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Chapter 1
Tessent MemoryBIST Overview

This manual introduces Tessent MemoryBIST and explains how to use Tessent MemoryBIST 
in the Tessent Shell based integration flow. This manual also provides complete reference 
information for all Tessent MemoryBIST-specific syntax used within the Tessent Shell 
environment.
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Why Consider Tessent MemoryBIST for Your 
Chip?

Tessent MemoryBIST is a highly advanced product that addresses several limitations of 
existing memory BIST solutions:

• Tessent MemoryBIST combines the power of memory BIST with tester 
programmability. When you use Tessent MemoryBIST, you include an embedded tester 
on the chip that enables you to test and diagnose the embedded memories with 
algorithms that were not considered while designing the chip—the post-silicon 
programmability.

• Tessent MemoryBIST also provides the ability to use different types of repairable 
memories in one controller. You can use repair analysis to implement a self-repair 
solution for repairable memories to significantly improve the chip yield without 
sacrificing a lot of silicon area overhead.

• Tessent MemoryBIST also provides significant flexibility and automation in designing 
an optimal memory BIST configuration to meet your chip power and test-time budget. 
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Tessent MemoryBIST Capabilities
Using Tessent MemoryBIST, you can perform the following:

• Test multiple memories using one memory BIST controller that has one or more BIST 
steps, where BIST steps are run in sequence.

• Test memories in parallel in one BIST step or in sequence in several BIST steps.

• Choose memory test algorithms from the Siemens EDA library of algorithms to be 
hard-coded into the memory BIST controller.

• Define one or more custom test memory algorithms to be hard-coded into the memory 
BIST controller.

• Run the memory BIST controller for all steps with the specific algorithms assigned at 
generation time (default configuration).

• Run the memory BIST controller in diagnostic mode where you can freeze on a specific 
BIST step, specific memory test port, or specific error count.

• Select a hard-coded memory BIST algorithm to be applied to a specific memory BIST 
step at the tester.

• Select an algorithm from a library of algorithms to be applied to a specific memory 
BIST step.

• Define a custom algorithm at tester time to be applied to a specific memory BIST step.

• Perform repair analysis on memories implementing different redundancy schemes such 
as row only, column only, or row and column.

Tessent MemoryBIST Library Algorithms
You can select algorithms for testing your memories from a library of built-in algorithms.
Below is a list of available library algorithms:

• SMarch

• SMarchCHKB

• SMarchCHKBci

• SMarchCHKBcil

• SMarchCHKBvcd

• ReadOnly

• LVMarchX
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• LVMarchY

• LVMarchCMinus

• LVMarchLA

• LVRowBar

• LVColumnBar

• LVGalPat

• LVGalColumn

• LVGalRow

• LVCheckerboard1X1

• LVCheckerboard4X4

• LVWalkingPat

• LVBitSurroundDisturb

The descriptions for the library algorithms listed above are available in the lib/tools/etv/
membistipg_algos folder of the tool tree. For details on each algorithm, refer to the 
“MemoryBIST Algorithms” section. Most of the LV* library algorithms have updated versions 
that have been optimized to eliminate redundant operations. Their descriptions are stored in the 
Tessent installation directory, along with a large variety of algorithms from the literature, such 
as the hammer read and write tests. These algorithms are available in the lib/technology/
memory_bist/algo folder of the tool tree, and can be encoded into the BIST engine as custom 
algorithms by supplying the descriptions to the tool.

User-Defined Algorithms
Often it is required to design specific test algorithms to target specific memory defects that are 
difficult to detect with the existing algorithms. To effectively test the memory, you might need 
to apply multiple algorithms to the same memory in a specific sequence. In some cases, you 
might choose to apply several algorithms to diagnose memory defects that are otherwise too 
difficult to identify.
For details on implementing user-defined algorithms, refer to the “Using Tessent User-Defined 
Algorithms” section.

Tessent MemoryBIST Library Operation Sets
You can select from a library of operation sets for generating waveforms to drive the memory. 
The list below shows the standard operation sets available for each type of memory BIST 
controller. The names of all operation sets are reserved names.
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• Async — This operation set applies to clockless RAMs. The operation set consists of 
three operations: Write, Read and ReadModifyWrite. Each operation is performed in 
four cycles (or ticks) of the reference clock used to control the memory BIST controller. 
Basic shadow reads used to detect some multi-port specific faults are added to the Read 
and ReadModifyWrite operations. This operation set is rarely used for modern 
memories.

• AsyncWR — This operation set is a variation of Async. The same operations (Write, 
Read and ReadModifyWrite) are performed in six cycles instead of four. Shadow reads 
are added to the Write operation.

• ROM — This operation set applies to ROMs and is typically used in combination with 
the ReadOnly library algorithm. It only includes two operations, Read and 
CompareMISR, each run in two cycles. The operation set can be used for ROMs with or 
without a clock input.

• Sync — This operation set applies to synchronous RAMs, that is memories that have a 
port with function clock. The three operations, Write, Read and ReadModifyWrite, are 
performed in two cycles each. Basic shadow reads, which are used to detect some multi-
port specific faults, are added to the Read and ReadModifyWrite operations. This 
operation set is compatible with most library algorithms. 

• SyncWR — This operation set is a variation of Sync. The only difference is that the 
Write operation is modified to include shadow reads to the Write operation.

• SyncWRvcd — This operation set is an extension of SyncWR and is typically used in 
combination with the SMarchCHKBvcd library algorithm. The operation set includes 12 
operations of two to three cycles that are listed in Table C-10 of the SMarchCHKBvcd 
Algorithm description. The operations allow for more complete testing of memory 
control signals, such as bit/byte write enables, read enable, and select. It also includes 
operations performing concurrent reads and writes that improve the coverage of multi-
port specific faults. 

• TessentSyncRamOps — This operation set is an extension of the SyncWRvcd operation 
set. It includes 25 operations, of two to three cycles each, that allow implementation of 
all library algorithms as well as a large variety of algorithms from the literature available 
in the lib/technology/memory_bist/algo directory. 

Additionally, several operations are available to optimize algorithms by reducing test 
time and the number of instructions required to implement them. This is important when 
using soft programmable controllers. These operations support fast address changes, 
switching of the address register in the middle of an operation, and other useful features. 
Refer to the “Optimizing Custom Algorithms and Operation Sets” section for more 
information on the subject

• TessentSyncRamOpsHR4 — This operation set is a variation of the 
TessentSyncRamOps operation set. The only difference is the implementation of the 
Read operation, which consists of four consecutive reads instead of two. It is a simple 
way of integrating hammer read tests into existing library or custom algorithms. Note 
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that even if the memory cell is read multiple times, the read result is only strobed 
(compared) once on the first read. Using the notation describing the MemoryBIST 
algorithms, the normal sequence describing the Read operation, (R0Rx), becomes 
(R0RxRxRx). Similarly, (R1Rx), becomes (R1RxRxRx). This means that a fault caused 
by the additional reads are detected in a subsequent phase of the algorithm. More 
information can be found in Knowledge Base Article MG604200 “Implementing 
Hammer tests for planar and FinFET memories with Tessent MemoryBIST”, available 
from Support Center.

• TessentSyncRamOpsHR6 — This operation set is similar to TessentSyncRamOpsHR4. 
The only difference is that the Read operation has six consecutive reads instead of four. 
The sequence for reading a 0 or a 1 becomes (R0RxRxRxRxRx) or (R1RxRxRxRxRx) 
respectively.

The library operation sets, especially TessentSyncRamOps, constitute a good starting point to 
create your own operation sets. The library operation sets are generic and not optimized for one 
type of memory. Custom operation sets might be required to accommodate specific timing 
requirements or modes of operation that can be controlled with UserN signals, where N varies 
from 0 to 23. The source of all library operation sets can be found in the lib/technology/
memorybist/opset folder of the tool tree.

Custom Operation Sets
New memories can have multiple modes that require different waveforms to perform different 
operations on the memory. Tessent MemoryBIST enables you to define new operation sets at 
generation time to address these requirements. Combined with the algorithm programming 
capability, you have a very powerful combination to test and diagnose the memories in different 
operation modes under different access conditions.
The standard Tessent MemoryBIST library operation sets assume memories with synchronous 
write and read ports (Sync* OperationSets), or asynchronous write and read ports (Async* 
OperationSets). Memories with synchronous write and asynchronous read ports need a custom 
operation set.

Memories with asynchronous read ports output read data in the same cycle as the active read 
enable. This requires an OperationSet with the StrobeDataOut in the first Tick of a Read 
operation. The custom OperationSet shown in Figure 1-1 can be used for memories with 
synchronous write and asynchronous read ports.
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Figure 1-1. Synchronous Write, Asynchronous Read Custom OperationSet

OperationSet (SyncW_AsyncR) {
  Operation (Write) {
    Tick {
         WriteEnable       : On;
         ShadowReadEnable  : On;
         ShadowReadAddress : On;
    }
    Tick {
         WriteEnable       : Off;
         ReadEnable        : On;
         ShadowReadAddress : Off;
    }
  }
  Operation (Read) {
    Tick {
         StrobeDataOut;
         ReadEnable        : On;
         ShadowReadEnable  : On;
    }
    Tick {
         ReadEnable        : On;
         ShadowReadEnable  : On;
    }
  }

  Operation (ReadModifyWrite) {
    Tick {
         StrobeDataOut;
         ReadEnable        : On;
         ShadowReadEnable  : On;
    }
    Tick {
         WriteEnable       : On;
         ReadEnable        : Off;
         ShadowReadAddress : On;
    }
  }
}

For details on implementing a custom OperationSet, refer to the “Using Tessent User-Defined 
Algorithms” section and the “OperationSet” wrapper description.
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Chapter 2
Getting Started

This chapter describes how to start inserting Tessent MemoryBIST within Tessent Shell and 
includes examples showing the most common scenarios and usages. If you are inserting 
memory BIST in a design with repairable memories, some of the flow steps have variations that 
are also described.
For a complete set of wrapper and property descriptions, refer to the “MemoryBist” and 
“MemoryBisr” sections of the “DftSpecification Configuration Syntax,” “PatternsSpecification 
Configuration Syntax,” and “DefaultsSpecification Configuration Syntax” sections in the 
Tessent Shell Reference Manual. The flow and main steps are the same for inserting memory 
BIST at the sub-block, physical block, or chip level.
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DFT Flow Using Tessent Shell
Tessent MemoryBIST in Tessent Shell has a high-level flow sequence.
Figure 2-1 illustrates the high-level sequence of steps required to insert memory BIST into a 
design. Each step in the figure links to more detailed information about the design-for-test flow, 
including examples.

Figure 2-1. Design Flow for Tessent Shell MemoryBIST

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Prerequisites
To insert memory BIST into your design, you must have either an RTL or a gate-level netlist as 
well as memory BIST libraries. 
If the design contains standard cells, the Tessent cell library or ATPG library is also required. 
For other IP blocks that do not have either RTL or library models, the simulation model can be 
loaded using the read_verilog or read_vhdl command with the -interface_only option. This 
instructs the tool to ignore the internals of all modules specified in the filename argument and 
extract only the module port definitions and parameters.

Design Flow Dofile Example 
A sample dofile in this section shows you how to set up a design flow.
The following example dofile sets up the design flow described in Figure 2-1.

Design Loading
set_context dft -rtl 
read_cell_library ../library/adk.tcelllib 
set_design_sources -format verilog -y {../library/mem ../design/rtl} \ 

-extension v 
set_design_sources -format tcd_memory -y ../library/mem -extension lib 
read_verilog ../design/rtl/blockA.v 
set_current_design blockA 

Specify and Verify DFT Requirements
set_design_level physical_block 
set_dft_specification_requirements -memory_test on 
add_clocks CLK -period 12ns -label clka 
check_design_rules  

Create DFT Specification
set spec [create_dft_specification] 
report_config_data $spec 

Process DFT Specification
process_dft_specification 

Extract ICL
extract_icl 

Create Patterns Specification
create_patterns_specification 
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Process Patterns Specification
process_patterns_specification 

Run and Check Testbench Simulations
run_testbench_simulations  
check_testbench_simulations  

Test Logic Synthesis
 run_synthesis 
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Design Loading
Design Loading is the first step in Tessent MemoryBIST insertion using Tessent Shell. The step 
consists of setting the correct context, reading libraries, reading the design, elaborating the 
design, and loading and reporting the design data.

Figure 2-2. Design Loading
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Set the Context
In Tessent Shell, setting the context means two things. First and foremost, you must set the 
context to dft for memory BIST hardware to be created. Second, you must specify whether the 
design type to be read in is written in RTL. If so, you must specify -rtl. If the design to be read 
in is a gate-level Verilog netlist, you should specify -no_rtl. When using the -no_rtl mode, a 
concatenated netlist is written out at the end of the dft insertion phase. In rtl mode, the file 
structure of the input design is preserved and only the modified design files are written out at the 
end of the dft insertion phase along with the newly created test IP. The netlist to be read in can 
be Verilog, VHDL, or mixed language. 
If memory BIST has been inserted into a block that is now being integrated at a higher hierarchy 
level of the design, you must open the Tessent Shell Data Base (TSDB) of the child block (the 
memory BIST inserted sub_block or physical_block) using the open_tsdb command. If you are 
using the same TSDB for both child and parent, you can reuse the TSDB (the default is 
tsdb_outdir), and you do not need to explicitly open the default TSDB because the existing 
content of the TSDB output directory is automatically visible to the tool. See the 
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set_tsdb_output_directory command description for how to control the name and location of the 
TSDB output directory.

Example 1
The following example sets the context to dft and specifies that the design to be read in is 
written in RTL.

set_context dft -rtl

Example 2
The following example sets the context to dft and specifies that a gate-level netlist is read in.

set_context dft -no_rtl

Example 3
The following example opens a child’s TSDB directory and therefore, exposes it at the parent 
level.

open_tsdb ../core_tsdb_outdir

Read the Libraries
You can use the read_cell_library command to read in the library file for library cells that are 
instantiated in the design. The MemoryBIST library suffices for RTL-only designs. However, 
typical designs also contain library cells instantiated in the RTL for pad cells and clock control, 
requiring additional libraries. When the Tessent cell libraries do not include the pad 
information, the LV pad library is natively supported by the read_cell_library command and can 
be used to augment the Tessent cell libraries with the pad information.
Memory BIST libraries are considered as Tessent core descriptions (TCDs) in Tessent Shell and 
are loaded and referred to as TCDs. The memory BIST models for the LV flow are compatible 
with Tessent Shell without modification and are loaded and referred to in the flow as TCDs.

Examples
Example 1

The following example shows how to read in the Tessent cell library file for the pad IO macros.

read_cell_library ../library/adk_complete.tcelllib

Example 2
The following example shows how to explicitly read in memory BIST models.

read_core_descriptions ../library/128x64_RAM.memlib
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Example 3
The following example shows how to use set_design_sources to reference memory BIST 
libraries. Using the tcd_memory type for the -format option indicates to the tool to expect a 
memory library file to be read in.

set_design_sources -format tcd_memory -y ../library/memlibs -extensions \ 
memlib 

Flow Variation for Repairable Memories
The memory library files used as input to Tessent MemoryBIST must contain specific wrappers 
to enable the generation and insertion of repair logic. 

The RedundancyAnalysis wrapper is necessary to enable the generation of the BIRA logic that 
calculates the repair solution for a memory. The PinMap sub-wrapper inside the 
RedundancyAnalysis wrapper is necessary to enable the generation of the BISR logic that is 
used to transfer the repair solution to the memory. 

Typically, memory BIST library files are provided and certified by a memory IP provider and 
can be used without further modification.

Read the Design
In Tessent Shell, after setting the context and loading the required libraries, you can use the 
read_verilog command to read in the design. 

Examples
Example 1

The following example shows how to read in one netlist that can be either RTL or gate level.

read_verilog ../netlist/cpu_top.v

Example 2
The following example shows how to specify a file and a directory library in which to search for 
Verilog modules. 

set_design_sources -format verilog -v ../design/top.v \ 
-y ../design -extensions v gv 

 

Note
set_design_sources should only be set once for each format type. If multiple 
set_design_sources are used for a given format, the last set_design_sources for the given file 

type is used. The -v and -y options accept a list of paths, if needed.
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Elaborate the Design
The next step in design loading is to elaborate the design using the set_current_design 
command. 
The set_current_design command specifies the root of the design that all subsequent operations 
are acted on. If any module descriptions are missing, design elaboration identifies them. For 
memory BIST insertion, modules are allowed to have no definition if they do not contain 
memories or do not contain clock tree elements in the fan-in of the memories. You can specify 
them with the add_black_box -module command.

Example
The following example shows how to use the set_current_design command.

set_current_design blockA

Load and Report the Design Data
You can load memory placement and power domain data, and use several commands to check 
the loaded design and associated libraries. 
You can load memory placement (DEF, or Design Exchange Format files) and power domain 
data (UPF, or Unified Power Format and CPF, or Common Power Format files) in this step. The 
data from these files affects the memory BIST planning in terms of memory partition and 
memory BIST controller allocation.

The following section provides examples of the more commonly used reporting commands.

Examples
Example 1

The following example runs set_design_sources and then reports the designs sources that are 
referenced.

> set_design_sources -format verilog -y {../data/design/mem \ 
../data/design/rtl} -extension v 

> report_design_sources  
// ICL search_design_load_path: activated 
// BoundaryScan search_design_load_path: activated 
// Scan search_design_load_path: activated 
// ---------------------------------------------------- 
// format type path file extensions 
// ------- ---- -------------------- --------------- 
// Verilog dir '../data/design/mem' 'v v.gz' 
// Verilog dir '../data/design/rtl' 'v v.gz' 
 



Tessent™ MemoryBIST User’s Manual, v2022.438

Getting Started
Load and Report the Design Data

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2
The following example reports the memory models as well as other test core descriptions 
currently loaded in Tessent Shell. Using the -levels 1 option displays only the core name and 
type. When this option is not set, the entire model content displays.

> report_config_data -partition tcd -levels 1 
Core(SYNC_1R1W_16x8) { 

Memory { 
// Not shown 

} 
} 
Core(SYNC_1RW_32x16) { 

Memory { 
// Not shown 

} 
} 
Core(SYNC_2R2W_12x8) { 

Memory { 
// Not shown 

} 
} 
 

Note
report_config_data displays all core descriptions currently loaded, in addition to memory 
models.

Example 3
The following example reports the memory instances found during design elaboration.

> report_memory_instances  
// 
// Memory Instance: blockA_l1_i1/blockA_l2_i1/mem1 
// ---------------------------------------------- 
// bist_data_in_pipelining : off 
// physical_cluster_override : 
// power_domain_island : 
// test_clock_override : 
// use_in_memory_bist_dft_specification : auto 
// use_in_memory_bisr_dft_specification : auto 
// 
// Memory Instance: blockA_l1_i1/blockA_l2_i1/mem2 
// ---------------------------------------------- 
// bist_data_in_pipelining : off 
// physical_cluster_override : 
// power_domain_island : 
// test_clock_override : 
// use_in_memory_bist_dft_specification : auto 
// use_in_memory_bisr_dft_specification : auto 
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Note
This report command provides additional property information as well the memory instance 
path. These properties can be set indirectly by loading additional design data such as a DEF 

file to designate a physical cluster. Most properties can be changed explicitly by using the 
set_memory_instance_options command.

Example 4
This example shows how to read in a DEF file containing the placement information of the 
memories and a UPF file describing the power domain associated with the memories.

read_upf ../data/design/power/blockA.upf 
read_def ../data/design/layout/blockA.def 
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Specify and Verify DFT Requirements
The next steps to insert MemoryBIST in Tessent Shell are specifying the DFT requirements, 
adding constraints, and verifying whether the DFT requirements specified are correct by 
running Design Rule Checking (DRC).

Figure 2-3. Specify and Verify DFT Requirements
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Set DFT Specification Requirements
To insert MemoryBIST, you must specify the DFT specification requirements with the 
set_dft_specification_requirements command. This enables the DRC specific to memory BIST 
and instructs the create_dft_specification command to include the MemoryBist wrapper.

Example
The following example shows how the memory BIST DFT specification requirements are 
specified and how the design level is defined as the chip level.

set_dft_specification_requirements -memory_test on 
set_design_level chip 

Flow Variation for Repairable Memories
When the design contains repairable memories, you must consider additional options when 
using the set_dft_specification_requirements command.

When using
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set_dft_specification_requirements -memory_test on 
 

the following additional options associated with repairable memories are set by default:

-memory_bisr_chains auto 
-memory_bisr_controller auto 
 

In most cases, you do not need to change these default values.

When -memory_bisr_chains is set to auto, if the current design instantiates blocks containing 
repairable memories that are not already connected to a memory BISR register, BISR registers 
are added. When -memory_bisr_controller is set to auto and set_design_level is set to chip, a 
BISR controller is added to the design.

If -memory_bisr_chains and -memory_bisr_controller are set to off, BISR chains and a BISR 
controller are not inserted into the design, effectively disabling BISR for the entire design.

To disable generation of BISR registers for specific memory instances, use the 
set_memory_instance_options command with the -use_in_memory_bisr_dft_specification 
option set to off. The following example disables the generation of the BISR register for 
memory instance mem4 even if the memory has repair resources.

SETUP> set_memory_instance_options blockA_clka_i1/mem4 \ 
-use_in_memory_bisr_dft_specification off 

Add Properties and Constraints
You can add or change properties and constraints that affect DFT specification creation, as 
shown in the following examples.

Examples
Example 1

To insert memory BIST at the chip level, four TAP pins (TDI, TCK, TMS, and TDO) must be 
available at the chip level and connected to pad IO macros. TRST, which is optional, can be an 
output pin of a power-up detector. If the TAP pins are already named tck, tdi, tms tdo, and trst, 
the function is automatically set.

The following example shows how to specify the five TAP pins (tck_p, tdi_p, tms_p, trst_p, 
tdo_p). 

set_attribute_value tck_p -name function -value tck 
set_attribute_value tdi_p -name function -value tdi 
set_attribute_value tms_p -name function -value tms 
set_attribute_value trst_p -name function -value trst 
set_attribute_value tdo_p -name function -value tdo 
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Example 2
The following example adds additional attributes for connecting essential fuse box connections 
at the chip level that are not inferred from the fuse box model.

set_config_value -in /DftSpecification(top,rtl)MemoryBisr/Controller/\ 
repair_clock_connection clkb 

set_config_value -in /DftSpecification(top,rtl)MemoryBisr/Controller/\ 
programming_voltage_source vddq 

set_config_value -in /DftSpecification(top,rtl)MemoryBisr/Controller/\ 
repair_trigger_connection bisr_rstn 

Example 3
You can use the DefaultsSpecification wrapper to change many of the built-in default values to 
match your preferences and requirements. The defaults setting mechanism also comes with a 
hierarchy of DefaultsSpecification wrappers that enable you to have company, group, and user-
level defaults. 

The following example shows how you can create a company memory BIST 
DefaultsSpecification.

Generate a file with all of the default options for memory BIST:

report_config_syntax DefaultsSpecification/DftSpecification/MemoryBist \ 
> company.tessent_defaults 
 

The following is a snippet from the company.tessent_defaults file:

DefaultsSpecification(<policy>) { // legal: company group user 
DftSpecification { 

MemoryBist { 
clock_partitioning : <string>;// legal : 

// (per_clock_domain) 
// per_sync_clock_group 

 
max_steps_per_controller : <int>; // default: unlimited 
max_memories_per_step : <int>; // default: unlimited 
max_test_time_per_controller : <time>; // default: 500ms {  

// symbols: unlimited } 
max_power_per_step : <milli_watts>; // default: 500  

// { symbols:  
// unlimited } 

single_memory_dimension_per_step : <boolean>; // default: off 
ControllerOptions { 
... 
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You can use this file to create a company memory BIST DefaultsSpecification as follows:

DefaultsSpecification(Company) { 
DftSpecification { 

MemoryBist { 
clock_partitioning : per_clock_domain; 
max_steps_per_controller : 5;  
max_memories_per_step : 10; 
max_test_time_per_controller : 1000ms;  
max_power_per_step : 250;  
single_memory_dimension_per_step : Off; 
ControllerOptions { 
... 

 

The created DefaultsSpecification can be read automatically by referencing it in the 
.tessent_startup file or explicitly using the read_config_data command.

Define Clocks
The next step in Specify and Verify DFT Requirements is to define the clocks with the 
add_clocks command.
When elaborating the design, Tessent Shell automatically traces clocks from the clock pins of a 
memory to a clock source.

For a detailed explanation of defining clocks and the associated clock DRC, please refer to the 
add_clocks command in the Tessent Shell Reference Manual.

Examples
Example 1

The following example shows that with a simple clock path (in this case, a path from the 
primary design clock pin to memories that consists of wires and buffers), you need to only 
define the clock period and reference the clock source pin. The reason is that the clock path is 
automatically traced from the memory being tested to the clock source pin. The -label option 
enables you to specify a symbolic name. If you do not set this option, a label name is generated 
automatically.

add_clocks CLK -period 12ns -label blockA_ram_clk

Example 2
The following example defines an internal clock source from a PLL that drives the memories. 

add_clocks clk_ref -period 10ns -label clk_ref 
add_clocks U_PLL/VCO -label clk_100mhz -reference U_PLL/REF \ 

-freq_multiplier 4 
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The first add_clocks command defines the clock source that is the reference for the PLL. The 
second add_clocks command defines the internal clock source that drives the memories with 
reference to an input pin of the same instance. The DRC traces this reference pin to its source, 
which is the clk_ref port in this case.

Run DRC
The next step in Specify and Verify DFT Requirements is to run Design Rule Checking (DRC) 
to make sure all the constraints are correct. Once DRC is clean, Tessent Shell moves from the 
SETUP to the ANALYSIS prompt.

check_design_rules 

If your design includes clock gating cells in the memory clock path, see the 
add_dft_clock_enables command description. If your design includes multiplexers that must be 
controlled, see the add_dft_control_points command description. And finally, to insert 
multiplexers in the memory clock paths, see the add_dft_clock_mux command description.

If the design setups have any issues such as incorrectly defined clocks, clock DRC rule 
violations occur and you must address them before you can proceed to the next flow step.

Flow Variation for Repairable Memories
BISR chains are connected according to the contents of a file named 
<design_name>.bisr_segment_order that is specified with the DftSpecification/MemoryBisr/
bisr_segment_order_file property. The file is automatically generated in the current working 
directory when running check_design_rules and contains a list of memory instances defining 
the BISR chain order. By default, the list is ordered by power domain islands (if a UPF or CPF 
file has been loaded) and memory instance names. The order is also affected by the physical 
memory placement if a DEF file has been loaded. 

If the default BISR chain order is not satisfactory, you can affect BISR chain ordering in one of 
two ways. The first consists of manually modifying the order of the memory instance names in 
the <design_name>.bisr_segment_order file before executing the process_dft_specification 
command. If you need to re-run the check_design_rules analysis later either during the same 
Tessent Shell invocation or a subsequent invocation to reuse the modified 
<design_name>.bisr_segment_order file, you must specify the 
set_dft_specification_requirements -bisr_segment_order_file command option when still in 
setup mode. 

For example, the following command indicates that the file modA.bisr_segment_order should 
be preserved and used to determine the BISR chain order when the next check_design_rules 
command is run.

SETUP> set_dft_specification_requirements -bisr_segment_order_file \ 
modA.bisr_segment_order 

 



Getting Started
Run DRC

Tessent™ MemoryBIST User’s Manual, v2022.4 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The second way of affecting the BISR chain order consists of reading a DEF file corresponding 
to the design using the read_def command. The file should be loaded in Tessent Shell during 
setup mode after the set_current_design command is performed. For example, the following 
command reads the DEF file corresponding to design modA. The BISR chain ordering is 
determined based on the memory placement information found in the DEF file.

SETUP> read_def modA.def 
 

Note
The file name of the bisr_segment_order_file is arbitrary and does not need to be the default 
name.
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Create DFT Specification
The next step is to create a DFT specification.
Use the create_dft_specification command to create a default DFT specification based on the 
DFT requirements specified in the previous step. You can use the report_config_data command 
to report the created DFT specification. Several different ways are available to edit or configure 
the DFT specification to meet the custom requirements.

Figure 2-4. Create DFT Specification
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Invoke create_dft_specification
Based on the DFT specification requirements described in the previous step, a DFT 
specification is automatically created using the create_dft_specification command. This DFT 
specification is stored in memory. 
To report the DFT specification in memory, use the report_config_data command. The DFT 
specification includes the IjtagNetwork wrapper to specify the access circuitry needed to 
program the BIST controllers and the MemoryBist wrapper to specify the memory BIST 
configuration. The IJTAG network is fully compliant with the 1687 IEEE standard.
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Example
In the following example, the DFT specification generated with the create_dft_specification is 
stored in a variable called dft_spec so that the variable can be used to report the DFT 
specification.

set dft_spec [create_dft_specification] 
report_config_data $dft_spec 

Edit/Configure the DFT Specification According to 
Your Requirements

Use one of the following methods to edit or configure the created DFT specification according 
to your requirements. You do not need to edit the DFT specification if want to use the default 
configuration the way it is.

Method 1: Change design constraints and regenerate the DFT specification
In this method, after generating a DFT specification, you return to setup mode and change one 
of the memory instance options and regenerate the DFT specification. In this case, the 
physical_cluster_size_ratio is changed from the default of 20% to 40%.

set_system_mode setup 
set_memory_instance_options -physical_cluster_size_ratio 40 
check_design_rules 
create_dft_specification -replace 

Method 2: Use the GUI to edit the DFT specification
In this method, you use the GUI to edit the DFT specification that has been created. 

First, open the GUI with the display_specification command. The GUI displays the DFT 
specification based on the DFT requirements specified in the Specify and Verify DFT 
Requirements step. The edits you make and apply with the GUI update the DFT specification in 
memory. If you want the flow to work next time without the GUI edits and be more script-
based, you can use the report_config_data command to display the edits you made, and then you 
can add them to the DFT specification using the read_config_data command.
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Figure 2-5. GUI to Edit the DFT Specification

Method 3: Modify the DFT specification in memory
An alternative method is to modify the DFT specification with the add_config_element and 
set_config_value commands. This way, every time you run the same flow, the edits are called, 
therefore making your Tcl file or dofile repeatable through iterations, if necessary.

Validate the DFT Specification
In this optional but recommended step, you can validate the edits you made to the DFT 
specification to make sure no errors exist before you proceed to the next step. 
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Example
The following example shows how to validate your DFT specification to check for issues or 
mistakes before processing it.

process_dft_specification -validate_only
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Process DFT Specification
The next step is to process the DFT specification that was created, edited, and validated in the 
previous step. This step creates and inserts the hardware for all the components that are in the 
DFT specification.

Figure 2-6. Process DFT Specification
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Create DFT Hardware with the DFT Specification
Use the process_dft_specification command to generate and insert into the design all DFT 
hardware requested with the DFT specification. For Tessent MemoryBIST, when inserting at 
the chip level, the TAP controller is inserted. When inserting memory BIST at the physical and 
sub-block levels, an IJTAG host scan interface is inserted.

Example
The following example shows how to generate and insert into the design the hardware requested 
with the DFT specification.

process_dft_specification 
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Extract ICL
The Extract ICL step verifies the proper connectivity of the ICL modules that were inserted with 
the process_dft_specification command and, when no DRC violations are detected, extracts the 
top-level ICL description. 
The extract_icl command also creates an SDC file that can be used for synthesis. Please refer to 
the RTL Design Flow Synthesis section for more information.

For a more in-depth explanation of the IJTAG network and associated data such as the ICL used 
to control the inserted memory BIST, refer to the Tessent IJTAG User’s Manual.

Tools downstream use this for creating patterns. You can use the open_visualizer command to 
debug ICL extraction DRC violations.

Figure 2-7. Extract ICL
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Preparation for Pattern Generation
The extract_icl command prepares the current design for pattern generation by finding all 
modules (both Tessent instruments and non-Siemens EDA instruments) with their associated 
ICL modules and, if no DRC violations are detected, creates the ICL for the current design. 
The root of the design was specified with the set_current_design command during design 
elaboration in the Design Loading step. The Create Patterns Specification and Process Patterns 
Specification steps use the ICL that was created for the root of the design. You can use the 
open_visualizer command to debug ICL extraction DRC violations. Refer to the “Debugging 
DRC Violations with Tessent Visualizer” section in the Tessent IJTAG User’s Manual.
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Example
The following shows how to extract all ICL modules to the root of the design. The example 
shows the transcript when performing ICL extraction at the current_design level.

INSERTION> extract_icl  
// Note: Updating the hierarchical data model to reflect RTL design 
changes. 
// Module 'blockA' synthesized (Time = 1.30 sec). 
// Module 'blockB' synthesized (Time = 1.02 sec). 
// Module 'core' synthesized (Time = 1.00 sec). 
// Warning: Rule FN1 violation occurs 534406 times 
// Warning: Rule FP13 violation occurs 108 times 
// Flattening process completed,  design_cells=369  leaf_cells=242  
// library_primitives=115  netlist_primitive=6443  sim_gates=2165  PIs=9  
POs=2  
// CPU time=1.07 sec. 
// ---------------------------------------------------------------------
------ 
// Begin circuit learning analyses. 
// -------------------------------- 
// Learning completed, CPU time=0.08 sec. 
// ---------------------------------------------------------------------
------ 
// Begin ICL extraction. 
// --------------------- 
// ICL extraction completed, ICL instances=27, CPU time=0.42 sec. 
// ---------------------------------------------------------------------
------ 
// Writing ICL file : 
// ./tsdb_outdir/dft_inserted_designs/core_rtl.dft_inserted_design/
core.icl 
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Create Patterns Specification
The Create Patterns Specification step creates the default patterns specification. The patterns 
specification is a configuration file that tells you what tests are created using 
process_patterns_specification. You can edit or configure the default patterns specification to 
generate the patterns specification you want.

Figure 2-8. Create Patterns Specification
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Automatically Created Patterns Specification
The default patterns specification, which is created with the create_patterns_specification 
command, is only stored in memory. 
A copy is written into the patterns directory of the TSDB output directory when running the 
process_patterns_specification command and the validation generated no errors. To see the 
specification, use the report_config_data command. 

Example
The following example creates the default signoff patterns specification and stores the 
specification in a variable called pat_spec and then uses this variable to report the patterns 
specification in memory.

set pat_spec [create_patterns_specification] 
report_config_data $pat_spec 
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Edit/Configure the Patterns Specification 
According to Your Requirements

Use one of the following methods to edit or create a patterns specification according to your 
requirements. Typically, you do not need to edit the default signoff patterns specification. The 
reason is that it exercises all of the inserted test logic, which is usually the IJTAG network and 
associated instruments, as well as all of the memory BIST controllers. Only the manufacturing 
patterns specification may need editing based on your requirements. 

Method 1: Edit the patterns specification in memory
This is the preferred method because as you edit the patterns specification in memory, the 
commands that are used are specified in the Tcl or dofile. This approach enables the edits to be 
easily repeated for the next iteration by using only scripts.

Example
The following example shows that the default value for tester_period is 100ns and can be 
changed by editing the patterns specification in memory. For a comprehensive set of 
configuration values that are changeable, refer to the PatternsSpecification section in the 
Tessent Shell Reference Manual.

set pat_spec [create_patterns_specification] 
set_config_value -in $pat_spec/Patterns(MemoryBist_P1)/tester_period 50ns 

Method 2: Write out the patterns specification, edit the file, and read the file back in
Although this method is easier, it is not recommended because every time the primary Tcl script 
or dofile runs, the patterns specification that is written out overwrites your edits. To make sure 
your edits are reusable and repeatable using scripts, make a copy of the patterns specification 
and then edit the specification before reading it back in.

Example
The following example writes the patterns specification into a file called 
initial_mbist_cfg.pat_spec. After making the edits you want in a copy of this file, this file is 
read back in. Note that the file that is written out is different from the edited file that is read back 
in.

create_patterns_specification 
report_config_data 
write_config_data initial_mbist_cfg.pat_spec -wrappers \ 

PatternsSpecification(blockA,signoff) 
read_config_data bonding1_config_edited.pat_spec 
report_config_data 

Method 3: Use the GUI to edit the Patterns Specification
The third option is to use the add_config_tab PatternsSpecification() command and edit the 
patterns specification through the GUI. 
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Example
The following example invokes the patterns specification for blockA.

add_config_tab PatternsSpecification(blockA,rtl,signoff) 
 

In this example, you use the GUI to edit the patterns specification that has been created. The 
edits you make and apply with the GUI update the patterns specification in memory. If you want 
the flow to work next time without the GUI edits and be more script-based, you can use the 
report_config_data command to display the edits you made, and then you can add them to the 
DFT specification using the read_config_data command.

Figure 2-9. GUI to Edit the Patterns Specification
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Process Patterns Specification
The Process Patterns Specification step creates the patterns and testbenches.

Figure 2-10. Process Patterns Specification

Process Patterns According to the Patterns Specification . . . . . . . . . . . . . . . . . . . . . . . . 56

Process Patterns According to the Patterns 
Specification

In this step, you create the patterns or testbenches according to either the default patterns 
specification or to the edited patterns specification that you created in the previous step.

Example
The following example generates the testbenches.

process_patterns_specification 
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Run and Check Testbench Simulations
The Run and Check Testbench Simulations step runs simulations of the memory BIST 
verification and then checks the results.

Figure 2-11. Run and Check Testbench Simulations
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Run Simulations
Use the run_testbench_simulations command to invoke a simulation manager to run a set of 
simulation testbenches. 
The run_testbench_simulations command compiles and simulates the testbenches generated 
from the process_patterns_specification command that are located in <tsdb_outdir>/patterns/
<design>.patterns_signoff.

For a detailed description of the run_testbench_simulations command and its usage, see the 
Tessent Shell Reference Manual.

Example
The following example runs simulations of all patterns defined in the PatternsSpecification.

run_testbench_simulations 
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Check Results
Use the check_testbench_simulations command to check the status of the simulations that were 
previously launched by the run_testbench_simulations command.
For a detailed description of the check_testbench_simulations command and its usage, see the 
Tessent Shell Reference Manual.

Example
The following example checks the simulation results for errors.

check_testbench_simulations 

Formal Verification
Tessent Shell based products currently do not generate scripts for use with Synopsys Formality. 
You can however, set constraints in your design and manually create a script that is used with 
Formality. For guidance on how this is accomplished, refer to the “Formal Verification” 
Appendix in the Tessent Shell User’s Manual.
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Test Logic Synthesis
The test logic synthesis process is differs between RTL or gate-level designs. The following 
sections outline the different options.

Note
During the synthesis of MemoryBIST logic, two types of warnings related to the 
optimization of registers may be issued by synthesis tools. These warnings may be ignored 

as synthesis tools are very reliable. Additionally, formal verification can be used to confirm the 
functionality is not affected. The warning types are:

• Removal of registers with no fanout, along with the combinational logic driving the 
inputs.

• Registers with inputs and outputs that are always identical are merged.

Figure 2-12. Test Logic Synthesis
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RTL Design Flow Synthesis
The RTL synthesis flow that integrates the MBIST RTL and associated test logic with the 
design RTL is an automated flow. The following sections outline the process.
Using Generated SDC for MemoryBIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Synthesizing the RTL Design with Test Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Using Generated SDC for MemoryBIST
The extract_icl and extract_sdc commands both create a Synopsys Design Constraints (SDC) 
file that can be used for synthesis, layout and static timing analysis (STA). Because the 
extract_sdc command requires ICL, it needs to be run after extract_icl.
When extract_icl is run on a physical block containing sub-blocks, the SDC constraints are 
generated for the physical module as well as the sub-blocks.

The created SDC is composed of several procedures that can be integrated into a design 
synthesis script. For more information and examples on how to use the generated SDC procs, 
refer to the “Timing Constraints SDC” chapter in the Tessent Shell User’s Manual. Additional 
information is also provided specific to MemoryBIST Instrument proc usage.

Synthesizing the RTL Design with Test Logic
This process is automated by a script that can be created and then processed by a synthesis tool 
to synthesize an RTL design that has been DFT inserted. 
The write_design_import_script command can be used to generate a script that can be processed 
by a synthesis tool to load the RTL design that has been DFT inserted. The script file written 
can be combined with the SDC generated during extract_icl to synthesize a physical block or 
chip design unit. 

For additional synthesis information, refer to the “Synthesis Guidelines for RTL Designs with 
Tessent Inserted DFT” and “Tessent Shell Workflows” sections in the Tessent Shell User’s 
Manual.
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Gate Level Design Flow Synthesis
The gate level design flow synthesis is a fully automated flow and only requires the 
run_synthesis command to synthesize the test logic and integrate into the design,
Run Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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Run Synthesis
The run_synthesis command only synthesizes test logic RTL contained within the TSDB.
When creating and inserting memory BIST, boundary scan or IJTAG logic, the generated RTL 
is automatically written to the TSDB during process_dft_specification. 

The run_synthesis command invokes a synthesis manager to perform synthesis of the test logic 
RTL.

For a detailed description of the run_synthesis command and its usage, refer to the Tessent Shell 
Reference Manual.

Example
The following example performs synthesis for a design and can be run at the physical_block or 
top design level.

          run_synthesis

Concatenate Netlist Generation
When run_synthesis completes successfully, a concatenated netlist of the design that contains 
the synthesized test logic and modified design modules is automatically created and placed in 
the dft_inserted_designs directory of the TSDB. 

Run and Check Testbench Simulations with a 
Gate Level Netlist

In order to run MemoryBIST gate level verification on a design with MemoryBIST previously 
inserted in the RTL, regeneration of the signoff patterns is required. The main steps to do this 
are outlined below.

Prerequisites
• A gate level design with MemoryBIST previously inserted in the RTL
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Procedure
1. Set context to IJTAG patterns

2. Point to the TSDB that was used to do MemoryBIST RTL insertion

3. Read cell and memory libraries

4. Read the gate level netlist

5. Read the design data from the TSDB, excluding the RTL

6. Set current design and check design rules

7. Create and process pattern specification

8. Run and check testbenches

Examples
The following example runs the steps outlined above for a design “cpu_top”:

set_context patterns -ijtag
set_tsdb_output_directory tsdb_outdir
read_cell_library adk.tcelllib
read_cell_library memory.lib
read_verilog cpu_top.vg
read_design cpu_top -design_id gate -no_hdl
set_current_design cpu_top
check_design_rules
create_patterns_specification
process_patterns_specification
set_simulation_library_sources -v adk.v -v ram.v
run_testbench_simulations
check_testbench_simulations
check_testbench_simulations -report_status
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Chapter 3
Planning and Inserting MemoryBIST

The topics in this chapter cover the planning, creation and subsequent insertion of the memory 
BIST logic. The chapter explains the planning step and how you can influence the Tessent 
MemoryBIST tool to give you a DFT plan, that is, a DftSpecification that matches your 
intended design. It shows how you can review and further edit this DftSpecification through a 
variety of tool features, including a GUI. Finally this chapter explains the validation and 
subsequent execution of the DftSpecification to have Tessent MemoryBIST generate the RTL 
and insert the logic into your design.
Design and Library Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Specifying and Verifying MemoryBIST Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Enabling Memory BIST and Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Loading Layout Placement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Loading Power Domain Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Adding Clocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Changing Default Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Adding Constraints Before Design Rule Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Creating, Modifying, and Validating a MemoryBIST DFT Specification . . . . . . . . . . . 74
Adding Constraints Before Creating an Initial DftSpecification . . . . . . . . . . . . . . . . . . . . 74
Parameter Selection Impacts on Performance and Area. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
MemoryBIST Partitioning Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Creating the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Review and Basic Edits of the DftSpecification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Re-Creating the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Validating the DftSpecification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Additional Editing Options of the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Processing the DftSpecification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Design and Library Requirements
You must have loaded the design that the memory BIST and repair solution shall be inserted 
into. You must also load the memory models. 
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Note
Legacy models you may have from the LogicVision design flow of memory BIST can be 
read in using the read_core_descriptions command. These are translated internally to the 

new description described in the Tessent Core Description (TCD)/Memory section. Note that 
Tessent Shell requires the LogicVision MemoryTemplate name to match the specified 
CellName as shown below:

MemoryTemplate(mydram) {
MemoryType : SRAM;
CellName : mydram;
.
.
.

}

A design flow requiring memory BIST and repair logic insertion into a gate-level design needs 
to use the Tessent Cell library. For top-level insertion the library must include pad cells, or a pad 
cell library must be loaded. For an RTL level flow, only the testbench simulation step at the end 
of the flow requires a library, as described in “Run and Check Testbench Simulations”.

Finally, you must have set the current top level design using the set_current_design command 
as well as the design hierarchy level of operation using set_design_level.
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Specifying and Verifying MemoryBIST 
Requirements

In this section you learn how to first enable the MemoryBIST product in Tessent Shell, define 
clocks, set defaults that globally influence the DftSpecification, and how you can review and 
modify key memory options on a per-instance basis. Additional data you can give to the Tessent 
MemoryBIST tool are layout location information through a DEF file and power information 
through an UPF or CPF file.
The section concludes with running design rulechecks that enable you to proceed with creation 
of the memory BIST DftSpecification in the next step of the design flow. Tessent MemoryBIST 
then utilizes this DftSpecification to implement the memory BIST solution you want in your 
design.

Enabling Memory BIST and Repair  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Loading Layout Placement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Loading Power Domain Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Adding Clocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Changing Default Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Adding Constraints Before Design Rule Checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Enabling Memory BIST and Repair
After design loading and setting the current level, you first must tell Tessent Shell that you want 
to add Tessent MemoryBIST, and optionally the memory repair functionality.
You do this through the command set_dft_specification_requirements:

SETUP> set_dft_specification_requirements -memory_test on 
 

This command has a few parameters that Tessent MemoryBIST sets automatically. For 
example, Tessent MemoryBIST automatically enables its repair features, if the design has 
repairable memories loaded.

Note
If you have repairable memories in the current design, you must insert both the memory 
BIST and the memory repair logic at the same time for all such memories. 

The current memory BIST flow does not allow the addition of memory repair logic 
independently of the BIST logic. This is a flow restriction and applies to memories in the 
current design view that previously had BIST inserted, as well as to memories that have not. 
Tessent MemoryBIST issues a warning or an error, depending on your particular flow case.
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Tip
You may choose to disable the repair functionality for all memory instances using the 
set_dft_specification_requirements command, or for a subset of memory instances using the 

set_memory_instance_options command.

You can report all loaded memories, visible in the current design:

SETUP> report_memory_instances 
 

This reporting command lists the current Tessent MemoryBIST design information at the 
moment of command invocation. Please observe how the reported information changes, and 
becomes more and more detailed as you progress through the flow.

Loading Layout Placement Information
Tessent MemoryBIST takes the physical location of memories into consideration when it 
assigns memories to different controllers.
The physical location is only one of several factors that make up the partitioning of memories 
among controllers. A few of many other factors include the power consumption, power 
domains, and test time estimates. You provide the physical layout information through a 
standard DEF (Design Exchange Format) file. You also have the option to change the physical 
cluster size, which is a factor expressed as a percentage of the die diagonal, that determines if 
Tessent MemoryBIST assigns the current memory to a new controller or to an existing one.

After design rulechecks and an initial DftSpecification is created, you have the chance to 
override the chosen cluster assignment as shown in the example below. This example loads the 
DEF file for your design, including the physical location information for your memories, and 
changes the size of the physical cluster to 10%.

SETUP> read_def ../data/design/rtl/blockA.def 
SETUP> set_memory_instance_options -physical_cluster_size_ratio 10 

Loading Power Domain Information
Tessent MemoryBIST takes the power domain information of memories into consideration 
when it assigns memories to different controllers.
The power domain is only one of several factors that make up the partitioning of memories 
among controllers. Other factors include the power consumption, physical location in the 
layout, test time estimates, and others as outlined in “MemoryBIST Partitioning Rules”. You 
provide the power domain information through a standard UPF or CPF file, as shown in the 
example below.
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SETUP> read_upf ../data/design/rtl/blockA.upf 
//  Reading UPF file ../data/design/rtl/blockA.upf ... 
//  Finished reading UPF file ../data/design/rtl/blockA.upf. 

MemoryBIST controllers can only test memories within the same power domain, or power-
domain island. A power-domain island is created when a specific power domain lies within a 
different power domain. MemoryBIST will partition the memory instances and assign 
controllers within each power-domain island separately. This is done to avoid driving BIST 
signals across power domain boundaries. To illustrate, one controller can test mem3 and mem4 
in the figure below. However, memories mem0 and mem1 are on different power-domain 
islands causing MemoryBIST to generate a separate controller for each memory. 

Figure 3-1. Power-Domain Islands

After design rulechecks and during the creation of the initial DftSpecification, you have the 
option to observe the power domain assignment Tessent MemoryBIST derived from the UPF or 
CPF files. You can run the report_memory_instances command and reference the 
power_domain_island information for each memory instance, as shown below.



Tessent™ MemoryBIST User’s Manual, v2022.468

Planning and Inserting MemoryBIST
Adding Clocks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ANALYSIS> report_memory_instances
//
// Memory Instance: 'mem0'
// ----------------------------------------------
// bist_data_in_pipelining              : auto
// physical_cluster_override            : 
// power_domain_island                  : pd.blue.2
// test_clock_override                  : 
// use_in_memory_bist_dft_specification : on
// use_in_memory_bisr_dft_specification : off
// parent_cluster_module                : 
// partitioning_group                   : 
// repair_sharing                       : off
//
// Memory Instance: 'mem1'
// ----------------------------------------------
// bist_data_in_pipelining              : auto
// physical_cluster_override            : 
// power_domain_island                  : pd.blue.3
// test_clock_override                  : 
// use_in_memory_bist_dft_specification : on
// use_in_memory_bisr_dft_specification : off
// parent_cluster_module                : 
// partitioning_group                   : 
// repair_sharing                       : off
//
// Memory Instance: 'mem3'
// ----------------------------------------------
// bist_data_in_pipelining              : auto
// physical_cluster_override            : 
// power_domain_island                  : pd.yellow.1
// test_clock_override                  : 
// use_in_memory_bist_dft_specification : on
// use_in_memory_bisr_dft_specification : on
// parent_cluster_module                : 
// partitioning_group                   : 
// repair_sharing                       : off
//
// Memory Instance: 'mem4'
// ----------------------------------------------
// bist_data_in_pipelining              : auto
// physical_cluster_override            : 
// power_domain_island                  : pd.yellow.1
// test_clock_override                  : 
// use_in_memory_bist_dft_specification : on
// use_in_memory_bisr_dft_specification : on
// parent_cluster_module                : 
// partitioning_group                   : 
// repair_sharing                       : off

Adding Clocks
Using the add_clocks command, you tell the Tessent MemoryBIST tool the clocks to use and 
their speed. This information is then used during design rule checking and for partitioning of 
memories among controllers.
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You must be in the setup mode to add clocks and their properties. You can issue the add_clocks 
command before or after the set_dft_specification_requirements command.

The following example defines the clock named ‘CLK’ to be a free-running clock with a period 
of 12ns. The example command also defines a label for this clock. If you do not define a label, 
Tessent MemoryBIST creates one for you. This label is found later on in the DftSpecification, 
in the MemoryBIST /Controller wrappers.

SETUP> add_clocks CLK -period 12ns -label clka  
 

To learn more about adding clocks of different properties and types, like differential clocks, 
refer to the Tessent Shell Reference Manual where there are numerous examples showing how 
to use the add_clocks command.

Changing Default Settings
You use the DefaultsSpecification to change the default behavior and values of Tessent 
MemoryBIST. Changes in this specification apply to all controllers and all memories. The next 
section shows how you can make changes to an individual memory instance or a collection of 
instances.
You have two ways of changing the entries in the DefaultsSpecification. The first is to edit the 
file itself and load it into the tool. The second option is to use set_defaults_value command or 
the more general set_config_value command. The set_defaults_value command is a shortcut to 
the DftSpecification and PatternsSpecification wrappers in the DefaultsSpecification, whereas 
with the set_config_value command, you have to explicitly reference the DefaultsSpecification 
wrapper and user mode.

Examples
Example 1: Loading the DefaultsSpecification File

SETUP> read_config_data MyDesign.defaults_specification 
 

In this example, the file named MyDesign.defaults_specification is read in. Any specification 
properties set in this file are used for the subsequent steps of the flow, replacing the respective 
tool default. Other default settings are not touched. Default settings have an impact in particular 
for the hardware of the controllers, other DFT elements, like pipelines, and memory 
partitioning.

Example 2: Changing a Controller Option
This example shows how to set the shared comparator as the new default for the design, instead 
of the Tessent MemoryBIST default of ‘per interface’. You only need to write the part of the 
DefaultsSpecification you want to change; everything else remains at the tool default. After you 
created the file, all you have read it as shown in Example 1
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DefaultsSpecification(user) {  
   DftSpecification { 
    MemoryBist { 
      ControllerOptions { 
        comparator_location : shared_in_controller; 
      } 
    } 
  } 
} 

Note
After having read the DefaultsSpecification file, Tessent MemoryBIST places the 
information in memory, where you can make additional changes as shown in Example 3 

below. Any subsequent changes to the file are considered until it is read in again. Remember, 
Tessent MemoryBIST operates on data in memory, not on disk. There are very few exceptions 
to this, one of which is the BISR Chain Order file described in “Planning and Inserting 
MemoryBIST”.

Example 3: Using a Specific Cell Selection instead of the RTL Cells Tessent MemoryBIST is 
creating

This example has two parts. First you must provide a cell selection library, then you tell Tessent 
MemoryBIST to use these instead of the built-in ones. This example also shows how to change 
a default setting through dofile commands, without a DefaultsSpecification file.

In the Tessent Cell Library Manual you find several examples of how to declare cells to be used 
for specific purposes. One important purpose is for clock gating. With the cell selection you 
instruct Tessent MemoryBIST to use very specific cells for example to implement clock gating 
or to implement data muxing, instead of the built-in RTL cells that Tessent MemoryBIST would 
create and use otherwise.

After having read in this library with the read_cell_library command, you need to change the 
default to activate the cell usage. This example uses the set_defaults_value command in setup 
mode for this. You do not need a DefaultsSpecification file for this to work. Tessent 
MemoryBIST is creating the respective DefaultsSpecification wrappers for you in memory.

SETUP> set_context dft -no_rtl 
SETUP> get_defaults_value DftSpecification/use_rtl_cells 
auto 
SETUP> set_defaults_value DftSpecification/use_rtl_cells off 
off 
SETUP> get_defaults_value DftSpecification/use_rtl_cells 
off 
SETUP> report_config_data DefaultsSpecification(user) 
 
DefaultsSpecification(user) { 
  DftSpecification { 
    use_rtl_cells : off; 
  } 
} 
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Adding Constraints Before Design Rule Checking
The previous section shows how to make global changes that apply to all controllers and all 
memories. Next, how to make changes that impact only one or a collection of memories is 
discussed. The set_memory_instance_options command is used for all these actions. 
Most changes using the set_memory_instance_options command become visible only after 
design rule checking, since only then are physical placement information and power 
information evaluated and a first partitioning planning is done by Tessent MemoryBIST. Also 
done during design rule checking is the evaluating of the memory properties, like repair status.

Nonetheless, you may want to already add certain constraints in setup mode, before design rule 
checking. One important constraint is removing memories from consideration for BIST.

Note
If you have repairable memories in the current design, you must insert both the memory 
BIST and the memory repair logic at the same time for all such memories.

The current memory BIST flow does not allow the addition of memory repair logic 
independently of the BIST logic. This is a flow restriction and applies to memories in the 
current design view that previously had BIST inserted, as well as to memories that have not. 
Tessent MemoryBIST issues a warning or an error, depending on your particular flow case.

Tip
You may choose to disable the repair functionality for all memory instances using the 
set_dft_specification_requirements command, or for a subset of memory instances using the 

set_memory_instance_options command.

Example for Removing a Memory from Consideration for BIST
You can do this with the -use_in_memory_bist_dft_specification option of the 
set_memory_instance_options command as shown in this example for one selected memory. Of 
course, you can also specify a list or a collection of memory instances.
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SETUP> report_memory_instances -limit 2 
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem1' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : auto 
// use_in_memory_bisr_dft_specification : auto 
// parent_cluster_module                :  
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem2' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : auto 
// use_in_memory_bisr_dft_specification : auto 
// parent_cluster_module                :  
// 
// Reached limit of 2, skipping remaining 16 instances. 
SETUP> set_memory_instance_options blockA_l1_i1/blockA_l2_i1/mem2 \ 
-use_in_memory_bist_dft_specification off 
SETUP> report_memory_instances -limit 2 
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem1' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : auto 
// use_in_memory_bisr_dft_specification : auto 
// parent_cluster_module                :  
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem2' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : off 
// use_in_memory_bisr_dft_specification : auto 
// parent_cluster_module                :  
// 
// Reached limit of 2, skipping remaining 16 instances. 
SETUP> check_design_rules 
[...] 
ANALYSIS> report_memory_instances -limit 2 
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem1' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
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// use_in_memory_bist_dft_specification : on 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem2' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  :  
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : off 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Reached limit of 2, skipping remaining 16 instances. 
ANALYSIS>  
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Creating, Modifying, and Validating a 
MemoryBIST DFT Specification

Once a successful design rule check is completed, you can begin creating the DftSpecification.
During the design rule checking all loaded setup data, including the optional physical location 
and power domain information, is processed. Tessent MemoryBIST has already completed 
initial analysis and you can report or introspect information to analyze the results and make 
needed modifications before you create the initial DftSpecification. You also have the option of 
modifying some of the analysis results before you create your initial DftSpecification. 

At this point of the memory BIST insertion flow you want to iterate through the process of 
creating DftSpecifications, reporting or introspecting values and settings and modifying these 
values, settings, and constraints to reach a final DftSpecification. Tessent MemoryBIST then 
utilizes this DftSpecification to implement the memory BIST solution you want in your design. 

Commands that become important in this part of the flow are report_memory_instances, 
get_memory_instance_option, create_dft_specification, and the DftSpecification introspection 
and editing commands, like add_config_element, get_config_value, or set_config_value. You 
can visualize the DftSpecification using display_specification. 

The section concludes with validating the edited MemoryBIST DftSpecification, enabling you 
to then create the hardware and insert the logic into the design as described in the next section of 
the design flow.

Adding Constraints Before Creating an Initial DftSpecification  . . . . . . . . . . . . . . . . . . 74
Parameter Selection Impacts on Performance and Area. . . . . . . . . . . . . . . . . . . . . . . . . 79
MemoryBIST Partitioning Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Creating the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Review and Basic Edits of the DftSpecification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Re-Creating the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Validating the DftSpecification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Additional Editing Options of the DftSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Adding Constraints Before Creating an Initial 
DftSpecification

Some constraints have a broad impact on the DftSpecification you are going to generate a few 
steps later in the flow. 
You can use the set_memory_instance_options command to change those constraints. As an 
example, this section shows the steps you can take to make changes with the memory 
partitioning.
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The check_design_rules command analyzes the design and attaches the power domain and 
placement information to each memory instance that you may have loaded earlier in the design 
flow with the UPF or CPF file and DEF file. Tessent MemoryBIST considers this information 
when assigning memories to different controllers. The UPF or CPF file determines the power 
domain information and you cannot change or diverge from the information contained in the 
file. However, the -physical_cluster_size_ratio and -physical_cluster_override arguments of the 
set_memory_instance_options command can configure the placement-based grouping or 
physical clustering of memories for controller assignment. MemoryBIST performs the grouping 
in conjunction with other controller partitioning rules, as described in “MemoryBIST 
Partitioning Rules”.

Tessent MemoryBIST creates a rectangle to fully enclose the current design and extracts the 
length of its diagonal, as shown in the figure below. The -physical_cluster_size_ratio argument 
specifies a ratio that is the percentage of a physical cluster’s diagonal with respect to the total 
diagonal distance. MemoryBIST adds a memory instance to a given cluster if it does not cause 
the diagonal of the cluster to exceed the threshold ratio, otherwise it creates a new cluster. The 
default ratio is 20 percent, but you can change this percentage value by specifying an integer 
between 0 and 100. A value of 0 causes each memory instance to be in its own cluster, and a 
value of 100 results in all memory instances being in the same (single) cluster. The example at 
the end of this section shows the effect of specifying a ratio of 100, forcing all memory 
instances into a single cluster. This only occurs if no other MemoryBIST partitioning rules need 
enforcement. 

Figure 3-2. MemoryBIST Physical Cluster Grouping

The example in “Re-Creating the DftSpecification” shows the usage of the 
-physical_cluster_override string switch for the set_memory_instance_options command, 
where string identifies a cluster ID name. This switch gives you the ability to exclude memories 
from physical clusters that would normally be assigned based on placement information and 
place them into a cluster specified by the cluster ID name. 
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Note
If you have repairable memories in the current design, you must insert both the memory 
BIST and the memory repair logic at the same time for all such memories.

The current memory BIST flow does not support the addition of memory repair logic 
independently of the BIST logic. This flow restriction applies to memories in the current design 
view that previously had BIST inserted, as well as to memories that have not. Tessent 
MemoryBIST issues a warning or an error, depending on your particular flow case.

Tip
You may choose to disable the repair functionality for all memory instances using the 
set_dft_specification_requirements command, or for a subset of memory instances using the 

set_memory_instance_options command.

Example 1
This example shows how to use the -physical_cluster_size_ratio argument of the 
set_memory_instance_options command to change the memory partitioning. This example 
changes the partitioning to have one controller for all memories in the current design. All 
memories are on the same power domain and clock domain, and no other partitioning rules are 
in effect.

After you load the design and elaborate it, you load the power domain (UPF file) and placement 
(DEF file) information, then specify the DFT requirements and clocks.

SETUP>set_current_design blockA
SETUP>read_upf ../data/design/rtl/blockA.upf
SETUP>read_def ../data/design/rtl/blockA.def
SETUP>set_dft_specification_requirements -memory_test on
SETUP>set_design_level sub_block
SETUP>add_clock CLK -period 12ns -label clka

Design rule checks are run and the initial DFT specification is created with the default physical 
cluster size ratio setting of 20.

SETUP>check_design_rules
ANALYSIS>create_dft_specification

You then report the DFT specification to show the resulting controller and memory partitioning. 
The tool creates two controllers with the memory and placement for this example.
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ANALYSIS>report_config_data
  MemoryBist {
    ijtag_host_interface : Sib(mbist);
    Controller(c1) {
      clock_domain_label : clka;
      Step {
        MemoryInterface(m1) {
          instance_name : mem1;
          output_enable_control : system;
        }
        MemoryInterface(m2) {
          instance_name : mem2;
          output_enable_control : system;
        }
      }
      Step {
        MemoryInterface(m3) {
          instance_name : mem3;
        }
      }
    }
    Controller(c2) {
      clock_domain_label : clka;
      Step {
        MemoryInterface(m1) {
          instance_name : mem4;
        }
        MemoryInterface(m2) {
          instance_name : mem5;
        }
        MemoryInterface(m3) {
          instance_name : mem6;
        }
      }
    }
  }

The requirement for this design block is a single controller for all memory instances. Therefore 
you specify 100 for the -physical_cluster_size_ratio switch of the 
set_memory_instance_options command, which puts all memory instances in the same cluster. 

ANALYSIS>set_system_mode setup
SETUP>set_memory_instance_options -physical_cluster_size_ratio 100

You then create the DFT specification, replacing the original specification.

SETUP>check_design_rules
ANALYSIS>create_dft_specification -replace

You report the DFT specification and observe the partitioning is a single physical cluster with a 
single MemoryBIST controller.
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ANALYSIS>report_config_data
 MemoryBist {
    ijtag_host_interface : Sib(mbist);
    Controller(c1) {
      clock_domain_label : clka;
      Step {
        MemoryInterface(m1) {
          instance_name : mem1;
          output_enable_control : system;
        }
        MemoryInterface(m2) {
          instance_name : mem2;
          output_enable_control : system;
        }
      }
      Step {
        MemoryInterface(m3) {
          instance_name : mem3;
        }
        MemoryInterface(m4) {
          instance_name : mem4;
        }
        MemoryInterface(m5) {
          instance_name : mem5;
        }
        MemoryInterface(m6) {
          instance_name : mem6;
        }
      }
    }
  }
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Parameter Selection Impacts on Performance and 
Area

Some parameters specified in the DftSpecification and DefaultsSpecification have more of an 
impact on design performance and area than others. While it is difficult to quantify an exact 
impact, understanding whether certain parameter selections tend to improve or degrade 
performance and area is important to consider when inserting a memory BIST solution in your 
design.
Table 3-1 below shows the memory BIST parameters within various wrappers in the 
DftSpecification and DefaultsSpecification that can have a positive or negative impact on 
performance and area depending on which options are selected. 

• Parameters that can improve performance or reduce area are marked with a “+” entry, 
indicating a positive impact.

• Parameters that typically increase area, and may also decrease performance in some 
cases, are marked with a “-” entry, indicating a negative impact.

• The Table Notes specified below Table 3-1 provide additional details.

Table 3-1. Parameter Impact on Performance and Area 
Wrapper Parameter Perf Area Notes
DftSpecification Parameters
AdvancedOptions pipeline_controller_outputs + - 1

observation_xor_size - 2,3
shared_comparators_per_go_id + 2,3
use_multicycle_paths + 16

AlgorithmResourceOptions data_register_bits - 4,5
counter_a_bits - 4,3
delay_counter_bits - 4,3
max_data_inversion_address_bit_index - - 4,3
a_equals_b_command_allowed - - 6
address_segment_x0_y0_allowed - -
max_x0_segment_bits - - 7
max_y0_segment_bits - - 7
soft_instruction_count - - 17
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Notes for Table 3-1:

1. Parameter option should be set to “on” for high speed controllers, especially when 
a_equals_b_command_allowed is set to “on”, or if a large value is specified for 
max_data_inversion_bit_index.

2. Area is inversely proportional to the integer value specified for this option. The 
maximum area is realized when a value of “1” is specified.

3. Performance might be affected when large values are specified.

4. Area is proportional to the value specified for this parameter.

5. Increases data path width from the controller to all memories that potentially creates 
routing congestion.

6. If this parameter is set to “on”, it is also recommended to set AdvancedOptions/
pipeline_controller_outputs to “on” for high speed controllers.

7. It is recommended to set the value of this parameter to “0” for minimum area, or to “1” 
whenever Operation/Cycle/AdvancedSignals/row_address_count_enable or 
column_address_count_enable properties are present in the operation sets embedded in 
the controller. Values larger than “1” increase area and degrade the performance of the 
address counters.

8. Use this parameter if the memory cluster does not already have registered inputs or 
outputs.

MemoryCluster pipeline_cluster_inputs + - 8
pipeline_cluster_outputs + - 8
repair_analysis_present - - 9

RepairOptions row_bira_location - 10
DiagnosisOptions comparator_selection_mux - 11

StopOnErrorOptions/failure_limit - 4
Step comparator_location - 12
Step/MemoryInterface repair_analysis_present - 9

scan_bypass_logic - - 13
local_comparators_per_go_id + 2,3
data_bits_per_bypass_signal - 2,3,15

DefaultsSpecification Parameters
RepairOptions max_repair_group_size - + 3,14

Table 3-1. Parameter Impact on Performance and Area  (cont.)
Wrapper Parameter Perf Area Notes
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9. If using IO/column repair, limit the number of IO’s in the same column segment to 64 to 
reduce the performance impact.

10. Area is minimum when the parameter is set to “controller”, but more wires are added 
between the controller and memory to connect the repair bus, which potentially creates 
routing congestion.

11. Area is minimum when the parameter is set to “off”, however bit-level resolution for 
diagnostics is no longer possible when local_comparators_per_go_id or 
shared_comparators_per_go_id are set to a value greater than “1”.

12. Area is minimum when the parameter is set to “shared_in_controller”, but routing 
congestion might increase around the controller. Set the parameter to “per_interface” to 
reduce routing congestion because of a large number of memories or wide data paths.

13. Area is proportional to the number of bits in the data path if the value specified for this 
parameter is different than “none”. Specifying the value of “sync_mux” provides best 
performance and testability, but has maximum area impact. Specifying the value of 
“async_mux” reduces area, but typically has a very negative impact on performance and 
could introduce untestable faults.

14. Area is inversely proportional to the group size. However, a very large group size might 
affect yield.

15. Specifying a value other than “1” may have an impact on timing closure and ATPG scan 
coverage. Refer to the “Reducing Bypass and Observation Logic Within the Memory 
Interface” topic for more information.

16. Parameter option should be set to “on” for high-speed controllers.

17. Specifying a value for soft_instruction_count is a trade-off between area and the 
complexity of the soft algorithm you can download at runtime. Typically, a 
soft_instruction_count of 4 to 8 is sufficient for most test algorithms. Specifying a large 
number of instructions results in a high hardware cost to implement the microprogram 
memory (typically 50 registers per instruction). However, if the number of instructions 
is small, it may limit you in the types of algorithms that you can implement and may 
require that you segment the test algorithm into several shorter phases and apply them in 
different TestSteps. For this case, you must use the preserve_bist_inputs property if a 
phase relies on the memory state left by a previous phase. 

Additional topics that address parameter impacts on performance and area are listed below:

Reducing Bypass and Observation Logic Within the Memory Interface. . . . . . . . . . . . 82
Overview of Bypass and Observation Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Logic Reduction Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Bypass and Observation Logic Reduction Requirements, Assumptions and Limitations . 85
Logic Reduction Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Pipeline Stage Options and Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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Reducing Bypass and Observation Logic Within the 
Memory Interface

To achieve high logic test coverage, Tessent MemoryBIST implements memory bypass and 
scan observation registers in the memory interface. The bypass registers provide observability 
of the fan-in cone of the memory data inputs, and provide controllability to the fanout cone of 
the memory data outputs. The observation registers provide observation points for the fan-in 
logic reaching the memory address and control inputs.
The MemoryBIST area can be minimized by adjusting the number of bypass and observation 
registers implemented in the memory interface. The following hardware adjustments are 
introduced:

• Reduce the number of synchronous bypass registers — Each data output port 
requires one set of bypass registers. Prior to the 2020.1 Tessent release, the number of 
registers had to equal the word size. Now, the reduction feature enables the register 
count to range from the word size down to 1 for each data output port. 

• Reduce the number of control/address observation registers — The memory address 
and control signals are combined into observation registers. Prior to the 2020.1 Tessent 
release, the signal-to-register ratio was limited from 2 to 8. Now, the area reduction 
feature extends the range of the valid ratios. The register count can range from the total 
of all addresses and control signals down to 1. 
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Overview of Bypass and Observation Logic
Tessent MemoryBIST interacts with the memory under test through the memory interface. The 
control circuitry implemented in the memory interface is illustrated in the figure below.
The multiplexers that select between the functional and MBIST signals are shown on the left. 
The common set of observation registers, labeled “O”, observe the memory address and control 
inputs. The synchronous bypass registers, labeled “B” at the bottom of the figure, implement the 
bypass path from the memory data input to the data output. The fanout of the memory data 
output to the functional logic and the MBIST comparator circuit is shown on the right. The 
XOR logic, which compresses multiple signals, are highlighted in red. 



Planning and Inserting MemoryBIST
Parameter Selection Impacts on Performance and Area

Tessent™ MemoryBIST User’s Manual, v2022.4 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-3. Memory Observation and Synchronous Bypass Registers

The MemoryBIST area can be minimized, especially for a controller implementing local 
comparators, by adjusting the number of bypass and observation registers implemented in the 
memory interface. The area savings achieved must be weighed against potential impacts on 
ATPG coverage, as well as timing impacts to the observation and bypass registers because of 
the depth of XOR trees. Refer to “Bypass and Observation Logic Reduction Requirements, 
Assumptions and Limitations” for more information.

Logic Reduction Implementation
The bypass and observation logic reduction level implemented is defined, generated, and 
inserted in the current DFT insertion pass, together with the MemoryBIST instruments.
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The DftSpecification properties shown below are used to configure the number of bypass and 
observation registers inserted into the memory interface:

DefaultsSpecification(policy) {
  DftSpecification {
    MemoryBist {
      MemoryInterfaceOptions {
        observation_xor_size :  off | 1..MaxPosInt | all; // default: 3
        data_bits_per_bypass_signal : 1..MaxPosInt | all; // default: 1
        scan_bypass_logic : async_mux | none | sync_mux | from_library ;
      }
    }
  }
}

DftSpecification(module,id) {
  MemoryBist {
    Controller(id) {
      AdvancedOptions {
        observation_xor_size : off | 1..MaxPosInt | all; // *DefSpec
      }
    }
    Step {
      MemoryInterface(id) {
        observation_xor_size : auto | off ;
        data_bits_per_bypass_signal : 1..MaxPosInt | all ; //*DefSpec
        scan_bypass_logic : async_mux | none | sync_mux |
                            from_library ; //*DefSpec
      }
    }
  }
}

By default for each memory interface, observation logic reduction ratio of address and control 
signals is 3 and no reduction is done on the bypass logic, which is equal to the memory data 
output port word size. 

The sections that follow provide information on how to use these properties to achieve the 
wanted level of observation and bypass logic reduction. Refer to “Logic Reduction Examples” 
to see implementation examples illustrating varying degrees of logic reduction.

Adjusting the Number of Scan Observation Registers
You can disable the insertion of observation logic for a controller by setting AdvancedOptions 
observation_xor_size to off. Disabling insertion for specific controller memory interfaces is 
done by specifying Step/MemoryInterface/observation_xor_size to off. 

The DftSpecification AdvancedOptions/observation_xor_size property is used to specify the 
reduction ratio of address and control signals to observation registers through an XOR tree. The 
tool provides the flexibility of assigning one address/control signal per observation register, up 
to combining all signals into one observation register. One consideration for limiting the 
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reduction ratio of address and control signals is to avoid making the at-speed timing paths to the 
observation registers become more critical than the paths to the memory. 

The reduction ratio of address and control signals to observation registers can be set for all 
memory interface modules by specifying the observation_xor_size property of the 
DefaultsSpecification.

Adjusting the Number of Memory Bypass Registers
The insertion of memory bypass registers is determined from the Memory TCD 
TransparentMode property by default. The DftSpecification Step/MemoryInterface/
scan_bypass_logic property can be used to override the TCD setting for the specified memory 
interface. Either of these property settings must be different than none to implement insertion of 
memory bypass registers. The synchronous bypass is the default and most common scheme. For 
the asynchronous bypass scheme, the XOR reduction is implemented without the bypass 
register.

The DftSpecification Step/MemoryInterface/data_bits_per_bypass_signal property is used to 
specify the number of functional data input signals combined in an XOR tree to a memory 
bypass register. The setting is meaningful when building bypass logic around a RAM. The tool 
provides the flexibility of assigning one data input per bypass register, up to combining all data 
input signals from a logical port into a 1-bit register. As with observation registers, limiting the 
bypass reduction ratio should be considered to avoid making the at-speed timing paths to the 
bypass registers more critical than the paths to the memory.

The reduction ratio of data signals to bypass registers can be set for all memory interface 
modules by specifying the data_bits_per_bypass_signal property of the DefaultsSpecification.

Bypass and Observation Logic Reduction Requirements, 
Assumptions and Limitations

The following are the requirements, assumptions, and limitations for implementing and utilizing 
bypass and observation logic reduction for a memory interface in Tessent Shell:

1. This feature is only available for the Tessent Shell design flow.

2. The features are fully backward compatible. The default value of 1 for the 
data_bits_per_bypass_signal property matches prior implementations. For the 
observation_xor_size property, all prior values are available and the default ratio of 3 
remains unchanged.

3. When data_bits_per_bypass_signal is greater than 1, ATPG coverage may be impacted 
because of the correlation of data applied to the functional circuit in the memory fanout. 
The results are variable from one circuit to another, and it is very difficult to find the 
root cause when the coverage is low. Therefore, debugging poor test coverage may be 
difficult.
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4. Differences in timing between the memory inputs and the bypass and observation 
registers can cause timing violations during at-speed scan tests. The paths to the bypass 
and observation registers can become more critical than the paths to the memory, 
because of the depth of the XOR tree.

5. When the Memory TCD DataOutStage property is specified as StrobingFlop, the 
memory bypass registers are reused to pipeline the memory data output to the MBIST 
circuit. In this configuration, data_bits_per_bypass_signal property must be specified as 
1. The tool issues an error during DftSpecification validation if this condition is not met.

Logic Reduction Examples
The following examples show the DftSpecification implementations for varying degrees of 
observation and bypass logic insertions.

Full Observation Registers and Reduced Bypass Registers
In this example, one observation register is assigned for each address and control signal, for all 
memory interfaces of controller c1. For memory interface m2, the memory word width is 12 
bits. The bypass register count is reduced from 12 to 2. Eight data input signals are combined 
into the first register and four data input signals are combined into the second register.

DftSpecification(blka,rtl) {
  MemoryBist {
    Controller(c1) {
      AdvancedOptions {
        observation_xor_size : 1;
      }
      Step {
        MemoryInterface(m1) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i1;
        }
        MemoryInterface(m2) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i2;
          data_bits_per_bypass_signal : 8;
          scan_bypass_logic : sync_mux;
        }
      }
    } // Controller
  }
} 

Minimum Observation and Bypass Logic
In this example, one observation register inserted for all memory interfaces of controller c1. For 
memory interface m1, the memory has one data output port 12 bits wide, and the bypass register 
count is reduced from 12 to 1. For memory interface m2, the memory has two data output ports, 
each 16 bits wide. The bypass register count for this interface is reduced from 32 to 2. 
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DftSpecification(blka,rtl) {
  MemoryBist {
    Controller(c1) {
      AdvancedOptions {
        observation_xor_size : all;
      }
      Step {
        MemoryInterface(m1) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i1;
          data_bits_per_bypass_signal : all;
        }
        MemoryInterface(m2) {
          instance_name : unita_i1/SYNC_2RW_512x16_i1;
          data_bits_per_bypass_signal : all;
        }
      }
    } // Controller
  }
} 

Disabling Observation and Bypass Logic for One Memory
In this example, memory interface m1 uses the default ratios. The TransparentMode property in 
its Memory TCD determines the bypass logic setting. No observation or bypass logic is inserted 
for memory interface m2.

DftSpecification(blka,rtl) {
  MemoryBist {
    Controller(c1) {
      AdvancedOptions {
        observation_xor_size : 3;
      }
      Step {
        MemoryInterface(m1) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i1;
          observation_xor_size : auto;
          scan_bypass_logic : from_library;
        }
        MemoryInterface(m2) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i2;
          observation_xor_size : off;
          scan_bypass_logic : none;
        }
      }
    } // Controller
  }
} 

Disabling Observation Logic for all Memories
In this example, no observation logic is inserted, and the default bypass register ratio is 3 for all 
memory interfaces of controller c1.
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DftSpecification(blka,rtl) {
  MemoryBist {
    Controller(c1) {
      AdvancedOptions {
        observation_xor_size : off;
      }
      Step {
        MemoryInterface(m1) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i1;
        }
        MemoryInterface(m2) {
          instance_name : unita_i1/SYNC_1R1W_512x12_i2;
        }
      }
    } // Controller
  }
} 

Pipeline Stage Options and Locations
MemoryBIST incorporates multi-cycle path (MCP) declarations in the generated SDC and STA 
scripts to facilitate timing closure for high-speed controllers. The tool may declare MCPs for 
timing paths internal to the controller that operate at half speed, IO repair logic, and for 
diagnosis logic. However, MemoryBIST performs memory operations at the full memory clock 
rate over paths declared as single-cycle timing paths. You can pipeline the paths to and from the 
memories to achieve timing closure. This section describes where the pipeline stages are located 
and which DftSpecification parameters define their properties.
In the standard MemoryBIST insertion flow, Figure 3-4 shows where you can place pipeline 
stages for designs that locate comparators in the MemoryBIST controller (Step/
comparator_location : shared_in_controller). Figure 3-5 shows the pipeline stage locations for 
designs that locate comparators in the memory interface (Step/comparator_location : 
per_interface).

The following legend identifies the groups of pipeline stage locations in the figures and the 
DftSpecification properties you can specify to configure them into your design.

•  — Pipeline stage locations in the MemoryBIST controller. You include these 
single-register pipeline stages with the “AdvancedOptions/pipeline_controller_outputs : 
on” setting in the DftSpecification. This is a global setting for all controller outputs and 
they are not included by default.

•  — Pipeline stage locations in the Memory Interface. You include these pipeline 
stages by specifying the Step/bist_data_in_pipelining and Step/bist_data_out_pipelining 
properties in the DftSpecification to a setting other than the “off” default. 

The bist_data_in_pipelining property defines the presence and depth of the pipeline 
stages you want to add to all BIST inputs in the memory interface and the 
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bist_data_out_pipelining property specifies the presence of a single-register pipeline 
stage for the BIST data output.

Note
MemoryBIST does not create BIST data out pipeline registers for ROM memory 
types.

•  — Pipeline stages that MemoryBIST automatically infers, based on your selection 
of previously described pipeline options. 

Figure 3-4. Standard Flow Pipeline Stage Locations (Comparators in 
MemoryBIST Controller)
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Figure 3-5. Standard Flow Pipeline Stage Locations (Local Comparators)

In a Shared Bus MemoryBIST insertion flow, Figure 3-6 shows where you can place pipeline 
stages. The following legend identifies the groups of pipeline stage locations in the figure and 
the DftSpecification properties you can specify to configure them into your design.

•  — MemoryBIST controller pipeline stage locations. You include these single-
register pipeline stages with the “AdvancedOptions/pipeline_controller_outputs : on” 
setting in the DftSpecification. This is a global setting for all controller outputs and they 
are not included by default.

Tip
Setting the DftSpecification AdvancedOptions/pipeline_controller_outputs property 
to “on” is essential for high-speed controllers.

•  — Cluster pipeline stage locations. You can include these single-register pipeline 
stages by specifying the MemoryCluster/pipeline_cluster_inputs and MemoryCluster/ 
pipeline_cluster_output properties in the DftSpecification to “on”. They are not included 
by default.
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Figure 3-6. Shared Bus Flow Pipeline Stage Locations

MemoryBIST Partitioning Rules
Tessent MemoryBIST follows certain partitioning rules to separate and group memories. The 
rules are outlined in this section so you are aware of how this is done and can make any needed 
modifications as you iterate through the DftSpecification creation process. Controller 
Compatibility Rules are denoted as “CCRx” and Step Compatibility Rules are denoted as 
“SCRx” in the following section.
The memory BIST controller compatibility partitioning in the DftSpecification is performed by 
the following CCR rules:

• CCR1: Memories of the different types (RAMs/ROMs/DRAMs) are assigned to 
separate controllers. Each controller is testing memories of the same type exclusively.

• CCR2: All DRAMs on the same controller must have identical row, column and bank 
dimensions.

• CCR3: MemoryBIST separates memories into groups such that the physical region, 
clock domain, power domain, and memory cluster are identical for all memories in a 
common group. When multiple clock domains drive a multi-port memory, the memory 
is associated to the clock domain with the fastest frequency. Refer to “Shared Bus 
Interface MemoryBIST Implementation Flow” for information on creating a memory 
cluster on a Shared Bus interface.

• CCR4: Memories designated to different partitioning group labels are assigned to 
different controllers. Refer to the set_memory_instance_options -partitioning_group 
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group_label command and option for information on assigning group labels to memory 
instances.

The memories are further separated into compatibility groups such that all memories in a group 
can be tested in parallel in a single memory controller step. Memories of different sizes are 
forced into separate groups if testing them in parallel takes longer than testing them in series. 
This happens when one memory has many row addresses and few column addresses, and the 
other one has many columns addresses and few row addresses.

The memory BIST step compatibility partitioning in the DftSpecification is performed by the 
following SCR rules:

• SCR1: All memories must use the same algorithm. Refer to the Algorithm property in 
the Core/Memory wrapper of the memory library for further information.

• SCR2: All memories must use the same operation set. Refer to the OperationSet 
property of the Core/Memory wrapper in the memory library for further information.

• SCR3: All memories must be of the same type of SRAM, ROM, or DRAM.

• SCR4: All DRAMs must have the same number of row, column, and bank address bits. 
For information about the address register segment sizes, refer to the 
LogicalAddressMap wrapper description in the Memory/AddressCounter/Function 
wrapper.

• SCR5: The column segments for all memories must have the same low value for 
CountRange. Likewise, the row segments for all memories must have the same low 
value for CountRange. The high value may be different. For information about the 
CountRange property, refer to the CountRange parameter description in the Memory/
AddressCounter/Function wrapper.

• SCR7: The bit groupings of all memories must be either all even or all odd, except for 
memories that have a bit slice of “1”. For a description of bit grouping, refer to 
BitGrouping parameter in the Core/Memory wrapper.

• SCR8: All memories must have identical bist_data_out_pipelining option settings. For a 
chained-memory configuration, this only applies to the last memory in the chain. Refer 
to the bist_data_out_pipelining parameter found in the in the Step wrapper of the 
DftSpecification/MemoryBist/Controller wrapper for further information.

• SCR9: All memories must have identical DataOutStage option settings. Refer to the 
DataOutStage parameter in the in the Core/Memory wrapper for further information.

• SCR10: The memory groups are separated such that max_power_per_step and 
max_memories_per_step are not exceeded. 

These parameters are set in the DefaultsSpecification/DftSpecification/MemoryBist 
wrapper. The power calculation is based only on the estimated memory power according 
to the specified MilliWattsPerMegaHertz property in the Core/Memory wrapper 
multiplied by the frequency of the clock domain. It does not include the power 
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consumed by the controller itself or the rest of the surrounding functional logic. The 
latter can be significant for a large clock domain, and it might be necessary to disable the 
functional logic during memory BIST.

• SCR11: The resulting memory groups are then assigned to controller steps such that the 
constraints, specified by the max_test_time_per_controller and 
max_steps_per_controller properties, are not exceeded. 

These parameters are set in the DefaultsSpecification/DftSpecification/MemoryBist 
wrapper. Memories that are not part of the same physical region, are not on the same 
clock domain, or do not share a common memory cluster are never tested by the same 
controller. Likewise, non-identical DRAMs are never tested by the same controller.

Creating the DftSpecification
The next step in the flow is to create your initial DftSpecification. 
In most cases, there is no need to edit this specification and you can continue with the creation 
and insertion of the Memory BIST hardware. The following sections show you how you can 
report and introspect the data in the DftSpecification. However, at first you must create one. 
You use the create_dft_specification command for this:

ANALYSIS> set spec [ create_dft_specification ]  
//  sub-command: create_dft_specification  
//   
//  Begin creation of DftSpecification(blockA,rtl) 
//    Creation of RtlCells wrapper 
//    Creation of IjtagNetwork wrapper 
//    Creation of MemoryBist wrapper 
//    Creation of MemoryBisr wrapper 
//   
//  Done  creation of DftSpecification(blockA,rtl) 
//   
/DftSpecification(blockA,rtl) 
 

At the end of the command execution, Tessent MemoryBIST reports the generated name of the 
current DftSpecification. In this case, the name is “/DftSpecification(blockA,rtl)”. Note that 
your transcript may look different depending on your settings and design requirements. 

Tip
Use the Tcl command ‘set’ to capture the returned reference to the DftSpecification 
generated by the ‘create_dft_specification’ command into a Tcl variable. This way, you can 

use the variable instead of writing the entire name of the DftSpecification in subsequent 
commands.
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The create_dft_specification command creates a specification in memory for you to report, 
introspect, and edit. No Memory BIST RTL has been created and your design has not yet been 
modified. This happens later through the process_dft_specification command.

Review and Basic Edits of the DftSpecification
Now that you have a DftSpecification, you want to see what the outcome is of Tessent 
MemoryBIST’s analysis of your setup information and constraints. Under some circumstances, 
you may want to edit the DftSpecification. This should be rare and not necessary for most 
memory BIST implementations. The examples below show how to complete various tasks, 
ranging from viewing the DftSpecification to making changes.
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Examples
Example 1: Reporting the Entire DftSpecification

ANALYSIS> set spec [create_dft_specific ] 
//  sub-command: create_dft_specification 
//   
//  Begin creation of DftSpecification(blockA,rtl) 
//    Creation of RtlCells wrapper 
//    Creation of IjtagNetwork wrapper 
//    Creation of MemoryBist wrapper 
//    Creation of MemoryBisr wrapper 
//   
//  Done  creation of DftSpecification(blockA,rtl) 
//   
/DftSpecification(blockA,rtl) 
ANALYSIS> report_config_data $spec 
 
DftSpecification(blockA,rtl) { 
  IjtagNetwork { 
    HostScanInterface(ijtag) { 
      Sib(sti) { 
        Attributes { 
          tessent_dft_function : scan_tested_instrument_host; 
        } 
        Sib(mbist) { 
        } 
      } 
    } 
  } 
  MemoryBist { 
    ijtag_host_interface : Sib(mbist); 
    Controller(c1) { 
      clock_domain_label : clka; 
      Step { 
        MemoryInterface(m1) { 
          instance_name : blockA_l1_i1/blockA_l2_i1/mem1; 
        } 
        MemoryInterface(m2) { 
          instance_name : blockA_l1_i1/blockA_l2_i1/mem2; 
        } 
        MemoryInterface(m3) { 
          instance_name : blockA_l1_i1/blockA_l2_i1/mem3; 
        } 
      } 
[...] 
 

Example 2: Reporting Parts of the DftSpecification
Usually, reporting the entire DftSpecification is too large. This example shows how to report 
only parts of it. You use the hierarchy in the DftSpecification, or in any other specification for 
that matter, similar to a hierarchical path name in the design. The example below reports the 
contents of memory BIST Controller(c1) of Example 1 above.
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ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1) 
 
Controller(c1) { 
  clock_domain_label : clka; 
  Step { 
    MemoryInterface(m1) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem1; 
    } 
    MemoryInterface(m2) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem2; 
    } 
    MemoryInterface(m3) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem3; 
    } 
  } 
  Step { 
    MemoryInterface(m4) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem4; 
    } 
    MemoryInterface(m5) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem5; 
    } 
  } 
  Step { 
    MemoryInterface(m6) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem6; 
    } 
  } 
} 
 

Example 3: Reporting all Default Values
By default, Tessent MemoryBIST only reports entries in the DftSpecification that differ from 
the defaults setting. This is done so you can easily see only what has changed, what is different. 
If you want to see the entire set of wrappers, options, and values for your DftSpecification, you 
use report_config_data -show_unspecified.

ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1) -
show_unspecified 
 
Controller(c1) { 
  parent_instance : ""; 
  leaf_instance_name : ""; 
  clock_domain_label : clka; 
  clock_period : ""; 
  AdvancedOptions { 
    algorithm : from_library; 
    operation_set : from_library; 
    extra_algorithms : ""; 
    extra_operation_sets : ""; 
    incremental_test_mode : off; 
[...] 
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Example 4: Introspecting and Changing DftSpecification Values
This example shows you the steps to edit a specific entry in the DftSpecification. Because you 
edit the information in-memory, a subsequent execution of the modified DftSpecification with 
the process_dft_specification command considers these changes.

Caution
Editing the DftSpecification on this level is usually not necessary and can result in 
unintended side effects, up to and including an invalid DftSpecification or BIST solution.

In this example you reduce the StopOnError failure limit of controller c1 from 4096 to 2048.

ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1)/
DiagnosisOptions -show_unspecified 
 
DiagnosisOptions { 
  comparator_selection_mux : on; 
  StopOnErrorOptions { 
    failure_limit : 4096; 
  } 
} 
ANALYSIS> get_config_value $spec/MemoryBist/Controller(c1)/
DiagnosisOptions/StopOnErrorOptions/failure_limit 
4096 
ANALYSIS> set_config_value $spec/MemoryBist/Controller(c1)/
DiagnosisOptions/StopOnErrorOptions/failure_limit 2048 
ANALYSIS> get_config_value $spec/MemoryBist/Controller(c1)/
DiagnosisOptions/StopOnErrorOptions/failure_limit 
2048 
ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1)/
DiagnosisOptions -show_unspecified 
 
DiagnosisOptions { 
  comparator_selection_mux : on; 
  StopOnErrorOptions { 
    failure_limit : 2048; 
  } 
} 
 

Re-Creating the DftSpecification
Some information is only available for report or introspection in the DftSpecification. Other 
information only influences the DFT solution, like memory partitioning, and only its result can 
be seen in the DftSpecification. Changing that information requires significant editing of the 
DftSpecification. The easier way is to change the incoming data and just re-create the 
DftSpecification. 
In this example, you want to move one memory instance, blockA_l1_i1/blockA_l2_i1/mem1, to 
a separate controller. The easiest way is to place this instance into its own physical cluster. 



Tessent™ MemoryBIST User’s Manual, v2022.498

Planning and Inserting MemoryBIST
Re-Creating the DftSpecification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example: Changing Physical Clustering Information and Re-Creating the 
DftSpecification

The example has several steps. At first you report parts of the DftSpecification, as well as report 
of the memory instance options. Then you override the physical cluster information for one 
instance. The next reporting shows that the DftSpecification remains unchanged, because it has 
not been re-created. Your change of the physical cluster information becomes only represented 
in the DftSpecification after the create_dft_specification -replace command. The subsequent 
reporting shows this.
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ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1) 
 
Controller(c1) { 
  clock_domain_label : clka; 
  Step { 
    MemoryInterface(m1) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem1; 
    } 
    MemoryInterface(m2) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem2; 
    } 
    MemoryInterface(m3) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem3; 
    } 
  } 
  Step { 
    MemoryInterface(m4) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem4; 
    } 
    MemoryInterface(m5) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem5; 
    } 
  } 
  Step { 
    MemoryInterface(m6) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem6; 
    } 
  } 
} 
ANALYSIS> report_memory_instances -limit 2 
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem1' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  : pd_A_1 
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : on 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem2' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  : pd_A_1 
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : on 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Reached limit of 2, skipping remaining 16 instances. 
ANALYSIS> set_memory_instance_options blockA_l1_i1/blockA_l2_i1/mem1 
-physical_cluster_override MyCluster 
ANALYSIS> report_memory_instances -limit 2 
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem1' 
// ---------------------------------------------- 
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// bist_data_in_pipelining              : off 
// physical_cluster_override            : MyCluster 
// power_domain_island                  : pd_A_1 
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : on 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Memory Instance: 'blockA_l1_i1/blockA_l2_i1/mem2' 
// ---------------------------------------------- 
// bist_data_in_pipelining              : off 
// physical_cluster_override            :  
// power_domain_island                  : pd_A_1 
// test_clock_override                  :  
// use_in_memory_bist_dft_specification : on 
// use_in_memory_bisr_dft_specification : off 
// parent_cluster_module                :  
// 
// Reached limit of 2, skipping remaining 16 instances. 
ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1) 
 
Controller(c1) { 
  clock_domain_label : clka; 
  Step { 
    MemoryInterface(m1) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem1; 
    } 
    MemoryInterface(m2) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem2; 
    } 
    MemoryInterface(m3) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem3; 
    } 
  } 
  Step { 
    MemoryInterface(m4) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem4; 
    } 
    MemoryInterface(m5) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem5; 
    } 
  } 
  Step { 
    MemoryInterface(m6) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem6; 
    } 
  } 
} 
ANALYSIS> set spec [create_dft_spec -replace] 
//  sub-command: create_dft_specification -replace  
//   
//  Begin creation of DftSpecification(blockA,rtl) 
//    Creation of RtlCells wrapper 
//    Creation of IjtagNetwork wrapper 
//    Creation of MemoryBist wrapper 
//    Creation of MemoryBisr wrapper 
//   
//  Done  creation of DftSpecification(blockA,rtl) 
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//   
/DftSpecification(blockA,rtl) 
ANALYSIS> report_config_data $spec/MemoryBist/Controller(c1) 
 
Controller(c1) { 
  clock_domain_label : clka; 
  Step { 
    MemoryInterface(m1) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem1; 
    } 
  } 
} 
ANALYSIS> report_config_data $spec/MemoryBist/Controller(c2) 
 
Controller(c2) { 
  clock_domain_label : clka; 
  Step { 
    MemoryInterface(m1) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem2; 
    } 
    MemoryInterface(m2) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem3; 
    } 
  } 
  Step { 
    MemoryInterface(m3) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem4; 
    } 
    MemoryInterface(m4) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem5; 
    } 
  } 
  Step { 
    MemoryInterface(m5) { 
      instance_name : blockA_l1_i1/blockA_l2_i1/mem6; 
    } 
  } 
} 
ANALYSIS>  
 

Validating the DftSpecification
After editing the DftSpecification, especially when done outside of Tessent MemoryBIST, you 
may have introduced errors in the DftSpecification. These errors could be as simple as a typo in 
a memory instance path name, or as severe as placing incompatible memories into the same test 
step of the same controller. Before proceeding with the memory BIST hardware generation and 
insertion, you want to validate that the current DftSpecification is error free and consistent.
To do this, you use the -validate_only switch of the process_dft_specification command. 
Because you only validate the specification, no RTL has been created and your design remains 
unchanged.
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ANALYSIS> process_dft_specification -validate_only 
//   
//  Begin validation of /DftSpecification(blockA,rtl) 
//    Validation of IjtagNetwork 
//    Validation of MemoryBist 
//    Validation of MemoryBisr 
//   
//  Done  validation of DftSpecification(blockA,rtl) 
//   
/DftSpecification(blockA,rtl) 
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Additional Editing Options of the DftSpecification
The examples in the prior sections show basic DftSpecification editing, which is usually all that 
is needed. In this section, you go beyond these basic editing and changing of values in existing 
wrappers. 
The first part in this section introduces the creation, interactive editing, and validation of a 
DftSpecification using the graphical interface. The second part shortly introduces the rich 
command-based editing capability of the DftSpecification enabled by Tessent MemoryBIST.

Editing the DftSpecification With the Config Data Browser in Tessent Visualizer  . . . 103
Validating a DftSpecification With the Config Data Browser in Tessent Visualizer  . . 108
Editing the DftSpecification Using Shell Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Editing the DftSpecification With the Config Data Browser 
in Tessent Visualizer

The Config Data Browser in Tessent Visualizer is a convenient way to learn about the 
DftSpecification. At each step and data entry point it offers to you only valid entries.
Through the following sequence of examples, you learn how to invoke the Config Data 
Browser, expand the hierarchy of the DftSpecification, add a new specification wrapper (a test 
step in this case) and use the cut-and-paste feature of the GUI to move a memory testing 
instance from its original step to the newly created step.

These examples only show you a small sample of the capabilities of the Config Data Browser.

Examples
Example 1: Invoking the Config Data Browser for a DftSpecification

Upon execution of the display_specification command, the Config Data Browser starts with the 
data from your last session (if any). The entries displayed in the Config Data Browser for your 
design might differ from the ones shown in Figure 3-7, but the general objects should be there. 

In the left pane, you see the (initially) collapsed hierarchy of the DftSpecification. Wrappers 
that have not been specified are grayed out. In the right pane, you see the properties and values 
for the selected wrapper node. The fields are automatically populated based on the 
DftSpecification and its respective default value setting.
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Figure 3-7. Config Data Browser Invocation

Example 2: Navigating the Hierarchy of the DftSpecification
You navigate through the hierarchy of the DftSpecification by clicking on the small arrow 
symbols next to the specification wrappers. This expands the wrapper, showing you additional 
wrappers until you come to a leaf entry. Figure 3-8 shows you the expansion down to the 
memory interface m3 of step 0 of the memory BIST controller (c1).
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Figure 3-8. Config Data Browser Hierarchy and Values

Example 3: Adding a new Specification Wrapper
For controller c1, you want to add another test step. As shown in Figure 3-9, when you right-
click the Controller(c1) wrapper, a menu displays. Select “Add wrapper as a child.” A second 
dialog box is displayed as shown in Figure 3-10. Choose “Step” from the dropdown menu and 
click “Apply.”. You now see that a new step has been added to the Controller(c1) wrapper. You 
can move the new wrapper to its position in the sequence of all steps of the controller, or define 
other parameters of this step as shown in the right pane of the window.
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Figure 3-9. Creating a New Test Step for Controller(c1)

Figure 3-10. Adding a Step
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Example 4: Using Cut-and-Paste
Next you need to populate the new step wrapper with a MemoryInterface. In this example, you 
use the cut-and-paste feature of the Config Data Browser to move the MemoryInterface(3) from 
the first Step to the new Step. To do this, you right-click MemoryInterface(3), choose “cut,” 
move the mouse cursor over the new Step, right-click again, and choose “paste.”. You have just 
dropped the MemoryInterface(m3) to its new step and position in the memory BIST test 
execution. Figure 3-11 shows you the final picture of your DftSpecification editing.

Figure 3-11. MemoryInterface(m3) Cut-and-Paste Result
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Validating a DftSpecification With the Config Data 
Browser in Tessent Visualizer

You should perform a validation step for the DftSpecification you edited either in the Config 
Data Browser, through commands, or manually. The advantage of running the validation step 
with the Config Data Browser is the color-coding of the DftSpecification hierarchical path 
down to the point of error. This path is highlighted in orange and red. Together with the error 
messages, you should be able to identify the problem quickly and implement the required fix. 
You can select the “Validate” button at any time.
Figure 3-12 shows the color-coding of the path through the DftSpecification to the error point 
and a portion of the Tessent Shell window showing the results of the validation, as well as the 
“Validate” button (circled in red). In addition to the transcript display, the error is available on a 
problematic wrapper tree node or property in the table, and you can read it in a tooltip with a 
mouse hover.
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Figure 3-12. DftSpecification Validation Error in the Config Data Browser

Editing the DftSpecification Using Shell Commands
Tessent MemoryBIST offers powerful and rich commands to create a DftSpecification from 
scratch, edit an existing one, merge templates into your specification and much more.



Tessent™ MemoryBIST User’s Manual, v2022.4110

Planning and Inserting MemoryBIST
Processing the DftSpecification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

There is an entire family of commands documented in the Tessent Shell Reference Manual, each 
having usage examples. You are encouraged to learn about these commands. The related topics 
listed below provides a good starting point.

Related Topics
add_config_element [Tessent Shell Reference Manual]
delete_config_element [Tessent Shell Reference Manual]
get_config_elements [Tessent Shell Reference Manual]
get_config_value [Tessent Shell Reference Manual]
move_config_element [Tessent Shell Reference Manual]
set_config_value [Tessent Shell Reference Manual]

Processing the DftSpecification
After the successful creation of the DftSpecification, the examples shown in this section 
describe the steps you take to generate the memory BIST and repair logic, and then insert them 
into your design.

Examples
Example 1: Validating the DftSpecification

If you have not done so, it is recommended to perform a validation of the DftSpecification prior 
to executing the RTL generation and insertion. To do this, you use the -validate_only switch of 
the process_dft_specification command. Because you only validate the specification, no RTL 
has been created and your design remains unchanged.

ANALYSIS> process_dft_specification -validate_only 
//   
//  Begin validation of /DftSpecification(blockA,rtl) 
//    Validation of IjtagNetwork 
//    Validation of MemoryBist 
//    Validation of MemoryBisr 
//   
//  Done  validation of DftSpecification(blockA,rtl) 
//   
/DftSpecification(blockA,rtl) 
 

Example 2: Executing the DftSpecification
Once the validation has passed successfully, you should not have any issues executing the 
current DftSpecification. This step generates all Tessent MemoryBIST RTL, including any 
BISR and BIRA logic, as well as RTL cells, as needed. Also your design is modified, inserting 
the BIST logic into your design. 
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Note
You have the option to process the DftSpecification but not have the BIST logic inserted 
into your design. You do this by using the -no_insertion option of the 

process_dft_specification command. Tessent MemoryBIST then generates all of its RTL as 
usual, but does not modify your design. 

The transcript below is significantly shortened. You see in the transcript where Tessent 
MemoryBIST saves all generated and modified files. All generated RTL, ICL, and PDL goes 
into the ‘instruments’ directory of the current TSDB (Tessent Shell Data Base), further 
subdivided by instrument. The TSDB has the default location and name of ‘./tsdb_outdir’. All 
modified design files are saved in the ‘dft_inserted_design’ directory of the TSDB. 
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ANALYSIS> process_dft_specification  
//   
//  Begin processing of /DftSpecification(blockA,rtl) 
//    --- IP generation phase --- 
//    Validation of IjtagNetwork 
//    Validation of MemoryBist 
//    Validation of MemoryBisr 
//    Processing of RtlCells 
//      Generating Verilog RTL Cells 
//        Verilog RTL : ./tsdb_outdir/instruments/
blockA_rtl_cells.instrument/blockA_rtl_tessent_and2.v 
[...] 
 
//    Processing of IjtagNetwork 
//      Generating design files for IJTAG SIB module 
blockA_rtl_tessent_sib_1 
//        Verilog RTL : ./tsdb_outdir/instruments/
blockA_rtl_ijtag.instrument/blockA_rtl_tessent_sib_1.v 
//        IJTAG ICL   : ./tsdb_outdir/instruments/
blockA_rtl_ijtag.instrument/blockA_rtl_tessent_sib_1.icl 
[...] 
//    Processing of MemoryBist 
//      Generating the IJTAG ICL for the memories. 
//      Generating design files for MemoryBist Controller(c1) 
//      Generating design files for MemoryBist Controller(c2) 
[...] 
//    Processing of MemoryBisr 
//      Generating design files for BISR module 
blockA_rtl_tessent_mbisr_register_SYNC_1RW_32x16_RC_BISR 
//        Verilog RTL : ./tsdb_outdir/instruments/
blockA_rtl_mbisr.instrument/
blockA_rtl_tessent_mbisr_register_SYNC_1RW_32x16_RC_BISR.v 
//        IJTAG ICL   : ./tsdb_outdir/instruments/
blockA_rtl_mbisr.instrument/
blockA_rtl_tessent_mbisr_register_SYNC_1RW_32x16_RC_BISR.icl 
//    --- Instrument insertion phase --- 
//    Inserting instruments of type 'ijtag' 
//    Inserting instruments of type 'memory_bist' 
//    Inserting instruments of type 'memory_bisr' 
//   
//    Writing out modified source design in ./tsdb_outdir/
dft_inserted_designs/blockA_rtl.dft_inserted_design 
//    Writing out specification in ./tsdb_outdir/dft_inserted_designs/
blockA_rtl.dft_spec 
//   
//  Done  processing of DftSpecification(blockA,rtl) 
//   
/DftSpecification(blockA,rtl) 
INSERTION>  
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Chapter 4
Creating and Verifying Test Patterns

This chapter describes the process to create and verify test patterns for MemoryBIST 
controllers.

Pattern Generation for TS-MBIST Insertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Creating Simulation Testbench Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Creating Manufacturing Test Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Generated MBIST Verification Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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Pattern Generation for TS-MBIST Insertions
Tessent MemoryBIST uses a similar flow for generating patterns at the block, core, or top level.
You typically generate only Verilog testbenches and not manufacturing test patterns at the block 
or core level, because that portion of the circuitry normally gets instantiated in a larger top-level 
design.

At the top level, you generate Verilog testbenches before signing-off the design. You then 
create Automated Test Equipment (ATE) test patterns, to apply as manufacturing tests on 
silicon devices.

In bottom-up flows, MBIST-inserted lower-level blocks or cores are fully verified in a stand-
alone fashion before being integrated into a larger design. This hierarchical DFT method 
enables completing MBIST insertion in smaller design portions, even though the rest of the 
design may not be ready yet. Because MBIST only requires valid clocks and a low-speed serial 
test access to run, verifying a block or core after it has been integrated into the full (top) design 
is greatly simplified.

In top-down flows, MBIST insertion is done across the entire design at once. This methodology 
requires fewer steps overall than a hierarchical DFT insertion, however the MBIST insertion 
has to be verified across the entire design before it can be signed-off. This process consequently 
takes longer to perform and requires more computing resources than a hierarchical approach. 
This full-chip verification task typically happens at a very critical time (for example, when the 
chip is essentially completed and just about to tape out), so unexpected delays may impact the 
design schedule.

The following figure illustrates the pattern generation for MemoryBIST controllers that are 
inserted in a core or top design.
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Figure 4-1. Pattern Generation

You generate the following:

• For the bottom-up flow, core-level Verilog testbenches

• For the top-down flow, top-level manufacturing test patterns and Verilog testbenches

The following sections describe how to create Verilog testbench simulation patterns and 
manufacturing test patterns. For manufacturing test patterns, the tool supports all test pattern 
formats currently supported for ATPG.

Creating Simulation Testbench Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Creating Manufacturing Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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Creating Simulation Testbench Patterns
Use this procedure to generate Verilog simulation testbench patterns that can be applied at the 
block, core, or top level.
Signoff, or simulation testbench patterns, are generated by default. The test patterns only target 
controllers inserted in the current design. Controllers in lower level physical blocks can be 
included when the property simulate_instruments_in_lower_physical_instances is set to on in 
the DefaultsSpecification. All controllers are run in parallel. Additionally, for controllers with 
RAMs you can limit testing to address corners by setting the patterns specification property 
reduced_address_count to on.

Prerequisites
The required inputs for this step of the flow that you specify from the tool prompt or within the 
pattern generating dofile are as follows:

• The TSDB (the tsdb_outdir) of a completed block, core or top-level design.

• Extracted ICL for the current design portion (normally found in the TSDB).

• Exported PDL with procedures for the current design (also found in the TSDB).

• An RTL or gate-level netlist of the current design for sign-off simulations.

The following procedure assumes the current design already went through MBIST insertion in a 
separate Tessent Shell session. If you just completed MBIST and are still within the same 
Tessent Shell session, skip step 1 below and go directly to step 2.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell  

2. Set the tool context to IJTAG patterns mode using the set_context command as follows:

SETUP> set_context patterns -ijtag  

3. Open the TSDB with the open_tsdb command, if it is not already open (which would be 
the case if you just completed MBIST insertion within the very same Tessent Shell 
session). For example:

SETUP> open_tsdb tsdb_outdir  

4. Unless it is already in memory, read the current design’s extracted ICL and TCD with 
the read_design command. For example:

SETUP> read_design blockA -design_identifier rtl -no_hdl 

5. Set the current design with the set_current_design command. For example:

SETUP> set_current_design blockA  
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The TSDB is analyzed and all inserted DFT logic (including MBIST controllers) are 
identified.

6. Create a pattern specification using the create_patterns_specification command. The 
example below sets a variable with the identification for the created specification, which 
can be used in modifying the specification if needed.

SETUP> set pat_spec [create_patterns_specification]

Memory BIST patterns are generated at this point.

7. If wanted, follow this step to set reduced_address_count to off for testing the full 
address range of memories. Otherwise, continue to the next step. The process outlined 
can be modified to configure other properties within the pattern specification as needed.

a. Specify the path to the wrapper containing the property. For example:

SETUP>set wrap [get_config_elements -in_wrapper ${pat_spec} \
      Patterns(MemoryBist_P1)/TestStep/MemoryBist]

The variable $wrap now contains the full path.

b. Set the reduced_address_count property to the off setting. For example:

SETUP>set_config_value reduced_address_count \
        -in_wrapper ${wrap} off

The patterns specification is now updated with the wanted property setting.

c. Optionally, confirm the setting by inspecting the patterns specification:

SETUP>report_config_data $pat_spec

The patterns specification is displayed for examination.

8. Process the pattern specification:

SETUP> process_patterns_specification

Note
The create_patterns_specification command always includes the Parallel Retention 
Test (PRT) pattern as part of the default signoff and manufacturing patterns 

specifications. It is highly recommended to simulate the PRT pattern during signoff 
verification even if you are not planning to use it during manufacturing test. The 
structure of the PRT pattern provides verification that all memories are accessible. You 
can modify the PRT pattern to operate with a reduced address space and zero retention 
time to reduce simulation time.

9. Point to the simulation library sources so all design files can be found. For example:

SETUP> set_simulation_library_sources -y ./memlibs -extensions { v }  
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10. Simulate the memory BIST testbenches with the following command:

SETUP> run_testbench_simulations  

11. The above simulation can be monitored or checked with the following command:

SETUP> check_testbench_simulations  

Results
If you are using the Top-Down Flow, you finished all necessary steps in this flow.
If you are using the Bottom-Up Flow, you are ready to perform the Top-Level ICL Network 
Integration.

Examples
The following example dofile opens the TSDB for blockA and generates its memory BIST 
testbenches. The pattern specification gets saved into a variable named $spec and could be 
reported on-screen if needed, by uncommenting the report_config_data line:

set_context patterns -ijtag 
 
open_tsdb tsdb_outdir 
read_design blockA -design_identifier rtl -no_hdl 
set_current_design blockA 
 
set spec [create_patterns_spec] 
#report_config_data $spec 
process_patterns_specification 
 
run_testbench_simulations 
check_testbench_simulations 
 
exit 

Related Topics
Patterns [Tessent Shell Reference Manual]
TestStep [Tessent Shell Reference Manual]
MemoryBist [Tessent Shell Reference Manual]
write_config_data [Tessent Shell Reference Manual]
read_config_data [Tessent Shell Reference Manual]

Creating Manufacturing Test Patterns
Use this procedure to generate manufacturing test patterns that can be applied at the top level.
Generated patterns are grouped based on the number of asynchronous ATE clocks that can be 
active within one pattern. The number is based on the DefaultsSpecification 
max_async_clock_sources property that defaults to unlimited, placing all memory BIST 
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controllers inside of a single pattern, operating in parallel and potentially belonging to different 
asynchronous frequency groups.

Generated patterns can be further split into multiple test step or procedure step pattern files, to 
enable test program events such as VDD bumping or PMU measurements being inserted in the 
middle of the patterns. Refer to the AdvancedOptions/split_patterns_file property descriptions 
in the TestStep and ProcedureStep wrappers for more information about patterns file splitting.

Manufacturing test patterns always perform tests across the full memory address space. The 
patterns specification property reduced_address_count defaults to off, and unlike signoff 
patterns, it is not set to on when a controller is testing RAMs only.

Manufacturing pattern files can be generated in WGL, STIL, STIL2005, TITD, FJTDL, 
MITDL, TSTL2 and SVF formats. The format you want can be specified with the 
PatternsSpecification manufacturing_patterns_formats property. When unspecified, the STIL 
format is generated. For a description of these formats, see the description of the format_switch 
argument of the write_patterns command.

Prerequisites
The required inputs for this step of the flow that you specify from the tool prompt or within the 
pattern generating dofile are as follows:

• The TSDB (the tsdb_outdir) of a completed top-level design.

• Extracted ICL for the current design (normally found in the TSDB).

• Exported PDL with procedures for the current design (also found in the TSDB).

The following procedure assumes the current design already went through MBIST insertion in a 
separate Tessent Shell session. If you just completed MBIST and are still within the same 
Tessent Shell session, skip step 1 below and go directly to step 2.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell

2. Set the tool context to IJTAG patterns mode using the set_context command as follows:

SETUP> set_context patterns -ijtag 

3. Open the TSDB with the open_tsdb command, if it is not already open (which would be 
the case if you just completed MBIST insertion within the very same Tessent Shell 
session). For example:

SETUP> open_tsdb tsdb_outdir  
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4. Unless it is already in memory, read the current design’s extracted ICL and TCD with 
the read_design command. For example:

SETUP> read_design blockA -design_identifier rtl -no_hdl 

5. Set the current design with the set_current_design command. For example:

SETUP> set_current_design top  

The TSDB is analyzed and all inserted DFT logic (including MBIST controllers) are 
identified.

6. Create a pattern specification using the create_patterns_specification command. The 
example below sets a variable with the identification for the created specification, which 
can be used in modifying the specification if needed.

SETUP> set pat_spec [create_patterns_specification manufacturing] 

Specifying the manufacturing usage option automatically adds the usage : 
manufacturing_test property to the PatternsSpecification. Memory BIST patterns are 
generated at this point.

7. If you want, follow this step to specify the wanted pattern file format with the 
manufacturing_patterns_formats property in the PatternsSpecification. If the default 
STIL format is acceptable, continue to the next step. The process outlined can be 
modified to configure other properties within the pattern specification as needed.

a. Using the variable set in Step 6, set the manufacturing_patterns_formats property to 
the wanted setting. For example, for WGL format:

SETUP>set_config_value manufacturing_patterns_formats \
        -in_wrapper ${pat_spec} Wgl

The patterns specification is now updated with the new property setting.

b. Optionally, confirm the setting by inspecting the patterns specification:

SETUP>report_config_data $pat_spec

The patterns specification is displayed for examination.

8. Process the patterns specification with the process_patterns_specification command:

SETUP> process_patterns_specification

Results
The generated manufacturing pattern files are located by default in the tsdb_outdir/patterns/
<design_name>_<design_id>.patterns.manufacturing folder. The pattern filenames are 
<pattern_name>.<format_ext>.gz, where <format_ext> is determined by the format specified 
in the manufacturing_patterns_formats property of the PatternsSpecification.
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Generated MBIST Verification Patterns
A pattern specification for a MBIST-only design typically consists of:

• One ICL verification pattern 

• One or multiple Memory BIST patterns

ICL verification patterns are automatically created from extracted ICL of the current design. 
These patterns ensure the ICL description is correct and matches the design’s implemented 
hardware. They check that all ICL-described Test Data Registers (TDRs) can be selected and 
have the expected length.

Memory BIST patterns exercise implemented MBIST controllers by clocking the design with 
appropriate clocks and instructing every BIST controller to launch a memory test. The 
generated testbenches (or patterns) thus run MBIST against design memories.

Example
An example block-level pattern specification is provided below:

PatternsSpecification(blockA,rtl,signoff) {
  Patterns(ICLNetwork) {
    ICLNetworkVerify(blockA) {
    }
  }
  Patterns(MemoryBist_P1) {
    ClockPeriods {
      CLK : 12.0ns;
    }
    TestStep(run_time_prog) {
      MemoryBist {
        run_mode : run_time_prog;
        reduced_address_count : on;
        Controller(blockA_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
            compare_go_id : on;
          }
          RepairOptions {
            check_repair_status : on;
          }
        }
      }
    }
  }
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  Patterns(MemoryBist_ParallelRetentionTest_P1) {
    ClockPeriods {
      CLK : 12.0ns;
    }
    TestStep(ParallelRetentionTest) {
      MemoryBist {
        run_mode : hw_default;
        parallel_retention_time : 0;
        reduced_address_count : on;
        Controller(blockA_rtl_tessent_mbist_c1_controller_inst) {
          parallel_retention_group : 1;
          DiagnosisOptions {
            compare_go_id : on;
          }
        }
      }
    }
  }
} 

The ClockPeriods wrapper indicates clock ports on the design, along with a clock period for 
each. Verilog testbenches model this clock as a clock generator for simulations). When creating 
manufacturing patterns for silicon the tool assumes this clock is provided by the tester.

A single memory BIST pattern file contains one or several TestStep wrapper(s). Test steps are 
run sequentially and perform specific memory BIST and BISR controllers actions.

Memory BIST controllers can run algorithms across the entire address space being tested. This 
verification step may be considered excessive when inserting MBIST into a small block or core, 
since memory TCD files were previously certified and validated. In such case a quicker 
simulation can be performed, using the reduced_address_count property in the MemoryBist 
wrapper.

Within a single TestStep wrapper, one or several memory BIST Controller wrapper(s) may be 
listed; they instruct an associated MBIST controller to perform a test. If multiple Controller 
wrappers are listed, they perform their tests concurrently.

Diagnosis options are controller-specific and can be specified using the DiagnosisOptions 
wrapper:

• If available, the MBIST controller’s GO output can be compared on every clock cycle 
using the compare_go property. If a comparison mismatch is detected between expected 
and actual (observed) data, the GO output is asserted low.

• The compare_go_id property can shift out the individual data comparator bits after BIST 
completes. This information is typically used to identify the faulty data bit(s) that 
resulted in the expected vs. observed data comparison error.
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Tip
The generated pattern specification is expected to be correct by construction 
and adequate for most cases. Only edit it when needed.

For example, you can save a pattern specification using the write_config_data command and 
then immediately read back a modified copy of this file, using the read_config_data command. 
However, care should be taken to ensure that both files stay relatively similar.
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Chapter 5
Implementing and Verifying Memory Repair

This chapter explains the process of implementing and verifying Built-In Self-Repair (BISR) 
capability in the Tessent Shell MemoryBIST flow.
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Overview of Memory Repair Capabilities
Repairable memories are popular in today’s designs. However, the failure data collection, 
redundancy analysis, and memory repair access increases the design complexity. Furthermore, 
when a chip has multiple repairable memories, a solid infrastructure must be developed to 
integrate the repair analysis and fuse box programming at the chip level so that the memories 
can be repaired at chip power-up.
Types of Repair  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Repair Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Chip Level Repair Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Built-In Repair Analysis (BIRA)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Built-In Self Repair (BISR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Implementing Soft Repair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Types of Repair
Memory repair can be used to improve manufacturing yield of integrated circuits. Tessent 
MemoryBIST supports all types of memory repair: column repair, row repair, or a combination 
of both. Column repair includes replacing single columns or blocks of columns up to the full 
width of a column multiplexer. The full width case is often referred to as IO repair. Row repair 
includes replacing blocks, rows, or even a subset of a row, down to a single word.
Spare rows and columns are incorporated to the memory itself by the memory compiler. The 
memory repair characteristics must be described in the memory library file provided to the 
Tessent MemoryBIST tools. Memory providers usually generate this file automatically and are 
the preferred source because the physical implementation information in the memory model 
cannot be qualified until post-silicon verification.

Repair Steps
Memory repair is performed in two steps. The first step consists of analyzing failures reported 
by the memory BIST controller during test execution to determine if the memory is repairable 
and, if repairable, determining the values to be applied to the repair inputs of the memory.

Chip Level Repair Architecture
This section provides an overview of the chip level repair architecture.
The figure below shows the top-level architecture of the BISR chain and the BISR controller. A 
central fuse box is connected to a chip-level BISR controller. The central fuse box can be 
instantiated inside or outside the BISR controller module. When the fuse box is located outside 
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the BISR controller module, extra connections between the fuse box and the BISR controller are 
required.

Figure 5-1. Chip-Level Configuration With BISR Controller

All repairable memories in the chip have a corresponding BISR register that holds a repair 
solution. All BISR registers in the chip are connected to form a chip-level BISR scan chain. The 
BISR chain is connected to a chip-level controller called a BISR controller. The BISR controller 
compresses the content of the BISR chain as it is scanned out of the BISR chain and writes the 
compressed data into the fuse box. The BISR controller can also decompress repair data from 
the fuse box and scan it in the BISR chain. 

The BISR controller works in conjunction with a BIRA (Built-In Redundancy Analysis) module 
that provides the repair fuse values calculated from memory failure data.

Note
The top-level architecture of the BISR chain and the BISR controller has two fundamental 
differences when the circuit contains power domains. These differences are covered in 

subsequent sections.
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Built-In Repair Analysis (BIRA)
Repairable memories implement spare or redundant rows or columns, enabling access to any 
faulty row or column to be redirected to a redundant element.
The existing memory BIST diagnostic capabilities, such as the Compare Status pins diagnostic 
approach and the Stop-On-Nth-Error diagnostic approach are not optimal solutions for the 
repair analysis of repairable memories. Each solution requires large test times or state-of-the-art 
high-speed memory testers. In addition, post execution analysis of the results must be done to 
determine if a memory is repairable and what repair, if any, is required.

To facilitate repairable memories in production testing environments, the Built-In Repair 
Analysis (BIRA) feature can be used to determine if a memory is repairable and the repair 
information based on the specified redundancy scheme.

This chapter outlines a solution for implementing and performing repair analysis in production 
test environments utilizing memory BIST. The repair analysis is performed during the 
execution of the memory BIST controller, and the repair results are scanned out of the controller 
after execution.

Table 5-1 shows the location of the BIRA circuit. Usually the BIRA circuitry is in the same 
location as the comparators. That is, BIRA is located in the BIST controller if DftSpecification/
MemoryBist/Controller/Step/comparator_location is set to shared_in_controller and is located 
in the memory interface if comparator_location is set to per_interface. The one exception is that 
it is also possible to insert the row repair BIRA circuitry in the controller even if 
comparator_location is set to per_interface. This enables minimizing area by maximizing 
sharing of address pipeline registers required by the BIRA logic. This is the default option. The 
location of the Row BIRA logic can be forced to be in the memory interface when 
comparator_location is set to per_interface by specifying 
row_bira_location:follow_comparators in the DftSpecification.

Limitations and Restrictions
The following limitations and restrictions apply to performing repair analysis.

Table 5-1. BIRA Module Location 
comparator_location: per_interface shared_in_controller
Row BIRA Controller or Interface1

1. Row BIRA logic located at the controller when row_bira_location is set to controller. Row BIRA
logic is located at the memory interface when row_bira_location is set to follow_comparators.

Controller

Column/IO BIRA Interface Controller
Row + Col BIRA Interface Controller
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• When using the preserve repair analysis register feature (PatternsSpecification property 
preserve_fuse_register_values: on), it is assumed that the device always remains 
powered up and the register contents are not affected as a result of voltage bumping. 
Also, the Test Access Port (TAP) cannot be reset.

• Although Tessent MemoryBIST supports insertion into a Verilog or VHDL RTL 
environment, only Verilog HDL is generated.

• The Row and Column BIRA engine may not always find a repair solution even if one 
exists, because the engine does not perform an exhaustive search of the repair solutions. 
To minimize area and test time the engine assigns all spare columns first unless it 
encounters a multi-bit error at a same address. In that case, the engine assigns a spare 
row even if spare columns are available. This repair strategy does not find a solution for 
some combinations of errors with a common row or column address appearing in a 
certain sequence. However, the impact on yield is negligible due to the low number of 
these combinations.

• The BIRA engine cannot change the fuse mapping of previously allocated spare 
elements to create a more optimal repair solution if errors are found during subsequent 
test sessions during an incremental repair flow. The low number of these occurrences 
have a negligible impact on yield.

• When several ShiftedIO properties are specified in the Memory BIST library with the 
same bitString value, the IO/Column BIRA does not always find a repair solution even 
if one exists. The memory is incorrectly declared as non-repairable if an error occurs 
during the same access at two or more IOs specified with the same bitString value. 
However, the impact on yield is minimal.

Built-In Self Repair (BISR)
Memories with self-repair capability must have the correct repair mapping information 
specified in the memory library file. Two types of memory repair interfaces are available—
serial and parallel:

• Memories with serial self-repair have scan ports on the memory module. The self-repair 
fuses are accessed serially by scanning in the repair fuse values.

• Memories with parallel self-repair interface have ports on the memory module that 
control each repair fuse. 

Figure 5-2 shows a module that contains two memories, MEM1 and MEM2. The memory 
MEM1 has a serial BISR interface and is shown with its internal BISR register. The repairable 
memory MEM2 has a parallel BISR interface. The parallel connections between the external 
BISR register and the memory parallel repair ports are shown. The BISR chain control signals 
are also shown. This figure illustrates how the BISR registers are connected to form a single 
BISR chain that is accessible using the BISR_SI and BISR_SO ports. When scanning values 
into the BISR chain, the content of the internal BISR register is the same as the external BISR 
register. The BISR_SELECT signal controls a multiplexer that selects the internal or external 
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BISR register. The BISR_SELECT signal controls which BISR register to scan out. The length 
of the internal BISR register must match that of the external BISR register.

Figure 5-2. Memories With Serial and Parallel Self-Repair Interfaces

Implementing Soft Repair
Two repair methods are supported by the BISR controller: soft or hard. The repair method is 
specified during DFT insertion using the repair_method property inside the DftSpecification. 
When repair_method is set to hard, the memory repair information is stored in a fuse box that 
enables the repair information to be stored permanently inside the device. This is the default 
repair method.
When the repair_method is set to soft, the memory repair information is not stored permanently 
inside the device. It must be reloaded or recalculated every time the device or a power domain 
region is powered on. If the repair solution is stored externally, it can be loaded using a 
bisr_chain_access mode. Another option is to re-run the Redundancy Analysis by running 
memoryBist followed by a BIRA to BISR data transfer for the affected regions. A fuse box 
interface model is not required when implementing the soft-repair methodology. The BISR 
controller operation modes associated with fuse box accesses are disabled, such as the 
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self_fuse_box_program and verify_fuse_box autonomous modes, as well as all 
fuse_box_access run modes.

Trade-offs and Benefits
When using soft repair, the power-up time of a device is longer because the execution of the 
memoryBist with Redundancy Analysis, followed by the loading of the repair information in 
the BISR chains, must be performed before the functional mode of operation can begin. 
Furthermore, specific defects that require special operating conditions may not be detected 
during the initial memoryBist sequence. 

However, the soft repair method enables significant area savings because it does not require the 
presence of an eFuse in the design. Also, this method enables an unlimited number of repair 
sessions. If new defects are detected and are repairable, the new repair solution can be loaded in 
the BISR chain.

Limitation
The BISR controller must be controlled exclusively through the MissionMode controller and 
the TDR of the BISR controller must never be reset to avoid resetting the BISR chains. For the 
same reason, the IJTAG network or TAP must not be reset, even when operating the device in 
functional mode.
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Memory Library Preparation and Repair 
Registers Description

This section includes information that is not required if an IP vendor provides your memory 
libraries. The explanation of the repair registers is needed only if you are planning to use the 
BIRA logic with your own BISR implementation.
Repair Analysis for IO/Column Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Repair Analysis for Row Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Repair Analysis for Row and IO/Column Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Built-In Self-Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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Repair Analysis for IO/Column Elements
This section describes how to specify spare IO/column-only elements, as well as the scope of 
repair in the memory array for each of the spare elements.
The section covers the following topics:

• IO or Column replacement mechanisms. Refer to the “IO/Column Repair” section.

• How to define the built-in repair analysis using the syntax of the memory library file. 
Refer to the “Implementing IO/Column Repair Analysis” section.

• Memory Library File examples for defining IO or column built-in repair analysis. Refer 
to the “Memory Library File Sample Syntax” section.

• Description of registers provided for each memory segment defined in the memory 
library file(s). Refer to the following:

o “Repair Status Register”

o “Fuse Registers”

• How the register status and FuseSet values are propagated to output ports on the 
memory interface or memory controller. Refer to the “Repair Analysis Output Ports for 
IO/Column Repair” section. 

The final step in implementing BIRA is to certify, or validate the memory library file built-in 
repair analysis settings. Refer to the “Certifying TCD Memory Library Files With 
memlibCertify in Tessent Shell” appendix for further information. Refer to the “Verifying BISR 
at the Block Level” section for information on validating the repairable memories and BIRA/
BISR logic at the block level.

IO/Column Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Implementing IO/Column Repair Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Repair Analysis Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Repair Analysis Output Ports for IO/Column Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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IO/Column Repair
Memories with redundant IO or Column elements can be used to improve chip yield. IO repair 
replaces an entire memory sub-array and the associated columns for an IO, whereas column 
repair replaces a single column across one or more IOs. Each mechanism is described in the 
following sections.

IO Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Column Replacement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

IO Replacement
In the IO replacement mechanism, an entire memory sub-array is duplicated. The redundant 
element can repair any failing column associated with a memory IO.
Figure 5-3 illustrates the structure of an 8-bit repairable memory with 4-to-1 column muxing 
and one redundant IO. The logic for the IO replacement mechanism is highlighted in blue.

Figure 5-3. Example Memory With Redundant IO

For IO replacement, the memory is repairable when one or more faults are along the same 
column or one or more failing columns are within the same memory IO.

For example, assume that a fault is detected on data bit Q[6] in the memory illustrated in 
Figure 5-3. The memory is repaired by bypassing the Bit6 sub-array as follows:

• Port D[6] writes into the Bit7 sub-array
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• Port D[7] writes into the redundant sub-array

• Port Q[6] receives the output of column mux 7

• Port Q[7] receives the output of column mux in the redundant sub-array

To identify the failing IO, the built-in repair analysis circuit must log the defective IO value.

Column Replacement
In the column replacement mechanism, a single column is duplicated. The redundant element 
can repair one failing column across one or more memory IOs.
Figure 5-4 illustrates the structure of an 8-bit repairable memory with 4-to-1 column muxing 
and one redundant column. The logic for the column replacement mechanism is highlighted in 
blue.

Figure 5-4. Example Memory With Redundant Column

For column replacement, the memory is repairable when one or more faults are along the same 
column or exactly one failing column is within the specified scope of repair.

To identify the failing column, the built-in repair analysis circuit must log the defective IO 
value as well as the faulty column address.
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Implementing IO/Column Repair Analysis
The topics in this section show how to specify IO/column repair elements, as well as the scope 
of repair in the memory array for each of the spare elements. An example implementation 
showing the correct memory library file syntax is also provided.

Tessent MemoryBIST Memory Library File Showing IO/Column Repair . . . . . . . . . . 137
ColumnSegmentRange Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ColumnSegment Wrapper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Memory Library File Sample Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Tessent MemoryBIST Memory Library File Showing IO/Column 
Repair

To implement built-in repair analysis, you must define the RedundancyAnalysis wrapper in the 
memory library file.
The properties and wrappers within the RedundancyAnalysis wrapper contain information 
about the repairable memory segments, the number of spare elements within a segment, and the 
addresses to be logged for replacing a defective IO/column with a spare.

Figure 5-5 summarizes the syntax of the memory library file used to support IO/column repair 
analysis.
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Figure 5-5. Repair Analysis Support in Memory Library File

RedundancyAnalysis { 
   ColumnSegmentRange { 
      SegmentAddress [y]: AddressPort(<name>); 
      .
      . //Repeat for all SegmentAddress bits
      .
   } 
   ColumnSegment (<SegmentName>) { 
      ColumnSegmentCountRange [<lowRange>: <highRange>]; 
      NumberOfSpareElements : <int>;
      ShiftedIORange  : Data [15:0]; 
      FuseSet { 
         Fuse [<bitIndex>]: AddressPort(<name>) | 
               not AddressPort(<name>) |
               LogicHigh | LogicLow; 
         FuseMap [<HighBitRange>:<LowBitRange>] { 
            NotAllocated : <bitString>; 
            ShiftedIO (<DataPortName>):<bitString>; 
            . 
            . //Repeat for all IO within ShiftedIORange 
            . 
         } 
         . 
         . //Repeat for all Fuse bits 
         . 
      } 
   } 
   . 
   . //Repeat for all ColumnSegments 
   . 
} 

ColumnSegmentRange Wrapper
Use the optional ColumnSegmentRange wrapper to define a portion of the memory address 
space where a spare element can replace a defective element.
The ColumnSegmentRange wrapper is defined in the RedundancyAnalysis wrapper of the 
memory library. This wrapper does not need to specified if only one RedundancyAnalysis/
ColumnSegment wrapper is defined. In this configuration, the column segment encompasses 
the entire memory address space.

SegmentAddress Property

Use the repeatable SegmentAddress property to specify the significant column address bits that 
are used to encode the ColumnSegment/ColumnSegmentCountRange limits. These range limits 
are used to define the portion of the column address space where the segment’s spare elements 
can replace a defective IO/Column element. 
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ColumnSegment Wrapper
The ColumnSegment wrapper is required for implementation of IO/column repair, and is used 
to define one or more segments of the memory space that have spare elements.
For IO/column repair analysis, you must specify at least one RedundancyAnalysis/
ColumnSegment wrapper. Every ColumnSegment is assumed to have one spare element. 

ColumnSegmentCountRange and RowSegmentCountRange Properties

Use the optional ColumnSegmentCountRange and RowSegmentCountRange properties to 
define the lowRange and highRange for the defined segment address bits. When a defective 
element is within this address range, a spare element can be allocated from this segment.

NumberOfSpareElements Property

Use the NumberOfSpareElements property to specify the number of redundant elements within 
the defined segment. The default value is 1.

ShiftedIORange Property

Use the ShiftedIORange property to define a group of IO/Data bits where spare elements can 
replace a faulty IO. When a defective element is within this group, a spare element can be 
allocated from this segment. The default value for this property is equal to the entire IO range.

FuseSet Wrapper

Use the mandatory FuseSet wrapper in the ColumnSegment wrapper to provide detailed 
information about the fuse register. The fuse register contains the bitmapping information for 
identifying the defective IO/column. 

• Fuse Property

Use the optional Fuse property to indicate the memory address ports to be logged in the 
fuse registers upon detecting failure. You must define the address port using the syntax: 

Fuse[<bitIndex>]: AddressPort(<name>) | not AddressPort(<name>) | 
   LogicHigh | LogicLow; 

Multiple fuse register bits are possible, but they must be indexed starting from 0. The 
constant LogicHigh | LogicLow values can be captured in the BIRA fuse register when a 
failure is detected.

• FuseMap Wrapper

Use the mandatory FuseMap wrapper to define the HighBitRange and the LowBitRange 
for the fuse used to map the defective IO to the corresponding fuse register value.
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Note
The FuseMap wrapper is independent of the Fuse property.

o NotAllocated Property

Use the optional NotAllocated property to specify a fuse register value that indicates 
no repair is needed for the column segment. If this property is not defined, an 
allocation bit is used as an indicator when repair is required, and faulty IO 
information is logged. The allocation bit is the MSB bit of the fuse registers.

o ShiftedIO Property

Use the mandatory ShiftedIO property to specify the values to be logged in the fuse 
register, which identifies each defective IO. 

Memory Library File Sample Syntax
This section provides examples of the memory library sample syntax.

Examples
Example 1: Memory With IO Redundancy

Suppose we have a 32-bit memory array with IO redundancy as shown in Figure 5-6.

Figure 5-6. Example of Memory With IO Redundancy 

Each half of the memory array has a single redundant IO that can repair any IO within the 
corresponding half. Assume that each redundant IO is programmed from a 5-bit fuse as follows:

• Bits [3:0] are used to identify the defective IO. 

• Bit [4] is the MSB of the fuse register; it is used as an allocation bit.



Implementing and Verifying Memory Repair
Repair Analysis for IO/Column Elements

Tessent™ MemoryBIST User’s Manual, v2022.4 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-7 illustrates an example of the memory library file syntax to define the above repair 
analysis capability.

Figure 5-7. RedundancyAnalysis Wrapper Syntax for Example 1

RedundancyAnalysis { 
   ColumnSegment (LEFT) { 
         ShiftedIORange: Data[15:0]; 
         FuseSet { 
               FuseMap[3:0] { 
                  ShiftedIO(Data[0]): 4'b0000; 
                  ShiftedIO(Data[1]): 4'b0001; 
                  ShiftedIO(Data[2]): 4'b0010; 
                  ShiftedIO(Data[3]): 4'b0011; 
                  ShiftedIO(Data[4]): 4'b0100; 
                  ShiftedIO(Data[5]): 4'b0101; 
                  ShiftedIO(Data[6]): 4'b0110; 
                  ShiftedIO(Data[7]): 4'b0111; 
                  ShiftedIO(Data[8]): 4'b1000; 
                  ShiftedIO(Data[9]): 4'b1001; 
                  ShiftedIO(Data[10]): 4'b1010; 
                  ShiftedIO(Data[11]): 4'b1011; 
                  ShiftedIO(Data[12]): 4'b1100; 
                  ShiftedIO(Data[13]): 4'b1101; 
                  ShiftedIO(Data[14]): 4'b1110; 
                  ShiftedIO(Data[15]): 4'b1111; 
               } 
         } 
   } 
   ColumnSegment (RIGHT) { 
         ShiftedIORange: Data[31:16]; 
         FuseSet { 
               FuseMap[3:0] { 
                  ShiftedIO(Data[16]): 4'b0000; 
                  ShiftedIO(Data[17]): 4'b0001; 
                  ShiftedIO(Data[18]): 4'b0010; 
                  ShiftedIO(Data[19]): 4'b0011; 
                  ShiftedIO(Data[20]): 4'b0100; 
                  ShiftedIO(Data[21]): 4'b0101; 
                  ShiftedIO(Data[22]): 4'b0110; 
                  ShiftedIO(Data[23]): 4'b0111; 
                  ShiftedIO(Data[24]): 4'b1000; 
                  ShiftedIO(Data[25]): 4'b1001; 
                  ShiftedIO(Data[26]): 4'b1010; 
                  ShiftedIO(Data[27]): 4'b1011; 
                  ShiftedIO(Data[28]): 4'b1100; 
                  ShiftedIO(Data[29]): 4'b1101; 
                  ShiftedIO(Data[30]): 4'b1110; 
                  ShiftedIO(Data[31]): 4'b1111; 
               } 
         } 
   } 
} 
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This redundancy specification implements three registers in the memory interface or memory 
controller for repair analysis reporting. These registers can be shifted out after the memory 
BIST execution to facilitate fuse box programming.

Shown in Figure 5-8, the 2-bit register BP1_RA_MEM1_REPAIR_STATUS_REG indicates 
the overall memory repairability. The remaining two registers correspond to the FuseSet 
wrappers. The 5-bit FUSE_REG registers log the defective I/O and include the allocation bit as 
the MSB.

Figure 5-8. FuseSet Registers for Example 1

For information on the built-in repair analysis registers, refer to the “Repair Analysis Registers” 
section.

Example 2: Memory With IO/Column Redundancy
Suppose we have a 32-bit memory array with IO/column redundancy as shown in Figure 5-9.
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Figure 5-9. Example of Memory With Column/IO Redundancy

The memory is divided into two blocks in this example. Within a memory block, each half of 
the memory array has one redundancy IO/column that can repair any IO/column within the 
corresponding half.

Assume that each redundant IO is programmed by a 5-bit fuse. The fuse box bitmapping for the 
defective IO/column is shown in Table 5-2.

Table 5-2. Fuse Box for Mapping Defective IO/Columns 
B0/B1 Left-Hand Side B0/B1 Right-Hand Side
Fuse Box Value Shifted IO Fuse Box Value Shifted IO
00000 None 00000 None
00001 0 00001 4
00010 1 00010 5
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In this example, the RedundancyAnalysis wrapper is specified as shown in Figure 5-10. 

00011 2 00011 6
00100 3 00100 7

Table 5-2. Fuse Box for Mapping Defective IO/Columns  (cont.)
B0/B1 Left-Hand Side B0/B1 Right-Hand Side
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Figure 5-10. RedundancyAnalysis Wrapper Syntax for Example 2

RedundancyAnalysis { 
   RowSegmentRange { 
      SegmentAddress[0]: AddressPort(Add[13]); 
   } 
   ColumnSegment (SubBlock0_LEFT) { 
      ShiftedIORange: Data[3:0]; 
      RowSegmentCountRange [1'b0:1'b0]; 
      FuseSet { 
         FuseMap[4:0] { 
            NotAllocated: 5'b00000; 
            ShiftedIO (Data[0]): 5'b00001; 
            ShiftedIO (Data[1]): 5'b00010; 
            ShiftedIO (Data[2]): 5'b00011;
            ShiftedIO (Data[3]): 5'b00100; 
         } 
      } 
   } 
   ColumnSegment (SubBlock0_RIGHT) { 
      ShiftedIORange: Data[7:4]; 
      RowSegmentCountRange [1'b0:1'b0]; 
      FuseSet { 
         FuseMap[4:0] { 
            NotAllocated: 5'b00000; 
            ShiftedIO (Data[4]): 5'b00001; 
            ShiftedIO (Data[5]): 5'b00010; 
            ShiftedIO (Data[6]): 5'b00011; 
            ShiftedIO (Data[7]): 5'b00100; 
         } 
      } 
   } 
   ColumnSegment (SubBlock1_LEFT) { 
      ShiftedIORange: Data[3:0]; 
      RowSegmentCountRange [1'b1:1'b1]; 
      FuseSet { 
         FuseMap[4:0] { 
            NotAllocated: 5'b00000; 
            ShiftedIO (Data[0]): 5'b00001; 
            ShiftedIO (Data[1]): 5'b00010; 
            ShiftedIO (Data[2]): 5'b00011; 
            ShiftedIO (Data[3]): 5'b00100; 
         } 
      } 
   } 
   ColumnSegment (SubBlock1_RIGHT) { 
      ShiftedIORange: Data[7:4]; 
      RowSegmentCountRange [1'b1:1'b1]; 
      FuseSet { 
         FuseMap[4:0] { 
            NotAllocated: 5'b00000; 
            ShiftedIO (Data[4]): 5'b00001; 
            ShiftedIO (Data[5]): 5'b00010; 
            ShiftedIO (Data[6]): 5'b00011; 
            ShiftedIO (Data[7]): 5'b00100; 
         } 
      } 
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   } 
} 

This redundancy specification implements five registers in the memory interface or memory 
controller to report the repair information. These registers can be shifted out after the memory 
BIST execution to facilitate fuse box programming.

Shown in Figure 5-11, the 2-bit register BP1_RA_MEM1_REPAIR_STATUS indicates the 
overall memory repairability. The remaining four registers correspond to the FuseSet wrappers 
and log the 5-bit encoding for the memory IO, as defined in Table 5-2. The fuse registers does 
not include the allocation bit because the NotAllocated property is being specified in the 
FuseMap definition.

Figure 5-11. FuseSet Registers for Example 2

For information on the built-in repair analysis registers, refer to the “Repair Analysis Registers” 
section.
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Repair Analysis Registers
When built-in repair analysis is implemented using Tessent Shell MemoryBIST, a set of 
registers is created in the hardware for storing the repair results from the BIST execution.
This set of registers consists of the following:

• One Repair Status Register for each memory with redundancy

• One or more Fuse Registers for each memory repair segment defined in the memory 
library file(s)

The comparator_location property setting in the MemoryBist/Controller/Step wrapper of the 
DftSpecification determines the location of the I/O and column repair analysis hardware 
associated with the repairable memory:

• comparator_location:shared_in_controller — The repair analysis registers are created in 
the memory controller.

• comparator_location:per_interface — The repair analysis registers are created in the 
corresponding memory interface.

Repair Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Fuse Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Repair Status Register
In the hardware, the overall ability of the memory to be repaired is reported by the repair status 
register:

<memory_instance_name>_REPAIR_STATUS

The repair status register specifies whether the memory requires a repair, is not repairable, or 
does not require a repair (when no failure is detected). The bit decode assignments for the repair 
status register are described in Table 5-3.

The repair status register(s) are located on the setup chain. Therefore, these registers can be 
serially scanned out of the memory controller or memory interface.

Table 5-3. <MEMORY_INSTANCE_NAME>_REPAIR_STATUS Decodes 
Bit1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable
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Fuse Registers
For each memory segment, two registers are required for each spare element:

• Allocation Register (if the NotAllocated property is not specified)

• FuseSet Register

Allocation Register

The allocation register, if present, contains a bit that specifies whether the spare element is 
allocated (needs repair) or is not allocated. This bit has the following name:

<memory_instance_name>_<segment_name>_SCOL#_ALLOC_REG

A value of 0 in this bit represents NOT allocated (no repair required), and a 1 represents 
allocated (repair required). If allocated, the value in the FuseSet register is dictated by the 
FuseSet wrapper in the memory library file.

FuseSet Register

The FuseSet register contains the fuse bits as specified by the FuseSet wrapper for the segment. 
The register is composed of the following: 

• The I/O map value corresponding to the defective element.

• If the Fuse property in the FuseSet wrapper is defined, then the FuseSet register also 
includes the address value driven on the memory address bus for the defective element.
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Repair Analysis Output Ports for IO/Column Repair
The Repair Status and FuseSet values are propagated to output ports on the memory interface or 
memory controller. 
The location of the BIRA module and registers depends on the comparator_location property 
setting in the MemoryBist/Controller/Step wrapper for each memory interface.

BIRA Port Names on the Controller When Using Shared Comparators. . . . . . . . . . . . 149
BIRA Port Names on the Interface When Using Local Comparators . . . . . . . . . . . . . . 149

BIRA Port Names on the Controller When Using Shared 
Comparators

When setting comparator_location: shared_in_controller, the BIRA registers are located inside 
the memory BIST controller, and the port naming convention has the following prefix:

<memory_instance_name>_<segment_name>_SCOL<x>_...

The <memory_instance_name> corresponds to the memory instance defined by the 
instance_name property in the MemoryInterface or ReusedMemoryInterface wrappers in the 
DftSpecification MemoryBist/Controller/Step wrapper. 

The <segment_name> corresponds to the ColumnSegment(<SegmentName>) inside the 
memory template wrapper.

The <x> index corresponds to the Nth spare element. The spare elements are numbered starting 
from 0.

BIRA Port Names on the Interface When Using Local 
Comparators

When setting comparator_location: per_interface, the BIRA registers are located inside the 
memory interface, and the port naming convention has the following prefix:

<segment_name>_SCOL<x>_...

The <segment_name> corresponds to the ColumnSegment(<SegmentName>) inside the 
memory template wrapper.

The <x> index corresponds to the Nth spare element. The spare elements are numbered starting 
from 0. The results of the memory repair analysis can be determined by monitoring the 
following ports:

• <prefix>_REPAIR_STATUS
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This output port reports the overall repair status of the memory with redundancy. The bit 
decode assignments are described in Table 5-3.

• <prefix>_FUSE_REG

This output port reports the IO map value for the defective element.

• <prefix>_FUSE_ADD_REG

This output port contains the memory column address where a redundant element must 
be allocated.

• <prefix>_ALLOC_REG

This single-bit output port indicates if the spare element must be allocated.
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Repair Analysis for Row Elements
This section describes how to specify spare row-only elements and the scope of repair in the 
memory array for each of the spare elements. This section covers the following topics:

• Row replacement mechanism. Refer to the “Row Repair” section.

• How to define the built-in repair analysis for row elements using the syntax of the 
memory library file. Refer to the “Implementing Row Repair Analysis” section.

• Memory Library File examples for defining row built-in repair analysis. Refer to the 
“Tessent MemoryBIST Memory Library File Showing Row Repair” section.

• Description of registers provided for each memory segment defined in the memory 
library file(s). Refer to the following:

o “Repair Status Register”

o “Fuse Registers”

• How the register status and FuseSet values are propagated to output ports on the 
memory interface/collar or memory controller. Refer to the “Repair Analysis Output 
Ports for Row Repair” section.

The final step in implementing BIRA is to certify, or validate the memory library file built-in 
repair analysis settings. Refer to the “Certifying TCD Memory Library Files With 
memlibCertify in Tessent Shell” appendix for further information. Refer to the “Verifying BISR 
at the Block Level” section for information on validating the repairable memories and BIRA/
BISR logic at the block level.

Row Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Implementing Row Repair Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Repair Analysis Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Repair Analysis Output Ports for Row Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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Row Repair
Memories with one or more redundant rows are often used to improve chip yield. Faulty rows in 
the memories are identified through failure mapping or repair analysis. Access to the faulty row 
addresses is redirected to the redundant elements. The chip with repaired memories becomes 
usable and does not need to be discarded.

Row Replacement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Row Replacement
In the Row replacement mechanism, additional rows are built into the memory array. These 
redundant elements can repair any failing row within the entire memory or within a specific 
bank. The replacement mechanism depends on the memory design.
For instance, a redundant element might replace a single physical row in one implementation, 
while another scheme always replaces multiple consecutive rows even if there is only one row 
failure.

Figure 5-12 illustrates the structure of a repairable memory containing two banks with 
dedicated redundant rows.

Figure 5-12. Example Memory With Redundant Rows
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Implementing Row Repair Analysis
This section describes how to specify any row elements and the scope of repair in the memory 
array for each of the spare elements and provides examples of repair analysis information in the 
memory library file.
A set of registers is provided for each memory repair segment defined in the memory library 
file. For description, refer to the “Repair Analysis Registers” section.

Tessent MemoryBIST Memory Library File Showing Row Repair . . . . . . . . . . . . . . . . 153
RowSegmentRange Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
RowSegment Wrapper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Memory Library File Sample Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Tessent MemoryBIST Memory Library File Showing Row Repair
To implement built-in repair analysis, you must define the RedundancyAnalysis wrapper in the 
memory library file.
The properties and wrappers within the RedundancyAnalysis wrapper contain information 
about the repairable memory segments, the number of spare elements within a segment, and the 
addresses to be logged for replacing a defective row location with a spare.

To specify row segments, use the RowSegmentRange and RowSegment wrappers and their 
contents. Refer to the descriptions starting with the “RowSegmentRange Wrapper” and 
“RowSegment Wrapper” sections.

Figure 5-13 summarizes the syntax of the memory library file used to support row repair 
analysis. 
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Figure 5-13. Repair Analysis/Row Support in Memory Library File

RedundancyAnalysis { 
   RowSegmentRange { 
      SegmentAddress [y]: AddressPort(<name>); 
      .
      . //Repeat for all SegmentAddress bits 
      . 
   } 
   RowSegment (<segmentName>){ 
      NumberOfSpareElements: <integer>; 
      RowSegmentCountRange [<lowRange>: <highRange>]; 
      FuseSet { 
         Fuse [<bitindex>]: AddressPort(<name>) | 
               not AddressPort(<name>) |
               LogicHigh | LogicLow; 
         . 
         . //Repeat for all Fuse bits 
         . 
      } 
   } 
   . 
   . //Repeat for all RowSegments 
   . 
} 

RowSegmentRange Wrapper
Use the optional RowSegmentRange wrapper to define a portion of the memory address space 
where the spare elements can replace one or more defective rows.
The RowSegmentRange wrapper is defined in the RedundancyAnalysis wrapper of the memory 
library. 

The following usage conditions apply:

• You do not need to specify the RowSegmentRange wrapper if only one 
RedundancyAnalysis/RowSegment wrapper is defined within the RedundancyAnalysis 
wrapper. In this case, the RowSegmentRange wrapper defaults to encompass the entire 
memory address space.

• If more than one RowSegment wrapper is defined within the RedundancyAnalysis 
wrapper, the RowSegmentRange wrapper is required, and all the segment ranges 
specified for all wrappers must combine to encompass the entire memory address space.

SegmentAddress Property

Use the repeatable SegmentAddress property to specify the significant row address bits that are 
used to encode the RowSegment/RowSegmentCountRange limits. These range limits are used 
to define the portion of the row address space where the segment’s spare elements can replace a 
defective row element.
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The following usage conditions apply:

• SegmentAddress [y] — For all specified SegmentAddress properties, y must start from 0 
and encompass all valid integers to n-1, where n is the number of the SegmentAddress 
properties specified.

• name must identify a port defined in the memory library file with Port/Function: 
Address specified. If the address port is a bused port, the name must identify a single bit 
within the bused port.

RowSegment Wrapper
The RowSegment wrapper is required for implementation of row repair, and is used to define 
one or more segments of the memory space that have spare row elements.
For row repair analysis, you must specify at least one RedundancyAnalysis/RowSegment 
wrapper. Every RowSegment is assumed to have one spare element.

If the RedundancyAnalysis/RowSegmentRange wrapper is specified, the number of 
RowSegment wrappers defined must encompass the entire memory address space.

NumberOfSpareElements Property

Use the NumberOfSpareElements property to specify the number of redundant elements within 
the defined segment. The default value is 1.

RowSegmentCountRange Property

Use the optional RowSegmentCountRange property to specify the lowRange and highRange for 
a defined segment based on the significant row address bits defined in the RowSegmentRange 
wrapper. When a defective element is within this segment range, a spare element can be 
allocated from this segment. RowSegmentCountRange can be specified only when at least one 
RedundancyAnalysis/RowSegmentRange/SegmentAddress bit is defined.

FuseSet Wrapper

Use the mandatory RowSegment/FuseSet wrapper to map the fuse register bits to address ports 
on the memory. The fuse register bit logs the value of this address port for the defective 
element. This wrapper is specified once per RowSegment wrapper.

• Fuse Property

Use the optional Fuse property to indicate the memory address ports to be captured in 
the fuse registers when a failure is detected. These fuse bits are defined per row segment. 
Constant LogicHigh and LogicLow values also can be captured by the BIRA fuse 
register when a failure is detected.
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The following usage conditions apply:

o A minimum of one Fuse must be defined per FuseSet.

o name must be either a scalar port or a single bit of a bused port.

o name must be a port defined by a Port wrapper with Function: Address in the 
memory library file. Constant values LogicHigh and LogicLow can be used instead 
of address bits.

Memory Library File Sample Syntax
This section discusses the structure of an example memory library file for a repairable memory.
The memory library file syntax example in Figure 5-14 defines the row repair analysis 
capability for the memory illustrated in Figure 5-12. The memory contains 2 banks of 16 rows 
and 4 columns. Each bank implements 2 redundant elements.

Figure 5-14. Memory Library File Sample Syntax

RedundancyAnalysis { 
   RowSegmentRange { 
      SegmentAddress[0]: AddressPort(ADR[6]); 
   } 
   RowSegment (Bank0){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1’b0:1’b0]; 
      FuseSet { 
         Fuse[3]: AddressPort(ADR[5]); 
         Fuse[2]: AddressPort(ADR[4]); 
         Fuse[1]: AddressPort(ADR[3]); 
         Fuse[0]: AddressPort(ADR[2]); 
      } 
   } 
   RowSegment (Bank1){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1’b1:1’b1]; 
      FuseSet { 
         Fuse[3]: AddressPort(ADR[5]); 
         Fuse[2]: AddressPort(ADR[4]); 
         Fuse[1]: AddressPort(ADR[3]); 
         Fuse[0]: AddressPort(ADR[2]); 
      } 
   } 
} 

This sample syntax of the memory library file specifies to Tessent Shell MemoryBIST the 
following information for row segments:

• The sample memory has two banks. Each bank has two spare elements available for 
repair. The two spare elements per bank can repair a failure occurring only within that 
bank. The FuseSet wrapper defines the address bits to be logged for each repairable 
element.
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• Each of the two row segments is located in the address space defined by the AddressPort 
ADR[6]. The RowSegment(Bank0) is selected within the address space whereby 
ADR[6] is 1’b0. The RowSegment(Bank1) is selected within the address space whereby 
ADR[6] is 1’b1.

• For the row segment range, the SegmentAddress bit 0 is defined as memory address port 
ADR[6].

• Each row segment consists of two spare elements as defined by the 
NumberOfSpareElements property. This means that for RowSegment(Bank0), there are 
two sets of fuses, each of which logs the value of the ports ADR[5:2] for the defective 
portion of memory within the row segment. Similarly for RowSegment(Bank1), there 
are two sets of fuses, each of which logs the value of the ports ADR[5:2] for the 
defective portion of memory within the row segment.
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Repair Analysis Registers
When built-in repair analysis is implemented using Tessent Shell MemoryBIST, a set of 
registers is created in the hardware for storing the repair results from the BIST execution. 
The following registers are provided for each memory segment defined in the memory library 
file(s):

• One segment Repair Status Register

• One or more Fuse Registers

The comparator_location property setting in the MemoryBist/Controller/Step wrapper of the 
DftSpecification determines the location of the row repair analysis hardware associated with the 
repairable memory:

• comparator_location:shared_in_controller — The repair analysis registers are created in 
the memory controller.

• comparator_location:per_interface — The repair analysis registers are created in the 
corresponding memory interface.

Repair Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Fuse Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Repair Status Register
In the hardware, the overall ability of the memory to be repaired is reported by the repair status 
register:

<memory_instance_name>_REPAIR_STATUS

The repair status register specifies whether the memory requires a repair, is not repairable, or 
does not require a repair (when no failure is detected). The bit decode assignments for the repair 
status register are described in Table 5-4.

The repair status register(s) are located in the setup chain. Therefore, these registers can be 
serially scanned out of the memory controller or memory interface.

Table 5-4. <MEMORY_INSTANCE_NAME>_REPAIR_STATUS Decodes 
Bit 1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable



Implementing and Verifying Memory Repair
Repair Analysis for Row Elements

Tessent™ MemoryBIST User’s Manual, v2022.4 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fuse Registers
For each memory segment, two registers are required for each spare element:

• Allocation Register (if the NotAllocated property is not specified)

• FuseSet Register

Allocation Register

The allocation register contains a bit specifying if the spare element is allocated and repair is 
needed, or is not allocated and no repair is needed. The register has the following name:

<memory_instance_name>_<segment_name>_SROW#_ALLOC_REG 

This register is always a single bit where 0 represents NOT allocated and 1 represents allocated. 
If allocated, the value in the FuseSet register represents a defective portion of the memory to be 
repaired.

FuseSet Register

The FuseSet register contains the fuse bits as specified by the FuseSet wrapper for the segment. 
The register is composed of the following: 

• The row map value corresponding to the defective element.

• If the Fuse property in the FuseSet wrapper is defined, then the FuseSet register also 
includes the address value driven on the memory address bus for the defective element.
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Repair Analysis Output Ports for Row Repair
The Register Status and FuseSet values are propagated to output ports on the memory interface 
or memory controller. 
The location of the BIRA module and registers depends on the comparator_location property 
setting in the MemoryBist/Controller/Step wrapper for each memory interface.

BIRA Port Names on the Controller When Using Shared Comparators. . . . . . . . . . . . 160
BIRA Port Names on the Interface When Using Local Comparators . . . . . . . . . . . . . . 160

BIRA Port Names on the Controller When Using Shared 
Comparators

When setting comparator_location: shared_in_controller, the BIRA registers are located inside 
the memory BIST controller, and the port naming convention has the following prefix:

<memory_instance_name>_<segment_name>_SROW<x>_...

The <memory_instance_name> corresponds to the memory instance defined by the 
instance_name property in the MemoryInterface or ReusedMemoryInterface wrappers in the 
DftSpecification MemoryBist/Controller/Step wrapper. 

The <segment_name> corresponds to the RowSegment(<SegmentName>) inside the memory 
template wrapper.

The <x> index corresponds to the Nth spare element. The spare elements are numbered starting 
from 0.

BIRA Port Names on the Interface When Using Local 
Comparators

When setting comparator_location: per_interface, the BIRA registers are located inside the 
memory interface, and the port naming convention has the following prefix:

<segment_name>_SROW<x>_...

The <segment_name> corresponds to the RowSegment(<SegmentName>) inside the memory 
template wrapper.

The <x> index corresponds to the Nth spare element. The spare elements are numbered starting 
from 0. The results of the memory repair analysis can be determined by monitoring the 
following ports:

• <prefix>_REPAIR_STATUS
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This output port reports the overall repair status of the memory with redundancy. The bit 
decode assignments are described in Table 5-3.

• <prefix>_FUSE_REG

This output port reports the IO map value for the defective element.

• <prefix>_FUSE_ADD_REG

This output port contains the memory column address where a redundant element must 
be allocated.

• <prefix>_ALLOC_REG

This single-bit output port indicates if the spare element must be allocated.
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Repair Analysis for Row and IO/Column Elements
While memories can be designed to provide either row or IO/column repair capability, 
memories can be designed to provide both.
Repair analysis for such memories is much more complex than single-dimension repair 
analysis. To provide built-in repair analysis for both row AND column redundancy, the 
RedundancyAnalysis wrapper in the memory library file must contain both row and column 
repair information. 

This section describes how to specify row and IO/column elements and the scope of repair in 
the memory array for each of the spare elements. This section covers the following topics:

• How to define the built-in repair analysis for row and IO/column elements using the 
syntax of the memory library file. Refer to the “Implementing Row and IO/Column 
Repair Analysis” section. 

• Memory Library File examples for defining built-in repair analysis for row and IO/
column elements. Refer to the “Sample Memory Library File Syntax” section.

• Description of registers provided for each memory segment defined in the memory 
library file(s). Refer to the following:

o “Repair Status Register”

• How the register status and FuseSet values are propagated to output ports on the 
memory interface or memory controller. Refer to the “Repair Analysis Output Ports for 
IO/Column and Row Repair” section. 

The final step in implementing BIRA is to certify, or validate the memory library file built-in 
repair analysis settings. Refer to the “Certifying TCD Memory Library Files With 
memlibCertify in Tessent Shell” appendix for further information. Refer to the “Verifying BISR 
at the Block Level” section for information on validating the repairable memories and BIRA/
BISR logic at the block level.
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Implementing and Verifying Memory Repair
Repair Analysis for Row and IO/Column Elements

Tessent™ MemoryBIST User’s Manual, v2022.4 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Implementing Row and IO/Column Repair Analysis
This section describes how to specify any row and IO/column elements, as well as the scope of 
repair in the memory array for each of the spare elements and provides examples for repair 
analysis information in the memory library file.

Tessent MemoryBIST Memory Library File Showing Row and IO/Column Repair . . 163
RowSegmentRange and ColumnSegmentRange Wrappers  . . . . . . . . . . . . . . . . . . . . . . 165
RowSegment and ColumnSegment Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Sample Memory Library File Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Tessent MemoryBIST Memory Library File Showing Row and IO/
Column Repair

To implement built-in repair analysis for rows and IO/columns, you must define the 
RedundancyAnalysis wrapper in the memory library file.
The properties and wrappers within the RedundancyAnalysis wrapper contain information 
about the repairable memory segments, the number of spare elements within a segment, and the 
addresses to be logged for replacing a defective location with a spare. Effectively, the 
description is a superset of information for row and column repair analysis.

• To specify row and column segment ranges, use the RowSegmentRange and 
ColumnSegmentRange wrappers with their contents. Refer to the descriptions starting 
with the “RowSegmentRange and ColumnSegmentRange Wrappers” section. 

• To specify row and column segments, use the RowSegment and ColumnSegment 
wrappers with their contents. Refer to the descriptions starting with the “RowSegment 
and ColumnSegment Wrappers” section.

Figure 5-15summarizes the syntax of the memory library file used to support built-in repair 
analysis for both row and IO/column elements.
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Figure 5-15. Repair Analysis Support in Memory Library File

RedundancyAnalysis {
RowSegmentRange { 

      SegmentAddress [<bitIndex>]: AddressPort(<name>); 
      .
      . //Repeat for all SegmentAddress bits 
      .
   }//End of RowSegmentRange 
   RowSegment (<segmentName>){ 
      NumberOfSpareElements : <integer>; 
      RowSegmentCountRange [<lowRange>: <highRange>]; 
      ColumnSegmentCountRange [<lowRange>: <highRange>]; 
                  ...; 
      FuseSet { 
         Fuse [bitIndex]: AddressPort(<name>) | 
               not AddressPort(<name>) |
               LogicHigh | LogicLow; 
         .
         . //Repeat for all Fuse bits 
         .
      }//End of FuseSet 
   }//End of RowSegment 
   .
   . //Repeat for all RowSegments 
   .
   ColumnSegmentRange { 
      SegmentAddress [<bitIndex>]: AddressPort(<name>); 
      .
      . //Repeat for all SegmentAddress bits 
      .
   }//End of ColumnSegmentRange 
   ColumnSegment (<SegmentName>) { 
      RowSegmentCountRange [<lowRange>: <highRange>]; 
      ColumnSegmentCountRange [<lowRange>: <highRange>]; 
      ShiftedIORange : Data [15:0]; 
      NumberOfSpareElements : <integer> 
                  ...; 
      FuseSet { 
         Fuse [bitIndex]: AddressPort(<name>) | 
               not AddressPort(<name>) |
               LogicHigh | LogicLow; 
         .
         . //Repeat for all Fuse bits 
         .
         FuseMap [<HighBitRange>:<LowBitRange>] { 
            NotAllocated : <bitString>; 
            ShiftedIO (<DataPortName>):<bitString>; 
            .
            . //Repeat for all IO within ShiftedIORange 
            .
         }//End of FuseMap 
      }//End of FuseSet 
   }//End of ColumnSegment 
   .
   . //Repeat for all ColumnSegments 
   .
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}//End of RedundancyAnalysis 

RowSegmentRange and ColumnSegmentRange Wrappers
Redundant row and columns/IO elements can be used simultaneously to replace the defective 
row and column elements in the memory.
Use the RowSegmentRange and ColumnSegmentRange wrappers to specify the boundary in 
which the spare elements defined in the RowSegment and ColumnSegment wrappers can be 
allocated. This segmentation also defines the area where the built-in repair analysis module 
calculates an optimal repair solution using the spare row and IO/column resources available for 
this memory region. 

The RowSegmentRange wrapper defines the significant row address bits that are used by the 
RowSegment/RowSegmentCountRange property and the ColumnSegment/
RowSegmentCountRange property. The RowSegmentCountRange property defines the row 
address boundaries for the corresponding RowSegment or ColumnSegment.

The ColumnSegmentRange wrapper defines the significant column address bits that are used by 
the ColumnSegment/ColumnSegmentCountRange property. The ColumnSegmentCountRange 
property defines the column address boundaries for the corresponding ColumnSegment.

The following usage conditions apply:

• RowSegmentCountRange limits specified inside all RowSegment or ColumnSegment 
wrappers must encompass the entire memory space.

• RowSegment wrappers with different RowSegmentCountRange limits must not overlap.

• ColumnSegmentCountRange limits specified inside all ColumnSegment wrappers must 
encompass the entire memory space.

• ColumnSegment wrappers with different ColumnSegmentCountRange or 
RowSegmentCountRange limits must not overlap.

SegmentAddress Property

Use the SegmentAddress property in both the RowSegmentRange and ColumnSegmentRange 
wrappers to specify which address ports are used to define the range of the memory segment. If 
only one RowSegment or ColumnSegment wrapper is defined within the RedundancyAnalysis 
wrapper, the RowSegmentRange or ColumnSegmentRange wrapper accordingly defaults to 
encompass the entire memory address space.

The following usage conditions apply:

• SegmentAddress[y] — For all specified SegmentAddress properties, y must start from 0 
and encompass all valid integers to n-1 where n is the number of the SegmentAddress 
properties specified.
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• name must identify a port defined in the memory library file with Port/
Function:Address. If the address port is a vectored port, the name must identify a single 
bit within the vectored port.

RowSegment and ColumnSegment Wrappers
Use the RowSegment and ColumnSegment wrappers to define one or more segments of the 
memory that has spare elements.
At least one RowSegment and one ColumnSegment wrapper must be specified for row and IO/
column repair analysis.

If the RowSegmentRange wrapper is specified, the number of RowSegment wrappers defined 
must encompass the entire memory address space.

NumberOfSpareElements Property

Use the RowSegment/NumberOfSpareElements property to specify the number of spare 
elements (banks, rows, or columns) within the defined segment. The default value is 1.

RowSegmentCountRange and ColumnSegmentCountRange Properties

Use the RowSegmentCountRange property in the RowSegment and ColumnSegment wrappers 
and use the ColumnSegmentCountRange property in the ColumnSegment wrapper to define the 
lowRange and highRange based on the row and column address bits. When a defective element 
is within this range, a spare element can be allocated from this segment. 
RowSegmentCountRange and ColumnSegmentCountRange can be specified only when at least 
one SegmentAddress bit is defined.

FuseSet Wrapper

Use the mandatory FuseSet wrapper to map the fuse register bits to address ports on the 
memory. The fuse register bit logs the value of this address port for the defective element. This 
wrapper is specified once inside each RowSegment and ColumnSegment wrapper.

• Fuse Property

Use the Fuse property in both the RowSegment/FuseSet and ColumnSegment/FuseSet 
wrappers to define which address bits are required for the fuses used to replace a 
defective element with a spare element. These fuse bits are defined per row segment. 
Constant LogicHigh and LogicLow values also can be captured by the BIRA fuse 
register when a failure is detected.

The following usage conditions apply:

o A minimum of one Fuse must be defined per FuseSet.

o name must either be a scalar port or a single bit of a vectored port.
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o name must be a port defined a Port wrapper with Function: Address in the memory 
library file. Constant LogicHigh and LogicLow values can be used instead of 
address bits.

Sample Memory Library File Syntax
An example memory library implementation is provided in this section for a memory with row 
and IO/column redundancy.
Figure 5-16 illustrates an example of the memory with row and IO/column redundancy.

Figure 5-16. Example Memory With Row and IO/Column Redundancy 

Figure 5-17 illustrates an example of the memory library file syntax to define the repair analysis 
capability for the example memory in Figure 5-16.
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Figure 5-17. Memory Library File Sample Syntax

RedundancyAnalysis { 
   RowSegmentRange { 
      SegmentAddress[0]: AddressPort(Address[10]); 
   } 
   RowSegment (Bank0){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0 
      FuseSet { 
         Fuse[3]: AddressPort(Address[9]); 
         Fuse[2]: AddressPort(Address[8]); 
         Fuse[1]: AddressPort(Address[7]); 
         Fuse[0]: AddressPort(Address[0]); 
      } 
   } 
   RowSegment (Bank1){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      FuseSet { 
         Fuse[3]: AddressPort(Address[9]); 
         Fuse[2]: AddressPort(Address[8]); 
         Fuse[1]: AddressPort(Address[7]); 
         Fuse[0]: AddressPort(Address[0]); 
      } 
   } 
   ColumnSegment (Bank0_Left){ 
      RowSegmentCountRange [1'b0:1'b0]; // Bank0
      ShiftedIORange: QO[7:0]; // Left
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[0]): 4'b0001; 
            ShiftedIO(QO[1]): 4'b0010; 
            ShiftedIO(QO[2]): 4'b0011; 
            ShiftedIO(QO[3]): 4'b0100; 
            ShiftedIO(QO[4]): 4'b0101; 
            ShiftedIO(QO[5]): 4'b0110; 
            ShiftedIO(QO[6]): 4'b0111; 
            ShiftedIO(QO[7]): 4'b1000; 
         } 
      } 
   } 
   ColumnSegment (Bank0_Right){ 
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0 
      ShiftedIORange: QO[15:8]; // Right 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[8]): 4'b0001; 
            ShiftedIO(QO[9]): 4'b0010; 
            ShiftedIO(QO[10]): 4'b0011; 
            ShiftedIO(QO[11]): 4'b0100; 
            ShiftedIO(QO[12]): 4'b0101; 
            ShiftedIO(QO[13]): 4'b0110; 
            ShiftedIO(QO[14]): 4'b0111; 
            ShiftedIO(QO[15]): 4'b1000; 
         } 
      } 
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   } 
   ColumnSegment (Bank1_Left){ 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      ShiftedIORange: QO[7:0]; // Left 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[0]): 4'b0001; 
            ShiftedIO(QO[1]): 4'b0010; 
            ShiftedIO(QO[2]): 4'b0011; 
            ShiftedIO(QO[3]): 4'b0100; 
            ShiftedIO(QO[4]): 4'b0101; 
            ShiftedIO(QO[5]): 4'b0110; 
            ShiftedIO(QO[6]): 4'b0111; 
            ShiftedIO(QO[7]): 4'b1000; 
         } 
      } 
   } 
   ColumnSegment (Bank1_Right){ 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      ShiftedIORange: QO[15:8]; // Right 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[8]): 4'b0001; 
            ShiftedIO(QO[9]): 4'b0010; 
            ShiftedIO(QO[10]): 4'b0011; 
            ShiftedIO(QO[11]): 4'b0100; 
            ShiftedIO(QO[12]): 4'b0101; 
            ShiftedIO(QO[13]): 4'b0110; 
            ShiftedIO(QO[14]): 4'b0111; 
            ShiftedIO(QO[15]): 4'b1000; 
         } 
      } 
   } 
} 

This sample syntax of the memory library file specifies to Tessent Shell MemoryBIST the 
following information for row and IO/column segments:

• The sample memory has two banks (or row segments). Each bank has two spare rows 
and two spare IOs available for repair. The two spare row elements per bank can repair a 
failure occurring only within that bank. The FuseSet wrapper defines the address bits to 
be logged for each repairable element. A single spare IO per column segment dictates 
the use of two ColumnSegment wrappers per bank. A total of four (4) ColumnSegment 
wrappers are required — 2 for Bank0 and 2 for Bank1.

• Each of the two row and column segments is located in the address space defined by the 
AddressPort Address[10]. The RowSegment(Bank0) and ColumnSegment(Bank0_xxx) 
is defined within the address space whereby Address[10] is 1'b0. The 
RowSegment(Bank1) and ColumnSegment(Bank1_xxx) is defined within the address 
space whereby Address[10] is 1'b1.

• For the row segment range, the SegmentAddress bit 0 is defined as memory address port 
Address[10].



Tessent™ MemoryBIST User’s Manual, v2022.4170

Implementing and Verifying Memory Repair
Repair Analysis for Row and IO/Column Elements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Each row segment consists of two spare elements as defined by the 
NumberOfSpareElements property. This means that for RowSegment(Bank0), there are 
two sets of fuses, each of which logs the value of the ports Address[9:7] and Address[0] 
for the defective portion of memory within the row segment. Similarly for 
RowSegment(Bank1), there are two sets of fuses, each of which logs the value of the 
ports Address[9:7] and Address[0] for the defective portion of memory within the row 
segment.

• Each ColumnSegment has FuseMap registers. The FuseMap registers capture the 
specified ShiftedIO fuse map value that indicates the IO on which an error was detected. 
FuseMap is mandatory when implementing IO/column repair. The fuse map values are 
used to identify the faulty IO of a memory. The fuse map values are found in the 
memory data sheet provided by the memory vendor.
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Repair Analysis Registers
When built-in repair analysis for row and IO/column is implemented using Tessent Shell 
MemoryBIST, a set of registers is implemented in hardware for latching the results of the 
memory BIST execution.
This set of registers is provided for each memory segment defined in the memory library file(s):

• One segment Repair Status Register

• One or more Fuse Registers 

The repair status and fuse registers are located on a dedicated BIRA setup chain. Therefore, 
these registers can be serially scanned out of either, or both, the memory controller and 
interface.

Repair Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Fuse Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Repair Status Register
In the hardware, the overall ability of the memory to be repaired is reported by the repair status 
register. Each memory has a repair status register named:

<memory_instance_name>_REPAIR_STATUS

The repair status register specifies if the memory requires repair, is not repairable, or does not 
require repair (when no failure is detected). The bit decode assignments for the repair status 
register are described in Table 5-5.

The repair status register(s) are located in the setup chain. Therefore, these registers can be 
serially scanned out of the memory controller or memory interface.

Fuse Registers
For each memory segment, two registers are required for each spare element:

• Allocation Register (if the NotAllocated property is not specified)

• FuseSet Register

Table 5-5. <MemoryInstance>_STATUS_REG Decodes 
Bit1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable



Tessent™ MemoryBIST User’s Manual, v2022.4172

Implementing and Verifying Memory Repair
Repair Analysis for Row and IO/Column Elements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Allocation Register

The allocation register, if present, contains a bit that specifies whether the spare element is 
allocated (needs repair) or is not allocated. This register has the following name:

<memory_instance_name>_<segment_name>_SROW#_ALLOC_REG   // for row spares
<memory_instance_name>_<segment_name>_SCOL#_ALLOC_REG   // for col spares

A value of 0 in this bit represents NOT allocated (no repair required), and a 1 represents 
allocated (repair required). If allocated, the value in the FuseSet register holds the memory 
address that needs to be repaired.

FuseSet Register

The FuseSet register contains the fuse bits as specified by the FuseSet wrapper for the segment. 
The register is composed of the following: 

• The IO map value corresponding to the defective element.

• If the Fuse property in the FuseSet wrapper for the respective memory row or column 
segment is defined, then the FuseSet register also includes the address value driven on 
the memory address bus for the defective element.

Repair Analysis Output Ports for IO/Column and Row 
Repair

Refer to the following sections for information on repair analysis output ports for IO/Column 
and Row repair:

• “Repair Analysis Output Ports for IO/Column Repair”

• “Repair Analysis Output Ports for Row Repair”
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Built-In Self-Repair
There are two types of memory repair interfaces—parallel and serial. Each memory can use 
only one type of repair interface. A memory with a parallel repair interface has ports to allocate 
redundant elements. A memory with a serial repair interface has an internal shift register that is 
used to allocate the redundant elements.
In the Memory Tessent Core Description (TCD) or memory library file, you specify BISR 
details using properties inside the PinMap/SpareElement wrapper as described in the “Parallel 
BISR Interface” and “Serial BISR Interface” sections.

Parallel BISR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Serial BISR Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
BISR-Specific Memory Library Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Memory Library Examples With Parallel and Serial BISR Interface . . . . . . . . . . . . . . 180

Parallel BISR Interface
When implementing a parallel BISR interface, you use the Fuse, FuseMap, and RepairEnable 
properties of the PinMap/SpareElement wrapper in the memory library file to specify the 
memory repair port name associated with the specified fuse register.
The properties of the PinMap/SpareElement wrapper provide guidance on how to connect the 
BISR fuse registers to the memory repair ports, as described in later sections.

Serial BISR Interface
A memory with a serial repair interface has an internal shift register that is used to allocate the 
spare elements.
When implementing the serial BISR interface, you must describe the order of the internal BISR 
register using RepairRegister[x] indexes in the Fuse, FuseMap, and RepairEnable properties of 
the PinMap/SpareElement wrapper in the memory library file. 

The total BISR length (N) for a given memory is equal to the number of the RepairRegister[x] 
properties specified in the RowSegment and ColumnSegment wrappers combined inside a 
memory library file. RepairRegister[0] specifies the bit of the BISR register that is closest to the 
BISR scanOut port and its value is scanned in first, and RepairRegister[N-1] specifies the bit of 
the BISR register that is closest to the BISR scanIn port and its value is scanned in last.

A single BISR register is generated for each memory. The RepairRegister[x] indexes must be 
contiguous from 0 to N-1 within a memory template. All indexes between 0 and N-1 must be 
used, and each index can be used only once.
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Be careful when describing the RepairRegister[x] indexes because they must match the internal 
memory BISR register order. The memory data sheet provides the internal BISR register 
ordering. Any mismatch between the order of the internal BISR chains and the order specified 
by the data sheet results in incorrect repair data scanned inside the memory. It is recommend 
that you run the memory template through the memory library certification tool (memlibc) to 
validate the memory template. This certification tool combined with fault-inserted memory 
simulations quickly identifies any mismatches between the memory template and the internal 
BISR register in the memory model. Refer to “Certifying TCD Memory Library Files With 
memlibCertify in Tessent Shell” for more information on this topic.

If a built-in retiming latch exists at the output of the internal BISR chain, use the Retimed 
property in the Port wrapper to indicate the presence of the retiming latch.
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BISR-Specific Memory Library Syntax
The section provides an example memory library file that shows the use of the Port wrapper to 
declare memory repair ports, as well as the use of the PinMap wrapper to specify the mapping 
of the repair solution to the memory.
Figure 5-18 summarizes the syntax of the example memory library file used to support built-in 
self-repair.
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Figure 5-18. Repair Support in Memory Library File

Port (<portName>) { 
   Function: BisrParallelData | BisrSerialData | 
            BisrClock | BisrReset | BisrScanEnable; 
   Direction: Input | Output; 
   ReTimed: On | (Off);
}
RedundancyAnalysis { 
   RowSegmentRange { 
      ...
   } 
   ColumnSegmentRange { 
      ...
   } 
   RowSegment (<segmentName>){ 
      ...
      PinMap { 
         SpareElement { 
            RepairEnable : <repairPortName> | 
               RepairRegister[bitIndex]; 
            Fuse [<bitIndex>]: <repairPortName> | 
               RepairRegister[bitIndex]; 
            LogicLow: <repairPortName> | 
               RepairRegister[bitIndex]; 
         } 
         . 
         . / Repeat for all SpareElements 
         .
      } 
   } 
   .
   . /Repeat for all RowSegments 
   . 
   ColumnSegment (<SegmentName>) { 
      ...
      PinMap { 
         SpareElement { 
            FuseMap [<bitIndex>]: <repairPortName> | 
               RepairRegister[bitIndex]; 
            RepairEnable: <repairPortName> | 
               RepairRegister[bitIndex]; 
            Fuse [<bitIndex>]: <repairPortName> | 
               RepairRegister[bitIndex]; 
            LogicLow: <repairPortName> | 
               RepairRegister[bitIndex]; 
         } 
      } 
   } 
} 

Port Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
PinMap SpareElement Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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Port Wrapper
The Port wrapper in the memory library file is used to declare the memory repair ports on a 
repairable memory.
Depending on the type of repair interface that is used in a memory, repair ports are specified 
with the following port functions, as specified in the Function property of the Port wrapper:

• For Parallel BISR interface:

o BisrParallelData

• For Serial BISR interface:

o BisrSerialData (with Port/Direction : input | output;)

o BisrClock (with Port/Polarity : (activeHigh) | activeLow;)

o BisrReset (with Port/Polarity : (activeHigh) | activeLow;)

o BisrScanEnable (with Port/Polarity : (activeHigh) | activeLow;) 

Note
All ports with Function:Select are intercepted (gated) when a serial BISR 
interface is used. This forces the memory to be deselected when shifting through 

the internal BISR chain.

PinMap SpareElement Wrapper
The contents of the PinMap wrapper enables you to apply the repair solution, computed by the 
BIRA engine, to the memory repair ports or the serial repair register of the memory. 
The PinMap/SpareElement wrapper specifies the mappings, or connections, from the BISR fuse 
registers to the corresponding memory repair ports. Tessent Shell MemoryBIST generates and 
instantiates self-repair hardware and connections for a memory when the DftSpecification 
MemoryInterface/repair_analysis_present property is “auto” (the default setting) and the 
memory library file for the memory contains a RedundancyAnalysis wrapper. The contents of 
the PinMap:SpareElement wrapper are interpreted differently depending on the type of repair 
interface used, as explained in the following sections.

Parallel Memory Repair Interface

Using the PinMap/SpareElement wrapper, you can specify mappings from the BISR fuse 
registers to the corresponding memory repair ports. These pin mappings directly connect the 
BISR fuse register ports to the memory repair ports.

Serial Memory Repair Interface
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Using the PinMap/SpareElement wrapper, you must specify the order of the internal BISR 
register. Tessent Shell MemoryBIST builds the corresponding external BISR register according 
to this order. The RepairRegister[x] index specifies the location of each fuse in the external 
BISR register.

BISR Usage Conditions

When using the BISR feature, you must declare the PinMap/SpareElement wrapper(s) in the 
appropriate RowSegment or ColumnSegment wrappers.

• When specified inside either the RowSegment or ColumnSegment wrappers, the 
PinMap wrapper may contain multiple SpareElement wrappers. The number of PinMap/
SpareElement wrappers inside the RowSegment wrapper must be equal to the 
NumberOfSpareElements property.

You also can specify the RepairEnable, Fuse, FuseMap, and LogicLow properties in the 
PinMap/SpareElement wrapper as described in the following sections. The repair interface 
determines which usage conditions apply:

• For the Parallel Repair Interface:

o The repairPortName must be either a scalar port or a single bit of a vectored port.

o The repairPortName must be a port defined in the memory library file 
corresponding to a Port/Function: BisrParallelData setting.

• For the Serial Repair Interface:

o The RepairRegister[x] value must be specified where x is the index of the Repair 
Enable register inside the BISR chain.

o The following Port/Function properties must be declared in the memory library file: 

• BisrSerialData (with Port/Direction: input | output;)

• BisrClock (with Port/Polarity: (activeHigh) | activeLow;)

RepairEnable Property

Use the RepairEnable property inside the PinMap/SpareElement wrapper to specify the port of 
the memory or the BISR chain register that enables the allocation of a repair element.

Fuse Property

Use the Fuse [<bitIndex>] property inside the PinMap/SpareElement wrapper to specify the 
port of the memory or the BISR register that controls the address of a spare row or column 
element. You can use this property multiple times. This property maps each bit in FuseSet/Fuse 
to the corresponding repair ports on the memory. Each PinMap/SpareElement wrapper index 
must match a FuseSet/Fuse index.
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FuseMap Property

Use the FuseMap [<bitIndex>] property inside the PinMap/SpareElement wrapper to specify the 
memory port that controls the port of a spare IO element. This property can be specified only 
inside the ColumnSegment wrapper and must be repeated for each FuseMap bit. This property 
maps the shifted IO fuse map bits to the corresponding repair ports on the memory. Each 
PinMap/SpareElement/FuseMap index must be within the FuseSet/Fuse[x:y] index range.

LogicLow Property

Use the LogicLow property inside the PinMap/SpareElement wrapper to insert a BISR register 
that is not connected to any BIRA output in the BISR chain. This BISR register captures a 
constant value during a BIRA-to-BISR transfer if BIRA is present. When no BIRA is present 
for this memory, the register holds its value during a BIRA-to-BISR transfer operation.

When using a memory with a parallel BISR interface, the memory repair port that this BISR is 
connected to must be specified.

When using a memory with a serial BISR interface, the index of this BISR register must be 
specified using RepairRegister[<bitIndex>].
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Memory Library Examples With Parallel and Serial BISR 
Interface

The sections below demonstrate two simple examples of repairable memories with their 
corresponding memory library file:

• “Row Repair and Parallel BISR Interface”

This example shows a memory with two redundant rows using a parallel BISR interface. 
The redundant rows are allocated using the REN0, RR0[3:0], REN1, RR1[3:0] ports on 
the memory module. 

• “Column Repair and Serial BISR Interface”

This example shows a memory with one redundant column using a serial BISR 
interface. The redundant column allocation is accessed using the serial BISR ports on 
the memory module.

Row Repair and Parallel BISR Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Column Repair and Serial BISR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Row Repair and Parallel BISR Interface
The example shown in the figure below is of a memory with two spare rows using a parallel 
BISR interface.

Figure 5-19. Example Memory With Two Spare Rows Using Parallel BISR 
Interface 

Figure 5-20 illustrates the memory library file fragment associated with the memory illustrated 
in Figure 5-19. 
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Figure 5-20. Memory Library File Fragment for Two Spare Rows Using Parallel 
BISR Interface

// MemoryRepair ports for Bank B0
Port(REN0) { 
   Function: BisrParallelData; 
   Direction: Input; 
}
Port(RR0[3:0]) {
   Function: BisrParallelData; 
   Direction: Input; 
} 
Port(REN1) {
   Function: BisrParallelData;
   Direction: Input; 
}
Port(RR1[3:0]) { 
   Function: BisrParallelData; 
   Direction: Input;
}
RedundancyAnalysis {
   RowSegment (My_RowSeg1){ 
      NumberOfSpareElements: 2;
      FuseSet {
         Fuse[3]: AddressPort(Address[9]);
         Fuse[2]: AddressPort(Address[8]);
         Fuse[1]: AddressPort(Address[7]);
         Fuse[0]: AddressPort(Address[0]);
      }
      PinMap { 
         SpareElement {
            RepairEnable: REN0;
            Fuse[0]: RR0[0];
            Fuse[1]: RR0[1];
            Fuse[2]: RR0[2];
            Fuse[3]: RR0[3];
         }
         SpareElement {
            RepairEnable: REN1;
            Fuse[0]: RR1[0];
            Fuse[1]: RR1[1];
            Fuse[2]: RR1[2];
            Fuse[3]: RR1[3];
         }
      }
   }
}

Column Repair and Serial BISR Interface
The example in the figure below shows a memory with one spare column using a serial BISR 
interface.
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Figure 5-21. Example Memory With One Spare Column and Serial BISR 
Interface

Figure 5-22 illustrates the memory library file fragment associated with the memory illustrated 
in Figure 5-21. 
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Figure 5-22. A Fragment of the Memory Library File Sample Syntax

// MemoryRepair ports for Bank B0
Port(BISR_CLK) {
   Function: BisrClock; 
   Direction: Input;
}
Port(BISR_RST) {
   Function: BisrReset; 
   Direction: Input; 
}
Port(BISR_SI) { 
   Function: BisrSerialData; 
   Direction: Input; 
}
Port(BISR_SO) {
   Function: BisrSerialData;
   Direction: Output;
}
RedundancyAnalysis {
   ColumnSegment (My_ColSeg){
      ShiftedIORange: QO[15:0]; 
      FuseSet { 
         Fuse[0]: Address[10]; 
         FuseMap[3:0]{ 
            ShiftedIO(QO[0]): 4'b0000; 
            ShiftedIO(QO[1]): 4'b0001; 
            ShiftedIO(QO[2]): 4'b0010; 
            ShiftedIO(QO[3]): 4'b0011; 
            ShiftedIO(QO[4]): 4'b0100; 
            ShiftedIO(QO[5]): 4'b0101; 
            ShiftedIO(QO[6]): 4'b0110; 
            ShiftedIO(QO[7]): 4'b0111; 
            ShiftedIO(QO[8]): 4'b1000; 
            ShiftedIO(QO[9]): 4'b1001; 
            ShiftedIO(QO[10]): 4'b1010; 
            ShiftedIO(QO[11]): 4'b1011; 
            ShiftedIO(QO[12]): 4'b1100; 
            ShiftedIO(QO[13]): 4'b1101; 
            ShiftedIO(QO[14]): 4'b1110; 
            ShiftedIO(QO[15]): 4'b1111; 
         } 
      }
      PinMap {
         SpareElement {
            Fuse[0]: RepairRegister[1];
            RepairEnable: RepairRegister[0];
            FuseMap[0]: RepairRegister[2];
            FuseMap[1]: RepairRegister[3];
            FuseMap[2]: RepairRegister[4];
            FuseMap[3]: RepairRegister[5];
         }   
      }
   }
}
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Implementing BIRA and BISR Logic
This section shows how to insert repair logic in your circuit. The emphasis is on the insertion of 
the BISR logic. BIRA logic is generated for a memory instance at the same time as the rest of 
the memory BIST logic (controller and interface) as long as the RepairAnalysis wrapper is 
present in the memory library file and that the repair_analysis_present property is not set to 
“Off” for that instance.
The primary BISR logic insertion task are as follows:

1. Inserting BISR chains in a block

2. Connecting a BISR controller to existing BISR chains

3. Connecting a BISR controller to an external fuse box

Note
A fuse box is not needed if the soft repair method is implemented. Refer to the 
“Implementing Soft Repair” section for more information.

4. Connecting a BISR controller to system logic

The first two tasks are used in a bottom-up design methodology where BISR chains are inserted 
in circuit blocks (or cores) before being connected at the chip top level to the BISR 
controller.This is the most frequently used method for inserting the repair logic.

Inserting BISR Chains in a Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Generic Fuse Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Determining the Fuse Box Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Creating and Inserting the BISR Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
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Inserting BISR Chains in a Block
BISR chains are automatically inserted if memories instantiated in the design have spare 
resources described in their memory library file as described in the Memory library. BISR 
registers associated to repairable memories are connected together to form scan chains.
Assigning Memories to Power Domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Controlling the BISR Chain Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Turning Off the Insertion of BISR Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Excluding Child Block BISR Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Assigning Memories to Power Domains
By default, all repairable memories are part of the same power domain and a single BISR chain 
is created. However, if more than one power domain exists, multiple BISR chains are required. 
The power domain of a memory instance is determined by its bisr_power_domain_name 
attribute that can be specified in two ways.
The preferred method consists of reading a UPF or CPF file corresponding to the design using 
the read_upf or read_cpf command. The file should be loaded in Tessent Shell during the setup. 
For example, the command

SETUP> read_upf moda.upf 
 

reads the UPF file corresponding to design moda and automatically sets the attribute for all 
memories.

The alternative method consists of manually setting the bisr_power_domain_name attribute 
using the set_attribute_value command. For example, the command

SETUP> set_attribute_value {memA_inst mem6_inst} -name 
bisr_power_domain_name -value pdgA 
 

assigns memory instances memA_inst and mem6_inst to a power domain labeled pdgA. 

Note
The value of “none” is a reserved string and you cannot specify it as a power domain group 
label. Refer to the PatternsSpecification MemoryBisr/Controller/

power_domain_group_labels property description for more information.

For sub-blocks or physical blocks containing repairable memories, there can be one or more 
BISR scan interfaces in place, and setting the bisr_power_domain_name attribute on the sub or 
physical block instance does not assign the contained BISR chains to the specified 
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PowerDomainGroup. In this case, the attribute must be set on the BISR_SI pin of each BISR 
chain you want to assign to a particular PowerDomainGroup. For example, the command

SETUP> set_attribute_value {core/blockA/pdgA_bisr_si} -name
bisr_power_domain_name -value pdgA

does assign the BISR chain with the pdgA_bisr_si input pin within the “blockA” sub or physical 
block, to PowerDomainGroup “pdgA”. Any remaining BISR chains within blockA are 
associated with the PowerDomainGroup specified on the ICL pin attribute for this child block. 
The default power domain group name for the BISR_SI ICL pins are the ones used during 
process_dft_specification for the child block. The BISR_SI power domain group names are 
saved as pin attributes inside the ICL for the child block when extract_icl is performed.

The manual specification method can be used to create a logical sub-division of large power 
domains and accelerate repair for a subset of memories in each domain during system power up.

Controlling the BISR Chain Order
BISR chains are connected according to the content of the BisrSegmentOrderSpecification 
wrapper containing a list of memory instances defining the BISR chain order. When a DEF file 
is provided, the BISR segments are ordered using an algorithm that optimizes the routing based 
on the memory coordinates. If a DEF file is not provided, the memories are sorted 
alphabetically within each power domain group.
The wrapper is contained in a file named <design_name>.bisr_segment_order that is 
automatically generated in the current directory when entering the analysis mode, or when you 
run the create_bisr_segment_order_file command. Analysis mode is automatically entered 
when check_design_rules is performed without any DRC errors occurring.

Figure 5-1 shows the contents of a chip-level BISR segment order file with three power 
domains. The default power domain is assigned to all repairable memories that are not explicitly 
assigned to a domain. It is often associated to the portion of the design whose power is never 
switched off.

Example 5-1. Example Chip-Level BISR Segment Order File

//----------------------------------------------------- 
//  File created by: Tessent Shell 
//          Version:  
//       Created on: 
//----------------------------------------------------- 
 
BisrSegmentOrderSpecification { 
PowerDomainGroup(-) { 
    OrderedElements { 
      memA; 
    } 
  } 
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PowerDomainGroup(pd_A) { 
    OrderedElements { 
      blockA_clka_i1/pd_A_bisr_si; 
      blockA_clka_i2/pd_A_bisr_si; 
      blockB_clka_i1/bisr_si; 
    } 
  } 
  PowerDomainGroup(pd_B) { 
    OrderedElements { 
      blockA_clka_i1/pd_B_bisr_si; 
      blockA_clka_i2/pd_B_bisr_si; 
    } 
  } 
} 
 

You can affect the BISR chain ordering in two ways if the default BISR chain order is not 
satisfactory. In the preferred method you read in a DEF file corresponding to the design using 
the read_def command, and create BISR segment ordering that MemoryBIST automatically 
optimizes based on memory placement and physical block or sub-block BISR_SI pin 
coordinates. The physical blocks and sub-blocks have MemoryBIST insertion and BISR chain 
ordering done separately. You should load the file in Tessent Shell during the setup mode at the 
same time you read in the other design files. For example, the command

SETUP> read_def modA.def 
 

reads the DEF file corresponding to design modA. MemoryBIST determines the BISR chain 
ordering based on the memory placement and block BISR_SI pin placement information found 
in the DEF file. If a block’s BISR_SI pin does not specify the coordinates, but the parent block 
does, MemoryBIST uses the parent block coordinates for ordering optimization. 

You can also independently override the placement of BISR registers and associated pipeline 
registers using the BisrElement and BisrElement/Pipeline wrappers and specify their insertion 
into a particular parent design instance. The tool determines the BISR chain ordering for these 
registers based on the parent design BISR_SI pin placement information found in the DEF file.

The second way consists of manually modifying the order of memory instance names within the 
<design_name>.bisr_segment_order file before running the process_dft_specification 
command. If check_design_rules is re-run either during the same Tessent Shell invocation or a 
subsequent one, and you want to reuse the modified <design_name>.bisr_segment_order file, 
you must specify the set_dft_specification_requirements while still in setup mode. For example, 
the command:

SETUP> set_dft_specification_requirements -bisr_segment_order_file 
modA.bisr_segment_order 
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indicates that the file modA.bisr_segment_order should be preserved and used to determine the 
BISR chain order when the next create_dft_specification command is run. The file name of the 
BISR segment order file is arbitrary and does not need to be the default name.

The process_dft_specification command creates an annotated BISR segment order file with a 
“.annotated” suffix in the current directory. An additional copy of the annotated file is also 
stored in the following file within the tsdb_outdir:

<tsdb_outdir>/instrument/<design_name><design_id>_rtl_mbisr.instrument/
<design_name><design_id>_mbisr.bisr_segment_order

The annotated file in the current directory is intended for you to use if BISR chain re-ordering is 
needed. The BISR segment order file in the TSDB documents the implemented BISR chain and 
is intended as a reference.

The annotated file contains comments that indicate repair group membership and BISR chain 
register lengths. For example, the section below shows the annotated version of the BISR 
segment order file shown in Figure 5-1:

//----------------------------------------------------- 
// File created by: Tessent Shell
// Version:
// Created on:
//-----------------------------------------------------

BisrSegmentOrderSpecification {
  PowerDomainGroup(-) {
    // ${controller_inst}/toBisr --> {OrderedElement …} -->
    //   ${controller_inst}/fromBisr
    OrderedElements {
      memA; // RepairGroup:None   BISRLength:10
    }
  }
  PowerDomainGroup(pd_A) {
    // ${controller_inst}/toBisr_pd_A --> {OrderedElement …} -->
    //   ${controller_inst}/fromBisr_pd_A
    OrderedElements {
      blockA_clka_i1/pd_A_bisr_si;
      blockA_clka_i2/pd_A_bisr_si;
      blockB_clka_i1/bisr_si;
    }
  }
  PowerDomainGroup(pd_B) {
    // ${controller_inst}/toBisr_pd_B --> {OrderedElement …} -->
    //   ${controller_inst}/fromBisr_pd_B
    OrderedElements {
      blockA_clka_i1/pd_B_bisr_si;
      blockA_clka_i2/pd_B_bisr_si;
    }
  }
} 
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The first comment line in the PowerDomainGroup wrapper helps you to understand the BISR 
chain order. It shows that the BISR chain scan input shifts into the OrderedElement items in the 
order listed from top to bottom, and finally to the BISR chain scan output. 

Additionally, each memory instance within the current design has a comment showing any 
applicable membership within a repair sharing group, as well as the length of the BISR register 
associated with that memory or repair sharing group. In the example above, memA is not part of 
any repair sharing group and the BISR register associated with memA has a length of 10. An 
example of an annotated physical block BISR segment order file with repair sharing is shown in 
the “BISR Segment Order File” topic.

Turning Off the Insertion of BISR Registers
It is possible to disable the generation of BISR registers for specific memory instances by 
running a set_memory_instance_option command with the 
use_in_memory_bisr_dft_specification option set to off.

SETUP> set_memory_instance_option blockA_clka_i1/mem4 
use_in_memory_bisr_dft_specification off 
 

The example above disables the generation of the BISR register for memory instance mem4, 
even if the memory has spare resources. However, this option is rarely used.

You can also disable BISR insertion in the design by using the following command:

set_dft_specification_requirement -memory_bisr_chains off

Excluding Child Block BISR Chains
When a parent design does not implement memory repair, yet integrates sub-blocks or physical 
blocks that already contain BISR chains, the chains must not be connected or used and be 
properly tied off. The method outlined below is used when the alternative of re-running the 
memory BIST DFT flow on the child blocks, with BISR chain insertion disabled, is not feasible.
The first step in excluding a child block BISR chain is to remove the chain connection from the 
<design_name>.bisr_segment_order file before the create_dft_specification command is run. 
This file is originally created when check_design_rules is run. If check_design rules is 
subsequently re-run and you want to reuse the modified <design_name>.bisr_segment_order 
file, you need to specify the set_dft_specification_requirements when still in setup mode. For 
example, the command: 

SETUP> set_dft_specification_requirements -bisr_segment_order_file 
 modA.bisr_segment_order
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indicates that the file modA.bisr_segment_order should be preserved and used to determine the 
BISR chain contents and order when the next create_dft_specification command is run. Note 
that the file name of the bisr_segment_order file is arbitrary.

The second step is to use the set_attribute_value command to add an “allowed_no_destination 
connection_rule_option to the pin, as shown in this example:

set_attribute_value [get_icl_ports pd_B_bisr_so -of_modules core]
    -name connection_rule_option -value allowed_no_destination

The second step also safeguards against accidental removal of BISR chain connections from the 
.bisr_segment_order file with the unintentional result of having a portion of the design not 
allowing repair. If the second step is not completed, an ICL extraction error results and points 
out that the BISR chain is not accessible. 

The two steps outlined above are repeated as needed for each child block BISR chain that is to 
be excluded.
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Generic Fuse Box
Several vendors provide fuse boxes, and they have a large number of interfaces and protocols 
that are not common to each other. Because of this complexity, the fuse box read and write 
protocols are encapsulated inside of a fuse box interface.
The interface is custom-designed for each fuse box. However, this is a one-time effort for a 
given technology. Also, Siemens EDA can provide this interface for certain technologies or 
design a new interface under certain conditions.

The fuse box can be instantiated inside the BISR controller or can be external to the BISR 
controller. The location is controlled with the MemoryBisr Controller/fuse_box_location 
property in the DftSpecification. The recommended design flow is to incorporate a vendor 
provided fuse box and interface prior to processing the DftSpecification, for either internal or 
external fuse box locations. Note that this is a requirement for a fuse box located externally. 
When the recommended design flow is not followed for an internal fuse box instantiation, the 
tool generates and uses a generic fuse box interface module that is valid for basic simulation 
purposes only.

The fuse box module is specified as follows:

• Internal Fuse Box

When the fuse box is internal to the BISR controller, and only one TCD 
FuseBoxInterface wrapper (tcd_fusebox) is present, the DftSpecification 
fuse_box_interface_module property is inferred from the tcd_fusebox if the 
fuse_box_interface_module property is not specified. If multiple tcd_fusebox library 
files are present the fuse_box_interface_module property must be specified.

If the recommended design flow is not followed in that a tcd_fusebox is not present, and 
the fuse_box_interface_module is not specified in the DftSpecification, a generic fuse 
box interface model is generated to include a generic fuse box that encapsulates specific 
fuse box read and write protocols. The generic interface and fuse box models are 
generated as template files and are used only for simulation purposes.

• External Fuse Box

When the fuse box is located outside the BISR controller, a fuse box interface must be 
instantiated in the design to provide a valid fuse box read and write interface to the BISR 
controller. Generally, external fuse boxes are used when the fuse box is shared for 
purposes other than memory repair. Refer to “Connecting the BISR Controller to an 
External Fuse Box” for further information.

The following sections provide detailed information on:

Fuse Box Interface Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Fuse Box Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Generic Fuse Box Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
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BISR Controller Fuse Box Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Fuse Box Interface Signals
The interface between the BISR controller and the fuse box interface is simple.
If Controller/fuse_box_location is set to external in the DftSpecification, then connections are 
made between the fuse box interface and the BISR controller. If fuse_box_location is set to 
internal, and no fuse box interface is specified in a tcd_fusebox wrapper or DftSpecification 
fuse_box_interface_module property, the BISR controller instantiates the generic fuse box 
interface module and the port names must match the port names generated in the following file 
within the TSDB:

tsdb_outdir/instruments/<design_name>_generic_fusebox_interface.v

Table 5-6 lists all fuse box interface ports that the BISR controller uses to communicate with the 
fuse box interface. This table also provides the interface input/output pins, their corresponding 
generic fuse box names, and descriptions. All control signals have an active high port polarity.

Fuse Box Protocol
Two operations are common to all fuse boxes: Read and Write. Two additional operations are 
specific to non-addressable fuse boxes: Transfer and Program.
The TCD FuseBoxInterface/programming_method property or DftSpecification 
AdvancedOptions/FuseBoxOptions/programming_method must be set to buffered for non-
addressable fuse boxes. An additional signal, programFB, is also connected to the fuse box 
interface.

Figure 5-23 shows the BISR controller fuse box access protocol during a Read operation cycle, 
and Figure 5-24 shows the BISR controller fuse box access protocol during a Write operation 
cycle. These figures do not show the programFB signal, but if present, its value is assumed to be 
0.

With the exception of the doneFB and fuseValue signals, the signals identified in the Generic 
Fuse Box Port Name column in Table 5-6 are generated by the BISR controller. The doneFB 
and fuseValue outputs are generated inside the generic fuse box interface module. All BISR 
controller outputs (selectFB, writeFB, FBAccess, address) change on the rising edge of the 
clock. The doneFB and fuseValue outputs are sampled on the rising edge of clock if the fuse 
box is instantiated within the BISR controller (fuse_box_location:internal). If not 
(fuse_box_location:external), then doneFB and fuseValue are sampled on the falling edge of 
clock.



Implementing and Verifying Memory Repair
Generic Fuse Box

Tessent™ MemoryBIST User’s Manual, v2022.4 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The fuse box interface asserts a logic high on doneFB for only one cycle and then returns to 
a logic low.

When the fuse box is internal to the BISR controller, the clock used by the fuse box interface 
can be balanced with the clock of the controller. In this case, all flops can be updated and 
sampled synchronously on the rising edge, yielding a higher speed of operation. 

When the fuse box is external to the BISR controller the clocks might not be balanced. The 
controller uses a slightly different timing where outputs still change on the rising edge, but 
inputs (such as doneFB and fuseValue) are sampled on the falling edge to account for potential 
skew between the controller and the fuse box interface. A lower speed of operation is possible 
in this case.

Figure 5-23 shows two variations of the waveforms that depend on the value of the TCD 
FuseBoxInterface/align_access_en_with_address or the DftSpecification AdvancedOptions/
FuseBoxOptions/align_access_en_with_address property. If set to on, the FBAccess pulse 
aligns in the first cycle with the address to be read. If set to off, the FBAccess pulse occurs one 
cycle ahead of the address to be read, allowing a slightly faster fuse box access. A setting of 
auto defaults to on if fuse_box_location is set to external, and to off if fuse_box_location is set 
to internal. Another difference is that the FBAccess pulse can overlap with the doneFB pulse of 
a previous access. In Figure 5-23, FBA2 occurs in the same cycle as DFB1. 

The tool will force the align_access_en_with_address property to on when you enable hard 
incremental repair by setting the DftSpecification max_fuse_box_programming_sessions 
property to a value greater than 1. When hard incremental repair is performed, the BISR 
controller asserts selectFB and reads the test insertion flags from the fuse box in the first clock 
cycles after selection (refer to Figure 5-49 for the fuse box organization). These first operations 
may not meet the minimum timing margin requirements for some eFuse interfaces. Aligning the 
FBAccess and Address signals provide the extra timing margin between the selectFB and 
FBAccess signals that ensure interoperability with the current eFuse interface circuits. When 
you do not implement hard incremental repair, the BISR controller performs the first eFuse 
accesses several clock cycles after it asserts selectFB. In this case, the 
align_access_en_with_address property does not need to be enabled as the eFuse timing 
requirements between the selectFB and FBAccess signals are met.
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Figure 5-23. BISR Controller Fuse Box Read Access Protocol

Figure 5-24 shows the waveforms of a Write operation for the two programming methods: 
unbuffered, which is the default, and buffered. The method is selected by specifying the 
FuseBoxInterface/programming_method or DftSpecification AdvancedOptions/
FuseBoxOptions/programming_method property. A Write operation using the unbuffered 
method takes much longer than for the buffered method. The reason is that a fuse is actually 
blown in the fuse box, and typical programming times are in the microseconds. The fuse box 
programming voltage (vddq) is applied during this operation. The buffered method only writes 
to registers in the fuse box interface, and the operation can be performed in two clock cycles. 
The programming voltage is not applied during this operation.

The selectFB signal is set high when the BISR controller is enabled. The writeFB signal is set 
high to indicate that the BISR controller is preparing a fuse box Write operation cycle. Then the 
BISR controller sets the Address port (the fuse address that needs to be written to) and asserts 
the FBAccess port high for one cycle. This port initiates the Write operation cycle. The BISR 
controller keeps the Address, writeFB, and selectFB signals stable until the generic fuse box 
interface sends a logic one on the doneFB output port, which indicates that the Write operation 
cycle has completed.



Implementing and Verifying Memory Repair
Generic Fuse Box

Tessent™ MemoryBIST User’s Manual, v2022.4 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-24. BISR Controller Fuse Box Write Access Protocol

Figure 5-25 shows the protocol to initiate the Transfer and Program operation when using the 
buffered programming method. The programFB signal is high for both the Transfer and 
Program operations, contrasted to being low for the Read and Write operations. The writeFB 
signal is low for the Transfer operation and high for the Program operation. The selectFB signal 
is also high for all operations but toggles between each operation. This makes it easier to 
identify the beginning of each operation. No handshake occurs between the TAP and fuse box 
interface for these operations that use the FBAccess and doneFB signals. The simulation 
testbench or test program includes a pause that corresponds to the duration of the operation.

Figure 5-25. BISR Controller Fuse Box Transfer and Program Protocol
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Table 5-6. Fuse Box Interface Signals 
Function Direction Generic 

Fuse Box 
Port Name

Size Description

FuseBoxClock Input clock 1 This port is the fuse box clock signal. 
This clock is generated by the BISR 
controller and is derived either from the 
TAP clock (TCK) or a functional clock. 
The clock is derived from TCK and is 
free-running whenever the BISR 
controller is enabled from the TAP. The 
clock is derived from the functional 
clock and enabled when entering the 
functional power-up mode. The clock is 
disabled 20 clock cycles after the falling 
edge of the selectFB input of the fuse 
box interface.

FuseBoxAddress Input Address n This port specifies the read or write 
address to the fuse box. Each address 
points to a single bit in the fuse box 
regardless of fuse box organization. 
This signal is updated on the rising edge 
of the clock.

FuseBoxWrite Input writeFB 1 This port is used during the fuse box 
write cycle. This signal remains high for 
the entire fuse box interface write cycle. 
This signal is updated on the rising edge 
of the clock.

FuseBoxBufferTransfer Input programFB 1 This optional port is present when the 
buffered programming method is used. 
The signal remains low during Read and 
Write operations and high during 
Transfer and Program operations. This 
signal is updated on the rising edge of 
the clock. 

FuseBoxSelect Input selectFB 1 The fuse box select port is raised when 
the BISR controller is enabled to 
perform read/write operations to the 
fuse box. This signal is updated on the 
rising edge of the clock.
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FuseBoxAccess Input FBAccess 1 This signal goes high for one clock 
cycle when the BISR controller initiates 
the fuse box interface read or write 
operation. This signal is updated on the 
rising edge of the clock.

Programming-
VoltagePin

Input vddq 1 This pin provides the high voltage 
required to blow the fuse. This pin 
usually is connected directly to a chip 
pin.

TestMode Input TM 1 The test mode port is used to isolate the 
fuse box during scan. All outputs from 
the fuse box that are in an unknown 
state during scan test mode should be 
gated by TM to prevent unknown values 
from being propagated to scannable 
registers.

Table 5-6. Fuse Box Interface Signals  (cont.)
Function Direction Generic 

Fuse Box 
Port Name

Size Description
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WriteDurationCounter Input strobeCntVal 32 This bus input port is driven by the 
BISR controller when performing a fuse 
box write cycle. A write delay counter 
must be generated inside the generic 
fuse box and loaded with the value on 
the strobeCntVal port when the writeFB 
port is high. The counter decrements 
when the FBAccess port is high and 
stops when it reaches 0. When the 
counter reaches 0, the FuseBoxDone 
port goes high and indicates to the BISR 
controller that the write cycle is 
completed. The default write duration 
delay corresponds to the value specified 
in the DftSpecification 
AdvancedOptions/FuseBoxOptions/
write_duration property and can be 
overwritten by the MemoryBisr/
Controller/fuse_box_write_duration 
property in the PatternsSpecification. 
The testbench calculates the initial write 
duration counter value based on the 
clock speed and the 
fuse_box_write_duration property 
specified. The fuse box keeps all fuse 
box interface ports static until the strobe 
counter reaches 0. This port is optional. 
If your fuse box does not require a 
counter to control the write duration, 
this property can be omitted.

Table 5-6. Fuse Box Interface Signals  (cont.)
Function Direction Generic 

Fuse Box 
Port Name

Size Description
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FuseBoxInterfaceReset Input FBreset 1 This optional input is driven by the 
BISR controller. It is used to reset flip-
flops in complex fuse box interfaces. Its 
active value is 1 and is applied 
asynchronously with respect to the clock 
when the BISR controller is inactive or 
configured in bisr_chain_access mode. 
The reset is released synchronously 
when the BISR controller is configured 
in its autonomous or fuse_box_access 
run modes. This signal is present when 
the TCD FuseBoxInterface/Interface/
reset property or the DftSpecification 
ExternalFuseBoxOptions/reset property 
is specified. 

FuseValue Output fuseValue 1 This port is the 1-bit output value from 
the fuse box. The fuse value 
corresponds to the fuse box value stored 
at the address specified by the Address 
port. When fuse_box_location is set to 
external, the fuseValue signal is 
sampled on the falling edge of the BISR 
clock. When fuse_box_location is set to 
internal, the fuseValue signal is sampled 
on both edges of the BISR clock. 

FuseBoxDone Output doneFB 1 This port indicates to the BISR 
controller that the fuse box access (write 
or read) is completed. When 
fuse_box_location is set to external, the 
FuseBoxDone signal is sampled on the 
falling edge of the BISR clock. The 
FuseBoxDone signal is sampled on the 
rising edge of the BISR clock when 
fuse_box_location is set to internal. The 
FuseBoxDone signal is used only during 
Autonomous modes of the BISR 
controller. The signal is not monitored 
when the fuse box is accessed through 
the TAP (fuse_box_access mode). The 
time allowed for the access is 
determined by the testbench.

Table 5-6. Fuse Box Interface Signals  (cont.)
Function Direction Generic 

Fuse Box 
Port Name

Size Description
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Generic Fuse Box Module
A generic fuse box interface module is generated when the MemoryBisr/Controller/
fuse_box_location property is set to internal in the DftSpecification, and no fuse box interface is 
specified in a tcd_fusebox wrapper or DftSpecification fuse_box_interface_module property. 
The generic fuse box interface is a module that is instantiated by the BISR controller and 
provides a simple interface access to a fuse box. The generic fuse box interface contains the 
actual fuse box and the interface logic.
Figure 5-26 illustrates a high-level overview of the generic fuse box interface module. 
Depending on the actual fuse box module, some inputs might not be used to implement the 
interface logic. The generic fuse box interface module is created in the TSDB at the following 
location:

tsdb_outdir/instruments/<design_name>_<design_id>_mbisr.instrument/

The generic fuse box module is composed of the following files:

<design_name>_<design_id>_tessent_mbisr_generic_fusebox_interface.v_template
<design_name>_<design_id>_tessent_mbisr_generic_fusebox.v
<design_name>_<design_id>_tessent_mbisr_generic_fusebox_interface -> 

<design_name>_<design_id>_tessent_mbisr_generic_fusebox_interface.v_template

This template can be used as an example to write your own generic fuse box interface module. 
This behavioral simulation interface model is compatible with the buffered and unbuffered 
AdvancedOptions/FuseBoxOptions/programming_method modes. The last file listed is a 
symbolic link to the template file. 

Note
Any customization of the template or symbolic link is overwritten and lost if the 
DftSpecification is reprocessed. 
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Figure 5-26. Sample Generic Fuse Box Interface Module

Note
The generic fuse box template is intended to be used for evaluation or experimentation 
purposes only and should never be used in a real design. The generic fuse box simulation 

model does not perform any validation on fuse write/read timing requirements.

When using the generic fuse box model, the following warning is shown during simulations:

**
**WARNING
**
** You are using the Generic FuseBox model as your fuse box simulation model.
** This fuse box model is instantiated inside the <design_name>_genericFuseBox
** module and should only be used for early verification of the BISR logic.
** You must edit the <design_name>_genericFuseBox module and instantiate
** the actual fuse box model that was provided by your fuse box vendor.
**

BISR Controller Fuse Box Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

BISR Controller Fuse Box Operations
The BISR controller reads and writes data to the fuse box one bit at a time. The BISR controller 
assumes that each fuse box address holds a 0 when not programmed. The BISR controller only 
accesses the fuse box in write cycle to program the 1s.
If a fuse box has an output that is more than 1 bit wide, the generic fuse box interface must 
provide muxing logic to address each bit individually. This logic would be part of the Interface 
Logic shown on the right side of the fuse box in Figure 5-26.
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During a write cycle, the Address port of the generic fuse box module specifies the fuse box 
location of a bit that a logic 1 is written. The interface logic must be designed so that the correct 
fuse is written during a write cycle.
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Determining the Fuse Box Size
The BISR controller uses an efficient compression algorithm to minimize the number of fuses 
required to store the repair information. The following formulas enable you to calculate an 
estimate of that number. 

Note
A fuse box is not needed if the soft repair method is implemented. Refer to the 
“Implementing Soft Repair” section for more information.

Because fuse boxes typically come in fixed sizes, the formula helps you choose the appropriate 
size. The Tessent Core Description (TCD) FuseBoxInterface/number_of_fuses property then 
can be assigned the total number of fuses in the fuse box OR the number calculated with the 
formula if the fuse box is used to store information other than memory repair information. By 
default, the number of fuses is set to 2, raised to the power of the number of address ports 
specified with the TCD FuseBoxInterface/Interface/address property.

Two formulas are available: a simplified formula for the case when a single BISR chain is used, 
and a general formula for the multi-chain case. Refer to the “Single-Chain Case” and “Multi-
Chain Case” sections for more information.

Single-Chain Case  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Multi-Chain Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Incremental Repair Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Single-Chain Case
The single-chain case formula is as follows:

NumberOfFuses = (NumberOfRepairs * buffer_size) 
                + ((NumberOfRepairs + 1) * (zero_counter_bits + 1))

where:

• NumberOfRepairs is the maximum number of repairs anticipated for the entire chip. 
This number typically varies between 3 and 10. The large majority of the chips requiring 
repair only need a single repair. Chips requiring 10 or more repairs are likely to fail non-
memory tests (for example, scan tests), making the chips non-repairable and posing a 
reliability problem.

• buffer_size is the largest portion of a BISR register associated with a single spare row or 
column resource. If a memory has more than one spare resource, the BISR register is 
composed of repair data for all of the memory’s spare resources. You should examine 
each portion of the memory’s BISR register and its association with each spare resource 
to determine buffer_size. You can find the register size for each spare resource by 
looking at the PinMap/SpareElement wrapper in the TCD file for the memory.
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For example, the RedundancyAnalysis wrapper for a memory with two spare rows and 
one spare column is shown below:

RedundancyAnalysis {
  RowSegment(rs) {
    NumberOfSpareElements : 2;
    FuseSet{ 
      Fuse[0] : AddressPort(A[2]);
      Fuse[1] : AddressPort(A[3]);
      Fuse[2] : AddressPort(A[4]);
    }
    PinMap {
      SpareElement {
        RepairEnable : RR0[3];
        Fuse[0] : RR0[0];
        Fuse[1] : RR0[1];
        Fuse[2] : RR0[2];
      }
      SpareElement {
        RepairEnable : RR1[3];
        Fuse[0] : RR1[0];
        Fuse[1] : RR1[1];
        Fuse[2] : RR1[2];
      }
    }
  }

  ColumnSegment(cs) {
    ShiftedIORange : Q[7:0];
    NumberOfSpareElements : 1;
    FuseSet {
      Fuse[0] : AddressPort(A[0]);
      Fuse[1] : AddressPort(A[1]);
      FuseMap[2:0]{ 
        ShiftedIO(Q[0]) : 3'b000;
        ShiftedIO(Q[1]) : 3'b001;
        ShiftedIO(Q[2]) : 3'b010;
        ShiftedIO(Q[3]) : 3'b011;
        ShiftedIO(Q[4]) : 3'b100;
        ShiftedIO(Q[5]) : 3'b101;
        ShiftedIO(Q[6]) : 3'b110;
        ShiftedIO(Q[7]) : 3'b111;
      }
    }
    PinMap {
      SpareElement {
        RepairEnable : CR0[5];
        Fuse[1] : CR0[4];
        Fuse[0] : CR0[3];
        FuseMap[2] : CR0[2];
        FuseMap[1] : CR0[1];
        FuseMap[0] : CR0[0];
      }
    }
  }
}
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The memory BISR register for this example is 14 bits in length to hold the repair data 
described in all the SpareElement wrappers:

o Four bits to hold the repair data for the first spare row, highlighted in green

o Four bits to hold the repair data for the second spare row, highlighted in orange

o Six bits to hold the repair data for the spare column, highlighted in red

Since buffer_size is the largest portion of a BISR register associated with a single spare 
resource, the buffer_size value for this memory is six. You must repeat the process 
outlined above for each memory in the current design and you use the largest buffer_size 
found in the NumberOfFuses equation.

• zero_counter_bits is the size of the counter used to count strings of consecutive 0s in the 
BISR chain once loaded with the BIRA results. By default, this counter size is the 
rounded up log2 of the BISR chain length.

• buffer_size and zero_counter_bits are extracted automatically from the circuit and 
reported in the <design_name>_<design_id>_mbisr_controller.tcd file located in the 
TSDB instrument/<design_name>_<design_id>_mbisr.instrument folder after 
process_dft_specification is run. An example of this file is shown in Figure 5-27. If you 
need to know the value of these parameters to calculate the number of fuses, you can run 
process_dft_specification once and locate them in the tcd file. Note that a preliminary 
run of process_dft_specification might be necessary to generate the default BISR chain 
order as described in the “Controlling the BISR Chain Order” section. 

Figure 5-27. Example MBISR TCD File Reporting BISR Statistics

...
Core(top_rtl_tessent_mbisr_controller) {    
    MemoryBisrController {
        version                          : xxxx.x;
        zero_counter_bits                : 6;
        external_fuse_box                : OFF;
        fuse_box_address_bits            : 10;
        max_fuse_box_address             : 1023;
        fuse_box_size                    : 512;
        max_bisr_chain_length            : 65536;
        max_bisr_length_bits             : 16;
        buffer_size                      : 10;
        ...
    }
}
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Multi-Chain Case
The multi-chain case formula has a first component that is identical to the single-chain case plus 
some overhead associated with the presence of additional chains; each chain is associated with a 
group. The formula is as follows:

NumberOfFuses = (NumberOfRepairs * buffer_size) + ((NumberOfRepairs + 1) * 
(zero_counter_bits+1)) + (NumberOfGroups – 1) * (fuse_box_address_bits + 
(zero_counter_bits + 1))

where:

• NumberOfGroups — is the number of groups in the circuit. Groups typically are 
associated with power domains. They also can be associated with memories that are 
assigned different repair priority levels within a power domain.

• fuse_box_address_bits — is the number of address bits required to access the fuse box. 
If the fuse box is used only to store memory repair information, the number of address 
bits is simply the log2 of the number of fuses in the fuse box, and the value is reported in 
the MBISR TCD file as shown in Figure 5-27 and as described in the “Single-Chain 
Case” section. However, if the fuse box is shared for other purposes, the number of 
address bits is larger.

Note
For the multi-chain case, the longest BISR chain determines the zero_counter_bits  value. 
The individual chain lengths, as well as the number of groups, are reported in the MBISR 

TCD file as shown in Figure 5-27 and as described in the “Single-Chain Case” section.

Incremental Repair Case
Hard incremental repair involves programming the fuse box in more than one test insertion, for 
example during wafer probe, package test, final test or even system test. 
Multiple insertions are enabled by specifying the max_fuse_box_programming_sessions 
property in the DftSpecification/MemoryBisr/Controller wrapper with a value greater than 1, 
which is the default value, or by selecting the “unlimited” option.

When max_fuse_box_programming_sessions is specified as “unlimited”, fuse box compression 
is disabled and the repair solution from the BISR chains are stored uncompressed in the fuse 
box. Subsequent repair solutions can be written directly into the fuse box without affecting the 
repair solution from previous insertions. This enables an unlimited number of 
self_fuse_box_program autonomous mode programming sessions. The number of fuses 
required for this use must be equal to, or greater than the total number of bits in the BISR chain. 
Disabling the fuse box compression hardware is also useful in the rare case where more than 
50% of the repair registers are expected to be used. In this case, the compression algorithm 
becomes inefficient and may result in requiring more fuses than there are bits in the BISR chain.
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When the max_fuse_box_programming_sessions property is set to 2 or more, the number of 
fuses is calculated as follows:

NumberOfFuses = (max_fuse_box_programming_sessions * FusesPerSession) +
(((max_fuse_box_programming_sessions - 1) * (fuse_box_address_bits + 1))
 + 1)

where:

• FusesPerSession — is the number of fuses calculated for a single session as explained in 
the “Single-Chain Case” and “Multi-Chain Case” sections. The formula is slightly 
pessimistic because it assumes that almost all repairs need to be performed during the 
first programming session and that all programming sessions are used. However, the 
number of fuses necessary to perform a number of repairs could be significantly less 
depending on the statistical distribution of the repairs. Conversely, the total number of 
repairs performed with the calculated number of fuses could be significantly higher 
depending on the number of programming sessions that are used. 

For example, suppose that NumberOfRepairs is set to 10 in the calculation of 
FusesPerSession for a circuit with a single BISR chain and that the result of the 
calculation is 250. Also suppose that max_fuse_box_programming_sessions is set to 2 
so that the total NumberOfFuses is 512 for the incremental repair case. This number of 
fuses enables performing up to 10 repairs if both programming sessions are used and if 
most repairs are performed during the first programming session. However, if all repairs 
are performed in a single programming session, up to 20 repairs can be performed with 
this number of fuses.

• fuse_box_address_bits — is the number of address bits required to access the fuse box. 
If the fuse box is used only to store memory repair information, the number of address 
bits is simply the log2 of the number of fuses in the fuse box, and the value is reported in 
the MBISR TCD file as shown in Figure 5-27 and as described in the “Single-Chain 
Case” section. However, if the fuse box is shared for other purposes, the number of 
address bits is larger.
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Creating and Inserting the BISR Controller
This sections covers BISR controller function, implementation and operation.
Understanding the BISR Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Connecting the BISR Controller to an External Fuse Box  . . . . . . . . . . . . . . . . . . . . . . . 211
Connecting a BISR Controller to System Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Choosing a Functional Repair Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
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Understanding the BISR Controller
The BISR controller hardware is created at the top level of the chip automatically. The hardware 
implements several functions and can be used to perform the following operations:

• Compress the repair information and write the result into the fuse box

• Decompress the fuse box contents and shift the contents into the chip BISR chain

• Initialize or observe BISR chain content via the TAP

• Read and program fuses via the TAP

The BISR controller is accessed using the TAP. The BISR chain control ports are automatically 
connected to the BISR controller. The BISR controller is also connected to the fuse box. The 
BISR controller provides external access to the BISR chain and the fuse box via the TAP. The 
BISR controller can also be used in an Autonomous run mode that provides BISR chain and 
fuse box access. This access handles all the repair information inside the chip.

When a chip is powered on, the content of the BISR chain is unknown. Because the content of 
the BISR chain is driving the memory repair ports, its content must be cleared or programmed 
with the repair information before the chip can be used. The BISR chain is asynchronously reset 
when holding the BISR controller functional repair enable input pin active. The two methods to 
initialize the BISR chain with repair information are as follows:

• Apply a low-to-high transition on the BISR controller functional repair enable input pin 

When the transition occurs, the BISR controller loads the repair information from the 
fuse box into the BISR chain. Typically, this method is used in a system where the BISR 
controller repair enable port is tied to a power-on reset signal.

If multiple power domain groups are present, the BISR controller has input ports named 
PowerDomainGroupEnable_<pdg_label> corresponding to each power domain group. 
These input ports are used to select the BISR segments to initialize when the BISR 
controller is enabled. These ports provide the ability to power-up individual BISR 
chains from selected power domains in the system, while preserving the repair 
information in other power domains.

• Initialize through the TAP using the Autonomous run mode 

One of the autonomous operations is power_up_emulation, which emulates a functional 
power-up reset. Typically, this method is used during manufacturing when the chip is 
accessed only through the TAP.

The BISR controller provides several ways to program the fuse box. The fuse box can be 
programmed either externally via the TAP or internally using the autonomous self-fuse box 
programming mode with the repair information content of the BISR chain.

BISR Controller Run Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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BISR Controller Run Modes
The BISR controller has three run modes:

• autonomous 

In this mode, the controller operation does not require any data patterns from the tester. 
The repair information and compression/decompression are done inside the chip. Seven 
autonomous operations can be performed: self_fuse_box_program, 
power_up_emulation, verify_fuse_box, rotate_bisr_chain, calculate_bisr_chain_length, 
load_bisr_chain, and clear_bisr_chain.

• bisr_chain_access 

In this mode, the chip-level BISR chain is accessed from the TAP TDI and TDO ports. 
Valid operations in this mode are enable_rotation (if no BISR controller is present), 
enable_bira_capture, and select_bisr_registers.

• fuse_box_access 

In this mode, the fuse box is accessed from the TAP through the BISR controller. The 
two valid operations in this mode are program and read. The program operation can be 
used to write to a single fuse address from the TAP. The read operation can be used to 
read a single fuse address from TAP. The fuse box is addressed one bit at a time 
irrespective of the actual fuse box organization.

Several vendors provide fuse boxes, and these fuse boxes have a large number of interfaces and 
protocols that are not common to each fuse box. Because of this complexity, the fuse box read 
and write protocols are encapsulated inside of an interface. The interface is custom designed for 
each fuse box. However, this is a one-time effort for a given technology. Also, Siemens EDA 
can provide this interface for certain technologies or design a new interface under certain 
conditions.

The fuse box can be instantiated inside the BISR controller or can be external to the BISR 
controller. 

• Internal Fuse Box

When the fuse box is internal to the BISR controller, a generic fuse box model is used to 
include the fuse box that encapsulates the specific fuse box read and write protocols. A 
generic fuse box model is generated as a template file. The fuse box must be 
instantiated, and the read and write protocols must be implemented inside this module. 

• External Fuse Box

When the fuse box is located outside the BISR controller, a fuse box interface must be 
instantiated in the design to provide a valid fuse box read and write interface to the BISR 
controller. Generally, external fuse boxes are used when the fuse box is shared for 
purposes other than memory repair.
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Connecting the BISR Controller to an External Fuse Box
The BISR controller supports having an external fuse box. Typically, an external fuse box is 
used when the fuse box is shared for multiple functions and accessing it via the TAP is not 
suitable for writing or reading fuse box functions that are not related to memory repair. Another 
situation that occurs is when the fuse box has features not supported by the BISR controller.

Tip
For information and examples on integrating a TSMC eFuse with a Tessent MemoryBIST 
BISR controller, refer to Knowledge Base Article MG596434 “Tessent MemoryBIST TSMC 

28nm and Newer eFuse Support (Tessent Shell Flow)”, available from the Support Center at 
https://support.sw.siemens.com.

When an external fuse box is used, the fuse_box_location property in the MemoryBisr/
Controller wrapper must be set to external. The fuse_box_interface_module property located in 
the same wrapper can be used to specify the library module for the external fuse box. If this is 
not specified, the library module is inferred from the design instance specified in the 
design_instance property of ExternalFuseBoxOptions wrapper. If neither of these properties are 
specified and only a single tcd_fusebox file exists in the design, the fuse box module is inferred 
from this tcd_fusebox description. 

The design instance for the external fuse box must already be instantiated in the design. 
Typically, the fuse box is instantiated within a module that also contains interface logic. If the 
external fuse box is only used for memory repair, all input ports of the module should be tied 
off, and the output ports should be left open. When executing the process_dft_specification 
command, all input ports are first disconnected, and then connected to the BISR controller 
module. If the external fuse box is also used for functional purposes, the input and output ports 
of the interface logic should already have connections to the functional logic. In this case, the 
process_dft_specification command muxes the input ports and connects to the existing output 
port connections for fuse box connections.

The core description for the external fuse box can automatically be read in during module 
matching. Refer to the set_design_sources -format tcd_fusebox command description for 
information about specifying where it is searched for. Refer to the read_core_descriptions 
command description to learn how to read the core description explicitly. Finally, you can refer 
to the set_module_matching_options command description for information about the name 
matching process.

If the instantiated module has a core description with a FuseBoxInterface wrapper, then 
connections between the BISR controller and the fuse box interface are done automatically. If a 
core description is not available, or not complete, explicit connections can be made in the 
MemoryBisr/Controller/ExternalFuseBoxOptions/ConnectionOverrides wrapper. When 
completing explicit connections within the DftSpecification ConnectionOverrides wrapper, note 
that it is mandatory to specify the following properties:

• done

https://support.sw.siemens.com
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• read_data

• write_en

• select

• access_en

• address

• write_duration_count

A user cannot omit one of the ports listed above from the tcd_fusebox and simply provide the 
single missing port in the ConnectionOverrides wrapper. It is recommended that the core 
description for the fuse box interface be as complete as possible. All ports described in the core 
description interface wrapper must exist on the actual design module instance. The design 
module instance is allowed to have additional ports not described in the library module Interface 
wrapper, as long as they are specified in the ConnectionOverrides wrapper before executing the 
process_dft_specification command.

Connecting a BISR Controller to System Logic
Typically, system logic is connected to the BISR controller for initiating memory repair and 
monitoring the progress of the operation.
All connections are specified in the DftSpecification configuration file in the MemoryBisr/
Controller wrapper. The system logic must provide a minimum of three input connections for 
initiating memory repair on power up.

• The BISR controller input clk must be driven by an appropriate functional clock. The 
connection is made by specifying the repair_clock_connection property.

• The BISR controller input resetN is the signal used to reset the BISR chain(s) and 
initiate memory repair. The connection is made by specifying the 
repair_trigger_connection property.

• The BISR controller repair mode input specifies the BISR controller autonomous run 
mode the controller initiates when it detects a rising edge on resetN. The three-bit repair 
mode connection is made by specifying the repair_mode_connection property. Refer to 
the property description for additional information and the run-mode encoding for this 
input.

Note
All BISR chains maintain their values if resetN remains high after the controller 
execution. If resetN is set low and the selected run mode is Functional Power-Up or 

BISR Chain Length Calculation, the BISR chain is cleared. If there are multiple power 
domain groups, only the enabled BISR chains are cleared.
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If the design contains more than one power domain group, the following connections are also 
required inside the MemoryBisr:Controller wrapper:

DftSpecification { 
  MemoryBisr { 
    Controller { 
      PowerDomainOptions { 
        PowerDomainName(pdgA) { 
          enable_from_pmu_connection : pin_or_net_name ; 
        } 
        PowerDomainName(...) {} 
      } 
    } 
  } 
} 
 

BISR controller outputs can be connected to system logic for monitoring the progress of the 
power-up operation. Those connections are optional but recommended to make sure that the 
memory repair information of the fuse box has been successfully transferred to all memories 
before accessing them for the first time.

• The BISR controller output BisrGo indicates that the BISR operation was successful 
when its value is 1. The state of BisrGo is only valid when BisrDone is also 1. The 
connection is made by specifying the AdvancedOptions:bisr_pass_connection property.

• The BISR controller output BisrDone indicates that an Autonomous mode of operation 
(for example, power-up) is completed when its value is 1. The connection is made by 
specifying the AdvancedOptions:bisr_done_connection property.

When the design contains more than one power domain, additional connections are required. At 
a minimum, the PowerDomainOptions:PowerDomainName:enable_from_pmu_connection 
property must be specified for each input of the BISR controller associated to a power domain. 
This input determines whether the power domain is loaded with repair information on the next 
low-to-high transition of the functional input with the repair_trigger_connection property.

Additional properties are available to monitor BISR controller output monitors dedicated to 
each group. The PowerDomainOptions:PowerDomainName:busy_to_pmu_connection property 
and the PowerDomainOptions:PowerDomainName:done_to_pmu_connection property. The 
“busy” output is high when the repair information for the corresponding power domain group is 
being loaded in the BISR chains. The “done” output is high once the repair information for the 
corresponding power domain has been loaded successfully in the BISR chains. You must 
monitor the global BisrGo output to confirm that the operation was successful.

All properties associated to controller inputs are not repeatable whereas all properties associated 
to controller outputs are repeatable so that you can connect a same output to multiple 
destinations.
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Choosing a Functional Repair Clock
The distributed architecture and conservative clocking methodology used for self-repair require 
some care in the selection of the functional repair clock used to apply repair during chip power 
up.We recommend that you use a functional clock of 50 MHz or less in that functional mode.
Note that all other modes used for manufacturing use the TAP clock (TCK), which is 10 MHz 
by default. Using such a low frequency simplifies timing closure. At 10 MHz, self-repair takes 
approximately 1 ms to complete for a BISR chain with 5000 bits, which is sufficient to repair 
hundreds of memories. If this time needs to be shortened, you can use a faster functional clock. 
However, you must consider the following factors when making a decision because they might 
limit the maximum achievable frequency: 

• Clock balancing of the BISR chain. The BISR chain is distributed throughout the chip, 
and some segments of the BISR chain might be part of pre-designed circuit blocks. 
Balancing the BISR clock to achieve a higher speed of operation might be difficult. 

• Clock edge uncertainty. Retiming registers are inserted between BISR registers so that 
balancing the BISR clock is not necessary. However, these retiming registers might limit 
the maximum achievable frequency because of the uncertain time of occurrence of the 
falling BISR clock edge with respect to its rising edge.

• Distribution of the BISR registers. The BISR chain is distributed throughout the chip, 
and some segments of the BISR chain might be part of pre-designed circuit blocks. Long 
wires between BISR registers might limit the maximum achievable frequency. Two 
mechanisms are available to alleviate timing issues:

o Pipeline Registers

• You can insert a pipeline register before and after each BISR register for 
memory instances specified with the BisrElement wrapper. You can 
independently configure the clocking for each pipeline register as negative or 
positive edge.

• You can insert multiple pipeline registers where you want within each power 
domain BISR chain using the “: pipeline” declaration in the 
BisrSegmentOrderSpecification wrapper.

o Placement-Based BISR Chain Routing 

• MemoryBIST optimizes the routing of the BISR chain based on placement when 
you use the BisrSegmentOrderSpecification wrapper and provide a DEF file that 
specifies memory coordinates. You load the DEF file using the read_def 
command prior to running the check_design_rules command. If you do not 
provide a DEF file, you can specify the BISR chain order to minimize the length 
of BISR connections and group by power domain.

• You can independently override the placement of BISR registers and associated 
pipeline registers and specify their insertion into a particular parent design 
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instance using the BisrElement and BisrElement/Pipeline wrappers. The BISR 
chain ordering is then determined based on the parent design BISR_SI pin 
placement information found in the DEF file.
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Top-Level Verification and Pattern Generation
This section covers fuse box programming, verifying the top-level BISR and generation of 
manufacturing test patterns.
Fuse Box Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Verifying BISR at the Block Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Verifying Top-Level BISR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Creating Multiple Load Scan Patterns With Repairable Memories  . . . . . . . . . . . . . . . 236
Generating Your Manufacturing Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
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Fuse Box Programming
The two methods for programming fuses using the BISR controller are the following:

• Using the Autonomous mode as described in the “Autonomous Self Fuse Box Program” 
section. This is the default method used to store memory repair information contained in 
BISR registers.

• Using the TAP as described in the “FuseBox Access” section. This method is used 
mostly for diagnosis and for storing information other than memory repair.

Note
The “Verifying BISR at the Block Level” section describes these two methods in 
detail.

Autonomous Self Fuse Box Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
FuseBox Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Autonomous Self Fuse Box Program
In the Autonomous self_fuse_box_program run mode, the BISR controller has the capability to 
rotate the BISR chain, compress its content, and write the content to the fuse box. The BISR 
chain must hold the correct memory repair information before the autonomous fuse box 
programming starts. There are two methods to load the memory repair information into the 
BISR chain:

• Run memory BIST followed by a BIRA-to-BISR transfer

• Scan in the BISR information through the TAP

FuseBox Access
The BISR controller provides read and write access to the fuse box via the TAP when the BISR 
controller is running in the FuseBoxAccess mode. 
In this run mode, a setup chain is accessed through the TDI and TDO ports of the chip. This 
setup chain contains a register that holds the fuse box address to write. A single bit of the fuse 
box is written at a time. For each write access to the fuse box, the fuse address value is scanned 
through the TAP into the setup chain of the BISR controller. The TAP must then pause to 
provide sufficient delay as specified in the fuse box data sheet. Multiple fuse box addresses 
might be written by successively scanning the address and pausing until the write duration delay 
is completed. The write duration delay is controlled by the PatternsSpecification property 
fuse_box_write_duration, and the done signal from the fuse box Interface is not monitored in 
this mode.
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Same as for the write access, the read access can only read one bit at a time from the fuse box. 
For each bit to be read from the fuse box, the bit address is scanned into the BISR controller 
through the TAP. The bit value is then captured in the BISR controller setup chain and is 
scanned out during the next shift instruction. The done signal is not monitored when the fuse 
box is accessed through the TAP. The time allowed for the access is determined by the 
testbench. Two clock cycles are allowed if the DftSpecification fuse_box_location property is 
set to “internal” and three clock cycles if it is set to “external”. The PatternsSpecification 
property test_time_multiplier can be specified to allow more time for an access.

To program the fuse box using the FuseBoxAccess mode, the BISR chain content must be 
scanned out, compressed externally using the CompressBisrChain script (which is included in 
the Tessent products release), and written one fuse at a time. The BISR chain must initially hold 
the correct memory repair information. The write_memory_repair_dictionary command is used 
to create the configuration file that is required for running the CompressBisrChain script. This 
file also serves as a useful verification reference as it contains all the fuse box parameters, as 
well as an ordered list of BISR register ICL instances listed per power domain group.
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Verifying BISR at the Block Level
The verification of repairable memories involves extra tasks that are not required on memories 
without self-repair. This can be achieved by performing the verification tasks outlined below at 
the design block level in a bottom-up flow.
Note that the tasks listed below assume there is no BISR controller present in the block. In the 
case where a BISR controller is present, refer to the “Verifying Top-Level BISR” section.

• Executing Fault-Inserted Memory BIST

• Performing BIRA-to-BISR Capture

o Scan External BISR Chain into the Internal BISR Chain

Memories with a serial BISR interface require this extra step. A BISR chain rotation 
shift is required to copy the content of the external BISR chain into the internal BISR 
chain registers.

For memories with a parallel BISR interface, this step is not required because the 
output of the external BISR registers is driving the memory repair ports directly. 
However, if a design has one or more memories with serial BISR interfaces, all 
BISR registers must perform the shift rotation, including the BISR registers for the 
memories with parallel BISR interface.

• Executing Post-Repair Memory BIST

These verification tasks are specified inside the PatternsSpecification configuration file for a 
memory BIST controller with BISR hardware as shown in Figure 5-28. For complete reference 
information for the PatternsSpecification configuration file syntax, refer to the “Configuration-
Based Specification” chapter of the Tessent Shell Reference Manual. Additionally, the 
write_memory_repair_dictionary command creates a configuration file that can serve as a 
useful verification reference as it contains an ordered list of BISR register ICL instances listed 
per power domain group.

Figure 5-28. Example PatternsSpecification to Verify BIRA and BISR
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PatternsSpecification(core,rtl,signoff) { 
 
Patterns(MemoryBist_P1) {  
    tester_period : 100ns; 
    ClockPeriods { 
      clka : 9.00ns; 
    } 
    TestStep(ClearBisrChain) { 
      MemoryBisr { 
        run_mode : bisr_chain_access; 
        Controller(core) { 
          BisrChainAccessOptions { 
            default_write_value : all_zero; 
          } 
        } 
      } 
    } 
    TestStep(PreRepair) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        Controller(core_rtl_tessent_mbist_c1_controller_inst) { 
          DiagnosisOptions { 
            compare_go : on;
          } 
          RepairOptions { 
            check_repair_status : non_repairable; 
          } 
        } 
      } 
    } 
    TestStep(CaptureBiraRotate) { 
      MemoryBisr { 
        run_mode : bisr_chain_access; 
        Controller(core) { 
          BisrChainAccessOptions { 
            enable_rotation : On; 
            enable_bira_capture : On; 
          } 
        } 
      } 
    } 
    TestStep(PostRepair) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        reduced_address_count : on; 
        Controller(core_rtl_tessent_mbist_c1_controller_inst) { 
          DiagnosisOptions { 
            compare_go : on; 
            compare_go_id : on; 
          } 
        } 
      } 
    } 
  } 
} 

Executing Fault-Inserted Memory BIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
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Performing BIRA-to-BISR Capture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Executing Post-Repair Memory BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Executing Fault-Inserted Memory BIST
In this task, faults are inserted into the memory using the procedure documented by the memory 
provider, which usually requires adding command-line options when starting the simulation. 
MemoryBIST is invoked by TestStep (PreRepair) as shown in Figure 5-28. As the 
MemoryBIST algorithm verifies the memory, the BIRA module is collecting failure 
information and computing the repair information for the memory. Assuming that the memory 
is repairable, the repair solution is available from the BIRA module when the MemoryBIST 
controller completes the execution.

Performing BIRA-to-BISR Capture
In this task, the BIRA values are captured into the external BISR register. 
This step is implemented in TestStep (CaptureBiraRotate) shown in Figure 5-28. The transfer 
from the BIRA to BISR registers is performed in the same way for memories with a serial or 
parallel repair interface. After the capture, a full rotation of the BISR chain is performed. The 
rotation enables the transfer of the repair information from the external to the internal BISR 
register of memories using a serial BISR interface. The rotation also verifies that memories 
using a parallel BISR interface can be mixed with memories using a serial BISR interface.

You specify BISR chain emulation for lower-level blocks with the SimulationOptions/
emulate_bisr_chains_in_lower_physical_blocks property and the design view for these blocks 
with the LowerPhysicalBlockInstances property in the PatternsSpecification. Refer to the 
emulate_bisr_chains_in_lower_physical_blocks property description of the auto (default) 
switch for details on the interaction of these properties and the resulting simulation view. Note 
that simulations with the ijtag_graybox view may fail if a lower-level block has memories with 
a serial repair interface and the BisrChainAccessOptions/select_bisr_registers property is set to 
“internal” or “internal_only”, or if the DftSpecifcation AdvancedOptions/
power_up_chain_select property is set to “internal”. This is because the ijtag_graybox design 
view does not include the memory internal repair chains and can introduce unknown values into 
the BISR chain. To resolve the simulation issues, you can specify the full design view for the 
relevant lower-level blocks, which may increase simulation time.

Executing Post-Repair Memory BIST
This task re-runs the MemoryBIST algorithm used in the first test step. During this task, the 
repair information is used by the repairable memories, and the redundant elements replace the 
defective memory elements. If the memory has been repaired correctly, the GO signal from the 
MemoryBIST controller should be high at the end of the simulation. Assuming that all fault 
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inserted memories are repairable, compare failures during this test step often indicate a problem 
with the memory library file.
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Verifying Top-Level BISR
The sign-off process for a chip with BISR hardware verifies the FuseBoxAccess, 
BisrChainAccess and Autonomous modes of operation of the BISR controller via the TAP.
Figure 5-29 shows a portion of the default PatternsSpecification configuration file generated for 
the TAP Access mode, while Figure 5-30 shows a portion of the default PatternsSpecification 
configuration file used for the Autonomous modes.

It is not necessary to run MemoryBIST with fault-inserted memories at the top level of the chip. 
This type of verification is better performed at the block level where MemoryBIST can be run 
on the full address space of all memories. At the top level, MemoryBIST only needs to be run 
with reduced_address_count: on with the BISR registers being reset to 0. This is the only type 
of interaction that, by default, is verified among memory BIST, BIRA, and BISR.

The default and recommended top-level BISR verification process therefore assumes that the 
connections between the BIRA and BISR registers, as well as the BISR registers and memory 
repair ports, have been verified at the assembly level already. Therefore, the testbenches 
generated at the top level only verify the connections between the BISR registers, the 
BISRcontroller, the TAP, and the fuse box. You can always modify the 
PatternsSpecificationconfiguration file to verify additional connections. 

The write_memory_repair_dictionary command creates a configuration file that can serve as a 
useful verification reference. This file contains all the fuse box parameters, as well as an ordered 
list of BISR register ICL instances listed per power domain group.

FuseBox Access Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Autonomous Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Autonomous Mode for Memory BIST-Only Verification . . . . . . . . . . . . . . . . . . . . . . . . 226
Functional Mode Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

FuseBox Access Mode
The FuseBox Access mode consists of writing and reading the fuse box through the TAP. This 
mode exercises the fuse box interface that the Autonomous modes also use. The FuseBox 
Access mode can also be used during verification of the functional fuse box interface when the 
fuse box is shared with other applications (that is, fuse_box_location: External in the 
DftSpecification).
In Figure 5-29, the first TestStep (FuseBoxProgram) programs two fuses at address 0 and 15. 
Those addresses are arbitrary, and extra addresses can be added easily to exercise more address 
lines of the fuse box, if necessary. The next TestStep (FuseBoxRead) reads the fuse box 
contents and expects a 0 from all locations except at 0 and 15, where it expects a 1. The read 
address range can be restricted as part of the read_address command. When a range is not 
specified, the default range is 0 to number_of_fuses, respectively.
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Figure 5-29. Example PatternsSpecification Configuration for FuseBox Access 
Mode

Patterns(MemoryBisr_TapAccessMode) { 
    TestStep(FuseBoxProgram) { 
      MemoryBisr { 
        run_mode : fuse_box_access; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          FuseBoxAccessOptions { 
            operation : program; 
            write_address : 0; 
            write_address : 15; 
          } 
        } 
      } 
    } 
    TestStep(FuseBoxRead) { 
      MemoryBisr { 
        run_mode : fuse_box_access; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          FuseBoxAccessOptions { 
            operation : read; 
            read_address(0) : 1; 
            read_address(15) : 1; 
          } 
        } 
      } 
    } 
  } 

Autonomous Modes
The functions accomplished by the Autonomous modes include the following:

• Calculating the BISR chain length

• Compressing the bit pattern contained by the BISR chain

• Programming fuses

• Reading fuses

• Decompressing the repair information

• Comparing it to the original contents of the BISR chain

The BISRChainAccess mode also is exercised during verification of the Autonomous modes to 
load the bit pattern before TestStep(SelfFuseBoxProgram) and unload the same bit pattern after 
TestStep(VerifyFuseBox):

• The first TestStep (BisrLoaderReset) in Figure 5-30 initializes the BISR chain and 
calculates its length. The BISR chain length is used in subsequent test steps.
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• The second TestStep performs a BisrChainAccess where the BISR chain is loaded with 
an arbitrary bit pattern. Only bits 0 and 4 of the BISR register are set in this example; 
these bits act as an arbitrary repair solution inside this BISR register. Note that the bit 
index on the BISR chain is 0 for the bit closest to TDO. While the BISR chain is loaded 
with the bit pattern, the values of the BISR chain are shifted out and compared on TDO. 
When multiple BISR scan chains are present, all chains are concatenated to shift in the 
bit pattern, by default.

• The third TestStep (SelfFuseBoxProgram) rotates the arbitrary bit pattern of the BISR 
chain, compresses it and programs the appropriate fuses. Because the time required to 
program such a simple bit pattern is significantly less than the maximum time allowed 
during manufacturing, the max_repair_count property is used to shorten the simulation 
time. This property is for verification purposes only and is not included in the 
configuration file used for manufacturing purposes. The SelfFuseBoxProgram mode 
does not disturb the content on the BISR chains. 

If the fuse box interface has an internal buffer (for example, the interface has a port with 
write_buffer_transfer property), you can postpone the final fuse box programming to a 
subsequent test step by setting the inhibit_buffer_to_fuse_transfer property to On.

• The fourth TestStep (VerifyFuseBox) verifies that the contents of the fuse box, once 
decompressed, corresponds to the initial bit pattern that was loaded in the BISR chain. 
Knowing that the content of the BISR chain was not disturbed after the 
SelfFuseBoxProgram step, the decompressed values from the fuse box should match the 
content of the BISR chain. As for all Autonomous modes, the GO and DONE output 
signals are set to 1 if the operation is successful.

Figure 5-30. PatternsSpecification Configuration for Autonomous Modes
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Patterns(MemoryBisr_AutonomousMode) { 
    TestStep(BisrLoaderReset) { 
      MemoryBisr { 
        run_mode : autonomous; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          AutonomousOptions { 
            operation : power_up_emulation; 
          } 
        } 
      } 
    } 
    TestStep(BisrChainAccess) { 
      MemoryBisr { 
        run_mode : bisr_chain_access; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          BisrChainAccessOptions { 
            enable_bira_capture : off; 
            select_bisr_registers : external; 
            
BisrRegisterAccessOptions(core_inst2.blockB_clka_i1.memA_bisr_inst) 
{ 
              write_value(0) : 1; 
              write_value(4) : 1; 
            } 
          } 
        } 
      } 
    } 
    TestStep(SelfFuseBoxProgram) { 
      MemoryBisr { 
        run_mode : autonomous; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          AutonomousOptions { 
            operation : self_fuse_box_program; 
            max_repair_count : 1; 
          } 
        } 
      } 
    } 
    TestStep(VerifyFuseBox) { 
      MemoryBisr { 
        run_mode : autonomous; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          AutonomousOptions { 
            operation : verify_fuse_box; 
          } 
        } 
      } 
    } 
  } 

Autonomous Mode for Memory BIST-Only Verification
In the example shown below, an autonomous mode of the controller called clear_bisr_chain 
initializes all flip-flops in the BISR chain without calculating its length. This enables quick 
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initialization of the memory repair inputs when performing memory BIST verification. The 
TestStep (bisr_clear) is added automatically in the PatternsSpecification file for memory BIST 
controllers that are testing repairable memories.

Figure 5-31. PatternsSpecification Configuration for Autonomous Modes for 
MemoryBIST-Only Verification

Patterns(MemoryBist_P1) { 
ClockPeriods { 
      clkb : 12.0ns; 
      clka : 3.0ns; 
} 
TestStep(clear_bisr) { 
      MemoryBisr { 
        run_mode : autonomous; 
        Controller(top_rtl_tessent_mbisr_controller_inst) { 
          AutonomousOptions { 
            operation : clear_bisr_chain; 
          } 
        } 
      } 
    } 
    TestStep(run_time_prog) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        reduced_address_count : on; 
        
Controller(core_inst1.blockA_clka_i1.blockA_l1_i1_blockA_l2_i1_blockA_rtl
_tessent_mbist_c1_controller_inst) { 
        } 
    } 
  } 
} 
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Functional Mode Verification
The BISR controller has a functional mode of operation enabling memories to be repaired in the 
system. You must verify that the proper functional inputs are applied to the BISR controller and 
that your system correctly interprets the various BISR controller outputs in that functional mode 
of operation. You perform this verification with manually created functional patterns.
This section describes the protocol between the system logic and the BISR controller, as well as 
the equations to determine approximate repair time. This section also shows how you can use a 
ProcedureStep to partially verify the functional mode of operation in combination with other 
BISR manufacturing tests.

BISR Protocol (Single Power Domain Group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
BISR Protocol (Multiple Power Domain Groups)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Repair Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Combining Functional Mode with Manufacturing Tests. . . . . . . . . . . . . . . . . . . . . . . . . 233

BISR Protocol (Single Power Domain Group)
The figure below and the following section outlines the BISR protocol for a single power 
domain group.
The controller reads, decompresses, and then shifts the fuse box content into the BISR chain 
using a system clock. Assuming that the TAP has been reset, a low-to-high transition on the 
resetN functional input initiates the repair. The Done output of the controller indicates that the 
repair operation is complete, and the Go output indicates if the operation was successful. A third 
output, bisrCEDis, indicates when the actual memory repair takes place. This signal also is used 
to disable memories with a serial repair interface. Figure 5-32 shows the protocol for a single 
power domain. 
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Figure 5-32. BISR Controller Protocol in Functional Mode (Single Power 
Domain Group)

The DftSpecification/MemBisr/Controller wrapper properties associated with the controller 
ports are as follows: 

• repair_clock_connection : clk;

• repair_trigger_connection : resetN;

• AdvancedOptions/bisr_done_connection : Done;

• AdvancedOptions/bisr_pass_connection : Go;

• PowerDomainOptions/PowerDomainName(pdg_name)/busy_to_pmu_connection : 
bisrCEDis;

The resetN input signal is synchronized using the system clock input clk. The resetN input must 
be low for a sufficient amount of time to asynchronously reset the four flip-flops of the 
synchronizer circuit. The amount of time depends on the cell library that you used to synthesize 
your circuit. The BISR controller outputs are initialized synchronously using a gated version of 
the functional clock input. The initialization is complete 3 cycles after a definite high level was 
detected on resetN. 

The Done and Go outputs remain low until the repair completes. The Done output then goes 
high, and the Go output also goes high if the repair was successful, but stays low if not. The 
bisrCEDis output goes high one cycle after the initialization and goes low once repair 
completes.
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Note
Memories with a serial repair interface might not be available immediately after bisrCEDis 
goes low. You should wait a few clock cycles to make sure that the signal had time to 

propagate to all memories that are not on the same clock domain as the BISR controller. Timing 
scripts (SDC and STA) assume a false path in that case. Functional simulations must be used to 
verify this asynchronous interface. 

BISR Protocol (Multiple Power Domain Groups)
The BISR protocol is slightly different when multiple power domain groups are present.
Figure 5-33 illustrates the BISR protocol for a circuit with three power domain groups. Signals 
clk (repair clock), resetN (repair enable), Done, and Go are the same as in Figure 5-32. New 
signals in Figure 5-33 include a 3-bit input bus (PwrDomGrpEn, corresponding to the 
DftSpecification/MemoryBisr PowerDomainName(pdg_name)/enable_from_pmu_connection 
property) and a set of outputs for each of the three groups. Signal names associated with a group 
have the same suffix, and is the power domain group name that you assigned during the 
DftSpecification step. The three groups are as follows: 

• G0 (_G0 suffix) 

• G1 (_G1 suffix) 

• G2 (_G2 suffix) 

For each group, Figure 5-33 shows four signals:

• toBisrSi_Gx is the serial input of the BISR chain.

• bisrClk_Gx is the clock of the BISR chain.

• PDGDone_Gx (AdvancedOptions/bisr_done_connection property) is a signal indicating 
that the memories of group x have been repaired and are ready to use.

• bisrCEDis_Gx (PowerDomainOptions/PowerDomainName(pdg_name)/
busy_to_pmu_connection property) indicates that repair is in progress for this group. 

Other signals such as a chain serial output (fromBisr_Gx) and a reset (bisrRstn_Gx) are specific 
to each group but are not shown. 
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Figure 5-33. BISR Controller Protocol in Functional Mode (Multiple Power 
Domain Groups)

The PwrDomGrpEn input bus determines which memory groups are repaired. Each bit of the 
bus is associated with a group, and any combination of groups is allowed. The least significant 
bit of the bus is associated with group G0. In the illustrated example, bits 0 and 2 are set to 1, 
which indicates that groups G0 and G2 are to be repaired, whereas the state of group G1 is 
preserved. Group G1 was repaired previously because the PDGDone_G1 signal has a value of 
1. 

The PwrDomGrpEn input must be stable before the falling edge of resetN. The two inputs are 
combined to control the asynchronous reset of a flip-flop. Therefore, it is recommended to have 
the two signals being generated from the flip-flops using different clock edges of the same 
clock. The PDGDone_Gx signal of the selected groups immediately goes low on the falling 
edge of resetN.

Note
The relationship between PwrDomGrpEn and resetN is not constrained by the timing scripts 
(SDC and STA), that assume a false path. Functional simulations must be used to verify this 

interface.

As is the case for the single power domain group, the BISR controller starts a few cycles after 
the rising edge of resetN. The groups are repaired in the order determined by the 
DftSpecification power_domain_priority_order property. In our example, group G0 is repaired 
first followed by group G2. The activity on toBisrSi_Gx and bisrClk_Gx for each group shows 
when the repair occurs for each group. The PDGDone_G0 signal is set to 1 as soon as repair for 
group G1 is complete. 
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The repair was successful if the Done and Go global outputs are Done=Go=1. 

Repair Time Calculation
Memories should not be accessed when repair is in progress. The duration of the repair 
operation is variable and is bounded as follows:
Trepair_min = Tclk * bisrChainLength

Trepair_max = Trepair_min + (readDuration * Tclk* numberFuses)

where:

• Tclk — period of the repair clock, clk

• bisrChainLength — length of BISR chain

• readDuration — number of clock cycles required for the fuse box interface to return a 
fuse value to the BISR controller

• numberFuses — number of fuses allocated for memory repair in the fuse box

Rarely are all fuses used, and the BISR chain length typically is much larger than the number of 
fuses allocated for memory repair. Therefore, the repair time always is much closer to the lower 
bound, Trepair_min. However, the repair time does not actually reach the lower bound because 
even if no memory repair is necessary, a minimum amount of overhead exists because of the 
circuit initialization and the reading of some fuses.

The readDuration factor is nominally 2 if fuse_box_location is set to internal, and 3 if 
fuse_box_location is set to external and align_access_en_with_address is set to on or auto. 
These values always enable a close estimation of the calculated repair time, but depending on 
the fuse box timing characteristics and the fuse box interface design, the calculated repair time 
may be slightly below the upper bound. Specifying more than 2 (or 3) clock cycles might be 
necessary to read fuses from the fuse box, especially at higher frequencies. However, a row of 
fuses is read during a single access and the result is stored at the fuse box output. Because the 
BISR controller requests only one fuse value at a time, the fuse box interface can return the 
values quickly if they are already available at the fuse box output and only initiate a slower fuse 
box access when necessary. 

For example, if a fuse box that contains 1024 fuses reads 32 fuses at a time, a fuse box access is 
only performed for about 3% of the BISR controller requests:

((32 access requests)/ 1024 total fuses) * 100 = 3.13%
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If a fuse box access takes 10 clock cycles, this means that the effective readDuration factor is 
2.25 instead of 2, as derived below:

32 fuse box accesses total, each yields 32 fuse values

clock cycle breakdown for each fuse box access:
    Fuse 1:     10 clock cycles
    Fuse 2-31:  2 clock cycles each, for readDuration = 2

    Total:      72 clock cycles per 32 fuse values

Effective readDuration = (32*72 cycles)/1024 fuses = 2.25 cycles/fuse

However, the error on the upper bound of the repair time is only a few percentage points 
because the repair time is dominated by the time required to load the BISR chain.

For circuits with more than one power domain group, the bisrChainLength term of the equations 
shown previously is the sum of all BISR chain lengths of the groups that are scheduled for 
repair as indicated by the PwrDomGrpEn input bus.

Time Out Condition

The integrity of the BISR chain is verified and its length is calculated each time a power domain 
is powered up. This occurs by asynchronously resetting the BISR chain and inserting a leading 
1 in front of the repair data loaded in the BISR chain. The BISR controller counts the number of 
clock cycles until the leading 1 appears at the output of the chain or until a maximum count is 
reached. In both cases, the Done output goes high. However, the Go output is high in the first 
case and low in the second case, indicating that the BISR chain is defective. 

The maximum count is set, by default, to 4 times the longest calculated BISR chain length. This 
large maximum count is to accommodate arbitrarily large changes (ECOs) in the BISR chain 
configuration that could be made after generating the BISR controller. The BISR controller 
automatically adapts to the new configuration without having to regenerate the BISR controller. 
The maximum count can be modified using the DftSpecification max_bisr_chain_length 
property. The same maximum count is used for all power domain groups. 

Combining Functional Mode with Manufacturing Tests
It is possible to combine the functional mode of operation with other modes used for 
manufacturing. This method enables using the automated verification infrastructure to verify 
that the functional inputs to the BISR controller are controlled correctly from the system logic. 
However, this method does not verify how the system logic behaves in response to the various 
BISR controller outputs.

This method consists of using a ProcedureStep wrapper in a patterns set to describe a user-
defined input sequence to the BISR controller. Typically, a user-defined sequence calls an SVF 
file or an iProc to modify pin settings, combined with iRunLoop or ProcedureStep tester_cycles, 
tck_cycles or wait_time properties. A user-defined sequence exercising the functional power-up 
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mode of operation of the BISR controller can replace the test step exercising the power-up 
emulation mode in the post-repair PatternsSpecification. The power-up emulation mode test 
step is generated by default and is identified by the properties shown below, and is used within 
the post-repair test pattern example shown in Figure 5-43:

MemoryBisr {
  run_mode : autonomous; 
  Controller(chip_rtl_tessent_mbisr_controller_inst) {
    AutonomousOptions {
      operation : power_up_emulation;
    }
  }
}  

An example iProc named custom_init_bisr_chains is shown in Figure 5-34 that can be used as a 
template when the functional reset pin “bisr_rstn” is a primary input of the device, and the 
primary input is listed as a DataInPort in the ICL. The code highlighted in green represents a 
user-defined functional power-up sequence that is created. The sequence shown sets the resetN 
port on the BISR controllers to 0 and transitions it to 1, that starts the BISR controller and 
serially loads the BISR chain with repair data contained in the fuse box.

This iProc can then be sourced from a ProcedureStep to initialize the BISR chains, as shown in 
Figure 5-35. Note that the iProc requires the ICL instance name of the BISR controller as its 
argument. After the BISR chain is initialized from the “bisr_rstn” functional input, the post-
repair memory BIST can then be performed on the repaired memory.
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Figure 5-34. BISR Controlled From Functional Inputs

iTopProc custom_init_bisr_chains {
  {bisr_controller_instance {}}
  {initial_ireset 0}
} {

  # This argument selects one or all BISR controllers in the design.
  # The default is to trigger all BISR controllers.
  if { $bisr_controller_instance ne "" } {
    set bisr_ctl_inst_c [get_icl_instances $bisr_controller_instance]
  } else {
    set bisr_ctl_inst_c [get_icl_instances -filter \
      {tessent_instrument_type==mentor::memory_bisr && \
      tessent_instrument_subtype==controller} -silent]
  }

  # This argument selects whether to reset the ICL network at the
  # beginning of the pattern. The default is to exclude the reset.
  if { $initial_ireset } {
    iNote "Resetting the IJTAG network state."
    iReset
  }

  #
  # Insert the sequence to start the BISR controller here.
  # This sequence must set the BISR controller resetN port to 0,
  # then to 1.
  #
  # In this example, all BISR controllers are connected to a
  # common primary input port.
  # 
  set func_reset bisr_rstn

  iNote "Asserting functional reset signal $func_reset to 0"
  iForcePort $func_reset 0b0;
  iApply;

  iNote "Asserting functional reset signal $func_reset to 1"
  iForcePort $func_reset 0b1;
  iApply;

  #
  # Determine the BISR chain length for each BISR controller.
  # Wait for the controller(s) to download the repair values
  # from the fuse box into the BISR chains.
  # 
  foreach_in_collection ctl_inst $bisr_ctl_inst_c {
    set ctl_inst_name [get_single_name $ctl_inst]
    set ctl_mod_name [get_attribute_value_list \
      -name module_name $ctl_inst]

    iClock ${ctl_inst_name}.clk
    set controller_period_ns [get_iclock_option \
      [get_icl_pins clk -of_inst $ctl_inst] -period -in ns]

    set memory_repair_info_dict [write_memory_repair_dictionary \
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      -fuse_box_controller_icl_instance $ctl_inst_name -return_dict]
    dict with memory_repair_info_dict {
      set fuse_box_init_cycles \
        [expr {ceil(1.0*$fuse_box_init_duration / $controller_period_ns)}]
      set fuse_box_read_cycles \
        [expr {ceil(1.0*$fuse_box_read_duration / $controller_period_ns)}]
      set pdg_num [dict size $pdg_length]
      set bisr_chain_length \
        [expr [join [dict values $pdg_length] +] + $pdg_num]
      set run_length [expr {1.0*($fuse_box_size * $fuse_box_read_cycles \
        + $fuse_box_init_cycles + $bisr_chain_length \
        + ($pdg_num * $zero_counter_bits) + ($pdg_num * 3)) }]
    }

   iNote "Initializing BISR chains for BISR controller $ctl_inst_name"
    iRunLoop $run_length -sck ${ctl_inst_name}.clk
  }
}

Figure 5-35. Post-Repair MemoryBIST With BISR Controlled From Functional 
Inputs

  Patterns(MemoryBist_postrepair_P1) {
    ProcedureStep(functional_bisr_load) {
      iCall(custom_init_bisr_chains) {
        iProcArguments {
          bisr_controller_instance : top_tessent_mbisr_controller_inst;
        }
      }
    }
    TestStep(TP3_1_run_time_prog) {
      MemoryBist {
        run_mode: run_time_prog;
        reduced_address_count: off;
        Controller(top_tessent_mbist_controller_inst) {
          DiagnosisOptions {
            compare_go: on;
            compare_go_id: on;
          }
        }
      }
    }
  }

Creating Multiple Load Scan Patterns With 
Repairable Memories

Multiple load scan patterns can be used to generate scan patterns through ROM and RAM 
memories. Before generating multiple load patterns on repairable memories, any repair 
information that was previously generated by the execution of MemoryBist, must be applied to 
the memory repair ports. It is important to load the repair information before each execution of 
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multiple load patterns, since the repair information may be cleared when the test_enable signal 
is de-asserted at the end of the scan patterns.
The required repair information needed to initialize the memory repair ports is automatically 
created when executing process_dft_specification with MemoryBISR present in the design. The 
following file is generated in the Tessent instrument container:

<tsdb_outdir>/<design>_<design_id>_mbisr.instrument/ 
              <design>_<design_id>_tessent_mbisr.pdl

This file contains an iTopProc that must be called as part of the test setup to initialize the BISR 
chains before generating multiple load patterns. Figure 5-36 and Figure 5-37 show examples of 
how this iProc is utilized to initialize the BISR chains, then create and write out the multiple 
load patterns.

Figure 5-36. iProc Usage for Physical Block Level With No BISR Controller

set_context patterns -scan

# Read design
set_current_design blka

import_scan_mode int_mode 

set_static_dft_signal_values memory_bypass_en 0
set instrument_path tsdb_outdir/instruments/blka_rtl_mbisr.instrument
set pdl_file blka_rtl_tessent_mbisr.pdl
source ${instrument_path}/${pdl_file}
set_test_setup_icall init_bisr_chains -non_retargetable

set_current_mode multiple_load -type internal

set_system_mode analysis

add_faults<memory I/O faults>
set_pattern_type -multiple_load on 
create_patterns

write_tsdb_data -replace
write_patterns multiple_load_serial.v -verilog -serial -replace
write_patterns multiple_load_parallel.v -verilog -parallel -replace

Figure 5-37. iProc Usage for Chip Level With BISR Controller Present

set_context patterns -scan_retargeting

# Read design
set_current_design chip

add_core_instances -instance core_inst1/wrapper_i1/blka_i1 \
                   -mode multiple_load
import_clocks
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set instrument_path tsdb_outdir/instruments/chip_rtl_mbisr.instrument
set pdl_file chip_rtl_tessent_mbisr.pdl
source ${instrument_path}/${pdl_file}

set_test_setup_icall init_bisr_chains -front

check_design_rules

read_patterns tsdb_outdir/logic_test_cores/blka_gate.logic_test_core/\
   blka.atpg_mode_multiple_load/blka_multiple_load_stuck.patdb
set_external_capture_options -pll_cycles 5 [lindex [get_timeplate_list] 0]
write_pattern chip_multiple_load_repair_W_blka_i1_parallel.v -parallel \
  -v -replace -param_list {SIM_TOP_NAME TB}
write_pattern chip_multiple_load_repair_W_blka_i1_serial.v -serial -v \
  -replace -param_list {SIM_TOP_NAME TB}

When calling set_test_setup_icall at the chip level, you must specify the “-front” command line 
option to ensure that the memory repair procedure is run at the beginning of the pattern. Not 
doing so results in an error during pattern generation, because in this condition, access to the 
repair logic is blocked because of the scan test signals.

You must provide an ATPG model of the eFuse during pattern generation in order meet the E14 
design rule requirements. If such a model is not available, you can instead provide an input 
constraint on the fuseValue output pin of the eFuse interface module. To do this, create a 
pseudo-port associated with the fuseValue output pin of the fuse box interface instance. Then, 
add a constant 0 input constraint on the “fuseValue” pseudo-port, as shown in the following 
example:

add_primary_inputs chip_rtl_tessent_mbisr_controller_inst/ \
chip_rtl_tessent_mbisr_generic_fusebox_interface_instance/fuseValue \
-pseudo_port_name fuseValue

add_input_constraints -c0 fuseValue

For more details, refer to the add_primary_inputs and add_input_constraints commands.
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Generating Your Manufacturing Test Patterns
Several variations are possible but the only difference is that some of the test patterns can be 
grouped together to form a single test pattern.
Figure 5-38 illustrates an example BISR manufacturing flow. The test patterns are organized in 
four groups— Initialization Test Pattern, Pre-Repair Test Patterns, Repair Test Patterns, Post-
Repair Test Patterns identified with a TP0, TP1, TP2, and TP3 prefix, respectively. 

Figure 5-39 to Figure 5-43 show an example manufacturing configuration file section for each 
group. Test patterns groups are described within the MemoryBisr and MemoryBist wrappers 
within the TestStep wrapper.

Figure 5-38. BISR Manufacturing Flow Example
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Initialization Test Pattern
The Initialization test pattern clears all BISR registers so that the spare resources of repairable 
memories are not used during the execution of the Pre-Repair group of test patterns. This 
pattern also is used to determine the length and verify the integrity of the BISR chain.
The figure below shows an example of an Initialization test pattern. 

Figure 5-39. Initialization Test Pattern Configuration

    TestStep(TP0_PowerUpEmulation) {
      AdvancedOptions {
        network_end_state : reset;
      }
      MemoryBisr {
        run_mode : autonomous;
        Controller(chip_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
            operation : power_up_emulation;
          }
        }
      }
    } 

Pre-Repair Test Patterns
The Pre-Repair group of test patterns tests all memories and determines if any memory cannot 
be repaired either because the memory does not have any spare resources or has an insufficient 
number to repair all failures encountered.

• For controllers testing only memories without spare resources, the GO output of the 
memory BIST controller is compared to “1” (compare_go:on). The GO_ID registers 
also can be inspected for collecting diagnostic information (compare_go_id:on). 

• For controllers testing at least one memory with spare resources, check_repair_status: 
non_repairable is used to determine if any memory is non-repairable. There are several 
possible settings for compare_go and compare_go_id depending on the requirements. 
These are described in detail in Table 5-9. All combinations ultimately result in 
checking that REPAIR_STATUS[1] of all memories is 0. If not, the pattern fails. Note 
that memories without spare resources also have a REPAIR_STATUS register. This 
enables quick identification of failing memories without having to inspect or even scan 
GO_ID_REGs when setting compare_go:on and compare_go_id:off.

• If the design contains memory BIST controllers that were generated with software 
version 7.0-SP03 or Tessent v9.0, the memories without built-in self-repair (BIRA) are 
not tested in the Pre-Repair memory BIST patterns. An extra step is required to verify 
the memories without BIRA for these controllers. We recommend that you run Post-
Repair memory BIST patterns if the design contains any memory BIST controllers that 
were generated with 7.0-SP03 or Tessent v9.0.
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• If the design contains memory BIST controllers that were generated with software 
version 7.0-SP01 or older, the compare_go_id property is turned off by default, and 
memories without BIRA are not tested in the Pre-Repair memory BIST patterns. We 
recommend that you run Post-Repair memory BIST patterns if the design contains any 
memory BIST controllers generated with software version 7.0-SP01 or older.

• When generating the manufacturing patterns in the TSDB directory, Tessent Shell issues 
a warning if it detects that some memories without BIRA are not tested in the Pre-Repair 
memory BIST patterns. If this warning is present, you must run the Post-Repair 
manufacturing pattern to verify the memories without BIRA.

Because many testers can generate only one clock period and its integer multiples at a time, a 
separate Patterns or MemoryBist wrapper is generated by default for each clock group. Each 
wrapper generates a separate test pattern file (for example, WGL file). Typically, each test 
pattern file includes a TAP reset at the beginning of a pattern. However, this is NOT the case for 
Pre-Repair patterns (exclude_initial_ireset_from_patterns: on). The reason is that the state of all 
BIST controllers of all clock groups must be preserved until the Repair group of test patterns is 
completed.

If a failure occurs during any of the test patterns of the Pre-Repair group, the chip is declared 
bad, and the tester can proceed to test another chip. However, if all Pre-Repair test patterns pass, 
the tester can proceed to the Repair group of test patterns.

The figure below shows an example of Pre-Repair test patterns. 
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Figure 5-40. Pre-Repair Test Patterns Example

Patterns(MemoryBist_PreRepair_P1) {
    tester_period : 7.0;
    tck_ratio : 4;
    ClockPeriods {
      clka : tester;
    }
    AdvancedOptions {
      exclude_initial_ireset_from_patterns : on;
    }
    TestStep(TP1_1_PreRepair) {
      AdvancedOptions {
        network_end_state : reset;
      }
      MemoryBist {
        run_mode : hw_default;
        reduced_address_count : off;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
          RepairOptions {
            check_repair_status : non_repairable;
          }
          DiagnosisOptions {
            compare_go : on;
          }
        }
      }
    }
  } 

Repair Test Patterns
The Repair group includes the following four test steps:

• The first step (TP2_1_CheckRepairNeeded) checks RepairStatus[0] of all memories 
with spare resources. If different than 0, the pattern fails and repair is needed. Note that 
check_repair_status and split_patterns_file are the only properties allowed in this step. 
(For exceptions, see the “Pre-Repair Test Patterns” section regarding controllers 
generated with software versions 7.0-SP03 and Tessent v9.0.) If a compare failure 
occurs, the tester proceeds with the next step.

• The second step (TP2_2_CaptureBira) of the Repair group transfers the contents of the 
built-in repair analysis (BIRA) registers to the BISR registers. The load_bisr_chain 
autonomous mode of operation performs this step in a single clock cycle and is 
recommended to optimize test time.

• The third programming step of the Repair group (TP2_2_SelfFuseBoxProgram) takes 
the contents of the BISR chain, compresses them, and programs the fuses. The time 
required to perform this step is a function of the write duration time 
(fuse_box_write_duration: time) and the number of fuses available for memory repair 
(number_of_fuses_for_repair: int | auto) that are specified in the PatternsSpecification 
and DftSpecification respectively. For example, if 256 fuses are available, and it takes 
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10us to program each fuse, the test pattern takes approximately 1.3ms to run because, on 
average, only 50% of fuses are assumed to need programming. After this time, the Go 
and Done outputs of the BISR controller are compared to 1, and a miscompare indicates 
a bad chip. Otherwise, the next step is performed. Note that fuse_box_write_duration 
can be overridden in the PatternsSpecification TestStep/MemoryBisr/Controller 
wrapper if the time to program a single fuse needs to be adjusted. 

• The fourth verification step (TP2_3_VerifyFuseBox) reads the fuse box content, 
decompresses it, and applies the decompressed repair information to the input of the 
BISR chain while comparing the input to the output of the BISR chain. (The output still 
contains the repair information calculated by the BIRA circuit.) Note that for memories 
with a serial repair interface, the internal BISR chain is selected as the reference for the 
comparison with the decompressed repair information. The BISR chain contains a copy 
of the repair information after the first step of the Repair group 
(TP2_2_CaptureBiraRotate). Note that this test step does not always generate a separate 
test pattern (TP2.3) as shown in Figure 5-38. Refer to the “Tester Settings 
Considerations” section for more details. 

The figures below show examples of Repair test patterns. 

Figure 5-41. Example Configuration for TP2_1 Repair Test Patterns

  Patterns(MemoryBist_CheckRepairNeeded) {
    ClockPeriods {
      clka : tester;
      clkb : tester;
    }

   AdvancedOptions {
      exclude_initial_ireset_from_patterns : on;
    }
    TestStep(TP2_1_CheckRepairNeeded) {
      AdvancedOptions {
        network_end_state : reset;
      }
      MemoryBist {
        run_mode : check_repair_needed;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        }
        Controller(chip_rtl_tessent_mbist_c2_controller_inst) {
        }
      }
    }
  }
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Figure 5-42. Example Configuration for TP2_2 Repair Test Patterns

    TestStep(TP2_2_CaptureBira) {
      AdvancedOptions {
        split_patterns_file : on;
      }
      MemoryBisr {
        run_mode : autonomous;
        Controller(chip_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
            operation : load_bisr_chain;
          }
        }
      }
    }

    TestStep(TP2_2_SelfFuseBoxProgram) {
      MemoryBisr {
        run_mode : autonomous;
        Controller(chip_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
    // Fuse box programming is disabled by default in manufacturing
    // patterns to avoid accidental fuse programming.
    // Change the operation to 'self_fuse_box_program' to enable
    // fuse box programming.
            operation : self_fuse_box_program;
          }
        }
      }
    }
    TestStep(TP2_3_VerifyFuseBox) {
      AdvancedOptions {
        split_patterns_file : on;
      }
      MemoryBisr {
        run_mode : autonomous;
        Controller(chip_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
            operation : verify_fuse_box;
          }
        }
      }
    }
  } 
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Post-Repair Test Patterns
The Post-Repair group of test patterns is similar to the Pre-Repair group. 
The main difference is that no memory failures are allowed in any of the test patterns, and the 
GO output of all memory BIST controllers is checked (compare_go: on). Another significant 
difference is that each test pattern, one per clock group, is self contained. That is, the chip can be 
powered down between each clock group, and the BISR chain is initialized with the repair 
information programmed in the fuse box. 

The default configuration file specifies the power_up_emulation operation to read the repair 
information. This means that reading of the fuse box is performed using the TAP clock. 
However, you might choose instead to use the power_up_emulation operation using the system 
clock available during power up. A ProcedureStep, which can call an SVF file or an iProc to 
modify pin settings, along with combinations of ProcedureStep tester_cycles, tck_cycles, or 
wait_time properties can be added to your configuration file to that effect as explained in the 
“Functional Mode Verification” section.

Test Time Reduction Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Test Time Reduction Options
You only include controllers testing memories with repair in the test program. For memories 
using multiple power domain groups, you only load the necessary BISR chains for each clock 
group.
The figure below shows an example of Post-Repair test patterns. 
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Figure 5-43. Example Configuration for Post-Repair Test Patterns

  Patterns(MemoryBist_P1) {
    tester_period : 7.0;
    tck_ratio : 4;
    ClockPeriods {
      clka : tester;
    }
    TestStep(load_bisr) {
      MemoryBisr {
        run_mode : autonomous;
        Controller(chip_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
            operation : power_up_emulation;
          }
        }
      }
    }
    TestStep(TP3_1_run_time_prog) {
      MemoryBist {
        run_mode : run_time_prog;
        reduced_address_count : off;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
            compare_go_id : on;
          }
        }
      }
    }
  } 

Tester Settings Considerations
This topic outlines important points that should be reviewed for proper tester configuration and 
execution of repair patterns.
During execution of Pre-Repair Test Patterns and Repair Test Patterns, the circuit under test 
must remain powered up without interruption. The state of input pins also should remain 
constant between test patterns. The state of the BIRA and BISR registers must be preserved 
from one test pattern to the next.

The Post-Repair Test Patterns generated for each clock group are independent, and the circuit 
under test can be powered down between test patterns. The state of the BISR registers is 
restored at the beginning of each test pattern.

During execution of Repair test patterns, it might be necessary to drive the programming 
voltage pin of the fuse box from a dedicated power supply. This is the case for fuses requiring 
programming currents exceeding the drive capacity of tester data channels (20mA is typical). 
The TestStep of the PatternsSpecification where it is necessary to change the settings of the 
dedicated power supply contain an optional property, force_voltage(pin_name):value, that 
causes splitting of the test patterns as shown in Figure 5-38. The TP2.2 test pattern including 
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test steps TP2_2_CaptureBira and TP2_2_SelfFuseBoxProgram is performed with the 
dedicated power supply set at the voltage required to program the fuse box, whereas 
TP2_1_CheckRepairNeeded and TP2_3_VerifyFuseBoxTP2.3 are run with the voltage set to 
allow reading the fuse box. The test pattern file (for example, WGL) contains a comment 
indicating that the settings of the power supply need to be changed.

The first step of the Repair group (TP2_1_CheckRepairNeeded) needs to be in a separate test 
pattern so that a simple pass/fail criterion can be used to identify the good chips from the chips 
that require repair. Significant test time can be saved this way in some circumstances. Because 
this test step is the first in the MembistPVerify wrapper, the beginning of the test pattern is 
already defined. However, the end of this test pattern must be identified by a force_voltage 
property as explained in the previous paragraph, or by a split_patterns_file: on property setting 
inserted in the next test step (TP2_2_CaptureBira).

Manufacturing Flow Variations
Several variations of the manufacturing flow are possible to optimize yield and test time.
One variation of the flow illustrated in Figure 5-38 is described in the section “Testing Repair 
Solution Before Fuse Programming” that enables testing the repair solution prior to fuse 
programming. The section “Performing Fuse Programming During Any Test Insertion” 
describes another variation that enables performing fuse programming during any test insertion 
(for example, final test), provided that the fuse array has never been programmed before.

Testing Repair Solution Before Fuse Programming
Testing your repair solution before programming the fuses might save some test time for 
circuits using fuses with very long programming times. Referring to Figure 5-44, the variation 
requires inserting the Post-Repair block of patterns (TP3.n) prior to the fuse programming 
pattern (TP2.3). The BISR Power up operation (AutonomousOption/operation: 
power_up_emulation) has been removed from the Post-Repair patterns. Therefore, the circuit 
cannot be powered down during execution of these patterns, and the initial TAP reset must be 
inhibited as for the Pre-Repair block of patterns (TP3.n) (exclude_initial_ireset_from_patterns: 
on) to preserve the BISR chain state. 

If compare failures occur during execution of this new block of patterns, then at least one 
memory is still not functional after repair. The cause is probably bad spare resources, in which 
case the circuit should be discarded. If no compare failures occur, then the repair solution is 
effective and fuse programming can be performed.

TP2.2 is different for memories with a serial or parallel BISR interface. The BIRA to BISR 
transfer for memories with a parallel BISR interface can be performed quickly using the 
load_bisr_chain mode of operation. For memories with a serial BISR interface, it is necessary to 
perform a full BISR chain rotation using the rotate_bisr_chain mode of operation and specifying 
enable_bira_capture : on. 
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Figure 5-44. Flow Variation: Testing Repair Solution Before Fuse Programming

Performing Fuse Programming During Any Test Insertion
The test flows of Figure 5-38 and Figure 5-44 normally are used during the first test insertion 
(that is, wafer test to increase yield). During subsequent test insertions (for example, final test), 
the Post-Repair test patterns (that is, TP3.n) are reapplied, possibly under different test 
conditions to verify the quality of the circuits. Circuits failing at this test insertion are discarded. 
The number of circuits usually is small so that yield is not affected significantly. However, 
repairing circuits during any test insertion is possible (provided the circuits have not been 
repaired previously) by first checking if the fuse box has been programmed previously. 

This is done by reading a number of fuses starting at address 0. The number is determined by 
the largest of the MemoryBisr/Controller/AdvancedOptions/repair_word_size and 
zero_counter_bits, and is usually less than 32. The following shows an example of a TestStep 
wrapper reading the first 32 locations of the fuse box and expecting a value of 0:

TestStep (membisr_CheckBlankFuseBox) {
MemoryBisr {

run_mode: fuse_box_access;
Controller(chip_rtl) {

FuseBoxAccessOptions {
read_address(31:0): 0;
operation : read;

}
}

}
}

If all fuses return a value of 0, then the fuse box was never programmed and the repair flow of 
Figure 5-38 can be performed as shown by the “pass” path in Figure 5-45 below. Otherwise, the 
Post-Repair test pattern is run.
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Figure 5-45. Flow Variation: Performing Fuse Programming During Any Test 
Insertion
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BISR Chain Test and Diagnosis
The default BISR implementation in Tessent Shell MemoryBIST only tests the connections 
necessary to repair memories during the post-repair steps. The following sections describe how 
to perform a complete test of the BISR chains, as well as connections to and from the BIRA 
registers.
In high-reliability systems, you may want to structurally test all connections during 
manufacturing test to maximize the probability of being able to perform an incremental repair in 
the field. Additionally, the BISR chain test can also be used to debug data connection issues 
between the BISR and BIRA registers as well as connection issues related to control signals, 
such as shift enable, reset, clock, and chain selection. 

The main faults targeted by the BISR chain test are highlighted in the figure below by the red 
dots and red lines. The remaining faults of the BIRA registers are covered using ATPG scan 
tests. The location of the faults other than those directly on the shift data path can be easily 
identified.

Figure 5-46. BISR Chain Test Fault Targets

Enabling BISR Chain Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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Enabling BISR Chain Tests
BISR chain tests are automatically generated when creating the PatternsSpecification if the 
default value for the include_repair_chain_test property is set to on. The property can be set 
independently for either manufacturing or signoff patterns as shown below:

DefaultsSpecification(<policy>) {
  PatternsSpecification {
    SignOffOptions {
      simulate_instruments_in_lower_physical_instances : off; 
      MemoryBisr {
        include_repair_chain_test : on;  // Default is off 
      }
    }
    ManufacturingOptions {
      MemoryBisr {
        include_repair_chain_test : on;  // Default is off 
      }
    }
  }
}

These options can also be set prior to issuing the create_patterns_specification command as 
follows:

SETUP>set_defaults_value PatternsSpecification/SignOffOptions/MemoryBisr/
include_repair_chain_test on

SETUP>set_defaults_value PatternsSpecification/ManufacturingOptions/
MemoryBisr/include_repair_chain_test on

SETUP>set_defaults_value PatternsSpecification/SignOffOptions/
simulate_instruments_in_lower_physical_instances off

The simulate_instruments_in_lower_physical_instances property is off by default to reduce the 
time needed to complete signoff simulations. In this configuration, only the BISR registers are 
included in a simplified model of lower-level physical blocks. These BISR registers will capture 
unknown values during some of the BISR chain tests because of the absence of BIRA registers 
in these blocks, however, these unknown values are automatically masked. Therefore, the 
connections between BIRA and BISR registers can be efficiently verified hierarchically during 
signoff. 

Note
Manufacturing patterns are applied to the full design hierarchy and completely test all BISR/
BIRA connections.
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BISR Chain Test Description
Enabling the BISR chain tests, as described in the previous section, creates a new 
Patterns(BiraBisrChainTest) wrapper in the PatternsSpecification when you run 
create_patterns_specification. The sections that follow describe the algorithm that the new 
pattern implements.
The portion of the algorithm described in the first section is common to all memories, whereas 
the portion described in the second section only applies to memories with a serial repair 
interface, or to memories that are part of a shared bus.

BISR Chain Common Test Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Serial Repair and Shared Bus Algorithm Additions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

BISR Chain Common Test Algorithm
The algorithm steps implemented by the BISR chain test Patterns wrapper that is common to all 
memories will be outlined. These steps provide a complete test of the BISR shift path, reset and 
shift enable inputs, as well as the connections to and from the BIRA registers. The connections 
are tested for stuck-at 0/1, as well as for shorts with immediate neighbors using a checkerboard 
test pattern.
Each algorithm step outlined below corresponds to a TestStep wrapper shown in Figure 5-47, 
which shows the first three TestSteps of the corresponding Patterns wrapper implementing the 
BISR chain test.

1. Clear BISR chains

2. Scan out 0s and scan in a checkerboard pattern

3. Perform a BISR to BIRA transfer

4. Clear BISR chains

5. Scan out 0s and scan in an inverse checkerboard pattern

6. Perform a BIRA to BISR transfer

7. Scan out checkerboard and scan in an inverse checkerboard pattern

8. Repeat steps 3 through 7 with inverted data

All steps, except step 3 (Tsb_BisrToBira_chckb), perform operations on the BISR chains, as 
indicated by the presence of the MemoryBisr wrapper. 

Step 3 requires running the BIST controllers that contain BIRA registers to perform the BISR to 
BIRA transfer. In this example PatternsSpecification, there is one controller at the top level and 
two controllers in lower-level blocks. All controllers are specified in step 3 because the 
complete model of the lower-level blocks is used. If the simplified model of the lower-level 
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block was used instead, which is the default, only the controller at the top level would need to be 
specified. In this case, the values scanned out from the lower-level blocks are automatically 
masked for certain portions of the algorithm since the values are unknown. 

A hardware feature is available to facilitate the BISR to BIRA transfer. The transfer can be 
initiated by specifying the apply_algorithm : null property in the AdvancedOptions wrapper of 
the PatternsSpecification. The controller performs the transfer and goes to the Done state 
without running any memory test algorithm. This operation is very fast since it runs in the 
hw_default run mode, which results in a small number of test execution cycles being used. The 
transfer can be performed using functional clocks or TCK, if a mechanism to inject TCK in the 
functional clock tree exists.
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Figure 5-47. Partial Common Algorithm Implementation

PatternsSpecification(blka,rtl,signoff) {
…
  Patterns(BiraBisrChainTest) {
    ClockPeriods {
      clk : tester;
      clk2 : tester;
    }
    SimulationOptions {
      LowerPhysicalBlockInstances {
        core_inst1 : full;
        core_inst2 : full;
      }
    }
    TestStep(T1_ClearBisrChain) {
      MemoryBisr {
        run_mode : autonomous;
        Controller(top_rtl_tessent_mbisr_controller_inst) {
          AutonomousOptions {
            operation : clear_bisr_chain;
          }
        }
      }
    }
    TestStep(T2_r_0_w_chkb) {
      MemoryBisr {
        run_mode : bisr_chain_access;
        Controller(top_rtl_tessent_mbisr_controller_inst) {
          BisrChainAccessOptions {
            default_write_value : checkerboard;
            default_read_value : all_zero;
          }
       }
      }
    }
    TestStep(T3a_BisrToBira_chkb) {
      MemoryBist {
        run_mode : hw_default;
// Controllers perform BISR to BIRA transfer and go to Done state
        Controller(core_inst1.core_rtl_tessent_mbist_c1_controller_inst) {
          AdvancedOptions {
            apply_algorithm : null;
          }
        }
        Controller(core_inst2.core_rtl_tessent_mbist_c1_controller_inst) {
          AdvancedOptions {
            apply_algorithm : null;
          }
        }

Serial Repair and Shared Bus Algorithm Additions
Memories with serial repair interfaces and those in shared bus implementations require 
additional steps to test the select input of the multiplexer that provides selection between the 
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internal and external BISR register, as well as the reset input of each bit of the internal BISR 
registers.
The multiplexer implementation for memories with serial repair interfaces is explained in 
“Built-In Self Repair (BISR)” and shown in Figure 5-2. The multiplexer implementation for 
shared bus memories is explained in “BIRA and BISR Generation for a Memory Cluster 
Module” and shown in Figure 6-13.

The additional algorithm steps outlined below are an extension of the common algorithm steps 
discussed in “BISR Chain Common Test Algorithm”:

9) Clear BISR chains

10) Scan out 0s from internal BISR registers and scan in 1s

11) Scan out 1s from internal BISR registers and scan in 1s

12) Perform a BISR to BIRA transfer

13) Reset all BISR registers

14) Perform a BIRA to BISR transfer

15) Scan out 0s from the internal BISR registers

These steps are similar to those performed in the common algorithm except that the internal 
BISR registers are selected during scan-out operations. The internal BISR registers are selected 
by specifying the BisrChainAccessOptions/select_bisr_registers property to internal in the 
PatternsSpecification for steps 10 and 11, and to internal_only for step 15. The test is arranged 
to load different contents in the external and internal BISR registers to prove the existence of the 
multiplexer selecting between the two.

In step 14, the external BISR registers capture the output of the corresponding BIRA registers. 
The internal BISR registers might hold or shift depending on their implementation for this 
operation. It is assumed that all bits of the internal BISR registers have a reset input so that the 
expected output of step 15 is predictable. This assumption is not true for some memories which 
only have a reset on the repair enable bit of the internal BISR register. The test cannot be 
applied in this case. 

Some BISR chains might be composed of a mixture of memories with parallel and serial repair 
interfaces, or memories that are part of a shared bus. BISR registers of memories with a parallel 
repair interface behave as external BISR registers. Steps 10 and 11 are tolerant of this situation, 
as the values scanned out from the internal or external registers are the same. However, these 
values differ in step 15. To ensure that only the values scanned out from the internal registers 
are compared, the select_bisr_registers property must be set to internal_only. The internal_only 
value scans out BISR registers associated to memories with either a serial or parallel memory 
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repair interface, however only the BISR registers associated to memories with a serial repair 
interface will be compared.

BISR Chain Test Limitations
The following are BISR chain test limitations that have been identified:

• Some memories with a serial repair interface only have a reset on the repair enable bit of 
the internal BISR register. These memories are partially reset and the additional test 
sequences described in “Serial Repair and Shared Bus Algorithm Additions” cannot be 
applied. 

• Custom and pipeline BISR registers that do not have a BIRA counterpart require 
modifications to the pattern described in the “BISR Chain Common Test Algorithm” 
section. You can create custom and pipeline registers using the 
create_custom_bisr_register command, the pipeline keyword in the 
bisr_segment_order_file, or by specifying the BisrElement/Pipeline(before | after) 
wrapper. The pattern modification consists of changing the expect value of these 
registers to 0 in step 7 of the algorithm using the “read_value(range) : 0” property and 
setting in the BisrChainAccessOptions/BisrRegisterAccessOptions wrapper.
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Compression Algorithm and Fuse Box 
Organization

Normally the information in this section is not necessary for implementing BISR but can be 
useful for diagnosing problems.
The compression algorithm that the BISR controller uses relies on the fact that a majority of 
memories do not need repair and that the values stored in the BISR registers are mostly 0’s. 
Therefore, the compressed repair information consists of two types of words stored in the fuse 
box: Zero Count and Repair Data. The first bit of each word, also called Opcode, indicates its 
type. Zero Count words have an Opcode of 0, and Repair Data words have an Opcode of 1. The 
length of each word depends on parameters that are automatically extracted from your circuit. 
The length of Zero Count words is set to 1 + Log2 (MaxChainLength) where MaxChainLength 
is the length of the BISR chain, which can be derived from the write_memory_repair_dictionary 
command. The length of Repair Data words is set to the longest BISR register length, which is 
extracted automatically from the circuit and reported in the MBISR TCD file as shown in the 
example of Figure 5-27 and described in the “Single-Chain Case” section.

In a Repair Data word, the first bit is part of the repair data in addition to being an Opcode. 
Repair Data words do not necessarily align with BISR register boundaries because the 
controller does not know the location of those boundaries. For this reason, a Repair Data word 
can be incomplete when it is the last word in the BISR chain. 

Figure 5-48(a) shows a typical example of repair information contained in the fuse box for a 
circuit requiring a single repair. The words are written to the fuse box from left to right, one bit 
at a time. That is, fuse box address 0 is on the left. The controller assumes that each fuse has its 
own address. For fuse boxes that are word oriented, the fuse box interface translates the fuse 
box address from the controller to a word address that is suitable for the specific fuse box and 
then programs a bit within that word.

The example shown is for a single power domain group. Any combination of Zero Count and 
Repair Data words might be used.

When multiple power domain groups are present, the tool compresses the data of each group as 
described above. In addition, the BISR controller stores group pointers in the fuse box to find 
the repair information specific to groups other than the first group. Figure 5-48(b) shows that 
each pointer requires a number of fuses, denoted as NumberOfAddressBits, equal to the number 
of fuse box address bits. You specify the number of fuse box address bits with the TCD 
FuseBoxInterface/Interface address property. The group pointer is stored MSB to LSB, 
meaning the MSB of the pointer is at the lower address in the fuse box. Figure 5-48(c) shows 
that the BISR controller inserts all pointers at the beginning of the fuse box, starting at address 
0, for the default configuration of a single programming session 
(max_fuse_box_programming_sessions = 1). 
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Figure 5-48. Fuse Box Organization

Note
You can use the CompressBisrChain script, which is provided in the Tessent products 
release, to compress the content of the BISR chain using the compression algorithm and the 

fuse box organization that is specific to your design. For more information about how to use the 
CompressBisrChain script, see the “CompressBisrChain Script Usage” section.

When you use hard incremental repair (max_fuse_box_programming_sessions > 1), additional 
data is stored in the fuse box to indicate how many times the fuse box was programmed and 
where the repair data is located for each programming session. Figure 5-49 shows an example 
for max_fuse_box_programming_sessions = 4. The first four bits are session flags. A session 
flag is set to 1 when repair data is present for the session. The BISR controller stores the session 
flag for the fourth session at address 0 in the fuse box and the first session flag is stored at 
address 3.

The next block of fuses is a test insertion pointer section. Except for the first session, each 
session has one test insertion pointer that is in the fuse box immediately after the session flag 
section. Like the power domain group pointer, the test insertion pointer requires a number of 
fuses equal to the number of fuse box address bits. The fuse box stores the test insertion pointer 
MSB to LSB, meaning the MSB of the pointer is at the lower address in the fuse box.
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The content for each programming session that follows the test insertion pointer section is 
organized the same way as shown in Figure 5-48. Each programming session is self-contained. 
In other words, none of the repair information of previous sessions is reused when using the 
autonomous fuse programming method.

Figure 5-49. Fuse Box Organization (max_fuse_box_programming_sessions > 
1)

CompressBisrChain Script Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
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CompressBisrChain Script Usage
The CompressBisrChain script is primarily used for designs incorporating an eFuse that cannot 
be programmed on-chip using the autonomous run mode of the BISR controller, and must be 
programmed externally. A secondary benefit of using the CompressBisrChain script is that for 
multi-session fuse programming (hard incremental repair), optimization techniques are included 
that reduce the number of fuses when Power Domain Groups (PDGs) with the same BISR chain 
length are present. In this case, additional optimization techniques reuse fuses from previous 
sessions whenever possible. Using the CompressBisrChain script makes the manufacturing 
process slightly more complex in that the repair data must be extracted, processed by the script, 
and re-loaded in the chip for fuse programming. This process is outlined later in this section.
The CompressBisrChain script reduces the number of fuses by copying the pointer to PDG data 
of the previous programming session if no new repair is necessary for a specific PDG. The same 
pointer can be reused for multiple sessions. For the example implementation presented, the first 
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group is defined with the DftSpecification PowerDomainOptions/
power_domain_priority_order property, which presents a limitation. The pointer for that group 
is hardcoded in the BISR controller and cannot be modified. Therefore, the repair information 
for this group is not shared by different sessions. To minimize the impact of this limitation, 
assign the highest priority to the smallest PDG. This lessens the probability that this PDG needs 
to be repaired.

Figure 5-50 compares the FuseBox Access and Autonomous Self Fuse Box Program methods 
for the example shown in Figure 5-49. For Session 1, the two methods give the same result, 
assuming that all PDGs are of different lengths. In Session 2, reusing the repair data of PDG2 is 
possible because no new repair is necessary for that group. Therefore, the pointer for PDG2 is 
copied into Session 2 and points back to the repair information in Session 1. The actual repair 
data is not copied.

The situation is different for PDG1, however. Because of the limitation previously described, 
the repair data must be copied even if the data is identical. A new block of repair data is written 
for PDG3 because additional repairs are necessary. In Session 3, only PDG1 requires new data. 
The pointers for PDG2 and PDG3 are copied. PDG2 points back to Session 1 data, and PDG3 
points back to Session 2 data. 

All pointers to existing data are shown in red in Figure 5-50 and point backwards to the fuse box 
address space. In this example, only three of the four available sessions are used, leaving the 
possibility that fuses can be programmed in the system. Most likely you would use the 
autonomous mode to program the fuses because this is easier than using the 
CompressBisrChain script, but you can use either method. The difference is that the 
autonomous mode does not reuse any of the repair information of previous sessions.

Figure 5-50. Encoding of Repair Information Using CompressBisrChain Script

When using the CompressBisrChain script for the second or subsequent fuse programming 
session (incremental repair), one step must be added to the manufacturing flow that reads the 
existing fuse box content prior to writing the new fuses. This step is shown in Figure 5-52. Once 
repairs are determined to be necessary, the entire fuse box is read, one bit at a time, using the 
fuse_box_access run mode of the BISR controller. To save test time, only the fuse box portion 
reserved to store memory repair information should be read. You can do this by specifying the 
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read_address (range) property in the PatternsSpecification MemoryBisr controller 
FuseBoxAccessOptions wrapper, as shown in the following example where the fuse box has 
1024 fuses but only 512 are reserved for memory repair.

Figure 5-51. Fuse Box Access Read Fuses TestStep

TestStep(membisr_CheckRepairNeeded) {
...

}
TestStep(membisr_ExtractFuseBoxSessionInfo) {

MemoryBisr {
run_mode: fuse_box_access;
Controller(FB_INST1) {

FuseBoxAccessOptions {
operation : read;
// Restrict read to the first 512 locations with 
// compare to "0".
read_address (511:0): 0 ; 

}
}

}
}

The miscompares on TDO indicate where the value 1 is programmed in the fuse box. The script 
uses this information for the following:

• To find the pointer to the last session with repair information.

• To find all PDG pointers if more than one group exists.

• To find the repair information associated with each group.

• To calculate the next available fuse location to write the new repair information.

The new repair solution is then extracted as usual by performing the BIRA-to-BISR transfer and 
rotating the BISR chain while comparing TDO to 0 to find which flip-flops of the BISR chain 
contain the value 1. The script uses this information to compare the new compressed repair data 
for each group and determine if any existing repair data can be reused.
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Figure 5-52. Manufacturing Flow Using CompressBisrChain Script (Incremental 
Repair)
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CompressBisrChain
The CompressBisrChain script, which is provided in the Tessent product release, is used to 
compress the content of the BISR chain using the compression algorithm and fuse box 
organization specific to your design.

Usage
CompressBisrChain -simLog simLog_filename

[-configFile config_filename]
[-outDir outDir_name]
[-outExt outFile_extension]
[-TestStepSuffix suffix]
[-help] 

Description
Designs with repairable memories in which a Tessent BISR controller is implemented, have two 
methods available for performing memory repair. The first method uses the autonomous 
run_mode fuse box programming method. This method performs a BISR chain compression 
and programming of the fuse box on-chip. The second method is done using the TAP access 
mode, specified by the fuse_box_access run_mode property. Fuse box programming using the 
TAP access mode requires some automation that is provided by the CompressBisrChain script.

Programming the fuse box using the TAP access mode requires executing the following steps:

• Extraction of the BISR chain information from a pattern output

• Compression of the BISR chain data

• Programming the fuse box using the TAP access mode

The CompressBisrChain script reads a configuration file that describes the BISR chain settings 
in your design as described in the -configFile switch description. The script also reads a 
simulation log file created from a PatternsSpecification, such as the one described in the 
Examples section.

The script creates four *.pattern_spec files in the current working directory with content ready 
to insert into the PatternsSpecification. These files define individual pattern TestSteps that you 
can use to:

• Program the fuse box

• Read the fuse box data

• Program the BISR chain

• Shift out the BISR chain
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Arguments
• -simLog simLog_filename

A required switch and string pair that specifies the name of the simulation log input file. The 
BISR chain information is extracted from this file.

• -configFile config_filename
An optional switch and string pair that specifies the location of the BISR parameter 
configuration file. The default setting of this option is:
<current_working_directory>/BisrCtrlParams.tcl

The BISR parameter configuration file is created with the write_memory_repair_dictionary 
command after ICL extraction has been performed on the design.

• -outDir outDir_name
An optional switch and string pair that specifies the directory for saving the generated files. 
The default location is the current directory.

• -outExt outFile_extension
An optional switch and string pair that specifies the optional suffix appended to the 
generated file names. The suffix can only contain alpha-numeric characters, plus “-”, “_”, 
and “.” characters. By default, no suffix is appended. The default names of the generated 
files are: BisrChainProgram.pattern_spec, BisrChainRead.pattern_spec, 
FuseBoxProgram.pattern_spec, and FuseBoxRead.pattern_spec.

• -TestStepSuffix suffix
An optional switch and string pair that specifies the suffix appended to the test step names. 
This is used to create unique test step names in the generated output files when running this 
script on designs with incremental repair. By default, no suffix is added.

• -help
An optional switch that displays the usage documentation.

Examples
The following PatternSpecification examples follow the manufacturing flow using the 
CompressBisrChain script as outlined in Figure 5-52. Only a single pre-repair pattern (TP1.1) 
and post-repair pattern (TP2.3) is shown. Subsequent repair sessions include the FuseBox 
Access (Read fuses) flow step, which is shown in Figure 5-51 but not included in this example.
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Patterns(MemoryBist_PowerUp) {
  TestStep(TP0_PowerUp) {
    MemoryBisr {
      run_mode : autonomous;
      Controller(chip_rtl_tessent_mbisr_controller_inst) {
        AutonomousOptions {
          operation : power_up_emulation;
        }
      }
    }
  }
}
Patterns(MemoryBist_PreRepair) {
  tester_period : 7.0;
  tck_ratio  : 4;
  ClockPeriods {
    clka : tester;
  }
  AdvancedOptions {
    exclude_initial_ireset_from_patterns : on;
  }
  TestStep(TP1.1_PreRepair) {
    AdvancedOptions {
      network_end_state : reset;
    }
    MemoryBist {
      run_mode : hw_default;
      reduced_address_count : off;
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        RepairOptions {
          check_repair_status : non_repairable;
        }
        DiagnosisOptions {
          compare_go : on;
        }
      }
    }
  }
}
Patterns(MemoryBist_CheckRepairNeeded) {
  ClockPeriods {
    clka : tester;
  }
  AdvancedOptions {
    exclude_initial_ireset_from_patterns : on;
  }
  TestStep(TP1.3_CheckRepairNeeded) {
    AdvancedOptions {
      network_end_state : reset;
    }
    MemoryBist {
      run_mode : check_repair_needed;
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
     }
    }
  }
}
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Patterns(BisrChainAccess) {
  TestStep(BiraToBisr) {
    MemoryBisr {
      run_mode : bisr_chain_access;
      Controller(chip_rtl_tessent_mbisr_controller_inst) {
        BisrChainAccessOptions {
          enable_rotation : on;
          enable_bira_capture : on;
          select_bisr_registers : external;
          default_read_value : all_zero;
        }
      }
    }
  }
}

In the MemoryBist_PreRepair TestStep (TP1.1), MemoryBIST tests all memories and 
determines if any memory cannot be repaired, in which case the chip is declared as bad. The 
BIRA controller collects failure information and computes repair solutions for repairable 
memories during this process. The MemoryBist_CheckRepairNeeded TestStep (TP1.3) then 
checks the Repair_Status[0] register of all memories for a high level to determine if a repair is 
needed. 

If you need to repair memories, run the BisrChainAccess pattern on the tester. The BiraToBisr 
TestStep loads the computed BIRA repair solution into the BISR registers and rotates the 
registers. The tester compares the TDO output to zero during the rotation and reports the 
mismatches. You must then convert the reported failures into a “simulation.log” file that 
follows the format highlighted in red:

...

# 556000ns: Executing FuseBox Controller blockA_rtl_tessent_mbisr_controller_inst in BISR 

Chain Access Mode

# 556000ns: Enabling BIRA capture

# 559624ns: Mismatch at pin 0 name ijtag_so, Simulated 1, Expected 0

# 559700ns: Previous scan out : pin ijtag_so , ICL register = mem1_bisr_inst.ShiftReg[8]

# 559824ns: Mismatch at pin 0 name ijtag_so, Simulated 1, Expected 0

# 559900ns: Previous scan out : pin ijtag_so , ICL register = mem1_bisr_inst.ShiftReg[10]

...

You run the CompressBisrChain script and specify the “simulation.log” file you created as an 
input to the script, as well as the BISR parameter configuration file with the -configFile switch. 
The script parses the “simulation.log” file, extracts the information highlighted in red and 
generates the four *.pattern_spec output files.

You use the TestStep within the FuseBoxProgram.pattern_spec file, created by the 
CompressBisrChain script, for writing the fuse box in TP2.2 of the manufacturing flow. 
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Example patterns for this step, and the remaining steps in the flow to verify the fuse box 
contents and perform post-repair testing, are as follows:

Patterns(FuseBoxAccess) {
  TestStep(TP2.2_FuseBoxAccess){ // Insert TestStep from the
                                 // CompressBisrChain
                                 // FuseBoxProgram.pattern_spec
                                 // output file.
  }
}
Patterns(BisrAutonomousMode) {
  TestStep(TP2.3_BISRVerify) {
    MemoryBisr {
      run_mode : autonomous;
      Controller(chip_rtl_tessent_mbisr_controller_inst) {
        AutonomousOptions {
          operation : verify_fuse_box;
        }
      }
    }
  }
}

Patterms(MemoryBist_PostRepair) {
  tester_period : 7.0;
  tck_ratio  : 4;
  ClockPeriods {
    clka : tester;
  }
  AdvancedOptions {
    exclude_initial_ireset_from_patterns : on;
  }
  TestStep(TP3.2_PostRepair) {
    MemoryBist {
      run_mode : run_time_prog;
      reduced_address_count : off;
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        RepairOptions {
          check_repair_status : off;
        }
        DiagnosisOptions {
          compare_go : on;
          compare_go_id : on;
        }
      }
    }
  }
}
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Incremental Repair
Incremental repair can be utilized to improve manufacturing yield or avoid costly system repair 
in the field. Incremental repair takes one of two forms: soft or hard. Specifying an option to 
enable soft incremental repair is not necessary as the connections that allow transferring the 
contents of the BISR registers to the BIRA registers are always present and enable incremental 
repair.
Incremental Repair Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
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Incremental Repair Overview
You can use incremental repair to improve manufacturing yield or to avoid costly system repair 
in the field. Incremental repair solutions can be implemented in either a soft form or hard form. 
Hard incremental repair involves programming the fuse box in more than one test insertion (for 
example wafer probe, package test, final test, or system test). By default, hard incremental 
repair is enabled for a single test insertion. Multiple insertions can be enabled by specifying the 
max_fuse_box_programming_sessions property in the DftSpecification/MemoryBisr/
Controller wrapper with a value greater than 1, which is the default value, or by selecting the 
“unlimited” option.

DftSpecification {
  MemoryBisr {
    Controller {
      ...
      max_fuse_box_programming_sessions : <int> ;
      ...
    }
  }
}

When the number of programming sessions is specified with an integer value, the repair 
information is compressed before being stored in the fuse box, as described in the 
“Compression Algorithm and Fuse Box Organization” topic. The number of fuses required to 
store the repair information is proportional to the specified integer value, in that subsequent 
repair insertions are stored in the remaining unused fuse locations. 

When max_fuse_box_programming_sessions is specified as “unlimited”, fuse box compression 
is disabled and the repair solution from the BISR chains is stored uncompressed in the fuse box. 
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In this case, the fuse box organization is different than that shown in Figure 5-49, in that no 
session flags, test insertion pointers, or power domain group pointers are stored. Only the BISR 
register content is stored for each power domain group, including the pipeline register in the 
BISR controller. Subsequent repair solutions, from different power domains for example, can 
be written directly into the fuse box without affecting the repair solution from previous 
insertions. Therefore, the repair solution for each power domain can be individually 
programmed into the fuse box rather than all at once. This method enables an unlimited number 
of self_fuse_box_program autonomous mode programming sessions. The number of fuses 
required for this use must be equal to or greater than the total number of bits in the power 
domain group BISR chain plus one for the pipeline register, across all power domain groups. 
Disabling the fuse box compression hardware is also useful in the rare case where more than 
50% of the repair registers are expected to be used. In this case, the compression algorithm 
becomes inefficient and may result in requiring more fuses than there are bits in the BISR chain.

Soft incremental repair consists of finding a repair solution complementing the solution already 
contained in the fuse box and applying the final solution for as long as the chip is powered up. 
This method can be used for two applications:

• The main application is to repair a chip in a system that was already repaired during 
manufacturing. Post-manufacturing failures are rare but can happen as the memory ages 
or if the chip is operated under conditions that were not tested during manufacturing. A 
special power supply for programming fuses is not required to perform repair. However, 
the disadvantage of not having one is that the repair solution must be recalculated each 
time the system is powered up. 

• The second application is to quantify the amount of additional yield, if any, that could be 
gained at manufacturing time with hard incremental repair.

Figure 5-53 illustrates the flow for soft incremental repair, which is the same for both 
applications. To simplify Figure 5-53, TP1 and TP3 are not broken down by clock groups. This 
is also more representative of system applications where all clocks typically are available so that 
a single pattern can be used for the pre-repair and post-repair patterns. 

TP2.2 is different for memories with a serial or parallel BISR interface. The BIRA to BISR 
transfer for memories with a parallel BISR interface can be performed quickly using 
load_bisr_chain mode of operation. For memories with a serial BISR interface, it is necessary to 
perform a full BISR chain rotation using the rotate_bisr_chain mode of operation and specifying 
enable_bira_capture : on. 
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Figure 5-53. Soft Incremental Repair Flow

The remainder of this section explains how to implement incremental repair. Although soft 
incremental repair is explained first, most aspects are applicable to hard incremental repair as 
well. For information pertaining to hard incremental repair only, refer to the “Considerations 
Specific to Hard Incremental Repair” section.

BIRA Initialization
After execution of the PowerUp or PowerUpEmulation autonomous operations, the BISR chain 
is loaded with the current repair solution contained in the fuse box. If the chip has never been 
repaired, the BISR chain contains only 0s. 
When memory BIST is performed and BIRA enabled, the BIRA fuse registers are loaded with 
the content of the corresponding BISR registers. 

Figure 5-54 shows a high-level view of the interface between the BISR and BIRA registers. The 
connections and register enabling incremental repair are shown in red. The register PastRepair, 
indicates the spare was allocated in a previous test insertion.
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Figure 5-54. BISR-to-BIRA Transfer Connection

The mux at the input of the BIRA registers holding the repair enable and repair address enables 
loading the initial repair enable and repair address from the corresponding BISR register instead 
of clearing the registers. The BISR-to-BIRA transfer occurs by default. If necessary, you can 
disable the transfer by specifying the preserve_fuse_register_values in the 
PatternsSpecification/Patterns/TestStep/MemoryBist/DiagnosisOptions wrapper.

The PastRepair register is used to check whether an error that appears to be covered by a spare 
resource is actually in the spare itself. If this is the case, the memory must be declared as 
unrepairable. Otherwise, all errors appear to be covered and not need new repairs, and the 
MemoryBIST post-repair pattern is not performed. Faulty spares would escape under these 
conditions. When multiple spares can cover the same address segment (row or column), 
replacing the bad spare with a known good one might be possible, but spare replacement is not 
supported by Tessent Shell MemoryBIST. The circuit shown on Figure 5-54 is applicable to 
memories having a repair enable input. A slightly different circuit is used for memories that do 
not have such an input. Tessent Shell MemoryBIST automatically selects and generates the 
appropriate circuit for each memory with spare resources.

One consequence of the BISR-to-BIRA transfer capability is the additional number of wires 
between the two registers. The two registers should stay as close as possible to minimize wire 
congestion.
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BIRA Repair Status Bits Checking
In the normal manufacturing flow, the BISR chain is rotated, and TDO is compared to 0 to 
detect whether the chip needs repair with a simple pattern that does not require extracting the 
repair status of individual memories. However, this mechanism does not work when using 
incremental repair because the BISR chain may contain 1’s because of a repair in previous test 
insertions.
Figure 5-55 shows the implementation of the mechanism used to observe both 
REPAIR_STATUS bits of each memory through the controller GO output connected to the 
BAP. This solution only requires one additional global signal to select between the two status 
bits and eliminates the need to scan the controller setup chains to determine the “Non-
Repairable” condition and the “Repair Needed” condition. This mechanism also can be used in 
the normal manufacturing flow to optimize test time.

Figure 5-55. Detection of Repair Needed Condition

Figure 5-55 shows the hardware enabling this mechanism, including the control signal 
CheckRepairNeeded. The example shows two controllers. Each controller has two memories 
with spare resources and one memory without. All memories have a repair status register, 
although the memory without spare resources only has the equivalent of REPAIR_STATUS[1], 
which indicates a non-repairable status as shown in Table 5-7. This register is set as soon as an 
error is found for this memory that forces the GO output of the controller to go low. For 
memories with spare resources, REPAIR_STATUS[1] is set if the errors found cause the 
memory to be non-repairable. In both cases, the chip is bad. Note that the path from 
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REPAIR_STATUS[0] to the controller output is combinational as the GO register may not be 
clocked at the time the check is performed.

The interpretation of the GO output throughout the BISR manufacturing flow repair stages 
shown in Figure 5-38, are summarized in Table 5-8 below.

Table 5-9 shows the actions performed for all combinations of compare_go, compare_go_id, 
compare_memory_go, check_repair_status, and extract_repair_fuse_map. The most efficient 
combination of options is: compare_go: On, compare_go_id: Off, check_repair_status: 
non_repairable. In this case, the setup chain of the controller is not accessed (Action A2 in 
Table 5-10) to inspect the repair status registers of all memories. This is not necessary because 
comparing the GO signal to 1 is sufficient to determine whether the memory is repairable.

Some combinations involving Action A3 might be problematic and are identified with a “*” in 
the table. Warnings are reported when scanning out GO_ID registers for which the feedback 
path has been disabled. This is the case for the GO_ID registers part of the shared or local 
comparators that are used to test memories with spare resources. The value contained in those 
registers is not meaningful and always matches the expected value “0”. 

Table 5-7. REPAIR_STATUS Register Decodes 
Bit1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable

Table 5-8. GO Output Interpretation by Repair Stage 
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Notes:

1. No Diagnosis

2. Memory level diagnosis resolution

3. IO level diagnosis (local comparators only)

4. Yellow highlight table cells: recommended settings for MBIST pre-repair

5. Green highlight table cells: recommended settings for MBIST post-repair

Table 5-9. Action Table for GO_ID 
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Off On non_repairable

Off Off Off Off A1 A200 A20X

Off Off On Off A3 A3* + A200 A3* + A20X

Off On Off Off A20X A200 A20X

Off On On Off A3+A20X A3*+A200 A3*+A20X

On Off Off Off A4 (1,5) A4 + A200 A4 (1,4)

On Off On Off A4+A3 (3,5) A4+A3*+A200 A4+A3*+A20X

On On Off Off A4+A20X (2,5) A4+A200 A4+A20X
(2,4)

On On On Off A4+A3+A20X (2,3,5) A4+A3*+A200 A4+A3*+A20X

Off X Off On A5 A5 A5
Off X On On A3*+A5 A3*+A5 A3*+A5
On X Off On A4+A5 A4+A5 A4+A5
On X On On A4+A3*+A5 A4+A3*+A5 A4+A3*+A5
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GO_ID Register Behavior
When the MemoryBist controller is performing a Go/NoGo test, the content of the GO_ID 
register accumulates the content of the comparators on each strobe. Upon completion of the 
algorithm, the content of the GO_ID register contains a ‘1’ for each comparator that detected a 
failure at any time during the algorithm. This cumulative behavior of the GO_ID register is 
referred to as “sticky”.

When the redundancy analysis (BIRA) mode is enabled (setting RepairOptions/
check_repair_status to “on” or “non_repairable”enables BIRA mode), the behavior of the 
GO_ID registers depends on the type of repair used and the location of the comparators, as 
shown in Table 5-11. The GO_ID registers are sticky during BIRA execution for memories 
using local comparators and IO repair, as well as for non-repairable memories using local 
comparators. For all other memories, the content of the GO_ID registers only reflect the result 
of the last compare of a controller run. When using shared comparators, this corresponds to the 
last strobe value from the last run BIST controller step. For local comparators with a repairable 
memory, this corresponds to the last strobe value for the current memory.

The tool issues a warning is when check_repair_status is enabled (‘on’ or ‘non_repairable’) and 
the MemoryBist controller has memories with non-sticky GO_ID registers. The state of the 
sticky GO_ID registers can be collected in the same controller run used for MBIST pre-repair. 
However, the disadvantage is that the simple flow shown in Figure 5-38 can’t be implemented. 
A full controller setup is required and the tester must interpret the meaning of the data scanned 
out instead of using a simple pass/fail criterion for deciding the next step. 

The tables below illustrate the behavior of the GO_ID registers in various modes.

Table 5-10. Action Descriptions 
Action Description
A1 Rule check: At least one comparison must be enabled.
A2<S1S0> Scan-out SHORT_SETUP; Compare REPAIR_STATUS[1:0] against <S1S0>

Memories without spares compare their REPAIR_STATUS against 0 (<S1>).
A3

__*
Scan-out SHORT_SETUP; Compare GO_ID_REG[x:0].
Warnings: GO_ID_REGs are not “sticky” (that is, they do not accumulate test 
results) for some configurations and mode of operation. Only the results of the 
last compare are available. Refer to tables below for more information.

A4 Compare GO/DONE on BAP Status register.
A5 Scan-out BIRA_SETUP; Compare REPAIR_STATUS[1:0] and fuse map 

(repairable memories) AND REPAIR_STATUS[1:1] (non-repairable memories).
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Table 5-11. GO_ID Behavior in BIRA Mode 
Comparator Type Memory With Redundancy Memory Without 

RedundancyIO Repair Any Other Repair 
Method

Shared Non-Sticky Non-Sticky Non-Sticky

Local Sticky Non-Sticky Sticky

Table 5-12. GO_ID Behavior in Stop-On-Error Mode 
Comparator Type Memory With Redundancy Memory Without 

Redundancy
Shared Non-Sticky Non-Sticky

Local Non-Sticky Non-Sticky

Table 5-13. GO_ID Behavior in Go/NoGo Mode 
Comparator Type Memory With Redundancy Memory Without 

Redundancy
Shared Sticky Sticky

Local Sticky Sticky

Table 5-14. Legend 
Term Description
Sticky The content of the GO_ID register contains the accumulated values 

from the comparators from all strobes during the MemoryBIST 
execution. The GO_ID registers that contain 1’s indicate that failures 
were detected on the corresponding comparators at any time during the 
algorithm execution.

Non-Sticky The content of the GO_ID register contains the comparator values from 
the last strobe only. The GO_ID registers that contain 1’s indicate the 
exact memory output that failed during the last strobe. This information 
is used for memory diagnosis (ESOE) as well as redundancy analysis 
(BIRA).
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Examples
The following is an example configuration file section that corresponds to the flow shown in 
Figure 5-53 for the Pre-Repair pattern TP1:

PatternsSpecification {
  Patterns(PreRepairFlow){

TestStep (0) {
...

}
    TestStep (MbistPreRepair) {
      MemoryBist {
        Controller (<MemoryBist ICL Instance Name>) {
          RepairOptions {
            check_repair_status: non_repairable;
          }
          DiagnosisOptions {
            compare_go: on;
            compare_go_id: off;
          }
        }
      }
    }

TestStep (1) {
...

}
  }
}

The “Repair needed” condition is detected using a dedicated pattern, TP2, that consists of 
sampling the GO signal of all controllers. All WTAPs and TAPs are scanned twice, once to set 
the CheckRepairNeeded signal and once to sample the GO signals. A mis-compare indicates 
that the chip requires repair; otherwise, the chip is good. In all cases, the decisions are made 
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using a simple pass/fail criterion. The “Repair needed” condition is checked using the following 
wrapper properties:

PatternsSpecification {
  Patterns(RepairFlow){

TestStep (0) {
...

}
    TestStep (CheckRepairNeeded) {
      AdvancedOptions {
        split_patterns_file : on;
      }
      MemoryBist {
        run_mode : check_repair_needed;

// Only controllers inside this TestStep have their
// repair status bit checked. All others are ignored.
Controller(<MemoryBist ICL Instance Name>) {// Repeatable
}

      // No other properties can be specified
      }
    }

TestStep (1) {
...

}
  }
}

Absence of Fuse Programming Step
Once it is determined that repair is needed, only the BIRA-to-BISR transfer is performed before 
retesting the chips when using soft incremental repair. No fuse programming steps are 
performed.
Post-repair testing is necessary because newly allocated spares have not yet been tested. Also, 
the spares allocated in a soft incremental repair run have not been tested under all operating 
conditions and might fail because of small voltage and temperature variations over time.

Handling of Blocks Without Incremental Repair 
Capability

Blocks that do not have the incremental repair capability must be handled differently when 
using the incremental repair flow.
The differences are as follows:

• Blocks without incremental repair capability must be in a different Power Domain 
Group (PDG). PDG’s can actually be sub-divisions of the same power domain. The 
objective is to have separate control of the BISR clock used for blocks with and without 
incremental repair capability.
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• Blocks without incremental repair capability must run in Go/NoGo mode in the TP1 
pattern. They are treated as memories without spare resources. If a failure occurs during 
this execution of test pattern TP1, the chip is declared non-repairable.

• Blocks without incremental repair capability cannot perform the BIRA-to-BISR transfer 
during the execution of the TP2.2 pattern. Otherwise, the repair solution for these blocks 
is lost. This means that the BIRA-to-BISR transfer of the blocks that do support 
incremental repair must be performed one PDG at a time.

Considerations Specific to Hard Incremental Repair
Hard incremental repair is an extension of soft incremental repair.
The differences are as follows:

• Hardware — The hardware necessary to support hard incremental repair is enabled by 
specifying the max_fuse_box_programming_sessions property in the DftSpecification/
MemoryBisr/Controller wrapper with “unlimited”, or a value of 1 (the default value) or 
greater. Only the hardware of the top-level BISR controller is affected. The 
implementation of BISR chains is unchanged. This means that both soft and hard 
incremental repair can be used on existing blocks.

• Fuse box size — The number of fuses required for memory repair increases when using 
hard incremental repair. Refer to the description in the Incremental Repair Overview 
section for details on determining impacts on fuse box size.

• Fuse box organization — The way the repair data is stored in the fuse box is different, 
but the basic compression algorithm is unchanged when an integer value is specified for 
max_fuse_box_programming_sessions. Compression is disabled for hard incremental 
repair when “unlimited” is specified for this property. Refer to the description in the 
Incremental Repair Overview section for additional details.

• Repair flow — The repair flow is essentially the same as the flow without hard 
incremental repair. The main difference is that the flow can be repeated up to the 
number of times allowed with the max_fuse_box_programming_sessions property 
during manufacturing or in the system. Two examples are shown below. The first one is 
for the case where an integer is specified for max_fuse_box_programming_sessions and 
the second one is where the unlimited value is specified.

In the example shown in Figure 5-56, one clock group is tested under two different sets 
of conditions using patterns TP1.1 (LVcc) and TP1.2 (HVcc). During execution of 
TP1.1, the BIRA circuit is initialized with the values loaded in the BISR chain by pattern 
TP0; the PatternsSpecification/Patterns/TestStep/MemoryBist/DiagnosisOptions/
preserve_fuse_register_values configuration property is set to Off to calculate a new 
repair solution, taking into consideration the repair solution already programmed in the 
fuse box. However, preserve_fuse_register_values is set to On when executing TP1.2 to 
accumulate the BIRA results. For both TP1.1 and TP1.2, the Go output of all Tessent 
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MemoryBIST controllers is checked to determine if any non-repairable memory exists. 
Once all memories have been tested, pattern TP1.3 is run to determine if any memory 
needs repair. Again, the Go output of all Tessent MemoryBIST controllers is checked to 
determine whether the fuse programming should be performed using pattern TP2.2. For 
the fuse programming, verification, and post-repair steps, the rest of the flow is identical 
to the flow described in “Top-Level Verification and Pattern Generation”. The 
assumption is that the chip is not powered down at any point during the entire process.

Figure 5-56. Hard Incremental Repair Manufacturing Flow Example for 
max_fuse_box_programming_sessions: <integer>

In the example shown in Figure 5-57, an additional step might be required to reset some bits of 
the BISR chains corresponding to the initial repair solution before proceeding with fuse 
programming. This depends on the type of nonvolatile memory used. Most eFuse macros do not 
tolerate reprogramming the same fuses, which is indicated in the eFuse datasheet. If 
reprogramming is not allowed, then the Verify step of TP2.2 is mandatory to avoid 
reprogramming fuses. The Verify autonomous mode of the BISR controller works differently 
when max_fuse_box_programming_sessions is set to unlimited, in that compression is disabled. 
The Verify step performs an XOR, determining the difference between the contents of the BISR 
chains and the decompressed values stored in the fuse box. The result is only the bits that were 
not previously programmed in the eFuse are loaded back into the BISR chains. This prevents 
the double programming of bits in the eFuse and avoids potential fuse box corruption. This step 
is expected to fail when performed before programming but must pass after programming.

BISR chains contain 0s at the end of TP2.4 if programming is successful. When a BISR 
controller supports a limited number of repair sessions, the verify step of TP2.3 loads the BISR 
chains with the correct repair data, decompressed from the fuse box. However when 
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max_repair_sessions is set to unlimited in the DftSpecification, the behavior of the verify step 
of TP2.4 is different. In this case, TP2.4 is broken into two TestSteps that perform the following 
operations:

• BIRA capture with BISR rotation — The BISR chains are loaded with the cumulative 
repair information from the BIRA modules.

• VerifyFuseBox — The cumulative repair data from the fuse box (programmed in TP2.3) 
is XOR’d with the BISR chain content. If the fuse box matches the BISR chain content, 
the resulting BISR chain content will be 0 at the end of the operation. It is therefore 
necessary to perform a PowerUp step before running post-repair MBIST.

Note
Any 1s that remain in the BISR chain after the VerifyFuseBox TestStep of TP2.4 indicate 
the corresponding BISR bit failed to program in the fuse box.

Figure 5-57. Hard Incremental Repair Manufacturing Flow Example for 
max_fuse_box_programming_sessions: unlimited
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Repair Sharing
Repair sharing provides the designer with the capability to reduce the area and power-up time 
increase realized with memory repair implementations, while maintaining the capability of 
performing memory repair. The following section outlines the requirements and steps to 
incorporate the sharing of BIRA and BISR hardware among multiple memories to realize these 
benefits.
Repair Sharing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Repair Sharing Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Implementing Repair Sharing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Creating and Modifying Repair Share Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
BISR Segment Order File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
BISR Instance Location  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Repair Sharing Overview
Implementing Built-in Self Repair (BISR) in designs that contain a large number of memories 
can have a significant impact on area and the time required for power up. Tessent Shell 
MemoryBIST has the capability to share BISR and BIRA hardware among memories and 
reduce these design impacts while maintaining balance with any potential yield impacts.
Repair sharing can be implemented on memories with Row/Word-only, Column/IO-only and 
Row/Column repair types. Memories of different dimensions are allowed to share the same 
BISR/BIRA hardware. The designer also has control over the level of sharing, or grouping of 
memories on a BISR/BIRA circuit to maintain a proper balance between potential yield impact 
and improvements in area and power-up time. Yield may be impacted because a failure detected 
in one memory allocates the same spare element on all memory instances sharing the BISR 
module, and a group might become unrepairable if another failure is found in the same group.

To share the repair logic for multiple memory instances, the BIRA module must be generic to 
all memory instances inside the repair group. A repair group represents a number of segments 
that can be part of a single or multiple memories. Tessent MemoryBIST analyzes the 
RedundancyAnalysis wrapper for all memories inside a repair group. The ColumnSegment and 
RowSegment wrappers from the largest segments are used to create the BIRA module, and 
these can come from two different memory templates. The union of these wrappers results in a 
BIRA module that can accommodate all memory instances inside the repair group.

Repair Sharing Conditions
The conditions described in this section must be met to share repair logic among memories in a 
repair group. Tessent MemoryBIST performs rule checks to ensure the compatibility of all 
memories that are sharing the same BIRA and BISR modules. 
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The following conditions are to be met for memories to share repair logic:

• Memories must use the same repair type

Allowed repair types are Row/word-only, Column/IO-only and Row/Column.

• Only one spare element per repair segment is utilized in memories

When repair sharing is enabled on memories with multiple spare elements per 
RowSegment or ColumnSegment wrapper, only the first spare element is connected to 
the shared BISR register. The additional spare elements are disabled and remain unused. 
For this situation, the following warning displays once for each impacted memory 
instance:

//Warning:/DftSpecification(BLK,rtl)/MemoryBist/Controller(c1)/Step<0>/

MemoryInterface(m1)

// Read from file: BLK_rtl.dft_specification, line number: 26
// This memory interface is assigned to repair group 'RGA'.
// The number of spare elements defined inside the TCD description for this 
// memory is larger than 1. A maximum of 1 spare element will be implemented
// per RowSegment and ColumnSegment wrapper when a memory interface is 
// assigned to a repair group. All other spare elements will be tied off.

The warning shown above can be waived by setting the following environment variable:

SETUP> setenv TESSENT_WAIVE_RS_SPARE_ELEMENT_WARNING 1
SETUP> process_dft_specification

• Memories must use the same spare size

a. Spare row block: The LSB’s of the Fuse register must log the same row address bits.

b. Spare column block: The LSB’s of the Fuse register must log the same column 
address bits.

c. Spare IO: Multiple IOs can use the same repair code. 

• Repair group must meet user specifications

a. Maximum group size: The total number of memory bits that can share a repair 
solution.

b. Repair group scope: Repair sharing should be limited to segments within a physical 
memory, or to memories within a logical memory for Shared Bus applications.

• Memories must have parallel memory repair interfaces

a. The BISR registers are shared by memories that may require a different number and 
arrangement of repair bits. The BISR registers contain allocation, fuse map and fuse 
address bits. The BISR register connections for memories with parallel repair 
interfaces are made directly to the corresponding memory repair bits. However, 
memories with serial repair interfaces would require a specific shifting order of these 
bits such that the shift chain in the BISR register matches the repair register internal 
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to each, possibly unique, memory. Because it is not possible to re-arrange the BISR 
registers to match the needed serial chain, memories with serial repair interfaces are 
not supported.

• Memories must have compatible physical address mappings

The address ports specified as fuses by different memories their respective 
RedundancyAnalysis/RowSegment/FuseSet wrappers must use the same equations in 
their physical address maps. Additionally, the terms and operators must be in the same 
order. 

An example of an incompatible physical address mapping is shown in Figure 5-58 
below. Two memories, Mem1 and Mem2 specify RowAddress[2] as Fuse[1] in their 
respective FuseSet wrapper. The mapping equation for this address bit is shown in their 
PhysicalAddressMap wrapper. The equations are equivalent, but the terms r[2] and r[0] 
are not in the same order. These memories would be placed in different repair groups 
unless the equations are modified. 

Figure 5-58. Incompatible Address Mapping Example

//Example showing incompatible address mapping
//Two memories with spare block of 2 rows
//Mem1: 16 rows/4 columns, Mem2: 8 rows/2 columns

RedundancyAnalysis { //Mem1: 16 rows/4 columns
  RowSegment(ALL) {
    FuseSet {
             Fuse[2]: AddressPort(ADR[5]); //RowAddress[3]
             Fuse[1]: AddressPort(ADR[4]); //RowAddress[2]
             Fuse[0]: AddressPort(ADR[3]); //RowAddress[1]
    }}}
  PhysicalAddressMap { //Mem1: default mappings not shown
    RowAddress[2]:r[0] xor r[2];
  }
.
.
.
RedundancyAnalysis { //Mem2: 8 rows/2 columns
  RowSegment(ALL) {
    FuseSet {
             Fuse[1]: AddressPort(ADR[3]); //RowAddress[2]
             Fuse[0]: AddressPort(ADR[2]); //RowAddress[1]
    }}}
  PhysicalAddressMap { //Mem1: default mappings not shown
    RowAddress[2]:r[2] xor r[0];
  }

• Memories must have compatible segment sizes

This compatibility condition is related to row or column segments for which the size is 
not a power of two. When sharing with other segments of larger sizes, an out-of-range 
repair address might be generated, and some memories may not tolerate this situation. 
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By default, it is assumed that memories do not allow out-of-range repair addresses, and 
more repair groups might be required in this case to accommodate these memories. 
Memories that do not tolerate their spare elements in out-of-range repair addresses 
should either be prevented from using repair sharing or be assigned to a repair group 
with identical memories. The procedure for assigning these memories to a separate 
repair group is as follows:

a. Disable repair sharing for incompatible memories

set_memory_instance_option memory_instances -repair_sharing off

b. Create the DftSpecification

create_dft_specification

c. Edit the DftSpecification to manually assign the memories you want from step(a) to 
a repair group. The repair group is specified with the controller Step/
MemoryInterface/repair_group_name property.

Note
Ensure that only compatible memories are assigned to a repair group. No 
validation is performed to confirm if the memories are compatible.

The following example illustrates the out-of-range repair address situation. Three 
memories, using row repair as outlined in Figure 5-59, have 16, 12 and 8 rows 
respectively. If a defect is found in row 12 to 15 of Mem1, Mem2 receives an out-of-
range repair address if it is in the same repair group as Mem1. Mem3 receives a repair 
address that appears to be in-range and is always compatible with both Mem1 and 
Mem2. If Mem2 tolerates an out-of-range repair address, all three memories can be part 
of the same repair group. If not, two groups are required. Mem2 can be part of its own 
group or it can be grouped with Mem3. The solution selected depends on the memory 
sizes, so that the repair groups are balanced in terms of their total number of bits.
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Figure 5-59. Incompatible Segment Size Example

//Three memories with a spare block of 2 rows
//Mem1: 16 rows/4 columns, Mem2: 8 rows/2 columns

RedundancyAnalysis { //Mem1: 16 rows/4 columns
  RowSegment(ALL) {
    FuseSet {
             Fuse[2]: AddressPort(ADR[5]); //RowAddress[3]
             Fuse[1]: AddressPort(ADR[4]); //RowAddress[2]
             Fuse[0]: AddressPort(ADR[3]); //RowAddress[1]
    }}}
.
.
.
RedundancyAnalysis { //Mem2: 12 rows/4 columns
  RowSegment(ALL) {
    FuseSet {
             Fuse[2]: AddressPort(ADR[5]); //RowAddress[3]
             Fuse[1]: AddressPort(ADR[4]); //RowAddress[2]
             Fuse[0]: AddressPort(ADR[3]); //RowAddress[1]
    }}}
.
.
.
RedundancyAnalysis { //Mem3: 8 rows/4 columns
  RowSegment(ALL) {
    FuseSet {
             Fuse[1]: AddressPort(ADR[4]); //RowAddress[2]
             Fuse[0]: AddressPort(ADR[3]); //RowAddress[1]
    }}}
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Implementing Repair Sharing
Repair sharing is disabled by default for backward compatibility. Once a design is elaborated, 
repair sharing can be enabled for the memory instances you want by following the methods 
outlined in this section.
Creating and Modifying Repair Share Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
BISR Segment Order File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
BISR Instance Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Creating and Modifying Repair Share Groups
Once a design has been elaborated by executing the set_current_design command, the 
memories that are to have repair sharing need to be enabled prior to the generation of the 
DftSpecification. This operation is performed while in the DFT context and the setup system 
mode. After the DftSpecification is created, the groupings can be further modified.
The command set_memory_instance_options is used to set the memory instance option 
-repair_sharing, which is used to control repair sharing for the specified memory instances. 

set_memory_instance_options memory_inst -repair_sharing off | on | (auto)

The memory_inst argument enables wildcards and can be a list or collection of one or more 
memory instances. For Shared Bus applications, the instance name can be the name of a 
memory cluster.

The -repair_sharing option defaults to “auto”, which defers repair sharing control to the global 
DefaultsSpecification RepairOptions/repair_sharing property, as shown in Figure 5-60. Because 
this has the default setting of “off”, repair sharing is disabled by default for all memories. 
Setting the instance option -repair_sharing to “on” or “off” overrides the DefaultsSpecification 
RepairOptions repair_sharing setting for the specified memories and memory clusters.
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Figure 5-60. DefaultsSpecification Repair Sharing Properties

DefaultsSpecification {
  DftSpecification {
    MemoryBist {
      RepairOptions {
        max_repair_group_size :(unlimited) | {int[(kilobits) | megabits]};
        repair_sharing        : on | (off);
      }
      MemoryInterfaceOptions {
        repair_group_scope    : physical_memory | (controller);
      }
      MemoryClusterOptions {
        repair_group_scope    : (controller) | logical_memory
                                | physical_memory ;
      }
    }
  }
}

The example dofile shown in Figure 5-61 shows how repair sharing can be enabled on all 
memory instances in a design. Note that this can also be achieved by setting the 
DefaultsSpecification RepairOptions/repair_sharing property to “on”, which enables repair 
sharing for all memories by default.

Figure 5-61. Repair Sharing on All Memory Instances Example

set_context dft -rtl
read_cell_library my_library.lib
read_verilog my_chip.vb
set_current_design my_chip

#enable memory sharing on all memory instances
set_memory_instance_options [get_memory_instances] -repair_sharing on

set_design_level chip
set_dft_specification_requirements -memory_test on
add clocks clka 12ns

check_design_rules
set my_spec [create_dft_specification]
report_config_data $my_spec

process_dft_specification

The property settings in the DefaultsSpecification, along with those specified with 
set_memory_instance_options, are used by the create_dft_specification command to construct 
repair groups for non shared-bus memories and generate the DftSpecification. Repair groups for 
Shared Bus memories cannot be resolved during create_dft_specification because the expansion 
level (logical or physical) is not known. For memory clusters, the settings in the 
DefaultsSpecification RepairOptions and MemoryClusterOptions wrappers are copied into the 
DftSpecification MemoryCluster wrapper for each cluster. If repair sharing has been enabled 
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for the memory cluster, either through the default setting or with set_memory_instance_options, 
then the repair_sharing property in the MemoryCluster wrapper is set to “on”. The repair groups 
for memory clusters are then generated during process_dft_specification.

After create_dft_specification is run, a DftSpecification similar to the one shown in Figure 5-62 
is created that shows repair group assignments for non shared-bus memories, as well as 
MemoryCluster wrappers for shared-bus memories. The DftSpecification can be modified by 
the user to change repair group assignments for non shared-bus memories. Modifications can 
also be made on memory clusters to enable or disable repair sharing, change 
repair_group_scope settings or change max_repair_group_size settings. After the wanted 
changes are made, process_dft_specification can be run.
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Figure 5-62. Example DftSpecification Properties for Repair Sharing

DftSpecification(top,rtl) {
  MemoryBisr {
  }
  MemoryBist {
    ijtag_host_interface : Sib(mbist);
    Controller(c1) {
      clock_domain_label : clka;
      Step {
        comparator_location : shared_in_controller;
        MemoryInterface(m1) {
          instance_name : core_inst1/blockA_clka_i1/mem1;
          repair_group_name : (none) | <repair group name>;
        }
       ReusedMemoryInterface(m2) {
         reused_interface_id : m1;
          instance_name : core_inst1/blockA_clka_i2/mem1;
          repair_group_name : (none) | <repair group name>;
       }
      }
      Step {
        comparator_location : shared_in_controller;
        MemoryInterface(m2) {
          instance_name : core_inst1/blockA_clka_i1/mem4;
          repair_group_name : bira_g1;
        }
        MemoryInterface(m3) {
          instance_name : core_inst1/blockA_clka_i1/mem5;
          repair_group_name : bira_g2;
        }
        MemoryInterface(m4) {
          instance_name : core_inst2/blockA_clka_i1/mem5;
          repair_group_name : bira_g1;
        }
      }
    }
  }
  Controller(c2) {
    clock_domain_label : clka;
    MemoryCluster(c1) {
        instance_name : cluster_instance;
        repair_sharing : (off) | on;   
        max_repair_group_size : (unlimited) 
                              | int[(kilobits)|megabits];
        repair_group_scope : (controller) | logical_memory
                              | physical_memory;
    }
  }
}
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BISR Segment Order File
There are no modifications to the structure or content of the BISR segment order file when 
using repair sharing. The paths to the physical memories described in the BISR segment order 
file are used to determine the final order of the BISR chain when repair sharing is enabled.
When repair groups are used, the first memory that is part of a repair group defines the location 
of the shared BISR register in the chain. Subsequent memories that belong to that repair group 
do not affect the final BISR chain order.

Figure 5-63 below shows the order of the BISR registers as described in the BISR segment 
order file on the left hand side and the final order when repair sharing is enabled on the right 
hand side. The BISR register of repair group 1 is first in the final chain because M1 the first 
memory of that repair group and its position in the original chain order is before M3, which is 
the first memory of repair group 2.

Figure 5-63. BISR Chain Ordering With Repair Sharing
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The process_dft_specification command creates an annotated BISR segment order file with a 
“.annotated” suffix in the current directory. The annotated BISR segment order file for the 
circuit on the left in the figure above is shown below:

//-----------------------------------------------------
//  File created by: Tessent Shell
//          Version: 
//       Created on: 
//-----------------------------------------------------

BisrSegmentOrderSpecification {
  PowerDomainGroup(-) {
    // bisr_si --> {OrderedElement ...} --> bisr_so
    OrderedElements {
      mem_m1; // RepairGroup:None BISRLength:18
      mem_m2; // RepairGroup:None BISRLength:18
      mem_m3; // RepairGroup:None BISRLength:18
      mem_m4; // RepairGroup:None BISRLength:18
      mem_m5; // RepairGroup:None BISRLength:18
    }
  }
}

The comment after each OrderedElements entry of “RepairGroup:None” confirms that repair 
sharing is not enabled, and that each memory has its own BISR register 18 bits in length. To 
contrast, the annotated BISR segment order file for the circuit on the right in Figure 5-63 is 
shown below:

//-----------------------------------------------------
//  File created by: Tessent Shell
//          Version: 
//       Created on: 
//-----------------------------------------------------

BisrSegmentOrderSpecification {
  PowerDomainGroup(-) {
    // bisr_si --> {OrderedElement ...} --> bisr_so
    OrderedElements {
      mem_m1; // RepairGroup:c1_RG1 BISRLength:18
      mem_m2; // RepairGroup:c1_RG1
      mem_m4; // RepairGroup:c1_RG1
      mem_m3; // RepairGroup:c1_RG2 BISRLength:18
      mem_m5; // RepairGroup:c1_RG2
    }
  }
}

The “RepairGroup:c<n>_RG<m>” entry in the comment after each OrderedElements entry 
confirms the repair sharing feature is enabled. The c<n> part of the string shows the controller 
that tests the memory and is the same identifier (id) specified in the MemoryBist/Controller(id) 
of the DftSpecification. In the example above, all memories are tested by the “c1” controller. 
The RG<m> part of the string shows the repair group that the memory belongs to, which is 
specified by the repair_group_name property of the DftSpecification.
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When you use repair sharing, only one OrderedElements entry per repair group has a 
BISRLength comment, which shows the length of the BISR register associated with that repair 
group. The file lists all members of a repair group on consecutive lines in the OrderedElements 
wrapper.

If you want to manually reorder the BISR chain, Siemens recommends moving all elements of a 
repair group together. For example, if you want to reverse the BISR chain order shown in the 
repair sharing example above, you will change it as follows:

//-----------------------------------------------------
//  File created by: Tessent Shell
//          Version: 
//       Created on: 
//-----------------------------------------------------

BisrSegmentOrderSpecification {
  PowerDomainGroup(-) {
    // bisr_si --> {OrderedElement ...} --> bisr_so
    OrderedElements {
      mem_m3; // RepairGroup:c1_RG2 BISRLength:18
      mem_m5; // RepairGroup:c1_RG2
      mem_m1; // RepairGroup:c1_RG1 BISRLength:18
      mem_m2; // RepairGroup:c1_RG1
      mem_m4; // RepairGroup:c1_RG1
    }
  }
}

BISR Instance Location
The BISR registers are inserted at different hierarchical levels in the design depending on the 
composition of the repair groups. For all repair_group_scope settings, the common ancestor or 
parent module of all memory instances inside a repair group is used to determine the BISR 
register instance location. 
In the example shown in Figure 5-64, all the memories use local comparators and have two 
spares that share a common BISR register. For this case, the BISR register location is simply the 
immediate parent of each memory and is the same as the case where there is no repair sharing. 
This is because for repair sharing, all memories must share comparators that are located in the 
controller. 
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Figure 5-64. BISR Register Location With Local Comparators

Note that the same BISR register location result would occur if the comparators and BIRA logic 
were moved to the controller, but repair groups were limited to physical memory boundaries by 
specifying repair_group_scope : physical_memory.

In the example shown in Figure 5-65, M2 and M3 share comparators that are located in the 
controller along with the BIRA logic. The shared BISR register is located in MODB, which is 
the common ancestor of the two memories. For this example, M1 has its own repair group or is 
excluded from repair sharing because of having local comparators.

Figure 5-65. BISR Register Location Example With Two Repair Groups

The example shown in Figure 5-66 shows the case where all memories have comparators 
located in the controller and are part of the same repair group. In this case, the BIRA logic is 
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located in the controller with the comparators and the shared BISR register for all three 
memories is located in the common ancestor module MODA.

Figure 5-66. BISR Register Location Example With One Repair Group
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Fast BISR Loading
Fast BISR loading is a BISR DFT hardware modification that can be implemented to reduce the 
time needed for loading the BISR registers during power-up. The material presented in this 
section describes the architectural modifications created as well as how to implement fast BISR 
loading.
Fast BISR Loading Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Fast BISR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Implementing Fast BISR Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Fuse Box Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
DFT Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Fast BISR Loading Overview
Fast BISR loading is a BISR DFT hardware modification that can be implemented to reduce the 
time needed for loading the BISR registers during power-up. The repair data is not compressed 
for this implementation and is stored directly in the fuse box. The BISR hardware drives the 
repair information from the fuse box directly to the memory parallel repair ports, which enables 
a significant speed improvement when powering up a device or power region. You can only use 
repairable memories with parallel repair interfaces with fast BISR loading implementations. 
Repairable memories with serial repair interfaces are not allowed.
The fuse box must be large enough to store the repair information for the entire chip. It is not 
necessary to further increase the fuse box size if Incremental Repair is used. Because the entire 
fuse box content is driven from fuse box interface ports, a compatible interface defined by the 
eFuse macro must be used. Siemens EDA provides compatible fuse box interfaces for TSMC 
technologies. Others must be provided by the user.

Chips that incorporate large numbers of memories may require implementing Repair Sharing to 
reduce the number of unique memory repair inputs and reduce routing congestion.

Fast BISR Architecture
An overall view of the fast BISR loading architecture is shown in the figure below. In this 
overview, the existing serial BISR interfaces are shown in orange, with one BISR chain for the 
repairable memories within each of the three power domains. When fast BISR loading is 
implemented, each BISR register is directly connected to the read buffer on fuse box interface 
using a parallel bus. Each BISR register is connected to dedicated bits on the parallel repair bus, 
as indicated by the purple paths in the figure.
After implementation, both parallel and serial repair buses are in place, with the parallel bus 
used to quickly load the BISR registers during power-up and the serial interface used for 
Autonomous mode BISR chain rotation operations.
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Figure 5-67. Overall Fast BISR Loading Architecture

When fast BISR loading is enabled in the DftSpecification, multiplexers are added between the 
BISR register and the memory repair inputs as shown in Figure 5-68. These multiplexers enable 
the repair solution contained in the read buffer of the fuse box to be applied in parallel to the 
memory inputs. The parallel load access is enabled by setting the SerialRepairEnable input pin 
to “0”. This input is reset to “0” when the TAP is reset and it is not necessary to control this 
input during the functional power up mode. This input is set to “1” for all other modes, unless 
explicitly set by the user during patterns generation.
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Figure 5-68. Parallel Load Multiplexers

The second set of multiplexers, located between the BIRA module and the BISR register, 
enables repair data to be captured by the BISR register for verification purposes when 
SerialRepairEnable is set to “0”.

During DFT Insertion, the SerialRepairEnable signal is connected to the BISR controller if it is 
present. If the BISR controller is not yet present in the design, this signal is connected to a port 
on the physical block.

The parallel repair inputs connecting through muxes to the memory repair inputs and BISR 
register inputs are connected to the read buffer port on the fuse box interface. The fuse box is 
not compressed when fast BISR loading is implemented and the memory repair information is 
stored directly, which requires a larger fuse box. Each parallel repair input bit is automatically 
connected to its corresponding fuse box bit.

Fast BISR Integration on Lower Level Blocks
When integrating sub_block or physical_block child designs, how BISR is implemented within 
each block must be considered to successfully implement fast BISR loading. The combinations 
listed in Table 5-15 identify both supported and unsupported cases, as well as options available 
to the user for design variations.
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The descriptions for Serial and Parallel memory repair loading types used in Table 5-15 are 
provided in Table 5-16 below.

Table 5-15. Fast BISR Loading Support 
Parent 
Block

Child 
Block

Action

Serial Serial This is the normal usage case. The BISR chains in both the parent and 
child blocks are loaded serially. If needed, any child BISR chains can 
be disabled by connecting the chain inputs to LogicLow and 
removing the chain SI pin from the BISR segment order file.

Parallel
Serial

Serial Unsupported case. The user has three options:
• Support fast BISR by enabling SerialRepairEnable on the child 

block through setting MemoryBisr/
memory_repair_loading_method to “from_read_buffer” and re-
processing DFT insertion.

• Remove fast BISR entirely by disabling the SerialRepairEnable 
property for the parent block in the DftSpecification. This is done 
by setting MemoryBisr/memory_repair_loading_method to 
“serial”.

• Retain fast BISR in the parent block and disable memory repair in 
the child blocks by removing the child BISR chains from the 
BISR segment order file and connecting the SI pin to LogicLow.

Parallel
Serial

Parallel
Serial

This is a supported usage case. If needed, the user has the option to 
disable both the parallel and serial inputs of the child block. 

Serial Parallel
Serial

Unsupported case. The user has two options: 
• Support fast BISR by enabling SerialRepairEnable on the parent 

block through setting MemoryBisr/
memory_repair_loading_method to “from_read_buffer” and re-
processing DFT insertion.

• Remove fast BISR entirely by disabling the parallel port of the 
child block. This is done by forcing the SerialRepairEnable input 
port to a LogicHigh.

Table 5-16. BISR Loading Terminology 
Type Description
Serial All BISR registers in this design level are initialized by shifting the repair 

information from the fuse box controller. The fuse box content is decompressed 
and loaded serially inside the BISR registers. The memory repair ports are driven 
by the BISR register outputs. The memories must wait until the BISR power 
domain group has completed its initialization before functional operations can 
begin.
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Parallel All BISR registers in this design level have a multiplexer that is used to select the 
source of the repair information driven to the memory repair ports. The BISR 
registers have an extra input port that is connected to the fuse box read buffer. 
This input can be selected as the repair information driven to the memory repair 
ports. These registers also support the serial BISR loading method.

Table 5-16. BISR Loading Terminology  (cont.)
Type Description
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Implementing Fast BISR Loading
The following sections describe various implementation details for including fast BISR loading 
in your design.
Fuse Box Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
DFT Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Fuse Box Interface
For Fast BISR loading implementations, the repair data in the fuse box is not compressed and is 
driven directly to the memory repair ports using parallel buses. The number_of_fuses property 
must be large enough to enable storing the repair information for the entire chip, and the entire 
contents of the fuse box must be available on the fuse box interface ports. This requires the fuse 
box interface to have a read buffer that is initialized with the fuse box contents and drives the 
repair values on the fuse box interface ports. 
The Tessent Core Description (TCD) FuseBoxInterface provides the declaration of the fuse box 
size, read buffer output port name and the name of the read_buffer_select input port on the fuse 
box interface, as shown in the example below.

Core(module_name)
  FuseBoxInterface {
    number_of_fuses : 2000 ;
    Interface {
      // inputs
      read_buffer_select : FBSelect ;
      // outputs
      read_buffer_output : FBData[63:0] ;
    }
  }
}

The read_buffer_select and read_buffer_output properties are mandatory if the MemoryBisr/
memory_repair_loading_method parameter is set to “from_read_buffer”, otherwise they are 
optional. If they are specified, the port names and bus range are validated against the design 
module. Furthermore, the bus range for read_buffer_output must be specified.

If you do not have a FuseBoxInterface wrapper associated with a fuse_box_module_interface 
property, or if the connections need to be made to any place other than the ports of the fuse box 
interface module, the ExternalFuseBoxOptions/ConnectionOverrides wrapper can be used to 
specify the read_buffer_select and read_buffer_output connections.
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DFT Insertion
Three properties in the DftSpecification are used to insert fast BISR loading into a design. One 
property is used to enable the insertion and two describe the interface port names.
To enable fast BISR loading, the memory_repair_loading_method property shown below, is set 
to “from_read_buffer”. The default BISR implementation is “serial”, which is described in 
Table 5-16.

DftSpecification(module_name,id) {
  MemoryBisr {
    memory_repair_loading_method : (serial) | from_read_buffer ;
    . . .
    Interface {
      serial_repair_enable : port_naming ; // %s_bisr_serial_repair_enable
      parallel_in          : port_naming ; // %s_bisr_parallel_in
    }
  }
}

The serial_repair_enable and parallel_in properties specify the port names to use for the sub 
block or physical block interface. These ports are only created if the block contains one or more 
memories with parallel repair inputs. The port name specified with serial_repair_enable 
corresponds to SerialRepairEnable and the port name specified with parallel_in corresponds to 
the parallel input bus, as illustrated in Figure 5-68. These two properties are ignored unless 
memory_repair_loading_method is set to from_read_buffer. If they are not specified when fast 
BISR loading is enabled, the port names default to the names specified in the 
DefaultsSpecification wrapper shown below.

DefaultsSpecification {
  DftSpecification {
    MemoryBisr {
      ChainInterface {

serial_repair_enable : port_naming;//%s_bisr_serial_repair_enable
parallel_in          : port_naming;//%s_bisr_parallel_in

}
}

}
}

During DFT insertion with fast BISR loading functionality enabled, the repair data compression 
logic is automatically removed from the BISR controller and the raw uncompressed repair data 
is stored inside the fuse box. A test data register (TDR) is also added in the BISR controller to 
drive the SerialRepairEnable output port. Child blocks are processed as outlined in Table 5-15 
and parallel load multiplexers are added to compatible blocks that contain one or more 
repairable memories with parallel repair inputs.

Tessent MemoryBIST validates the connections bit-by-bit between each memory parallel BISR 
input and the proper bus index of the fuse box read_buffer_output port (when the BISR 
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controller is present at the top level), or the parallel_in ports of the current block-level design, 
during ICL extraction and ICL elaboration. This automated connection verification is 
significantly faster and more reliable than simulation-based verification. The parallel BISR 
inputs of memory instances can be tied off if they are not used for parallel repair. 

Pattern Generation
The properties shown below are available to control fast BISR loading pattern generation for 
both autonomous and bisr_chain_access modes of operation for the BISR controller. 

PatternsSpecification(module_name,id,id) {
  Patterns(pattern_name) {
    TestStep(name) {
      MemoryBisr {
        Controller(name) {
          AutonomousOptions {
            enable_bira_capture : on | (off) ;
            select_read_buffer  : on | off |(auto) ;
          }
          BisrChainAccessOptions {
            enable_bira_capture : on | (off) ;
            select_read_buffer  : on | (off) ;
          }
        }
      }
    }
  }
}

When the select_read_buffer property is set to on, the SerialRepairEnable signal driving the 
multiplexers shown in Figure 5-68 is set to “0”. This enables the module’s parallel inputs, that 
are driven by the fuse box read buffer outputs, to reach the memory repair ports. If the 
enable_bira_capture property is also enabled, the parallel repair inputs are also be captured 
inside the BISR registers at the beginning of the shift cycle and scanned out.

When the select_read_buffer property is set to off, the SerialRepairEnable signal driving the 
multiplexers is set to “1”. This enables the repair values from the BISR register outputs to drive 
the memory repair ports. If the enable_bira_capture property is enabled in this case, the values 
from the BIRA engine are also captured inside the BIRA registers at the beginning of the shift 
cycle. 

Generally, there is no BISR controller or fuse box present when the design level is sub_block or 
physical_block. These are typically inserted at the chip design level. For sub_block and 
physical_block design levels, the parallel repair input ports of the BISR registers are connected 
to a top-level port. When generating patterns for these blocks when select_read_buffer set to on, 
an iProc is needed that provides iForcePort statements on the primary inputs of the block to 
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emulate the read buffer values and avoid unknown values being captured into the BISR 
registers. The iProc shown below provides an example implementation:

iTopProc ReadBuffer{} {
  iForcePort ReadBufferParallelPortName 0
  iApply
}

Note that the BisrChainAccessOptions/default_write_value and BisrRegisterAccessOptions/
write_value properties can only be used to initialize BISR register values with the serial repair 
method.

For pattern generation at the chip level with the fuse box and controller present in the design, 
the fast BISR loading process is initiated by loading the fuse box content into the read buffer. 
The methodology used for the transfer of data from the fuse box to the read buffer is dependent 
on the fuse box interface logic and is not documented here. This step is done manually by the 
end-user and consists of adding extra TestSteps that typically involve activating a 
FuseBoxAccess to initiate the fuse box to read buffer transfer. For further information, refer to 
Figure 5-57 in “Considerations Specific to Hard Incremental Repair”.
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External Repair
External repair gives you the capability of implementing memory repair on memories that do 
not have dedicated repair logic. This feature utilizes an extra memory I/O as the spare element 
and adds the necessary logic in the memory interface to operate it.
The following topics describe the external repair feature and how you implement it into the 
design flow for Tessent Shell MemoryBIST.

External Repair Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Implementing External Repair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Design Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
DFT Insertion for External Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

External Repair Assumptions and Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

External Repair Overview
You typically implement memory repair with memories that contain spare column or row 
elements. These types of memories embed decode and multiplexing logic to access the spare 
elements when needed. You can implement external memory repair in situations where 
memories with embedded repair logic are not available, or complete testing of the repair logic is 
required for reliability reasons.
External repair uses one extra memory I/O as the spare element and adds the necessary logic in 
the memory interface to operate it. For situations where incremental repair is used, you can 
increase design quality and reliability through full testability of the spare I/O and external repair 
logic. You can implement Incremental Repair during the manufacturing process or in high-
reliability systems.

Figure 5-69 shows a memory that implements external repair. The memory has five IOs and 
functionally, only four are used. The fifth I/O is a spare, with its input tied to 0 and the output 
not connected to functional logic.
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Figure 5-69. Memory With External Repair

The BIST interface includes the typical logic to intercept the memory inputs for BIST, as well 
as the logic for observation and control to test logic in the fan-in and fan-out of the memory. 
The tool adds the red-highlighted logic for external repair and includes muxes for shifting the 
inputs and outputs according to the repair address provided by the BISR register (not shown in 
the figure). Also not shown, is the structure of the bit write enable muxes that intercept the bit 
write enable inputs are identical to that used for the data inputs.

The tool implements the repair logic so it can be fully tested using scan ATPG or logic BIST 
when the memory is in bypass mode. Bypass mode is configured when you specify both of the 
following properties as:

• scan_bypass_logic — set or inferred to sync_mux (recommended) or async_mux

• observation_xor_size — set or inferred to auto

The tool only marks the RepairEnable and RepairAddress inputs of the interface as Detected by 
Implication (DI). It is then possible to guarantee that any I/O can be replaced later. This might 
be important if the system performs memory repair. When using memories with embedded 
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repair logic, it is not practical to exhaustively verify the decoder and muxing logic because of 
their limited access.

The repair logic implementation also enables you to apply multiple load or RAM sequential 
patterns on a repaired memory. In that mode, while the memory has the repair solution applied, 
a shift at the inputs to the bypass registers could occur making the values captured by the bypass 
register during ATPG test unpredictable. The input of the bypass register is gated to logic 0 for 
this reason. For the same reason, the output of the bypass register is not observable as some of 
the bits might be shifted before going out of the memory interface and the values captured by 
registers in the memory fan-out would become unpredictable. The most significant bit of the 
memory output also has an unpredictable value when applying multiple load patterns to a 
repaired memory. However, this output only fans out to the MBIST logic, and all memory 
outputs are prevented from being captured when multiple load patterns are applied so that only 
functional paths are exercised.

Repair analysis fully tests the spare I/O at the same time as the rest of the memory, under all 
conditions of voltage and temperature, and incremental repair can reliably use them as needed. 
When using memories with embedded repair logic, extra test steps might be required to test the 
spare I/O. Another advantage is that if repair analysis detects a failure in both the spare and the 
rest of the memory, the analysis immediately declares the memory as non-repairable. This 
eliminates the need for running the post-repair test step, as required when implementing 
embedded repair logic. It is important to note that if only the spare is faulty, the analysis 
declares the memory repairable and programs fuses to indicate that the spare is faulty; however 
the memory is still usable. A subsequent analysis will declare the memory as non-repairable if it 
finds a fault in the rest of the memory.
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Implementing External Repair
This section describes how you implement external memory repair in the Tessent Shell flow. 
There are very few differences from the steps described earlier in this chapter for memories with 
embedded repair logic; therefore you will see only the differences from the normal design flow.
Design Preparation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
DFT Insertion for External Repair  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Design Preparation
The first step is to generate the memories required for the functional design with one additional 
I/O. You then insert the memories in the design as usual, except you tie the MSB of the data 
input to 0 and leave the MSB of the data output open. This method enables the use of the same 
memory module in two different ways, which is with or without external repair. For example, 
you can use a 9-bit memory module as an 8-bit memory with external I/O repair, or a 9-bit 
memory without repair.
The Tessent Core Description (TCD) of a memory using external repair must not include a 
RedundancyAnalysis wrapper, whether you created the TCD manually or automatically 
generated it by using a memory compiler. The presence of this wrapper indicates the memory 
already includes repair logic.

Note
Tessent MemoryBIST does not substitute memories in the design with memories containing 
an additional I/O. It is your responsibility to generate and insert the memories with the 

correct number of I/Os.

You can use the -external_repair_ready, -repairable, -non_repairable, and -type memory_type 
arguments for the get_memory_instances command to find and create a collection of memories 
that are suitable for external repair. 

DFT Insertion for External Repair
When you have completed the design preparation, you next configure the memory instances and 
DftSpecification for memory BIST insertion. This section discusses the portion specific to 
configuring external memory repair.

Prerequisites
• Complete the “Design Preparation” items.



Implementing and Verifying Memory Repair
Implementing External Repair

Tessent™ MemoryBIST User’s Manual, v2022.4 309

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. During the “Adding Constraints Before Design Rule Checking” step of the Tessent 

MemoryBIST insertion flow, you specify the following command to enable external 
repair for the specified memory instances:

set_memory_instance_options mem_inst -generate_external_repair_logic on

MemoryBIST inserts external repair logic for the memory instances specified by the 
mem_inst field. You can specify wildcard entries, which makes it easy to specify a large 
number of memories.

2. Run check_design_rules to transition from setup to analysis mode:

check_design_rules

The bisr_segment_order_file is created and automatically populated with a BISR 
segment for each memory that has the generate_external_repair_logic property specified 
to on. For example:

BisrSegmentOrderSpecification {
  PowerDomainGroup(-) {
    OrderedElements {
      mem_container_inst/mem_inst1;
    }
  }
}

3. Create the DftSpecification

create_dft_specification

MemoryBIST automatically populates the MemoryInterface wrapper of the memories 
you specified for external repair with the “generate_external_repair_logic : on” 
property. For example:

DftSpecification(block1,rtl) {
  MemoryBist {
    Controller(c1) {
      Step {
        MemoryInterface(m1) {
          generate_external_repair_logic : on;
          instance_name : mem_container_inst/mem_inst1;
        }
      }
    }
  }
}

Results
MemoryBIST generates external repair logic for each memory you specified in Step 1. By 
default, both a repair analysis (BIRA) module and a BISR module is generated for each memory 
specified by the generate_external_repair_logic option. However, methods outlined elsewhere 
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in this chapter are available for you to exclude the BIRA module or the BIRA module. This may 
be necessary in custom repair flows. You can exclude the BIRA module by setting the 
Controller/Step/MemoryInterface/repair_analysis_present property to off in the 
DftSpecification. You can exclude the BISR segment by removing the memory from the 
bisr_segment_order_file. 
The sharing of BIRA/BISR logic, as described in “Repair Sharing”, is also supported. However, 
the external repair logic, highlighted as red in Figure 5-69, remains dedicated to each memory 
when you enable sharing. 

External Repair Assumptions and Limitations
The following assumptions and limitations apply when implementing external memory repair. 
Workarounds are suggested where applicable. 

1. Repair is limited to a single IO. For very wide memories (such as those with more than 
64 IOs), this may limit the maximum frequency at which the BIRA module can operate. 
You can use the DftSpecification RepairOptions/enable_multicycle_operation property 
to address this limitation.

2. Memories with an additional IO must be instantiated by the user. Tessent MemoryBIST 
does not insert or substitute memories.

3. Ports with the function GroupWriteEnable must have the same width as the data input 
port.

4. Memories behind a shared bus are not supported. Most applications using a shared bus 
only provide access to the functional inputs and outputs. Most benefits of using external 
repair would be lost, even if the repair logic could be decoupled from the memory 
interface and placed around the physical memories.

5. Memories having scalar ports are not supported.

6. Embedded scan chains present in the design cannot capture the value of data inputs and 
outputs when you apply multiple load patterns. Tessent MemoryBIST does not check 
this since it is implementation specific.

7. Embedded test logic is not supported for memory data ports. Therefore, the TestInput 
and TestOutput properties are not allowed for data ports in the memory TCD.

8. When present, you must tie memory inputs with port function OutputEnable to their 
active value by setting the Step/MemoryInterface/output_enable_control property to 
“always_on” in the DftSpecification.
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Chapter 6
Implementing MemoryBIST With Memory

Shared Bus Interface

This chapter describes the concepts, flow, architecture, and configuration files needed to 
generate, insert, and verify BIST hardware for testing memories that use Shared Bus interfaces. 
A Shared Bus interface provides a common access port to a number of memories. This 
architecture enables scalability when adding memories inside a module and at the same time 
preserves a fixed footprint at the module boundary for memory BIST access. A typical 
application for Shared Bus interfaces would be testing memories that are inside processor core 
modules.
The terms Shared Bus memory cluster or Shared Bus cluster refer to a module that provides 
access to multiple memories using a common Shared Bus interface. The memories accessed 
through the Shared Bus interface are called logical memories. A logical memory is an address 
space that is composed of one or more physical memories. Library files provide descriptions of 
the Shared Bus memory cluster module, shared interface ports and information about the logical 
and physical memories. This chapter describes the steps required to create these library files and 
explains the tool flow that performs the generation, insertion, and verification of embedded test 
hardware.

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
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Limitations
When implementing Tessent MemoryBIST with Shared Bus memory interfaces, the following 
limitations apply:

• Shared Bus interfaces cannot be driven in parallel by the same memory BIST controller, 
even if the Shared Bus interfaces are identical in terms of function. 

• Shared Bus memory cluster modules with logical memories that are accessed 
concurrently through the Shared Bus must meet one of the following criteria:

o logical memory data inputs do not overlap on the data inputs of the cluster module 
interface.

o logical memory data input connections use identical (fully overlap) data inputs of the 
cluster module interface. 

• When the memory access level is logical, PhysicalAddressMap and PhysicalDataMap in 
the physical memory libraries is not supported. The workaround is to manually code this 
information into the logical memory core library files.

• Because the memory BIST circuits reside outside the Shared Bus memory cluster, any 
memory bypass or scan observation logic required for scan test must be integrated 
directly inside the Shared Bus memory cluster.

• For hardware optimization reasons, only shared comparators are supported for Shared 
Bus memory clusters. The comparator circuit is instantiated in the memory BIST 
controller so that it can be shared among logical memories.

• All memories within a Shared Bus memory cluster module must belong to the same 
power domain group.

Applying Memory BIST to a MemoryCluster
The example design shown below is used throughout this chapter to demonstrate the steps 
required to generate, insert, and verify BIST hardware for testing memories via the Shared Bus 
interface. 
The syntax of the MemoryCluster core library file is shown in Figure 6-5.
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Figure 6-1. Example of CHIP With a Shared Bus Memory Cluster Module

The design in Figure 6-1 has one Shared Bus interface named SB1. Four logical memories 
named LM_0 through LM_3 are accessible using the common Shared Bus interface. The logical 
memories represent an address space that is accessible from the external Shared bus interface 
SB1 and may be composed of one or more physical memories, which are represented by the 
blue boxes in Figure 6-1.

Although this example uses a Shared Bus memory cluster module with a single Shared Bus 
interface, a Shared Bus memory cluster module can have more than one Shared Bus interface. 
Each Shared Bus interface provides access to the memory data, control, and clock ports as well 
as other control ports required to address specific memories inside the Shared Bus memory 
cluster module.

The design in Figure 6-1 shows a configuration where all logical memories are located within 
the Shared Bus memory cluster. Depending on the IP implementation, logical memories may be 
instantiated outside the Shared Bus memory cluster at a different design hierarchy.

A single logical memory can be accessed at any time per Shared Bus interface. Each logical 
memory is enabled by specifying its corresponding selection code on the array select port of the 
Shared Bus interface. Once an array access code is specified on the Shared Bus interface, the 
corresponding logical memory can be accessed externally through the clock, data, and control 
ports of the Shared Bus interface.
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In turn, a logical memory may be composed of one or more physical memories. This process of 
selecting and instantiating the physical memories in the design is called physical RAM 
integration. The documentation of your specific IP provides the requirements for the physical 
memories and guidelines for design modifications. After the RAM integration process, the 
Tessent libraries must be adjusted to match the physical memory implementation in the design. 
Refer to the “Library Requirements” section for more information.

The hierarchical nature of the logical and physical memories has several advantages:

• Early verification of the Shared Bus interface can be performed at the logical memory 
level using a behavioral model without physical memories.

• The user can decide on the implementation of the physical memories without affecting 
the overall Shared Bus access. The user can select the RAMs and stacking configuration 
based on their design requirements. The changes are localized within the logical level.

Figure 6-2. Composition of Logical Memory LM_1

Figure 6-2 shows the composition of logical memory LM_1. The logical memory receives and 
drives 8 bits of the data channel on the Shared Bus interface. Two physical memories are 
instantiated in a horizontal stacking configuration. The 4-bit data ports of the physical memories 
combine to form the 8-bit data path of LM_1.

During memory BIST planning phase, one dedicated memory BIST controller is assigned per 
Shared Bus memory cluster module. The memory BIST controller and interface logic are 
instantiated at the same level as the Shared Bus memory cluster module as illustrated in 
Figure 6-3.
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Figure 6-3. Shared Bus Memory Cluster Module After Embedded Test Insertion

If the design contains standard memories, a different memory BIST controller is assigned to test 
these memories. A memory BIST controller that is assigned to a Shared Bus memory cluster 
module cannot be used to test memories outside the Shared Bus memory cluster. Multiple 
Shared Bus memory clusters can be instantiated inside the design.

Shared Bus Support Features
The embedded test hardware generated for Shared Bus interfaces is very similar to the hardware 
generated for standard memories and is fully supported in the hierarchical flow. A memory 
BIST controller and memory interfaces are generated and instantiated as usual. 
Extra modules, such as memory emulation logic and multiplexing logic, also are generated and 
connected between the memory BIST interfaces and the memory cluster module as shown in 
Figure 6-4.
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Figure 6-4. Memory BIST Shared Bus Hardware Overview

The memory emulation logic blocks shown in green correspond to the logical or physical 
memories inside the Shared Bus memory cluster module. One memory emulation logic module 
is generated for each logical or physical memory. The multiplexing logic, also shown in green, 
handles the control and access logic between the Shared Bus interface ports, the memory BIST 
controller, and the memory emulation modules. Together, the memory emulation modules and 
the multiplexing logic provide a virtual access to all the logical or physical memories. This 
enables the memory BIST controller to run the BIST algorithms and perform standard 
operations on all logical or physical memories.

The BIST controller, memory interface modules, memory emulation modules, and multiplexing 
logic are grouped inside a Shared Bus assembly module. Wrapping the BIST logic enables 
cross-boundary area optimization during synthesis and reduces the loose logic in the design 
after synthesis. The benefits of using the wrapper module are improved logic optimization and 
significant area reduction.
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Shared Bus Interface MemoryBIST 
Implementation Flow

This section explains the three required memory library files and provides an overview of the 
various steps in the flow to test memories behind a Shared Bus interface.To a large extent, the 
flow is the same as the implementation for standard memory BIST with variations in terms of 
memory BIST logic implementation and testing.
Library Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Shared Bus Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Design Loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Specify and Verify DFT Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Create DFT Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Process DFT Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Extract ICL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Create Patterns Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Process Patterns Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Run and Check Testbench Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Test Logic Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
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Library Requirements
Three memory library files are required:

• Memory Cluster Tessent Core Description

o Associated with each Shared Bus memory cluster module

o Describes Shared Bus interface pins

o Lists all logical memories contained within the Shared Bus memory cluster module

o Describes pin mappings between logical memories and the Shared Bus interface

• Logical Memory Tessent Core Description

o Associated with each logical memory in the Shared Bus memory cluster module

o Created or modified by the user based on physical memories used

o References library files of individual physical memories making up the logical 
memory

• Physical Memory Tessent Core Description

o Associated with each physical memory

o Used in the standard Tessent MemoryBIST flow

o Does not need modifications if generated by a memory compiler

The Shared Bus memory cluster and logical memory TCD are usually created manually. The 
TCD can be automated if your IP is delivered in an electronic format describing the memory 
organization accessed through the Shared Bus interface.

The MBIST Information File (MBIF) format may be converted into Tessent libraries using the 
memlibGenerate utility. This utility is a standalone executable in the Tessent software 
installation tree.

For more information about the availability of the MBIF format, please contact your IP 
provider.

For more information about the TCD automation, refer to the application note “Creating 
Memory Cluster and Logical Memory Libraries Using memlibGenerate”.

Memory Cluster Tessent Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Logical Memory Tessent Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Physical Memory Tessent Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
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Memory Cluster Tessent Core Description
The TCD syntax for Shared Bus memory cluster modules is shown in the figure below.
Refer to the Core/MemoryCluster TCD description for more information.

Figure 6-5. Memory Cluster TCD Syntax

Core(core_name) { 
  MemoryCluster { 
    Port (portName) { 
      Direction: InOut | (Input) | Output; 
      Function: portFunction;  
      SafeValue: (X) | 0 | 1; 
    }   
    MemoryBistInterface (interfaceName) { // Repeatable 
      Port (port_name) { 
        Direction: InOut | (Input) | Output; 
        Polarity: (ActiveHigh) | ActiveLow; 
        Function: portFunction; 
        LogicalPort: port_id;
      } 
      MemoryGroupAddressDecoding (GroupAddress | Address [x:y]) { 
        Code (binaryValue): logical_memory_id[, logical_memory_id...];
                                             //Property is repeatable 
      } 
      LogicalMemoryToInterfaceMapping (logical_memory_id) { 
        MemoryTemplate: logicalMemoryCoreName; 
        ConfigurationData: binaryValue; 
        PipelineDepth: integer; 
        MemoryInstanceName: instance_path_to_logical_memory;
        PinMappings { 
        // wrapper is repeatable for multi-port logical memories
          TestPortSelect: binary; 
          LogicalMemoryLogicalPort(lm_logical_port_id) :
              InterfaceLogicalPort(cluster_interface_logical_port_id); 
          LogicalMemoryDataInput[indexList]: 
              InterfaceDataInput[indexList]; 
          LogicalMemoryDataOutput[indexList]: 
              InterfaceDataOutput[indexList]; 
          LogicalMemoryAddress[indexList]: 
              InterfaceAddress[indexList];
          LogicalMemoryWriteAddress[indexList]: 
              InterfaceWriteAddress[indexList]; 
          LogicalMemoryReadAddress[indexList]: 
              InterfaceReadAddress[indexList]; 
          LogicalMemoryGroupWriteEnable[indexList]: 
              InterfaceGroupWriteEnable[indexList]; 
        } 
      } 
    }  
  } 
} 
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Note
When you have both 1R1W and 1RW memories on the same Shared Bus memory cluster 
and there are Address and WriteAddress ports functions defined on the cluster 

MemoryBistInterface for driving the address ports of the 1R1W memory, the 1RW memories 
should connect to the address port with function Address and use LogicalMemoryAddress[]: 
InterfaceAddress[] property to define the address port mapping.
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Logical Memory Tessent Core Description
The logical memory library file uses a superset of the memory core library syntax, specifically 
the addition of MemoryGroupAddressDecoding and PhysicalToLogicalMapping wrappers.
The logical memory TCD is an extension of the memory TCD. Figure 6-6 shows the syntax 
applicable to logical memories. Refer to the Core/Memory TCD description for more 
information.

Figure 6-6. Logical Memory TCD Syntax

Core(core_name) { 
Memory { 
  Algorithm: algo_name; 
  Port(port_name) { 
    Direction: InOut | (Input) | Output; 
    Polarity: (ActiveHigh) | ActiveLow; 
    Function: function_type; 
    LogicalPort: lm_logical_port_id;
  } 
  AddressCounter {  
    Function (Address) { 
      LogicalAddressMap { 
        ColumnAddress[x:y]: Address[a:b]; 
        RowAddress[x:y]: Address[a:b]; 
        BankAddress[x:y]: Address[a:b]; 
      } 
    } 
    Function (ColumnAddress | RowAddress | BankAddress) { 
      CountRange [lowRange:highRange]; 
    } 
  } 

  MemoryGroupAddressDecoding (Address [a:b]) { 
    Code (binaryValue): physical_memory_id[, physical_memory_id...]; 
                                            //Property is repeatable 
  } 
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  PhysicalToLogicalMapping(physical_memory_id) { 
    MemoryTemplate: physicalTemplateName; 
    PinMappings { 
    // wrapper is repeatable for multi-port logical memories
      PhysicalMemoryLogicalPort(pm_logical_port_id):
          LogicalMemoryLogicalPort(lm_logical_port_id);
      PhysicalMemoryDataInput[<indexList>]: 
          LogicalMemoryDataInput[<indexList>]; 
      PhysicalMemoryDataOutput[<indexList>]: 
          LogicalMemoryDataOutput[<indexList>]; 
      PhysicalMemoryAddress[<indexList>]:  
          LogicalMemoryAddress[<indexList>]; 
      PhysicalMemoryWriteAddress[<indexList>]:  
          LogicalMemoryWriteAddress[<indexList>]; 
      PhysicalMemoryReadAddress[<indexList>]:  
          LogicalMemoryReadAddress[<indexList>]; 
      PhysicalMemoryGroupWriteEnable[<indexList>]: 
          LogicalMemoryGroupWriteEnable[<indexList>]; 
    } 
  } 
} 
} 

During the RAM integration process, the user is free to implement the logical memory address 
space using any available memory. Once the process is completed, the logical memory TCD 
must be edited to match the implementation.

The TCD modifications include adding the MemoryGroupAddressDecoding wrapper to 
indicate how the physical memories are activated, and PhysicalToLogicalMapping wrappers to 
indicate how the physical memories are connected to the ports of the logical memory.
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Figure 6-7. Example Logical Memory With Four Physical Memories

Figure 6-7 shows logical memory LM_0 implemented with 4 physical memories. The logical 
memory size is 32 words. It receives and drives 8 bits of the data channel on the Shared Bus 
interface.

In the logical memory TCD, the data input, data output, address port and the address 
segmentation are defined as shown below:

Port(D[7:0]) {
    Function: Data;
    Direction: Input;
}
Port(Q[7:0]) {
    Function: Data;
    Direction: Output;
}
Port(A[4:0]) {
    Function: Address;
    Direction: Input;
}
AddressCounter {
    Function(Address) {
        ColumnAddress[0:0] : Address[0:0];
        RowAddress[3:0] :  Address[4:1];
    }
}
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Four identical physical memories are instantiated in a 2 by 2 stacking configuration. The 4-bit 
data ports of the physical memories combine to form the 8-bit data path of LM_0. Logical 
memory address A[4] selects the upper or lower pairs of memories. The remaining address bits 
A[3:0] control the address inputs of the physical memories. Assume that the logical memory 
clock and control signals propagate to all physical memories. When A[4] is 0, memories 
MSB_lower and LSB_lower are enabled. When A[4] is 1, memories MSB_upper and 
LSB_upper are enabled. As a result, MSB_lower and LSB_lower are tested concurrently, 
followed by MSB_upper and LSB_upper.

The MemoryGroupAddressDecoding wrapper indicates the address signal used to activate the 
physical memories and defines the selection codes:

MemoryGroupAddressDecoding(Address[4]) {
    Code(1'b0): MSB_lower, LSB_lower;
    Code(1'b1): MSB_upper, LSB_upper;
}

The PhysicalToLogicalMapping wrapper associates the data, address and group write enable 
ports of the physical memory to the ports of the logical memory. Clock and other control 
signals, such as write and read enables, are assumed to be broadcast to all physical memories. 
The tool implicitly maps the physical memory port to the logical memory port if they are 
defined with the same port function. One wrapper is required per physical memory:

PhysicalToLogicalMapping(MSB_lower) {
    MemoryTemplate: SYNC_1RW_16x4;
    PinMappings {
        PhysicalMemoryDataInput[3:0] : LogicalMemoryDataInput[7:4];
        PhysicalMemoryDataOutput[3:0] : LogicalMemoryDataOutput[7:4];
        PhysicalMemoryAddress[3:0] : LogicalMemoryAddress[3:0];
    }
}

PhysicalToLogicalMapping(LSB_lower) {
    MemoryTemplate: SYNC_1RW_16x4;
    PinMappings {
        PhysicalMemoryDataInput[3:0] : LogicalMemoryDataInput[3:0];
        PhysicalMemoryDataOutput[3:0] : LogicalMemoryDataOutput[3:0];
        PhysicalMemoryAddress[3:0] : LogicalMemoryAddress[3:0];
    }
}

PhysicalToLogicalMapping(MSB_upper) {
    MemoryTemplate: SYNC_1RW_16x4;
    PinMappings {
        PhysicalMemoryDataInput[3:0] : LogicalMemoryDataInput[7:4]
        PhysicalMemoryDataOutput[3:0] : LogicalMemoryDataOutput[7:4];
        PhysicalMemoryAddress[3:0] : LogicalMemoryAddress[3:0];
    }
}
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PhysicalToLogicalMapping(LSB_upper) {
    MemoryTemplate: SYNC_1RW_16x4;
    PinMappings {
        PhysicalMemoryDataInput[3:0] : LogicalMemoryDataInput[3:0];
        PhysicalMemoryDataOutput[3:0] : LogicalMemoryDataOutput[3:0];
        PhysicalMemoryAddress[3:0] : LogicalMemoryAddress[3:0];
    }
}

If the physical memories implement redundancy, then their hierarchical instance path must be 
specified in order for Tessent MemoryBIST to insert the BIRA and BISR circuit. Refer to the 
“Handling MemoryCluster Modules With Repairable Memories” section for more information.

Pseudo-Vertical Stacking of Physical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Pseudo-Vertical Stacking of Physical Memory
The pseudo-vertical stacking configuration is where you implement a W x D physical memory 
to comprise a logical memory interface dimension of (n*W) x (D/n).
The variable W represents the number of physical memory words, D is the physical memory 
data path width, and n is typically a power of two value which corresponds to the number of 
partitions you split the physical memory data path into. The logical memory can contain many 
physical memories using the pseudo-vertical stacking configuration.

Figure 6-8. Pseudo-Vertical Stacking of Physical Memory

Figure 6-9 shows an example logical memory LM_64x8 with a single 32x16 physical memory. 
In this example implementation, the lower data bits serve as the logical memory’s lower bank, 
and the higher data bits serve as the upper bank.
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Figure 6-9. Example Logical Memory With Pseudo-Stacked Physical Memory

The logical memory TCD defines the data input, data output, address port, and the address 
segmentation as shown below:

Port(A[5:0]) {
  Function  : Address;
  Direction : Input;
}
Port(D[7:0]) {
  Function  : Data;
  Direction : Input;
}
Port(Q[7:0]) {
  Function  : Data;
  Direction : Output;
}
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AddressCounter {
    Function(ColumnAddress) {
      LogicalAddressMap {
        ColumnAddress[0] : Address[0];
        ColumnAddress[1] : Address[1];
        ColumnAddress[2] : Address[5];
      }
      CountRange [0:7];
    }
    Function(RowAddress) {
      LogicalAddressMap {
        RowAddress[0] : Address[2];
        RowAddress[1] : Address[3];
        RowAddress[2] : Address[4];
      }
      CountRange [0:7];
    }
  }

Logical memory address A[5] splits the physical memory data path in two parts by selecting the 
upper or lower portion, or bank, of the physical memory data path bits. The remaining logical 
memory address A[4:0] bits control the address inputs of the physical memory.

The MemoryGroupAddressDecoding wrapper indicates the address signal used to activate the 
wanted physical memory data path split and defines the selection code:

  MemoryGroupAddressDecoding (Address[5]) {
     Code(1'b0) : MEM_LSB;
     Code(1'b1) : MEM_MSB;
  }

The PhysicalToLogicalMapping wrapper associates the data, address, and group write enable 
ports of the physical memory to the ports of the logical memory. From the perspective of the 
logical memory TCD, pseudo-vertical stacking of a physical memory is implemented by 
specifying multiple PhysicalToLogicalMapping wrappers, where each references the same 
physical memory instance with the MemoryInstanceName property. The 
PhysicalToLogicalMapping wrappers for the example outlined in this section are shown below. 
Note how the logical memory data input ports are mapped to the physical memory data input 
ports, where each logical memory data bit is broadcast to two physical memory data bits.
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  PhysicalToLogicalMapping(MEM_LSB) {
    MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
    MemoryInstanceName : PM_32x16;
    PinMappings {
      PhysicalMemoryDataInput[7:0]  : LogicalMemoryDataInput[7:0];
      PhysicalMemoryDataOutput[7:0] : LogicalMemoryDataOutput[7:0];
      PhysicalMemoryAddress[4:0]    : LogicalMemoryAddress[4:0];
    }
  }
  PhysicalToLogicalMapping(MEM_MSB) {
    MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
    MemoryInstanceName : PM_32x16;
    PinMappings {
      PhysicalMemoryDataInput[15:8]  : LogicalMemoryDataInput[7:0];
      PhysicalMemoryDataOutput[15:8] : LogicalMemoryDataOutput[7:0];
      PhysicalMemoryAddress[4:0]     : LogicalMemoryAddress[4:0];
    }
  }

If the physical memories implement redundancy, then their hierarchical instance path must be 
specified in order for Tessent MemoryBIST to insert the BIRA and BISR circuit. Refer to the 
“Handling MemoryCluster Modules With Repairable Memories” section for more information.

Requirements and Limitations
Requirements

• If the TCD for a physical memory used for pseudo-vertical stacking contains a 
PhysicalDataMap wrapper, it is required that the mapping between the data input ports 
and the internal data lines in the memory are symmetrical among all parts of the physical 
memory into which the data path is split. The tool will automatically ignore the 
PhysicalDataMap if it is of the style described in the “Use the Physical Data Map 
Correctly” sub-topic of “Optimization Recommendations”. Otherwise, a non-
symmetrical PhysicalDataMap cannot be ignored and the tool will switch to the logical 
access level.

• Any unused bits of the physical memory must be MSBs of each memory partition 
defined in the corresponding PhysicalToLogicalMapping wrapper. Otherwise, the 
physical memory access level is not supported for the logical memory. 

The PhysicalToLogicalMapping wrappers shown below illustrate the proper 
configuration of the example PM_32x16 physical memory in implementing a 64x7 
logical memory. There is a single unused physical memory bit (MSB) in each wrapper.

PhysicalToLogicalMapping(MEM_LSB) {
  MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
  MemoryInstanceName : PM_32x16;
  PinMappings{
    PhysicalMemoryDataInput[6:0] : LogicalMemoryDataInput[6:0];
    PhysicalMemoryDataOutput[6:0]: LogicalMemoryDataOutput[6:0];
    PhysicalMemoryAddress[4:0]   : LogicalMemoryAddress[4:0];
  }
}
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PhysicalToLogicalMapping(MEM_MSB) {
  MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
  MemoryInstanceName : PM_32x16;
    PinMappings {
      PhysicalMemoryDataInput[14:8] : LogicalMemoryDataInput[6:0];
      PhysicalMemoryDataOutput[14:8]: LogicalMemoryDataOutput[6:0];
      PhysicalMemoryAddress[4:0]    : LogicalMemoryAddress[4:0];
    }
 }

An unsupported configuration would be realized if a PhysicalToLogicalMapping 
wrapper was configured to leave an unused physical memory bit in a LSB position, as 
illustrated by the example below:

PhysicalToLogicalMapping(MEM_LSB) {
  MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
  MemoryInstanceName : PM_32x16;
  PinMappings{
    PhysicalMemoryDataInput[7:1] : LogicalMemoryDataInput[6:0];
    PhysicalMemoryDataOutput[7:1]: LogicalMemoryDataOutput[6:0];
    PhysicalMemoryAddress[4:0]   : LogicalMemoryAddress[4:0];
  }
}
PhysicalToLogicalMapping(MEM_MSB) {
  MemoryTemplate : SYNC_1RW_32x16_RC_BISR;
  MemoryInstanceName : PM_32x16;
    PinMappings {
      PhysicalMemoryDataInput[14:8] : LogicalMemoryDataInput[6:0];
      PhysicalMemoryDataOutput[14:8]: LogicalMemoryDataOutput[6:0];
      PhysicalMemoryAddress[4:0]    : LogicalMemoryAddress[4:0];
    }
 }

Limitations
• Use of the report_memory_cluster_configuration command prior to executing the 

check_design_rules command results in the logical memory access level reported for the 
logical memory implementing pseudo-vertical stacking. The 
report_memory_cluster_configuration command should be run after check_design_rules 
to verify the physical access level is reported.

• The memory TCD syntax enables you to specify the RedundancyAnalysis/
ColumnSegment/ShiftedIORange property in the form of a bused port or as scalar ports 
separated by a comma. Specifying this property as scalar ports for the pseudo-vertical 
stacking configuration is not supported and is rule-checked by the tool. 

Physical Memory Tessent Core Description
The physical memory library file is the same as the standard memory library file used for 
memory BIST without Shared Bus. 
Please refer to the Tessent Core Description (Core/Memory) for further details on the physical 
memory core library.
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Shared Bus Learning
The organization and access mechanism of the memories attached to the shared bus interface 
must be described to Tessent MemoryBIST in the form of a Tessent Core Description (TCD) 
within the memory library files. The process of creating the TCDs and validating them against 
the memory cluster core in the design has typically been a manual one, but much of it can be 
automated with the shared bus learning flow.
An overview of the shared bus learning flow is shown in Figure 6-10. It is recommended that 
you implement the flow on a single, stand-alone shared bus memory cluster core prior to DFT 
insertion. Automation is available for Steps 1, 4 and 5 in the flow and you intercept the normal 
DFT insertion flow at Step 6.

Figure 6-10. Shared Bus Learning Flow

Step 1 is where you generate the memory cluster core RTL, instantiate the core into the design, 
and create the memory cluster and logical memory TCD. As outlined in “Library 
Requirements”, the memory cluster TCD and logical memory TCD may be created manually, 
which is usually the case for users designing their own memory clusters. For commercial cores, 
your IP provider may deliver the IP in an MBIST Information File (MBIF) electronic format 
that describes the memory organization accessed through the shared bus interface. The 
generation of the TCD can be automated if your IP is available in MBIF format through the use 
of the memlibGenerate utility, located in the Tessent software installation tree.

Steps 2 and 3 is where physical RAM integration is done. In this process, you select and 
instantiate physical memories into each logical memory. Refer to the documentation from your 
IP provider for specific requirements and design guidelines for integrating the physical 
memory.
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Step 4 updates the logical memory TCD to match the physical memory implementation after 
RAM integration is complete. The set_memory_cluster_library_generation_options command 
automates this learning process, which is described in “Physical-to-Logical (P2L) Mapping 
Automation”.

Step 5 is where a tracing-based validation is performed to verify the memory cluster and logical 
memory TCD with the memory cluster core RTL. The set_memory_cluster_validation_options 
command automates this process, which is described in “Library Validation”.

Step 6 is where you perform the normal DFT flow on your design containing the fully populated 
memory cluster core. This step generates the DFT IPs, inserts them into your design, and 
verifies their operation.

The file usage and data processing flow for shared bus learning is shown in the figure below. 
The P2L automation applied in Step 4 creates updated TCD files based on the structure learned 
from examining the memory cluster core RTL.

Figure 6-11. Shared Bus Learning Data Processing Flow
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Physical-to-Logical (P2L) Mapping Automation
During the RAM integration process, you can implement the logical memory address space 
using any available physical memory, and multiple physical memories may be used. 
For example, in Figure 6-1, logical memory LM_2 instantiates one physical memory whereas 
logical memory LM_1 instantiates two physical memories in a horizontal stacking 
configuration. Both physical memories of LM_1 are enabled concurrently and their data ports 
combine to form the data path of LM_1. Logical memory LM_3 incorporates horizontal and 
vertical stacking configurations where two physical memories are active at a given time. Each 
pair of memories form the lower or upper address range, depending on the address value.

After addition of physical memories into the cluster core RTL, the logical memory TCD must 
indicate how the physical memories will be activated during memory BIST. The logical 
memory TCD must reflect the connectivity of the physical memories to the logical memory 
ports. This is accomplished with the addition of two types of wrappers to the Logical Memory 
Tessent Core Description files:

• MemoryGroupAddressDecoding wrapper — This wrapper specifies the address signals 
used to activate the physical memories and defines the selection codes. It is needed 
when a vertical stacking configuration is present.

• PhysicalToLogicalMapping wrapper — This wrapper associates the data, address, and 
group write enable ports of the physical memory to the ports of the logical memory.

The set_memory_cluster_library_generation_options command automates the creation of these 
wrappers. The command derives the mappings of the physical memories within a logical 
memory from the memory cluster core RTL. The command populates the extracted information 
into the logical memory TCD and writes out the updated files. The following section describes 
how to use this command.

Implementing the P2L Mapping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Implementing the P2L Mapping Flow
The following procedure describes how to use the 
set_memory_cluster_library_generation_options command to automatically map a memory 
cluster core. The process updates the logical memory TCD files with the 
MemoryGroupAddressDecoding and PhysicalToLogicalMapping wrappers that describe the 
physical memory configurations within each logical memory.

Prerequisites
• Design that contains only the memory cluster core and its physical memories

• Memory cluster TCD

• Logical memory TCD without P2L information
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• Physical memory TCD

Procedure
1. Load the design and memory libraries

The design containing a single memory cluster core and physical memories is loaded 
and references to the TCD files for the memory cluster, the logical memories, and the 
physical memories are loaded. This step is identical to the standard DFT design flow and 
is done within the DFT context of Tessent Shell.

set_context dft –rtl

# Load the library for the technology cells
read_cell_library ../tech_cells.lib

# Search paths for memory TCD files
# They may be read in explicitly using read_core_descriptions
set_design_sources –format tcd_memory –y MEM –extensions {lib lvlib}

# Search paths for design files
# They may be read in explicitly using read_verilog
set_design_sources –format verilog –y RTL –extensions {v vb}

# Load the top-level design
read_verilog RTL/WIRELESS_CORE.vb

2. Design elaboration and setup

The full design is elaborated and the tool is configured for memory test, which includes 
analysis of the memory cluster. This step is also identical to the standard DFT design 
flow.

set_current_design WIRELESS_CORE

# Define the clock reaching the core
add_clocks clk –period 12ns

# Enable analysis for memory test
set_design_level sub_block
set_dft_specification_requirements –memory_test on

3. Enable the P2L mapping

While in setup system mode, enable P2L mapping using the 
set_memory_cluster_library_generation_options command. Refer to the command 
description to determine the mapping configuration options you want to include.

set_memory_cluster_library_generation_options \  
  -generate_physical_to_logical_info

// Warning: The default memory cluster initialization file for
// cluster libraries generation was created.

// Edit this file manually if the default initialization sequence 
// needs to be modified.
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The command creates a memory cluster initialization file. This is a Tessent dofile that 
the tool will source to configure the memory cluster into MemoryBIST mode during the 
next circuit analysis phase. The initialization file is saved in the current working 
directory. An example file name is shown below:

WIRELESS_CORE_rtl.memory_cluster_mbist_mode_init

Normally, the initialization file requires no modification. It may be customized to adjust 
the protocol to enable MemoryBIST mode for the core and tracing of the physical 
memories within the core. If the tool reports problems with the application of the 
memory cluster initialization sequence, refer to the “Enabling MemoryBIST Mode for a 
Cluster” topic.

4. Generate the P2L mapping

The circuit analysis and extraction of the physical-to-logical mapping occurs during the 
transition from system mode setup to system mode analysis, as shown in the following 
example:

check_design_rules

// ---------------------------------------------------------------------------

// Begin RTL synthesis.

// --------------------

// Synthesized modules=18, Time=1.09 sec.

// Note: There were 10 modules selectively synthesized. There were also 6 sub-modules

// created by synthesis.

//    Use 'get_module -filter is_synthesized' to see them.

//    You can also use 'set_quick_synthesis_options -verbose on' to have the

//    synthesis step report the synthesized module names in the transcript as 

//    they are being synthesized.

// ---------------------------------------------------------------------------

// Warning: Rule FP2 violation occurs 1 times

// Flattening process completed, cell instances=482, gates=918, PIs=2, POs=0,

// CPU time=0.01 sec.

// ---------------------------------------------------------------------------

// Begin circuit learning analyses.

// --------------------------------

// Learning completed, CPU time=0.00 sec.

// ----------------------------------------

// Begin Shared Bus memory cluster library generation.

// Memory Cluster Instance: 'CLUSTERInst'.

// Memory Bist interface ID: 'I1'.

//   Processing of LM_0 logical memory.

//   Processing of LM_1 logical memory.

//   Processing of LM_2 logical memory.

//   Processing of LM_3 logical memory.

//   Processing of LM_4 logical memory.

// Shared Bus memory cluster library generation completed.

// ----------------------------------------

The circuit analysis is based on the flat design model, which is an internal, flattened 
representation of the hierarchical design. The memory cluster initialization file is 
sourced to condition the memory cluster core RTL for memory test. The tool applies the 
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selection code for each logical memory. By tracing through the flat model, the tool 
attempts to locate the physical memory instances and to determine the stacking 
configuration within the logical memory.

Results
Upon successful extraction, the P2L mappings are populated into the logical memory TCD 
within Tessent Shell. By default, the complete logical memory TCD is written to the 
memory_tcd_outdir folder found in the current working directory. The output filenames are the 
same as the original logical memory TCD files. 
The new files include updates to the logical memory templates. You should review the added 
PhysicalToLogicalMapping wrappers for completeness. If the MemoryInstanceName property 
does not appear in the PhysicalToLogicalMapping wrapper, refer to the limitations listed in 
“Shared Bus Learning Assumptions and Limitations” for possible reasons and determine if you 
need to add the property manually. If the original file contains other types of configuration data, 
they are not preserved after P2L generation and must be retrieved from the original file. 

Note
Siemens EDA recommends defining custom algorithms and operation sets in files separate 
from the cluster and logical memory templates.
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Library Validation
The shared bus memory cluster library validation implements a tracing-based approach, where 
the content of the memory cluster TCD and logical library TCDs are validated against the data 
collected from the learned memory cluster structure. The trace-based validation approach is an 
extension of the library validation performed in the DFT flow, where the focus is on the 
consistency of the semantics among the TCDs for the memory cluster, logical memories, and 
physical memories.
Shared bus memory cluster library validation provides the following functionality:

• Validation that no memory is missing memory BIST, including instances that are 
determined to be physical memories connected to a shared bus interface, but are not 
accessible using the selection codes specified in the memory cluster TCD.

• Validation of the mappings specified in the LogicalMemoryToInterfaceMapping and 
PhysicalToLogicalMapping wrappers. This includes the following paths:

o DataInput

o DataOutput

o Address

o ReadAddress

o WriteAddress

o GroupWriteEnable

• Validation of the PipelineDepth property

Validation is based on user-provided matching expressions, meaning that it is necessary for you 
to specify a pattern using wildcards or regular expressions that enables the tool to identify 
physical memory modules before the validation starts. The following sections describe how to 
use the set_memory_cluster_validation_options command to perform the validation.

Implementing the Library Validation Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Memory Cluster TCD Validation at the Logical Level  . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Implementing the Library Validation Flow
The following procedure describes how to use the set_memory_cluster_validation_options 
command to perform a trace-based validation of the memory cluster TCD, logical memory 
TCDs, and physical memory TCDs against the structure traced from the memory cluster core 
RTL.

Prerequisites
• Design that contains only the memory cluster core and its physical memories



Implementing MemoryBIST With Memory Shared Bus Interface
Shared Bus Learning

Tessent™ MemoryBIST User’s Manual, v2022.4 337

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Memory cluster TCD

• Logical memory TCDs with P2L information

• Physical memory TCDs

Procedure
1. Load the design and memory libraries

The design containing a single memory cluster core and physical memories is loaded 
and references to the TCD files for the memory cluster, the logical memories, and the 
physical memories are loaded. This step is identical to the standard DFT design flow and 
is done within the DFT context of Tessent Shell.

set_context dft –rtl

# Load the library for the technology cells
read_cell_library ../tech_cells.lib

# Search paths for memory TCD files
# They may be read in explicitly using read_core_descriptions
set_design_sources –format tcd_memory –y MEM –extensions {lib lvlib}

# Search paths for design files
# They may be read in explicitly using read_verilog
set_design_sources –format verilog –y RTL –extensions {v vb}

# Load the top-level design
read_verilog RTL/WIRELESS_CORE.vb

2. Design elaboration and setup

The full design is elaborated and the tool is configured for memory test, which includes 
analysis of the memory cluster. This step is also identical to the standard DFT design 
flow.

set_current_design WIRELESS_CORE

# Define the clock reaching the core
add_clocks clk –period 12ns

# Enable analysis for memory test
set_design_level sub_block
set_dft_specification_requirements –memory_test on

3. Enable the memory cluster TCD and logical memory TCD validation
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Enable shared bus library validation while in setup system mode by using the 
set_memory_cluster_validation_options command:

set_memory_cluster_validation_options {SYNC.* RAM.*} –regexp

// Warning: The default memory cluster initialization file for
// cluster libraries validation was created.
// Edit this file manually if the default initialization sequence
// needs to be modified.

The command creates a memory cluster initialization file. This is a Tessent dofile that 
the tool will source to configure the memory cluster into MemoryBIST mode during the 
next circuit analysis phase. The initialization file is saved in the current working 
directory. An example file name is shown below:

WIRELESS_CORE_rtl.memory_cluster_mbist_mode_init

Normally, the initialization file requires no modification. It may be customized to adjust 
the protocol to enable MemoryBIST mode for the core and tracing of the physical 
memories within the core. If the tool reports problems with the application of the 
memory cluster initialization sequence, refer to the “Enabling MemoryBIST Mode for a 
Cluster” topic.

4. Validate the memory cluster TCD and logical memory TCD
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The circuit analysis and validation occurs during the transition from system mode setup 
to system mode analysis, as shown in the following example:

check_design_rules

// ---------------------------------------------------------------------------

// Begin RTL synthesis.

// --------------------

// Synthesized modules=18, Time=1.09 sec.

// Note: There were 10 modules selectively synthesized. There were also 6 sub-modules

// created by synthesis.

//    Use 'get_module -filter is_synthesized' to see them.

//    You can also use 'set_quick_synthesis_options -verbose on' to have the

//    synthesis step report the synthesized module names in the transcript as 

//    they are being synthesized.

// ---------------------------------------------------------------------------

// Warning: Rule FP2 violation occurs 1 times

// Flattening process completed, cell instances=482, gates=918, PIs=2, POs=0,

// CPU time=0.01 sec.

// ---------------------------------------------------------------------------

// Begin circuit learning analyses.

// --------------------------------

// Learning completed, CPU time=0.00 sec.

// ----------------------------------------

// Begin Shared Bus memory cluster library validation.

// Memory Cluster Instance: 'CLUSTERInst'.

// Memory Bist interface ID: 'I1'.

//   Processing of LM_0 logical memory.

//   Processing of LM_1 logical memory.

//   Processing of LM_2 logical memory.

//   Processing of LM_3 logical memory.

//   Processing of LM_4 logical memory.

// Shared Bus memory cluster library validation completed.

// ----------------------------------------

The circuit analysis is based on the flat design model, which is an internal, flattened 
representation of the hierarchical design. The memory cluster initialization file is 
sourced to condition the memory cluster core RTL for memory test. The tool applies the 
selection code for each logical memory. By tracing through the flat model, the tool 
attempts to locate the physical memory instances and to determine the stacking 
configuration within the logical memory.

Memory Cluster TCD Validation at the Logical Level
The typical usage for the set_memory_cluster_validation_options command in the shared bus 
learning flow is to validate the final memory cluster TCD and logical memory TCD after the 
RAM integration process. The command also provides you with the option of performing 
validation at the logical level only. In this usage, you would be validating the memory cluster 
TCD before you have implemented the physical memories of the chosen technology into the 
design.
Validation at logical level requires that you identify logical memories in the design. Logical 
memories should be considered as memory modules, which are activated using unique selection 
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codes from the memory cluster TCD. Clear logical memory boundaries may or may not exist in 
the design, therefore in the RTL before the RAM integration phase, generic (behavioral) RAMs 
should be instantiated and considered as the logical memories. Each selection code from the 
memory cluster TCD will activate a single generic RAM. Logical-level validation will not 
succeed in cases where clear logical memory boundaries do not exist, such as where multiple 
generic RAMs are instantiated within a common parent instance and both need to be 
simultaneously selected. 

Enabling MemoryBIST Mode for a Cluster
Circuit tracing is based on the flat design model, which is an internal, flattened representation of 
the hierarchical design. The memory cluster must be configured in MemoryBIST mode to 
analyze the circuit relevant for memory test. The MemoryBIST mode entry sequence must be 
provided to Tessent MemoryBIST and can be obtained from the documentation for your 
specific IP.
The subsequent sections describe how the initialization sequence is created and how you can 
customize it.

Memory Cluster Initialization File Generation
As described in “Implementing the P2L Mapping Flow” the tool automatically generates a 
dofile which contains the default memory cluster initialization sequence used in the simulation 
context on the flat model. The default initialization sequence assumes a generic protocol, and 
constrains the following inputs of the shared bus interface defined in the memory cluster TCD:

• Port function InterfaceReset — defines the Shared Bus Interface Reset port(s)

• Port function BistOn — defines the Shared Bus Interface Request port(s)

• Port function ConfigurationData — defines the Shared Bus Interface Configuration Data 
port(s)

An example initialization sequence is shown below. The interface reset and request ports are set 
to their active values. The signals are held for 20 clock cycles, before the interface reset is 
deactivated. The signals are then held for 50 clock cycles.
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# Cluster module: CLUSTER

# Enable active-low interface reset port
add_simulation_forces [get_ports nrst] -value 0;

# Enable active-high interface request port
add_simulation_forces \
  [get_pins MbistOn1 \
    -of_instances [get_instances \
    -of_modules [get_modules CLUSTER -use_module_matching_options]]] \
    -value 1;

# Apply 20 system clock cycles
simulate_clock_pulses [get_clocks] -repetitions 20;

# Release interface reset port
add_simulation_forces [get_ports nrst] -value 1;

# Apply 50 system clock cycles
simulate_clock_pulses [get_clocks] -repetitions 50;

If your IP provider delivers an electronic file, the memlibGenerate utility will automatically 
transfer the reset, request, and configuration data ports into the memory cluster TCD. The file 
may identify additional inputs that must be asserted for the duration of memory test mode. If the 
memory cluster TCD is automatically created, these signals will also be appropriately 
constrained in the default memory cluster initialization file. The memlibGenerate utility 
assumes that the Shared Bus Interface reset is an active low signal.

Memory Cluster Initialization File Modification
The default initialization file created by the set_memory_cluster_library_generation_options 
command may be incomplete, and the protocol may require further customization based on the 
cluster core IP documentation. In addition, some of the input ports which need to be driven to 
achieve MBIST mode, or to initialize/reset the cluster module, may be unknown. This may 
occur when the memory cluster TCD is manually created rather than automatically generated by 
the memlibGenerate utility.

The tool provides the ability for you to edit the initialization file manually to address this 
situation. As described in “Implementing the P2L Mapping Flow”, the file is automatically 
generated and is automatically sourced when check_design_rules is run. All changes made to 
the file by the user after the generation will be applied by the tool when executing the cluster 
initialization sequence.

The initialization file is stored in the current working directory with the following naming 
convention:

<design_name>_<insertion_id>.memory_cluster_mbist_mode_init

The check_design_rules command automatically applies the initialization file, which contains 
the cluster initialization sequence for each Shared Bus cluster module in the design. Each 
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sequence is preceded by the cluster module name and should initialize all Shared Bus interfaces 
belonging to the particular cluster module.

When you modify the cluster initialization file, it is important that you use design introspection 
commands, such as get_pins and get_ports, instead of specifying explicit hierarchical paths to 
pins/ports. This is needed because a quick-synthesis is done as part of the cluster validation 
procedure and some post-synthesis names may change during the flow. The get_modules 
-use_module_matching_options command and switch are useful when you are looking for 
modules whose names were potentially uniquified.

If signals added to the modified initialization file do not correspond to primary inputs or the 
cluster module itself, they will not be automatically preserved in the flat design model. When 
this occurs, the tool will issue an error informing you that the pin does not exist in the flat 
model. You must then run the following command after default initialization file generation 
(with either set_memory_cluster_library_generation_options or 
set_memory_cluster_validation_options) and before the check_design_rules command is run:

set_attribute_value pin_port_name -name preserve_in_flat -value "yes"

Memory Cluster Initialization File Debugging
During the analysis, if MemoryBIST mode was not entered successfully, then one of the 
following situations will happen, depending on the specific IP:

• A MemoryBIST acknowledge signal error (the signal being “X” or an inactive state) 
might be reported by the tool if your IP defines one.

• No physical memory may be accessible from the Shared Bus Interface.

• All physical memories are accessible, regardless of the selection values specified using 
the Shared Bus Interface.

Typically, the Shared Bus Interface of your specific IP implements the MBIST acknowledge 
signal and Tessent MemoryBIST will examine its value after the initialization sequence is 
simulated during check_design_rules execution. MemoryBIST mode will not be entered if the 
MBIST acknowledge signal is ‘X’ or is at an inactive polarity and the tool will issue an error 
message. The error message includes the command to invoke Tessent Visualizer and display the 
tracing path. The displayed path is from the InterfaceReset port to the MBIST acknowledge 
port. The corresponding simulation values from the current simulation context are also 
displayed, as seen in the figure below.
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Figure 6-12. MemoryBIST Request to Acknowledge Path With Incorrectly 
Initialized Register

The initialization sequence can be debugged interactively by:

1. Adding a new simulation context (refer to the add_simulation_context command).

2. Sourcing the modified initialization file from your working directory.

3. Observing the influence of the modified sequence on the MBIST acknowledge signal in 
Tessent Visualizer.

The following steps may also be helpful in the cases where Tessent MemoryBIST reports an 
MBIST acknowledge signal error:

1. Inspect the memory cluster initialization file for completeness. Typically, the following 
signals are required to be constrained by the sequence:

o A pin/port with Port Function BistOn — Enables MemoryBIST mode and disables 
some functional logic.

o A pin/port with Port Function InterfaceReset — Specifies the signal that is used to 
reset the Shared Bus Interface.

o A pin/port with Port Function ConfigurationData — Specifies the signal that is used 
to configure access to the logical memories.

o Other signals that are documented by your IP provider that must maintain the same 
state through all MemoryBIST testing.

If some of these signals are not constrained by the initialization sequence, review the 
documentation of your specific IP to confirm the required initialization sequence.

2. If the initialization sequence seems to contain all the typically required signals, you can 
pinpoint the source of the MBIST acknowledge signal becoming an 'X' or inactive value 
by using Tessent Visualizer. For further information, refer to the “Using Tessent 
Visualizer to Debug Design Issues” topic in the Tessent Shell User’s Manual.

3. Investigate if there is additional logic that is not part of the original IP from your 
provider that is connected to your memory cluster. The logic may also need to be 
constrained in the memory cluster initialization file. To test for this condition, you can 
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try to run check_design_rules with Shared Bus Learning disabled. If check_design_rules 
reports any blocking conditions for memory clock tracing, these same blocking 
conditions will be present when performing Shared Bus Learning. These additional 
blocking conditions will need to be handled by adding the proper constraints in the 
memory cluster initialization file.

Note
Siemens EDA recommends running the Shared Bus Learning features on a Shared Bus 
memory cluster in isolation, where the memory cluster is instantiated within the current 

design with no other logic around the memory cluster. However, if you have run the Learning 
features on a Shared Bus memory cluster in the context of a design with functional logic 
surrounding the memory cluster, then you may need to edit the initialization sequence to ensure 
clocks and control signals propagate to the memory cluster. Running the Learning features in 
the context of a design is discouraged as it can unnecessarily complicate debug efforts.

Shared Bus Learning Assumptions and Limitations
The following assumptions and limitations apply when implementing the Shared Bus Learning 
automation flow:

1. The MemoryInstanceName property must be added manually to either the memory 
cluster TCD or logical TCD files if they require the use of the %VARIABLE% notation 
(as defined in Table 6-1) in the MemoryInstanceName property to uniquely specify the 
physical memory instance. Refer to Table 6-15 and the related text for an example.
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2. If a logical memory template is used by more than one logical memory, as shown by 
LM_0 and LM3 in the figure below, and the MemoryInstanceName property is needed, 
editing is required to uniquify the instances.

Referring to the figure above, the instance names for each physical memory in LM_0 
and LM_3 relative to the memory cluster module are:

LM_0_inst/upper_mem_inst
LM_0_inst/lower_mem_inst
LM_3_inst/upper_mem_inst
LM_3_inst/lower_mem_inst

Using this as an example, two implementation solutions are illustrated:

a. Solution 1 — Manually update the MemoryInstance property in the memory cluster 
TCD and logical memory TCD files after running P2L mapping automation.

The relevant portion of the input memory cluster TCD file contains:

LogicalMemoryToInterfaceMapping(LM_0) {
  MemoryTemplate : LM_64x8;
  ...
}
...
LogicalMemoryToInterfaceMapping(LM_3) {
  MemoryTemplate : LM_64x8;
  ...
}
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The relevant portion of the input logical memory TCD contains:

MemoryTemplate(LM_64x8) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
}

Note that P2L mapping automation does not add the MemoryInstanceName property 
to either the memory cluster TCD or logical memory TCD. The user must manually 
update these files. The relevant portion of the final memory cluster TCD file after 
manual edits (shown in red):

LogicalMemoryToInterfaceMapping(LM_0) {
  MemoryTemplate : LM_64x8;
  ...
  MemoryInstanceName : LM_0_inst;
  <PIN_MAPPINGS_WRAPPER>
}
...
LogicalMemoryToInterfaceMapping(LM_3) {
  MemoryTemplate : LM_64x8;
  ...
  MemoryInstanceName : LM_3_inst;
<PIN_MAPPINGS_WRAPPER>
}

The relevant portion of the final logical memory TCD file after running P2L 
automation (green highlight additions) and adding manual edits (red highlight 
additions):

MemoryTemplate(LM_64x8) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
  PhysicalToLogicalMapping(UPPER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : upper_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  } 
  PhysicalToLogicalMapping(LOWER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : lower_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  }
}

b. Solution 2 — Manually uniquify the logical memory templates reference by LM_0 
and LM_3. This edit must be completed in the memory cluster TCD and logical 
memory TCD before using P2L mapping automation.
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The relevant portion of the input memory cluster TCD file after manual edits (shown 
in red) contains:

LogicalMemoryToInterfaceMapping(LM_0) {
  MemoryTemplate : LM_64x8;
  ...
}
...
LogicalMemoryToInterfaceMapping(LM_3) {
  MemoryTemplate : LM_64x8_0;
  ...
}

The relevant portion of the input logical memory TCD after manual edits (shown in 
red) contains:

MemoryTemplate(LM_64x8) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
}
MemoryTemplate(LM_64x8_0) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
}
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Note that the memory cluster TCD and logical memory TCD do not require editing 
after P2L mapping automation. The relevant portion of the output logical memory 
TCD after running P2L mapping automation (green highlight additions): 

MemoryTemplate(LM_64x8) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
  PhysicalToLogicalMapping(UPPER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : LM_0_inst/upper_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  } 
  PhysicalToLogicalMapping(LOWER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : LM_0_inst/lower_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  }
}
MemoryTemplate(LM_64x8_0) {
  <PORT_WRAPPER_DEFINITIONS>
  ...
  <ADDRESS_COUNTER_WRAPPER>
  PhysicalToLogicalMapping(UPPER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : LM_3_inst/upper_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  } 
  PhysicalToLogicalMapping(LOWER_MEM) {
    MemoryTemplate : <PHYSICAL_TEMPLATE_NAME>;
    MemoryInstanceName : LM_3_inst/lower_mem_inst;
    <PIN_MAPPINGS_WRAPPER>
  }
}

Note
Solution 2 will result in a larger area overhead than Solution 1 requires.

3. Memory clusters that contain multi-port memories are not currently supported.

The following assumption and limitation applies when using the shared bus learning validation 
feature at the logical level.

1. It is assumed that each selection code activates only one logical memory.

Design Loading
As with the standard memory BIST flow, design loading is the first step in the Tessent 
MemoryBIST insertion using Tessent Shell. The step consists of setting the correct context, 
reading libraries, reading the design, and elaborating the design.
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To utilize the Shared Bus feature, the MemoryCluster, logical and physical memory core library 
files must be loaded. An example is provided below.

Example
set_context dft -rtl  
read_core_descriptions {../data/MEM/CLUSTER.tcd_mem_cluster_lib \ 
                       ../data/MEM/Logical.lvlib \ 
                       ../data/MEM/SYNC_1RW_16x8.tcd_mem_lib \ 
                       ../data/MEM/SYNC_1RW_32x4.tcd_mem_lib 
                       } 
set_design_sources -format verilog -y ../data/MEM -extension vb 
read_verilog {../data/RTL/CORE.vb ../data/RTL/CLUSTER.vb} 
set_current_design CORE 
 

For more details on design loading, please refer to Chapter 3, Planning and Inserting 
MemoryBIST.

Specify and Verify DFT Requirements
As with the standard memory BIST flow, you must specify the DFT specification requirements 
with the set_dft_specification_requirements command. This enables the DRC specific to 
memory BIST and instructs the create_dft_specification command to include the MemoryBist 
or MemoryBisr wrappers.

Example
The following example shows how the memory BIST DFT specification requirements are 
specified and how the design level is defined at the chip level.

set_dft_specification_requirements -memory_test on 
set_design_level chip 
 

There is the additional DFTSpecification property (DftSpecification()MemoryBist/Controller()/
MemoryCluster()/memory_access_level) and associated DefaultsSpecification property 
(DefaultsSpecification/DftSpecification/MemoryBist/MemoryClusterOptions/
memory_access_level), which is auto by default, that affects the memory bist controller 
configuration. A summary of the values for the memory_access_level property is as follows:

• logical — The memory BIST controller operates at the logical memory level which 
means that a virtual memory (emulating a memory from the controller viewpoint) is 
created for the logical memory. The physical composition of the logical memory is 
irrelevant; all physical memories that form the logical memory are tested in one step. A 
single memory BIST interface is created for each logical memory.
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Note
The tool reports an error when the memory access level is set to “logical”, and a 
logical memory TCD does not define a RedundancyAnalysis wrapper while a 

physical memory TCD within the logical memory does.

• physical — The memory BIST controller operates at the physical memory level, with a 
virtual memory being created for each individual physical memory that forms the logical 
array. Each physical memory has its own memory BIST interface and a dedicated 
controller step associated with the physical memory access code, if it is defined in the 
MemoryGroupAddressDecoding wrapper in the logical MemoryTemplate.

In case a RedundancyAnalysis wrapper is present in the logical memory core library, its 
content is disregarded when option Physical is chosen.

• auto — Enabling this option balances the pros and cons of the two options described 
above. Virtual memories are generated for the physical memories when the following 
conditions are met, otherwise a virtual memory is created for the logical memory:

o At least one PhysicalToLogicalMapping wrapper exists in the logical memory core 
library that defines the relationship between physical and logical memory ports,

o The logical memory has no BIRA logic associated with it - no RedundancyAnalysis 
wrapper is present in that logical memory core library,

Note
The default memory BIST controller configuration generated for a share bus cluster module 
is different for the LogicVision design flow (equivalent to memory_access_level: logical) 

than in the Tessent Shell MemoryBIST flow (memory_access_level: auto). To create a 
MemoryCluster memory BIST controller with the same configuration as the LogicVision 
design flow, the memory_access_level needs to be set to logical.

For more details on design loading, please refer to Chapter 3, Planning and Inserting 
MemoryBIST.

Create DFT Specification
There no difference in usage when compared to standard memory BIST flow, an example is 
given below.
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ANALYSIS> create_dft_specification -replace 
// 
//  Begin creation of DftSpecification(CORE,rtl) 
//    Creation of RtlCells wrapper 
//    Creation of IjtagNetwork wrapper 
//    Creation of MemoryBist wrapper 
// 
//  Done  creation of DftSpecification(CORE,rtl) 
// 
/DftSpecification(CORE,rtl) 
 

Below is an example DFTSpecification produced from create_dft_specification for a design 
block with a single memory cluster module instantiation.

DftSpecification(CORE,rtl) { 
  IjtagNetwork { 
    HostScanInterface(ijtag) { 
      Sib(sti) { 
        Attributes { 
          tessent_dft_function : scan_tested_instrument_host; 
        } 
        Sib(mbist) { 
        } 
      } 
    } 
  } 
  MemoryBist { 
    ijtag_host_interface : Sib(mbist); 
    Controller(c1) { 
      clock_domain_label : clk; 
      AdvancedOptions { 
        observation_xor_size : off; 
      } 
      MemoryCluster(cluster1) { 
        instance_name : CLUSTERInst; 
      } 
    } 
  } 
} 
 

Once the DftSpecification has been created, you can use report_memory_cluster_configuration 
to report the cluster configuration for cluster modules in you design. An example is given 
below.
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ANALYSIS> report_memory_cluster_configuration 
 
// Memory cluster: CLUSTER, expansion level: auto 
// ============================================== 
// ----  --------  -------  --------  ---------  -------  --------  ---------------- 
// Step  Access    Logical  Physical  Cluster    Logical  Physical  Memory 
//       level     access   access    interface  memory   memory    instance 
//                 code     code      id         id       id        id 
// ----  --------  -------  --------  ---------  -------  --------  ---------------- 
// 0     physical  3'b001   -         I1         LM_0     MEM_0     I1_LM_0_MEM_0 
//                                    I1         LM_0     MEM_1     I1_LM_0_MEM_1 
// 1     physical  3'b010   -         I1         LM_1     MEM_0     I1_LM_1_MEM_0 
// 2     physical  3'b011   1'b0      I1         LM_2     MEM_b0_L  I1_LM_2_MEM_b0_L 
//                                    I1         LM_2     MEM_b0_M  I1_LM_2_MEM_b0_M 
// 3     physical  3'b011   1'b1      I1         LM_2     MEM_b1_L  I1_LM_2_MEM_b1_L 
//                                    I1         LM_2     MEM_b1_M  I1_LM_2_MEM_b1_M 
// 4     physical  3'b100   1'b0      I1         LM_3     MEM_0     I1_LM_3_MEM_0 
// 5     physical  3'b100   1'b1      I1         LM_3     MEM_1     I1_LM_3_MEM_1 

Process DFT Specification
There is no difference in usage when compared to the standard memory BIST flow, and an 
example is shown below.
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ANALYSIS> process_dft_specification                                                           
//                                                                                            
//  Begin processing of /DftSpecification(CORE,rtl)                                  
//    --- IP generation phase ---                                                             
//    Validation of IjtagNetwork                                                              
//    Validation of MemoryBist                                                                
//    Processing of RtlCells                                                                  
//      Generating Verilog RTL Cells                                                          
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_and2.v 
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_clk_and2.v 
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_or2.v      
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_clk_or2.v  
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_buf.v      
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_clk_buf.v  
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_inv.v      
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_clk_inv.v  
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_mux2.v     
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_cells.instrument/

CORE_rtl_tessent_clk_mux2.v 
// 
//      Loading the generated RTL verilog files (2) to enable instantiating the contained 

modules 
//      into the design. 
// 
//      Loading the generated structural verilog files (8) to enable instantiating the 

contained modules 
//      into the design. 
//    Processing of IjtagNetwork 
//      Generating design files for IJTAG SIB module CORE_rtl_tessent_sib_1 
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_ijtag.instrument/

CORE_rtl_tessent_sib_1.v 
//        IJTAG ICL   : ./tsdb_outdir/instruments/CORE_rtl_ijtag.instrument/

CORE_rtl_tessent_sib_1.icl 
//        Tcd Scan    : ./tsdb_outdir/instruments/CORE_rtl_ijtag.instrument/

CORE_rtl_tessent_sib_1.tcd_scan 
//      Generating design files for IJTAG SIB module CORE_rtl_tessent_sib_2 
//        Verilog RTL : ./tsdb_outdir/instruments/CORE_rtl_ijtag.instrument/

CORE_rtl_tessent_sib_2.v 
//        IJTAG ICL   : ./tsdb_outdir/instruments/CORE_rtl_ijtag.instrument/

CORE_rtl_tessent_sib_2.icl 
// 
//      Loading the generated RTL verilog files (2) to enable instantiating the contained 

modules 
//      into the design. 
//    Processing of MemoryBist 
//      Generating the Shared Bus memory cluster synthesis models. 
//      Generating the cluster initialization iProcs for the Shared Bus memory clusters. 
//      Generating design files for MemoryBist Controller(c1) 
//      Generating design files for Bist Access Port 
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//      Generating design files for MemoryBist controller assembly 
//    --- Instrument insertion phase --- 
//    Inserting instruments of type 'ijtag' 
//    Inserting instruments of type 'memory_bist' 
// 
//    Writing out modified source design in ./tsdb_outdir/dft_inserted_designs/

CORE_rtl.dft_inserted_design 
//    Writing out specification in ./tsdb_outdir/dft_inserted_designs/CORE_rtl.dft_spec 
// 
//  Done  processing of DftSpecification(CORE,rtl) 
// 
/DftSpecification(CORE,rtl) 
 

Extract ICL 
The extract_icl command prepares the current design for pattern generation, as is done in the 
standard memory BIST flow, by finding all modules (both Tessent instruments and non-
Siemens EDA instruments) with their associated ICL modules and, if no DRC violations are 
detected, creates the ICL for the current design. 
The root of the design was specified with the set_current_design command during design 
elaboration in the Design Loading step. The Create Patterns Specification and Process Patterns 
Specification steps use the ICL that was created for the root of the design. You can use the 
open_visualizer command to debug ICL extraction DRC violations. Refer to the “Debugging 
DRC Violations with Tessent Visualizer” section in the Tessent IJTAG User’s Manual.

Create Patterns Specification
The Create Patterns Specification step creates the default patterns specification in the same 
manner at the standard memory BIST flow. The patterns specification is a configuration file that 
tells you what tests are created using process_patterns_specification. You can edit or configure 
the default patterns specification to generate the patterns specification you want.
Below is an example PatternsSpecification produced from create_patterns_specification for a 
design block with a single memory cluster module instantiation.
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PatternsSpecification(CORE,rtl,signoff) { 
  Patterns(ICLNetwork) { 
    ICLNetworkVerify(CORE) { 
    } 
  } 
  Patterns(MemoryBist_P1) { 
    ProcedureStep(initialize_memory_cluster) { 
      
iCall(CORE_rtl_tessent_mbist_c1_shared_bus_assembly_inst_CORE_rtl_tessent
_mbist_c1_shared_bus_glue_logic_inst.initialize_memory_cluster) { 
      } 
    } 
    ClockPeriods { 
      clk : 1.25ns; 
    } 
    TestStep(run_time_prog) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        reduced_address_count : on; 
        
Controller(CORE_rtl_tessent_mbist_c1_shared_bus_assembly_inst_CORE_rtl_te
ssent_mbist_c1_controller_inst) { 
          DiagnosisOptions { 
            compare_go : on; 
            compare_go_id : on; 
          } 
        } 
      } 
    } 
  } 
} 
 

Notice there is reference to an iCall to initialize the cluster module. This is covered in the next 
section.

By default, the memory BIST controller tests all memories in a cluster module in a single 
TestStep in the order according to the controller steps enumerated by the 
report_memory_cluster_configuration command.

Depending on the selected memory access level, logical or physical memories can be tested 
individually using the freeze_step property in the PatternsSpecification. 

An example is given below where only the first scheduled memory is tested. The 
configuration_data value can also be specified in the MemoryClusterOptions wrapper to 
override the default ConfigurationData value if defined in the 
LogicalMemoryToInterfaceMapping wrapper of the memory cluster library, which defaults to 
the value auto if unspecified in the controller wrapper.
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PatternsSpecification(CORE,rtl,signoff) {
  Patterns(ICLNetwork) {
    ICLNetworkVerify(CORE) {
    }
  }
  Patterns(MemoryBist_P1) {
    ProcedureStep(initialize_memory_cluster) {
      
iCall(CORE_rtl_tessent_mbist_c1_shared_bus_assembly_inst_CORE_rtl_tessent
_mbist_c1_shared_bus_glue_logic_inst.initialize_memory_cluster) {
      }
    } 
    ClockPeriods { 
      clk : 1.25ns; 
    } 
    TestStep(run_time_prog) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        reduced_address_count : on; 
        
Controller(CORE_rtl_tessent_mbist_c1_shared_bus_assembly_inst_CORE_rtl_te
ssent_mbist_c1_controller_inst) { 
          AdvancedOptions +{ 
            freeze_step : 0; 
            MemoryClusterOptions +{ 
              configuration_data(I1) : 2'b00; 
            } 
          } 
          DiagnosisOptions { 
            compare_go : on; 
            compare_go_id : on; 
          } 
        } 
      } 
    } 
  } 
} 

Process Patterns Specification
There is no difference in usage when compared to the standard memory BIST flow and an 
example is shown below.
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SETUP> process_patterns_specification 
// 
//  Begin processing of /PatternsSpecification(CORE,rtl,signoff) 
// 
//    Processing of /PatternsSpecification(CORE,rtl,signoff)/
Patterns(ICLNetwork) 
// 
//      Creation of pattern 'ICLNetwork' 
//        Solving ICLNetworkVerify(CORE) 
// 
//      Writing pattern file './tsdb_outdir/patterns/
CORE_rtl.patterns_signoff/ICLNetwork.v' 
// 
//    Processing of /PatternsSpecification(CORE,rtl,signoff)/
Patterns(MemoryBist_P1) 
//      Processing of ProcedureStep(initialize_memory_cluster) 
//      Processing of TestStep(run_time_prog) instrument 'memory_bist' 
// 
//      Creation of pattern 'MemoryBist_P1' 
//        Solving ProcedureStep(initialize_memory_cluster) 
//        Solving TestStep(run_time_prog) 
// 
//      Writing pattern file './tsdb_outdir/patterns/
CORE_rtl.patterns_signoff/MemoryBist_P1.v' 
//      Generating design files for Monitor module 
MemoryBist_P1_CLOCK_MONITOR 
//        Verilog module : ./tsdb_outdir/patterns/
CORE_rtl.patterns_signoff/MemoryBist_P1_CLOCK_MONITOR.v 
//      Writing simulation data dictionary file './tsdb_outdir/patterns/
CORE_rtl.patterns_signoff/simulation.data_dictionary' 
// 
//  Done  processing of /PatternsSpecification(CORE,rtl,signoff) 
// 
//  Writing configuration data file './tsdb_outdir/patterns/
CORE_rtl.patterns_spec_signoff'. 
 

During process_patterns_specification, an initialization sequence (iProc) for the Shared Bus 
interface is created, which is generally needed if the Shared Bus memory cluster module 
implements interface ports that use the InterfaceReset or BistOn port functions. The Shared Bus 
memory cluster initialization sequence is driven by TDR bits and is performed before launching 
the memory BIST controller. The initialization sequence is referenced in the 
PatternsSpecification/Patterns/ProcedureStep with an iCall. If the initialization sequence needs 
modification, it can be found at the following location:

tsdb_outdir/instruments/<design_name>_<design_id>_mbist.instrument/
<design_name>_<design_id>_tessent_mbist_<controller_id>_shared_bus_glue_logic.pdl 
 

An example of the initialization iProc is given below. The Shared Bus cluster module in this 
example has an interface reset and does not have a BIST enable (a port with a BistOn port 
function)
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iProcsForModule CORE_rtl_tessent_mbist_c1_shared_bus_glue_logic 
iProc initialize_memory_cluster {} { 
  iWrite nrst_toCluster 0b1 
  iApply 
  iNote "Activating InterfaceReset port(s) of the cluster module CLUSTER 
via outputs of the glue logic module instance [get_icl_scope -iCall]" 
  iWrite nrst_toCluster 0b0 
  iApply 
  iRunLoop 16 
  iNote "Deactivating InterfaceReset port(s) of the cluster module CLUSTER 
via outputs of the glue logic module instance [get_icl_scope -iCall]" 
  iWrite nrst_toCluster 0b1 
  iApply 
  iRunLoop 16 
} 

Run and Check Testbench Simulations
There is no difference in usage when compared to the standard memory BIST flow and the 
commands are shown below.

run_testbench_simulations 
check_testbench_simulations 

Test Logic Synthesis
There is no difference in usage when compared to the standard memory BIST flow and the 
command shown below.

run_synthesis
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Handling MemoryCluster Modules With 
Repairable Memories

This section explains the considerations, methods and prerequisites for built-in repair analysis 
(BIRA) and built-in self-repair (BISR) generation and insertion for memories accessed through 
a Shared Bus interface.
BIRA and BISR Generation for a Memory Cluster Module. . . . . . . . . . . . . . . . . . . . . . 359
Design and Library File Prerequisites for BIRA and BISR  . . . . . . . . . . . . . . . . . . . . . . 361

BIRA and BISR Generation for a Memory Cluster 
Module

Tessent MemoryBIST is able to insert the BIRA and BISR logic for memories accessed through 
a Shared Bus interface. By default, BIRA logic is placed outside the Shared Bus memory cluster 
module and the BISR logic is placed inside the Shared Bus memory cluster module near the 
memory to be repaired.
If the memory access level is set to “logical”, then for logical memories that consist of more 
than one physical memory, you must have a one-to-one mapping between logical and physical 
memories to achieve maximum repair resolution. By default, the memory_access_level in the 
MemoryClusterOptions wrapper is set to auto, which automatically creates for each individual 
physical memory its own memory BIST interface, enabling direct access at the Shared Bus 
cluster module’s level.

Note
The tool reports an error when the memory access level is set to “logical”, and a logical 
memory TCD does not define a RedundancyAnalysis wrapper while a physical memory 

TCD within the logical memory does.

The BIRA logic is instantiated inside the memory BIST controller module as in a normal 
design. However, two instances of the BISR registers for each physical memory are inserted 
inside the design. The first BISR register instance is located near the memory emulation logic 
and captures the BIRA fuse information. The second BISR register instance is located near the 
real memory instance inside the memory cluster module and drives the memory repair ports. 
This means that the core logic must be changed to support the Tessent MemoryBIST repair 
feature. Figure 6-13 provides an overview of a design after BIRA and BISR insertion. The 
BIRA and BISR logic are shown in salmon.
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Figure 6-13. Design Overview of a Memory Cluster Module With BISR

Note
Logical memories LM_1 and LM_2 do not contain memories with redundancy. Therefore, 
those memories do not have a BISR register.

The BISR registers are connected serially and tied to a multiplexer that selects the BISR chain 
to scan out. The BISR controller controls the multiplexer select signal. The external BISR 
registers (located outside of the memory cluster module) are selected when the BISR controller 
performs the BIRA-to-BISR transfer. Once this transfer is complete, the BISR chain is rotated, 
and the values that are captured by the external BISR registers are copied to the corresponding 
BISR registers inside the Shared Bus memory cluster module that drive the memory repair 
ports. This process is identical to the existing BIRA and BISR flow and does not require 
additional test steps to perform the memory BIST pre-repair, BISR programming, or memory 
BIST post-repair.
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Design and Library File Prerequisites for BIRA and 
BISR

The following sections describe how to prepare the design and memory library files so that the 
BIRA and BISR hardware can be inserted into the design. 
Functional Design Preparation for BIRA and BISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Memory Cluster Library File Preparation for BIRA and BISR. . . . . . . . . . . . . . . . . . . 361
Tcl Processing of MemoryInstanceName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Functional Design Preparation for BIRA and BISR
The memory cluster module does not require any design changes in preparation for BISR and 
BIRA hardware insertion.

Memory Cluster Library File Preparation for BIRA and 
BISR

With memory_access_level in the MemoryClusterOptions wrapper set to auto or physical (auto 
is the default), access is automatically created for each individual physical memory, with its 
own memory BIST interface, enabling direct access of the physical memory at the Shared Bus 
cluster module’s level.
When repairable memories are integrated in the Shared Bus memory cluster, their hierarchical 
instance paths must be identified. The MemoryInstanceName property in the Shared Bus cluster 
and logical memory TCD must be populated with the memory instance path relative to the 
Shared Bus memory cluster module.
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Figure 6-14. Four Physical Memories With Redundancy

Figure 6-14 shows logical memory LM_0 implemented with 4 physical memories with 
redundancy. The identical physical memories are instantiated in a 2 by 2 stacking configuration. 
For simplicity, the figure does not show all connections. The RR0 and RR1 ports on the 
physical memories enable redundant row elements (shown with gold-color horizontal bars), and 
the CR0 port enables the redundant column element (shown with gold-color vertical bars). 
Assume that LM_0 is instantiated within the Shared Bus memory cluster module. The instance 
path to LM_0, relative to the Shared Bus memory cluster, is populated in the Shared Bus 
memory cluster TCD as shown below:

MemoryClusterTemplate (CLUSTER) {
    LogicalMemoryToInterfaceMapping(LM_0) {
        MemoryInstanceName: LM_0_inst;
    }
}

The instance path for the physical memories is relative to its logical memory. The instance paths 
are populated in the logical memory TCD of LM_0 as shown below. The physical memory 
instance paths are formed by concatenating the definitions from the Shared Bus memory cluster 
TCD and the logical memory TCD.
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MemoryTemplate(LM_0) {
    PhysicalToLogicalMapping(MSB_lower) {
        MemoryTemplate: SYNC_1RW_16x4;
        MemoryInstanceName: MSB_lower_inst;
    }
    PhysicalToLogicalMapping(LSB_lower) {
        MemoryTemplate: SYNC_1RW_16x4;
        MemoryInstanceName: LSB_lower_inst;
    }
    PhysicalToLogicalMapping(MSB_upper) {
        MemoryTemplate: SYNC_1RW_16x4;
        MemoryInstanceName: MSB_upper_inst;
    }
    PhysicalToLogicalMapping(LSB_upper) {
        MemoryTemplate: SYNC_1RW_16x4;
        MemoryInstanceName: LSB_upper_inst;
    }
}

Figure 6-15. Logical Memory Placed Outside of a Shared Bus Memory Cluster

In Figure 6-15, logical memory LM_3 is instantiated at the same hierarchy level as the Shared 
Bus memory cluster. The instance path to LM_3 would require to traverse from the Shared Bus 
memory cluster to its parent module, then down into LM_3. The MemoryInstanceName 
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property accepts one or more “../” path modifiers to create a relative path, which can be used as 
shown below for this example to reach LM_3 outside the Shared Bus memory cluster:

LogicalMemoryToInterfaceMapping(LM_3) {
  MemoryInstanceName: ../LM_3_inst;
}

Special variables can be specified within the MemoryInstanceName property to reference 
portions of the hierarchical instance path to the Shared Bus memory cluster. Using the variables 
described in Table 6-1, the instance path to logical memory LM_3 can be derived as shown 
below. The %CLUSTER_PARENT% variable is expanded to the instance path of the module 
instantiating the Shared Bus memory cluster.

LogicalMemoryToInterfaceMapping(LM_3) {
  MemoryInstanceName: %CLUSTER_PARENT%/LM_3_inst;
}

Table 6-1 documents the available variables for use inside the Shared Bus memory cluster and 
logical memory TCD to derive the memory instance. The memory instance paths can be 
parameterized, based on the design structure, without using absolute instance names. If no 
%...% variable is used, the final memory instance is computed by appending the Shared Bus 
memory cluster instance with the MemoryInstanceName property value.

When a %...% variable is used, the memory instance path is no longer relative to the Shared Bus 
memory cluster. Instead the entire memory instance path must be provided using %...% 
variables or manual specification of design hierarchies.

The examples in Table 6-1 are computed assuming that the Shared Bus memory cluster instance 
path is the following:

wrapper_inst/core_inst/block_inst/memory_cluster_inst

Table 6-1. Shared Bus MemoryInstanceName Variables 
Variable Usage
%TOP% Provide full instance from the chip-level. Use this method to 

avoid the concatenation of the Shared Bus memory cluster 
instance hierarchy. This variable is used to start specifying 
the memory instance container from the root of the design.
%TOP%/my_wrapper_inst/mem_inst =>
my_wrapper_inst/mem_inst

%CLUSTER_PARENT% First parent of the Shared Bus cluster instance.
%CLUSTER_PARENT% => 
wrapper_inst/core_inst/block_inst

%CLUSTER_PARENT%/mem_wrapper_inst/mem_inst =>
wrapper_inst/core_inst/block_inst/mem_wrapper_inst/
mem_inst
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Tcl Processing of MemoryInstanceName
Occasionally, you may have Shared Bus clusters where the instance paths to some physical 
memories require more complex manipulation than the variables outlined in the prior section 
can offer. For example, the case when you use a generate loop to instantiate the Shared Bus 
interface and the physical memory instance paths use the generate loop index.
You can use the MemoryInstanceName property in the cluster and logical memory TCD to 
encode and perform basic string mapping using a Tcl-based function. The parameterization 
values shown in Table 6-1, combined with string substitution, provide a method to adapt the 
physical memory instance path without uniquifying the cluster or logical memory TCD.

The following example describes how you use the %LM_ID% variable for this 
parameterization. Consider a Shared Bus core named CLUSTER, which has two logical 
memories with logical_memory_id’s of LM_0 and LM_1, and each logical memory references 
the same logical memory template LM_TEMPLATE. Each logical memory is composed of four 

%CLUSTER_LEAF% Leaf name of the Shared Bus cluster instance. Typically used 
with %CLUSTER_PARENT% to denote memory instances 
located in sibling hierarchy.
%CLUSTER_LEAF% =>
memory_cluster_inst

%CLUSTER_PARENT%/%CLUSTER_LEAF%_tlb_wrapper =>
wrapper_inst/core_inst/block_inst/
memory_cluster_inst_tlb_wrapper

%CLUSTER_PARENT#% The #th parent of the Shared Bus cluster instance, where # is 
an integer value that can be 2 or higher.
%CLUSTER_PARENT2% => wrapper_inst/core_inst

%CLUSTER_PARENT3% => wrapper_inst

%CLUSTER_PARENT#_LEAF% Leaf name of the #th parent of the Shared Bus cluster 
instance, where # is an integer value and can be 2 or higher.
%CLUSTER_PARENT2_LEAF% => core_inst

%CLUSTER_PARENT3_LEAF% => wrapper_inst

%LM_ID% Provides a method to parameterize a physical memory 
instance path based on a logical memory ID. Refer to “Tcl 
Processing of MemoryInstanceName” for an example and 
usage information.

Table 6-1. Shared Bus MemoryInstanceName Variables  (cont.)
Variable Usage
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physical memories with physical_memory_id’s of PM_0, PM_1, PM_2, and PM_3. The 
MemoryClusterTemplate for this example Shared Bus core is:

MemoryClusterTemplate(CLUSTER) {
  MemoryBistInterface(I1) {
    LogicalMemoryToInterfaceMapping(LM_0) {
      MemoryTemplate: LM_TEMPLATE;
      MemoryInstanceName: "";
    }
    LogicalMemoryToInterfaceMapping(LM_1) {
      MemoryTemplate: LM_TEMPLATE;
      MemoryInstanceName: "";
    }
  }
}

The physical memories of LM_0 have the following instance paths:

• PM_0: hier_0_inst/hier0_p0_inst/mem0_inst

• PM_1: hier_0_inst/hier0_p0_inst/mem1_inst

• PM_2: hier_0_inst/hier1_p0_inst/mem0_inst

• PM_3: hier_0_inst/hier1_p0_inst/mem1_inst

The physical memories of LM_1 have the following instance paths:

• PM_0: hier_0_inst/hier0_p1_inst/mem0_inst

• PM_1: hier_0_inst/hier0_p1_inst/mem1_inst

• PM_2: hier_0_inst/hier1_p1_inst/mem0_inst

• PM_3: hier_0_inst/hier1_p1_inst/mem1_inst

Note that the memory instance paths are unique for each logical_memory_id.

Without using the %LM_ID% variable, you cannot make use of a single MemoryInstanceName 
property to describe the instance paths for both logical memories. You would therefore need to 
uniquify the common LM_TEMPLATE as shown.

MemoryClusterTemplate(CLUSTER) {
  MemoryBistInterface(I1) {
    LogicalMemoryToInterfaceMapping(LM_0) {
      MemoryTemplate: LM_TEMPLATE_0;
      MemoryInstanceName: "";
    }
    LogicalMemoryToInterfaceMapping(LM_1) {
      MemoryTemplate: LM_TEMPLATE_1;
      MemoryInstanceName: "";
    }
  }
}
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The logical memory templates would then be as follows:

MemoryTemplate(LM_TEMPLATE_0) {
  PhysicalToLogicalMapping(PM_0) {
    MemoryInstanceName: hier0_inst/hier0_p0_inst/mem0_inst;
  }
  PhysicalToLogicalMapping(PM_1) {
    MemoryInstanceName: hier0_inst/hier0_p0_inst/mem1_inst;
  }
  PhysicalToLogicalMapping(PM_2) {
    MemoryInstanceName: hier0_inst/hier1_p0_inst/mem0_inst;
  }
  PhysicalToLogicalMapping(PM_3) {
    MemoryInstanceName: hier0_inst/hier1_p0_inst/mem1_inst;
  }
}
 
MemoryTemplate(LM_TEMPLATE_1) {
  PhysicalToLogicalMapping(PM_0) {
    MemoryInstanceName: hier0_inst/hier0_p1_inst/mem0_inst;
  }
  PhysicalToLogicalMapping(PM_1) {
    MemoryInstanceName: hier0_inst/hier0_p1_inst/mem1_inst;
  }
  PhysicalToLogicalMapping(PM_2) {
    MemoryInstanceName: hier0_inst/hier1_p1_inst/mem0_inst;
  }
  PhysicalToLogicalMapping(PM_3) {
    MemoryInstanceName: hier0_inst/hier1_p1_inst/mem1_inst;
  }
}

When you use the %LM_ID% variable, the common logical memory template does not need to 
be uniquified. The example below adds the ability to modify the MemoryInstanceName, based 
on any of the variables listed in Table 6-1. It makes use of the Tcl “string map” command and 
the %LM_ID% variable.

MemoryClusterTemplate(CLUSTER) {
  MemoryBistInterface(I1) {
    LogicalMemoryToInterfaceMapping(LM_0) {
      MemoryTemplate: LM_TEMPLATE;
      MemoryInstanceName: "";
    }
    LogicalMemoryToInterfaceMapping(LM_1) {
      MemoryTemplate: LM_TEMPLATE;
      MemoryInstanceName: "";
    }
  }
}
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MemoryTemplate(LM_TEMPLATE) {
  PhysicalToLogicalMapping(PM_0) {
    MemoryInstanceName: "[string map {LM_0 p0 LM_1 p1}\
      {hier0_inst/hier0_%LM_ID%_inst/mem0_inst}]";
  }
  PhysicalToLogicalMapping(PM_1) {
    MemoryInstanceName: "[string map {LM_0 p0 LM_1 p1}\
      {hier0_inst/hier0_%LM_ID%_inst/mem1_inst}]";
  }
  PhysicalToLogicalMapping(PM_2) {
    MemoryInstanceName: "[string map {LM_0 p0 LM_1 p1}\
      {hier0_inst/hier1_%LM_ID%_inst/mem0_inst}]";
  }
  PhysicalToLogicalMapping(PM_3) {
    MemoryInstanceName: "[string map {LM_0 p0 LM_1 p1}\
      {hier0_inst/hier1_%LM_ID%_inst/mem1_inst}]";
  }
}

The MemoryInstanceName properties use:

"[string map {LM_0 p0 LM_1 p1} {hier0_inst/hier0_%LM_ID%_inst/mem0_inst}]";

The “string map” Tcl command is composed of two arguments, each enclosed by “{}”. The first 
argument, shown in red, contains one or more string pairs. The first string in each pair is the 
“search string”, while the second string is the “replacement string”. For the example above, the 
“string map” sequence is:

• When the string “LM_0” is found, replace it with the string “p0”.

• When the string “LM_1” is found, replace it with the string “p1”.

The second argument, shown in green, is the target string the command operates on. Note the 
%LM_ID% variable is embedded in the string. The tool replaces the variable by the 
logical_memory_id value from the MemoryBistInterface/LogicalMemoryToInterfaceMapping 
wrapper for the cluster, which in this case is LM_0 and LM_1. The result from the “string map” 
command is then used for the MemoryInstanceName property.
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Parallel Testing of Multiple Shared Bus 
Interfaces on a Memory Cluster

This section describes how to perform parallel testing of memories accessed through different 
Shared Bus interfaces located on a Shared Bus memory cluster module.
Figure 6-16 illustrates a Shared Bus memory cluster implementing two Shared Bus interfaces. 
The corresponding MemoryCluster TCD specifies two MemoryBistInterface wrappers. Tessent 
MemoryBIST assigns one controller for the Shared Bus memory cluster. The Shared Bus 
interfaces are accessed sequentially. For example, logical memories LM_0, LM_1 and LM_2 of 
interface 1 may be tested before LM_3 of interface 2. At present, multiple Shared Bus interfaces 
on the same Shared Bus memory cluster cannot be driven in parallel by the same memory BIST 
controller.

Figure 6-16. Memory Cluster With Two Shared Bus Interfaces

The method to work around the limitation is to model each Shared Bus interface as separate 
Shared Bus memory clusters. Tessent MemoryBIST dedicates one controller per interface as 
shown in Figure 6-17 below.



Tessent™ MemoryBIST User’s Manual, v2022.4370

Implementing MemoryBIST With Memory Shared Bus Interface
Design Modifications

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 6-17. Modeling a Memory Cluster With Two Shared Bus Interfaces
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Memory Cluster TCD Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Design Modifications
Incorporating the work-around of modeling each Shared Bus interface as separate Shared Bus 
memory clusters, requires some modification to the design.
For the example of Figure 6-17, create and instantiate a new module next to interface 2. The 
new module connects to the ports of interface 2 and feeds through the same signals to its 
boundary. The new module effectively becomes another Shared Bus memory cluster (memory 
cluster B). One controller drives interface 1 of the original Shared Bus memory cluster A. The 
second controller attaches to the new Shared Bus memory cluster B, connected to interface 2.

Memory Cluster TCD Modifications
Incorporating the work-around of modeling each Shared Bus interface as separate Shared Bus 
memory clusters, requires some modification to the Shared Bus memory cluster TCD.
Referring to the example of Figure 6-17, in the MemoryCluster TCD of Shared Bus memory 
cluster A, only the specification of the MemoryBistInterface wrapper for interface 1 is kept. 
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Shared Bus memory cluster A is modeled to consist of logical memories LM_0, LM_1, and 
LM_2 only. Similarly, a MemoryCluster TCD is created for Shared Bus memory cluster B. It 
specifies the MemoryBistInterface wrapper for interface 2 and contains logical memory LM_3.

MemoryClusterTemplate(clusterA) {
  ...
  MemoryBistInterface(sb1) {
    ...
    LogicalMemoryToInterfaceMapping (LM_0) { ... }
    LogicalMemoryToInterfaceMapping (LM_1) { ... }
    LogicalMemoryToInterfaceMapping (LM_2) { ... }
  }
} // clusterA

MemoryClusterTemplate(clusterB) {
  ...
  MemoryBistInterface(sb2) {
    ...
    LogicalMemoryToInterfaceMapping (LM_3) { ... }
  }
} // clusterB

Hierarchical instance paths of repairable memories must be identified in the 
MemoryInstanceName property of the Shared Bus memory cluster and logical memory TCD. In 
Figure 6-17, logical memory LM_3 is associated to the new Shared Bus memory cluster B that 
is instantiated at the same hierarchical level as the original Shared Bus memory cluster A. The 
instance path from Shared Bus memory cluster B to LM_3 would require to traverse from 
cluster B up to its parent module then down into cluster A.

Using the variables of Table 6-1, the instance path to logical memory LM_3 can be derived as 
shown below. The %CLUSTER_PARENT% variable is expanded to the instance path of the 
module instantiating Shared Bus memory cluster B.

MemoryClusterTemplate(clusterB) {
  ...
  MemoryBistInterface(sb2) {
    ...
    LogicalMemoryToInterfaceMapping (LM_3) {
      MemoryInstanceName : %CLUSTER_PARENT%/cluster_a_inst/LM_3_inst;
    }
  }
} // clusterB
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Chapter 7
Using Tessent User-Defined Algorithms

This chapter describes how to implement custom user-defined algorithms (UDAs) under 
Tessent Shell MemoryBIST flow.
Usage Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Overview and Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Defining a Custom Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Optimizing Custom Algorithms and Operation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Optimization Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Optimizing Properties Modifying the Address Within an Operation . . . . . . . . . . . . . . . . . 378
Optimizing Properties Modifying the Data Within an Operation. . . . . . . . . . . . . . . . . . . . 386
Diagnosis Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Optimization Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Example Algorithm: March C- Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Coding the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Advanced Multi-Port Testing With a UDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Fast Test Sequences Based on SyncWRvcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Pseudo Concurrent Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Concurrent Write to the Reference Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
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Usage Context
Tessent MemoryBIST is provided with a library of predefined memory test algorithms 
generically referred to as the Tessent Library Algorithms. Memory core description files then 
explicitly point to those algorithms to get implemented during memory BIST insertion.
It is however, possible to implement additional algorithms that are not part of the Tessent 
library; these are typically called custom or User-Defined Algorithms (UDAs). This chapter 
explains how to implement them using a Tessent Shell flow.
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Tip
The syntax for UDAs is exactly the same whether a custom algorithm is hard-coded 
(defined at design time) or soft-coded (defined at silicon test time).

Overview and Terminology
There is ample literature covering memory test in general, test algorithms, and memory fault 
coverage, so this section focuses only on the essential information.
A typical memory test usually applies a series of specific sequences across the entire memory 
array. A very simple March test is described as the following steps:

1. From the bottom of the memory to the top, write a background of <dataPattern>;

2. From bottom to top, read <dataPattern> and immediately write <inverseDataPattern>;

3. From bottom to top, read <inverseDataPattern> and immediately write <dataPattern>;

4. From bottom to top, read <dataPattern>.

The very same algorithm could also be written using this commonly-used compact syntax:

Simple March algorithm = ^{w0}, ^{r0w1}, ^{r1w0}, ^{r0};

The above algorithm is essentially split into four distinct phases, with each phase shown within 
braces. For each phase:

• The caret symbol (“^”) translates to “increasing address locations”, while a lowercase 
letter “v” (not shown) would imply “decreasing address locations”.

• The letter “r” stands for a memory read while “w” means a memory write.

• The “0” and “1” symbols respectively translate to “non-inverted data pattern” and 
“inverted data pattern” (not necessarily to logic 0 or 1 values).

The above description is very high-level. It does not state the exact data pattern used or the 
exact address locations to test. To be applied to an actual memory, the test algorithm would 
therefore need an initialization sequence specifying such information.

A typical Tessent MemoryBIST UDA can be described similarly; it includes an initialization 
section followed by the actual high-level algorithm. A custom algorithm description contains 
several test phases called instructions; each instruction consists of a given operation that is 
repeatedly applied until specific next conditions are met. At that point, the memory BIST 
controller proceeds to the next sequential instruction - that is, phase - and continues until the 
entire algorithm has been run.

Because a single memory BIST controller can test multiple memories in parallel, the default 
minimum and maximum address locations vary. Although the minimum address is normally an 
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all-zero value, the maximum address is usually derived from the highest possible bank, row, and 
column address segments reached by all BIST controller-tested memories.

Looking at the preceding example, one might therefore describe this algorithm as follows, 
which would more closely match the Tessent MemoryBIST language:

• instruction(w0) = operation: write, write_data: 000...000, address_counter: increment, 
until_address_equals: max_address;

• instruction(r0w1) = operation: read_modify_write, read_compare_data: 000...000, 
write_data: 111...111, address_counter: increment, until address_equals: max_address;

• instruction(r1w0) = operation: read_modify_write, read_compare_data: 111...111, 
write_data: 000...000, address_counter: increment, until address_equals: max_address;

• instruction(r0) = operation: read, read_compare_data: 000...000, address_counter: 
increment, until address_equals: max_address.

The following sections in this chapter expand the UDA concept in more detail.

Defining a Custom Algorithm
To successfully implement a UDA, first determine what the algorithm does. If its high-level 
description is available (from existing documentation or elsewhere), use it; otherwise try to 
break it down into smaller phases and for each, determine how the address counter and apply/
expect data registers behave.

Note
It is usually a bad idea to reverse-engineer a low-level algorithm description (such as the 
raw pattern output of a memory tester) and try to derive a higher-level algorithm from it. 

Such cycled sequences do not convey the algorithmic nature of memory tests very well. They 
also often contain hardware-specific optimizations or implementation shortcuts, making it very 
difficult to precisely duplicate using a memory BIST controller.

For any given target algorithm, analyze its various implicit test sub-phases and answer the 
following questions for each:

• At what address is the test phase starting (that is, bottom, top, or elsewhere)?

• In what direction is the address counter going (that is, incrementing, decrementing, 
idle)?

• Is it incrementing/decrementing over the entire address range or just across some 
specific address segments (that is: banks, rows or columns)?

• What is the increment/decrement value (for example: +/-1, +/-2, and so on, or something 
else)?
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• What memory operation(s) is (are) applied at any given address, before moving on to the 
next address location (for example: write, read, read-modify-write, write-read, no-op, 
and so on)?

• What data pattern is written (if any)? What data is expected to be read (if any)?

• Do address counters and data registers need to implement a particular physical-to-logic 
mapping (for example, a scrambling table)?

Once you have answers to the above questions, coding a UDA is a lot simpler. Many algorithm 
characteristics directly translate into Tessent MemoryBIST properties.
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Optimizing Custom Algorithms and Operation 
Sets

This section explains how to optimize Tessent MemoryBIST custom algorithms and operation 
sets by eliminating redundant memory accesses, which are sometimes introduced because of the 
requirement that each operation performed by the controller is at least two ticks long. Several 
properties are available in Tessent MemoryBIST to eliminate these redundancies, enabling a 
reduction in test time and an improvement of test quality for some memories. 
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Optimization Overview
The architecture of Tessent MemoryBIST is based on an architecture where each operation 
performed by the controller requires at least two cycles to run. In built-in operation sets like 
SYNC or SYNCWR, address counters, data registers, instruction pointer, and many other 
registers only increment every second clock cycle. This architecture simplifies timing closure 
significantly without sacrificing defect coverage.
Timing closure is simplified because most of the controller is working at half speed and 
synthesis and layout only have a few timing critical signals to concentrate on. From an at-speed 
defect coverage perspective, the only requirement for most documented fault models is to 
perform a read or write on a first memory location in a first clock cycle and perform another 
read or write to a second location in the next clock cycle. This is achieved at the boundary of the 
2-tick operations when the address changes.

For example, consider a March test phase such as R0W1. For each address, a “0” is first read 
and then a “1” is written. Using the ReadModifyWrite operation of the SYNC or SYNCWR 
operation set, this operation requires two clock cycles and the address counter is effectively 
clocked at half speed. However, at-speed coverage is achieved at the transition between the two 
address locations because a “1” is written at a first location and a “0” is read at a different 
location in consecutive clock cycles. This test is very stressful for the memory, especially if the 
two locations are performed in the same column.

The built-in operation sets were optimized for library algorithms, which are mainly based on 
ReadModifyWrite operations. However, these operation sets do not allow an efficient 
implementation of other algorithms in certain cases. Redundant memory accesses increase test 
time and some memories require the ability to change the address on more than two consecutive 
clock cycles to test their decoders adequately. Several properties are available in Tessent 
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MemoryBIST to create custom algorithms and operation sets eliminating these redundant 
memory accesses.

The following sections describe the OperationSet wrapper properties that are useful for 
eliminating redundant memory accesses in custom algorithms, and provide examples of how 
these properties can be used. Two groups of properties are described, the first of which enables 
modifying the address within an operation, and the second enables modifying the data pattern 
within an operation. These sections are followed by a discussion on the implications on 
diagnosis when using these properties. The final section provides a set of additional 
optimization recommendations to consider for improving custom operation sets.

Optimizing Properties Modifying the Address 
Within an Operation

Three properties allow a change of the address applied to the memory within an operation: 
column_address_count_enable, row_address_count_enable, and switch_address_register.
The Cycle/AdvancedSignals column_address_count_enable and row_address_count_enable 
properties are useful to advance the address counter on every clock cycle for fast initialization 
or complete readout of the memory. Figure 7-1 shows the relevant portions of a custom 
algorithm, and Figure 7-2 shows the corresponding operation set illustrating the use of these 
properties. The algorithm writes a checkerboard pattern using a “fast column” address sequence 
implemented with address register A and reads the pattern back using a “fast row” address 
sequence implemented with address register B. The checkerboard pattern is obtained by 
inverting the Write and Expect data with the least significant bit (LSB) of the column and row 
address bits.

Figure 7-1. Simple Algorithm Writing and Reading all Memory Locations

MemoryOperationsSpecification {
  Algorithm (FastWriteRead) {
    TestRegisterSetup {
      operation_set_select: MyCustomOpSet;
      AddressGenerator {
        AddressRegisterA {
          x1_carry_in: y1_carry_out;
          y1_carry_in: none;
        }
        AddressRegisterB {
          x1_carry_in: none;
          y1_carry_in: x1_carry_out;
        }
      }
      DataGenerator {
        load_write_data : all_zero;
        load_expect_data: all_zero;
        invert_data_with_column_bit: c[0];
        invert_data_with_row_bit : r[0];
      }
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    MicroProgram {
      Instruction (InitializeRAM) {
        branch_to_instruction: InitializeRAM;
        operation_select: Write2CellsFastY;
        AddressCommands {
          address_select: select_a;
          x1_address: increment;
          y1_address: increment;
        }
        DataCommands {
          write_data: data_reg;
        }
        NextConditions {
          x1_end_count: on;
          y1_end_count: on;
        }
      }

      Instruction (ReadRAM) {
        branch_to_instruction: ReadRAM;
        operation_select: Read2CellsFastX;
        AddressCommands {
          address_select: select_b;
          x1_address: increment;
          y1_address: increment;
        }
        DataCommands {
         expect_data: data_reg;
        }
        NextConditions {
          x1_end_count: on;
          y1_end_count: on;
        }
      }
    }
  }
}

The algorithm has two instructions, InitializeRAM and ReadRAM using operation 
Write2CellsFastY and Read2CellsFastX respectively. Each instruction runs until the last 
address of the memory is reached. When using the Write and Read operations of the built-in 
operation sets (SYNC or SYNCWR), this algorithm takes 2*2*N cycles, where N is the number 
of address locations, because the address registers only update at the end of the 2-cycle 
operations. However, the custom operation set of Figure 7-2 reduces the number of cycles to 
2*N. This is because the address register selected by the instruction updates in both the first and 
second clock tick of the selected operation, because of the presence of the 
column_address_count_enable and the row_address_count_enable properties in the first Cycle 
of operation Write2CellsFastY and Read2CellsFastX respectively.
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Figure 7-2. Example Operation Set Using row_address_count_enable and 
column_address_count_enable

MemoryOperationsSpecification {
  OperationSet (MyCustomOpSet) {
    …
    SignalPipelineStages {
      strobe_data_out: 1;
    }
    Operation (Write2CellsFastY) {
      Cycle {
        select: on;
        write_enable: on;
        read_enable: off;
        AdvancedSignals {
          column_address_count_enable: on; // Write fast column
        }
      }
      Cycle {
      }
    }

    Operation (Read2CellsFastX) {
      Cycle {
        select: on;
        write_enable: off;
        read_enable: on;
        AdvancedSignals {
          row_address_count_enable: on; // Read fast row
        }
        strobe_data_out: on;
      }
      Cycle {
        strobe_data_out: on;
      }
    }
  }
}

Note that these properties are “sticky” within an operation in that they retain their value (on or 
off) from one tick to the next unless explicitly set to the opposite value. The default is off at the 
beginning of an operation. Note that these operations need to be used with the appropriate 
address register (A and B respectively), whereas the built-in Write and Read operations are used 
with any address register.

For the majority of algorithms, the row and column increment/decrement value is 1. By default, 
Tessent MemoryBIST generates address registers that are optimized for this case and run at 
higher speed. Also, starting with version 2016.3, it is no longer necessary to code the algorithm 
using X0/Y0 address segments to benefit from optimized address registers. X0/Y0 address 
segments are automatically inferred as needed. This enhancement has several advantages. The 
same algorithm can be used for any memory configuration. Prior to the 2016.3 release, Y0 
address segments were not allowed for memories with no or only one column address bits. This 
limitation affected test time and complexity of the test plan for controllers containing a mix of 
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memories with different numbers of column address bits. Timing closure is now easier as the 
hardware is always configured to achieve the best performance.

If it is intended to use a row or column increment/decrement value of 2 or more in any custom 
algorithm, hard or soft-coded, the value of max_x0_segment_bits and max_y0_segment_bits 
need to be set to auto in the MemoryBist/Controller/AlgorithmResourceOptions wrapper of the 
DftSpecification. The optimized address registers are not used in this case and timing closure 
might be more difficult for high speed circuits.

The use of column_address_count_enable and row_address_count_enable properties assumes 
an even number of column and row addresses in a BIST controller step. This is never an issue 
for column addresses. For the case where the maximum number of rows in a step is determined 
by a memory with an odd number of rows, the number of rows is automatically increased by 
one for that step. This means that the memory is deselected whenever the address counter 
reaches the maximum row address. No intervention from the user is required to handle this 
situation.

There is an additional, related assumption to be aware of when coding custom operations using 
column_address_count_enable and row_address_count_enable with optimized address registers 
(for example, max_x0_segment_bits: 1 and max_y0_segment_bits: 1). These properties assume 
that the address at the start of the operation, and after execution of the operation, is Even if the 
AddressCommands property of the instruction is increment, and Odd, if decrement. The address 
sequence might be slightly different than the one expected if this assumption is not true. For 
example, consider the algorithm of Figure 7-3 and the associated operation set of Figure 7-4. 
The algorithm writes column bars in memory and reads the memory along diagonals. When 
initializing the memory and reading a memory diagonal, the address changes on every clock 
cycle.

The initialization of the memory is essentially identical to the previous example using the 
InitializeRAM instruction and Write2CellsFastY operation. Address register A is segmented the 
same way as well, counting fast column. The only difference related to the initialization is that 
the data pattern is inverted with the LSB of the column address to create column bars. This 
pattern causes the memory output to flip on every clock cycle when executing the 
ReadDiagonal_Inst instruction using the ReadDiagonal operation and address register B. 
Address register B is configured so that both the row address and column address can increment 
at the same time to read along diagonals. The column_address_count_enable and 
row_address_count_enable are both used in the operation so that address transitions occur on 
every clock cycle.

For the first diagonal, the address sequence is regular (R0C0, R1C1, R2C2, …) until reaching 
the last row. The row address counter wraps around to row address 0 to start the next diagonal. 
The column address at that time is determined by the ratio of the number of rows divided by the 
number of columns. The remainder of this division is guaranteed to be even by construction. 
However, the column address value is not important because it is overridden when executing 
instruction AddColumnOffset_Inst. This instruction does not perform any write or read to the 
memory but increments the column address of address register A that keeps track of the 
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diagonal number, and the result is copied back into address register B to provide the starting 
point of the next diagonal.

For the second diagonal, the column address is Odd, and the AddressCommands property is 
increment. This produces a broken diagonal pattern (R0C1, R1C0, R2C3, R3C2, …). Instead of 
incrementing by 1 on every cycle, the column address is decrementing by 1, then incrementing 
by 3, decrementing by 1, and so on. The behavior is similar for all diagonals starting at an odd 
column address such that all memory locations are read, and both the row and column addresses 
are changed on every clock cycle. Therefore, there is no loss of defect coverage due to this 
behavior. Note that regular diagonals are obtained if max_x0_segment_bits and 
max_y0_segment_bits are set to auto instead of 1, but optimized address registers can not be 
used in that case.

Figure 7-3. Fast Diagonal Algorithm

MemoryOperationsSpecification {
  Algorithm (FastDiagonal) {
    TestRegisterSetup {
      operation_set_select: FastDiagonalOpset;
      AddressGenerator {
        AddressRegisterA {
          x1_carry_in: y1_carry_out;
          y1_carry_in: none;
        }
        AddressRegisterB {
          x1_carry_in: none;
          y1_carry_in: none;
        }
      }
      DataGenerator {
        invert_data_with_column_bit : c[0]; // create column bars
      }
    }

    MicroProgram{
      Instruction ( InitializeRAM ) {
        branch_to_instruction: InitializeRAM;
        operation_select: Write2CellsFastY;
        AddressCommands {
          address_select: select_a;
          x1_address: increment;
          y1_address: increment;
        }
        DataCommands {
          write_data: data_reg;
        }
        NextConditions {
          x1_end_count: on;
          y1_end_count: on;
        }
      } // end instruction InitializeRAM
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      Instruction ( ReadDiagonal_inst ) {
        branch_to_instruction: ReadDiagonal_inst;
        operation_select: ReadDiagonal;
        AddressCommands {
          address_select: select_b;
          x1_address: increment;
          y1_address: increment;
        }
        DataCommands {
          expect_data: data_reg;
        }
        NextConditions {
          x1_end_count: on;
        }
      }

      Instruction ( AddColumnOffset_inst ) {
        branch_to_instruction: ReadDiagonal_inst;
        operation_select: NoOperation;
        AddressCommands {
          address_select: select_a_copy_to_b;
          x1_address: hold;
          y1_address: increment;
        }
        DataCommands {
          expect_data: data_reg;
        }
        NextConditions {
          y1_end_count: on;
          RepeatLoopA {   // Repeat algorithm with inverse data
            branch_to_instruction: InitializeRAM;
            Repeat1 {
              write_data_sequence: inverse;
              expect_data_sequence: inverse;
            }
          }
        }
      } // end instruction
    } // MicroProgram
  }
}
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Figure 7-4. Fast Diagonal Operation Set

MemoryOperationsSpecification {
  OperationSet (FastDiagonalOpset) {
  //
  //Pipeline strobe so that it can be specified in same cycle as read
  // enable and each operation can read two locations
    SignalPipelineStages {
      strobe_data_out: 1;
    }
    Operation (NoOperation) {
      Cycle {
        select: on;
      }
      Cycle {
      }
    } // end of operation (NoOperation)

    Operation (Write2CellsFastY) {
      Cycle {
        select: on;
        write_enable: on;
        AdvancedSignals {
         column_address_count_enable: on;
        }
      }
      Cycle {
      }
    } // end of operation (Write2CellsFastY)

    Operation (ReadDiagonal) {
      Cycle {
        select: on;
        write_enable: off;
        strobe_data_out: on;
        AdvancedSignals {
          column_address_count_enable: on;
          row_address_count_enable: on;
        }
      }
      Cycle {
        strobe_data_out: on;
      }
    } // end of operation (ReadDiagonal)
  } // end of operation set
}

The number of diagonals is the same as the number of column addresses. This is reflected in the 
NextConditions wrapper of the AddColumnOffset_Inst instruction. All diagonals are re-tested 
using the inverse data pattern, as indicated in the RepeatLoopA wrapper of the same instruction.

The Cycle/AdvancedSignals switch_address_register property is useful in algorithms where 
several memory operations are performed on a reference cell and its neighbors. An example of 
such an algorithm is the LVBitSurroundDisturb Algorithm, where each write to a neighbor is 
followed by a read to the reference cell. The library algorithm currently uses the SYNC 
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operation set so that two operations are required to write to a neighbor and read the reference 
cell. Both operations are two cycles long, resulting in half of the memory accesses being 
redundant. The switch_address_register property enables combining the two instructions into a 
single instruction through making use of a specialized operation. In Figure 7-5, the instruction 
WRITE_AWAY_READ_HOME_INST1 replaces instructions WRITE_AWAY_CELL1 and 
READ_HOME_CELL1 of the original algorithm. The instruction makes use of the operation 
called WRITE_AWAY_READ_HOME. In the first clock cycle, the write to the neighbor is 
performed using the data specified by the write_data property of the instruction. In the second 
cycle, the read to the reference is performed and compared to the data specified by the 
expect_data property of the instruction. To continue with the optimization, 
WRITE_AWAY_CELL2 and READ_HOME_CELL2 of the original algorithm are combined 
in the same manner. Note that RepeatLoopB in READ_HOME_CELL2 must now point to 
WRITE_AWAY_READ_HOME_INST1 instead of WRITE_AWAY_CELL1.

Figure 7-5. Example Usage for the switch_address_register Property

MemoryOperationsSpecification {
  Algorithm (LVBitSurroundDisturb_optimized) {
  …
    MicroProgram {
    …
      Instruction (WRITE_AWAY_READ_HOME_INST1) {
        branch_to_instruction: WRITE_AWAY_READ_HOME_INST1;
        operation_select: WRITE_AWAY_READ_HOME;
        AddressCommands {
          address_select: select_b;
        }
        DataCommands {
          write_data: inverse_data_reg;
          expect_data: data_reg;
        }
        AddressCommands {
          x1_address: hold;
          y1_address: increment;
        }
        CounterCommands {
          counter_a: increment;
        }
        NextConditions {
          counter_a_end_count: On;
        }
      }
    }
    …
  }
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  OperationSet (MyCustomOpSet) {
    …
    SignalPipelineStages {
      strobe_data_out: 1;
    }
    …
    Operation (WRITE_AWAY_READ_HOME) {
        Cycle {
          select: on;
          write_enable: on;
        }
        Cycle {
          write_enable: off;
          AdvancedSignals {
            switch_address_register: on;
          }
          // Strobe delayed with SignalPipelineStages/StrobeDataOut: 1;
          strobe_data_out: on;
        }
    }
  }
}

Optimizing Properties Modifying the Data Within an 
Operation

The Cycle/AdvancedSignals wrapper invert_write_data and invert_expect_data properties are 
useful for modifying the data pattern within an operation when several memory accesses are 
performed to the same address as part of this operation.
For example, consider the R0W1R1 and R1W0R0 sequences used in a custom algorithm. A 
value is read in the first clock cycle but the opposite value is read in the third clock cycle. 
Because only one DataCommands/expect_data property can be specified in a given instruction, 
the invert_expect_data property must be used in the selected operation to adjust the expected 
value, as shown in Figure 7-6. Note that invert_expect_data is not “sticky”, contrary to the 
majority of other properties. That is, it is only on in the cycles where it is explicitly set to on. 
The invert_expect_data property must be specified in the same cycle as the corresponding 
strobe_data_out.

Figure 7-6. Example Illustrating the use of invert_expect_data

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    Operation (ReadWriteRead) {
      Cycle {
        write_enable: off;
        // First read operation. Expect data specified by 
        // expect_data of instruction
        read_enable: on;
        // Strobe delayed with SignalPipelineStages{strobe_data_out:1;}
        strobe_data_out: on;
      }
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      Cycle {
      // Write operation. Write data specified by instruction write_data
      // is the inverse of the value specified by instruction expect_data
        write_enable: on;
        read_enable: off;
      }

      Cycle {
        write_enable: off;
        // Second read operation. Expect data specified by expect_data
        // is inverted using the invert_expect_data property
        read_enable: on;
        AdvancedSignals {
          invert_expect_data: on;
        }
        strobe_data_out: on;
      }
    }
  }
}

Another example is the W0W1W0W1R1 sequence used in a custom algorithm. Multiple writes 
of different values are performed in consecutive cycles. Because only one DataCommands/
write_data property can be specified in a given instruction, the invert_write_data property must 
be used in the selected operation to adjust the write value as shown in Figure 7-7. Note that 
invert_write_data is also not sticky.
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Figure 7-7. Example Illustrating the use of invert_write_data

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    Operation (WriteToggleRead) {
      Cycle {
        select : on;
        write_enable : on;
      }
      Cycle {
        AdvancedSignals {
          invert_write_data: on;
        }
      }
      Cycle {
        AdvancedSignals {
          invert_write_data: off;
        }
      }
      Cycle {
        AdvancedSignals {
          invert_write_data: on;
        }
      }
      Cycle {
        write_enable: off;
        strobe_data_out: on; //Early strobe is pipelined
      }
    }
  }
}

Diagnosis Considerations
When using the properties described in the two previous sections, strobes probably occur in 
consecutive cycles. 
For example, when applying the ReadWriteRead operation of Figure 7-6 “Example illustrating 
the use of invert_expect_data” in an algorithm testing several memory locations, strobes occur 
in consecutive cycles at every address transition. In such a case, there is one limitation 
concerning the operation of Stop-On- Nth-Error.

In the PatternsSpecification used to generate testbenches and test patterns, the 
DiagnosisOptions/StopOnErrorOptions/data_compare_time_slots property needs to be set to 
even or odd when running in Stop-On-Nth-Error mode to avoid obtaining inconsistent 
diagnostic results if errors are occurring in consecutive clock cycles. This requirement means 
that the test must be run twice to extract all memory failures. This trade-off simplifies timing 
closure and improves the performance of the Stop-On-Nth-Error mode.
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Optimization Recommendations
The following are optimization recommendations for algorithms, operation sets and relevant 
memory library file properties.

Minimize the Use of X0/Y0 Segmentation
Before the 2016.3 release, it was necessary to explicitly segment the row and column address 
register in the algorithm for optimizing controller speed when using row_address_count_enable 
and column_address_count_enable properties in the selected operation set. The disadvantage of 
this method is that three versions of the same algorithm were required to handle memories with 
0, 1, or 2 or more column address bits respectively. This requirement is no longer necessary and 
a single algorithm can now be used. The software automatically implements the segmentation 
as needed for each type of memory. Refer to the “Optimizing Properties Modifying the Address 
Within an Operation” section for further information. 

Use Unsized Constants or Variables
• Set the least significant bit of the bank address in AddressRegisterA or 

AddressRegisterB for any memory configuration:

AddressRegisterA {
  load_bank_address: b1;
}

As opposed to:

AddressRegisterA {
  load_bank_address: 3'b001;
}

• Set the maximum count value of CounterA:

TestRegisterSetup {
  load_counter_a_end_count: num_bank_address_bits;
}

As opposed to:

TestRegisterSetup {
  load_counter_a_end_count: 3;
}

Standardize and Minimize the Size of Data Registers
The majority of algorithms only require two bits for write and expect data registers. The data is 
replicated as needed for each memory. However, the default register size is chosen to be the size 
of the largest data path of all memories attached to the controller when using a soft 
programmable controller or hard-coded custom algorithms. This increases controller area and 
routing congestion between the controller and the memories unnecessarily. 
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The DftSpecification AlgorithmResourceOptions/data_register_bits property needs to be 
explicitly set when generating the controller in that case. The value of this property should not 
be higher than the length of any unique pattern specified by the DataGenerator load_write_data 
and load_expect_data properties in any of the algorithms. Use of the symbolic values all_zero, 
all_one, and so on, for these properties ensures this recommendation, otherwise the 
considerations outlined in the following examples apply. Also note that you do not need to 
specify these properties if the pattern is all 0s, which is the default setting.

Example 1
The following DftSpecification and Algorithm wrapper settings:

AlgorithmResourceOptions {
  data_register_bits: N;
}

DataGenerator {
}

are equivalent to the following settings:

AlgorithmResourceOptions {
}

DataGenerator {
  load_expect_data: N'b00..00;
  load_write_data:  N'b00..00;
}

Where N represents the bit width of the memory data path. 

Example 2
When the following DftSpecification and Algorithm settings:

AlgorithmResourceOptions {
  data_register_bits: M;  // Where M < N 
}

DataGenerator {
  load_expect_data: N'b01..0101;
  load_write_data:  N'b01..0101;
}

are replaced with these settings:

AlgorithmResourceOptions {
}

DataGenerator {
  load_expect_data: M'b01..0101;
  load_write_data:  M'b01..0101;
}
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The pattern specified in the algorithm is truncated and the intent of the algorithm is preserved.

Example 3
When the following DftSpecification and Algorithm settings:

AlgorithmResourceOptions {
  data_register_bits: M;  // Where M > N 
}

DataGenerator {
  load_expect_data: N'b01..0101;
  load_write_data:  N'b01..0101;
}

are replaced with these settings:

AlgorithmResourceOptions {
}

DataGenerator {
  load_expect_data: M'b01..0101;
  load_write_data:  M'b01..0101;
}

The pattern specified in the algorithm is padded with 0s and the intent of the algorithm is NOT 
preserved.

Use a Single Operation Set for All Algorithms
It is more efficient to develop a common operation set for all algorithms applicable to certain 
memory types, such as synchronous RAM, ROM, DRAM, and CAM. This ensures consistency 
in the implementation of common operations, such as ReadModifyWrite, and provides some 
area reduction. This also provides more flexibility when writing soft algorithms that were not 
originally available at the time that the controller was generated. Operation sets cannot be 
modified after the controller is generated, and only a single operation set can be specified when 
executing any algorithm. Note that Siemens EDA now provides a general operation set 
applicable to more than 50 library algorithms. This operation set can be augmented, if needed, 
for new algorithms requiring specialized operations. 

Use One of SMarchCHKB* Library Algorithms as Default
Each of the SMarchCHKB* algorithms is actually a combination of algorithms that have been 
developed over the past 20 years. They have special properties that are not applicable to custom 
algorithms.

• Application to multi-port memories

The algorithms have been designed to be applied to both single- and multi-port 
memories in parallel, while testing multi-port specific faults.

• Automation of Parallel Static Retention Testing
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Pattern generation is greatly simplified because the algorithm is automatically split into 
the three phases (StartToPause, PauseToPause, PauseToEnd) and test patterns are 
generated with instructions for the test engineer. Each phase only includes the algorithm 
instructions that are essential to the retention test to optimize test time.

• Checkerboard pattern application

The data pattern is automatically adjusted to the particular memory configuration to 
apply the proper checkerboard pattern required for performing specialized tests, such as 
bit line shorts or coupling.

Use the Physical Data Map Correctly
It is usually not necessary to provide a PhysicalDataMap wrapper. There are a few common 
mistakes that might result in a lower quality test or significant area increase of the memory 
interface.

• Inversion based on column address c[0]

As an example, Data[0]: d[0] xor c[0], which indicates each column is mirrored with 
respect to its neighbors. This mapping should not be specified for an SRAM. By default, 
SMarchCHKB* library algorithms assume this inversion is present for an SRAM, and 
applies the correct data pattern based on the effective value of BitGrouping, which is 
typically “1” for memories with column address bits and “N” for memories without. 
However, an incorrect pattern is applied if the PhysicalDataMap wrapper contains the 
equation shown in this example. 

• Inversion of data for data bits implemented in different sub-arrays 

As an example, for a memory with N data bits implemented as two sub-arrays of N/2 
bits, the following PhysicalDataMap wrapper should not be used:

PhysicalDataMap {
  Data[0] : d[0];
  Data[1] : d[1];
  ...
  Data[N/2 - 1] : d[N/2 - 1];
  Data[N/2] : ~d[N/2];
  Data[N/2 + 1] : ~d[N/2 + 1];
  ...
  Data[N-1] : ~d[N-1];
}

This usage causes the addition of unnecessary logic. The default data mapping does not 
result in any reduction of the fault coverage.
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Optimization Benefits
Following the optimization recommendations outlined in this section enables the designer to 
realize significant advantages:

• Simplification of pattern generation, as it is no longer necessary to know the memory 
configuration to select the appropriate algorithm

• Reduction in the number of scan operations necessary to select the algorithms, as it is no 
longer necessary to operate in freeze_step mode. The same algorithm can be applied to 
all controller steps

• Consistency and simpler maintenance of the algorithms

• Reduction of the MemoryBIST logic area requirements
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Example Algorithm: March C- Algorithm
A March C- algorithm can be generically described as follows:

1. Write background of D-data incrementing from address minimum to address maximum.

2. Read D-data and write Dbar-data incrementing from address minimum to address 
maximum.

3. Read Dbar-data and write D-data incrementing from address minimum to address 
maximum.

4. Read D-data and write Dbar-data decrementing from address maximum to address 
minimum.

5. Read Dbar-data and write D-data decrementing from address maximum to address 
minimum.

6. Read D-data decrementing from address maximum to address minimum.

This basic algorithm is well-known in the memory test field; one of its variants can be described 
in standard notation syntax as follows:

Note that in the preceding algorithm variant, phases corresponding to steps 1 and 6 show arrows 
pointing both up and down; these phases can run either way. For simplicity, this example still 
assumes “up” and “down” directions for steps 1 and 6 (respectively).

Coding the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
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Coding the Algorithm
Coding of the algorithm involves setting up the initial MBIST controller register configuration, 
development of the microprogram wrapper and lastly, incorporating any algorithm 
optimizations that may be needed.
TestRegisterSetup Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
MicroProgram Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Algorithm Optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

TestRegisterSetup Wrapper
The TestRegisterSetup wrapper determines the initial configuration (setup) of an MBIST 
controller’s registers. To specify it, first answer the following key algorithm questions:

• What library (or possibly custom) operation set is to be used? [Answer: SyncWR]

• How does the address counter count (for example, column or row first)? [Answer: Row 
first]

• What default write and expect data pattern is to be used? [Answer: All zeros]

The test register setup portion of this algorithm would therefore look like this (line numbers 
added to the left for reference):

1 MemoryOperationsSpecification {
2   Algorithm (MarchCMinus){
3     TestRegisterSetup {
4       operation_set_select : SyncWR;
5       AddressGenerator {
6         AddressRegisterA {
7           y1_carry_in : x1_carry_out;
8           x1_carry_in : none;
9         }
10       }
11       DataGenerator {
12         load_write_data  : all_zero;
13         load_expect_data : all_zero;
14       }
15     }
16     MicroProgram {
17     }
18   }
19 }

Line 4 in the preceding example indicates the operation set from which you want to choose 
operations. Lines 6-9 configure address register “A” to count fast rows and lines 12-13 specify 
the intended data pattern.
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MicroProgram Wrapper
The MicroProgram wrapper represents the actual test algorithm. For each algorithm step, 
answer the following questions:

• What specific memory BIST operation is applied, from the selected operation set?

• Do the address segments decrement, hold, or increment?

• If appropriate, what data pattern should be written or observed?

• When should the algorithm advance to its next step or phase?

Procedure
1. The MBIST controller first writes the data pattern (zeros for example) from address min 

to address max:

1 MemoryOperationsSpecification {
2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7         operation_select : Write;
8         AddressCommands {
9           x1_address : increment;
10           y1_address : increment;
11         }
12         DataCommands {
13           write_data : data_reg;
14         }
15         NextConditions {
16           x1_end_count : on;
17           y1_end_count : on;
18         }
19       }
20     }
21   }
22 }

In the preceding example, the very first algorithm instruction word is arbitrarily named 
“M0_W0”; it indicates this is step zero of a March algorithm and this step writes zeros 
across the entire memory.

Line 7 indicates that memory BIST must repeatedly apply the “write” operation. Lines 
9-10 specify that after every write application, a column or row increment (or both) 
should occur. Line 13 implies that MBIST should write the data_reg value (zeros, for 
example) to the memory.

Lines 15-18 state that when row and column address segments both reach their 
maximum values (or “end count”), the algorithm should then move on to the next step 
(or “instruction”).
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Note
Tessent MemoryBIST uses “post-increment”-style address counters. Any memory 
operation is therefore fully run before address counters change; the next address 

becomes effective only after the selected operation’s last clock tick.

If an address segment increments and reaches its maximum value, it wraps around and 
rolls back to its minimum value. Conversely, a decrementing address segment reaching 
its minimum value wraps around to its maximum value.

This algorithm phase effectively writes zeros across the entire memory array. Once it 
reaches the top of the memory, it performs one last write and then wraps around to the 
bottom of the memory (that is its minimum address).

2. This part of the March C- algorithm can be written as follows:

1 MemoryOperationsSpecification {
2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7       }
8       Instruction (M1_R0W1) {
9         operation_select : ReadModifyWrite;
10         AddressCommands {
11           x1_address : increment;
12           y1_address : increment;
13         }
14         DataCommands {
15           write_data : inverse_data_reg;
16           expect_data : data_reg;
17         }
18         NextConditions {
19           x1_end_count : on;
20           y1_end_count : on;
21         }
22       }
23     }
24   }
25 }

Following the very same methodology used with step 1, line 8 now indicates that zeros 
are expected to be read from the memory and ones are written to it. Lines 15-16 thus 
properly reflect the data to write and expect.

Because the algorithm reads and then writes each and every memory location, the 
selected operation (on line 9) is chosen to be read-modify-write. After going through all 
address locations, the next algorithm instruction is selected (as indicated by lines 19-20).

3. This step turns out to be the same as step 2, except for its write and expect data patterns 
(which are the opposite). It can, therefore, be written as follows:

1 MemoryOperationsSpecification {
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2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7       }
8       Instruction (M1_R0W1) {
9       }
10       Instruction (M2_R1W0) {
11         operation_select : ReadModifyWrite;
12         AddressCommands {
13           x1_address : increment;
14           y1_address : increment;
15           inhibit_last_address_count : on; // <= Note this
16         }
17         DataCommands {
18           write_data : data_reg;
19           expect_data : inverse_data_reg;
20         }
21         NextConditions {
22           x1_end_count : on;
23           y1_end_count : on;
24         }
25       }
26     }
27   }
28 }

Line 15 in the preceding example requires additional explanations.

Recall that the next step (step 4) performs memory operations in a decrementing address 
order fashion. Given that the memory BIST controller uses post-increment address 
counters, it would normally complete step 3 with a read-modify-write operation 
performed at the maximum memory address, and then roll back or wrap around to the 
minimum address location.

However, because step 4 is about to be performed with decrementing address pointers, a 
method is needed to instruct the MBIST controller to effectively hold or stop at the top 
of the memory, after completing its last memory operation of step 3. The 
inhibit_last_address_count property achieves this purpose; it prevents the address 
segments from wrapping around when a minimum or maximum address is reached.

Tip
As a rule of thumb, use the inhibit_last_address_count property whenever the next 
immediate algorithm step (instruction) modifies the addressing direction.

The next step starts from the top of the memory - that is, at its maximum address.

4. This phase of the algorithm is just like step 2, however, it is performed with 
decrementing (instead of incrementing) address segments. At this point, you may 
already know the description:

1 MemoryOperationsSpecification {
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2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7       }
8       Instruction (M1_R0W1) {
9       }
10       Instruction (M2_R1W0) {
11       }
12       Instruction (M3_R0W1) {
13         operation_select : ReadModifyWrite;
14         AddressCommands {
15           x1_address : decrement;
16           y1_address : decrement;
17         }
18         DataCommands {
19           write_data : inverse_data_reg;
20           expect_data : data_reg;
21         }
22         NextConditions {
23           x1_end_count : on;
24           y1_end_count : on;
25         }
26       }
27     }
28   }
29 }

Note that nothing special needs to be done about the next conditions and end count 
properties with decrementing address segments. Tessent MemoryBIST considers the 
step to be completed when the final address location is the minimum address and 
address segments decrement.

5. This phase of the algorithm is just like step 3 but uses decrementing address segments:

1 MemoryOperationsSpecification {
2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7       }
8       Instruction (M1_R0W1) {
9       }
10       Instruction (M2_R1W0) {
11       }
12       Instruction (M3_R0W1) {
13       }
14       Instruction (M4_R1W0) {
15         operation_select : ReadModifyWrite;
16         AddressCommands {
17           x1_address : decrement;
18           y1_address : decrement;
19         }
20         DataCommands {
21           write_data : data_reg;
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22           expect_data : inverse_data_reg;
23         }
24         NextConditions {
25           x1_end_count : on;
26           y1_end_count : on;
27         }
28       }
29     }
30   }
31 }

Contrary to step 3, no inhibit_last_address_count property is needed in the preceding 
phase. The very next (and final) algorithm step is also run in a decrementing address 
order, so the BIST controller is allowed to roll back to the top once it completes this 
phase.

6. This final phase performs reads across the entire array:

1 MemoryOperationsSpecification {
2   Algorithm (MarchCMinus) {
3     TestRegisterSetup {
4     }
5     Microprogram { 
6       Instruction (M0_W0) {
7       }
8       Instruction (M1_R0W1) {
9       }
10       Instruction (M2_R1W0) {
11       }
12       Instruction (M3_R0W1) {
13       }
14       Instruction (M4_R1W0) {
15       }
16       Instruction (M5_R0) {
17         operation_select : Read;
18         AddressCommands {
19           x1_address : decrement;
20           y1_address : decrement;
21         }
22         DataCommands {
23           expect_data : data_reg;
24         }
25         NextConditions {
26           x1_end_count : on;
27           y1_end_count : on;
28         }
29       }
30     }
31   }
32 }

The BIST controller completes the test by reading the last memory address location (that 
is at the bottom of the memory) and rolling back to the top location. Afterwards, test 
results are shifted out. Assuming everything went fine, no comparison error is reported 
in the test patterns.
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Algorithm Optimization
The whole March C- algorithm previously described is implemented as six discrete steps and 
defines six separate MBIST instruction wrappers. While this example makes it easy to establish 
a 1:1 step <=> instruction correspondence, its implementation would, however, also require six 
separate microcode words to be available in a soft-programmable MBIST controller. This may 
be more than what is available in a silicon device.
Tessent MemoryBIST supports the use of RepeatLoopA/RepeatLoopB wrapper loops, making 
it simple to re-run a previously-defined algorithm portion. Steps 3, 4, and 5 could, therefore, be 
eliminated by repeating step 2 with only minor modifications. For more information, refer to the 
Instruction/NextConditions wrapper description for the RepeatLoopA and RepeatLoopB 
wrapper properties.
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Advanced Multi-Port Testing With a UDA
The information in this section provides examples of custom algorithms and operation sets that 
can be applied to multi-port memories that have features not adequately covered by library 
algorithms, or for diagnosis purposes.
Tessent MemoryBIST supports several properties enabling you to perform operations on 
inactive ports of multi-port memories in parallel with the read/write operations dictated by the 
algorithm. These concurrent operations are controlled by the selected operation set. The 
sections listed below provide several examples showing the flexibility of concurrent operations, 
and how they can be used in custom algorithms to implement test/diagnosis sequences that 
might be unique to certain memory configurations or features.

Fast Test Sequences Based on SyncWRvcd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Pseudo Concurrent Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Concurrent Write to the Reference Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Fast Test Sequences Based on SyncWRvcd
The examples outlined in this section are used to generate test sequences that apply long bursts 
where the address and data change on every clock cycle, while testing for potential interference 
between ports of a 1R1W memory. The custom algorithms use the library operation set 
syncWRvcd. The first example uses 0s and 1s as data patterns for controllers equipped with data 
registers having less than 8 bits, while pseudo-random patterns are used in the second example 
when larger data registers are available. Other data patterns can be used as needed.
The first instruction (WRITE_BACKGROUND) of the custom algorithm of Figure 7-8 is 
writing column stripes in a special way. Address register A is segmented so that the reference 
address is incremented by 2 instead of 1. The selected operation, 
WRITEREAD_COLUMN_SHADOWREADWRITE, causes a value of all 0s to be written to 
all even addresses using normal writes and a value of all 1s to be written to all odd addresses 
using concurrent writes. Refer to Figure 7-9 for a description of the instruction. The address 
sequence realized for the write port is 0,1,2,3,…, N-2, N-1. The address of the read port is 
derived from the address on the write port by inverting the least significant bit, for example 
1,0,3,2,…, N-1, N-2. Both address and data change on every clock cycle on both the read and 
write port.

The second instruction (READMODIFYWRITE_CONCWRITEREAD) of the algorithm uses 
the same method to generate the address for reading back the column stripes. The difference is 
the address on the read port is 0,1,2,3,…, N-2, N-1 and the one on the write port is 1,0,3,2,…, 
N-1, N-2. The selected operation, 
READMODIFYWRITE_COLUMN_SHADOWWRITEREAD, implements a concurrent write 
during the read of the first cycle and the result is compared in the second cycle, where a 
concurrent read and normal write are also performed. Refer to Figure 7-9 for a description of the 
instruction. The result of the concurrent read at odd addresses is not compared in the first 
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iteration of the algorithm. This is completed in subsequent iterations where the LSB of address 
register A is set. The “Pseudo Concurrent Write” section shows how to compare the result of 
concurrent read operations in fewer iterations.

The third instruction (READ_BACKGROUND) uses address register B to read all addresses to 
verify that none of the memory cells were corrupted by the concurrent operations. The address 
changes on every other clock cycle when executing this instruction. This instruction also sets up 
loop A to repeat the first three instructions using the inverse data pattern.

The fourth instruction (INCR_COLUMN_ADDRESS) sets the LSB of address register A so 
that the reference address sequence starts at 1, but still increments by 2. This enables the 
comparison of the read results from odd addresses, performed concurrently with writes at even 
addresses that were not done in previous iterations.

Figure 7-8. Fast Test Sequence With Simple Data Patterns

MemoryOperationsSpecification {
  Algorithm ( ConcurrentReadWriteColumn ) {
    TestRegisterSetup {
      AddressGenerator {
        AddressRegisterA {
          number_y0_bits : 1;
          x1_carry_in    : y1_carry_out;
          y1_carry_in    : none;
          Y0CarryIn      : none;
        }
        AddressRegisterB {
          x1_carry_in : y1_carry_out;
          y1_carry_in : none;
        }
      }

      DataGenerator {
        invert_data_with_row_bit    : none;
        invert_data_with_column_bit : c[0];
      }
      operation_set_select : SyncWRvcd;
    }
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    MicroProgram {
      Instruction ( WRITE_BACKGROUND ) {
        operation_select      : WRITEREAD_COLUMN_SHADOWREADWRITE;
        branch_to_instruction : WRITE_BACKGROUND;
        AddressCommands {
          address_select : select_a;
          x1_address     : increment;
          y1_address     : increment;
          y0_address     : hold;
        }
        DataCommands {
          write_data : zero;
        }
        NextConditions {
          x1_end_count : on;
          y1_end_count : on;
        }
      }

      Instruction ( READMODIFYWRITE_CONCWRITEREAD ) {
        operation_select      : READMODIFYWRITE_COLUMN_SHADOWWRITEREAD;
        branch_to_instruction : READMODIFYWRITE_CONCWRITEREAD;
        AddressCommands {
          address_select : select_a;
          x1_address     : increment;
          y1_address     : increment;
        }
        DataCommands {
          expect_data : zero;
          write_data  : zero;
        }
        NextConditions {
          x1_end_count : on;
          y1_end_count : on;
        }
      }
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      Instruction ( READ_BACKGROUND ) {
        operation_select      : READ;
        branch_to_instruction : READ_BACKGROUND;
        AddressCommands {
          address_select : select_b;
          x1_address     : increment;
          y1_address     : increment;
        }
        DataCommands {
          expect_data : zero;
          write_data  : zero;
        }
        NextConditions {
          x1_end_count : on;
          y1_end_count : on;
          RepeatLoopA {
            branch_to_instruction : WRITE_BACKGROUND;
              Repeat1 {
                write_data_sequence : inverse;
                expect_data_sequence: inverse;
              }
          }
        }
      }
    }
  }
}

    Instruction ( INCR_COLUMN_ADDRESS ) {
      operation_select      : NOOPERATION;
      branch_to_instruction : WRITE_BACKGROUND;
      AddressCommands {
        address_select : select_a;
        x1_address     : hold;
        y1_address     : hold;
        y0_address     : increment;
      }
      NextConditions {
        y0_end_count   : on;
      }
    }
  }
}

For controllers with data registers of 8 bits or more, it is possible to replace the 1s and 0s data 
pattern with a pseudo-random pattern. Only three small changes are required to the algorithm 
shown above in Figure 7-8:

1. Specify an arbitrary seed in the DataGenerator wrapper using load_write_data and 
load_expect_data. The value must be the same for both data registers, and different than 
all 0s.

2. Modify the first instruction to make use of the pseudo-random data generator by 
specifying write_data : data_reg_prdg.



Tessent™ MemoryBIST User’s Manual, v2022.4406

Using Tessent User-Defined Algorithms
Fast Test Sequences Based on SyncWRvcd

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Modify the second instruction to generate the corresponding expected data value by 
specifying expect_data : data_reg_prdg.

Another variation of the algorithm consists of using operation 
READMODIFYWRITE_ROW_SHADOWWRITEREAD to perform concurrent operations on 
adjacent rows instead of adjacent columns. Column stripes are replaced by row stripes. The row 
address counter is segmented so that it increments by 2 instead of 1, and the column address 
counter is not segmented in this case. Note that this variation of the algorithm works on 
memories with or without column address bits. This is not the case of the original algorithm.

Figure 7-9 shows the main operations of the syncWRvcd operation set used by the custom 
algorithm. Note that properties described in a Cycle wrapper are “sticky”, meaning that they 
retain their value (on or off) from one cycle to the next unless explicitly set to the opposite 
value. The only exception is strobe_data_out, which must be specified for each cycle requiring a 
compare.

Figure 7-9. Portion of syncWRvcd Library Operation Set

MemoryOperationsSpecification {
  OperationSet (syncWRvcd) {
  …
    Operation (READMODIFYWRITE_COLUMN_SHADOWWRITEREAD) {
      Cycle {
        read_enable  : on;
        write_enable : off;
        ConcurrentPortSignals {
          write_column_address : on;
          write_data_polarity  : inverse;
          read_enable          : on;
        }
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        ConcurrentPortSignals {
          read_enable         : on;
          read_column_address : on;
        }
        strobe_data_out : on;
      }
    }
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    Operation (READMODIFYWRITE_ROW_SHADOWWRITEREAD) {
      Cycle {
        read_enable  : on;
        write_enable : off;
        ConcurrentPortSignals {
          write_row_address   : on;
          write_data_polarity : inverse;
          read_enable         : on;
        }
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        ConcurrentPortSignals {
          read_enable      : on;
          read_row_address : on;
        }
        strobe_data_out : on;
      }
    }

    Operation (WRITEREAD_COLUMN_SHADOWREADWRITE) {
      Cycle {
        read_enable  : off;
        write_enable : on;
        ConcurrentPortSignals {
          read_enable         : on;
          read_column_address : on;
        }
      }
      Cycle {
        read_enable  : on;
        write_enable : off;

        ConcurrentPortSignals {
          write_column_address : on;
          write_data_polarity  : inverse;
          read_enable          : on;
          read_column_address  : on;
        }
      }
    }
  }
}

Pseudo Concurrent Write
The result of concurrent read operations are not compared to an expected value when using 
library operation sets. However, it is possible to do so by using custom operation sets and 
provide the additional observation capability on a read port by performing a concurrent read 
operation while performing an algorithm write.
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This type of operation is called a “pseudo concurrent write”, and provides additional capability 
for the following memory configurations:

• 2R2W — supporting concurrent write

• nRmW, where n ≠ m — not supporting concurrent write

The principle is the same for both cases. A strobe is added to compare the result of a concurrent 
read operation performed during an algorithm write. The logical port used for reading is 
different than the one used for writing, but are part of the same test port. Note that memory 
configurations including any number of RW ports do not meet this criterion, and the pseudo 
concurrent write concept is not applicable. This is why it is not used in library operation sets and 
algorithms.

Figure 7-10 shows an example of an operation implementing pseudo concurrent write. A read is 
performed in the first cycle at the reference address controlled by the algorithm, and the result 
compared to the value specified by the algorithm expect_data property. In the second cycle, a 
write is performed at the reference address at the same time a concurrent read is performed on 
all inactive read ports. The output of the logical read port that is part of the current test port is 
compared. In this example, the expected value is the inverse of the value specified by the 
expect_data property because of the invert_expect_data property being set to on.

Figure 7-10. Pseudo Concurrent Write Example

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    SignalPipelineStages {
      strobe_data_out): 1; // Delay strobe by 1 for synchronous memories
    …
    }
    Operation (READ_WRITE_CONCREAD) {
      Cycle {
        read_enable     : on;
        write_enable    : off;
        strobe_data_out : on;
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        AdvancedSignals {
          invert_expect_data : on;
        }
        ConcurrentPortSignals {
          read_enable      : on;
          read_row_address : on;
        }
        strobe_data_out : on;
      }
    }
  }
}
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This operation can be used for all memories of configuration nRmW with n ≠ m, which are not 
supporting concurrent write. The subset of port combinations covered by the pseudo concurrent 
write capability are indicated within the TSDB 
<design_name>_<design_id>_tessent_mbist_c1.generation.log file, which contains a section 
describing the composition of test ports for a memory. This file is located in the following 
TSDB folder:

tsdb_outdir/instruments/<design_name>_<design_id>_mbist.instrument

As an example, for a 2R3W memory, the test ports could be defined as follows:

Test Port          Logical Read/Write Ports
---------          ------------------------
0                  R1 / W1
1                  R2 / W2
2                  R1 / W3

The composition of the test ports is sensitive to the order of reference of logical ports in the 
memory TCD file. In the example above, logical port R1 was referenced before R2 and this is 
why it is used twice. The order can be modified to take into account the physical layout of the 
memory. It might not be possible to test all port combinations of interest using the pseudo 
concurrent write capability but the concurrent read operations without compare are always 
applicable and provide the same coverage as long as the location is read and its value compared 
before being written again. This could happen in the current or subsequent algorithm phase.

Note that all possible port combinations can be covered for nR1W and 2R2W memories. In the 
second case, pseudo concurrent write operations are applied in addition to the concurrent write 
operations already supported by the library operation set syncWRvcd. The previous example of 
Figure 7-10 is modified to illustrate this in Figure 7-11. The second tick is identical and 
exercises the combination of a read port with the write port of a same test port. A concurrent 
write is added in the first tick to exercise the combination of the same read port with the second 
write port. The other two combinations are exercised when executing the algorithm on the 
second test port.
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Figure 7-11. Combining Pseudo Concurrent Write and Concurrent Write 
Operations Example

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    SignalPipelineStages {
      strobe_data_out): 1; // Delay strobe by 1 for synchronous memories
      …
    }
    Operation (READ_CONCWRITE_WRITE_CONCREAD) {
      Cycle {
        read_enable     : on;
        write_enable    : off;
        AdvancedSignals {
          invert_write_data : on;
        }
        ConcurrentPortSignals {
          write_column_address : on;
        }
        strobe_data_out : on;
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        AdvancedSignals {
          invert_expect_data : on;
        }
        ConcurrentPortSignals {
          read_enable      : on;
          read_row_address : on;
        }
        strobe_data_out : on;
      }
    }
  }
}

Concurrent Write to the Reference Address
Some memories allow writing a memory location from one port while reading or writing the 
same location from a different port. Until the v2015.4 release, it was only possible to write and 
read the same location, using a custom operation that includes a normal write and concurrent 
read.
Figure 7-12 shows the operation of Figure 7-11, “Combining Pseudo Concurrent Write and 
Concurrent Write Operations Example”, modified to illustrate this. The only change is 
highlighted in red, and consists of setting ConcurrentPortSignals/read_row_address to off in the 
second Cycle wrapper. The ConcurrentPortSignals/read_column_address property is not 
shown, but defaults to off as explained in a previous section. A concurrent read to the reference 
address is performed because ConcurrentPortSignals/read_enable is set to on, and the other two 
properties are set to off.
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Figure 7-12. Example Operation With Write and Concurrent Read to the Same 
Address

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    SignalPipelineStages {
      strobe_data_out): 1; // Delay strobe by 1 for synchronous memories
      …
    }
    Operation (READ_CONCWRITE_WRITE_CONCREAD) {
      Cycle {
        read_enable     : on;
        write_enable    : off;
        AdvancedSignals {
          invert_write_data : on;
        }
        ConcurrentPortSignals {
          write_column_address : on;
        }
        strobe_data_out : on;
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        AdvancedSignals {
          invert_expect_data : on;
        }
        ConcurrentPortSignals {
          read_enable      : on;
          read_row_address : off;
        }
        strobe_data_out : on;
      }
    }
  }
}

It is now possible to perform a concurrent write to the reference address while reading or 
writing it from another port. The property ConcurrentPortSignals/write_enable was 
implemented to provide this feature. The example of Figure 7-11 is further modified to illustrate 
the usage of this property, as shown in Figure 7-13.
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Figure 7-13. Example Operation With Write and Concurrent Write to the Same 
Address

MemoryOperationsSpecification {
  OperationSet (my_opset) {
    SignalPipelineStages {
      strobe_data_out): 1; // Delay strobe by 1 for synchronous memories
      …
    }
    Operation (READ_CONCWRITE_WRITE_CONCREAD) {
      Cycle {
        read_enable     : on;
        write_enable    : off;
        AdvancedSignals {
          invert_write_data : on;
        }
        ConcurrentPortSignals {
          write_column_address : on;
        }
        strobe_data_out : on;
      }
      Cycle {
        read_enable  : off;
        write_enable : on;
        AdvancedSignals {
          invert_expect_data : on;
        }
        ConcurrentPortSignals {
          write_enable  : on;
        }
        strobe_data_out : on;
      }
    }
  }
}

The change is highlighted in red and consists of setting ConcurrentPortSignals/write_enable to 
on in the second Cycle wrapper. ConcurrentPortSignals/write_column_address and 
write_row_address are not explicitly set and default to off. Note that for backward compatibility 
reasons with previous operation sets, write_enable is inferred to on whenever 
write_column_address or write_row_address is set to on. The behavior of 
ConcurrentPortSignals/read_enable, read_row_address and read_column_address is not 
changed.

Note that library operation sets never attempt to write a memory location from one port while 
reading or writing from a different port because the result is unpredictable for most memories. If 
a memory does allow this type of access, a custom operation set and algorithm must be created 
if you want to test this feature.
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Making a UDA Available to MemoryBIST
The procedures in the following sections describe how to implement a custom UDA (User-
Defined Algorithm) with Tessent MemoryBIST. This task is normally performed through the 
DFT specification within the design flow.
A custom UDA that has been separately validated or certified can be used in larger designs. 
UDAs can either be hard-coded in silicon or soft-coded in microcode memory (which is 
implemented as flop arrays - not as SRAM).

The syntax of a UDA remains exactly the same, regardless of whether the algorithm is to be 
hard coded or soft-coded. However, the UDA must be provided at design time if it is to be 
hard-coded. The UDA can be modified when it is soft-coded, even post-silicon, and is only 
shifted into MemoryBIST controllers at run time.

Chapter 2, “Getting Started”, covers the implementation of MemoryBIST, which by default 
implements (hard-codes) the built-in library algorithm specified in the Memory TCD for 
memories tested by a memory BIST controller. The procedures that follow focus on the 
additional steps required to hard-code UDAs into a design, and explain how to implement the 
necessary logic for the MemoryBIST controller to run soft-coded UDA.

MemoryBIST Configuration for Hard-Coded UDA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
MemoryBIST Configuration for Soft-Coded UDA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

MemoryBIST Configuration for Hard-Coded UDA
This procedure demonstrates how to implement a custom UDA with Tessent MemoryBIST that 
will be hard-coded in the controller RTL. This task is normally performed through the DFT 
specification in the design flow. The UDA can be configured to be the default algorithm for the 
controller, or as an algorithm that is available in addition to the default algorithm. For the latter 
case, both algorithms would be hard-coded in the controller RTL with this procedure.

Note
This procedure can also be used to hard-code an additional Tessent MemoryBIST library 
algorithm rather than a UDA. For this implementation, Step 2 would be skipped, and the 

value assigned to the extra_algorithms property in Step 4 would simply be the library algorithm 
name.

The custom algorithm can define and make use of a custom operation set, or utilize a standard 
Tessent MemoryBIST library operation set. The library operation sets that are available are 
those built into the memory BIST controller, which by default are those specified by the 
memory TCD for the memories tested by the controller, unless another is explicitly specified in 
the DftSpecification for the controller.
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Prerequisites
• Confirm the UDA has been separately certified or validated before implementing it.

• The UDA should be comprised of a MemoryOperationsSpecification wrapper, that 
contains the Algorithm wrapper. If a custom operation set is required, the OperationSet 
wrapper defining the operation set should also be present.

Procedure
1. Invoke Tessent Shell, set the tool context to dft -rtl mode, read cell libraries, set design 

sources, and read all HDL for your design as described in “Design Loading”.

2. Read in the UDA during setup with the read_core_descriptions command, as shown in 
the following example:

SETUP> read_core_descriptions \
       data/design/mem/algo_march.tcd_mem_lib 
 

3. Proceed with a normal TS-MBIST flow as described in “Specify and Verify DFT 
Requirements” and “Create DFT Specification” to generate a DFT specification.

4. Edit the DFT specification, as described in “Edit/Configure the DFT Specification 
According to Your Requirements”, and add the following properties for the memory 
BIST controller instance(s) you want to add the UDA: 

• AdvancedOptions/extra_algorithms

• AdvancedOptions/extra_operation_sets

The example below shows one method, adding the UDA named “march” and an 
operation set named “sync2” to memory BIST controller c1:

ANALYSIS>set dft_spec [get_config_elements DftSpecification]
ANALYSIS>set ctl_wrap [get_config_elements \
      memorybist/controller(c1) -in $dft_spec]
ANALYSIS>add_config_element AdvancedOptions -in $ctl_wrap
ANALYSIS>set_config_value AdvancedOptions/extra_algorithms \
      -in $ctl_wrap march
ANALYSIS>set_config_value AdvancedOptions/extra_operation_sets \
      -in $ctl_wrap sync2

a. Alternately, if you want the UDA to be the default algorithm and operation set for 
the controller rather than being an additional algorithm hard-coded into the RTL, 
change the properties of the preceding sequence as follows:

ANALYSIS>set_config_value AdvancedOptions/algorithm \
      -in $ctl_wrap march
ANALYSIS>set_config_value AdvancedOptions/operation_set \
      -in $ctl_wrap sync2
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The resulting DftSpecification with the UDA configured as an extra algorithm is now:

DftSpecification(top,rtl) {
  ...
  MemoryBist {
    Controller(c1) {
      AdvancedOptions {
        extra_algorithms : march;
        extra_operation_sets : sync2;
      }
      Step {
        ...
      }
    }
  }
}

5. Proceed with the rest of the standard MBIST flow, as described in Chapter 2. The 
indicated UDA(s) is hard-coded into the MBIST controller’s RTL.

6. When generating testbenches or patterns, follow the steps described in “Selecting a 
Hard-Coded UDA for Execution” to select and run the UDA you want to run.

Results
UDAs that are implemented with this procedure become part of the RTL of the specific memory 
BIST controllers that are generated during this insertion. They are thus considered as being 
hard-coded. From this point on, they can be invoked exactly like any built-in Tessent library 
algorithm.

MemoryBIST Configuration for Soft-Coded UDA
This procedure outlines how to configure a Tessent MemoryBIST controller with the necessary 
hardware to run a soft-coded UDA, which is shifted into the MemoryBIST controller microcode 
at run time.

Note
The controller also supports loading Tessent MemoryBIST library algorithms at run time 
that are compatible with the parameters configured in the controller’s hardware. 

Additionally, controllers that are configured to run soft-coded algorithms can also run hard-
coded algorithms configured in the controller hardware. 

Prerequisites
• Determine the number of instructions you want to accommodate in the microcode 

memory of the soft programmable controller. The number of instructions in the UDA 
you plan to use should not exceed this value. The trade-off in the area required for the 
implementation of higher instruction counts should be carefully considered. 
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Procedure
1. Invoke Tessent Shell, set the tool context to dft -rtl mode, read cell libraries, set design 

sources, and read all HDL for your design as described in “Design Loading”.

2. Continue with a normal Tessent Shell MemoryBIST flow as described in “Specify and 
Verify DFT Requirements” and “Create DFT Specification” to generate a DFT 
specification.

3. Edit the DFT specification, as described in “Edit/Configure the DFT Specification 
According to Your Requirements”, and add an AlgorithmResourceOptions wrapper to 
the memory BIST controller instance(s) that you want to add the hardware to support 
soft-coded UDAs. The following example shows one method, where the memory BIST 
controller c1 will have the wrapper added:

ANALYSIS>set dft_spec [get_config_elements DftSpecification]
ANALYSIS>set ctl_wrap [get_config_elements \
      memorybist/controller(c1) -in $dft_spec]
ANALYSIS>add_config_element AlgorithmResourceOptions -in $ctl_wrap

4. Specify the instruction count needed for the UDA, by setting the soft_instruction_count 
property as shown in the following example:

ANALYSIS>set_config_value AlgorithmResourceOptions/\
      soft_instruction_count -in $ctl_wrap 16

For this example, 16 instruction words are specified.

5. If your UDA specifies any of the following properties:

• load_bank_address_min or load_bank_address_max

• load_column_address_min or load_column_address_max

• load_row_address_min or load_row_address_max

Specify the soft_algorithm_address_min_max property to on, as shown in the following 
example:

ANALYSIS>set_config_value AlgorithmResourceOptions/\
      soft_algorithm_address_min_max -in $ctl_wrap on

This enables the user to specify a user-defined address count range in the soft algorithm.

6. Depending on design usage and area requirements, specify the 
preserve_microcode_initial_values property as needed. The following example specifies 
this property to off:

ANALYSIS>set_config_value AlgorithmResourceOptions/\
      preserve_microcode_initial_values -in $ctl_wrap off

Refer to the property description to understand the usage and area impacts and 
determine the proper setting for your design.
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The resulting DftSpecification after completing these steps is now:

DftSpecification(top,rtl) {
  ...
  MemoryBist {
    Controller(c1) {
      AlgorithmResourceOptions {
        soft_instruction_count : 16;
        preserve_microcode_initial_values : off;
        soft_algorithm_address_min_max : on; 
      }
      Step {
        ...
      }
    }
  }
}

7. Proceed with the rest of the standard MBIST flow, as described in Chapter 2. The 
MemoryBIST controller will have the necessary hardware to run soft-coded UDA.

8. When generating testbenches or patterns, follow the steps described in “Selecting a Soft-
Coded UDA for Execution” to select and load the UDA you want to run.

Results
The MemoryBIST controller configured by the preceding steps will now have the necessary 
hardware incorporated to load and run a soft-coded UDA.
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Selecting a UDA for MemoryBIST Execution
The procedures in the following sections describe how to run a user-defined algorithm (UDA) 
that was either hard-coded in a Tessent MemoryBIST controller, or is to be run on a controller 
that is configured to support soft-coded algorithms. This task is normally performed during the 
creation of the patterns specification within the design flow.
Selecting a Hard-Coded UDA for Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Selecting a Soft-Coded UDA for Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Selecting a Hard-Coded UDA for Execution
This procedure explains how to run a custom UDA that was previously hard-coded in a Tessent 
MemoryBIST controller. This part of the flow is normally performed using the pattern 
specification.
Memory BIST controllers typically test multiple memories in parallel. Each tested memory has 
a default algorithm associated with it, which is indicated in its memory TCD file. When a 
pattern specification is first created, the tool automatically considers all default algorithms and 
accordingly determines a suitable test plan that tests those memories in the most efficient way.

Unless a custom algorithm is defined as the default algorithm for a given memory, it is not 
automatically run. For this reason, you may want to explicitly instruct the memory BIST 
controller to run one at a given point in time.

This procedure contains the necessary steps to select a UDA (or any other Tessent Library 
algorithm) from the list of all hard-coded algorithms built into the memory BIST controller.

Prerequisites
• This procedure assumes the UDA has already been hard-coded in a target memory BIST 

controller.

• The procedure assumes a continuation of the steps outlined in “MemoryBIST 
Configuration for Hard-Coded UDA”; otherwise ensure the design sources are properly 
set and loaded.

Procedure
1. Generate a patterns specification, as described in “Create Patterns Specification”.

SETUP>set pat_spec [create_patterns_specification]

2. Edit the pattern specification, as described in “Edit/Configure the Patterns Specification 
According to Your Requirements”, and add the following properties to the memory 
BIST controller instance(s) you want your UDA to run:

• AdvancedOptions/apply_algorithm
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• AdvancedOptions/apply_operation_set

The following example shown is derived from the content of the Example provided at 
the end of this procedure, and selects the UDA “march” and its “sync2” operation set for 
the first specified controller of the second test pattern:

SETUP>set_config_value apply_algorithm -in_wrapper $pat_spec/
  Patterns<1>/TestStep<0>/MemoryBist/Controller<0>/
  AdvancedOptions march
SETUP>set_config_value apply_operation_set -in_wrapper $pat_spec/
  Patterns<1>/TestStep<0>/MemoryBist/Controller<0>/
  AdvancedOptions sync2

Tip
With the set_config_value command, determining the exact hierarchical names to 
use may sometimes be challenging. You can use introspection (get_config_elements 

for example) to determine the appropriate hierarchical path. You can also make use of 
the <N> syntax form, where <N> represents the Nth occurrence of a given wrapper in a 
DFT or pattern specification. Refer to the Example for more information.

3. Verify and process the patterns specification using the process_patterns_specification 
command:

SETUP>process_patterns_specification

4. Perform the rest of the standard MemoryBIST pattern generation flow, as described in 
Chapter 2. This typically means running the run_testbench_simulations and 
check_testbench_simulations commands.

Results
The selected algorithm and operation set (whether a UDA or any other Tessent Library 
algorithm), configured by the procedure described, is run by the specified memory BIST 
controller(s) in the wanted controller step.

Examples
The following example dofile hard-codes a UDA named “march” and its operation set “sync2” 
in the RTL of memory BIST controller c1. The dofile then configures the patterns specification 
to select the UDA for memory BIST controller c1. The UDA is now selected for BIST 
execution and simulated.
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# Enter property context 
set_context dft -rtl 
 
# Set design sources and read files 
set_design_sources -format verilog -y {data/mem data/rtl} -extension v 
read_core_descriptions data/mem/algo_march.tcd_mem_lib 
read_verilog data/rtl/blockA.v 
 
set_current_design blockA 
set_design_level sub_block 
 
set_dft_specification_requirements -memory_bist auto 
add_clock CLK -period 12ns -label clka 
check_design_rules 
 
set spec [create_dft_spec] 
set_config_value extra_algorithms -in_wrapper 
$spec/MemoryBist/Controller(c1)/AdvancedOptions march 
set_config_value extra_operation_sets -in_wrapper 
$spec/MemoryBist/Controller(c1)/AdvancedOptions sync2  

process_dft_specification 
 
extract_icl 
 
set pat_spec [create_patterns_spec] 
set_config_value apply_algorithm -in_wrapper 
$pat_spec/Patterns(MemoryBist_P1)/TestStep(run_time_prog)/MemoryBist
/Controller(blockA_rtl_tessent_mbist_c1_controller_inst)/AdvancedOptions march 

set_config_value apply_operation_set -in_wrapper 
$pat_spec/Patterns(MemoryBist_P1)/TestStep(run_time_prog)/MemoryBist
/Controller(blockA_rtl_tessent_mbist_c1_controller_inst)/AdvancedOptions sync2 
 
process_patterns_specification 
 
run_testbench_simulations 
check_testbench_simulations 
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The pattern specification generated from the preceding example dofile is:

PatternsSpecification(blockA,rtl,signoff) { 
  Patterns(ICLNetwork) { 
    ICLNetworkVerify(blockA) { 
    } 
  } 
  Patterns(MemoryBist_P1) { 
    ClockPeriods { 
      CLK : 12.0ns; 
    } 
    TestStep(run_time_prog) { 
      MemoryBist { 
        run_mode : run_time_prog; 
        reduced_address_count : on; 
        Controller(blockA_rtl_tessent_mbist_c1_controller_inst) { 
          AdvancedOptions { 
            apply_algorithm : march; 
            apply_operation_set : sync2;
          } 
          RepairOptions { 
            check_repair_status : on; 
          } 
          DiagnosisOptions { 
            compare_go : on; 
            compare_go_id : on; 
          } 
        } 
      } 
    } 
  } 
} 
 

To further illustrate the <N> syntax introspection form shown in Step 2 of this procedure, the 
following set_config_value command (it should all appear on a single command line):

set_config_value apply_algorithm -in_wrapper 
   PatternsSpecification(blockA,rtl,signoff)
   /Patterns(MemoryBist_P1)/TestStep(run_time_prog)
   /MemoryBist/Controller(blockA_rtl_tessent_mbist_c1_controller_inst)
   /AdvancedOptions march 
 

is effectively equivalent to the following command:

set_config_value apply_algorithm -in_wrapper 
   PatternsSpecification<0>/Patterns<1>/TestStep<0>
   /MemoryBist/Controller<0>/AdvancedOptions march 
 

because the command targets the very first occurrence of “PatternsSpecification”, the second 
occurrence of “Patterns”, the first occurrence of “TestStep”, and so on, of the 
PatternsSpecification.
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Selecting a Soft-Coded UDA for Execution
The information presented in this section explains how to select and run a custom user-defined 
algorithm on a Tessent MemoryBIST controller that has been configured to support soft-coded 
algorithms. Soft-coded algorithms are shifted into the memory BIST controller at run time. The 
algorithm selection task is normally performed during the patterns specification creation and 
editing portion of the flow.
The custom algorithm can define and make use of a custom operation set, or utilize a standard 
Tessent MemoryBIST library operation set. The library operation sets that are available are 
those built into the memory BIST controller. By default, these are specified by the memory 
TCD for the memories tested by the controller, unless another operation set is explicitly 
specified in the DftSpecification for the controller.

Prerequisites
• This procedure assumes the memory BIST controller has been properly configured with 

the necessary hardware and appropriately-sized microcode memory to functionally 
support the custom UDA that is to be loaded and run. Refer to “MemoryBIST 
Configuration for Soft-Coded UDA” for information on how to implement the 
hardware.

• The UDA should be comprised of a MemoryOperationsSpecification wrapper, that 
contains the Algorithm wrapper. If a custom operation set is required, the OperationSet 
wrapper defining the operation set should also be present.

• The procedure assumes a continuation of the steps outlined in “MemoryBIST 
Configuration for Soft-Coded UDA”; otherwise ensure the design sources are properly 
set and loaded.

Procedure
1. Read in the UDA in setup mode with the read_core_descriptions command, as shown in 

the following example:

SETUP> read_core_descriptions \
       data/design/mem/algo_march.tcd_mem_lib 
 

The algorithm now resides in memory for the tool to scan into the controller during the 
test pattern run.

2. Complete steps 1 and 2 in “Selecting a Hard-Coded UDA for Execution”.

The patterns specification is edited to indicate the UDA you want to run for the 
configured controller. The process is identical as that done for hard-coded algorithms. 

3. Complete steps 3 and 4 in “Selecting a Hard-Coded UDA for Execution”.
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Results
The selected algorithm is configured with the procedure described and is run by the specified 
memory BIST controller(s) in the wanted controller step. The custom algorithm is provided to 
the tool after the supporting hardware had been generated and implemented in the controller. 
The patterns specification is edited to specify the custom algorithm to be run on this controller, 
in the same way as is done for selecting hard-coded algorithms. The tool creates the patterns 
necessary to scan in the UDA into the controller’s microcode, and the test is performed.

Examples
The example dofile that follows, configures controller c1 with the necessary hardware to 
support soft-coded algorithms. Note that the algorithm specified in the memory TCD for the 
memories tested by the controller will be built into the controller RTL by default. After the 
hardware is generated, a UDA named “march” is read into the tool, which is to be used as the 
soft algorithm. The dofile then configures the patterns specification to select this algorithm for 
memory BIST controller c1. The UDA is now selected for BIST execution and simulated.
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# Enter property context 
set_context dft -rtl 
 
# Set design sources and read files 
set_design_sources -format verilog -y {data/mem data/rtl} -extension v 
read_verilog data/rtl/blockA.v 
 
set_current_design blockA 
set_design_level sub_block 
 
set_dft_specification_requirements -memory_bist auto 
add_clock CLK -period 12ns -label clka 
check_design_rules 
 
# Configure controller c1 for soft-coded algorithms
set spec [create_dft_spec] 
set_config_value soft_instruction_count -in_wrapper 
$spec/MemoryBist/Controller(c1)/AlgorithmResourceOptions 16
set_config_value soft_algorithm_address_min_max -in_wrapper 
$spec/MemoryBist/Controller(c1)/AlgorithmResourceOptions off
set_config_value address_segment_x0_y0_allowed -in_wrapper 
$spec/MemoryBist/Controller(c1)/AlgorithmResourceOptions on 

process_dft_specification 
 
extract_icl 
# Read in the UDA that is to be soft-coded into controller c1
read_core_descriptions data/mem/algo_march.tcd_mem_lib

set pat_spec [create_patterns_spec] 
set_config_value apply_algorithm -in_wrapper 
$pat_spec/Patterns(MemoryBist_P1)/TestStep(run_time_prog)/MemoryBist
/Controller(blockA_rtl_tessent_mbist_c1_controller_inst)/AdvancedOptions march 
 
set_config_value apply_operation_set -in_wrapper 
$pat_spec/Patterns(MemoryBist_P1)/TestStep(run_time_prog)/MemoryBist
/Controller(blockA_rtl_tessent_mbist_c1_controller_inst)/AdvancedOptions sync2 

process_patterns_specification 
 
run_testbench_simulations 
check_testbench_simulations 
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Chapter 8
Tessent MemoryBIST Diagnosis

This chapter describes the diagnosis approaches supported by Tessent MemoryBIST, including 
a description of features and a guide for using each approach.
Only an overview on diagnosing memory failures to the address and bit level is covered in this 
chapter as it uses Tessent Shell SiliconInsight. Refer to Tessent SiliconInsight User’s Manual 
for Tessent Shell for complete information on using this tool for memory diagnosis.
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Memory BIST Diagnosis Approaches
Using memory BIST to test embedded memories provides significant advantage over the direct 
pin access test methods for PASS/FAIL testing. However, in most cases, it is important to 
identify the source of physical failure in the memory. This is referred to as the Diagnosis 
process.
Diagnosis Objectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Diagnosis Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Memory BIST Diagnosis Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Diagnosis Objectives
Often you are faced with a difficult decision when it comes to the diagnosis requirements of 
memories. This is mainly because interest is in the functional model of the memory and not the 
memory’s physical structure. However, you need to identify the memory BIST diagnosis 
capability as part of the design based on manufacturing objectives and yield target. 
Depending on the objectives of the diagnosis process, you need to take different design actions. 
For example, it might be acceptable to identify only the failing memories. This is useful for 
small memories when root-cause analysis is not required. In this case, you can choose a simple 
diagnosis approach to monitor the Pass/Fail status on every memory at the end of the test. 
However, if the objective is to enable offline memory repair, you need to consider another 
design strategy to monitor the memory test status during the test and to enable the tester to keep 
track of the failing address or data bit. 

Disabling all diagnosis features makes it difficult to meet reasonable yield targets and 
manufacturing objectives and is therefore not recommended.

Diagnosis Levels
Various diagnosis levels can be implemented on the chip depending on the diagnosis objectives. 
The following list provides various diagnosis levels and highlights the objectives of each level:

• Memory-Only Level 

o Identifies the failing memory only. 

o Is useful for small memories, where no root cause analysis is required.

• Memory Address Level 

o Identifies the failing address in a memory.

o Provides limited failing address mapping. 

o Is useful for applications where soft repair based on address mapping is used.
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• Offline Bit-Mapping 

o Mapping the failure to bits in memory.

o Useful when detailed root cause analysis is to be performed for yield improvements. 
Note that in this case, diagnosis time is not relevant.

Memory BIST Diagnosis Capabilities
Using memory BIST, you can use different runtime options and configuration properties to 
achieve the required diagnosis level. The diagnosis features in memory BIST are based on serial 
scan-based diagnosis.
The scan-based diagnosis topology is shown in Figure 8-1. This approach is referred to as 
Enhanced Stop-On-Nth-Error because the memory BIST controller is equipped with an error 
count register that is scan initialized before each run. When the controller has encountered a 
number of errors equal to that specified in the error register, it stops so that all pertinent error 
information (algorithm step, address, failing bit position, and so forth) can be scanned out of the 
controller. By iteratively scanning in subsequent error counts and running the controller, all bit 
fail data can eventually be extracted. The Enhanced Stop-On-Nth-Error diagnosis option can be 
generated by memory BIST using the failure_limit property of the DftSpecification.

Figure 8-1. Scan-based Diagnosis Approach Topology Using Enhanced Stop-
On-Nth-Error Serial Scan

The remainder of this chapter details how to use these diagnosis approaches. In addition, this 
chapter shows how a specific diagnosis level can be achieved and presents a verification 
procedure to verify that the chosen diagnosis approach is correctly implemented on the chip.
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Achieving Specific Diagnosis Level
This section provides the description of rules you can follow to simplify the decision of which 
diagnosis level to use and how to achieve that level.
As previously stated, various diagnosis levels can be implemented on the chip based on the 
diagnosis objectives. Four examples of diagnosis levels are provided in the sub-sections listed 
below.

Diagnosing Failing Memories Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Diagnosing Failing Addresses and Bit-Mapping in a Memory . . . . . . . . . . . . . . . . . . . . 429

Diagnosing Failing Memories Only
The objective of the Memory Only diagnosis level is to identify the failing memory in a group 
of small memories when no root cause analysis is required. Identifying the failing address or the 
BIST clock cycle number is not required within this level. You are required to identify only the 
failing memory, which you can achieve by either:

• using memory repair for at least one memory, in which case a status register is created 
for all memories with and without repair, or:

• comparing the GO_ID bits at the end of the memory BIST run if the following 
conditions apply:

o The controller has either a single memory or step or is run with freeze_step set to nn

o The memories use local comparators

The go_id bits are always part of the SetUp chain of the memory BIST controller. Therefore, if 
you need to compare the go_id bits to identify the failing memory, you must ensure that the 
internal Setup chain of the memory BIST controller is operational. In other words, you can 
correctly shift in and out of the setup chain through the TAP controller.

Using PatternsSpecification, you can create a testbench that compares the GO_ID bits at the end 
of the memory BIST run using the compare_go_id property. 

Using the Enhanced Stop-On-Nth-Error approach might not guarantee the failing memory 
identifications if the controller has multiple steps and the PatternsSpecification property 
freeze_step is set to on. The reason is that the number of errors encountered could exceed the 
value specified for the DftSpecification property failure_limit.

This diagnosis strategy has minimal area overhead and minimal impact on design time. 
However, using this method makes it impossible to understand the reason behind the memory 
failure. 
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Diagnosing Failing Addresses and Bit-Mapping in a 
Memory

The objective of the Failing Address and Bit-Mapping diagnosis level is to identify the failing 
memory addresses and bits.
To achieve the Failing Address diagnosis level, you must ensure the following:

• The failure_limit property of the DftSpecification is set to a value large enough to 
capture all possible failures in any BIST step (default is 4096). 

This method enables you to diagnose speed-related failures. This is because the embedded test 
controller does not interact with the tester, except while shifting and comparing the address 
register, which is done at a slow speed. The area overhead in this case is mainly because of the 
error counter that is not high. The design overhead is also kept minimal because the addition of 
the error count register is done transparently to the user.



Tessent™ MemoryBIST User’s Manual, v2022.4430

Tessent MemoryBIST Diagnosis
Enhanced Stop-On-Nth-Error Approach

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Enhanced Stop-On-Nth-Error Approach
The Enhanced Stop-On-Nth-Error (ESOE) diagnosis approach scans out all pertinent failure 
data from the controller’s internal registers. The memory BIST controller is equipped with an 
error count register that is scan-initialized before each run. When the controller has encountered 
a number of errors equal to those specified in the error register, it stops so that all pertinent error 
information (algorithm phase, address, failing bit position, and so forth) can be scanned out of 
the controller. By iteratively scanning in subsequent error counts and running the controller, all 
bit fail data are eventually extracted.

     StopOnErrorOptions { 
          failure_limit : <int> | off ; 

}
 

The failure_limit property in DftSpecification adds the ESOE capabilities to the controller, 
including an error counter that can record up to n errors. The default failure limit count is 4096.

When using ESOE to diagnose memory failures, the MemoryBIST controller stops the 
algorithm execution and holds the current state of the controller for analysis the moment the 
algorithm detects a new error, and the failure counter reaches 0. 

Because of the hardware implementation of the MemoryBIST controller, the error detection 
circuit is always a number of clock cycles behind the address registers and instruction pointers. 
The number of clock cycles depends on a number of hardware factors such as pipeline stages 
and varies based on the selected operation set and algorithm.

When ESOE data is extracted from the MemoryBIST controller, it must be processed to identify 
the precise memory location where the error occurred. Each MemoryBIST controller has a 
unique set of parameters that must be used to perform ESOE data analysis. Because of the 
complexity of this analysis, it is not practical to use this in simulation for diagnosis purposes. 
Note that the ESOE diagnosis process can be simulated along with memory fault injection. It 
can be used to ensure that the MemoryBIST controller is able to detect faults and stop the 
MemoryBIST execution. However, the raw diagnosis data from the controller setup chain may 
not provide useful information to the user.

The SiliconInsight debugger should be used to perform ESOE diagnosis. It contains all the 
algorithms needed to analyze and process the ESOE results from the MemoryBIST controllers 
and report the exact memory locations. Refer to Tessent SiliconInsight User’s Manual for 
Tessent Shell for more information on memory failure analysis.

Several factors influence what value to specify for the failure_limit property to generate the 
appropriate hardware.

• Algorithm complexity. The number of read-compare operations performed at each 
memory location in an algorithm determines how many errors might be detected during 
diagnosis. Because the same memory location is read several times, multiple errors may 
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be generated depending on the type of faults. However, extracting every error is usually 
not necessary because most of these errors are repetitive after the first few hundred. As a 
reference, the total number of read-compare operations for the three most commonly 
used library algorithms are 14 (SMarchCHKBci), 18 (SMarchCHKBcil), and 26 
(SMarchCHKBvcd).

• Area. When specifying a non-zero value for the failure_limit property, additional 
hardware is incorporated in the memory BIST controller and, if local comparators are 
used, in the memory interfaces. The dominant factor of this hardware is the size of the 
error and failure limit counters, which are proportional to the logarithm (base 2) of the 
failure_limit value. The number of bits of the error counter can be multiplied by 30 to 
obtain an approximate gate count.

• Application. There are two applications, memory debug and production of bitmaps 
during manufacturing. During memory debug, it is possible to focus on a specific 
memory and even on a specific port of a memory to reduce the number of errors that 
must be extracted. However, during manufacturing, it is desirable to log memory 
failures of several memories in parallel as much as possible to minimize the number of 
test patterns and test time. For manufacturing applications, we recommend that you 
specify the same value of failure_limit for all controllers in a chip. You can do this by 
setting the value in the DefaultsSpecification/DftSpecification/MemoryBist/
DiagnosisOptions/StopOnErrorOptions wrapper.

Performing Enhanced Stop-On-Nth-Error Diagnosis for Bitmap Applications . . . . . . 431

Performing Enhanced Stop-On-Nth-Error Diagnosis 
for Bitmap Applications

Performing Stop-On-Nth-Error diagnosis consists of the iterative process of running the 
memory BIST controller and having it stop on successive error counts so that failure data can be 
scanned out. As a reference, an example ESOE pattern set is shown in the figure below.
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Figure 8-2. Example ESOE Pattern Set

Patterns(esoe) {
  ClockPeriods {
    clk1 : 20.0ns;
  }
  TestStep(init) {
    AdvancedOptions {
      split_patterns_file : off; // default
      network_end_state : keep;  // default
    }
    MemoryBist {
      run_mode : run_time_prog;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      DiagnosisOptions {
        extract_diagnosis_data : off;
      }
      Controller(unita_i1_blka_rtl_tessent_mbist_c1_controller_inst) {
        AdvancedOptions {
          freeze_step : 1;
        }
        DiagnosisOptions {
          compare_go : on;
          compare_go_id : off;  // default
          StopOnErrorOptions {
            failure_limit : 1;
          }
        }
      }
    }
  }
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  // The TestStep(exec) and TestStep(incr) sequence can be repeated
  TestStep(exec_1) {
    AdvancedOptions {
      split_patterns_file : on;
      network_end_state : initial;
    }
    MemoryBist {
      run_mode : run_time_prog;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      DiagnosisOptions {
        extract_diagnosis_data : auto; // default
      }
      Controller(unita_i1_blka_rtl_tessent_mbist_c1_controller_inst) {
        AdvancedOptions {
          freeze_step : 1;
        }
        DiagnosisOptions {
          compare_go : on;
          compare_go_id : on;
          StopOnErrorOptions {
            failure_limit : auto_increment;
          }
        }
      }
    }
  }

  TestStep(incr_1) {
    AdvancedOptions {
      split_patterns_file : on;
      network_end_state : initial;
    }
    MemoryBist {
      run_mode : increment_failure_limit;
      AdvancedOptions {
        preserve_bisr_inputs : on;
      }
      Controller(unita_i1_blka_rtl_tessent_mbist_c1_controller_inst) {
      }
    }
  }
}

The failure limit counter has a limitation that must be taken into account when generating test 
patterns. The failure limit counter of the enhanced Stop-On-Nth-Error hardware does not check 
whether the maximum count specified with the DftSpecification property failure_limit (default 
is 4096) is reached. If the BIST controller is run a number of times so that this maximum count 
is exceeded, the counter wraps around and starts counting from 0. The same failures are 
extracted again, if any are present. This behavior might cause an unnecessary increase in the 
time required to extract failure information because it appears that new failures are present 
when, in fact, they are old failures. The problem is more likely to occur when several controllers 
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on the same chip have been generated with a different value for the failure_limit property, and 
they are run in parallel. To minimize the impact of this limitation, do the following:

• Specify the same value for the failure_limit property for all controllers on a circuit. Do 
this by setting the value in the DefaultsSpecification. 

• If using the same value for all controllers is not possible, only run controllers with the 
same value in parallel.

• Set the maximum number of iterations in the diagnosis program to be equal to the 
failure_limit value minus 1.

For the reasons noted in the “Enhanced Stop-On-Nth-Error Approach” section, the 
SiliconInsight debugger should be used to perform ESOE diagnosis. It contains all the 
algorithms needed to analyze and process the ESOE results from the MemoryBIST controllers 
and report the exact memory locations. Refer to Tessent SiliconInsight User’s Manual for 
Tessent Shell for more information on memory failure analysis.
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Chapter 9
Common Implementation Flows

This chapter describes various flows, or methods, of how to use Tessent MemoryBIST to 
implement the memory test solution you want in a design. It explains and provides examples for 
the most common flows that are generally used for creating and inserting the memory BIST 
logic. This topic is covered at a higher level and the detailed implementation specifics found in 
other sections of this manual and the Tessent Shell Reference Manual are not repeated. 
The tool offers the following flows related to the memory BIST creation and insertion phase:

• Top-Down Flow

• Bottom-Up Flow

Topics to consider when choosing the best implementation flow to use include physical 
partitioning information and the use of power domains.  These items must be carefully 
accounted for when going through the flow. It's also important to know if all the design 
information is complete and available, or if the memory BIST is implemented in pieces as the 
design information is completed.

Top-Down Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Bottom-Up Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Top-Down Flow
In the top-down implementation flow you perform both memory BIST generation and insertion 
activities in one flow through the tool for the whole design from the top level. This approach is 
generally not used very often unless the design is not very large, or if the design is implemented 
at the gate level and is completed. For large SoC designs created in a block-level approach, the 
bottom-up flow is typically used instead of this method.
To use the top-down flow approach, you use the high-level flow sequence of steps explained in 
the Getting Started chapter and illustrated in Figure 2-1. All of the design and library files for 
the whole design are required before beginning the flow.

For example purposes, the block-based design diagram shown in Figure 9-1 illustrates a 
hierarchical design that includes memories spread throughout the design. The top level of the 
design includes two identical cores. Each core has two copies of blockA and one of blockB.  
Within blockA there are two different power domains with an island configuration as 
illustrated.
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Figure 9-1. Hierarchical Design Example With Many Memories

To implement the top-down MBIST flow method with this design requires all of the correct 
design, library, physical implementation (DEF), and power domain files (CPF or UPF) as a 
prerequisite. Then the high level flow sequence from the Getting Started chapter is used just 
once with the design level set to chip. This method creates and inserts all of the necessary 
memory BIST controllers and other logic all at once for the whole design. The single created 
TSDB is all-inclusive with the top-down flow because all the work is done from the chip level. 
A completed block-based design diagram illustrating the addition of the memory BIST 
controllers is shown in Figure 9-2.
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Figure 9-2. Hierarchical Design Example With MemoryBIST Controllers

As shown in the diagram, memory BIST controllers are automatically placed where needed, 
taking into account the power domains and physical configuration information that was 
provided. For example, within blockA three controllers are needed because of the different 
power regions in that area of the design. Each power area requires a separate BIST controller.

After the BIST controllers are created and inserted, the patterns and testbenches are created and 
then simulated. If any issues are found that need correcting, then make those changes and re-run 
the flow from the beginning.

Bottom-Up Flow
The bottom-up implementation flow performs memory BIST generation and insertion in 
multiple stages, generally based on the different blocks in a design. This is a common approach 
for adding memory BIST to large SoC designs that are designed in functional/logical/physical 
blocks.
There are benefits to using this bottom-up approach that include flexibility, limited scopes to 
work with, and the ability to implement memory BIST for completed blocks while the whole 
design is not yet completed. It also facilitates a re-use opportunity where a completed design 
block with BIST can be re-used in other designs.  Many large SoCs are designed by different 
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groups working on the variety of blocks. This bottom-up, or block-based approach enables each 
group to complete their design and memory BIST work for their block(s) independent of the 
other groups.

There are basically two ways to implement the bottom-up flow within Tessent Shell. If all the 
design blocks are completed and the design files are available, then you could invoke Tessent 
Shell once and use a bottom-up flow sequence where you first set the design current level to the 
lowest sub_block and implement memory BIST for it. Then repeat for the other sub_blocks by 
changing the current design focus and re-running the flow sequence of steps explained in 
Getting Started for each block. After all of the lowest blocks are done, then move to the next 
higher level of hierarchy and incorporate the completed blocks into that level and add any 
needed memory BIST for that level. Continue in this manor until all of the levels of hierarchy 
are completed, then at the top level bring it all together with design level set to chip. If this 
approach were used to implement memory BIST for the example design shown in Figure 9-1, 
then the major steps to use would include those shown in Figure 9-3.

This one tool invocation methodology creates one large Tessent Shell Data Base (TSDB) that 
contains all of the data, but within that TSDB the results from the separate steps for the blocks 
and cores are separated. An example and description of this database structure is provided in the 
“Tessent Shell Data Base (TSDB)” chapter of the Tessent Shell Reference Manual.

The other, and likely more common, method to implement a bottom-up flow is to invoke 
Tessent Shell and create the memory BIST for each block as you are able to. This approach 
provides the most flexibility in working with different design completion schedules for the 
blocks. For each block you create a separate TSDB with the data needed for that block. If any 
changes are required that affects any block, then just redo the BIST implementation for that 
block that needs it.

Once higher levels of the design are ready, then incorporate the lower level blocks as you add 
any needed BIST logic at the higher level. This creates a TSDB for the higher level. The steps 
are basically the same as shown in Figure 9-3, but are done with separate invocations of Tessent 
Shell instead of all at once.

If you use the same invocation location when starting your different Tessent Shell sessions, then 
all of the database information for the different design pieces are placed under one large TSDB 
in a single root directory. Another way to accomplish this is to use the 
set_tsdb_output_directory command with each session to specify the TSDB output directory 
that you would like to use.
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Figure 9-3. Steps to Implement MemoryBIST for Example Design in One Tool 
Invocation

It is also fine if you want to create separate TSDBs for your different blocks and cores because 
it does not matter if everything is located in one area. When integrating lower-level blocks at the 
top or chip level, the open_tsdb command makes the contents of the specified TSDB directories 
visible to the tool.
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Appendix A
Tessent Core Description

This chapter describes the configuration data syntax used to describe the following macro 
module types: memories, boundary scan segments, and fuseboxes.
This appendix uses the following syntax conventions when documenting wrappers and 
properties used in the library descriptions.

Table A-1. Conventions for Command Line Syntax 
Convention Example Usage
UPPercase -STatic Required argument letters are in uppercase; in 

most cases, you may omit lowercase letters 
when entering literal arguments, and you need 
not enter in uppercase. Arguments are normally 
case insensitive.

Boldface set_fault_mode Uncollapsed 
| Collapsed

A boldface font indicates a required argument.

[ ] exit [-force] Square brackets enclose optional arguments. 
Do not enter the brackets. 

Italic dofile filename An italic font indicates a user-supplied 
argument.

{ } add_fault_sites {-ALl | 
-UNDEFINED_Cells 
}[-VERBose]

Braces enclose arguments to show grouping. 
Do not enter the braces.

| add_fault_sites {-ALl | 
-UNDEFINED_Cells 
}[-VERBose]

The vertical bar indicates an either/or choice 
between items. Do not include the bar in the 
command.

Underline set_au_analysis ON | OFf An underlined item indicates either the default 
argument or the default value of an argument.

… add_clocks off_state 
primary_input_pin… 
[-Internal]

An ellipsis follows an argument that may 
appear more than once. Do not include the 
ellipsis when entering commands.

Table A-2. Syntax Conventions for Configuration Files 
Convention Example Usage
Italic scan_in : port_pin_name; An italic font indicates a user-supplied value. 
Underline wgl_type : generic | lsi; An underlined item indicates the default value.
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Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
AddressCounter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
PhysicalAddressMap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
PhysicalDataMap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
GroupWriteEnableMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
RedundancyAnalysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
RedundancyAnalysis/RowSegment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
RedundancyAnalysis/ColumnSegment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
PinMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
IclPorts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

MemoryCluster  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
MemoryCluster/Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
MemoryBistInterface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
MemoryBistInterface/Port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
MemoryBistInterface/LogicalMemoryToInterfaceMapping . . . . . . . . . . . . . . . . . . . . . . . 521
MemoryGroupAddressDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
PhysicalToLogicalMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
PinMappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

FuseBoxInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

| logic_level : both | high | low; The vertical bar separates a list of values from 
which you must choose one. Do not include 
the bar in the configuration file.

... port_naming : port_naming, ...; Ellipses indicate a repeatable value. The 
comment “// repeatable” also indicates a 
repeatable value.

// // default: ijtag_so The double slash indicates the text 
immediately following is a comment and tells 
the tool to ignore the text.

Table A-2. Syntax Conventions for Configuration Files  (cont.)
Convention Example Usage
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Core
Core
In Tessent Shell, descriptions of main elements, like the memory library, the boundary scan 
information, or the fuse box interface, are presented to the tool in form of TCD files (Tessent 
Core Description files). After loading, they are hierarchically organized under the Core root 
entry, which is unique for a given module name.

Syntax
Core(module_name) { 
  Memory {  
  } 
  MemoryCluster { 
  } 

BoundaryScan { 
  } 

FuseBoxInterface { 
  } 
} 

Description
The Core wrapper collects all TCD data read into the tool. Such descriptions are automatically 
read in during module matching. See the set_design_sources -format tcd_memory command 
description for information about where they are looked for. See the read_core_descriptions 
command description to learn how to read them in explicitly.

You can also report on the loaded TCD information. You do this using the report_config_data 
command. An example is "report_config_data Core(ModuleName)/Memory -partition tcd", 
which report the contents of the Memory entries under Core. To see the supported syntax, use 
the report_config_syntax command, for example "report_config_syntax [get_config_value 
Core/Memory -partition meta:tcd -object]”. Because the tool automatically looks up the 
metadata, you can specify only the wrapper names, such as “report_config_syntax Core/
Memory”.

Parameters
• module_name

The name of the module, equivalent of the current design module name. You do not need to 
specify this when loading a memory TCD file. The tool with auto-generate and auto-
configure the Core-level wrapper for you.

Related Topics
set_design_sources [Tessent Shell Reference Manual]
read_core_descriptions [Tessent Shell Reference Manual]
report_config_data [Tessent Shell Reference Manual]
report_config_syntax [Tessent Shell Reference Manual]
Tessent™ MemoryBIST User’s Manual, v2022.4 443

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
Core
set_module_matching_options [Tessent Shell Reference Manual]
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Memory
Specifies the memory behavior for the specific module_name.

Syntax
Core(module_name) {                                                            
  Memory {                                                                     
    Algorithm                         : algo_name; 
    ATD                               : on | off;  
    BitGrouping                       : int | auto; 
    ConcurrentRead                    : on | off; 
    ConcurrentWrite                   : on | off; 
    DataOutHoldWithInactiveReadEnable : on | off; 
    DataOutStage                      : none | StrobingFlop 
    InternalScanLogic                 : on | off; 
    LogicalPorts                      : nRnWnRW; 
    MemoryHoldWithInactiveSelect      : on | off; 
    MemoryType                        : rom | sram | dram; 
    MilliWattsPerMegaHertz            : real | auto;  
    MinHold                           : time; // default: 0 
    NumberOfBits                      : int | auto; 
    NumberOfWords                     : int | auto; 
    ObservationLogic                  : on | off; 
    OperationSet                      : operation_set_name; 
    PipelineDepth                     : int; // default: 0 
    ReadOutOfRangeOK                  : on | off;
    RetentionTimeMax                  : time | none; 
    RomContentsFile                   : file_path_name; 
    ShadowRead                        : on | off | auto; 
    ShadowWrite                       : on | off; 
    ShadowWriteOK                     : on | off; 
    TransparentMode                   : syncmux | none | asyncmux; 
    Port(port_name) { 
    } 

AddressCounter { 
    } 
    PhysicalAddressMap { 
    } 
    PhysicalDataMap { 
    } 
    GroupWriteEnableMap {
    }

RedundancyAnalysis {
}
IclPorts {
} 

} 
} 

Description
The Memory TCD describes the memory behavior for the specified module_name and is 
automatically read in during module matching. See the set_design_sources -format tcd_memory 
command description for information about where they are looked for. See the 
read_core_descriptions command description to learn how to read them in explicitly. See the 
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set_module_matching_options command description for information about the name matching 
process.

Note
The legacy LogicVision memory library format is supported natively and is automatically 
translated into this format when read. You only need to read one memory description. Note 

that Tessent Shell requires the LogicVision MemoryTemplate name to match the specified 
CellName as shown below:

MemoryTemplate(mydram) {
MemoryType : SRAM;
CellName : mydram;
.
.
.

}

To see the content of a read-in Core(ModuleName)/Memory, use the “report_config_data 
Core(ModuleName)/Memory -partition tcd” command.

To see the supported syntax, use the “report_config_syntax Core/Memory” command.

Parameters
• Algorithm : algo_name;

A property that identifies the type of the default algorithm that the memory BIST controller 
uses to test the memory. You can specify a library algorithm name or a custom algorithm 
name. The available library algorithms are shown below, with SMarchCHKBci as the 
default:

For the details on the Algorithm values, refer to “MemoryBIST Algorithms” in this manual.

SMarchCHKBci SMarch
SMarchCHKB ReadOnly
SMarchCHKBcil SMarchCHKBvcd
LVMarchX LVMarchY
LVMarchCMinus LVMarchLA
LVRowBar LVColumnBar
LVGalPat LVGalColumn
LVGalRow LVCheckerboard1X1
LVCheckerboard4X4 LVWalkingPat
LVBitSurroundDisturb LVAddressInterconnect
LVDataInterconnect
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These usage conditions apply:
o The ReadOnly algorithm can only be used for MemoryType ROM.

o A ROM memory type can only use the ReadOnly algorithm.

o You can override the algorithm selection by setting values in DefaultsSpecification/
DftSpecification/MemoryBist/ControllerOptions, in DftSpecification/MemoryBist/
Controller/AdvancedOptions, or in DftSpecification/MemoryBist/Controller/Step. 

o A custom algorithm name might be specified. However, it is recommended that one 
of the following library algorithms is specified to enable the automatic generation of 
the parallel retention test: SMarchCHKB, SMarchCHKBci, SMarchCHKBcil or 
SMarchCHKBvcd.

o The SMarchCHKBvcd algorithm performs specialized tests on the chip select and 
read enable ports. To use this algorithm, the memory data output value must be 
preserved when the chip select or read enable port is deasserted.

Note
You cannot specify a different algorithm for two instances of the same memory. 
To specify different algorithms, create a new memory template and specify a 

different algorithm.

• ATD : on | off;
A property that supports address transition detection (ATD). The default value is off. A 
setting of on forces the address of the memory to change so that data can be read out of the 
memory being tested. Use this property for memories that require an address transition to 
initiate a read cycle.
These usage conditions apply:

o The OperationSet property must specify an ATD waveform.

o If your address counter is not segmented, the value specified for NumberOfWords 
must be even.

o If your address counter is segmented into a row address (AddressCounter: Function 
(rowAddress)) and a column address (AddressCounter: Function (columnAddress)), 
you must specify an even value for lowRange and an odd value for highRange in 
Function (columnAddress): CountRange.

The restrictions relating to the address counter prohibit an out-of-range address that is 
caused by inverting bit0 of the row address counter when the ATD waveform is on.

• BitGrouping : int | auto;
A property that specifies the distribution of the data bits in the memory array. The default 
value is auto. The specified integer value must be between 1 and the value specified for the 
NumberOfBits property. The auto setting resolves to 1 when the memory address port has at 
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least one column address bit, otherwise it will resolve to the value of the NumberOfBits 
property.
Modern memories are designed to form physical arrays of cells with minimum layout 
spacing design rules to reduce area. Memory designers also use different strategies to 
achieve higher performance by manipulating the way the memory bits are distributed in the 
physical array. Some memories might be designed to allow the data bit of a word be next to 
each other in the array. Other memories might have them distributed in the array in a 
systematic way. 
The BitGrouping property enables you to specify the distribution of the data bits in the 
memory array. This information is required by some Tessent MemoryBIST algorithms to 
construct a contiguous checkerboard pattern within the bit arrays. Specifically, the 
following algorithms use this property during the checkerboard phases:

o SMarchCHKB

o SMarchCHKBci

o SMarchCHKBcil

o SMarchCHKBvcd

During the checkerboard phases of the algorithm, the BIST data written and read from the 
memory is modified at the memory interface to ensure the memory contains checkerboard 
patterns.
Refer to Example 2, Example 3, and Example 4 for examples of BitGrouping usage. 

• ConcurrentRead : on | off;
A property that enables you to perform simultaneous read operations on inactive read ports 
during both the read and write cycles of the active port controlled from the selected 
algorithm. The default setting is off. Setting this property to on inserts logic in the memory 
interface circuit to support concurrent read operations controlled from the selected operation 
set. This is useful when multi-port memories exhibit defects related to inter-port interaction 
and require special test algorithms that enable the sensitization and detection of those 
defects. ConcurrentRead provides more flexibility than ShadowRead. ConcurrentRead 
enables modification of both the row and column address from the operation set, and is 
therefore preferred when creating custom operation sets for a programmable controller. 
ShadowRead only enables modification to the row address.
This property is not supported for ROM or 1RW memories.

• ConcurrentWrite : on | off;
A property that enables you to perform simultaneous write operations on an inactive write 
port during both the write and read cycles of the active port controlled from the selected 
algorithm. The default setting is off. Setting this property to on inserts logic in the memory 
interface circuit to support concurrent write. This is useful when multi-port memories 
exhibit defects related to inter-port interaction and require special test algorithms that enable 
the sensitization and detection of those defects. ConcurrentWrite provides more flexibility 
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than ShadowWrite. ConcurrentWrite enables modification of both the row and column 
address as well as the data pattern from the selected operation set, and is therefore preferred 
when creating custom operation sets for a programmable controller. ShadowWrite is only 
used by library algorithms and is not controllable from the operation set. ConcurrentWrite 
can be used on multi-port memories with up to two ports with write capability.
The memories must have ONE of the following combinations of ports:

o Two ReadWrite ports

o One Read-only port and one Write-only port

o Any number of Read-only ports and two Write-only ports

• DataOutHoldWithInactiveReadEnable : on | off;
A property that specifies whether the memory output is preserved when the read enable 
control signal is inactive. The default value is on.
If the memory output does not hold when the read enable control signal is inactive and you 
want to test the memory with the SMarchCHKBvcd algorithm, you must set the 
DataOutHoldWithInactiveReadEnable property to off.

• DataOutStage : none | StrobingFlop ;
A property that controls whether or Tessent MemoryBIST uses a strobing flip-flop on 
output data to meet the hold time in a memory that cannot safely write the data from a 
previous read operation. Specifying a strobing flip-flop effectively provides one stage of 
pipelining between the data output and the comparator logic.
Valid values are as follows:

• InternalScanLogic : on | off;
A property that specifies the memory module containing scan circuitry that is reused during 
scan test modes. The default value is off. The supported internal scan logic is the bypass 
logic between the data input and the data output of the memory. If the bypass logic includes 
flip-flops on the data input side, the flip-flops must be stitched into a scan chain. 
When InternalScanLogic is set to on, Tessent MemoryBIST does not generate a scan model 
for the associated memory module. The memory scan model must be provided to the tool.
You must set TransparentMode to none when InternalScanLogic is set to on. 

none Does not add a flip-flop to capture the output data
StrobingFlop Inserts a flip-flop to strobe the memory output. This 

property is used when the data output of the memory is not 
latched or registered. For scan testing, the strobing flip-flop 
is reused to implement the bypass mode specified by the 
TransparentMode: syncmux setting.
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Set Core/Memory/ObservationLogic to off if the internal scan logic includes flip-flops that 
observe the address and control inputs and those flip-flops are part of the internal scan chain 
of the memory.

• LogicalPorts : nRnWnRW;
A property that identifies the configuration of read, write, and read/write logical ports for a 
memory. Logical ports require a unique address bus for reading, writing, or both.
Valid values are as follows:

The default value for this property depends on the MemoryType property, as follows:
o If MemoryType is sram this property defaults to 1RW. 

o If MemoryType is rom, this property defaults to 1R.

The following usage conditions apply:
o If MemoryType is rom, you cannot specify W or RW. 

o If MemoryType is sram, you must specify at least one R and one W or one RW. 

• MemoryHoldWithInactiveSelect : on | off;
The on setting indicates that, when the select control signal is inactive, the memory content 
is preserved for a write operation and the memory output is preserved for a read operation.
If the memory contents or output does not hold when the select control signal is inactive and 
you want to test the memory with the SMarchCHKBvcd algorithm, you must set 
MemoryHoldWithInactiveSelect to off.

• MemoryType : rom | sram | dram;
A property that specifies the type of memory. The default value is sram. Valid values are as 
follows:

nR Identifies the number of Read logical 
ports.

nW Identifies the number of Write logical 
ports.

nRW Identifies the number of ReadWrite logical 
ports.

rom Specifies a read-only memory
sram Specifies a static random access 

memory.
dram Specifies a dynamic random access 

memory.
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• MilliWattsPerMegaHertz : real | auto;
A property that defines the amount of power consumed by the memory in relation to the 
operational frequency. This value represents the average between the read and write power 
consumption. Memory BIST performs approximately equal number of read and write 
operations. This value, which typically is from the data sheet provided by the memory 
supplier, enables you to manage the power distribution and consumption of the chip.
By default, the auto option estimates the value as follows:
b * (0.0004 + (c * 0.00008))
Where:

o b is the number of bits per word inferred from the NumberOfBits property.

o c is the number of columns or column mux option, inferred from AddressCounter/
Function/CountRange of the ColumnAddress, which in turn can be inferred from the 
column address segment width.

• MinHold : time; // default: 0
The MinHold property provides delay on all address, data, and control input signals from 
the memory BIST controller with respect to the memory clock during RTL simulation. 
Specify MinHold when the minimum hold requirements of the memory models are greater 
than zero. The value can be either an integer or a real number with up to two digits of 
accuracy following the decimal point. A value of zero, which is the default, does not affect 
the simulation.
If you use the MinHold property for a memory, keep in mind that delay is being added in the 
RTL code that does not translate through synthesis. The delays added in the RTL code to 
meet a hold-time requirement are ignored by the synthesis tool, and the inherent gate and 
wire delay in the circuit may or may not be sufficient to meet the hold-time requirement on 
the memory. The specified value must be greater than or equal to zero and less than the 
specified clock period. The time unit for MinHold is nanoseconds.

Note
The specified MinHold value should not be equal to or greater than the clock period 
associated with the memory and its memory BIST Controller. Otherwise, the tool 

reports an error.

• NumberOfBits : int | auto;
The NumberOfBits property specifies the number of bits per word in the memory. If the 
NumberOfBits property is not specified, the default value is the output data width of the first 
logical port defined in the memory library.
For example, for a 32X8 memory (depth of 32 words and width of 8 bits), the entry for 
NumberOfBits would be 8.
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• NumberOfWords : int | auto;
The NumberOfWords property specifies the number of words in the memory. The 
NumberOfWords property defaults to the product of the number of columns, rows, and 
banks defined in the AddressCounter wrapper. If an AddressCounter/CountRange is 
specified for a particular address segment, that AddressCounter/CountRange is used in the 
formula. If no AddressCounter/CountRange is specified, the address segment size is 
assumed to be 2n, where n is the number of bits in that address segment.

Note
Siemens EDA recommends specifying the NumberOfWords property for non-
segmented addresses and for memories in which the actual number of words is not a 

power of 2. Not specifying NumberOfWords might cause the simulation to fail. For 
example, if you do not specify NumberOfWords for a memory with 12 words and four 
address bits, the address counter counts to 16 although there are only 12 words. 

Tessent MemoryBIST controller supports testing of memories with asymmetric banks 
containing a different number of rows per bank. In this case, you must specify an 
AddressCounter/CountRange for each existing memory address segment in the memory 
library file. Also, you must specify the NumberOfWords property indicating the valid 
memory address range is 0 to NumberOfWords -1.
For example, for a 32X8 memory (depth of 32 words and width of 8 bits), the entry for 
NumberOfWords is 32.

• ObservationLogic : on | off;
The ObservationLogic property specifies whether or not Tessent MemoryBIST adds scan 
observation points for address and control signals in the memory interface.
A value of on adds sample points by means of XOR gates and flip-flops to the address and 
control signals of the memory within the interface. Tessent MemoryBIST either uses 
existing flip-flops within the interface for these sample points, or if necessary, adds 
additional flip-flops with the XOR gates. A value of off omits sample points from the 
interface.

• OperationSet : Async | AsyncWR | ROM | (Sync) | SyncWR | SyncWRvcd | 
TessentSyncRamOps | TessentSyncRamOpsHR4 | TessentSyncRamOpsHR6 | 
OperationSetName;
The OperationSet property specifies the name of the operation set that the memory BIST 
controller uses to generate waveforms that drive the memory. The operation set that you 
specify must define the operations that are required by the algorithm testing this memory.
Valid values are as follows:

o Async | AsyncWR | ROM | (Sync) | SyncWR | SyncWRvcd | TessentSyncRamOps | 
TessentSyncRamOpsHR4 | TessentSyncRamOpsHR6 — Reserved strings that 
specifies a library operation set. Refer to “Tessent MemoryBIST Library Operation 
Sets” for a description of each operation set. 
Tessent™ MemoryBIST User’s Manual, v2022.4452

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
Memory
Tip
Siemens EDA recommends using the library operation sets as templates to create 
your own operation sets. The library operation sets are generic and not optimized 

for one type of memory. Custom operation sets might be required to accommodate 
specific timing requirements or modes of operation.

o OperationSetName — is a user-defined identifier that matches the name of an 
operation set defined by the OperationSet wrapper. If you specify a user-defined 
name for the OperationSet property, Tessent MemoryBIST searches the specified 
memory library files for an OperationSet wrapper with the same identifier.

• PipelineDepth : int; // default: 0
The optional PipelineDepth property declares the number of cycles to delay the compare on 
the read data. The adjustment is memory specific and typically is used to handle memories 
with built-in pipelining. The compare on the read data is enabled by the strobe_data_out 
property in the OperationSet/Operation/Cycle wrapper. 
In the operation set used with this memory, the position of strobe_data_out is pipelined by 
the specified number of stages. Using the PipelineDepth property enables you to apply a 
common operation set to multiple memories having different pipelining and to customize 
the delay per memory type.
Note that all memories that are grouped in the same step must have the same PipelineDepth 
value. Example 1 provides additional detail on the use of PipelineDepth.

• ReadOutOfRangeOK : on | off;
The ReadOutOfRangeOK property suppresses the CountRange rule checking when 
ShadowRead is set to on. This enables you to use the shadow read cycle even when the low 
CountRange for your RowAddress is odd or the high CountRange for your RowAddress is 
even. The data from the out-of-range read does not contribute to the BIST results. Set this 
property to on only when your memory can tolerate an out-of-range read without damaging 
the memory logic or corrupting the memory data.

• RetentionTimeMax : time | none;
The RetentionTimeMax property specifies the upper limit of retention time between two full 
refreshes of a DRAM array. Therefore, the real refresh interval between two consecutive 
refresh operations applied to the memory is computed as RetentionTimeMax divided by the 
maximum number of memory rows. The RetentionTimeMax value is also used to size the 
delay counter so that all the retention time values you want can be accommodated. The 
default value is none.

• RomContentsFile : file_path_name;
The ROMContentsFile property specifies the name of the ROM contents file. The ROM 
contents file is a hexadecimal or a binary listing of the ROM contents. Each line in the ROM 
contents file represents a single address location within the ROM starting with address 0.
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You can override the ROM content file name using the rom_content_file property in 
DftSpecification/MemoryBist/Controller/Step/MemoryInterface wrapper.
The entire ROM contents file should be specified in hexadecimal or binary. The two formats 
cannot be mixed within the same ROM contents file. The number of hexadecimal or binary 
digits per line must be consistent with the width of the ROM locations. For example, each 
entry for a 12-bit wide ROM must be specified exactly as three hexadecimal digits (000 to 
3FF) or 12 binary digits (000000000000 to 1111111111111).
The example ROM contents file shown below is in hexadecimal format for a 16-bit wide 
ROM. Because the last entry in the ROM contents file is FFFF, all subsequent address 
locations assume the FFFF data value.

0060 
E896 
0000 
0000 
0000 
0000 
0000 
0000 
C010 
01C6 
0000 
0000 
C010 
0212 
0000 
0000 
C010 
025E 
FFFF 
 

The example ROM contents file shown below in binary format is for a 6-bit wide ROM. 
Because the last entry in the ROM contents file is 101111, all subsequent address locations 
assume the 101111 data value.

001000 
011011 
000110 
000110 
001111 
101000 
101011 
101010 
101111 

• ShadowRead : on | off | auto;
The ShadowRead property enables and disables the shadow read cycle. To detect shorts 
between multiple logical ports, the memory BIST controller performs a shadow read on 
inactive read ports during both the write and the read cycles of the active ports. 
ShadowRead does not allow to read a memory cell located in a different column when 
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running algorithms on a programmable controller using a custom operation set. Use 
ConcurrentRead for greater flexibility.
A value of on enables the shadow read by inverting bit0 of the row address counter. A value 
of off disables the shadow read. The default value is auto and its value (on or off) is 
determined by Tessent MemoryBIST as follows:

o ShadowRead is off, if the OperationSet section in the memory library file does not 
specify the ConcurrentPortSignals/read_row_address and ConcurrentPortSignals/
read_enable waveforms.

o ShadowRead is off, if you do not specify a row address. For information on 
specifying a row address, refer to the AddressCounter wrapper.

o ShadowRead is off, if you use the default address counter and the value specified for 
the NumberOfWords property is odd.

o ShadowRead is off, if either lowRange for Function(RowAddress)/CountRange is 
an odd value or highRange for Function(RowAddress)/CountRange is an even 
value. You can suppress this rule by setting the ReadOutOfRangeOK property to on.

o ShadowRead is off, if you specify LogicalPorts: 1RW or 1R.

Note
When ShadowWrite is on the ShadowRead property is turned to on as well, if the 
requirements are met.

The restrictions relating to the address counter prohibit an out-of-range address, that 
is caused by inverting bit0 of the row address counter, when the 
ConcurrentPortSignals/read_enable waveform is On.

• ShadowWrite : on | off;
The ShadowWrite property enables and disables the shadow write operation. The shadow 
write operation is used to detect inter-port bitline coupling faults for multiple ReadWrite 
logical ports. The memory BIST controller performs a shadow write on inactive ReadWrite 
ports in specific phases of the SMarchCHKBci, SMarchCHKBcil, and SMarchCHKBvcd 
algorithms during the READ cycle of the active ReadWrite port. For memories with one 
Read and two Write ports, the SMarchCHKBci, SMarchCHKBcil, and SMarchCHKBvcd 
algorithms also support shadow write on inactive write ports during the READ and WRITE 
cycles of the active port.
A value of on enables the shadow write by forcing the row address to its full binary range. 
The default value of off disables the shadow write.
When ShadowWrite is on and ShadowWriteOk is on in the memory library file, concurrent 
operations are enabled in programmable controllers. The OperationSet SyncWRvcd is 
automatically selected if Algorithm: SMarchCHKBvcd is specified, and the user can then 
modify the way concurrent operations are performed in the SMarchCHKBvcd library 
algorithm, or in any custom algorithm. ShadowWrite operations are not controllable from 
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the operation set and are only used by library algorithms. ConcurrentWrite operations are 
fully controllable from the operation set.
If ShadowWrite is On, the following conditions must be satisfied:

o The memories must be synchronous SRAM. Preferably, Siemens EDA Sync or 
SyncWR operation sets should be used. Other operation sets must take into account 
that the waveform used to perform shadow writes from inactive ports is the exact 
inverse of the waveform described for write enable signals. Also, the row address 
changes at the same time as the write enable signal. These waveforms might not be 
appropriate in all cases, especially for asynchronous memories.

o If no memory port with Function ShadowAddressEnable is defined, the number of 
rows cannot be a power of two. The row address range must not use the full binary 
count. It might be required to generate a new memory block with at least one more 
row to comply with this restriction. Note that this restriction does not apply to 
memories that use the SMarchCHKBvcd algorithm.

o The memories must have a BitGrouping of 1. 

o The memories must have ONE of the following combinations of ports: 

• Two ReadWrite ports

• One Read-only port and one Write-only port

• Any number of Read-only ports and two Write-only ports

o The algorithm used must be SMarchCHKBci, SMarchCHKBcil, or 
SMarchCHKBvcd. 

o If ShadowWrite is On, you must specify a row address. For information on 
specifying a row address, refer to the AddressCounter wrapper.

o The ShadowWriteOK property must be On.

• ShadowWriteOK : on | off;
The ShadowWriteOK property is used to indicate that the memory can tolerate an 
out-of-range address during shadow write without damaging the memory logic or corrupting 
the data. If enabled it suppresses the count range rule checking. This property must be set to 
on to perform shadow writes on the memory. ShadowWrite operations are not controllable 
from the operation set and are only used by library algorithms. ConcurrentWrite operations 
are fully controllable from the operation set.
A value of off indicates that the memory cannot tolerate out of range addresses and therefore 
shadow writes should not be used on this memory.

• TransparentMode : syncmux | none | asyncmux ;
The TransparentMode property specifies when and how memories are bypassed during scan 
testing. Bypassing memories enables testing the user interface logic to and from these 
embedded memories as well as the memory BIST controller and interface circuitry. 
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The default value is syncmux. Valid values are as follows:
o syncmux — Inserts an additional multiplexer and flip-flop on the memory output 

ports that enable combinational ATPG tools to test the interface between the user 
logic and the memory. When you specify this value, the interface also provides 
control values for scan chain testing. In addition, you can observe the memory input 
port by using the same flip-flop that provides the control values for memory data 
output ports.

For ATPG tools that have the capability to generate test patterns through the 
specified memories, the additional multiplexer might not be necessary.

o none — Specifies that no bypass logic is added in the memory interface. Specify 
none if you have a bidirectional data bus or the memory implements an internal 
bypass logic.

o asyncmux — Inserts an additional multiplexer on the memory output ports so that 
data is directly transferred from the data input ports to the data output ports. This 
setting enables combinational ATPG tools to test the interface between the user logic 
and the memory. You can use this value only when DataOutStage is set to none.

Note
To perform memory BIST, which requires controllability of the memory output, you 
must disable any internal bypass circuitry in your memory.

Examples
Example 1

The following example defines the read operation in the operation set for a typical synchronous 
memory. The read access is activated in the first cycle, and the output data is compared on the 
second cycle.

Operation (Read) { 
  Cycle { 
    read_enable: on; 
  } 
  Cycle { 
    read_enable: off; 
    strobe_data_out: on; 
  } 
} 

Figure A-1illustrates the same memory having two stages of built-in pipelining on the output 
data. To account for the latency of the output data introduced by the internal pipelining stages, 
you can specify the PipelineDepth property and apply the same read operation. The 
strobe_data_out signal is pipelined by two cycles without any modifications to the operation set.
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Figure A-1. Memory With 2 Stages of Built-In Pipelining on the Output Data

Example 2
The following outlines an example BitGrouping usage. Consider the physical layout of a 8-bit 
memory in which data is stored in columns. That is, data[0] is placed under column 0, data[1] is 
placed in column 1, data[2] is in column 2,.., data [7] is in column 7. Sometimes this type of 
memory is referred to as a word-oriented memory. The memory BIST controller applies a 
checkerboard pattern to the memory by alternating values of 0 and 1 in the address locations, as 
shown. For this memory, the BitGrouping is equal to the data width, which is 8.

The numbers 0-7 in the figure above represent the physical data bits 0-7. Note that a large 
majority of memories with column address bits use a layout corresponding to this example, with 
a BitGrouping of 1.
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Example 3
The following outlines another usage for BitGrouping. Many memories are designed to gather 
bits from different addresses with the same data reference into the same array. That is, the 
memory has separate arrays for each bit of the word. Here is an example of a memory with 4 
data bits. There are four arrays with each array has the specific data bit reference. The 
BitGrouping property for this type of memory should be defined with a value of 1.

Example 4
In this example BitGrouping usage, consider a memory where only three of the consecutive data 
bits are physically gathered in the array. The physical layout of a 6-bit memory that is broken 
into two arrays. This example shows a bit grouping of 3.

To access bit0 of the first row, specify the column address y0 to select the correct bit0. The 
checkerboard pattern for this grouping needs a 1 in the first bit0 and a 0 in the second bit0 of the 
same row. Specifying BitGrouping 3 for this example enables the hardware to make this 
correction. 

Related Topics
set_design_sources [Tessent Shell Reference Manual]
read_core_descriptions [Tessent Shell Reference Manual]
set_module_matching_options [Tessent Shell Reference Manual]
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report_config_data [Tessent Shell Reference Manual]
report_config_syntax [Tessent Shell Reference Manual]
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Port
The Port wrapper is used to define signal port properties for a memory.

Syntax
Core(<core_name>) {                                                            
 Memory {                                                                     

Port(port_name) { 
BusRange : range; 
BistOrTmActive     : on | off; 
BitsPerWriteEnable : int; 
Direction          : Input | Output | InOut; 

    DisableDuringScan  : on | off | auto; 
Function : None | Address | BistEn | BistOn | 

Clock | Data | GroupWriteEnable | LogicHigh | 
LogicLow | Open | OutputEnable | 
ReadEnable | ScanTest | Select | 
ShadoWaddressEnable |  
WriteEnable | CAS | RAS | User0 | User1 | 
User2 | User3 | User4 | User5 | User6 | User7 |
User8 | User9 | User10 | User11 | User12 |
User13 | User14 | User15 | User16 | User17 |
User18 | User19 | User20 | User21 | User22 |
User23 | Refresh | Activate | Precharge |
ValidData | BisrParallelData | BisrSerialData |
BisrClock | BisrReset | BisrScanenable  

LogicalPort        : port_id_string, ... ; 
    Polarity           : activeLow | activeHigh; 
    Retimed            : on | off; 

SafeValue      : binary; //Default: x 
EmbeddedTestLogic { 

      TestInput  : port_name; 
      TestOutput : port_name; 
    } 
    } 

} 
} 

Description
The Port wrapper defines the direction, function, and bus parameters for a signal port. The 
memory TCD includes a Port wrapper for each port on the memory.

When you have multiple Port wrappers specified within the memory TCD of Function: Address 
or Function:Data, Tessent MemoryBIST concatenates and drives the ports of each Function 
type in the order they appear within the memory TCD. If the resulting order is not what you 
intended, you must re-arrange the appropriate Port wrappers in the memory TCD. An example 
demonstrating the concatenation is provided in Example 1.
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Parameters
• port_name(range) 

The port_name property is the name of the port. Because Tessent MemoryBIST instantiates 
the memory into a memory BIST interface, port_name must match the actual port name of 
the memory module. The optional range element identifies that range for bused ports. 
The following example defines a Port wrapper of an 8-bit wide port named D1:

Port (D1[7:0])

If you include the range for a bused port in the Port wrapper, you do not need to specify the 
BusRange property.

Note
The use of an escaped identifier for port_name is not supported.

If port_name contains a %d character identifier, Tessent MemoryBIST expands the port 
based on the bit range specified after %d or on the BusRange property. This enables the 
support of both bused and scalar memory ports.

Note
The %d scalar notation is case sensitive. If you use %D, the Port is treated as a bus 
with %D as part of the name. This makes it impossible to load the Tessent Shell 

output into other Siemens EDA tools or any simulator.

• BusRange : range; 
The BusRange property specifies the range for a bused port. You do not need to specify the 
range for single bit ports. The following syntax specifies this property: 
range is defined as [LeftIndex:RightIndex], where [LeftIndex:RightIndex] identifies the 
range for bused ports. 
This example specifies an 8-bit bused port named D1

Port(D1) {  
  BusRange: [7:0]; 
} 

• BistOrTmActive : on | off;
The BistOrTMActive property specifies if the memory control port should be driven during 
both BIST and scan test. 
A value of on instructs Tessent MemoryBIST to make the following ports active during both 
BIST and scan test: Activate, Precharge, Refresh, Select, OutputEnable, RAS, CAS, 
WriteEnable or GroupWriteEnable. 
A value of off instructs the tool to handle the port as necessary for BIST.
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• BitsPerWriteEnable : int; // default: 1
A parameter that indicates the number of data bits associated per group write enable signal. 
The default value is 1. Use in conjunction with the port function GroupWriteEnable. 

• Direction : Input | Output | InOut;
The Direction property specifies the direction of the memory port. A value of Input 
identifies a port as an input to the memory. A value of Output identifies a port as an output 
from the memory. A value of InOut identifies a bidirectional data port. In this case, you 
must associate the bidirectional data port with an output enable port.

Note
If Function is set to either Data or None, you must specify Direction.

• DisableDuringScan : on | off | auto;
The DisableDuringScan property specifies if certain memory ports are to be disabled during 
scan and logic test. The controller type determines the valid port types that can be disabled. 
The functional input is gated with the scan and logic test mode signal LV_TM within the 
memory interface. The gating differs based on the implementation of the 
memory_bypass_en DFT signal (refer to the add_dft_signals command for more 
information). If the signal is not implemented, the input is gated to its inactive value for the 
entire duration of the test. If the signal is implemented, the input is gated for the entire 
duration of the test when the memory is bypassed (memory_bypass_en = 1). When the 
memory is not bypassed (memory_bypass_en = 0), the input is gated only during shifting of 
the scan chains so the patterns can be applied during the capture phase.
Setting DisableDuringScan to on prevents the memory from being activated by functional 
logic during scan and logic test. Therefore, the power requirement is minimized. The value 
of off instructs Tessent MemoryBIST to not add the gating capability. 
DisableDuringScan can only be set to on for the following functions: Activate, Precharge, 
Refresh, Select, RAS, CAS, WriteEnable, InterfaceReset, ReadEnable, GroupWriteEnable, 
and User0 through User23. For function OutputEnable, the value for this property is always 
automatically inferred. It is set to off if the port is tied to its active value, and set to on if 
driven by system logic. The property is ignored for any other function.
For the default value of auto, Tessent MemoryBIST determines automatically for the 
current port, if the value should be set to on or off. The value resolves to on for ports with 
these functions: Activate, CAS, Precharge, RAS, Refresh, Select, User0 through User23, 
and WriteEnable. For function OutputEnable, the value for this property is always 
automatically inferred. It is set to off if the port is tied to its active value, and on if it is 
driven by system logic. For ports with any other function, the value resolves to off.

• Function : function_type; 
The Function property specifies the type of function of the signal port. The default value is 
none. Table A-3 describes the valid values for each Function value.
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Table A-3. Valid Function Values 
Function Description
Activate Specifies the activate signal for DRAM. A port of this 

function can be controlled by the activate property of the 
DramSignals wrapper in the operation set.

Address Specifies a memory address port.
BisrClock Specifies the port that controls the clock to the internal 

BISR chain registers. This port function is mandatory for 
memories with serial BISR interface.

BisrParallelData Specifies the memory ports used for memory repair. This 
port function is mandatory for memories with parallel BISR 
interface.

BisrReset Specifies the port that controls the internal BISR register 
chain asynchronous reset. This port function is mandatory 
for memories with serial BISR interface.

BisrScanEnable Specifies the port that enables the shifting of the internal 
BISR chain. This port function is optional for memories 
with serial BISR interface.

BisrSerialData Specifies the internal BISR chain serial input and output 
ports. The BisrSerialData port function is mandatory for 
memories with a serial BISR interface. You must specify 
the port direction using Direction: input | output | inout.
In most cases, a memory with a serial BISR interface must 
have two BisrSerialData ports where one port has direction 
input and the other port has direction output. The exception 
is when a memory has serial repair access but no shift out 
port. In this case, you specify only the BisrSerialData input 
port.

BistEn Specifies that the port is used to control a clock multiplexer 
in the memory. A port of this function is connected to the 
BIST_EN signal of the controller.

BistOn Specifies that the port is used to control the signals (data/
address/control but not a clock) selection in the memory. A 
port of this function is connected to the BIST_ON signal of 
the controller.

CAS Specifies the column access strobe signal for DRAM. A 
port of this function can be controlled by the cas property of 
the DramSignals wrapper in the operation set.

Clock Specifies a memory clock port.
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Data Specifies the data port. When Data is specified for the 
Function property, Direction indicates if Data is an input, 
output, or bidirectional port

GroupWriteEnable Specifies a write enable port that controls one or more bits 
in the data path. Group write enable ports must be 
associated with the data input port being controlled using 
the LogicalPort property in their Port wrappers.
The number of data bits in the group is defined using the 
BitsPerWriteEnable property.
The group write enable ports can be controlled using the 
even_group_write_enable and odd_group_write_enable 
properties of the Cycle wrapper.

LogicHigh Specifies that the associated port is to be tied to a logic high 
value.

LogicLow Specifies that the associated port is to be tied to a logic low 
value.

None Specifies a port that does not need to be controlled during 
memory BIST. This is the default. The functional 
connection to this port is preserved. Use SafeValue to 
control the memory port value during the memlibc 
certification flow. For pattern generation, a ProcedureStep 
in the PatternsSpecification may be required to set the 
proper value after you insert memory BIST into the design. 
Tessent MemoryBIST does not intercept the memory port.

Open Specifies an unused output port of the memory that is to be 
left unconnected. The associated port must be defined with 
Direction output.

OutputEnable Specifies the memory tri-state output enable that drives the 
data to the memory interface. A port of this function can be 
controlled by the output_enable property of the Cycle 
wrapper in the operation set.

Precharge Specifies a port that controls the precharge circuitry in 
DRAM. A port of this function can be controlled by the 
precharge property of the DramSignals wrapper in the 
operation set.

RAS Specifies the row access strobe signal for DRAM. A port of 
this function can be controlled by the ras property of the 
DramSignals wrapper in the operation set.

Table A-3. Valid Function Values  (cont.)
Function Description
Tessent™ MemoryBIST User’s Manual, v2022.4 465

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
Port
The following usage conditions apply:
o Selection guidelines for Function values are as follows:

• If a port needs to have a different logic value in functional and Memory BIST 
mode, then a port function other than LogicHigh or LogicLow must be used. 

ReadEnable Specifies a memory read enable signal. A port of this 
function can be controlled by the read_enable property of 
the Cycle wrapper in the operation set.

Refresh Specifies a port that controls the refresh circuitry in 
DRAM. A port of this function can be controlled by the 
refresh property of the DramSignals wrapper in the 
operation set.

ScanTest Specifies the port that configures the embedded test logic to 
enable scan testing. Typically, the port disables the 
memory’s tri-state outputs or enables the memory bypass 
mode. A port of this function is connected to the 
memory_bypass_en DFT signal, gated with the logic test 
ltest_en DFT signal.

Select Specifies a memory (chip) select signal. A port of this 
function can be controlled by the select property of the 
Cycle wrapper in the operation set.

ShadowAddressEnable Specifies that the port is used to enable the 
ShadowWriteAddress on the memory. This property is 
valid only for memories that support the ShadowWrite 
operation.
A memory with a port of this function can have 
ShadowWrite: on, and the number of rows in the memory 
equal to a power of two. Asserting this port on the memory 
enables you to perform a write operation without corrupting 
the memory array content.

User0 - User23 Enable user-defined waveform to be applied to the 
associated memory port. These port functions can be 
assigned to any input port and can be controlled by the 
corresponding properties, user0 through user23, in the 
operation set.

ValidData Specifies an output signal from the user logic that is 
asserted when valid data is available on the read data bus.

WriteEnable Specifies a memory write enable signal. A port of this 
function can be controlled by the write_enable property of 
the Cycle wrapper in the operation set.

Table A-3. Valid Function Values  (cont.)
Function Description
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When LogicHigh or LogicLow is specified, no mux is inserted so the port logic 
levels are the same in both modes.

• Most values of port Function cause a multiplexer to be inserted to select between 
the functional and test inputs. The following value selections assume a dedicated 
test port and no multiplexer is inserted: BistEn, BistOn, ScanTest, 
ShadowAddressEnable, BisrParallelData, BisrSerialData, BisrClock, BisrReset 
and BisrScanEnable.

• When you specify a port Function value of None, MemoryBIST does not insert a 
mux and you must specify a SafeValue, which the tool uses to control the 
memory port value during the memlibc certification flow. For pattern generation, 
a ProcedureStep in the PatternsSpecification may be required to set the proper 
value after you insert memory BIST into the design.

• Table A-4 provides additional Function value selection details and guidelines for 
various port operations in functional and memory BIST modes.

• LogicalPort : port_id_string, ...;
A property with a repeatable string value. The LogicalPort property groups address, data, 
and control signals for memory BIST. Memory BIST requires a read port and a write port to 
perform the test. The read port and the write port can be either separate ports or shared ports.
When LogicalPort is omitted from a Port wrapper, Tessent MemoryBIST treats the port as a 
global port and includes the port in all logical ports.

Table A-4. Function Value Details and Guidelines 
Port Operation Value Selection
Tied high or low in 
functional and memory BIST 
mode

LogicHigh or LogicLow

Port is driven in functional 
mode but needs to be static in 
memory BIST mode

One of User0 to User23 values, with the appropriate logic 
level specified with the corresponding property in the Port 
wrapper. For example, ActiveHigh (default) if the port 
should be driven to logic 0 during memory BIST, and 
ActiveLow for a logic 1 level.

Port needs to toggle in 
memory BIST mode

Any port Function controlled from the OperationSet 
wrapper, including User0-23.

Port is driven in functional 
mode, but cannot be gated.

None; set SafeValue to the appropriate level applied by the 
user circuit. For pattern generation, a ProcedureStep in the 
PatternsSpecification may be required to set the proper 
value when memory BIST is inserted into the design.
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An example implementation is shown below:
Port (D1[7:0]) { 
  Function: Data; 
  LogicalPort: A; 
} 
Port (D2[7:0]) { 
  Function: Data; 
  LogicalPort: B; 
} 
Port (Clock) { 
  Function: Clock; //This port belongs to both logical port A and B. 
} 

Note
You can specify only one clock, one set of addresses, and one set of data terminals per 
logical port.

• Polarity : activeLow | activeHigh;
The Polarity property specifies the active polarity of the port. Every operation begins with 
all signals at their inactive values.
A value of activehigh specifies that a logic “1” on the port activates the function. This is the 
default. A value of activelow specifies that a logic “0” on the port activates the function.
An example Polarity entry for a WriteEnable signal that activates when a logic “0” occurs 
on the port would be:

Function: WriteEnable; 
Polarity: ActiveLow; 

• Retimed : on | off;
For a memory implementing the serial repair interface, the Retimed property specifies if the 
internal BISR chain has a negedge retiming flop on its scanout port. This property is used 
only when declaring the memory pin corresponding to the repair serial data output.
A value of on specifies that a negedge retiming flop is present at the output of the internal 
BISR chain. A value of off specifies that no retiming flop is present on the internal BISR 
chain. This is the default.
The following example specifies that the internal BISR chain has a negedge retiming flop on 
the SDOUT port:

Port(SDOUT) { 
  Function: BisrSerialData; 
  Direction: Output; 
  Retimed: On; 
} 

• SafeValue : binary; // Default: x
The SafeValue property specifies an assumed value that the tool applies to the memory 
input ports with Function:None, only during the memlibCertify (memlibc) memory library 
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certification flow. The memlibc certification flow instantiates the controller, interfaces, and 
memory modules in a testbench which you use to verify the operation of the BIST circuitry.
Tessent MemoryBIST does not add additional logic to a memory port for which you specify 
a SafeValue value. Once you insert the memory controller and interfaces into your design, 
the functional logic drives the memory inputs defined with Function:None.

Note
The SafeValue property only has an effect during the memlibc certification flow. 
You need to ensure the functional logic properly drives the port after you insert the 

memory controller and interface into your design.

For single-bit ports, you specify the value as a binary value, or as a “1”, “0”, or “X” value. 
Setting this property to 1'bx or “X” sets the port to logic “X” in the memlibc certification 
flow testbench. “X” denotes the value as ambiguous and is the default value. The value of 
1'b0 or “0” sets the port to logic “0” and the value of 1'b1 or “1” sets the port to logic “1” in 
the memlibc certification flow testbench.
For bussed ports, you must specify the value as a binary value, matching the bit width of the 
port, otherwise the tool reports an error. The exception is when specifying “X” for all bits of 
a bussed port. In this case, setting this property to “X” assigns “X” to all bits of the bussed 
port. You need to specify SafeValue only for ports that specify Direction: Input and 
Function:None in the definition.

• EmbeddedTestLogic
The EmbeddedTestLogic wrapper describes any embedded test interface feature that exist 
for the functional port being defined.
The following usage conditions apply:

o EmbeddedTestLogic wrappers cannot be defined for ports with the following 
functions: BistOn, BistEn, ScanTest, LogicLow, LogicHigh, Open, None.

o EmbeddedTestLogic wrappers cannot be defined for ports when the Direction 
property is set to the value inout.

• EmbeddedTestLogic/TestInput : port_name(range);
The TestInput property identifies the input test port associated with a functional port. When 
defined for a functional input port, this property specifies that embedded multiplexing logic 
exists within the memory to select between the functional port and the test port. This 
selection is controlled by an input port with Function BistOn. 
For a functional output port, this property specifies that embedded multiplexing logic exists 
within the memory to bypass the memory output with test data. This selection is controlled 
by an input port with Function ScanTest.
For an input port of function Clock, this property specifies that embedded multiplexing 
logic exists within the memory to select between the functional clock and a BIST clock. 
This selection is controlled by an input port with Function BistEn.
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The port_name value specifies the name of the input test port associated with the functional 
port being defined. The optional range value identifies the range for bused ports.
If port_name contains a %d character identifier, Tessent MemoryBIST expands the port 
based on the bit range specified after %d or on the BusRange property. This enables the 
support of both bused and scalar memory ports.

Note
The %d scalar notation is case sensitive. If you use %D, the Port is treated as a bus 
with %D as part of the name. This makes it impossible to load the tool’s output into 

other Siemens EDA tools or any simulator.

The following usage conditions apply:
o The bus range must be the same as the range specified for the functional port being 

defined. The exceptions are the test data input port and test group write enable input 
port.

o You can specify a test data input port or a test group write enable input port that is 
narrower than its functional signal. The test input signals are assumed to be repeated 
inside the memory module to form the internal data bus or the write mask controls to 
the memory array. The following limitations apply when testing such a memory 
design:

• The valid test data width must range from 2 bits up to the functional port width.

• The valid test group write enable width must range from 1 bit up to the 
functional port width. 

• Only data input and group write enable ports specified with the 
EmbeddedTestLogic/TestInput property are supported; all other test input ports 
must conform to the identical width requirement.

• No data scrambling can be present within the memory array itself.

• To support scalar or bit-blasted types for the data and group write enable ports, 
their definition in the memory library is restricted to the following syntax; the 
functional and test ports must be specified in one Port wrapper using the %d 
notation:

  Port (DIN%d[31:0]) { // functional port 
    Function: Data; 
    Direction: Input; 
    EmbeddedTestLogic { 
      TestInput: DFTDIN%d[31:0]; // test port 
    } 
  } 
 

o If this property is defined for an input functional port, then a port with Function 
BistOn must also be defined. If defined for an input clock port, then a port with 
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Function BistEn must also be defined. If defined for an output functional port, then a 
port with the Function ScanTest must also be defined.

o The existence of this property must be consistent among all functional ports having 
the same function and assigned to the same logical port. 

o If this property is defined for a functional output port, then the Core/Memory/
TransparentMode property must have a value of SyncMux.

The following example specifies that the test input port TA[7:0] is associated with 
functional port A[7:0].

Port (A[7:0]) { 
  Function: Address; 
  EmbeddedTestLogic { 
    TestInput: TA[7:0]; 
  } 
} 
Port (TESTSEL) { 
  Function: BistOn; 
} 

• EmbeddedTestLogic/TestOuput : port_name(range);
The TestOutput property identifies the output test port associated with a functional port. 
When defined for a functional output port, the TestOutput property identifies the dedicated 
output port used to observe test responses. When defined for a functional input port, the 
property identifies the output port used to observe the multiplexed functional and test input 
data.
The port_name value specifies the name of the output test port associated with the 
functional port being defined. The optional range value identifies the range for bused ports.
If port_name contains a %d character identifier, Tessent MemoryBIST expands the port 
based on the BusRange property. This enables the support of both bused and scalar memory 
ports.

Note
The %d scalar notation is case sensitive. If you use %D, the Port is treated as a bus 
with %D as part of the name. This makes it impossible to load the tools’ output into 

other Siemens EDA tools or any simulator.

The following usage conditions apply:
o If this property is used with an Input port, then the TestInput property must also 

appear.

o The bus range must be the same as the range specified for the functional port being 
defined.

o The existence of this property must be consistent among all functional ports having 
the same function and assigned to the same logical port.
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This example specifies that the test output port TQ[15:0] is associated with functional data 
output port Q[15:0].

Port (Q[15:0]) { 
  Function: Data; 
  Direction: Output; 
  EmbeddedTestLogic { 
    TestOutput: TQ[15:0]; 
  } 
} 
Port (TESTSEL) { 
  Function: BistOn; 
} 

Examples
Example 1

This example shows how to properly create a memory TCD for a memory that has an address 
composed of several ports. For this example, the memory address is composed of the following 
ports:

• BNK[1:0] — Bank Address port

• ROW[5:0] — Row Address port

• COL[1:0] — Column Address port

The memory TCD syntax accepts more than one Port wrapper with Function:Address. The 
order in which the Port wrappers appear in the memory TCD have an impact on how the 
MemoryBIST logic drives the memory address ports.

Consider the Port wrapper order in the memory TCD of Example A-1, which results in the 
MemoryBIST logic driving the memory address ports in an unintended fashion.

Note there is no Port Function to specify whether a port is a BankAddress, RowAddress, or 
ColumnAddress port. Therefore, each memory address port has their Function property defined 
as “Address”. 

Example A-1. Incorrect Memory TCD Port Wrapper Ordering

Port (ROW[5:0]){
  function: Address;
}
Port (COL[1:0]){
  function: Address;
}
Port (BNK[1:0]){
  function: Address;
}
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AddressCounter {
  Function(BankAddress){
    LogicalAddressMap {
      BankAddress[1:0]:Address[9:8];
    }
    CountRange[0:3];
  }
  Function(ColumnAddress){
    LogicalAddressMap {
      ColumnAddress[1:0]:Address[1:0];
    }
    CountRange[0:3];
  }
  Function(RowAddress){
    LogicalAddressMap {
      RowAddress[5:0]:Address[7:2];
    }
    CountRange[0:55];
  }
}

The AddressCounter wrapper specifies how MemoryBIST constructs the address counter, as 
highlighted in red text. For this example, the address counter is 10 bits wide and constructed 
with the following segmentation:

address counter[9:0]={BankAddress[1:0],RowAddress[5:0],ColumnAddress[1:0]}

Note
The Port wrapper listing order in the memory TCD affects how the address counter drives 
the memory address ports.

The ROW[5:0] Port wrapper is the first address port specified in the memory TCD, for which 
MemoryBIST will use the first six bits of the address counter to drive the memory ROW port. 
The second Port wrapper is the COL[1:0] port, for which MemoryBIST uses the next two 
address counter bits to drive the COL port. The last Port wrapper is the BNK[1:0] port which 
the two remaining address counter bits drive. That is:

address counter[9:4] drives the memory ROW[5:0] port
address counter[3:2] drives the memory COL[1:0] port
address counter[1:0] drives the memory BNK[1:0] port

Notice this results in a misalignment between the address counter segmentation and the memory 
address ports. The address counter[9:4] bits drive the memory’s ROW[5:0] port, however 
address counter[9:4] is composed of {BankAddress[1:0],RowAddress[5:2]}.

Simulations may not be able to detect this misalignment. If the number of words in your 
memory is equal to the full binary address count, then the Verilog simulations will likely pass. 
This address misalignment would affect the physical checkerboard pattern created in the 
memory. Since memory simulation models do not consider the physical arrangement of the 
memory array, no simulation issues would result.
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However, if the number of words in your memory is not equal to the full binary address count, 
the Verilog simulations could fail. The misalignment could cause one or more operations to be 
outside of the memory’s valid address range. In the Port and AddressCounter wrappers of 
Example A-1, the RowAddress has a limited count range as shown in the green highlighted text. 
The maximum value the memory ROW[5:0] port should drive is 6'b110111, or decimal 55. The 
misalignment because of the Port ordering will result with the ROW[5:0] port actually driving a 
maximum of 6'b111101, or decimal 61, which is outside of the valid row count range.

To correct the misalignment, the Port wrappers of Function:Address should appear in the same 
order as the AddressCounter segmentation, which is BankAddress[1:0], RowAddress[5:0], and 
finally ColumnAddress[1:0] as shown in Example A-2. 

Example A-2. Correct Memory TCD Port Wrapper Ordering

   port (BNK[1:0]){
     function: Address;
   }
   port (ROW[5:0]){
     function: Address;
   }
   port (COL[1:0]){
     function: Address;
   }

   AddressCounter {
     Function (BankAddress){
       LogicalAddressMap {
         BankAddress[1:0]:Address[9:8];
       }
       CountRange[0:3];
     }
     Function  (RowAddress){
       LogicalAddressMap {
         RowAddress[5:0]:Address[7:2];
       }
       CountRange[0:63];
     }
     Function (ColumnAddress){
       LogicalAddressMap {
         ColumnAddress[1:0]:Address[1:0];
       }
       CountRange[0:3];
     }
   }

Related Topics
report_config_data [Tessent Shell Reference Manual]
report_config_syntax [Tessent Shell Reference Manual]
Memory
Core
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The AddressCounter wrapper can segment the address bits into bank, row or column address 
and enables you to specify the count range of each address segment.

Syntax
Core(core_name) {                                                            

Memory {  
AddressCounter { 

Function(address|columnAddress|rowAddress|bankAddress) { 
      LogicalAddressMap { 
        RowAddress[x:y] : Address[a:b]; // repeatable 
        ColumnAddress[x:y] : Address[a:b]; // repeatable 

BankAddress[x:y] : Address[a:b]; // repeatable 
      } 
      CountRange  [lowRange:highRange]; 
    } 

} 
} 

} 

Description
This wrapper is mandatory.

Typically, the lower address bits correspond to the column or row segment and the higher 
address bits correspond to the bank segment. Tessent MemoryBIST’s controller supports testing 
of memories with asymmetric banks containing a different number of rows per bank. For more 
information about asymmetric banks, refer to the Core/Memory/NumberOfWords and Core/
Memory/CountRange properties.

Note
Shadow read operations, memory templates with the PhysicalDataMap wrapper or the 
PhysicalAddressMap wrappers, and all checkerboard algorithms require segmented 

addresses. All checkerboard algorithms require a segmented address counter to build the correct 
physical one-by-one checkerboard pattern.

To ensure proper memory addressing, refer to Port wrapper Example 1 for information on the 
ordering of the memory TCD Ports of Function:Address and the AddressCounter/
LogicalAddressMap address segmentation elements.

Parameters
• Function(address | columnAddress | rowAddress | bankAddress)

The required Function wrapper defines how the memory BIST controller drives memory 
address ports. Use the Function wrapper to segment the address port into column, row, and 
bank addresses as well as to specify the count range of each segment.
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The following example shows an address port segmented into 4 row address bits and 7 
column address bits. The row address range is defined as 0 to 15. The column address range 
is not specified and defaults to the full binary count of the column address size (0 to 127).

Function (address) { 
  LogicalAddressMap { 
    ColumnAddress[6:0]: Address[6:0]; 
    RowAddress[3:0]: Address[10:7]; 
  } 
} 
Function (rowAddress) { 
  CountRange[0:15]; 
} 

• Function/LogicalAddressMap
The LogicalAddressMap wrapper maps the column, row, and bank address function bits to 
the logical address bits.
The following usage conditions apply:

o The values for ColumnAddress[x], RowAddress[x], and BankAddress[x] together 
must use the entire range specified for the address port (Core/Memory/Port/Function 
Address).

o Each bit in Address[x] must map to either a column, row, or bank address counter bit 
or be multiplexed to row and column address bits. Multiplexing of bank address bits 
is not supported.

o If a multiplexed row address segment and column address segment feature different 
sizes, you can define padding bit values for the shorter address segment with the 
multiplexed_address_padding of the Operation wrapper in the operation set.

o If at least one address bit position is multiplexed, either all row address bits or all 
column address bits must be multiplexed as well.

o Address multiplexing is supported only for single-port (1RW) memories.

Mapping assignments, whether specified as either msb:lsb or lsb:msb, are equivalent and 
implemented in RTL the same way.
For example, the following mappings:

ColumnAddress[0:2] : Address[2:0]
ColumnAddress[2:0] : Address[2:0]

results in the same mapping in hardware:
ColumnAddress[0] — Address[0]
ColumnAddress[1] — Address[1]
ColumnAddress[2] — Address[2]
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The following example shows a mapping for a 15-bit address bus with a non-contiguous 8-
bit row address segment, which is composed of address bit 14, and from address bits 6 to 0:

Function (Address) { 
  LogicalAddressMap { 
    RowAddress[6:0] : Address[6:0]; 
    ColumnAddress[6:0] : Address[13:7]; 
    RowAddress[7:7] : Address[14:14]; 
  } 
} 

• Function/LogicalAddressMap/BankAddress[x:y] : Address[a:b]
A repeatable property and address pair. It maps parts or all of the bank address function 
counter bits to the logical address bits. 
For an example, see the Function/LogicalAddressMap wrapper above.

• Function/LogicalAddressMap/ColumnAddress[x:y] : Address[a:b]
A repeatable property and address pair. It maps parts or all of the column address function 
counter bits to the logical address bits. 
For an example, see the Function/LogicalAddressMap wrapper above.

• Function/LogicalAddressMap/RowAddress[x:y] : Address[a:b]
A repeatable property and address pair. It maps parts or all of the row address function 
counter bits to the logical address bits. 
For an example, see the Function/LogicalAddressMap wrapper above.

• Function/CountRange [lowRange:highRange]
The CountRange property specifies the count range for the column, row, or bank address 
segments.
The following example shows an address port segmented into 4 row address bits and 7 
column address bits. The row address range is defined as 0 to 15. The column address range 
is not specified and defaults to the full binary count of the column address size (0 to 127).

Function (address) { 
  LogicalAddressMap { 
    ColumnAddress[6:0]: Address[6:0]; 
    RowAddress[3:0]: Address[10:7]; 
  } 
} 
Function (rowAddress) { 
  CountRange[0:15]; 
} 

Note
Asymmetric memory banks may exist with different numbers of rows per bank. For 
more information about asymmetric banks, refer to the NumberOfWords and 

CountRange properties.
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Related Topics
Memory
Port
Core/Memory/NumberOfWords
Core/Memory/CountRange
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PhysicalAddressMap
The PhysicalAddressMap wrapper describes the mapping between the logical address and the 
physical address in the memory array.

Syntax
Core(core_name) {                                                            

Memory {  
PhysicalAddressMap { 

BankAddress[bit] : expression; // repeatable 
ColumnAddress[bit] : expression; // repeatable 
RowAddress[bit] : expression; // repeatable 

} 
  } 
} 

Description
The PhysicalAddressMap wrapper enables Tessent MemoryBIST to construct a physical 
checkerboard pattern in the memory. The left column of the PhysicalAddressMap wrapper 
identifies the memory pins. The right column of the wrapper shows how the address counter bits 
drive the memory pins

If your memory TCD file(s) do not include a PhysicalAddressMap wrapper, Tessent 
MemoryBIST assumes a one-to-one mapping. For example, RowAddress[x]: r[x], 
ColumnAddress[x]: c[x], and BankAddress[x]: b[x].

In addition, if the number of equations is fewer than the number of address ports or if the 
mapping contains gaps, Tessent MemoryBIST assumes a one-to-one mapping for the missing 
addresses. 

For example:

PhysicalAddressMap { 
  ColumnAddress[0]: c[0] xor c[1]; 
  ColumnAddress[1]: c[1]; 
  ColumnAddress[3]: c[3]; 
}
 

Tessent MemoryBIST automatically fills in the missing address as follows:

ColumnAddress[2]: c[2];
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When specifying the PhysicalAddressMap wrapper, ColumnAddress[x], RowAddress[x], and 
BankAddress[x] must be uniquely specified. In the example shown below, Tessent Memory 
BIST issues an error indicating ColumnAddress[1] is repeated:

PhysicalAddressMap { 
  ColumnAddress[0]: c[0] xor c[1]; 
  ColumnAddress[1]: c[1]; 
  ColumnAddress[1]: c[2]; 
} 

The same counter bit c[x], r[x], or b[x] may be specified in one or more equations. Omitting a 
counter bit from the PhysicalAddressMap wrapper is permitted. In the example shown below, 
Tessent MemoryBIST issues a warning indicating counter bit r[2] is not used in any equation: 

PhysicalAddressMap { 
  ColumnAddress[0]: c[0] xor c[1]; 
  ColumnAddress[1]: c[1]; 
  ColumnAddress[2]: c[2]; 
  RowAddress[0]: r[0] xor r[1]; 
  RowAddress[1]: r[1]; 
  RowAddress[2]: r[1]; 
} 

For further information and detailed examples, refer to the “Memory BIST Physical Mapping 
Examples” appendix.

Parameters
• BankAddress[bit] ColumnAddress[bit] RowAddress[bit]

These repeatable properties identify the signals that are mapped to the memory address port 
as described by the LogicalAddressMap wrapper in the AddressCounter wrapper. The index 
(bit) must match the LogicalAddressMap wrapper index values.

• expression
This property represents a Boolean expression composed of Boolean operators, address 
counter bits, and optional parentheses. Table A-5 shows the valid operators and their 
precedence from highest to lowest. Operators on the same level are evaluated from left to 
right.

Table A-5. Operator Precedence 
Operator Precedence
not highest
and, nand
xor, xnor
or, nor lowest
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The operands represent the counter bits used to generate the column, row, or bank 
addresses. Valid address counter symbols are as follows, where the integer x is a valid bit 
index of the address segment as defined in the AddressCounter wrapper:

o c[x] — column address

o r[x] — row address

o b[x] — bank address

The address counter bits r[x], c[x], or b[x] can be specified in any of the ColumnAddress, 
RowAddress, or BankAddress equations. 
Optional parentheses define the operator precedence. Inserting parentheses is strongly 
recommended to avoid ambiguity in interpreting precedence and to improve readability. 
The following are examples of supported mapping equations:

o RowAddress[0]: c[0];

o RowAddress[0]: not c[0] xor c[1] xor c[2];

o RowAddress[0]: (c[0] and not c[1]) or c[2];

o RowAddress[0]: not (r[11] and ((r[11] nor r[12]) nand not r[10]));

Examples
Example 1

The following example shows a typical PhysicalAddressMap wrapper.

PhysicalAddressMap { 
  ColumnAddress[0]: c[0] xor c[1]; 
  ColumnAddress[1]: c[1]; 
  ColumnAddress[2]: c[2]; 
  ColumnAddress[3]: c[3]; 
  RowAddress[0]: r[0] xor r[2]; 
  RowAddress[1]: r[1] xor r[2]; 
  RowAddress[2]: r[2]; 
  RowAddress[3]: r[3]; 
  RowAddress[4]: r[4]; 
  RowAddress[5]: r[5]; 
  RowAddress[6]: r[6]; 
  RowAddress[7]: r[7]; 
  RowAddress[8]: r[8]; 
  RowAddress[9]: r[9]; 
} 

Example 2
The following example shows the scrambling definition for a bussed address port. The port 
width is 4 bits; bit 0 represents the column address, and bits 1 to 3 represent the row address. 
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Memory { 
  Port (A[3:0]) { 
    Function: Address; 
    Direction: Input; 
  } 
  ... 
  AddressCounter { 
    Function (Address) { 
      LogicalAddressMap { 
        ColumnAddress[0:0]: Address[0:0]; 
        RowAddress[2:0]: Address[3:1]; 
      } 
    } 
  } 
  PhysicalAddressMap { 
    ColumnAddress[0]: r[0] xor (c[0] or r[1]); 
    RowAddress[0]: r[0]; 
    RowAddress[1]: r[1]; 
    RowAddress[2]: not (r[2] and not c[0]); 
  } 
} 

Related Topics
Memory
AddressCounter
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PhysicalDataMap
The PhysicalDataMap wrapper describes the mapping between the data input ports of the 
memory and the internal data lines.

Syntax
Core(core_name) {                                                            

Memory {  
PhysicalDataMap { 

Data[bit] : [not] d[bit] [xor expression] ... ; 
    } 
  } 
} 

Description
Because physical memory cells are arranged in a particular order to ease layout, you must 
provide this information so Tessent MemoryBIST can correctly generate the checkerboard 
patterns. Tessent MemoryBIST does not support the PhysicalDataMap wrapper for ROM 
memories, as specified by the “Memory/MemoryType : rom;” setting in the memory TCD file. 
However, if you do specify the PhysicalDataMap wrapper for a ROM memory, Tessent 
MemoryBIST will ignore the wrapper with no impact to the generated hardware or to the 
default ROM MISR signature calculation.

If your memory TCD file does not include a physical data map wrapper, Tessent MemoryBIST 
assumes a one-to-one mapping, Data[n]: d[n].

The address counter bit specified in the physical data map equation must be defined in the Core/
Memory/AddressCounter wrapper of your memory TCD file.

The data bus must be an even multiple of the number of the physical data map equations. 
Tessent MemoryBIST repeats the entire physical data map wrapper to produce a map wide 
enough for the actual data bus.

For further information and detailed examples, refer to the “Memory BIST Physical Mapping 
Examples” appendix.

Parameters
• Data[bit]

This property represents the data port of the memory.
• d[bit]

This property identifies the physical data bit controlled by the memory BIST controller.
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• expression
The expression value represents a Boolean expression specified within the physical data 
map equation of the form:

<counterBit> | ([not] <counterBit> and [not] <counterBit>)

The parentheses in the preceding expression are literal characters.
<counterBit> is of the form c[bit] | r[bit], where c[bit], r[bit] represent the counter bits used 
to generate the column addresses (c[bit]), and row addresses (r[bit]), respectively.
The following table shows the valid physical data map equation operators and their 
precedence. Operators on the same level of precedence are evaluated from left to right.

When specifying the mapping between the data input ports of the memory and the internal 
data lines, Data[bit] must be contiguous:

PhysicalDataMap { 
  Data[0]: d[0]; 
  //ERROR: missing Data[1] 
  Data[2]: d[2]; 
  Data[3]: d[3]; 
} 

Further, d[bit] must use every Data[bit] exactly once:
PhysicalDataMap { 
  Data[0]: d[0]; 
  Data[1]: d[0]; 
  //ERROR: d[0] used more than once. d[1] missing. 
} 

Examples
Example 1

The first example is a typical PhysicalDataMap wrapper for an 8-bit wide memory. 

Table A-6. Operator Precedence 
Operator Precedence
not highest
and
xor lowest
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PhysicalDataMap { 
  Data[0]: not d[1] xor c[0]; 
  Data[1]: d[0] xor c[0]; 
  Data[2]: d[2]; 
  Data[3]: not d[3] xor (c[1] and not r[2]) xor r[4]; 
  Data[4]: d[4] xor (not c[3] and r[5]) xor (c[3] and not r[5]); 
  Data[5]: d[5] xor c[0]; 
  Data[6]: d[6]; 
  Data[7]: not d[7] xor c[1] xor c[8]; 
} 

Example 2
The second example shows two equivalent versions of the PhysicalDataMap wrapper for a 4-bit 
wide memory. Tessent MemoryBIST interprets the first PhysicalDataMap wrapper as shown in 
the second PhysicalDataMap wrapper.

PhysicalDataMap { 
  Data[0]: not d[0]; 
  Data[1]: d[1]; 
} 
PhysicalDataMap { 
  Data[0]: not d[0]; 
  Data[1]: d[1]; 
  Data[2]: not d[2]; 
  Data[3]: d[3]; 
} 

Related Topics
Memory
AddressCounter
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GroupWriteEnableMap
The GroupWriteEnableMap wrapper describes the mapping of a memory’s group write enable 
bit to the one or more data bits that it controls.

Syntax
Core(core_name) {
  Memory {
    GroupWriteEnableMap {
      GroupWriteEnable[gwe_bit] : d[bit_or_range], ... ; // repeatable
    }
  }
}

Description
The GroupWriteEnableMap wrapper is an optional wrapper that describes the mapping of a 
memory’s group write enable (GWE) bit to the one or more data bits that it controls. If this 
wrapper is not specified, a uniform distribution of the GWE bits to memory data bits is assumed 
and all memory bits must be controlled by a GWE bit. This wrapper is only allowed if the 
memory has at least one Port wrapper with the Function GroupWriteEnable present in the 
library.

If the ports with Function GroupWriteEnable also feature EmbeddedTestLogic inputs, the 
number of GroupWriteEnable properties must match the size of the test GWE port. Otherwise, 
the number of GroupWriteEnable properties must match the size of the functional GWE port.

Parameters
• GroupWriteEnable[gwe_bit] : d[bit_or_range], ... ;

A repeatable property and repeatable data bit or data bit range pairing that specifies which 
memory data bits are controlled by the GWE bit specified by gwe_bit. 
The gwe_bit indices for GroupWriteEnable must count from 0 to the size of the test input or 
functional GWE port, minus 1.
The data bit_or_range indices must be within the range of functional memory data input 
ports, regardless of whether the data port has EmbeddedTestLogic or not. The bit range of 
vector Data Input ports must always start with “0”. The indices cannot be duplicated within 
the GroupWriteEnableMap wrapper, however not all indices need to be used. If all indices 
are not used, a warning is issued.
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Examples
This example shows a mapping of a 4 bit GWE port that covers 9 of 10 bits of memory data 
input ports:

GroupWriteEnableMap {
  GroupWriteEnable[3] : d[9];
  GroupWriteEnable[2] : d[8:6];
  GroupWriteEnable[1] : d[4];
  GroupWriteEnable[0] : d[3:0];
}

Given this mapping, data input bits 0-3 and 6-8 are controlled by GWE bits 0 and 2 with the 
Cycle/even_group_write_enable property and data input bits 4 and 9 are controlled by GWE 
bits 1 and 3 with the Cycle/odd_group_write_enable property. Note that data input bit 5 is not 
controlled by any GWE bit.
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RedundancyAnalysis
The RedundancyAnalysis wrapper indicates that the built-in repair analysis (BIRA) feature is 
required for the memory described by the memory library.

Syntax
Core(core_name) {                                                            

Memory {  
RedundancyAnalysis { 

RowSegmentRange {                                                                                                                                                                                                                        
      SegmentAddress[bit] : AddressPort(name) ; // repeatable                                                                                                                                                                                 
    }                                                                                                                                                                                                                                        
 RowSegment(string) {  //repeatable 

} 
ColumnSegmentRange { 
SegmentAddress[bit] : AddressPort(name); // repeatable 

} 
ColumnSegment(string) {  //repeatable 
} 

} 
} 

}

Description
The properties and wrappers within the RedundancyAnalysis wrapper contain information 
about the repairable memory segments, the number of spare elements within a segment, and the 
addresses to be logged for the spare fuses.

Note
For multi-port memories, you only need to define the repair information for one port. 
Tessent MemoryBIST tests the ports in sequence re-using the same comparators between 

ports. The comparator results are cumulative and capture all defects for all ports at the end of 
the test.

Note
The use of an escaped identifier for AddressPort(name) is not supported.

Parameters
• RowSegmentRange/SegmentAddress[bit] : AddressPort(name) ; // Repeatable

The RowSegmentRange wrapper enables you to specify the memory address bits used to 
define the address space for the specified row segment. 
The RowSegmentRange defines the significant row address bits that encode the 
RowSegmentCountRange limits in the Core/Memory/RedundancyAnalysis/
ColumnSegment and Core/Memory/RedundancyAnalysis/RowSegment wrappers.
You do not need to specify this wrapper if only one RowSegment or ColumnSegment 
wrapper is defined within the RedundancyAnalysis wrapper. If only one RowSegment or 
Tessent™ MemoryBIST User’s Manual, v2022.4488

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
RedundancyAnalysis
ColumnSegment wrapper is present, the segment encompasses the entire memory address 
space.
If more than one RowSegment or ColumnSegment wrapper is defined for a same 
ShiftedIORange, the RowSegmentRange wrapper is required and the combined count 
ranges of all RowSegmentCountRange properties must encompass all possible codes 
defined by the SegmentAddress properties of the RowSegmentRange wrapper. Any unused 
codes must be explicitly indicated within the range values of the RowSegmentCountRange 
property. Refer to the second Example provided in the RowSegmentCountRange property 
description.

• ColumnSegmentRange/SegmentAddress[bit] : AddressPort(name) ; // Repeatable
The ColumnSegmentRange wrapper enables you to define a portion of the memory address 
space where spare element can replace a defective element. The ColumnSegmentRange 
defines the significant column address bits that encode the ColumnSegmentCountRange 
limits inside the ColumnSegment wrapper.
You do not need to specify this wrapper if only one ColumnSegment or RowSegment 
wrapper is defined within the RedundancyAnalysis wrapper. If only one ColumnSegment or 
RowSegment wrapper is present, the segment encompasses the entire memory address 
space.
If more than one ColumnSegment or RowSegment wrapper is defined for a same 
ShiftedIORange, the ColumnSegmentRange wrapper is required and the combined count 
ranges of all ColumnSegmentCountRange properties must encompass all possible codes 
defined by the SegmentAddress properties of the ColumnSegmentRange wrapper. Any 
unused codes must be explicitly indicated within the range values of the 
ColumnSegmentCountRange property. Refer to the second Example provided in the 
ColumnSegmentCountRange property description.
This example divides the memory address space into 2 column segments called BANK0 and 
BANK1. The address range of each column segment is defined by address port AD[7].

ColumnSegmentRange{ 
  SegmentAddress[0]: AddressPort(AD[7]); 
} 
ColumnSegment (BANK0) { 
  ColumnSegmentCountRange [1'b0:1'b0]; 
} 
ColumnSegment (BANK1) { 
  ColumnSegmentCountRange [1'b1:1'b1]; 
} 

Examples
The following example specifies four RowSegment wrappers.

• Each segment consists of two spare elements and is located in the address space defined 
by the address ports AD[12:10].
Tessent™ MemoryBIST User’s Manual, v2022.4 489

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
RedundancyAnalysis
• The RowSegment(Bank0) is defined within the address space, whereby AD[12:10] is 
within 3'b000 and 3'b001.

• The RowSegment(Bank1) is defined within the address space, whereby AD[12:10] is 
within 3'b010 and 3'b011.

• The RowSegment(Bank2) is defined within the address space, whereby AD[12:10] is 
within 3'b100 and 3'b101.

• The RowSegment(Bank3) is defined within the address space, whereby AD[12:10] is 
within 3'b110 and 3'b111.

RedundancyAnalysis { 
  RowSegmentRange { 
    SegmentAddress[0]: AddressPort(AD[10]); 
    SegmentAddress[1]: AddressPort(AD[11]); 
    SegmentAddress[2]: AddressPort(AD[12]); 
  } 
  RowSegment (Bank0){ 
    NumberOfSpareElements: 2; 
    RowSegmentCountRange [3'b000:3'b001]; 
    FuseSet { 
      Fuse[2]: AddressPort(AD[9]); 
      Fuse[1]: AddressPort(AD[8]); 
      Fuse[0]: AddressPort(AD[7]); 
    } 
  } 
  RowSegment (Bank1){ 
    NumberOfSpareElements: 2; 
    RowSegmentCountRange [3'b010:3'b011]; 
    FuseSet { 
      Fuse[2]: AddressPort(AD[9]); 
      Fuse[1]: AddressPort(AD[8]); 
      Fuse[0]: AddressPort(AD[7]); 
    } 
  } 
  RowSegment (Bank2){ 
    NumberOfSpareElements: 2; 
    RowSegmentCountRange [3'b100:3'b101]; 
    FuseSet { 
      Fuse[2]: AddressPort(AD[9]); 
      Fuse[1]: AddressPort(AD[8]); 
      Fuse[0]: AddressPort(AD[7]); 
    } 
  } 
  RowSegment (Bank3){ 
    NumberOfSpareElements: 2; 
    RowSegmentCountRange [3'b110:3'b111]; 
    FuseSet { 
      Fuse[2]: AddressPort(AD[9]); 
      Fuse[1]: AddressPort(AD[8]); 
      Fuse[0]: AddressPort(AD[7]); 
    } 
  } 
} 
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Related Topics
RedundancyAnalysis/ColumnSegment
RedundancyAnalysis/RowSegment
Memory
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RedundancyAnalysis/RowSegment
The RowSegment wrapper enables you to identify a segment of the memory address space that 
contains spare row elements.

Syntax
Core(core_name) {                                                            

Memory {  
RedundancyAnalysis { 

 RowSegment(string) { // repeatable 
NumberOfSpareElements   : int; // default: 1 
RowSegmentCountRange range;  
FuseSet {                                         

Fuse[bit] : AddressPort(name) | not AddressPort(name) | 
LogicHigh | LogicLow; // repeatable  

}                                                                                                                                                                                                                                      
PinMap { 
} 

} 
} 

} 
} 

Description
The row memory segment specified by the RowSegment wrapper can cover the whole memory 
address space or a subset of the address space. Each segment covers all IOs. If a single segment 
is used, it must cover the whole address space. The wrapper is repeatable and when multiple 
segments are used, each segment covers a subset of the address space and the union of all 
segments must cover the entire memory without overlap. Specify this wrapper in the 
RedundancyAnalysis wrapper to implement row repair analysis.

Note
The use of an escaped identifier for AddressPort(name) is not supported.

Parameters
• RowSegment(string)

The string value names the row segment. It must be unique identifier for the memory 
segment.

• NumberOfSpareElements: int ; // default: 1
The NumberOfSpareElements property enables you to define the number of spare rows. The 
default value is 1.
The following example specifies there are 2 spare elements in the row segment Bank0.
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RowSegment (Bank0){ 
  NumberOfSpareElements: 2; 
  . 
  . 
} 

• RowSegmentCountRange range ;
The RowSegmentCountRange property defines the portion of the row address space where 
the segment’s spare elements can replace a defective IO/Column element.
range is defined as [<lowRange>:<highRange>], where valid values are as follows: 

o lowRange— specifies the low address value in terms of the defined segment address 
bits used to enable the repair analysis for this segment.

o highRange— specifies the high address value in terms of the defined segment 
address bits used to enable the repair analysis for this segment.

Valid data types for lowRange and highRange are integers or BitsValues. If any 
SegmentAddress bits are specified in the RowSegmentRange wrapper, the 
RowSegmentCountRange property defaults to a lowRange of zero to a highRange of 2n -1, 
where n is the number of SegmentAddress bits specified.
The RowSegmentCountRange property can be specified only when at least one 
SegmentAddress bit is defined. When more than one RowSegment wrapper is specified, the 
combined count ranges of all RowSegmentCountRange properties must encompass all 
possible codes defined by the SegmentAddress properties of the RowSegmentRange 
wrapper. Any unused codes must be explicitly indicated within the range values of the 
RowSegmentCountRange property.
In the following example, row segment Bank0 is enabled when address port AD[11] is logic 
1 and AD[10] is logic 0. Row segment Bank1 is enabled for all remaining AD[11] and 
AD[10] combinations.

RowSegmentRange {
   SegmentAddress[1]: AddressPort(AD[11]);
   SegmentAddress[0]: AddressPort(AD[10]);
}
RowSegment(Bank0) {
   RowSegmentCountRange[2'b00:2'b00];
   .
   .
   .
}
RowSegment(Bank1) {
   RowSegmentCountRange[2'b01:2'b11];
   .
   .
   .
}
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In the example below, addr[9:8] are bank address bits, but there are only three banks, each 
with a ColumnSegment. In this case, there are only three useful decoded values of the 
SegmentAddress bits, however the remaining decoded value is added to the last segment.

RedundancyAnalysis { 
  RowSegmentRange {
      SegmentAddress[0] : AddressPort(addr[8]);
      SegmentAddress[1] : AddressPort(addr[9]);
  }
  ColumnSegment (ALL0) { 
      RowSegmentCountRange  [2'b00:2'b00];
       ...
  }
  ColumnSegment (ALL1) { 
      RowSegmentCountRange  [2'b01:2'b01];
       ...
  }
  ColumnSegment (ALL2) { 
      // value 2'b11 specified but is never exercised
      RowSegmentCountRange  [2'b10:2'b11];        
       ...
  }
}

• FuseSet/Fuse[bit] : AddressPort(name) | not AddressPort(name) | LogicHigh | LogicLow ;
The Fuse property in the FuseSet wrapper defines which address bits are required for the 
fuses to replace a defective element with a spare element. These fuse bits are defined per 
row segment. This is a repeatable property.
The following example specifies two segments that consist of two spare elements each. 
Each spare element has a fuse register that logs the specified address bits as defined by the 
FuseSet wrapper. The fuse register bits are as follows:

o Fuse[3] — logs the address driven on the port AD[9] for the defective element

o Fuse[2] — logs the address driven on the port AD[8] for the defective element

o Fuse[1] — logs the address driven on the port AD[7] for the defective element

o Fuse[0] — logs the address driven on the port AD[0] for the defective element
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RowSegment (Bank0){ 
  NumberOfSpareElements: 2; 
  RowSegmentCountRange [1'b0:1'b0]; 
  FuseSet { 
    Fuse[3]: AddressPort(AD[9]); 
    Fuse[2]: AddressPort(AD[8]); 
    Fuse[1]: AddressPort(AD[7]); 
    Fuse[0]: AddressPort(AD[0]); 
  } 
} 
RowSegment (Bank1){ 
  NumberOfSpareElements: 2; 
  RowSegmentCountRange [1'b1:1'b1]; 
  FuseSet { 
    Fuse[3]: AddressPort(AD[9]); 
    Fuse[2]: AddressPort(AD[8]); 
    Fuse[1]: AddressPort(AD[7]); 
    Fuse[0]: AddressPort(AD[0]); 
  } 
} 

Related Topics
RedundancyAnalysis
Memory
RedundancyAnalysis/ColumnSegment
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RedundancyAnalysis/ColumnSegment
The ColumnSegment wrapper enables you to identify a segment of the memory address space 
that contains spare IO/Column elements. 

Syntax
Core(core_name) {                                                            

Memory {  
RedundancyAnalysis { 

ColumnSegment(string) { // repeatable 
RowSegmentCountRange range;  
ColumnSegmentCountRange range;  
NumberOfSpareElements : int; // default: 1 
ShiftedIORange : port_name, ... ; 
FuseSet { 

Fuse[bit] : AddressPort(name) | not AddressPort(name) | 
LogicHigh | LogicLow; 

FuseMap[HighBitRange:LowBitRange] { 
NotAllocated : binary; // default: 0 
ShiftedIO(io) : binary; // repeatable 

} 
} 
PinMap { 
} 

} 
} 

} 
} 

Description
The column segment defined by the ColumnSegment wrapper can cover the whole address 
space or a subset of the address space. It can also cover all IOs or a subset of the IOs. The 
wrapper is repeatable and all segments must cover the entire memory without overlapping. 
Specify this wrapper in the RedundancyAnalysis wrapper to implement IO/Column repair 
analysis.

Note
The use of an escaped identifier for ShiftedIORange:port_name or AddressPort(name) is 
not supported.

Parameters
• ColumnsSegment(string)

The string value names the column segment. It must be unique identifier for the memory 
segment.

• RowSegmentCountRange range ;
The RowSegmentCountRange property defines the portion of the row address space where 
the segment’s spare elements can replace a defective IO/Column element.
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range is defined as [<lowRange>:<highRange>], where valid values are as follows: 
o lowRange— specifies the low address value in terms of the defined segment address 

bits used to enable the repair analysis for this segment.

o highRange— specifies the high address value in terms of the defined segment 
address bits used to enable the repair analysis for this segment.

Valid data types for lowRange and highRange are integers or BitsValues. If any 
SegmentAddress bits are specified in the RowSegmentRange wrapper, the 
RowSegmentCountRange property defaults to a lowRange of zero to a highRange of 2n -1, 
where n is the number of SegmentAddress bits specified.
The RowSegmentCountRange property can be specified only when at least one 
SegmentAddress bit is defined. When more than one ColumnSegment wrapper is specified, 
the combined count ranges of all RowSegmentCountRange properties must encompass all 
possible codes defined by the SegmentAddress properties of the RowSegmentRange 
wrapper. Any unused codes must be explicitly indicated within the range values of the 
RowSegmentCountRange property.
In the following example, column segment Bank0 is enabled when address port AD[10] is 
logic 0. Bank1 is enabled when AD[10] is logic 1.

RowSegmentRange {
   SegmentAddress[1]: AddressPort(AD[10]);
}
ColumnSegment(Bank0) {
   RowSegmentCountRange[1'b0:1'b0];
   .
   .
   .
}
ColumnSegment(Bank1) {
   RowSegmentCountRange[1'b1:1'b1];
   .
   .
   .
} 

In the example below, addr[9:8] are bank address bits, but there are only three banks, each 
with a ColumnSegment. In this case, there are only three useful decoded values of the 
SegmentAddress bits, however the remaining decoded value is added to the last segment.
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RedundancyAnalysis { 
  RowSegmentRange {
      SegmentAddress[0] : AddressPort(addr[8]);
      SegmentAddress[1] : AddressPort(addr[9]);
  }
  ColumnSegment (ALL0) { 
      RowSegmentCountRange  [2'b00:2'b00];
       ...
  }
  ColumnSegment (ALL1) { 
      RowSegmentCountRange  [2'b01:2'b01];
       ...
  }
  ColumnSegment (ALL2) { 
      // value 2'b11 specified but is never exercised
      RowSegmentCountRange  [2'b10:2'b11];        
       ...
  }
}

• ColumnSegmentCountRange range
The ColumnSegmentCountRange property defines the portion of the column address space 
where the segment’s spare elements can replace a defective IO/Column element.
range is defined as [<lowRange>:<highRange>], where valid values are as follows: 

o lowRange— specifies the low address value in terms of the defined segment address 
bits used to enable the repair analysis for this segment.

o highRange— specifies the high address value in terms of the defined segment 
address bits used to enable the repair analysis for this segment.

Valid data types for lowRange and highRange are integers or BitsValues. If any 
SegmentAddress bits are specified in the ColumnSegmentRange wrapper, the 
ColumnSegmentCountRange property defaults to a lowRange of zero to a highRange of 2n -
1, where n is the number of SegmentAddress bits specified.
The ColumnSegmentCountRange property can be specified only when at least one 
SegmentAddress bit is defined.
When more than one ColumnSegment wrapper is specified, the combined count ranges of 
all ColumnSegmentCountRange properties must encompass all possible codes defined by 
the SegmentAddress properties of the ColumnSegmentRange wrapper. Any unused codes 
must be explicitly indicated within the range values of the ColumnSegmentCountRange 
property.
In the following example, column segment Bank0 is enabled when address port AD[11] is 
logic 1 and AD[10] is logic 0. Column segment Bank1 is enabled for all remaining AD[11] 
and AD[10] combinations.
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ColumnSegmentRange {
   SegmentAddress[1]: AddressPort(AD[11]);
   SegmentAddress[0]: AddressPort(AD[10]);
}
ColumnSegment(Bank0) {
   ColumnSegmentCountRange[2'b00:2'b00];
   .
   .
   .
}
ColumnSegment(Bank1) {
   ColumnSegmentCountRange[2'b01:2'b11];
   .
   .
   .
}
 

In the example below, addr[9:8] are bank address bits, but there are only three banks, each 
with a ColumnSegment. In this case, there are only three useful decoded values of the 
SegmentAddress bits, however the remaining decoded value is added to the last segment.

RedundancyAnalysis { 
  ColumnSegmentRange {
      SegmentAddress[0] : AddressPort(addr[8]);
      SegmentAddress[1] : AddressPort(addr[9]);
  }
  ColumnSegment (ALL0) { 
      ColumnSegmentCountRange  [2'b00:2'b00];
       ...
  }
  ColumnSegment (ALL1) { 
      ColumnSegmentCountRange  [2'b01:2'b01];
       ...
  }
  ColumnSegment (ALL2) { 
      // value 2'b11 specified but is never exercised
      ColumnSegmentCountRange  [2'b10:2'b11];        
       ...
  }
}

• NumberOfSpareElements: int ; // default: 1
The NumberOfSpareElements property enables you to define the number of spare columns. 
The default value is 1.

• ShiftedIORange: port_name, ... ;
The ShiftedIORange property enables you to define a group of IO bits where spare elements 
can replace a faulty IO. When a defective element is within this group, a spare element is 
allocated to this segment. The port_name value is a valid data port name that does not 
contain escaped identifiers. Each port name can be a bused port or scalar ports separated by 
comma. The default range includes all IO bits of the data port.
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• FuseSet/Fuse[bit] : AddressPort(name) | not AddressPort(name) | LogicHigh | LogicLow ;
The repeatable FuseSet wrapper contains two possible definitions of the fuse register bits: 

o The first definition is used to map fuse register bits to address ports on the memory. 
In this case, the fuse register bit logs the value of this address port for the defective 
IO element. The mapping information is passed through the Fuse property. The use 
of an escaped identifier for AddressPort(name) is not supported.

o The second definition is used for IO shifting and enables you to define fuse register 
values for identifying defective IO/columns. The defined fuse value is loaded into 
the fuse register for a defective IO. The mapping information for the shifted IO is 
passed to the tool through the FuseMap wrapper.

Note
The FuseSet wrapper is used in the ColumnSegment wrapper and is specified only 
once per ColumnSegment wrapper.

• FuseSet/FuseMap[HighBitRange:LowBitRange] 
The FuseMap wrapper enables you to define a bit range for the fuse register. This wrapper is 
used to map IO ports to the fuse register.
This example specifies the binary codes that are logged to identify each failing data IO port.

FuseMap[3:0] { 
  ShiftedIO(Data[0]): 4'b0000; 
  ShiftedIO(Data[1]): 4'b0001; 
  ShiftedIO(Data[2]): 4'b0010; 
  ShiftedIO(Data[3]): 4'b0011; 
  ShiftedIO(Data[4]): 4'b0100; 
  ShiftedIO(Data[5]): 4'b0101; 
  ShiftedIO(Data[6]): 4'b0110; 
  ShiftedIO(Data[7]): 4'b0111; 
  ShiftedIO(Data[8]): 4'b1000; 
  ShiftedIO(Data[9]): 4'b1001; 
} 

• FuseSet/FuseMap[HighBitRange:LowBitRange]/NotAllocated : binary;
The NotAllocated property specifies the fuse register decode value to indicate the spare 
element in the column segment is not used. If this property is not present, a one bit register 
called the Allocation Bit is added as the MSB of the fuse register.
These usage conditions apply:

o This property must be specified for all or none of ColumnSegment.

o If this property is defined, the specified value must be all zeroes.

o If this property is defined, the same value must be specified for all 
ColumnSegments.
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o If this property is defined, the specified value cannot be repeated as a ShiftedIO 
value within the same FuseMap wrapper.

• FuseSet/FuseMap[HighBitRange:LowBitRange]/ShiftedIO(io) : binary; // repeatable
The repeatable ShiftedIO property enables you to specify the values to be logged in the fuse 
register, which identifies each defective IO. io is a defined data port name.
You should specify a ShiftedIO property for all memory data outputs. Otherwise, an error 
message is generated. You can specify the same bitString value for ShiftedIO properties of 
different memory outputs. However, a limitation applies.

Related Topics
RedundancyAnalysis
Memory
RedundancyAnalysis/RowSegment
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PinMap
The contents of the PinMap wrapper enables you to instruct Tessent MemoryBIST to apply the 
repair solution, computed by the BIRA engine, to the memory repair ports or the serial repair 
register.

Syntax
Core(core_name) {                                                            

Memory {  
RedundancyAnalysis { 

RowSegment (string) { 
PinMap { 

SpareElement { 
RepairEnable : repairPortName | RepairRegister[bit]; 
Fuse[bit] : repairPortName | RepairRegister[bit];  
LogicLow : repairPortName | RepairRegister[bit];  

} 
      } 
    } 
      ColumnSegment (string) { 

PinMap { 
SpareElement { 

RepairEnable : repairPortName | RepairRegister[bit]; 
Fuse[bit] : repairPortName | RepairRegister[bit]; 
FuseMap[bit] : repairPortName | RepairRegister[bit]; 
LogicLow : repairPortName | RepairRegister[bit]; 

} 
} 

} 
} 

} 
}

Description
Using the SpareElement wrapper, you can specify mappings from the BISR fuse registers to the 
corresponding memory repair ports. These pin mappings are used to connect the BISR fuse 
register ports to the memory repair ports. The number of SpareElement wrappers allowed 
within the PinMap wrapper is equal to the NumberOfSpareElements value specified in the 
respective RedundancyAnalysis/ColumnSegment and RedundancyAnalysis/RowSegment 
wrappers.

For a memory with serial repair interface, you can specify the sequence of the internal BISR 
chain register within the memory.

Note
The use of an escaped identifier for repairPortName is not supported.
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Parameters
The parameter descriptions are identical for the RowSegment(string)/PinMap/SpareElement 
wrapper and the ColumnSegment(string)/PinMap/SpareElement wrapper. The property path 
leading to the elements in SpareElement is omitted in the following.
RepairRegister[bit] enables you to describe the order of the internal BISR chain register for the 
serial BISR interface. The total BISR chain length (N) for a given memory is equal to the 
number of the RepairRegister[bit] properties specified in the RowSegment and ColumnSegment 
wrappers combined inside a memory TCD file. 
The RepairRegister[0] specifies the BISR chain register that is closest to the output port with 
function BisrSerialData, and the RepairRegister[N-1] specifies the BISR chain register that is 
closest to the input port with function BisrSerialData. A single BISR chain register is generated 
for each memory TCD file. The RepairRegister[x] indexes must be contiguous from 0 to N-1 
within a memory TCD file. All indexes between 0 and N-1 must be used, and each index can 
only be used once. 
You must take care to describe the RepairRegister[x] indexes to match the internal memory 
BISR chain order specified in the memory data sheet. Any mismatch between the external and 
internal BISR chains ordering results in the incorrect repair data scanned inside the memory.
• RepairEnable : repairPortName | RepairRegister[bit];

The RepairEnable property is used to identify the memory pin name or the bit of the internal 
BISR chain register that is used to control the memory repair function.
repairPortName specifies memory port name used to activate the spare element. 

• Fuse[bit] : repairPortName | RepairRegister[bit];
The Fuse property enables you to specify the memory port of the internal BISR chain bit 
that controls the address of a spare row or column element. You can use this property 
multiple times. This property maps each bit in FuseSet:Fuse property to the corresponding 
repair ports or bits in the internal BISR chain of the memory. Each 
SpareElement:Fuse[<bitIndex>] index must match a FuseSet:Fuse [<bitIndex>] index. 
bit represents the fuse bit number. This number must start from zero and incrementally 
count by one up to n-1 where n is the number of Fuse bits specified.
repairPortName represents the memory port with function BisrParallelData that logs the 
failing address for the spare element.
Each ColumnSegment/FuseSet/Fuse property must have a corresponding PinMap/
SpareElement/Fuse property. 

• FuseMap[bit] : repairPortName | RepairRegister[bit];
The FuseMap property is only available for the ColumnSegment/PinMap/SpareElement 
wrapper.
The FuseMap property enables you to specify the memory port or internal BISR chain bit 
that controls the IO shifting circuit. This property maps the shifted IO fuse map bits to the 
corresponding repair ports or bits in the internal BISR chain of the memory. Each 
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SpareElement/FuseMap[bit] index must be within the FuseSet/FuseMap[range] index 
range.
bit represents the fuse bit number. This number must start from zero and incrementally 
count by one up to n-1 where n is the number of Fuse bits specified.
repairPortName represents the memory port with function BisrParallelData that logs the 
failing IO for the spare element.

• LogicLow : repairPortName | RepairRegister[bit];
The LogicLow property is used to instantiate a BISR register that is not associated to any 
BIRA register. This instantiates a BISR register that initializes to a logiclow when the 
asynchronous BISR clear signal is enabled. This register holds its value during a BIRA to 
BISR transfer.
repairPortName identifies the memory port with function BisrParallelData that is driven to 
the logic low value.
RepairRegister[bit] identifies the index of the internal BISR chain that is set to the logic low 
value.
This example specifies that the third bit of the BISR chain initializes to a constant logic low 
value during the BISR chain asynchronous reset. This register holds its value during a BIRA 
to BISR transfer. This register is connected to the SRowAddress[2] port of the memory with 
parallel BISR interface.

PinMap{ 
  SpareElement{ 
    LogicLow: SRowAddress[2]; 
    Fuse[2]:  SRowAddress[1]; 
    Fuse[1]:  SRowAddress[0]; 
    RepairEnable: SRowEn; 
  } 
} 

Examples
The following example shows spare elements for implementing built-in self-repair feature.

PinMap { 
  SpareElement { 
    RepairEnable: B0_REN0; 
    Fuse[0]: B0_RR0[0]; 
    Fuse[1]: B0_RR0[1]; 
    Fuse[2]: B0_RR0[2]; 
    Fuse[3]: B0_RR0[3]; 
  } 
  SpareElement { 
    RepairEnable: B0_REN1; 
    Fuse[0]: B0_RR1[0]; 
    Fuse[1]: B0_RR1[1]; 
    Fuse[2]: B0_RR1[2]; 
    Fuse[3]: B0_RR1[3]; 
  } 
} 
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Related Topics
RedundancyAnalysis
Memory
RedundancyAnalysis/RowSegment
RedundancyAnalysis/ColumnSegment
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IclPorts
IclPorts
Identifies memory ports to be controlled or observed using TDRs of the IJTAG network.

Usage
IclPorts {

DataInPort (port_name[range]) { // repeatable
Attribute(attribute_name) : attribute_value ; // repeatable

}
DataOutPort (port_name[range]){ // repeatable

Attribute(attribute_name) : attribute_value ; // repeatable
}

}

Description
The IclPorts wrapper identifies memory ports to be controlled or observed using TDRs of the 
IJTAG network. The TDRs are automatically added to the DftSpecification wrapper generated 
by create_dft_specification, then inserted and connected to the memory during the DFT 
Specification processing. 

A common usage is to provide static control to the memory, such as read/write margin and 
power mode, prior to applying the memory test. The TDR can be accessed with an iProc applied 
through a ProcedureStep in the Patterns Specification. 

Use the DataInPort and DataOutPort wrappers to assign attributes on the associated memory 
ports. The attributes instruct the create_dft_specification command to configure the TDR 
connections in the IjtagNetwork wrapper of the generated DFT Specification. 

Note
The use of an escaped identifier for port_name is not supported.

The create_dft_specification command considers the following ICL attributes. Other valid 
attributes may be specified, but are ignored by create_dft_specification.

• default_load_value

• tessent_use_in_dft_specification

• tessent_enable_group

• tessent_common_tdr_source

Tessent MemoryBIST generates an ICL view of the memory module. The attributes defined in 
the DataInPort and DataOutPort wrappers are populated into the memory ICL module.

The DataInPort and DataOutPort wrappers are repeatable. Each wrapper may specify one or 
more attributes. The specified attributes are cumulative and if duplicated, the last value 
specified is retained.
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Arguments
• DataInPort(port_name[range] )

The port_name property must refer to a Port wrapper defined with Function:None and 
Direction:Input. The optional range element identifies the bit range for bussed ports. 

• DataOutPort(port_name[range] )
The port_name property must refer to a Port wrapper defined with Function:None and 
Direction:Output. The optional range element identifies the bit range for bussed ports.

• Attribute(attribute_name) : attribute_value ;
A repeatable property and value pair that is specified in the DataInPort or DataOutPort 
wrapper. A port or bus bit range specified in many DataInPort or DataOutPort wrappers 
collects all of the attributes specified within each wrapper for those ports. If an attribute is 
duplicated, the value that is specified last is retained.

Examples
Example TDR DFT Configurations

Table A-7 shows the TDR configurations that are created with the IclPorts specifications 
provided, using the tessent_enable_group and tessent_common_tdr_source attributes. 
Mem_inst0 and Mem_inst1 are different instances of the same memory module. Where 
indicated, Mem_inst2 is an instance of a different memory module. 

Table A-7. Example TDR Configurations Using tessent_enable_group and 
tessent_common_tdr_source 

Specification Resulting DFT
Example Implementations Controlling the Full Bus
Bussed port with tessent_enable_group:
DataInPort(Tm[4:0]) {

  Attribute(tessent_enable_group):group0;

}

Green TDR[4:0] drives Tm[4:0] of Mem_inst0.
Blue TDR[4:0] drives Tm[4:0] of Mem_inst1.
Tessent™ MemoryBIST User’s Manual, v2022.4 507

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
IclPorts
Bussed port with tessent_common_tdr_source:
DataInPort(Tm[4:0]) {

  Attribute(tessent_common_tdr_source):tm_all;

}

Bussed port with both attributes:
DataInPort(Tm[4:0]) {

  Attribute(tessent_common_tdr_source):tm_all;

  Attribute(tessent_enable_group):group0;

} Green TDR[0] drives Tm[4:0] of all memory 
instances.

Bit-wise port with 
tessent_common_tdr_source:
DataInPort(Tm[4]) {

  Attribute(tessent_common_tdr_source):tm_4;

}

...

DataInPort(Tm[0]) {

  Attribute(tessent_common_tdr_source):tm_0;

}

Bit-wise port with both attributes:
DataInPort(Tm[4]) {

  Attribute(tessent_common_tdr_source):tm_4;

  Attribute(tessent_enable_group):group0;

}...

DataInPort(Tm[0]) {

  Attribute(tessent_common_tdr_source):tm_0;

  Attribute(tessent_enable_group):group0;

}

Green TDR[4:0] drives Tm[4:0] of all memory 
instances.

Example Implementations Controlling Portions of a Bus

Table A-7. Example TDR Configurations Using tessent_enable_group and 
tessent_common_tdr_source  (cont.)

Specification Resulting DFT
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Split Bus with tessent_enable_group:
DataInPort(Tm[4:2]) {

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[1:0]) {

  Attribute(tessent_enable_group):group1;

  Attribute(default_load_value) : 2'b11;

}

Orange TDR[2:0] drives Tm[4:2] of Mem_inst0.
Red TDR[1:0] drives Tm[1:0] of Mem_inst0.
Green TDR[2:0] drives Tm[4:2] of Mem_inst1.
Blue TDR[1:0] drives Tm[1:0] of Mem_inst1.

Split Bus with tessent_common_tdr_source:
DataInPort(Tm[4:2]) {

  Attribute(tessent_common_tdr_source):tm_4_2;

}

DataInPort(Tm[1:0]) {

  Attribute(tessent_common_tdr_source):tm_1_0;

}

TDR[0] drives Tm[4:2] of all memory instances.
TDR[1] drives Tm[1:0] of all memory instances.

Split Bus with both attributes:
DataInPort(Tm[4:2]) {

  Attribute(tessent_common_tdr_source):tm_4_2;

  Attribute(tessent_enable_group) : group0;

}

DataInPort(Tm[1:0]) {

  Attribute(tessent_common_tdr_source):tm_1_0;

  Attribute(tessent_enable_group) : group1;

}

Green TDR[0] drives Tm[4:2] of all memory 
instances.
Blue TDR[0] drives Tm[1:0] of all memory 
instances.

Table A-7. Example TDR Configurations Using tessent_enable_group and 
tessent_common_tdr_source  (cont.)

Specification Resulting DFT
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Bit-wise split bus with both attributes:
DataInPort(Tm[4]) {

  Attribute(tessent_common_tdr_source):tm_4;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[3]) {

  Attribute(tessent_common_tdr_source):tm_3;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[2]) {

  Attribute(tessent_common_tdr_source):tm_2;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[1]) {

  Attribute(tessent_common_tdr_source):tm_1;

  Attribute(tessent_enable_group):group1;

}

DataInPort(Tm[0]) {

  Attribute(tessent_common_tdr_source):tm_0;

  Attribute(tessent_enable_group):group1;

}

Green TDR[2:0] drives Tm[4:2] of all memory 
instances.
Blue TDR[1:0] drives Tm[1:0] of all memory 
instances.

Example Implementation of TDR Sharing Between Different Memory Modules With Partially
Shared Attribute Values

Table A-7. Example TDR Configurations Using tessent_enable_group and 
tessent_common_tdr_source  (cont.)

Specification Resulting DFT
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Example 2
The Memory TCD specifies the input port in1 to be sourced by one TDR. The first DataInPort 
wrapper includes all port bits. The second DataInPort wrapper subsequently excludes bit 0.

Mem_inst0/Mem_inst1 IclPorts wrapper:
DataInPort(Tm[4]) {

  Attribute(tessent_common_tdr_source):tm_4;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[3]) {

  Attribute(tessent_common_tdr_source):tm_3;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[2]) {

  Attribute(tessent_common_tdr_source):tm_2;

  Attribute(tessent_enable_group):group0;

}

DataInPort(Tm[1]) {

  Attribute(tessent_common_tdr_source):tm_1;

  Attribute(tessent_enable_group):group1;

}

DataInPort(Tm[0]) {

  Attribute(tessent_common_tdr_source):tm_0;

  Attribute(tessent_enable_group):group1;

}

Mem_inst2 IclPorts wrapper:
DataInPort(Tm[4]) {

  Attribute(tessent_common_tdr_source):tm_4;

  Attribute(tessent_enable_group):group3;

}

DataInPort(Tm[3]) {

  Attribute(tessent_common_tdr_source):tm_3;

  Attribute(tessent_enable_group):group3;

}

DataInPort(Tm[2]) {

  Attribute(tessent_common_tdr_source):tm_2;

  Attribute(tessent_enable_group):group3;

}

DataInPort(Tm[1]) {

  Attribute(tessent_common_tdr_source):tm_1;

  Attribute(tessent_enable_group):group1;

}

DataInPort(Tm[0]) {

  Attribute(tessent_common_tdr_source):tm_0;

  Attribute(tessent_enable_group):group1;

}

Green TDR[2:0] drives Tm[4:2] of Mem_inst0 and
Mem_inst1.
Blue TDR[1:0] drives Tm[1:0] of all memory 
instances.
Red TDR[2:0] drives Tm[4:2] of Mem_inst2.

Table A-7. Example TDR Configurations Using tessent_enable_group and 
tessent_common_tdr_source  (cont.)

Specification Resulting DFT
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IclPorts {
    DataInPort(in1[4:0]) {
      Attribute(tessent_use_in_dft_specification) : auto;
    }
    DataInPort(in1[0:0]) {
      Attribute(tessent_use_in_dft_specification) : false;
    }
  }

The generated DftSpecification configures a 4-bit TDR controlling the 4 MSBs of the memory 
input port.

Tdr(sri_tdr1) {
    DataOutPorts {
      connection(0) : dpmem1/in1[1];
      connection(1) : dpmem1/in1[2];
      connection(2) : dpmem1/in1[3];
      connection(3) : dpmem1/in1[4];
    }
    reset_value : 4'b0000;
  }

Example 3
The Memory TCD specifies the input port in1 to be sourced by separate TDRs. The first 
DataInPort wrapper assigns the 3 MSBs to enable group mode1. The second DataInPort assigns 
the 2 LSBs to enable group mode2 and sets the default TDR value.

  IclPorts {
    DataInPort(in1[4:2]) {
      Attribute(tessent_enable_group) : mode1;
    }
    DataInPort(in1[1:0]) {
      Attribute(tessent_enable_group) : mode2;
      Attribute(default_load_value) : 2'b11;
    }
  }

The generated DftSpecification configures two TDRs to be connected to the memory port. The 
default value of the 2-bit TDR is 2'b11.
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  // Enable group "mode1"
  Tdr(sri_tdr2) {
    DataOutPorts {
      connection(0) : dpmem1/in1[2];
      connection(1) : dpmem1/in1[3];
      connection(2) : dpmem1/in1[4];
    }
    reset_value : 3'b000;
  }
  // Enable group "mode2"
  Tdr(sri_tdr3) {
    DataOutPorts {
      connection(0) : dpmem1/in1[0];
      connection(1) : dpmem1/in1[1];
    }
    reset_value : 2'b11;
  }

Example 4
The Memory TCD specifies that each bit of the in1 bus, for all instances of this memory, should 
be driven by the same TDR.

IclPorts {
  DataInPort(in1[0]) {
    Attribute(tessent_common_tdr_source): config_mem0;
  }
  DataInPort(in1[1]) {
    Attribute(tessent_common_tdr_source): config_mem1;
  }
}

The generated DftSpecification configures one TDR to be connected to the memory ports of all 
instances:

Tdr(sri_tdr1) {
  DataOutPorts {
    port_naming : config_mem1,config_mem0;
    connection(1): dpmem1/in1[1];
    connection(1): dpmem2/in1[1];
    connection(1): dpmem3/in1[1];
    connection(0): dpmem1/in1[0];
    connection(0): dpmem2/in1[0];
    connection(0): dpmem3/in1[0];
  }
}
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MemoryCluster
Specifies the memory cluster behavior for the specific module_name.

Syntax
Core(core_name) {                                                            
  MemoryCluster {                                                                     
    Port(port_name) { 
    } 
    MemoryBistInterface(id) { 
    } 

IclPorts {
}

} 
} 

Description
Specifies the memory cluster behavior for the specific module_name. Such descriptions are 
automatically read in during module matching. See the set_design_sources -format tcd_memory 
command description for information about where they are looked for. See the 
read_core_descriptions command description to learn how to read them in explicitly. See the 
set_module_matching_options command description for information about the name matching 
process.

Note
The legacy LogicVision MemoryClusterTemplate library format is supported natively and 
is automatically translated into this format when read. You only need to read one memory 

description for a given MemoryCluster.

To see the content of a read-in Core(ModuleName)/Memory, use the “report_config_data 
Core(ModuleName)/MemoryCluster -partition tcd” command.

To see the supported syntax, use the “report_config_syntax Core/MemoryCluster” command.

Parameters
There are no parameters specified for this wrapper
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MemoryCluster/Port
The Shared Bus memory cluster TCD Port wrapper defines the direction, function, and bus 
parameters for a signal port that is global to all Shared Bus memory interfaces within a Shared 
Bus memory cluster. 

Usage
Core(<core_name>) {                                                            
  MemoryCluster {                                                                     

Port(port_name) { 
Direction          : Input | Output | InOut; 
Function : None | Clock | ScanTest | BistOn | 

InterfaceReset ;
SafeValue      : X | 1 | 0 ; 

    } 
} 

} 

Description
The Shared Bus memory cluster TCD Port wrapper defines the direction, function, and bus 
parameters for a signal port that is global to all the Shared Bus memory interfaces, as defined by 
a MemoryBistInterface wrapper, within a Shared Bus memory cluster TCD. The 
MemoryCluster/Port wrapper is repeatable for each global signal port needed. 

The Arguments section defines properties that are unique to the Shared Bus memory cluster 
TCD syntax for the Port wrapper.

Note
The use of an escaped identifier for port_name is not supported.

Arguments
• Function : function_type;

The Function property specifies the function of the signal port. The default value is None. 
Table A-8 describes the valid function_type values that can be specified.

Table A-8. Valid Port Function Values for Shared Bus Memory Cluster TCD 
Function Description
None Specifies a port that does not need to be controlled during memory BIST. 

This is the default. The functional connection to this port are preserved. 
Use SafeValue to control the memory port value during the controller 
assembly simulation. For pattern generation, a ProcedureStep in the 
PatternsSpecification may be required to set the proper value when 
memory BIST is inserted into the design. Tessent MemoryBIST does not 
intercept the memory port.

Clock Specifies a memory clock port.
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ScanTest Specifies the port that configures the embedded test logic to enable scan 
testing. Typically, the port disables the memory’s tri-state outputs or 
enables the memory bypass mode.

InterfaceReset Specifies a signal that is used to reset all Shared Bus memory interfaces in 
the cluster.

BistOn Specifies that the port is used to control the signals (data/address/control, 
but not clock) selection in the memory. A port of this function is 
connected to the BIST_ON signal of the controller.

Table A-8. Valid Port Function Values for Shared Bus Memory Cluster TCD  
Function Description
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MemoryBistInterface
The MemoryBistInterface wrapper contains information about ports, logical memories, and 
access codes associated with the specified Shared Bus interface.

Syntax
Core(core_name) {                                                            
  MemoryCluster {                                                                     
    MemoryBistInterface(id) { 
      Port(port_name) { 
      } 
      MemoryGroupAddressDecoding(GroupAddress) | (Address[x:y]) { 
      } 
      LogicalMemoryToInterfaceMapping(logical_memory_id) { 
      } 
    } 

} 
} 

Description
The MemoryBistInterface wrapper contains information about ports, logical memories, and 
access codes associated with the specified Shared Bus MemoryCluster.

Parameters
• id

A unique identifier for the MemoryBistInterface within the MemoryCluster.
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MemoryBistInterface/Port
The MemoryBistInterface Port wrapper defines the direction, function, and bus parameters for a 
signal port on a Shared Bus interface.

Usage
Core(<core_name>) {                                                            
  MemoryCluster { 

MemoryBistInterface(id) { 
Port(port_name) { 
Direction          : Input | Output | InOut; 
Function : None | MemoryGroupAddress | WriteAddress |

Address | ReadAddress | InterfaceReset |
ConfigurationData | TestPortSelect |
Data | Clock | WriteEnable | ReadEnable |
GroupWriteEnable ;

SafeValue      : X | 1 | 0 ; 
LogicalPort : cluster_interface_logical_port_id, ... ;

    } 
} 

}
} 

Description
The MemoryBistInterface Port wrapper defines the direction, function, and bus parameters for a 
signal port on a Shared Bus interface. The wrapper is repeatable and used within the Shared Bus 
memory cluster TCD.

The Arguments section defines properties that are unique to the Shared Bus memory cluster 
TCD syntax for the interface Port wrapper. Refer to the memory TCD Port wrapper for 
descriptions of the common properties.

Note
The use of an escaped identifier for port_name is not supported.

Arguments
• Function : function_type ;

The Function property specifies the function of the signal port. The default value is None. 
Table A-9 describes the valid values that are unique to the Shared Bus memory cluster TCD 
interface ports. Refer to the memory TCD Port wrapper for descriptions of the remaining 
Function properties that are common.

Table A-9. Valid Port Function Values Unique to the Shared Bus Memory Cluster 
TCD Interface 

Function Description
MemoryGroupAddress Specifies a port that is used to select a memory.
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1. When you have both 1R1W and 1RW memories on the same Shared Bus memory cluster 
and there are Address and WriteAddress ports functions defined on the cluster 
MemoryBistInterface for driving the address ports of the 1R1W memory, the 1RW 
memories should connect to the address port with function Address and use 
LogicalMemoryAddress[]: InterfaceAddress[] property to define the address port mapping. 
2. The use of Function:Address in combination with LogicalPort is preferred over 
Function:WriteAddress or Function:ReadAddress. The former combination is consistent 
with the memory library file usage for memories that are not part of a Shared Bus memory 
cluster.

Address Specifies an address port shared by the cluster’s logical memories.2

WriteAddress Specifies a signal that provides the write address for a single-port logical 
memory.1 This Function is not allowed if there are any memory cluster 
TCD PinMappings/LogicalMemoryLogicalPort properties to indicate 
mapping between logical ports.2

ReadAddress Specifies signal that provides the read address for a single-port logical 
memory.1 This Function is not allowed if there are any memory cluster 
TCD PinMappings/LogicalMemoryLogicalPort properties to indicate 
mapping between logical ports.2

WriteEnable Specifies a write enable port shared by the cluster’s logical memories.
GroupWriteEnable Specifies a write enable port that controls one or more bits in the data path

to the logical memories. 
ReadEnable Specifies a read enable port shared by the cluster’s logical memories. 
Clock Specifies a clock port shared by the cluster’s logical memories.
Data Specifies a signal that provides data to the logical memories. When Data is

specified for the Function property, the Direction property indicates if Data
is an input, output, or bidirectional port.

InterfaceReset Specifies a signal that is used to reset the Shared Bus memory interface.
ConfigurationData Specifies a port that is used to configure access to a logical memory.
TestPortSelect Specifies a port that is used to select a multi-port logical memory port that

is multiplexed to a cluster interface port. This select port can be declared as
a separate cluster interface port or share the bus port name with the 
MemoryGroupAddress port. In this case, the TestPortSelect bits must be 
contiguously placed on either the LSB or MSB side of the joint physical 
port.

Table A-9. Valid Port Function Values Unique to the Shared Bus Memory Cluster 
TCD Interface  (cont.)

Function Description
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• LogicalPort : cluster_interface_logical_port_id, ... ;
A property with a repeatable string value that groups address, data, and control signals of the 
memory cluster interface for logical memories that contain multiple ports. When specified, 
port functions of WriteAddress and ReadAddress are not allowed. Logical memories with 
multiple ports are associated to a particular cluster interface logical port by associating the 
specified cluster_interface_logical_port_id in the LogicalMemoryToInterfaceMapping/
PinMappings/LogicalMemoryLogicalPort() : 
InterfaceLogicalPort(cluster_interface_logical_port_id) property assignment in the 
Memory Cluster TCD.
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MemoryBistInterface/
LogicalMemoryToInterfaceMapping

The LogicalMemoryToInterfaceMapping wrapper specifies the associations between the logical 
memory and the shared bus interface ports

Syntax
Core(core_name) { 
  MemoryCluster { 
    MemoryBistInterface(id) { 
      LogicalMemoryToInterfaceMapping(logical_memory_id) { 
        MemoryInstanceName : instance_name ; 
        ConfigurationData  : binary  ; // default: 0 
        MemoryTemplate     : template_name ; 
        PipelineDepth      : integer       ; // default: 0 
        PinMappings { // repeatable for multi-port logical memory
          } 
    } 
  } 
 } 

Description
The LogicalMemoryToInterfaceMapping wrapper is used in the MemoryCluster/ 
MemoryBistInterface wrapper and is part of the Shared Bus memory cluster TCD.

Parameters
• LogicalMemoryToInterfaceMapping/MemoryInstanceName : instance_name ;

The MemoryInstanceName property identifies the hierarchical path to the logical memory 
in the MemoryCluster module. Tessent MemoryBIST automatically constructs the absolute 
path to the memory instance by concatenating the memory cluster instance path with the 
specified MemoryInstanceName.

• LogicalMemoryToInterfaceMapping/ConfigurationData : binary ;
The ConfigurationData property in the MemoryCluster core library wrapper specifies a 
binary value that must be applied on the port with the ConfigurationData port function when 
the logical memory is selected.

• LogicalMemoryToInterfaceMapping/MemoryTemplate : template_name ;
Defines the logical memory core library name.

• LogicalMemoryToInterfaceMapping/PipelineDepth : integer ;
The PipelineDepth property specifies the total number of pipeline stages that surround the 
logical memory. For example, if a memory has one stage of pipeline registers on the data 
inputs and one stage of pipeline registers on the data outputs, the pipeline depth for this 
memory is 2. In this example, the assumption is that the logical memory itself is a 
synchronous memory and only introduces a delay of one clock cycle. The value specified 
for PipelineDepth in the memory cluster library file for a given logical memory overrides 
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any value specified in the corresponding logical (or physical) memory library file. 
Therefore, the PipelineDepth value must include the contribution of all pipeline stages 
inside the memory cluster.
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MemoryGroupAddressDecoding
The MemoryGroupAddressDecoding wrapper specifies the access method and decode value to 
access a given memory.
This wrapper has two usages, one within the Shared Bus memory cluster TCD and another 
within the Shared Bus logical memory TCD.

Syntax
Usage 1: Memory Cluster TCD

The MemoryGroupAddressDecoding wrapper in the Memory Cluster Tessent Core Description 
specifies the access method and decode value to access each logical memory.
Core(core_name) { 
  MemoryCluster { 
    MemoryBistInterface(id) { 
      MemoryGroupAddressDecoding(GroupAddress) | (Address[x:y]) { 
        Code(binaryValue) : logical_memory_id [,logical_memory_id...] ;
      } 
    } 
  } 
} 

Usage 2: Logical Memory TCD
The MemoryGroupAddressDecoding wrapper in the Logical Memory Tessent Core Description  

contains the information about one or more physical memories that form the address space 
of the logical memory. 
Core(core_name) { 
  Memory { 
    MemoryGroupAddressDecoding (Address [x:y]) { 
      Code(binaryValue) : physical_memory_id [,physical_memory_id...] ;
    } 
  } 
} 

Description
Usage 1: The MemoryGroupAddressDecoding wrapper is used in the MemoryCluster/
MemoryBistInterface wrapper of the Shared Bus memory cluster TCD as shown in Figure 6-5.

Usage 2: The MemoryGroupAddressDecoding wrapper is used in the Shared Bus logical 
memory TCD as shown in Figure 6-6.

Usage Conditions:
• Use the GroupAddress decoding method if the memory cluster module has a port that is 

used to select logical memories.

• Use the Address[x:y] decoding method if the memory cluster module selects logical 
memories based on address bus ranges.
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• The specified decoding method indicates which port to use to enable the logical 
memories that the Code property specifies. If the GroupAddress decoding method is 
specified, the size of the Code property’s binary value must match the width of the port 
specified with the Function type of MemoryGroupAddress.

• If you have a logical memory that includes multiple physical memories and you are 
using BISR, additional code bits are required. See “Memory Cluster Library File 
Preparation for BIRA and BISR” for more information.

• If you use the Address[x:y] decoding method, you cannot specify address bits that map 
to the logical memory address in the MemoryBistInterface/
LogicalMemoryToInterfaceMapping wrapper. 

• Usage 2: You cannot specify address bits that map to the physical memory address in 
the PhysicalToLogicalMapping wrapper.

Parameters
Usage 1

• Code(binaryValue) : logical_memory_id [,logical_memory_id...] ;
A required, repeatable property that specifies the name for each logical memory that is 
enabled with a particular port value or address as defined by binaryValue.

Usage 2
• Code(binaryValue) : physical_memory_id [,physical_memory_id...] ;

A required, repeatable property that specifies one or more physical memories, which form 
the address space of the logical memory, that are enabled with a particular port value or 
address as defined by binaryValue.

Examples
The following example shows how to use the Address[x:y] decoding method:

MemoryGroupAddressDecoding(Address[4:3]){ 
  code(2'b00): MEM_0; 
  code(2'b01): MEM_1; 
  code(2'b10): MEM_2; 
  code(2'b11): MEM_3; 
} 
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PhysicalToLogicalMapping
The PhysicalToLogicalMapping wrapper specifies the associations between the physical 
memory ports and the logical memory ports, and is used in the Shared Bus logical memory 
TCD. One PhysicalToLogicalMapping wrapper is required for each physical memory that 
forms the logical memory.

Syntax
Core(core_name) { 
  Memory { 
    PhysicalToLogicalMapping (physical_memory_id) { // Repeatable 
      MemoryTemplate: physicalTemplateName; 
      MemoryInstanceName : instance_name ; 
      PinMappings { // repeatable for multi-port logical memory
      } 
    } 
  } 
} 

Description
The PhysicalToLogicalMapping wrapper is used in the logical memory core library file to map 
the ports of the physical memory to the ports of the logical memory. This wrapper is used in the 
Shared Bus logical memory TCD.

Parameters
• MemoryTemplate : physicalTemplateName;

Defines the logical memory core library name.
• MemoryInstanceName : instance_name ;

The MemoryInstanceName property identifies the hierarchical path to the physical memory 
in the MemoryCluster module. Tessent MemoryBIST automatically constructs the absolute 
path to the memory instance by concatenating the memory cluster instance path with the 
specified MemoryInstanceName.
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PinMappings
The PinMappings wrapper is used within the Memory Cluster Library and the Logical Memory 
Library.

Usage
Usage 1: Memory Cluster Library

Core(core_name) { 
  MemoryCluster { 
    MemoryBistInterface(id) { 
      LogicalMemoryToInterfaceMapping(logical_memory_id) { 
         PinMappings {  // repeatable for multi-port logical memory
           TestPortSelect : binary ; // default: 1'b0
           LogicalMemoryLogicalPort(lm_logical_port_id):
               InterfaceLogicalPort(cluster_interface_logical_port_id);
           LogicalMemoryDataInput[indexList]: 
               InterfaceDataInput[indexList]; 
           LogicalMemoryDataOutput[indexList]: 
               InterfaceDataOutput[indexList]; 
           LogicalMemoryAddress[indexList]: 
               InterfaceAddress[indexList]; 
           LogicalMemoryWriteAddress[indexList]: 
               InterfaceWriteAddress[indexList]; 
           LogicalMemoryReadAddress[indexList]: 
               InterfaceReadAddress[indexList]; 
           LogicalMemoryGroupWriteEnable[indexList]: 
               InterfaceGroupWriteEnable[indexList]; 
        } 
      } 
    } 
  } 
} 
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Usage 2: Logical Memory Library
Core(core_name) { 
  Memory { 
    PhysicalToLogicalMapping(physical_memory_id) { // Repeatable 
      MemoryTemplate: physicalTemplateName; 
      PinMappings { // repeatable for multi-port logical memory
        PhysicalMemoryLogicalPort(pm_logical_port_id) :
            LogicalMemoryLogicalPort(lm_logical_port_id);
        PhysicalMemoryDataInput[indexList]: 
            LogicalMemoryDataInput[indexList]; 
        PhysicalMemoryDataOutput[indexList]: 
            LogicalMemoryDataOutput[indexList]; 
        PhysicalMemoryAddress[indexList]:  
            LogicalMemoryAddress[indexList]; 
        PhysicalMemoryWriteAddress[indexList]:  
            LogicalMemoryWriteAddress[indexList]; 
        PhysicalMemoryReadAddress[indexList]:  
            LogicalMemoryReadAddress[indexList]; 
        PhysicalMemoryGroupWriteEnable[indexList]: 
            LogicalMemoryGroupWriteEnable[indexList]; 
      } 
    } 
  } 
} 

Description
The PinMappings wrapper in the memory cluster library specifies the mappings between the 
logical memory ports and the shared bus interface ports. Each port declared with the 
MemoryBistInterface/Port wrapper must have a mapping specified. The PinMappings wrapper 
is repeated and specified for each logical port for logical memories with multiple ports. The 
PinMappings wrapper in the logical memory library specifies the mappings of the physical 
memory ports to the logical memory ports.

If there are any PinMappings/LogicalMemoryLogicalPort properties present in the memory 
cluster library, the presence of LogicalPort properties in the memory cluster library and logical 
memory library is implied for mapping between logical ports. In this case, the port functions 
ReadAddress and WriteAddress are not allowed; however multiple ports with function Address 
are allowed and are distinguished by the LogicalPort label for connectivity. 

The presence of the PinMappings/LogicalMemoryLogicalPort property in the memory cluster 
library also requires the presence of the PinMappings/PhysicalMemoryLogicalPort property for 
completeness. An exception can occur in the case where a shared bus cluster contains a mixture 
of multi-port and single port memories. Because of the presence of multi-port logical memories, 
the LogicalPort and PinMappings/LogicalMemoryLogicalPort properties have to be used versus 
the use of ReadAddress and WriteAddress port functions for single port implementations. 
However, the memory vendor may not have the LogicalPort property specified in the single port 
physical memory library since there is a single logical port and the LogicalPort property is 
redundant. In this case, you have to specify a dash or NULL in the PinMappings/
LogicalMemoryLogicalPort and PinMappings/PhysicalMemoryLogicalPort properties, as 
demonstrated in the following example.
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MemoryClusterTemplate(C) {
 MemoryBistInterface(I1) {
  LogicalMemoryToInterfaceMapping(lm1) {
    PinMappings {
     LogicalMemoryLogicalPort(-) : InterfaceLogicalPort(A);
    }
  }
 }
}
MemoryTemplate(logical_mem) {
 PhysicalToLogicalMapping {
  PinMappings {
   PhysicalMemoryLogicalPort(-): LogicalMemoryLogicalPort(RW1);
   // Use this property when the LogicalPort property is defined in
   // this logical memory, don't use it otherwise 
  }
 }
}

If there are no memory cluster PinMappings/LogicalMemoryLogicalPort properties specified, 
there can only be one PinMappings wrapper present in either the memory cluster library or 
logical memory library. The ReadAddress or WriteAddress port functions should be specified 
in addition to Address port functions in the memory cluster library, as well as the PinMappings/
LogicalMemory{Read | Write}Address and PinMappings/PhysicalMemory{Read | 
Write}Address properties in the memory cluster library and logical memory library, 
respectively.

For clusters implementing multi-port logical memories where you specify multiple 
PinMappings wrappers, the following usage conditions apply:

1. All memory cluster LogicalMemoryToInterfaceMapping/PinMappings wrappers define 
the LogicalMemoryLogicalPort property.

2. All logical memory PhysicalToLogicalMapping/PinMappings wrappers define the 
PhysicalMemoryLogicalPort property.

3. All LogicalMemoryToInterfaceMapping/PinMappings/LogicalMemoryLogicalPort 
property ids (for example, “RW1”) are unique within a 
LogicalMemoryToInterfaceMapping wrapper.

4. All the PhysicalToLogicalMapping/PinMappings/PhysicalMemoryLogicalPort property 
ids are unique within a PhysicalToLogicalMapping wrapper.

5. All the logical memory TCD Port/LogicalPort identifiers have the associated logical 
memory cluster LogicalMemoryToInterfaceMapping/PinMappings wrapper defined. 
This ensures all the logical ports of a given logical memory instance have an explicit 
association to a cluster interface logical port defined. 

6. All the physical memory TCD Port/LogicalPort identifiers have the associated logical 
memory PhysicalToLogicalMapping/PinMappings wrapper defined. This ensures all the 
logical ports of a given physical memory instance have an explicit association to the 
logical memory logical port.
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7. There are no memory cluster MemoryBistInterface/Port wrappers defining ports with 
function ReadAddress or WriteAddress. All address ports must be of the Address 
function type.

8. All the memory cluster MemoryBistInterface/Port wrappers defining ports that are 
LogicalPort-specific (for example, functions Address, Data (Input/Output), ReadEnable, 
WriteEnable, and GroupWriteEnable) have a LogicalPort property defined.

9. All the logical memory TCD, LogicalPort-specific ports have an associated port of the 
same function and LogicalPort id on the memory cluster MemoryBistInterface.

Arguments
Usage 1

• LogicalMemoryLogicalPort(lm_logical_port_id) : 
InterfaceLogicalPort(cluster_interface_logical_port_id);
Specifies the association of the PinMappings wrapper for the logical port of a multi-port 
logical memory, specified by lm_logical_port_id, to the MemoryBistInterface/Port/
LogicalPort:cluster_interface_logical_port_id of the memory cluster interface. The 
lm_logical_port_id identifier must correspond to a unique LogicalPort label defined in the 
logical memory TCD.

• TestPortSelect : binary ; 
This property is used together with the port specified in the memory cluster TCD with the 
MemoryBistInterface/Port/Function of type TestPortSelect. The value binary must match 
the size of the port defined in the memory cluster interface. The use of TestPortSelect 
decreases route congestion at the cluster interface by multiplexing logical ports of a logical 
memory to the memory cluster interface. The TestPortSelect : binary property is used to 
drive the select inputs of the logical port multiplexers. In cases where there is only one 
single-direction port, such as the write port of a 2R1W memory, the value of the 
TestPortSelect property may be “x”.

• LogicalMemoryDataInput[]: InterfaceDataInput[] ;
Maps the data input port of the logical memory to the data input port of the memory cluster 
interface.

• LogicalMemoryDataOutput[]: InterfaceDataOutput[] ;
Maps the data output port of the logical memory to the data output port of the memory 
cluster interface.

• LogicalMemoryAddress[]: InterfaceAddress[] ;
Maps the address port of the logical memory to the address port of the memory cluster 
interface. Only use this mapping with single-port memories (1RW).

• LogicalMemoryWriteAddress[]: InterfaceWriteAddress[] ;
Maps the write address port of the logical memory to the write address port of the memory 
cluster interface. Use this mapping with dual-port memories (1R1W).
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• LogicalMemoryReadAddress[]: InterfaceReadAddress[] ;
Maps the read address port of the logical memory to the read address port of the memory 
cluster interface. Use this mapping with dual-port memories (1R1W).

• LogicalMemoryGroupWriteEnable[]: InterfaceGroupWriteEnable[] ;
Maps the group write enable port of the logical memory to the group write enable port of the 
memory cluster interface.

Note
When you have both 1R1W and 1RW memories on the same Shared Bus memory 
cluster and there are Address and WriteAddress ports functions defined on the 

cluster MemoryBistInterface for driving the address ports of the 1R1W memory, the 
1RW memories should connect to the address port with function Address and use 
LogicalMemoryAddress[]: InterfaceAddress[] property to define the address port 
mapping.

Usage 2
• PhysicalMemoryLogicalPort(pm_logical_port_id) : 

LogicalMemoryLogicalPort(lm_logical_port_id) ;
Specifies the association of the PinMappings wrapper for the logical port of a physical 
memory, specified by pm_logical_port_id, to a unique Port/
LogicalPort:cluster_interface_logical_port_id of the logical memory TCD. The 
pm_logical_port_id identifier must correspond to a unique LogicalPort label defined in the 
physical memory TCD.

• PhysicalMemoryDataInput[]: LogicalMemoryDataInput[] ;
Maps the data input port of the physical memory to the data input port of the logical 
memory.

• PhysicalMemoryDataOutput[]: LogicalMemoryDataOutput[] ;
Maps the data output port of the physical memory to the data output port of the logical 
memory.

• PhysicalMemoryAddress[]: LogicalMemoryAddress[] ;
Maps the address port of the physical memory to the address port of the logical memory.

• PhysicalMemoryWriteAddress[]: LogicalMemoryWriteAddress[] ;
Maps the write address port of the physical memory to the write address port of the logical 
memory.

• PhysicalMemoryReadAddress[]: LogicalMemoryReadAddress[] ;
Maps the read address port of the physical memory to the read address port of the logical 
memory.
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• PhysicalMemoryGroupWriteEnable[]: LogicalMemoryGroupWriteEnable[] ;
Maps the group write enable port of the physical memory to the group write enable port of 
the logical memory.

Examples
The following example cluster template demonstrates the mapping of logical memory logical 
ports to cluster interface logical ports. Also shown is the use of TestPortSelect to multiplex the 
logical ports W1/W2, and R1/R2 of logical memory LM_2R2W_inst2 to the cluster interface 
logical ports A and B.

MemoryClusterTemplate(CLUSTER_MULTIPORT) { // {{{
 MemoryBistInterface(I1) { // {{{
 // [start] : Interface port functions {{{
 // Observe some ports have multiple LogicalPort labels
 Port(clk) {Function: Clock;}
 Port(confdata[1:0]) {Function: ConfigurationData; Direction : Input;}
 Port(I1_A1[5:0]) {Function: Address; Direction: Input; LogicalPort: A,E;}
 Port(I1_A2[5:0]) {Function: Address; Direction: Input; LogicalPort: B;}
 Port(I1_A3[5:0]) {Function: Address; Direction: Input; LogicalPort: C;}
 Port(I1_A4[5:0]) {Function: Address; Direction: Input; LogicalPort: D;}
 Port(I1_DI1[15:0]) {Function: Data; Direction: Input; LogicalPort: A,E;}
 Port(I1_DO1[15:0]) {Function: Data; Direction: Output;LogicalPort: B;}
 Port(I1_DI2[15:0]) {Function: Data; Direction: Input; LogicalPort: C;}
 Port(I1_DO2[15:0]) {Function: Data; Direction: Output;LogicalPort: D;}
 Port(I1_WE1) {Function: WriteEnable; Direction: Input; LogicalPort: A,E;}
 Port(I1_RE1) {Function: ReadEnable; Direction: Input; LogicalPort: B;}
 Port(I1_WE2) {Function: WriteEnable; Direction: Input; LogicalPort: C;}
 Port(I1_RE2) {Function: ReadEnable; Direction: Input; LogicalPort: D;}
 Port(I1_SEL[2:0]) {Function: MemoryGroupAddress; Direction: Input;}
 Port(I1_SEL[3:3]) {Function: TestPortSelect; Direction: Input;}
 Port(nrst) {Function: InterfaceReset; Direction: Input; Polarity : ActiveLow;}
 Port(MbistOn1) {Function: BistOn; Direction: Input;}
 // [end] : Interface port functions }}}
 MemoryGroupAddressDecoding(GroupAddress) { // {{{
  code(3'b000) : LM_2R2W_inst1;
  code(3'b001) : LM_2R2W_inst2;
  code(3'b011) : LM_2R1W_inst3;
 } // }}} 
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 // The following memory does not multiplex physical ports to the  
 // Shared Bus interface. For example, it has 4 logical ports that 
 // are connected to four cluster logical ports A, B, C, and D.
LogicalMemoryToInterfaceMapping(LM_2R2W_inst1) { // {{{
 MemoryTemplate : LM_2R2W;
 MemoryInstanceName : LM_2R2W_inst1;
 PipelineDepth : 9;
 PinMappings {
  TestPortSelect: 1'b0;
  LogicalMemoryLogicalPort(W1) : InterfaceLogicalPort(A);
  LogicalMemoryDataInput[7:0] : InterfaceDataInput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b0;
  LogicalMemoryLogicalPort(R1) : InterfaceLogicalPort(B);
  LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b1;
  LogicalMemoryLogicalPort(W2) : InterfaceLogicalPort(C);
  LogicalMemoryDataInput[7:0] : InterfaceDataInput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b1;
  LogicalMemoryLogicalPort(R2) : InterfaceLogicalPort(D);
  LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
} // }}} 
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  // The following memory uses internal multiplexing of its logical ports
  // to the Shared Bus cluster interface logical ports A and B, each of 
  // which are used twice.
LogicalMemoryToInterfaceMapping(LM_2R2W_inst2) { // {{{
 MemoryTemplate : LM_2R2W;
 MemoryInstanceName : LM_2R2W_inst2;
 PipelineDepth : 9;
 PinMappings {
  TestPortSelect: 1'b0;
  LogicalMemoryLogicalPort(W1) : InterfaceLogicalPort(A);
  LogicalMemoryDataInput[7:0] : InterfaceDataInput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b0;
  LogicalMemoryLogicalPort(R1) : InterfaceLogicalPort(B);
  LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b1;
  LogicalMemoryLogicalPort(W2) : InterfaceLogicalPort(A);
  LogicalMemoryDataInput[7:0] : InterfaceDataInput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
 PinMappings {
  TestPortSelect: 1'b1;
  LogicalMemoryLogicalPort(R2) : InterfaceLogicalPort(B);
  LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
  LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
 }
} // }}} 
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  LogicalMemoryToInterfaceMapping(LM_2R1W_inst3) { // {{{
   MemoryTemplate : LM_2R1W;
   MemoryInstanceName : LM_2R1W_inst3;
   PipelineDepth : 9;
   PinMappings {
    // TestPortSelect is irrelevant for the Write port of 
    // this logical memory
    TestPortSelect: 1'bx;
    LogicalMemoryLogicalPort(W1) : InterfaceLogicalPort(A);
    LogicalMemoryDataInput[7:0] : InterfaceDataInput[7:0];
    LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
   }
   PinMappings {
    TestPortSelect: 1'b0;
    LogicalMemoryLogicalPort(R1) : InterfaceLogicalPort(B);
    LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
    LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
   }
   PinMappings {
    TestPortSelect: 1'b1;
    LogicalMemoryLogicalPort(R2) : InterfaceLogicalPort(B);
    LogicalMemoryDataOutput[7:0] : InterfaceDataOutput[7:0];
    LogicalMemoryAddress[3:0] : InterfaceAddress[3:0];
   }
  } // }}}
 } // }}}
} // }}}  
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FuseBoxInterface
Describes a fuse box interface module with all its associated interface ports and the 
characteristics of the fuse box it uses.

Usage
Core(module_name) { 

FuseBoxInterface { 
 

write_duration : time ; // Default: 8us 
read_duration : time ; // Default: 200ns
init_duration : time ; // Default: 1us
read_word_size : int ;  // Default: 1 
align_access_en_with_address : on | off | auto ; 
read_pipeline_depth : int ; // Default: 0 
programming_method : buffered | unbuffered ; 
number_of_fuses : int | auto ; 

  
Interface { 
} 

} 
} 

Description
A configuration file format used to describe a fuse box interface module with all its associated 
interface ports and the characteristics of the fuse box it uses. These descriptions are 
automatically read in during module matching. See the set_design_sources -format tcd_fusebox 
command description for information about where they are looked for. See the 
read_core_descriptions command description to learn how to read them in explicitly. See the 
set_module_matching_options command description for information about the name matching 
process. 

To see the content of a read-in Core(ModuleName)/FuseBoxInterface, use the 
“report_config_data “Core(ModuleName)/FuseBoxInterface -partition tcd” command. To see 
the supported syntax, use the “report_config_syntax Core/FuseBoxInterface” command. 

The described fuse box interface module must only have type of the ports mentioned in the 
Interface wrapper when it is instantiated inside the bisr controller as controlled by the 
fuse_box_location property of the DefaultsSpecification/DftSpecification/MemoryBisr wrapper 
or of the DftSpecification/MemoryBisr/Controller wrapper.

When describing a module that is external to the bisr controller, all ports described in the 
Interface wrapper must exist on the actual design module instance. The design module instance 
is allowed to have additional ports not described in the library module Interface wrapper, as 
long as they are specified in the DftSpecification ExternalFuseBoxOptions wrapper before 
running process_dft_specification. Note however, when defining connections in the 
ConnectionOverrides wrapper, it is mandatory to specify the following properties:

• done
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• read_data

• write_en

• select

• access_en

• address

• write_duration_count

It is recommended that the FuseBoxInterface module is as complete as possible.

Arguments
• write_duration : time ; 

A property that defines the guaranteed minimum amount of time it takes to program a fuse. 
When unspecified, the default value is 8 microseconds.

• read_duration : time ;
A property that defines the guaranteed maximum amount of time it takes to read a fuse 
value. When unspecified, the default value is 200ns. 

• init_duration : time ;
A property that defines the maximum initialization time needed by the fuse box after it has 
been selected. A delay of the specified duration is inserted before the first read access to the 
fuse box after it has been selected. When unspecified, the default value is 1us.

• read_word_size  : int ; 
A property that defines how many fuses are read in one read access to the fuse box. Even 
though the fuse box interface module supplies only one read bit at a time, the time it takes to 
return a fuse value when it is part of the same read word that was previously read is much 
faster. The read_word_size number is used by the tool to calculate the worst case time it 
take to unload all the fuses when generation a power_up_emulation pattern. When 
unspecified, the default value is 1. Specifying a number that is smaller than reality only has 
the effect that the power_up_emulation pattern waits longer than it needs to.

• align_access_en_with_address : on | off | auto ;
A property that specifies if the pulse triggering a fuse box access and generated by the BISR 
controller is expected to be aligned with the address to be read or written or is one cycle 
ahead. The value "on" means that the fuse box interface can only accept a pulse that is 
aligned with the address. The value "off" means that the fuse box interface can also accept a 
pulse occurring one cycle ahead of the address enabling a slightly faster fuse box access. 
For example, a read access can take as little as two clock cycles instead of three for some 
fuse box interfaces. When set to auto, it defaults to on if fuse_box_location is external, and 
to off if fuse_box_location is internal. 
Tessent™ MemoryBIST User’s Manual, v2022.4536

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Tessent Core Description
FuseBoxInterface
• read_pipeline_depth : int ;
A property that specifies how many additional pipeline stages are to be added for fuse box 
read cycles. The default setting is 0, for which a read access takes two cycles when 
accessing an internal fuse box and three cycles for an external fuse box.

• programming_method : buffered | unbuffered ;
A property used to specify that it is not allowed to program individual fuses at randomly 
specified addresses. In some fuseboxes, individual fuse bit cannot be addressed directly, all 
fuse bits must be read or programmed as a group. 
When this property is set to buffered, a signal called programFB is generated by the BISR 
controller and connected to the fuse box interface. This signal is used to initiate the final 
fuse box programming. Extra steps are also added to the patterns to transfer and program the 
fuses during the “self_fuse_box_program” autonomous operation and in the “program” and 
“read” fuse box access modes.

• number_of_fuses : int | auto ;
A property used to define the number of fuses present in the fuse box. You need to reserve 
the bottom part of the address space for repair but you may use the upper part for other 
purposes. By default, the value is computed as 2 to the power of the number of address ports 
specified with the Core/FuseBoxInterface/Interface/address property. The number of fuses 
reserved for repair is described in the MemoryBisr/Controller wrapper of the 
DftSpecification wrapper.

Examples
The following example defines a fuse box interface module call fuse_2k where the write 
duration is 10us, the read word size is 8 and the number of fuses available for repair is 2000.

FuseBoxInterface { 
 
  write_duration             : 10us; 
  read_word_size             : 8 
  number_of_fuses            : 2000; 
  
} 

Related Topics
DftSpecification/MemoryBisr/Controller [Tessent Shell Reference Manual]
DefaultsSpecification/DftSpecification/MemoryBisr [Tessent Shell Reference Manual]
report_config_data [Tessent Shell Reference Manual]
report_config_syntax [Tessent Shell Reference Manual]
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Interface
Lists all the port functions and their associated port name. 

Syntax
Core(module_name) {   
  FuseBoxInterface { 
 
    Interface { 
      // inputs 
      bisr_en               : port_name; 
      clock                 : port_name; 
      select                : port_name; 
      reset                 : port_name; 
      access_en             : port_name; 
      write_en              : port_name; 
      address               : port_name;  // n-bit 
      write_buffer_transfer : port_name; 
      read_buffer_select    : port_name; 
      programming_voltage    : port_name; 
 
      write_duration_count  : port_name;  // n-bit 
 
      logictest_en          : port_name; 
 
      // outputs 
      done                  : port_name; 
      read_data             : port_name;
      read_buffer_output    : port_name; // n-bit 
    } 
  } 
} 

Description
A wrapper that list all the port functions and their associated port name. All functions except for 
bisr_en and programming_voltage are required. 

The programming_voltage port is required if your are going to have the module instantiated 
inside the bisr controller, as controlled by the fuse_box_location property of the 
DefaultsSpecification/DftSpecification/MemoryBisr wrapper or of the DftSpecification/
MemoryBisr/Controller wrapper, and it does not have a local charge pump to generate its 
programing voltage internally.

Parameters
• bisr_en : port_name;

A property that specifies one or many connections to create from the bisr_en port to any pins 
in the circuit. This signal is typically used as the select for multiplexers when the fuse box is 
shared with other circuitry, and the multiplexer is already inside the interface.
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• clock : port_name;
A required property that identifies the name of the “clock” input port on the fuse box 
interface module. The specified clock input port is driven by the clock output port of the 
BISR controller.

• select : port_name;
A required property that identifies the name of the “select” input port on the fuse box 
interface module that selects the fuse box for an operation. The specified select input port is 
connected to the select output port of the BISR controller.

• reset : port_name;
A required property that identifies the name of the “reset” input port on the fuse box 
interface module. 

• access_en : port_name;
A required property that identifies the name of the “access_en” input port on the fuse box 
interface module that initiates an access to the fuse box. The specified access_en input port 
is connected to the access_en output port of the BISR controller.

• write_en : port_name;
A required property that identifies the name of the “write_en” input port on the fuse box 
interface module that configures the fuse box in write mode. The specified write_en input 
port is connected to the write_en output port of the BISR controller.

• address : port_name; 
A required property that identifies the name of the “address” input ports on the fuse box 
interface module. The bus range must be specified as part of the port_name. You can use the 
%<integer>d[msb:lsb] symbol to define a group of scalar ports. 
For example, Add%2d[12:0] would define port “Add12” to “Add00” as the address ports. 
The specified input address port is connected to the address output ports of the BISR 
controller.

• write_buffer_transfer : port_name;
A property that identifies the name of the “write_buffer_transfer” input port on the fuse box 
interface module that initiates the final fuse box programming. This property is required if 
FuseBoxInterface/programming_method is set to buffered. Refer to the 
programming_method property description for additional information. The specified 
write_buffer_transfer input port is connected to the programFB output port of the BISR 
controller.

• read_buffer_select : port_name;
A property that identifies the name of the “read_buffer_select” input port on the fuse box 
interface module. The read_buffer_select property is mandatory if the DftSpecification/
MemoryBisr/memory_repair_loading_method property is set to “from_read_buffer”, and 
for this setting the control of read_buffer_select is handled by Tessent Shell. When 
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memory_repair_loading_method is set to the default setting of “serial”, the control of the 
read_buffer_select input on the fuse box interface is accomplished by the user through 
assigning a TDR register inside the IjtagNetwork, then manually controlling it in the 
patterns specification. If read_buffer_select is specified, the port names and bus range are 
validated against the design module.

• programming_voltage : port_name;
A property that identifies the name of the “programming_voltage” input port on the fuse box 
interface module. 
The programming_voltage port is required if your are going to have the module instantiated 
inside the bisr controller, as controlled by the fuse_box_location property of the 
DefaultsSpecification/DftSpecification/MemoryBisr wrapper or of the DftSpecification/
MemoryBisr/Controller wrapper, and it does not have a local charge pump to generate its 
programing voltage internally.

• write_duration_count : port_name; 
A required property that identifies the name of the “write_duration_count” input bus on the 
fuse box interface module, which indicates the number of clock cycles required to perform a 
write operation. The bus range must be specified as part of the port_name. You can use the 
%<integer>d[msb:lsb] symbol to define a group of scalar ports. 
For example, WD%2d[12:0] would define port “WD12” to “WD00” as the 
write_duration_count ports. 
The specified input write_duration_count ports are connected to the write_duration_count 
output ports of the BISR controller.

• logictest_en : port_name; 
An optional property that identifies the name of the “logictest_en” input port on the fuse box 
interface module. The specified input port is connected to the Sib(sti) ltest_to_en output 
port, which also connects to the BISR controller TM input port. This signal is asserted high 
during scan test.

• done : port_name;
A required property that identifies the name of the “done” output port on the fuse box 
interface module. This port indicates when the fuse box access has been completed. The 
specified done output port is connected to the done input port of the BISR controller.

• read_data : port_name;
A required property that identifies the name of the “read_data” output port on the fuse box 
interface module. The specified read_data output port is connected to the read_data input 
port of the BISR controller.

• read_buffer_output : port_name;
A property that identifies the name of the read buffer output port on the fuse box interface 
module. You can use the %<integer>d[msb:lsb] symbol to define a group of scalar ports.
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For example, RB%2d[12:0] would define port “RB12” to “RB00” as the read_buffer_output 
ports.
The read_buffer_output property is mandatory if the MemoryBisr/
memory_repair_loading_method parameter is set to “from_read_buffer”, otherwise it is 
optional. If read_buffer_output is specified, the port names and bus range are validated 
against the design module.

Examples
The following example defines the port names on a fuse box interface in a module called 
generic_fuse_box. 

Core(generic_fuse_box) {
 FuseBoxInterface { 
 
  Interface { 
    // inputs 
 
    clock                 : clock; 
    select                : selectFB; 
    reset                 : FBreset; 
    access_en             : FBAccess; 
    write_en              : writeFB; 
    address               : Address[8:0];  
    write_buffer_transfer : programFB; 
    read_buffer_select    : port_name; 
 
    programing_voltage    : vddq; 
 
    write_duration_count  : strobeCntVal[31:0];  
 
    logictest_en          : TM; 
 
    // outputs 
    done                  : doneFB; 
    read_data             : fuseValue; 
  } 
   
 } 
}

Related Topics
DftSpecification/MemoryBisr/Controller [Tessent Shell Reference Manual]
DefaultsSpecification/DftSpecification/MemoryBisr [Tessent Shell Reference Manual]
FuseBoxInterface
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Appendix B
Configuration-Based Specification

This chapter documents the configuration data syntax used to encode the 
MemoryOperationsSpecification information. This information describes custom memory test 
algorithms and memory operation sets.
The configuration data syntax is composed of nested wrappers and properties that fully describe 
the MemoryOperationsSpecification Algorithm and OperationSet information. These 
specifications can be automatically created using the create_dft_specification and 
create_patterns_specification commands, and they can be processed using the 
process_dft_specification and process_patterns_specification commands. The specifications 
can be edited and introspected using the commands listed in Table B-1.

Note
The legacy LogicVision Algorithm and OperationSet wrapper formats are supported 
natively and are automatically translated into the format described in this Appendix when 

read.

Table B-1. Configuration Data Editing and Introspection Commands 
Command Description
add_config_element Adds a configuration element in the configuration data.
add_config_message Adds error, warning, or information messages to configuration 

elements.
add_config_tab Adds one configuration tree tab to the Config Data Browser 

window.
delete_config_element Deletes one or more configuration elements. Only elements 

that can be added can be deleted.
delete_config_messages Deletes error, warning or info message that were added to 

configuration elements using the add_config_message 
command.

delete_config_tabs Deletes one or many configuration tree tabs from the Config 
Data Browser window that was previously added using the 
add_config_tab or display_specification command.

get_config_elements Returns a collection of configuration elements or a count of 
configuration elements when the -count option is used.

get_config_messages Returns a list of message strings attached to a configuration 
element.
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This chapter uses the syntax conventions in Table B-2 when documenting wrappers and 
properties used in configuration data. 

This appendix covers the following topics:

MemoryOperationsSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

get_config_value Returns a value associated with a configuration element based 
on the specified option.

move_config_element Moves a configuration element from one location to another.
read_config_data Reads the content of configuration data files or a string into the 

Tessent Shell environment.
report_config_data Reports the content of configuration wrappers in the transcript 

as it displays inside the file when the configuration data is 
written to a file using the write_config_data command.

report_config_messages Reports messages associated to a configuration element. When 
the -hierarchical option is used, it also reports the messages 
associated to elements below the specified wrapper.

report_config_syntax Reports the legal configuration syntax for a specified 
configuration object.

set_config_value Sets the value of an element in the configuration data.
write_config_data Writes the configuration data presently in memory into a file. 

When using the -wrappers option, the data written to the file 
can be limited to some specific wrappers.

Table B-2. Syntax Conventions for Configuration Files 
Convention Example Usage
Italic scan_in : port_pin_name; An italic font indicates a user-supplied value. 
Underline wgl_type : generic | lsi; An underlined item indicates the default value.
| logic_level : both | high | low; The vertical bar separates a list of values from 

which you must choose one. Do not include the 
bar in the configuration file.

... port_naming : port_naming, ...; Ellipses indicate a repeatable value. The 
comment “// repeatable” also indicates a 
repeatable value.

// // default: ijtag_so The double slash indicates the text immediately 
following is a comment and tells the tool to 
ignore the text.

Table B-1. Configuration Data Editing and Introspection Commands  (cont.)
Command Description
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AddressGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
DataGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
MicroProgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Instruction/AdvancedOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
Instruction/DataCommands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Instruction/AddressCommands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
Instruction/CounterCommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Instruction/NextConditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

OperationSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
SignalPipelineStages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
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MemoryOperationsSpecification
MemoryOperationsSpecification
This section describes the syntax available to describe custom memory test algorithms and 
memory access waveforms. Memory test algorithms are described in the Algorithm wrapper 
and memory access operations are described in the OperationSet wrapper.

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 
  } 
  OperationSet(operation_set_name) { 
  } 
} 

Description
A wrapper used to hold all user-defined Algorithm and OperationSet wrappers. The content of 
multiple files containing each a MemoryOperationsSpecification wrapper with different 
Algorithm and OperationSet wrappers can be read into the tool simultaneously using the 
read_config_data command. The contents of multiple MemoryOperationsSpecification 
wrappers are merged automatically. You can use the write_config_data command to write them 
back out into a single file or separated into multiple files. 

Parameters
No parameters are required for this wrapper.

Related Topics
Algorithm
read_config_data [Tessent Shell Reference Manual]
OperationSet
write_config_data [Tessent Shell Reference Manual]
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Algorithm
This section discusses the syntax for the Algorithm wrapper used in the memory TCD for 
Tessent MemoryBIST. The Algorithm wrapper is used to describe the memory test algorithm 
that can be hard-coded into the controller or scanned into the controller for execution. 

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

TestRegisterSetup { 
      AddressGenerator { 
      } 
      DataGenerator { 
      } 
      allow_multi_size_memory_parallel_test : on | off;  
      load_counter_a_end_count  : int | min_bank | max_bank |

 min_column | max_column |
 min_row | max_row |
 num_address_bits |
 num_bank_address_bits | 

 num_column_address_bits | 
 num_row_address_bits | 

// default: 0
      load_delay_counter_end_count : int | min_bank | max_bank | 

min_column | max_column |  
min_row | max_row | 
num_address_bits |  
num_bank_address_bits;
// default: 0 

      data_polarity_enable : on | off | auto; 
      operation_set_select : operation_set_name; 
      target_memory : all_compatible | row_only; 
      treat_bank_as_row_msb : on | off; 
    } 
    MicroProgram { 

} 
  } 
} 

Description
This section discusses the syntax for the Algorithm wrapper used in the memory TCD for 
Tessent MemoryBIST. All algorithms defined in the memory TCD file are hard-coded into the 
controller. 

You can define one or more algorithms in the Tessent MemoryBIST Algorithm file. There are 
multiple ways in which you can specify the algorithms you want to be available in a controller: 

• You can refer to algorithms by specifying the name in the property of the Algorithm 
property of the Core/Memory TCD configuration file.

• You can set a global default by defining the algorithm and extra_algorithm properties in 
the DefaultsSpecification/DftSpecification/MemoryBist/ControllerOptions wrapper. 
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The global default specifies controller step algorithm and added algorithms that you 
want built into the controller if you do not specify them as indicated in the next list item.

• You can edit the algorithm property and the extra_algorithm property of 
DftSpecification/MemoryBist/Controller/AdvancedOptions wrapper to specify the 
default controller step algorithm and added algorithms that you want built into the 
controller that can be selected at run time.

The algorithm wrapper outline provided in Figure B-1 shows the required sub-wrappers that 
need to be present, in any included algorithm, for the process_dft_specification command to 
complete without error. Mandatory wrappers need to be present even if there are no properties 
assigned within them.

Figure B-1. Algorithm Wrapper Requirements

MemoryOperationsSpecification {
  Algorithm(algorithm_name) {
    TestRegisterSetup {                       // Mandatory
      AddressGenerator {                      // Mandatory
        AddressRegisterA | AddressRegisterB { // Mandatory; can be empty
        }
      }
      DataGenerator {                         // Mandatory; can be empty
      }
    }
    MicroProgram {                            // Mandatory
      Instruction {                           // Mandatory
        NextConditions {                      // Mandatory; can be empty
          RepeatLoopA | RepeatLoopB {         // Optional
            Repeat1 | Repeat2 | Repeat3 {     // Optional
            }
          }
        }
      AdvancedOptions {                       // Optional
      }
      DataCommands {                          // Optional
      }
      AddressCommands {                       // Optional
      }
      CounterCommands {                       // Optional
      }
    }
  }
}

Parameters
• TestRegisterSetup/allow_multi_size_memory_parallel_test : on | off

This property indicates whether the current algorithm is compatible with parallel testing of 
different size memories. The compatibility is dependent on the algorithm coding. 
The value of on specifies the algorithm can be applied to any BIST step without restrictions 
on the memory sizes. This is the default. The value of off specifies the algorithm can only be 
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applied to a BIST step that is testing memories with the same number of rows, columns and 
banks. 

• TestRegisterSetup/load_counter_a_end_count : int | min_bank | max_bank | min_column | 
max_column | min_row | max_row | num_address_bits | num_bank_address_bits |  
num_column_address_bits | num_row_address_bits | num_address_bits_minus_one | 
num_data_bits_minus_one;
The optional property enables you to specify the end count value for the general purpose 
module CounterA. This end count value is the target count value for Counter A. When 
CounterA is instructed to count using the Microprogram/Instruction/CounterCommands/
counter_a property, the CounterA increments once per operation execution. When the 
CounterA module reaches the specified load_counter_a_end_count, the counter is reset to 
zero.
The default value of this property is 0.

o integer — decimal number specifying the end count value. The integer specified for 
the property must be in the range [0:2n-1]. n is the number of bits in CounterA .

o min_bank — specifies the starting bank address of the controller step to which the 
algorithm is applied and is the lowest starting bank address of all memories tested in 
the controller step.

o max_bank — specifies the ending bank address of the controller step to which the 
algorithm is applied and is the highest ending bank address of all memories tested in 
the controller step.

o min_column — specifies the starting column address of the controller step to which 
the algorithm is applied and is the lowest starting column address of all memories 
tested in the controller step.

o max_column — specifies the ending column address of the controller step to which 
the algorithm is applied and is the highest ending column address of all memories 
tested in the controller step.

o min_row — specifies the starting row address of the controller step to which the 
algorithm is applied and is the lowest starting row address of all memories tested in 
the controller step.

o max_row — specifies the ending row address of the controller step to which the 
algorithm is applied and is the highest ending row address of all memories tested in 
the controller step.

o num_address_bits — specifies the total number of bank, column and row address 
bits used in the controller step to which the algorithm is applied.

o num_bank_address_bits — specifies the total number of bank address bits used in 
the controller step to which the algorithm is applied.
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o num_column_address_bits — specifies the total number of column address bits used 
in the controller step to which the algorithm is applied.

o num_row_address_bits — specifies the total number of row address bits used in the 
controller step to which the algorithm is applied.

• TestRegisterSetup/load_delay_counter_end_count : int | min_bank | max_bank | 
min_column | max_column | min_row | max_row | num_address_bits | 
num_bank_address_bits | num_column_address_bits | num_row_address_bits;
The optional property enables you to specify the end count value for the general purpose 
module DelayCounter. This end count value is the target count value for the DelayCounter. 
When the DelayCounter is instructed to count using the Microprogram/Instruction/
CounterCommands/delay_counter property, the DelayCounter increments once per 
operation execution. When the DelayCounter module reaches the specified 
load_delay_counter_end_count, the counter is reset to zero. 
The default value of this property is 0.

o integer — decimal number specifying the end count value. The integer must be in 
the range [0:2n-1]. n is the number of bits in DelayCounter.

o min_bank — specifies the starting bank address of the controller step to which the 
algorithm is applied and is the lowest starting bank address of all memories tested in 
the controller step.

o max_bank — specifies the ending bank address of the controller step to which the 
algorithm is applied and is the highest ending bank address of all memories tested in 
the controller step.

o min_column — specifies the starting column address of the controller step to which 
the algorithm is applied and is the lowest starting column address of all memories 
tested in the controller step.

o max_column — specifies the ending column address of the controller step to which 
the algorithm is applied and is the highest ending column address of all memories 
tested in the controller step.

o min_row — specifies the starting row address of the controller step to which the 
algorithm is applied and is the lowest starting row address of all memories tested in 
the controller step.

o max_row — specifies the ending row address of the controller step to which the 
algorithm is applied and is the highest ending row address of all memories tested in 
the controller step.

o num_address_bits — specifies the total number of bank, column and row address 
bits used in the controller step to which the algorithm is applied.

o num_bank_address_bits — specifies the total number of bank address bits used in 
the controller step to which the algorithm is applied.
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o num_column_address_bits — specifies the total number of column address bits used 
in the controller step to which the algorithm is applied.

o num_row_address_bits — specifies the total number of row address bits used in the 
controller step to which the algorithm is applied.

• TestRegisterSetup/data_polarity_enable : on | off | auto;
The optional property enables you to apply the physical data map equations, or apply a 
logical data pattern to the memory when executing custom algorithms. The value of on 
activates the data_polarity and performs the physical data mapping equations when 
performing operations on the memory. The value of off deactivates the data_polarity, which 
removes the equation polarity from the physical data map equations. 
This property is ignored if the PhysicalDataMap wrapper of the memory library file does not 
contain any not or xor terms.
This property is not applicable to library algorithms. Data mapping is automatically applied 
as defined by these algorithms. For SMarchCHKB, SMarchCHKBci, SMarchCHKBcil and 
SMarchCHKBvcd, the physical data map is only applied during specific phases of the 
algorithm. For all other library algorithms, the physical data map is applied during all phases 
of the algorithm.
The value of auto is set by Tessent MemoryBIST as follows: 

o on — when an equation of the Core/Memory/PhysicalDataMap wrapper in the 
memory TCD  file contains a not or xor term. 

o off — for the following algorithms: SMarchCHKB, SMarchCHKBci, 
SMarchCHKBcil, and SMarchCHKBvcd.

Note
Any crossing of bit lines or remapping of logical data bits to different physical 
data bits is still performed when data_polarity_enable is set to off.

• TestRegisterSetup/operation_set_select : operation_set_name;
The mandatory property enables you to identify an OperationSet from which the 
microprogram select Operations to be performed on the memory.

• TestRegisterSetup/target_memory : all_compatible | row_only;
This property indicates whether the current algorithm is to be used with row_only memories 
or all memories. 
An algorithm that operates on the column address counter cannot be applied to memory 
BIST steps having zero column address bits. For this reason, you might have to create a 
second copy of your custom algorithms that only operates on the row address counter. For 
such algorithm, set this property to row_only. Those algorithms are not included into the 
memory BIST controller unless it has at least one step where it is testing exclusively 
row_only memories.
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When this property is set to row_only, the algorithm is not hard-coded into the controller if 
no step exists with only row_only memories.
Algorithms making use of the Column Address counter are automatically excluded from the 
memory BIST step having exclusively row_only memories. If the controller exclusively 
tests row_only memories, all algorithms making use of the Column Address counter are 
discarded.

• TestRegisterSetup/treat_bank_as_row_msb : on | off ;
This property indicates whether the bank address counter is automatically configured as an 
extension of the row address counter. The Z address segment is linked to the X1 address 
segment. The Z address segment counts when instructed by the Microprogram/Instruction/
AddressCommands/x1_address property and a carry-out from the X1 address segment is 
generated.
An application of this property is testing a memory having bank address bits with an 
algorithm that operates only on the row and column address counters.
A value of on specifies the Z address segment is linked to the X1 address segment. A value 
of off specifies the Z address segment is not linked to the X1 address segment. 
Further, this property is set to off if the algorithm specifies the z_carry_in property, or if the 
algorithm links the carry-out from the Z address segment to any of the row address or 
column address segments. One of the properties x0_carry_in, x1_carry_in, y0_carry_in, 
y1_carry_in specifies z_carry_out.
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The mandatory AddressGenerator wrapper groups the properties of the address generator that 
require initialization prior to execution of the microprogram. 

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

TestRegisterSetup { 
      AddressGenerator { 

load_bank_address_max   : bits | auto; 
        load_bank_address_min   : bits | auto; 
        load_column_address_max : bits | auto; 
        load_column_address_min : bits | auto; 
        load_row_address_max    : bits | auto; 
        load_row_address_min    : bits | auto; 
        AddressRegisterA | AddressRegisterB { 
        } 

} 
} 

} 
} 

Description
The AddressGenerator wrapper groups the properties of the address generator that require 
initialization prior to execution of the microprogram. The wrapper is mandatory and contains 
two possible wrappers, AddressRegisterA and AddressRegisterB, of which one must be present.

Parameters
• load_bank_address_max : bits | auto;

The optional property enables you to specify a maximum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
z_end_count is true. It is also used by the Instruction/AddressCommands wrapper when a 
load_max command is in effect. This property defaults to a bits value equivalent to the 
maximum highRange of the CountRange(BankAddress) specified in the Core/Memory/
AddressCounter wrapper of the memory TCD file for all memories tested in the controller 
step.
These usage conditions apply:

o This property is rarely used for hard algorithms. In general, the property is not 
specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.
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o Specify the property only when the number of bank address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory library file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.

o The specified property cannot be greater than the maximum highRange specified for 
CountRange(BankAddress) in the AddressCounter wrapper of the memory library 
file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample load_bank_address_max value for AddressGenerator.
TestRegisterSetup { 
  AddressGenerator { 
    load_bank_address_max: 2'b01; 
    . 
    . 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• load_bank_address_min : bits | auto;
The optional property enables you to specify a minimum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
z_end_count is true. It is also used by the Instruction/AddressCommands wrapper when a 
load_min command is in effect. This property defaults to a bits value equivalent to the 
minimum lowRange of the CountRange(BankAddress) specified in the Core/Memory/
AddressCounter wrapper of the memory TCD file for all memories tested in the controller 
step.
These usage conditions apply:

o This property is rarely used for hard algorithms. In general, the property is not 
specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.

o Specify the property only when the number of bank address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory library file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.
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o The specified property cannot be less than the minimum lowRange specified for 
CountRange(BankAddress) in the AddressCounter wrapper of the memory library 
file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample load_bank_address_min value for AddressGenerator.
TestRegisterSetup { 
  AddressGenerator { 
    Load_bank_address_min: 2'b01; 
. 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• load_column_address_max : bits | auto;
The optional property enables you to specify a maximum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
y0_end_count or y1_end_count is true. It is also used by the Instruction/AddressCommands 
wrapper when a load_max command is in effect. This property defaults to a bits value 
equivalent to the maximum highRange of the CountRange(ColumnAddress) specified in the 
Core/Memory/AddressCounter wrapper of the memory TCD file for all memories tested in 
the controller step.
These usage conditions apply:

o This property is rarely used for hard algorithms. In general, the property is not 
specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.

o Specify the property only when the number of Column address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.

o The specified property cannot be greater than the maximum highRange specified for 
CountRange(ColumnAddress) in the AddressCounter wrapper of the memory 
library file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample load_column_address_max value for AddressGenerator.
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TestRegisterSetup { 
  AddressGenerator { 
    load_column_address_max: 2'b01; 
    . 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• load_column_address_min : bits | auto;
The optional property enables you to specify a minimum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
y0_end_count or y1_end_count is true. It is also used by the Instruction/AddressCommands 
wrapper when a load_min command is in effect. This property defaults to a bits value 
equivalent to the minimum lowRange of the CountRange(ColumnAddress) specified in the 
Core/Memory/AddressCounter wrapper of the memory TCD file for all memories tested in 
the controller step.
These usage conditions apply:

o This property is rarely used for hard algorithms. In general, the property is not 
specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.

o Specify the property only when the number of Column address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.

o The specified property cannot be less than the minimum lowRange specified for 
CountRange(ColumnAddress) in the AddressCounter wrapper of the memory 
library file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample load_column_address_min value for AddressGenerator.
TestRegisterSetup { 
  AddressGenerator { 
    load_column_address_min: 2'b01; 
    . 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• load_row_address_max : bits | auto;
The optional property enables you to specify a maximum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
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x0_end_count or x1_end_count is true. It is also used by the Instruction/AddressCommands 
wrapper when a load_max command is in effect. This property defaults to a bits value 
equivalent to the maximum highRange of the CountRange(RowAddress) specified in the 
Core/Memory/AddressCounter wrapper of the memory TCD file for all memories tested in 
the controller step.
These usage conditions apply:

o This property is rarely used for hard algorithms. In general, the property is not 
specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.

o Specify the property only when the number of Row address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.

o The specified property cannot be greater than the maximum highRange specified for 
CountRange(RowAddress) in the AddressCounter wrapper of the memory library 
file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample LoadRowAddressMax value for AddressGenerator.
TestRegisterSetup { 
  AddressGenerator { 
    load_row_address_max: 2'b01; 
    . 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• load_row_address_min : bits | auto;
The optional property enables you to specify a minimum value for both the A and B address 
registers. This value is used by the Instruction/NextConditions wrapper when checking if 
x0_end_count or x1_end_count is true. It is also used by the Instruction/AddressCommands 
wrapper when a load_min command is in effect. This property defaults to a bits value 
equivalent to the minimum lowRange of the CountRange(RowAddress) specified in the 
Core/Memory/AddressCounter wrapper of the memory TCD file for all memories tested in 
the controller step.
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These usage conditions apply:
o This property is rarely used for hard algorithms. In general, the property is not 

specified and the tool selects the appropriate default value. Using this method, the 
algorithm can be applied to any memory.

o This property is sometimes used in soft algorithms to limit the address range during 
diagnosis. The DftSpecification soft_algorithm_address_min_max property must be 
set to on for this usage.

o Specify the property only when the number of Row address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than 
zero.

o The width of the binary value bits must be equivalent to the maximum address bit 
width specified in the AddressCounter wrapper of the memory library file for all 
memories tested in the controller step.

o The specified property cannot be less than the minimum lowRange specified for 
CountRange(RowAddress) in the AddressCounter wrapper of the memory library 
file for all memories tested in the controller step.

o The specified property is applied to both AddressRegisterA and AddressRegisterB.

The following is a sample load_row_address_min value for AddressGenerator.
TestRegisterSetup { 
  AddressGenerator { 
    load_row_address_min: 2'b01; 
    . 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

Related Topics
MemoryOperationsSpecification
Algorithm
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AddressRegisterA | AddressRegisterB
The AddressRegisterA and AddressRegisterB wrappers group the properties of the named 
address register. 

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

TestRegisterSetup { 
      AddressGenerator { 
        AddressRegisterA | AddressRegisterB { 
          load_bank_address   : binary | min_bank | max_bank; 
          load_column_address : binary | min_column | max_column; 
          load_row_address    : binary | min_row | max_row; 
          number_x0_bits      : int; // default: 0 
          number_y0_bits      : int; // default: 0 
          x0_carry_in         : none | x1_carry_out |z_carry_out |

y1_carry_out | y0_carry_out; 
          x1_carry_in         : none | x0_carry_out | z_carry_out |

y1_carry_out | y0_carry_out; 
          y0_carry_in         : none | x1_carry_out | z_carry_out |

y1_carry_out | x0_carry_out; 
          y1_carry_in         : none | x1_carry_out | z_carry_out |

y0_carry_out | x0_carry_out; 
          z_carry_in          : none | x1_carry_out | x0_carry_out |

y1_carry_out | y0_carry_out; 
        } 

} 
} 

} 
} 

Description
The AddressRegisterA and AddressRegisterB wrappers group the properties for the two address 
registers available in the Memory BIST architecture for programmable controllers. It is 
mandatory that at least one wrapper is present in the AddressGenerator wrapper and the wrapper 
can be empty. Each address register is a counter generating the addresses during execution of 
the Memory BIST microprogram. These registers require initialization prior to execution of the 
microprogram. 

The AddressRegisterA and AddressRegisterB wrappers consist of properties that enable you to 
specify the following:

• Initialization of the BankAddress

• Initialization of the RowAddress

• Initialization of the ColumnAddress

• Row address register segmentation

• Column address register segmentation
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• Linking of address register segments

One, or both, of AddressRegisterA and AddressRegisterB must be specified in the 
AddressGenerator wrapper.

Parameters
• AddressRegisterA | AddressRegisterB/load_bank_address : binary | min_bank | max_bank;

The optional property enables you to specify a binary value to be loaded into the 
BankAddress for the named A or B AddressRegister. The value loaded into the 
BankAddress is the initial value of the bank address prior to execution of the microprogram. 
You should specify the property only when the number of bank address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than zero.
The value of min_bank specifies the starting bank address of the controller step to which the 
algorithm is applied and is the lowest starting bank address of all memories tested in the 
controller step. This is the default. The value of max_bank specifies the ending bank address 
of the controller step to which the algorithm is applied and is the highest ending bank 
address of all memories tested in the controller step.

• AddressRegisterA | AddressRegisterB/load_column_address : binary |min_column | 
max_column;
The optional property enables you to specify a binary value to be loaded into the 
ColumnAddress for the named A or B AddressRegister. The value loaded into the 
ColumnAddress is the initial value of the column address prior to execution of the 
microprogram. You should specify the property only when the number of column address 
bits specified in any Core/Memory/AddressCounter wrapper of the memory TCD file is 
greater than zero.
The value of min_column specifies the starting column address of the controller step to 
which the algorithm is applied and is the lowest starting column address of all memories 
tested in the controller step. This is the default. The value max_column specifies the ending 
column address of the controller step to which the algorithm is applied and is the highest 
ending column address of all memories tested in the controller step.

• AddressRegisterA | AddressRegisterB/load_row_address : binary | min_row | max_row | 
The optional LoadRowAddress property enables you to specify a binary value to be loaded 
into the RowAddress for the named A or B AddressRegister. The value loaded into the 
RowAddress is the initial value of the row address prior to execution of the microprogram. 
You should specify the property only when the number of row address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than zero.
The value min_row specifies the starting row address of the controller step to which the 
algorithm is applied and is the lowest starting row address of all memories tested in the 
controller step. This is the default. The value max_row specifies the ending row address of 
the controller step to which the algorithm is applied and is the highest ending row address of 
all memories tested in the controller step.
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• AddressRegisterA | AddressRegisterB/number_x0_bits : int; // default: 0
The optional property enables you to specify the number of bits in the X0 segment of the 
RowAddress. The RowAddress counter may be separated into a X1 address counter and a 
X0 address counter.
int is an integer number specifying the number of bits in the X0 address counter. It defaults 
to 0. The number of bits in the X1 address counter is the number of row address bits less the 
specified number_x0_bits ; 
These usage conditions apply:

o The number of row address bits specified in any Core/Memory/AddressCounter 
wrapper of the memory TCD  must be greater than zero.

o The minimum value for int is zero.

o The maximum value for int is the smallest of:

• The number of row address bits minus one.

• n, where n is the number_x0_bits, with a CountRange of [0:(2n-1)]. That is the 
row address CountRange for the X0 address segment must be a full binary count 
from all zeros to all ones.

o number_x0_bits must be set to 1 when ALL of the following conditions apply:

• max_x0_segment_bits is set to 1.

• The selected operation set has an operation with Cycle/AdvancedSignals/
row_address_count_enable set to on. 

• No x1_address is set to Hold in any Microprogram/Instruction/
AddressCommands/ wrapper.

• AddressRegisterA | AddressRegisterB/number_y0_bits : int; // default: 0
The optional property enables you to specify the number of bits in the Y0 segment of the 
ColumnAddress. The ColumnAddress counter may be separated into a Y1 address counter 
and a Y0 address counter.
int is a number of bits in the Y0 address counter. It defaults to 0. The number of bits in the 
Y1 address counter is the number of ColumnAddress bits less the specified number_y0_bits.
These usage conditions apply:

o The number of column address bits specified in any Core/Memory/AddressCounter 
wrapper of the memory TCD must be greater than zero.

o The minimum value for int is zero.

o The maximum value for int is the smallest of:

• The number of column address bits minus one.
Tessent™ MemoryBIST User’s Manual, v2022.4 561

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
AddressGenerator
• n, where n is the number_y0_bits with a CountRange of [0:(2n-1)]. That is the 
column address CountRange for the Y0 address segment must be a full binary 
count from all zeros to all ones.

o number_y0_bits must be set to 1 when ALL of the following conditions apply:

• max_y0_segment_bits is set to 1.

• The selected operation set has an operation with column_address_count_enable 
set to On.

• No y1_address is set to Hold in any Microprogram/Instruction/
AddressCommands wrapper.

• AddressRegisterA | AddressRegisterB/x0_carry_in : none | x1_carry_out | z_carry_out | 
y1_carry_out | y0_carry_out;
The optional property is one of several CarryIn properties used to configure the segments of 
the address counter. You have to specify this property when either the number of row 
address bits specified in any AddressCounter wrapper of the memory TCD is greater than 
zero, or when number_y0_bits is greater than zero.
Valid values are as follows:

o none — specifies that there is no carry in required for this counter segment. This is 
the default. This segment counts when instructed to count by the x0_address 
property of the Microprogram/Instruction/AddressCommands wrapper.

o z_carry_out — specifies that there is a carry out from the Z address segment is 
required for this segment. This counter segment counts when instructed to count by 
the x0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Z address segment is generated. z_carry_out can 
only be specified when the number of bank address bits specified in any Core/
Memory/AddressCounter wrapper of the memory TCD is greater than zero.

o x1_carry_out — specifies that there is a carry out from the X1 address segment is 
required for this segment. This counter segment counts when instructed to count by 
the x0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the X1 address segment is generated. x1_carry_out 
can only be specified when the number of row address bits specified in any Core/
Memory/AddressCounter wrapper of the memory TCD is greater than zero.

o y1_carry_out — specifies that there is a carry out from the Y1 address segment is 
required for this segment. This counter segment counts when instructed to count by 
the x0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Y1 address segment is generated. y1_carry_out 
can only be specified when the number of columns address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD is greater than zero.

o y0_carry_out — specifies that there is a carry out from the Y0 address segment is 
required for this segment. This counter segment counts when instructed to count by 
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the x0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Y0 address segment is generated. y0_carry_out 
can only be specified when the number of column address bits specified in any Core/
Memory/AddressCounter wrapper of the memory TCD is greater than zero and 
number_y0_bits is greater and zero.

• AddressRegisterA | AddressRegisterB/y0_carry_in : none | x1_carry_out | z_carry_out | 
y1_carry_out | x0_carry_out;
The optional y0_carry_in property is one of several CarryIn properties used to configure the 
segments of the address counter. You have to specify y0_carry_in when either the number 
of column address bits specified in any AddressCounter wrapper of the memory TCD is 
greater than zero, or number_y0_bits is greater than zero.
Valid values are as follows:

o none — specifies that there is no carry in required for this counter segment. This 
segment counts when instructed to count by the y0_address property of the 
Microprogram/Instruction/AddressCommands.

o z_carry_out — specifies that there is a carry out from the Z address segment is 
required for this segment. This counter segment counts when instructed to count by 
the y0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Z address segment is generated. z_carry_out can 
only be specified when the number of bank address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero.

o x1_carry_out — specifies that there is a carry out from the X1 address segment is 
required for this segment. This counter segment counts when instructed to count by 
the y0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the X1 address segment is generated. x1_carry_out 
can only be specified when the number of row address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero.

o x0_carry_out — specifies that there is a carry out from the X0 address segment is 
required for this segment. This counter segment counts when instructed to count by 
the y0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the X0 address segment is generated. x0_carry_out 
may only be specified when wither the number of row address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero, or 
number_x0_bits is greater than zero.

o y1_carry_out — specifies that there is a carry out from the Y1 address segment is 
required for this segment. This counter segment counts when instructed to count by 
the y0_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Y1 address segment is generated. y1_carry_out 
can only be specified when the number of column address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero.
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The following is a sample linking of address segments for AddressRegisterA. In this 
example, assume that there are eight row (X) address bits, six column (Y) address bits, and 2 
bank (Z) address bits specified in the memory templates. The resulting linked address 
counter is Y1<-Y0<-Z<-X1<-X0 where Y1 is the most significant address segment and X0 
is the least significant address segment.

TestRegisterSetup { 
  AddressGenerator { 
    AddressRegisterA { 
      number_x0_bits: 7; 
      number_y0_bits: 4; 
      z_carry_in: x1_carry_out; 
      x1_carry_in: x0_carry_out; 
      x0_carry_in: None; 
      y1_carry_in: y0_carry_out; 
      y0_carry_in: z_carry_out; 
  } // end of AddressRegisterA wrapper 
} // end of AddressGenerator wrapper 

• AddressRegisterA | AddressRegisterB/y1_carry_in : none | x1_carry_out | z_carry_out | 
y0_carry_out | x0_carry_out;
The optional y1_carry_in property is one of several CarryIn properties used to configure the 
segments of the address counter. Specify y1_carry_in when the number of column address 
bits specified in any AddressCounter wrapper of the memory TCD is greater than zero.
Valid values are as follows:
• none — specifies that there is no carry in required for this counter segment. This segment 
counts when instructed to count by the y1_address property of the Microprogram/
Instruction/AddressCommands wrapper. y1_carry_in must be a value other than none (none 
is not allowed) when ALL of the following conditions apply:

o max_y0_segment_bits set to 1.

o The selected operation set has an operation with column_address_count_enable set 
to On.

o y1_address set to a value other than Hold in all Microprogram/Instruction/
AddressCommands wrappers (Hold is never used).

• z_carry_out — specifies that there is a carry out from the Z address segment is required for 
this segment. This counter segment counts when instructed to count by the y1_address 
property of the Microprogram/Instruction/AddressCommands wrapper, and a carry out from 
the Z address segment is generated.
• x1_carry_out — specifies that there is a carry out from the X1 address segment is required 
for this segment. This counter segment counts when instructed to count by the y1_address 
property of the Microprogram/Instruction/AddressCommands wrapper, and a carry out from 
the X1 address segment is generated. x1_carry_out can only be specified when the number 
of row address bits specified in any AddressCounter wrapper of the memory TCD is greater 
than zero.
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• x0_carry_out — specifies that there is a carry out from the X0 address segment is required 
for this segment. This counter segment counts when instructed to count by the y1_address 
property of the Microprogram/Instruction/AddressCommands wrapper, and a carry out from 
the X0 address segment is generated. x0_carry_out can only be specified when the number 
of row address bits specified in any AddressCounter wrapper of the memory TCD is greater 
than zero, and number_x_bits is greater than zero.
• y0_carry_out — specifies that there is a carry out from the Y0 address segment is required 
for this segment. This counter segment counts when instructed to count by the y1_address 
property of the Microprogram/Instruction/AddressCommands wrapper, and a carry out from 
the Y0 address segment is generated. y0_carry_out can only be specified when the number 
of column address bits specified in any AddressCounter wrapper of the memory TCD is 
greater than zero, and number_y0_bits is greater than zero.
The following is a sample linking of address segments for AddressRegisterA. In this 
example, assume that there are eight row (X) address bits, six column (Y) address bits, and 2 
bank (Z) address bits specified in the memory templates. The resulting linked address 
counter is Y1<-Y0<-Z<-X1<-X0 where Y1 is the most significant address segment and X0 
is the least significant address segment.

TestRegisterSetup { 
  AddressGenerator { 
    AddressRegisterA { 
      number_x0_bits: 7; 
      number_y0_bits: 4; 
      z_carry_in: x1_carry_out; 
      x1_carry_in: x0_carry_out; 
      x0_carry_in: None; 
      y1_carry_in: y0_carry_out; 
      y0_carry_in: z_carry_out; 
    } // end of AddressRegisterA wrapper 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• AddressRegisterA | AddressRegisterB/z_carry_in : none | x1_carry_out | x0_carry_out | 
y1_carry_out | y0_carry_out;
The optional z_carry_in property is one of several CarryIn properties used to configure the 
segments of the address counter. You have to specify z_carry_in when the number of bank 
address bits specified in any AddressCounter wrapper of the memory TCD is greater than 
zero. 
Valid values are as follows:

o none — specifies that there is no carry in required for this counter segment. This 
segment counts when instructed to count by the z_address property of the 
Microprogram/Instruction/AddressCommands wrapper.

o x1_carry_out — specifies that there is a carry out from the X1 address segment is 
required for this counter segment. This segment counts when instructed to count by 
the z_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the X1 address segment is generated. x1_carry_out 
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can only be specified when the number of row address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero. 

o x0_carry_out — specifies that there is a carry out from the X0 address segment is 
required for this counter segment. This segment counts when instructed to count by 
the z_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the X0 address segment is generated. x0_carry_out 
can only be specified when: The number of row address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero, and the 
number_x0_bits is greater than zero.

o y1_carry_out — specifies that there is a carry out from the Y1 address segment is 
required for this counter segment. This segment counts when instructed to count by 
the z_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Y1 address segment is generated. Y1CarryOut can 
only be specified when the number of column address bits specified in any 
AddressCounter wrapper of the memory TCD is greater than zero.

o y0_carry_out — specifies that there is a carry out from the Y0 address segment is 
required for this counter segment. This segment counts when instructed to count by 
the z_address property of the Microprogram/Instruction/AddressCommands 
wrapper, and a carry out from the Y0 address segment is generated. y0_carry_out 
may only be specified when wither the number of column address bits specified in 
any AddressCounter wrapper of the memory TCD is greater than zero, or the 
number_y0_bits is greater than zero.

The following is a sample linking of address segments for AddressRegisterA. In this 
example, assume that there are eight row (X) address bits, six column (Y) address bits, and 2 
bank (Z) address bits specified in the memory templates. The resulting linked address 
counter is Y1<-Y0<-Z<-X1<-X0 where Y1 is the most significant address segment and X0 
is the least significant address segment.

TestRegisterSetup { 
  AddressGenerator { 
    AddressRegisterA { 
      number_x0_bits: 7; 
      number_y0_bits: 4; 
      z_carry_in: x1_carry_out; 
      x1_carry_in: x0_carry_out; 
      x0_carry_in: None; 
      y1_carry_in: y0_carry_out; 
      y0_carry_in: z_carry_out; 
    } // end of AddressRegisterA wrapper 
  } // end of AddressGenerator wrapper 
} // end of TestRegisterSetup wrapper 
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DataGenerator
The DataGenerator located wrapper inside the TestRegisterSetup wrapper groups the properties 
of the data generator that require initialization prior to execution of the microprogram.

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

TestRegisterSetup { 
DataGenerator { 
load_write_data             : pattern; 

        load_expect_data            : pattern; 
        invert_data_with_row_bit    : none | int;  
        invert_data_with_column_bit : none | int;  
      } 

} 
} 

} 

Description
The DataGenerator located wrapper inside the TestRegisterSetup wrapper groups the properties 
of the data generator that require initialization prior to execution of the microprogram. Using 
this wrapper you can define the patterns that are loaded into the WriteData register or the 
ExpectData register. 

Parameters
• load_write_data : pattern;

The optional load_write_data property enables you to specify a binary value to be loaded 
into the WriteData register. The value loaded into the WriteData register is the initial value 
of the write data prior to execution of the microprogram. By default, a binary pattern with 
each bit set to 0 is selected. Settings for pattern are:

• load_expect_data : pattern;
The optional load_expect_data property enables you to specify a binary value to be loaded 
into the ExpectData register. The value loaded into the ExpectData register is the initial 

binary A specified binary bit pattern to be written. The 
default value is 0s — for example 0b00..00.

all_one A bit pattern of all 1s is loaded for writing — for 
example 0b11..11.

all_zero A bit pattern of all 0s is loaded for writing — for 
example 0b00..00.

alternating_zero A bit pattern of 0b10..10 is loaded for writing.
alternating_one A bit pattern of 0b01..01 is loaded for writing.
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value of the expect data prior to execution of the microprogram.By default, a binary pattern 
with each bit set to 0 is selected. Settings for pattern are:

• invert_data_with_row_bit : none | int; 
The optional invert_data_with_row_bit property enables you to specify a row address bit 
that inverts the applied write and expect data registers. The applied write and expect data 
registers are inverted when the specified row address bit is a 1 and is not inverted when the 
row address bit is a 0. 
The value of none specifies that no row bit is selected to invert the write and expect data 
registers. This is the default. 
The value int is of the form r[<index>]. The specified r[<index>] must select a valid row 
address bit where index is in the range from zero to the number of row address bits minus 
one. The number of row address bits is specified in the AddressCounter wrapper of the 
memory TCD file.
The following is a sample invert_data_with_row_bit value that selects row address bit 0 to 
invert the write and expect data registers.

TestRegisterSetup { 
  DataGenerator { 
    invert_data_with_row_bit: r[0]; 
    . 
  } // end of DataGenerator wrapper 
} // end of TestRegisterSetup wrapper 

• invert_data_with_column_bit : none | int; 
The optional invert_data_with_column_bit property enables you to specify a column 
address bit that inverts the applied write and expect data registers. The applied write and 
expect data registers are inverted when the specified column address bit is a 1 and is not 
inverted when the column address bit is a 0.
The value none specifies that no column bit is selected to invert the write and expect data 
registers. This is the default.
The value int is of the form c[<index>]. The specified c[<index>] must select a valid 
column address bit where index is in the range from zero to the number of column address 
bits minus one. The number of column address bits is specified in the memory TCD  file.

binary A specified binary bit pattern to be compared. The 
default value is 0s — for example 0b00..00.

all_one A bit pattern of all 1s is loaded for comparing — for 
example 0b11..11.

all_zero A bit pattern of all 0s is loaded for comparing — for 
example 0b00..00.

alternating_zero A bit pattern of 0b10..10 is loaded for comparing.
alternating_one A bit pattern of 0b01..01 is loaded for comparing.
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The following is a sample invert_data_with_column_bit value that selects column address 
bit 0 to invert the write and expect data registers.

TestRegisterSetup { 
  DataGenerator { 
    invert_data_with_column_bit: c[0]; 
    . 
  } // end of DataGenerator wrapper 
} // end of TestRegisterSetup wrapper 

Related Topics
MemoryOperationsSpecification
Algorithm
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MicroProgram
The mandatory MicroProgram wrapper enables you to describe the instructions that control the 
execution of the memory test algorithm. 

Syntax
 
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

 Microprogram { 
Instruction(instruction_name) { // repeatable

        operation_select      : operation_name ; // default: NoOperation 
        branch_to_instruction : instruction_name ; 
        AdvancedOptions { 
        } 
        DataCommands {
        } 
        AddressCommands {
        } 
        CounterCommands {
        { 
        NextConditions { 
        }
      } 
    } 
  } 
} 

Description
The MicroProgram wrapper consists of a set of instructions specifying commands to the Pointer 
Control module, Address Generator module, Data Generator module, and Sequencer module. 
The MicroProgram wrapper must contain at least one Instruction wrapper.

Parameters
• Instruction(instruction_name)

The Instruction is a mandatory repeatable wrapper containing properties that make up the 
operational fields of the instruction word. Each Instruction wrapper represents one 
instruction word. Its parameter instruction_name is a string uniquely identifying the 
Instruction.

• Instruction(instruction_name)/operation_select : operation_name ; 
The operation_select property enables you to identify an Operation from the selected 
operation set, which specifies the memory operation to be run. 
Valid values are as follows:

o NoOperation — specifies that no operation has been selected. This is the default.

o AutoRefresh — selects the AutoRefresh operation to be performed.
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o operation_name — is a string that must match one of the Operation names in the 
selected OperationSet, which in turn is specified in the Core/Memory wrapper of the 
memory TCD file. 

This example specifies that the Operation “Read” is selected.
MicroProgram { 
  Instruction (Instruction_Two) { 
    operation_select: read; 
    . 
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• Instruction(instruction_name)/branch_to_instruction : instruction_name ; 
This property enables you to specify the instruction that the pointer control selects as the 
next instruction to run if the requested conditions are not all true (except for the Instruction/
NextConditions/RepeatLoop condition—that is all Repeat wrappers have not been run). The 
Repeat wrapper next conditions are described within the RepeatLoop wrapper. When all 
requested conditions are true, the next sequential instruction is loaded to run.
The default is the Instruction wrapper name for which this property was to be specified 
within. instruction_name must identify an Instruction wrapper name for which the 
branch_to_instruction property is specified for a previously specified instruction. That 
pointer control only supports a branch to itself or a branch backwards.

Related Topics
MemoryOperationsSpecification
Algorithm
Tessent™ MemoryBIST User’s Manual, v2022.4 571

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
Instruction/AdvancedOptions
Instruction/AdvancedOptions
The AdvancedOptions wrapper enables you to account for specific memory features when 
describing the memory test algorithm.

Syntax
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

 MicroProgram { 
Instruction(instruction_name) { 
AdvancedOptions { 

disable_memories_without_group_writeenable  : on | off; 
disable_memories_without_outputenable     : on | off; 

          disable_memories_without_readenable        : on | off; 
          disable_memories_without_select        : on | off; 
          disable_memories_without_writeenable       : on | off; 
          inhibit_refresh                          : on | off; 
        } 

} 
} 

} 
} 

Description
Using the properties of this wrapper, you can write a generic algorithm that can be applied to 
memories even though certain control signals are unavailable. This avoids the need to code 
multiple algorithms based on the memory type.

Parameters
• disable_memories_without_group_writeenable : on | off; 

The disable_memories_without_group_writeenable property specifies whether the 
memories without the group write enable control signal should be disabled for the specified 
instruction. This property enables memories with and without a group write enable control 
signal to be tested by the same controller.
The value on disables memories without the group write enable control signal for the 
specified instruction. 
The default value off does not disable memories without the group write enable control 
signal for the specified instruction.
A bit corresponding to the group write enable control signal is added to the instruction if one 
of the following is true:

o Some, but not all, memories under test have the group write enable control signal 
AND the controller is soft programmable.

o Zero (0) or more, but not all, memories under test have the group write enable 
control signal and at least one hard algorithm attempts to disable the group write 
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enable control signal. The memories under test can be either concurrent or 
sequential.

• disable_memories_without_outputenable : on | off;
The disable_memories_without_outputenable property specifies whether the memories 
without the output enable control signal should be disabled for the specified instruction. 
This property enables memories with and without an output enable control signal to be 
tested by the same controller.
The value on disables memories without the output enable control signal for the specified 
instruction. 
The default value off does not disable memories without the output enable control signal for 
the specified instruction.
The memories under test can be either concurrent or sequential. A bit corresponding to the 
output enable control signal is added to the instruction if one of the following is true:

o Some, but not all, memories under test have the output enable control signal and the 
controller is soft programmable.

o Zero (0) or more, but not all, memories under test have the output enable control 
signal and at least one hard algorithm attempts to disable the output enable control 
signal.

• disable_memories_without_readenable : on | off;
The disable_memories_without_readenable property specifies whether memories with one 
of the following characteristics should be disabled for the specified instruction:

o No read enable control signal is present. The MemoryTemplate wrapper does not 
specify any port with function ReadEnable.

o Data output is not preserved when the read enable control signal is deasserted. This 
behavior is indicated with Core/Memory/DataOutHoldWithInactiveReadEnable set 
to Off.

This property enables memories with and without a read enable control signal or memories 
with different Core/Memory/DataOutHoldWithInactiveReadEnable settings to be tested by 
the same controller. 
The value on for the specified instruction, disables memories without the read enable 
control signal or that have Core/Memory/DataOutHoldWithInactiveReadEnable set to Off. 
The default value off for the specified instruction, does not disable memories without the 
read enable control signal or that have Core/Memory/DataOutHoldWithInactiveReadEnable 
set to Off.
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The memories under test can be either concurrent or sequential. A bit corresponding to the 
read enable control signal is added to the instruction if one of the following is true:

o Some, but not all, memories under test have the read enable control signal or have 
Core/Memory/DataOutHoldWithInactiveReadEnable set to On and the controller is 
soft programmable.

o Zero (0) or more, but not all, memories under test have the read enable control signal 
or have Core/Memory/DataOutHoldWithInactiveReadEnable set to On and at least 
one hard algorithm attempts to disable the read enable control signal.

Note
Core/Memory/DataOutHoldWithInactiveReadEnable is On by default.

• disable_memories_without_select : on | off;
The disable_memories_without_select property specifies whether memories with one of the 
following characteristics should be disabled for the specified instruction:

o No select control signal is present. The Core/Memory/Port wrapper does not specify 
any port with function Select.

o Memory content is not preserved when the select control signal is deasserted. This 
behavior is indicated with Core/Memory/MemoryHoldWithInactiveSelect set to off.

This property enables memories with and without a select control signal or memories with 
different Core/Memory/MemoryHoldWithInactiveSelect  settings to be tested by the same 
controller.
The value on for the specified instruction, disables memories without the select control 
signal or that have Core/Memory/MemoryHoldWithInactiveSelect set to Off.
The default value off for the specified instruction, does not disable memories without the 
select control signal or that have Core/Memory/MemoryHoldWithInactiveSelect set to Off.
The memories under test can be either concurrent or sequential. A bit corresponding to the 
select control signal is added to the instruction if one of the following is true:

o Some, but not all, memories under test have the select control signal or have Core/
Memory/MemoryHoldWithInactiveSelect set to On and the controller is soft 
programmable.

o Zero (0) or more, but not all, memories under test have the select control signal or 
have Core/Memory/MemoryHoldWithInactiveSelect  set to On and at least one hard 
algorithm attempts to disable the select control signal.

Note
Core/Memory/MemoryHoldWithInactiveSelect is set to On by default.
Tessent™ MemoryBIST User’s Manual, v2022.4574

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
Instruction/AdvancedOptions
• disable_memories_without_writeenable : on | off;
The disable_memories_without_writeenable property specifies whether the memories 
without the write enable control signal should be disabled for the specified instruction. This 
property enables memories with and without a write enable control signal to be tested by the 
same controller. 
A value of on disables memories without the write enable control signal for the specified 
instruction. 
The default value off does not disable memories without the write enable control signal for 
the specified instruction.
The memories under test can be either concurrent or sequential. A bit corresponding to the 
write enable control signal is added to the instruction if one of the following is true:

o Some, but not all, memories under test have the write enable control signal and the 
controller is soft programmable.

o Zero (0) or more, but not all, memories under test have the write enable control 
signal and at least one hard algorithm attempts to disable the write enable control 
signal.

• inhibit_refresh : on | off;
The InhibitRefresh property enables you to prevent the insertion of any AutoRefresh 
operations by the Refresh Control module. 
The value on  inhibits AutoRefresh operations from being inserted when the Refresh 
Control module is enabled.
The value off  enables AutoRefresh operations to be inserted when the Refresh Control 
module is enabled. This is the default.
The InhibitRefresh is meaningful only if:

o The Core/Memory/MemoryType property in the memory library file has been 
specified as DRAM.

o The Controller/DramOptions/run_time_refresh_interval property is not off in the 
MemoryBist wrapper of the PatternsSpecification.

Related Topics
MemoryOperationsSpecification
Algorithm
Core
Memory
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Instruction/DataCommands
The DataCommands wrapper enables you to manipulate the data pattern written to the memory 
input and expected from the memory output. 

Syntax
 
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

 MicroProgram { 
Instruction(instruction_name) { 
DataCommands { 

inhibit_data_compare : on | off; 
          expect_data          : zero | one | data_reg |

inverse_data_reg | data_reg_rotate | 
inverse_data_reg_rotate | 
data_reg_rotate_with_invert | 
inverse_data_reg_rotate_with_invert | 
data_reg_prdg | inverse_data_reg_prdg | 
reset_data_reg | set_data_reg | 

           write_data          : zero | one | data_reg |  
                                 inverse_data_reg | 

data_reg_rotate | 
inverse_data_reg_rotate | 
data_reg_rotate_with_invert | 
inverse_data_reg_rotate_with_invert | 
data_reg_prdg | inverse_data_reg_prdg | 
reset_data_reg | set_data_reg | 

          address_a_equals_b   : off | invert_expect_data | 
invert_write_data | 
invert_write_data_and_expect_data; 

 
        } 

} 
} 

} 
} 

Description
The data pattern can be selected based on the output of the expect and write data registers as 
well as rotating the register content. The compare event on the read data for the selected 
operation can also be suppressed.

Parameters
• inhibit_data_compare : on | off;

The inhibit_data_compare property enables you to compare normally expected data and 
read data, or to disable any StrobeDataOut signal during running of the selected operation. 
For the value on, any StrobeDataOut signal is disabled and the expect data and read data are 
not compared.
For the default value off, expected data and read data are compared normally.
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This property is ignored for an instruction execution within an Instruction/NextConditions/
RepeatLoopA or RepeatLoopB or combination thereof. This property is overridden by one 
of or the combination thereof the RepeatLoopA/Repeat/inhibit_data_compare and 
RepeatLoopB/Repeat/inhibit_data_compare values specified.
This example specifies that any StrobeDataOut signal is disabled, and the expect data and 
read data are not compared.

MicroProgram { 
  Instruction (Instruction_Two) { 
    DataCommands {  
      inhibit_data_compare: on; 
      . 
    } // end of DataCommands 
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• expect_data : zero | one | data_reg | inverse_data_reg | data_reg_rotate | 
inverse_data_reg_rotate | data_reg_rotate_with_invert | 
inverse_data_reg_rotate_with_invert | data_reg_prdg | inverse_data_reg_prdg | 
reset_data_reg | set_data_reg ;
The expect_data property specifies the expected data to be compared with data read from 
the memory.
Valid values are as follows:

o zero — selects expect data of all zeros. This is the default.

o one — selects expect data of all ones.

o data_reg — selects the expect data register loaded with a value specified by the 
DataGenerator/load_expect_data property.

o inverse_data_reg — selects the inverted expect data register. The initial value of the 
expect data register is specified by the DataGenerator/load_expect_data property.

o data_reg_rotate — selects the expect data register. The expect data register is rotated 
at the end of the executing operation. The initial value of the expect data register is 
specified by the DataGenerator/load_expect_data property.

o inverse_data_reg_rotate — selects the inverted expect data register. The expect data 
register is rotated at the end of the executing operation. The initial value of the 
expect data register is specified by the DataGenerator/load_expect_data property.

o data_reg_rotate_with_invert — selects the expect data register. The expect data 
register with an inverted feedback is rotated at the end of the executing operation. 
The initial value of the expect data register is specified by the DataGenerator/
load_expect_data property.

o inverse_data_reg_rotate_with_invert — selects the inverted expect data register. The 
expect data register with an inverted feedback is rotated at the end of the executing 
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operation. The initial value of the expect data register is specified by the 
DataGenerator/load_expect_data property.

o data_reg_prdg — applies the content of the expect data register to the memory 
outputs and updates at the end of the current operation to generate a new pseudo-
random value for a subsequent operation.

o inverse_data_reg_prdg — applies the content of the inverted expect data register to 
the memory outputs and updates at the end of the current operation to generate a new 
pseudo-random value for a subsequent operation.

o reset_data_reg — selects expect data of constant zeros. The value is not modified by 
any inversion with address bits.

o set_data_reg — selects expect data of constant ones. The value is not modified by 
any inversion with address bits.

These usage conditions apply:
o For the following commands, the content of the expect data register is preserved at 

the end of the current operation:

o The rotate command is performed on the last tick of the selected operation. For each 
execution, the rotate is one bit to the left or from the least significant bit, bit 0 of the 
expect data register, to the most significant bit of the expect data register. The most 
significant bit of the expect data register is rotated to the least significant bit, bit 0, of 
the expect data register.

o The rotate_with_invert command specifies that the most significant bit of the expect 
data register is inverted when feed back to bit 0 of the expect data register.

o The specified command, with the exception of reset_data_reg and set_data_reg, may 
be modified when an Instruction/NextConditions RepeatLoop is active. For a 
detailed description of the expect data command modifications, refer to the 
expect_data_sequence property. 

o The specified command, with the exception of reset_data_reg and set_data_reg, is 
modified by the DataGenerator/invert_data_with_row_bit and 
invert_data_with_column_bit properties.

o The values applied by the reset_data_reg and set_data_reg commands are not 
modified by the DataGenerator/invert_data_with_row_bit and DataGenerator/
invert_data_with_column_bit properties. These commands are useful when reading 
constant zeros or ones from all memory locations such as in a march-type algorithm. 

zero one
data_reg inverse_data_reg
reset_data_reg set_data_reg
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In contrast, the zero and one commands are useful when reading alternating zeros or 
ones, based on address, such as in a checkerboard-type algorithm.

o data_reg_prdg and inverse_data_reg_prdg — To use the pseudo-random data pattern 
generation feature:

• The data registers must have at least 8 bits.

• The maximum length of the pseudo-random sequence is determined by the data 
register size as follows:

o The polynomials used to generate the pseudo-random sequence are fixed and 
implemented as a Linear Feedback Shift Register (LFSR) of type I. 

o Both the write data and expect data register must be initialized with the same seed. 
This seed cannot be all 0s. 

o The read address sequence must exactly match the write address sequence so that the 
comparators do not report mis-compares.

o A memory location must be read before writing a new pseudo-random value into 
that location so that the comparators do not report mis-compares.

This example specifies that expect data of all ones is selected.
MicroProgram { 
  Instruction (Instruction_Two) { 
    DataCommands {  
      expect_data: one; 
      . 
    } // end of DataCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• write_data : zero | one | data_reg | inverse_data_reg | data_reg_rotate | 
inverse_data_reg_rotate | data_reg_rotate_with_invert | 

Data 
Register 
Size

Sequence 
Length

Polynomial

8-15 28 - 1 x8 + x4 + x3 +x2 + 1
16-31 216 - 1 x16 + x12 + x3 + x + 1
32-63 232 - 1 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + 

x4 + x2 + x + 1 
(Standard CRC-32 polynomial)

64+ 264 - 1 x64 + x4 + x3 + x + 1 
(Standard CRC-64 polynomial)
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inverse_data_reg_rotate_with_invert | data_reg_prdg | inverse_data_reg_prdg | 
reset_data_reg | set_data_reg ;
The write_data property specifies the write data to be written to the memory.
Valid values are as follows:

o zero — selects write data of all zeros. This is the default

o one — selects write data of all ones.

o data_reg — selects the write data register loaded with a value specified by the 
DataGenerator/load_write_data property.

o inverse_data_reg — selects the inverted write data register. The initial value of the 
write data register is specified by the DataGenerator/load_write_data property.

o data_reg_rotate — selects the write data register. The write data register is rotated at 
the end of the executing operation. The initial value of the write data register is 
specified by the DataGenerator/load_write_data property.

o inverse_data_reg_rotate — selects the inverted write data register. The write data 
register is rotated at the end of the executing operation. The initial value of the write 
data register is specified by the DataGenerator/load_write_data property.

o data_reg_rotate_with_invert — selects the write data register. The write data register 
with an inverted feedback is rotated at the end of the executing operation. The initial 
value of the write data register is specified by the DataGenerator/load_write_data 
property.

o inverse_data_reg_rotate_with_invert — selects the inverted write data register. The 
write data register with an inverted feedback is rotated at the end of the executing 
operation. The initial value of the write data register is specified by the 
DataGenerator/load_write_data property.

o data_reg_prdg — applies the content of the write data register to the memory inputs 
and updates at the end of the current operation to generate a new pseudo-random 
value for a subsequent operation. 

o inverse_data_reg_prdg — applies the content of the inverted write data register to 
the memory inputs and updates at the end of the current operation to generate a new 
pseudo-random value for a subsequent operation. 

o reset_data_reg — selects write data of constant zeros. The value is not modified by 
any inversion with address bits.

o set_data_reg — selects write data of constant ones. The value is not modified by any 
inversion with address bits.
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These usage conditions apply:
o For the following commands, the content of the write data register is preserved at the 

end of the current operation:

o The rotate command is performed on the last tick of the selected operation. For each 
execution the rotate is one bit to the left or from the least significant bit, bit 0 of the 
write data register, to the most significant bit of the write data register. The most 
significant bit of the write data register is rotated to the least significant bit, bit 0, of 
the write data register.

o The rotate_with_invert command specifies that the most significant bit of the write 
data register is inverted when feed back to bit 0 of the write data register.

o The specified command, with the exception of reset_data_reg and set_data_reg, may 
be modified when a Instruction/NextConditions/Repeat Loop is active. For a 
detailed description of the write data command modifications, refer to the 
RepeatLoop/Repeat/write_data_sequence description.

o The specified command, with the exception of reset_data_reg and set_data_reg, is 
modified by the DataGenerator/invert_data_with_row_bit and DataGenerator/
invert_data_with_column_bit properties.

o The values applied by the reset_data_reg and set_data_reg commands are not 
modified by the DataGenerator/invert_data_with_row_bit and DataGenerator/
invert_data_with_column_bit properties. These commands are useful when writing 
constant zeros or ones to all memory locations such as in a march-type algorithm. In 
contrast, the zero and one commands are useful when writing alternating zeros or 
ones, based on address, such as in a checkerboard-type algorithm.

o data_reg_prdg and inverse_data_reg_prdg — To use the pseudo-random data pattern 
generation feature:

• The data registers must have at least 8 bits.

• The maximum length of the pseudo-random sequence is determined by the data 
register size as follows::

zero one
data_reg inverse_data_reg
reset_data_reg set_data_reg

Data 
Register 
Size

Sequence 
Length

Polynomial

8-15 28 - 1 x8 + x4 + x3 +x2 + 1
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o The polynomials used to generate the pseudo-random sequence are fixed and 
implemented as a Linear Feedback Shift Register (LFSR) of type I. 

o Both the write data and expect data register must be initialized with the same seed. 
This seed cannot be all 0s. 

o The read address sequence must exactly match the write address sequence so that the 
comparators do not report mis-compares.

o A memory location must be read before writing a new pseudo-random value into 
that location so that the comparators do not report mis-compares.

This example selects the write data register loaded with a value specified by the 
DataGenerator/load_write_data property.

MicroProgram { 
  Instruction (Instruction_Two) { 
    DataCommands { 
      write_data: data_reg; 
      . 
    } // end of DataCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• address_a_equals_b : off | invert_expect_data | invert_write_data | 
invert_write_data_and_expect_data; 
The address_a_equals_b property enables you to invert the write data, expect data, or both 
write and expect data when AddressRegisterA equals AddressRegisterB. This property is 
useful for algorithms with a “home” and an “away” cell such as the standard LVGalPat 
Algorithm. This enables you to program a single instruction that can, for example, write a 
background of “zeros” but write “ones” to a single cell in the memory array.
Valid values are as follows:

o off — disables the inversion of the write or expect data registers when 
AddressRegisterA equals AddressRegisterB. This is the default.

16-31 216 - 1 x16 + x12 + x3 + x + 1
32-63 232 - 1 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + 

x4 + x2 + x + 1 
(Standard CRC-32 polynomial)

64+ 264 - 1 x64 + x4 + x3 + x + 1 
(Standard CRC-64 polynomial)

Data 
Register 
Size

Sequence 
Length

Polynomial
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o invert_write_data — enables the inversion of the applied write data registers when 
AddressRegisterA equals AddressRegisterB.

o invert_expect_data — enables the inversion of the applied expect data registers 
when AddressRegisterA equals AddressRegisterB.

o invert_write_data_and_expect_data — enables the inversion of the applied write and 
expect data registers when AddressRegisterA equals AddressRegisterB.

This example specifies that the inversion of the applied write data registers is enabled when 
AddressRegisterA equals AddressRegisterB.

MicroProgram { 
  Instruction (Instruction_Two) { 
    DataCommands { 
      address_a_equals_b: invert_write_data; 
      . 
    } // end of DataCommands wrapper 
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper  

Related Topics
MemoryOperationsSpecification
Algorithm
Core
Memory
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Instruction/AddressCommands
The AddressCommands wrapper specifies the value applied to the memory address input 
throughout the instruction, as well as how they are updated at the end of the instruction. 

Syntax
 
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

 MicroProgram { 
Instruction(instruction_name) { 
AddressCommands { 

address_select             : select_a | select_b | 
a_xor_b | select_a_copy_to_b | 
select_b_copy_to_a | 
select_a_rotate_b | 
select_b_rotate_a | 
select_a_rotate_left_b | 
select_b_rotate_left_a | 
select_b_rotate_right_a | 

inhibit_last_address_count : on | off; 
          x1_address                 : hold | increment | decrement | 

load_min | load_max; 
          x0_address                 : hold | increment | decrement | 

load_min | load_max; 
          y1_address                 : hold | increment | decrement | 

load_min | load_max; 
          y0_address                 : hold | increment | decrement | 

load_min | load_max; 
          z_address                  : hold | increment | decrement | 

load_min | load_max; 
        } 
      } 

} 
} 

} 

Description
The AddressCommands wrapper enables you to select the value applied to the memory address 
input throughout the instruction. You can also specify how the column, row and bank address 
segments are updated at the end of the instruction. Contents can be transferred between the two 
address registers and their content can also be modified by rotation.

Parameters
• address_select : select_a | select_b | a_xor_b | select_a_copy_to_b | select_b_copy_to_a 

|select_a_rotate_b | select_b_rotate_a | select_a_rotate_left_b | select_b_rotate_left_a | 
select_b_rotate_right_a ; 
The address_select property enables you to select address register A or address register B 
and to manipulate the address registers. The content of the selected address register is 
applied to the memory on the address bus. This property also defines which register the 
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address segment commands z_address, x0_address, x1_address, y0_address, and 
y1_address are to be performed on.
Valid values are as follows:

o select_a — applies AddressRegisterA to the memory address bus, and the address 
segment commands are performed on AddressRegisterA. This is the default.

o select_b — applies AddressRegisterB to the memory address bus, and the address 
segment commands are performed on AddressRegisterB.

o a_xor_b — applies the result of the logical exclusive OR between AddressRegisterA 
and AddressRegisterB to the memory address bus, and the address segment 
commands are performed on AddressRegisterA.

o select_a_copy_to_b — applies AddressRegisterA to the memory address bus, the 
address segment commands are performed on AddressRegisterA, and the result is 
copied to AddressRegisterB.

o select_b_copy_to_a — applies AddressRegisterB to the memory address bus, the 
address segment commands are performed on AddressRegisterB, and the result is 
copied to AddressRegisterA.

o select_a_rotate_b — applies AddressRegisterA to the memory address bus, the 
address segment commands are performed on AddressRegisterA, and the 
AddressRegisterB is rotated left. 

o select_b_rotate_a — applies AddressRegisterB to the memory address bus, the 
address segment commands are performed on AddressRegisterB, and the 
AddressRegisterA is rotated left.

o select_a_rotate_left_b — applies AddressRegisterA to the memory address bus, the 
address segment commands are performed on AddressRegisterA, and 
AddressRegisterB is rotated towards the MSB. This command is equivalent to 
select_a_rotate_b.

o select_b_rotate_left_a — applies AddressRegisterB to the memory address bus, the 
address segment commands are performed on AddressRegisterB, and 
AddressRegisterA is rotated towards the MSB. This command is equivalent to 
select_b_rotate_a.

o select_b_rotate_right_a — applies AddressRegisterB to the memory address bus, the 
address segment commands are performed on AddressRegisterB, and 
AddressRegisterA is rotated towards the LSB.

These usage conditions apply:
o The address register selected is valid for running the selected operation.

o The copy command is performed on the last tick of the selected operation.
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o The rotate command is performed on the last tick of the selected operation. The 
address register consists of BankAddress<-RowAddress<-ColumnAddress, where 
the column address is the least significant. For each execution, the rotate is one bit to 
the left (from bit 0 to the MSB) or to the right (from the MSB to bit 0) on the 
selected address register and involves all of the address register bits.

If some memories use a reduced number of address bits, redundant address rotations 
occur that may cause simulation mismatches, depending on the test algorithm 
implementation. To avoid these redundant address combinations, you should bind 
only homogeneous memories to a given controller when any of the rotate commands 
are used. If the controller is testing memories of different address sizes, you can 
create multiple versions of your test algorithm, customizing each version to 
compensate for the redundant address rotations.

This example specifies that AddressRegisterB is applied to the memory address bus, and the 
address segment commands are performed on AddressRegisterB.

MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands { 
      address_select : select_b; 
      . 
    } // end of AddressCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• inhibit_last_address_count : on | off;
The inhibit_last_address_count property enables you to prevent the selected 
AddressRegister from counting on the last execution of the selected instruction. Typically, 
this is used to prevent the address counter from wrapping on the last instruction execution 
from the maximum address to the minimum address or vice versa. Thus, on the next 
instruction a reverse address sequence is possible without requiring an additional instruction 
to change the address pointer.
The on value prevents the selected AddressRegister from counting on the last execution of 
the selected instruction when all requested conditions, specified in the Instruction/
NextConditions wrapper, are true and the next sequential instruction is loaded for execution.
For the value off, any address segment command set to Increment or Decrement is 
performed normally. This is the default.
These usage conditions apply:

o For an instruction that specifies a Instruction/NextConditions/RepeatLoopA or 
RepeatLoopB wrapper and the RepeatLoop is executing a Repeat, this property is 
overridden by the value specified for that Repeat in the inhibit_last_address_count 
property within the Repeat wrapper.

o This property is ignored if the following properties are defined as load_min or 
load_max: z_address, x0_address, x1_address, y0_address, and y1_address
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This example specifies that the selected AddressRegister is prevented from counting on the 
last execution of the selected instruction when all requested NextConditions are true and the 
next sequential instruction is loaded for execution.

MicroProgram {  
  Instruction (Instruction_Two) {  
    AddressCommands { 
      inhibit_last_address: on;  
      . 
    } // end of AddressCommands wrapper 
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper  

• x1_address : hold | increment | decrement | load_min | load_max;
The x1_address property enables you to specify the address counting command for the X1 
segment of the row address. 
Valid values are as follows:

o hold — specifies that the X1 segment of the selected address register holds the 
current value. This is the default

o increment — specifies an incrementing count direction from minimum to maximum 
for the X1 segment of the selected address register.

o decrement — specifies a decrementing count direction from maximum to minimum 
for the X1 segment of the selected address register.

o load_min — loads the X1 address segment with the value defined by the 
AddressGenerator/load_row_address_min property.

o load_max — loads the X1 address segment with the value defined by the 
AddressGenerator/load_row_address_max property.

The following usage conditions apply:
o Specify x1_address when the number of row address bits specified in any Core/

Memory/AddressCounter wrapper of the memory TCD file is greater than zero.

o The specified command may be modified when an Instruction/NextConditions/
Repeat Loop is active. For a detailed description of the address segment command 
modifications, refer to address_sequence.

o The x0_address property must have the same value as the x1_address property when 
it is defined as load_min or load_max.

This example specifies an incrementing count direction from minimum to maximum 
for the X1 segment of the selected address register.

This example specifies an incrementing count direction from minimum to maximum for the 
X1 segment of the selected address register. 
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MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands { 
      x1_address : increment; 
      . 
    } // end of AddressCommands wrapper 
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• x0_address : hold | increment | decrement | load_min | load_max;
The x0_address property enables you to specify the address counting command for the X0 
segment of the row address. 
Valid values are as follows:

o hold — specifies that the X0 segment of the selected address register holds the 
current value. This is the default.

o increment — specifies an incrementing count direction from minimum to maximum 
for the X0 segment of the selected address register.

o decrement — specifies a decrementing count direction from maximum to minimum 
for the X0 segment of the selected address register. 

o load_min — loads the X0 address segment with the value defined by the 
AddressGenerator/load_row_address_min property.

o load_max — loads the X0 address segment with the value defined by the 
AddressGenerator/load_row_address_max property.

The following usage conditions apply:
o Specify x0_address when: 

• The number of row address bits specified in any Core/Memory/AddressCounter 
wrapper of the memory TCD file is greater than zero.

• The value of the number_x0_bits property within the AddressRegisterA | 
AddressRegisterB wrapper is greater than zero for the selected address register.

o The specified command may be modified when an Instruction/NextConditions/
Repeat Loop is active Repeat Loop is active. For a detailed description of the 
address segment command modifications, refer to address_sequence. 

o The x1_address property must have the same value as x0_address property when it is 
defined as load_min or load_max.

This example specifies an incrementing count direction from minimum to maximum for the 
X0 segment of the selected address register. 
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MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands { 
      x0_address: increment; 
      . 
    } // end of AddressCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

• y1_address : hold | increment | decrement | load_min | load_max;
The y1_address property enables you to specify the address counting command for the Y1 
segment of the column address. 
Valid values are as follows:

o hold — specifies that the Y1 segment of the selected address register holds the 
current value. This is the default.

o increment — specifies an incrementing count direction from minimum to maximum 
for the Y1 segment of the selected address register.

o decrement — specifies a decrementing count direction from maximum to minimum 
for the Y1 segment of the selected address register.

o load_min — loads the Y1 address segment with the value defined by the 
AddressGenerator/load_row_address_min property.

o load_max — loads the Y1 address segment with the value defined by the 
AddressGenerator/load_row_address_max property.

The following usage conditions apply:
o Specify y1_address when the number of column address bits specified in any Core/

Memory/AddressCounter wrapper of the memory TCD file is greater than zero.

o The specified command may be modified when an Instruction/NextConditions/
Repeat Loop is active Repeat Loop is active. For a detailed description of the 
address segment command modifications, refer to address_sequence. 

o The y1_address property must have the same value as y0_address property when it is 
defined as load_min or load_max.

This example specifies an incrementing count direction from minimum to maximum for the 
Y1 segment of the selected address register. 

MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands { 
      y1_address: increment; 
      . 
    } // end of AddressCommands wrapper 
  } // end of Instruction wrapper 
} // end of MicroProgram wrapper 
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• y0_address : hold | increment | decrement | load_min | load_max;
The y0_address property enables you to specify the address counting command for the Y0 
segment of the column address. 
Valid values are as follows:

o hold — specifies that the Y0 segment of the selected address register holds the 
current value.

o increment — specifies an incrementing count direction from minimum to maximum 
for the Y0 segment of the selected address register.

o decrement — specifies a decrementing count direction from maximum to minimum 
for the Y0 segment of the selected address register.

o load_min — loads the Y0 address segment with the value defined by the 
AddressGenerator/load_row_address_min property.

o load_max — loads the Y0 address segment with the value defined by the 
AddressGenerator/load_row_address_max property.

The following usage conditions apply:
o The Controller/AlgorithmResourceOptions/address_segment_x0_y0_allowed is on 

in the MemoryBist wrapper of the DftSpecification.

o Specify y0_address when: 

• The number of column address bits specified in any Core/Memory/
AddressCounter wrapper in the memory library file is greater than zero.

• The value of the number_y0_bits property within the 
MemoryOperationsSpecification/Algorithm/TestRegisterSetup/ wrapper is 
greater than zero for the selected address register.

o The specified command may be modified when an Instruction/NextConditions/
Repeat Loop is active Repeat Loop is active. For a detailed description of the 
address segment command modifications, refer to address_sequence. 

o The y1_address property must have the same value as y0_address property when it is 
defined as load_min or load_max.

This example specifies an incrementing count direction from minimum to maximum for the 
Y0 segment of the selected address register. 

MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands {  
      y0_address: increment; 
      . 
    } // end of AddressCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 
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• z_address : hold | increment | decrement | load_min | load_max;
The z_address property enables you to specify the address counting command for the Z 
segment of the bank address. 
Valid values are as follows:

o hold — specifies that the Z segment of the selected address register holds the current 
value. This is the default.

o increment — specifies an incrementing count direction from minimum to maximum 
for the Z segment of the selected address register.

o decrement — specifies a decrementing count direction from maximum to minimum 
for the Z segment of the selected address register. 

o load_min — loads the Z address segment with the value defined by the 
AddressGenerator/load_row_address_min property.

o load_max — loads the Z address segment with the value defined by the 
AddressGenerator/load_row_address_max property.

The following usage conditions apply:
o Specify z_address when the number of bank address bits specified in any Core/

Memory/AddressCounter wrapper in the memory library file is greater than zero.

o The specified command may be modified when an Instruction/NextConditions/
Repeat Loop is active Repeat Loop is active. For a detailed description of the 
address segment command modifications, refer to address_sequence.

This example specifies an incrementing count direction from minimum to maximum for the 
Z segment of the selected address register. 

MicroProgram { 
  Instruction (Instruction_Two) { 
    AddressCommands {  
      z_address: increment; 
      . 
    } // end of AddressCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper 

Related Topics
AddressGenerator
AddressCounter
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Instruction/CounterCommands
The CounterCommands wrapper enables you to specify how the CounterA and the 
DelayCounter are updated at the end of the instruction.

Syntax
 
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

MicroProgram {
Instruction(instruction_name) { 

        CounterCommands { 
counter_a      : hold | increment; 

          delay_counter : hold | increment; 
        } 
      } 

} 
} 

} 

Description
The CounterA and DelayCounter can independently preserve the counter value or request the 
counter to increment by 1 at the end of the instruction.

Parameters
• counter_a : hold | increment;

The counter_a property enables you to specify the command issued to the CounterA 
module.
The value hold specifies that the counter is to hold. This is the default. 
The value increment specifies that the counter is enabled to count on the last tick of the 
executing operation. 
This example specifies that the counter is enabled to count on the last tick of the executing 
operation.

MicroProgram { 
  Instruction (Instruction_Two) { 
    CounterCommands { 
      counter_a: increment; 
      . 
    } // end of CounterCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper  

• delay_counter : hold | increment;
The delay_counter property specifies the command issued to the DelayCounter module. 
The value hold specifies that the counter is to hold. This is the default.
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The value increment specifies that the counter is enabled to count on the last tick of the 
executing operation. 
The delay_counter property can only be used when the Controller/DramOptions/
run_time_refresh_interval property is off in the MemoryBist wrapper of the 
PatternsSpecification.
This example specifies that the counter is enabled to count on the last tick of the executing 
operation.

MicroProgram {  
  Instruction (Instruction_Two) {  
    CounterCommands { 
      delay_counter: increment;  
      . 
    } // end of CounterCommands wrapper  
  } //end of Instruction wrapper 
} //end of MicroProgram wrapper  
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Instruction/NextConditions
The mandatory NextConditions wrapper contains properties that are used to sequence the 
microprogram instructions.

Syntax
 
MemoryOperationsSpecification { 
  Algorithm(algorithm_name) { 

 MicroProgram { 
Instruction(instruction_name) { 

        NextConditions { 
x0_end_count            : on | off; 

          x1_end_count            : on | off;  
          y0_end_count            : on | off; 
          y1_end_count            : on | off; 
          z_end_count             : on | off; 
          counter_a_end_count     : on | off; 
          delay_counter_end_count : on | off; 
          RepeatLoopA | RepeatLoopB { 
            branch_to_instruction : instruction_name ; 
            Repeat1 | Repeat2 | Repeat3 { 
              enable                     : on | off; 

address_sequence           : no_change | inverse; 
              expect_data_sequence       : no_change | inverse; 
              write_data_sequence        : no_change | inverse; 
              inhibit_last_address_count : on | off; 
              inhibit_data_compare       : on | off; 
            } 

} 
        } 
      } 

} 
} 

} 

Description
The NextConditions wrapper properties sequence the microprogram instructions as follows:

• If all requested conditions are true the next sequential instruction word is loaded.

• If all requested conditions are true, except for the requested RepeatLoop condition, the 
next instruction word to be loaded is specified by the branch_to_instruction property in 
the RepeatLoop wrappers.

• If any of the requested conditions are not true the next instruction word to be loaded is 
specified by the branch_to_instruction property.

The NextConditions wrapper is mandatory within an Instruction wrapper and the wrapper can 
be empty if no properties need to change from default settings.
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Parameters
• x0_end_count : on | off;

The x0_end_count property enables you to specify whether or not the x0_end_count trigger 
is a required condition for advancing to the next instruction. The x0_end_count condition is 
generated if:

o The Instruction/AddressCommands/x0_address property is set to increment, and the 
X0 segment has reached the maximum of the row address countrange specified in 
the AddressCounter/Function/CountRange property of the memory TCD file.

o The Instruction/AddressCommands/x0_address property is set to decrement, and the 
X0 segment has reached the minimum of the row address countrange specified in the 
AddressCounter/Function/CountRange property of the memory TCD file.

The value on specifies that the x0_end_count trigger is a condition required to generate a 
next condition. 
The value off specifies that the x0_end_count trigger is not condition required to generate a 
next condition. This is the default.
These usage conditions apply:

o The Controller/AlgorithmResourceOptions/address_segment_x0_y0_allowed is on 
in the MemoryBist wrapper of the DftSpecification.

o Specify x0_end_count when:

• The number of row address bits specified in any Core/Memory/AddressCounter 
wrapper of the memory TCD file is greater than zero. 

• The number_x0_bits is greater than zero for the selected address register. 

o To use the x0_end_count condition the instruction must have the Instruction/
AddressCommands/x0_address property specified either to increment or decrement.

• x1_end_count : on | off; 
The x1_end_count property enables you to specify whether or not the x1_end_count trigger 
is a required condition for advancing to the next instruction. The x1_end_count condition is 
generated if:

o The Instruction/AddressCommands/x1_address property is set to increment, and the 
X1 segment has reached the maximum of the row address countrange specified in 
the AddressCounter/Function/CountRange property of the memory TCD file.

o The Instruction/AddressCommands/x1_address property is set to decrement, and the 
X1 segment has reached the minimum of the row address countrange specified in the 
AddressCounter/Function/CountRange property of the memory TCD file. 

The value on specifies that the x1_end_count trigger is a condition required to generate a 
next condition. 
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The value off specifies that the x1_end_count trigger is not a condition required to generate 
a next condition. This is the default.
These usage conditions apply:

o Specify x1_end_count when the number of row address bits specified in any Core/
Memory/AddressCounter wrapper of the memory TCD file is greater than zero. 

o To use the x1_end_count condition the instruction must have the Instruction/
AddressCommands/x1_address property specified either to increment or decrement.

• y0_end_count : on | off;
The y0_end_count property enables you to specify whether or not the y0_end_count trigger 
is a required condition for advancing to the next instruction. The y0_end_count condition is 
generated if:

o The Instruction/AddressCommands/y0_address property is set to increment, and the 
Y0 segment has reached the maximum of the column address countrange specified 
in the AddressCounter/Function/CountRange property of the memory TCD file.

o The Instruction/AddressCommands/y0_address property is set to decrement, and the 
Y0 segment has reached the minimum of the column address countrange specified in 
the AddressCounter/Function/CountRange property of the memory TCD file.

The value on specifies that the y0_end_count trigger is a condition required to generate a 
next condition. 
The value off specifies that the y0_end_count trigger is not a condition required to generate 
a next condition. This is the default.
These usage conditions apply:

o The Controller/AlgorithmResourceOptions/address_segment_x0_y0_allowed is on 
in the MemoryBist wrapper of the DftSpecification.

o Specify y0_end_count when:

• The number of column address bits specified in any Core/Memory/
AddressCounter wrapper of the memory TCD file is greater than zero.

• The number_y0_bits is greater than zero for the selected address register.

o To use the y0_end_count condition, the instruction must have the Instruction/
AddressCommands/y0_address property specified either to increment or decrement.
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• y1_end_count : on | off;
The y1_end_count property enables you to specify whether or not the y1_end_count trigger 
is a required condition for advancing to the next instruction. The Y1_EndCount condition is 
generated if:

o The Instruction/AddressCommands/y1_address property is set to increment, and the 
Y1 segment has reached the maximum of the column address countrange specified 
in the AddressCounter/Function/CountRange property of the memory TCD file.

o The Instruction/AddressCommands/y1_address property is set to decrement, and the 
Y1 segment has reached the minimum of the column address countrange specified in 
the AddressCounter/Function/CountRange property of the memory TCD file.

The value on specifies that the y1_end_count trigger is a condition required to generate a 
next condition. 
The value off specifies that the y1_end_count trigger is not a condition required to generate 
a next condition. This is the default.
These usage conditions apply:

o Specify y1_end_count when the number of column address bits specified in any 
Core/Memory/AddressCounter wrapper of the memory TCD file is greater than 
zero.

o To use the y1_end_count condition the instruction must have the Instruction/
AddressCommands/y1_address property specified either to increment or decrement.

• z_end_count : on | off;
The z_end_count property enables you to specify whether or not the z_end_count trigger is 
a required condition for advancing to the next instruction. The Z_EndCount condition is 
generated if:

o The Instruction/AddressCommands/z_address property is set to increment, and the Z 
address has reached the maximum of the bank address countrange specified in the 
AddressCounter/Function/CountRange property of the memory TCD file.

o The Instruction/AddressCommands/z_address property is set to decrement, and the 
Z address has reached the minimum of the bank address countrange specified in the 
AddressCounter/Function/CountRange property of the memory TCD file. 

The value on specifies that the z_end_count trigger is a condition required to generate a next 
condition. 
The value off  specifies that the z_end_count trigger is not a condition required to generate a 
next condition. This is the default.
These usage conditions apply:

o Specify z_end_count when the number of bank address bits specified in any Core/
Memory/AddressCounter wrapper of the memory TCD file is greater than zero.
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o To use the z_end_count condition the instruction must have the Instruction/
AddressCommands/z_address property specified either to increment or decrement.

• counter_a_end_count : on | off;
The counter_a_end_count property enables you to specify whether or not the 
counter_a_end_count trigger is a required condition for advancing to the next instruction. 
The counter_a_end_count condition is generated when the CounterA is incremented, and 
the counter has reached the value specified by the Algorithm/TestRegisterSetup/
load_counter_a_end_count property.
The on value specifies that the counter_a_end_count trigger is a condition required to 
generate a next condition. 
The value off specifies that the counter_a_end_count trigger is not a condition required to 
generate a next condition. This is the default.
To use the counter_a_end_count condition the instruction must have the Instruction/
CounterCommands/counter_a property specified to increment.

• delay_counter_end_count : on | off;
The delay_counter_end_count property enables you to specify whether or not the 
delay_counter_end_count trigger is a required condition for advancing to the next 
instruction. The delay_counter_end_count condition is generated when the DelayCounter is 
incremented and the counter has reached the value specified by the Algorithm/
TestRegisterSetup/load_delay_counter property.
The on value specifies that the delay_counter_end_count trigger is a condition required to 
generate a next condition. 
The value off specifies that the delay_counter_end_count trigger is not a condition required 
to generate a next condition. This is the default.
To use the delay_counter_end_count condition the instruction must have the Instruction/
CounterCommands/delay_counter property specified to increment.

• RepeatLoopA | RepeatLoopB wrapper
The RepeatLoop wrapper groups the properties of the Repeat Loop module used to repeat 
execution of one or several sequential instructions. 
A group of sequential instructions for RepeatLoopA is defined from the instruction 
specified by RepeatLoopA/branch_to_instruction to the instruction specifying 
RepeatLoopA in the NextConditions wrapper. 
This group of sequential instructions is re-run for each Repeat sub-wrapper in RepeatLoopA 
with modified address and data commands as specified within the Repeat sub-wrapper. 
RepeatLoop(B) is similar. 
When the loop of instructions are repeated for each Repeat sub-wrapper the RepeatLoop 
condition becomes true. One or both of the RepeatLoop sub-wrappers may be specified in 
one instruction.
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The RepeatLoopA and RepeatLoopB loops may also be nested. When loops are nested the 
inner loop re-runs each Repeat sub-wrapper containing properties that modify the address 
and data commands. However, each of these Repeat wrappers is also influenced by the outer 
loop Repeat wrapper’s properties that modify the address and data commands.
These usage conditions apply:

o Each of the RepeatLoopA and RepeatLoopB wrappers may be used only once in the 
MicroProgram wrapper.

o If both RepeatLoopA and RepeatLoopB are specified in the NextConditions wrapper 
of different instructions, the sequential set of instructions for RepeatLoopA must be 
completely nested in the sequential set of instructions for RepeatLoopB. Similarly, 
the sequential set of instructions for RepeatLoopB must be completely nested in the 
sequential set of instructions for RepeatLoopA. 

o If both RepeatLoopA and RepeatLoopB are specified in the same NextConditions 
sub-wrapper, the sequential set of instructions for RepeatLoopA must be completely 
nested in the sequential set of instructions for RepeatLoopB.

• RepeatLoopA | RepeatLoopB / branch_to_instruction : instruction_name ;
The branch_to_instruction property enables you to specify the instruction that the pointer 
control selects as the next instruction to be run if all requested conditions are true (except for 
the RepeatLoop condition—that is all Repeat wrappers have not been run). The next 
conditions are described in the NextConditions wrapper.
This property is mandatory inside any RepeatLoopA | RepeatLoopA wrapper specified. 
The value instruction_name is a valid Instruction wrapper name. The default value is the 
Instruction wrapper name for which this property was specified within.
This property is used as follows:

o The instruction_name must identify an Instruction wrapper name.

o instruction_name specified can be the Instruction wrapper name for which the 
branch_to_instruction property is specified of a previously specified instruction. 
That pointer control only supports a branch to itself or a branch backwards.

o If both RepeatLoopA and RepeatLoopB wrappers are specified in the same 
RepeatLoop wrapper the following must be true:

• RepeatLoopB/branch_to_instruction must specify the same instruction or an 
instruction sequentially specified before the RepeatLoopA/
branch_to_instruction. That is RepeatLoopA must be nested with RepeatLoopB.

o If both RepeatLoopA and RepeatLoopB wrappers are used in the MicroProgram 
wrapper but NOT in the same instruction one of the following must be true:

• RepeatLoopA consisting of the sequential group of instructions from the 
specified RepeatLoopA/branch_to_instruction property to the instruction 
specifying RepeatLoopA must be nested within Repeat LoopB consisting of the 
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sequential group of instructions from the specified RepeatLoopB/
branch_to_instruction to the instruction specifying RepeatLoopB. RepeatLoopA 
must be nested within RepeatLoopB. 

• Similarly to the above, RepeatLoopB must be nested within RepeatLoopA.

• Repeat LoopA consisting of the sequential group of instructions from the 
specified RepeatLoopA/branch_to_instruction to the instruction specifying 
RepeatLoopA does not use any of the same instructions as RepeatLoopB 
consisting of the sequential group of instructions from the specified 
RepeatLoopB/branch_to_instruction to the instruction specifying RepeatLoopB. 
That is RepeatLoopA and RepeatLoopB do not share any of the same 
instructions and thus are not nested.

• RepeatLoopA | RepeatLoopB / Repeat1 | Repeat2 | Repeat3 wrapper 
The Repeat wrappers groups the properties that enable you to modify the address 
sequencing, write data sequencing, and expect data sequencing for the repeated instruction. 
These instruction modifications apply to the sequential group of instructions from the 
instruction specified by the RepeatLoopA/branch_to_instruction, and RepeatLoopB/
branch_to_instruction property, respectively, to the instruction specifying RepeatLoop.
A minimum of one Repeat wrapper must be specified per RepeatLoop wrapper. The Repeat 
wrapper can be specified up to a maximum of three times per the RepeatLoop wrapper.

• enable : on | off;
The enable property activates the repetition of the group of instructions in the RepeatLoop 
and applies the settings within the associated Repeat1, Repeat2 or Repeat3 wrapper.

• address_sequence : no_change | inverse;
The address_sequence property enables you to specify that the address segment commands 
run by instructions during the Repeat either be performed as specified by the instruction, or 
the command is modified to a complimentary command.
Valid values are as follows:

o no_change — specifies that the address sequencing is to remain as programmed for 
execution of the Repeat wrapper. This is the default.

o inverse — specifies that the address sequencing is to be modified to the 
complementary command from the specified command in each instruction within 
the RepeatLoop wrapper. 

These usage conditions apply:
o If RepeatLoopA and RepeatLoopB are not nested the resulting no_change and 

inverse modifications for the address_sequence property are shown in Table 7-6.
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o If RepeatLoopA and RepeatLoopB are nested the resulting no_change and inverse 
modifications for the address_sequence property are shown in Table 7-7.

Table B-3. Un-Nested address_sequence Property Modification 
x1_address
x0_address
y1_address
y0_address
z_address

RepeatLoop(A | B)/
Repeat/
address_sequence

Modified x1_address
Modified x0_address
Modified y1_address
Modified y0_address
Modified z_address

hold no_change hold
hold inverse hold
increment no_change increment
increment inverse decrement
decrement no_change decrement
decrement inverse increment
load_min no_change load_min
load_min inverse load_min
load_max no_change load_max
load_max inverse load_max

Table B-4. Nested address_sequence Property Modification 
x1_address
x0_address
y1_address
y0_address
z_address

RepeatLoop(A)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

RepeatLoop(B)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

Modified x1_address
Modified x0_address
Modified y1_address
Modified y0_address
Modified z_address

hold no_change - hold
hold inverse - hold
hold no_change no_change hold
hold no_change inverse hold
hold inverse no_change hold
hold inverse inverse hold
hold - no_change hold
hold - inverse hold
increment no_change - increment
increment inverse - decrement
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increment no_change no_change increment
increment no_change inverse decrement
increment inverse no_change decrement
increment inverse inverse increment
increment - no_change increment
increment - inverse decrement
decrement no_change - decrement
decrement inverse - increment
decrement no_change no_change decrement
decrement no_change inverse increment
decrement inverse no_change increment
decrement inverse inverse decrement
decrement - no_change decrement
decrement - inverse increment
load_min no_change - load_min
load_min inverse - load_min
load_min no_change no_change load_min
load_min no_change inverse load_min
load_min inverse no_change load_min
load_min inverse inverse load_min
load_min - no_change load_min
load_min - inverse load_min
load_max no_change - load_max
load_max inverse - load_max
load_max no_change no_change load_max
load_max no_change inverse load_max
load_max inverse no_change load_max

Table B-4. Nested address_sequence Property Modification  (cont.)
x1_address
x0_address
y1_address
y0_address
z_address

RepeatLoop(A)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

RepeatLoop(B)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

Modified x1_address
Modified x0_address
Modified y1_address
Modified y0_address
Modified z_address
Tessent™ MemoryBIST User’s Manual, v2022.4602

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
Instruction/NextConditions
• expect_data_sequence : no_change | inverse;
The expect_data_sequence property enables you to specify that the expect data commands 
run by instructions during the Repeat either be performed as specified by the instruction, or 
the command is modified to a complimentary command.
Valid values are as follows:

o no_change — specifies that the expect data sequencing is to remain as programmed 
for execution of the Repeat. This is the default.

o inverse — specifies that the expect data sequencing is to be modified to the 
complementary command from the specified command in each instruction within 
the RepeatLoop. 

These usage conditions apply:
o If RepeatLoopA and RepeatLoopB are not nested the resulting no_change and 

inverse modifications for the expect data command are shown in Table 7-8.

load_max inverse inverse load_max
load_max - no_change load_max
load_max - inverse load_max

Table B-5. Un-Nested expect_data_sequence Property Modification 
expect_data RepeatLoop(A | B)/

Repeat/
expect_data_sequence

Modified expect_data

zero no_change zero
zero inverse one
one no_change one
one inverse zero
data_reg no_change data_reg
data_reg inverse inverse_data_reg
inverse_data_reg no_change inverse_data_reg
inverse_data_reg inverse data_reg
data_reg_rotate no_change data_reg_rotate

Table B-4. Nested address_sequence Property Modification  (cont.)
x1_address
x0_address
y1_address
y0_address
z_address

RepeatLoop(A)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

RepeatLoop(B)/
Repeat/
address_sequence
“-” indicates the 
Repeat is not active

Modified x1_address
Modified x0_address
Modified y1_address
Modified y0_address
Modified z_address
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z
z
z
z
z
z
z
z
o
o
o
o

o If RepeatLoopA and RepeatLoopB are nested the resulting no_change and inverse 
modifications for the expect data command are shown in Table 7-9.

data_reg_rotate inverse inverse_data_reg_rotate
inverse_data_reg_rotate no_change inverse_data_reg_rotate
inverse_data_reg_rotate inverse data_reg_rotate
data_reg_rotate_with_invert no_change data_reg_rotate_with_invert
data_reg_rotate_with_invert inverse inverse_data_reg_rotate_with_i

nvert
inverse_data_reg_rotate_with_inver
t

no_change inverse_data_reg_rotate_with_i
nvert

inverse_data_reg_rotate_with_inver
t

inverse data_reg_rotate_with_invert

Table B-6. Nested expect_data_sequence Property Modification 
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ero no_change - zero
ero inverse - one
ero no_change no_change zero
ero no_change inverse one
ero inverse no_change one
ero inverse inverse zero
ero - no_change zero
ero - inverse one
ne no_change - one
ne inverse - zero
ne no_change no_change one
ne no_change inverse zero

Table B-5. Un-Nested expect_data_sequence Property Modification  (cont.)
expect_data RepeatLoop(A | B)/

Repeat/
expect_data_sequence

Modified expect_data
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o
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ne inverse no_change zero
ne inverse inverse one
ne - no_change one
ne - inverse zero
ata_reg no_change - data_reg
ata_reg inverse - inverse_data_reg
ata_reg no_change no_change data_reg
ata_reg no_change inverse inverse_data_reg
ata_reg inverse no_change inverse_data_reg
ata_reg inverse inverse data_reg
ata_reg - no_change data_reg
ata_reg - inverse inverse_data_reg
verse_data_reg no_change - inverse_data_reg
verse_data_reg inverse - data_reg
verse_data_reg no_change no_change inverse_data_reg
verse_data_reg no_change inverse data_reg
verse_data_reg inverse no_change data_reg
verse_data_reg inverse inverse inverse_data_reg
verse_data_reg - no_change inverse_data_reg
verse_data_reg - inverse data_reg

ata_reg_rotate no_change - data_reg_rotate
ata_reg_rotate inverse - inverse_data_reg_rotat
ata_reg_rotate no_change no_change data_reg_rotate
ata_reg_rotate no_change inverse inverse_data_reg_rotate
ata_reg_rotate inverse no_change inverse_data_reg_rotat
ata_reg_rotate inverse inverse data_reg_rotate

Table B-6. Nested expect_data_sequence Property Modification  (cont.)
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d
d e
in e
in
in
in
in
in e
in e
in
in nv

d e_

d nv

d e_

d e_

d nv

d nv

d e_

in e_

in nv
ata_reg_rotate - no_change data_reg_rotate
ata_reg_rotate - inverse inverse_data_reg_rotat
verse_data_reg_rotate no_change - inverse_data_reg_rotat
verse_data_reg_rotate inverse - data_reg_rotate
verse_data_reg_rotate no_change no_change inverse_data_reg_rotate
verse_data_reg_rotate no_change inverse data_reg_rotate
verse_data_reg_rotate inverse no_change data_reg_rotate
verse_data_reg_rotate inverse inverse inverse_data_reg_rotat
verse_data_reg_rotate - no_change inverse_data_reg_rotat
verse_data_reg_rotate - inverse data_reg_rotate
verse_data_reg_rotate_with_invert no_change - data_reg_rotate_with_i

ert
ata_reg_rotate_with_invert inverse - inverse_data_reg_rotat

with_invert
ata_reg_rotate_with_invert no_change no_change data_reg_rotate_with_i

ert
ata_reg_rotate_with_invert no_change inverse inverse_data_reg_rotat

with_invert
ata_reg_rotate_with_invert inverse no_change inverse_data_reg_rotat

with_invert
ata_reg_rotate_with_invert inverse inverse data_reg_rotate_with_i

ert
ata_reg_rotate_with_invert - no_change data_reg_rotate_with_i

ert
ata_reg_rotate_with_invert - inverse inverse_data_reg_rotat

with_invert
verse_data_reg_rotate_with_invert no_change - inverse_data_reg_rotat

with_invert
verse_data_reg_rotate_with_invert inverse - data_reg_rotate_with_i

ert

Table B-6. Nested expect_data_sequence Property Modification  (cont.)
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in e_

in nv

in nv

in e_

in e_

in nv
• write_data_sequence : no_change | inverse;
The write_data_sequence property enables you to specify that the commands run by 
instructions during Repeat either be performed as specified by the instruction, or the 
command is modified to a complimentary command.
Valid values are as follows:

o no_change — specifies that the Write data sequencing is to remain as programmed 
for execution of the Repeat. This is the default.

o inverse — specifies that the Write data sequencing is to be modified to the 
complementary command from the specified command in each instruction within 
RepeatLoop. 

These usage conditions apply:
o If RepeatLoopA and RepeatLoopB are not nested the resulting no_change and 

inverse modifications for the write_data_sequence property are shown in Table B-7.

Note
The other write_data *data_reg* commands (data_reg_rotate, 
inverse_data_reg_rotate, data_reg_rotate_with_invert, 

inverse_data_reg_rotate_with_invert, data_reg_prpg, and inverse_data_reg_prpg) 
follow the same behavior as data_reg and inverse_data_reg in Table B-7.

verse_data_reg_rotate_with_invert no_change no_change inverse_data_reg_rotat
with_invert

verse_data_reg_rotate_with_invert no_change inverse data_reg_rotate_with_i
ert

verse_data_reg_rotate_with_invert inverse no_change data_reg_rotate_with_i
ert

verse_data_reg_rotate_with_invert inverse inverse inverse_data_reg_rotat
with_invert

verse_data_reg_rotate_with_invert - no_change inverse_data_reg_rotat
with_invert

verse_data_reg_rotate_with_invert - inverse data_reg_rotate_with_i
ert

Table B-6. Nested expect_data_sequence Property Modification  (cont.)
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• If RepeatLoopA and RepeatLoopB are nested the resulting no_change and inverse 
modifications for the write_data_sequence property are shown in Table 7-11.

Table B-7. Un-Nested write_data_sequence Property Modification 
write_data RepeatLoop(A | B)/

Repeat/
write_data_sequence

Modified write_data

zero no_change zero
zero inverse one
one no_change one
one inverse zero
date_reg no_change date_reg
date_reg inverse inverse_date_reg
inverse_date_reg no_change inverse_date_reg
inverse_date_reg inverse date_reg
date_reg_rotate no_change date_reg_rotate
date_reg_rotate inverse inverse_date_reg_rotate
inverse_date_reg_rotate no_change inverse_date_reg_rotate
inverse_date_reg_rotate inverse date_reg_rotate
date_reg_rotate_with_invert no_change date_reg_rotate_with_invert
date_reg_rotate_with_invert inverse inverse_date_reg_rotate_with_invert
inverse_date_reg_rotate_with_
invert

no_change inverse_date_reg_rotate_with_invert

inverse_date_reg_rotate_with_
invert

inverse date_reg_rotate_with_invert

Table B-8. Nested write_data_sequence Property Modification 
write_data RepeatLoopA/

Repeat/
write_data_
sequence

RepeatLoopB/
Repeat/
write_data_
sequence

Modified write_data

zero no_change - zero
zero inverse - one
zero no_change no_change zero
zero no_change inverse one
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zero inverse no_change one
zero inverse inverse zero
zero - no_change zero
zero - inverse one
one no_change - one
one inverse - zero
one no_change no_change one
one no_change inverse zero
one inverse no_change zero
one inverse inverse one
one - no_change one
one - inverse zero
date_reg no_change - date_reg
date_reg inverse - inverse_date_reg
date_reg no_change no_change date_reg
date_reg no_change inverse inverse_date_reg
date_reg inverse no_change inverse_date_reg
date_reg inverse inverse date_reg
date_reg - no_change date_reg
date_reg - inverse inverse_date_reg
inverse_date_reg no_change - inverse_date_reg
inverse_date_reg inverse - date_reg
inverse_date_reg no_change no_change inverse_date_reg
inverse_date_reg no_change inverse date_reg
inverse_date_reg inverse no_change date_reg
inverse_date_reg inverse inverse inverse_date_reg
inverse_date_reg - no_change inverse_date_reg
inverse_date_reg - inverse date_reg

Table B-8. Nested write_data_sequence Property Modification  (cont.)
write_data RepeatLoopA/

Repeat/
write_data_
sequence

RepeatLoopB/
Repeat/
write_data_
sequence

Modified write_data
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date_reg_rotate no_change - date_reg_rotate
date_reg_rotate inverse - inverse_date_reg_rotate
date_reg_rotate no_change no_change date_reg_rotate
date_reg_rotate no_change inverse inverse_date_reg_rotate
date_reg_rotate inverse no_change inverse_date_reg_rotate
date_reg_rotate inverse inverse date_reg_rotate
date_reg_rotate - no_change date_reg_rotate
date_reg_rotate - inverse inverse_date_reg_rotate
inverse_date_reg_rotate no_change - inverse_date_reg_rotate
inverse_date_reg_rotate inverse - date_reg_rotate
inverse_date_reg_rotate no_change no_change inverse_date_reg_rotate
inverse_date_reg_rotate no_change inverse date_reg_rotate
inverse_date_reg_rotate inverse no_change date_reg_rotate
inverse_date_reg_rotate inverse inverse inverse_date_reg_rotate
inverse_date_reg_rotate - no_change inverse_date_reg_rotate
inverse_date_reg_rotate - inverse date_reg_rotate
date_reg_rotate_with_invert no_change - date_reg_rotate

_with_invert
date_reg_rotate_with_invert inverse - inverse_date_reg_rotate_wi

th_invert
date_reg_rotate_with_invert no_change no_change date_reg_rotate_with_inver

t
date_reg_rotate_with_invert no_change inverse inverse_date_reg_rotate

_with_invert
date_reg_rotate_with_invert inverse no_change inverse_date_reg_rotate

_with_invert
date_reg_rotate_with_invert inverse inverse date_reg_rotate_with_inver

t

Table B-8. Nested write_data_sequence Property Modification  (cont.)
write_data RepeatLoopA/

Repeat/
write_data_
sequence

RepeatLoopB/
Repeat/
write_data_
sequence

Modified write_data
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• inhibit_last_address_count : on | off;
The inhibit_last_address_count property enables you to prevent the selected 
AddressRegister from counting on the last execution of the selected instruction. Typically, 
this is used to prevent the address counter from wrapping on the last instruction execution 
from the maximum address to the minimum address or vice versa. Thus, on the next 
instruction a reverse address sequence is possible without requiring an additional instruction 
to change the address pointer. 
For the value off, any address segment command set to increment or decrement is 
performed normally. This is the default.
The value on prevents the selected AddressRegister from counting on the last execution of 
the selected instruction when all requested NextConditions are true and the next sequential 
instruction is loaded for execution.

date_reg_rotate_with_invert - no_change date_reg_rotate
_with_invert

date_reg_rotate_with_invert - inverse inverse_date_reg_rotate_wi
th_invert

inverse_date_reg_rotate_with
_invert

no_change - inverse_date_reg_rotate_wi
th_invert

inverse_date_reg_rotate_with
_invert

inverse - date_reg_rotate_with_inver
t

inverse_date_reg_rotate_with
_invert

no_change no_change inverse_date_reg_rotate
_with_invert

inverse_date_reg_rotate_with
_invert

no_change inverse date_reg_rotate
_with_invert

inverse_date_reg_rotate_with
_invert

inverse no_change date_reg_rotate_with_inver
t

inverse_date_reg_rotate_with
_invert

inverse inverse inverse_date_reg_rotate_wi
th_invert

inverse_date_reg_rotate_with
_invert

- no_change inverse_date_reg_rotate_wi
th_invert

inverse_date_reg_rotate_with
_invert

- inverse date_reg_rotate
_with_invert

Table B-8. Nested write_data_sequence Property Modification  (cont.)
write_data RepeatLoopA/

Repeat/
write_data_
sequence

RepeatLoopB/
Repeat/
write_data_
sequence

Modified write_data
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This property overrides the Instruction/AddressCommands/inhibit_last_address_count 
property when RepeatLoop is executing this Repeat wrapper.
This property is ignored when the following properties are defined as load_min or 
load_max: x_address, x1_address, y0_address, y1_address, z_address of the wrapper 
Instruction/AddressCommands.

• inhibit_data_compare : on | off;
The inhibit_data_compare property enables you to compare normally expected data and 
read data, or to disable any StrobeDataOut signal during running of the selected operation.
The value on specifies any StrobeDataOut signal is disabled and the expect data and read 
data are not compared.
The default value of off specifies that expected data and read data are compared normally.
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The OperationSet wrapper specifies the name of the operation set that the memory BIST 
controller uses to generate waveforms that drive the memory. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 
    SignalPipelineStages {
    } 
    Operation (operation_name) { 

} 
  } 
} 

Description
This section discusses the complete syntax for the OperationSet wrapper used in Tessent 
MemoryBIST. The OperationSet wrapper specifies the set of memory access operations used by 
the controller to apply the test algorithm.

The values for the library operation sets (Sync, SyncWR, SyncWRvcd, Async, AsyncWR and 
ROM) are reserved and cannot be used as custom operation set names.

Tip
Siemens EDA recommends using the library operation sets as templates to create your own 
operation sets. The library operation sets are available in the <install_dir>/lib/technology/

icbist/lvision/example folder of the tool tree. The library operation sets are generic and not 
optimized for one type of memory. Custom operation sets might be required to accommodate 
specific timing requirements or modes of operation.

Parameters
• operation_set_name

The operation_set_name property is a unique identifier that specifies a built-in operation set 
or a user-defined access type. Valid values for operation_set_name are as follows:

o Async— is a reserved string that specifies the library asynchronous operation set. 
This property applies to a memory for which the contents of a new location within its 
array are put at the outputs after an address change (a clock is not used in the read 
operation).

o AsyncWR — is a reserved string that specifies a library asynchronous operation set 
for a multi-port memory.

o ROM — is a reserved string that specifies the library operation set for ROMs. 
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o Sync — is a reserved string that specifies the library synchronous operation set. This 
property applies to a memory for which the contents of a new location within its 
array are displayed at the outputs after an address change and a clock.

o SyncWR — is a reserved string that specifies a library synchronous operation set for 
a multi-port memory.

o SyncWRvcd — is a reserved string that specifies a library synchronous operation set 
for a multi-port memory. This property applies to a memory tested by the 
SMarchCHKBvcd algorithm.

o operationSetName — is a user-defined identifier that matches the name of an 
operation set defined by the OperationSet wrapper. If you specify a user-defined 
name for the OperationSet property, Tessent MemoryBIST searches the specified 
memory library files for an OperationSet wrapper with the same identifier.
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SignalPipelineStages
The optional SignalPipelineStages wrapper enables you to declare the number of pipelining 
stages required for a BIST function in a particular OperationSet.

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 
    SignalPipelineStages { 
      select          : int ; // default: 0 
      output_enable   : int ; // default: 0 
      read_enable     : int ; // default: 0 
      strobe_data_out : int ; // default: 0 
      write_enable    : int ; // default: 0 

UserSignals { 
        user<0...23> : int ; // default: 0 
      } 
      DramSignals { 
        activate   : int ; // default: 0 
        precharge  : int ; // default: 0 
        cas        : int ; // default: 0 
        ras        : int ; // default: 0 
        refresh    : int ; // default: 0 
      } 
    } 
  } 
} 

Description
The waveform for the BIST function in a particular OperationSet is defined in the OperationSet/
Operation wrapper. This generated waveform for the named BIST function is then pipelined by 
the number of stages specified by int as declared by the subsequent properties under the 
SignalPipelineStages wrapper.

The specified BIST function must be a Function assigned to a Core/Memory/Port in the 
memory TCD file. If the Function property of one of the memory ports is defined as validData 
in the memory TCD file, the number of pipeline stages for strobe_data_out must be 0. 

Parameters
• select : int ; // default: 0

Delays the select signal waveform, as specified by the select property in the Operation/
Cycle wrapper, by int clock cycles. The default is 0.

• output_enable : int ; // default: 0
Delays the output enable signal waveform, as specified by the output_enable property in the 
Operation/Cycle wrapper, by int clock cycles. The default is 0.
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• read_enable : int ; // default: 0
Delays the read enable signal waveform, as specified by the read_enable property in the 
Operation/Cycle wrapper, by int clock cycles. The default is 0.

• strobe_data_out : int ; // default: 0
Delays the compare enable signal, as specified by the strobe_data_out property in the 
Operation/Cycle wrapper, by int clock cycles. The default is 0.

Note
If you specify a strobe_data_out delay greater than “0”, in most cases you also need 
to specify a similar delay for the output_enable property. 

• write_enable : int ; // default: 0
Delays the write enable signal waveform, as specified by the write_enable property in the 
Operation/Cycle wrapper, by int clock cycles. The default is 0.

• UserSignals/user0 - user23: int ; // default: 0
The user<n> (n=0,...,23) property delays the user<n> signal waveform, as specified by the 
user<n> property in the Operation/Cycle/UserSignals wrapper, by int clock cycles. The 
default is 0.

• DramSignals/activate : int ; // default: 0
Delays the activate signal waveform, as specified by the activate property in the Operation/
Cycle/DramSignals wrapper, by int clock cycles. The default is 0.

• DramSignals/precharge : int ; // default: 0
Delays the precharge signal waveform, as specified by the precharge property in the 
Operation/Cycle/DramSignals wrapper, by int clock cycles. The default is 0.

• DramSignals/cas : int ; // default: 0
Delays the CAS signal waveform, as specified by the cas property in the Operation/Cycle/
DramSignals wrapper, by int clock cycles. The default is 0.

• DramSignals/ras : int ; // default: 0
Delays the RAS signal waveform, as specified by the ras property in the Operation/Cycle/
DramSignals wrapper, by int clock cycles. The default is 0.

• DramSignals/refresh : int ; // default: 0
Delays the refresh signal waveform, as specified by the refresh property in the Operation/
Cycle/DramSignals wrapper, by int clock cycles. The default is 0.
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The Operation wrapper enables you to define memory operations based on a sequence of 
control, data, and address signal events. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
multiplexed_address_padding : binary ; // default: 0 
AddressOverrides { 
} 

      Cycle { 
      } 
    } 
  } 
} 
 

Description
The Operation wrapper enables you to define memory operations based on a sequence of 
control, data, and address signal events. All event sequences are synchronous with respect to 
cycles of an implied BIST clock.

Parameters
• multiplexed_address_padding : binary;

The multiplexed_address_padding property is used when the row address and column 
address widths are different, and they are multiplexed onto the same address port.
The binary value specifies the padding bit values. By default, Tessent MemoryBIST pads 
the bits with all zeros.
These usage conditions apply:

o This property is only valid for a multiplexed-address bus.

o binary must be exactly as wide as the difference between the RowAddress and 
ColumnAddress bus widths.

o When the number of RowAddress bits is greater than the number of ColumnAddress 
bits, binary applies to the bits padded to the ColumnAddress. The address padding 
bits are always assigned to the most significant bits of the ColumnAddress bus.

o When the number of ColumnAddress bits is greater than the number of RowAddress 
bits, binary applies to the bits padded to the RowAddress. The address padding bits 
are always assigned to the most significant bits of the RowAddress bus.

o The value defined in row_address, column_address, bank_address overrides the 
value for the multiplexed_address_padding property.
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The following illustrates how you can use multiplexed_address_padding when the 
RowAddress is 2-bits wider than the ColumnAddress. The binary 2'b11 is assigned to the 
most significant bits of the ColumnAddress bus.

  Operation (AutoRefresh){ 
    multiplexed_address_padding: 2'b11; 
    . 
  } //end of Operation wrapper 
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AddressOverrides
The AddressOverrides wrapper enables you to define properties for forcing a particular value on 
the row address, column address or bank address. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
AddressOverrides { 
row_address : binary ; // default: x 
column_address : binary ; // default: x 
bank_address : binary ; // default: x 

} 
Cycle {
}

    } 
  } 
} 
 

Description
All forced event sequences on row, column or bank address are synchronous with respect to 
cycles of an implied BIST clock.

Parameters
• row_address : binary;

The row_address property is optional. This property enables you to identify the row address 
bits to be forced and specify the value that these bits are forced to. 
Valid values are as follows:

o binary specifies the forced values that are to be applied to the address-bus.

o You can specify a 1, 0 or an x for the binary value. Any unspecified MSB’s default 
to x.

This property can only be specified if the number of RowAddress bits in the LogicalAddress 
wrapper (Core/Memory/AddressCounter) of the memory TCD file is greater than zero.
The specified range of RowAddress bits must be within the range of 0 to the number of 
RowAddress bits minus one, which is specified in the LogicalAddressMap wrapper of the 
memory TCD file.
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The following example specifies that the RowAddress bits 11, 10, and 8 are forced to the 
values 1'b1, 1'b0, and 1'b1 respectively:

Operation (AutoRefresh){ 
  AddressOverrides { 
    row_address : 12'b10x1xxxxxxxx; 
  } //end of AddressOverrides wrapper 
} //end of Operation wrapper 
 

If the address-bus in this example is wider than 12 bits, all MSB’s are forced to ‘x’.
• column_address : binary;

The column_address property is optional. This property enables you to identify the column 
address bits to be forced and specify the value that these bits are forced. 
Valid values are as follows:

o binary specifies the forced values that are to be applied to the address-bus.

o You can specify a 1, 0 or an x for the binary value. Any unspecified MSB’s default 
to x.

This property can only be specified if the number of ColumnAddress bits in the 
LogicalAddress wrapper (Core/Memory/AddressCounter) of the memory TCD file is 
greater than zero.
The specified range of ColumnAddress bits must be within the range of 0 to the number of 
ColumnAddress bits minus one, which is specified in the LogicalAddressMap wrapper of 
the memory TCD file.

• bank_address : binary;
The bank_address property is optional. This property enables you to identify the bank 
address bits to be forced and specify the value that these bits are forced.
Valid values are as follows:

o binary specifies the forced values that are to be applied to the address-bus.

o You can specify a 1, 0 or an x for the binary value. Any unspecified MSB’s default 
to x.

This property can only be specified if the number of BankAddress bits in the 
LogicalAddress wrapper (Core/Memory/AddressCounter) of the memory TCD file is 
greater than zero.
The specified range of BankAddress bits must be within the range of 0 to the number of 
BankAddress bits minus one, which is specified in the LogicalAddressMap wrapper of the 
memory TCD file.
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Cycle
The Cycle wrapper corresponds to a clock cycle and enables you to identify the state of the 
signals during one memory BIST controller clock cycle. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
AddressOverrides { 
} 

      Cycle { 
select                  : on | off | auto; 

        read_enable             : on | off | auto; 
        output_enable           : on | off | auto; 
        strobe_data_out         : on | off; 
        write_enable            : on | off | auto; 
        even_group_write_enable : on | off | auto; 
        odd_group_write_enable  : on | off | auto; 

bist_data_enable : on | off | auto; 
        AdvancedSignals { 

} 
UserSignals { 

        } 
DramSignals { 

        } 
ConcurrentPortSignals { 

        } 
      } 
    } 
  } 
} 
 

Description
The Cycle wrapper corresponds to a clock cycle and enables you to identify the state of the 
signals during one memory BIST controller clock cycle.

Parameters
• select: on | off  | auto;

The select property controls the memory port that uses the Function property (Core/
Memory/Port) specified to Select.
Valid values are as follows:

o on — activates the Select signal.

o off — deactivates the Select signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.
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To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to select.

• read_enable: on | off  | auto;
The read_enable property controls the memory port that uses the Function property (Core/
Memory/Port) specified to ReadEnable.
Valid values are as follows:

o on — activates the ReadEnable signal.

o off — deactivates the ReadEnable signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to readenable.

• output_enable: on | off  | auto;
The output_enable property enables you to enable output drivers of the embedded memory. 
Valid values are as follows:

o on — activates the output enable signal.

o off — deactivates the output enable signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

Use the Polarity property in the appropriate Core/Memory/Port wrapper of the memory 
TCD file to specify the activation value. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to outputenable.

Note
If you do not specify output_enable in any operation and your design has an output 
enable signal, Tessent MemoryBIST creates an error indicating that the signal is not 

used.

• strobe_data_out: on | off;
The strobe_data_out property samples the data from the memory and compares the value 
with the expected data defined in the test algorithm. 
The default value is off. strobe_data_out is active only for the clock cycle in which the 
property is specified.
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These usage conditions apply:
o Memory output data must be valid at the end of the clock cycle in which 

strobe_data_out occurs.

o All OperationSet wrappers require at least one operation that contains a 
strobe_data_out. 

o A strobe_data_out property can be specified on any or all Cycles of any Operation as 
timing permits.

o For memories where the BIST function validData is specified, the strobe_data_out 
property must be specified on the earliest cycle of the operation when data is 
available.

o Pipelining of strobe_data_out may be specified using the PipelineDepth property in 
the Core/Memory wrapper or the OperationSet/SignalPipelineStages wrapper in the 
memory TCD file.

The following example specifies that the data is sampled from the memory for comparison 
with expected data pattern:

Operation (Read) { 
  Cycle { 
    read_enable: on; 
  } 
  Cycle { 
    read_enable: off; 
    strobe_data_out: on; 
  } 
} 

• write_enable: on | off  | auto;
The write_enable property enables you to control the memory WriteEnable signal.
Valid values are as follows:

o on — activates the WriteEnable signal.

o off — deactivates the WriteEnable signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to WriteEnable.
Refer to the Note in the odd_group_write_enable property description for further 
information.
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• even_group_write_enable: on | off  | auto;
The even_group_write_enable property enables you to control the memory 
GroupWriteEnable signals that are assigned into the even set. This property also modifies 
the expect data register output of the current instruction. The even bits of the expect data 
register output are inverted in the cycle where even_group_write_enable is off and 
odd_group_write_enable is on.
Valid values are as follows:

o on — activates the even GroupWriteEnable signal.

o off — deactivates the even GroupWriteEnable signal.

o The default value of auto resolves to on for the first cycle and preserves the setting of 
the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to GroupWriteEnable.
Refer to the Note in the odd_group_write_enable property description for further 
information.

• odd_group_write_enable: on | off  | auto;
The odd_group_write_enable property enables you to control the memory 
GroupWriteEnable signals that are assigned into the odd set. This property also modifies the 
expect data register output of the current instruction. The odd bits of the expect data register 
output are inverted in the cycle where odd_group_write_enable is off and 
even_group_write_enable is on.
Valid values are as follows:

o on — activates the odd GroupWriteEnable signal.

o off — deactivates the odd GroupWriteEnable signal.

o The default value of auto resolves to on for the first cycle and preserves the setting of 
the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD specifies the Function property to GroupWriteEnable.
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Note
In the case where a memory includes port(s) with Function property of 
GroupWriteEnable and does not include port(s) with Function WriteEnable, the 

memory inputs controlled by the even_group_write_enable and 
odd_group_write_enable signals are additionally gated with the write_enable signal by 
adding an AND gate in the associated MBIST interface. If a custom operation set is 
used, then write_enable must be set to On whenever odd_group_write_enable or 
even_group_write_enable is set to On.

• bist_data_enable: on | off | auto;
o The default value of auto resolves to off for the first cycle and preserves the setting 

of the previous cycle for subsequent cycles.
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Cycle/AdvancedSignals
The AdvancedSignals wrapper enables you to define specific addressing and data inversion 
behavior of an algorithm from the operation set. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
      Cycle { 
        AdvancedSignals { 
          column_address_count_enable : on | off | auto; 
          row_address_count_enable    : on | off | auto; 
          switch_address_register     : on | off; 

address_override_enable : on | off | auto; 
          invert_expect_data          : on | off; 
          invert_write_data           : on | off; 

} 
      } 
    } 
  } 
} 
 

Description
The AdvancedSignals wrapper enables you to define specific addressing and data inversion 
behavior of an algorithm from the operation set. All event sequences are synchronous with 
respect to cycles of an implied BIST clock.

Parameters
• column_address_count_enable: on | off  | auto;

The column_address_count_enable property enables you to enable counting of the column 
address within an operation. Typically, this property is used to perform back-to-back 
column address sequence.
This property is limited to enabling counting of the Y0 or Y1 address segments of the 
selected address register. Any carryout from the Y address segment is ignored except on the 
last cycle of the operation. The column address count direction is determined by the 
y0_address and y1_address properties of the Instruction/AddressCommands wrapper.
Valid values are as follows:

o on — enables counting of the Y Column Address segment.

o off — disables counting of the Y Column Address segment.

The default value of auto resolves to off for the first cycle of each operation. During an 
operation, a signal transition remains in effect until the next transition occurs on that signal. 
For example, when a Cycle wrapper specifies column_address_count_enable: on, the 
column_address_count_enable signal transition remains active until another Cycle wrapper 
specifies column_address_count_enable: off.
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These usage conditions apply:
o This property is used only for programmable memory BIST controllers.

o Address counting must be enabled in the Algorithm wrapper by specifying one of 
the following commands in order for column_address_count_enable to have an 
effect:

y0_address: increment;
y0_address: decrement;
y1_address: increment;
y1_address: decrement;

o The settings shown in Table B-9 are required when using 
column_address_count_enable to increment/decrement the column address by 1 on 
every clock cycle and benefit from maximum circuit performance.

Algorithms and operation sets using these settings can be applied to any memory, so 
it is not necessary to run algorithms using freeze_step. The tool automatically selects 
the best implementation without changing the functionality, based on the number of 
column address bits as follows:

Table B-9. Required Settings for Increment/Decrement by 1 
DftSpecification max_y0_segment_bits: 1; //default

max_x0_segment_bits: 1; //default

Enables the implementation of the 
carry-look-ahead (CLA) circuit.

Algorithm AddressRegisterA {

x1_carry_in: y1_carry_out;

y1_carry_in: none;

}

This is only an example. The address
register could include bank address 
bits as well. The essential setting is 
highlighted in red.

Operation Operation (Write2CellsFastY) {
Cycle {

select: on;
write_enable: on;
read_enable: off;
AdvancedSignals {

column_address_count_enable: on;
}

}
Cycle {
}

}

This is only an example. The 
essential characteristics are that the 
operation must be two cycles long 
and column_address_count_enable 
remains on in both cycles of the 
operation.

Number of Column 
Address Bits

Automatic Modification

0 The row address is incremented instead as if 
row_address_count_enable: on had been specified in the 
operation.

1 No change required to the algorithm or operation.
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Note
Algorithms explicitly specifying address register segmentation (that is 
number_y0_bits:1 and number_x0_bits: 1) can only be used for memories with 2 

or more column address bits. It is therefore preferable to use the settings of the table 
to make the algorithm more general.

Note
Operations that are two cycles long but explicitly set 
column_address_count_enable: off in the second cycle are automatically 

modified to column_address_count_enable: on. This is necessary for the correct 
operation of the CLA circuit.

Note
The address at the start of the operation and after execution of the operation must 
be Even if the Instruction/AddressCommand wrapper address property is set to 

increment, and Odd if the address property is set to decrement, to obtain a linear 
address sequence.

o The settings shown in Table B-10 are required when using 
column_address_count_enable to increment/decrement the column address by a 
value greater than one on every clock cycle.

2 or more The algorithm and operation are automatically modified to 
segment the address register (number_y0_bits: 1 and 
number_x0_bits: 1).

Table B-10. Required Settings for Increment/Decrement by > 1 
DftSpecification max_y0_segment_bits: auto; Turns off the implementation of 

the carry-look-ahead (CLA) 
circuit.

Algorithm AddressRegisterA {
x1_carry_in: y1_carry_out;
y0_carry_in: x1_carry_out;
y1_carry_in: none;

}

This setting is only an example. 
The essential setting is 
highlighted in red.

Number of Column 
Address Bits

Automatic Modification
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These settings enable full flexibility of the address sequence but the resulting circuit 
runs at significantly lower speed than for the default (that is max_y0_segment_bits: 
1 and max_x0_segment_bits: 1). The circuit is also larger because of the possible 
address segment arrangements.

Finally, algorithms using these settings are not compatible with memories with less 
than two column address bits and typically require the use of freeze_step: int. This 
increases test time because of more frequent controller setup operations.

• row_address_count_enable: on | off  | auto;
The row_address_count_enable property enables you to enable counting of the row address 
within an operation. Typically, this property is used to perform back-to-back row address 
sequence.
This property is limited to enabling counting of the X0 or X1 address segments of the 
selected address register. Any carryout from the X address segment is ignored except on the 
last cycle of the operation. The row address count direction is determined by the x0_address 
and x1_address properties of the Instruction/AddressCommands wrapper.
Valid values are as follows:

o on — enables counting of the X Row Address segment.

o off — disables counting of the X Row Address segment.

The default value of auto resolves to off for the first cycle of each operation. During an 
operation, a signal transition remains in effect until the next transition occurs on that signal. 
For example, when a Cycle wrapper specifies row_address_count_enable: on, the 
row_address_count_enable signal transition remains active until another Cycle wrapper 
specifies row_address_count_enable: off.
These usage conditions apply:

o This property is used only for programmable memory BIST controllers.

Operation Operation (Write2CellsFastY) {
Cycle {

select: on;
write_enable: on;
read_enable: off;
AdvancedSignals {
column_address_count_enable: on;

}
}
Cycle {
}

}

This is a typical example. The 
operation length is arbitrary and 
column_address_count_enable 
can be present in any cycle.

Table B-10. Required Settings for Increment/Decrement by > 1  (cont.)
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o Address counting must be enabled in the Algorithm wrapper by specifying one of 
the following commands in order for row_address_count_enable to have an effect:

x0_address: increment;
x0_address: decrement;
x1_address: increment;
x1_address: decrement;

o The settings shown in Table B-11 are required when using 
row_address_count_enable to increment/decrement the row address by 1 on every 
clock cycle and benefit from maximum circuit performance.

Note
Algorithms explicitly specifying address register segmentation (that is 
number_x0_bits:1) can also be used. Memories always have at least four rows, 

so address segmentation is possible.

Note
Operations that are two cycles long but explicitly set row_address_count_enable: 
off in the second cycle are automatically modified to 

row_address_count_enable: on. This is necessary for the correct operation of the 
CLA circuit.

Note
The address at the start of the operation and after execution of the operation must 
be Even if the Instruction/AddressCommand wrapper address property is set to 

increment, and Odd if the address property is set to decrement, to obtain a linear 
address sequence.

Table B-11. Required Settings for Increment/Decrement by 1 
DftSpecification max_x0_segment_bits: 1; //default Enables the implementation of the 

carry-look-ahead (CLA) circuit.
Algorithm AddressRegisterA {

y1_carry_in: x1_carry_out;
x1_carry_in: none;

}

This is only an example. The 
address register could include bank 
address bits as well. The essential 
setting is highlighted in red.

Operation Operation (Write2CellsFastY) {
Cycle {
select: on;
write_enable: on;
read_enable: off;
AdvancedSignals {

row_address_count_enable: on;
}

}
Cycle {
}

}

This is only an example. The 
essential characteristics are that the 
operation must be two cycles long 
and row_address_count_enable 
remains on in both cycles of the 
operation.
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o The settings shown in Table B-12 are required when using 
row_address_count_enable to increment/decrement the row address by a value 
greater than one on every clock cycle.

These settings enable full flexibility of the address sequence but the resulting circuit 
runs at significantly lower speed than for the default (max_x0_segment_bits: 1). The 
circuit is also larger because of the possible address segment arrangements.

• switch_address_register: on | off;
The switch_address_register property is used to switch between the two address registers 
that the algorithm uses — Home and Away.
For the value on, a signal is generated by the signal generator to force the memory address 
to select the other Address Register that is not being used by the current instruction. For 
example, if the current instruction uses AddressRegisterA, the memory address selects 
AddressRegisterB when this new property is set to on. Similarly — if B is used rather than 
A.
If the value is off, the tool does not switch between the two address registers. This is the 
default.
These usage conditions apply:

o You need to have specific operation name that use this property.

o The switch_address_register property works for operations with two Cycles.

o The switch_address_register property can only be forced to on in the second Cycle 
of the Operation.

Table B-12. Required Settings for Increment/Decrement by > 1 
DftSpecification max_y0_segment_bits: auto; Disables the implementation of 

the carry-look-ahead (CLA) 
circuit.

Algorithm AddressRegisterA {
y1_carry_in: x1_carry_out;
x0_carry_in: y1_carry_out;
x1_carry_in: none;

}

This setting is only an example. 
The essential setting is 
highlighted in red.

Operation Operation (Write2CellsFastX) {
Cycle {

select: on;
write_enable: on;
read_enable: off;
AdvancedSignals {

row_address_count_enable: on;
}

}
Cycle {
}

}

This is a typical example. The 
operation length is arbitrary 
and row_address_count_enable 
can be present in any cycle.
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o If the operation requires three of more Cycles, the property should be set to off in the 
third Cycle — you can only set it to on in the second Cycle wrapper.

o The instruction before the current instruction must have expect_data property 
defined in the Instruction/DataCommands wrapper.

o The assumption is made that the Away cell and the Home cell hold different values.

• address_override_enable: on | off | auto;
o The default value of auto resolves to off for the first cycle and preserves the setting 

of the previous cycle for subsequent cycles.

• invert_expect_data: on | off;
The invert_expect_data property enables you to invert the data pattern, specified by the 
expect_data property (Instruction/DataCommands) of an algorithm, so that the data pattern 
can be modified on every clock cycle within an operation.
Valid values are as follows:

o on — inverts the expect data.

o off — does not invert the expect data. This is the default.

Data pattern changes within an operation are limited to the pattern specified by the 
expect_data of the corresponding algorithm instruction and its inverse.

• invert_write_data: on | off;
The invert_write_data property enables you to invert the data pattern specified by the  
write_data property (Instruction/DataCommands) of an algorithm, so that the data pattern 
can be modified on every clock cycle within an operation.
Valid values are as follows:

o on — inverts the write data.

o off — does not invert the write data. This is the default.

Data pattern changes within an operation are limited to the pattern specified by the 
write_data of the corresponding algorithm instruction and its inverse.
Tessent™ MemoryBIST User’s Manual, v2022.4632

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
Operation
Cycle/UserSignals
The UserSignals wrapper enables you to control the memory port that uses the Function 
property specified to user<n>. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
      Cycle { 

UserSignals { 
          user<0...23> : on | off | auto; 
        } 
      } 
    } 
  } 
} 
 

Description
The UserSignals wrapper enables you to control the memory port that uses the Function 
property specified to user<n>. All event sequences are synchronous with respect to cycles of an 
implied BIST clock. The default value of auto resolves to off for the first cycle of an operation. 
During subsequent cycles of an operation, a signal transition remains in effect until the next 
transition on that signal is specified. 

Parameters
• user0 - user23: on | off  | auto;

The user<n> (n=0,...,23) property controls the memory port that uses the Function property 
specified to User<n>.
Valid values are as follows:

o on — activates the user<n> signal.

o off — deactivates the user<n> signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file.
For the first Cycle wrapper of each operation the default value user<n>: off is applied. 
During an operation, a signal transition remains in effect until the next transition on that 
signal. For example, once a Cycle wrapper specifies user<n>: on, the user<n> signal 
remains active until another Cycle wrapper specifies the user<n> property to off.
This property affects your memory only if a Port wrapper for that memory specifies the 
Function property to user<n>.
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Cycle/DramSignals
The DramSignal wrapper enables you to control memory ports that specify various Function 
properties. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
      Cycle { 

DramSignals { 
          activate       : on | off | auto; 
          precharge      : on | off | auto; 
          cas            : on | off | auto; 
          ras            : on | off | auto; 
          refresh        : on | off | auto; 
          address_select : column | row | auto; 
        } 
      } 
    } 
  } 
} 
 

Description
The DramSignal wrapper enables you to control memory ports that specify various Function 
properties. All event sequences are synchronous with respect to cycles of an implied BIST 
clock.

Parameters
• activate: on | off  | auto;

The activate property controls the memory port that uses the Function property specified to 
activate.
Valid values are as follows:

o on — enables the Activate signal.

o off — disables the Activate signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper for that memory specifies Function Activate.

• precharge: on | off  | auto;
The precharge property controls the memory port that uses the Function property specified 
to precharge.
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Valid values are as follows:
o on — activates the Precharge signal.

o off — deactivates the Precharge signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to Precharge.

• cas: on | off  | auto;
The cas property controls the memory port that uses the Function property specified to cas. 
Valid values are as follows:

o on — activates the CAS signal.

o off — deactivates the CAS signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies Function CAS.

• ras: on | off | auto;
The ras property controls the memory port that uses the Function property specified to ras. 
Vlid values are as follows:

o on — activates the RAS signal.

o off — deactivates the RAS signal.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to RAS.

• refresh: on | off  | auto;
The refresh property controls the memory port that uses the Function property specified to 
refresh.
Valid values are as follows:

o on — activates the Refresh signal.

o off — deactivates the Refresh signal.
Tessent™ MemoryBIST User’s Manual, v2022.4 635

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Configuration-Based Specification
Operation
o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

To specify the activation value use the Polarity property in the appropriate Core/Memory/
Port wrapper of the memory TCD file. This property affects your memory only if a Port 
wrapper in the memory TCD file specifies the Function property to Refresh.

• address_select: column | row  | auto;
The address_select property controls the row or column values driven onto a multiplexed 
address port.
Valid values are as follows:

o column — drives the column address values to the address port when multiplexed 
addressing is used. For non-multiplexed addresses, this Cycle assignment is ignored.

o row — drives the row segment values to the address port when multiplexed 
addressing is used. For non-multiplexed addresses, this Cycle assignment is ignored.

o The default value of auto resolves to row for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles. 

Example:

For the first Cycle wrapper of each operation the default is address_select : row. 
During an operation, a signal transition remains in effect until the next transition 
occurs on that signal. For example, when a Cycle wrapper specifies address_select: 
column, the Address signal transition remains active until another Cycle wrapper 
specifies address_select: row.

This property is ignored when the LogicalAddressMap (Core/Memory/AddressCounter) 
does not specify RowAddress bits, or ColumnAddress bits, and the RowAddress must be 
multiplexed with the ColumnAddress.
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Cycle/ConcurrentPortSignals
The ConcurrentPortSignals wrapper enables you to activate and deactivate concurrent memory 
read and write properties to help detect faults specific to multi-port memories. 

Syntax
MemoryOperationsSpecification { 
  OperationSet(operation_set_name) { 

Operation(operation_name) { 
      Cycle { 

ConcurrentPortSignals { 
          read_enable          : on | off | auto; 
          write_enable         : on | off | auto; 
          read_column_address  : on | off | auto; 
          read_row_address     : on | off | auto; 
          write_row_address    : on | off | auto; 
          write_column_address : on | off | auto; 
          write_data_polarity  : no_change | inverse | auto;
          even_group_write_enable : on | off | auto; 
          odd_group_write_enable  : on | off | auto;
        } 
      } 
    } 
  } 
} 
 

Description
All event sequences specified in the ConcurrentPortSignals wrapper are synchronous with 
respect to cycles of an implied BIST clock.

Concurrent read and write operations provide more flexibility than ShadowRead and 
ShadowWrite operations. Concurrent operations enable modification of both the row and 
column address from the operation set, and are therefore preferred when creating custom 
operation sets for a programmable controller. ShadowRead only enables modification to the 
row address and ShadowWrite is only used by library algorithms and is not controllable from 
the operation set.

Parameters
• read_enable: on | off  | auto;

The read_enable property enables you to activate/deactivate the concurrent read.
The concurrent read enable has the following limitations:

o Concurrent read is not supported for ROM or 1RW memories.

o The read_enable property cannot be turned on or off per algorithm instruction. If an 
algorithm uses operations with and without concurrent read, two versions of the 
operation must be defined in the operation set.
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Valid values are as follows:
o on — activates the concurrent read.

o off — deactivates the concurrent read.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

Use the read_enable property with the read_column_address and read_row_address 
properties. You can specify the concurrent read properties — read_column_address, 
read_row_address, and read_enable — in one or more Cycle/ConcurrentPortSignals 
wrappers of an operation, thereby enabling concurrent read during any read or write cycle.
In general, the result of the concurrent read operation is not compared to an expected value. 
This is the case when using library operation sets. However, custom operation sets can 
perform this compare for one of the logical ports being used to perform concurrent read 
operations. The logical port being compared is the one selected for the current test port. A 
compare is performed when all of the following conditions are present:

o No read operation is required by the algorithm on the logical port with read 
capability, which is part of the current test port. The port is said to be inactive.

o Concurrent read is enabled by adding a Cycle wrapper in a custom operation set that 
contains one of the following combinations of properties:

Cycle {
  select: on;
  read_enable: off;
...
  ConcurrentPortSignals {
    read_enable: on;
    ...
  }
}

Cycle {
  select: off;
  read_enable: on;
...
  ConcurrentPortSignals {
    read_enable: on;
    ...
  }
}

Cycle {
  select: off;
  read_enable: off;
...
  ConcurrentPortSignals {
    read_enable: on;
    ...
  }
}
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Operation
This causes the memory output to be updated with the value read at the reference 
address determined by the algorithm if both ConcurrentReadColumnAddress and 
ConcurrentReadRowAddress are set to off, or to an address located in an adjacent 
column if ConcurrentReadColumnAddress is set to on, or to an address located in an 
adjacent row if ConcurrentReadRowAddress is set to on. This is true as long as the 
current test port is composed of two logical ports. If the current test port only 
involves a logical port of type RW, no concurrent read operation is performed 
because the logical port is always under control of the algorithm.

o A strobe is present in the same cycle (asynchronous read port) or the next cycle 
(synchronous read port) wrapper. A strobe is normally not used for the Cycle 
wrapper combinations listed above and is only useful for specialized diagnostic 
tests. The expected value is determined by the value of the expect_data property 
specified in the algorithm.

• write_enable: on | off | auto;
The write_enable property is used to detect faults specific to multi-port memories.
This property enables you to perform a write operation from inactive ports on a memory cell 
located in a column or row that is adjacent to the memory cell at the reference address 
indicated by the algorithm. The write_data_polarity property can be used to invert the data 
value written from the inactive port.
The concurrent write operation has the following limitations:

o Concurrent write is restricted to 2RW, 1R1W and nR2W memories.

o Concurrent write cannot be turned on or off per algorithm instruction. If an 
algorithm uses operations with and without concurrent write, two versions of the 
operation must be defined in the operation set.

Valid values are as follows:
o on — Activates the write access signals for the inactive write ports in the specified 

cycle as shown in the table below:

o off — Deactivates the concurrent write operation.

Table B-13. write _enable Write Access Operation When Explicitly Specified 
write_column_address write_row_address write_enable Write Access for 

Inactive Port
n/a n/a Specified to Off Inactive
Off Off Specified to On To reference cell
Off On Specified to On To adjacent row
On Off Specified to On To adjacent column
On On Specified to On To diagonal address
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o auto — The default value depends on the write_row_address and 
write_column_address settings to maintain compatibility with existing operation sets 
that do not specify write_enable. Default settings and write access behavior are 
shown in the table below:

Use the write_enable property with the write_column_address and write_row_address 
properties. You can specify the concurrent write properties — write_column_address, 
write_row_address and write_enable — in one or more Cycle/ConcurrentPortSignals 
wrappers of an operation, thereby enabling concurrent write during any read or write cycle.

Caution
Performing a concurrent write simultaneously with a read or write access from the 
inactive port at the reference address may corrupt the memory data.

• read_column_address: on | off  | auto;
The read_column_address property enables you to select the column address of the 
concurrent read operation.
The concurrent read column address has the following limitations:

o The inactive read address is limited to the adjacent column or row.

o read_column_address is not supported for ROM or 1RW memories.

o The read_column_address property cannot be turned on or off per algorithm 
instruction. If an algorithm uses operations with and without concurrent read, two 
versions of the operation must be defined in the operation set.

Valid values are as follows:
o on — activates the concurrent read column address. Concurrent read inverts the least 

significant column address bit for memories with column address bits or the least 
significant row address bit for memories without column address bits on the inactive 
read port.

o off — deactivates the concurrent read column address. The address of the inactive 
port is controlled by the normal test port logic.

Table B-14. write_enable Write Access Operation Default Settings 
write_column_address write_row_address write_enable Write Access for 

Inactive Port
Off Off Defaults to Off Inactive
Off On Defaults to On To adjacent row
On Off Defaults to On To adjacent column
On On Defaults to On To diagonal address
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Operation
o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

These usage conditions apply:
o read_column_address takes effect only if Cycle/ConcurrentPortSignals/read_enable 

is set to on.

o read_column_address is ignored if Core/Memory/ConcurrentRead property is set to 
off.

o read_column_address has the same effect as read_row_address for memories 
without column address bits. That is, the concurrent read row address is activated.

o You can specify the concurrent read properties — read_column_address, 
read_row_address, and read_enable — in one or more Cycle wrappers of an 
operation, thereby enabling concurrent read during any read or write cycle.

• read_row_address: on | off  | auto;
The read_row_address property enables you to select the row address of the concurrent read 
operation.
The concurrent read row address has the following limitations:

o The inactive read address is limited to the adjacent row.

o read_row_address is not supported for ROM or 1RW memories.

o The read_row_address property cannot be turned on or off per algorithm instruction. 
If an algorithm uses operations with and without concurrent read, two versions of the 
operation must be defined in the operation set.

Valid values are as follows:
o on — activates the concurrent read row address. Concurrent read inverts the least 

significant row address bit on the inactive read port.

o off — deactivates the concurrent read row address. The address of the inactive port 
is controlled by the normal test port logic.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

These usage conditions apply:
o read_row_address takes effect only if read_enable is set to on.

o read_row_address is ignored if the ConcurrentRead property of Core/Memory is set 
to off.

o read_row_address is ignored if the memory does not have a row address.
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o You can specify the concurrent read properties — read_column_address, 
read_row_address, and read_enable — in one or more Cycle wrappers of an 
operation, thereby enabling concurrent read during any read or write cycle.

• write_row_address: on | off  | auto;
The write_row_address property enables you to select the concurrent write row address and 
to activate the concurrent operation.
The concurrent write row address has the following limitations:

o The inactive write address is limited to the adjacent row.

o The concurrent write is restricted to 2RW, 1R1W and nR2W memories. Limiting the 
memory types prevent simultaneous write contention.

o The concurrent write cannot be turned On/Off per algorithm instruction. If an 
algorithm uses operations with and without concurrent write, two versions of the 
operation must be defined in the operation set.

Valid values are as follows:
o on — activates the concurrent write row address. Concurrent write inverts the least 

significant row address bit on the inactive write port.

o off — deactivates the concurrent write row address. The address of the inactive port 
is controlled by the normal test port logic.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

The concurrent write properties — write_row_address, write_column_address, and 
write_data_priority — can be specified in one or more Cycle wrappers of an operation and 
allow concurrent write during any read or write cycle.

• write_column_address: on | off  | auto;
The write_column_address property enables you to select the concurrent write column 
address and to activate the concurrent operation.
The concurrent write column address has the following limitations:

o The inactive write address is limited to the adjacent column.

o The concurrent write is restricted to 2RW, 1R1W, and nR2W memories. Limiting 
the memory types prevent simultaneous write contention.

o The concurrent write cannot be turned On/Off per algorithm instruction. If an 
algorithm uses operations with and without concurrent write, two versions of the 
operation must be defined in the operation set.

Valid values are as follows:
o on — activates the concurrent write column address. Concurrent write inverts the 

least significant column address bit on the inactive write port.
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o off — deactivates the concurrent write column address. The address of the inactive 
port is controlled by the normal test port logic.

o The default value of auto resolves to off for the first cycle and preserves the setting 
of the previous cycle for subsequent cycles.

The concurrent write properties — write_column_address, write_row_address, and 
write_data_priority — can be specified in one or more Cycle wrappers of an operation and 
enable concurrent write during any read or write cycle.

• write_data_polarity: no_change | inverse  | auto;
The write_data_polarity property enables you to select the data pattern of the concurrent 
write operation.
Valid values are as follows:

o no_change — applies the current active port data to the inactive write port during the 
concurrent write operation.

o inverse — applies the complement of the current active port data to the inactive 
write port during the concurrent write operation.

o The default value of auto resolves to no_change for the first cycle and preserves the 
setting of the previous cycle for subsequent cycles.

These usage conditions apply:
o The concurrent write properties — write_data_polarity, write_column_address, and 

write_row_address — can be specified in one or more Cycle wrappers of an 
operation and enable concurrent write during any read or write cycle.

o This property is only valid if either write_column_address or write_row_address is 
set to on.

The following example applies the complement of the active port data pattern to the inactive 
write port during the concurrent write operation at the adjacent column.

Operation (AutoRefresh){ 
  Cycle { 
    ConcurrentPortSignals { 
      write_column_address: on; 
      write_data_polarity: inverse; 
      . 
    } // end of ConcurrentPortSignals wrapper 
  } //end of Cycle wrapper 
} //end of Operation wrapper 

• even_group_write_enable: on | off | auto;
The even_group_write_enable property enables you to control the memory 
GroupWriteEnable signals that are assigned into the even set, during the concurrent write 
operation. This feature may be useful when creating custom algorithms and operation sets 
for memories with write-only ports.
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Valid values are as follows:
o on — activates the even GroupWriteEnable signal on the inactive memory write 

ports during concurrent write operations.

o off — deactivates the even GroupWriteEnable signal on the inactive memory write 
ports during concurrent write operations.

o The default value of auto resolves to on for the first cycle and preserves the setting of 
the previous cycle for subsequent cycles.

These usage conditions apply:
o This property affects your memory only if a Port wrapper in the memory TCD for 

that memory specifies the Function property to GroupWriteEnable.

o This property affects your memory only if it has the ConcurrentWrite property set to 
on in the memory TCD.

o This property is only effective when the ConcurrentPortSignals/write_enable 
property is activated in the same Cycle wrapper of the OperationSet.

• odd_group_write_enable: on | off | auto;
The odd_group_write_enable property enables you to control the memory 
GroupWriteEnable signals that are assigned into the odd set, during the concurrent write 
operation. This feature may be useful when creating custom algorithms and operation sets 
for memories with write-only ports.
Valid values are as follows:

o on — activates the odd GroupWriteEnable signal on the inactive memory write ports 
during concurrent write operations.

o off — deactivates the odd GroupWriteEnable signal on the inactive memory write 
ports during concurrent write operations.

o The default value of auto resolves to on for the first cycle and preserves the setting of 
the previous cycle for subsequent cycles.

These usage conditions apply:
o This property affects your memory only if a Port wrapper in the memory TCD for 

that memory specifies the Function property to GroupWriteEnable.

o This property affects your memory only if it has the ConcurrentWrite property set to 
on in the memory TCD.

o This property is only effective when the ConcurrentPortSignals/write_enable 
property is activated in the same Cycle wrapper of the OperationSet.
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Appendix C
MemoryBIST Algorithms

Siemens EDA provides a library of test patterns or algorithms for testing your memories. These 
algorithms represent some of the tests that you can perform on your memories using Tessent 
Shell’s MemoryBIST programmable controllers. You can use the detailed algorithm examples 
provided in this appendix as a basis for creating your own custom algorithms.
This appendix provides the following information about each algorithm:

• A brief description of the algorithm

• Algorithm length

• The controller address and data setup for the algorithm

• The algorithm sequence of instructions

• An example of the algorithm programming syntax

• Identifies the detected faults

• Identifies the availability of the algorithm

Any abbreviations used in this appendix are described in the “Notation Describing 
MemoryBIST Algorithms” section.

This appendix covers the following topics:

Notation Describing MemoryBIST Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
MemoryBIST Algorithm Detected Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
MemoryBIST Algorithm Test Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Available Library Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

SMarch Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
ReadOnly Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
SMarchCHKB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
SMarchCHKBci Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
SMarchCHKBcil Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
SMarchCHKBvcd Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
LVMarchX Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
LVMarchY Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
LVMarchCMinus Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
LVMarchLA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
LVRowBar Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
LVColumnBar Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
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Notation Describing MemoryBIST Algorithms
LVGalPat Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
LVGalColumn Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
LVGalRow Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
LVCheckerboard1X1 Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
LVCheckerboard4X4 Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
LVWalkingPat Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
LVBitSurroundDisturb Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

Notation Describing MemoryBIST Algorithms
This chapter uses the notation described below for the MemoryBIST algorithms:

• R0 — Read current location and compare most significant output bit to 0.

• R1 — Read current location and compare most significant output bit to 1.

• Rc — Read current location and compress contents into a MISR.

• W0 — Write to current location, applying 0 to the least significant input bit.

• W1 — Write to current location, applying 1 to the least significant input bit.

• M — Multi-cycle delay (always equal to 4).

• A — Number of address locations.

• R — Number of row address locations.

• C — Number of column address locations.

• BRC — Begin row cycle.

• ERC — End row cycle.

• %operationType — Number of clock cycles specified for an operation.

• MemRst — Test phase run when the following property is on:

PatternsSpecification/Patterns/TestStep/MemoryBist/AdvancedOptions/memory_reset

• Wait — Optional pause for parallel retention test.

• PRT — Test phase run for parallel retention test.

MemoryBIST Algorithm Detected Faults
The Tessent Shell MemoryBIST algorithms can detect a variety of fault types. The comparisons 
provided in the table can be used to choose the algorithms that best suit your needs.
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Notes:

1. Approximately 50% coverage

2. Shadow read only

3. Shadow write cannot be applied to a memory that has rows numbering as a power of two 
unless it has an input port with Function type ShadowAddressEnable. The coverage of 
bitline coupling faults might be slightly reduced in this case.

4. Column shadow write cannot be applied to memory with write-only ports unless it is 
capable of performing a row cycle when the write enable input is set to its inactive 
value. This requires a test mode of operation of the memory. The coverage of multi-port 
interference faults might be slightly reduced if such a test mode is not available.

MemoryBIST Algorithm Test Times
The algorithm complexity and a test time calculation are provided in the table for each Tessent 
MemoryBIST algorithm. 

Table C-2. MemoryBist Algorithm Test Times 
Algorithm Algorithm Complexity Test Time @ 

200MHz (ms)
Number of 
Instructions

SMarch 22N 0.11 14
SMarchCHKB 26N 0.13 19
SMarchCHKBci 36N 0.18 27
SMarchCHKBcil 44N 0.23 49
SMarchCHKBvcd 68N 0.35 90
ReadOnly 4N 0.02 3
LVMarchX 8N 0.04 3
LVMarchY 12N 0.06 4
LVMarchCMinus 12N 0.06 3
LVMarchLA 28N 0.14 5
LVRowBar 8N 0.04 5
LVColumnBar 8N 0.04 5
LVGalPat (8*(Nx*Ny)2+12Nx*Ny)*Nz 42.0 6

LVGalColumn (8Ny*(Nx)2+12Nx*Ny)*Nz 10.55 7

LVGalRow (8Nx*(Ny)2+12Nx*Ny)*Nz 0.23 7
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Where:

• N — Equivalent to Nx*Ny*Nz

• Nx — Number of rows

• Ny — Number of columns

• Nz — Number of banks

The test time results are for a memory with 1k words, organized as 256 rows of four columns, 
with a 200 MHz tester clock. The number of bits per word is not important for this calculation. 

Test times for memories of different word sizes and organization can be calculated using the 
equation given in the “Algorithm Complexity” table row. The resulting value is then multiplied 
by the tester clock period to obtain the total test time for that memory and algorithm.

The algorithm complexity of all LV* algorithms can be reduced by using custom algorithms 
and operation sets that remove redundant cycles. In some cases, it is necessary to slightly 
modify the algorithm itself to make use of complex operations. The test time reduction ranges 
that are possible varies between 10% to 50%. Refer to “Optimizing Custom Algorithms and 
Operation Sets” for further information.

During Parallel Static Retention Testing (PSRT), the algorithms listed in Table C-3 have shorter 
test durations because of the reduced number of algorithm test phases that are performed during 
PSRT sub-phases. The test times noted in the table do not include the pauses between PSRT 
sub-phases. Refer to the respective algorithm test description table for information on which 
algorithm phases are run during each PSRT sub-phase.

LVCheckerboard1X1 8N 0.04 3
LVCheckerboard4X4 8N 0.04 3
LVWalkingPat (4*(Nx*Ny)2+16Nx*Ny)*Nz 21.05 5

LVBitSurroundDisturb 140N 0.72 8

Table C-3. MemoryBist Algorithm PSRT Test Times 
Algorithm Algorithm Complexity Test Time @ 

200MHz (ms)
Number of 
Instructions

SMarch 10N 0.05 6
SMarchCHKB 6N 0.03 9
SMarchCHKBci 6N 0.03 9
SMarchCHKBcil 6N 0.03 9

Table C-2. MemoryBist Algorithm Test Times  (cont.)
Algorithm Algorithm Complexity Test Time @ 

200MHz (ms)
Number of 
Instructions
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MemoryBIST Algorithm Test Times
SMarchCHKBvcd 8N 0.04 34

Table C-3. MemoryBist Algorithm PSRT Test Times  (cont.)
Algorithm Algorithm Complexity Test Time @ 

200MHz (ms)
Number of 
Instructions
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Available Library Algorithms

1

Available Library Algorithms
The following describes each algorithm in the Siemens EDA algorithm library.
SMarch Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
ReadOnly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
SMarchCHKB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
SMarchCHKBci Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
SMarchCHKBcil Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
SMarchCHKBvcd Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
LVMarchX Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
LVMarchY Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
LVMarchCMinus Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
LVMarchLA Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
LVRowBar Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
LVColumnBar Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
LVGalPat Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
LVGalColumn Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
LVGalRow Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
LVCheckerboard1X1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
LVCheckerboard4X4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
LVWalkingPat Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
LVBitSurroundDisturb Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

SMarch Algorithm
The memory BIST controller performs all operations using fast row accesses. In a fast row 
count sequence, the column address remains constant until the memory BIST controller 
accesses all rows.
Table C-4 describes the SMarch algorithm per test port. 

Table C-4. Description of SMarch Test Algorithm per Test Port 
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*+ 0 Idle NoOperation Performs multi-cycle 
initialization.
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SMarch Algorithm

2

3

4

5 s.

6 s.

7 s, 
es 

8 . 

9  is 
Where:

Detected Faults
The SMarch algorithm detects the failure modes indicated in Table C-1.

*+ 1,2 1 (RxW1)
(R1W1)

ReadModifyWrite 
ReadModifyWrite

Scans 1s through first word.

*+ 3,4 1 (R1W0)
(R0Rx)

ReadModifyWrite 
ReadRead 

Scans 0s through first word.

*+ 5 2 to W
Fast row

(W0Rx) Write Writes 0s in all other words.

** 6,7 1 to W
Fast row

(R0W1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Reads 0s and replaces with 1

*** 8,9 1 to w
Fast row

(R1W0)
(R0W0)

ReadModifyWrite 
ReadModifyWrite

Reads 1s and replaces with 0

10,11 w to 1
Fast row

(R0W1)(R1Rx) ReadModifyWrite 
ReadRead 

Reads 0s and replaces with 1
reverse address sequence. Do
back-to-back reads before 
changing address.

10,11 W to 1
Fast row

(R1W0)
(R0Rx)

ReadModifyWrite 
ReadRead 

Reads 1s and replace with 0s
Does back-to-back reads 
before changing address.

12,13 1 to W
Fast row

(R0W0)
(R0Rx)

ReadModifyWrite 
ReadRead 

Only the first read operation
significant.

x+ Algorithm phases performed during MemRst

x* Algorithm phases performed during the PSRT start_to_pause sub-phase
x** Algorithm phases performed during the PSRT pause_to_pause sub-phase
x*** Algorithm phases performed during the PSRT pause_to_end sub-phase

Table C-4. Description of SMarch Test Algorithm per Test Port  (cont.)
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Test Time
The time required for the memory BIST controller to test your design using the SMarch 
algorithm is outlined in Table C-2.

Specification
To test SRAMs using the SMarch algorithm, specify Algorithm SMarch in the memory TCD 
file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in the 
DefaultsSpecification.

ReadOnly Algorithm
The ReadOnly algorithm is the default test algorithm that the memory BIST controller uses to 
test ROMs. The ReadOnly algorithm is a simple two-pass algorithm that reads and compresses 
the ROM contents by traversing the address space in both ascending and descending order. 
For ROMs with multiple read ports, memory BIST provides separate MISRs for each port and 
repeats the test for each port while performing shadow reads on the inactive ports. Shadow 
reads perform normal read operations to strategic addresses but do not compress the results.

The memory BIST controller performs all operations using fast column accesses. In a fast 
column count sequence, the row address remains constant until the memory BIST controller 
accesses all columns.

Table C-5 describes the ReadOnly algorithm per test port. 
Table C-5. Description of ReadOnly Test Algorithm per Test Port 
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1 0 Idle None Performs multi-cycle 
initialization.

2 1 1 to W
Fast column

(Rc) Read Reads and compresses the 
ROM contents.

3 1 W to 1
Fast column

(Rc) Read Reads and compresses the 
ROM contents in reverse 
address sequence.

4 2 N/A (MISR Compare) CompareMISR Compares the GO bit based 
on the final signature.
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SMarchCHKB Algorithm
Detected Faults
The ReadOnly algorithm detects the following failure modes:

• Stuck to opposite value cell faults. A stuck to opposite value fault is a single memory 
cell stuck at a logic 1 when the expected value is a logic 0 (or stuck at a logic 0 when the 
expected value is a logic 1).

• Address decoder faults. These faults result in any of the following: any given address 
does not access any cells, any given address simultaneously accesses multiple cells, and 
multiple addresses access a single cell.

Test Time
The time required for the memory BIST controller to test your design using the ReadOnly 
algorithm is outlined in Table C-2.

Specification
To test ROMs using the ReadOnly algorithm, specify Algorithm as ReadOnly in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.

SMarchCHKB Algorithm
When you specify Algorithm equal to SMarchCHKB, the memory BIST controller performs all 
operations using either fast column or fast row accesses. In a fast row count sequence, the 
column address remains constant until the memory BIST controller accesses all of the rows. In a 
fast column count sequence, the row address remains constant until the memory BIST controller 
accesses all of the columns.
In the algorithm description, Phases 2 and 3 ensure that the memory BIST controller can access 
the memory by writing and reading to the first address location. Phases 5, 6, and 7 use normal 
cycles with a checkerboard pattern. The 0s and 1s in the other phases refer to solid zero and 
solid one patterns. 

Table C-6 describes the SMarchCHKB algorithm per test port.
Table C-6. Description of SMarchCHKB Test Algorithm per Test Port 
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1*+ 0 Idle NoOperation Performs multi-cycle 
initialization.
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SMarchCHKB Algorithm

 

 

2*+ 1,2 1 (RxW1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Scans 1s through first 
word.

3*+ 3,4 1 (R1W0)
(R0Rx)

ReadModifyWrite
ReadRead 

Scans 0s through first 
word.

4* 5 Idle NoOperation Performs multi-cycle 
initialization.

5* 6 1 to W
Fast column

(RxW0) ReadModifyWrite Writes checkerboard 
background data.

- Optional Wait None Pauses the testbench to 
perform the static 
retention test. (There is 
no hardware in the 
controller that performs
the static retention test.)

6** 7 1 to W
Fast column

(R0W1) ReadModifyWrite Reads checkerboard 
background, and 
replaces it with inverse 
checkerboard data.

- Optional Wait None Pauses the testbench to 
perform the static 
retention test. (There is 
no hardware in the 
controller that performs
the static retention test.)

7*** 8 1 to W
Fast column

(R1W0) ReadModifyWrite Reads inverse 
checkerboard data. 
Memory contents are 
now a don’t care.

8 9 - Idle NoOperation Performs multi-cycle 
initialization.

9 10,11 1 (RxW0)
(R0Rx)

ReadModifyWrite
ReadRead 

Scans 0s through first 
word.

10+ 12 2 to W
Fast row

(W0Rx) Write Writes 0s in all other 
words.

Table C-6. Description of SMarchCHKB Test Algorithm per Test Port  (cont.)
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SMarchCHKB Algorithm
Where:

Detected Faults
The SMarchCHKB algorithm detects the failure modes indicated in Table C-1.

Test Time
The time required for the memory BIST controller to test your design using the SMarchCHKB 
algorithm is outlined in Table C-2.

11 13,14 1 to W
Fast row

(R0W1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Reads 0s and replaces 
with 1s.

12 13,14 1 to W
Fast row

(R1W0)
(R0W0)

ReadModifyWrite
ReadModifyWrite

Reads 1s and replaces 
with 0s.

13 15,16 W to 1
Fast row

(R0W1)
(R1Rx)

ReadModifyWrite
ReadRead 

Reads 0s and replaces 
with 1s. Does 
back-to-back reads 
before changing 
address.

14 15,16 W to 1
Fast row

(R1W0)
(R0Rx)

ReadModifyWrite
ReadRead 

Reads 1s and replaces 
with 0s. Does 
back-to-back reads 
before changing 
address.

15 17,18 1 to W
Fast row

(R0W0)
(R0Rx)

ReadModifyWrite
ReadRead

Only the first read 
operation is significant.

x+ Algorithm phases performed during MemRst

x* Algorithm phases performed during the PSRT start_to_pause sub-phase
x** Algorithm phases performed during the PSRT pause_to_pause sub-phase
x*** Algorithm phases performed during the PSRT pause_to_end sub-phase

Table C-6. Description of SMarchCHKB Test Algorithm per Test Port  (cont.)
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Specification
To test SRAMs using the SMarchCHKB algorithm, specify Algorithm SMarchCHKB in the 
memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related 
entry in the DefaultsSpecification.

SMarchCHKBci Algorithm
The SMarchCHKBci algorithm is the default test algorithm that the memory BIST controller 
uses to test RAMs.This algorithm is similar to the SMarchCHKB test algorithm, and 
accommodates synchronous and asynchronous SRAMs with single or multiple ReadWrite 
ports. The algorithm is capable of detecting signal coupling between bitlines of adjacent 
columns and port interference faults that are caused by high resistance ground connections to 
one of the N-channel source terminals. 
A few steps are added to the current algorithm to make sure that the appropriate data 
combinations are applied to every cell. The entire algorithm is shown in Table C-7.

Table C-7. Description of SMarchCHKBci Test Algorithm per Test Port 
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1*+ 0 Idle NoOperation

2*+ 1,2 1 (RxW1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Scans 1s through first 
word.

3*+ 3,4 1 (R1W0)
(R0Rx)

ReadModifyWrite
ReadRead

Scans 0s through first 
word. A back-to-back 
read is performed before 
changing address.

4* 5 Idle NoOperation Performs Multi-cycle 
Initialization

5* 6 1 to W
Fast 
column

(RxW0) ReadModifyWrite Writes checkerboard 
background data.

5.5 7 1 to W
Fast 
column

(R0W0) ReadModifyWrite Reads the checkerboard 
background while 
ShadowWrite is on. 
Writes checkerboard 
data. 

- Optional Wait None Pauses the test to perform
the static retention test.
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6** 8 1 to W
Fast 
column

(R0W1) ReadModifyWrite Reads checkerboard 
background. Replaces it 
with Inverse 
Checkerboard. 

6.5 9 1 to W
Fast 
column

(R1W1) ReadModifyWrite Reads Inverse 
Checkerboard Pattern 
while ShadowWrite is on,
Write Inverse 
Checkerboard Pattern.

- Optional Wait None Pauses the test to perform
the static retention test.

7*** 10 1 to W
Fast 
column

(R1W0) ReadModifyWrite Reads Inverse 
Checkerboard data, 
replaces it with 
checkerboard data.

8 11 - Idle NoOperation Performs Multi-cycle 
Initialization.

9 12,13 1 (RxW0)
(R0Rx)

ReadModifyWrite
ReadRead

Scans 0s through the first
word. A back-to-back 
read is performed before 
changing address.

10+ 14 2 to W 
Fast row

(W0Rx) Write Writes 0s in all words.

11 15,16 1 to W
Fast row

(R0W1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Reads all 0s replaces 
them with 1s.

12 15,16 1 to W 
Fast row

(R1W0)
(R0W0)

ReadModifyWrite
ReadModifyWrite

Reads 1s, and replaces 
them with 0s.

13 17,18 w to1 
Fast row

(R0W1)
(R1Rx)

ReadModifyWrite
ReadRead

Reads 0s, and replaces 
them with 1s. A back-to-
back read is performed 
before changing address.

14 17,18 w to 1 
Fast row

(R1W0)
(R0Rx)

ReadModifyWrite
ReadRead

Reads 1s, and replaces 
them with 0s. A back-to-
back read is performed 
before changing address.

Table C-7. Description of SMarchCHKBci Test Algorithm per Test Port  (cont.)
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Where:

Detected Faults
The SMarchCHKBci algorithm detects the failure modes indicated in Table C-1.

Test Time
The time required for the memory BIST controller to test your design using the SMarchCHKBci 
algorithm is outlined in Table C-2. 

15 19 w to 1 (R0W0) ReadModifyWrite Reads 0 while 
ShadowWrite is on. 
Writes 0.

16 20,21 1 
Fast row

(RxW1)
(R1Rx)

ReadModifyWrite
ReadRead

Writes 1 through the first
word. A back-to-back 
read is performed before 
changing address.

17 22 2 to W
Fast row

(W1Rx) Write Writes 1 to all locations.

18 23 1 to W
Fast row

(R1W1) ReadModifyWrite Reads 1 while 
ShadowWrite is on and 
writes it back.

19 24,25 1 (R1Wmemcontents)
(WmemcontentsRx)

ReadModifyWrite
Write

Writes the memory 
content into the first word
(default 0), and writes it 
back.

20 26 2 to W
Fast row

(Wmemcontents 
Rmemcontents)

Write Writes memory contents 
to the rest of the memory
(default 0).

x+ Algorithm phases performed during MemRst

x* Algorithm phases performed during the PSRT start_to_pause sub-phase
x** Algorithm phases performed during the PSRT pause_to_pause sub-phase
x*** Algorithm phases performed during the PSRT pause_to_end sub-phase

Table C-7. Description of SMarchCHKBci Test Algorithm per Test Port  (cont.)
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Specification
To test SRAMs using the SMarchCHKBci algorithm, specify Algorithm SMarchCHKBci  in 
the memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the 
related entry in the DefaultsSpecification.

SMarchCHKBcil Algorithm
This algorithm is similar to the SMarchCHKBci test algorithm and accommodates synchronous 
and asynchronous memories with single or multiple ReadWrite ports. The algorithm is capable 
of detecting bitline and wordline current leakage defects in single and multi-port memories.
A few steps are added to the current algorithm to make sure that the appropriate data 
combinations are applied to every cell. Table C-8 shows the entire algorithm.

Table C-8. Description of SMarchCHKBcil Test Algorithm per Test Port 
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1*+ 0 Idle NoOperation

2*+ 1,2 1 (RxW1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Scans 1s through first 
word.

3*+ 3,4 1 (R1W0)
(R0Rx)

ReadModifyWrite
ReadRead

Scans 0s through first 
word. A back-to-back read
is performed before 
changing address.

4* 5 Idle NoOperation Performs Multi-cycle 
Initialization

5* 6 1 to W
Fast 
column

(RxW0) ReadModifyWrite Writes checkerboard 
background data.

5.5 7 1 to W
Fast 
column

(R0W0) ReadModifyWrite Reads the checkerboard 
background while 
ShadowWrite is on. Writes
checkerboard data. 

- Optional Wait None Pauses the test to perform 
the static retention test.
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6** 8 1 to W
Fast 
column

(R0W1) ReadModifyWrite Reads checkerboard 
background. Replaces it 
with Inverse 
Checkerboard. 

6.5 9 1 to W
Fast 
column

(R1W1) ReadModifyWrite Reads Inverse 
Checkerboard Pattern 
while ShadowWrite is on. 
Writes Inverse 
Checkerboard Pattern.

- Optional Wait None Pauses the test to perform 
the static retention test.

7*** 10 1 to W
Fast 
column

(R1W0) ReadModifyWrite Reads Inverse 
Checkerboard data, 
replaces it with 
checkerboard data.

8 11 - Idle NoOperation Performs Multi-cycle 
Initialization.

9 12,13 1 (RxW0)
(R0Rx)

ReadModifyWrite
ReadRead

Scans 0s through the first 
word. A back-to-back read
is performed before 
changing address.

10+ 14 2 to w 
Fast row

(W0Rx) Write Writes 0s in all words.

11 15,16 1 to w 
Fast row

(R0W1)
(R1W1)

ReadModifyWrite
ReadModifyWrite

Reads all 0s, replaces them
with 1s.

12 15,16 1 to w 
Fast row

(R1W0)
(R0W0)

ReadModifyWrite
ReadModifyWrite

Reads 1s, and replaces 
them with 0s.

13 17,18 w to1 
Fast row

(R0W1)
(R1Rx)

ReadModifyWrite
ReadRead

Reads 0s, and replaces 
them with 1s. A back-to-
back read is performed 
before changing address.

14 17,18 w to 1 
Fast row

(R1W0)
(R0Rx)

ReadModifyWrite
ReadRead

Reads 1s, and replaces 
them with 0s. A back-to-
back read is performed 
before changing address.

Table C-8. Description of SMarchCHKBcil Test Algorithm per Test Port  (cont.)
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15 19-30 1 to w
Fast row 

(R0W1)
(R0Rx)
(R1W0)

ReadModifyWrite
ReadRead
ReadModifyWrite

This phase is composed of
three operations. For all 
operations, the column 
address is constant. 
The first set of operations 
is a Read 0. followed by a 
Write 1.
The second set of 
operations is to perform 
two back-to-back Read 0 
from a different row (on 
the same column) while 
ShadowWrite is on. 
However, the result of the 
second read operation is 
not compared.
The third set of operations
is to Read a 1 from the 
current row and then 
restore its value to 0.

16 31,32 1 (RxW1)
(R1Rx)

ReadModifyWrite
ReadRead

Writes 1 through the first 
word. A back-to-back read
is performed before 
changing address.

17 33 2 to w (W1Rx) Write Writes 1 to all locations.

Table C-8. Description of SMarchCHKBcil Test Algorithm per Test Port  (cont.)
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Where:

Detected Faults
The SMarchCHKBcil algorithm detects the failure modes indicated in Table C-1.

18 34-45 1 to w
fast row

(R1W0)
(R1Rx)
(R0W1)

ReadModifyWrite
ReadRead
ReadModifyWrite

This phase is composed of
three operations. For all 
operations, the column 
address is constant. 
The first set of operations 
is a Read 1 followed by a 
Write 0.
The second set of 
operations is to perform 
two back-to-back Read 1 
from a different row while
ShadowWrite is on. 
However, the result of the 
second read operation is 
not compared.
The third set of operations
is to Read a 0 from the 
current row and then 
restore its value to 1. 

19 46,47 1 (RxWmemcontents)
(WmemcontentsRx)

ReadModifyWrite
Write

Writes the memory 
content into the first word 
(default 0), and writes it 
back.

20 48 2 to w Wmemcontents 
Rmemcontents

Write Writes memory contents to
the rest of the memory 
(default 0).

x+ Algorithm phases performed during MemRst

x* Algorithm phases performed during the PSRT start_to_pause sub-phase
x** Algorithm phases performed during the PSRT pause_to_pause sub-phase
x*** Algorithm phases performed during the PSRT pause_to_end sub-phase

Table C-8. Description of SMarchCHKBcil Test Algorithm per Test Port  (cont.)
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Test Time
The time required for the memory BIST controller to test your design using the 
SMarchCHKBcil algorithm is outlined in Table C-2. 

Specification
To test SRAMs using the SMarchCHKBcil algorithm, specify Algorithm SMarchCHKBcil in 
the memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the 
related entry in the DefaultsSpecification.

SMarchCHKBvcd Algorithm
This algorithm is an enhanced SMarchCHKBcil test algorithm to detect data path shorts as well 
as enable the detection of voltage drop on cells in multi-port memories. 
A few steps are added to the SMarchCHKBcil algorithm to make sure that the appropriate data 
combinations are applied to every cell. However, this algorithm only can be used with full 
parallel data access (serial interfacing is not supported).

Usage
The implementation is enhanced to remove operations that require reading the memory and 
writing the memory in the next cycle. These operations have caused timing closure issues. The 
algorithm makes the assumption that data inputs are physically laid out so that even-index 
inputs are interleaved with odd-index inputs when testing for shorts between bits of the internal 
memory data bus. The algorithm makes the same assumption for group write enable inputs.

Each phase of the algorithm is described for the case of a single bank. If more than one bank 
exists, the phase repeats for each bank. The address counter in a phase determines whether the 
banks are addressed in ascending or descending order.

The algorithm requires a special operation set. Additional operations perform the specialized 
test sequences. Table C-9 lists the operations that the algorithm requires. The library operation 
set SyncWRvcd is compatible with this algorithm. If you create a custom operation set, you 
must define all necessary operations.

Table C-9 shows the entire SMarchCHKBvcd algorithm. The codes in the Operations Used and 
Description columns map to Table C-10, which gives the corresponding operation names that 
are defined in the SyncWRvcd operation set.
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Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port 
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1*+ 0 Idle OP0

2* 1-3 1 to C, Row 1
1 to C, Row 1

(W0R0Rx)
(W1R1Rx)
Idle

OP5
OP5
OP0

This phase is used to detect 
data path shorts.
The same pattern is written to
all words with no data 
mapping applied.
Step 1 — (OP5) Write 
checkerboard to the data path 
and read it back for all words 
in the first row.
Step 2 — (OP5) Write inverse
checkerboard to the data path 
and read it back for all words 
in the first row.
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3* 4-12 1 to C, Row 1
1 to C, Row 1
1 to C, Row 1
1 to C, Row 1

(W0R0Rx)(W1R1Rx)
(W0R0Rx)(W1R1Rx)
(W0R0Rx)(W1R1 Rx)
(W1R1Rx)(W0R1Rx)
Idle

OP5,OP6
OP5,OP7
OP5,OP5
OP5,OP8
OP0

This phase is used to detect 
bit/group write enable faults.
Repeat all groups of 
operations for all words in the
first row.
Step 1 — (OP5) Write and 
read 0s for the word.
Step 2 * (OP6) Write 1s while
Even Group Write Enables are
on followed by reading data 
pattern 0101 ... 0101.
Step 3 — (OP5) Write and 
read 0s for the word.
Step 4 * (OP7) Write 1s while
Odd Group Write Enables are
on followed by reading data 
pattern 1010 ... 1010.
Step 5 — (OP5) Write and 
read 0s for the word.
Step 6 — (OP5) Write 1s 
while all Group Write Enables
are on followed by reading 1s
Step 7 — (OP5) Write and 
read 1s for the word.
Step 8 * (OP8) Attempt to 
write 0s while all Group Write
Enables are off followed by 
reading 1s.

Note: Steps marked with * indicate that memories without the feature under test are 
disabled to avoid corruption of their content.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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3.6* 13-19 1 to C, Row 1
1 to C, Row 2
1 to C, Row 1
1 to C, Row 2
1 to C, Row 2
1 to C, Row 1

(W1Rx)
(W0Rx)
(R1Rx)
(R1Rx)
(R0Rx)
(R0Rx)
Idle

OP1
OP1
OP2
OP9
OP2
OP9
OP0

This phase is used to detect 
Read Enable stuck-active 
faults.
Step 1 — (OP1) Write 1s to 
all words in the first row.
Step 2 — (OP1) Write 0s to 
all words in the second row.
Step 3 — (OP2) Read 1s from
all words in the first row.
Step 4 — (OP9) Attempt to 
read 0s from all words in the 
second row while Read 
Enable is off.
Step 5 — (OP2) Read 0s from
all words in the second row.
Step 6 — (OP9) Attempt to 
read 1s from all words in the 
first row while Read Enable is
off.

Note: During Steps 4 and 6, memories without a ReadEnable input are disabled to avoid 
invalid failures. DataOutHoldWithInactiveReadEnable must be set to Off for memories 

with a ReadEnable input and whose outputs do not hold their values when the ReadEnable is
inactive.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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3.7* 20-26 1 to C, Row 1
1 to C, Row 2
1 to C, Row 1
1 to C, Row 1
1 to C, Row 2
1 to C, Row 2

(R1Rx)
(R0Rx)
(R0W0)
(R1Rx)
(R1W1)
(R0Rx)
Idle

OP2
OP2
OP4
OP2
OP4
OP2
OP0

This phase is used to detect 
Chip Select stuck-active 
faults.
Step 1 — (OP2) Read 1s from
all words in the first row.
Step 2 — (OP2) Read 0s from
all words in the second row.
Step 3 — (OP4) Attempt to 
read 1s and write 0s for all 
words in the first row while 
Chip Select is off.
Step 4 — (OP2) Read 1s from
all words in the first row.
Step 5 — (OP4) Attempt to 
read 0s and write 1s for all 
words in the second row while
Chip Select is off.
Step 6 — (OP2) Read 0s from
all words in the second row.

Note: During Steps 3 and 5, memories without a Select input are disabled to avoid invalid
failures. Prior to v2021.4, MemoryHoldWithInactiveSelect must be set to Off if a subset 

of the memory logical ports have a Select input.
4* 27 Idle OP0
5* 28-29 1 to W

Fast column
(RxW0)
Idle

OP3
OP0

Write checkerboard 
background data.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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5.1 30-31 1 to W
Fast row

(R0W1)
(W0Rx)

OP10
OP12

This phase is only useful for 
multi-port memories.
Step 1 — (OP10) Read 
checkerboard and write 
inverse checkerboard data.
Step 2 — (OP12) Write 
checkerboard data restoring 
the original background and 
reading it back.
During the Read portion of the
operation, a 
write_column_address 
operation is performed on the 
adjacent column of inactive 
write port. The operation is 
not performed for memories 
without column address bits.
During the Write portion of 
the operation, a 
read_column_address 
operation is performed on the 
adjacent column of inactive 
read port for memories with 
column address bits. The 
operation is performed on the 
adjacent row for memories 
without column address bits.

5.2 32 1 to W
Fast row

(R0W1) OP3 Read checkerboard 
background and replace it 
with inverse checkerboard 
data.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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5.3 33-34 1 to W
Fast row

(W0Rx)
(R0W0)

OP1
OP3

Step 1 — (OP1) Write 
checkerboard data and read it 
back.
Step 2 — (OP3) Read 
checkerboard data and write it
back before changing the 
address.
The back-to-back Write 
operations occur at the end of
the last Write operation on the
current cell and the Write 
operation on the cell in the 
next row address.

5.5 35-36 1 to W
Fast column

(R0W0)
Idle

OP11
OP0

Read checkerboard 
background while 
ConcurrentWrite is on, and 
ConcurrentRead is off (Read 
is performed at the address 
specified by the test algorithm
from all inactive R/W ports). 
Write checkerboard with 
ConcurrentRead on and 
ConcurrentWrite off.

Optional Wait None Pause the test to perform the 
static retention test.

6** 37-38 1 to W
Fast column

(R0Rx)
Idle

OP2
OP0

Read checkerboard 
background data followed by 
a read operation whose data 
out is not compared.

6.1** 39-40 1 to W
Fast column

(R0W1)
Idle

OP3
OP0

Read checkerboard 
background while 
ConcurrentRead is off. 
Replace it with inverse 
checkerboard data while 
ConcurrentRead is on. 
ConcurrentWrite is off in both
cases.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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6.2 41-42 1 to W
Fast row

(R1W0)
(W1Rx)

OP10
OP12

This phase is only useful for 
multi-port memories.
Step 1 — (OP10) Read 
inverse checkerboard and 
write checkerboard data.
Step 2 — (OP12) Write 
inverse checkerboard data 
restoring the original 
background and reading it 
back.
During the Read portion of the
operation, a 
write_column_address 
operation is performed on the 
adjacent column of inactive 
write port. The operation is 
not performed for memories 
without column address bits.
During the Write portion of 
the operation, a 
read_column_address 
operation is performed on the 
adjacent column of inactive 
read port for memories with 
column address bits. The 
operation is performed on the 
adjacent row for memories 
without column address bits.

6.3 43 1 to W
Fast row

(R1W0) OP3 Read inverse checkerboard 
background and replace it 
with checkerboard data.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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6.4 44-45 1 to W
Fast row

(W1Rx) 
(R1W1)

OP1
OP3

Step 1 — (OP1) Write inverse
checkerboard data and read it 
back.
Step 2 — (OP3) Read inverse
checkerboard data and write it
back before changing the 
address.
The back-to-back Write 
operations occur at the end of
the last Write operation on the
current cell and the Write 
operation on the cell in the 
next row address.

6.5 46-47 1 to W
Fast column

(R1W1)
Idle

OP11
OP0

Read inverse checkerboard 
background while 
ConcurrentWrite is on, and 
ConcurrentRead is off (Read 
is performed at the address 
specified by the test algorithm
from all inactive R/W ports). 
Write inverse checkerboard 
with ConcurrentRead on and 
ConcurrentWrite off.

Optional Wait None Pause the test to perform the 
static retention test.

7*** 48-49 1 to W
Fast column

(R1Rx)
Idle

OP2
OP0

Read inverse checkerboard 
background data followed by 
a read operation whose data 
out is not compared.

7.1 50-51 1 to W
Fast column

(R1W0)
Idle

OP3
OP0

Read inverse checkerboard 
data while ConcurrentRead is
off. Replace it with 
checkerboard data while 
ConcurrentRead is on.

8 52 Idle OP0 Perform multi-cycle 
initialization.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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10+ 53 1 to W
Fast row

(W0Rx) OP1 Write 0s to all words.

11 54-55 1 to W
Fast row

(R0W1)
(R1W1)

OP3
OP3

Step 1 — (OP3) Read 0 
followed by write 1.
Step 2 — (OP3) Read 1 and 
write it back.

12 56-57 1 to W
Fast row

(R1W0)
(R0W0)

OP3
OP3

Step 1 — (OP3) Read 1 
followed by write 0.
Step 2 — (OP3) Read 0 and 
write it back.

13 58-59 W to 1
Fast row

(R0W1)
(R1W1)

OP3
OP3

Step 1 — (OP3) Read 0 
followed by write 1.
Step 2 — (OP3) Read 1 and 
write it back before 
decrementing the address.

14 60-61 W to 1
Fast row

(R1W0)
(R0W0)

OP3
OP3

Step 1 — (OP3) Read 1 
followed by write 0.
Step 2 — (OP3) Read 0 and 
write it back before 
decrementing the address.

15 62-74 1 to W
Fast row

(R0W1) 
(R0W0)
(R1W0)
Idle

OP3
OP3
OP3
OP0

Step 1 — (OP3) Read 0 
followed by write 1.
Step 2 — (OP3) Read 0 from 
adjacent row on the same 
column and write it back.
Step 3 — (OP3) Read 1 from 
the current row and restore its
value to 0.

17 75 1 to W
Fast row

(W1Rx) OP1 Write 1s to all words.

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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Where:

Table C-10 shows the mapping of operation names to the codes used in the Operation Used and 
Description columns of Table C-9.

18 76-88 1 to W
Fast row

(R1W0)
(R1W1)
(R0W1)
Idle

OP3
OP3
OP3
OP0

Step 1 — (OP3) Read 1 
followed by write 0.
Step 2 — (OP3) Read 1 from 
adjacent row on the same 
column and write it back.
Step 3 — (OP3) Read 0 from 
the current row and restore its
value to 1.

20 89 1 to W
Fast row

(WmemcontentsRx) OP1 Write the memory content to 
all words (default 0).

x+ Algorithm phases performed during MemRst

x* Algorithm phases performed during the PSRT start_to_pause sub-phase
x** Algorithm phases performed during the PSRT pause_to_pause sub-phase
x*** Algorithm phases performed during the PSRT pause_to_end sub-phase

Table C-10. Mapping of Operation Code to Operation Name 
Code Operation Name
OP0 NoOperation
OP1 Write
OP2 Read
OP3 ReadModifyWrite
OP4 ReadModifyWrite_WithSelectOff
OP5 WriteReadCompare 
OP6 WriteReadCompare_EvenGWE_On
OP7 WriteReadCompare_OddGWE_On
OP8 WriteReadCompare_AllGWE_Off
OP9 ReadWithReadEnableOff

Table C-9. Description of SMarchCHKBvcd Test Algorithm per Test Port  (cont.)
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Detected Faults
The SMarchCHKBvcd algorithm detects the failure modes indicated in Table C-1.

Test Time
The time required for the memory BIST controller to test your design using the 
SMarchCHKBvcd algorithm is outlined in Table C-2. 

Specification
To test SRAMs using the SMarchCHKBvcd algorithm, specify Algorithm SMarchCHKBvcd in 
the memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the 
related entry in the DefaultsSpecification.

Usage Conditions
The OperationSet property of the memory TCD file must be the Siemens EDA library 
SyncWRvcd.

The SMarchCHKBvcd algorithm performs specialized tests on the chip select and read enable 
ports, if they are present. To use this algorithm, the memory data output value must be 
preserved when the chip select or read enable port is deasserted. If the memory data output 
value is not preserved in these cases, in the Memory wrapper of the memory TCD file, set the 
MemoryHoldWithInactiveSelect or DataOutHoldWithInactiveReadEnable properties to off, as 
appropriate for your memory.

LVMarchX Algorithm
The LVMarchX algorithm is a test algorithm that is available for loading into the memory 
controller to perform a March X algorithm. The March X algorithm is performed as follows:

1. Write background of D-data incrementing from address minimum to address maximum.

2. Read D-data and write D-data incrementing from address minimum to address 
maximum.

3. Read D-data and write D-data decrementing from address maximum to address 
minimum.

OP10 ReadModifyWrite_Column_ConcurrentWriteRead
OP11 ReadModifyWrite_Row_ConcurrentWriteRead
OP12 WriteRead_Column_ConcurrentReadWrite

Table C-10. Mapping of Operation Code to Operation Name  (cont.)
Code Operation Name
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4. Read D-data decrementing from address maximum to address minimum.

Test Time
The time required for the memory BIST controller to test your design using the LVMarchX 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed and a carry out from the Y1 address 
segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum AND a 
x1_carry_out is generated OR.

o The Y1 address segment is decrementing and has reached the minimum AND a 
x1_carry_out is generated.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

Algorithm Sequence
Table C-11 describes the LVMarchX algorithm sequence.
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Example Algorithm Wrapper
Figure C-1 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentMarchXFastX and TessentMarchXFastY), that have been optimized to 
eliminate redundant operations, are also available in the lib/technology/memory_bist directory 
of the tool tree. These algorithms run slightly faster, but diagnosis needs to be performed in two 
steps as explained in the “Diagnosis Considerations” section. 

Table C-11. Description of LVMarchX Algorithm 
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0 0 - - min to 
max,
fast row

WD Write Write background of D-data.

1 1 - - min to 
max,
fast row

RDWD ReadModifyWrite Read D-data and Write data 
D-data.
After all addresses have been
accessed branch to 
instruction 1 and repeat one 
time as follows with 
RepeatLoopA:

• Repeat #1 - repeat 
instructions with inverted
the address sequencing, 
write data sequencing, 
and expect data 
sequencing

2 1 Repeat 
#1

- max to 
min, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-
data.

3 2 - - max to 
min,
fast row

RD Read Read D-data.
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Figure C-1. LVMarchX Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVMarchX){  
    TestRegisterSetup {  
      operation_set_select : Sync;  
      AddressGenerator {  
        AddressRegisterA {  
          z_carry_in : y1_carry_out;  
          y1_carry_in : x1_carry_out;  
          x1_carry_in : none;  
        }  
      }  
      DataGenerator {  
        load_write_data  : all_zero;  
        load_expect_data : all_zero;  
      }   
    }  
    MicroProgram {  
      Instruction (M0_W0) {  
        operation_select : Write;  
        AddressCommands { 
          address_select : select_a;  
          z_address : increment;  
          x1_address : increment;  
          y1_address : increment;  
        } 
        DataCommands { 
          write_data : data_reg;  
        } 
        NextConditions {  
          z_end_count : on;  
          x1_end_count : on;  
          y1_end_count : on;  
        }  
      }  
      Instruction (M1_R0_W1) {  
        operation_select : ReadModifyWrite;  
        AddressCommands { 
          address_select : select_a;  
          z_address  : increment;  
          x1_address : increment;  
          y1_address : increment;  
          inhibit_last_address_count : on;
        } 
        DataCommands { 
          expect_data : data_reg;  
          write_data : inverse_data_reg;  
        } 
        NextConditions {  
          z_end_count : on;  
          x1_end_count : on;  
          y1_end_count : on;  
          RepeatLoopA {  
            branch_to_instruction : M1_R0_W1;  
            Repeat1 {  
              enable : on;
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              write_data_sequence : inverse;  
              expect_data_sequence : inverse;  
              address_sequence : inverse;  
            }  
          }  
        }  
      } 
      Instruction (M3_R0) {  
        operation_select : Read;  
        AddressCommands { 
          address_select : select_a;  
          z_address : decrement;  
          x1_address : decrement;  
          y1_address : decrement;  
          inhibit_last_address_count : on;
        } 
        DataCommands { 
          expect_data : data_reg;  
        } 
        NextConditions {  
          z_end_count : on;  
          x1_end_count : on;  
          y1_end_count : on;  
        }  
      }  
    }  
  }
}  

Fault Coverage
The faults detected by the LVMarchX algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVMarchX algorithm, specify Algorithm LVMarchX in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVMarchX algorithm:

• Operations named Write, ReadModifyWrite, and Read must exist or be mapped to 
another operation in OperationSet in the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.
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LVMarchY Algorithm
The LVMarchY algorithm is a test algorithm that is available for loading into the memory 
controller to perform a March Y algorithm. The March Y algorithm is performed as follows:

1. Write background of D-data incrementing from address minimum to address maximum.

2. Read D-data, write D-data, and read D-data incrementing from address minimum to 
address maximum.

3. Read D-data, write D-data, and read D-data decrementing from address maximum to 
address minimum.

4. Read D-data decrementing from address maximum to address minimum.

Test Time
The time required for the memory BIST controller to test your design using the LVMarchY 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR

o The X1 address segment is decrementing and has reached the minimum

• The bank address segment Z counts when instructed and a carry out from the Y1 address 
segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum AND a 
x1_carry_out is generated OR.

o The Y1 address segment is decrementing and has reached the minimum AND a 
x1_carry_out is generated.
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DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

Algorithm Sequence
Table C-12 describes the LVMarchY algorithm sequence.

Table C-12. Description of LVMarchY Algorithm 
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0 0 - - min to 
max,
fast row

WD Write Write background of D-
data.

1 1 - - - RDWD ReadModifyWrite Read D-data and Write D-
data.

2 - - min to 
max,
fast row

RD Read Read D-data. 
Branch back to Instruction 
1 until all addresses are 
accessed.
After all addresses have 
been accessed branch to 
instruction 1 and repeat one 
time as follows with 
RepeatLoopA:

• Repeat #1 - repeat 
instructions with 
inverted the address 
sequencing, write data 
sequencing, and expect 
data sequencing

2 1 Repeat 
#1

- - RDWD ReadModifyWrite Read D-data and Write D-
data.

2 Repeat 
#1

- max to 
min,
fast row

RD Read Read D-data. 
Branch back to Instruction 
1 until all addresses are 
accessed.

3 3 - - max to 
min,
fast row

RD Read Read D-data.
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Example Algorithm Wrapper
Figure C-2 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentMarchYFastX and TessentMarchYFastY), that have been optimized to 
eliminate redundant operations, are also available in the lib/technology/memory_bist directory 
of the tool tree. These algorithms run slightly faster, but diagnosis needs to be performed in two 
steps as explained in the “Diagnosis Considerations” section.
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Figure C-2. LVMarchY Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVMarchY) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator {
         AddressRegisterA { 
            z_carry_in : y1_carry_out; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data  : all_zero; 
         load_expect_data : all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (M0_W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (M1_R0_W1) { 
         operation_select : ReadModifyWrite;
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands {
            expect_data : data_reg; 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (M1_R1) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
            x1_address : increment; 
            y1_address : increment; 
            inhibit_last_address_count : on;
         }
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         DataCommands { 
            expect_data : inverse_data_reg;  
         }
         branch_to_instruction : M1_R0_W1; 
         NextConditions { 
            z_end_count : on; 
            x1_end_count: on; 
            y1_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction : M1_R0_W1;  
               Repeat1 { 
                  enable : on;
                  write_data_sequence : inverse;
                  expect_data_sequence : inverse;
                  address_sequence : inverse;
               } 
            } 
         } 
      } 
      Instruction (M3_R0) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            z_address : decrement; 
            x1_address : decrement; 
            y1_address : decrement; 
            inhibit_last_address_count : on;
         }
         DataCommands { 
            expect_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
   } 
  }
} 

Fault Coverage
The faults detected by the LVMarchY algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVMarchY algorithm, specify Algorithm LVMarchY in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.
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Usage Conditions
The following usage conditions apply to the LVMarchY algorithm:

• Operations named Write, ReadModifyWrite, and Read must exist or be mapped to 
another operation in OperationSet specified in the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to four.

LVMarchCMinus Algorithm
The LVMarchCMinus algorithm is a test algorithm that is available for loading into the memory 
controller to perform a March C- algorithm. The March C- algorithm is performed as follows:

1. Write background of D-data incrementing from address minimum to address maximum.

2. Read D-data and write D-data incrementing from address minimum to address 
maximum.

3. Read D-data and write D-data incrementing from address minimum to address 
maximum.

4. Read D-data and write D-data decrementing from address maximum to address 
minimum.

5. Read D-data and write D-data decrementing from address maximum to address 
minimum.

6. Read D-data decrementing from address maximum to address minimum.

Test Time
The time required for the memory BIST controller to test your design using the 
LVMarchCMinus algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:
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where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed and a carry out from the Y1 address 
segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum AND a 
x1_carry_out is generated OR.

o The Y1 address segment is decrementing and has reached the minimum AND a 
x1_carry_out is generated.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

Algorithm Sequence
Table C-13 describes the LVMarchCMinus algorithm sequence.

Table C-13. Description of LVMarchCMinus Algorithm 
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WD Write Write background of D-data.
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Example Algorithm Wrapper
Figure C-3 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentMarchCMinusFastX and TessentMarchCMinusFastY), that have been 
optimized to eliminate redundant operations, are also available in the lib/technology/
memory_bist directory of the tool tree. These algorithms run slightly faster, but diagnosis needs 
to be performed in two steps as explained in the “Diagnosis Considerations” section.

1 1 - - min to 
max, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-data.
After all addresses have been 
accessed branch to instruction 1
and repeat three times as follows
with RepeatLoopA:

• Repeat #1 - repeat 
instructions with inverted 
write data sequencing and 
expect data sequencing

• Repeat #2 - repeat 
instructions with inverted 
the address sequencing

• Repeat #3 - repeat 
instructions with inverted 
the address sequencing, 
write data sequencing, and 
expect data sequencing

2 1 Repeat 
#1

- min to 
max, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-data.

3 1 Repeat 
#2

- max to 
min, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-data.

4 1 Repeat 
#3

- max to 
min, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-data.

5 2 - - max to 
min, fast 
row

RD Read Read D-data.

Table C-13. Description of LVMarchCMinus Algorithm  (cont.)
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Figure C-3. LVMarchCMinus Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVMarchCMinus){ 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : y1_carry_out; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data  : all_zero; 
         load_expect_data : all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (M0_W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (M1_R0_W1) { 
         operation_select : Readmodifywrite; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : data_reg; 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction : M1_R0_W1; 
               Repeat1 { 
                  enable : on;
                  write_data_sequence : inverse;
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                  expect_data_sequence : inverse;
                  inhibit_last_address_count : on; 
               } 
               Repeat2 {
                  enable : on; 
                  address_sequence : inverse;
               } 
               Repeat3 { 
                  enable : on;
                  address_sequence : inverse;
                  expect_data_sequence : inverse;
                  write_data_sequence : inverse;
               } 
            } 
         } 
      } 
      Instruction (M5_R0) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            z_address : decrement; 
            x1_address : decrement; 
            y1_address : decrement; 
            inhibit_last_address_count : on;
         }
         DataCommands { 
            expect_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
   } 
  }
} 

Fault Coverage
The faults detected by the LVMarchCMinus algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVMarchCMinus algorithm, specify Algorithm LVMarchCMinus in 
the memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the 
related entry in the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVMarchCMinus algorithm:

• Operations named Write, ReadModifyWrite, and Read must exist or be mapped to 
another operation in OperationSet of the memory TCD file.
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• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

LVMarchLA Algorithm
The LVMarchLA algorithm is a test algorithm that is available for loading into the memory 
controller to perform a March LA algorithm. The March LA algorithm is performed as follows:

1. Write background of D-data incrementing from address minimum to address maximum.

2. Read D-data, write D-data, write D-data, write D-data, and read D-data incrementing 
from address minimum to address maximum.

3. Read D-data, write D-data, write D-data, write D-data, and read D-data incrementing 
from address minimum to address maximum.

4. Read D-data, write D-data, write D-data, write D-data, and read D-data decrementing 
from address maximum to address minimum.

5. Read D-data, write D-data, write D-data, write D-data, and read D-data decrementing 
from address maximum to address minimum.

6. Read D-data decrementing from address maximum to address minimum.

Test Time
The time required for the memory BIST controller to test your design using the LVMarchLA 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.
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• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed and a carry out from the Y1 address 
segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum AND a 
x1_carry_out is generated OR.

o The Y1 address segment is decrementing and has reached the minimum AND a 
x1_carry_out is generated.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

Algorithm Sequence
Table C-14 describes the LVMarchLA algorithm sequence.

Table C-14. Description of LVMarchLA Algorithm 
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WD Write Write background of D-data.
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1 1 - - - RDW
D

ReadModifyWrite Read D-data and Write D-data.

2 - - WD Write Write D-data. 
3 - - min to 

max,
fast 
row

WDR
D

WriteRead Write D-data and Read D-data.
Branch back to Instruction 1 until 
all addresses are accessed.
After all addresses have been 
accessed branch to instruction 1 and 
repeat three times as follows with 
RepeatLoopA:

• Repeat #1 - repeat instructions 
with inverted write data 
sequencing and expect data 
sequencing

• Repeat #2 - repeat instructions 
with inverted the address 
sequencing

• Repeat #3 - repeat instructions 
with inverted the address 
sequencing, write data 
sequencing, and expect data 
sequencing

2 1 Repeat 
#1

- - RDW
D

ReadModifyWrite Read D-data and Write D-data.

2 Repeat 
#1

- WD Write Write D-data. 

3 Repeat 
#1

- min to 
max,
fast 
row

WDR
D

WriteRead Write D-data and Read data D-data.
Branch back to Instruction 1 until 
all addresses are accessed.

Table C-14. Description of LVMarchLA Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-4 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentMarchLAFastX and TessentMarchLAFastY), that have been optimized to 
eliminate redundant operations, are also available in the lib/technology/memory_bist directory 
of the tool tree. These algorithms run slightly faster, but diagnosis needs to be performed in two 
steps as explained in the “Diagnosis Considerations” section.

3 1 Repeat 
#2

- - RDW
D

ReadModifyWrite Read D-data and Write D-data.

2 Repeat 
#2

- WD Write Write D-data. 

3 Repeat 
#2

- max 
to 
min,
fast 
row

WDR
D

WriteRead Write D-data and Read data D-data.
Branch back to Instruction 1 until 
all addresses are accessed.

4 1 Repeat 
#3

- - RDW
D

ReadModifyWrite Read D-data and Write data D-data.

2 Repeat 
#3

- - WD Write Write D-data. 

3 Repeat 
#3

- max 
to 
min,
fast 
row

WDR
D

WriteRead Write D-data and Read data D-data.
Branch back to Instruction 1 until 
all addresses are accessed.

5 4 - - max 
to 
min,
fast 
row

RD Read Read D-data.

Table C-14. Description of LVMarchLA Algorithm  (cont.)
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Figure C-4. LVMarchLA Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVMarchLA){ 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : y1_carry_out; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data  : all_zero; 
         load_expect_data : all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (M0_W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (M1_R0_W1) { 
         operation_select : ReadModifyWrite; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            expect_data : data_reg; 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (M1_W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
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         } 
      } 
      Instruction (M1_W1_R1) { 
         operation_select : Write_read_operation;
         AddressCommands {
            address_select : select_a;            
            z_address : increment; 
            x1_address : increment;           
            y1_address : increment;           
         }
         DataCommands { 
            write_data : inverse_data_reg;      
            expect_data : inverse_data_reg; 
         }
         branch_to_instruction : M1_R0_W1; 
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction : M1_R0_W1; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence : inverse; 
                  expect_data_sequence : inverse; 
                  inhibit_last_address_count : on; 
               } 
               Repeat2 {
                  enable : on; 
                  address_sequence : inverse; 
               } 
               Repeat3 { 
                  enable : on;
                  address_sequence : inverse; 
                  write_data_sequence : inverse; 
                  expect_data_sequence : inverse; 
               } 
            } 
         } 
      } 
      Instruction (M5_R0) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            z_address : decrement; 
            x1_address : decrement; 
            y1_address : decrement; 
            inhibit_last_address_count : on;
         }
         DataCommands { 
            expect_data : data_reg; 
         }
         NextConditions { 
            z_end_count : on; 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
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   } 
  }
} 

Fault Coverage
The faults detected by the LVMarchLA algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVMarchLA algorithm, specify Algorithm LVMarchLA in the 
memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related 
entry in the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVMarchLA algorithm:

• Operations named Write, ReadModifyWrite, WriteRead, and Read must exist or be 
mapped to another operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to five.

LVRowBar Algorithm
The LVRowBar algorithm is a test algorithm that is available for loading into the memory 
controller to perform a row bar algorithm. The row bar algorithm is performed as follows:

1. Write background of D-data to even columns and D-data to odd columns incrementing 
from address minimum to address maximum for a single bank.

2. Read D-data from even columns and D-data from odd columns incrementing from 
address minimum to address maximum for a single bank.

3. Re-run 1 and 2, incrementing the bank address from minimum to maximum.

4. Repeat 1 to 3 with inverted data.

Test Time
The time required for the memory BIST controller to test your design using the LVRowBar 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.
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AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast 
columns as follows:

where:

• The column address segment Y1 counts when instructed.

• The row address segment X1 counts when instructed and a carry out from the Y1 
address segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum OR.

o The Y1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each column. That is the logical data pattern 
applied is D for even columns and D for odd columns.

Algorithm Sequence
Table C-15 describes the LVRowBar algorithm sequence.

Table C-15. Description of LVRowBar Algorithm 
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0 0 - - min to 
max,
fast 
column

WD_e, 
D_o

Write Write background of D-data to
even column addresses and D-
data to odd column addresses.

1 1 - - max to 
min,
fast 
column

RD_e, 
D_o

Read Read background of D-data 
from even column addresses 
and D-data from odd column 
addresses.
Tessent™ MemoryBIST User’s Manual, v2022.4698

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



MemoryBIST Algorithms
LVRowBar Algorithm

 

Example Algorithm Wrapper
Figure C-5 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentRowBarFastX and TessentRowBarFastY), that have been optimized to 
eliminate redundant operations, are also available in the lib/technology/memory_bist directory 
of the tool tree. These algorithms run slightly faster, but diagnosis needs to be performed in two 
steps as explained in the “Diagnosis Considerations” section.

2 2 - - min to 
max,
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.
After all bank addresses have 
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted 
write data sequencing and 
expect data sequencing

3 0 - Repeat 
#1

min to 
max,
fast 
column

WD_e, 
D_o

Write Write background of D-data to
even column addresses and D-
data to odd column addresses.

4 1 - Repeat 
#1

max to 
min,
fast 
column

RD_e, 
D_o

Read Read background of D-data 
from even column addresses 
and D-data from odd column 
addresses.

5 2 - Repeat 
#1

min to 
max,
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.

Table C-15. Description of LVRowBar Algorithm  (cont.)
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Figure C-5. LVRowBar Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVRowBar) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            x1_carry_in : y1_carry_out;
            y1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         InvertDataWithColumnBit : c[0]; 
      } 
   } 
   MicroProgram { 
      Instruction (W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (R0) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
         }
         branch_to_instruction : W0; 
         NextConditions { 
            z_end_count : on; 
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            RepeatLoopB { 
               branch_to_instruction: W0; 
               Repeat1 { 
                  enable : on;
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    }
  }
} 

Fault Coverage
The faults detected by the LVRowBar algorithm are identified in Table C-1. Stuck-at faults are 
detected correctly when there are no address decoder faults.

Specification
To test SRAMs using the LVRowBar algorithm, specify Algorithm LVRowBar in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVRowBar algorithm:

• Operations named Write and Read must exist or be mapped to another operation in 
OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

LVColumnBar Algorithm
The LVColumnBar algorithm is a test algorithm that is available for loading into the memory 
controller to perform a column bar algorithm. The column bar algorithm is performed as 
follows:

1. Write background of D-data to even rows and D-data to odd rows incrementing from 
address minimum to address maximum for a single bank.

2. Read D-data from even rows and D-data from odd rows incrementing from address 
minimum to address maximum for a single bank.

3. Re-run 1 and 2 incrementing the bank address from minimum to maximum.

4. Repeat 1 to 3 with inverted data.
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Test Time
The time required for the memory BIST controller to test your design using the LVColumnBar 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each row. That is the logical data pattern 
applied is D for even rows and D for odd rows.

Algorithm Sequence
Table C-16 describes the LVColumnBar algorithm sequence.
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Example Algorithm Wrapper
Figure C-6 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentColumnBarFastX and TessentColumnBarFastY), that have been optimized 
to eliminate redundant operations, are also available in the lib/technology/memory_bist 

Table C-16. Description of LVColumnBar Algorithm 
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0 0 - - min to max,
fast row

WD_e, 
D_o

Write Write background of D-data to 
even row addresses and D-data 
to odd row addresses.

1 1 - - max to min, 
fast row

RD_e, 
D_o

Read Read background of D-data 
from even row addresses and D
data from odd row addresses.

2 2 - - min to max,
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.
After all bank addresses have 
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted 
write data sequencing and 
expect data sequencing

3 0 - Repeat 
#1

min to max, 
fast row

WD_e, 
D_o

Write Write background of D-data to 
even row addresses and D-data 
to odd row addresses.

4 1 - Repeat 
#1

max to min, 
fast row

RD_e, 
D_o

Read Read background of D-data 
from even row addresses and D
data from odd row addresses.

5 2 - Repeat 
#1

min to max,
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max.  
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.
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directory of the tool tree. These algorithms run slightly faster, but diagnosis needs to be 
performed in two steps as explained in the “Diagnosis Considerations” section.
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Figure C-6. LVColumnBar Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVColumnBar) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out;
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         InvertDataWithRowBit : r[0]; 
      } 
   } 
   MicroProgram { 
      Instruction (W0) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (R0) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
         }
         branch_to_instruction : W0; 
         NextConditions { 
            z_end_count : on; 
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            RepeatLoopB { 
               branch_to_instruction: W0; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence:  inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  }
} 

Fault Coverage
The faults detected by the LVColumnBar algorithm are identified in Table C-1. Stuck-at faults 
are detected correctly when there are no address decoder faults.

Specification
To test SRAMs using the LVColumnBar algorithm, specify Algorithm LVColumnBar in the 
memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related 
entry in the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVColumnBar algorithm:

• Operations named Write and Read must exist or be mapped to another operation in 
OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

LVGalPat Algorithm
The LVGalPat algorithm is a test algorithm that is available for loading into the memory 
controller to perform a galloping pattern algorithm. The LVGalPat algorithm is performed as 
follows:

1. Write background of D-data from address minimum to address maximum for a single 
bank.

2. Write D-data to the “home” cell addressed by AddressRegisterA.

3. Read D-data from all “away” cells in the same bank addressed by AddressRegisterB but 
following each read of the “away” cell read D-data from the “home” cell.

4. Write D-data at the “home” cell to restore the data background.
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5. Increment the “home” cell addressed by AddressRegisterA and re-run steps 2 to 5 until 
every cell in the bank has been a “home” cell.

6. Increment the bank address from minimum to maximum and re-run steps 1 to 6.

7. Repeat steps 1 to 6 with inverted data.

Test Time
The time required for the memory BIST controller to test your design using the LVGalPat 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

AddressRegisterB
The AddressRegisterB segments are configured to identical to AddressRegisterA.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each column. That is, the logical data pattern 
applied is D for even columns and D for odd columns.

Algorithm Sequence
Table C-17 describes the LVGalPat algorithm sequence.
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0 - - min to max, fast 
row

WD Write Write background of D-data.

1 - - - WD Write Write D-data to location 
addressed by 
AddressRegisterA.

2 - - - RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - - AddressRegisterB 
min to max,
fast row

RD Read Read D-data from all address
using AddressRegisterB.  Wh
AddressRegisterB is equivale
to AddressRegisterA the read
D-data is expected.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterB row and 
column addresses.

4 - - AddressRegisterA 
min to max,
fast row

RDWD ReadModifyWrite Read D-data and write D-data
the location addressed by 
AddressRegisterA.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterA row and 
column addresses.
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5 - - min to max,
bank addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all ban
addresses.
After all bank addresses have
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted
write data sequencing and
expect data sequencing.

0 - Repeat 
#1

min to max, fast 
row

WD Write Write background of D-data.

1 - Repeat 
#1

- WD Write Write D-data to location 
addressed by 
AddressRegisterA.

Table C-17. Description of LVGalPat Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-7 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentGalPatFastX and TessentGalPatFastY), that have been optimized to 
eliminate redundant operations, are also available in the lib/technology/memory_bist directory 
of the tool tree. These algorithms run slightly faster, but diagnosis needs to be performed in two 
steps as explained in the “Diagnosis Considerations” section.

2 - Repeat 
#1

- RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - Repeat 
#1

AddressRegisterB 
min to max,
fast row

RD Read Read D-data from all address
using AddressRegisterB.  Wh
AddressRegisterB is equivale
to AddressRegisterA the read
D-data is expected.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterB row and 
column addresses.

4 - Repeat 
#1

AddressRegisterA 
min to max,
fast row

RDWD ReadModifyWrite Read D-data and write D-data
the location addressed by 
AddressRegisterA.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterA row and 
column addresses.

5 - Repeat 
#1

min to max,
bank addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all ban
addresses.
After all bank addresses have
been accessed repeat phase 0
and 1 with inverted write and
expect data.

Table C-17. Description of LVGalPat Algorithm  (cont.)
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Figure C-7. LVGalPat Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVGalPat) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
         AddressRegisterB { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data  : all_zero; 
         load_expect_data : all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (WRITE_BACKGROUND) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (WRITE_HOME_CELL) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_HOME_CELL) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            expect_data : inverse_data_reg; 
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         NextConditions { 
         } 
      } 
      Instruction (READ_AWAY_CELL) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_b; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : data_reg; 
            address_a_equals_b : invert_expect_data; 
         }
         branch_to_instruction : READ_HOME_CELL; 
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (REWRITE_HOME_CELL_AND_ADVANCE) { 
         operation_select : ReadModifyWrite; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
            expect_data : inverse_data_reg; 
         }
         branch_to_instruction : WRITE_HOME_CELL; 
         NextConditions {
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : select_a_copy_to_b; 
            z_address : increment; 
         }
         branch_to_instruction : WRITE_BACKGROUND; 
         NextConditions { 
            z_end_count : on;                 
            RepeatLoopB { 
               branch_to_instruction: WRITE_BACKGROUND; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence:  inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  } 
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}

Fault Coverage
The faults detected by the LVGalPat algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVGalPat algorithm, specify Algorithm LVGalPat in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVGalPat algorithm:

• Operations named Write, Read, ReadModifyWrite must exist or be mapped to another 
operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

• If the MemoryBist/Controller/a_equals_b_command_allowed property is set to off, the 
LVGalPat algorithm is not available.

LVGalColumn Algorithm
The LVGalColumn algorithm is a test algorithm that is available for loading into the memory 
controller to perform a galloping column pattern algorithm. The LVGalColumn algorithm is 
performed as follows:

1. Write background of D-data from address minimum to address maximum for a single 
bank.

2. Write D-data to the “home” cell addressed by AddressRegisterA.

3. Read D-data from all “away” cells in the same column (same Y address) of the same 
bank addressed by AddressRegisterB. Following each read of the “away” cell read D-
data from the “home” cell.

4. Write D-data at the “home” cell to restore the data background.

5. Increment the “home” cell addressed by AddressRegisterA and re-run steps 2 to 5 until 
every cell in the bank has been a “home” cell.

6. Increment the bank address from minimum to maximum and re-run steps 1 to 6.

7. Repeat steps 1 to 6 with inverted data.
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Test Time
The time required for the memory BIST controller to test your design using the LVGalColumn 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The column address segment Y1 counts when instructed.

• The row address segment X1 counts when instructed and a carry out from the Y1 
address segment is generated. An y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum OR.

o The Y1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

AddressRegisterB
The AddressRegisterB segments are configured to count each of the segments individually 
where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed.

• The bank address segment Z counts when instructed.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each column. That is, the logical data pattern 
applied is D for even columns and D for odd columns.

Algorithm Sequence
Table C-18 describes the LVGalColumn algorithm sequence.
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0 - - min to max, fast 
column

WD Write Write background of D-data.

1 - - - WD Write Write D-data to location 
addressed by 
AddressRegisterA.

2 - - - RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - - AddressRegisterB 
row address min 
to max

RD Read Read D-data from all row 
addresses in the same column
using AddressRegisterB.  Wh
AddressRegisterB is equivale
to AddressRegisterA the read
D-data is expected.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterB row  
addresses.

4 - - - - NoOperation Advance the column address 
one.

5 - - AddressRegisterA 
min to max,
fast column

RDWD ReadModifyWrite Read D-data and write D-dat
at the location addressed by 
AddressRegisterA.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterA row and 
column addresses.
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6 - - min to max, bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all ban
addresses.
After all bank addresses have
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted
write data sequencing and
expect data sequencing.

0 - Repeat 
#1

min to max, fast 
column

WD Write Write background of D-data.

1 - Repeat 
#1

- WD Write Write D-data to location 
addressed by 
AddressRegisterA.

Table C-18. Description of LVGalColumn Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-8 illustrates the Algorithm wrapper for the example memory.

2 - Repeat 
#1

- RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - Repeat 
#1

AddressRegisterB 
row address min 
to max

RD Read Read D-data from all row 
addresses in the same column
using AddressRegisterB.  Wh
AddressRegisterB is equivale
to AddressRegisterA the read
D-data is expected.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterB row  
addresses.

4 - Repeat 
#1

- - NoOperation Advance the column address 
one.

5 - Repeat 
#1

AddressRegisterA 
min to max,
fast column

RDWD ReadModifyWrite Read D-data and write D-dat
at the location addressed by 
AddressRegisterA.
Branch back to Instruction 2 
and repeat for all 
AddressRegisterA row and 
column addresses.

6 - Repeat 
#1

min to max,
bank addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all ban
addresses.
After all bank addresses have
been accessed repeat phase 0
and 1 with inverted write and
expect data.

Table C-18. Description of LVGalColumn Algorithm  (cont.)
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Figure C-8. LVGalColumn Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVGalColumn) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            x1_carry_in : y1_carry_out; 
            y1_carry_in : none; 
         } 
         AddressRegisterB { 
            z_carry_in : none; 
            y1_carry_in : none; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data: all_zero; 
         load_expect_data: all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (WRITE_BACKGROUND) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (WRITE_HOME_CELL) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            write_data : inverse_data_reg;
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_HOME_CELL) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            expect_data : inverse_data_reg; 
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         }
         NextConditions { 
         } 
      } 
      Instruction (READ_AWAY_COLUMN) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_b; 
            x1_address : increment; 
         }
         DataCommands { 
            expect_data : data_reg; 
            address_a_equals_b : invert_expect_data;
         }
         branch_to_instruction : READ_HOME_CELL; 
         NextConditions { 
            x1_end_count : on; 
         } 
      } 
      Instruction (ADVANCE_AWAY_COLUMN_POINTER) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : select_b; 
            y1_address : increment; 
         }
         NextConditions { 
         } 
      } 
      Instruction (REWRITE_HOME_CELL_AND_ADVANCE) { 
         operation_select : Readmodifywrite; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
            expect_data : inverse_data_reg; 
         }
         branch_to_instruction : WRITE_HOME_CELL; 
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_a_copy_to_b; 
            z_address : increment; 
         }
         branch_to_instruction : WRITE_BACKGROUND; 
         NextConditions { 
            z_end_count : on; 
            RepeatLoopB { 
               branch_to_instruction: WRITE_BACKGROUND; 
               Repeat1 {
                  enable : on; 
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                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      }
    } 
  }
} 

Fault Coverage
The faults detected by the LVGalColumn algorithm are identified in Table C-1. Only coupling 
faults occurring in the same column are detected.

Specification
To test SRAMs using the LVGalColumn algorithm, specify Algorithm LVGalColumn in the 
memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related 
entry in the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVGalColumn algorithm:

• Operations named Write, Read, ReadModifyWrite must exist or be mapped to another 
operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

• If the MemoryBist/Controller/a_equals_b_command_allowed property is set to off, the 
LVGalColumn algorithm is not available.

LVGalRow Algorithm
The LVGalRow algorithm is a test algorithm that is available for loading into the memory 
controller to perform a galloping row algorithm. The LVGalRow algorithm is performed as 
follows:

1. Write background of D-data from address minimum to address maximum for a single 
bank.

2. Write D-data to the “home” cell addressed by AddressRegisterA.

3. Read D-data from all “away” cells in the same row (same X address) of the same bank 
addressed by AddressRegisterB. Following each read of the “away” cell read D-data 
from the “home” cell.
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4. Write D-data at the “home” cell to restore the data background.

5. Increment the “home” cell addressed by AddressRegisterA and re-run steps 2 to 5 until 
every cell in the bank has been a “home” cell.

6. Increment the bank address from minimum to maximum and re-run steps 1 to 6.

7. Repeat steps 1.) to 6.) with inverted data.

Test Time
The time required for the memory BIST controller to test your design using the LVGalRow 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

AddressRegisterB
The AddressRegisterB segments are configured to count each of the segments individually 
where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed.

• The bank address segment Z counts when instructed.
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DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each column. That is, the logical data pattern 
applied is D for even columns and D for odd columns.

Algorithm Sequence
Table C-19 describes the LVGalRow algorithm sequence.

Table C-19. Description of LVGalRow Algorithm 
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0 - - min to max, fast 
row

WD Write Write background of D-data

1 - - - WD Write Write D-data to location 
addressed by 
AddressRegisterA.
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2 - - - RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - - AddressRegisterB
column address 
min to max

RD Read Read D-data from all colum
addresses in the same row 
using AddressRegisterB. 
When AddressRegisterB is 
equivalent to 
AddressRegisterA the read D
data is expected.
Branch back to Instruction 2
and repeat for all 
AddressRegisterB column 
addresses.

4 - - - - NoOperation Advance the row address by
one.

5 - - AddressRegisterA
min to max,
fast row

RDWD ReadModifyWrite Read D-data and write D-da
at the location addressed by 
AddressRegisterA.
Branch back to Instruction 2
and repeat for all 
AddressRegisterA row and 
column addresses.

6 - - min to max,
bank addresses

- NoOperation Increment the Bank Address
counting from min to max. 
Branch back to Instruction 0
and repeat the test for all ban
addresses.
After all bank addresses hav
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverte
write data sequencing an
expect data sequencing.

Table C-19. Description of LVGalRow Algorithm  (cont.)
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0 - Repeat 
#1

min to max,
fast row

WD Write Write background of D-data

1 - Repeat 
#1

- WD Write Write D-data to location 
addressed by 
AddressRegisterA.

2 - Repeat 
#1

- RD Read Read D-data to location 
addressed by 
AddressRegisterA.

3 - Repeat 
#1

AddressRegisterB
column address 
min to max

RD Read Read D-data from all colum
addresses in the same row 
using AddressRegisterB. 
When AddressRegisterB is 
equivalent to 
AddressRegisterA the read D
data is expected.
Branch back to Instruction 2
and repeat for all 
AddressRegisterB column 
addresses.

4 - Repeat 
#1

- - NoOperation Advance the row address by
one.

5 - Repeat 
#1

AddressRegisterA
min to max,
fast row

RDWD ReadModifyWrite Read D-data and write D-da
at the location addressed by 
AddressRegisterA.
Branch back to Instruction 2
and repeat for all 
AddressRegisterA row and 
column addresses.

Table C-19. Description of LVGalRow Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-9 illustrates the Algorithm wrapper for the example memory.

6 - Repeat 
#1

min to max,
bank addresses

- NoOperation Increment the Bank Address
counting from min to max. 
Branch back to Instruction 0
and repeat the test for all ban
addresses.
After all bank addresses hav
been accessed repeat phase 0
and 1 with inverted write an
expect data.

Table C-19. Description of LVGalRow Algorithm  (cont.)
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Figure C-9. LVGalRow Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVGalRow) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data: all_zero; 
         load_expect_data: all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (WRITE_BACKGROUND) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (WRITE_HOME_CELL) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_HOME_CELL) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            expect_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_AWAY_ROW) { 
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         operation_select : Read; 
         AddressCommands {
            address_select : select_b; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : data_reg; 
            address_a_equals_b : invert_expect_data;
         }
         branch_to_instruction : READ_HOME_CELL; 
         NextConditions { 
            y1_end_count : on; 
         } 
      } 
      Instruction (ADVANCE_AWAY_ROW_POINTER) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_b; 
            x1_address : increment; 
         }
         NextConditions { 
         } 
      } 
      Instruction (REWRITE_HOME_CELL_AND_ADVANCE) { 
         operation_select : Readmodifywrite; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
            expect_data : inverse_data_reg; 
         }
         branch_to_instruction : WRITE_HOME_CELL; 
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_a_copy_to_b; 
            z_address : increment; 
         }
         branch_to_instruction : WRITE_BACKGROUND; 
         NextConditions { 
            z_end_count : on; 
            RepeatLoopB { 
               branch_to_instruction: WRITE_BACKGROUND; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
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      } 
    } 
  }
}  

Fault Coverage
The faults detected by the LVGalRow algorithm are identified in Table C-1. Only coupling 
faults occurring in the same row are detected.

Specification
To test SRAMs using the LVGalRow algorithm, specify Algorithm LVGalRow in the memory 
TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related entry in 
the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVGalRow algorithm:

• Operations named Write, Read, ReadModifyWrite must exist or be mapped to another 
operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

• If the MemoryBist/Controller/a_equals_b_command_allowed property is set to off, the 
LVGalRow algorithm is not available.

LVCheckerboard1X1 Algorithm
The LVCheckerboard1X1 algorithm is a test algorithm that is available for loading into the 
memory controller to perform a 1X1 Checkerboard algorithm. 
The checkerboard 1x1 algorithm is described in Table C-20.

Test Time
The time required for the memory BIST controller to test your design using the 
LVCheckerboard1X1 algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.
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AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The column address segment Y1 counts when instructed.

• The row address segment X1 counts when instructed and a carry out from the Y1 
address segment is generated. A y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum OR.

o The Y1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted with each column and with each row. That is the 
logical data pattern applied is:

• D when column address bit 0 = 1'b0 and row address bit 0 = 1'b0 

• D when column address bit 0 = 1'b1 and row address bit 0 = 1'b0 

• D when column address bit 0 = 1'b0 and row address bit 0 = 1'b1 

• D when column address bit 0 = 1'b1 and row address bit 0 = 1'b1 

Algorithm Sequence
Table C-20 describes the LVCheckerboard1X1 algorithm sequence.

Table C-20. Description of LVCheckerboard1X1 Algorithm 
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0 0 - - min to max, 
fast row

WD Write Write 1X1 checkerboard D-data
background.

1 1 - - min to max, 
fast row

RD Read Read 1x1 checkerboard D-data.
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Example Algorithm Wrapper
Figure C-10 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentCheckerboard1x1FastX and TessentCheckerboard1x1FastY), that have 
been optimized to eliminate redundant operations, are also available in the lib/technology/
memory_bist directory of the tool tree. These algorithms run slightly faster, but diagnosis needs 
to be performed in two steps as explained in the “Diagnosis Considerations” section.

2 5 - - min to max, 
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 and
repeat the test for all bank 
addresses.
After all bank addresses have 
been accessed branch to 
instruction 0 and repeat one time
as follows with RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted 
write data sequencing and 
expect data sequencing.

3 0 Repeat 
#1

- min to max, 
fast row

WD Write Write 1X1 checkerboard D-data
background.

4 1 Repeat 
#1

- min to max, 
fast row

RD Read Read 1x1 checkerboard D-data.

5 5 Repeat 
#1

- min to max,
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 and
repeat the test for all bank 
addresses.

Table C-20. Description of LVCheckerboard1X1 Algorithm  (cont.)
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Figure C-10. LVCheckerboard1X1 Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVCheckerboard1X1){ 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            x1_carry_in : y1_carry_out; 
            y1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         InvertDataWithRowBit: r[0];
         InvertDataWithColumnBit: c[0];
      } 
   } 
   MicroProgram { 
      Instruction (W_1X1_CHECKERBOARD) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
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      Instruction (R_1X1_CHECKERBOARD) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
         }
         branch_to_instruction : W_1X1_CHECKERBOARD;
         NextConditions { 
            z_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction: W_1X1_CHECKERBOARD; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  }
} 

Fault Coverage
The faults detected by the LVCheckerboard1X1 algorithm are identified in Table C-1. Stuck-at 
faults are detected correctly when there are no address decoder faults.

Specification
To test SRAMs using the LVCheckerboard1X1 algorithm, specify Algorithm 
LVCheckerboard1X1 in the memory TCD file or the Controller(id)/AdvancedOptions of the 
DftSpecification or the related entry in the DefaultsSpecification.
Tessent™ MemoryBIST User’s Manual, v2022.4732

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



MemoryBIST Algorithms
LVCheckerboard4X4 Algorithm
Usage Conditions
The following usage conditions apply to the LVCheckerboard1X1 algorithm:

• The LVCheckerboard1X1 algorithm is only available if the memory controller is testing 
a memory with at least 1 row address bit and 1 column address bit. For memories that 
utilize only row address, the SMarchCHKB, SMarchCHKBci, SMarchCHKBcil and 
SMarchCHKBvcd algorithms can be used.

• Operations named Write, ReadModifyWrite, and Read must exist or be mapped to 
another operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

LVCheckerboard4X4 Algorithm
The LVCheckerboard4X4 algorithm is a test algorithm that is available for loading into the 
memory controller to perform a 4X4 Checkerboard algorithm. 
The checkerboard 4x4 algorithm is described in Table C-21.

Test Time
The time required for the memory BIST controller to test your design using the 
LVCheckerboard4X4 algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The column address segment Y1 counts when instructed.

• The row address segment X1 counts when instructed and a carry out from the Y1 
address segment is generated. A y1_carry_out is generated when:

o The Y1 address segment is incrementing and has reached the maximum OR.
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o The Y1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

The logical data pattern applied is inverted after every two columns and every two row. That is, 
the logical data pattern applied is:

• D when column address bit 1 = 1'b0 and row address bit 1 = 1'b0 

• D when column address bit 1 = 1'b1 and row address bit 1 = 1'b0 

• D when column address bit 1 = 1'b0 and row address bit 1 = 1'b1 

• D when column address bit 1 = 1'b1 and row address bit 1 = 1'b1 

Algorithm Sequence
Table C-21 describes the LVCheckerboard4X4 algorithm sequence.

Table C-21. Description of LVCheckerboard4X4 Algorithm 
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0 0 - - min to max, 
fast row

WD Write Write 4X4 checkerboard D-data
background.

1 1 - - min to max, 
fast row

RD Read Read 4X4 checkerboard D-data

2 5 - - min to max, 
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.
After all bank addresses have 
been accessed branch to 
instruction 0 and repeat one 
time as follows with 
RepeatLoopB:

• Repeat #1 - repeat 
instructions with inverted 
write data sequencing and 
expect data sequencing.
Tessent™ MemoryBIST User’s Manual, v2022.4734

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



MemoryBIST Algorithms
LVCheckerboard4X4 Algorithm

 

.

Example Algorithm Wrapper
Figure C-11 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentCheckerboard4x4FastX and TessentCheckerboard4x4FastY), that have 
been optimized to eliminate redundant operations, are also available in the lib/technology/
memory_bist directory of the tool tree. These algorithms run slightly faster, but diagnosis needs 
to be performed in two steps as explained in the “Diagnosis Considerations” section.

3 0 Repeat 
#1

- min to max, 
fast row

WD Write Write 4X4 checkerboard D-data
background.

4 1 Repeat 
#1

- min to max, 
fast row

RD Read Read 4X4 checkerboard D-data

5 5 Repeat 
#1

- min to max, 
bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
and repeat the test for all bank 
addresses.

Table C-21. Description of LVCheckerboard4X4 Algorithm  (cont.)
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Figure C-11. LVCheckerboard4X4 Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVCheckerboard4X4){ 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            x1_carry_in : y1_carry_out; 
            y1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         invert_data_with_row_bit   : r[1];
         invert_data_with_column_bit: c[1];
      } 
   } 
   MicroProgram { 
      Instruction (W_4X4_CHECKERBOARD) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
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      Instruction (R_4X4_CHECKERBOARD) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            expect_data : zero; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : Nooperation; 
         AddressCommands {
            address_select : select_a; 
            z_address : increment; 
         }
         branch_to_instruction : W_4X4_CHECKERBOARD;
         NextConditions { 
            z_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction: W_4X4_CHECKERBOARD; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  }
} 

Fault Coverage
The faults detected by the LVCheckerboard4X4 algorithm are identified in Table C-1. Stuck-at 
faults are detected correctly when there are no address decoder faults.

Specification
To test SRAMs using the LVCheckerboard4X4 algorithm, specify Algorithm 
LVCheckerboard4X4 in the memory TCD file or the Controller(id)/AdvancedOptions of the 
DftSpecification or the related entry in the DefaultsSpecification.
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Usage Conditions
The following usage conditions apply to the LVCheckerboard4X4 algorithm:

• The LVCheckerboard4X4 algorithm is only available if the memory controller is testing 
a memory with at least 2 row address bits and 2 column address bits. Memories with at 
least 1 row and 1 column address bit can utilize the LVCheckerboard1X1 algorithm as 
an alternative. Memories with only row address bits can utilize the SMarchCHKB, 
SMarchCHKBci, SMarchCHKBcil and SMarchCHKBvcd algorithms.

• Operations named Write, ReadModifyWrite, and Read must exist or be mapped to 
another operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

• If the max_data_inversion_address_bit_index property is set to 0, the 
LVCheckerboard4X4 algorithm is not available.

LVWalkingPat Algorithm
The LVWalkingPat algorithm is a test algorithm that is available for loading into the memory 
controller to perform a walking pattern algorithm. 
The LVWalkingPat algorithm is described in Table C-22.

Test Time
The time required for the memory BIST controller to test your design using the LVWalkingPat 
algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.
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• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.

AddressRegisterB
The AddressRegisterB segments are configured to identical to AddressRegisterA.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

Algorithm Sequence
Table C-22 describes the LVWalkingPat algorithm sequence.

Table C-22. Description of LVWalkingPat Algorithm 
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0 - - min to max, fast 
row

WD Write Write background of D-data.

1 - - - WD Write Write D-data to location addre
by AddressRegisterA.

2 - - AddressRegisterB 
min to max,
fast row

RD Read Read D-data from the locatio
addressed by AddressRegiste
Read D-data when 
AddressRegisterB equal 
AddressRegisterA.

3 - - AddressRegisterB 
min to max, fast 
row

RDWD ReadModifyWrite Read D-data and Write D-dat
the location addressed by 
AddressRegisterA. 
Branch back to Instruction 1 
repeat for all AddressRegiste
row and column addresses.
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4 - - min to max, bank 
addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
repeat the test for all bank 
addresses.
After all bank addresses have
accessed branch to instruction
and repeat one time as follow
with RepeatLoopB:

• Repeat #1 - repeat instruc
with inverted write data 
sequencing and expect da
sequencing.

0 - Repeat 
#1

min to max, fast 
row

WD Write Write background of D-data.

1 - Repeat 
#1

- WD Write Write D-data to location addre
by AddressRegisterA.

2 - Repeat 
#1

AddressRegisterB 
min to max,
fast row

RD Read Read D-data from the locatio
addressed by AddressRegiste
Read D-data when 
AddressRegisterB equal 
AddressRegisterA.

3 - Repeat 
#1

AddressRegisterB 
min to max,
fast row

RDWD ReadModifyWrite Read D-data and Write D-dat
the location addressed by 
AddressRegisterA. 
Branch back to Instruction 1 
all AddressRegisterA row an
column addresses.

Table C-22. Description of LVWalkingPat Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-12 illustrates the Algorithm wrapper for the example memory. Two equivalent 
algorithms (TessentWalkingPatFastX and TessentWalkingPatFastY), that have been optimized 
to eliminate redundant operations, are also available in the lib/technology/memory_bist 
directory of the tool tree. These algorithms run slightly faster, but diagnosis needs to be 
performed in two steps as explained in the “Diagnosis Considerations” section.

4 - Repeat 
#1

min to max,
bank addresses

- NoOperation Increment the Bank Address 
counting from min to max. 
Branch back to Instruction 0 
repeat the test for all bank 
addresses.
After all bank addresses have
accessed repeat phase 0,1, an
with inverted write and expec
data.

Table C-22. Description of LVWalkingPat Algorithm  (cont.)
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Figure C-12. LVWalkingPat Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVWalkingPat) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
         AddressRegisterB { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data: all_zero; 
         load_expect_data: all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (WRITE_BACKGROUND) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (WRITE_HOME_CELL) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_AWAY_CELL) { 
         operation_select : Read; 
         AddressCommands {
            address_select : select_b; 
            x1_address : increment; 
            y1_address : increment; 
         }
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         DataCommands { 
            expect_data : data_reg; 
            address_a_equals_b : invert_expect_data; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (REWRITE_HOME_CELL_AND_ADVANCE) { 
         operation_select : ReadModifyWrite; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
            expect_data : inverse_data_reg; 
         }
         branch_to_instruction : WRITE_HOME_CELL; 
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : NoOperation; 
            address_select : select_a_copy_to_b;
            z_address : increment; 
         branch_to_instruction : WRITE_BACKGROUND; 
         NextConditions { 
            z_end_count : on; 
            RepeatLoopB { 
               branch_to_instruction: WRITE_BACKGROUND; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  }
} 

Fault Coverage
The faults detected by the LVWalkingPat algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVWalkingPat algorithm, specify Algorithm LVWalkingPat in the 
memory TCD file or the Controller(id)/AdvancedOptions of the DftSpecification or the related 
entry in the DefaultsSpecification.
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Usage Conditions
The following usage conditions apply to the LVWalkingPat algorithm:

• Operations named Write, Read, ReadModifyWrite must exist or be mapped to another 
operation in OperationSet of the memory TCD file.

• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be greater than or 
equal to three.

• If the a_equals_b_command_allowed property is set to off, the LVWalkingPat 
algorithm is not available.

LVBitSurroundDisturb Algorithm
The LVBitSurroundDisturb algorithm is a test algorithm that is available for loading into the 
memory controller to perform a bit surround disturb algorithm. 
The LVBitSurroundDisturb algorithm is described in Table C-23.

Test Time
The time required for the memory BIST controller to test your design using the 
LVBitSurroundDisturb algorithm is outlined in Table C-2. 

TestRegisterSetup
The test register setup describes the controller test register values to be initialized for the 
address and data prior to execution of the algorithm.

AddressRegisterA
The AddressRegisterA segments are configured to sequence the address counting with fast rows 
as follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed and a carry out from the X1 
address segment is generated. An x1_carry_out is generated when:

o The X1 address segment is incrementing and has reached the maximum OR.

o The X1 address segment is decrementing and has reached the minimum.

• The bank address segment Z counts when instructed.
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• Initial value of a AddressRegisterA is Z = 0, Y = 0, X = 0.

AddressRegisterB
The AddressRegisterB segments are configured to independently count each address segment as 
follows:

where:

• The row address segment X1 counts when instructed.

• The column address segment Y1 counts when instructed.

• The bank address segment Z counts when instructed.

• Initial value of a AddressRegisterB is: Z = 0, Y = 0, X = 0.

DataRegister
The logical data pattern D is loaded into both the write and expect data registers and is a word of 
all zeroes.

CounterA EndCount Register
The Counter A EndCount register is loaded with the binary equivalent to the decimal value ‘1’.

Algorithm Sequence
Table C-23 describes the LVBitSurroundDisturb algorithm sequence.

Table C-23. Description of LVBitSurroundDisturb Algorithm 
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0 - - min to max, fast 
row

WD Write Write background of D-data.

1 - - - - NoOperation Offset AddressRegisterB by 
decrementing one Row Address
decrementing one Column Add
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2 - - AddressRegisterB,
increment column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB 
column address by one.

3 - - AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 - - AddressRegisterB,
increment row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB ro
address by one.

5 - - AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 - Repeat 
#1

AddressRegisterB,
decrement column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB 
column address by one.

3 - Repeat 
#1

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 - Repeat 
#1

AddressRegisterB, 
decrement row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB r
address by one.

5 - Repeat 
#1

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counter co
from zero to CounterA endcoun
(twice).
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 - Repeat 
#2

AddressRegisterB,
increment column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB 
column address by one.

3 - Repeat 
#2

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 - Repeat 
#2

AddressRegisterB,
increment row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB ro
address by one.

5 - Repeat 
#2

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 - Repeat 
#3

AddressRegisterB,
decrement the 
column address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB 
column address by one.

3 - Repeat 
#3

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 - Repeat 
#3

AddressRegisterB,
decrement the row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB r
address by one.

5 - Repeat 
#3

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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6 - - Address RegisterA, 
increment min to 
max, fast rows

- NoOperation Increment AddressRegisterA an
copy the result to AddressRegis
Branch back to Instruction 1 an
run phases 1 through 5 for all 
AddressRegisterA row and colu
addresses.

7 - - Address RegisterA, 
bank addresses, 
min to max

- NoOperation Increment the bank address for 
AddressRegisterA and copy the
result to AddressRegisterB.
Branch back to Instruction 0 an
run phases 1 through 7 for all b
addresses.
Repeat instructions 0-7 once as
follows with RepeatLoopA:

• Repeat #1 - branch to instru
0 and repeat instructions wi
inverted the write and expec
data sequencing

0 Repeat 
#1

- min to max, fast 
row

WD Write Write background of D-data.

1 Repeat 
#1

- - - NoOperation Offset AddressRegisterB by 
decrementing one Row Address
decrementing one Column Add

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
In

st
ru

ct
io

n 
#

R
ep

ea
t

Lo
op

A
 

R
ep

ea
t

Lo
op

B 

A
dd

re
ss

 
Se

qu
en

ce

Se
qu

en
ce

O
pe

ra
tio

n

D
es

cr
ip

tio
n

Tessent™ MemoryBIST User’s Manual, v2022.4750

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



MemoryBIST Algorithms
LVBitSurroundDisturb Algorithm

2
.

. 

d 
om 
ice).

.
w 

. 

d 
om 
ice).

es 

ction 
th 
cing
ction 
th 

tion 
th 
ite 

Ph
as

e

2 Repeat 
#1

- AddressRegisterB,
increment column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB 
column address by one.

3 Repeat 
#1

- AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 Repeat 
#1

- AddressRegisterB,
increment row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB ro
address by one.

5 Repeat 
#1

- AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 Repeat 
#1

Repeat 
#1

AddressRegisterB, 
decrement column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB 
column address by one.

3 Repeat 
#1

Repeat 
#1

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to counterA endcount (twi

4 Repeat 
#1

Repeat 
#1

AddressRegisterB,
decrement row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB r
address by one.

5 Repeat 
#1

Repeat 
#1

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 Repeat 
#1

Repeat 
#2

AddressRegisterB,
increment column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB 
column address by one.

3 Repeat 
#1

Repeat 
#2

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 Repeat 
#1

Repeat 
#2

AddressRegisterB,
increment row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Increment AddressRegisterB ro
address by one.

5 Repeat 
#1

Repeat 
#2

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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2 Repeat 
#1

Repeat 
#3

AddressRegisterB,
decrement column 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB 
column address by one.

3 Repeat 
#1

Repeat 
#3

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw

4 Repeat 
#1

Repeat 
#3

AddressRegisterB,
decrement row 
address

WD Write Write D-data at the location 
addressed by AddressRegisterB
Decrement AddressRegisterB r
address by one.

5 Repeat 
#1

Repeat 
#3

AddressRegisterA RD Read Read D-data at the location 
addressed by AddressRegisterA
Increment CounterA.
Branch back to Instruction 2 an
repeat until CounterA counts fr
zero to CounterA endcount (tw
Repeat instructions 2-5 three tim
as follows with RepeatLoopB:

• Repeat #1 - branch to instru
2 and repeat instructions wi
inverted the address sequen

• Repeat #2 - branch to instru
2 and repeat instructions wi
inverted the write data 
sequencing.

• Repeat #3 -branch to instruc
2 and repeat instructions wi
inverted the address and wr
data sequencing.

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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Example Algorithm Wrapper
Figure C-13 illustrates the Algorithm wrapper for the example memory.

6 Repeat 
#1

- Address RegisterA, 
increment min to 
max, fast rows

- NoOperation Increment AddressRegisterA an
copy the result to AddressRegis
Branch back to Instruction 1 an
run phases 1 through 5 for all 
AddressRegisterA row and colu
addresses.

7 Repeat 
#1

- Address RegisterA, 
bank addresses, 
min to max

- NoOperation Increment the bank address for 
AddressRegisterA and copy the
result to AddressRegisterB.
Branch back to Instruction 0 an
run phases 1 through 7 for all b
addresses.
Repeat instructions 0-7 once as
follows with RepeatLoopA:

• Repeat #1 - branch to instru
0 and repeat instructions wi
inverted the write and expec
data sequencing

Table C-23. Description of LVBitSurroundDisturb Algorithm  (cont.)
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Figure C-13. LVBitSurroundDisturb Example Algorithm Wrapper

MemoryOperationsSpecification {
  Algorithm (LVBitSurroundDisturb) { 
   TestRegisterSetup { 
      operation_set_select : Sync; 
      LoadCounterA_EndCount : 1;
      AddressGenerator { 
         AddressRegisterA { 
            z_carry_in : none; 
            y1_carry_in : x1_carry_out; 
            x1_carry_in : none; 
         } 
      } 
      DataGenerator { 
         load_write_data: all_zero; 
         load_expect_data: all_zero; 
      } 
   } 
   MicroProgram { 
      Instruction (WRITE_BACKGROUND) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_a; 
            x1_address : increment; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : data_reg; 
         }
         NextConditions { 
            x1_end_count : on; 
            y1_end_count : on; 
         } 
      } 
      Instruction (OFFSET_AWAY_CELL) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : select_b; 
            x1_address : decrement; 
            y1_address : decrement; 
         }
         NextConditions { 
         } 
      } 
      Instruction (WRITE_AWAY_CELL1) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_b; 
            y1_address : increment; 
         }
         DataCommands { 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
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      Instruction (READ_HOME_CELL1) { 
         operation_select : Read; 
         CounterCommands {
            counter_a : increment; 
         }
         AddressCommands {
            address_select : select_a; 
         }
         DataCommands { 
            expect_data : data_reg; 
         }
         branch_to_instruction : WRITE_AWAY_CELL1;
         NextConditions { 
            counter_a_end_count : on; 
         } 
      } 
      Instruction (WRITE_AWAY_CELL2) { 
         operation_select : Write; 
         AddressCommands {
            address_select : select_b; 
            x1_address : increment; 
         }
         DataCommands { 
            write_data : inverse_data_reg; 
         }
         NextConditions { 
         } 
      } 
      Instruction (READ_HOME_CELL2) { 
         operation_select : read; 
         CounterCommands {
            counter_a : increment; 
         }
         AddressCommands {
            address_select : select_a;
         DataCommands { 
            expect_data : data_reg; 
         }
         branch_to_instruction : WRITE_AWAY_CELL2;
         NextConditions { 
            counter_a_end_count : on; 
            RepeatLoopB { 
               branch_to_instruction: WRITE_AWAY_CELL1; 
               Repeat1 {
                  enable : on; 
                  address_sequence : inverse; 
               } 
               Repeat2 {
                  enable : on; 
                  write_data_sequence : inverse; 
               } 
               Repeat3 {
                  enable : on; 
                  address_sequence : inverse; 
                  write_data_sequence : inverse; 
               } 
            } 
         } 
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      } 
      Instruction (MOVE_HOME_CELL) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : Select_A_Copy_To_B; 
            x1_address : increment; 
            y1_address : increment; 
         }
         branch_to_instruction : OFFSET_AWAY_CELL; 
         NextConditions { 
            x1_end_count: on; 
            y1_end_count: on; 
         } 
      } 
      Instruction (GOTO_NEXT_BANKADDRESS) { 
         operation_select : NoOperation; 
         AddressCommands {
            address_select : select_a_copy_to_b; 
            z_address : increment; 
         }
         branch_to_instruction : WRITE_BACKGROUND; 
         NextConditions { 
            z_end_count : on; 
            RepeatLoopA { 
               branch_to_instruction: WRITE_BACKGROUND; 
               Repeat1 {
                  enable : on; 
                  write_data_sequence: inverse; 
                  expect_data_sequence: inverse; 
               } 
            } 
         } 
      } 
    } 
  }
} 

Fault Coverage
The faults detected by the LVBitSurroundDisturb algorithm are identified in Table C-1.

Specification
To test SRAMs using the LVBitSurroundDisturb algorithm, specify Algorithm 
LVBitSurroundDisturb in the memory TCD file or the Controller(id)/AdvancedOptions of the 
DftSpecification or the related entry in the DefaultsSpecification.

Usage Conditions
The following usage conditions apply to the LVBitSurroundDisturb algorithm:

• Operations named Write, Read, ReadModifyWrite must exist or be mapped to another 
operation in OperationSet of the memory TCD file.
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• For soft programmable controller usage, the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions/soft_instruction_count property must be set to 8 if the Z 
address bank is defined, otherwise, it should be 7.
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Appendix D
Memory Fault Types

This appendix describes the various memory fault models that have been developed to represent 
the effects of common memory defect mechanisms. This appendix contains the following 
information for each fault model:

• A general description of the fault behavior

• The test sequence needed to detect the fault

• Test algorithms provided by membistGenerate that cover the fault

This appendix describes the following fault types:

Address Decoder Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Bit/Group/Global Write Enable Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Access Transistor Current Leakage Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Data Retention Faults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Data Path Shorts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Destructive Read Faults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Dynamic Coupling Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
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Address Decoder Faults
This model encompasses faults in the address decoder logic. Three different faulty behaviors 
are possible:

• ADa: a certain address results in no cell being accessed.

• ADb: a certain address simultaneously accesses multiple cells.

• ADc: a certain cell can be accessed by multiple addresses.

It has been shown that the above address decoder faults can in fact be mapped to faults in the 
memory cell array. Therefore covering the memory cell array faults results in these faults also 
being covered.

Detection Requirements
All March style tests detect an address decoder fault.

Algorithms
Address decoder faults are covered by the algorithms indicated in Table C-1.

Bit/Group/Global Write Enable Faults 
These defects on the write enable ports—bit, group, or global—are stuck-active and short 
between the bit/byte write enable ports and the global write enable ports.

Detection Requirements
Stuck active faults on Bit/Group/Global Write Enables are detected by first writing a data value 
to memory with these inputs set to their active value, followed by an attempt at writing the 
opposite data value with these inputs set to their inactive value, then verifying that the first data 
value is still present. 

Shorts between Bit/Group Write Enables are detected by performing write operations with 
inputs corresponding to an odd and even index of the bus set to opposite values. Similarly, 
shorts between Bit/Group Write Enables and the Global Write Enable are detected by 
performing write operations with the Bit/Group Write Enables and Global Write Enable set to 
opposite values.

Bit/Group/Global write enable faults are covered by the algorithms indicated in Table C-1.

Access Transistor Current Leakage Faults
Excessive leakage current from the access transistors into the bitlines and datalines can cause 
the content of a memory cell to be incorrectly read. The unusually high leakage current of the 
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Data Retention Faults
access transistors between the data lines, as well as the leakage current of the cells on the 
bitlines, could reduce the differential voltage between the bitlines that can cause the differential 
amplifier to read the cell incorrectly. The worst case is when all the cells on the column have the 
same value except the pivot cell.

Detection Requirements
Detecting the excessive leakage current faults can best be achieved by sensitizing the worst case 
condition, such as when the pivot cell holds a value “1” while all cells in the same column hold 
the opposite value “0”. The inverse is also true. 

The detection of leakage faults does not depend on the content of the cells in adjacent columns.

Algorithm
Access transistor current leakage faults are covered by the algorithms indicated in Table C-1.

Data Retention Faults
A data retention fault is one where a cell loses its contents over time without being accessed. 
This is primarily a DRAM cell fault mechanism, resulting from an abnormally large leakage 
current. Leakage can occur between a cell and the substrate or between two cells. A retention 
fault can also occur in SRAM cells as the result of a defective pull-up device in the cell.

Detection Requirements
These faults are detected by writing a physical checkerboard pattern in memory, pausing for 
some time, and then reading it back. The process is repeated for the inverse checkerboard 
pattern. The SMarchCHKB* library algorithms are automatically split into three test patterns to 
facilitate the application on the tester. Always use one of these algorithms as the default 
algorithm to enable this feature.

Algorithms
Data retention faults are covered by the algorithms indicated in Table C-1.

Data Path Shorts 
Data path shorts occur between even-numbered and odd-numbered elements of the data path, 
that are assumed to be physically adjacent. The shorts can be anywhere between the memory 
inputs or outputs, and the column multiplexers.

Detection Requirements
These faults are detected by writing and reading a checkerboard-like pattern (101010...) to all 
locations in the first row of every bank.
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Algorithm
The Data Path shorts are covered by the algorithms indicated in Table C-1.

Destructive Read Faults
This fault can cause the contents of a memory cell to be changed during a read access. However, 
the value read after a first read access could be the correct value. This fault can occur as a result 
of a resistive defect in the pull-down path of a memory cell, for example. 
This fault can also be called a deceptive destructive read fault. 

Detection Requirements
To detect a destructive read fault, the cell under test must be initialized and then read multiple 
times in consecutive clock cycles. The minimum number of reads is two. The sequence must be 
repeated for both logic 1 and logic 0. Siemens EDA library algorithms use the Read operation to 
detect this fault, for which the default number of reads is two. However, some memories may 
require the number of reads to be increased, which is easily done by customizing the Read 
operation.

An example is shown below, where the original operation is augmented by four cycles. Note 
that the number of additional strobes should be kept to a minimum to avoid slowing down the 
diagnosis process because of the multiple identical failures being reported. In fact, the last 
strobe can be omitted in all SMarch* algorithms as the fault is detected in a subsequent 
algorithm phase.

Operation (Read) {
  Cycle {
    select            : on;
    write_enable      : off;
    read_enable       : on;
    output_enable     : on;
    ConcurrentPortSignals {
      read_enable     : on;
    }
  }
  Cycle {
     strobe_data_out  : on;
  } 
  Cycle {      } 
  Cycle {      }
  Cycle {      }
  Cycle {
     strobe_data_out  : on;   // Optional
  }
}

Algorithm 
The destructive read fault defect is detected by the algorithms indicated in Table C-1.
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Dynamic Coupling Faults
In this fault model, reading or writing a logic 0 or logic 1 to one memory cell (the coupling cell) 
forces the value in another cell (the base cell) to either a logic 0 or logic 1. A total of four 
dynamic coupling faults are therefore possible between two cells:

• dyCFa: reading or writing a 0 in the coupling cell forces a 0 in the base cell.

• dyCFb: reading or writing a 0 in the coupling cell forces a 1 in the base cell.

• dyCFc: reading or writing a 1 in the coupling cell forces a 0 in the base cell.

• dyCFd: reading or writing a 1 in the coupling cell forces a 1 in the base cell.

The two coupled cells can appear anywhere in the memory array.

Detection Requirements
To detect a dyCFa fault, the following sequence of events must occur:

1. The base cell must be storing a logic 1 and the coupling cell a logic 0.

2. The coupling cell must be read or a logic 0 value written to it.

3. The base cell must be read before any value is written to it.

To detect a dyCFb fault, the following sequence of events must occur:

1. Both the base and coupling cells must be storing a logic 0.

2. The coupling cell must be read or a logic 0 value written to it.

3. The base cell must be read before any value is written to it.

To detect a dyCFc fault, the following sequence of events must occur:

1. Both the base and coupling cells must be storing a logic 1.

2. The coupling cell must be read or a logic 1 value written to it.

3. The base cell must be read before any value is written to it.

To detect a dyCFd fault, the following sequence of events must occur:

1. The base cell must be storing a logic 0 and the coupling cell a logic 1.

2. The coupling cell must be read or a logic 1 value written to it.

3. The base cell must be read before any value is written to it.

Algorithms
Dynamic coupling faults are covered by the algorithms indicated in Table C-1.
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Idempotent Coupling Faults
In this fault model, a logic 0 to logic 1 or logic 1 to logic 0 transition in one memory cell (the 
coupling cell) forces the value in another cell (the base cell) to either a logic 0 or logic 1. A total 
of four idempotent coupling faults are therefore possible between two cells:

• IdCFa: a 0 to 1 transition in the coupling cell forces a 0 in the base cell.

• IdCFb: a 0 to 1 transition in the coupling cell forces a 1 in the base cell.

• IdCFc: a 1 to 0 transition in the coupling cell forces a 0 in the base cell.

• IdCFd: a 1 to 0 transition in the coupling cell forces a 1 in the base cell.

The two coupled cells can appear anywhere in the memory array.

Detection Requirements
To detect an IdCFa fault, the following sequence of events must occur:

1. The base cell must be storing a logic 1 and the coupling cell a logic 0.

2. A logic 1 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

To detect an IdCFb fault, the following sequence of events must occur:

1. Both the base and coupling cells must be storing a logic 0.

2. A logic 1 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

To detect an IdCFc fault, the following sequence of events must occur:

1. Both the base and coupling cells must be storing a logic 1.

2. A logic 0 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

To detect an IdCFd fault, the following sequence of events must occur:

1. The base cell must be storing a logic 0 and the coupling cell a logic 1.

2. A logic 0 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

Algorithms
Idempotent coupling faults are covered by the algorithms indicated in Table C-1.
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Inversion Coupling Faults
In this fault model, a logic 0 to logic 1 or logic 1 to logic 0 transition in one memory cell (the 
coupling cell) inverts the value in another cell (the base cell). Two inversion coupling faults are 
therefore possible between two cells:

• InCFa: a 0 to 1 transition in the coupling cell inverts the value in the base cell.

• InCFb: a 1 to 0 transition in the coupling cell inverts the value in the base cell.

The two coupled cells can appear anywhere in the memory array.

Note that for each of the above faults, both inversions of the base cell must occur. If only one 
occurs, then the fault reduces to one of the idempotent coupling faults.

Detection Requirements
To detect an InCFa fault, the following sequence of events must occur:

1. The coupling cell must be storing a logic 0 and the value stored in the base cell must be 
known.

2. A logic 1 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

To detect an InCFb fault, the following sequence of events must occur:

1. The coupling cell must be storing a logic 1 and the value stored in the base cell must be 
known.

2. A logic 0 must be written to the coupling cell.

3. The base cell must be read before any value is written to it.

Algorithms
Inversion coupling faults are covered by the algorithms indicated in Table C-1.

Memory Select Faults
This defect is a result of an internal memory select stuck active fault. 

Detection Requirements
These faults are detected by the following sequence:

1. Write 1 to a first cell

2. Write 0 to a second cell in the same column
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Multi-Port Interference Faults
3. read 1 from the first cell

4. read 0 from the second cell

5. Attempt to read 1 from the first cell, while de-asserting the select input. The result of the 
read operation is 0 for a fault-free memory.

6. Attempt to write 0 to the first cell, while de-asserting the select input

7. Read 1 from the first cell

8. Attempt to read 0 from the second cell, while de-asserting the select input. The result of 
the read operation is 1 for a fault-free memory.

9. Attempt to write 1 to the second cell, while de-asserting the select input

10. Read 0 from the second cell

This sequence is applied to the first two rows of every bank. The sequence assumes that the 
memory holds the last value read while asserting the select input. If this assumption is not true, 
MemoryHoldWithInactiveSelect must be set to off in the memory library file to disable the test.

Algorithm 
The memory select stuck active defect is detected by the algorithms indicated in Table C-1.

Multi-Port Interference Faults
This defect is primarily a result of high resistance ground connections to one of the N-channel 
source terminals in multi-port memories.

Detection Requirements
This type of fault can be detected by turning ON all access transistors connected to the drain of 
the N-channel and observing the result of the read on one of the ports. This can be done by 
reading the same row simultaneously from both ports. This maximizes the chances to detect the 
defect because the N-channel needs to transfer more charge from the bit lines. 

Because single-port and multi-port memories can be tested during the same step, the same 
algorithm can be used. The only difference is that read operations at specific locations must 
occur concurrently on the inactive port while the algorithm is applied to the active port. The 
Siemens EDA library operation sets enable such operations, called shadow or concurrent 
operations, on inactive ports of multi-port memories. The detection of defective ground 
connections is maximized in the same steps as for the single-port bitline coupling faults.

Algorithm
Multi-port interference faults are covered by the algorithms indicated in Table C-1.
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Multiport Synchronous Bitline Coupling Faults
This defect is mainly a result of slightly slower access transistors on one port. This causes the 
data read from one port to be coupled to the other ports’ bitlines.

Detection Requirements
These faults are primarily detected by performing a read and a write simultaneously from 
different ports, in the same column, using opposite data values. The data values in the cells 
adjacent to the one being read has secondary detection effect.

Algorithm
Multi-port synchronous bitline coupling faults are covered by the algorithms indicated in 
Table C-1.

Neighborhood Pattern Sensitive Faults
A neighborhood pattern sensitive fault deals with memory faults that occur due to specific 
patterns in the neighborhood. The definition of neighborhood is not unique. Different 
neighborhoods are considered for specific faults in the Siemens EDA library algorithms.
A few examples of neighborhoods:

• single-port bitline coupling faults — The two cells adjacent to the cell under test 
located in the same row.

• Access transistor leakage current faults — All cells in the same column as the cell 
under test.

Custom algorithms might be required to test faults that need to consider different 
neighborhoods.

Parametric Faults
Parametric faults can be classified into DC and AC parametric faults. DC parametric faults 
encompass time independent voltage/current abnormalities. These faults include:

• high power consumption

• high current leakage

• high or low input voltage thresholds

AC parametric faults encompass time dependent voltage abnormalities. These faults include:

• output slow to rise or slow to fall times

• large input setup and hold times
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• large output delay times

• large memory cycle times

Detection Requirements
Applying test patterns at system cycle speeds results in the detection of the AC parametric 
faults. This is one of the great advantages of the memory BIST approach. Detecting other 
defects, such as current leakage within a cell causing data retention faults, requires an 
application of pauses at specific points in the algorithm.

Read Disturb Faults
This model encompasses defects that cause a memory cell to change value (logic 0 or logic 1) 
when another cell is read. This normal read operation on one memory cell causes another cell to 
change value (logic 0 to logic 1 or logic 1 to logic 0). 
Some definitions of read disturb faults found in literature also include the case where the 
aggressor and victim cells are the same. In Tessent MemoryBIST, these faults are defined as 
Destructive Read Faults.

Detection Requirements
These faults are typically detected by the same algorithms used to detect inversion coupling, as 
the write operation at the aggressor cell is usually preceded by a read operation.

Algorithms
Read disturb faults are covered by the algorithms indicated in Table C-1.

Read Enable Faults 
These defects are a result of stuck-active faults of the memory read enable signal, including 
paths internal to the memory. 

Detection Requirements
These faults are detected by the following sequence:

1. Write 1 to a first cell

2. Write 0 to a second cell in the same column

3. Read 1 from the first cell

4. Attempt to read 0 from the second cell, while de-asserting the read enable input. The 
result of the read operation is 1 for a fault-free memory.
Tessent™ MemoryBIST User’s Manual, v2022.4770

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Memory Fault Types
Single Port Bitline Coupling Faults
5. Read 0 from the second cell

6. Attempt to read 1 from the first cell, while de-asserting the read enable input. The result 
of the read operation is 0 for a fault-free memory.

This sequence is applied to the first two rows of every bank. The sequence assumes that the 
memory holds the last value read while asserting the read enable input. If not, 
DataHoldWithInactiveReadEnable must be set to off in the memory library file to disable the 
test. 

Algorithm 
The read enable stuck active defects are detected by the algorithms indicated in Table C-1.

Single Port Bitline Coupling Faults
Signal coupling between bitlines of adjacent columns causes read errors when accessing cells 
with minor manufacturing defects. Worst-case coupling occurs when the data value of the two 
adjacent cells in the same row is chosen to interfere with the read operation. The data values 
depend on factors related to the memory layout namely bit grouping and cell orientation.

Detection Requirements
The fault is detected when reading the reference cell with adjacent cells containing specific 
values. All eight combinations of the three cells (reference and two neighbors) are applied, to 
take into account the mirroring of bit lines.

Algorithm
Single port bitline coupling faults are covered by the algorithms indicated in Table C-1.

Stuck-At Faults
In this model, a memory cell is permanently forced to a logic 0 (stuck-at-0 fault) or logic 1 
(stuck-at-1 fault) value, irrespective of any value written to the cell. This is the most common 
fault, but also the easiest to detect.

Detection Requirements
A logic 1 must be read from the cell under test to detect the stuck-at-0 fault while a logic 0 must 
be read to detect the stuck-at-1 fault.

Algorithms
Stuck-at faults are covered by the algorithms indicated in Table C-1.
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Stuck-Open Faults
In this model, a memory cell can’t be accessed. As an example, this could be due to an open 
word line.

Detection Requirements
Stuck-open faults are detected as stuck-at faults when the sense amplifier does not contain a 
data latch. When a data latch is present, the following sequence must be applied:

1. The cell under test must be storing a logic x (either 0 or 1)

2. The inverse logic value must be written into the cell

3. The cell must be read and the value compared

Algorithms
Stuck-open faults are covered by the algorithms indicated in Table C-1.

Transition Faults
In this model, a memory cell fails to undergo a transition from a logic 0 to a logic 1 value (up 
transition fault) or from a logic 1 to a logic 0 value (down transition fault). These faults are 
special cases of stuck-at faults because of the fact that once the non-faulty transition occurs, the 
faulty cell can no longer transition and hence manifests stuck-at behavior. 
In some cases, however, a coupling fault with another cell (see Idempotent Coupling Faults, 
Inversion Coupling Faults, and Dynamic Coupling Faults) can flip the value of the cell, thereby 
masking the stuck-at behavior. For this reason, transition faults must be considered separately 
from stuck-at faults.

Detection Requirements
To detect an up transition fault, the following sequence of events must occur:

1. The cell under test must be storing a logic 0.

2. A logic 1 must be written into the cell.

3. The cell must be read before a logic 0 is written to it.

To detect a down transition fault, the following sequence of events must occur:

1. The cell under test must be storing a logic 1.

2. A logic 0 must be written into the cell.

3. The cell must be read before a logic 1 is written to it.
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Algorithms
Transition faults are covered by the algorithms as indicated in Table C-1.

Write Disturb Faults
Write disturb faults cause a memory cell to change value when performing a non-transition 
write to this cell. Some definitions of write disturb faults found in literature also include the case 
where the aggressor and victim cells are different.
In Tessent MemoryBIST, these faults are defined as Inversion Coupling Faults or Idempotent 
Coupling Faults.

Detection Requirements
These faults are detected by writing a value to a cell, repeating this operation at least once, then 
reading the cell to verify that the correct value is present. This sequence must be repeated for 
both the logic 0 and logic 1 value.

All five algorithms of the SMarch* family, plus the LVMarchLA algorithm detect these faults. 
For cases where the write needs to be repeated more than once, the TessentHammerWriteFastX 
and TessentHammerReadFastY algorithms are required. These algorithms are available from 
the /lib/technology/memory_bist/algo directory in the release tree.

Algorithms
Write disturb faults are covered by the algorithms indicated in Table C-1.

Write Recovery Faults
A write recovery fault occurs when a value is read from a cell just after the opposite value has 
been written to a cell along the same column and the bitline precharge has not been performed 
correctly.
The resulting faulty behavior is that reading from cell A just after writing to cell B results in 
reading the value written to cell B.

Detection Requirements
To detect a write recovery fault, the following sequence of events must occur:

For a given column address:

1. Write 1 to a first cell in row address A

2. Write 0 to a second cell in row address B

3. Read 1 from the first cell
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4. Repeat steps 1-3 with different data values

Algorithms
Write recovery faults are covered by the algorithms indicated in Table C-1.
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Appendix E
Parallel Static Retention Testing

A large portion, if not the majority, of a complete memory test is spent on static retention 
testing. For chips containing several embedded SRAMs, performing the static retention test on 
all of the SRAMs in parallel or in groups of controllers is highly beneficial. This appendix 
describes how to accomplish this when the embedded SRAMs are tested by different memory 
BIST controllers or when they are tested sequentially within different memory BIST controller 
steps. This appendix also describes how to sequentially perform parallel static retention testing 
on groups of controllers. 
Before running parallel static retention testing (PSRT), we recommend that you first run BIST 
in HWDefault or RunTimeProg mode to provide the highest level of fault coverage. Then run 
the sub-phases of PSRT that specifically target testing of the cell retention time. When PSRT is 
enabled for a multi-port memory, only one R port and one W port or one RW port is enabled. In 
this case, PSRT does not run BIST on all ports. Performing PSRT from all ports is unnecessary; 
this only adds test time for the pause. Depending on the specified pause length, the additional 
test time could be significant and does not increase the coverage of the test.

Parallel Static Retention Testing Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Handling Multiple Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Sequence for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Sample PatternsSpecification Syntax for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . 777

Handling Memories Tested Sequentially . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
Testing Controllers in Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

Sequence for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Sample PatternsSpecification Syntax for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . 781

Parallel Static Retention Testing Limitations
Parallel Static Retention Testing is supported by the following library algorithms:

• SMarch

• SMarchCHKB

• SMarchCHKBci

• SMarchCHKBcil

• SMarchCHKBvcd
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Handling Multiple Controllers
The key to performing the static retention test in parallel to all SRAMs that are being tested by 
different memory BIST controllers is to synchronize the controllers. To accomplish this, the 
applicable library algorithms can be made to support three test sub-phases:

• start_to_pause — In this sub-phase, the controller loads a background pattern into all 
memories and stops. The background pattern is all zeros for the simple SMarch 
algorithm and a checkerboard pattern for the remaining algorithms.

• pause_to_pause — In this sub-phase, the controller reads the background pattern and 
loads an inverse background pattern into all memories and stops. The inverse 
background pattern is all ones for the simple SMarch and an inverse checkerboard 
pattern for the remaining algorithms.

• pause_to_end — In this sub-phase, the controller reads the inverse background pattern 
and exits.

Sequence for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Sample PatternsSpecification Syntax for Test Sub-Phases . . . . . . . . . . . . . . . . . . . . . . . 777

Sequence for Test Sub-Phases
You should apply only one of the test sub-phases at a time. Perform PSRT in the following 
sequence:

1. Enable all controllers in parallel and make them each run the start_to_pause sub-phase.

2. When all controllers complete Step 1, apply the first static retention test pause.

3. Enable all controllers in parallel and make them each run the pause_to_pause sub-phase.

4. When all controllers complete Step 3, apply the second static retention test pause.

5. Enable all controllers in parallel and make them each run the pause_to_end sub-phase.

Figure E-1 shows the sequence for applying the test sub-phases.
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Figure E-1. Parallel Static Retention Test Sequence

Sample PatternsSpecification Syntax for Test Sub-
Phases

Using PatternsSpecification, you can create a testbench that contains the proper sub-phase and 
retention pause sequences. 
The following is a sample that illustrates the sequence for the two-controller example in 
Figure E-1.

TestStep (0) { 
MemoryBist {

parallel_retention_time: 10ms;
Controller (A) {  
...  
} 
Controller (B) {  
...  
}

} 
} 
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When generating the pattern, process_patterns_specification automatically creates the three 
sub-phases and two retention pauses. The resulting pattern is equivalent to manually specifying 
the test sequence as shown in the following example:

TestStep (t1) {
MemoryBist { 

AdvancedOptions { 
retention_test_phase: start_to_pause; 
preserve_bist_inputs : on;

} 
Controller (A) {
}
Controller (B) { 
} 

}
}
ProcedureStep (p1) {

wait_time : 10ms;
} 
TestStep (t2) {

MemoryBist {
AdvancedOptions { 

retention_test_phase: pause_to_pause;
preserve_bist_inputs : on;

} 
Controller (A) { 
} 
Controller (B) { 
} 

}
}
ProcedureStep (p2) {

wait_time : 10ms;
} 
TestStep (t3) {

MemoryBist {
AdvancedOptions { 

retention_test_phase: pause_to_end;
} 
Controller (A) { 
} 
Controller (B) { 
}

} 
} 

Handling Memories Tested Sequentially
The three sub-phase approach, described in the “Handling Multiple Controllers” section, can 
also be used to provide a parallel static retention test of memories tested sequentially; that is, 
tested in different memory BIST controller steps. This approach is applicable because when a 
controller applies a given sub-phase, the controller applies the sub-phase within all steps before 
stopping.
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Assume, for example, that Ctrl A in Figure E-1 contains three steps. As shown in Figure E-1, 
when this controller is instructed to apply the sub-phase start_to_pause, the controller applies 
this sub-phase sequentially within each of its three steps before stopping. As a result, all 
memories in all three steps contain background patterns and are ready for the first static 
retention test pause.

You can deduce from the above scenario that a parallel static retention test can be applied to any 
combination of SRAMs tested by different controllers and in different steps within these 
controllers.
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Testing Controllers in Groups
PSRT also can be performed sequentially on subsets of controllers. This approach reduces the 
power consumption during PSRT by limiting the number of controllers that are executing at the 
same time. During PSRT, the controllers are organized into controller groups. All controllers 
that belong to the same controller group are run in parallel. 
The three sub-phases described in the “Handling Multiple Controllers” section are applied in the 
following sequence:

1. start_to_pause

2. pause_to_pause

3. pause_to_end

Within a test sub-phase, each controller group is enabled sequentially. All controllers in a group 
are instructed to apply the same sub-phase. When the last controller group completes execution, 
the next PSRT sub-phase is performed. The controller groups are enabled in the same sequence 
for all three sub-phases.

Sequence for Test Sub-Phases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Sample PatternsSpecification Syntax for Test Sub-Phases . . . . . . . . . . . . . . . . . . . . . . . 781

Sequence for Test Sub-Phases
The sequence for applying PSRT on four controllers organized into two controller groups is 
described in this section. Controllers A and B are in Group 1. Controllers C and D are in Group 
2.
PSRT is achieved using the following sequence shown in Figure E-2 and described below:

1. Enable Ctrl A and Ctrl B in parallel to run the start_to_pause sub-phase.

2. Enable Ctrl C and Ctrl D in parallel to run the start_to_pause sub-phase.

3. When Ctrl C and Ctrl D complete Step 2, apply the first static retention test pause.

4. Enable Ctrl A and Ctrl B in parallel to run the pause_to_pause sub-phase.

5. Enable Ctrl C and Ctrl D in parallel to run the pause_to_pause sub-phase.

6. When Ctrl C and Ctrl D complete Step 5, apply the second static retention test pause.

7. Enable Ctrl A and Ctrl B in parallel to run the pause_to_end sub-phase.

8. Enable Ctrl C and Ctrl D in parallel to run the pause_to_end sub-phase
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Figure E-2. Parallel Static Retention Test with Controller Groups

Sample PatternsSpecification Syntax for Test Sub-
Phases

Using PatternsSpecification, you can create a testbench that contains the sequence described in 
the previous section. 
The following sample illustrates the sequence for the four-controller example in Figure E-2:

TestStep (0) {
MemoryBist {

parallel_retention_time: 2ms; 
Controller (A) { 

parallel_retention_group: 1; 
} 
Controller (B) { 

parallel_retention_group: 1; 
} 
Controller (C) { 

parallel_retention_group: 2; 
} 
Controller (D) { 

parallel_retention_group: 2; 
} 

}
} 
 

The generated testbench always applies all three sub-phases, and the retention_test_phase 
property should not be specified. The same retention pause of 2ms is applied between sub-
phases. Each controller group consists of all controllers with the same group number.
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Note
The specified value for the parallel_retention_group property is a label for the controller 
group. The controller group execution order within a sub-phase is determined by the 

appearance order of the group numbers.
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Appendix F
Memory BIST Physical Mapping Examples

This appendix contains information about address data mapping in memory BIST and provides 
several examples.
This appendix covers the following topics:

Memory Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

Logical and Physical Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
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Memory Cores
Memory Cores
A memory core is built of memory cells that are arranged in one or more arrays (or blocks or 
banks). The arrays might further be divided into sub-arrays (or sub-blocks). 
A memory core contains w words of b bits wide each, which are physically configured in a 
matrix of nrow rows by ncol columns. Memory wordlines, each of them selecting a row of 
memory cells, are in the same direction as the rows. The bitlines are in the same direction as 
columns. The bitlines are used to write data to the memory cells and read data from them.

w x b = nrow x ncol

In a sample memory core, there are one or more words on each row. The number of columns is 
a whole multiple of the number of bits (b) per word (w). When there is more than one word per 
row, the corresponding bits from all the words on a row get multiplexed onto a memory’s 
dataline. For example, the 0th bit of all the words on the same row gets multiplexed onto Dout 0 
of the memory. 

The number of words per row is denoted as ncolmux (which is ncol / b). The w words are 
decoded by the nadd address inputs, where:

2nadd >= w > 2(nadd-1)

The address inputs are divided into nra row address inputs and nca column address inputs 
where:

2nra >= nrow > 2(nra-1)

2nca >= ncolmux > 2(nca-1)

Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

Example 1
Consider a 1kx32, 1-port memory, with 4:1 column multiplexing. This memory has the 
following:

w = 1024, b = 32, ncolmux = 4

Therefore,

nrow = w / ncolmux = 1024 / 4 = 256,  
ncol = b x ncolmux = 32 x 4 = 128, 
nadd = log2(w) = log2(1024) = 10,  
nra = log2(nrow) = log2(256) = 8, and 
nca = log2(ncolmux) = log2(4) =2. 
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Example 1
A simple architecture for this memory is presented in Figure F-1.

Figure F-1. Simple Architecture for the Memory in Example 1

The two-column address bits are denoted as C0 and C1, which are select lines for the column 
multiplexers.

Note
Only the data out signals are shown. Similarly, the data in lines get de-multiplexed onto the 
bit lines or columns using the column addresses.

To conclude, the following list summarizes the terms defined in this section:

• w = number of words in a memory, 

• b = number of bits in a word, 

• ncolmux = number of words per row = ncol / b,

• nrow = number of rows in memory array = w / ncolmux, 
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• ncol = number of columns in memory array = b x ncolmux,

• nadd = number of addresses <= log2w, 

• nra = number of row addresses <= log2nrow, and

• nca = number of column addresses <= log2ncolmux.

Note
For log2w, log2nrow, and log2ncolmux, when the value is not a whole number, round 

the value up to the next whole number.
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Logical and Physical Mapping
When looking externally at a memory, the words are stored consecutively with respect to the 
address values, and the data bits within each word are stored in the order of their sequential 
numbering. 
This arrangement is called logical mapping of a memory, which is illustrated in Figure F-2. 

Figure F-2. Logical Memory Cell Arrangement

In Figure F-2, the designators r, c, and d are defined as below:

• r# : Logical row address bit

• c# : Logical column address bit 

• d# : Logical data bit 

Note
The number of rows or columns are shown as a full power of 2, which is not the case 
for all memories.
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Logical and Physical Mapping
In many cases, the physical arrangement of memory cells does not correspond to the assumed 
logical arrangement, as a result of different memory design requirements. Some reasons for 
these differences include the following:

• To deal with small memory cells, memory designers sometimes fit the periphery cells in 
the pitch of more than one memory cell. For instance, they lay out sense amplifiers in the 
pitch of 4, 8, or more memory cells, so they place the corresponding bits of different 
words next to each other in the memory core, to be able to multiplex these 
corresponding bits onto one common sense-amplifier circuit.

• To balance the load on different address lines or (pre)decoded lines, memory designers 
sometimes scatter the wordlines or bitlines.

• To minimize the size of address and column decoders, as well as the length and hence 
propagation times of row and column select lines, memory arrays are typically divided 
into several sub-arrays.

• To increase the yield for larger memories, spare (redundant) rows or columns are often 
implemented, which typically disrupt the physical address sequence.

The Tessent MemoryBIST controller assumes the logical arrangement of cells when generating 
patterns, particularly the checkerboard patterns. To physically preserve the patterns, it becomes 
necessary to describe the mapping between the physical and logical cell arrangements. 

The differences between the logical and physical cell arrangements are typically because of a 
scrambling of the rows, columns, and data bit lines. This scrambling can be described by a 
logical transformation or mapping between the address and data signals required to access the 
logical memory cell arrangement and those signals required to provide the same data pattern in 
the physical memory cell arrangement.

To simplify, the goal is to start with a pattern corresponding to a logical address and data and 
then by logical operations, transform the addresses and the data to a state or value that places the 
same pattern in the corresponding physical location. For example, if the intention is to write a 
1010...10 pattern into the nth logical row and mth logical column, you need to describe the 
physical row and column address bits as a function of the logical row and column addresses in 
such a way that a 1010...10 pattern is written in the nth physical row and mth physical column.

The following examples illustrate this mapping:

Note
As mentioned before, the lowercase designators r, c, and d correspondingly denote the 
logical row address, column address, and the data bits. The uppercase designators R, C, and 

D denote the physical row address, column address, and data pins of the memory under test.

Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
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Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

Example 2
Consider the row address mapping example shown in the figure below.

Figure F-3. Row Address Mapping Example

The column on the left in Figure F-3(a) represents a logical row sequence of memory words 
where the bit values represented within each box correspond to the values for the address 
signals r2, r1 and r0, to access each row. The column on the right in Figure F-3(a) illustrates a 
typical scrambling of memory words within a column. As shown, every second pair of rows are 
flipped. 

To access each successive row in the column now requires that the generated address values 
correspond to the bit values shown within each word in the second column of Figure F-2. These 
represent the true physical address bit values represented by R2, R1 and R0. Therefore, to 
achieve the sequence you want, it is necessary to transform r2, r1 and r0 into R2, R1 and R0. 

Figure F-3 illustrates the transformation rather simply. A single XOR gate is needed to generate 
R0 from r0 and r1. The following simple equations express this transformation or mapping.
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R0 = r0 xor r1 
R1 = r1 
R2 = r2 
 

The corresponding memory library file syntax is as follows:

PhysicalAddressMap { 
   RowAddress[0] : r[0] xor r[1]; 
   RowAddress[1] : r[1]; 
   RowAddress[2] : r[2]; 
} 

Example 3
Consider a memory that has w words and each word is 3 bits wide. There are four words on each 
row of the memory array; therefore, two column address bits are illustrated. 
The arrangement of the memory columns and their addresses are depicted in Figure F-4. 
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Figure F-4. Column Address Mapping Example
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In Figure F-4, the 3 bits of each word on every row are broken apart and corresponding bits of 
each word are placed next to each other according to the column address mapping shown in the 
figure. To specify this data bit ordering, the Core/Memory wrapper requires a statement such as:

BitGrouping: 1;  
 

because each data bit is placed in the array by itself. The logical column address assumes a 
sequential order of the columns, as illustrated by the values for c1c0 on the topmost row above 
the memory array in Figure F-4. The following equations express the generation of column 
address pin values as a function of the logical column address bits, to physically achieve the 
wanted pattern:

C0 = c1 
C1 = c0 xor c1  
 

The corresponding memory library file syntax is as follows:

PhysicalAddressMap { 
   ColumnAddress[0] : c[1]; 
   ColumnAddress[1] : c[0] xor c[1]; 
} 

Note
In this example, a one-to-one logical to physical mapping is assumed for the row address 
bits and the states and sequence of the data bits.

The default value for the BitGrouping property is the number of bits in a word or b. So, for this 
example, when BitGrouping is not specified it defaults to 3. 

To further clarify the BitGrouping concept, consider the memory arrangement presented in 
Figure F-4. The memory of Figure F-4 is extended so that each word now has 6 bits, every 2 bits 
are placed next to each other. In this case, the following statement is in place:

BitGrouping: 2;

In Figure F-4, the multiplexers before the data output pins are drawn to better illustrate the 
column multiplexing.

Example 4
Consider a memory that has w words, each word 4 bits wide. 
Figure F-5 shows a small portion of the memory array with its data arrangement. 
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Figure F-5. Data Mapping Example

This data pattern is repeated throughout the entire array. Notice that unlike the sequential 
ordering of logical data bits, here the data bits are not placed in the array consecutively. In 
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addition, an inverted data value, denoted as Data, is written into half of the physical memory 
cells. The following equations express this data transformation:

D0 = d0 xor r1  
D2 = not d1 xor r1  
D1 = d2 xor r1  
D3 = not d3 xor r1 
 

The corresponding memory library file syntax is as follows:

PhysicalDataMap {
Data[0] : d[0] xor r[1];
Data[2] : not d[1] xor r[1];
Data[1] : d[2] xor r[1];
Data[3] : not d[3] xor r[1];

}

To obtain the equation for memory data pin 0 (D0), the logical data bit 0 (d0) can be mapped to 
D0 with one difference—when r1 is 1, the data bit value is flipped. Furthermore, D2, which is 
physically placed as the second column of the memory array, needs logical d1, but here data is 
flipped when r1 is 0. That is why the NOT of r1 XORed with d1 is used. A similar explanation is 
in place for D1 and D3. 

Now, consider the data arrangement for a portion of the memory array shown in Figure F-5. The 
first 4 columns of the array are the same as the array in Figure F-4, while columns 4-7 are the 
mirror image of columns 0-3 with respect to the vertical line. When the column address c0 is 1, 
the data arrangement is reversed. Hence, the equations above have been modified to express the 
data address pins for this memory as follows:

D0 = (d0 xor r1) xor c0 
D2 = (not d1 xor r1) xor c0 
D1 = (d2 xor r1) xor c0 
D3 = (not d3 xor r1) xor c0. 
 

The corresponding memory library file syntax is as follows:

PhysicalDataMap {
Data[0] : d[0] xor r[1] xor c[0];
Data[2] : not d[1] xor r[1] xor c[0];
Data[1] : d[2] xor r[1] xor c[0];
Data[3] : not d[3] xor r[1] xor c[0];

}

Example 5
Consider now the data mapping for the memory in the figure below. 
This example illustrates portions of four columns of a memory array with a BitGrouping of 1. 
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Going from one column to the other, data inverts when c0 is 1. Furthermore, the data pattern on 
each row is repeated while r6 is 0. From row 64 onwards, however, the data pattern is inverted 
for the columns with c0 equal to 0 because of bitline twist. Therefore, you can write the data 
mapping for D0 in this example as:

D0 = d0 xor c0 xor (r6 and not c0)

The corresponding memory library file syntax is as follows:

PhysicalDataMap { 
   Data[0] : d[0] xor c[0] xor (r[6] and not c[0]); 
} 
 

Figure F-6 only depicts a portion of the memory array to illustrate a data mapping using AND.
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Figure F-6. Data Mapping Example That Incorporates AND

You can express virtually all address mappings as a series of XOR based equations similar to 
those in Example 2 and Example 3. Furthermore, you can express virtually all data mappings as 
a series of XOR and AND based equations, as illustrated in Example 5. 

Note
You can use NOT for both types of mappings.
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To simplify your memory logical and physical address and data mappings, it is suggested that, 
after understanding your memory architecture, you divide the mapping task into three parts:

• Row Address Mapping

• Column Address Mapping

• Data Mapping

Handle each part independently, as illustrated in Examples 2 through 5. Try to express your 
memory configuration in tables similar to the illustrations in this document.

The memory library file assumes a one-to-one mapping when you do not specify address and 
data mapping. For the mapping syntax in the memory library file, refer to the following:

• PhysicalAddressMap

• PhysicalDataMap
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Appendix G
Complete Examples for Multi-Segment

Memory Repair

This appendix provides complete examples for implementing Built-In Self-Repair (BISR) using 
serial and parallel interfaces for a multi-segment memory with row and column repair. The 
memories used in the examples have row and column redundancy—a total of 4 spare rows and 
4 spare columns. Each memory is divided into quadrants. The top hemisphere is the upper bank 
(Bank 0), and the bottom hemisphere is the lower bank (Bank 1). Each bank has two spare rows 
and two spare columns. For each bank, one redundant column is assigned to the left side and 
one to the right side. 
This appendix covers the following topics:

Parallel BISR Interface Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
Serial BISR Interface Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

Parallel BISR Interface Example
The following example outlines the memory library file for a memory with a parallel BISR 
interface.
Figure G-1 illustrates an example of a memory with a parallel BISR interface.
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Figure G-1. Example Memory With Parallel BISR Interface 

Figure G-2 shows an example of the memory library file syntax for a parallel repair interface. 
The example defines the repair analysis capability with built-in self-repair and soft repair to 
illustrate the example memory in Figure G-1.
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Figure G-2. Memory Library File Sample Syntax for Parallel BISR Interface

// MemoryRepair ports for Bank B0 
Port(B0_REN0) { 
   Function: BisrParallelData; 
   Direction: input; 
}
Port(B0_RR0[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
}
Port(B0_RR1[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
}
Port(B0_REN1) { 
   Function: BisrParallelData; 
   Direction: input; 
}
Port(B0_CRAR[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B0_CRAL[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
}
// MemoryRepair ports for Bank B1 
Port(B1_REN0) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B1_RR0[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B1_RR1[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B1_REN1) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B1_CRAR[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
Port(B1_CRAL[3:0]) { 
   Function: BisrParallelData; 
   Direction: input; 
} 
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RedundancyAnalysis { 
   RowSegmentRange { 
      SegmentAddress[0]: AddressPort(Address[10]); 
   } 
   RowSegment (Bank0){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0 
      FuseSet { 
         Fuse[3]: AddressPort(Address[9]); 
         Fuse[2]: AddressPort(Address[8]); 
         Fuse[1]: AddressPort(Address[7]); 
         Fuse[0]: AddressPort(Address[0]); 
      } 
      PinMap { 
         SpareElement { 
            RepairEnable: B0_REN0; 
            Fuse[0]: B0_RR0[0]; 
            Fuse[1]: B0_RR0[1]; 
            Fuse[2]: B0_RR0[2]; 
            Fuse[3]: B0_RR0[3]; 
         } 
         SpareElement { 
            RepairEnable: B0_REN1; 
            Fuse[0]: B0_RR1[0]; 
            Fuse[1]: B0_RR1[1]; 
            Fuse[2]: B0_RR1[2]; 
            Fuse[3]: B0_RR1[3]; 
         } 
      } 
   } 
   RowSegment (Bank1){ 
      NumberOfSpareElements: 2; 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      FuseSet { 
         Fuse[3]: AddressPort(Address[9]); 
         Fuse[2]: AddressPort(Address[8]); 
         Fuse[1]: AddressPort(Address[7]); 
         Fuse[0]: AddressPort(Address[0]); 
      } 
      PinMap { 
         SpareElement { 
            RepairEnable: B1_REN0; 
            Fuse[0]: B1_RR0[0]; 
            Fuse[1]: B1_RR0[1]; 
            Fuse[2]: B1_RR0[2]; 
            Fuse[3]: B1_RR0[3]; 
         } 
         SpareElement { 
            RepairEnable: B1_REN1; 
            Fuse[0]: B1_RR1[0]; 
            Fuse[1]: B1_RR1[1]; 
            Fuse[2]: B1_RR1[2]; 
            Fuse[3]: B1_RR1[3]; 
         } 
      } 
   } 
   ColumnSegment (Bank0_Left){ 
      RowSegmentCountRange [1'b0:1'b0]; // Bank0 
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      ShiftedIORange: QO[7:0]; // Left 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[0]): 4'b0001; 
            ShiftedIO(QO[1]): 4'b0010; 
            ShiftedIO(QO[2]): 4'b0011; 
            ShiftedIO(QO[3]): 4'b0100; 
            ShiftedIO(QO[4]): 4'b0101; 
            ShiftedIO(QO[5]): 4'b0110; 
            ShiftedIO(QO[6]): 4'b0111; 
            ShiftedIO(QO[7]): 4'b1000; 
         } 
      } 
      PinMap { 
         SpareElement { 
            FuseMap[0]: B0_CRAL[0]; 
            FuseMap[1]: B0_CRAL[1]; 
            FuseMap[2]: B0_CRAL[2]; 
            FuseMap[3]: B0_CRAL[3]; 
         } 
      } 
   } 
   ColumnSegment (Bank0_Right){ 
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0 
      ShiftedIORange: QO[15:8]; // Right 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[8]): 4'b0001; 
            ShiftedIO(QO[9]): 4'b0010; 
            ShiftedIO(QO[10]): 4'b0011; 
            ShiftedIO(QO[11]): 4'b0100; 
            ShiftedIO(QO[12]): 4'b0101; 
            ShiftedIO(QO[13]): 4'b0110; 
            ShiftedIO(QO[14]): 4'b0111; 
            ShiftedIO(QO[15]): 4'b1000; 
         } 
      } 
      PinMap { 
         SpareElement { 
            FuseMap[0]: B0_CRAR[0]; 
            FuseMap[1]: B0_CRAR[1]; 
            FuseMap[2]: B0_CRAR[2]; 
            FuseMap[3]: B0_CRAR[3]; 
         } 
      }
   } 
   ColumnSegment (Bank1_Left){ 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      ShiftedIORange: QO[7:0]; // Left 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[0]): 4'b0001; 
            ShiftedIO(QO[1]): 4'b0010; 
            ShiftedIO(QO[2]): 4'b0011; 
            ShiftedIO(QO[3]): 4'b0100; 
            ShiftedIO(QO[4]): 4'b0101; 
            ShiftedIO(QO[5]): 4'b0110; 
            ShiftedIO(QO[6]): 4'b0111; 
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            ShiftedIO(QO[7]): 4'b1000; 
         } 
      } 
      PinMap { 
         SpareElement { 
            FuseMap[0]: B1_CRAL[0]; 
            FuseMap[1]: B1_CRAL[1]; 
            FuseMap[2]: B1_CRAL[2]; 
            FuseMap[3]: B1_CRAL[3]; 
         } 
      }
   } 
   ColumnSegment (Bank1_Right){ 
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1 
      ShiftedIORange: QO[15:8]; // Right 
      FuseSet { 
         FuseMap[3:0]{ 
            ShiftedIO(QO[8]): 4'b0001; 
            ShiftedIO(QO[9]): 4'b0010; 
            ShiftedIO(QO[10]): 4'b0011; 
            ShiftedIO(QO[11]): 4'b0100; 
            ShiftedIO(QO[12]): 4'b0101; 
            ShiftedIO(QO[13]): 4'b0110; 
            ShiftedIO(QO[14]): 4'b0111; 
            ShiftedIO(QO[15]): 4'b1000; 
         } 
      } 
      PinMap {
         SpareElement {
            FuseMap[0]: B1_CRAR[0]; 
            FuseMap[1]: B1_CRAR[1]; 
            FuseMap[2]: B1_CRAR[2]; 
            FuseMap[3]: B1_CRAR[3]; 
         }
      } 
   } 
} 

The sample syntax of the memory library file in Figure G-2 specifies to Tessent MemoryBIST 
the following information for row and column segments:

• The sample memory has two banks (or row segments). Each bank has two spare rows 
and two spare columns available for repair. The two spare row elements per bank can 
repair a failure occurring only within that bank. The FuseSet sub-wrapper defines the 
address bits to be logged for each repairable element. Because each row segment has 
two spare columns, a total of four (4) ColumnSegment wrappers are needed:

o Two ColumnSegment wrappers for Bank0 

o Two ColumnSegment wrappers for Bank1 

Each ColumnSegment has a RowSegmentCountRange property that assigns it to the 
appropriate range.
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• Each of the two row and column segments is located in the address space defined by the 
address port Address[10]. The RowSegment(Bank0) and ColumnSegment(Bank0_xxx) 
are defined within the address space, whereby Address[10] is 1'b0. The 
RowSegment(Bank1) and ColumnSegment(Bank1_xxx) are defined within the address 
space, whereby Address[10] is 1'b1.

• This syntax specifies a segment range where the SegmentAddress bit 0 is defined as 
memory address port Address[10].

• Each row segment consists of two spare elements as defined by the 
NumberOfSpareElements property. Therefore, two fuse registers are required for 
RowSegment(Bank0), each of which logs the value of the ports Address[9:7] for the 
defective portion of memory within the row segment. Similarly for 
RowSegment(Bank1), two fuse registers log the value of the ports Address[9:7] when 
faults are detected within the portion of the memory covered by the range of this row 
segment.

• When implementing Column and IO repair, FuseMap registers capture the ShiftedIO 
fuse map values specified by the FuseSet/FuseMap/ShiftedIO properties for a given 
ColumnSegment. The value of the FuseMap register captured by the BIRA module 
identifies the memory IO on which a fault has been detected.

• When implementing Column repair, the FuseMap register described previously is 
needed to identify the faulty IO. However, extra information is required to identify the 
faulty column for a given IO. The PinMap/FuseMap property specifies the column 
address to log when a failure is detected.

• For each fuse and FuseMap register defined inside the FuseSet wrapper, a corresponding 
FuseMap property must be specified inside the PinMap wrapper. The PinMap wrapper 
maps the BISR spare element fuse registers to the corresponding spare element 
allocation ports on the memory.

Serial BISR Interface Example
The example in this section uses the same memory repair scheme as in the parallel BISR 
interface example, which has four redundant rows and four redundant columns. However, the 
following example uses a serial BISR interface. 
Figure G-3 shows the serial BISR interface ports and the BISR register inside the memory 
module.
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Figure G-3. Example Memory With Serial BISR Interface 

The memory template associated with the memory illustrated in Figure G-3 is shown in 
Figure G-4. The memory template for this example is similar to the parallel BISR interface 
example but with two differences:

• The BisrParallelData port functions have been replaced by the serial BISR interface port 
functions (BisrClock, BisrSerialData, and BisrReset).

• The properties inside the PinMap/SpareElement wrapper now specify the order of the 
BISR register chain using the special RepairRegister[<x>] value instead of a port name.

Figure G-4. Memory Library File Sample Syntax for Serial BISR Interface
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// MemoryRepair ports for Bank B0
Port(BISR_CLK) {
   Function: BisrClock; 
   Direction: input;
}
Port(BISR_RST) {
   Function: BisrReset;
   Direction: input;
}
Port(BISR_SI) {
   Function: BisrSerialData;
   Direction: input;
}
Port(BISR_SO) {
   Function: BisrSerialData;
   Direction: output;
}
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RedundancyAnalysis {
   RowSegmentRange {
      SegmentAddress[0]: AddressPort(Address[10]);
   }
   RowSegment (Bank0){
      NumberOfSpareElements: 2;
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0
      FuseSet {
         Fuse[3]: AddressPort(Address[9]);
         Fuse[2]: AddressPort(Address[8]);
         Fuse[1]: AddressPort(Address[7]);
         Fuse[0]: AddressPort(Address[0]);
      }
      PinMap {
         SpareElement {
            RepairEnable: RepairRegister[35];
            Fuse[0]: RepairRegister[31];
            Fuse[1]: RepairRegister[32];
            Fuse[2]: RepairRegister[33];
            Fuse[3]: RepairRegister[34];
         }
         SpareElement {
            RepairEnable: RepairRegister[30];
            Fuse[0]: RepairRegister[26];
            Fuse[1]: RepairRegister[27];
            Fuse[2]: RepairRegister[28];
            Fuse[3]: RepairRegister[29];
         }
      }
   }
   RowSegment (Bank1){
      NumberOfSpareElements: 2;
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1
      FuseSet {
         Fuse[3]: AddressPort(Address[9]);
         Fuse[2]: AddressPort(Address[8]);
         Fuse[1]: AddressPort(Address[7]);
         Fuse[0]: AddressPort(Address[0]);
      }
      PinMap {
         SpareElement {
            RepairEnable: RepairRegister[17];
            Fuse[0]: RepairRegister[13];
            Fuse[1]: RepairRegister[14];
            Fuse[2]: RepairRegister[15];
            Fuse[3]: RepairRegister[16];
         }
         SpareElement {
            RepairEnable: RepairRegister[12];
            Fuse[0]: RepairRegister[8];
            Fuse[1]: RepairRegister[9];
            Fuse[2]: RepairRegister[10];
            Fuse[3]: RepairRegister[11];
         }
      }
   }
   ColumnSegment (Bank0_Left){
      RowSegmentCountRange [1'b0:1'b0]; // Bank0
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      ShiftedIORange: QO[7:0]; // Left
      FuseSet {
         FuseMap[3:0]{   
            ShiftedIO(QO[0]): 4'b0001;
            ShiftedIO(QO[1]): 4'b0010;
            ShiftedIO(QO[2]): 4'b0011;
            ShiftedIO(QO[3]): 4'b0100;
            ShiftedIO(QO[4]): 4'b0101;
            ShiftedIO(QO[5]): 4'b0110;
            ShiftedIO(QO[6]): 4'b0111;
            ShiftedIO(QO[7]): 4'b1000;
         }
      }
      PinMap {
         SpareElement {
            FuseMap[0]: RepairRegister[22];
            FuseMap[1]: RepairRegister[23];
            FuseMap[2]: RepairRegister[24];
            FuseMap[3]: RepairRegister[25];
         }
      }
   }
   ColumnSegment (Bank0_Right){
      RowSegmentCountRange [1'b0:1'b0]; // Bank 0
      ShiftedIORange: QO[15:8]; // Right
      FuseSet {
         FuseMap[3:0]{
            ShiftedIO(QO[8]): 4'b0001;
            ShiftedIO(QO[9]): 4'b0010;
            ShiftedIO(QO[10]): 4'b0011;
            ShiftedIO(QO[11]): 4'b0100;
            ShiftedIO(QO[12]): 4'b0101;
            ShiftedIO(QO[13]): 4'b0110;
            ShiftedIO(QO[14]): 4'b0111;
            ShiftedIO(QO[15]): 4'b1000;
         }
      }
      PinMap {
         SpareElement {
            FuseMap[0]: RepairRegister[18];
            FuseMap[1]: RepairRegister[19];
            FuseMap[2]: RepairRegister[20];
            FuseMap[3]: RepairRegister[21];
         }
      }
   }
   ColumnSegment (Bank1_Left){
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1
      ShiftedIORange: QO[7:0]; // Left
      FuseSet {
         FuseMap[3:0]{
            ShiftedIO(QO[0]): 4'b0001;
            ShiftedIO(QO[1]): 4'b0010;
            ShiftedIO(QO[2]): 4'b0011;
            ShiftedIO(QO[3]): 4'b0100;
            ShiftedIO(QO[4]): 4'b0101;
            ShiftedIO(QO[5]): 4'b0110;
            ShiftedIO(QO[6]): 4'b0111;
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            ShiftedIO(QO[7]): 4'b1000;
         }
      }
      PinMap {
         SpareElement {
            FuseMap[0]: RepairRegister[4];
            FuseMap[1]: RepairRegister[5];
            FuseMap[2]: RepairRegister[6];
            FuseMap[3]: RepairRegister[7];
         }
      }
   }
   ColumnSegment (Bank1_Right){
      RowSegmentCountRange [1'b1:1'b1]; // Bank 1
      ShiftedIORange: QO[15:8]; // Right
      FuseSet {
         FuseMap[3:0]{
            ShiftedIO(QO[8]): 4'b0001;
            ShiftedIO(QO[9]): 4'b0010;
            ShiftedIO(QO[10]): 4'b0011;
            ShiftedIO(QO[11]): 4'b0100;
            ShiftedIO(QO[12]): 4'b0101;
            ShiftedIO(QO[13]): 4'b0110;
            ShiftedIO(QO[14]): 4'b0111;
            ShiftedIO(QO[15]): 4'b1000;
         }
      }
      PinMap {
         SpareElement {
            FuseMap[0]: RepairRegister[0];
            FuseMap[1]: RepairRegister[1];
            FuseMap[2]: RepairRegister[2];
            FuseMap[3]: RepairRegister[3];
         }
      }
   }
}

The sample memory library file syntax shown in Figure G-4 shows how to use the 
RepairRegister syntax. The RepairRegister index matches the order of the memory BISR chain 
where RepairRegister[0] is closest to BISR_SO, and RepairRegister[35] is closest to BISR_SI. 
Each repair register must be used and must correctly map to the corresponding Fuse, FuseMap, 
or RepairEnable BIRA fuse information.
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Appendix H
Functional Debug Memory Access

This appendix explains the functional debug memory access feature, which provides a 
mechanism to access memories in the context of functional system debug using existing 
memory BIST infrastructure.
The feature provides read and write access to any supported BISTable memory with negligible 
additional area. Refer to the “Requirements, Assumptions and Limitations” section for the 
currently supported memories.

Three basic memory access modes are:

• Read a single location of a single memory with a nondestructive scan-out that enables 
many algorithm executions with a single scan-in. The scan-out maintains the controller 
state in this access mode and therefore only requires a single initialization.This 
recommended usage is described in the first row of Table H-1 and within this appendix.

• Write single or multiple locations. The data pattern is selectable at run time. When 
writing multiple locations in a single execution, a custom algorithm controls the address 
sequence, and the data pattern can be modified as a function of the address. This mode 
can be used to initialize a block of locations with regular data patterns.

• Read a single location of many memories with destructive scan-out. Table H-1 describes 
this mode in rows two through four, where the scan-out destroys the controller state and 
you re-initialize the controller before beginning another algorithm execution.

Note
The hardware disables the memory when the address from the controller goes out of range. 
The algorithm can cause an out-of-range condition because the controller step defines the 

address range used by the algorithm, not the selected memory. This is true even if you select a 
single memory to run the algorithm. Refer to the “Requirements, Assumptions and Limitations” 
section for details on when this may occur.

This appendix covers the following topics:

Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
Algorithm Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
Verification of Read and Write Access Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
Requirements, Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
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Feature Description
Feature Description
The Functional Debug Memory Access feature is an improvement over what currently is 
possible with soft programmable controllers, which is significantly more expensive than with 
the hard programmable controller.
The improvement consists of starting a hardcoded algorithm from an address loaded directly in 
the address register (register A, B, or both) via the setup chain. Normally, the algorithm’s 
default values would override this value during the initialization phase of the controller. The 
initialization is suppressed via a control bit located on the setup chain or a controller input that is 
set at run time using the incremental_test_mode property in the DftSpecification/MemoryBist/
Controller/AdvancedOptions wrapper.

Note
When incremental_test_mode is On, algorithms that are used to read and write the memory 
must be hard-coded, or for soft programmable controller, downloaded at runtime..

Algorithm Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
Verification of Read and Write Access Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
Requirements, Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

Algorithm Description
Custom algorithms that access a single memory location and from a range of memory locations 
are described in this section.
The algorithm may be included during the Design Loading step so that it is hard-coded into the 
controller. For a soft programmable controller, the algorithm may also be downloaded during 
the Process Patterns Specification step. 

The custom algorithm used to read a single location of memory is shown in Figure H-1. 
AddressRegisterA is initialized to value 0 and the expected data value is set to all zeros.When 
the default all zeros value of expected data is used, the content of the memory location is stored 
in the GO_ID registers for RAMs or in the MISR registers for ROMs. Compare failures are 
indicated on the GO signal, GO_ID registers and MISR registers when they are scanned out, 
unless the memory content matches the expected default value.
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Figure H-1. Example Read Algorithm for a Single Location

MemoryOperationsSpecification {
  Algorithm (MemReadAlgo) {
   TestRegisterSetup {
      OperationSetSelect: SYNC;
      AddressGenerator {
         AddressRegisterA {
            load_row_address: min_row; //actual address loaded at run time
            load_column_address: min_column; //actual column address also
            load_bank_address: min_bank ; //actual bank address also 
            // Recommended for GO_ID setup mode to increment address
            z_carry_in: x1_carry_out;
            x1_carry_in: y1_carry_out;
            y1_carry_in: none;
         }
      }
      DataGenerator {
         load_expect_data: all_zero; // data pattern can be changed at
                                 // run time
      }
   } 
   MicroProgram {
      Instruction (MEM_READ) {
         OperationSelect: Read;
         AddressCommands {
            address_select: select_a;
            // Recommended for GO_ID setup mode to increment address
            x1_address: increment;
            y1_address: increment;
            z_address: increment;
         }
         DataCommands {
            expect_data: data_reg;
         }
         NextConditions {
            // Unconditional exit. Only one address read.
            // Address counter incremented by 1
         }
      }
   }
  }
}

To use Functional Debug Memory Access mode, the patterns should be constructed in the 
following sequence.

• Apply the initialization pattern once (Init).

• Apply the execution pattern in a loop (Exec). 

• Iterate the Exec pattern until all locations of interest have been accessed.

The Init TestStep configures the controller to apply the selected algorithm to a single memory. 
Note that the Init TestStep does not run the algorithm and is a preparation step for the following 
Exec TestSteps. Therefore, the Init TestStep runtime is very short. Additionally, and important 
Tessent™ MemoryBIST User’s Manual, v2022.4 813

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Functional Debug Memory Access
Algorithm Description
for MissionMode usage where resources are more constrained, you only need the Init TestStep 
when a configuration change is necessary for the algorithm operating in the following Exec 
TestStep. For example, you can repeat the Exec TestStep without an intervening Init TestStep if 
an algorithm prepares for the next execution by incrementing the address. The Exec pattern is 
also shared by all memories on a controller step, which may cause out-of-range conditions on 
the single memory being tested. You need more Exec patterns in this case to fully cover the 
locations of interest. For further information, refer to the “Requirements, Assumptions and 
Limitations” section.

To create the Init TestStep, specify the following PatternsSpecification properties in the 
Patterns wrapper:

Patterns(func_debug_mode) {
  TestStep(init) {
    MemoryBist {
      run_mode: run_time_prog;
      Controller(instance) {
        AdvancedOptions {
          incremental_test_mode : on;
          freeze_step : <n>;
          enable_memory_list : <memory_id>;
          freeze_test_port : <n>;
          apply_algorithm : <algorithm_name>;
        }
      }
    }
  }
}

You may also override the initial settings of the address registers, data registers and CounterA 
that were defined in the algorithm. Specify new values for these parameters in the Controller/
AlgorithmSetupOverrides wrapper.

The Exec TestStep runs the previously programmed algorithm without serially configuring the 
controller. Upon completion of the algorithm, the content of the memory location can be 
extracted by shifting out the GO_ID or MISR register. The hardware is built with a new GO_ID 
setup chain mode that enables scanning out the GO_ID or MISR register of the selected 
memory. This setup mode greatly reduces test time and preserves the controller state registers. 
Then, subsequent runs of the Exec TestStep can repeat the algorithm without reconfiguration.
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To create the Exec TestStep, specify the following PatternsSpecification properties in the 
Patterns wrapper:

Patterns(func_debug_mode) {
  TestStep(exec) {
    MemoryBist {
      run_mode: hw_default;
      Controller(instance) {
        AdvancedOptions {
          incremental_test_mode : on;
        }
      }
    }
  }
}

Figure H-1 shows an example algorithm that can be used to read a single location and 
potentially be used for the GO_ID setup mode. Notice that this read algorithm increments the 
address by one to prepare the address registers for the next iteration of the Exec TestStep.

Compare failures during read access can be avoided if the expected data for this memory 
location is known and specified at run time. Then, scanning out the GO_ID register is 
unnecessary, which saves a significant amount of scan-in and scan-out time. However, large test 
data registers (ExpectDataRegister and WriteDataRegister) in the controller are needed to do so, 
and a corresponding number of connections are required between the controller and memories.

The write algorithm for a single location is essentially the same as the read algorithm. The read 
operation is replaced by a write operation, and the write data register is used instead of the 
expect data register. The standard Sync or SyncWR operation sets can be used to perform the 
operations or any other suitable operation set.

The full flexibility of the controller can be used to perform operations on multiple memory 
locations. Therefore, the expect and write data pattern can be modified based on the address, 
repeat loops can be used, address register segments can be linked to count fast column or fast 
row, and so on. The algorithms described previously can be generalized further to cover a range 
of locations instead of a single location. Figure H-2 shows an example.
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Figure H-2. Example Write Algorithm for a Block of Locations

MemoryOperationsSpecification {
  Algorithm (MemWriteAlgo) {
   TestRegisterSetup {
      OperationSetSelect: SYNC;
      AddressGenerator {
         AddressRegisterA { // Address A is used in this example.
                        // Load default initial row and column addresses
            load_row_address: min_row ;
            load_column_address: min_column ;
            x1_carry_in: y1_carry_out;
            y1_carry_in: none;
         }
      }
      DataGenerator {
         load_write_data: all_zero; // initial data pattern
         // Data pattern can be manipulated as part of the algorithm
      }
      load_counter_a_end_count: 31; // 5 CounterA bits
      // Set the end count value to one less the largest block size that
      // can be accessed. Here, defaults to 32 locations.
   }

   MicroProgram {
      Instruction (MEM_BLOCK_WRITE) {
         OperationSelect: Write;
         branch_to_instruction: MEM_BLOCK_WRITE;
         AddressCommands {
            address_select: select_a;
            x1_address: increment;
            y1_address: increment;
         }
         CounterCommands {
            counter_a: increment;
         }
         DataCommands {
            write_data: data_reg;
         }
         NextConditions {
            counter_a_end_count: on;
         }
      }
   }
  }
}

The data patterns are limited by the size of the test data registers. Most test algorithms only 
require 2-bit registers. However, this size would need to be increased to the maximum data path 
width if more flexibility is required, especially during write operations. Memory pipelining 
options would also multiply n times the number of registers, where n is the number of pipeline 
stages. Both the active area of the registers and routing to the memories must be considered in 
making the decision of increasing the data register size. Note that both test data registers 
(ExpectDataRegister and WriteDataRegister) have the same width in the controller.
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An additional feature might be useful when performing read operations on multiple locations 
during a single test. You can compare a single data bit of each data word by specifying the 
following property:

Controller (instance) {
   MemoryInterface(memory_id) { // repeatable
      comparator_id_select: all | none | integer;
   }
} 

This quickly verifies if a block of memory locations or all memory locations have the selected 
bit set to a specific value.

Verification of Read and Write Access Functions
The basic read and write access functions are verified by initializing a block of locations and 
reading it back. The freeze_step and enable_memory_list properties must be used to access only 
a single memory. For a list of memory ID names, refer to the DftSpecification of the TSDB.
As indicated previously, the memory access mode is applied using a series of TestSteps. 
Figure H-3 shows an outline of the PatternsSpecification used for this verification. Note that the 
outline does not show all the recommended configurations as outlined in the “Implementation” 
section. All locations are initialized to 0s (all_zero). Note that an Init TestStep is not needed 
prior to the mem_write_zeros_exec Exec TestStep because the default settings for the write 
algorithm are used. Next, two arbitrary locations are changed to 1s (all_one). Note that in the 
initialization TestSteps for writing these two arbitrary locations, the start count is specified to be 
the same as the Write algorithm’s end count. This is done so that only a single write occurs, 
rather than the block write of 32 locations the algorithm would normally perform. 

Note
For algorithms hard-coded into the memory BIST controller, only the initial value of 
CounterA can be specified in the PatternsSpecification at run time, and this counter only 

counts up. If an algorithm requires execution of X number of operations and CounterA is used 
to track the number of iterations, the value to be loaded into CounterA using the 
AlgorithmSetupOverrides/load_counter_a_start_count property is the algorithm’s 
load_counter_a_end_count + 1 - X.

Lastly, the final content of all 32 locations is read back. The following example uses an 8-bit 
address register with column address aligned at bits [2:0].

Figure H-3. Test Steps Used for Verification of Debug Capability
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Patterns(verify_func_debug_mode) {
  // Initialize the first 32 locations to all_zero
  TestStep(mem_write_zeros_exec) {
  }

  // Write all_one to first arbitrary location 8'h01
  TestStep(mem_write_init_1) {
    MemoryBist {
      Controller {
        AlgorithmSetupOverrides {
          load_counter_a_start_count : 31;
          DataGenerator {
            load_write_data : all_one;
          }
          AddressGenerator {
            AddressRegisterA {
              load_column_address : 3'b001;
            }
          }
        }
      }
    }
  }
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  TestStep(mem_write_exec_1) {
  }
  // Write all_one to second arbitrary location 8'h04
  TestStep(mem_write_init_2) {
    MemoryBist {
      Controller {
        AlgorithmSetupOverrides {
          load_counter_a_start_count : 31;
          DataGenerator {
            load_write_data : all_one;
          }
          AddressGenerator {
            AddressRegisterA {
              load_column_address : 3'b100;
            }
          }
        }
      }
    }
  }
  TestStep(mem_write_exec_2) {
  }

  // Read 32 locations and compare content to all_zero.
  // GO status for locations 8'h01 and 8'h04 will indicate a fail.
  TestStep(mem_read_init) {
  }
  TestStep(mem_read_exec_1) {
  }
  TestStep(mem_read_exec_2) {
  }
  ...
  TestStep(mem_read_exec_32) {
  }
}

Requirements, Assumptions and Limitations
The following are the requirements, assumptions and limitations in utilizing functional debug 
memory access in Tessent Shell:

• This feature is supported by hard and soft programmable Memory BIST controllers.

• You must hard code a custom algorithm that can be used to read from a single location. 
For a soft programmable controller, you may download the algorithm at run time. For an 
example of the read algorithm, refer to Figure H-1.

• This feature is incompatible with Parallel Static Retention Testing and memory reset 
modes that only operate with library algorithms. 

• This feature supports all memory types. Although DRAMs are supported, some 
restrictions concerning their refresh operations may apply.

• All memory operations (read or write) are initiated through the IJTAG protocol.
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• The completion time for each memory access requiring controller setup, partial or 
complete, depends on a number of factors. The length of the setup chain is variable 
based on the controller options selected. For example, using local comparators causes 
the setup chain to be significantly longer than when using shared comparators. The 
execution time of the custom algorithm performing the memory access is also affected 
by the options selection. For example, the depth of the pipeline to and from the memory 
delays the completion of the custom algorithm. For hard programmable controllers, 
several NoOperation operations are performed after completion of a custom algorithm.

• The memory address must be decomposed in terms of its physical bank, row, and 
column address before loading into the controller. If present, address mapping is applied 
automatically. You can find this information about the memory structure in the Core 
Memory description.

• The switch from functional to BIST/debug mode and vice-versa must be done in such a 
way that the memory content is not corrupted, which you can achieve by setting the 
memory select and write enable pins to an inactive state when switching occurs. The 
switch can occur while clocks are free-running or when clocks are gated. However, the 
Memory BIST controller and memories still must receive the active clock signal. 
Tessent Shell MemoryBIST does not check for this condition.

• The writing of arbitrary data patterns to any memory tested by a controller requires 
setting the data_register_bits property in the DftSpecification/MemoryBist/Controller/
AlgorithmResourceOptions wrapper to the maximum memory data bus width of all 
memories. Please review the usage conditions of this controller property because in 
some cases, this can have an important impact on area.

• In a hard programmable controller, only the initial value of CounterA can be specified in 
the PatternsSpecification at run time, and this counter only counts up. If an algorithm 
requires execution of X number of operations, and CounterA is used to track the number 
of iterations, the value to be loaded in CounterA using AlgorithmSetupOverrides/
load_counter_a_start_count must be the algorithm's load_counter_a_end_count + 1 - X. 
Another option is to use a segment of the second address counter. The address counter 
can be loaded with X - 1 and count down until reaching 0.

• If the address is higher than the tested memory’s maximum address, either incremented 
by the algorithm or scanned in with the pattern file, the GO_ID registers remain at 0. 
The hardware disables the memory when the address from the controller goes out of 
range. The algorithm can cause an out-of-range condition because the controller step 
defines the address range used by the algorithm, not the selected memory. This is true 
even if you select a single memory to run the algorithm. There are three situations where 
this might happen:

a. Multiple memories of different sizes in a step: The tool defines the maximum 
address as the largest bank address, row address, and column address found in any of 
the memories. For example, if memory M1 has two column address bit and M2 has 
four columns, M1 is de-selected half of the time as the algorithm always counts 
columns from 0 to 3.
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b. Multi-port memories with an odd number of rows: The tool rounds up the 
number of rows for the step to the next even value when the memory allows 
concurrent/shadow read operations.

c. Multi-port and Single-port memories with an odd number of rows: The tool 
rounds up the number of rows for the step to the next even value when a memory 
allows operations with strobes in consecutive cycles. 

Implementation
This section describes how to implement and verify the Functional Debug Memory access 
hardware. The process is the same as usual except for the steps described in the following 
sections.

DftSpecification
To enable the hardware and pattern capabilities, the incremental_test_mode property must be 
specified for the MemoryBIST controller when configuring the DFT Specification:

DftSpecification {
  MemoryBist {
    Controller(id) {
      AdvancedOptions {
          .
          .
        incremental_test_mode: on ;
          .
          .
      }
    }
  }
}

When incremental_test_mode is set to on, Tessent MemoryBIST generates the necessary setup 
chain muxing and controller ports to enable functional system debug. You may also 
automatically populate the default DFT specification by issuing the following command prior to 
generating the DFT Specification using the create_dft_specification command:

set_defaults_value DftSpecification/MemoryBist/ControllerOptions/
incremental_test_mode on

PatternsSpecification
The recommended settings and usage for Functional Debug Memory Access mode requires 
preparing and applying an initialization (Init) TestStep and a series of execution (Exec) 
TestSteps. 

The Init TestStep configures the controller to apply the selected algorithm to a single memory. 
The custom algorithm default address, expect data and write data can be overridden. The Exec 
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TestStep runs the previously programmed algorithm. Upon completion of the algorithm, the 
content of the memory location can be extracted by shifting out the GO_ID or MISR register. 
The Exec pattern is repeated until all locations of interest have been accessed.

The recommended usage configurations, as well as additional usage configurations for 
Functional Debug Mode, are outlined in Table H-1 and the Table Notes that follow. All 
configurations have the following TestStep settings in common:

• preserve_bist_inputs : on ; // Necessary to avoid corruption of the memory between 
TestSteps

• incremental_test_mode : on ; // Enables using the AlgorithmSetupOverrides wrapper to 
specify the address

• compare_go_id : on ; // Necessary to annotate the pattern with the name of the 
GO_ID_REG registers

• freeze_test_port : int ; // Not required, but it can save test time since it is not necessary to 
read the same address location from all test ports

If your goal is to read the content of multiple memories within the same TestStep, one of the 
following conditions should exist:

• Memories have local comparators, OR

• The MemoryBIST controller has a single Step

Table H-1. Functional Debug Mode Usage Configurations 
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X Yes Yes4 Read +

Incr Addr

Init +

(N*Exec)

GOID of selected 
memory only

Recommended settings and 
documented usage in this 
Appendix

X Yes No Read N*

(Init+Exec)

Entire short setup 
chain

Pattern patching required3

shared_in_controller No X Read N*

(Init+Exec)

Entire short setup 
chain

Pattern patching required3 and
the results supply only the 
contents of the memory in the 
last Step
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Table Notes:

1. The applied algorithm operations are described below:

o Read + Incr Addr — The algorithm reads one address location and increments the 
address. This algorithm can only be used if freeze_step is active (set to an integer 
value) and a single memory is enabled.

o Read — The algorithm only reads one address location. This is necessary to read the 
same location in all memories of all controller steps.

2. The PatternsSpecification TestStep ordering definitions are as follows:

o Init — A TestStep where you specify the run_mode as run_time_prog and the 
controller is configured to apply the selected algorithm. The custom algorithm 
default address, expect data and write data can be overridden as shown in the first 
TestStep of Figure H-5.

o Exec — A TestStep where the controller runs in the hw_default run_mode. 

o N — The number of address locations to read.

3. Pattern patching indicates that the Init TestStep must be modified for each address 
location that is to be read. 

4. Enable a single memory only.

For the recommended configuration usage, the example shown in Figure H-4 shows how to set 
up a functional debug write access utilizing the custom algorithm shown in Figure H-2 that 
would already be processed during the Design Loading step and hard-coded into the controller.

In the Init TestStep, the MemWriteAlgo algorithm is selected and is applied to memory m1 in 
controller step 1. By default, the custom algorithm writes zeros to the first 32 locations. The 
AlgorithmSetupOverrides wrapper modifies the starting column, row and bank addresses as 
well as the write data pattern. The data written to the memory is inverted when the column or 
row address is odd. In the Exec TestStep, the modified custom algorithm is applied to 32 
memory locations.

per_interface No X Read N*

(Init+Exec)

Entire short setup 
chain

Pattern patching required3

Table H-1. Functional Debug Mode Usage Configurations  (cont.)
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Figure H-4. Functional Debug Mode Write Example

PatternsSpecification(core,rtl,signoff) {

  Patterns(Functional_debug_mode_write) { // {{{
    ClockPeriods {
      clk : 12.0ns;
    }
    TestStep(Functional_debug2_init) {
      MemoryBist {
        run_mode : run_time_prog;
        AdvancedOptions {
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          preserve_bist_inputs : on;
        }
        Controller(c1_inst) {
          MemoryInterface(m1) {
            comparator_id_select : all;
          }
          AdvancedOptions {
            enable_memory_list : m1;
            incremental_test_mode : on;
            test_execution_cycles : 10;
            apply_algorithm : MemWriteAlgo;
            freeze_step : 1;
          }
          AlgorithmSetupOverrides {
            AddressGenerator {
              AddressRegisterA {
                load_bank_address : 1'b1;
                load_column_address : 2'b00;
                load_row_address : 4'b1111;
              }
            }
            DataGenerator {
              load_write_data : 16'b0000000000000011;
              invert_data_with_row_bit : r[0];
              invert_data_with_column_bit : c[0];
            }
          }
        }
      }
    }
    TestStep(Functional_debug2_exec) {
      MemoryBist {
        run_mode : hw_default;
        AdvancedOptions {
          preserve_bist_inputs : on;
        }
        Controller(c1_inst) {
          AdvancedOptions {
            incremental_test_mode : on;
            test_execution_cycles : 1000;
          }
        }
      }
    }
  } // }}}
}

The example shown in Figure H-5 shows how to set up a functional debug read access, utilizing 
the custom algorithm shown in Figure H-1, that would already be processed during the Design 
Loading step and hard-coded into the controller.

In the Init TestStep, the MemReadAlgo algorithm is selected and is applied to memory m1 in 
controller step 1. By default, the custom algorithm reads one location, compares the content to 
zeros then increments the address. The AlgorithmSetupOverrides wrapper modifies the starting 
column row and bank addresses to read from. The three subsequent Exec TestSteps run the 
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modified custom algorithm and extracts the memory content starting at column address 0, row 
address 5 and bank address 0.

Figure H-5. Functional Debug Mode Read Example

Patterns(Functional_debug_mode_read) { // {{{
  ClockPeriods {
    clk : 12.0ns;
  }
  TestStep(Functional_debug3_init) {
    MemoryBist {
      run_mode : run_time_prog;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      Controller(c1_inst) {
        MemoryInterface(m1) {
          comparator_id_select : all;
        }
        AdvancedOptions {
          enable_memory_list : m1;
          incremental_test_mode : on;
          test_execution_cycles : 10;
          apply_algorithm : MemReadAlgo;
          freeze_step : 1;
        }
        AlgorithmSetupOverrides {
          AddressGenerator {
            AddressRegisterA {
              load_bank_address : 1'b0;
              load_column_address : 2'b00;
              load_row_address : 4'b0101;
            }
          }
          DataGenerator {
          }
        }
      }
    }
  }
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    TestStep(Functional_debug3_exec1) {
    MemoryBist {
      run_mode : hw_default;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      Controller(c1_inst) {
        AdvancedOptions {
          incremental_test_mode : on;
          test_execution_cycles : 500;
        }
        DiagnosisOptions {
          compare_go_id : on;
        }
      }
    }
  }
  TestStep(Functional_debug3_exec2) {
    MemoryBist {
      run_mode : hw_default;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      Controller(c1_inst) {
        AdvancedOptions {
          incremental_test_mode : on;
          test_execution_cycles : 500;
        }
        DiagnosisOptions {
          compare_go_id : on;
        }
      }
    }
  }
  TestStep(Functional_debug3_exec3) {
    MemoryBist {
      run_mode : hw_default;
      AdvancedOptions {
        preserve_bist_inputs : on;
      }
      Controller(c1_inst) {
        AdvancedOptions {
          incremental_test_mode : on;
          test_execution_cycles : 500;
        }
        DiagnosisOptions {
          compare_go_id : on;
        }
      }
    }
  }
} // }}}
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Appendix I
Advanced BAP Memory Access

The advanced BAP enables certain feature overrides in the hw_default operating mode of 
memory BIST controllers attached to the BAP. Test time can be reduced significantly by 
eliminating shift cycles to serially configure the controllers, at the cost of additional connections 
between the BAP and the controllers.
The portion of the advanced BAP memory access feature that interacts with the memory BIST 
controllers is configurable through the IJTAG protocol. This controller configuration may be 
used for manufacturing test within the ATE environment, as well as for in-system test through a 
Tessent MissionMode controller. Using a MissionMode controller for in-system test is a general 
solution enabling access to all instruments connected to the IJTAG network, including memory 
BIST controllers. All options of the PatternsSpecification are supported when generating 
patterns for the MissionMode controller.

The advanced BAP memory access feature also provides the ability of invoking memory tests 
through system signals connected to the BAP direct access interface, rather than serially shifting 
test configuration data and results by the IJTAG network. The direct access interface supports a 
low-latency protocol to configure the MemoryBIST controller, perform Go/NoGo tests, and 
monitor the pass/fail status. However, some modes of operation such as detailed diagnosis are 
not available.

This appendix describes the advanced BAP memory access method in the topics listed below. 
These topics provide information on the direct access interface architecture, interaction with the 
system control logic, procedures for inserting the direct access interface and generating 
simulation workbench for verification.

BAP Direct Access Interface Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
BAP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
BAP Direct Access Interface Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
System Logic Interaction and Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

BAP Requirements, Assumptions and Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
Advanced BAP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

Inserting the BAP Direct Access Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Verifying the BAP Direct Access Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Timing Closure Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
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BAP Direct Access Interface Feature Description
BAP Direct Access Interface Feature 
Description

The BAP module is created for each MBIST DftSpecification insertion pass and services one or 
more MemoryBIST controllers. The BAP direct access interface feature creates a set of ports 
that can be connected to system logic. 
The direct access interface supports a low latency protocol to configure the MemoryBIST 
controller, perform Go/NoGo tests and monitor the pass/fail status. The controllers attached to 
the BAP may operate on the same or different clock domains depending on the functional clock 
sources of the memories under test. There are two different implementations of the feature, 
offering a trade-off between gate count and latency when multiple functional clocks are 
involved. Timing considerations are also slightly different. 

The sections listed below provide the system-level details of the BAP direct access feature.

BAP Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
BAP Direct Access Interface Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
System Logic Interaction and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

BAP Architecture
A block diagram for the advanced BAP, with both BAP and controller direct access is shown in 
the figure below.
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Figure I-1. Advanced BAP Memory Access Diagram (single sequencer)

The advanced BAP memory access feature is comprised of two components. The BAP direct 
access interface ports are shown on the left side of the BAP below the IJTAG network interface 
ports. These connections are user-configurable and connect to the functional logic. On the right 
side, connections from the BAP to the MemoryBIST controllers are completed automatically 
and are not user configurable. The signals to the MemoryBIST controllers are programmed by 
the IJTAG TDRs added into the BAP or, if present, configured through ports of the BAP direct 
access interface. The ports on the MemoryBIST controllers can be implemented independently 
of the BAP direct access interface. The advanced BAP enables certain feature overrides, such as 
algorithm, for all memories without serially configuring the controllers. By operating the 
memory BIST controllers in hw_default mode, test time can be reduced by eliminating shift 
cycles to setup the memory test in the IJTAG protocol.
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The direct access interface provides the ability of invoking memory tests through system signals 
connected to the BAP. The sequencer within the BAP implements the low latency protocol to 
start and stop the memory test. In this implementation, a single sequencer is used to minimize 
the gate count of the BAP. The clock of the sequencer, sys_clock, should have a relatively low 
frequency, comparable to ijtag_tck, to make sure that the control signals generated arrive in the 
correct order at all MBIST controllers.

The direct access interface offers basic options to configure the memory test. You can change 
the test algorithm and operation set to be applied on the memories. You can choose which 
controllers, step and memory to run based on your in-system test requirement. For example, if 
the allocated test time is limited, you can take advantage of this flexibility through the selection 
of a short algorithm with few instructions, or to only perform memory BIST on one memory. 

Repair analysis can also be performed through the direct access interface. The results of this 
analysis can be used to perform either soft or hard incremental repair by accessing the BISR 
controller via the Tessent Mission Mode controller or the direct access interface of the BISR 
controller. 

The output ports of the direct access interface indicate the global pass/fail and completion status 
of all active controllers. The execution time of each controller is typically different, so the pass/
fail and completion status of individual controllers can also be monitored.

Figure I-2 shows a different implementation of the BAP shown in Figure I-1, with a sequencer 
for each functional clock. This implementation enables to further reduce the time required to 
start and stop the controllers, and more accurately constrains the critical paths from the 
sequencers to the MBIST controllers sharing the same functional clock. The cost consists of 
dedicated input/output control signals, as well as a sequencer for each functional clock. 
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Figure I-2. Advanced BAP Memory Access Diagram (multiple sequencers)
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BAP Direct Access Interface Pins
The BAP direct access interface pins that are created depend upon the features configured in the 
DftSpecification.
Specifying the DftSpecification direct_access property to “on” enables creating the BAP direct 
access interface. By default, the BAP direct access interface contains the ports necessary to 
support the controller features enabled within the Controller/DirectAccessOptions/
ExecutionSelections wrapper. The ports related to controller selection are not present if there is 
only a single memory BIST controller. Refer to the Inserting the BAP Direct Access Interface 
section for more information on implementation of the BAP direct access interface.

Table I-1 describes the direct access interface ports that the tool creates on the BAP.

Note
All MBIST controller port names described in Table I-1 that automatically connect to the 
BAP direct access interface are prefixed by “MBISTPG_”. The exceptions are the controller 

ports connected to the BIST_SETUP, CHECK_REPAIR_NEEDED, and 
PRESERVE_FUSE_REGISTER signals.

Table I-1. BAP Direct Access Interface Ports 
Port Name Type Description
User Connected BAP Signals
sys_reset[_<clock_domain>] Input An active low signal that asynchronously 

resets the registers inside the advanced BAP 
for the memory access mode.

sys_clock[_<clock_domain>] Input System clock.
sys_test_init[_<clock_domain>] Input An active high signal releasing the 

asynchronous reset and enabling the clock of 
all memory BIST controllers. This input is 
used when multiple memory BIST controller 
runs are performed and results need to be 
preserved from one run to the other. Set this 
input to 1, together with sys_test_start, for the
first controller run and maintain this value for
all subsequent runs. Set this input to 0 at the 
end of all controller runs to disable the clock 
and assert the asynchronous reset of all 
memory BIST controllers. This input can be 
tied to 0 if it is not necessary to maintain the 
state of memory BIST controllers between 
controller runs.
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sys_test_start[_<clock_domain>] Input There is only one sys_test_start input when 
direct_access_clock_source is set to common.
There is one such input per BIST clock 
domain when direct_access_clock_source is 
set to per_bist_clock_domain. When the 
corresponding sys_test_init signal is 0, setting
sys_test_start to 1 performs the following 
operations: 

• 1. Release the asynchronous reset of all 
memory BIST controllers.

• 2. Enable the clock of all memory BIST 
controllers.

• 3. Enable all controllers.
• 4. Start all controllers.

After the memory test, setting sys_test_start 
to 0 performs the operations in the reverse 
order:

• 4. Stop all controllers.
• 3. Disable all controllers.
• 2. Disable the clock of all memory BIST 

controllers.
• 1. Assert the asynchronous reset of all 

memory BIST controllers.
When the corresponding sys_test_init signal 
is 1, only operations 3 and 4 are performed.

sys_test_pass[_<clock_domain>] Output Memory test pass/fail status. Asserted to 0 
when at least one controller detects a failure.

sys_test_done[_<clock_domain>] Output Memory test completion status. Asserted to 1
when all controllers have completed their 
execution.

sys_ctrl_pass[msb:lsb] Output Pass/fail status per controller. One-hot 
encoding indicates which controller(s) 
detected a failure.

sys_ctrl_done[msb:lsb] Output Completion status per controller. One-hot 
encoding indicates which controller(s) 
completed their execution.

sys_ctrl_select[msb:lsb] Input Individual enable signal per controller. Select
the controller(s) to run by setting the 
corresponding bit to 1.

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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sys_algo_select[msb:lsb] Input Test algorithm selection code.
sys_select_common_algo Input Enable the algorithm selection. When set to 1,

the algorithm associated with the code 
specified on the sys_algo_select port is used. 
Otherwise, the default algorithm encoded at 
RTL generation is run.

sys_opset_select[msb:lsb] Input Operation set selection code.
sys_select_common_opset Input Enable the operation set selection. When set 

to 1, the operation set associated with the 
code specified on the sys_opset_select port is
used. Otherwise, the default operation set 
encoded at RTL generation is run.

sys_step_select[msb:lsb] Input Controller step selection code.
sys_step_select_en Input Enable the controller step selection. When set

to 1, the step associated with the code 
specified on the sys_step_select port is used. 
Otherwise, all the steps are run.

sys_memory_select[msb:lsb] Input Individual enable signal per memory within a
controller step. Select the memories to run by
setting the corresponding bit to 1.

sys_memory_select_en Input Enable the memory selection. When set to 1, 
the memories associated with the signals 
specified on the sys_memory_select port are 
tested. Otherwise, all the memories are tested

sys_test_port_select[msb:lsb] Input Memory test port selection code.
sys_test_port_select_en Input Enable controller test port selection. When set

to 1, the test port associated with the signals 
specified on the sys_test_port_select port are 
used. Otherwise, all the test ports are tested.

sys_data_inv_col_add_bit_select[msb:lsb] Input Select the column address bit that inverts the 
applied write and expect data registers. The 
select width is set by the 
AlgorithmResourceOptions/
max_data_inversion_address_bit_index 
property, which defaults to 0 and corresponds
to c[0].

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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sys_data_inv_col_add_bit_select_en Input Enable data inversion based on column 
address bit selection. When set to 1, data 
inversion is determined by the signal present 
on sys_data_inv_col_add_bit_select.

sys_data_inv_row_add_bit_select[msb:lsb] Input Select the row address bit that inverts the 
applied write and expect data registers. The 
select width is set by the 
AlgorithmResourceOptions/
max_data_inversion_address_bit_index 
property, which defaults to 0 and corresponds
to r[0].

sys_data_inv_row_add_bit_select_en Input Enable data inversion based on row address 
bit selection. When set to 1, data inversion is 
determined by the signal present on 
sys_data_inv_row_add_bit_select.

sys_mbistcfg_en Input Override the configuration data for the 
memory clusters. When set to 1, the value 
specified on the sys_mbistcfg_interface<id> 
port is applied to the associated memory 
cluster interface. Otherwise, the default value
encoded at RTL generation is used.

sys_mbistcfg_interface<id> Input Configuration data for memory cluster 
interface <id>.

sys_<ctrl_id>_<cluster_id>_
<cluster_reset_port_name><x>

Input Reset signal for each memory cluster 
instance. The memory cluster TCD defines 
the port name (reset) and its active polarity. 
The port specifies the InterfaceReset function
of the cluster module. ctrl_id and cluster_id 
are respective DftSpecification wrapper 
names.

sys_<ctrl_id>_<cluster_id>_
<cluster_request_port_name><x>

Input Request signal for each memory cluster 
instance. The memory cluster TCD defines 
the port name (request) and its active polarity.
The port specifies the BistOn function of the 
cluster module. If the request signal is multi-
bit, the BAP input is a bus port. ctrl_id and 
cluster_id are respective DftSpecification 
wrapper names.

sys_retention_test_phase[1:0] Input Retention test phase selection code for 
SMarchCHKB based library algorithms.

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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sys_preserve_test_inputs Input An active high signal that maintains the 
memories under BIST control. For retention 
testing, use this signal to avoid corrupting the
memory content during the retention pause. 

sys_bira_en Input An active high signal that enables repair 
analysis for the repairable memories under 
BIST control.

sys_check_repair_needed Input An active high signal that enables 
examination of the repair analysis status 
register after BIST completion.

sys_preserve_fuse_register Input An active high signal that enables the 
preservation of repair analysis register values
from a previous test step. This inhibits the 
loading of the BISR register values into the 
repair analysis registers when a new test step 
begins.

Controller Auto-Connected Signals
BIST_ASYNC_RESET Output An active low asynchronous reset signal that 

connects to the ASYNC_RESETN input of 
the MBIST controller.

bistEn[msb:lsb] Output An active high enable signal per controller 
used in the start/stop protocol. Connects to the
EN input of the MBIST controller.

BIST_SETUP Output Run mode signal used in the start/stop 
protocol. Connects to the BIST_SETUP input
of the MBIST controller.

MBISTPG_GO[msb:lsb] Input Pass/fail status per controller. Connects to the
GO output of the MBIST controller.

MBISTPG_DONE[msb:lsb] Input Completion status per controller. Connects to
the DONE output of the MBIST controller.

BIST_ALGO_SEL[x:y] Output Test algorithm selection code. Connects to the
ALGO_SEL input of the MBIST controller.

BIST_SELECT_COMMON_ALGO Output An active high signal that enables the test 
algorithm selection code. Connects to the 
SELECT_COMMON_ALGO input of the 
MBIST controller.

BIST_OPSET_SEL[x:y] Output Operation set selection code. Connects to the 
OPSET_SEL input of the MBIST controller.

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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BIST_SELECT_COMMON_OPSET Output An active high signal that enables the 
operation set selection code. Connects to the 
SELECT_COMMON_OPSET input of the 
MBIST controller.

BIST_STEP_SEL[x:y] Output Controller step selection code. Connects to 
the STEP_SELECT input of the MBIST 
controller.

BIST_STEP_SELECT_EN Output An active high signal that enables the 
controller step selection code. Connects to the
STEP_SELECT_EN input of the MBIST 
controller.

BIST_MEM_SEL[x:y] Output Individual selection signal per memory within
a controller step. Connects to the 
MEM_SELECT input of the MBIST 
controller.

BIST_MEM_SELECT_EN Output An active high signal that enables the memory
selection. Connects to the 
MEM_SELECT_EN input of the MBIST 
controller.

BIST_ALGO_MODE0
BIST_ALGO_MODE1

Output Retention test phase selection code for library
algorithms. Connects to the 
ALGO_MODE[1:0] inputs of the MBIST 
controller.

BIST_TEST_PORT_SEL[x:y] Output Controller test port selection code. Connects 
to the TEST_PORT_SELECT input of the 
MBIST controller.

BIST_TEST_PORT_SELECT_EN Output An active high signal that enables the 
controller test port selection code. Connects 
to the TEST_PORT_SELECT_EN input of 
the MBIST controller.

BIST_SELECT_TEST_DATA Output An active high signal that maintains 
memories under BIST control. Connects to 
the TESTDATA_SELECT input of the 
MBIST controller.

BIST_DATA_INV_COL_ADD_BIT_SEL[x:y] Output Controller column address data inversion 
selection. Connects to the 
DATA_INV_COL_ADD_BIT_SELECT input of 
the MBIST controller.

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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BAP Shared Bus Direct Access Interface Pins
An example advanced BAP configuration for Shared Bus access is provided below to highlight 
the direct access interface ports that are created and how they connect to the cluster instances.

BIST_DATA_INV_COL_ADD_BIT_SELECT_EN Output An active high signal that enables the column
address data inversion selection. Connects to 
the DATA_INV_COL_ADD_BIT_SELECT_EN 
input of the MBIST controller.

BIST_DATA_INV_ROW_ADD_BIT_SEL[x:y] Output Controller row address data inversion 
selection. Connects to the 
DATA_INV_ROW_ADD_BIT_SELECT input of 
the MBIST controller.

BIST_DATA_INV_ROW_ADD_BIT_SELECT_EN Output An active high signal that enables the row 
address data inversion selection. Connects to 
the DATA_INV_ROW_ADD_BIT_SELECT_EN 
input of the MBIST controller.

BIRA_EN Output An active high signal that enables controller 
repair analysis. Connects to the BIRA_EN 
input of the MBIST controller.

CHECK_REPAIR_NEEDED Output An active high signal that enables repair 
analysis status register examination after 
BIST completion. Connects to the 
CHECK_REPAIR_NEEDED input of the 
MBIST controller.

PRESERVE_FUSE_REGISTER Output An active high signal that enables preserving 
repair analysis register values from the 
previous test step. Inhibits the loading of the 
BISR register values into the repair analysis 
registers when a new test step begins. 
Connects to the MBIST_RA_PRSRV_FUSE_VA 
input of the MBIST controller.

sel Input Reserved for future use. Tied to 0.

Table I-1. BAP Direct Access Interface Ports  (cont.)
Port Name Type Description
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The memory cluster is described by the following DftSpecification, resulting in the connections 
shown in Figure I-3:

DftSpecification {
  MemoryBist {
    Controller(c1) {
      MemoryCluster(cluster1) {
        instance_name: c1_inst1;
      }
    }
    ReusedController(c2) {
      reused_controller_id: c1;
      MemoryCluster(cluster1) {
        // same cluster module as c1
        instance_name: c1_inst2;
      }
    }
    Controller(c3) {
      MemoryCluster(cluster1) {
        instance_name: c1_inst3;
      }
    }
  }
}
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Figure I-3. Advanced BAP Shared Bus Access Diagram

Note that the direct access interface cluster configuration ports are shared between all the cluster 
types (modules) and their instances, while each memory cluster has dedicated direct access 
input ports for reset and request.

Note
The timing protocol for the memory cluster reset and request inputs are different than the 
other direct access interface input signals. The protocol is determined by the core provider 

and the user is responsible for its proper implementation.

Note
The direct access interface system connections for the cluster reset and request inputs, as 
well as the BAP configuration_data inputs, are not automated at this time with the 

BistAccessPort/Connections wrapper in the DftSpecification.
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System Logic Interaction and Timing
The following sections provide details for system logic connections and the direct access 
interface timing:
Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
Clocking Schemes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Sampling Pass/Done Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

Timing Diagram
The general access protocol for in-system testing using advanced BAP memory access with 
single and multiple sequencers is described in this section. 
Figure I-4 shows the protocol for the BAP implementation case described in Figure I-1, where a 
low frequency functional clock is used for the sequencer generating control signals for all 
MBIST controllers attached to the BAP. The timing diagram illustrates memory tests being 
initiated on memory controllers 0 and 2, and each runs algorithm 4.

Determining the codes used for controller and algorithm selection shown in this diagram, as 
well as selection codes for other controller features, is described in the Selection Codes section.

Figure I-4. BAP Direct Access Interface Timing Protocol

The sys_reset input is the asynchronous reset for the sequencer, and all BAP outputs are forced 
to their inactive value when this input is 0. Once the sequencer reset is released (that is, a 0 to 1 
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transition), the sys_test_start input is used to initiate a test. This input goes through a 
synchronizer before being applied to the sequencer in the event that the system inputs (sys_*) 
are not generated by sys_clock. 

Note
Starting with the 2020.3 release, a synchronizer cell from the cell library is implemented 
inside of the BAP, rather than a double flop implementation. Depending on what type of 

synchronizer cell the designer selects from the cell library, the timing of some BAP direct 
access interface signals may need to be adjusted. Synchronizer cells with a reset input do not 
need adjustment. For synchronizer cells without a reset, the sys_test_init and sys_test_start BAP 
direct access inputs must be set active for at least two functional clock cycles, before the 
sys_reset signal is set inactive. This ensures that the synchronizer cell is properly initialized, or 
flushed, before initiating a test.

The sequence of events shown in Figure I-4 during test initiation consists of the following:

1. Release reset of all MBIST controllers — 0 to 1 transition on BIST_ASYNC_RST

2. Prepare run mode for MBIST controllers — 00 to 10 transition on BIST_SETUP

3. Start selected MBIST controllers — 000 to 101 transition on BISTen

During execution, the sys_test_pass output remains high until the test is done (0 to 1 transition 
on sys_test_done) unless a fault is detected by one of the selected MBIST controllers as 
indicated by the red dotted line.

Once the test is done, the sys_test_start input can be set to 0. The sequence of events described 
earlier is then performed in the reverse order. A minimum of 6 clock cycles should be allowed 
before re-asserting sys_test_start to initiate a new test with the same or different inputs. 

Figure I-5 shows a timing diagram for the BAP implementation case described in Figure I-2 
with multiple sequencers. The same algorithm and controllers are selected as indicated by the 
sys_select_common_algo, sys_algo_select and syc_ctrl_select inputs. These shared inputs are 
applied ahead of time to the BAP to leave enough time for them to propagate to the MBIST 
controllers. Controllers are started per clock domain using the dedicated sys_test_start_CKA 
and sys_test_start_CKB  BAP inputs, which are assumed to be synchronized to clock 
sys_clock_CKA and sys_clock_CKB respectively.
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Figure I-5. BAP Direct Access Interface Timing Protocol with Multiple 
Sequencers

Clocking Schemes
The BAP direct access interface supports two different clocking schemes. Choosing between 
the two schemes depends on how the in-system test is operated.
If the system control logic operates on a slow functional clock, the BAP direct access interface 
can use the same clock source to manage the in-system test. One sequencer is implemented in 
the BAP to operate all controllers. The absolute value of the delays from the BAP outputs to the 
MBIST controllers are not important. However, the signals should arrive in the order described 
in the “Timing Diagram” section. This means that the difference in propagation delays cannot 
exceed one period of sys_clock. Selecting a relatively slow speed clock, similar to TCK 
(typically at tens of MHz), makes it relatively easy to meet this requirement without having to 
analyze the detailed timing.

If the system control logic operates on fast functional clocks, the BAP direct access interface 
can be built to manage the in-system test on a per-clock domain basis. Multiple sequencers are 
implemented in the BAP and each sequencer operates the controllers belonging to the same 
clock domain. This implementation further reduces the time required to start and stop the 
controllers, and more accurately constrains the critical paths from the sequencers to the MBIST 
controllers sharing the same functional clock. In addition to the sequencer clock input, other 
signals such as reset, memory test pass/fail, and completion status, are dedicated per clock 
domain as shown in Table I-1.

Sampling Pass/Done Signals
Sampling Pass/Done BAP outputs is done slightly differently for the single and multiple 
sequencer implementations.
In the single sequencer case, shown in Figure I-1, the global sys_test_pass and sys_test_done 
status signals, as well as the per-controller sys_ctrl_pass and sys_ctrl_done status signals are not 
registered outputs of the BAP direct access interface. These signals are sourced from memory 
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BIST controller DONE and GO outputs, and can be from various memory BIST clock domains. 
Because of this variation, consideration on how the functional control logic captures these 
signals is necessary to avoid potential glitches in sampling.

There are three methods available for avoiding potential glitches when functional logic captures 
pass/done status from the BAP direct access interface, depending on the exact requirements:

1. Wait a fixed time duration until all controllers complete test execution. This is the 
method employed during manufacturing test. Test time needs to be known for each run, 
and can be determined from the verification testbench as described in the “Test 
Execution Time Determination” section.

2. Synchronize the sys_test_done BAP output using a synchronizer cell clocked by 
sys_test_clock or other appropriate functional clock. The synchronized sys_test_done 
output can then be used to sample the sys_test_pass as well as the sys_ctrl_pass BAP 
outputs. This method is useful as the system does not need to store all possible test time 
values, and yet samples test results as soon as they are available. However, a time out 
value corresponding to the longest possible test time should be stored by the system in 
case a controller does not reach the Done state.

3. Also synchronize the sys_test_pass BAP output as described in method #2. This is only 
necessary if the system needs to be notified as soon as possible of a failure on any of the 
controllers.

In the multi-sequencer case of Figure I-2, synchronizers of method #2 and #3 are not necessary 
as the sys_test_done and sys_test_pass outputs are generated for each clock domain.

BAP Requirements, Assumptions and 
Limitations

The following are the requirements, assumptions and limitations for implementing and utilizing 
advanced BAP memory access in Tessent Shell:

• Applying in-system memory tests is a destructive process. The memory content, prior to 
the memory being taken off-line, is overwritten. 

• This feature only supports simulation patterns with controllers using a run_mode of 
hw_default, running Go/NoGo tests (compare_go:on). The pass/fail and completion 
status of the test and individual controllers are reported. Operating modes that require 
shifting the controller setup chain are not supported.

• The BAP ports must be connected to the system control logic before performing logic 
synthesis and scan insertion.

• When automating the BAP connections to the system control logic through the 
DftSpecification, the system side port or pin must be pre-existing in the design.
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• The tool does not create patterns to configure the system control logic nor to operate the 
BAP module for in-system use. For sign-off verification, a testbench can be created 
through the PatternsSpecification to illustrate the protocol that must be implemented by 
the system control logic.

• The BAP direct access interface selection input ports are created when at least one 
controller implements the corresponding selection feature in the controller 
DftSpecification ExecutionSelections wrapper. 

• When the BistAccessPort/DirectAccessOptions/direct_access_clock_source property is 
set to “common”, the system logic clock connected to the direct access interface 
sys_clock input port should be at least four times slower than the lowest memory BIST 
clock frequency. The slower clock has no impact on test time and avoids having to 
constrain additional paths. 
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Advanced BAP Implementation
The following sections provide details on implementing the advanced BAP memory access 
feature in hardware, and verifying it in simulation. Information on ensuring timing closure for 
synthesis with the implementation of this feature is also provided.
Inserting the BAP Direct Access Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Verifying the BAP Direct Access Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Timing Closure Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
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Inserting the BAP Direct Access Interface
The following sections describe how to configure the DftSpecification to insert the BAP direct 
access interface and make connections to the system control logic:
BAP and Controller DftSpecification Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Clock Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
System Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

BAP and Controller DftSpecification Options
The BAP module is generated and inserted in the current DFT insertion pass, together with the 
MemoryBIST instruments. For inclusion of the BAP direct access interface, configure the 
DirectAccessOptions wrappers in the MemoryBist section of the DFT Specification. The 
material that follows outlines various options for implementations that range from basic to more 
advanced.
In a basic setup, the BAP is automatically equipped with additional ports to perform in-system 
memory test and to report the test status to the system control logic. The memory test is 
performed using the default settings defined in the memory library and DFT specification. You 
are able to test all memories at once, or a subset of memories based on controller assignment. A 
single sequencer is implemented to manage the test for all controllers attached to the BAP. The 
single clock to the sequencer must be at least four times slower than the lowest memory BIST 
clock frequency.

DftSpecification {
  MemoryBist {
    BistAccessPort {
      DirectAccessOptions {
        direct_access: on;
      }
    }
  }
}

For flexibility in configuring the in-system test, you can specify controller features that are 
directly configured from the BAP. These controller features enable applying the test on a subset 
of memories and changing the test algorithm and operation set. You can configure individual 
controllers using the ExecutionSelections wrapper in the MemoryBist/Controller/
DirectAccessOptions section of the DFT specification. In the following example, the BAP 
direct access interface is equipped to select a group of memories tested concurrently or a single 
memory within controller c1. Additional IJTAG TDRs are added into the BAP for control 
during manufacturing test. Additional input ports are added on the BAP for control during in-
system test.
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DftSpecification {
  MemoryBist {
    BistAccessPort {
      DirectAccessOptions {
        direct_access: on;
      }
    }
    Controller(c1) {
      DirectAccessOptions {
        ExecutionSelections {
          step: on;
          memory: on;
        }
      }
    }
  }
}

The selection features at the controller level can be used for applications independent of the 
BAP direct access interface. Because IJTAG TDRs are added into the BAP, they can be 
programmed during manufacturing test or during in-system test using the MissionMode 
controller. The advantage of implementing the additional IJTAG TDRs are test time reduction. 
Selecting the controller step, memory, algorithm or operation set can be achieved by 
programming the BAP TDR instead of serially loading the configuration chain through the 
controllers.

Depending on your test methodology, the system side ports of the BAP may not be wanted. You 
can disable the BAP direct access interface by setting direct_access: off in the MemoryBist/
BistAccessPort/DirectAccessOptions section of the DFT specification. In the following 
example, the BAP direct access interface is not implemented, but is equipped with an IJTAG 
TDR to select the controller step and memory within controller c1.

DftSpecification {
  MemoryBist {
    BistAccessPort {
      DirectAccessOptions {
        direct_access: off;
      }
    }
    Controller(c1) {
      DirectAccessOptions {
        ExecutionSelections {
          step: on;
          memory: on;
        }
      }
    }
  }
}

For advanced in-system usage, you can use the ExecutionSelections wrapper in the 
MemoryBist/BistAccessPort of the DFT specification to omit unneeded system-side ports from 
the BAP direct access interface. In the following example, the BAP direct access interface is 
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able to perform in-system memory test on all memories at once, without the ability to select 
controller, algorithm or operation set. The BAP is built with IJTAG TDR to program the 
algorithm or operation set.

DftSpecification {
  MemoryBist {
    BistAccessPort {
      DirectAccessOptions {
        direct_access: on;
        ExecutionSelections {
          controller: off;
          algorithm: off;
          operation_set: off;
        }
      }
    }
    Controller(c1) {
      DirectAccessOptions {
        ExecutionSelections {
          algorithm: on;
          operation_set: on;
        }
      }
    }
  }
}

Clock Connections
The BAP direct access interface supports two different clocking schemes, each with a different 
impact on the connection and signaling requirements of sys_clock.
The clocking scheme used in the BAP direct access interface is specified with the 
DftSpecification BistAccessPort/DirectAccessOptions/direct_access_clock_source property. 
The clock connections are configured within the Connections/DirectAccess/ClockDomain 
wrapper.
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When direct_access_clock_source is specified as common, a single test sequencer is created in 
the BAP that manages memory testing for all attached controllers. For this setting, the sys_clock 
connection to the system logic must be specified as follows: 

DftSpecification {
  MemoryBist {
    BistAccessPort {
      Connections {
        DirectAccess {
          ...
          ClockDomain(-) {           // domain_label must be "-"
            clock : port_pin_name ;  // System logic clock
            ...
          }
        }
      }
    }
  }
}

The system logic clock frequency must be at least four times slower than the lowest memory 
BIST clock frequency. The slower clock frequency has no impact on test time because the clock 
is only used by the BAP test sequencer. The slower clock is necessary to provide enough time 
between different sequencer events and signal propagation to the controller, without having to 
constrain the timing paths.

When direct_access_clock_source specified as per_bist_clock_domain, a separate test 
sequencer is created in the BAP direct access interface for each memory BIST clock domain. 
The sys_clock port for each sequencer is automatically connected to the clock corresponding to 
the specified memory BIST clock domain label. For this setting, the clock connections are 
specified as follows:

DftSpecification {
  MemoryBist {
    BistAccessPort {
      Connections {
        DirectAccess {
          ...
          ClockDomain(mbist_clk_domain_1) { // Repeatable for each domain
               // The following is optional. An automatic connection is
               // made to the matching memory BIST controller
               // clock_domain_label clock
            clock : port_pin_name ;         // Optional
            ...
          }
          ClockDomain(mbist_clk_domain_2) { 
            ...
          }
        }
      }
    }
  }
}
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In either clocking scheme, the system logic driving sys_test_start can be from any clock domain 
because this BAP direct access interface input goes through a synchronizer, clocked by the 
respective BAP sequencer clock. All other BAP direct access interface inputs driven by the 
system logic should be in a stable state at the interface prior to sys_test_start being asserted.

System Connections
Connections from the BAP direct access interface to the system control logic can be automated 
to occur along with the generation and insertion of the BAP module during the DFT insertion 
pass. 
The only exceptions for availability of automated connections are the reset and request inputs 
for memory clusters. Refer to the “BAP Shared Bus Direct Access Interface Pins” section for 
further information.

The system connections are configured within the Connections wrapper in the MemoryBist 
section of the DFT specification. To use the Connections wrapper, the BistAccessPort 
DirectAccessOptions/direct_access property must be set to on. 

By default, the BAP direct access interface contains the system logic connection ports that are 
necessary to support the controller features enabled in the MemoryBist ExecutionSelections 
wrapper. If there is only a single memory BIST controller attached to the BAP, the controller 
selection ports are not present on the direct access interface.

The repeatable ClockDomain wrapper within the Connections wrapper, configures BAP direct 
access interface connections that can originate from different clock domains, as described in the 
Clock Connections section. The BAP direct access interface contain a set of ports for system 
logic connection, for each ClockDomain wrapper specified.

When making system logic connections, ensure that the Connections wrapper connections for 
controller_done (sys_ctrl_done), controller_pass (sys_ctrl_pass), ClockDomain/test_done 
(sys_test_done) and ClockDomain/test_pass (sys_test_pass) are to internal input pins or output 
ports of the current design. All other connections must be to internal output pins or input ports 
of the current design.

It is not allowed to duplicate usage for the specified design ports and pins. If a system control 
logic port or pin is wider than its counterpart on the BAP direct access interface, only the 
number of bits equaling the width of the direct access interface are connected to the control 
logic and the remaining control logic bits are unused. An error is issued if the system control 
logic port or pin is smaller in width than its counterpart on the BAP direct access interface

A warning is issued during DFT insertion if a BAP direct access interface output (such as 
controller_done, controller_pass, test_done, or test_pass) connects to a system control logic port 
or pin that already has a drive source. The tool disconnects the driver in this situation.
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Verifying the BAP Direct Access Interface
The following sections describe how to create a simulation testbench that can be used to verify 
the BAP direct access interface using the appropriate selection codes for the incorporated 
features. 
PatternsSpecification Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Test Execution Time Determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
Selection Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
Parallel Retention Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

PatternsSpecification Options
The in-system memory test is controlled from the functional logic. The system control logic can 
be implemented and operated in various architectures and protocols. For example, it might be a 
standard bus or a CPU based interface. The tool does not create patterns to configure the system 
control logic or to operate the BAP module for in-system use. It is recommended to ensure the 
correct operation of the in-system test as part of your design verification flow.
To facilitate sign-off verification in the Tessent Shell flow, a simulation testbench can be 
created using the process_patterns_specification command to mimic the protocol that must be 
implemented by the system control logic. The testbench targets the system-side inputs and 
outputs of the BAP direct access interface. A series of Verilog force statements are applied to 
launch the selected controllers, wait for the test execution, and sample the memory test pass/fail 
and completion status outputs of the BAP.

You can generate such a testbench using the MemoryBist wrapper in the Patterns/TestStep 
section of the patterns specification. The access_protocol property instructs the tool to utilize 
the BAP direct access interface instead of the IJTAG network. In the following example, the 
memories associated with controllers c1 and c2 are tested using the default settings. The MBIST 
controllers are clocked at the functional period of 10ns. Assume the system control logic 
operates on a slow functional clock. One sequencer is implemented in the BAP. The BAP direct 
access interface is clocked at 40ns, which is four times slower than the lowest MBIST clock 
frequency.
Tessent™ MemoryBIST User’s Manual, v2022.4854

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Advanced BAP Memory Access
Verifying the BAP Direct Access Interface
PatternsSpecification(chip,rtl,direct) {
  Patterns (pat1) {
    ClockPeriods {
      clka : 10ns;
    }
    TestStep(test1) {
      MemoryBist {
        access_protocol : parallel;
        run_mode : hw_default;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
          }
        }
        Controller(chip_rtl_tessent_mbist_c2_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
          }
        }
      }
    }
  }
}

Selection of algorithms, operation sets, controllers, steps, or memories can be configured 
through the patterns specification using the same syntax as for manufacturing test. The 
compatible memory BIST pattern generation options are shown in Table I-2.

Table I-2. Pattern Generation Options 
Property/Wrapper Selection
AdvancedOptions/apply_algorithm A test algorithm for all memories.
AdvancedOptions/apply_operation_set An operation set for all memories.
Controller wrapper One or more active controllers. Enables a group of 

memories based on controller.
AdvancedOptions/freeze_step One controller step for all controllers. Enables a 

group of memories tested concurrently within a 
controller.

AdvancedOptions/enable_memory_list One or more memories within a controller step. 
Enables specific memory instances.

MemoryBist/AdvancedOptions/
retention_test_phase

Apply one of three phases for retention testing using 
the SMarchCHKB based library algorithms.

MemoryBist/AdvancedOptions/
preserve_bist_inputs

Maintain memories under BIST control throughout 
the current TestStep.

AdvancedOptions/
MemoryClusterOptions/
configuration_data

Override the configuration data value applied to the 
associated Shared Bus memory cluster interface.
Tessent™ MemoryBIST User’s Manual, v2022.4 855

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Advanced BAP Memory Access
Verifying the BAP Direct Access Interface
In the following example, the BAP direct access interface only enables controller c1. 
Furthermore, a custom algorithm is applied to one specific memory. The memory under test is 
activated in the second controller step of controller c1.

PatternsSpecification(chip,rtl,direct) {
  Patterns (pat2) {
    ClockPeriods {
      clka : 10ns;
    }
    TestStep(test1) {
      MemoryBist {
        access_protocol : parallel;
        run_mode : hw_default;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
          }
          AdvancedOptions {
            apply_algorithm : hammer;
            freeze_step : 1;
            enable_memory_list : m2;
          }
        }
      }
    }
  }
}

When the execution selections at the controller level are implemented, the necessary controller 
ports are created and connected to the IJTAG TDR in the BAP. You can override the algorithm 
and operation set, and select step and memory by setting the controller inputs in parallel. The 
selections are global for all active controllers. The main advantage of the parallel broadcast is 
reducing the time to configure the memory test. For example, you can change the algorithm 
applied to all memories by configuring only the BAP. Without the advanced BAP memory 
access feature, the override must be programmed by serially shifting through all controller 
configuration chains. 

You can achieve test time reduction for in-system test with the MissionMode controller and 
manufacturing test because both applications are based on the IJTAG protocol. During 
operation through the IJTAG network, the system-side ports of the BAP direct access interface 
are unused. When the access_protocol property is set to ijtag, you can utilize the parallel 
broadcast by setting run_mode to hw_default and specifying one or more AdvancedOptions 
properties of Table I-2 in the patterns specification. In the following example, the IJTAG 
pattern runs controllers c1 and c2. Furthermore, a custom algorithm is applied to all memories 
associated to both controllers. Because run_mode is hw_default, the algorithm is configured in 
the BAP only. The configuration chains of controllers c1 and c2 are not accessed.
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PatternsSpecification(chip,rtl,direct) {
  Patterns (pat3) {
    ClockPeriods {
      clka : 10ns;
    }
    TestStep(test1) {
      MemoryBist {
        run_mode : hw_default;
        Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
            compare_memory_go : on;
          }
          AdvancedOptions {
            apply_algorithm : movi;
          }
        }
        Controller(chip_rtl_tessent_mbist_c2_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
            compare_memory_go : on;
          }
          AdvancedOptions {
            apply_algorithm : movi;
          }
        }
      }
    }
  }
}

Test Execution Time Determination
After launching the memory test, the system control logic must wait for the controllers to 
complete the algorithm execution and report their test pass/fail and completion status.
For a basic algorithm, the wait time can be manually calculated from the test sequence of the 
memories, the memory sizes, and the algorithm order (number of times that each memory 
location is assessed). Alternatively, the wait time can be obtained by examining the simulation 
testbench used to verify the BAP direct access interface. The procedure is described using the 
patterns specification example shown below.
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PatternsSpecification(chip,rtl,direct) {
  Patterns (pat4) {
    ClockPeriods {
      clka : 10ns;
    }
    TestStep(test1) {
      MemoryBist {
        access_protocol : parallel;
        run_mode : hw_default;
        Controller(chip_rtl_tessent_mbist_c2_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
          }
        }
      }
    }
  }
}

When the patterns specification is processed, each Patterns wrapper results in a simulation 
testbench file stored within the patterns directory of the TSDB. The Patterns wrapper name, 
pat4, forms the testbench file name:

tsdb_outdir/patterns/chip_rtl.patterns_direct/pat4.v

For Patterns(pat4) in the patterns specification, the TestStep(test1) wrapper translates to a 
Verilog task statement in the simulation testbench. The Verilog task statement implements the 
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protocol to operate the BAP direct access interface according to the TestStep settings. The 
TestStep wrapper name, test1, forms the prefix of the Verilog task name:

`timescale 1ns / 100ps
module TB
...
task test1_direct_access_test;
begin
  $display ($realtime,"ns: Start testing the parallel access protocol of
   BAP chip_rtl_tessent_mbist_bap_inst");
  force `SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_test_start = 1'b1;
  force `SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_test_init = 1'b1;
  force `SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_reset = 1'b1;
  force `SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_ctrl_select=2'b01;
  #(7*40.0);
  #737660.0;
  $display ($realtime,"ns: Check the testing results of BAP
    chip_rtl_tessent_mbist_bap_inst");
  if ( `SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_test_pass == 1'b1 ) 
    ...
  end
  if (`SIM_INSTANCE_NAME.chip_rtl_tessent_mbist_bap_inst.sys_test_done == 1'b1)
    ...
  end
  ...
end
endtask
...
end
endmodule

Within the Verilog task statement, test1_direct_access_test, a series of Verilog force statements 
activate the system-side inputs of the BAP. Once the test is started, the Verilog delay statements 
provide the wait time corresponding to the algorithm execution. After that, the status outputs of 
the BAP are compared. Running controller c2 requires 280 + 737660 time units. At the top of 
the testbench file, the timescale statement defines the time unit as 1 ns. Therefore, the test 
execution time is 737940 ns.

Selection Codes
System logic sources selection codes to the BAP direct access interface ports for the controller 
features that have been configured in the DftSpecification. These selection codes identify which 
controller, step, memory, algorithm and operation set are to be used for the in-system test. 
MemoryBIST controllers can be individually configured in the DftSpecification to support any 
combination of direct access step, memory, algorithm or operation set selection capabilities.
Once the DftSpecification is created, the selection codes are available within the file 
design_name_design_id_tessent_mbist_bap.direct_access_dictionary located in the TSDB in 
the tsdb_outdir/instruments/design_name_design_id_mbist.instrument folder.
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An example of the dictionary content is shown in Example I-1 below. The BAP direct access 
interface has been configured for controller, step, algorithm, operation set and memory 
selection capability. Two controllers, identified as c1 and c2, have also been configured to 
support all of these selections. The third controller, c3, is a shared bus controller and is 
configured to support controller and step selections.

The controller selection codes are one-hot encoded in the order listed. For this example, 
controller c1 has the selection code 3'b001 applied to the direct access interface sys_ctrl_select 
input ports, and controller c2 is selected with 3'b010. All controllers are selected with the code 
3'b111.

Similarly, memory selection codes are also one-hot encoded. In this example, assume controller 
c1 (3'b001) and step(1) (2'b01) are selected for in-system test. A memory selection code of 
2'b01 applied to the sys_memory_select input ports select the memory identified with an index 
of “0”, and a code of 2'b10 select the memory identified with an index of “1”. Both memories in 
the step are selected with the code 2'b11. 

The dictionary identifies the design instance name for selectable non-shared bus memories, and 
an instance id for selectable shared bus memories. The instance id is a concatenation of the 
shared bus memory cluster TCD MemoryBistInterface(id), 
LogicalMemoryToInterfaceMapping(logical_memory_id), and finally the logical memory TCD 
PhysicalToLogicalMapping(physical_memory_id) if the DftSpecification 
memory_access_level is set, or resolves, to physical. In this example, assume controller c3 
(3'b100) and step(2) (2'10) are selected for in-system test. A memory selection code of 2'b01 
applied to the sys_memory_select input ports select the memory identified with an index of “0”, 
which has an instance id of I1_LM_1_LEFT_MEM. This corresponds to a MemoryBistInterface 
id of “I1”, a logical memory id of “LM_1”, and a physical memory id of “LEFT_MEM” in the 
shared bus memory TCD.

Selection codes for the hard-coded algorithms and operation sets available in each controller are 
listed as follows:

Algorithm(algorithm_name) selection_code
OperationSet(operationset_name) selection_code

Algorithm selection codes are applied to the sys_algo_select input ports of the direct access 
interface and OperationSet selection codes are applied to the sys_opset_select input ports.
Tessent™ MemoryBIST User’s Manual, v2022.4860

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Advanced BAP Memory Access
Verifying the BAP Direct Access Interface
Example I-1. BAP Direct Access Dictionary Contents

set bap_direct_access_dictionary {
  controller(c1) {
    ControllerSelectionBit 0
    Algorithm(WRITE_SPEED_1R1W_UX7LS) 2'b00
    Algorithm(Y_CHECKER_1R1W_UX7LS) 2'b01
    Algorithm(X_MARCH_1R1W_UX7LS) 2'b10
    Algorithm(SMARCHCHKBCI) 2'b11
    OperationSet(OPERATIONS_1R1W_UX7LS) 2'b00
    OperationSet(NEC_SYNC_1R1W) 2'b01
    OperationSet(SYNC) 2'b10
    step(0) {
      MemorySelectionBit(SYNC_1R1W_16x8_iA) 0
    }
    step(1) {
      MemorySelectionBit(SYNC_1RW_32x16_RC_BISR_iA) 0
      MemorySelectionBit(SYNC_1RW_32x16_RC_BISR_iA) 1
    }
    step(2) {
      MemorySelectionBit(SYNC_2R1W_16x8_iA) 0
    }
  }
  controller(c2) {
    ControllerSelectionBit 1
    Algorithm(WRITE_SPEED_1R1W_UX7LS) 2'b00
    Algorithm(Y_CHECKER_1R1W_UX7LS) 2'b01
    OperationSet(OPERATIONS_1R1W_UX7LS) 2'b00
    OperationSet(NEC_SYNC_1R1W) 2'b01
    step(0) {
      MemorySelectionBit(SYNC_1R1W_16x8_iA) 0
      MemorySelectionBit(SYNC_2R1W_16x8_iA) 1
    }
    step(1) {
      MemorySelectionBit(SYNC_1RW_32x16_RC_BISR_iA) 0
    }
  }
  controller(c3) {
    ControllerSelectionBit 2
    step(0) {
      MemorySelectionBit(I1_LM_0_LOWER_MEM) 0
    }
    step(1) {
      MemorySelectionBit(I1_LM_0_UPPER_MEM) 0
    }
    step(2) {
      MemorySelectionBit(I1_LM_1_LEFT_MEM) 0
      MemorySelectionBit(I1_LM_1_RIGHT_MEM) 1
    }
  }
}

If there is only one controller configured for advanced BAP memory access, the BAP direct 
access interface will not contain sys_ctrl_select input ports for controller selection. 
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Parallel Retention Testing
Through the system-side ports of the BAP, you can enable parallel retention test using the 
SMarchCHKB based library algorithms.
The BAP must be equipped with the control signals by setting the ExecutionSelections/
retention_test_phase property to on in the DFT Specification. Retention test is typically 
performed concurrently on all memories. Table I-3 shows the sequence of events and the test 
phase selection codes for the sys_retention_test_phase inputs. The “00” code disables retention 
testing. 

In addition to setting the test phase selection code for each retention phase, the sys_test_start 
signal should be asserted during each retention phase execution, and deasserted during the 
retention pauses and at the conclusion of the test. Finally, the sys_test_init and 
sys_preserve_test_inputs signals should be set to 1 for the entire retention test. For more 
information, refer to the “Parallel Static Retention Testing” Appendix.

You can create a simulation testbench to run parallel retention test using the SMarchCHKB 
based library algorithms. In the following example, the BAP direct access interface applies the 
SMarchCHKBvcd algorithm to the memories associated with controller c1. The TestStep 
wrappers implement the retention test phases of steps 1, 3, and 5 in Table I-3 above. The 
ProcedureStep wrappers represent the retention pauses of steps 2 and 4 in the same table.

Table I-3. Retention Test Phases 
Step Event Library Algorithm 

Phase Execution
sys_retention_test_phase[1:0]

1 Load checkerboard 
background

start_to_pause 01

2 Apply first retention pause n/a n/a
3 Read checkerboard 

background. Load inverse 
checkerboard background.

pause_to_pause 10

4 Apply second retention 
pause

n/a n/a

5 Read inverse checkerboard 
background

pause_to_end 11
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Figure I-6. Example BAP Direct Access Parallel Retention Test

Patterns (prt) {
  ClockPeriods {
    clka : 10ns;
  }
  TestStep(write_ckb) {
    MemoryBist {
      access_protocol : parallel;
      run_mode : hw_default;
      AdvancedOptions {
        retention_test_phase : start_to_pause; //sys_retention_test_phase= 01
      }   
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        DiagnosisOptions {
          compare_go : on;
        }
        AdvancedOptions {
          apply_algorithm : SMarchCHKBvcd;
        }
      }
    }
  }

  ProcedureStep(pause1) {
    wait_time : 500ns;
  }
  TestStep(read_ckb_write_inv_ckb) {
    MemoryBist {
      access_protocol : parallel;
      run_mode : hw_default;
      AdvancedOptions {
        retention_test_phase : pause_to_pause; //sys_retention_test_phase= 10
      }   
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        DiagnosisOptions {
          compare_go : on;
        }
        AdvancedOptions {
          apply_algorithm : SMarchCHKBvcd;
        }
      }
    }
  }
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  ProcedureStep(pause2) {
    wait_time : 500ns;
  }
  TestStep(read_inv_ckb) {
    MemoryBist {
      access_protocol : parallel;
      run_mode : hw_default;
      AdvancedOptions {
        retention_test_phase : pause_to_end; //sys_retention_test_phase= 11
      }   
      Controller(chip_rtl_tessent_mbist_c1_controller_inst) {
        DiagnosisOptions {
          compare_go : on;
        }
        AdvancedOptions {
          apply_algorithm : SMarchCHKBvcd;
        }
      }
    }
  }
}

Timing Closure Considerations
Insertion of the advanced BAP memory access feature may require some additional 
considerations to obtain timing closure, depending on the clock source implementation.
The clocking scheme used in the BAP direct access interface is specified with the 
DftSpecification BistAccessPort/DirectAccessOptions/direct_access_clock_source property. 
When specified as common, a single test sequencer is created in the BAP that manages memory 
testing for all attached controllers. For this setting, the absolute value of the delays from the 
BAP outputs to the MBIST controllers are not important. However, the signals should arrive in 
the order described in the “Timing Diagram” section. This means that the difference in 
propagation delays cannot exceed one period of sys_clock. Selecting a relatively slow speed 
clock similar to TCK (typically at tens of MHz) makes it relatively easy to meet this 
requirement without having to analyze the detailed timing. When specified as 
per_bist_clock_domain, a separate test sequencer is created in the BAP for each memory BIST 
clock domain. 

The timing closure considerations for each of these settings is as follows:

direct_access_clock_source: common

• Cross domain paths exist from the BAP sequencer to the memory BIST circuits. Declare 
false paths from the branch of sys_clock in the BAP to the functional clocks used in the 
memory BIST logic.

• In the v2018.1 release, a persistent buffer is instantiated immediately after the sys_clock 
input port. The clock buffer is preserved through synthesis to apply the timing exception 
on the netlist for static timing analysis.
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• In the v2018.2 release, the SDC file declares a generated clock at the clock buffer 
output, and includes a generic false path from the generated clock to the functional 
clocks reaching memory BIST controllers attached to the same BAP.

direct_access_clock_source: per_bist_clock_domain

• The BAP sequencer and memory BIST controller(s) are on the same clock domain. A 
timing path exists from the BAP sequencer, through the controller BIST_SO output and 
back to the capture flop in the BAP TDR. This timing path is false and is covered by the 
existing timing exception between the IJTAG TCK and BIST clock.
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Appendix J
Certifying TCD Memory Library Files With

memlibCertify in Tessent Shell

Implementing memory BIST using Tessent MemoryBIST products requires special memory 
models, often referred to as memory library files or memory TCD files. The abstract models are 
needed to describe test-specific memory attributes that enable the Tessent MemoryBIST tool to 
create built-in test hardware with high defect test coverage. The memory library files do not 
provide any behavioral representation of the memory. However, there is a need to verify that the 
memory attributes are correctly defined and are consistent with the memory functional 
behavior.
This section describes how you can automate the validation of the memory library files using 
the memlibCertify utility. The intention is to have memory providers (companies or groups 
within a company) that are responsible for development of embedded memories (compiled or 
custom) certify the creation of all memory library files before the designer tries to use them in a 
design. This certification process verifies that the memory test attributes are correctly defined 
and are consistent with the memory behavioral model.

Memory library files are presented to the tool in the form of Tessent Core Description (TCD) 
files. For further information on the memory TCD file structure and content, refer to the 
“Memory” topic in this manual.

Note
The legacy LogicVision memory library format is supported natively and is automatically 
translated into the memory TCD format when read. Note that Tessent Shell requires the 

LogicVision MemoryTemplate name to match the specified CellName as shown below:

MemoryTemplate(mydram) {
      MemoryType:    SRAM;
      CellName:      mydram;
      .
      .
      .
}

Note
You can also use the memlibCertify utility to validate custom user-defined algorithms 
(UDAs).
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The following topics are covered in this section:

Certification Steps for Memories without Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . 868
Certification Steps for Memories with Redundancy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
memlibCertify Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
memlibCertify Utility Usage in Tessent Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

memlibCertify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
memlibCertify Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

Certification Steps for Memories without 
Redundancy

This procedure describes the steps needed to validate the memory TCD files for RAM and 
ROM memories that do not incorporate memory repair. The process makes use of the 
memlibCertify utility to automate the validation as much as possible. The memlibCertify utility 
also provides physical mapping data validation between memory vendor bitmap files and 
matching memory TCD files in the Tessent Shell flow. 

Prerequisites
• If a memory TCD is being certified for a ROM, you need to provide a ROM contents 

file. The contents of this file is described in the RomContentsFile property description of 
the Memory TCD wrapper.

• Memory TCD files and corresponding valid Verilog simulation models for all unique 
memory types that need to be validated.

• A memory vendor bitmap file for each memory module to validate the address and data 
mapping that is described in the PhysicalAddressMap and PhysicalDataMap wrappers 
of the memory TCD.

Procedure
1. Prepare the Environment — Create the necessary directory structures and copy all 

relevant memory library files and Verilog models to the corresponding directories.

The memlibCertify utility is flexible in that it supports repeatable arguments that can 
point to a variety of memory library file folders and Verilog simulation model folders. 
This enables one to organize folders as necessary. A simplistic directory structure could 
be implemented as shown below, where all the memory library files are located in the 
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memlib directory, and the corresponding Verilog simulation models are located in the 
verilog directory.

2. Generate Tessent Shell dofiles — Run the memlibCertify utility to generate the dofiles 
that create the DFT hardware, patterns and testbenches needed, as well as run and check 
simulations to complete the verification for each memory. A makefile is created that 
automates the certification process.

Refer to the memlibCertify utility documentation to determine the proper runtime 
options specific to your implementation. 

The following example shows a typical invocation of memlibCertify:

% memlibc -memLib memlib/singlePort/spram.tcd_memory
-memLib memlib/dualPort/dpram.lvlib
-simModelDir verilog/libs/90nm/rams
-simModelDir verilog/libs/90nm/roms
-extension v:vg
-romFileExtension romdata
-romFileDir memlib/roms/rom.tcd_memory
-bitMapFile memlib/singlePort/spram.bitmap 

This example instructs memlibCertify to process three memory library files 
(spram.tcd_memory, dpram.lvlib and rom.tcd_memory). Tessent Shell natively supports 
legacy LogicVision memory library format and these files can be processed by 
memlibCertify, as shown in the example with dpram.lvlib. The specified search paths 
and file extensions are appropriately forwarded into the generated dofiles. 

The ROM content files with the specified file extensions are searched for within the 
directories specified with the -romFileDir switch and the file names are loaded into the 
generated dft_spec.do dofile. If you do not specify the -romFileDir property, the utility 
searches for ROM content files with the specified file extensions within the directories 
specified by the -memLib properties. Refer to the “memlibCertify Output” section for 
further information on the generated dofiles and makefile. For more information on 
using ROM content files, refer to the memlibCertify -romFileExtension switch 
description as well as the tool help contents viewed with the -help switch.
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Note
For ROMs, file_path_name entries for the RomContentsFile property in the Memory 
library file are ignored. The file_path_name is specified in the DftSpecification 

which is configured by the dft_spec.do dofile. For information on the proper formatting 
of a ROM contents file, refer to the RomContentsFile property description.

For this example, the memlibCertify invocation is also specifying the vendor memory 
bitmap file for the single port RAM with the -bitMapFile switch. This will enable 
physical mapping data validation between the PhysicalAddressMap and 
PhysicalDataMap defined in the memory library file and the bit cell arrangement 
defined in the vendor bitmap file for this memory. This validation is described further in 
the next step. Refer to the memlibCertify -bitMapFile, -bitMapDir, and 
-reportBitMapFileMatchingOnly switch descriptions for more information on physical 
mapping data validation options. 

3. Generate RTL — Generate Tessent MemoryBIST hardware (RTL) based on the 
content of the provided memory library files with the dft_spec.do file that is generated 
by memlibCertify.

After creating the Tessent MemoryBIST dofiles and makefile, the next step is to 
generate memory BIST hardware that is used to verify the memory library file.

Either of steps 3.a or 3.b shown below can be utilized to generate the memory BIST 
hardware. If you are certifying ROM memory library files, you also need to complete 
step 3.c.

a. Generation from Tessent Shell Invocation

From the working directory, enter:

%tessent -shell -dofile dft_spec.do

b. Generation from makefile

From the working directory, enter:

%make gen

c. Additional Step for Handling ROM Errors

If a ROM memory library file is included in the certification and a corresponding 
ROM contents file was not located, the dft_spec.do execution will return an error. In 
this case, the user is prompted to edit the dft_spec.do dofile to add the appropriate 
memory library module name and ROM contents file path and name to the 
set_rom_content_files_list variable defined in the dofile. The dofile can then be re-
run as described in steps a) or b) above.
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Upon completion of Steps 3.a or 3.b, and 3.c for ROMs, the generated RTL contains the 
following:

• One memory BIST controller for all ROM memories

• One memory BIST controller for all RAM memories

• One BIST Step for each memory within the appropriate controller

The generation step invokes Tessent Memory BIST tools to perform syntax checking of 
the memory library files. The tools also apply specific rule checking on the memory 
library description. The Tessent Shell log file tshell.log_dft_spec is created in the 
working directory during this step and reports any errors or warnings that exist.

You must fix any syntax errors in the memory library file to enable the tools to generate 
the hardware.

The rule checks are necessary to ensure correct operation of the BIST controller. They 
include checking for missing writeEnables for RAMs, application of incompatible 
address buses of multi-port memories, and many others.

Some rules may trigger warnings too. These warnings are indications of something 
missing in the memory library files or property definitions that are incompatible with 
Tessent MemoryBIST. You must examine all warnings and investigate their sources 
before proceeding to the next step.

The generated hardware is placed in the Tessent Shell Data Base (TSDB) structured sub-
directory named tsdb_outdir within the working directory.

The memory vendor bitmap file indicates the XY coordinates of the bit cells within the 
memory array. If the vendor bitmap files are provided to memlibCertify, this procedure 
step will correlate the PhysicalAddressMap and PhysicalDataMap equations with the 
arrangement defined in the vendor bitmap file. For a memory wrapper that instantiates a 
single memory macro, the validation will be performed on the vendor bitmap of the 
macro.

The validation results are reported into the Tessent Shell log file. If mismatches are 
found between the address calculated from the PhysicalAddressMap equations and the 
vendor bitmap file, they are listed in a file named 
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<memory_module_name>.address_map_mismatch in the current directory. An example 
mismatch report is shown below:

=================================================
|     Controller     |         Memory           |
|  Physical Address  |     Logical Address      |
|     (Decimal)      |      (Hexadecimal)       |
=================================================
|                    |  Before   After    From  |
|                    | Physical Physical Vendor |
|                    | Address  Address  Bitmap |
| Bank   Row  Column |   Map      Map     File  |
=================================================
     1      0      0          8        e      8 
     1      0      1          9        f      9 
     1      1      0          a        c      a 
     1      1      1          b        d      b 
     1      2      0          c        a      c 
     1      2      1          d        b      d 
     1      3      0          e        8      e 
     1      3      1          f        9      f 
     1      4      0         18       1e     18 
     1      4      1         19       1f     19 
     1      5      0         1a       1c     1a 
     1      5      1         1b       1d     1b 
     1      6      0         1c       1a     1c 
     1      6      1         1d       1b     1d 
     1      7      0         1e       18     1e 
     1      7      1         1f       19     1f  

4. Generate Testbenches and Patterns  — Generate the testbench and test patterns that 
are used to verify that the Tessent MemoryBIST hardware generated in Step 3 operates 
correctly when compared against the memory behavioral model. 

Either of steps 4.a or 4.b shown below can be utilized to generate the simulation 
testbenches and patterns that are used to run Verilog simulations:

a. Testbench Generation from Tessent Shell Invocation

From the working directory, enter:

%tessent -shell -dofile patterns_spec.do

b. Testbench Generation from makefile

From the working directory, enter:

%make testbench

The Tessent Shell log file tshell.log_patterns_spec is created in the working directory 
during this step and reports any errors or warnings that were encountered while 
processing the patterns specification. This file must be checked to make sure the 
creation of the testbench and patterns were successful. The patterns folder is also created 
in the tsdb_outdir folder.
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5. Simulate and Verify — Run the simulations to verify the Tessent MemoryBIST 
generated hardware against the memory behavioral model.

Either of steps 5.a or 5.b shown below can be utilized to run the simulations and verify 
the memory library files included in the certification.

a. Run Simulations from Tessent Shell Invocation

From the working directory, enter:

%tessent -shell -dofile simulations.do

b. Run Simulations from the makefile

From the working directory, enter:

%make sim_rtl

The Tessent Shell log file tshell.log_simulations is created in the working directory 
during this step and reports any errors or warnings that were encountered, as well as the 
simulation results reported by the check_testbench_simulations command. The 
simulation files are archived in new sub-folder named simulation_outdir in the working 
directory. 

The tshell.log_simulations file should be checked to make sure the simulations ran 
without any errors. The simulated testbenches should not contain any compare failures. 
A compare failure indicates that the memory library file is not correctly modeling the 
behavior of the memory model. 

6. Optional Shortcut 

Steps 3 through 5 can be combined into a single execution to further automate the 
process. This assumes that any special handling has already been incorporated into the 
dofiles generated by memlibCertify, such as editing dft_spec.do to add the needed 
rom_contents_file property for ROMs. 

The following can be utilized to process all of the steps in one invocation:

From the working directory, enter:

%make all

Results
A successful certification shows a pass status with no miscompares reported for each pattern, as 
shown in the example below. This report is archived in the tshell.log_simulations file in the 
working directory after the completion of Step 5.
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//  command: check_testbench_simulations -report -design_name ${design_name} -design_id rtl 

// Simulation status for

//       ./simulation_outdir memlibc_memory_bist_assembly_rtl.simulation_signoff

// =================================================================================

// -----------------------------------  ------  -----------  -----------  -------

// Pattern Name                         Status  Unexpected   Missing      Date  

//                                              Miscompares  Miscompares 

// -----------------------------------  ------  -----------  -----------  -------

// ICLNetwork                           pass         0         0     Wed Jan 24 xx PST 2018

// MemoryBist_P1                        pass         0         0     Wed Jan 24 xx PST 2018

// MemoryBist_ParallelRetentionTest_P1  pass         0         0     Wed Jan 24 xx PST 2018

//

//  command: exit 

Certification Steps for Memories with 
Redundancy

Certifying memories with redundancy (row, column, or row and column) requires extra steps.
For memories with redundancies, the memory library file contains a RedundancyAnalysis 
wrapper describing the repair scheme and fuse mapping information. The description of the 
redundancy analysis wrapper must be verified separately from the other memory library file 
contents that are verified using the same method outlined in the “Certification Steps for 
Memories without Redundancy” section. The verification of the redundancy analysis wrapper is 
based on simulations with Fault Injected memory models that exercise Tessent MemoryBIST 
Built-In Repair Analysis (BIRA) circuitry and validate that the information specified in the 
RedundancyAnalysis wrapper of the memory library file is accurate. Faults are injected at a 
particular address in the memory, and the repair status and fuse register contents are extracted 
and examined. You must make sure that the status register and fuse register contents are as 
expected and map to the address location where the fault was injected.

The steps described in this procedure enable the needed BIRA capabilities and make changes to 
the testbench simulation to inject faults into memories. The final step outlines the analysis of the 
failures.

Prerequisites
• Completion of the “Certification Steps for Memories without Redundancy” steps to 

verify proper function of the memory library file other than the RedundancyAnalysis 
wrapper. All files and folders created are retained to complete verification of the 
RedundancyAnalysis wrapper contents.

• A verilog simulation model for the memory being certified that includes fault injection 
features. The fault injection implementation in the memory model is vendor specific. 
For more details, consult the documentation from your memory provider.

The example task below shows fault injection in a model that enables setting a fault on a 
particular address and IO. The task sets registers that are used in the behavioral logic to 
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inject the faults. These fault injection registers, when enabled, force a defect to be 
injected on the memory data input during the write cycle.

task injectSA;
  input [ROW_BITS + COL_BITS - 1:0] Add;
  input [IO-1:0] FIO;
  begin
    if ( FaultNum === 'bx )
      FaultNum = 0;
    $display("** Fault[%2d]::Injecting fault at address %d on IO(s):
             %d",FaultNum,Add,FIO);
    FaultAddrEn[FaultNum] = 1;
    FaultAddr[FaultNum] = Add;  
    FaultIO[FaultNum] = FIO;  
    FaultNum=FaultNum+1;
  end
endtask

•

Procedure
1. Load the Design and PatternsSpecification — The Tessent Shell environment from 

the prior certification run is loaded into a new session.

In the working directory, invoke Tessent Shell and run the following commands to load 
the design and PatternsSpecification data from the prior certification run that covered 
the normal RAM functions in the memory library file:

%tessent -shell
SETUP>set_context patterns -ijtag
SETUP>set design_name memlibc_memory_bist_assembly
SETUP>set patterns_spec_file_path [get_tsdb_output_directory]/patterns/
${design_name}_rtl.patterns_spec_signoff
SETUP>read_design ${design_name} -design_id rtl -no_hdl
SETUP>set_current_design ${design_name}
SETUP>read_config_data ${patterns_spec_file_path}

For clarity, the actual text output from the Tessent Shell commands are not shown in the 
example above. 

2. Enable Extraction of Repair Information — Changes are made to the patterns 
specification to enable the extraction of repair information after a fault is injected.

The presence of a RedundancyAnalysis wrapper in the memory library file enables the 
creation of the RepairOptions wrapper for the MemoryBist controller in the custom 
algorithm’s TestStep wrapper. The check_repair_status property is already specified in 
this wrapper and set to “on”, which enables sampling of the repair analysis 
STATUS_SHADOW registers from the controller SHORT_SETUP chain. The 
STATUS_SHADOW register values are duplicated from the BIRA chain STATUS 
register values, and provide the repair analysis results of the memory. 
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The commands shown below add the extract_repair_fuse_map property that enables 
sampling of the repair analysis fuse registers, as well as the STATUS register values 
from the BIRA chain.

Note
Because executing check_repair_status or extract_repair_fuse_map clears their 
respective chains, running check_repair_status enables for checking the repair status 

from the STATUS_SHADOW registers without losing the repair solution contained in 
the BIRA chain.

For the purposes of this memlibCertify procedure, running extract_repair_fuse_map and 
losing the repair information in the BIRA chain is not an issue because a repair is not 
performed.

For memories with redundant row and column elements, the spare_element_priority 
property can be optionally added in the same manner. This property specifies the type of 
spare element to be allocated first upon failures.

Note
The wrappers and ids presented below are valid for a single memory being certified 
with default naming.

SETUP>set patterns_spec [get_config_elements PatternsSpecification]
SETUP>set ctrl_wrap [get_config_elements -in $patterns_spec 
Patterns(MemoryBist_P1)/TestStep(run_time_prog)/MemoryBist/Controller]
SETUP>set_config_value RepairOptions/extract_repair_fuse_map -in $ctrl_wrap 
on
SETUP>set_config_value RepairOptions/spare_element_priority -in $ctrl_wrap 
row

The resulting PatternsSpecification modifications are shown below and can be displayed 
with the report_config_data command.
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Patterns(MemoryBist_P1) {
    ClockPeriods {
      BIST_CLK : 10.0ns;
    }
    TestStep(run_time_prog) {
      MemoryBist {
        run_mode : run_time_prog;
        reduced_address_count : off;
         Controller(mem_container_inst_memlibc_memory_bist_
                   assembly_rtl_tessent_mbist_c1_controller_inst) {
          DiagnosisOptions {
            compare_go : on;
            compare_go_id : on;
          }
          RepairOptions {
            check_repair_status : on;
            extract_repair_fuse_map : on;
          }
        }
      }
    }
   ...
}

3. Generate Testbench — View the PatternsSpecification and generate the updated 
testbench and patterns with the following commands:

SETUP>report_config_data $pattern_spec
SETUP>process_patterns_specification
SETUP>exit

4. Create the Verilog Fault Injection Module — The verilog model is created that 
interacts with the memory simulation model and performs the fault injection. 

As an example, a verilog module named FI.vb is created and saved in the working 
directory. The contents of this file are shown below and is based on the existence of a 
fault injection feature in the memory simulation model, such as that described in the 
prerequisites.

module FI();
  initial begin
    #1; 
    // Injecting fault at address 127, IO 3
    TB.DUT_inst.mem_container_inst.m1_mem_inst.injectSA(127,3);
  end
endmodule

The simulation path shown in the example to the fault injection task is valid for any 
single memory certification implementation. The user modifies the task name to what is 
present in the memory simulation model and adjusts the input parameters as needed to 
validate the RedundancyAnalysis wrapper contents.

5. Simulate — The simulations are run with the inclusion of the fault injection module.
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The simulations.do file utilized in Step 5 of “Certification Steps for Memories without 
Redundancy” for this memory library file is edited to specify the simulation options that 
are needed to run the fault injection module along with the patterns. The following 
example shows the changes in bold that are needed to invoke the module described in 
Step 4:

run_testbench_simulations -design_name ${design_name} -design_id 
rtl -extra_verilog_files FI.vb -extra_top_modules FI

The simulations can then be re-run using either of the methods outlined in Steps 5.a or 
5.b of “Certification Steps for Memories without Redundancy”.

The simulation fails because the fault injection causes unexpected miscompares. The 
check_testbench_simulations command can be run to get the simulation summary 
before exiting the tool session. An example simulation error output as well as the 
check_testbench_simulations invocation and result are shown below.

//  Error: 2 out of 4 simulations failed:

//         MemoryBist_P1 - 4 unexpected miscompares.

//         MemoryBist_ParallelRetentionTest_P1 - 6 unexpected miscompares.

// 'DOFile simulations.do' aborted at line 20

SETUP> check_testbench_simulations -report -design_name ${design_name} -design_id rtl 

// Simulation status for ./simulation_outdir/

memlibc_memory_bist_assembly_rtl.simulation_signoff

// ================================================================================

// --------------------------------    ------  -----------  -----------  ----------

// Pattern Name                        Status  Unexpected   Missing         Date

//                                             Miscompares  Miscompares 

// --------------------------------    ------  -----------  -----------  ----------

// ICLNetwork                           pass         0           0          xxx

// MemoryBisr_BisrChainAccess           pass         0           0          xxx

// MemoryBist_P1                        fail         9           0          xxx

// MemoryBist_ParallelRetentionTest_P1  fail         6           0          xxx

//

SETUP> exit

%

6. Analyze the Simulation Failure Results 

The failure results from the simulation are now analyzed against what is specified in the 
RedundancyAnalysis wrapper of the memory library file.

The Verilog simulation log files are located in the folder indicated in Figure J-1 for a 
certification performed on a single memory library file with a default tool setup. For 
Questa® SIM, either the transcript or questa.simulation_log files can be referenced.
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Figure J-1. Verilog Simulation Log Files for Single Memory Certification

A portion of the Verilog simulation log for this example is shown in Figure J-2. For this 
TCD library certification case, the repair analysis engines are implemented in the 
memory interface. Each memory instance has a repair status register in the BIRA 
hardware named:

RA_INTERFACE_STATUS_REG[x]

In other usages, if the BIRA repair status registers were located at the controller, they 
would be named:

RA_<MemoryID>_STATUS_REG[x]
  where:
    <MemoryID> = DftSpecification MemoryInterface(<MemoryID>) or
                 the repair group name for repair sharing
                 implementations.

The repair status register specifies whether the memory requires a repair, is not 
repairable, or does not require a repair (when no failure is detected). The bit decode 
assignments for the repair status register are described in the table below: 

In this example, the simulation log shows that RA_INTERFACE_STATUS_REG[0] of 
the memory has a compare fail of expect 0 and simulated 1. This indicates that the 
memory repair status is “Repair Required”. 

Most repair analysis hardware have two registers for each spare element in each memory 
segment: the allocation register and the FuseSet register.

The allocation register contains a bit specifying whether a spare element is allocated or 
not. This register is always a single bit, where “0” represents NOT allocated, and “1” 
represents allocated. If allocated, the value in the FuseSet register represents the 
defective portion of the memory to be repaired. 

Bit1 Bit0 Repair Status
00 No Repair Required
01 Repair Required
1x Not Repairable
Tessent™ MemoryBIST User’s Manual, v2022.4 879

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Certifying TCD Memory Library Files With memlibCertify in Tessent Shell
Certification Steps for Memories with Redundancy
Figure J-2. Partial Output of a Verilog Simulation Log

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_STATUS_SHADOW_REG[0] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_STATUS_REG[0] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_ALLOC_BIT[0] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[4] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[3] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[2] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[1] 

# Mismatch at pin           1 name ijtag_so, Simulated 1, Expected 0

# Previous scan out : pin ijtag_so = 

mem_container_inst_m1_mem_inst_interface_inst.RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[0] 

For this example, as shown in Figure J-2 the 
RA_INTERFACE_rs_SPARE0_ALOC_BIT indicates a spare element has been 
allocated from the segment defined in the RowSegment(rs) wrapper of the memory 
template, which is shown in Figure J-3. Similarly, the 
RA_INTERFACE_rs_SPARE0_FUSE_ADD_REG[*] represents the fuse repair 
address register defined in the FuseSet wrapper.

The fuse repair address register contains the fuse bits as specified by the FuseSet 
wrapper for the segment. Each fuse bit logs a single memory address bit that all together 
identify the defective memory element. In the example simulated, 
FUSE_ADD_REG[4:0] are set to “1”, which are mapped in the FuseSet wrapper to 
memory address A[6:2]. For this memory, the column segment is determined by A[1:0], 
so this row repair covers an overall address range of 10'b0001111100 to 
10'b0001111111, or 124 to 127. The injected fault from Step 4 was to address 127, 
which matches expectations and validates proper operation of the BIRA hardware.
Tessent™ MemoryBIST User’s Manual, v2022.4880

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Certifying TCD Memory Library Files With memlibCertify in Tessent Shell
Certification Steps for Memories with Redundancy
Figure J-3. Example RedundancyAnalysis Wrapper (Partial)

  RedundancyAnalysis {

      RowSegment(rs) {
          NumberOfSpareElements : 2;
          FuseSet {
              Fuse[0] : AddressPort(A[2]);
              Fuse[1] : AddressPort(A[3]);
              Fuse[2] : AddressPort(A[4]);
              Fuse[3] : AddressPort(A[5]);
              Fuse[4] : AddressPort(A[6]);
              Fuse[5] : AddressPort(A[7]);
              Fuse[6] : AddressPort(A[8]);
              Fuse[7] : AddressPort(A[9]);

          }
          PinMap {
              SpareElement {
                  RepairEnable : RR0[8];
                  Fuse[0]      : RR0[0];
                  Fuse[1]      : RR0[1];
                  Fuse[2]      : RR0[2];
                  Fuse[3]      : RR0[3];
                  Fuse[4]      : RR0[4];
                  Fuse[5]      : RR0[5];
                  Fuse[6]      : RR0[6];
                  Fuse[7]      : RR0[7];
              
              }
              SpareElement {
                  ...
              }
          }
      }
      ColumnSegment() {
          ShiftedIORange : Q[7:0];
          NumberOfSpareElements : 1;
          FuseSet {
              Fuse[0] : AddressPort(A[0]);
              Fuse[1] : AddressPort(A[1]);
            ...
          }
      }
  }

7. Repeat Steps 2 through 6 as needed to validate the RedundancyAnalysis wrapper 
contents.

Edit the contents of your fault injection module in Step 4 for interesting addresses and 
IO faults. For memories with redundant row and column elements, changing the 
spare_element_priority property setting in Step 2 may provide additional validation 
coverage of the repair functions defined in the RedundancyAnalysis wrapper.
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memlibCertify Limitations
The memlibCertify utility has the following limitations:

• The legacy LogicVision memory library format is supported natively and is 
automatically translated into the memory TCD format when read. Note that Tessent 
Shell requires the LogicVision MemoryTemplate name to match the specified CellName 
as shown below:

MemoryTemplate(mydram) {
      MemoryType:    SRAM;
      CellName:      mydram;
      .
      .
      .
}

• The memlibCertify utility does not support validating memory cluster libraries.

• The utility does not automate the process of validating memories with redundancies. 
This process requires additional steps that are explained in the “Certification Steps for 
Memories with Redundancy” section.

• The utility can validate physical address and data mapping that are described in the 
PhysicalAddressMap and PhysicalDataMap wrappers of the memory library file. The 
process requires the vendor bitmap file for the corresponding memory module. For 
further information, refer to the memlibCertify utility description.

• The tool does not validate the MilliWattsPerMegaHertz property in the memory library 
file.

• Disabling the generation of BISR logic for memories that support self repair requires 
additional manual steps. For further information, refer to the memlibCertify utility 
description.

• By default, Tessent Shell utilizes Questa SIM from Siemens Digital Industries Software. 
For information on how to specify other simulators that are supported by Tessent Shell 
and how to pass simulator options, refer to the memlibCertify utility description.
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memlibCertify Utility Usage in Tessent Shell
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memlibCertify
A tool that automates the process of validating memory library files. 

Usage
memlibc -memLib filename]...

         -simModelDir dir_path ... 
         -simModelFile file_path...
         [-extension ext1[:ext2] ...]
         [-quiet]

[-bitMapDir dir_path] ...
[-bitMapFile file_path] ...
[-reportBitMapFileMatchingOnly]
[-verilogOptionFile file_name] ...
[-romFileExtension ext1[:ext2]...]
[-romFileDir dir_path[:dir_path2]...]

         [-help]

Description
memlibCertify is a tool that automates the process of validating memory library files. The tool 
can be used in either the LV flow or Tessent Shell flow. By default, memlibCertify generates 
the necessary “.do” files as well as a Makefile that can be utilized to complete the certification 
process for Tessent Shell flow. memlibCertify also provides physical mapping data validation 
between memory vendor bitmap files and matching memory TCD files in the Tessent Shell 
flow. For information on memlibCertify use in the LV flow, refer to the Certifying Memory 
Library Files with memlibCertify manual. For use in the Tessent Shell flow, refer to the other 
topics within “Certifying TCD Memory Library Files With memlibCertify in Tessent Shell” and 
the argument descriptions below. 

You can pass simulator arguments and switches to the run_testbench_simulations command 
invoked within the simulation.do file created by memlibCertify. You can use this method to 
change the default Questa SIM simulator, tailor waveform and debug data, and specify 
simulator-specific options and other valid arguments for the run_testbench_simulations 
command as needed. 

To utilize this feature, you specify and assign the simOptions variable when running “make 
sim_rtl” or “make all”. For example, if you are using the default simulator Questa SIM, the 
method shown below will pass in the -debugDB simulator option to create the vsim.dbg file that 
the schematic viewer accesses when debugging your waveforms. You must specify this 
simulator option in conjunction with the -store_simulation_waveform switch for the 
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run_testbench_simulations command. Either of the examples shown below will pass these 
simulator options to the run_testbench_simulations command:

make sim_rtl simOptions="-store_simulation_waveforms on \
-simulator_options -debugDB"

make all simOptions="-store_simulation_waveforms on \
-simulator_options -debugDB"

Note that simulator specific options must be consistent with the simulator that the 
run_testbench_simulations command utilizes. The memlibCertify utility creates (or overwrites) 
a file named SimOptions in the current working directory that contains the contents of the latest 
simOptions Makefile variable assignment. The simulations.do dofile always checks if the 
SimOptions file exists, and if so, passes the contents to the run_testbench_simulations 
command.

The memlibCertify utility automatically generates BISR logic for memories that have the 
following wrappers in their memory library file:

• RedundancyAnalysis/ColumnSegment/PinMap

• RedundancyAnalysis/RowSegment/PinMap

If needed, you can prevent generation of Built-In Self-Repair (BISR) logic for memories that 
support self repair by editing the dft_spec.do file created by memlibCertify and adding the 
-memory_bisr_chains argument and setting as follows:

set_dft_specification_requirements -memory_test on 
-memory_bisr_chains off

Arguments
• -memLib filename

Use this repeatable option to specify the name of the TCD memory library file. The memory 
library file might define one or more Memory, OperationSet, or Algorithm wrappers. All 
Memory wrappers in a given file are processed. This argument is mandatory and repeatable.

• -simModelDir dir_path ...
When you have multiple simulation models in different files, you can put them all in one 
directory and then use this option to have memlibCertify search this directory. This 
argument is repeatable. It is mandatory to specify one of the -simModelDir or 
-simModelFile options. Both can be specified if needed.

• -simModelFile file_path ...
When you have only one simulation model file, use this option to specify the file that 
contains the simulation models for memories or library cells. This argument is repeatable. It 
is mandatory to specify one of the -simModelFile or -simModelDir options. Both can be 
specified if needed.
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• -extension ext1[:ext2]...
Use this option to control the file extension naming (without the dot) used in conjunction 
with the -simModelDir option. These extensions define the order that files are searched 
within a directory to resolve a Verilog module name. Use colons to separate multiple 
extensions. This argument is optional and defaults to vb.

• -quiet
Use this option to reduce the verbosity of memlibCertify when processing memory library 
files.

• -bitMapDir dir_path 
When you have multiple memory vendor bitmap files, you can put them all in one directory 
and use this option to have memlibCertify search this directory. The search is limited to files 
with a .bitmap extension and memlibCertify supports the ad hoc industry ASCII format, as 
described in “Adding Physical X-Y Coordinate Data to Bitmap Reports” in the Tessent 
SiliconInsight User’s Manual for Tessent Shell. This argument is optional and repeatable, 
but you must specify either the -bitMapDir or -bitMapFile option to enable physical 
mapping data validation. The sequence in which directories are specified implies the search 
order. 

• -bitMapFile file_path 
Use this option to explicitly specify the memory vendor bitmap file. The memlibCertify 
utility supports the ad hoc industry ASCII format, as described in “Adding Physical X-Y 
Coordinate Data to Bitmap Reports” in the Tessent SiliconInsight User’s Manual for 
Tessent Shell. This argument is optional and repeatable, but you must specify either the 
-bitMapFile or -bitMapDir option to enable physical mapping data validation.

• -reportBitMapFileMatchingOnly
Use this option to only produce a matching report between the TCD memory library names 
found by the -memLib specification and the specified memory vendor bitmap file names. 
The validation of the physical mapping data is not performed. Either the -bitMapDir or 
-bitMapFile option must be specified for the report to be generated, otherwise the argument 
is ignored. 

• -verilogOptionFile file_name
Use this option to specify a Verilog option file that will be read as part of the simulation 
step. This is useful for forwarding debug options into the testbench or to modify the 
simulation library sources. This argument is optional and repeatable, however if it is 
repeated, only the last occurrence will take effect. The memlibCertify utility adds the option 
“-f file_name” to reference the specified file for the set_simulation_library_sources 
command within the simulations.do file created for the certification simulations. If you do 
not specify a Verilog option file, or you specify a file that does not exist, memlibCertify 
creates an empty file called VerilogOptions in the current working directory and adds “-f 
VerilogOptions” to the set_simulation_library_sources command.
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• -romFileExtension ext1[:ext2] ...
Use this option to specify the list of file extensions (without the dot) used to identify the 
ROM data files. Use colons to separate multiple extensions. By default, the search is limited 
to the directories containing the memory library files, as specified with the -memLib option, 
unless additional locations are specified with the -romFileDir option. The memlibCertify 
utility searches for the ROM data file belonging to the MemoryTemplate defining a ROM 
memory type. The ROM data filename must match the ROM module name with the 
specified extension or extensions. The file search results will be populated into the dofile 
named dft_spec.do. This argument is optional and when it is specified, at least one extension 
must be specified to enable the automatic file search.

• -romFileDir dir_path[:dir_path2]...
Use this option to specify a location the tool searches for ROM content files with the file 
name extensions specified by the -romFileExtension property. The -romFileDir argument is 
optional and dir_path is repeatable. Use colons to separate multiple dir_path values. The 
tool processes the first ROM content file found if the file is present in multiple directories 
specified by additional -romFileDir arguments. If -romFileDir is not specified, the search 
for ROM content files defaults to the directories containing the memory library files, as 
specified with the -memLib option.

• -help
Use this option to display the tool help contents and runtime options.

memlibCertify Output
The memlibCertify utility creates the following files in the working directory:

• Tessent Shell dofiles needed to perform the certification process:

o dft_spec.do

Tessent Shell dofile that performs the DFT insertion steps for the specified memory 
libraries.

o patterns_spec.do

Tessent Shell dofile that creates the patterns and testbenches necessary for 
certification.

o simulations.do

Tessent Shell dofile that performs the simulations and completes the certification 
process. 

• Makefile

The memlibCertify utility generates a makefile that contains several make targets. These 
make targets can be used to automate the certification of the memory library file.
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Note
To see all make targets, type make in the current working directory.

%make
Target                         Description
---------------------------------------------------------------
make gen  Generate the memoryBist hardware for memory

templates.
make testbench Generate the Verilog testbench for the

memoryBist controllers.                                        
make sim_rtl Runs the Verilog simulation for the

memoryBist controllers.
make clean Deletes the TSDB and simulation output

directories.
make all           gen testbench sim_rtl

• memlibc.log

Log file capturing the screen output from the memlibCertify utility execution.

• VerilogOptions file

An empty VerilogOptions file is created by memlibCertify if the -verilogOptionFile 
argument is not specified, or specifies a nonexistent file. Refer to the memlibCertify 
-verilogOptionFile argument description for information on forwarding simulator-
specific options that are to be used during simulation.

• SimOptions file

The SimOptions file is created when the Makefile variable simOptions is specified and 
assigned when invoking “make all” or “make sim_rtl”. The SimOptions file is created in 
the current working directory and contains the values assigned to the simOptions 
variable. Refer to the memlibCertify command description for details on how this file is 
used.
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Appendix K
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending 
on your need, help is available from documentation, online command help, and your Siemens 
representative.
The Tessent Documentation System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
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The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML 
content. From the InfoHub, you can access all locally installed product documentation, system 
administration documentation, videos, and tutorials. For users who want to use PDF, you have a 
PDF bookcase file that provides access to all the installed PDF files.
For information on defining default HTML browsers, setting up browser options, and setting the 
default PDF viewer, refer to the Siemens® Software and Mentor® Documentation System 
manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a 
Tessent tool with the -manual invocation switch. 

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file 
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — You can get contextual online help within most Tessent 
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command 
description.
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Global Customer Support and Success
A support contract with Siemens Digital Industries Software is a valuable investment in your 
organization’s success. With a support contract, you have 24/7 access to the comprehensive and 
personalized Support Center portal.
Support Center features an extensive knowledge base to quickly troubleshoot issues by product 
and version. You can also download the latest releases, access the most up-to-date 
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login, 
register here:

https://support.sw.siemens.com/register
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Third-Party Information
Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
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