
Software Version 2022.4
Document Revision 28

SIEMENS EDA

Tessent™ IJTAG User’s
Manual

Unpublished work. © 2022 Siemens

This Documentation contains trade secrets or otherwise confidential information owned by Siemens Industry
Software Inc. or its affiliates (collectively, “Siemens”), or its licensors. Access to and use of this Documentation is
strictly limited as set forth in Customer’s applicable agreement(s) with Siemens. This Documentation may not be
copied, distributed, or otherwise disclosed by Customer without the express written permission of Siemens, and may
not be used in any way not expressly authorized by Siemens.

This Documentation is for information and instruction purposes. Siemens reserves the right to make changes in
specifications and other information contained in this Documentation without prior notice, and the reader should, in
all cases, consult Siemens to determine whether any changes have been made.

No representation or other affirmation of fact contained in this Documentation shall be deemed to be a warranty or
give rise to any liability of Siemens whatsoever.

If you have a signed license agreement with Siemens for the product with which this Documentation will be used,
your use of this Documentation is subject to the scope of license and the software protection and security provisions
of that agreement. If you do not have such a signed license agreement, your use is subject to the Siemens Universal
Customer Agreement, which may be viewed at https://www.sw.siemens.com/en-US/sw-terms/base/uca/, as
supplemented by the product specific terms which may be viewed at https://www.sw.siemens.com/en-US/sw-
terms/supplements/.

SIEMENS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENTATION INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. SIEMENS SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES, LOST DATA OR
PROFITS, EVEN IF SUCH DAMAGES WERE FORESEEABLE, ARISING OUT OF OR RELATED TO THIS
DOCUMENTATION OR THE INFORMATION CONTAINED IN IT, EVEN IF SIEMENS HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS: The trademarks, logos, and service marks (collectively, "Marks") used herein are the property of
Siemens or other parties. No one is permitted to use these Marks without the prior written consent of Siemens or the
owner of the Marks, as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a
source of a product, but is intended to indicate a product from, or associated with, a particular third party. A list of
Siemens' Marks may be viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The
registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.

About Siemens Digital Industries Software

Siemens Digital Industries Software is a leading global provider of product life cycle management (PLM) software
and services with 7 million licensed seats and 71,000 customers worldwide. Headquartered in Plano, Texas,
Siemens Digital Industries Software works collaboratively with companies to deliver open solutions that help them
turn more ideas into successful products. For more information on Siemens Digital Industries Software products and
services, visit www.siemens.com/plm.

Support Center: support.sw.siemens.com
Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form

https://www.sw.siemens.com/en-US/sw-terms/base/uca/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.siemens.com/plm
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form
https://www.sw.siemens.com/en-US/sw-terms/supplements/
https://www.sw.siemens.com/en-US/sw-terms/supplements/

Revision History ISO-26262

Author: In-house procedures and working practices require multiple authors for documents. All
associated authors for each topic within this document are tracked within the Siemens
documentation source. For specific topic authors, contact Siemens Digital Industries Software
documentation department.

Revision History: Released documents include a revision history of up to four revisions. For
earlier revision history, refer to earlier releases of documentation on Support Center.

Revision Changes Status/
Date

28 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Dec 2022

27 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Sep 2022

26 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Jun 2022

25 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Mar 2022
Tessent™ IJTAG User’s Manual, v2022.4

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.44

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table of Contents

Revision History ISO-26262

Chapter 1
Introduction to Tessent IJTAG . 13

Tessent IJTAG Flow . 14
ICL and PDL Limitations . 16
License Usage/Requirements. 17

Chapter 2
ICL and PDL Modeling . 19

ICL Instrument Description . 19
How to Build an ICL Netlist . 20
How to Model Global Reset, Local Reset and Embedded TAPs . 23
ScanInterfaces and Associations Between Ports and ScanInterfaces 35

Modules With Explicitly Specified ScanInterfaces . 36
DRCs for Explicitly Specified ScanInterfaces . 36
Inferred Associations Between Ports and Explicitly Specified ScanInterfaces 37

Modules Without Explicitly Specified ScanInterfaces . 41
Checking ICL Module Ports. 41
Anonymous ScanInterface Creation. 42

How to Define an iProc . 44
How to Call an iProc . 45

Chapter 3
A Typical PDL Retargeting Flow . 47

The Basic PDL Retargeting Flow . 48
Invoke Tessent Shell . 49
Set the IJTAG Context and System Modes . 50
Read ICL Files . 50
Read PDL Files . 51
Set the Retargeting Level . 51
Define Clocks and Timing . 53

Test Clock. 53
Synchronous System Clock . 54
Asynchronous System Clock . 55

Design Rule Checks . 56
Create Pattern Sets . 56
Write PDL, Pattern, and Testbench Files . 59
Comments and Annotations in Tessent IJTAG . 60
Exit the Tool . 67

Optional Elements of a PDL Retargeting Flow . 68
Test Setup and Test End Procedures. 68
Tessent™ IJTAG User’s Manual, v2022.4 5

Table of Contents
How to Define and Use Clocks Outside ICL . 69
How to Constrain Inputs . 69
Report Generation. 71
IJTAG Introspection . 72
PDL Retargeting With Symbolic Variables . 76

Specifying Symbolic Variables in PDL . 76
Retargeted Symbolic Variables . 79
Symbolic Variables Specific to Boundary Scan Patterns. 94

How to Run iCalls in Parallel . 95
PDL Specialties and Exceptions . 96
iMerge Conflict Reporting . 96

PDL Retargeting Commands . 102
Introspection and Reporting Commands . 104

Chapter 4
ICL Extraction . 109

ICL Extraction Flow . 111
Required Inputs for ICL Extraction . 112
Optional Inputs for ICL Extraction. 112

Performing ICL Extraction . 112
Top-Down and Bottom-Up ICL Extraction Flows . 115

Top-Down ICL Extraction Flow. 116
Bottom-Up ICL Extraction Flow . 117

ICL Extraction Design Rule Checks . 118
Debugging DRC Violations With Tessent Visualizer . 119

How to Influence the ICL Extraction Process . 120
How to Influence ICL Extraction Through Commands . 120
How to Influence ICL Extraction Through ICL Module Attributes. 124

ICL Network Extraction of Parameterized Modules . 127
ICL Extraction Commands . 128

Chapter 5
IJTAG Network Insertion . 131

The IJTAG Network Insertion Flow . 132
IJTAG Network Insertion Example . 133
Placement-Aware IJTAG Stitching . 134
Modification of the IJTAG Network Insertion Flow . 135

How to Edit or Modify a DftSpecification . 137
DftSpecification Examples . 139

Examples . 139

Chapter 6
IJTAG and ATPG in Tessent Shell . 149

IJTAG ATPG Flow Overview. 149
IJTAG Features of ATPG in Tessent Shell . 151

EDT IP Setup for IJTAG Integration . 151
How to Set Up Embedded Instruments Through Test Procedures 153
How to Set Up Embedded Instruments Through the Dofile. 154
6 Tessent™ IJTAG User’s Manual, v2022.4

Table of Contents
Implicit and Explicit iReset Commands . 155
A Detailed IJTAG ATPG Flow . 158

Chapter 7
IJTAG Examples. 161

ICL Modeling versus Verilog Modeling . 162
ICL Namespaces . 163
PDL Namespaces . 164
Skipping the Run-Test/Idle State . 164
How to Define Default Values in ICL . 166
Attributes of the ICL Extraction Flow. 168
Scan Chain Integrity Test in Tessent IJTAG . 169
How to Define Auto-Return Values in ICL. 169
How to Model Addressable Registers in ICL . 171
How to Model a ScanMux Selection Preference . 174

Chapter 8
Verification and Debug of IJTAG Instruments and Networks . 179

General Guidelines for Debugging Simulation Results. 180
Creating ICL Verification Patterns . 180
Using ICL Verification Patterns . 181
ICL Verification Patterns Summary . 184
Displaying the Comparison Failure Counter . 185
Conclusion . 185

Chapter 9
IJTAG Network Performance . 187

IJTAG Network Performance Optimization . 188
FastIJTAG Solutions . 191

DFT Specification Implementations . 192
Scan Input Pipelining . 192
SIB Output Retiming Stage . 194

Clock Tree Balancing . 195
Software Clock Stretching . 197

Selective TCK Stretching . 197
TCK Ratio and Single Period Tester . 200
TCK Ratio Greater Than One. 201
Multiple Period Tester . 201
Custom TCK Timeplate and Duty Cycle . 202
Non-TCK Clocks and Selective TCK Stretching. 203
Impact on Timing . 203
Impact on SSN Patterns . 204
Additional Flow Information . 205

Backward Compatibility . 206
FastIJTAG Limitations . 206
FastIJTAG Examples . 208

TDI Scan Input Pipelining . 208
Selective TCK Stretching . 210
Tessent™ IJTAG User’s Manual, v2022.4 7

Table of Contents
Appendix A
Getting Help . 213

The Tessent Documentation System . 213
Global Customer Support and Success . 214

Third-Party Information
8 Tessent™ IJTAG User’s Manual, v2022.4

List of Figures

Figure 1-1. IJTAG High-Level Architecture . 13
Figure 1-2. Tessent IJTAG Flow . 14
Figure 2-1. Example ICL Description . 21
Figure 2-2. Association Between ResetPorts and Registers . 27
Figure 2-3. Hierarchical Reset . 28
Figure 2-4. Modeling Self-clearing Local Reset . 29
Figure 2-5. Edge-Triggered Local Reset . 31
Figure 3-1. PDL Retargeting Flow . 48
Figure 3-2. First Pattern Set . 58
Figure 3-3. First and Second Pattern Sets . 58
Figure 3-4. Pattern Set Report With Two Patterns . 72
Figure 3-5. ICL Description of the my_ip Instrument. 84
Figure 3-6. An iProc Called run_test for my_ip Instrument . 85
Figure 3-7. ICL Network with Three Instances of my_ip . 85
Figure 3-8. PDL to Run the Test on Three Instances of my_ip. 86
Figure 3-9. Scan Path to Access my_ip_i1 . 87
Figure 3-10. Scan Path to Access my_ip_i2 and my_ip_i3 . 87
Figure 3-11. Generated “pattern_set” and “variable” Annotations (tck_ratio = 1) 89
Figure 3-12. Generated “pattern_set” and “variable” Annotations (tck_ratio = 4) 90
Figure 3-13. iReadVar Extracted from the tck_ratio = 1 and 4 Examples 91
Figure 3-14. Annotation at Referenced Vector for tck_ratio = 1 and 4. 91
Figure 3-15. iWriteVar Extracted from the tck_ratio = 1 and 4 Examples 92
Figure 3-16. Annotation at Referenced Vector for tck_ratio = 1 and 4. 93
Figure 3-17. iMerge Flow Graph. 101
Figure 4-1. Generic ICL Extraction Flow . 111
Figure 4-2. ICL Rule Violation Debug in Tessent Visualizer . 119
Figure 4-3. Logical Connection Example . 122
Figure 5-1. IJTAG Network Insertion Flow . 132
Figure 5-2. Placement-Aware Stitching. 134
Figure 5-3. Config Data Browser . 137
Figure 7-1. Gate-Level Verilog Module Example. 162
Figure 7-2. Partial IEEE 1149.1 TAP Controller State Diagram. 165
Figure 7-3. Schematic View of an Indirect Addressing Scheme. 172
Figure 7-4. ICL Description of an Indirect Addressing Scheme . 173
Figure 7-5. Tracing Scan Paths to a Common Source . 176
Figure 7-6. ScanMux Driving Another ScanMux . 177
Figure 8-1. Example Design . 183
Figure 9-1. Example Chip With Embedded Blocks and IJTAG Network. 189
Figure 9-2. Multilevel Design Hierarchy With Long Data Path . 192
Figure 9-3. Multilevel Design Hierarchy Using Scan Input Pipelining 193
Tessent™ IJTAG User’s Manual, v2022.4 9

List of Figures
Figure 9-4. Tessent SIB With Pipeline Stage . 194
Figure 9-5. Tessent SIB Circuit Diagram (Retiming Stage Circled) 195
Figure 9-6. TCK CLK Tree With Stop Points . 196
Figure 9-7. Normal TCK (Setup/Hold 0.5 x TCK Period) . 198
Figure 9-8. Selective TCK Stretching (-extra_control_setup_hold_cycles 1). 199
Figure 9-9. Selective TCK Stretching (-extra_control_setup_hold_cycles 1), Continued . . 199
Figure 9-10. TMS Selective TCK Stretching (1.25 TCK Setup, 1.75 TCK Hold) 200
Figure 9-11. Selective TCK Stretching Using Two Additional Timeplates 200
Figure 9-12. Timeplate With TCK Ratio of 2 . 201
Figure 9-13. Tester-Based Selective TCK Stretching . 201
Figure 9-14. Custom RZ Timeplate Waveforms . 202
Figure 9-15. Non-TCK Clock During TCK Stretching . 203
10 Tessent™ IJTAG User’s Manual, v2022.4

List of Tables

Table 1-1. Tessent IJTAG Flow . 15
Table 3-1. Variables and Associations . 79
Table 3-2. Conflict Report Terminology . 97
Table 3-3. PDL Retargeting Command Summary . 102
Table 3-4. ICL Introspection and Reporting Command Summary 104
Table 4-1. Values for ICL Extraction Attribute connection_rule_option 125
Table 4-2. ICL Extraction Command Summary . 128
Table 5-1. Modifications to the IJTAG Network Insertion Flow . 135
Table 5-2. IJTAG Network Insertion Command Summary . 138
Table 6-1. EDT Configuration Keywords and Values . 152
Table 8-1. Scan Path Configurations . 183
Table 9-1. Custom RZ Timeplate Time of Events . 203
Tessent™ IJTAG User’s Manual, v2022.4 11

List of Tables
12 Tessent™ IJTAG User’s Manual, v2022.4

Tessent™ IJTAG User’s Manual, v2022.4 13

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
Introduction to Tessent IJTAG

Tessent IJTAG is Siemens EDA implementation of the IEEE 1687-2014 (IJTAG) standard.
It includes the following primary aspects:

• Hardware Rules — For IEEE 1687 instruments including port functions, timing, and
connection rules.

• Instrument Connectivity Language (ICL) — Describes isolated nodes and partial or
complete networks. This enables retargeting pin/register read/writes to scan commands.

• Procedural Description Language (PDL) — Describes instrument usage at a given
level and facilitates automatic retargeting to any higher level.

Figure 1-1 illustrates an example of a high-level IJTAG implementation.

Figure 1-1. IJTAG High-Level Architecture

Tessent IJTAG Flow . 14
ICL and PDL Limitations . 16
License Usage/Requirements . 17

Tessent™ IJTAG User’s Manual, v2022.414

Introduction to Tessent IJTAG
Tessent IJTAG Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent IJTAG Flow
The Tessent IJTAG usage flow and the constituent phases that make up the flow are described
in this section.
This flow is illustrated in Figure 1-2. It assumes that there is an ICL description for each of the
instruments as well as for the interconnect network of the instruments. Tessent IJTAG can
compute the interconnect ICL from the Verilog design description. Please see Chapter 4, “ICL
Extraction.”

Figure 1-2. Tessent IJTAG Flow

Table 1-1 provides a high-level overview of the flow and detailed description of each step of the
flow.

Introduction to Tessent IJTAG
Tessent IJTAG Flow

Tessent™ IJTAG User’s Manual, v2022.4 15

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 1-1. Tessent IJTAG Flow
Flow Step Description
Tessent Shell and Tessent
IJTAG

Tessent Shell is the platform you use to perform the Tessent
IJTAG operations.
Tessent Shell is a Tcl shell environment and design data model
that provides a unified Tcl command set with data model
interaction, including ICL introspection.
Refer to the Tessent Shell User’s Manual and Tessent Shell
Reference Manual for complete information.

IJTAG Flow Inputs In the initial phase of the flow, you must set the IJTAG context
and subsequently read in the PDL and ICL descriptions of your
design using native Tessent Shell commands.
The tool loads this information into the internal ICL database.
See “Read ICL Files” and “Read PDL Files.”

Pattern Retargeting Level After Tessent Shell has read in the ICL descriptions, you have
access to IJTAG-specific commands such as iProc, iCall, iNote,
iRead, iApply, and so on.
Before proceeding, you must specify the ICL hierarchy level to
which the PDL commands should be retargeted. See “Set the
Retargeting Level.”

Design Rule Checking Tessent IJTAG automatically performs ICL design rule checking
on the set ICL hierarchy level, down to the instrument level.
Every instrument is checked for consistency between its objects
and ports. You must correct any DRC violations before
proceeding to the next phases of the flow—refer to “Design Rule
Checks”.

ICL Introspection Tessent IJTAG provides a robust Tcl-based command set to
perform ICL introspections for retrieving and reporting
information from the ICL, PDL, and pattern sets.
For more information, see “IJTAG Introspection.”

PDL Command Retargeting Tessent IJTAG performs automatic PDL retargeting based on the
ICL hierarchy level you specified.
The tool can retarget the PDL commands from instrument level
up to chip level. See “A Typical PDL Retargeting Flow.”

Patterns and Testbench The final phase of the Tessent IJTAG flow is writing out the
retargeted PDL, testbench, and patterns.
For more information, see “Write PDL, Pattern, and Testbench
Files.”

Tessent™ IJTAG User’s Manual, v2022.416

Introduction to Tessent IJTAG
ICL and PDL Limitations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ICL and PDL Limitations
The IEEE 1687-2014 standard describes some ICL and PDL features that Tessent IJTAG does
not yet support.
The unsupported ICL features are:

• ICL NameSpace and UseNameSpace. ICL modules can only be placed into the global
ICL namespace. Each ICL module name must be unique at this global level.

• Call back data registers. The ReadCallBack and WriteCallBack properties cannot be
used within a DataRegister definition.

• The AccessTogether property of the Alias construct.

• The AllowBroadcastingOnScanInterface property of the Instance construct.

• Backslashes in ICL strings are interpreted as escaping indicators only if the next
character is a backslash or double quotation marks. If the next character is something
else, the backslash is interpreted as an ordinary character of the string.

The unsupported PDL features are:

• PDL level-1 commands are meaningless when generating traditional manufacturing
pattern files. Those commands are only relevant in an interactive silicon debug session
context.

• The -together option of the iApply command.

• The -LastReadValue and -LastMiscompareValue options of the iState command.

• The iScan command does not support the following:

o ICL black boxes.

o The -stable option.

o The use of ScanInterfaces on a module other than the current design.

o The use of iScan in an iProc or iTopProc that is subject to iMerge.

ICL Extraction An optional step of the Tessent IJTAG flow is the extraction of
interconnection information of the various IJTAG building
blocks from the flat design netlist.
See “ICL Extraction” for complete information.

Table 1-1. Tessent IJTAG Flow (cont.)
Flow Step Description

Introduction to Tessent IJTAG
License Usage/Requirements

Tessent™ IJTAG User’s Manual, v2022.4 17

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

License Usage/Requirements
Stand-alone verification of non-Tessent instruments requires an IJTAG license regardless of
where you use the instruments. With the IJTAG license, you can create ICL and PDL for the
instrument and validate it using commands such as iWrite, iRead, and iApply. With these ICL
and PDL commands, you can generate testbenches and simulate those testbenches with the
Verilog model of the instrument.
If you use at least one Tessent signed instrument (MemoryBIST, LogicBIST, TestKompress,
MissionMode) at your current design or at any lower hierarchical level, then any one of those
respective licenses is sufficient to create an ICL network, including connecting your non-
Tessent instruments. In all other cases, you need either an IJTAG or a MissionMode license.
Similarly, you can use any license of IJTAG, MemoryBIST, LogicBIST, TestKompress, or
MissionMode, to write into any non-Tessent instrument in the IJTAG network as long as there
is at least one Tessent instrument connected to the IJTAG network. In all other cases, you need
either an IJTAG or a MissionMode license.

In general, setting up or using any Tessent IP/instrument through the IJTAG network does not
require an IJTAG license, but it may require an IJTAG license based on selected features. The
Two-Pin Serial Port (TPSP) controller is one example. Usually, the tool uses the respective
product license.

Tessent™ IJTAG User’s Manual, v2022.418

Introduction to Tessent IJTAG
License Usage/Requirements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.4 19

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
ICL and PDL Modeling

This chapter provides some insight into ICL and PDL without reproducing the entire IEEE 1687
document but provides enough information so you can understand the remainder of this
manual..
Additionally, the “IJTAG Examples” chapter later in this document provides more examples.
These example test cases are also a good source of information for learning about ICL, PDL,
and how to use Tessent IJTAG.

This chapter includes the following topics:

ICL Instrument Description . 19
How to Build an ICL Netlist . 20
How to Model Global Reset, Local Reset and Embedded TAPs 23
ScanInterfaces and Associations Between Ports and ScanInterfaces 35

Modules With Explicitly Specified ScanInterfaces . 36
Modules Without Explicitly Specified ScanInterfaces . 41

How to Define an iProc . 44
How to Call an iProc . 45

ICL Instrument Description
The ICL code below is a complete description of an instrument, named tdr1. It has a scan in port
named si, and a scan out port named so. There are four enable ports: en, se, ce, and ue. Finally,
the test clock port is named tck. Observe that each port is defined through a keyword.

Module tdr1 {

 ScanInPort si;
 ScanOutPort so { Source R[0]; }
 SelectPort en;
 ShiftEnPort se;
 CaptureEnPort ce;
 UpdateEnPort ue;
 TCKPort tck;

 ScanRegister R[7:0] {
 ScanInSource si;
 }
}

Tessent™ IJTAG User’s Manual, v2022.420

ICL and PDL Modeling
How to Build an ICL Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

With these keywords come a direction (input or output), but more importantly a semantic and
timing. For example, the port name 'se' is the shift enable port. For a human, these semantics
allow a good level of understanding of the intention of the ports, their usage, and eventually, the
operation of the instrument. From a tool point of view, these semantics allow for very thorough
design rule checks. For example, the scan in port si may not be driven by a data output port of
another instrument. Instead, it must be connected to a scan output port.

IEEE 1687 has an explicit timing of events defined through the standard. For example, to be
able to shift into the scan input port, the enable signal se has to be active high, the scan data has
to arrive at si, and meet setup and hold time requirements around the rising edge of TCK. The
speed of the clock and the exact timing of these events is up to the application tool and the
implementation in hardware. There is no method of defining the period of a clock in ICL or
PDL.

See IJTAG Network Performance Optimization for how to maximize the frequency of the
IJTAG network test clock.

After the listing of the ports, this example shows an 8-bit scan register named R. The keywords
in the attribute section of the scan register declaration are the ICL code between the brackets
({}). These keywords provide further information about the scan register. The example also
declares that the scan data for R comes directly from the scan input port si. Again, the standard
defines that the shift direction in R is from the left to the right. Accordingly, si is connected to
R[7], and as shown in the attribute part of the ScanOutPort, so is connected to R[0]. If the
register was declared as R[1:8], then it would shift from R[1] to R[8]. Understand that these
connections are implicit per the definition of the standard. They do not need to be modeled and
cannot be changed.

How to Build an ICL Netlist
This section describes how to build an ICL netlist.
Assume you want to create an ICL description as shown in Figure 2-1. You have ICL module
definitions for all instruments, TDR1, TDR2, SIB, and TAP. For a clearer drawing, you color-
code connections.

ICL and PDL Modeling
How to Build an ICL Netlist

Tessent™ IJTAG User’s Manual, v2022.4 21

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-1. Example ICL Description

Next, instantiate each instrument, connect them, and create a top-level ICL description named
chip. The name of the top ICL module must match the module name of the corresponding
design module described in Verilog or VHDL. All ports found in the top ICL module must exist

Tessent™ IJTAG User’s Manual, v2022.422

ICL and PDL Modeling
How to Build an ICL Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

in the design module though the design module is likely to have extra, non-IJTAG ports. The
following example shows the top ICL module:

Module chip {

TCKPort tck;
ScanInPort tdi;
ScanOutPort tdo { Source MyTap.tdo; }
TMSPort tms;
TRSTPort trst;

Instance MyTap Of tap1 { InputPort tck = tck ;
InputPort tdi = tdi ;
InputPort tms = tms ;
InputPort trst = trst ;
InputPort fso = MySib2.so ; // return scan path

}

Instance MySib1 Of sib1 { InputPort si = tdi ;
InputPort se = MyTap.se ; // shift enable
InputPort ce = MyTap.ce ; // capture enable
InputPort ue = MyTap.ue ; // update enable
InputPort en = MyTap.tdrEn1 ;//select enable
InputPort tck = tck ; // test clock
InputPort fso = MyTdr1.so ; //MyTdr1, scan out

}

Instance MyTdr1 Of tdr1 { InputPort si = tdi ;
InputPort se = MyTap.se ; // shift enable
InputPort ce = MyTap.ce ; // capture enable
InputPort ue = MyTap.ue ; // update enable
InputPort en = MySib1.ten ; // select enable

}

Instance MySib2 Of sib1 { InputPort si = MySib1.so ;
InputPort se = MyTap.se ; // shift enable
InputPort ce = MyTap.ce ; // capture enable
InputPort ue = MyTap.ue ; // update enable
InputPort en = MyTap.tdrEn1 ;//select enable
InputPort tck = tck ; // test clock
InputPort fso = MyTdr2.so ;// MyTdr2, scan out

}

Instance MyTdr2 Of tdr2 { InputPort si = MySib1.so ;
InputPort se = MyTap.se ; // shift enable
InputPort ce = MyTap.ce ; // capture enable
InputPort ue = MyTap.ue ; // update enable
InputPort en = MySib2.ten ; // select enable

}
}

You must define the port connections of an instrument and declare each input port connection.
Consequently, the connection list of each instrument instantiation only lists input ports and the
ports driving them. For example, the port so of instance MySib1 drives the input port si of the
instance MyTdr2 of the instrument tdr2.

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 23

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Model Global Reset, Local Reset and
Embedded TAPs

This section describes the different aspects of the modeling of the IJTAG concepts “Global
Reset” and “Local Reset” and the modeling of embedded TAP controllers.
Reset signals can be intercepted or gated to trigger the reset of registers only in certain parts of
the design. Other registers can be prevented from getting their reset pulse, while the rest of the
circuit is forced into its reset state. TAP controllers can be parked either in the “reset” state or in
the “idle” state.

All those topics are related to the following three types of signals in the ICL description: reset
signals, trst signals and tms signals. These signals can be either explicitly connected in the ICL
description, or implicitly connected by the tool.

For the sake of completeness, the next pages show the set of rules that determine the implied
connectivity of reset signals, trst signals, tms signals and registers with ResetValue
specification. If certain special features are required, like a Local Reset or the isolation of an
embedded TAP, these signals usually have to be connected explicitly in the ICL description.
But for the understanding of the modeled behavior of an IJTAG network during a Global Reset
or a Local Reset, it is important to know which connections between the different parts are
implied by the tool.

Rules for the Implied Connections of Ports of Type ResetPort and
ToResetPort

If a ResetPort of an ICL module is not explicitly connected using the “InputPort” statement in
the instantiation of this module, the tool connects the ResetPort according to the following
rules:

• If there is exactly one ResetPort in the parent module, the instance ResetPort is
connected to this parent module port.

• If there is no ResetPort in the parent module but in total exactly one ResetPort in the
instances within the same parent module, the instance ResetPort is connected to this
instance output port.

• If there are neither ResetPorts in the parent module nor ToResetPorts in the instances
within the same parent module, the ResetPort is connected to the “Global Reset”, a
virtual signal that is active only in case of an iReset (synchronous as well as
asynchronous).

• If none of the above is true, the source of the ResetPort is ambiguous, which triggers the
DRC violation ICL124 (“ambiguous source of instance input port”). If the handling of
this DRC is downgraded to warning, the ResetPort is connected to the “Global Reset” as
if there was no suitable reset signal source.

Tessent™ IJTAG User’s Manual, v2022.424

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If a ToResetPort of an ICL module is not explicitly connected using the “Source” property of
the ToResetPort specification, the tool connects the ToResetPort according to the following
rules:

• If there is exactly one ResetPort in the same module, the ToResetPort is connected to
this port.

• If there is no ResetPort in the same module but in total exactly one ToResetPort in the
instances within the module, the ToResetPort is connected to this instance output port.

• If there are neither ResetPorts in the same module nor ToResetPorts in the instances
within the module, the ToResetPort is connected to the “Global Reset”, a virtual signal
that is active only in case of an iReset (synchronous as well as asynchronous).

• If none of the above is true, the source of the ToResetPort is ambiguous, which triggers
the DRC violation ICL123 (“ambiguous source of output port”). If the handling of this
DRC is downgraded to warning, the ToResetPort is connected to the “Global Reset” as
if there was no suitable reset signal source.

For the implied connections of ResetPorts and ToResetPorts, the ActivePolarity of the ports
does not have to match. Tessent Shell automatically inserts inverted connections if necessary.

Rules for the Implied Connections of Ports of Type TRSTPort and
ToTRSTPort

If a TRSTPort of an ICL module is not explicitly connected using the “InputPort” statement in
the instantiation of this module, the tool connects the TRSTPort according to the following
rules:

• If there is exactly one TRSTPort in the parent module, the instance TRSTPort is
connected to this parent module port.

• If there is no TRSTPort in the parent module, but in total exactly one ToTRSTPort in the
instances within the same parent module, the instance TRSTPort is connected to this
instance output port.

• If there are neither TRSTPorts in the parent module nor ToTRSTPorts in the instances
within the same parent module, the TRSTPort is connected to “Asynchronous Global
Reset”, a virtual signal that is active only in case of an asynchronous iReset (iReset
without -sync switch).

• If none of the above holds, the source of the TRSTPort is ambiguous, which triggers the
DRC violation ICL124 (“ambiguous source of instance input port”). If the handling of
this DRC is downgraded to warning, the TRSTPort is connected to “Asynchronous
Global Reset” as if there was no suitable trst signal source at all.

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 25

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If a ToTRSTPort of an ICL module is not explicitly connected using the “Source” property of
the ToTRSTPort specification, the tool connects the ToTRSTPort according to the following
rules:

• If there is exactly one TRSTPort in the same module, the ToTRSTPort is connected to
this port.

• If there is no TRSTPort in the same module, but in total exactly one ToTRSTPort in the
instances within the module, the ToTRSTPort is connected to this instance output port.

• If there are neither TRSTPorts in the same module nor ToTRSTPorts in the instances
within the module, the ToTRSTPort is connected to “Asynchronous Global Reset”, a
virtual signal that is active only in case of an asynchronous iReset (iReset without –sync
switch).

• If none of the above holds, the source of the ToTRSTPort is ambiguous, which triggers
the DRC violation ICL123 (“ambiguous source of output port”). If the handling of this
DRC is downgraded to warning, the ToTRSTPort is connected to “Asynchronous
Global Reset” as if there was no suitable trst signal source at all.

Rules for the Implied Connections of Ports of Type TMSPort and ToTMSPort
If a TMSPort of an ICL module is not explicitly connected using the “InputPort” statement in
the instantiation of this module, the tool connects the TMSPort according to the following rules:

• If there is exactly one TMSPort in the parent module, the instance TMSPort is connected
to this parent module port.

• If there is no TMSPort in the parent module but in total exactly one ToTMSPort in the
instances within the same parent module, the instance TMSPort is connected to this
instance output port.

• If there are neither TMSPorts in the parent module nor ToTMSPorts in the instances
within the same parent module, the DRC violation ICL126 (“missing source of instance
input port”) is triggered. This DRC cannot be downgraded to warning.

• If none of the above holds, the source of the TMSPort is ambiguous, which triggers the
DRC violation ICL124 (“ambiguous source of instance input port”). If the handling of
this DRC is downgraded to warning, the TMSPort is treated as if it was directly driven
by a top-level TMSPort. The associated TAP controllers cannot be parked, and they
cannot be prevented from reacting to the synchronous Global Reset.

If a ToTMSPort of an ICL module is not explicitly connected using the “Source” property of the
ToTMSPort specification, the tool connects the ToTMSPort according to the following rules:

• If there is exactly one TMSPort in the same module, the ToTMSPort is connected to this
port.

Tessent™ IJTAG User’s Manual, v2022.426

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If there is no TMSPort in the same module, but in total exactly one ToTMSPort in the
instances within the module, the ToTMSPort is connected to this instance output port.

• If there are neither TMSPorts in the same module nor ToTMSPorts in the instances
within the module, the DRC violation ICL125 (“missing source of output port”) is
triggered. This DRC cannot be downgraded to warning.

• If none of the above holds, the source of the ToTMSPort is ambiguous, which triggers
the DRC violation ICL123 (“ambiguous source of output port”). If the handling of this
DRC is downgraded to warning, the ToTMSPort is treated as if it was directly driven by
a top-level TMSPort. The associated TAP controllers cannot be parked, and they cannot
be prevented from reacting to the synchronous Global Reset.

Rules for the Implied Connections of Registers
The ICL constructs “DataRegister” and “ScanRegister” do not have a dedicated possibility to
specify the source of their reset signal. Therefore, the association between register and reset
signal is always implicit.

The following rules apply to the implied reset connectivity of the registers with ResetValue
specifications (registers without ResetValue specification are not affected by any reset activity):

• If there is exactly one ResetPort in the parent module, the register is connected to this
parent module port.

• If there is no ResetPort in the parent module, but in total exactly one ToResetPort in the
instances within the same parent module, the register is connected to this instance output
port.

• If there are neither ResetPorts in the parent module nor ToResetPorts in the instances
within the same parent module, the register is connected to “Global Reset”, a virtual
signal that is active only in case of an iReset (synchronous and asynchronous).

• If none of the above is true, the source of the ResetPort is ambiguous, which triggers the
DRC violation ICL127 (“ambiguous register reset signal”). If the handling of this DRC
is downgraded to warning, the register is connected to “Global Reset” as if there was no
suitable reset signal source.

The lack of means to specify the register reset explicitly may result in the requirement to
introduce additional ICL hierarchy levels to clarify the association between registers and
ResetPorts. See Figure 2-2. To achieve the unique association between the ScanRegister RegA
and the ResetPort rst1, and the unique association between ScanRegister RegB and the
ResetPort rst2, you must introduce the modules blockA_1 and blockA_2.

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 27

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-2. Association Between ResetPorts and Registers

The Role of the DataMux
You must intercept reset, trst, and tms signals to introduce functionality like a Local Reset (that
is, the triggering of a reset in certain parts of the circuit) or the suppression of reset activity
during a Global Reset. You must this also for the isolation of TAP controllers including the
possibility to park them in the “reset” state or the “idle” state. The general approach for
modeling this kind of interception is the same for all three types of signals. The essential ICL
element for this purpose is the DataMux. If exactly one of the data inputs of a DataMux is
driven by a reset signal, trst signal, or tms signal, the DataMux becomes a “reset mux”, “trst
mux”, or “tms mux” respectively. All the other inputs, including the select inputs, must be
ordinary data signals. They must be driven by the parallel outputs of a register, by DataOutPorts
or DataInPorts, by other DataMuxes, or by combinational logic modeled by the ICL construct
“LogicSignal”.

A DataMux that provides (through one of its inputs with an ordinary data signal) the active
value of a ResetPort or ToResetPort can trigger the reset of all downstream registers. This sort
of reset is called Local Reset. It happens right after the update cycle that configured the
DataMux in such a way that it selects the data signal with the active reset value. The Local
Reset rests until the DataMux is configured again in such a way that it presents the ordinary
reset signal or an inactive reset value.

A DataMux that provides (through one of its inputs with an ordinary data signal) the inactive
value of a ResetPort or ToResetPort can be used to suppress the effect of a Global Reset (that is,
the reset activity that happens on behalf of an iReset command) or the effect of a higher-level
Local Reset on the downstream registers.

A trst signal can be intercepted in the same way as a reset signal. This provides the possibility to
either trigger an asynchronous Local Reset or to suppress the effect of an asynchronous Global
Reset or an asynchronous higher-level Local Reset on the downstream registers. If a DataMux
drives the value “0” to the TRSTPort of a TAP controller state machine (that is, an ICL module
with a ToIRSelectPort), the TAP controller is held in the “reset” state. All registers associated
with the ToResetPort of the TAP controller state machine are reset. No scan activity can happen
through this TAP controller before the TRSTPort is either driven with its inactive value or with
an ordinary trst signal again.

Tessent™ IJTAG User’s Manual, v2022.428

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A DataMux can also be used to intercept a tms signal. If a DataMux drives the value “1” to the
TMSPort of a TAP controller state machine (that is, an ICL module with a ToIRSelectPort), the
TAP controller is held in the “reset” state. If a DataMux drives the value “0” to the TMSPort of
a TAP controller state machine, the TAP controller is held in the idle state. In both cases, no
scan activity can happen through this TAP controller before the TMSPort is driven with an
ordinary tms signal again. Intercepting the tms signal of a TAP controller can be used to “park”
an embedded TAP controller either in the “idle” state or in the “reset” state. In the latter case,
the TAP controller is not only isolated, its registers are also reset.

Recommendations for the Design of Hierarchical Local Reset and Global
Reset

Whenever it is not intended to suppress the Global Reset in certain parts of the circuit, but there
is a possibility to trigger a Local Reset, the reset circuitry should be designed “hierarchically”,
such that the reset of a certain hierarchy level automatically triggers the reset of the modules
below that level. This can be achieved by an appropriate specification of the ResetValue of the
registers controlling the reset muxes. After a reset of the control registers, the attached reset
muxes should present the ordinary reset signal, not one of the data signals.

Figure 2-3 on page 28 demonstrates this concept.

Figure 2-3. Hierarchical Reset

The reset_ctrl_B register can be used to trigger a Local Reset in blockB, the reset_ctrl_C
register can be used to trigger a Local Reset in blockC. If the ResetValue specifications for the
“rst_ovr” register bit of the two registers is set to 0, the Global Reset automatically triggers the
reset in blockB, and the reset of blockB automatically triggers the reset of blockC. This is
because the Global Reset resets the reset_ctrl_B register. When the “rst_ovr” bit of this register
is reset to “0”, the associated multiplexer immediately selects the ordinary reset signal, which is

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 29

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

currently active (because of the Global Reset). Therefore the active reset signal arrives at the rst
input of blockB. This resets the register reset_ctrl_C. The “rst_ovr” bit of this register is reset to
“0”, and the associated multiplexer immediately selects the rst input of the module blockB,
which is currently active. Consequently, the reset also arrives at blockC.

To achieve this desirable hierarchical behavior, it is recommended to choose the ResetValue of
the control registers such that the associated multiplexers select the ordinary reset signals but
not the data signals after a reset of the control registers.

Self-Clearing Local Reset
The IEEE 1687-2014 standard describes the concept of a self-clearing Local Reset. When the
TDR that triggers the Local Reset reacts on this Local Reset (with a certain delay), then the reset
control signals in this register can be set back to their inactive states without an additional scan
load. The Local Reset is triggered immediately after the update of the TDR and becomes
inactive immediately thereafter before the TAP controller is back to the “idle” state.

In the ICL, the delay cannot be modeled, and the tool automatically handles the Local Reset
correctly. But it might be necessary to introduce additional hardware in the actual design
description (Verilog or VHDL) to ensure the correct timing. In particular, it must be ensured
that the Local Reset signal reaches all registers that are supposed to be reached before it
switches itself off again.

Figure 2-4 on page 29 shows how the self-clearing Local Reset can be modeled. You need an
additional level of hierarchy to describe the association between the ScanRegister and the
ResetPort. ICL does not have the means to describe this association directly.

Figure 2-4. Modeling Self-clearing Local Reset

Tessent™ IJTAG User’s Manual, v2022.430

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In 2-4, blockA is the top level. blockB contains all the logic that is subject to the Local Reset.
blockC is just another block that makes use of the Local Reset. The rst_ovr bit in the reset_ctrl
register has the ResetValue “0”.

When the “reset_ctrl” register is loaded such that the “rst_ovr” bit contains the value “1”, this
value propagates to the DataMux in blockA and triggers a Local Reset in blockB. The reset also
affects the “reset_ctrl” register, but only after resetting all registers in blockC (because of the
implied delay). When the reset signal finally arrives at the “reset_ctrl” register, it sets “rst_ovr”
back to “0”. This switches off the Local Reset, and the “reset_ctrl” scan register is ready for
ordinary scan load activity again. Any registers in blockC are usable again. The tool achieves all
this with one scan load, and there is no need for dedicated “activate reset” and “disable reset”
scan loads.

Note
The complete hardware in this example is also subject to the ordinary Global Reset, because
the inactive state of the “rst_ovr” control bit ensures that the top-level reset signal from the

“rst” primary input port reaches all parts of the design.

Edge-Triggered Local Reset
In addition to the previously described reset mechanisms, a local reset can also be triggered by a
rising or falling edge on a data signal. Such an edge-triggered reset is modeled through a special
ICL module with the singular purpose of generating a reset signal based on a rising or falling
edge.

The edge-triggered reset ICL module must have exactly three ports: One ResetPort, one
ToResetPort, and one DataInPort. In addition, you must specify the
“tessent_edge_triggered_reset” attribute in the module description. The attribute can have the
value “falling” or “rising”. When a corresponding falling or rising edge occurs on the
DataInPort of the module, the IJTAG engine automatically activates the ToResetPort of the
module for one cycle. If no edge is detected, it sources the value of the ToResetPort from the
ResetPort input of the module. Thus it resets a module that is connected to the ToResetPort of
the edge-triggered reset module when it detects an edge as well as when the ResetPort input is
active.

Figure 2-5 on page 31 and the example that follows it shows how a falling-edge-triggered local
reset can be modeled in ICL.

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 31

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-5. Edge-Triggered Local Reset

Module blockA {
 […]
 DataInPort edge;
 ResetPort rst;
 Instance rstFalling Of edgeReset {
 InputPort rst = rst;
 InputPort edge = edge;
 }

 Instance inst1 Of blockB {
 InputPort rst = rstFalling.toRst;
 }
}
Module edgeReset {
 ResetPort rst;
 DataInPort edge;
 ToResetPort toRst;
 Attribute tessent_edge_triggered_reset = "falling";
}

In Figure 2-5 on page 31, blockB has the ResetPort “rst” that is connected to the instance
rstFalling of the edge-triggered reset module edgeReset. As such, the reset of blockB is
triggered whenever the “rst” input of blockA is active and whenever a falling edge is detected
on the “edge” input of blockA.

The following general rules apply to the edge-triggered reset module:

• The ResetPort and ToResetPort must have the same ActivePolarity.

Tessent™ IJTAG User’s Manual, v2022.432

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The decoding logic of the data signal that drives the DataInPort must not contain any
unconnected parts. All of its inputs must ultimately be driven by DataRegisters,
ScanRegisters, or top-level DataInPorts.

Synchronous Reset and Asynchronous Reset
The IEEE 1687 standard describes two types of reset: synchronous reset and asynchronous
reset.

The command “iReset” triggers an asynchronous Global Reset, the command “iReset –sync”
triggers a synchronous Global Reset.

The asynchronous Global Reset applies appropriate waveforms to the top-level ResetPorts and
TRSTPorts. The effect of this reset is simulated in the retargeter considering all the explicit and
implied reset connections. All internal ResetPorts, ToResetPorts, TRSTPorts, ToTRSTPorts,
and registers, which are not connected to the reset circuitry (neither explicitly nor implicitly),
are assumed to be driven with the active reset values.

The synchronous Global Reset applies appropriate waveforms to the top-level ResetPorts and
TMSPorts to enforce the transition of the TAP state machine or machines to the state “test logic
reset”. The effect of this reset is simulated in the retargeter considering all the explicit and
implied reset connections. All internal ResetPorts, ToResetPorts, and registers, which are not
connected to the reset circuitry (neither explicitly nor implicitly), are assumed to be driven with
the active reset values. The internal TMSPorts and ToTMSPorts that are not connected to other
TMS signal sources (neither explicitly nor implicitly), are assumed to be driven with the value
“1” during this reset, such that the synchronous reset is also applied to the embedded TAP
controllers without explicitly connected TMSPorts.

An ICL module that is meant to model the TAP state machine (that is, an ICL module with a
ToIRSelectPort specification) can have a ToResetPort. In such a configuration of ports, the
ToResetPort becomes active when either the TRSTPort of the module is active or the TMSPort
of the module is constantly driven with the value “1” (which means that the TAP state machine
arrives in the “test logic reset”).

A ResetPort or a ToResetPort can be forced to react on asynchronous resets only. This can be
achieved by explicitly connecting them to a TRSTPort or ToTRSTPort. A ResetPort or
ToResetPort that is connected like this does not react on the synchronous reset.

A Local Reset is nearly simulated in the same way as a Global Reset. The trigger for a Local
Reset is not the iReset command, but the update of a register that configures a “reset mux” or a
“trst mux” such that a reset signal or a trst signal becomes active. The Local Reset does not have
any effect on the internal ResetPorts, ToResetPorts, TRSTPorts, ToTRSTPorts, and registers
that are not connected to the reset circuitry (neither explicitly nor implicitly).

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Tessent™ IJTAG User’s Manual, v2022.4 33

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In some cases, the asynchronous Global Reset is not possible. In the following situations,
Tessent IJTAG automatically performs a synchronous Global Reset, even if the –sync switch of
the iReset command is omitted:

• If the top-level TRSTPort is constrained to the inactive value (CT1 constraint)

• If the top-level TRSTPort is forced to the inactive value by iForcePort

• If one of the TAP controllers does not have a TRSTPort

The use of the iReset command has some effects that are not immediately related to the reset of
the ScanRegisters, DataRegisters, and TAP state machines. These are:

• The iClock specifications are deleted

• The iClockOverride specifications are deleted

• The iOverrideScanInterface specifications are set to their default values

Requirements and Limitations
The support of Local Reset and Embedded TAP controllers is subject to a few special
requirements and limitations:

• Dedicated iApply commands for Local Reset — The retargeter must not try to resolve
the iWrite and iRead requirements by means of a Local Reset, because this would have
undesirable side effects on other parts of the circuit. To ensure that the ordinary iRead or
iWrite retargeting does not interfere with a Local Reset, all modifications on the register
bits and primary inputs controlling the Local Reset must happen in the last iApply
operation (scan load or parallel I/O operation). If this restriction makes the retargeting of
the iApply impossible, you must separate the ordinary iRead and iWrite commands from
those that are meant to trigger or terminate the Local Reset and use dedicated iApply
commands for each of them. In such a situation, the following message is shown:

The retargeter cannot find a solution for the current PDL
constraints without toggling the reset of at least one register
in an intermediate iApply operation (iApply operation = scan load
or primary input alteration). The ICL and the PDL must be designed
such that it is not required to toggle the register reset before
the last iApply operation. Consider splitting the iApply into
several parts, for example, one iApply to apply/terminate the
Local Reset and one iApply for the remaining PDL targets.

• Timing considerations — The embedded TAP controllers with “parking” functionality
and the related control signals must be designed such that the TAP controllers are
automatically synchronized with the other enabled TAP controllers after they have been
released from their parking state (“reset” or “idle”). This requirement can only be
fulfilled if the timing of the involved signals is carefully designed.

For example: Assume that an embedded TAP controller has been parked by means of an
interception of its TMS signal in the reset state. This parking usually ends on the falling

Tessent™ IJTAG User’s Manual, v2022.434

ICL and PDL Modeling
How to Model Global Reset, Local Reset and Embedded TAPs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

edge of TCK, when the control register for the isolation of the embedded TAP (that is,
the register that controls the interception of the TMS signal of the embedded TAP) is
updated by a higher-level TAP. From this moment on, the embedded TAP controller
must receive the TMS signal again, and the state machine of the embedded TAP and the
state machine of the other TAPs must be running. While the other TAPs are currently in
the Update-DR state, the embedded TAP that has just been woken up is still in the reset
state. There is only one TAP state transition left before the retargeter assumes that all
TAP controllers are in IDLE state again. Therefore, it is crucial that the interception of
the TMS ends before the next TAP state transition is applied, such that the next state
transition with TMS=0 takes the embedded TAP from reset to idle, while at the same
time the other TAPs are taken from Update-DR to idle. If the signal for the termination
of the TMS interception arrives too late, the embedded TAP stays in the “reset” state and
the TAP controllers get out of sync.

ICL and PDL Modeling
ScanInterfaces and Associations Between Ports and ScanInterfaces

Tessent™ IJTAG User’s Manual, v2022.4 35

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ScanInterfaces and Associations Between
Ports and ScanInterfaces

This section explains the behavior of the tool regarding ScanInterface creation, inference,
checking, and introspection.
An ICL ScanInterface describes the assembly of ports that provide scan access to the IJTAG
network or a subset of the IJTAG network.

You can explicitly specify ScanInterfaces or the tool can infer them. It can also infer the
association between ports and explicitly specified ScanInterfaces. The conditions for the
automated inference of ScanInterfaces and their ports are complex.

How the tool handles ScanInterfaces depends on whether the ICL module in question is
associated with the current design or not. The rules for ICL modules associated with the current
design are stricter. The tool must know which ScanInterface control ports of the current design
(CaptureEnPort, ShiftEnPort, UpdateEnPort, SelectPort, or TMSPort) are associated with the
individual scan ports (ScanInPort or ScanOutPort) to create the stimulus data for the control
ports correctly.

In this section, the term “current design” refers to the ICL module that is associated with the
current design. The term “internal module” refers to an ICL module that is part of the current
ICL elaboration but not associated with the current design.

Note
The IEEE 1687-2014 standard uses the term “handoff module” for an ICL module that
parties exchange and need stricter checks. Tessent IJTAG only treats the current design as

an ICL “handoff module”.

All mechanisms that infer ScanInterfaces or associations between ports and ScanInterfaces do
not affect the content of files you create using the write_icl command. The internal data model
changes only, which affects the behavior of the PDL retargeting and the result of ICL
introspection.

Modules With Explicitly Specified ScanInterfaces. 36
Modules Without Explicitly Specified ScanInterfaces . 41

Tessent™ IJTAG User’s Manual, v2022.436

ICL and PDL Modeling
Modules With Explicitly Specified ScanInterfaces

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Modules With Explicitly Specified ScanInterfaces
This section explains the design rule checks and the additional inferred associations between
ports and ScanInterfaces for modules with explicitly specified ScanInterfaces.
DRCs for Explicitly Specified ScanInterfaces. 36
Inferred Associations Between Ports and Explicitly Specified ScanInterfaces 37

DRCs for Explicitly Specified ScanInterfaces
In a module with explicitly specified ScanInterfaces, the ports and the ScanInterfaces are
subject to various checks. This section describes them.

Checking ICL Module Ports
If the current design contains more than one ScanInPort or ScanOutPort, all its scan ports
(ScanInPorts and ScanOutPorts) must be members of explicitly specified ScanInterfaces. This
is true irrespective of the number of existing ScanInterfaces and the number of scan ports
already members of ScanInterfaces. For example, if some scan ports lack membership in a
ScanInterface but other ScanInterface specifications are already in place, the tool does not try to
infer ScanInterfaces for the “unattended” scan ports. The related DRC is ICL103.

You can downgrade the ICL103 severity level to “Warning”. However, an ICL103 violation
prevents IJTAG retargeting, independent of its severity level.

For internal modules, no such restriction exists. There can be a mixture of scan ports that are
members of ScanInterfaces and scan ports that are not members of ScanInterfaces, as long as
the existing ScanInterface specifications are valid. As for the current design, the tool does not
try to infer the presence of additional ScanInterfaces if there is at least one explicitly specified
ScanInterface.

Checking ScanInterface Members
The tool checks the consistency and standard compliance of Port and Chain specifications of
explicitly specified ScanInterfaces using several DRCs, but these are the most important:

• ICL70 — Invalid mixture of ports that are specific for client, host, client-TAP, or host-
TAP ScanInterfaces.

• ICL101 — ScanInterface without control ports.

• ICL105 — Invalid combinations of ports that are not covered by one of the other DRCs.

• ICL106 — Invalid ports in the “Chain” construct of the ScanInterface.

• ICL107 — “Chain” construct in a host or host-TAP ScanInterface.

• ICL108 — Missing associations between scan ports and ScanInterface chains.

ICL and PDL Modeling
Modules With Explicitly Specified ScanInterfaces

Tessent™ IJTAG User’s Manual, v2022.4 37

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• ICL109 — DefaultLoadValue outside of Chain specification.

• ICL110 — Chain specifications with overlapping ports.

Refer to the related descriptions in the Tessent Shell Reference Manual for more details.

Inferred Associations Between Ports and Explicitly
Specified ScanInterfaces

The following section shows the rules that determine the implied association between ICL ports
and ICL ScanInterfaces.
These additional associations between ICL ports and ICL ScanInterfaces affect the
introspection of the icl_port, icl_pin, icl_scan_interface, and icl_scan_interface_of_module
objects. However, they do not appear in the files you create using the write_icl command.

Note
The tool does not consider ICL ports with the “ir” or “ir_dr” function_modifier and does not
automatically assign them to a ScanInterface if there are several ICL ports with the same

port function as the port in question.

In the following, the phrase “all <port_function>” refers to all ports of type <port_function>
except the ones with the “ir” or “ir_dr” function_modifier if there are several ICL ports of type
<port_function>. Otherwise, it refers to the unique port of type <port_function>, independently
of the function_modifier.

The capture and update ports have two conditions that indicate the tool should not interfere with
the explicit ScanInterface specifications. The tool suppresses implied associations between ICL
ports and ICL ScanInterfaces when both of the following conditions are true:

• The ScanInterface contains an explicitly specified ShiftEnPort or ToShiftEnPort.

• All ports with the port_function in question (CaptureEnPort, UpdateEnPort,
ToCaptureEnPort, or ToUpdateEnPort) are already part of other explicitly specified
ScanInterfaces.

The tool associates all CaptureEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All CaptureEnPorts of the ICL module have distinct function_modifier attribute values.

• The ScanInterface has been identified as a client ScanInterface.

• There are no CaptureEnPorts in the original specification of the ScanInterface.

• The implied association of the CaptureEnPorts with the ScanInterface is not suppressed
by the tool.

Tessent™ IJTAG User’s Manual, v2022.438

ICL and PDL Modeling
Modules With Explicitly Specified ScanInterfaces

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool associates all ShiftEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All ShiftEnPorts of the ICL module have distinct function_modifier attribute values.

• The ScanInterface has been identified as a client ScanInterface.

• There are no ShiftEnPorts in the original specification of the ScanInterface.

The tool associates all UpdateEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All UpdateEnPorts of the ICL module have distinct function_modifier attribute values.

• The ScanInterface has been identified as a client ScanInterface.

• There are no UpdateEnPorts in the original specification of the ScanInterface.

• The implied association of the UpdateEnPorts with the ScanInterface is not suppressed
by the tool.

The tool associates all ToCaptureEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All ToCaptureEnPorts of the ICL module have distinct function_modifier attribute
values.

• The ScanInterface has been identified as a host ScanInterface.

• There are no ToCaptureEnPorts in the original specification of the ScanInterface.

• The implied association of the ToCaptureEnPorts with the ScanInterface is not
suppressed by the tool.

The tool associates all ToShiftEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All ToShiftEnPorts of the ICL module have distinct function_modifier attribute values.

• The ScanInterface has been identified as a host ScanInterface.

• There are no ToShiftEnPorts in the original specification of the ScanInterface.

The tool associates all ToUpdateEnPorts of an ICL module with a ScanInterface if all of the
following conditions are true:

• All ToUpdateEnPorts of the ICL module have distinct function_modifier attribute
values.

• The ScanInterface has been identified as a host ScanInterface.

• There are no ToUpdateEnPorts in the original specification of the ScanInterface.

ICL and PDL Modeling
Modules With Explicitly Specified ScanInterfaces

Tessent™ IJTAG User’s Manual, v2022.4 39

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The implied association of the ToUpdateEnPorts with the ScanInterface is not
suppressed by the tool.

The tool associates a TCKPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only TCKPort in the ICL Module.

• The ScanInterface has been identified as a client or client-TAP ScanInterface.

• There is no TCKPort in the original specification of the ScanInterface.

The tool associates a ToTCKPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only ToTCKPort in the ICL Module.

• The ScanInterface has been identified as a host or host-TAP ScanInterface.

• There is no ToTCKPort in the original specification of the ScanInterface.

The tool associates a ResetPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only ResetPort in the ICL Module.

• The ScanInterface has been identified as a client ScanInterface.

• There is no ResetPort in the original specification of the ScanInterface.

The tool associates a ToResetPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only ToResetPort in the ICL Module.

• The ScanInterface has been identified as a host ScanInterface.

• There is no ToResetPort in the original specification of the ScanInterface.

The tool associates a TRSTPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only TRSTPort in the ICL Module.

• The ScanInterface has been identified as a client-TAP ScanInterface.

• There is no TRSTPort in the original specification of the ScanInterface.

The tool associates a ToTRSTPort of an ICL module with a ScanInterface if all of the following
conditions are true:

• The port is the only ToTRSTPort in the ICL Module.

Tessent™ IJTAG User’s Manual, v2022.440

ICL and PDL Modeling
Modules With Explicitly Specified ScanInterfaces

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The ScanInterface has been identified as a host-TAP ScanInterface.

• There is no ToTRSTPort in the original specification of the ScanInterface.

ICL and PDL Modeling
Modules Without Explicitly Specified ScanInterfaces

Tessent™ IJTAG User’s Manual, v2022.4 41

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Modules Without Explicitly Specified
ScanInterfaces

This section explains the design rule checks and the creation of anonymous ScanInterfaces for
modules without explicitly specified ScanInterfaces.
Checking ICL Module Ports . 41
Anonymous ScanInterface Creation . 42

Checking ICL Module Ports
The combination of the ICL ports in the ICL module must enable the unambiguous creation of
one anonymous single-chain ScanInterface based on the rules described in this section.

Note
These rules apply when the current design does not contain any explicit ScanInterface
specifications, but it does contain at least one scan port (ScanInPort or ScanOutPort).

These checks are the minimal requirements for inferring an anonymous ScanInterface in the
current design. The actual strategy to infer a ScanInterface (including additional ports like
CaptureEnPort or UpdateEnPort) is described in “Anonymous ScanInterface Creation” on
page 42.

If the tool cannot infer a required ScanInterface for the current design, it reports an ICL71
violation.

You can downgrade ICL71 to a “Warning” severity level. However, an ICL71 violation
prevents IJTAG retargeting, independent of the violation’s severity level.

For internal modules with scan ports but without explicit ScanInterface specifications, the
possibility to infer an anonymous ScanInterface is not mandatory. The tool attempts to infer a
ScanInterface as described in Anonymous ScanInterface Creation, but it does not report if it
fails to do so.

• The tool ignores ScanInPorts directly feeding into OneHotScanGroups during the
checks described in this section. The tool treats them as inactive inputs of the
OneHotScanGroups later during IJTAG retargeting.

• There can only be one ScanInPort and one ScanOutPort.

o The tool is working to infer one anonymous single-chain ScanInterface. The
presence of multiple ScanInPorts or ScanOutPorts requires one of the following:
multiple ScanInterfaces, multiple chains in one ScanInterface, or it is ambiguous
which ports to use for the ScanInterface.

Tessent™ IJTAG User’s Manual, v2022.442

ICL and PDL Modeling
Modules Without Explicitly Specified ScanInterfaces

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• At most, one of the following port types can appear in the ICL module: ShiftEnPort,
ToShiftEnPort, TMSPort, or ToTMSPort.

o These port_functions are necessarily associated with ScanInterfaces. They
unambiguously determine the type of the ScanInterface. The ScanInterface type is
ambiguous if there is more than one of these port functions.

• If there are no ports of type ShiftEnPort, ToShiftEnPort, TMSPort, or ToTMSPort, then
at most, one of the following port types can appear in the ICL module: SelectPort or
ToSelectPort.

o SelectPorts and ToSelectPorts are not necessarily associated with ScanInterfaces
(that is why they do not appear in the list of port_functions in the previous check).

o However, without ShiftEnPort, ToShiftEnPort, TMSPort, and ToTMSPort, the only
possibility to form a valid ScanInterface is having either a SelectPort or a
ToSelectPort as a control signal for the ScanInterface.

o If there are both SelectPort and ToSelectPort, the type of the ScanInterface is
ambiguous.

• One of the following port types must appear in the ICL module: ShiftEnPort,
ToShiftEnPort, TMSPort, ToTMSPort, SelectPort, or ToSelectPort.

o It is not possible to form a valid ScanInterface without any of these ports.

o A client ScanInterface must have a ShiftEnPort, SelectPort, or both.

o A host ScanInterface must have a ToShiftEnPort, ToSelectPort, or both.

o A client-TAP ScanInterface must have a TMSPort.

o A host-TAP ScanInterface must have a ToTMSPort.

• If the previous checks pass and indicate a client or client-TAP ScanInterface, the ICL
module must contain a ScanInPort and a ScanOutPort. Only host or host-TAP
ScanInterfaces can lack one of the scan ports.

• The ShiftEnPort, ToShiftEnPort, TMSPort, ToTMSPort, SelectPort or ToSelectPort
must be unique. Ultimately, this determines the type of the ScanInterface.

o If this is the ShiftEnPort, ToShiftEnPort, TMSPort, or ToTMSPort, the tool ignores
the SelectPorts and ToSelectPorts of the ICL Module.

o If there are no ports of type ShiftEnPort, ToShiftEnPort, TMSPort, or ToTMSPort,
then the SelectPort or ToSelectPort must be unique.

Anonymous ScanInterface Creation
The creation of anonymous ScanInterfaces can occur in the current design and internal modules.
In the current design, the tool can create an anonymous ScanInterface if the scan ports exist. In

ICL and PDL Modeling
Modules Without Explicitly Specified ScanInterfaces

Tessent™ IJTAG User’s Manual, v2022.4 43

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

internal modules, the tool silently skips the creation of the ScanInterfaces if it is impossible or
ambiguous.
The tool assigns the name “unnamed” to the anonymous ScanInterface. The tool can perform
introspection on the anonymous ScanInterface like any other ScanInterface. However, they do
not appear in the files you create using the write_icl command.

When the tool determines the presence and uniqueness of an anonymous client ScanInterface
from the rules in “Checking ICL Module Ports” on page 41, it creates the ScanInterface with the
following members:

• A unique ScanInPort and the unique ScanOutPort.

• A SelectPort if it exists and it is unique.

• All CaptureEnPorts of the module if they have distinct function_modifier attribute
values.

• All ShiftEnPorts of the module if they have distinct function_modifier attribute values.

• All UpdateEnPorts of the module if they have distinct function_modifier attribute
values.

• A ResetPort if it exists and it is unique.

• A TCKPort if it exists and it is unique.

When the tool determines the presence and uniqueness of an anonymous host ScanInterface
from the rules in “Checking ICL Module Ports”, it creates the ScanInterface with the following
members:

• A unique ScanInPort, the unique ScanOutPort, or both.

• A ToSelectPort if it exists and it is unique, and there are no ToShiftEnPorts in the
middle.

• All ToCaptureEnPorts of the module if they have distinct function_modifier attribute
values.

• All ToShiftEnPorts of the module if they have distinct function_modifier attribute
values.

• All ToUpdateEnPorts of the module if they have distinct function_modifier attribute
values.

• A ToResetPort if it exists and it is unique.

• A ToTCKPort if it exists and it is unique.

Tessent™ IJTAG User’s Manual, v2022.444

ICL and PDL Modeling
How to Define an iProc

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When the tool deduces the presence and uniqueness of an anonymous client-TAP ScanInterface
from the rules in “Checking ICL Module Ports”, it creates the ScanInterface with the following
members:

• A unique ScanInPort and the unique ScanOutPort.

• A unique TMSPort.

• A TRSTPort if it exists and it is unique.

• A TCKPort if it exists and it is unique.

When the tool deduces the presence and uniqueness of an anonymous host-TAP ScanInterface
from the rules in “Checking ICL Module Ports”, it creates the ScanInterface with the following
members:

• A unique ScanInPort, the unique ScanOutPort, or both.

• A unique ToTMSPort.

• A ToTRSTPort if it exists and it is unique.

• A ToTCKPort if it exists and it is unique.

How to Define an iProc
Most of your ICL instruments have PDL that describes, for example, how the instrument is
supposed to be tested or operated.
The PDL is described at the IO-boundary of the instrument. It is then up to Tessent IJTAG to
retarget these PDL commands to the chosen ICL hierarchy level, referred to as the
current_design and defined using the set_current_design command. Here are two simple
examples of the usage of 'iProc'.

iProcsForModule tdr1

iProc write_data { value } {
 iNote "Writing the value '$value' to register R"
 iWrite R $value
 iApply
}

iProc read_data { value } {
 iNote "Reading the expect value '$value' from register R"
 iRead R $value
 iApply
}

The first observation is that PDL requires that an iProc is bound to one ICL module. This
binding is accomplished with the PDL keyword iProcsForModule. All PDL iProcs following

ICL and PDL Modeling
How to Call an iProc

Tessent™ IJTAG User’s Manual, v2022.4 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the iProcsForModule keyword are bound to the specified module. The range of the binding is up
to the next usage of iProcsForModule and is not linked in any way to the file in which it was
specified.

How to Call an iProc
By using the binding of an iProc to an ICL module, you make the iProc available to each
instance of the module.
Assume that an instance MyTdr of tdr1 of the example above is located in an instance named
Block1 that is instantiated in an ICL module instance of Core3. The full hierarchical ICL
instance path is therefore Core3.Block1.MyTdr. Because each instance of module tdr1 has
access to the iProc write_data you can invoke the iProc by calling it as follows:

iCall Core3.Block1.MyTdr.write_data 0xff

In more general terms, the iCall effective_icl_instance_path to an iProc is a concatenation of the
iProc instance path (the path of the iProc being processed), the ICL hierarchy prefix defined
through the iPrefix command, and the specified ICL path in the first argument of the iCall
command. Refer to the iCall in the Tessent Shell Reference Manual for a full description of the
command.

Tessent™ IJTAG User’s Manual, v2022.446

ICL and PDL Modeling
How to Call an iProc

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.4 47

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
A Typical PDL Retargeting Flow

This chapter describes how to perform the basic PDL retargeting flow with Tessent Shell.
The Basic PDL Retargeting Flow . 48

Invoke Tessent Shell . 49
Set the IJTAG Context and System Modes . 50
Read ICL Files . 50
Read PDL Files . 51
Set the Retargeting Level . 51
Define Clocks and Timing . 53
Design Rule Checks . 56
Create Pattern Sets . 56
Write PDL, Pattern, and Testbench Files . 59
Comments and Annotations in Tessent IJTAG . 60
Exit the Tool . 67

Optional Elements of a PDL Retargeting Flow. 68
Test Setup and Test End Procedures. 68
How to Define and Use Clocks Outside ICL . 69
How to Constrain Inputs . 69
Report Generation. 71
IJTAG Introspection . 72
PDL Retargeting With Symbolic Variables . 76

How to Run iCalls in Parallel . 95
PDL Specialties and Exceptions . 96
iMerge Conflict Reporting . 96

PDL Retargeting Commands . 102
Introspection and Reporting Commands . 104

Tessent™ IJTAG User’s Manual, v2022.448

A Typical PDL Retargeting Flow
The Basic PDL Retargeting Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Basic PDL Retargeting Flow
The main steps of the PDL retargeting flow consist of invoking Tessent Shell and setting the
context and system modes, reading the ICL and PDL files, setting the retargeting level, defining
clocks and timing, checking design rules, creating patterns sets, and writing the pattern files.
Figure 3-1 illustrates the main steps of the basic flow.

Figure 3-1. PDL Retargeting Flow

The following sections define the flow and discuss each step separately. The sections describe
only the necessary steps for an ICL flow that uses only ICL and PDL files. Consequently, the
patterns Tessent IJTAG computes can contain only ports defined in the top-level ICL module as
defined using the set_current_design command. If you need to include ports that are outside of
the ICL description, you also must read in at least the top-level Verilog description of your
netlist. This enables you, for example, to define the speed of a non-ICL system clock, add input

A Typical PDL Retargeting Flow
Invoke Tessent Shell

Tessent™ IJTAG User’s Manual, v2022.4 49

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

constraints outside of the ICL, or in general have all ports of the topmost Verilog module
automatically included in the retargeted PDL testbench. These optional steps are discussed in
the section “Optional Elements of a PDL Retargeting Flow”. For these reasons, it is
recommended to also read in the top netlist module as well, as described in the section “Set the
Retargeting Level.”

If you do not have a top-level ICL file for your design, Tessent IJTAG can compute one for you
using the Verilog gate-level netlist description.

Tessent IJTAG functionality is implemented in Tessent Shell. Many of the commands used in
Tessent IJTAG are the same commands you know from ATPG, like the add_clocks or
set_procfile_name commands. This document makes frequent references to commands in
Tessent Shell as needed for the understanding of the flow and usage.

Refer to the Tessent Shell Reference Manual for a full description of the commands.

Invoke Tessent Shell . 49
Set the IJTAG Context and System Modes . 50
Read ICL Files . 50
Read PDL Files. 51
Set the Retargeting Level . 51
Define Clocks and Timing. 53

Test Clock . 53
Synchronous System Clock . 54
Asynchronous System Clock . 55

Design Rule Checks . 56
Create Pattern Sets . 56
Write PDL, Pattern, and Testbench Files . 59
Comments and Annotations in Tessent IJTAG . 60
Exit the Tool . 67

Invoke Tessent Shell
You invoke Tessent Shell from a command line shell.
Use the following syntax:

% tessent -shell

After invocation, the tool is in setup mode. Refer to “Tool Invocation” in the Tessent Shell
User’s Manual for additional invocation options.

Tessent™ IJTAG User’s Manual, v2022.450

A Typical PDL Retargeting Flow
Set the IJTAG Context and System Modes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Set the IJTAG Context and System Modes
After Tessent Shell loads, you must tell the tool what you intend to do next.
Do this using the set_context command.

For PDL retargeting, you use the options (sub-context) of ijtag pattern generation as follows:

set_context patterns -ijtag

The execution of this command moves Tessent Shell to setup mode for IJTAG command
retargeting. At this point, you declare the files to read and other setup parameters as explained in
the following section.

Read ICL Files
Tessent IJTAG builds the ICL hierarchy by reading the ICL module definitions and ICL
instantiations. This is the only mandatory step in setup mode.
There is only one command for reading in any ICL file:

read_icl filename

For example, the ICL includes three files: a top-level ICL module in the local directory in the
file named ./top.icl, a module of a sib in a file located in a provided ICL library,
${ICL_Library_Path}/sib.icl, and an instrument module description in ${ICL_Library_Path}/
instr_1.icl. The following line reads all three files:

read_icl ./top.icl ${ICL_Library_Path}/sib.icl ${ICL_Library_Path}/instr_1.icl

The Tessent IJTAG tool automatically determines the ICL hierarchy described in these files.
You do not need to specify the modules in any particular order. Of course, using more than one
read_icl command is possible. The following alternative example is equivalent to the one
above:

set icl_module_ list { sib instr_1 }

foreach icl_module $icl_module_list { read_icl ${ICL_Library_Path}/${icl_module}.icl }

read_icl ./top.icl

Tessent IJTAG does not require that the ICL files have the .icl filename extension, however, it
is recommended. Using this naming convention, you can easily read all ICL files of a particular
directory, for example:

read_icl ${ICL_Library_Path}/*.icl

Refer to the read_icl command in the Tessent Shell Reference Manual for a full description.

A Typical PDL Retargeting Flow
Read PDL Files

Tessent™ IJTAG User’s Manual, v2022.4 51

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Read PDL Files
Strictly speaking, PDL files are not mandatory to read. You can create pattern sets using direct
iRead and iWrite operations to the instruments. However, this is uncommon.
More common is that most of your instruments have PDL files associated with them. These
PDL files provide iProcs bound to the instrument you can iCall later during PDL command
retargeting.

In the Tessent IJTAG tool within Tessent Shell, PDL command files are considered Tcl dofiles
because they describe actions that the tool must perform, just like any other Tcl dofile. You can
therefore use the normal dofile command:

dofile PDL_filename[.gz]

Tessent IJTAG does not require that the PDL files have the .pdl filename extension, however, it
is recommended.

There are two types of PDL files:

• A PDL file that wraps all PDL commands other than iProc and iProcsForModule inside
of iProcs

• A PDL file that contains PDL commands other than iProc and iProcsForModule outside
of iProcs

While loading the PDL dofiles, Tessent Shell runs the commands in the dofile. You can
therefore mix Tcl commands, Tcl procs, and PDL iProcs in the same file. Tcl procs and PDL
iProcs are registered and can be called later. Other commands are run immediately, just like any
other dofile. Therefore, the second type of PDL file is not allowed in setup mode. You can only
run it inside an open pattern set.

Consider avoiding the second type because using this type of PDL is not portable. It must be
written with a particular top ICL module in mind, results in hard to follow PDL commands, and
may be error-prone in its usage. Encapsulating all PDL reading and writing commands inside of
iProcs enables the PDL retargeting later in the flow to use only iCalls to meaningful instances
and iProc names.

PDL files of the first type can be called in both setup and analysis mode, and inside an open
pattern set.

Set the Retargeting Level
Once the ICL is read, you must tell the tool to which level in the hierarchy the PDL commands
should be retargeted.
Tessent IJTAG uses the same command set_current_design, also used for setting the topmost
netlist level for a Verilog netlist description.

Tessent™ IJTAG User’s Manual, v2022.452

A Typical PDL Retargeting Flow
Set the Retargeting Level

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_current_design [module name]

The module name can be omitted if there is no ambiguity about which module is the top-most
module and if you want to retarget the PDL to this level. Running the set_current_design
triggers among others, the creation of the ICL hierarchy based on the read ICL modules and ICL
connectivity. Any error, for example, a misconnection that violates IJTAG semantic rules, is
flagged as a design rule violation at that point.

Usually, the current design is set to the top-level ICL module. We recommend to also load the
topmost Verilog module, at least as a black box. This enables subsequent optional adding of
non-ICL clocks and input constraints to non-ICL input ports. Even if your ICL modeling does
not need non-ICL clocks or input constraints, your Verilog testbench from the ICL flow is still
difficult to simulate against the Verilog/RTL level netlist description because it contains only
the ICL-known ports. Any non-ICL port in your top-most Verilog/RTL module is not part of
your ICL testbench. Loading the netlist into Tessent IJTAG makes all ports known to the tool. It
then automatically adds all ports to the ICL testbench.

Therefore, Siemens EDA recommends the following:

read_verilog <topmost Verilog file name> -interface_only

set_current_design [module name]

See read_verilog and set_current_design in the Tessent Shell Reference Manual.

A Typical PDL Retargeting Flow
Define Clocks and Timing

Tessent™ IJTAG User’s Manual, v2022.4 53

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Define Clocks and Timing
To define the timing of your patterns or testbench computed from the retargeted PDL, you must
understand the relationship and dependencies between the default behavior and default
timeplates built into Tessent IJTAG, any user-specified timeplates, the add_clocks command,
and the open_pattern_set command.
For more information, see add_clocks and open_pattern_set in the Tessent Shell Reference
Manual.

Test Clock . 53
Synchronous System Clock . 54
Asynchronous System Clock. 55

Test Clock
In the simplest PDL retargeting flow, you do not need to declare clocks and timeplates to the
tool. The tool knows the ICL test clock through the ICL port function “TCKPort” in the topmost
ICL module.
See IJTAG Network Performance Optimization for how to maximize the frequency of the
IJTAG network test clock.

Tessent IJTAG knows several default timeplates, depending on the off-state of the test clock
and other timing properties. Hence, there is no need for a user-defined timeplate. See the
open_pattern_set command for a detailed description of these defaults.

By default, the tool assumes the following properties for the test clock and relative timing of
pins:

• The test clock has an off-state of 0

• The test clock period is 100ns

• The relative timing of the ports is force off PI, measure PO, pulse off the test clock

If the test clock is declared with an off-state of 1 through the add_clocks command, the default
changes to the following:

• The test clock has an off-state of 1 (as you have declared)

• The test clock period is 100ns

• The relative timing of the ports is force off PI, pulse off the test clock, measure PO,
leading clock edge

The exact timing of all events at the ports is automatically determined for you. It depends on the
off state of the test clock and the open_pattern_set -tck_ratio switch as explained in detail in the

Tessent™ IJTAG User’s Manual, v2022.454

A Typical PDL Retargeting Flow
Define Clocks and Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

open_pattern_set command. If you are satisfied with these built-in, default timeplates and when
events like the measure of the PO happen, you do not need to define a timeplate.

If you just want to change the period of the test clock, you can do this easily at the moment you
describe the PDL to retarget as part of the open_pattern_set command. However, you may want
to use a timeplate if you want to change the exact timing of events, for example when the PO is
measured. The only time a custom timeplate is mandatory is when you want to define more than
two edges of system clocks.

Test Clock Example
Assume you want to use a 200ns test clock named tck, with an off-state of 1. You also do not
want to use a timeplate. Because you want to use the off-state of 1, but the Tessent IJTAG tool's
default is the off-state of 0 for the test clock, you have to use the add_clocks command first.
You can then use options to open_pattern_set to change the default 100ns timing of the test
clock to 200ns.

Together, this looks like the following:

add_clocks 1 tck

set_system_mode analysis

open_pattern_set pat1 -tester_period 200ns -tck_ratio 1

You must specify the -tck_ratio as 1, which means that the tck period is equal to the tester
period. If you do not specify the -tck_ratio, it is computed automatically to create the TCK
period specified with the “set_ijtag_retargeting_options -tck_period” command (the default
TCK period is 100 ns). In this example, this results in a TCK ratio of 2. Alternatively, you can
also change the TCK period length to 200 ns (“set_ijtag_retargeting_options -tck_period
200ns”).

Synchronous System Clock
System clocks are declared in ICL using the ICL port function 'ClockPort'.
All system clocks declared this way are by definition of the IEEE 1687 standard pulse-always
clocks. Hence, you must use the add_clocks command with the -pulse_always option.

System clocks declared to Tessent IJTAG in this way are considered synchronous clocks. This
means they are synchronous to the tester clock, defined with the -tester_period option of the
open_pattern_set command.

Synchronous System Clock Example
Let us continue the test clock example from the Test Clock Example section. In addition to the
200ns period test clock, you now also have two synchronous 50ns system clocks. One system
clock, the one named sclk0, has an off state of 0, whereas the other, sclk1, has an off state of 1.

A Typical PDL Retargeting Flow
Define Clocks and Timing

Tessent™ IJTAG User’s Manual, v2022.4 55

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

System clocks require the add_clocks command. You can then use open_pattern_set options to
define the timing of the test clock versus the system clocks. You must set the tester period to the
speed of the system clock, then use the tck ratio to time the test clock relative to the system
clock speed, as shown here:

add_clocks 1 tck

add_clocks 0 sclk0 -pulse_always

add_clocks 1 sclk1 -pulse_always

set_system_mode analysis

open_pattern_set pat1 -tester_period 50ns -tck_ratio 4

Asynchronous System Clock
Asynchronous system clocks are declared to the tool in a very similar way as synchronous
system clocks.
You need to use the -period option of the add_clocks command to declare the period of these
asynchronous system clocks.

For example, the following line declares a 10 ns asynchronous system clock:

add_clocks SysClk -period 10ns

Asynchronous System Clock Example
Assume that sclk0 and sclk1 were not synchronous clocks of 50 ns period, but asynchronous
clocks of 30 ns and 70 ns period, respectively. The example would now look like this:

add_clocks 1 tck

add_clocks 0 sclk0 -period 30ns

add_clocks 1 sclk1 -period 70ns

set_system_mode analysis

open_pattern_set pat1 -tester_period 200ns -tck_ratio 1

Because the asynchronous clocks are independent of the tester period, you can use the
-tester_period option in combination with the -tck_ratio option to define the period of the test
clock. If you do not specify the tck_ratio, it is automatically computed such that the product of
tester period and TCK ratio is at least as long as the TCK period specified with the
“set_ijtag_retargeting_options -tck_period” command. Because the default tck_period is 100
ns, the tck_ratio would be automatically computed as 1 in this example.

As a second example, assume that only sclk0 is a 30 ns asynchronous clock. Because sclk1 is a
synchronous clock relative to the tester period (50 ns again), the example now looks like this:

add_clocks 1 tck

Tessent™ IJTAG User’s Manual, v2022.456

A Typical PDL Retargeting Flow
Design Rule Checks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_clocks 0 sclk0 -period 30ns

add_clocks 1 sclk -pulse_always

set_system_mode analysis

open_pattern_set pat1 -tester_period 50ns -tck_ratio 4

Observe that this is the same set of options of the open_pattern_set command, as used in the
synchronous clock example above. In other words, asynchronous clocks add only the -period
option to the add_clocks command, but have no other influence on the flow. Only synchronous
clocks related to the test clock period must be considered when using the open_pattern_set
options.

Refer to the Tessent Shell Reference Manual for additional information on the add_clocks and
open_pattern_set Tcl commands and the PDL command iClock.

Design Rule Checks
During the change from setup to analysis mode the final set of design rules are checked and test
procedures, if declared, are evaluated.
You do this by calling the Tessent Shell command and option

set_system_mode analysis

This switches from setup mode to analysis mode, in which you can create patterns through PDL
command retargeting.

Tessent IJTAG is very verbose in its error messages. Usually, it lists the ICL or PDL filename,
the line number in error, the offending keyword if applicable, and a very verbose text explaining
the error and often also how to fix it. The example below shows an error in the tdr1 ICL file.
The data width used in an alias statement is incorrect between the left and right side of the alias
statement.

// Error: Expression width conflict found in ICL module ‘tdr2’ Enum
// definition ‘PermissibleValues’. The Enum definition ‘PermissibleValues’
// has a width of 8 whereas the value ‘7'b1111111’ has a width of 7. The
// actual expression must have a width that is the same as the width of the
// target. Found on or near line 21 of file ‘../data/icl/tdr2.icl’.
// ICL semantic rule ICL52

No error can be waived. All errors must be fixed before Tessent IJTAG can enter the analysis
mode.

Create Pattern Sets
Once in analysis mode, there are only two things to do, creating patterns and writing patterns.
Tessent IJTAG encapsulates the PDL commands inside of named pattern sets.

A Typical PDL Retargeting Flow
Create Pattern Sets

Tessent™ IJTAG User’s Manual, v2022.4 57

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To do this:

open_pattern_set pattern_set_name [options]

<iCall of previously defined iProcs, iRead, iWrite, … >…

close_pattern_set [options]

The name of the pattern set is mandatory and must be unique among all used pattern sets. This
name is used to reference the patterns in several later commands, for example, reporting or
writing the pattern set to disk.

You can declare multiple pattern sets, but only one can be open at a time. There is no option to
append to a pattern set once it is closed.

The order of multiple pattern set definitions is not important, because Tessent IJTAG runs the
PDL command iReset at the beginning of each pattern set. The effect of iReset depends on the
reset-value definition defined for an instrument and its components. All registers having a
specified ResetValue in ICL are expected to be in their reset state. All other registers are
assumed to have an unknown value.

Because an iReset is performed at the beginning of each pattern set, the starting state of the ICL
netlist is identical from pattern set to pattern set. Therefore, the pattern sets do not depend on
each other. They can be defined and saved in any order. Patterns sets can also be skipped when
saving.

Sometimes this automatic iReset at the beginning of a pattern set is undesirable. An example of
this is a complex PDL-based setup of a PLL, followed by one or several PDL pattern sets,
requiring the PLL. You may require that the PLL remains locked and does not get reset.
However, if you suppress this iReset, the current pattern set depends on the state reached at the
end of the previous pattern set. Therefore, this reset option cannot be used in the very first
pattern set. Further, you must take great care to save and run both pattern sets in the proper
order.

The following example shows how to open a pattern set suppressing the initial iReset:

open_pattern_set pat1 -no_initial_ireset

Please consult the Tessent Shell Reference Manual for complete information. The
open_pattern_set command reference has several examples showing how to achieve a certain
timing behavior of the retargeted PDL.

Retargeting is done at every iApply. Once the retargeting has completed successfully, you can
open another pattern set or save the retargeted PDL into one or several pattern formats. All
pattern sets remain available until deleted or until the tool terminates.

To report all currently available pattern sets use the report_pattern_sets command:

report_pattern_sets [options]

Tessent™ IJTAG User’s Manual, v2022.458

A Typical PDL Retargeting Flow
Create Pattern Sets

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In the following example, a pattern set “test1” is created using default options (timeplate, tester
period, tck ratio, initial iReset, active scan interfaces, network end state, TAP start state, TAP
end state):

set_context patterns -ijtag
read_icl chip.icl
source chip.pdl
set_current_design chip
set_system_mode analysis
open_pattern_set test1
iCall mytest1
close_pattern_set
report_pattern_sets

This produces the following report:

Figure 3-2. First Pattern Set

If you now create a second pattern set “test2” with the different options specified here:

open_pattern_set test2 -tester_period 200ns -tck_ratio 4 -no_initial_ireset
iCall mytest2
close_pattern_set -network_end_state reset
write_patterns test2.stil -stil -pattern_sets test2
report_pattern_sets

you get the following report listing both pattern sets:

Figure 3-3. First and Second Pattern Sets

The report contains the following columns:

name — Name of the pattern set. First argument of the open_pattern_set command.

timeplate — The timeplate used for this pattern set. Argument of the -timeplate switch of the
open_pattern_set command.

tester period — The tester period. Either the argument of the -tester_period switch of the
open_pattern_set command or derived from the timeplate. If there is no timeplate and no
-tester_period switch, the tester period is chosen such that the TCK period equals the product of
tester period and TCK ratio.

tck ratio — The TCK ratio. Number of tester cycles for one TCK cycle. Argument of the
-tck_ratio switch of the open_pattern_set command. If the -tck_ratio switch is not specified, the

A Typical PDL Retargeting Flow
Write PDL, Pattern, and Testbench Files

Tessent™ IJTAG User’s Manual, v2022.4 59

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tck_ratio is computed such that the product of tester period and TCK ratio is at least as long as
the TCK period specified with the “set_ijtag_retargeting_options -tck_period” command.

tester cycles — The overall number of tester cycles of this pattern set. This is calculated when
the pattern set is closed.

initial iReset — The pattern set contains an automatically added iReset. Default is yes. This can
be switched off by means of the -no_initial_ireset switch of the open_pattern_set command.

active_scan_interfaces — The names of the active scan interfaces. Argument of the
-active_scan_interfaces switch of the open_pattern_set command.

network endstate — The state to which the ICL scan network is forced when the pattern set is
closed. This is the argument of the -network_end_state switch of the close_pattern_set
command. This can be either “keep” (the state is not changed) or “initial” (the state as it has
been at the beginning of the pattern set) or “reset” (the state as it is after reset).

TAP start state — The expected TAP start state. The possible values are: “IDLE”,
“DRPAUSE”, “IRPAUSE” or “any”.

TAP end state — The established TAP end state. The possible values are: “IDLE”,
“DRPAUSE” or “IRPAUSE”.

saved — Whether the pattern set has been saved by the write_patterns command.

Note
If a pattern set has an initial iReset, then the column “TAP start state” contains the word
“any” instead of the name of a particular TAP state, because the TAP start state does not

matter in this case.

Write PDL, Pattern, and Testbench Files
Tessent IJTAG only stores an internal representation of the retargeted PDL. When you write
patterns, the retargeted PDL is translated into the requested pattern format.
You can select which of the pattern sets should be included. If no pattern set is given, all pattern
sets in the sequence of their declaration are saved. The following example writes the pattern sets
p1 and p3 in the STIL format to file p13.stil; pattern set p2 is written as a Verilog testbench into
filep2.v; pattern set p4 is written in the SVF format to file p4.svf.

write_patterns p13.stil -stil -pattern_sets p1 p3

write_patterns p2.v -verilog -pattern_sets p2

write_patterns p4.svf -svf -pattern_sets p4

Tessent™ IJTAG User’s Manual, v2022.460

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The “write_patterns -svf” command has been enhanced to write retargeted SVF patterns.
This includes generating SVF patterns, for example, for WTAP interfaces or other

hierarchical modules. SVF files generated through this new feature are then easily read as user-
defined sequences (UDS) and applied to a DUT.

In earlier Tessent IJTAG versions, SVF patterns were only generated for a top-level design with
a TAP. The resulting SVF file typically included SIR (Scan Instruction Register), SDR (Scan
Data Register), STATE (move FSM to specific state), and TRST (Test ReSeT) statements.

The enhanced SVF writer now generates SVF even if a TAP interface was not positively
identified in the current design. In such a case, the SVF file toggles the design pins using PIO
(Parallel IO) lines instead of the usual SIR, SDR, STATE, and TRST statements.

Please consult the Tessent Shell Reference Manual for complete information on all options of
the write_patterns command.

Comments and Annotations in Tessent IJTAG
Tessent IJTAG creates various types of comments, notes, and annotations during IJTAG
retargeting, IJTAG pattern file generation, and IJTAG testbench generation.
During the actual retargeting step, Tessent IJTAG processes commands such as iWrite, iRead,
iApply, and stores the result in an internal format (IJTAG pattern sets). When it does this, two
different types of notes come into existence: user notes and process notes. User notes are the
result of the iNote command. Process notes are created by the retargeter to annotate the different
steps of the retargeting process and to add useful information to the pattern sets.

When you use the command write_patterns to create a pattern file or a testbench, Tessent
IJTAG converts the user notes and the process notes into the appropriate representation in the
pattern file format. Besides this, the command write_patterns may convert certain content of the
pattern sets into comments in the pattern file, if this content is not representable by other means
of the pattern file output language.

User Notes
Origin

When Tessent IJTAG processes each iNote command during IJTAG retargeting, it converts it
into a user note. When it imports and converts SVF files into IJTAG pattern sets (either by using
the command import_patterns_from_svf or by using the svf_file property of the ProcedureStep
wrapper in the pattern specification), it also converts the comments in the SVF file into user
notes.

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Tessent™ IJTAG User’s Manual, v2022.4 61

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Set Data
The pattern set introspection command, get_pattern_set_data, provides access to the user notes
in the IJTAG pattern sets. For each event of the pattern set, the lists that are associated with the
keys “notes.type_list” and “notes.text_list” contain the information about the user notes and the
process notes of the event. If the nth element of the type_list is “user”, then the nth element of
the text_list is a user note.

write_patterns -svf
Tessent IJTAG converts user notes into SVF comments, using the “exclamation point”
comment style.

Example:

! This is a user note

write_patterns –pdl
Tessent IJTAG converts user notes into iNote commands in the output PDL. Example:

iNote "This is a user note"

write_patterns (all other pattern file and testbench formats)
The output-format-specific language constructs represent the user notes. Example (STIL):

Ann {* This is a user note *}

Process Notes
Most frequent process notes

The IJTAG retargeter creates process notes to report on the currently addressed PDL targets and
to show human-readable details about the results of the retargeting.

Process notes per iApply

For each iApply, the tool adds the list of addressed iRead and iWrite commands as a process
comment. You can specify the style of this list using the following command:

set_ijtag_retargeting_options -iapply_target_annotations off|dense|full

If you set this option to “off”, it adds the list of addressed iRead and iWrite commands as
process comment.

If you set the option to “dense”, it groups registers and bus ports, and the values may be
abbreviated.

Tessent™ IJTAG User’s Manual, v2022.462

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example:

//

// Targets:

// Apply 0

// reads:

// block2_I1.longreg[199:0] = 00010100010001000111...00010100010001000111

// block2_I2.shortreg[7:0] = 11001110

// writes:

// block1_I1.datain = 1

// block1_I1.cfg = 0

//

If you set the option to “full”, it reports each single bit separately and abbreviation does not
happen.

//
// Targets:
// Apply 0
// reads:
// block2_I2.shortreg[5] = 1
// block2_I2.shortreg[4] = 1
// block2_I2.shortreg[3] = 0
// block2_I2.shortreg[2] = 0
// block2_I2.shortreg[1] = 0
// block2_I2.shortreg[0] = 1
// writes:
// block1_I1.datain = 1
// block1_I1.cfg = 0
//

If the tool internally splits an iApply into several iApply commands (this can happen, for
example in case of indirect addressing schemes with DataRegisters), the number behind the
“Apply” denotes the currently processed internal iApply.

Process notes per scan load

The tool augments each scan load of the result of the retargeting with process notes about the
scan path, the load value and the unload value.

Example 1 (scan load through a TAP ScanInterface without Chain construct):

// TAP vector tdi..tdo (tap1_I1.bypass sib1_I1.SIB block2_I1.tdr.R[10:0]
// sib1_I2.SIB sib1_I3.SIB)
// Loading: 0_0_10000000000_1_0
// Unloading: 0_0_000XXXXXXXX_0_0

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Tessent™ IJTAG User’s Manual, v2022.4 63

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2 (scan load through an ordinary ScanInterface without Chain construct, inverted
register):

// scan vector si..so (sib1_I1.SIB ~block2_I1.tdr.R[10:0]
// sib1_I2.SIB sib1_I3.SIB)
// Loading: 0_10000000000_1_0
// Unloading: 0_000XXXXXXXX_0_0

Example 3 (scan load through an ordinary ScanInterface with four Chain statements):

// scan (ch3) vector si[3]..so[3] (blockA.reg3[3:0] blockB.reg3[3:0])
// Loading: 0000_1100
// Unloading: 1100_1111
// scan (ch2) vector si[2]..so[2] (blockA.reg2[3:0] blockB.reg2[3:0])
// Loading: 1010_0101
// Unloading: 1110_0001
// scan (ch1) vector si[1]..so[1] (blockA.reg1[3:0] blockB.reg1[3:0])
// Loading: 1111_0000
// Unloading: 0000_0000
// scan (ch0) vector si[0]..so[0] (blockA.reg0[3:0] blockB.reg0[3:0])
// Loading: 0101_1010
// Unloading: 0011_0011

Process notes per cycle or cycle group

When the IJTAG retargeter expands scan loads or TAP state transitions into test vectors, it also
creates process notes to document what is going on.

You can find the following notes when scan loads through ordinary ScanInterfaces are
expanded:

// Capture Cycle
// Shift Cycles
// Update Cycle

You can find the following notes when scan loads through TAP ScanInterfaces are expanded:

// Advance TAP controller from idle to Shift-IR
// Advance TAP controller from idle to Shift-DR
// Advance TAP controller from Pause-IR to Shift-IR
// Advance TAP controller from Pause-DR to Shift-DR
// Shift-IR
// Shift-DR
// Advance TAP controller from Shift-IR to Exit-IR
// Advance TAP controller from Shift-DR to Exit-DR

Comments and Annotations created during write_patterns

Note
A backslash shown in this section indicates line continuation. The complete comment
displays in one single line in the pattern file and the backslash does not appear in the pattern

file.

Tessent™ IJTAG User’s Manual, v2022.464

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

write_patterns –svf
The SVF pattern file writer creates the following comments:

!svf_cmd number

The index of the next SVF command.

!TESSENT_PRAGMA pattern_set name

The name of the pattern set.

!TESSENT_PRAGMA tester_period period

The tester period.

!TESSENT_PRAGMA icl_checksum checksum_and_version

The ICL checksum and the version of the checksum computation algorithm.

If several versions of the ICL checksum computation algorithm exist, the tool performs each
computation and several “!TESSENT_PRAGMA icl_checksum” notes appear in the SVF file.

!TESSENT_PRAGMA clock [-type type] -pin pin [-pin_inverse npin] [-period period] \

[-offstate 0|1]

The specification of the added clocks. These notes appear at the beginning of the pattern file.
There is one “TESSENT_PRAGMA clock” comment per added clock.

• type - type is only specified in case of synchronous clocks.

It is one of sync, sync2x, sync3x, and so on.

• pin - The name of the clock.

• npin - The associated port in case of a differential clock.

• period - The clock period. It is only specified in case of asynchronous clocks.

• -offstate - The off-state of the clock.

!TESSENT_PRAGMA expect_z binary_value

SVF does not have a generic possibility to represent “Detect Floating”.The
“!TESSENT_PRAGMA expect_z” comment is inserted before a PIO command if at least one
of the ports is compared to the value Z. The positions with the digit “1” mark the positions of
the ports that are compared to “Z” in the next PIO command. The order of digits in the
binary_value matches the PIOMAP specification, the leftmost bit in the binary_value refers to
the first port in the PIOMAP, the rightmost bit refers to the last port in the PIOMAP. The length
of the binary_value must match the number of ports in the PIOMAP.

!TESSENT_PRAGMA annotation pdl_target -type type -var_bits var_bits [-var_length length] \

-pin pin [-relative_cycles cycles] [-inversion inversion] [-persistent_compare On|Off]

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Tessent™ IJTAG User’s Manual, v2022.4 65

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This comment refers to the next PIO, SDR, or SIR command. It is required by the pattern
management to map the original iRead and iWrite targets to the ports and the values in the SVF
pattern file:

• pdl_target — The original iRead, iComparePort, iWrite, or iForcePort target that is
observed (or set) by the next SVF command (PIO, SDR, SIR).

pdl_target can be followed by an occurrence count in parentheses.

• type — “read” in case of iRead and iComparePort, “write” in case of iWrite and
iForcePort. Note: “TESSENT_PRAGMA annotation” comments of type “write” are
currently not generated. “write” is reserved for future use.

• var_bits — The pdl_target does not contain indices or ranges, even if the original PDL
target is a port or a register with several bits. It always contains only the base name,
potentially followed by an occurrence count in parentheses. var_bits specifies which
parts of the PDL target this TESSENT_PRAGMA refers to. It is a list of indices or
ranges.

• length — If the pdl_target is a port or a register with several bits but the first occurrence
of the PDL target is used only with a subset of this range, subsequent processing steps
might need to know the complete range of the PDL target at the time of its first
occurrence. The length parameter provides this information. It is one more than the
maximum occurring index of the PDL target.

• pin — The top-level port through which the iRead, iComparePort, iWrite, or iForcePort
target is observed (or set). For iRead targets that are observed through scan registers, pin
is the ScanOutPort that unloads the register. For iWrite targets that are set using scan
registers, pin is the related ScanInPort that is used to load the register.

• cycles — For SIR and SDR commands, the cycles in which the observations of the
iRead targets happen at the ScanOutPort, or the cycles in which the values for the iWrite
targets are applied to the ScanInPort. Like the var_bits, cycles is a list that can contain a
mixture of indices and ranges.

• inversion — A binary number that specifies the inversion between the original PDL
target and the value that is observed (or set) at pin. The width of the binary number must
match the number of indices in var_bits. The leftmost bit of inversion refers to the
leftmost index in var_bits, the rightmost bit of inversion refers to the rightmost index in
var_bits.

• -persistent_compare — Set this switch to “On” if the next PIO command is the first one
in which a iComparePort command becomes effective. This switch specifies pins for
continuous observation. Set the switch to “Off” to stop the continuous observation.

!TESSENT_PRAGMA variable variable -type type -var_bits var_bits \

[-var_length length] -pin pin [-relative_cycles cycles] [-inversion inversion] \

[-persistent_compare On|Off]

Tessent™ IJTAG User’s Manual, v2022.466

A Typical PDL Retargeting Flow
Comments and Annotations in Tessent IJTAG

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is required by the pattern management to map the iRead variables and iWrite variables to
the ports and the values in the SVF pattern file.

write_patterns –pdl
There are no relevant comments that are created during write_patterns –pdl.

write_patterns (all other pattern file and testbench formats)
The following annotations are created in all other pattern file formats:

TESSENT_PRAGMA annotation pdl_target -type type -var_bits var_bits \

[-var_length length] -pin pin [-relative_cycles cycles] [-inversion inversion]

The description of the parameters matches the description of the SVF pattern files.

For a scan load, this kind of annotation displays only at the first shift vector of the scan load. All
“TESSENT_PRAGMA annotation …” specifications belonging to the scan load are collected
and inserted at this place.

The –persistent_compare switch, which exists in the SVF pattern files, does not exist for other
pattern file formats, because these other formats reapply the “expect” states derived from the
iComparePort commands in each single vector anyway.

TESSENT_PRAGMA variable variable -type type -var_bits var_bits [-var_length length] \

-pin pin [-relative_cycles cycles] [-inversion inversion]

The description of the parameters matches the description of the SVF pattern files.

For a scan load, this kind of annotation can only be found at the first shift vector of the scan
load. All “TESSENT_PRAGMA variable …” specifications belonging to the scan load are
collected and inserted at this place.

The –persistent_compare switch, which exists in the SVF pattern files, does not exist for other
pattern file formats, because these other formats reapply the “expect” states derived from the
iComparePort commands in each single vector, anyway.

TESSENT_PRAGMA bit_annotation pdl_target -type type -var_bits var_bits \

[-var_length length] -pin pin [-inversion inversion]

The tool creates these pragmas as an unrolled version of the “TESSENT_PRAGMA
annotation”. Unlike the “TESSENT_PRAGMA annotation” that displays together with the first
shift vector of a scan load, the “TESSENT_PRAGMA bit_annotation” displays directly
together with the vector that contains the related drive state or expect state. Therefore, the
relative_cycles parameter is dispensable for this kind of pragma.

TESSENT_PRAGMA bit_variable variable -type type -var_bits var_bits [-var_length length] \

-pin pin [-inversion inversion]

A Typical PDL Retargeting Flow
Exit the Tool

Tessent™ IJTAG User’s Manual, v2022.4 67

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool creates these pragmas are as an unrolled version of the “TESSENT_PRAGMA
variable”. Unlike the “TESSENT_PRAGMA variable” that displays together with the first shift
vector of a scan load, the “TESSENT_PRAGMA bit_variable” displays directly together with
the vector that contains the related drive state or expect state. Therefore, the relative_cycles
parameter is dispensable for this kind of pragma.

Exit the Tool
Use the Tessent Shell exit command to exit the tool.

exit

You can optionally specify the -force switch that instructs the tool to terminate even if there are
unsaved patterns.

Tessent™ IJTAG User’s Manual, v2022.468

A Typical PDL Retargeting Flow
Optional Elements of a PDL Retargeting Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Optional Elements of a PDL Retargeting Flow
Up to this point, only the mandatory components of a basic PDL retargeting flow have been
discussed. This section discusses several optional elements of the flow.
The first three elements deal with objects outside of ICL and PDL: test procedures, for example
for bringing the circuit into 'ijtag test mode,' defining and using non-ICL clocks, and defining
input constraints on non-ICL ports. Following this is a discussion of reporting and introspection.

Test Setup and Test End Procedures . 68
How to Define and Use Clocks Outside ICL . 69
How to Constrain Inputs . 69
Report Generation . 71
IJTAG Introspection . 72
PDL Retargeting With Symbolic Variables . 76

Test Setup and Test End Procedures
You have already seen that timeplates can be used to define a particular clocking and pin event
sequence. If there are test_setup or test_end procedures in the loaded procedure file, these
procedures are considered in Tessent IJTAG as well.
Because the test procedures cannot be simulated on the ICL netlist, Tessent IJTAG can only add
the cycles defined in the procedures to the saved pattern sets. The “write_patterns” command
adds the cycles from the test_setup procedure at the beginning of each saved pattern file,
independently of how many pattern sets are contained in the written file, and only for the
formats of STIL, WGL, and Verilog. Similarly, it adds the cycles from the test_end procedure at
the end of each saved pattern file.

Writing patterns in PDL format cannot contain the cycle information, because the written PDL
represents only the retargeted PDL.

test_setup procedures have a second effect: All forced pins that are constant at the end of the
test_setup execution are regarded as input constraints. This behavior is equivalent to the Tessent
ATPG tools. In order to force an input pin in a test procedure that is not in the top-level ICL
module, you first have to load at least a interface-only version of the top-level Verilog netlist
description prior to setting the current_design in setup mode:

read_verilog myTopLevelVerilogModule.v -interface_only

Once the Verilog netlist has been loaded in setup mode, the tool knows about the non-ICL pin.
You are free to force the pin in the test procedures as described earlier.

In Tessent IJTAG, you cannot iCall an iProc from within any test procedure. This functionality
is only available in the ATPG functionality in Tessent Shell, because the test_setup procedure in

A Typical PDL Retargeting Flow
How to Define and Use Clocks Outside ICL

Tessent™ IJTAG User’s Manual, v2022.4 69

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ijtag context is used to enable the ICL network using arbitrary events. For example, it may be
required to turn on powered down regions of the die. You can also use test_setup to program the
system clock circuitry when it is not under the control of the ICL network.

How to Define and Use Clocks Outside ICL
You can declare additional clocks that do not correspond to ICL clock ports.
You do this with the add_clocks command. For example, you could have a second, non-IJTAG
test clock or a reference clock outside of ICL that you need to perform the events described in
your test_setup.

The timing of these clocks may be defined in a timeplate in the test procedure file. You can
pulse these clocks also in the test_setup and test_end procedures.

To define either aspect of a non-ICL clock, you first have to load at least an interface-only
version of the top-level Verilog netlist description:

read_verilog myTopLevelVerilogModule.v -interface_only

Once the Verilog netlist has been loaded in setup mode, the tool knows about the non-ICL pin.
Use the add_clocks command to declare the clock and its properties to the tool, including using
the “-pulse_always” option of the add_clocks command. Such always-pulse non-ICL clocks are
pulsed as defined during IJTAG operation.

As usual, if your clock is not always-pulse, you have to explicitly pulse clocks in the test
procedures (test setup, test end). You also must have a timeplate for these clocks. Consequently,
these clock events are used when processing the procedures as part of writing the patterns (other
than PDL) to disk. These clocks are not pulsed during any IJTAG operation.

How to Constrain Inputs
You may want the design to be statically configured outside of the ICL and PDL in an “ijtag”
test mode. The PDL retargeter knows only about top-level ports that are in the port list of the
top-level ICL module. Most of the time, there are just the JTAG ports leading to and from the
TAP controller. Neither ICL nor PDL have the concept of statically constrained top-level ports.
In the IEEE 1687 standard, this task is left to the application tool.
There are two principal ways of achieving this static configuration. The first is through a
test_setup procedure as discussed above. The second way is through the usual Tessent Shell
command:

add_input_constraints <primary_input_pin_name> [options]

Tessent™ IJTAG User’s Manual, v2022.470

A Typical PDL Retargeting Flow
How to Constrain Inputs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In order to constrain a non-ICL input port, you first have to load at least an interface-only
version of the top-level Verilog netlist description:

read_verilog myTopLevelVerilogModule.v -interface_only

Once the Verilog netlist has been loaded in setup mode, Tessent Shell knows about the non-ICL
pin. Use the add_input_constraints command to declare this input pin and its properties to the
tool.

Input constraints on ICL ports are not allowed, with the following exceptions:

• You can use the add_input_constraints command to constrain an ICL port of type
DataInPorts with CT0 or CT1 constraints.

• You can use the add_input_constraints command to constrain an ICL port of type
TRSTPort with a CT1 constraint. This enables a single ICL network description to be
used for a wafer test, where a TRSTPort is available, and also for further package tests
when the TRSTPort has been bonded to the package and is no longer available.

If you place a CT1 input constraint on the TRSTPort and use iReset, the tool performs a
synchronous reset using five test clock pulses, while holding the TMSPort high,
followed by a test clock pulse with TMSPort low.

• You can use the add_input_constraints command to constrain an ICL port of type
ClockPort. The iClock command detects constrained clock sources, including
constrained differential or inverse clock sources.

In the following example, the tool traces iClock to the constrained port ClkA and a
constrained differential clock port ClkP.

A Typical PDL Retargeting Flow
Report Generation

Tessent™ IJTAG User’s Manual, v2022.4 71

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// command: add_clocks ClkA -period 10ns
// command: add_clocks ClkP -period 10ns
// command: add_clocks ClkM -period 10ns
// command: add_input_constraints ClkA -C0
// command: add_input_constraints ClkP -C0
// command: add_input_constraints ClkM -C0
.
.
// command: # constrained clock
// command: catch { iClock block1_I1.raw1_I1.ClkA }
// sub-command: iClock block1_I1.raw1_I1.ClkA

// Error: Unable to trace the iClock 'block1_I1.raw1_I1.ClkA' to a
valid clock source. Traced the system clock to the constrained port
'ClkA'.

// command: # constrained differential inv
// command: catch { iClock block1_I1.raw1_I1.ClkP }
// sub-command: iClock block1_I1.raw1_I1.ClkP
// Error: Unable to trace the iClock 'block1_I1.raw1_I1.ClkP' to
// a valid clock source. Traced the system clock to clock source
// 'ClkP'. This port is the representative port of a differential
// clock, but the associated port is constrained.

Report Generation
All Tessent Shell reporting commands start with “report_”. A report is a human-readable output
from the tool to the screen or the transcript file.
With Tessent Shell, Siemens EDA also introduces introspection. In contrast to reporting,
introspection creates, manipulates, operates on, or deletes information in a way suitable for
scripting. All introspection commands that generate information start with ‘get_’.

Using Tessent Shell, you can report information about iClocks using the following command:

report_iclock — Reports the ICL ClockPort specified by the iClock commands and their
extracted sources and cumulative freqMultiplier and freqDivider values. You can only specify
this when you have an opened pattern set.

Reporting all pattern sets is achieved as follows:

report_pattern_sets — Reports all pattern sets if no parameter is given. If no options are given,
the command lists all patterns sets in order of declaration, not in alphabetical order. You can use
options to report only pattern sets that match a certain name or to change the sorting criteria of
the report.

Tessent™ IJTAG User’s Manual, v2022.472

A Typical PDL Retargeting Flow
IJTAG Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following lines show an example of usage in Tessent Shell:

Figure 3-4. Pattern Set Report With Two Patterns

In this example, two pattern sets were created using the open_pattern_set / close_pattern_set
pair of commands. One pattern set is named pattern_1, the other is named pattern_2. The former
uses a timeplate named “Slow”, whereas the latter uses no specific timeplate (this means the
timing is according to the default timing of Tessent IJTAG). Both do not change the relationship
between the ICL test clock and the ATE's timing (tck ratio remains 1). The information in the
column “tester_cycle” provides the number of test clock cycles required for the pattern set to
run. The two columns of “initial iReset” and “network end state” give information about which
options were used in the open_pattern_set and close_pattern_set commands. With these options,
the state of the ICL network can be manipulated. For example, the initial reset can be
suppressed or the Tessent IJTAG is asked to retain the state of the network as it was before the
opening of the pattern set. For more details, see the command descriptions for the
open_pattern_set and close_pattern_set commands. The final column indicates if the pattern set
had already been saved to disk or not.

IJTAG Introspection
Tessent Shell provides a robust Tcl-based command set you can use to introspect design
objects.
This introspection is also available for the ICL data model. For more information, see “ICL
Data Model” in the Tessent Shell Reference Manual and “Object Specification Format” in the
Tessent Shell User’s Manual. There you find several elaborate examples of using introspection
for a Verilog netlist. Here, the focus is on using introspection in the IJTAG context. The only
difference is that here, you access the ICL data structures, and not the data structures
representing the Verilog netlist. The concepts of introspection and collections remain the same.

Below are some examples of introspection and report generation. Refer to the Tessent Shell
Reference Manual for a complete description of the commands used in these examples.

Example 1
Get all ICL modules and print their names.

puts [get_name_list [get_icl_modules]]

The innermost Tessent Shell introspection command “get_icl_modules” computes and returns a
collection of all currently loaded ICL module objects. The command “get_name_list” computes

A Typical PDL Retargeting Flow
IJTAG Introspection

Tessent™ IJTAG User’s Manual, v2022.4 73

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

all names of the ICL objects given to it in the form of a collection. In this case, “get_name_list”
computes a Tcl list, containing the names of all the ICL modules currently loaded.

For example, the Tcl lines above, if run in a dofile, would generate this transcript:

// command: puts [get_name_list [get_icl_modules]]
sib1 tdr1 raw1 block1 tdr2 block2 block3 tap1 tap1_fsm chip

Example 2
Get all instances of a particular ICL module and print their names.

puts [get_name_list [get_icl_instances -of_module tdr*]]

This example shows the use of the wildcard character (*) when you specify (“filter”) the module
name for which you want all instances listed. In general, you can use regular expressions to
define the filtering options for example:

-of_module [get_icl_modules <pattern> -regexp]

For example, the Tcl lines above, if run in a dofile, would generate this transcript:

// command: puts [get_name_list [get_icl_instances -of_module tdr*]]
block1_I1.tdr1 block1_I1.tdr2 block1_I2.tdr1 block1_I2.tdr2
block3_I1.tdr1 block3_I1.tdr2 block3_I1.tdr3 block3_I1.tdr4

Example 3
Get all instances of all ICL modules. Use looping to access each module and instance one after
another. Explicitly use the attribute to get the name of the instance.

set moduleColl [get_icl_modules]

foreach_in_collection module $moduleColl {

set instanceColl [get_icl_instances -of_module $module]

foreach_in_collection instance $instanceColl {

puts [get_attribute_value_list $instance -name name]

}

}

This example demonstrates the usage of the foreach_in_collection looping and how to access
elements in the collections. The innermost command, get_attribute_value_list, returns the
“value” of the attribute “name” of the design object, which in this case is an ICL instance.

Note that this example only illustrates other introspection features, like the usage of attributes
and collections. Combining the introspection of ICL modules and ICL instances of Examples 1
and 2, would result in a much more compact, and also faster running introspection of the same
result:

puts [get_name_list [get_icl_instances -of_module [get_icl_modules]]]

Tessent™ IJTAG User’s Manual, v2022.474

A Typical PDL Retargeting Flow
IJTAG Introspection

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 4
Report all attributes currently associated with a particular module.

report_attributes [get_icl_modules tdr1]

For example, the Tcl lines above, if run in a dofile, would generate this transcript:

Attribute Definition Report

Attributes defined for object 'tdr1':
Name Value Inheritance
--------------- ---------- -----------
is_created false -
is_modified false -
is_valid true -
master_name tdr1 -
name tdr1 -
object_type icl_module -
port_group_list -

Using the get_icl_* command family is the correct way of accessing information about ICL
objects. You must not use, for example, “get_modules tdr1” for an ICL module tdr1. The
get_modules command is meant to access the design objects. Assume, there is a design module
also named tdr1. Using “get_modules tdr1” would give you the introspection result for this
design object and not for the ICL object as you intended.

Example 5
Introspect into the ICL port functions and get the name of the tck port of a particular module.

set modName tdr1

puts [get_name_list [get_icl_ports * -of_module $modName -function tck]]

This example generates a collection of ICL ports, filtered twofold. The first filter is the name of
the module of interest, which in this example is stored in a Tcl variable. The second filter that is
applied simultaneously with the first one is the function of the ICL port. The get_icl_ports
command together with these two filters computes and returns a collection of ICL TCKPort port
names of the module tdr1. See icl_port in the Tessent Shell Reference Manual for more
information.

Example 6
Automatically report the invocation instance from within an iProc. Using the get_icl_scope
command, you can get, among others, the ICL instance path of the ICL instance that calls the
iProc.

iProc myTest { } {

iNote "iProc 'myTest' was called for ICL instance [get_icl_scope]"

}

A Typical PDL Retargeting Flow
IJTAG Introspection

Tessent™ IJTAG User’s Manual, v2022.4 75

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 7
Report which ICL modules have been loaded. The key command here is report_icl_modules.
This command takes several optional switches. Without any switches, it reports only the names
of all loaded or extracted ICL modules. This is similar to the get_icl_modules command. In the
example below the reporting command is used to print the ICL module definition for a loaded
SIB module (the transcript is abbreviated).

ANALYSIS> report_icl_modules -modules sib

// instanced as block1.MyBlock1Sib
// instanced as chip4.sib1_I1
// instanced as chip4.sib1_I2
Module sib {
 // ICL module read from source on or near line 1
 // of file '../data/icl/sib.icl'
 ScanInPort si;
 ScanOutPort so { Source SIB; }
 ShiftEnPort se;

[…]

Tessent™ IJTAG User’s Manual, v2022.476

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PDL Retargeting With Symbolic Variables
Tessent IJTAG offers the possibility to associate user-defined symbolic variables with ICL
objects that are the targets of an iRead or iWrite command. The purpose of these variables is to
identify the location within the pattern files, where a particular iRead or iWrite happens on the
target objects.
When you specify symbolic variables during PDL retargeting, these variables appear as special
annotations in the resulting patterns files together with the information required for mapping the
original iRead or iWrite command to the associated data bits in the pattern vector.

These iWrite and iRead variables enable patching their values on the ATE by providing
machine-readable annotations in the pattern files. Tessent Silicon Insight supports the patching
of these variables natively, and some ATE companies can patch these variables using their
native software.

Rule checks of the iWriteVar objects ensure they do not influence the IJTAG network's state
because they are intended to be patched. Patching an IJTAG object that affects the network state
invalidates the rest of the scan operations.

Specifying Symbolic Variables in PDL . 76
Retargeted Symbolic Variables . 79
Symbolic Variables Specific to Boundary Scan Patterns. 94

Specifying Symbolic Variables in PDL
Symbolic variables are identified within the PDL using a note with a special pragma string
value.
To identify the target of an iRead or iWrite command to be tracked by a variable, use an iNote
command with a special pragma string value:

iNote “tessent_pragma variable_type variable_name pdl_target_list [inversion_mask]”

The tool applies the pragma to the object of the next iRead or iWrite command specified by the
pdl_target_list of the iNote.

Use the following arguments to define symbolic variables:

• tessent_pragma — A case-insensitive keyword that indicates this iNote command
serves a particular purpose specifically in the Tessent Shell. The tool does not process
the iNote in the usual way.

• variable_type — A case-insensitive keyword that reflects the type of command to
associate with the symbolic variable. Use the iReadVar keyword for the iRead
command. Use the iWriteVar keyword for the iWrite command. Although the

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 77

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

recommended practice uses mixed-case to identify the associated command more
readily, the keywords are case-insensitive.

For each variable of type iReadVar, there must be a matching iRead command before
the next iApply. Likewise, for each variable of type iWriteVar, there must be a matching
iWrite command before the next iApply. As long as the iApply has not been run,
iReadVar specifications, iWriteVar specifications, iRead commands, and iWrite
commands can appear in any order.

• variable_name — The name of the symbolic variable to register.

The symbolic variable can consist of several bits. Like ports or registers, the name is
hierarchical, which means the symbolic variable registers against a particular ICL
instance.

An effective prefix is the currently active instance path. It consists of the currently
processed iCall instance path and the most recent iPrefix specification within the current
iPrefix. The tool automatically prepends the effective prefix to the instance path of the
symbolic variable.

The instance path of the symbolic variable is independent of the instance paths of the
pdl_target_list elements. The tool automatically considers the effective prefix so that the
symbolic variables can be uniquely registered inside of iProcs that are called for several
different instances of the same ICL module.

o Optionally specify symbolic variables with a range. The range width must match the
overall number of bits of all elements in the pdl_target_list.

o Optionally specify symbolic variables without a range. The tool infers the range
[width-1:0]. The width is the overall number of bits of the elements in the
pdl_target_list. This is also true for PDL targets of width 1.

Note
There are no scalar symbolic variables.

o After retargeting, a symbolic variable always has a range [n-1:0] where n is the
largest index used in all iNotes. If you specify myvar[4:3] as your variable_name in
an iNote and never define other iNotes for bits 2:0, the variable is registered with
size [4:0] and bits [2:0] are not mapped to any ICL object.

The mapping between the bits of a multi-bit symbolic variable and a multi-bit PDL
target is from left to right, whether the range is ascending or descending. The leftmost
bit of the symbolic variable matches the leftmost bit of the leftmost element in the
pdl_target_list. The rightmost bit of the symbolic variable matches the rightmost bit of
the rightmost element in the pdl_target_list.

A symbolic variable name can only occur once in a pattern set. An exception is when
different bits of the variable are written during different iApply commands. In this case,
you can define variable XYZ[3:2] in one iNote and XYZ[1:0] in another.

Tessent™ IJTAG User’s Manual, v2022.478

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• pdl_target_list — A comma-separated list of the iRead or iWrite that specifies the target
associations of the symbolic variable. The list must not contain any whitespace
characters.

You must specify the individual elements of the pdl_target_list in the same way as they
are specified in iRead or iWrite commands. Use [join $name_list ,] to define the list of
elements over several lines. Use the lappend command to add one or more entries to the
list. Use the previously mentioned join command to convert it into a comma-separated
list with no whitespace.

• inversion_mask — A numerical PDL value that specifies whether the symbolic variable
represents the unaltered values or the inverted values of the elements in the
pdl_target_list. The value follows the PDL conventions for decimal, binary, or
hexadecimal numbers.

The inversion_mask is padded (on the left side) with zeros or truncated (on the left side)
until its width matches the variable’s width. Then, the leftmost bit (the most significant
bit) of the inversion_mask is associated with the leftmost bit of the variable. The
rightmost bit (the least significant bit) of the inversion_mask is associated with the
rightmost bit of the variable. If a bit of the inversion_mask is set, it means that the
corresponding bit of the symbolic variable represents the inverted value of the
corresponding bit of the pdl_target_list.

Special Considerations for iWriteVars
Symbolic variables are potentially used to patch the patterns after the PDL retargeting. In other
words, the patterns are potentially modified without undergoing the entire retargeting process
again. For this reason, symbolic variables of type iWriteVar are checked to ensure that they do
not interfere with any logic that substantially changes the ICL model’s behavior. The ICL
model must be in a known state at all times during the retargeting process. The list of ICL
objects that cannot be the target of an iWriteVar are:

• Scan path reconfiguration, including Enable specifications of ScanOutPorts.

• Control of DataMux elements that are gating update_en or capture_en signals.

• Control of DataMux elements that are gating trst, tms, or reset signals.

• All elements that are referenced in a tessent_pipeline_enable attribute.

Excessive use of iWriteVar specifications can significantly impact the performance of the PDL
retargeting. Symbolic variables of type iWriteVar make the IJTAG retargeting more difficult
because the retargeter must assume that all of the logic involved in the iWriteVar retargeting is
in an unknown state as soon as the associated iWrite becomes effective.

For debugging purposes, you can request a bit_annotation to be inserted into an output pattern
file such as STIL to identify the ICL object for which each scanin value is targeted. Turn on this
feature using the “set_ijtag_retargeting_options -annotation_parameter_values {scanin on}”

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 79

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

command. It has no performance impact. Use iWriteVar specifications only when you want to
enable patching for those values on the tester.

Example
The following commands register the variables and associations shown in Table 3-1:

 iNote "tessent_pragma iReadVar readvar inst1.dataout[7:5] 0b101"
 iNote "tessent_pragma iWriteVar inst1.writevar[2:3] inst1.datain[1:0]"
 iNote "tessent_pragma iReadVar readpo dout1,dout2[1:0],dout3 0xA"

Retargeted Symbolic Variables
When you associate an iRead or iWrite command with a symbolic variable, the tool keeps track
of when and how the command becomes effective in the IJTAG retargeting process. It
augments the resulting pattern files (for example, STIL, WGL, Verilog testbench, or SVF) with
suitable annotations containing all of the available information about the symbolic variable.

Note
The annotations created as a result of the specification of symbolic variables for iRead and
iWrite commands replace the “TESSENT_PRAGMA annotation” and

“TESSENT_PRAGMA bit_annotation” comments that are typically created for all read values,
and for write values when “set_ijtag_retargeting_options -annotation_parameter_values {scanin
on}” is used.

Table 3-1. Variables and Associations
Variable Type PDL Target Inversion
readvar[2] iReadVar inst1.dataout[7] Yes
readvar[1] iReadVar inst1.dataout[6] No
readvar[0] iReadVar inst1.dataout[5] Yes
inst1.writevar[2] iWriteVar inst1.datain[1] No
inst1.writevar[3] iWriteVar inst1.datain[0] No
readpo[3] iReadVar dout1 Yes
readpo[2] iReadVar dout2[1] No
readpo[1] iReadVar dout2[0] Yes
readpo[0] iReadVar dout3 No

Tessent™ IJTAG User’s Manual, v2022.480

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The output in the pattern file is an annotation with the following content:

TESSENT_PRAGMA var_keyword var_name -type type -var_bits bits \
 [-var_length length] -pin pin [-relative_cycles cycles] [-inversion inversion] \
 {[-last_cycle_correction value] | [-first_cycle_correction value]}

• var_keyword — The keyword “variable” or “bit_variable”.

The “variable” keyword appears at the start of an operation, such as scan loads or
vectors. The tool collects and inserts all “TESSENT_PRAGMA variable …”
annotations that belong to one scan load before the first shift vector of this scan load.

The “bit_variable” keyword appears for the individual vectors that result from the
unrolling of a scan load and for non-scan load vectors. It appears together with the
vector that contains the related drive state or expected state. The -relative_cycles switch
is not used in this case.

The tool uses “variable” annotations to identify all bits of a symbolic variable. The
“bit_variable” annotations help your review of the pattern file. Tool automation does not
use the “bit_variable” annotations. Refer to the Example for details of how the
information in the “variable” annotation is all that is required to identify all bits of a
symbolic variable properly.

• var_name — The name of the symbolic variable without any index and prefixed by the
ICL instance name against which the PDL defining the symbolic variable was called.

The var_name specification does not contain indices or ranges, even if the symbolic
variable is declared with several bits in the PDL where it was introduced. The var_name
contains the base name of the symbolic variable only.

For example, when myVar is a symbolic variable name defined in an iProc that is called
against the u1.my_ip_i1 ICL instance, the effective name is u1.my_ip_i1.myVar. Refer
to Figure 3-6, Figure 3-8, and Figure 3-11 for precise examples of this naming
convention.

• type — The keyword “read” or “write” defines the type of the symbolic variable.

• -var_bits bits — Specifies which parts of the symbolic variable this
TESSENT_PRAGMA refers to. bits is a space-separated list of indices or ranges.

For example, “-var_bits {15 12:10 3:2 0}” means that a scan load accesses the bits 15,
12 down to 10, 3 down to 2, and 0. Typically, a single scan load accesses the entire
symbolic variable. However, you can define a symbolic variable for ICL objects that
cannot scan in the same scan load.

• -var_length length — Specifies the length of the symbolic variable. This specification
is optional. When omitted, the length is extracted from the -var_bits bits.

The length is the entire width of the symbolic variable, whereas bits lists the bits to
access during the current scan load.

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 81

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The indices of a symbolic variable are [n-1:0], where n is the var_length. The bits
referenced with the -var_bits switch always refer to indices in the [n-1:0] range. It is
possible that a scan load only accesses a subset of the bits of a symbolic variable. When
all bits are not accessed in a single scan load, the length is specified in the annotation
associated with the first scan load accessing one or more bits of the symbolic variable.

• -pin pin — The top-level port through which the symbolic variable is read from or
written to. For read variables observed through scan registers, the referenced pin is the
ScanOutPort used to unload the register. For write variables defined on scan registers,
the referenced pin is the related ScanInPort used to load the register.

• -relative_cycles cycles — For scan loads, the cycles offset in which the iRead target
observations happen at the ScanOutPort, or the vector offset in which the iWrite target
values must be applied to the ScanInPort.

Like -var_bits bits, cycles is a list that can contain a mixture of indices and ranges. The
number of entries in the cycles list always matches the number of bits. The relative cycle
is relative to the position of the annotation placed at the beginning of the scan load used
to load or unload bits of a symbolic variable.

When the pattern is written out with a tck_ratio larger than 1, you must consider the
specified tck_ratio value when converting relative cycles into actual test_cycle or vector
locations. The section How to Patch a Symbolic Variable in the ATE memory and the
section How to Map a Miscompare on the ATE to an iReadVar describes this in detail.

• -inversion inversion — A binary number that specifies the inversion between the
symbolic variable and the value that is observed (or set) at the associated pin. The width
of the binary number matches the number of indices in -var_bits bits. The leftmost bit of
inversion refers to the leftmost index in bits, the rightmost bit of inversion refers to the
rightmost index in bits.

• -last_cycle_correction value — For scan loads, value specifies an offset in the number
of tester cycles to apply to the highest “-relative_cycles” value to obtain the correct
tester cycle for the corresponding iRead or iWrite action. The use of this parameter is
mutually exclusive with “-first_cycle_correction”.

• -first_cycle_correction value — For scan loads, value specifies an offset in the number
of tester cycles to apply to the lowest “-relative_cycles” value to obtain the correct tester
cycle for the corresponding iRead or iWrite action. The use of this parameter is mutually
exclusive with “-last_cycle_correction”.

How to Patch a Symbolic Variable in the ATE memory
Follow these steps to patch an ATE pattern to change the value of a symbolic variable. The
Example illustrates these steps in detail.

1. Identify the currently used tck_ratio value using the “TESSENT_PRAGMA vector_set”
annotation. Refer to Figure 3-11 and Figure 3-12 for examples.

Tessent™ IJTAG User’s Manual, v2022.482

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Identify all occurrences of the “TESSENT_PRAGMA variable var_name” annotation
for the symbolic variable to patch. Refer to Figure 3-15 for an example. For iWriteVar,
it is possible that the values for some or all bits are repeated several times. The Example
illustrates this with the seed_var iWriteVar.

3. Identify the vector_id associated to the annotation using the “Pattern:# Vector:#
TesterCycle:#” annotation above it. Refer to Figure 3-15 for an example.

4. Extract the associated relative offset specified in the -relative_cycles switch for each bit
specified in the -var_bits switch.

5. Extract the possible cycle_correction value from the “TESSENT_PRAGMA variable
var_name” annotation. If the -first_cycle_correction switch is given, the range start must
be updated. If the -last_cycle_correction switch is given, the range end must be updated.

6. Compute the vector range to patch using these equations:

range_start = vector_id_of_annotation +
 (relative_offset_of_bit * tck_ratio) +
 first_cycle_correction

range_end = vector_id_of_annotation +
 (relative_offset_of_bit * tck_ratio) +
 (tck_ratio - 1) + last_cycle_correction

The reason the patch corresponds to a range of vectors when tck_ratio is greater than one
is explained in the paragraph located above Figure 3-16.

How to Map a Miscompare on the ATE to an iReadVar
Follow these steps to map a miscompare on the ATE to an iReadVar. The Example illustrates
these steps in detail.

1. Identify the currently used tck_ratio value using the “TESSENT_PRAGMA vector_set”
annotation. Refer to Figure 3-11 and Figure 3-12 for examples.

2. Identify all occurrences of the “TESSENT_PRAGMA variable var_name” annotation
for the symbolic variable to map miscompares to. Refer to Figure 3-13 for an example.

3. Identify the tester cycle id associated with the annotation using the “Pattern:# Vector:#
TesterCycle:#” annotation above it. Refer to Figure 3-13 for an example.

4. Extract the associated relative offset specified in the -relative_cycles switch for each bit
specified in the -var_bits switch.

5. If the bit corresponds to the first bit of the variable, and if the “TESSENT_PRAGMA
variable var_name” statement has the -first_cycle_correction switch set, extract the
offset from the switch. Alternately, if the bit corresponds to the last bit of the variable,
and if the “TESSENT_PRAGMA variable var_name” statement has the
-last_cycle_correction switch set, extract the offset from the switch. In all other cases,
ignore the value of the switch.

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Compute the tester cycle id associated to each bit of the symbolic variable using this
equation, where cycle_correction is the value determined by the previous step:

tester_cycle_id_of_annotation +
 (relative_offset_of_bit * tck_ratio) +
 cycle_correction

A miscompare happening on the given pin at the specific tester cycle id correspond to a
miscompare of the given bit of the iReadVar. This process is clearly illustrated in the
paragraphs above Figure 3-14.

Example
This example illustrates the steps to define Read and Write symbolic variables into the PDL and
shows how they are mapped into the STIL file annotation. The methods used to patch a
symbolic variable are explained in the How to Patch a Symbolic Variable in the ATE memory
section. The methods used to map miscompares to iReadVars are explained in the How to Map
a Miscompare on the ATE to an iReadVar section. This example illustrates both in detail using
a pattern generated for tck_ratio of 1 and 4.

Figure 3-5 shows the ICL that describes the IJTAG element of a simple instrument. Its IJTAG
ScanInterface provides access to a 10-bit scan chain composed of two scan registers: enable and
cnt_int[8:0]. Two alias names, gonogo and fail_cnt[4:0], are mapped to bits of the same register.
The mapping between the fail_cnt alias and the cnt_init register illustrates a more complex
mapping to illustrate how the -relative_cycles switch appears when the symbolic variable bits
do not come out in order. This is not typical in well-designed instruments, but it is a valid
possibility for general-purpose software to handle.

Tessent™ IJTAG User’s Manual, v2022.484

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-5. ICL Description of the my_ip Instrument

Module my_ip {
 TCKPort ijtag_clock;
 ResetPort ijtag_reset {
 ActivePolarity 0;
 }
 CaptureEnPort ijtag_ce;
 ShiftEnPort ijtag_se;
 UpdateEnPort ijtag_ue;
 SelectPort ijtag_sel;
 ScanInPort ijtag_si;
 ScanOutPort ijtag_so {
 Source cnt_init[0];
 }

 ScanRegister enable {
 CaptureSource enable;
 ResetValue 1'b0;
 ScanInSource ijtag_si;
 }
 ScanRegister cnt_init[8:0] {
 ScanInSource enable;
 }
 Alias gonogo = ~cnt_init[0];
 Alias fail_cnt[4:0] = cnt_init[4],cnt_init[6],
 cnt_init[3],cnt_init[8],cnt_init[7];
}

Next, an iProc for the given instrument is shown in Figure 3-6. The iProc is used to run a given
test on its associated instrument. It includes four special iNotes that define two iWriteVars and
two iReadVars.

The first symbolic variable, called seed_var, is of type write and is defined on the cnt_init
ScanRegister defined in the ICL. Because no indices are used for cnt_init, all register bits are
referenced, that is cnt_init[8:0].

The second symbolic variable of type write is called enable_var and is defined on the ICL
ScanRegister named enable. The last two symbolic variables are of type read and are mapped to
the aliases defined in the associated ICL.

Notice the iApply command between the iWrite on the cnt_init register and the iWrite on the
enable register. This iApply instructs the IJTAG retargeter to load the seed with a scan load and
then load the enable with another scan load. Because both registers are part of the same IJTAG
scan chain, the cnt_init register is scanned in again with the same value during the second scan
load used to set the enable to 1.

This is the reason the annotation for the seed_var iWriteVar appears twice in the pattern. When
you patch the seed_var value in the first scan load, you must also patch it for the second scan
load. The green annotation in Figure 3-11 shows how they repeat for each instance of my_ip.

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 85

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-6. An iProc Called run_test for my_ip Instrument

iProcsForModule my_ip
iProc run_test {seed wait_cycles} {
 iNote "tessent_pragma iWriteVar seed_var cnt_init"
 iWrite cnt_init $seed
 iApply
 iNote "tessent_pragma iWriteVar enable_var enable"
 iWrite enable 1
 iApply
 iRunLoop $wait_cycles
 iWrite cnt_init 0
 iWrite enable 0
 iNote "tessent_pragma iReadVar status_var fail_cnt[4:0]"
 iRead fail_cnt 0
 iNote "tessent_pragma iReadVar GoNogo_var gonogo"
 iRead gonogo 1
 iApply
}

Figure 3-7 illustrates an ICL network containing three my_ip instrument instances. Notice how
the scan path including the my_ip_i1 instance is mutually exclusive to the scan path that
includes the other two instances, my_ip_i2 and my_ip_i3. This not how to build an optimal
network but it illustrates the mapping of symbolic variables when they cannot all be accessed
during the same scan load.

Figure 3-7. ICL Network with Three Instances of my_ip

Figure 3-8 shows the PDL to concurrently run the test on all three instances of the “my_ip”
instrument. Notice how the run_test iProc in Figure 3-6 is called on the three instances. For
example, the my_ip_i1 instance uses the arguments 80 and 120. Each call uses different
arguments. The iCall commands are within an iMerge block to instruct the IJTAG retargeter to
execute the tests in parallel and not in series.

Tessent™ IJTAG User’s Manual, v2022.486

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The open_pattern_set command uses the -tck_ratio switch with its default value of one. The
-tck_ratio switch describes how each TCK cycle is created. When this is set to one, TCK is
defined as an RZ clock, and each TCK cycle consumes one vector on the ATE.

When tck_ratio is specified to n, TCK gets defined as an NRZ signal, and it is forced low for
half of the n/2 vectors and force high for the other half. Each TCK cycle thus consumes n
vectors on the ATE.

An annotation describes the specified tck_ratio value, affecting how to interpret the
relative_cycles. In the case of an iWrite variable, tck_ratio affects how many vectors you must
modify for a single bit of a symbolic variable.

Refer to the How to Patch a Symbolic Variable in the ATE memory section for more
information about the patching process. Continue with this example for a complete illustration
of the patching process in the presence of a tck_ratio > 1.

Figure 3-8. PDL to Run the Test on Three Instances of my_ip

open_pattern_set run_test -tck_ratio 1
 iMerge -begin
 iCall my_ip_i1.run_test 80 120
 iCall my_ip_i2.run_test 90 120
 iCall my_ip_i3.run_test 70 120
 iMerge -end
close_pattern_set

The IJTAG retargeter optimizes the scan loads required to achieve the requested operations. It
opens the scan path to include my_ip_i1 and loads the seed value, as shown in Figure 3-9. It
then opens the scan path to include my_ip_i2 and my_ip_i3 and loads their seed values, as
shown in Figure 3-10. Then, as the run_test iProc of Figure 3-6 instructs, it must repeat the two
operations to set the enable bit high. The fail_cnt and gonogo status bits are read from the three
instruments after the specified number of TCK cycles.

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 87

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-9. Scan Path to Access my_ip_i1

Figure 3-10. Scan Path to Access my_ip_i2 and my_ip_i3

Figure 3-11 shows the relevant annotations extracted from the STIL file. Notice that each vector
starts with an annotation that identifies its vector id and its tester cycle id. The vector id is used
for patching the vector values. The tester cycle id is used to back map a miscompare to an
iReadVar.

At the start of the pattern, there is an annotation that lists the pattern_set name with an optional
-tck_ratio switch. In this example, the -tck_ratio switch is not present because it has a value
of 1.

Tessent™ IJTAG User’s Manual, v2022.488

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-12 shows the same annotations when the PDL in Figure 3-8 is retargeted with a
tck_ratio value of 4. Compare the annotations in both cases. The “TESSENT_PRAGMA
variable” annotations are identical. The first difference is the “TESSENT_PRAGMA
pattern_set” annotation. The term “-tck_ratio 4” is present to specify the tck_ratio to a value
larger than one.

The second difference is that the vector id and tester cycle id annotations, which identify the
location of the “TESSENT_PRAGMA variable” annotations, are now all multiplied by 4. In
this example, iProc uses an iRunLoop -tck, which explains why everything got stretched by
tck_ratio.

If the PDL includes -iRunLoops with either the -sck or the -time switch, the loop is not required
to be a multiple of tck_ratio. In this case, the vector ids and tester cycle ids are not always
required to be a multiple of tck_ratio. Regardless, they represent the location when and where
the “TESSENT_PRAGMA variable” annotations reside on the ATE.

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 89

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-11. Generated “pattern_set” and “variable” Annotations (tck_ratio = 1)

Ann {* Pattern:0 Vector:0 TesterCycle:0 *}
Ann {* TESSENT_PRAGMA pattern_set run_test *}

Ann {* Pattern:0 Vector:16 TesterCycle:16 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:44 TesterCycle:44 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {13:5} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {24:16} *}

Ann {* Pattern:0 Vector:74 TesterCycle:74 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {13} *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:92 TesterCycle:92 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {14} *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {13:5} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {25} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {24:16} *}

Ann {* Pattern:0 Vector:124 TesterCycle:243 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {8 10 7 12:11} *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {4} -inversion 0b1 *}

Ann {* Pattern:0 Vector:142 TesterCycle:261 *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {20 22 19 24:23} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {16} -inversion 0b1 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {9 11 8 13:12} *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {5} -inversion 0b1 *}

Tessent™ IJTAG User’s Manual, v2022.490

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-12. Generated “pattern_set” and “variable” Annotations (tck_ratio = 4)

Ann {* Pattern:0 Vector:0 TesterCycle:0 *}
Ann {* TESSENT_PRAGMA pattern_set run_test -tck_ratio 4*}

Ann {* Pattern:0 Vector:64 TesterCycle:64 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:176 TesterCycle:176 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {13:5} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {24:16} *}

Ann {* Pattern:0 Vector:296 TesterCycle:296 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {13} *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:368 TesterCycle:368 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {14} *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {13:5} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.enable_var -type write -var_bits
{0} -pin ijtag_si -relative_cycles {25} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {24:16} *}

Ann {* Pattern:0 Vector:496 TesterCycle:972 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {8 10 7 12:11} *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {4} -inversion 0b1 *}

Ann {* Pattern:0 Vector:568 TesterCycle:1044 *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {20 22 19 24:23} *}
Ann {* TESSENT_PRAGMA variable my_ip_i3.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {16} -inversion 0b1 *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {9 11 8 13:12} *}
Ann {* TESSENT_PRAGMA variable my_ip_i2.GoNogo_var -type read -var_bits
{0} -pin ijtag_so -relative_cycles {5} -inversion 0b1 *}

Mapping a Miscompare to a Bit of an iReadVar
When backmapping a miscompare to an iReadVar, you must identify the tester cycle id
associated to each bit of the iReadVar. Refer to the section How to Map a Miscompare on the
ATE to an iReadVar, which describes the steps to map a miscompare.

One example of an iReadVar annotation from Figure 3-11 and Figure 3-12 can illustrate the
process both with and without a tck_ratio. Figure 3-13 shows the selected annotations. The first

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 91

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

example does not specify the -tck_ratio switch in its “TESSENT_PRAGMA pattern_set”
annotation, which means tck_ratio is 1. The second example uses tck_ratio = 4.

Figure 3-13. iReadVar Extracted from the tck_ratio = 1 and 4 Examples

// With tck_ratio = 1
Ann {* TESSENT_PRAGMA pattern_set run_test *}
Ann {* Pattern:0 Vector:124 TesterCycle:243 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {8 10 7 12:11} *}

// With tck_ratio = 4
Ann {* TESSENT_PRAGMA pattern_set run_test -tck_ratio 4*}
Ann {* Pattern:0 Vector:496 TesterCycle:972 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.status_var -type read -var_bits
{4:0} -var_length 5 -pin ijtag_so -relative_cycles {8 10 7 12:11} *}

The “TESSENT_PRAGMA variable” annotations are identical in both cases. The symbolic
variable has 5 bits. Bit 4 is sampled by the vector that is 8 × tck_ratio vectors after where the
TESSENT_PRAGMA variable” annotation is located.

For the case with tck_ratio = 1, to find the vector sampling bit 4 of the status_var:

• 124 + 8 = 132

For the case with tck_ratio = 4, to find the vector sampling bit 4 of the status_var:

• 496 + 8 × 4 = 528

Figure 3-14 shows the annotations and the vector present at that location in the tck_ratio = 1 and
the tck_ratio = 4 cases.

Notice the “TESSENT_PRAGMA bit_variable” annotations at those locations. The tool ignores
them. They help you read the STIL file. The TesterCycle value provides the tester cycle id to
map a miscompare on the specified pin to the given bit of the iReadVar. The expected value for
the iReadVar is extracted from the _po_ value of that vector.

Figure 3-14. Annotation at Referenced Vector for tck_ratio = 1 and 4

// With tck_ratio = 1
Ann {* Pattern:0 Vector:132 TesterCycle:251 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.status_var -type read
-var_bits {4} -pin ijtag_so -inversion 0b0 *}
V {_pi_=1101010; _po_=L; }

// With tck_ratio = 4
Ann {* Pattern:0 Vector:528 TesterCycle:1004 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.status_var -type read
-var_bits {4} -pin ijtag_so -inversion 0b0 *}
V {_po_=L;}

Tessent™ IJTAG User’s Manual, v2022.492

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Patching a Bit of an iWriteVar
When patching a bit of an iWriteVar, you must identify the vectors associated with that bit.
Refer to the section How to Patch a Symbolic Variable in the ATE memory, which describes the
steps to patch a bit.

One example of an iWriteVar annotation from Figure 3-11 and Figure 3-12 illustrates the
process both with and without a tck_ratio. The selected annotations are in Figure 3-15. The first
example does not specify the -tck_ratio switch in its “TESSENT_PRAGMA pattern_set”
annotation, which means tck_ratio is 1. The second example uses tck_ratio = 4.

Figure 3-15. iWriteVar Extracted from the tck_ratio = 1 and 4 Examples

// With tck_ratio = 1
Ann {* TESSENT_PRAGMA pattern_set run_test *}
Ann {* Pattern:0 Vector:16 TesterCycle:16 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:74 TesterCycle:74 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

// With tck_ratio = 4
Ann {* TESSENT_PRAGMA pattern_set run_test_ratio4 -tck_ratio 4 *}
Ann {* Pattern:0 Vector:64 TesterCycle:64 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

Ann {* Pattern:0 Vector:296 TesterCycle:296 *}
Ann {* TESSENT_PRAGMA variable my_ip_i1.seed_var -type write -var_bits
{8:0} -pin ijtag_si -relative_cycles {12:4} *}

The “TESSENT_PRAGMA variable” annotations are identical and are repeated in both cases.
Refer to the paragraph before Figure 3-6 describing the iProc with an iApply between seed and
enable iWrites. Both registers are part of the same scan chain, so the seed values are scanned in
twice. You must patch the seed value each time it is scanned in.

The -var_length switch is not specified, meaning that the specified -var_bits make up the entire
symbolic variable. The scanin value for bit 8 is located in the vector that is 12 × tck_ratio
vectors after each occurrence where the “TESSENT_PRAGMA variable” annotation is located.

For the case with tck_ratio = 1, to find the vectors loading bit 8 of the seed_var:

• 16 + 12 = 28

• 74 + 12 = 86

For the case with tck_ratio = 4, to find the vectors loading bit 8 of the seed_var:

• 64 + 12 × 4 = 112

• 64 + 12 × 4 + (4 - 1) = 115

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Tessent™ IJTAG User’s Manual, v2022.4 93

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• 296 + 12 × 4 = 344

• 296 + 12 × 4 + (4 - 1) = 347

Together, these evaluate into the patching vectors 112:115 and 344:347. When tck_ratio is
larger than one, each scanin bit is duplicated by the tck_ratio value, so you must patch a range of
vectors in that case.

Figure 3-16 shows the annotations and vectors present at those locations for the two cases
(tck_ratio = 1 and tck_ratio = 4).

Notice the “TESSENT_PRAGMA bit_variable” annotation at those locations. The tool ignores
them. They help you read the STIL file. The SignalGroup definition for the _pi_ signal group
shows which vector bit corresponds to the ijtag_si pin.

Figure 3-16. Annotation at Referenced Vector for tck_ratio = 1 and 4

SignalGroups {
 pi = '"ijtag_tck" + "ijtag_reset" + "ijtag_ce" + "ijtag_se" +
"ijtag_ue" + "ijtag_sel" + "ijtag_si"';
}

// With tck_ratio = 1
Ann {* Pattern:0 Vector:28 TesterCycle:28 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.seed_var -type write -var_bits
{8} -pin ijtag_si -inversion 0b0 *}
V { _pi_=1101010; }

Ann {* Pattern:0 Vector:86 TesterCycle:86 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.seed_var -type write -var_bits
{8} -pin ijtag_si -inversion 0b0 *}
V { _pi_=1101010; }

// With tck_ratio = 4
Ann {* Pattern:0 Vector:112 TesterCycle:112 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.seed_var -type write -var_bits
{8} -pin ijtag_si -inversion 0b0 *}
V { _pi_=0101010; }
Ann {* Pattern:0 Vector:113 TesterCycle:113 *}
V { _pi_=1101010; }
Ann {* Pattern:0 Vector:114 TesterCycle:114 *}
V { _pi_=1101010; }
Ann {* Pattern:0 Vector:115 TesterCycle:115 *}
V { _pi_=0101010; }

Ann {* Pattern:0 Vector:344 TesterCycle:344 *}
Ann {* TESSENT_PRAGMA bit_variable my_ip_i1.seed_var -type write -var_bits
{8} -pin ijtag_si -inversion 0b0 *}
V { _pi_=0101010; }
Ann {* Pattern:0 Vector:345 TesterCycle:345 *}
V { _pi_=1101010; }
Ann {* Pattern:0 Vector:346 TesterCycle:346 *}
V { _pi_=1101010; }
Ann {* Pattern:0 Vector:347 TesterCycle:347 *}
V { _pi_=0101010; }

Tessent™ IJTAG User’s Manual, v2022.494

A Typical PDL Retargeting Flow
PDL Retargeting With Symbolic Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Symbolic Variables Specific to Boundary Scan Patterns
During the boundary scan extraction flow, the tool writes a set of annotations to the STIL
pattern set to identify the boundary scan register. You can use these annotations to debug
simulation failures.
The output in the pattern file are annotations that start with the following content:

TESSENT_PRAGMA boundary_scan bscan_reg_path -begin

• bscan_reg_path — This is the pathname of the boundary scan register. The -begin
keyword marks the beginning of the register.

This annotation is followed by one or more of the following:

TESSENT_PRAGMA boundary_scan_bit -relative_cycles cycle_num -top_port port_name

• cycle_num — The position of the boundary scan bit in the boundary scan register.

• port_name — The name of the top-level port associated with the boundary scan bit.

The output ends with the following content:

TESSENT_PRAGMA boundary_scan bscan_reg_path -end

• bscan_reg_path — This is the path name of the boundary scan register. It matches the
name given in the -begin annotation. The -end keyword marks the end of the register.

To turn this behavior off, set the annotation parameter “pragma_bscan_annotation” to off with
the -annotation_parameter_values switch of the set_ijtag_retargeting_options command.

The following is an example of annotations identifying a boundary scan register consisting of
six bits:

TESSENT_PRAGMA boundary_scan top_bscan_interFace_I.BScanReg -begin
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 0 -top_port io_0
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 1 -top_port io_1
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 2 -top_port io_2
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 3 -top_port io_3
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 4 -top_port io_4
TESSENT_PRAGMA boundary_scan_bit -relative_cycles 5 -top_port io_5
TESSENT_PRAGMA boundary_scan top_bscan_interFace_I.BScanReg -end

A Typical PDL Retargeting Flow
How to Run iCalls in Parallel

Tessent™ IJTAG User’s Manual, v2022.4 95

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Run iCalls in Parallel
You can instruct the PDL retargeter to try to run PDL commands in parallel.
The PDL iMerge command instructs the PDL retargeter to try to run subsequent PDL
commands in parallel. The IEEE 1687 document describes iMerge only as a desired option to a
PDL retargeter. The retargeter is not required to parallelize any or all of the PDL commands.
The PDL retargeter might identify that some of the PDL commands cannot be run in parallel
and chooses to serialize them instead. Overall, the order of the parallel execution is not
determined by the standard. Instead, the order is determined by the application tool.

The following is a brief description of the commands iMerge, iTake, and iRelease. The iMerge
command is used to specify the beginning and the end of a so-called "merge block", that is, a set
of iCall commands that are meant to be processed in parallel in the final representation of the
test patterns. The syntax is as follows:

iMerge -begin
iCall [<instPath>.]<proc> [<args>…]
iCall [<instPath>.]<proc> [<args>…]
iCall [<instPath>.]<proc> [<args>…]
…

iMerge -end

iCall is the only PDL command that is allowed in between iMerge -begin and iMerge -end.

iTake can be used inside of an iProc to reserve a "resource" (a port, a register, or an instance) for
exclusive use with this iProc. None of the other parallel running iProcs is allowed to alter states
or clock frequencies on the resources taken by an iProc. The reservation persists until the end of
the iProc. iTake uses the following syntax:

iProc <name> {<args>… } {
iTake <resourceIdentifier>
…

• iRelease explicitly undoes a reservation done by iTake.

• iMerge can be called recursively, that is, an iProc called by an iCall command inside of
a merge block can also contain a merge block.

• iProcs inherit the reservations of their callers.

• iProcs can release the reservations of their callers by using iRelease.

The implied release of all resources at the end of the iProc does not release the resources of the
caller if there is (on purpose or by accident) an intersection of resources.

PDL Specialties and Exceptions . 96
iMerge Conflict Reporting . 96

Tessent™ IJTAG User’s Manual, v2022.496

A Typical PDL Retargeting Flow
PDL Specialties and Exceptions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PDL Specialties and Exceptions
Tessent IJTAG generates an error or warning message when certain situations occur due to
erroneous user input.
The following situations result in an error or warning:

• Unprocessed iWrite/iRead/iScan targets are not allowed at the end of an iProc that is
called from within an iMerge block.

• Missing "iMerge -end" at the end of iProc is not allowed.

• Missing "iMerge -end" at close_pattern_set is not allowed.

• iApply -end_in_pause is not allowed in iMerge threads.

• iReset is not allowed in iMerge threads.

iMerge Conflict Reporting
In a merge block, all PDL commands between the -begin and -end of iMerge are processed in
parallel as much as possible.
By default, Tessent IJTAG identifies any resource conflicts, such as two PDL commands
writing to the same register, and all conflicts arising from reservations done by the iTake
command. All conflicting commands are then processed serially. For the remaining iCall
commands, Tessent IJTAG tries to find an optimal parallel solution.

Processing conflicting commands serially can cause the settings associated with the first
processed task to be overwritten by subsequently processed tasks. In some situations, such as
those caused by erroneous user input, the conflicts are unexpected and overwriting the previous
settings is destructive.

To minimize the incidence of destructive overwrites, you can instruct the tool to halt processing
when it detects conflicts. To do so, use the iMerge -error_on_conflict switch. This switch
instructs iMerge to stop on the first event that creates a conflict and to display a detailed conflict
report about the involved events and conflicts. This enables you to verify the conflicts before
the tool overwrites a previous task.

In the ATPG context, the set_test_setup_icall -merge and set_test_end_icall -merge commands
automatically perform conflict reporting. Refer to set_test_setup_icall and set_test_end_icall in
the Tessent Shell Reference Manual for a full description.

A Typical PDL Retargeting Flow
iMerge Conflict Reporting

Tessent™ IJTAG User’s Manual, v2022.4 97

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Conflicts cause the open pattern set to be in an undefined state. That is, some of the iMerge
block’s scheduled events have been processed and stored to the open pattern set while others

have not been processed and stored. To obtain usable patterns, you must close the pattern set,
identify and eliminate the root cause of the conflict, and re-create the pattern set from the
beginning.

The iMerge conflict report consists of three parts:

• Error message with the list of conflicts. When you call iMerge as part of an open pattern
set in the context patterns -ijtag, the error message is as follows:

// Error: iMerge conflict encountered.

As an example, the following conflict applies to a situation in which two events cannot
be merged because they write conflicting values:

// Event '3' tries to set the value of 'block1.R[0]' to '1' to meet
the iApply targets, whereas event '6' tries to set the value of
'block1.R[0]' to '0' to meet the iApply targets.

All events are identified by a unique event ID that is simply an integer. This event ID is
referred to in all three parts of the report.

• Description of the involved events. The description section begins as follows:

// Event:
// iNote:
// Resources:

• iMerge flow graph. See “Example of iMerge Conflict Reporting and Analysis” for a
usage example.

Table 3-2 defines the terminology used in the description section of the conflict report.
Table 3-2. Conflict Report Terminology

Term Description
Controllable entity Primary input or scan register bit. The values applied to

these entities do not depend directly on something else, but
they can be freely chosen during a scan load or the
application of the stimuli of the top-level ports.

Random access In the message “A controllable entity requests random
access,” the tool assumes that it must apply the values 0 and
1 at least once within the same iApply.

Tessent™ IJTAG User’s Manual, v2022.498

A Typical PDL Retargeting Flow
iMerge Conflict Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example of iMerge Conflict Reporting and Analysis
This section provides a sample scenario in which iMerge detects an error and stops processing.
By examining the conflict report and the ICL description you can identify the root cause of the
problem and thus eliminate it.

Suppose you have the following PDL description. The iMerge blocks in this example reflect the
actual ICL hierarchy such that you have a nested iMerge structure.

Resource A port, scan register, or data register or instance that has
been subject to an iTake command. The ports that have
been targeted by iForcePort or iComparePort commands
are also (implied) resources.

Setup command A command that precedes an action (iApply or iRunLoop)
and that determines the targets and the behavior of that
action. Setup commands of an iApply include iWrite and
iRead. Setup commands of an iRunLoop include iClock
and iClockOverride.

Unspecific read An iRead without specification of the expected value.

Table 3-2. Conflict Report Terminology (cont.)
Term Description

A Typical PDL Retargeting Flow
iMerge Conflict Reporting

Tessent™ IJTAG User’s Manual, v2022.4 99

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context patterns -ijtag

read_icl ../data/icl/*
source ../data/pdl/raw1.iprocs

iProcsForModule chip
iProc testAllRaw {} {
 iMerge -begin -error_on_conflict //Specified on outermost iMerge block
 iCall block1_I1.testAllRaw
 iCall block1_I2.testAllRaw
 iCall block2_I1.testAllRaw
 iCall block3_I1.testAllRaw
 iMerge -end
}

iProcsForModule block1
iProc testAllRaw {} {
 iMerge -begin
 iCall raw1_I1.run_testa
 iCall raw1_I2.run_testa
 iMerge -end
}

iProcsForModule block2
iProc testAllRaw {} {
 iMerge -begin
 iCall raw1_I1.run_testa blue //iMerge conflict
 iCall raw1_I2.run_testa green
 iMerge -end
}

iProcsForModule block3
iProc testAllRaw {} {
 iMerge -begin
 iCall raw1_I1.run_testa
 iCall raw1_I2.run_testa
 iCall raw1_I3.run_testa
 iCall raw1_I4.run_testa
 iMerge -end
}

set_current_design
add_clocks ClkA -period 10ns
set_system_mode analysis

open_pattern_set test1 -tester_period 100ns
 iCall testAllRaw
close_pattern_set

write_patterns pat1.stil -stil -repl

Tessent™ IJTAG User’s Manual, v2022.4100

A Typical PDL Retargeting Flow
iMerge Conflict Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The resulting conflict report displays as follows:

// Error: iMerge conflict encountered.
//
// Event '43' tries to set the value of 'block2_I1.tdr.R[6]' to '1' to
meet the iApply targets, whereas event '50' tries to set the value of
'block2_I1.tdr.R[6]' to '0' to meet the iApply targets.
// Event '43' tries to set the value of 'block2_I1.tdr.R[5]' to '0' to
meet the iApply targets, whereas event '50' tries to set the value of
'block2_I1.tdr.R[5]' to '1' to meet the iApply targets.
//
// Event: 50, iApply
// iNote: Set mode to green
// Resources:
// INSTANCE block2_I1.raw1_I2
// Controllable entities requesting value 0:
// block2_I1.tdr.R[6]
// block2_I1.tdr.R[3]
// block2_I1.tdr.R[2]
// Controllable entities requesting value 1:
// block2_I1.tdr.R[5]
// Controllable entities requesting random access:
// block1_I1.sib1.SIB
// block1_I1.sib2.SIB
// block1_I2.sib1.SIB
// ...
// Controllable entities fixed to 0 to stabilize resources:
// block2_I1.tdr.R[0]
// block2_I1.tdr.R[7]
// block2_I1.tdr.R[4]
// block2_I1.tdr.R[1]
// Targeted setup commands:
// iWrite mode green
//
// Event: 43, iApply
// iNote: Set mode to blue
// Resources:
// INSTANCE block2_I1.raw1_I1
// Controllable entities requesting value 0:
// block2_I1.tdr.R[5]
// block2_I1.tdr.R[3]
// block2_I1.tdr.R[2]
// Controllable entities requesting value 1:
// block2_I1.tdr.R[6]
// Controllable entities requesting random access:
// block1_I1.sib1.SIB
// block1_I1.sib2.SIB
// block1_I2.sib1.SIB
// ...
// Controllable entities fixed to 0 to stabilize resources:
// block2_I1.tdr.R[0]
// block2_I1.tdr.R[7]
// block2_I1.tdr.R[4]
// block2_I1.tdr.R[1]
// Targeted setup commands:
// iWrite mode blue

A Typical PDL Retargeting Flow
iMerge Conflict Reporting

Tessent™ IJTAG User’s Manual, v2022.4 101

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is followed by the flow graph. Figure 3-17 shows the partial flow graph that applies to this
example. When you examine the flow graph, you see that the iApply of event 43 is the second
iApply called from within iCall raw1_I1.run_testa that in turn is called from within iCall
block2_I1.testAllRaw. The iApply of event 50 is the second iApply called from within iCall
raw1_I2.run_testa that in turn is also called from within iCall block2_I1.testAllRaw.

Figure 3-17. iMerge Flow Graph

Next, examining the ICL, you can see that different DataRegisters (DR1 and DR2) drive the
mode values of the instances of module raw1, but those DataRegisters have the same data
source. Because iMerge does not know whether those data registers can be enabled or disabled
independently of each other, it assumes a conflict to avoid potential issues.

Tessent™ IJTAG User’s Manual, v2022.4102

A Typical PDL Retargeting Flow
PDL Retargeting Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Module block2 {
 ScanInPort si1;
 ScanOutPort so1 { Source tdr.so; }
 SelectPort en1;
 ShiftEnPort se;
 CaptureEnPort ce;
 UpdateEnPort ue;
 TCKPort tck;
 ClockPort ClkA;

 Instance tdr Of tdr2 {
 InputPort en = en1;
 InputPort si = si1;
 InputPort fq = 3'b0,RMux[7:0];
 }
 Instance raw1_I1 Of raw1 {
 InputPort in = DR1[7:0];
 InputPort clk = ClkA;
 }
 Instance raw1_I2 Of raw1 {
 InputPort in = DR2[7:0];
 InputPort clk = ClkA;
 }
 DataRegister DR1[7:0] {
 WriteEnSource we1;
 WriteDataSource tdr.td[7:0];
 }
 DataRegister DR2[7:0] {
 WriteEnSource we2;
 WriteDataSource tdr.td[7:0];
 }
 LogicSignal we1 {
 tdr.td[9],tdr.td[8] == 2'b10;
 }
 LogicSignal we2 {
 tdr.td[9],tdr.td[8] == 2'b11;
 }
 DataMux RMux[7:0] SelectedBy tdr.td[10],tdr.td[8] {
 2'b10 : raw1_I1.out;
 2'b11 : raw1_I2.out;

PDL Retargeting Commands
The following table contains a summary of the PDL retargeting commands available in Tessent
Shell.

Table 3-3. PDL Retargeting Command Summary
Command Description
iApply Triggers the retargeting of all queued iRead and iWrite

commands.
iCall Calls an iProc registered against the ICL module associated

with the specified effective_icl_instance_path.

A Typical PDL Retargeting Flow
PDL Retargeting Commands

Tessent™ IJTAG User’s Manual, v2022.4 103

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

iClock Checks whether a controlling clock path from a valid clock
source to the specified clock port exists and computes the
cumulative frequency multiplier and divider values.

iClockOverride Models how the functional clocking has been programmed.
iMerge Encloses one or several iCall statements that may be run in

parallel instead of serially.
iNote Inserts a note or annotation in the opened pattern set.
iOverrideScanInterface Imposes user-specified behavior on the operation of a

ScanInterface.
iPrefix Sets the iPrefix path that is used to compute the

effective_icl_instance_path for the iCall command and other
PDL commands.

iProc Specifies a PDL procedure that can run later when referenced
by the iCall command.

iProcsForModule Specifies the ICL module that subsequent iProc commands
refer to and optionally its PDL name space.

iRead Adds a read operation to the command queue that is solved
by the next iApply command.

iRelease Releases a resource previously taken by iTake.
iReset Adds a sequence of actions to the current pattern set that is

required to set the ICL network into the reset state.
iRunLoop Creates a vector loop of a given duration.
iTake Takes ownership of ICL resources to prevent the retargeting

software from altering their states during the processing of
subsequent iApply commands or during the processing of
concurrent iProcs in iMerge parallelization

iUseProcNameSpace Within a pattern set, selects a PDL name space valid for all
subsequent PDL commands.

iWrite Adds a write operation to the command queue that is solved
by the next iApply command.

add_clocks Adds ICL system clocks. Also used for adding non-ICL
clocks. Needed to define a test clock off-state other than 0,
which is the default.

add_input_constraints Constrains primary input pins to certain values during the
ATPG process.

close_pattern_set Finalizes and closes the currently open pattern_set.

Table 3-3. PDL Retargeting Command Summary (cont.)
Command Description

Tessent™ IJTAG User’s Manual, v2022.4104

A Typical PDL Retargeting Flow
Introspection and Reporting Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Introspection and Reporting Commands
The following table provides a summary of all relevant ICL and PDL introspection commands
as well as all IJTAG related reporting commands available in Tessent Shell.
Commands specific to ICL extraction are listed separately in “ICL Extraction Commands” on
page 128.

All Tessent Shell reporting commands start with “report_”, whereas all introspection commands
returning information about objects start with “get_”. Commands starting with “delete_”
remove objects from the tool memory.

delete_patterns Deletes the pattern set currently in memory.
open_pattern_set Opens an empty named pattern_set and makes it ready to be

populated with the specified PDL commands.
read_icl Reads ICL files into the internal ICL database.
reset_open_pattern_set Clears the content of the currently open pattern set.
set_context Specifies the current usage context of Tessent Shell. You

must set the context before you can invoke most other
commands in Tessent Shell.

set_current_design Specifies the top level of the design or ICL module from
which the data module is elaborated downward for all
subsequent commands until reset by another execution of this
command.

set_ijtag_retargeting_options Enables you to configure different aspects of IJTAG
retargeting.

set_module_matching_options Defines the prefixes and suffixes or regular expressions to
use when matching an ICL module name to a design module
name during the ICL Extraction flow.

set_system_mode Specifies the system mode you want the tool to enter.

Table 3-4. ICL Introspection and Reporting Command Summary
Command Description
delete_icl_modules Deletes the specified ICL modules from memory.
delete_iprocs Deletes the specified list of iProcs attached to the ICL

module that was specified by the last iProcsForModule
command.

Table 3-3. PDL Retargeting Command Summary (cont.)
Command Description

A Typical PDL Retargeting Flow
Introspection and Reporting Commands

Tessent™ IJTAG User’s Manual, v2022.4 105

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

get_icl_fanins Returns a collection of all requested objects found in the
fan-in of the specified pin or port objects.

get_icl_fanins_in_module Returns a collection of all requested objects found in the
fan-in of the specified icl_pin_in_module or icl_port
objects. This can be used even if the current design has not
yet been set.

get_icl_fanouts Returns a collection of all requested objects found in the
fanout of the specified ICL pin, or port objects.

get_icl_fanouts_in_module Returns a collection of all requested objects found in the
fanout of the specified icl_pin_in_module or icl_port
objects. This can be used even if the current design has not
yet been set.

get_icl_instances Returns a collection of all ICL instances instantiated relative
to the current design that match the specified name_patterns
list.

get_icl_modules Returns a collection of all ICL modules that match the
specified name_patterns list.

get_icl_module_parameter_list Returns the list of parameters of an ICL module.
get_icl_module_parameter_value Returns the value of the parameter on the specified module.
get_icl_objects Returns a collection of all requested objects matching

various criteria like name patterns, object types, associated
ICL objects, attribute expressions, and so on.

get_icl_pins Returns a collection of all hierarchical ICL pins instantiated
relative to the current design that match the specified
name_patterns list.

get_icl_ports Returns a collection of all ports on a given module that
match the specified name_patterns list.

get_icl_scan_interface_list Returns the names of the scan interfaces in an existing ICL
top module, if the ICL top module exists. If the ICL top
module does not exist, it returns the names of the scan
interfaces that are created in the new ICL top module by ICL
extraction after the add_icl_scan_interfaces command has
been used to specify the scan interfaces.

get_icl_scan_interface_port_list Returns the names of the ports for the specified scan
interface in an existing ICL top module, or the names of the
ports for the specified scan interface that are created in the
new ICL top module during ICL extraction.

Table 3-4. ICL Introspection and Reporting Command Summary (cont.)
Command Description

Tessent™ IJTAG User’s Manual, v2022.4106

A Typical PDL Retargeting Flow
Introspection and Reporting Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

get_icl_scope Returns the current ICL scope, for example, the instance
path name for which an iCall was issued.

get_iclock_list Returns a list of ICL port and pin names on which you have
issued an iClock command.

get_iclock_option Returns the effective or specified source, frequency
multiplier, or frequency divider values for
the specified icl_port_or_pin_name.

get_ijtag_retargeting_options Returns the value of the specified option either set by a
set_ijtag_retargeting_options command or its default value.

get_iproc_argument_default Returns the default value for the specified arg_name of the
specified proc_name attached to the ICL module specified
by the last iProcsForModule command.

get_iproc_argument_list Returns the list of argument names for the specified iProc
attached to the ICL module that was specified by the last
iProcsForModule command.

get_iproc_body Returns the body for the specified iProc attached to the ICL
module that was specified by the last iProcsForModule
command.

get_iproc_list Returns a Tcl list of iProcs attached to the ICL module
specified by the last iProcsForModule command.

get_open_pattern_set Returns the name of the currently open pattern set.
get_pattern_set_data Returns requested details of the internal representation of

the specified pattern set.
report_design_sources Reports the pathnames or file extensions previously

specified with the set_design_sources command.
report_icl_modules Reports loaded and extracted ICL modules in either ICL

syntax or human-readable form.
report_iclock Reports the ICL ClockPort specified by the iClock

commands as well as their extracted sources
and cumulative freqMultiplier and freqDivider values.

report_ijtag_logical_connections Reports the logical paths that exist within the current design
between the specified source and destination pins/ports, as
well as all connections from or to the specified pins/ports. If
no pin or port connections are specified, all logical
connections are listed.

Table 3-4. ICL Introspection and Reporting Command Summary (cont.)
Command Description

A Typical PDL Retargeting Flow
Introspection and Reporting Commands

Tessent™ IJTAG User’s Manual, v2022.4 107

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_ijtag_retargeting_options Reports the types and values of each option either set by a
set_ijtag_retargeting_options command or their default
values.

report_module_matching With the -icl option, this command reports the identified
name matching between the ICL modules and Verilog
modules during the ICL Extraction flow.

report_module_matching_options Reports the current settings defined by the
set_module_matching_options command.

report_pattern_sets Creates a human-readable report of a specified pattern set or
of all pattern sets.

Table 3-4. ICL Introspection and Reporting Command Summary (cont.)
Command Description

Tessent™ IJTAG User’s Manual, v2022.4108

A Typical PDL Retargeting Flow
Introspection and Reporting Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.4 109

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
ICL Extraction

The goal of ICL Extraction, or more precisely ICL network extraction, is the automated
generation of the interconnection information of the various IJTAG building blocks
(instruments, SIBs, TDRs, and so on) from the flattened netlist of a design.
The output of the extraction process is the interconnect information of the instantiated IJTAG
building blocks in ICL format. You can use the Tessent Shell command extract_icl to perform
the ICL extraction. Refer to extract_icl in the Tessent Shell Reference Manual for a full
description of the command. However, if the IJTAG network was manually inserted or using
other methods, then this chapter describes how you can extract the ICL. See also “Top-Down
and Bottom-Up ICL Extraction Flows.”

This flow is used in an environment where the ICL is available only for the IJTAG building
blocks. There is no ICL for the network that connects all ICL blocks, although the Verilog
gate-level design contains all these connections. It is the task of Tessent IJTAG in this flow to
generate the missing ICL from the design data and netlist setup information.

Once the missing ICL has been generated, the PDL retargeting flow using this generated ICL
file commences without any change.

ICL Extraction has a number of specific design rule checks, some of which are supported in
Tessent Visualizer for graphical debug. These design rule checks ensure that the generated ICL
is syntactically and semantically correct.

The following topics are described in this chapter:

ICL Extraction Flow . 111
Required Inputs for ICL Extraction . 112
Optional Inputs for ICL Extraction. 112

Performing ICL Extraction . 112
Top-Down and Bottom-Up ICL Extraction Flows . 115

Top-Down ICL Extraction Flow. 116
Bottom-Up ICL Extraction Flow . 117

ICL Extraction Design Rule Checks . 118
Debugging DRC Violations With Tessent Visualizer . 119

How to Influence the ICL Extraction Process. 120
How to Influence ICL Extraction Through Commands . 120
How to Influence ICL Extraction Through ICL Module Attributes. 124

ICL Network Extraction of Parameterized Modules . 127

Tessent™ IJTAG User’s Manual, v2022.4110

ICL Extraction

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ICL Extraction Commands. 128

ICL Extraction
ICL Extraction Flow

Tessent™ IJTAG User’s Manual, v2022.4 111

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ICL Extraction Flow
The main steps of the ICL Extraction Flow and the corresponding commands that implement
the flow are described in this section.
Figure 4-1 illustrates the steps of the basic Tessent IJTAG ICL Extraction flow you perform
with Tessent Shell.

Figure 4-1. Generic ICL Extraction Flow

Required Inputs for ICL Extraction . 112
Optional Inputs for ICL Extraction. 112

Tessent™ IJTAG User’s Manual, v2022.4112

ICL Extraction
Required Inputs for ICL Extraction

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Required Inputs for ICL Extraction
To perform ICL extraction, you must provide information about your design to Tessent Shell.
The following inputs are required:

• Design Data — Currently the Verilog gate-level netlist.

• Library — The ATPG library.

• ICL Data — The ICL descriptions of the IJTAG building blocks instantiated within the
design. The ICL descriptions may contain special extraction attributes that direct the
ICL extraction process.

Optional Inputs for ICL Extraction
In addition to the required design information listed above, you can provide certain optional
inputs that can influence the ICL extraction process.

• Test Procedure File or Input Constraints — The purpose is to set the design into a
mode that sensitizes the paths between the IJTAG building blocks.

For example, you have a MUX that is in the path between two IJTAG building blocks,
but the MUX itself is not an IJTAG building block described in an ICL file. The select
input of the MUX must be set to the necessary value to sensitize the path between the
connected IJTAG building blocks.

• Extraction modifiers – Through commands in Tessent IJTAG you can influence how
the ICL extraction processes are performed. Through these commands you can, for
example, instruct Tessent IJTAG to ignore a loaded ICL module, or to declare to the tool
how to deal with a black box instance in your Verilog design.

Performing ICL Extraction
The following command sequence provides the basic Tessent Shell commands to perform ICL
extraction.

Prerequisites
• A Verilog design netlist

• One or more cell libraries

• ICL primitives

Procedure
1. In a shell, invoke Tessent Shell:

% tessent -shell

ICL Extraction
Performing ICL Extraction

Tessent™ IJTAG User’s Manual, v2022.4 113

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After invocation, the tool is in an unspecified setup mode. You must set the context
before you can invoke the ICL extraction commands.

2. Set the context to IJTAG mode using the set_context command as follows:

set_context patterns -ijtag

3. Read in the design netlist using the read_verilog command. For example:

read_verilog chip.v

4. Read in one or more cell libraries into the tool using the read_cell_library command as
follows:

read_cell_library ./libraries/tessentCellLib

5. Read in the ICL for the primitives using the read_icl command. For example:

read_icl ./data/icl_primitives/sib1.icl

Upon reading the ICL data, the tool performs ICL semantic rule checks on this data.

6. If needed, specify the acceptable prefixes and suffixes or regular expressions to use
when matching an ICL module to a design using the set_module_matching_options
command. For example:

set_module_matching_options -prefix_pattern_list {mycore_} \
-suffix_pattern_list {_[0-9]+} -regexp

7. Set the top-level of the design using the set_current_design command. For example:

set_current_design chip

The order of reading the design netlist files, library files, and ICL files is not important
to the tool. However, once the top-level of the design is set, Tessent IJTAG matches the
ICL module names against the design module names as the first step in the ICL
extraction process. Any ICL or design file read in afterward is not considered. Use a
subsequent “set_current_design” command in this case.

8. Depending on your design style, specify any additional parameters including the
following commands:

add_black_box

add_clocks

add_input_constraints

9. If needed, specify the test procedure file that contains the test_setup procedure using the
set_procfile_name command. For example:

set_procfile_name procedures/test_setup.proc

10. If needed, specify any additional commands or attributes that influence ICL extraction.
Commands include the following:

add_ijtag_logical_connection

Tessent™ IJTAG User’s Manual, v2022.4114

ICL Extraction
Performing ICL Extraction

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_icl_scan_interfaces

set_icl_scan_interface_ports

You can insert additional ICL extraction related attributes into modules, using the
command:

set_attribute_value

11. Change the system mode to analysis to run the ICL extraction using the
set_system_mode command as follows:

set_system_mode analysis

During the transition from setup to analysis mode, the tool performs ICL design rule
checking and special ICL extraction related design rule checks that essentially validate
the ICL function-aware tracing between the ICL modules. Once in analysis mode, the
generated ICL module is available. You may proceed with PDL retargeting or save the
generated ICL module.

12. Write the extracted ICL results to an external file using the write_icl command:

write_icl -output_file generated_chip.icl
-modules [get_single_name [get_current_design]] -hierarchical -replace

ICL Extraction
Top-Down and Bottom-Up ICL Extraction Flows

Tessent™ IJTAG User’s Manual, v2022.4 115

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Down and Bottom-Up ICL Extraction
Flows

ICL extraction is performed automatically in the “patterns -ijtag” context when the system
mode is switched to analysis and no ICL module has been read in that matches the top-gate level
module name.
ICL extraction is supported in both -no_rtl and -rtl contexts. In the patterns -ijtag context, the
-rtl switch is inferred if you come from the dft context and use the -rtl option when setting the
dft context. When you enter the patterns -ijtag context from the unspecified context, the -no_rtl
option is assumed. ICL extraction makes use of quick synthesis to convert any RTL in the fan-in
or fanout of ICL modules. See the description of the synthesize_before_analysis and the
exclude_from_synthesis module attributes in the Tessent Shell Reference Manual if you are
using a test_setup procedure for ICL extraction.

Tessent Shell supports the following ICL extraction flows:

• Top-Down ICL Extraction Flow — This flow generates a flat ICL description of the ICL
network connecting all loaded ICL modules. The resulting set of ICL modules consists
of all initially provided ICL modules, plus a single, flat, extracted ICL module
representing the ICL interconnect network across all design hierarchy boundaries.

• Bottom-Up ICL Extraction Flow — In this flow, you extract ICL modules one by one
from the leaf level instruments to the top. Stepping through the design hierarchy, one
ICL module is generated for each hierarchy step, building the ICL netlist hierarchy
bottom-up to the top-level design module.

In both flows, Tessent IJTAG matches the loaded ICL modules against the loaded design
modules. This matching is by name of the module, taking uniquifications and other name
manipulations into account. The set_module_matching_options command enables the
specifications of how the ICL and design module names should be matched.

When issuing set_current_design in setup mode, Tessent IJTAG tests if there is an ICL module
name that matches the name of the chosen top-level design module under the set matching
options. ICL Extraction is automatically enabled if none of the ICL modules names in the
database match the name of the specified current design. If there is a matching module name, no
extraction is triggered.

Once Tessent IJTAG has determined that the current flow requires ICL Extraction a list of
matched ICL and Verilog module names can be reported with the 'report_module_matching -icl'
command and option.

You can also introspect this decision of Tessent IJTAG with the 'get_context -extraction'
command and option that returns “1" if you are in an ICL extraction flow and “0” otherwise.

The extraction of ICL itself is part of switching to the analysis mode from setup mode. The tool
performs initial DRC including the application of test_setup and constraints, matches the ICL

Tessent™ IJTAG User’s Manual, v2022.4116

ICL Extraction
Top-Down ICL Extraction Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

modules, instances, and ports to the corresponding design entities, and uses a tracing-based
algorithm to identify the design components that implement the ICL access network. This
tracing is performed in the flat model of the design netlist.

You can provide additional data to make this tracing work correctly, for example, declared
clocks, a test setup procedure, or input constraints on top-level IO ports and on internal (cut)
points. You can also declare logical connections between points in the design that define where
Tessent IJTAG should continue the extraction process, or define which modules to ignore
during ICL extraction.

Once the tracing completes successfully, an ICL module or file can be written that represents
the identified ICL access network. The ICL data generated by the extraction process is readily
available for subsequent PDL retargeting. It is not required to read the generated ICL file in
setup mode and once more go to analysis mode.

ICL extraction differentiates between input constraints that were applied at the current top-level
of the design and constraints that were applied internally to the design. All these constraints
were provided to Tessent IJTAG before ICL extraction was started. It is expected that these
constraints are fulfilled also during PDL retargeting, that is, the design setup during ICL
extraction is a compatible subset of the design setup during PDL retargeting.

Tessent Shell enforces this automatically by using the add_input_constraints command for all
current top-level constraints listed in the attributes. Non-top-level constraints are not enforced.
However, in future, Tessent IJTAG may check that the internal constraints set during ICL
extraction are satisfied by the overall design setup.

Top-Down ICL Extraction Flow . 116
Bottom-Up ICL Extraction Flow . 117

Top-Down ICL Extraction Flow
The top-down flow calculates the IJTAG building block connections starting at the top module
of a chip.
Depending on the options used during write_icl, the resulting ICL connection file can contain
the connections and instances of all IJTAG building blocks of the complete chip.

For all practical purposes, the flow is identical to the PDL retargeting flow described in A
Typical PDL Retargeting Flow. The only difference is that not all ICL modules that provide
ICL interconnections were loaded.

ICL Extraction
Bottom-Up ICL Extraction Flow

Tessent™ IJTAG User’s Manual, v2022.4 117

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Bottom-Up ICL Extraction Flow
The bottom-up flow calculates the IJTAG building block connections starting at the lower level
modules of the design and writes the IJTAG building block connectivity within these
lower-level modules to ICL connection files.
The module of interest is set through the set_current_design Tessent Shell command. It is
possible to load the Verilog netlist description for the entire design, although the ICL extraction
is done only for a submodule that is defined through set_current_design. The hierarchy level
specified with the set_current_design command applies to both the ICL and the Verilog.

Once the new ICL connection files are extracted and saved, they are then used as input in the
next step to calculate the connections for the next higher level of the design. This command
sequence must be repeated for each desired design module level.

Tessent™ IJTAG User’s Manual, v2022.4118

ICL Extraction
ICL Extraction Design Rule Checks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ICL Extraction Design Rule Checks
ICL extraction has additional design rule checks (DRCs) that are performed at the beginning of
the extraction process and after each loaded ICL module passes its syntax and semantics checks.
After the ICL module for the instrument interconnection has been extracted from the design
description, the newly generated module and all loaded modules must pass the remainder of the
ICL syntax and semantics checks.
The ICL extraction DRCs start with the letter 'I', followed by a number. For example, DRC I1
performs consistency checks on each design module that was mapped to an ICL module during
the execution of the “set_current_design” command. This includes verifying that all ports on the
ICL module are present in the corresponding Verilog module. The reverse is not necessary
because the Verilog design module usually has more ports than the ICL module.

A common ICL extraction DRC violation is I2. This is one of the main tracing checks. It
verifies that a connection can be identified from an ICL-attributed pin to another ICL-attributed
pin or a top-level port. An ICL-attributed pin is a pin of a Verilog design module instance that
has been mapped to an ICL module instance and pin.

To start debugging ICL extraction DRC violations, you can use the following ICL reporting
command:

report_module_matching -icl

The report of this command is available once the set_current_design command has completed
successfully, before the ICL extraction is performed at the beginning of set_system_mode
analysis. The report shows which ICL and Verilog modules have been matched by name and
under consideration of the prefix and suffix regular expressions (if you specify the -regexp
switch) of the 'set_module_matching_options' command. Below is an example:

// design module design instance ICL file ICL module
// ------------- --------------------------- ------------------------------- --------
// chip_JTAP chip/JTAP_INST ../chip_JTAP.icl chip_JTAP
// sib chip/sib_top_designConfigReg ../Libraries/ijtag/sib.icl sib
// sib chip/sib_piccpu_1 ../Libraries/ijtag/sib.icl sib
// sib chip/sib_piccpu_2 ../Libraries/ijtag/sib.icl sib
// tdr1 chip/piccpu_1/tdr ../Libraries/ijtag/tdr1_mod.icl tdr1
// tdr1 chip/piccpu_2/tdr ../Libraries/ijtag/tdr1_mod.icl tdr1
// tdr1 chip/top_designConfigReg/tdr ../Libraries/ijtag/tdr1_mod.icl tdr1

If you find anything suspicious, please revisit the set_module_matching_options or
double-check that you have loaded all ICL modules you require for the design. Start with the
command report_module_matching_options to check the options set for the tool for matching
the names of modules between the design and the ICL descriptions.

You can influence the ICL extraction process through commands in Tessent Shell and through
ICL and design attributes. Some of these attributes can be used to resolve I2 DRC violations.

ICL Extraction
Debugging DRC Violations With Tessent Visualizer

Tessent™ IJTAG User’s Manual, v2022.4 119

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This is explained later in this chapter in the section “How to Influence the ICL Extraction
Process”.

Debugging DRC Violations With Tessent Visualizer . 119

Debugging DRC Violations With Tessent Visualizer
You can also debug some ICL extraction DRC violations using Tessent Visualizer. This is
especially helpful for the I2 connection tracing DRC.

Prerequisites
DRC violations reported by Tessent IJTAG

Procedure
1. Open Tessent Visualizer using the open_visualizer command.

2. Use the Instance Browser and DRC Browser tabs to find the ICL extraction DRC
violations of interest. Grouping the DRC violations by instance and applying
appropriate filters helps expose the specific design objects associated with each
violation. From the DRC Browser, right-click a violation in the table and choose
“Visualize DRC” from the popup window. The instances associated with the violation
are displayed in the Flat Schematic along with a description of the violation.
Alternatively, you can use the command “analyze_drc_violation.” at the tool prompt in
the Transcript tab.

Figure 4-2. ICL Rule Violation Debug in Tessent Visualizer

Tessent™ IJTAG User’s Manual, v2022.4120

ICL Extraction
How to Influence the ICL Extraction Process

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Influence the ICL Extraction Process
You can influence how ICL extraction is being performed through several attributes associated
with ICL or design modules and instances, as well as commands of Tessent IJTAG.
Using these attributes, you can, for example, ensure that ICL-defined data ports may be tied off,
preventing the tool from issuing an I2 DRC violation. Many of the commands and attributes you
use and define here are translated into the ICL syntax of the generated ICL module.

How to Influence ICL Extraction Through Commands . 120
How to Influence ICL Extraction Through ICL Module Attributes 124

How to Influence ICL Extraction Through
Commands

You can use Tessent Shell commands to influence ICL extraction.
With the set_module_matching_options command, you tell how the ICL module names and the
design module names can be matched, as shown earlier in the “ICL Extraction Design Rule
Checks” section. In the following sections, additional commands are described through which
you can influence the ICL extraction process and the resulting ICL module.

How to Map ICL Module Names and Design Module Names
The matching of ICL modules and design modules is done through the module names.
Unfortunately, there are many reasons why an ICL module name and a design module name
might not match exactly. Unification of names as part of the synthesis process is a major
contributor to these name mismatches. Fortunately, these name modifications follow specific
patterns.

Typically, synthesis adds a prefix or suffix to the design module’s original name. For example,
names are changed from “MyModule" to “MyModule_X1”, to “MyModule_X2”, and so on.
Using the Tessent Shell set_module_matching_options command you can tell the tool these
module name mapping patterns specifically for your design. For the example above, you would
use the following:

set_module_matching_options -suffix_pattern_list {_X[0-9]+} -regexp

With this command, option, and parameter, you tell the tool to expect module name changes
that add “_X" followed by a number that is at least one digit. Now assume that there is a second
module name mapping pattern in your design. This second pattern may change the names as
follows: “MyModule" to “MyModule_Y1", to “MyModule_Y2", and so on. Because you want
to add another module matching option in addition to the first one, make sure you use the
“-append" switch. Without the -append switch, the second command invocation overwrites the
first one.

ICL Extraction
How to Influence ICL Extraction Through Commands

Tessent™ IJTAG User’s Manual, v2022.4 121

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_module_matching_options -suffix_pattern_list {_Y[0-9]+} -regexp -append

Now any design module name that matches either mapping pattern can be recognized and
subsequently be mapped to the ICL module name “MyModule". Use the
set_module_matching_options command before you use set_current_design, because part of
setting the current design is creating the ICL to design the module name mapping table.

Once you have set the current design, you can learn about the ICL and design module matching
the tool has identified by using the report_module_matching command, with the “-icl" option.

How to Add Top-Level Ports
As mentioned earlier, ICL Network Extraction uses tracing to identify design instances and
design ports that should be included in the generated ICL description. It is possible that
additional data ports, like global test mode signals, should be added to the ICL top-level
module, but these ports are not reachable through tracing. To declare to the ICL Extraction
functionality to include such additional top-level ports, Tessent Shell provides the command
add_icl_ports. With this command, you can add ports of different types, like DataInPort,
DataOutPort, ScanInPort, or ScanOutPort.

If you have add_clocks -pulse_always defined on any port of your current design, it is defined
as a ClockPort in the extracted ICL even if it has not been reached by tracing from a ClockPort
of an instantiated module with matching ICL description.

You can also trigger the creation of differential clocks in the new ICL top-level module. Use the
add_input_constraints and add_clocks commands as shown in the following example:

add_input_constraints -equivalent CLKP -invert CLKN
add_clocks 0 CLKP -period 50ns

By default, the tool uses the port with the off-state “0” as the ordinary ClockPort in ICL
(“representative port”), and uses the port with the off-state “1” as the ClockPort with the
“DifferentialInvOf” property (“associated port”). Connecting the ports to other ICL ClockPorts
or to internal clocks that unambiguously determine their roles in the differential group overrides
the default.

How to Ignore a Design Instance During ICL Extraction
Assume now that the module matching report shows a design module instance that, for
whatever reason, should be excluded from the ICL extraction process, but other instances of the
same module should be considered. You can do this by setting the attribute
ignore_during_icl_extraction to “true” for this instance from within Tessent Shell before you
enter analysis mode. In the example below, if you want to exclude the design instance named
"MyBlock4_ignore" from ICL extraction, do the following:

set_attribute_value [get_instance MyBlock4_ignore]
-name ignore_during_icl_extraction -value true

Observe the usage of the get_instance command, not the get_icl_instance command.

Tessent™ IJTAG User’s Manual, v2022.4122

ICL Extraction
How to Influence ICL Extraction Through Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Extract ICL From an Incomplete Design Description
Another group of commands that influence the ICL extraction process are related to logical
connections. Through a logical connection, you can influence the design netlist tracing by
connecting an arbitrary design module instance pin (source) with another design module
instance pin (target). When the design netlist tracing algorithm encounters such a source during
forward tracing, it continues with the designated target location, ignoring the actual design
netlist structure. Similarly, during backward tracing the process continues with the designated
source location when a target pin was reached. The source and the target location may also be
ports.

Use logical connections to move forward with your IJTAG work, for example, for incompletely
defined designs. Assume, for example, a case in which you have design module black boxes on
the ICL extraction path. Using logical connections you can connect the ICL relevant pins of the
black boxes, allowing the ICL extraction tracing to go “through" the design black box. Another
example is an incompletely defined ICL network in your existing top-level module. Using
logical connections you can “patch" the missing pieces until the design is complete.

The ICL network created through the ICL extraction process uses both sets of data, the one
extracted from the design description as well the declared logical connections. In case of
discrepancies, you have logical connections as well as connections in the design between the
same pins, the declared logical connections take precedence.

In the example below, you instruct the ICL extraction process to logically connect the instance
pin U1/Y with the instance pin U2/A.

add_ijtag_logical_connection -from U1/Y -to U2/A

Figure 4-3. Logical Connection Example

Instance pin name denotes the instance pin in the design. Therefore, it must be expressed in the
usual instance-pin-path name syntax of the design description, that is, by using the slash
character (/) – not the IJTAG method of using the period (.) as a hierarchy separator. This
add_ijtag_logical_connection command creates a connection in the newly generated top-level
ICL module, from the ICL instance pin mapped to U1/Y to the ICL instance pin mapped to U2/
A. This connection is created irrespective of the actual design connections, if any.

ICL Extraction
How to Influence ICL Extraction Through Commands

Tessent™ IJTAG User’s Manual, v2022.4 123

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Matching the add_ijtag_logical_connection command, there is a
delete_ijtag_logical_connection command and a report_ijtag_logical_connections command.
Assume a report like the following:

report_ijtag_logical_connections

// IJTAG Logical Connections:
// From Source To Destination
// ============= =====================
// /i1/i/dout[1] /i2/i/din[1]
// /i2/i/dout[1] /i1/\escaped/din[45]
// /tap1_I1/tdo tdo
// tdi /pll1_I1/si1
// tdi /sib1_IPLL/si
// tdi /tap1_I1/tdi

Besides reporting, you can introspect the logical connections using attributes placed on the pins
(ports) you used in the add_ijtag_logical_connection command. For example, following the
above example, the commands

get_attribute_value_list [get_pins /i2/i/din[1]] \
-name ijtag_logical_hier_connection_from_src

get_attribute_value_list [get_ports /tdi] \
-name ijtag_logical_hier_connection_to_dst

compute the following results

{{/i1/i/dout[1]}}

and

{/pll1_I1/si1 /sib1_IPLL/si /tap1_I1/tdi}

respectively.

To declare which logical connection to delete usually you would use both a source and a target
design module instance pin name. Deleting multiple logical connections at once is also possible.
Deleting all logical connections originating from “tdi" of this example can be accomplished by
using only the source option of the command:

delete_ijtag_logical_connections -from tdi

report_ijtag_logical_connections

// IJTAG Logical Connections:
// From Source To Destination
// ============= =====================
// /i1/i/dout[1] /i2/i/din[1]
// /i2/i/dout[1] /i1/\escaped/din[45]
// /tap1_I1/tdo tdo

Tessent™ IJTAG User’s Manual, v2022.4124

ICL Extraction
How to Influence ICL Extraction Through ICL Module Attributes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

It is important to understand that the declared logical connection only influences the design
tracing during ICL extraction. It does not affect the other operations that are part of the ICL
extraction process. In particular, any design simulations performed during I5 checks, such as
checking for blocked or controlling paths, use the unchanged design description.

How to Add Scan Interface Data to the Extracted Module
The ICL extraction process determines the port name and ICL port function for all module ports
identified during the ICL extraction process. You can explicitly specify ScanInterfaces or the
tool can infer them. See “ScanInterfaces and Associations Between Ports and ScanInterfaces”
on page 35 for more details.

To explicitly provide this information, you can use the add_icl_scan_interfaces and
set_icl_scan_interface_ports commands. For a list of introspection and extraction commands,
see “ICL Introspection and Reporting Command Summary” on page 104 and “ICL Extraction
Command Summary” on page 128.

Assume your newly created top-level ICL module needs the following ScanInterface syntax:

ScanInterface I1 {

Port P1 ;

Port P2 ;

}

ScanInterface I2 {

Port P1 ;

Port P4 ;

}

You would use the following commands after the design has been set, but before switching to
analysis mode:

add_icl_scan_interfaces { I1 I2 }

set_icl_scan_interface_ports -name I1 -ports {P1 P2}

set_icl_scan_interface_ports -name I2 -ports {P1 P4}

Of course, all used port names must be valid ports of the ICL module that is created through
ICL extraction. The created scan interface must follow all rules defined in the standard.

How to Influence ICL Extraction Through ICL
Module Attributes

This section describes how you can use Tessent Shell attributes to influence ICL extraction.

ICL Extraction
How to Influence ICL Extraction Through ICL Module Attributes

Tessent™ IJTAG User’s Manual, v2022.4 125

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The attributes related to ICL extraction fall into one of two categories. The first category
contains attributes that instruct Tessent IJTAG to verify a particular ICL network structure. The
first implemented attribute of this category makes the tool validate that a certain ICL port is
connected to a top-level port. Use this attribute if, for example, the port must be controlled or
observed directly at top-level ports, without an intermediate data or scan register.

The second category of attributes may be used to prevent I2 DRC violations, as follows: During
ICL extraction, if any port of an ICL-attributed design module instantiated on the current design
cannot be traced to a port on the top level or on another ICL-attributed module, an I2 violation is
issued. To bypass DRC I2 violations, an attribute called connection_rule_option can be
specified in the ICL file for ICL ports to indicate that the IJTAG logic driven by or driving such
ports can be unused for ICL extraction tracing. The “connection_rule_option” attribute also has
an impact on the previous hierarchical tracing of the input and output cones. If defined on an
input port with the attribute value “allowed_no_source”, no hierarchical tracing is performed at
that input port and, therefore, no synthesis is done in the input cone of that port. If defined on an
output port with the attribute value “allowed_no_destination”, no hierarchical tracing is
performed at that input port and, therefore, no synthesis is done in the output cone of that port. If
synthesis is required for those cones, it has to be manually defined by defining
“synthesize_before_analysis” attributes on the synthesis-required design modules.

A typical example is a TAP controller with multiple return scan in ports from the logic. You
may have only one ICL module definition in your ICL design library, and connect the TAP in
different designs differently. Using these attributes enables Tessent IJTAG, during the ICL
extraction phase, to waive any I2 connection issues for ports that your current design is not
using, but are still declared in your ICL module definition. Nonetheless, these attributes should
be used with care, because you might waive a valid design rule violation.

The allowed values for the connection_rule_option attribute are described below in Table 4-1.
Table 4-1. Values for ICL Extraction Attribute connection_rule_option

Attribute Value Port
Direction

Allowed Simulation
Value
(stable_after_setup)

Description

allowed_no_source input 0/1/Z/X The port can be floating or
be driven by any logic. No
synthesis happens in the
input cone of this port

allowed_tied input 0/1 The port can be tied to
low/high or be driven by
any logic with a
simulation value of 0 or 1
in stable_after_setup
simulation context

Tessent™ IJTAG User’s Manual, v2022.4126

ICL Extraction
How to Influence ICL Extraction Through ICL Module Attributes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

As an example, you may want to allow a data-in port named “din” of the ICL module “block1”
to be constrained to high. Such a constraint in the Verilog netlist would cause a tracing violation
because the data-in connection from “din” towards the inputs of the design would have been
blocked. Using the correct value for the connection_rule_option attribute in the ICL module
waives this I2 violation. In this example, you must add the following ICL attribute to the ICL
port function of the ICL module definition:

Module block1 {

…

DataInPort din { Attribute connection_rule_option = "allowed_tied_high"; }

…

}

The resulting top-level ICL created by the ICL extraction is then for example:

Module top {

…

allowed_tied_low input 0 The port can be tied to low
or be driven by any logic
with a simulation value of
0 in stable_after_setup
simulation context

allowed_tied_high input 1 The port can be tied to
high or be driven by any
logic with simulation
value of 1 in
stable_after_setup
simulation context

allowed_no_destination output 0/1/Z/X The port can be open or
connected to any logic
regardless of simulation
values. No synthesis
happens in the output cone
of this port

must_connect_to_top_port input
and
output

N.A. Enables an extra DRC
test, validating that the
port is connected to the
top-level IO ports of the
design

Table 4-1. Values for ICL Extraction Attribute connection_rule_option (cont.)
Attribute Value Port

Direction
Allowed Simulation
Value
(stable_after_setup)

Description

ICL Extraction
ICL Network Extraction of Parameterized Modules

Tessent™ IJTAG User’s Manual, v2022.4 127

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Instance block1_I1 Of block1 { InputPort din = 'b1; }

…

}

ICL Network Extraction of Parameterized
Modules

ICL supports the extraction of generic or parameterized modules.
Consider the following parameterized ICL example:

Module bus {
 DataInPort datain[$MSB:0] ;
 DataOutPort dataout { Source RegD[$MSB:0] ; }
 <…>
 Parameter MSB = 5 ;
}

ICL enables every instance of module "bus" to either proceed with the default value of 5 for
MSB, seen below in the instance "bus_inst1", or to overwrite the parameter value during
instantiation as shown in the next instance "bus_inst2".

Instance bus_inst1 Of bus {
 InputPort datain[5:0] = toplevel_datain[15:10] ;
}

Instance bus_inst2 Of bus {
 Parameter MSB = 7 ;
 InputPort datain[7:0] = toplevel_datain[17:10] ;
}

Although both instances are derived from the same ICL module, the width of the data input port
is 6 bits for bus_inst1, but 8 bits for bus_inst2.

This type of parameterized module is also known in the design space, including the possibility
to overwrite the default value. The following is a (partial) example that matches the previous
example:

module bus (datain, dataout, <…>);
 parameter MSB = 5 ;
 input [MSB:0] datain ;
 <…>
endmodule

With the following instantiations:

bus bus_inst1 (.datain(toplevel_datain[15:10]), <…>) ;

and

Tessent™ IJTAG User’s Manual, v2022.4128

ICL Extraction
ICL Extraction Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

bus #(.MSB(7)) bus_inst2 (.datain(toplevel_datain[17:10]), <…>);

ICL Network Extraction recognizes these design parameters and correctly generate the
corresponding ICL Network, automating the parameter overwrite for each respective instance of
parameterized design modules. In the example shown above, ICL Network Extraction generates
the ICL instantiations bus_inst1 and bus_inst2 from the design example instances shown above.

Currently, you can only use simple expressions in the design modules, as complex parameter
expressions are not supported. Everything that is allowed in ICL is supported.

ICL Extraction Commands
The following table provides a summary of all relevant ICL commands available in Tessent
Shell.

Table 4-2. ICL Extraction Command Summary
Command Description
add_icl_ports Specifies top design ports that are added as DataInPort or

DataOutPort ports in the ICL file generated during ICL
extraction.

add_icl_scan_interfaces Defines the names of one or several ICL ScanInterface
definitions. You must follow through with
set_icl_scan_interface_ports, defining the ports for each of
the added scan interfaces.

add_ijtag_logical_connection Defines a logical connection between a source and a target
instance pin (port). The logical connection becomes part
of the generated ICL module.

delete_icl_ports Undoes the effect of the add_icl_ports command on a
specified list of top-level ports.

delete_icl_scan_interfaces Deletes previously added scan interfaces.
delete_ijtag_logical_connection Deletes previously added logical connections.
extract_icl Checks the ICL connectivity rules between IJTAG

instances and extracts the top-level ICL
module.

get_attribute_value_list Gains access to the values of attributes associated with
ICL or design objects.

get_icl_extraction_options Provides access to the settings specified by the
set_icl_extraction_options command.

get_icl_scan_interface_list Provides introspection into existing or added
ScanInterface names.

ICL Extraction
ICL Extraction Commands

Tessent™ IJTAG User’s Manual, v2022.4 129

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

get_icl_scan_interface_port_list Provides introspection into existing or added ports of
ScanInterfaces.

get_test_end_icall_list Returns the iCalls added to the test_end procedure by the
set_test_end_icall commands. Each iCall is a list
containing the iProc and its arguments.

get_test_setup_icall_list Returns the iCalls added to the test_setup procedure by the
set_test_setup_icall commands. Each iCall is a list
containing the iProc and its arguments.

read_cell_library Reads an ATPG library.
read_icl Reads ICL files into the internal ICL database.
read_verilog Reads the design in Verilog format.
read_vhdl Reads the design in VHDL format.
report_design_sources Returns the pathnames or file extensions previously

specified with the set_design_sources command.
report_icl_extraction_options Provides a human-readable report of the ICL extraction

options.
report_icl_modules Reports loaded ICL modules in either ICL syntax or

human-readable form.
report_ijtag_logical_connections Prints a report of all previously added logical connections.
report_module_matching Reports the identified name matching between the ICL

modules and Verilog modules during the ICL extraction
flow when used with the -icl option.

report_module_matching_options Reports the current settings defined by the
set_module_matching_options command.

set_attribute_value Sets the value of an attribute.
set_current_design Specifies the top level of the design for all subsequent

commands until reset by another
execution of this command.

set_design_sources Specifies where the tool should look for the definition of
undefined modules in the list of files specified by the
read_icl command.

set_icl_extraction_options Customizes the behavior of ICL extraction.
set_icl_scan_interface_ports Defines a list of ports to be added to a scan interface,

previously added by add_icl_scan_interfaces.

Table 4-2. ICL Extraction Command Summary (cont.)
Command Description

Tessent™ IJTAG User’s Manual, v2022.4130

ICL Extraction
ICL Extraction Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_module_matching_options Defines the acceptable prefixes and suffixes or regular
expressions to use when matching an ICL module to a
design module during ICL extraction.

set_procfile_name Specifies a new procedure file for the tool to process at a
later time.

set_test_end_icall Adds an iCall to the start of the test_end procedure.
set_test_setup_icall Adds an iCall to the end of the test_setup procedure.
write_icl Writes out ICL modules created or read in with the

read_icl command to the specified file.

Table 4-2. ICL Extraction Command Summary (cont.)
Command Description

Tessent™ IJTAG User’s Manual, v2022.4 131

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
IJTAG Network Insertion

The IJTAG Network Insertion functionality enables you to connect existing instruments and
insert SIBs, TDRs, and ScanMuxes to create your own IJTAG network.
The IJTAG Network Insertion functionality enables you to connect the network to a TAP
controller or a pre-existing TAP controller in the design. The principle of IJTAG Network
Insertion is straightforward using the create_dft_specification command. The tool reads in the
ICL models for the instrument in the design and inserts a SIB or TDR based on how the ICL
models need to be accessed. You can edit or modify the IJTAG network to suit your design
requirements if necessary.

After you complete your design edits, you can generate the ICL description of the IJTAG
network using the extract_icl command. Note that the tool does not automatically perform ICL
extraction after the IJTAG network insertion because you have the option to perform additional
editing before extraction.

Tessent IJTAG can generate and stitch up its own TAP or it can connect to a pre-existing TAP
controller. If the IJTAG network needs to connect to a pre-existing TAP controller, an ICL for
that TAP controller must be provided.

The IJTAG Network Insertion Flow . 132
IJTAG Network Insertion Example . 133
Placement-Aware IJTAG Stitching . 134
Modification of the IJTAG Network Insertion Flow . 135

How to Edit or Modify a DftSpecification . 137
DftSpecification Examples . 139

Tessent™ IJTAG User’s Manual, v2022.4132

IJTAG Network Insertion
The IJTAG Network Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The IJTAG Network Insertion Flow
This section presents the basic IJTAG Network Insertion flow and lists the corresponding
commands that implement the flow.
Figure 5-1 shows the basic IJTAG Network Insertion flow steps you perform with Tessent
Shell.

Figure 5-1. IJTAG Network Insertion Flow

As Figure 5-1 shows, the IJTAG Network Insertion flow is relatively simple. Because you want
to modify the design files, you have to set the tool to the dft context and then load a cell library,
your design files, and the ICL for all instruments used (which can be loaded automatically for
you). One create_dft_specification command instructs the tool to create the DftSpecification
and the second command, process_dft_specification, runs a validation step before generating
and making any edits to the design files.

As the tool processes the DftSpecification, it writes files to disk in an organized directory
structure. These files include all inserted IJTAG network objects (SIBs, TDRs, and ScanMuxes)
in both ICL and Verilog format and all modified design files. The IJTAG network is

IJTAG Network Insertion
IJTAG Network Insertion Example

Tessent™ IJTAG User’s Manual, v2022.4 133

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

automatically generated using the create_dft_specification command. However, you can always
modify the created DftSpecification using editing commands or using the GUI with
display_specification. As mentioned before, the ICL description of the network is not
automatically generated because you may want to do further design editing. However, because
all data resides in memory, you can perform the subsequent IJTAG Network Extraction step
using the extract_icl command.

IJTAG Network Insertion Example. 133
Placement-Aware IJTAG Stitching . 134
Modification of the IJTAG Network Insertion Flow . 135

IJTAG Network Insertion Example
The following is an example of IJTAG Network Insertion.

set_context dft -no_rtl

##Read the libraries

read_cell_library ./library/adk_complete.tcelllib
read_cell_library ./library/memory.atpglib

##Read the netlist

read_verilog ./netlist/cpu_top_scan_tk.v
read_verilog ./generated/cpu_top_edt.v
read_verilog ./PLL/PLL.v -interface_only

##Read ICL and PDL files before set_current_design

read_icl ./PLL/PLL.icl
dofile ./PLL/PLL.pdl

set_current_design cpu_top

##Set design level before running set_system_mode analysis

set_design_level chip

##Specify the TAP pins using set_attribute_value

set_attribute_value tck_p -name function -value tck
set_attribute_value tdi_p -name function -value tdi
set_attribute_value tms_p -name function -value tms
set_attribute_value trst_p -name function -value trst
set_attribute_value tdo_p -name function -value tdo

set_system_mode analysis

report_icl_modules

##Automatically read any ICL from the directories that verilog is picked from

create_dft_specification
report_config_data

Tessent™ IJTAG User’s Manual, v2022.4134

IJTAG Network Insertion
Placement-Aware IJTAG Stitching

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

##Use display_specification to edit or modify the specification or use editing commands
##if needed.

process_dft_specification

extract_icl

exit

The above example starts by setting context to dft and reading libraries.

The next step is reading in the Verilog netlist that has already been scan inserted and EDT IP
inserted with the PLL module already present. For the PLL module, an ICL and PDL have been
previously created and validated stand-alone. The PDL and ICLs for the PLL are read in next.
The level at which the IJTAG network is inserted is specified using set_design_level. In this
example, the IJTAG network is inserted at the top of the design and so the TAP pins are
specified before running “set_system_mode analysis”.

With create_dft_specification, the ICL for the PLL and the EDT instruments is automatically
configured for insertion into an IJTAG network. This network can be reported using
report_config_data. If the IJTAG network connection is desired then use
process_dft_specification, otherwise use the editing commands or display_specification with
the Config Data Browser to edit. The last step is extract_icl that provides the ICL for the level
that was set using set_current_design.

Placement-Aware IJTAG Stitching
The placement-aware IJTAG stitching feature improves the ordering of elements in the IJTAG
scan chain by using coordinates from a DEF file to create the shortest paths between the nodes.
Without any layout information, the tool alphabetically connects signoff blocks and IJTAG
instruments into one IJTAG chain at each hierarchy level. An alphabetical connection may lead
to layout and routing problems, but placement-aware stitching helps alleviate this problem.

Figure 5-2 compares an example IJTAG network layout with alphabetical stitching (left side)
and placement-aware stitching (right side).

Figure 5-2. Placement-Aware Stitching

IJTAG Network Insertion
Modification of the IJTAG Network Insertion Flow

Tessent™ IJTAG User’s Manual, v2022.4 135

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Placement-aware stitching uses coordinates from a DEF file to generate a DftSpecification
wrapper that orders the IJTAG elements to create the shortest paths between the nodes.
Placement-aware processing is automatic when you load a DEF file. (No special command or
switch is necessary.) The DEF file should provide placement information for the scan-out pins
of the IJTAG instruments. Placement-aware stitching uses the instance coordinates when
coordinates of the scan-out pins are missing.

Stitching starts at the IJTAG scan-out port (ijtag_so or tdo). The tool determines which element
has the closest placement and makes it the next node until all elements are in the chain. If the
coordinates for the scan-out port are missing, stitching starts at the element with coordinates
closest to the (0,0) point.

Note
You can also provide the node coordinates inside Tessent Shell by setting the
“def_x_coordinate” and “def_y_coordinate” attributes.

Modification of the IJTAG Network Insertion Flow
In most usage cases, you can use the basic IJTAG Network Insertion flow. However, the
following flow modifications are available to you, if needed.

Table 5-1. Modifications to the IJTAG Network Insertion Flow
To... Description
Change the output directory
root

By default, the process_dft_specification command writes all edited
design files and generated IJTAG network object files into a sorted
directory structure rooted at ./tsdb_outdir. You can instruct the tool to
use any other directory root using the set_tsdb_output_directory
command; the tool creates it if it does not already exist.

Verify that the written
DftSpecification is correct

You have the various options of verifying that the written
DftSpecification is correct. See the options "-no_insertion" and
"-validate_only" of the process_dft_specification command.

Transcript all design edits
performed

The high-level command, process_dft_specification, runs a series of
Tessent Shell editing commands such as create_connections or
create_instance. Usually, these commands are not transcripted, but
they may be useful when debugging. The process_dft_specification
command provides you with the -transcript_insertion_commands
option that adds all design editing steps performed during the
execution of the DftSpecification to the transcript.

Run a DftSpecification You can have more than one DftSpecification loaded for the current
design; they differ based on a user-specified identifier. For more
information, see the DftSpecification wrapper description. Selecting
one or the other DftSpecification is easily done through the "id" option
of the process_dft_specification command.

Tessent™ IJTAG User’s Manual, v2022.4136

IJTAG Network Insertion
Modification of the IJTAG Network Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Automatically run
additional design edits

At the end of the DftSpecification processing, the modified design file
is written to the output directory. If you want to further edit the design,
the automatic writing of the design file is an unnecessary and
potentially time-consuming step. The process_dft_specification
command provides a method to tell the tool to first run your design
editing command before writing out the final, modified design file.
This file then includes both the inserted IJTAG network and your
specified design edits.

Write a
process_dft_specification.p
ost_insertion Procedure

If you are writing a Tcl procedure, with the specific name of
process_dft_specification.post_insertion, in memory, you load the Tcl
procedure using the dofile command and target a file that contains this
procedure. Alternatively, you can code the Tcl procedure in the main
dofile directly. When the process_dft_specification command sees that
a Tcl procedure exists, it automatically calls the Tcl procedure after all
design edits specified by the DftSpecification have successfully
completed, but before the write_design command is run.

Table 5-1. Modifications to the IJTAG Network Insertion Flow (cont.)
To... Description

IJTAG Network Insertion
How to Edit or Modify a DftSpecification

Tessent™ IJTAG User’s Manual, v2022.4 137

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Edit or Modify a DftSpecification
You can create a new DftSpecification and modify elements of an existing DftSpecification in
one of two ways: using either the Config Data Browser window in Tessent Visualizer or an
ASCII text editor.
The Config Data Browser provides you with a graphical interface that facilitates the creation
and modification of specification elements as shown in Figure 5-3. The window displays a
treelike representation of a specification you have defined using DftSpecification syntax. You
can graphically view the hierarchy of the specification, move the placement of elements in the
specification hierarchy, and create new elements as well as modify the properties for elements
that are already defined.

Figure 5-3. Config Data Browser

The graphical interface guides you through the IJTAG Network Insertion process by allowing
you to choose only those objects that are legal at the current insertion step. When you are ready,
you can also validate the IJTAG network specification before you instruct the tool to insert it
into the design, and the tool highlights any errors.

You can create a new DftSpecification by using the following command:

display_specification -create

Tessent™ IJTAG User’s Manual, v2022.4138

IJTAG Network Insertion
How to Edit or Modify a DftSpecification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The command opens the Config Data Browser and creates the DftSpecification wrapper linked
to the current design. For more information, see the display_specification command.

You can display a DftSpecification currently in memory and modify or append the specified
IJTAG network by using the same command without the "-create" option. For example, the
following line opens the DftSpecification for the user-provided ID "good3" for the current
top-level design:

display_specification good3

For information on using the Config Data Browser, see “Config Data Browser” in the Tessent
Shell User’s Manual. For information on DftSpecification syntax and examples, see
“DftSpecification” in the Tessent Shell Reference Manual. The grammar is completely
described in the Tessent Shell Reference Manual.

• IJTAG Network Insertion Commands

Table 5-2 lists of all the relevant IJTAG Network Insertion extraction commands available in
Tessent Shell.

Table 5-2. IJTAG Network Insertion Command Summary
Command Description
display_specification Displays the DftSpecification in the Config Data Browser.

Enables subsequent editing of the displayed
DftSpecification. Use the “-create” option to get a new,
empty DftSpecification.

process_dft_specification Runs the DftSpecification. It modifies the current design
and creates design and ICL files as needed by the
specification.

read_config_data Reads a configuration file. For ICL Insertion, this
configuration file is a DftSpecification.

IJTAG Network Insertion
DftSpecification Examples

Tessent™ IJTAG User’s Manual, v2022.4 139

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification Examples
This section presents examples of specific, common IJTAG Network Insertion tasks created
using DftSpecification elements and syntax.
The Configuration-Based Specification chapter in the Tessent Shell Reference Manual
documents all elements of the DftSpecification in great detail and also provides many examples.
You should familiarize yourself with this chapter to understand all of the capabilities of the
IJTAG Network Insertion flow.

Examples. 139

Examples
The examples in this section are based on the assumption that you are creating a
DftSpecification using an ASCII text editor and not using the graphical interface provided by
the Config Data Browser. However, these examples are valid with either method.

Connection of a Basic Scan Instrument to a SIB
In this example, you have an existing instrument with a single scan interface that you want to
connect to a SIB, that is inserted.

Instrument
Module instrumentB {

ScanInPort si;
ScanOutPort so { Source R[0]; }
ShiftEnPort se;
SelectPort sel;
TCKPort clk;
ScanRegister R[1:0] {

ScanInSource si;
}

}

DftSpecification
You use a SIB wrapper, identified by the ID “S3”, and declare the instance path to the design
instance of the instrument within the SIB wrapper. You do not need to specify “scan-in”, “scan-
out”, or any of the other control ports because the tool retrieves this information from the ICL
module description. Note that the instance path must already exist in the design because
specification processing does not create the design instance; it only connects it as specified.

Sib(S3) {
 (design2_I1/instrumentB_I1) {
 }
}

Tessent™ IJTAG User’s Manual, v2022.4140

IJTAG Network Insertion
DftSpecification Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Result
The resulting IJTAG network has a SIB inserted. The SIB controls the SelectPort "sel" of the
instrument instance at ‘design2_I1/instrument_I1. The scan-out of the instrument is connected
to the second scan-in port of the SIB; the scan-in of the instrument is connected to the same
IJTAG scan chain as the first scan-in port of the SIB. Similarly, scan-, capture-, and update-
control ports of the instrument are connected to the same source from which the SIB receives
these control signals. Tck is connected similarly.

Connection of a Scan Instrument With More Than One ScanInterface
In this example, the instrument has two ScanInterface definitions. If you were to use the syntax
of the “Connection of a Basic Scan Instrument to a SIB” example, the tool would not know
which of the two scan ports to connect to the SIB. Therefore, in this case, you must also declare
the name of the ScanInterface name as it is defined in the ICL file.

Instrument
Module instrumentC {

ScanInPort si;
ScanOutPort so1 { Source R1[0]; }
ScanOutPort so2 { Source R2[0]; }
ShiftEnPort se; SelectPort sel1;
SelectPort sel2;
TCKPort clk;

ScanInterface P1 {Port so1; Port sel1;}
ScanInterface P2 {Port so2; Port sel2;}
ScanRegister R1[1:0] {

ScanInSource si;
}
ScanRegister R2[1:0] {

ScanInSource si;
}

}

DftSpecification
In this example, all you want to do is connect the ports of ScanInterface P2 to the SIB “S3”. The
ScanInterface P1 is connected differently.

Sib(S3) {
DesignInstance(design2_I1/instrumentB_I1) {

scan_interface : P2 ;
}

}

Connection of a Parallel Data Instrument
The examples “Connection of a Basic Scan Instrument to a SIB” and “Connection of a Scan
Instrument With More Than One ScanInterface” showed how to connect an instrument with a
ScanInterface. This example shows how to connect an instrument’s parallel data ports to a TDR.

IJTAG Network Insertion
DftSpecification Examples

Tessent™ IJTAG User’s Manual, v2022.4 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Instrument
Module instrumentA {

DataInPort INA[6:0];
DataOutPort OUTA[7:0];

}

DftSpecification
You now want to connect the instrument to a TDR that is inserted as part of the specification
processing. You use the following basic connection specification:

Tdr(T3) {
DataOutPorts {

Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];
}
DataInPorts {

Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
}

}

Result
The resulting IJTAG network contains a TDR register of eight bits. The size of the TDR is
automatically determined based on the connectivity requirements. The TDR contains eight data
input ports, seven data output ports, and all of the usual control signal ports. The seven lowest
bits of the instrument are connected to the seven data output ports of the TDR, which then lead
to the seven data input ports of the instrument. Similarly, the eight data output ports of the
instrument are connected to the eight data input ports of the TDR, from which the eight bits in
the TDR register capture the data.

Connection of a Parallel Data Instrument to the Top Level
This example shows how to connect the parallel data ports of an instrument to the data ports at
the top level. The example “Connection of a Parallel Data Instrument to a TDR” describes how
the instrument can be connected to a TDR.

Instrument
Module instrumentA {
 DataInPort INA[6:0];
 DataOutPort OUTA[7:0];
}

Tessent™ IJTAG User’s Manual, v2022.4142

IJTAG Network Insertion
DftSpecification Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification
You want to connect the instrument to the top level as part of the specification processing. You
use the following basic connection specification:

IjtagNetwork {
 DataOutPorts {
 Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];
 }
 DataInPorts {
 Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
 }
}

If the top-level input ports are already connected to other parts of the design, you do not want to
separate the connection. In this case, by default, if a multiplexer is needed, the tool
automatically inserts a multiplexer in the direct parent instance of the connected instrument pin
or pins, switching between the original connection and the newly-inserted connection described
in the DftSpecification. The tool does not insert a multiplexer if the connected pin is floating or
tied, or if the net connected to the pin has no fan-in (multiplexing : auto). The select input of the
inserted multiplexer is connected to a newly-created top-level DataInPort.

The following example shows the use of the multiplexing parameter to force the tool to always
insert a multiplexer between the top-level input port and the pins of the instrument, whether it is
needed or not (multiplexing : on). Note, you can always instruct the tool to not insert any
multiplexers (multiplexing : off).

IjtagNetwork {
 DataOutPorts{
 Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];
 }
 DataInPorts {
 Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
 multiplexing : on;
 }
}

Connection of a Parallel Data Instrument to a TDR
This example connects an instrument’s parallel data ports to a TDR that is inserted during
specification processing. This example also shows the use of the multiplexing parameter.

The multiplexing parameter used in this example has the same options (auto (default), on, and
off) as in the example “Connection of a Parallel Data Instrument to the Top Level”, and the
same type of analysis is performed to determine if a multiplexer is needed or not. The only
difference is that for TDRs, the select port of the multiplexer is connected to an additional
DataOutPort fed by an additional bit of the inserted TDR.

IJTAG Network Insertion
DftSpecification Examples

Tessent™ IJTAG User’s Manual, v2022.4 143

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification
Tdr(T3) {
 DataOutPorts{
 Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];
 multiplexing : on;
 }
 DataInPorts{
 Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
 }
}

Result
The size of the TDR is automatically determined based on the connectivity requirements. In this
example, the resulting IJTAG network contains a TDR register of nine bits: eight data input
ports, eight data output ports, and all the usual control signal ports. The seven lowest bits of the
TDR register are connected to the seven lowest data output ports of the TDR, which then lead to
the seven data input ports of the instrument. Similarly, the eight data output ports of the
instrument are connected to the eight data input ports of the TDR, from which the lowest eight
bits in the TDR’s register capture the data. The ninth bit in the TDR register and the eighth data
out port is needed because of the multiplexing select line requirement.

Creation of a TDR With More Bits Than Needed for the Current Specification
This example builds on example “Connection of a Parallel Data Instrument to a TDR” and
shows how to reserve additional bits in the TDR when the connection is unknown during
specification processing.

You can use the parameter “length” to specify how many bits the TDR’s register should have;
you cannot specify a length that is smaller than needed to satisfy all other connection
requirements.

DftSpecification
You add a TDR register of length 10.

Tdr(T3) {
length : 10 ;
DataOutPorts {

Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];
}
DataInPorts {

Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
}

}

Connection of an EDT Controller
The next example continues to build on the example “Creation of a TDR With More Bits Than
Needed for the Current Specification.” This example describes a flow in which the EDT IP is
already inserted, and you want to create the IJTAG network and connect the static EDT
configuration bits to a TDR in the network. (Section “IJTAG ATPG Flow Overview” on

Tessent™ IJTAG User’s Manual, v2022.4144

IJTAG Network Insertion
DftSpecification Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

page 149 describes an example in which an EDT IP is connected to an existing TDR as part of
the EDT IP Insertion flow.)

DftSpecification
The EDT ICL module contains only DataInPort objects that statically configure the EDT IP
instance. One of those control bits is “edt_bypass”. In the specification, you want to connect bit
9 of the TDR “T3” to the edt bypass port “CA_bypass” in the EDT IP.

Tdr(T3) {
length : 10 ;
DataOutPorts {

Connection(8) : design2_I1/edtIP_I1/CA_bypass;
Connection(6:0) : design2_I1/instrumentA_I1/INA[6:0];

}
DataInPorts {

Connection(7:0) : design2_I1/instrumentA_I1/OUTA[7:0];
}

}

Note that you may need to add the “set_edt_pins bypass -” command to the EDT instance’s
dofile to denote that the edt bypass pin is now internally connected.

Connection to a TAP Controller
This example shows how to connect the IJTAG network to an existing TAP controller. The
specification describes the ports of the TAP that connect to the chip internal side (the host
interface). The TAP’s left-side ports (TDI, TDO, TCK, TMS, TRST) should already be
connected.

DftSpecification
These two examples introduce a HostScanInterface onto which the IJTAG network is
connected. A set of design instance pin pathnames are used to denote the functions that each of
the design instance pins perform on the host scan interface:

IjtagNetwork {
HostScanInterface(ijtag) {

Interface {
scan_in : main_tap/tdi;
scan_out : main_tap/host1_scanin;
select : main_tap/host1_select;
capture_en : main_tap/ce;
shift_en : main_tap/se;
update_en : main_tap/ue;
reset : main_tap/tlr;
reset_polarity : active_low;
tck : main_tap/tck;

}
}

}

If the TAP ICL and design modules are available and loaded, the same can be accomplished
more easily in a way similar to the scan instrument connection explained earlier in “Connection

IJTAG Network Insertion
DftSpecification Examples

Tessent™ IJTAG User’s Manual, v2022.4 145

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

of a Basic Scan Instrument to a SIB.” This example assumes that the TAP ICL defines a
ScanInterface named “host1” that includes the scan and outgoing controlling port functions: the
ScanInPort (from the chip-side back to the TAP), ToSelectPort, ToCaptureEnPort,
ToShiftEnPort, and ToUpdateEnPort.

IjtagNetwork {
HostScanInterface(ijtag) {

Interface {
design_instance : main_tap ;
scan_interface : host1 ;

}
}

}

Creation of a Hierarchy of SIBs
It is a common practice to define a hierarchy of SIBs. For example, you may place a first level
of SIBs in front of every power domain or in front of every core. Then, within this core, you
may need to add additional SIBs. This example shows how to define a set of SIBs that are
connected serially just by their relative order of declaration.

DftSpecification
The sequence of SIB, TDR, and ScanMux elements in the DftSpecification, read from top to
bottom, defines the order in which they appear in the IJTAG network, from the scan output
towards the scan input. This means that for this example the SIB with the ID “S1” is closest to
the scan output, connected to the scan input port of the TAP, the SIB with ID “S3” is connected
to the TDI, and the SIB with the ID “S2” is located between the two. The first scan input pin of
“S2” is connected to the scan output pin of “S3”, and the scan output pin of “S2” is connected to
the scan input pin of “S1”. For a detailed example and schematic refer to the description of the
IjtagNetwork wrapper in the Tessent Shell Reference Manual.

IjtagNetwork {
HostScanInterface(ijtag) {

Interface {
design_instance : main_tap ;
scan_interface : host1 ;

}
Sib(S1) {
}
Sib(S2) {
}
Sib(S3) {
}

}
}

Next, you want to place “S2” in the ICL sub-network controlled by “S1”. This is easily done by
moving the SIB(S2) wrapper declaration into the wrapper of SIB(S1) as follows.

Tessent™ IJTAG User’s Manual, v2022.4146

IJTAG Network Insertion
DftSpecification Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IjtagNetwork {
HostScanInterface(ijtag) {

Interface {
design_instance : main_tap ;
scan_interface : host1 ;

}
Sib(S1) {

Sib(S2) {
}

}
Sib(S3) {
}

}
}

Usage of a ScanMux
The following example shows how to use a ScanMux. A ScanMux has two scan input ports
(input 0 and input 1), one scan output port, and one 1-bit wide select port. If you need a larger
ScanMux, you must concatenate multiple ScanMuxes.

You should try to control the mux select line using a TDR bit at the scan output side of the
ScanMux; this enables you to change the select line value by scan shifting through the mux and
the TDR. If this is not possible, you should try to control the ScanMux from a TDR or the TAP
higher up in the hierarchy. Avoid trying to control the mux select line using an ICL object (like
a TDR) that is in only one of the two scan input paths because this can lock the mux into only
one configuration.

DftSpecification
The following example shows the usage of a ScanMux in which the mux input 0 is connected to
a 3-bit TDR, input 1 is connected to a 5-bit TDR, and there is a single-bit TDR after the mux,
further towards the scan out, which means it is defined first in the DftSpecification. This TDR is
connected to the mux select line. The connection is done by referencing the ID of the TDR and
the generic DataOut(0) token and referencing the data output port connected to the TDR register
bit 0 (which, in this case, is the only bit of the TDR). Refer to the Tessent Shell Reference
Manual for complete information about the ScanMux.

IJTAG Network Insertion
DftSpecification Examples

Tessent™ IJTAG User’s Manual, v2022.4 147

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Sib(S1) {
Tdr(Tsel) {
}
ScanMux(SM1) {

Select : tdr(Tsel)/DataOut(0);
Input(0) {

Tdr(T0) {
length : 3 ;

}
}
Input(1) {

Tdr(T1) {
length : 5 ;

}
}

}
}

Move of a SIB, TDR, or ScanMux Deeper Into the Design Hierarchy
The following example shows how to change the default placement of an element. By default,
all inserted SIBs and ScanMuxes are inserted into the top-level design module. The default
location for a TDR depends on whether or not the TDR uses DataInPorts, DataOutPorts, or
DecodedSignals connections. If the TDR does not use any of these, the TDR is also placed in
the top-level design module; otherwise, it is automatically placed in the common ancestor of the
connections.

DftSpecification
You use the “parent_instance” parameter to specify where in the design hierarchy the ICL
object should be inserted. The SIB, TDR, and ScanMux elements all have a “parent_instance”
parameter. You can force the TDR to be placed in the top-level design module by specifying a
period (.) as the parent_instance. This example specifies that the SIB should be inserted at the
design instance path “design2_I1/core1.” The instance path must exist, but any missing ports
are created as needed to connect the object to the rest of the IJTAG network.

Sib(S3) {
parent_instance : design2_I1/core1;
(design2_I1/core1/instrumentB_I1) {
}

}

Change of the Instance Name of a SIB, TDR, or ScanMux
In the following example, you specify the name of an IJTAG network object. By default, all
inserted IJTAG network objects such as SIB, TDR, and ScanMux have a predetermined name
that is composed of the DftSpecification id, the id of the object (like “S3” below), and the type
of the object (like SIB).

You can use the “leaf_instance_name” parameter to change this default naming convention.
However, you are completely responsible for ensuring that this name is a legal design instance
name. The tool validates the given name before insertion. The tool also uniquifies the name if

Tessent™ IJTAG User’s Manual, v2022.4148

IJTAG Network Insertion
DftSpecification Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

needed, based on the default or specified uniquification rules; you can change the uniquification
rules using the command.

DftSpecification
You name the SIB “sib_S3”. Of course, the “leaf_instance_name” can be combined with the
“parent_instance” parameter.

Sib(S3) {
leaf_instance_name : sib_S3;
(design2_I1/instrumentB_I1) {
}

}

Change of the Design and ICL Port Names of a SIB, TDR, or ScanMux
In the following example, you specify the name for ports of an IJTAG network object. The SIB,
TDR, and ScanMux modules have default names for all ports. You can use the Interface
wrapper, to change the default names for one, several, or all ports. The mechanism is the same
for the SIB, TDR, and ScanMux, although the names and semantics of the ports differ. The
example below shows this mechanism for the ScanMux only.

DftSpecification
You change the name of the ScanMux input ports from the default “mux_in0” and “mux_in1”,
respectively, to “mux_input0” and “mux_input1”; the names of all other ports of the ScanMux
are not changes and still have their default names:

ScanMux(SM1) {
Interface {

input0 : mux_input0 ;
input1 : mux_input1 ;

}
}

Tessent™ IJTAG User’s Manual, v2022.4 149

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 6
IJTAG and ATPG in Tessent Shell

The purpose of the IJTAG functionality within ATPG is to significantly simplify the test_setup
procedure as well as the optional test_end procedure by using IJTAG to configure EDT IPs and
any other embedded IJTAG instruments needed for scan ATPG.
Because IJTAG is only available in Tessent Shell and is not part of the classic ATPG point tools
(FastScan and TestKompress), ATPG must be used within Tessent Shell to leverage this
feature. The Tessent Shell User’s Manual explains the steps required to transition existing
dofiles from the ATPG point tools to ATPG in Tessent Shell.

IJTAG ATPG Flow Overview . 149
IJTAG Features of ATPG in Tessent Shell . 151

EDT IP Setup for IJTAG Integration . 151
How to Set Up Embedded Instruments Through Test Procedures 153
How to Set Up Embedded Instruments Through the Dofile. 154
Implicit and Explicit iReset Commands . 155

A Detailed IJTAG ATPG Flow. 158

IJTAG ATPG Flow Overview
This section outlines the steps of the IJTAG ATPG flow, especially for enabling IJTAG to set
up EDT IPs in the design.
The flow has some optional steps, depending on what files are already available. For example, if
a complete ICL description is already available, Step 1, ICL Network Insertion as well as Step
4, ICL Extraction are not necessary. Similarly, if no embedded compression is used, no EDT IP
needs to be inserted and Step 2 of the flow can consequently be skipped.

1. Use the “IJTAG Network Insertion” feature to add the hardware that controls the static
signals of EDT and any other instruments to be driven through IJTAG. This can be done
on the RTL or synthesized netlist.

2. Have the tool generate ICL and PDL for the EDT IP when the EDT IP is generated.

3. Provide ICL models for any other modules involved in the network (if any), such as the
TAP and TDRs.

4. Perform ICL extraction so the connectivity of the ICL network is extracted from the
design.

Tessent™ IJTAG User’s Manual, v2022.4150

IJTAG and ATPG in Tessent Shell
IJTAG ATPG Flow Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Run ATPG. The test_setup (or test_end) procedure may include iCalls that reference
iProcs on any ICL instance. This enables the low-power mode of an EDT IP, for
example, and you can have the tool generate the sequence needed to do that in
test_setup.

For a detailed description of the IJTAG ATPG flow including details of all the Tessent Shell
commands used in the flow, see “A Detailed IJTAG ATPG Flow” on page 158.

IJTAG and ATPG in Tessent Shell
IJTAG Features of ATPG in Tessent Shell

Tessent™ IJTAG User’s Manual, v2022.4 151

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IJTAG Features of ATPG in Tessent Shell
This section introduces the ICL module and PDL of the EDT IP. It then explains how this and
the ICL/PDL of other instruments can be used as part of test_setup and test_end for ATPG in
Tessent Shell.
The following topics are described in this section:

EDT IP Setup for IJTAG Integration . 151
How to Set Up Embedded Instruments Through Test Procedures. 153
How to Set Up Embedded Instruments Through the Dofile . 154
Implicit and Explicit iReset Commands . 155

EDT IP Setup for IJTAG Integration
Tessent Shell commands are used to generate the IJTAG files needed to integrate EDT IP with
IJTAG.
As part of the EDT IP creation, the Tessent Shell command write_edt_files is used to generate
several files needed for subsequent flow steps, like synthesis or test pattern generation. By
default, the write_edt_files command causes the tool to generate dofiles that use IJTAG to
describe the static configuration inputs of the EDT IP. These static configuration inputs select
certain features of the EDT IP: edt bypass, single chain bypass, low power, and edt
configuration. Please see set_edt_pins in the Tessent Shell Reference Manual to learn more
about the purpose and usage of these static configuration pins.

Note
When no static control ports are present in the EDT logic, the ICL description of the EDT IP
is not required for pattern generation. However, the ICL is still generated referencing only

the edt_clock port to support other Tessent flow functionality such as SDC generation, that is
tied to the presence of the ICL description of DFT instruments.

Tessent™ IJTAG User’s Manual, v2022.4152

IJTAG and ATPG in Tessent Shell
EDT IP Setup for IJTAG Integration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The write_edt_files command generates an ICL file similar to the following:

Module CA_edt {
 DataInPort CA_CONFIGURATION { RefEnum ConfigTable; }
 DataInPort CA_LOW_POWER { RefEnum OnOffTable; }
 DataInPort CA_BYPASS { RefEnum OnOffTable; }

 Enum ConfigTable {
 LC = 1'b0;
 HC = 1'b1;
 }

 Enum OnOffTable {
 off = 1'b0;
 on = 1'b1;
 }

 Attribute tessent_instrument_type = "mentor::edt";
 Attribute tessent_signature = "7b07783c53f9534b437c62964b2aad63";
}

Your ICL file may vary in the descriptions of the actual data ports because only those static
configuration inputs that you have defined for the particular EDT IP are used. The name of the
ICL data port is identical to the name of the corresponding design port. Similarly, the name of
the ICL module is identical to the name of your EDT IP in the design.

In addition to the ICL file, the write_edt_files command also generates a matching PDL file
linked to the generated ICL module. It features a single iProc named “setup” that is iCall’ed for
the respective EDT logic instance. The setup iProc takes parameter-value pairs for the static
configuration inputs. An example iCall for an EDT IP instance named CA_edt_instance might
look as follows:

iCall CA_edt_instance.setup edt_configuration LC \
edt_bypass on edt_single_bypass_chain off

Generic semantic terms, such as “edt_configuration” or “edt_bypass” are used for the parameter
denoting the static configuration ports of an EDT IP. The generated PDL file translates these
semantic terms into the pin names used for your EDT IP instance. There is no need to provide
those to the PDL file. Further, there is no need to list every other option possible for the EDT IP.
Only the parameter-value pair that is changed from its default value must be specified.
Table 6-1 lists all the possible ports by parameter keyword and their default values.

Table 6-1. EDT Configuration Keywords and Values
Parameter Keyword Default Value
edt_configuration 0 (== LC)
edt_low_power_shift_en 0 (== off)
edt_bypass 0 (== off)
edt_single_bypass_chain 0 (== off)

IJTAG and ATPG in Tessent Shell
How to Set Up Embedded Instruments Through Test Procedures

Tessent™ IJTAG User’s Manual, v2022.4 153

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When the iCall to the generated setup iProc is placed in the test_setup procedure using the
desired parameter-value pairs, it statically configures the EDT IP automatically as part of
test_setup. On the design side, these ICL data ports must be added to the ICL network. For
example, by connecting them to the parallel data output of a Test Data Register, which is in turn
part of the ICL scan network. (See Chapter 5, IJTAG Network Insertion to learn how to create
such a network). They can also be connected directly to ports. The PDL retargeting engine reads
the PDL that is called by the test_setup procedure and determines what needs to be shifted into
the top-level design to set the static configuration bits in the PDL. This is done automatically by
the PDL retargeting engine as part of the test_setup simulation.

How to Set Up Embedded Instruments Through
Test Procedures

In the patterns -scan ATPG context, IJTAG is only allowed in test_setup and test_end
procedures. It is not allowed in any other procedure or in ATPG’s analysis mode. Also, only
iReset and iCall commands are allowed in the test procedures.

Note
For complete information on test procedure file creation, syntax, and structure, refer to
“Test Procedure File” in the Tessent Shell User’s Manual.

The iProc called by the iCall command in the test procedure may use all supported PDL
commands. The following example illustrates the usage:

set time scale 1.000000 ns ;
 timeplate gen_tp1 =
 force_pi 0 ;
 measure_po 10 ;
 pulse tck_a 40 20;
 period 100 ;
end;

procedure test_setup =
 timeplate gen_tp1 ;
 // cycle 1 starts at time 0
 cycle =
 force test_mode_EDT 1 ;
 force test_mode_MBIST 0 ;
 end;

 iCall OCC_Inst1.setup
 iCall coreA.blockA.edtInst1.setup edt_bypass ON ;
 iCall coreA.blockB.edtInst1.setup edt_bypass OFF ;

end;

When a pulse statement exists in the timeplate that is being used at the time of the iCall for the
TCK clock, then the tck ratio is 1. If a pulse statement does not exist, the tck ratio defaults to 4.

Tessent™ IJTAG User’s Manual, v2022.4154

IJTAG and ATPG in Tessent Shell
How to Set Up Embedded Instruments Through the Dofile

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

While the tool is processing the test_setup procedure during the transition to the analysis system
mode, if it encounters an iCall statement, it calls the PDL retargeting engine to retarget the
called iProcs to the current top level. The computed, internal sequence then replaces the iCall in
the internal representation for the test procedure. This processed test procedure, which only
includes events with respect to the port of the current design, is what is passed on to DRC. So
DRC indirectly verifies the resulting sequence. For DRC, there is no difference between
test_setup (or test_end) patterns defined through “force" and “pulse" statements or those
defined through PDL. The latter is just much more convenient, especially when there are many
embedded instruments to set up through a TAP controller. The iCalls in the test procedures must
invoke loaded iProcs, which in turn may use any legal PDL command.

Note that IJTAG is not part of the actual ATPG pattern creation. It only provides the means to
specify the test_setup and test_end procedures, or part of them. Consequently, the ATPG
patterns written to disk contain patterns derived from the PDL within the test_setup and
test_end sections. Again, there is no difference from the traditional way of defining test_setup
or test_end patterns.

For IJTAG to work within ATPG’s test_setup and test_end, the Verilog netlist and the entire
ICL hierarchy and PDL command files must be loaded into Tessent Shell. This includes the top-
level ICL file. If there is no top-level ICL, Tessent Shell can generate one using the “IJTAG
Network Insertion” functionality.

How to Set Up Embedded Instruments Through the
Dofile

Tessent Shell provides a convenient way of adding IJTAG iCalls to test_setup and test_end
procedures from within the dofile, where all design introspection and Tcl commands are
available to specify the needed IJTAG commands.
The test procedure example described above in the “How to Set Up Embedded Instruments
Through Test Procedures” section shows the explicit usage of the iCall PDL command inside a
test procedure. But it may not be convenient to embed the iCall commands within the test
procedure file especially if they are generated from the tool based on introspection. The tool,
therefore, enables a much more convenient way of adding IJTAG iCalls to test_setup and
test_end procedures from within the dofile, where all design introspection and Tcl commands
are available to specify the needed IJTAG commands.

The set_test_setup_icall and set_test_end_icall commands are available in the setup mode of the
“patterns -scan” context to declare one or more iCalls to be added to the end of test_setup or the
beginning of test_end, respectively, without the need to edit the procedure file itself.

Command lines in the dofile matching the test_setup procedure example above would look like
this:

SETUP> set_test_setup_icall {OCC_Inst1.setup} -append

IJTAG and ATPG in Tessent Shell
Implicit and Explicit iReset Commands

Tessent™ IJTAG User’s Manual, v2022.4 155

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> set_test_setup_icall {coreA.blockA.edtInst1.setup edt_bypass ON} -append

SETUP> set_test_setup_icall {coreA.blockB.edtInst1.setup edt_bypass OFF} -append

As before, these three iCalls declared to the ATPG tool through the set_test_setup_icall
command become part of the test_setup procedure and are run when the test_setup procedure is
processed.

The next example demonstrates the convenience provided by these dofile commands. It sets all
EDT instances anywhere in the design to the edt_bypass off mode of operation. For this, it first
introspects the design to find all EDT ICL modules that were named MyEDT in this example,
then calls the set_test_setup_icall command for each instance by looping through a (string) list
of instance path names.

SETUP> foreach edt_inst [get_name_list [get_icl_instances -of_module MyEDT]] {

set_test_setup_icall [list $edt_inst.setup edt_bypass off] -append

}

Observe that the “-append" option can also be used for the very first set_test_setup_icall
command without any error given by the tool.

In all of the examples listed above, the iCalls are run sequentially in the order they were
declared. IJTAG also enables the parallel execution of iCalls. The next example shows an iProc
that sets up multiple OCC instruments, all in parallel. The PDL retargeting engine tries to find a
solution within the given hardware constraints that enables this parallel execution. If it cannot
find such a solution, it serializes the parts that cannot be parallelized. This iProc example below
assumes that the top-level design/ICL module is named “top":

iProcsForModule top
iProc parallel_OCC_setup {

iMerge –begin
iCall coreA.OCC_Inst.setup
iCall coreB.OCC_Inst.setup

iMerge –end

Then, in the dofile, there is only one iCall in test_setup to run for all OCCs:

SETUP> set_test_setup_icall {parallel_OCC_setup} -append

There are two ways of defining the iProc above, either in a separate file, which can optionally be
generated from the dofile and then sourced, or in the dofile directly, since the iProcsForModule
as well as the iProc keywords are all registered dofile commands.

Implicit and Explicit iReset Commands
Whether using explicit iCalls in the test_setup procedure or through the set_test_setup_icall
command, in both scenarios the tool needs to know the initial state of the ICL network. To this
end, it issues an implicit iReset command before it commences with the PDL retargeting.

Tessent™ IJTAG User’s Manual, v2022.4156

IJTAG and ATPG in Tessent Shell
Implicit and Explicit iReset Commands

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Assume again that the following test_setup procedure is given to the tool:

procedure test_setup =
 timeplate gen_tp1 ;
 // cycle 1 starts at time 0
 cycle =
 force test_mode_EDT 1 ;
 force test_mode_MBIST 0 ;
 end;

 iCall OCC_Inst1.setup ;
 iCall coreA.blockA.edtInst1.setup edt_bypass ON ;
 iCall coreA.blockB.edtInst1.setup edt_bypass OFF ;
end;

To explain this implicit iReset, the test_setup procedure below shows what the tool is actually
evaluating:

procedure test_setup =
 timeplate gen_tp1 ;
 // cycle 1 starts at time 0
 cycle =
 force test_mode_EDT 1 ;
 force test_mode_MBIST 0 ;
 end;

 iReset ;
 iCall OCC_Inst1.setup ;
 iCall coreA.blockA.edtInst1.setup edt_bypass ON ;
 iCall coreA.blockB.edtInst1.setup edt_bypass OFF ;

end;

Notice the tool inserted an "iReset" command, just before the very first iCall. This implicit
iReset happens if the set_test_setup_icall command was used instead of the explicit iCalls in the
test_setup procedure.

While this iReset is needed to establish the initial state of the ICL Network, it could destroy
your design setup state reached through the cycles of force and pulse statements, especially if
there is a TAP controller that would be reset through the iReset command. To prevent this

IJTAG and ATPG in Tessent Shell
Implicit and Explicit iReset Commands

Tessent™ IJTAG User’s Manual, v2022.4 157

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

implicit iReset, you place an explicit iReset command at a convenient location in the test_setup
procedure, for example right at the beginning of test_setup:

procedure test_setup =
 timeplate gen_tp1 ;
 // cycle 1 starts at time 0

iReset ;

 cycle =
 force test_mode_EDT 1 ;
 force test_mode_MBIST 0 ;
 end;

 iCall OCC_Inst1.setup ;
 iCall coreA.blockA.edtInst1.setup edt_bypass ON ;
 iCall coreA.blockB.edtInst1.setup edt_bypass OFF ;
end;

The tool then no longer issues the implicit iReset. However, you must make sure that after all
cycles are applied, the state of the ICL network components is the reset state. This must hold
true in particular for the state of a TAP controller you might have operated in the cycle
statements.

You can also combine the explicit iReset with the set_test_setup_icall command to achieve the
same result as the test_setup procedure above:

procedure test_setup =
 timeplate gen_tp1 ;
 // cycle 1 starts at time 0

 iReset ;

 cycle =
 force test_mode_EDT 1 ;
 force test_mode_MBIST 0 ;
 end;
end;

With the dofile:

SETUP> set_test_setup_icall {OCC_Inst1.setup} -append

SETUP> set_test_setup_icall {coreA.blockA.edtInst1.setup edt_bypass ON} -append

SETUP> set_test_setup_icall {coreA.blockB.edtInst1.setup edt_bypass OFF} -append

As before, the iCalls are inserted after the last cycle statement, but with no implicit iReset added
before, because there is already an explicit iReset in the test_setup procedure.

Tessent™ IJTAG User’s Manual, v2022.4158

IJTAG and ATPG in Tessent Shell
A Detailed IJTAG ATPG Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
In the 2014_1 release and all subsequent releases, PDL commands (iReset, iCall, and
iMerge) are no longer allowed in procfiles in the patterns -ijtag context.

A Detailed IJTAG ATPG Flow
This section illustrates the entire IJTAG ATPG flow, including all required commands, for
using IJTAG to set up an EDT IP as well as an OCC instrument.
The flow has the following entry points:

1. (Optional) ICL Network Insertion.

2. (Optional) EDT IP insertion.

3. (Optional) Generation of the top-level ICL description.

4. ATPG.

The information shown in the following example can be similarly extended to any other
embedded instrument that must be set up prior to scan. The flow starts with the insertion of the
ICL Network, then continues to the insertion of the EDT IP, the top-level ICL generation
through extraction from the design, and concludes with ATPG.

For example, if no embedded compression is used, Step 2 can be skipped. Similarly, if the
design already comes with a complete ICL model including the top-level ICL module and the
ICL network connecting all relevant instruments, the flow simplifies to only Step 4.

Flow Step 1 inserts an ICL Network. In particular, the DFT specification defines a TDR to
which Step 2b connects the EDT IP’s edt_bypass port. (For simplicity of the example, only the
edt_bypass signal of the EDT IP is shown.) In this example, the TDR has the instance name
“MyTDR” and a DataOutPort named “td". This DataOutPort is connected to the edt_bypass
port of the EDT IP in Step 2b of the flow.

1. (Optional) ICL Network Insertion.

See Chapter 5, “IJTAG Network Insertion” for details. If there is already a complete ICL
network, proceed to Step 2.

set_context dft

read_cell_library <library files>

read_verilog <design files>

read_icl <ICL files for all instruments>

;# Note that the ICL modules are auto-loaded if the <filename>.icl matches

;# the module name in the design and is in the default or set design search path.

IJTAG and ATPG in Tessent Shell
A Detailed IJTAG ATPG Flow

Tessent™ IJTAG User’s Manual, v2022.4 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_current_design

set_system_mode analysis

read_config_data <the specification file of the ICL Network to be inserted>

process_dft_specification

2. (Optional) EDT IP insertion.

If you entered the flow with Step 1, you can proceed to EDT IP insertion without leaving
Tessent Shell. If you exited Tessent Shell or this is your first flow step, just read the cell
library and the design and ICL files again. If you do not use EDT IP, proceed to Step 3.

a. Follow through with the EDT IP insertion flow as usual.

b. While in setup mode, instruct the tool to connect the Bypass port of the EDT
instance to the td output port of the IJTAG TDR:

 set_edt_pins bypass - MyTdr/td

c. When in analysis mode, write out the EDT IP inserted files. By default, the tool
performs IJTAG mapping and writes out the ICL and PDL file.

write_edt_files <all other option>

3. (Optional) Generation of the top-level ICL description.

After synthesis of the EDT IP, generate the top-level ICL file. This functionality is only
available in the patterns -ijtag context. If you already have a complete top-level ICL file
from somewhere else, proceed to Step 4.

set_context patterns -ijtag

read_cell_library < library files>

read_verilog < design files>

read_icl <your ICL files (EDT module, TAP module, TDR module, …)>

;# Note that the ICL modules are auto-loaded if the <filename>.icl matches

;# the module name in the design and is in the default or set design search path.

;# This is the case for SIB, TAP, and TDR modules if they were inserted

;# using the ICL Network insertion functionality of the Tessent Shell, shown in

;# Step 1. This is not the case for the EDT IP ICL module generated in Step 2

;# because the provided EDT filename is usually different from the EDT IP

;# module name.

set_module_matching_options <as needed only>

;# to bridge naming conventions between the design and ICL

set_current_design

;# Make sure that you have loaded the design as well as all ICL files before you

Tessent™ IJTAG User’s Manual, v2022.4160

IJTAG and ATPG in Tessent Shell
A Detailed IJTAG ATPG Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

;# issue this command. You also must have issued the module matching

;# command beforehand. The reason for this is that set_current_design

;# processes all design information and makes the link between the ICL and

;# design modules. Anything loaded afterward is not part of the design

;# going into analysis mode.

set_system_mode analysis

write_icl -output_file [get_single_name [get_current_design]].icl -replace

;# Assume the top-level module is named "top".

4. ATPG.

set_system_mode setup

;# Only needed if you come from a previous step in the flow.

set_context patterns -scan

set_test_setup_icall { OCC_Inst1.setup } -append

;# Adds the iCall to a PDL iProc to test_setup that implements the setup of an

;# instrument before ATPG. In this example the setup iProc comes with the OCC.

dofile ./MyEDT/top_setup.pdl

;# This is the dofile that was generated by the earlier EDT IP insertion step.

;# The actual filename depends on the filename chosen in Step 2.c.

;# As a key IJTAG setup component it runs the “set_test_setup_icall”

;# command explained earlier. It is important to understand the generated dofile.

set_system_mode analysis

create_patterns

;# Do not forget to save your patterns and the flat model.

Tessent™ IJTAG User’s Manual, v2022.4 161

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 7
IJTAG Examples

This chapter presents selected IJTAG topics of interest.

Note
For an example to create a fully compliant IEEE 1500 Wrapper Serial Port (WSP) using
Tessent Shell’s IJTAG features, see “How to Create a WSP Controller in Tessent Shell” in

the Tessent Shell User’s Manual.

The topics covered include the following:

• ICL Modeling versus Verilog Modeling — The first example demonstrates that there
is no need to model the Verilog description of a module 1:1 in ICL. It is sufficient to
model the IO-behavior of an instrument while the die is in IJTAG mode of operation.

• ICL and PDL Namespaces — The ICL namespaces are not currently supported, but
the concept is discussed for completeness.

• Skipping the Run-Test/Idle State — A discussion of the option to skip the run-test/idle
state that the TAP controller can pass through during the scan operation.

• Default Values in ICL — Different ways to define default values in ICL are described
in this section along with examples.

• Attributes of the ICL Extraction Flow — ICL attributes follow the same use model as
attributes elsewhere in Tessent Shell. The example in this section shows the role
attributes play in the ICL extraction flow.

• Scan Chain Integrity Test in Tessent IJTAG — An example in this section shows
how to create an ICL scan chain integrity test.

• How to Define Auto-Return Values and Addressable Registers in ICL — The
example in the “How to Define Auto-Return Values in ICL” section describes a
particular ICL construct that instructs the PDL retargeter to automatically restore
defined bits on a register to a prescribed value by the end of the iApply time frame. The
example is designed to automatically turn off a bit in a scan register encoding a read
enable, so that subsequent read operations may proceed correctly. This automation is
enabled in the PDL retargeter without your intervention.

ICL Modeling versus Verilog Modeling . 162
ICL Namespaces . 163
PDL Namespaces . 164
Skipping the Run-Test/Idle State . 164

Tessent™ IJTAG User’s Manual, v2022.4162

IJTAG Examples
ICL Modeling versus Verilog Modeling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

How to Define Default Values in ICL . 166
Attributes of the ICL Extraction Flow . 168
Scan Chain Integrity Test in Tessent IJTAG . 169
How to Define Auto-Return Values in ICL . 169
How to Model Addressable Registers in ICL . 171
How to Model a ScanMux Selection Preference . 174

ICL Modeling versus Verilog Modeling
This section describes how to create the ICL model of a Verilog module.
Figure 7-1 shows a gate-level description of a Verilog module.

Figure 7-1. Gate-Level Verilog Module Example

For simplicity, the example does not show any clock or enable signals in the Verilog or the ICL.

IJTAG Examples
ICL Namespaces

Tessent™ IJTAG User’s Manual, v2022.4 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Assume that the input port 'ijtag_enable' is active and selects the left-most input of each
multiplexer while the die is in the ijtag mode of operation. Under the assumption of the
ijtag_enable value being constant, you can model the Verilog module in ICL as follows:

Module M1 {
 ScanInPort si ;
 ScanOutPort so { Source Reg3[0] ; }

 ScanRegister Reg1[2:0] {
 ScanInSource si ;
 }

 ScanRegister Reg2[2:0] {
 ScanInSource Reg1[0];
 }

 ScanRegister Reg3[2:0] {
 ScanInSource Reg2[0] ;
 }
}

This is a straightforward translation of the Verilog module's scan register chain. Just to show
that this is not the only possible translation, consider this following ICL module:

Module M2 {
 ScanInPort si ;
 ScanOutPort so { Source Reg[0] ; }

 ScanRegister Reg[8:0] {
 ScanInSource si ;
 }

 Alias Reg1[2:0] = Reg[8:6] ;
 Alias Reg2[2:0] = Reg[5:3] ;
 Alias Reg3[2:0] = Reg[2:0] ;
}

This is an equivalent description of the IO behavior of the instrument. For example, both ICL
modules M1 and M2 allow addressing three 3-bit registers named Reg1, Reg2, and Reg3,
respectively from PDL.

ICL Namespaces
Note: ICL Namespaces are not currently supported; only PDL Namespaces are. This section is
provided for completeness purposes only.

Tessent™ IJTAG User’s Manual, v2022.4164

IJTAG Examples
PDL Namespaces

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PDL Namespaces
Assume you own an ICL module named M. You have two suppliers, who instantiate their
instruments in your ICL module. At the supplier's instrument top-level and downwards, there
are no conflicts of either ICL or PDL objects. However, the PDL these suppliers provide for
your module M may conflict. Both may provide a PDL named “init” bound to M. The IJTAG
standard provides therefore a PDL namespace to further separate PDL for the same ICL
module.
Your ICL module file:

Module M { … }

Your PDL file(s), defining the iProcs that may be modified by the respective supplier:

iProcTargetModule M -iProcNameSpace R
iProc init {} { … }

iProcTargetModule M -iProcNameSpace S
iProc init {} { … }

Your ICL file instantiating I1 of module M:

Module TOP {
 …
 Instance I1 of M
 …
}

You can now iCall both iProcs named 'init' of instance I1 of module M as follows

iCall I1.R::init
iCall I1.S::init

Skipping the Run-Test/Idle State
Run-Test/Idle (RTI) is a wait state between scan loads. The state machine allows skipping the
RTI state when there are successive scan loads to run.
Run-Test/Idle is a state of the IEEE 1149.1 TAP finite state machine (FSM) as shown in
Figure 7-2. The RTI state allows the TAP controller to wait on an action. A basic scan load has
the following sequence of states: RTI, Select-DR, Capture-DR, Shift-DR, Exit1-DR,
Update-DR, and RTI.

IJTAG Examples
Skipping the Run-Test/Idle State

Tessent™ IJTAG User’s Manual, v2022.4 165

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-2. Partial IEEE 1149.1 TAP Controller State Diagram

Because there is a direct transition from Update-DR to Select-DR with a TMS=1 transition, the
RTI state may be skipped between two or more consecutive scan loads. A basic sequence of
states for two consecutive scan loads is: RTI, Select-DR, Capture-DR, Shift-DR, Exit1-DR,
Update-DR, Select-DR, Capture-DR, Shift-DR, Exit1-DR, Update-DR, and RTI. The second
Select-DR begins the second scan load after skipping the RTI state. RTI can be skipped between
any combination of DR and IR scan loads.

During IJTAG retargeting, the retargeting engine will not skip the RTI state if any of the
following apply:

• In-system test is performed.

• Two-Pin Serial Port is present.

• An action follows the scan load that is neither an iNote nor a scan load, such as
iRunLoop or iReset.

Tessent™ IJTAG User’s Manual, v2022.4166

IJTAG Examples
How to Define Default Values in ICL

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• A TAP FSM will be taken out of the idle state and put onto the active scan path due to
the scan load.

• A TAP FSM will be put into the idle state and removed from the active scan path due to
the scan load.

• The next scan load targets a different scan interface than the current scan load.

• It is the last scan load of an iCall in test_setup or test_end (even if there is a scan load
following directly afterward in the next iCall).

• The target scan interface is a non-TAP client and TCK has an off-state of 1.

How to Define Default Values in ICL
This section describes how to define default values in ICL.
Consider the following part of an ICL module definition:

ScanRegister Reg_1[3:0] {
 ScanInSource si ;
 ResetValue 4'b1001 ;
 DefaultLoadValue 4'b1001 ;
}

ScanRegister Reg_2[3:0] {
 ScanInSource si ;
 DefaultLoadValue 4'b1111 ;
}

In the properties section of the scan register declaration, there are the “ResetValue” and
“DefaultLoadValue” keywords. Both define a scan load value that the PDL retargeter must
abide by. When an iReset is issued, the 4-bit scan register, Reg_1 in this example, assumes the
value 4'b1001 for its register bits. The reset signal does not need to be ICL-routed. It is
implicitly assumed.

IJTAG Examples
How to Define Default Values in ICL

Tessent™ IJTAG User’s Manual, v2022.4 167

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Better ICL coding style uses enumeration tables to abstract from data values. The scan register
example above would resemble the following:

ScanRegister Reg_1[3:0] {
ScanInSource si ;
ResetValue resetvalue ;
DefaultLoadValue defaultvalue ;
RefEnum scanRegValTable ;

}

Enum scanRegValTable {

resetvalue 4’b1001 ;
defaultvalue 4’b1001 ;
green 4’b1101 ;
blue 4’b1110 ;

}

The string-value pairs defined by the enumeration table are only a shorthand. You can always
use numbers for reading and writing as usual.

Assume the following user PDL for the ICL example above:

iWrite Reg_1 green
iApply

iWrite Reg_1 0b0011
iApply

Another interesting behavior of the PDL retargeter is due to the 'DefaultLoadValue' ICL
keyword in the ICL example above. Assume the following user PDL for the ICL example:

iReset

iWrite Reg_1[0] 0b0
iApply

iWrite Reg_2[0] 0b0
iApply

The iWrite command specifies only scan register bit 0. However, the PDL retargeter must shift
in something for the other bits. The default load value defines this.

This is the retargeted PDL:

iReset

iWrite Reg_1 0b1000
iApply

iWrite Reg_2 0b1110
iApply

Tessent™ IJTAG User’s Manual, v2022.4168

IJTAG Examples
Attributes of the ICL Extraction Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If no default load values were defined and the left-most three bits were never written before,
neither explicitly through an iWrite command nor implicitly through an iReset, the IJTAG
default rule is then to write the value 0. This is particularly important for data registers that do
not necessarily have a reset value defined.

Attributes of the ICL Extraction Flow
This section explains the usage of some attributes for IJTAG.
Overall, there is no difference in the use model compared to the rest of Tessent Shell. IJTAG
only adds a few built-in attributes, some of which are shown in the following example that is
derived from the ICL extraction flow.

In Tessent Shell, there are several ways to gain access to an attribute or attribute value. This
example uses a reporting function to get a list of all attributes of an entity.

report_attributes

Here, it is important to use the correct introspection commands to get access to the ICL entities
and not the (Verilog) design entities. Hence, to report all attributes for the top-level ICL module
named “chip”, use the following command:

report_attributes [get_icl_modules chip]

In case the ICL module “chip” was created through ICL extraction, there are several built-in
attributes listed that are of interest. Below is a partial report:

ANALYSIS> report_attributes [get_icl_modules chip]
Attribute Definition Report

Name Value Inheritance

------------------------------------ -- ----------

forced_high_input_port_list {A[1]} {A[0]} -

forced_high_internal_input_port_list {a_inst3/A[1]} {a_inst2/A[2]} {a_inst2/A[0]} -

forced_low_input_port_list {\B[0] } {\B[1] } {A[2]} {pmu_se} -

forced_low_internal_input_port_list {b_inst2/A} -

icl_extraction_date Wed Aug 15 00:21:13 2012 -

is_created true -

This list of attributes shows that the module 'chip' was created through ICL extraction
(is_created == true), and when this happened (icl_extraction_date). The next line shows how to
get access to the value of an attribute. It returns a Tcl list.

get_attribute_value_list [get_icl_modules chip] -name is_created

If you do not know the top-level name or if you want to have a more generic script, you can
introspect the name as well, as follows. Please note again the use of the correct icl introspection
commands and options. Otherwise, you get the design introspection versions.

IJTAG Examples
Scan Chain Integrity Test in Tessent IJTAG

Tessent™ IJTAG User’s Manual, v2022.4 169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples are as follows:

report_attributes [get_current_design -icl]

get_attribute_value_list [get_current_design -icl] -name is_created

Scan Chain Integrity Test in Tessent IJTAG
Tessent IJTAG provides an extension to IJTAG that enables the creation of scan chain integrity
tests.
The current release of this functionality provides only the building blocks. Using these building
blocks, a chain test for a provided scan register can easily be constructed. Currently no
automation is provided in Tessent IJTAG to compute chain integrity tests for all ICL scan
chains with a single command.

An ICL scan chain integrity test is defined in two steps: an iWrite to the register, followed by an
iRead from the register.

Note
Use the optional ‘-end_in_pause’ switch of the iApply command to create IJTAG scan chain
integrity tests.

In this example, you use the same chain test value that Tessent ATPG tool uses. You can also
use a running 1 or running 0, which is useful to validate a register length and access, or any
other value you determine is meaningful.

set chaintest [string range [string repeat "0011" \
: [expr $reg_length / 4 +1]] 0 [expr $reg_length -1]]
:
:iWrite MyTdr1.R 0b${chaintest}
iApply -end_in_pause

iRead MyTdr1.R 0b${chaintest}
iApply

How to Define Auto-Return Values in ICL
This section presents an ICL feature that makes the PDL retargeter automatically keep a certain
value in a register bit.
Writing to this bit is still performed as expected, however after the bit changes value due to a
write operation, the PDL retargeter returns the bit to this specified value at the next opportunity.
It might require that the PDL retargeter issue another scan load operation to fulfill this
requirement.

Tessent™ IJTAG User’s Manual, v2022.4170

IJTAG Examples
How to Define Auto-Return Values in ICL

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Assume you have an application where the enable bits in a TDR must be kept in their off state at
all times, except for the short moments when they are needed. You could require that the author
of the module's PDL remember to turn off these bits, but this would be cumbersome and
error-prone. IJTAG provides an automated mechanism in the form of the “iApplyEndState” in
ICL.

Module M {

 ScanInPort sin;
 ScanOutPort sout { Source TDR_2[0] ; }
 ...

ScanRegister TDR_1[8:0] {
 ScanInSource sin;
 ResetValue 9’b0;

}

Alias myDataWriteEnable = TDR_1[8] {
 iApplyEndState 1'b0;

}

ScanRegister TDR_2[8:0] {
 ScanInSource TDR1[0];
 ResetValue 9’b0;

}

}

In this ICL module example, the scan register bit TDR_1[8] must be kept at 0. Writing to the
scan register as follows changes this bit:

User PDL file:

iWrite TDR_1 0b111001100
iApply

It is up to the PDL retargeter to first run per your intention, and then return bit TDR_1[8] to the
0 value, (as specified in the iApplyEndState) at the earliest possible opportunity. This
opportunity is usually given with the next iApply statement.

IJTAG Examples
How to Model Addressable Registers in ICL

Tessent™ IJTAG User’s Manual, v2022.4 171

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To continue this example, assume that you read from TDR_2 after the above iWrite to TDR_1.
In this example the PDL retargeter computes the following PDL:

Retargeted PDL:

iWrite TDR_1 0b111001100
iApply

iWrite TDR_1 0b011001100
iRead TDR_2 0x1ff
iApply

A second possible opportunity for the tool to restore the iApplyEndState value, if there is no
subsequent iApply command, is through options to the close_pattern_set command. If you use
either the option “close_pattern_set -network_end_state initial” or “close_pattern_set
-network_end_state reset”, the tool has the opportunity through one or several of the
automatically computed iApply blocks statements to not only bring the ICL network into the
requested state but also put the iApplyEndState value back in place.

The ICL code example in Figure 7-4 shown in the “How to Model Addressable Registers in
ICL” section is extended to demonstrate a practical example.

How to Model Addressable Registers in ICL
This section describes some of the ways you can model addressable registers in ICL.
The ICL code example in Figure 7-4 demonstrates using the iApplyEndState ICL feature.
Notice that the bit TDR1[63] in the ICL code in Figure 7-4 encodes the 'read enable' instruction.
This bit has to assume the value 1 when values from data registers should be read (Enum
ReadWriteCmd). However, it must be kept 0 at all other times. The iApplyEndState ICL feature
ensures that the PDL retargeter automatically 'turns off' the read enable bit, once it is no longer
needed.

ICL enables modeling a register addressing scheme controlled from IJTAG ScanRegisters. The
address, data, read enable, and write enable values are automatically calculated by the PDL
retargeter.

ICL supports the direct modeling of addressable registers using the AddressPort, ReadEnPort,
and WriteEnPort port functions, and the AddressValue property within the DataRegister and
Instance construct. Many standard addressing schemes are correctly modeled with this syntax.
More complex addressing schemes must be modeled explicitly with a DataMux construct on the
read path and a DataRegister with WriteDataSource and WriteEnSouce properties on the write
path.

Figure 7-3 is a schematic view of an example with an indirect addressing scheme. To read the
DataOut port of an instrument, the bank register must first be written to select the proper

Tessent™ IJTAG User’s Manual, v2022.4172

IJTAG Examples
How to Model Addressable Registers in ICL

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

instrument within the bank. Then, a read transaction is performed on the given bank followed by
a last scan load to capture the result of the read. The read path is modeled with cascaded
DataMux where the first level is selected by the bank register and the second level is selected by
the ReadEnable signal and the bank address.

When doing the final scan load to capture the read value, the solver would normally scan in the
same values into the TDR, as it did during the second scan load. However, if this is done, the
third scan load would initiate a second read transaction, which is not desired. The PDL
retargeter is told to leave the ReadEnable signal to its off value on the last scan load using the
iApplyEndState property within the Alias construct, as shown in Figure 7-4.

Figure 7-3. Schematic View of an Indirect Addressing Scheme

IJTAG Examples
How to Model Addressable Registers in ICL

Tessent™ IJTAG User’s Manual, v2022.4 173

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-4. ICL Description of an Indirect Addressing Scheme

Module block1 {
 ScanInPort si1;
 ScanOutPort so1 { Source TDR1[0]; }
 SelectPort en1;
 ShiftEnPort se;
 CaptureEnPort ce;
 UpdateEnPort ue;
 TCKPort tck;

 ScanRegister TDR1[63:0] {
 ResetValue 64'b0;
 ScanInSource si1;
 CaptureSource 32'b0,RX_M;
 }

 Alias RE = TDR1[63] { iApplyEndState 1'b0; }
 Alias cmd[1:0] = TDR1[63:62] { RefEnum ReadWriteCmd; }
 Alias R0_cmd[1:0] = R0[31:30] { RefEnum ReadWriteCmd; }
 Alias R1_cmd[1:0] = R0[31:30] { RefEnum ReadWriteCmd; }
 Alias R2_cmd[1:0] = R0[31:30] { RefEnum ReadWriteCmd; }

 DataRegister R0[31:0] { WriteEnSource R0_W; WriteDataSource TDR1[31:0];}
 DataRegister R1[31:0] { WriteEnSource R1_W; WriteDataSource TDR1[31:0];}
 DataRegister R2[31:0] { WriteEnSource R2_W; WriteDataSource TDR1[31:0];}

 DataRegister R0_0[7:0] { WriteEnSource R0_0_W; WriteDataSource R0[7:0];}
 DataRegister R0_1[7:0] { WriteEnSource R0_1_W; WriteDataSource R0[7:0];}
 DataRegister R0_2[7:0] { WriteEnSource R0_2_W; WriteDataSource R0[7:0];}
 DataRegister R1_0[7:0] { WriteEnSource R1_0_W; WriteDataSource R1[7:0];}
 DataRegister R1_1[7:0] { WriteEnSource R1_1_W; WriteDataSource R1[7:0];}
 DataRegister R1_2[7:0] { WriteEnSource R1_2_W; WriteDataSource R1[7:0];}
 DataRegister R2_0[7:0] { WriteEnSource R2_0_W; WriteDataSource R2[7:0];}
 DataRegister R2_1[7:0] { WriteEnSource R2_1_W; WriteDataSource R2[7:0];}
 DataRegister R2_2[7:0] { WriteEnSource R2_2_W; WriteDataSource R2[7:0];}

 LogicSignal R0_W { cmd,TDR1[61:32] == write,30'd0; }
 LogicSignal R1_W { cmd,TDR1[61:32] == write,30'd1; }
 LogicSignal R2_W { cmd,TDR1[61:32] == write,30'd2; }
 DataMux RX_M[31:0] SelectedBy cmd,TDR1[61:32] {
 2'b10, 30'd0 : 24'b0,R0_X_M[7:0];
 2'b10, 30'd1 : 24'b0,R1_X_M[7:0];
 2'b10, 30'd2 : 24'b0,R2_X_M[7:0]; }

 LogicSignal R0_0_W { R0_cmd,R0[29:24] == write, 6'd0; }
 LogicSignal R0_1_W { R0_cmd,R0[29:24] == write, 6'd1; }
 LogicSignal R0_2_W { R0_cmd,R0[29:24] == write, 6'd2; }
 DataMux R0_X_M[7:0] SelectedBy R0_cmd,R0[29:24] {
 2'b10, 6'd0 : R0_0[7:0];
 2'b10, 6'd1 : R0_1[7:0];
 2'b10, 6'd2 : R0_2[7:0]; }

 LogicSignal R1_0_W { R1_cmd,R1[29:24] == write, 6'd0; }
 LogicSignal R1_1_W { R1_cmd,R1[29:24] == write, 6'd1; }
 LogicSignal R1_2_W { R1_cmd,R1[29:24] == write, 6'd2; }
 DataMux R1_X_M[7:0] SelectedBy R1_cmd,R0[29:24] {

Tessent™ IJTAG User’s Manual, v2022.4174

IJTAG Examples
How to Model a ScanMux Selection Preference

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

 2'b10, 6'd0 : R1_0[7:0];
 2'b10, 6'd1 : R1_1[7:0];
 2'b10, 6'd2 : R1_2[7:0]; }

 LogicSignal R2_0_W { R2_cmd,R2[29:24] == write, 6'd0; }
 LogicSignal R2_1_W { R2_cmd,R2[29:24] == write, 6'd1; }
 LogicSignal R2_2_W { R2_cmd,R2[29:24] == write, 6'd2; }
 DataMux R2_X_M[7:0] SelectedBy R2_cmd,R0[29:24] {
 2'b10, 6'd0 : R2_0[7:0];
 2'b10, 6'd1 : R2_1[7:0];
 2'b10, 6'd2 : R2_2[7:0]; }

 Enum ReadWriteCmd { read = 2'b10; write = 2'b01; }
}

How to Model a ScanMux Selection Preference
During IJTAG pattern retargeting, the IJTAG engine always attempts to utilize a scan path with
the optimal length when performing the operations of an iApply.
In many cases, this automatically implies the assignment of the select signal of the ScanMuxes
along the scan path. Nonetheless, there might be multiple ScanMux selections that have the
same overall scan path length. Even though these selections seem equivalent to the IJTAG
engine, they could have special meanings in the design. Therefore, the IJTAG engine chooses a
selection in a deterministic manner, using the following rules:

1. If selections have the same direct source, the IJTAG engine prefers them in the order
specified in the ICL file.

2. If selections have the same scan path length to a common source, the IJTAG engine
prefers them in the order specified in the ICL file. The computation of the scan path
length is static and performed during ICL elaboration. Therefore, it cannot take dynamic
changes in scan path length (for example, due to ScanMuxes) into account. As a result,
the scan path length computation only considers direct paths to a common source
without any scan path configuration elements. For more details, refer to Computation of
Scan Path Length to a Common Source.

3. The top selection of a ScanMux supersedes all other selection rules. In other words, the
first mux_select_value line in the list of selections for the mux_select_signals of a
ScanMux supersedes all other selection rules.

Computation of Scan Path Length to a Common Source
The tool uses a tracing procedure to determine the length of the scan path to a common source
point. This scan path analysis is static and occurs during the ICL elaboration. Therefore, the tool
cannot take the current network configuration into account. As a result, it cannot trace through
complex ScanMuxes.

IJTAG Examples
How to Model a ScanMux Selection Preference

Tessent™ IJTAG User’s Manual, v2022.4 175

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The exception to this rule is simple ScanMuxes of segment insertion bits (SIBs). When the tool
encounters a SIB during the trace, the algorithm assumes that the SIB is not active and the trace
continues at the input of the SIB.

Examples
Example 1. Preferred Solution in a TAP DR-MUX:

ScanMux DRMux SelectedBy instruction[2:0] {
 3'b000 : bypass; // BYPASS instruction
 3’b100 : bypass; // HIGHZ instruction
 3'bx01 : fromTdr1;
 }

In this example, the IJTAG engine prefers the instruction “000” to “100”, even though they both
result in the same selection of the ScanMux because “000” is specified before “100”. This
ensures that the IJTAG engine does not accidentally activate the “HIGHZ” mode of the TAP.
The preference only becomes relevant if the IJTAG retargeting engine has no implicit or
explicit requirements for the value of the instruction.

Example 2. Preferred Solution With Different ScanRegisters:
ScanRegister r1[1:0] { ScanInSource tdi; }
ScanRegister r2[1:0] { ScanInSource tdi; }
ScanRegister r3[1:0] { ScanInSource tdi; }
ScanRegister r4[2:0] { ScanInSource tdi; }
ScanMux m1 SelectedBy select[1:0] {
 2’b10: r4[0];
 2’b11: r3[0];
 2’b00: r2[0];
 2’b01: r1[0];
}

In this example, the selection of “11” is preferred to “00” and “01”. The “10” selection is not
preferred because it would result in a longer overall scan path, as the r4 ScanRegister has a
length of 3, whereas the other possible selections all have a length of 2.

Tessent™ IJTAG User’s Manual, v2022.4176

IJTAG Examples
How to Model a ScanMux Selection Preference

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3. Preferred Solution for Scan Paths to a Common Source:
Figure 7-5. Tracing Scan Paths to a Common Source

In this example, the ScanMux on the right has three different possible selections including a SIB
drawn in green. The tool traces all three to the same common source and prioritizes selections
based on the order defined in the ICL file.

IJTAG Examples
How to Model a ScanMux Selection Preference

Tessent™ IJTAG User’s Manual, v2022.4 177

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 4. Preferred Solution when a ScanMux Drives Another ScanMux:
Figure 7-6. ScanMux Driving Another ScanMux

In this example, the ScanMux on the right has three different possible selections. The third
selection is driven by another ScanMux that is not within a SIB. The tool cannot statically
compute the scan path length for the red ScanMux, and as a result, there will be no prioritization
for the third selection.

Tessent™ IJTAG User’s Manual, v2022.4178

IJTAG Examples
How to Model a ScanMux Selection Preference

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.4 179

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 8
Verification and Debug of IJTAG

Instruments and Networks

IEEE 1687-2014 (IJTAG) enables you to describe various instruments and network components
through ICL files; these ICL files are read and processed by Tessent IJTAG. A higher-level ICL
file representing the current design can then be exported (ICL extraction) and lower-level PDL
test procedures can be regenerated (PDL retargeting) to a higher-level module.
Inserting new IJTAG instruments in a design and connecting them together modifies the overall
access network. For instance, an instrument may be connected to an IEEE 1500 Wrapper Test
Access Port (WTAP) and this WTAP may in turn be interfaced to an IEEE 1149.1 TAP. To
access the instrument, one thus has to go through the TAP and WTAP to reach it. Depending on
how the connections to the TAP and WTAP are made, accessing the target instrument may
require implementation-specific instruction opcodes and loading data registers with appropriate
data.

Assuming a design has a syntactically-valid ICL description, how do you validate its contents?
Do all described test data registers (TDRs) have the expected length and are connected exactly
as indicated?

An obvious method is to take an existing instrument-level test, retarget it to the current top-level
and then simply simulate it – exactly like a functional test. However, the coverage of such a
functional test is usually relatively low, and knowing exactly what gets tested is not obvious to
determine. Additionally, when simulations fail, it is increasingly difficult to figure out why.

This chapter provides guidelines and pointers to verify and debug such IJTAG networks and
instruments.

Tip
When using the Two-Pin Serial Port for IJTAG, refer to the topic “How to Avoid
Simulation Issues When Using the Two-Pin Serial Port Controller” in the Tessent Shell

User’s Manual .

General Guidelines for Debugging Simulation Results . 180
Creating ICL Verification Patterns . 180
Using ICL Verification Patterns. 181
ICL Verification Patterns Summary . 184
Displaying the Comparison Failure Counter . 185
Conclusion . 185

Tessent™ IJTAG User’s Manual, v2022.4180

Verification and Debug of IJTAG Instruments and Networks
General Guidelines for Debugging Simulation Results

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

General Guidelines for Debugging Simulation
Results

This section describes guidelines to help you debug simulation results.
• Create ICL verification testbenches

• Display the comparison failure counter in waveforms

Creating ICL Verification Patterns
Tessent IJTAG provides an automated method to structurally validate an ICL file: verification
patterns are generated based on the current ICL model of the design. Those patterns can be
exported as Verilog testbenches and then be simulated against the actual HDL view. This
ensures the ICL-based Tessent IJTAG view matches the actual test access infrastructure of the
current design.
Once this test access infrastructure has been validated (either via simulation or by testing an
actual silicon device), one can confidently assume the target instrument is accessible; settings
can be correctly applied to the instrument and its status can be monitored. If functional tests are
subsequently run and fail, the debug should therefore focus on the actual instrument behavior –
not on whether it is correctly accessed through the IJTAG network.

To generate those ICL verification patterns, use the create_icl_verification_patterns command.
For example:

[...]
extract_icl
set_system_mode analysis
open_pattern_set pset
create_icl_verification_patterns
close_pattern_set
report_pattern_set
write_patterns patterns/check_network.v -verilog -replace[...]

In the above dofile excerpt, a pattern set named “pset” is opened. The verification patterns are
automatically generated by Tessent IJTAG, based on the current design’s extracted ICL. Those
patterns are saved as Verilog testbenches (TBs) or ATE patterns for simulation with digital
EDA simulators (or for testing an actual silicon device on an ATE).

You can simulate verification testbenches generated by the create_icl_verification_patterns
command with Siemens EDA Questa™ SIM or other standard EDA simulators.

Tip
When using the Two-Pin Serial Port for IJTAG, refer to the topic “How to Avoid
Simulation Issues When Using the Two-Pin Serial Port Controller” in the Tessent Shell

User’s Manual .

Verification and Debug of IJTAG Instruments and Networks
Using ICL Verification Patterns

Tessent™ IJTAG User’s Manual, v2022.4 181

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Using ICL Verification Patterns
The test patterns generated from the create_icl_verification_patterns command are divided into
two categories.

• Scan register integrity test — Verifies that the scan-in to scan-out path of every scan
register works correctly. It also checks whether every scan register can be accessed and
has the correct length. For every scan multiplexer in place, each input must be exercised
at least once.

• Data input & output certification — Ensures the parallel IOs of an ICL module
capture and drive the intended values, using simulation-based “force” and “observe”
commands. Shifted-in values should be updated on the parallel output and captured
parallel inputs should be shifted-out appropriately.

Scan Register Integrity Test
The scan register integrity test is performed after the tools first create a scan path table. This
table is constructed by tracing backward from each scan output described in the current ICL
module. Whenever a scan mux is reached, a path that was not used before is selected. When
reaching a scan input, tracing stops and the traced scan path is stored in the scan path table. This
tracing process is then repeatedly performed, every iteration choosing the next path from the
last reached scan mux. Once all scan paths have been traced, the actual pattern generation
process is initiated.

The pattern generation comprises three distinct steps:

1. For every possible scan path, issue iWrite commands to set the intended scan mux select
conditions, then issue iWrite and iRead commands to shift the test pattern in or out to or
from the scan registers. If successful, the tested scan mux inputs and the related scan
registers are flagged as tested.

The activation of the scan path could fail due to mutually exclusive scan mux
conditions. In such a case, the related scan muxes are being flagged as “to be processed”
in step 2.

2. For each scan mux input that was not tested in step 1, the scan mux condition is
activated; the pattern for the scan register connected to the scan mux at the input or
output side then gets exercised. If successful, the related scan mux input and scan
register is flagged as tested.

In this step, only one scan mux is activated and the solver has the freedom to activate
everything else that may be required to scan in or out the related scan register.

ScanMux inputs can be excluded from the test by using the attribute
exclude_codes_from_icl_verify. Use this attribute in the ScanMux declaration and

Tessent™ IJTAG User’s Manual, v2022.4182

Verification and Debug of IJTAG Instruments and Networks
Using ICL Verification Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

specify the values that must not be applied to the select inputs of the multiplexer. If there
are multiple values that must be excluded, enclose each value in braces, as follows:

ScanMux mux SelectedBy tdr[2:0] {
 Attribute exclude_codes_from_icl_verify = "{3'b100} {3'b110}";
 3'b000: registerA[0];
 3'b100: registerB[0];
 3'b101: registerC[0];
 3'b110: registerD[0];
}

The specification of the attribute shown in the previous example instructs the
verification pattern generator not to configure the mux in such a way that the registerB
or registerD are used as input selectors.

3. For each scan register not flagged as tested, iWrite and iRead commands apply the
pattern directly and expect the solver to find a solution that activates all necessary
conditions to reach this scan register.

The last two steps above are skipped if everything is tested during step 1.

A scan register could be part of more than one scan path. In that case, it is tested multiple
times.

No patterns are created or generated for paths not containing any scan register (also
known as transparent paths) or only made of scan registers that were explicitly excluded.

An error is generated if scan registers are left untested. This error indicates the scan
registers could not be activated:

// Error: Failed to access following scan registers:
// i1.r1[10:0]
// i1.r2[10:0]

The pattern used to test the scan registers and their connectivity is the following:

101100111100001111111100000000…

The above pattern ensures the concatenated scan register length is as expected.

Verification and Debug of IJTAG Instruments and Networks
Using ICL Verification Patterns

Tessent™ IJTAG User’s Manual, v2022.4 183

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example
Assume an ICL file describes the following design consisting of four scan registers (r1-r4) and
scan muxes (s1-s3):

Figure 8-1. Example Design

This example results in four scan path configurations being added to the table in the following
order:

A ‘T’ means the scan register is tested in this scan path configuration. Tracing starts at a scan
out and keeps tracing backward until a scanin is encountered.

The algorithm takes into account a list of instances to exclude from the test. This list is
generated from the -instances or -modules and -exclude_instances or -exclude_modules
switches optionally specified by you. This list is empty by default, that is, all instances are
considered for test unless specified otherwise.

Data Input and Output Certification
The tests applied in the previous section validate serial scan paths. However, for a complete test,
parallel IO capture and update should also be verified. Parallel data captured at inputs can be
shifted out for examination while known shifted-in data can be applied (updated) at outputs.

For such tests to be performed on a given ICL module instance, its tessent_design_instance
attribute must be defined - because the tools then know the related design instance and can
address these pins directly in the design (via Verilog simulation).

Table 8-1. Scan Path Configurations
s1 s2 s3 r1 r2 r3 r4
0 0 0 T T - T
1 0 0 - T - T
1 1 0 - - T T
1 1 1 - - - -

Tessent™ IJTAG User’s Manual, v2022.4184

Verification and Debug of IJTAG Instruments and Networks
ICL Verification Patterns Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The verification process forces and measures internal DataIn and DataOut pin in conjunction
with iWrite and iRead commands. Within a given design, hierarchical parallel DataIn pins are
forced to a specific value before being captured and shifted out with an iRead. Similarly, iWrite
commands are applied to shift in a known value and then update it to DataOut pins where this
value can be compared.

The following steps are performed to certify DataIn pins on every instance with the
tessent_design_instance attribute:

1. iWrite a “0” to DataIn pins.

2. iApply.

3. Create measure/compare actions and add them to the solution.

4. Repeat the above with “1”.

The following steps are performed to certify the DataOut pins on every instance with the
tessent_design_instance attribute:

1. Create force actions to force a “0” to all DataOut pins.

2. iRead the “0” from the DataOut pins.

3. iApply.

4. Release the force actions.

5. Repeat the above with “1”.

Note
ICL Extraction sets the tessent_design_instance attribute to the pre-synthesis instance
names whenever those names are available. During the creation of the data pin verification

patterns, the actual design instance names are ignored. The verification pattern generator only
uses the tessent_design_instance attribute to obtain the references to the design pins.
Consequently, the RTL design files provided to ICL extraction must be used during the
simulation of the verification patterns, at least in the case where synthesis modifies the design
hierarchy (for example, because of “generate” loops). To obtain data pin verification patterns
that can be simulated using the synthesized netlist with instance names that have been modified
by synthesis, you either have to modify the tessent_design_instance attributes accordingly or
run ICL Extraction based on the synthesized netlist from the beginning (without providing rtl
files to the tool).

ICL Verification Patterns Summary
The create_icl_verification_patterns command automatically generates patterns to validate the
IJTAG network & instrument connectivity of the current ICL module. Those test patterns
ensure that the instrument can be properly accessed from the outside world.

Verification and Debug of IJTAG Instruments and Networks
Displaying the Comparison Failure Counter

Tessent™ IJTAG User’s Manual, v2022.4 185

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If simulations (or even ATE tests) indicate mismatches during functional tests but not during
ICL network and instrument verification, then it means that debug should focus on the targeted
instrument itself, not on the test access network. This simplifies the overall debug process, as it
narrows the failure’s scope and enables a quicker issue resolution.

Displaying the Comparison Failure Counter
When simulation mismatches are reported, the design may be debugged by analyzing
waveforms. This is typically done by displaying values over time for ports and signals of
interest. However, debugging complete simulation waveforms could be overwhelming if you do
not know where to look.
To help debug those mismatches, the verification testbench contains an internal variable named
_compare_fail_count. This variable is expected to be 0 initially and increments whenever a
comparison mismatch is observed.

It may be useful to display this variable when looking at simulation waveforms. Because it only
increments when a miscompare is recorded, first focus around the simulation time at which it
becomes equal to 1. Before that time, everything is likely to be good, and any additional failure
afterward may have the same cause.

Once you zoom in that very first failure, look at the few preceding clock cycles and investigate
what went wrong. Keep in mind that a failing comparison occurring on a serial scan-out port
(such as TDO) is often caused by an erroneous captured value. Although the error may only be
reported once that specific bit is shifted out, you need to look at the time the bit was captured to
diagnose further.

Conclusion
Using an ICL description at a given design level (for example: for an entire chip),
automatically-generated test patterns can be applied to ensure the integrity of the test access
network. This enables debug to focus on the target instrument itself, rather than having to figure
whether the instrument is properly accessed or not. The command to generate such patterns is
create_icl_verification_patterns.
Debugging simulation waveforms is a tedious process; fortunately one can zoom in closer to the
failure location by looking for the testbench internal variable named _compare_fail_count. This
variable initially starts at 0 and increments +1 whenever mismatches are recorded. Signal
waveforms can then be analyzed near the point in time where the variable increment first
occurred.

Tessent™ IJTAG User’s Manual, v2022.4186

Verification and Debug of IJTAG Instruments and Networks
Conclusion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ IJTAG User’s Manual, v2022.4 187

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 9
IJTAG Network Performance

The IJTAG network requires the distribution of control signals (capture enable, shift enable, and
update enable) over the entire design. Typically, these signals are sourced by a single IEEE
1149.1 Test Access Port (TAP) controller. The signals are launched and captured on opposite
edges of the network clock, TCK. The network is guaranteed to work even if no special care is
taken to propagate TCK and the network control signals. However, the maximum frequency of
operation might be too low for large designs or applications requiring a high network
throughput (for example, memory BIST diagnosis). This chapter describes a method for
optimizing the performance of the IJTAG network in those cases. The method takes into
account that most designs are designed hierarchically.
Note that the maximum frequency of network operation is also determined by the presence and
configuration of memory BIST testing, which is usually performed at the fastest functional rate
applicable to each memory BIST controller under test. To ensure correct timing and operation
of IJTAG accesses to the internal setup chain of the memory BIST controller, memory BIST
controllers implemented prior to v2020.4 require a minimum functional clock to TCK
frequency ratio of 4. Controllers implemented with versions v2020.4 and later incorporate
Enhanced MBIST Access (EMA), where TCK is sourced to the memory BIST controller during
the shift operation of the internal chains, rather than the functional clock, eliminating the need
for the 4:1 frequency ratio.

A condition that requires a minimum frequency ratio of 2:1 of the slowest memory BIST
controller functional clock to TCK, is the case of an IJTAG access to the internal setup chain of
a memory BIST controller with the following properties:

• EMA is present in the controller

• The DftSpecification AdvancedOptions/use_multicycle_paths property is enabled by
either:

o DefaultsSpecification ControllerOptions/use_multicycle_paths set to “on” OR

o DefaultsSpecification ControllerOptions/use_multicycle_paths set to “auto” AND
DefaultsSpecification ControllerOptions/use_multicycle_paths_period_threshold set
to “none” or to a period value larger than the period of the slowest functional clock
at the memory BIST controller.

Tessent™ IJTAG User’s Manual, v2022.4188

IJTAG Network Performance
IJTAG Network Performance Optimization

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
It is your responsibility to ensure you meet this requirement during synthesis and layout.
There is no rulecheck to ensure this requirement is satisfied when you run

process_patterns_specification. The TCK period in the patterns must be consistent with the one
used during timing closure.

IJTAG Network Performance Optimization . 188
FastIJTAG Solutions . 191

DFT Specification Implementations . 192
Clock Tree Balancing . 195
Software Clock Stretching . 197
Backward Compatibility . 206
FastIJTAG Limitations . 206
FastIJTAG Examples . 208

IJTAG Network Performance Optimization
This section describes how you can optimize IJTAG network performance. The methods
described are based on the concept of source synchronous timing, where the clock launching the
signals is propagated together with them and used to capture the signals at the destination. The
smaller the difference in the propagation time of the clock and signals, the better the
performance.

IJTAG Network Performance
IJTAG Network Performance Optimization

Tessent™ IJTAG User’s Manual, v2022.4 189

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-1. Example Chip With Embedded Blocks and IJTAG Network

Figure 9-1 shows a design with embedded blocks. Blocks are physical regions that are laid out
and signed off separately. The components of the IJTAG network are shown in teal and are all
clocked by TCK. The network is primarily used to control memory BIST and repair controllers
in this example, but any other controller type could be connected to the network.

Because TCK, the control signals of interest (capture enable, shift enable, update enable, and
select), and scan data paths may be heavily loaded due to a high fanout or long wires, they may
need to be buffered. TCK buffers are represented by triangles labeled T1 and T2 whereas
buffers for control signals are represented by triangles labeled C1 and C2. Data path delays due
to high-load fanout or buffering are represented by triangles labeled D1 and D2.

High-load fanouts can cause data path delays. The delays may be cumulative across the
hierarchy. An example of this is a physical block instantiated within a second physical block,
which is in turn under a third physical block, when the same line feeds all three levels of
hierarchy. Another example is a serial scan path delay, where a particular SIB has a high-load
fanout that reaches many instruments. For these two examples and other data path delay
scenarios, Equation 9-1 must be satisfied:

| ∑ DTCK - ∑ Ddata | < 0.5 TCKperiod (9-1)

Tessent™ IJTAG User’s Manual, v2022.4190

IJTAG Network Performance
IJTAG Network Performance Optimization

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

However, Equation 9-1 may not be satisfied for physical blocks and instruments deep in the
IJTAG hierarchy and may be valid only for instruments near the top of the design.

Control paths driven by the TAP are distributed over the entire chip, resulting in cumulative
delays across the hierarchy in addition to the data path delay. In that scenario, Equation 9-2
must be satisfied:

| ∑ DTCK - ∑ Dctrl | < 0.5 TCKperiod (9-2)

However, Equation 9-2 may not be valid for physical blocks and instruments placed away from
the TAP.

The objective is to keep the total propagation delays of control signals, data paths, and TCK
within ½ cycle of the target network frequency over the entire design.

Due to the timing limitations within IJTAG networks and loading, the instruments or physical
blocks placed deep in the hierarchy may have problems while operating at higher TCK
frequencies. Two important timing paths are highlighted in red and labeled L1 and L2 in
Figure 9-1. These paths, also called timing loops, connect different levels of the TCK tree and
are the source of these problems. These loops are common in IJTAG network topologies, and it
is not possible to avoid them entirely. In timing loop L1, the previous (n-1) TCK pulse clocked
the TAP, but the SIB that shifts data to the TAP is clocked by the current (n) TCK pulse. In
timing loop L2, the previous (n-1) TCK pulse clocks the SIB that hosts the physical Block A,
while the current (n) TCK pulse clocks the data coming from the child block.

The TCK signal delay must not be greater than half of the TCK period for each timing loop.
Equation 9-3 determines the highest possible frequency in the entire IJTAG network:

DTCK < 0.5 TCKperiod (9-3)

Scan Insertion Bits (SIBs) provide a natural pipeline mechanism for the serial output of
instruments and embedded blocks all the way to the TDO output. The strobe on TDO is aligned
with the rising edge of TCK by default in the manufacturing patterns to emulate the conditions
encountered once the circuit is embedded in the system. Delaying the strobe does not provide
any benefit when the TAP clock is an early version of TCK as recommended. This is because of
the presence of a latch in the TAP that closes on the rising edge of TCK so that the loop timing
is still ½ TCK cycle.

In a hierarchical design, it is recommended to specify a TCK clock frequency at the block level
that is higher than the final one at the chip top level. This enables the tool to distribute the
margin between the blocks and the top level. For example, suppose that the target frequency at
the chip level is 50MHz, blocks could use 100MHz as the target when signed off. Small blocks
could use even higher frequencies as they are more likely to become part of larger blocks before
being instantiated in the chip top level.

IJTAG Network Performance
FastIJTAG Solutions

Tessent™ IJTAG User’s Manual, v2022.4 191

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FastIJTAG Solutions
FastIJTAG extends Tessent IJTAG by providing solutions for timing closure problems. The
solutions can help you create an IJTAG network that operates at the desired frequency in your
chip.
DFT Specification Implementations. 192

Scan Input Pipelining . 192
SIB Output Retiming Stage . 194

Clock Tree Balancing . 195
Software Clock Stretching . 197

Selective TCK Stretching . 197
TCK Ratio and Single Period Tester . 200
TCK Ratio Greater Than One . 201
Multiple Period Tester . 201
Custom TCK Timeplate and Duty Cycle . 202
Non-TCK Clocks and Selective TCK Stretching . 203
Impact on Timing . 203
Impact on SSN Patterns . 204
Additional Flow Information . 205

Backward Compatibility . 206
FastIJTAG Limitations . 206
FastIJTAG Examples . 208

TDI Scan Input Pipelining . 208
Selective TCK Stretching . 210

Tessent™ IJTAG User’s Manual, v2022.4192

IJTAG Network Performance
DFT Specification Implementations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFT Specification Implementations
You can implement any of the following IJTAG network performance optimization solutions to
resolve timing closure problems when you specify the DFT Specification requirements for your
design.

• Scan input pipelining adds a one-bit TDR in series with the scan path inside heavily
loaded SIBs to provide an additional output port.

• Placement-aware IJTAG stitching uses physical layout information to create an IJTAG
chain with the shortest path. Refer to “Placement-Aware IJTAG Stitching” and the “TDI
Scan Input Pipelining” example.

• SIB output retiming stages create a reliable IJTAG network, but some SIBs may require
an adjustment when not optimal in a timing loop.

Scan Input Pipelining . 192
SIB Output Retiming Stage . 194

Scan Input Pipelining
Scan input pipelining provides an additional output port by adding a one-bit TDR in series with
the scan path inside heavily loaded SIBs.
Suppose your design uses the nesting of physical blocks to form a multilevel design hierarchy.
In that case, it may contain a long data path with many fanouts from the TDI port to the lowest
physical block in the hierarchy, or even from a SIB to deep hierarchies. Figure 9-2 provides an
illustration.

Figure 9-2. Multilevel Design Hierarchy With Long Data Path

To avoid these scenarios, add a pipeline stage consisting of a one-bit TDR connected in series
with the scan path inside the SIB. You add the pipeline stage by specifying the
“to_scan_in_feedthrough : pipeline” property and value in the HostScanInterface/Sib(id)
wrapper of the DftSpecification, or by specifying “to_scan_in_feedthrough_on_pb_sibs :

IJTAG Network Performance
DFT Specification Implementations

Tessent™ IJTAG User’s Manual, v2022.4 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

pipeline” in the IjtagNetwork wrapper of the DefaultsSpecification, as shown in the “TDI Scan
Input Pipelining” example.

The pipeline location is not disruptive and preserves the original network topology. The
pipelining of the scan input path resynchronizes the data line with the TCK clock provided to
the SIB. Equation 9-4 must be valid for each timing loop for each hierarchy level separately:

| DTCK - Ddata | < 0.5 TCKperiod (9-4)

Figure 9-3. Multilevel Design Hierarchy Using Scan Input Pipelining

Figure 9-3 shows the use of the pipeline stage (P) for SIBs with heavily loaded fanouts, such as
the SIB that hosts the physical block. This pipeline stage changes the layout footprint of
affected SIBs with the addition of the output port “to_ijtag_si” on the SIB module boundaries.
Figure 9-4 marks the added pipeline stage with a red circle in the circuit.

Tessent™ IJTAG User’s Manual, v2022.4194

IJTAG Network Performance
DFT Specification Implementations

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-4. Tessent SIB With Pipeline Stage

SIB Output Retiming Stage
Tessent Shell's scan path retiming creates a reliable network, but it is not optimal for timing
loops. A property in the Sib DftSpecification wrapper can remove the retiming element from the
scan-out port.
Refer to Figure 9-1 for example timing loops L1 and L2. The “retiming_so” flop inside the SIB
(refer to Figure 9-5) may be problematic if it is the last SIB of the chain driving the “ijtag_so”
output of an entire child block. The child block is hosted by a parent SIB one hierarchy level
above. Suppose the current (n) TCK clock cycle captures data for output from the child block.
The parent SIB captures the data signal as it returns from the child, but the capturing cycle
occurred on a previous (n-1) cycle of TCK. The circuit in Figure 9-1 guarantees that the TCK of
the child is later than the parent in this regard. In that case, you can remove the “retiming_so”
flop from the child SIB to extend the time window from half of the TCK period to an entire
TCK cycle.

IJTAG Network Performance
Clock Tree Balancing

Tessent™ IJTAG User’s Manual, v2022.4 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-5. Tessent SIB Circuit Diagram (Retiming Stage Circled)

Automatically determining the last SIB in the scan chain of a block is impossible for Tessent
Shell because of the possibility of future insertion passes. Therefore, you must choose the
required SIBs and manually specify their so_retiming properties to remove their scan-out
retiming elements. You specify “so_retiming : off” in the HostScanInterface/Sib wrapper of the
DftSpecification to remove the scan-out retiming element on the final Sib.

Clock Tree Balancing
The first thing to verify in your implementation is to make sure that you connect the TAP to an
early version of TCK during clock tree synthesis (CTS).
This may not happen by default. Figure 9-6 shows what you might need to do to guide the
layout tool during the TCK clock tree synthesis step. You specify
tessent_persistent_cell_tck_cts_stop_buf as a stop point to the clock tree synthesis command,
which keeps the TAP on an early version of TCK. The layout placement of this buffer is
immediately after the TCK input. You do not need to modify the timing constraints generated
by the Tessent tools. The CTS buffer is always added inside the Tessent TAP controller.

Tessent™ IJTAG User’s Manual, v2022.4196

IJTAG Network Performance
Clock Tree Balancing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-6. TCK CLK Tree With Stop Points

In a hierarchical design, the TCK clock input of embedded blocks must also be designated as a
stop point during clock tree synthesis. This is applicable whether the blocks are inserted at the
chip top level or within another block.

Another implementation aspect is that control signals might require the use of specialized layout
tool commands to treat high fanout nets. The objective is to achieve roughly similar propagation
delays compared to TCK to satisfy equation 9-2.

The serial input to the network, TDI, has not been discussed because it is naturally sourced by
an early version of TCK from a chip pin and is less loaded than the other control signals. It must
however satisfy equation 9-2 and might have to be treated like control signals.

IJTAG Network Performance
Software Clock Stretching

Tessent™ IJTAG User’s Manual, v2022.4 197

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Software Clock Stretching
Control signal delays are cumulative across the design hierarchy. Timing delays affect IJTAG
instruments, especially when placed far away from their TAP controller. Timing delays also
affect TMS timing, for example in designs that require routing TMS to multiple embedded TAP
controllers. Selective TCK stretching solves signal delay problems for heavily loaded control
signals in large IJTAG networks.
This type of clock stretching primarily affects the non-shift states of the TAP controller Finite
State Machine (FSM), which minimizes the impact on test time. Selective TCK stretching may
be accomplished in three ways, depending on two conditions:

• TCK clock ratio

• ATE capability to apply different test clock periods

Selective TCK Stretching . 197
TCK Ratio and Single Period Tester . 200
TCK Ratio Greater Than One . 201
Multiple Period Tester. 201
Custom TCK Timeplate and Duty Cycle. 202
Non-TCK Clocks and Selective TCK Stretching . 203
Impact on Timing. 203
Impact on SSN Patterns . 204
Additional Flow Information . 205

Selective TCK Stretching
Selective TCK stretching increases the setup and hold timing margins of IJTAG control signals
and the TMS TAP controller input by one or more TCK periods.
Use the set_ijtag_retargeting_options command and specify the number of extra setup and hold
cycles using the “-extra_control_setup_hold_cycles” and “-extra_tms_setup_hold_cycles”
switches.

Figure 9-7 shows the typical TCK waveform. All setup and hold times are equal to half of the
TCK cycle. The FSM inside the TAP changes state on the positive edge, but the TAP outputs
(CAPTURE_EN, SHIFT_EN) and IJTAG instrument Select update on the negative edge in the
same cycle. However, UPDATE_EN updates on the same positive edge as the FSM state.
Signals propagate across the hierarchy to instruments that capture the controls on the positive
edge in the next cycle, except UPDATE, which captures on the negative edge. The IJTAG
Select signal qualifies (logical AND) each TAP output signal for an instrument and is captured
on the same edge as the control signal. Therefore, the setup and hold times for Select are more
relaxed than for the TAP output signals individually.

Tessent™ IJTAG User’s Manual, v2022.4198

IJTAG Network Performance
Software Clock Stretching

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-7. Normal TCK (Setup/Hold 0.5 x TCK Period)

When you specify the “-extra_control_setup_hold_cycles” switch, the selective TCK stretching
adds extra setup and hold time for the IJTAG control signals, and in the case shown in
Figure 9-8 and Figure 9-9, these expand from 0.5TCK to 1.5TCK. The previous timing equation
(Equation 9-4) modifies with “+ N × TCKperiod”, where you determine the number of additional
cycles N, to become Equation 9-5:

| ∑ DTCK - ∑ Dctrl | < 0.5 TCKperiod + N × TCKperiod (9-5)

Note
The maximum number of extra control or TMS setup and hold cycles is 256.

Selective TCK stretching for IJTAG control signals occur for the CAPTURE, UPDATE, and
Select pulses, and the first SHIFT pulse in each iApply frame. The rest of the SHIFT phase runs
at the full TCK frequency. Selective TCK stretching makes each frame longer, but it does not
affect the SHIFT, which is the longest part of the frame, except in the first pulse. It is crucial for
IJTAG performance that selective TCK stretching does not cause the SHIFT phase to run
slower.

For a TCK ratio of 2 with a fifty percent duty cycle, the TCK primary input drives its value in
the middle of the tester cycle. Therefore, two tester cycles model one TCK pulse, as shown in
Figure 9-8 and Figure 9-9. A fifty percent duty cycle for both stretched and non-stretched
versions of the TCK signal generates correct constraints for the SDC file.

IJTAG Network Performance
Software Clock Stretching

Tessent™ IJTAG User’s Manual, v2022.4 199

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-8. Selective TCK Stretching (-extra_control_setup_hold_cycles 1)

Figure 9-9. Selective TCK Stretching (-extra_control_setup_hold_cycles 1),
Continued

The TAP controller samples TMS on the positive edge of TCK and setup and hold times are
equal to 0.25 TCK and 0.75 TCK respectively. The setup and hold margins are not balanced
because the Tessent generic timeplate forces the TMS signal at time “0” during a force_pi
event, which forces the signal in the middle of the tester clock “off” state. When you specify the
“-extra_tms_setup_hold_cycles” switch, the selective TCK stretching adds extra setup and hold
time by extending the TCK cycle by a “N x TCKperiod” for each, where “N” is the number of
additional cycles specified. Figure 9-10 illustrates the hold time expansion from 0.75 TCK to
1.75 TCK and setup time from 0.25 TCK to 1.25 TCK when you specify a value of “1”. Unlike
the “-extra_control_setup_hold_cycles” switch, using the “-extra_tms_setup_hold_cycles”
switch does not require the tool to generate extra timeplates, as described in the following
sections. The tool automatically generates timeplates in this case.

Tessent™ IJTAG User’s Manual, v2022.4200

IJTAG Network Performance
Software Clock Stretching

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-10. TMS Selective TCK Stretching (1.25 TCK Setup, 1.75 TCK Hold)

TCK Ratio and Single Period Tester
If the tester supports only one single clock period for the pattern set and the TCK ratio equals
one, the TCK waveform is split into multiple time frames. Each time frame corresponds to a
single tester cycle and an associated timeplate defining TCK as a port with forced timing.
Figure 9-11 illustrates selective TCK stretching by using two additional timeplates with the
same tester period. The figure shows that two additional non-return-to-zero (NRZ) timeplates
are required to model the TCK waveform for three tester cycles. The first additional timeplate
has a force time at 25% of the period, the second at 75%. At most, three different timeplates are
required to form both the original and stretched TCK waveforms, regardless of the shape of the
original TCK waveform and the number of extra pulses for stretching.

Note
The edge timings listed on top of the figure are relative. The “0.25” means that the edge
occurs at 25% of the tester period. The “1” and “0” represent the value to pulse or force on

TCK in the cycle. The RZ and NRZ determine the value that TCK returns to by the end of the
cycle.

Figure 9-11. Selective TCK Stretching Using Two Additional Timeplates

IJTAG Network Performance
Software Clock Stretching

Tessent™ IJTAG User’s Manual, v2022.4 201

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

TCK Ratio Greater Than One
When a TCK ratio is greater than one, the TCK signal is treated as a data input line instead of a
clock and influences the format of the timeplate for pattern generation.
For example, Figure 9-8 and Figure 9-9 show waveforms for a TCK ratio equal to two. Here,
the TCK primary input is forced to its value in the middle of the tester period, so two tester
cycles are required to model one pulse of TCK. Figure 9-12 shows the corresponding timeplate
with a TCK ratio of “2”.

Figure 9-12. Timeplate With TCK Ratio of 2

timeplate tessent_ijtag =
 force_pi 0;
 measure_po 2.4;
 force TCK 5;
 pulse_clock 2.5 5;
 period 10;
end;

Multiple Period Tester
Some testers support different clock periods per timeplate for the same pattern set. Those testers
can form a signal with selective TCK stretching by using a single return-to-zero or return-to-one
waveform placed in a single timeplate with a larger period. A TCK ratio of one is required in
this case.

Note
Refer to the “set_tester_options” command in the Tessent Shell Reference Manual for more
information.

Figure 9-13 shows a tester-based waveform with selective TCK stretching that uses one
additional timeplate (shown in red) for a pattern. The timeplates use different tester periods.

Figure 9-13. Tester-Based Selective TCK Stretching

Tessent™ IJTAG User’s Manual, v2022.4202

IJTAG Network Performance
Software Clock Stretching

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Custom TCK Timeplate and Duty Cycle
For custom TCK timeplates where the TCK clock duty cycle is not 50%, stretching of the
waveform is proportional.
Figure 9-14 illustrates proportional, return-to-zero (RZ) waveforms of a custom timeplate. The
timeplate has one extra setup and hold cycle. Table 9-1 lists the time of events of the custom
timeplate. The period of the non-stretched timeplate is 100 ns.

The one extra cycle for both setup and hold time make the non-stretched time frame three times
longer. The original hold time is extended three times, the same as the setup time.

The original, non-stretched leading edge of TCK occurs at 45 ns, and the trailing edge occurs at
70 ns. The hold time is 25 ns (70 - 45 = 25).

After selective TCK stretching, the leading edge is at the same point, but the trailing edge
moves to 120 ns. The stretched hold time is 75 ns (120 - 45 = 75) and is three times longer than
the original hold time.

The stretching of the timeplate is correct. However, the stretched hold time is shorter than 100
ns, which is the original period. The setup time is longer than the two original periods (225 ns).
This scenario may result in incorrect SDC constraints generated for Tessent IJTAG instruments
and is a known limitation.

Note
Refer to “Impact on Timing” on page 203 for more details.

Figure 9-14. Custom RZ Timeplate Waveforms

IJTAG Network Performance
Software Clock Stretching

Tessent™ IJTAG User’s Manual, v2022.4 203

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Non-TCK Clocks and Selective TCK Stretching
Selective TCK stretching has no impact on non-TCK clocks defined in the generated timeplates.
When you specify “set_tester_options -timeplate_constraints same_period”, the generated
timeplates for selective TCK stretching distribute the TCK cycle over multiple tester cycles and
the non-TCK clock pulses within each tester cycle.

When you specify “set_tester_options -timeplate_constraints none”, the tool converts non-TCK
clocks defined with “add_clocks -pulse_always” into multiple-pulse timing within each tester
cycle in the timeplates generated for selective TCK stretching. The conversion to multiple-pulse
timing also occurs for ICL ClockPorts defined with “add_icl_ports -function_modifier
sync_tester_clock”. Refer to “Multiple-Pulse Clocks” in the Tessent Shell User’s Manual for
additional information.

Therefore, selective stretching of TCK does not affect non-TCK clocks and the waveforms
generate as shown, independent of tester timeplate constraints.

Figure 9-15. Non-TCK Clock During TCK Stretching

Impact on Timing
Selective TCK stretching adds programmable multicycle paths (MCPs) to the IJTAG SDC
generated by Tessent Shell. The MCPs relax the setup and hold times of the TMS TAP input,
and the IJTAG control signals capture_enable, shift_enable, update_enable, and select.

Table 9-1. Custom RZ Timeplate Time of Events
Event Original Time Stretched Time
Leading edge 45 ns 45 ns
Trailing edge 70 ns 120 ns
Force PI before the leading edge 40 ns 40 ns
Force PI before the trailing edge 65 ns 115 ns
Strobe PO before the leading edge 43 ns 43 ns
Strobe PO before the trailing edge 68 ns 118 ns

Tessent™ IJTAG User’s Manual, v2022.4204

IJTAG Network Performance
Software Clock Stretching

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing Flow
Tessent Shell generates an SDC file with a TCL procedure that uses the same name as the
Tessent Shell command set_ijtag_retargeting_options. This procedure takes any switch and
value argument pairs used by Tessent Shell, but it only processes the arguments of the
“-extra_control_setup_hold_cycles” and “-extra_tms_setup_hold_cycles” switches. Then, the
TCL procedure sets the global SDC variables tessent_extra_control_setup_hold_cycles and
tessent_extra_tms_setup_hold_cycles to the required values.

You must create and source a side file into the timing tool and Tessent Shell to keep the design
models consistent between the tools.

Note
Refer to “Selective TCK Stretching” for an example.

Custom Timeplates Considerations
The tool extends setup and hold times proportionally for custom timeplates with TCK duty
cycles other than 50%. However, the resulting setup and hold times can be shorter than those of
the original timeplate, which can cause incorrect generation of SDC constraints for Tessent
IJTAG instruments.

To ensure the correct SDC, you must create the TCK clock in the SDC to represent the non-50%
duty cycle. Tessent Shell creates SDC assuming the TCK clock has a 50% duty cycle. You must
be aware that the timing margin of extra setup and hold cycles are proportionally distributed
depending on your duty cycle.

For example, suppose you specified 2 extra setup and hold cycles. The timing margin of these
extra 4 cycles (2 setup and 2 hold) are proportionally distributed based on the duty cycle.

Impact on SSN Patterns
SSN utilizes global TCK stretching. Selective TCK stretching can help close timing
requirements. The impact of selective TCK stretching for SSN patterns is:

• The tool performs selective TCK stretching during the write_patterns command if there
are IJTAG operations to write as part of the pattern set. This effectively creates TCK as
a ratio of the SSN bus clock to keep the SSN bus as fast as possible.

Note
Refer to the “set_tester_options -timeplate_constraints same_period” command in
the Tessent Shell Reference Manual for a description of global TCK stretching for

SSN.

IJTAG Network Performance
Software Clock Stretching

Tessent™ IJTAG User’s Manual, v2022.4 205

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• During the test_setup, test_end, ssn_setup, and ssn_end, the tool further stretches TCK
and applies the extra setup and hold cycles that were specified by the
set_ijtag_retargeting_options command.

Additional Flow Information
This section provides additional information to consider when developing a flow.

Procedure Files
The write_procfile command writes procedure files and does not apply selective TCK
stretching.

Writing procedures as part of a Tessent Core Description (TCD) flow, or writing TSDB data,
does not save selective TCK stretching information.

Pattern Formats
The write_patterns command performs selective TCK stretching only for test benches and tester
pattern formats. Pattern formats that do not support the application of selective TCK stretching
are:

• ASCII

• Binary

• PatDB

• PDL

• SVF

Writing Patterns
When using the write_patterns command with selective TCK stretching enabled, full ICL and
PDL information must be present in the following contexts if SSN is not present:

• patterns -scan

• patterns -scan_retargeting

• patterns -scan_diagnosis

The flow ensures that the required information is available in other contexts.

Tessent™ IJTAG User’s Manual, v2022.4206

IJTAG Network Performance
Backward Compatibility

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Backward Compatibility
Scan input pipelining and selective TCK stretching are backward compatible and have no
impact on the existing flow.

• Placement-aware IJTAG stitching is enabled by default when a DEF file is loaded. For
alphabetical stitching, do not load a DEF file.

• The previous behavior of the SIBs does not change because the default value of the
to_scan_in_feedthrough property is “none”.

• The previous behavior of the SIBs does not change because the default value of
so_retiming is “on”.

• The default number of extra pulses in selective TCK stretching is “0”. You must define a
value of “1” or higher to use this feature.

FastIJTAG Limitations
This section provides a collection of known limitations.

Temporary
MissionMode

The MissionMode controller (InSystemTest) is currently not compatible with selective TCK
stretching.

SSN Streaming through IJTAG
SSN Streaming through IJTAG is currently incompatible with selective TCK stretching for the
external capture mode (set_current_mode -type { unwrapped | external }). This limitation does
not affect internal capture mode.

SVF Pattern Format
Tessent Shell can create SVF but conditionally applies selective TCK stretching as follows:

When generating patterns through a TAP interface (typically chip level), Tessent Shell writes
SVF patterns using the protocol-aware SDR and SIR commands. In this case, the pattern file
does not express the TCK stretching. This is not a limitation. It is a feature of the SVF format
not to express the TCK cycles. Tessent Shell can read this format back in. It can apply selective
stretching to generate another pattern format.

When generating patterns through an IJTAG interface (typically block level), Tessent Shell
writes SVF patterns using the explicit PIO commands. In this case, the pattern file expresses the
selective TCK stretching. However, Tessent Shell does not currently apply stretching in the PIO
SVF. Tessent Shell can read this format back in. When generating another pattern format, it
applies selective stretching as expressed in the PIO pattern regardless of the value of the
extra_control_setup_hold_cycles option.

IJTAG Network Performance
FastIJTAG Limitations

Tessent™ IJTAG User’s Manual, v2022.4 207

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Permanent
Pattern Generation with an MBIST Asynchronous Interface

Prior to the 2020.4 release, the MBIST IP implemented an asynchronous interface (AI) to
access its internal chains. When using legacy MBIST hardware with AI, the BIST_CLK
frequency to TCK frequency ratio must be at least 8 to generate MBIST patterns. Otherwise,
Tessent displays an error message. To decrease the TCK frequency, you can either increase the
value of the tester_period property or increase the value of the tck_ratio property.

The STA scripts to validate the MBIST AI timing have not been updated to reflect selective
TCK stretching. Specifically, the reporting of the BIST_SHIFT timing will be pessimistic.

Starting with the 2020.4 release, AI was replaced by the Enhanced MBIST Access (EMA)
mechanism. A controller equipped with EMA is not affected by this limitation.

TCK Ratio and Custom Timeplates
Default timing can use any even TCK ratio, but custom timeplates require the TCK ratio to be
one or a power of 2. If the TCK ratio set by the set_ijtag_retargeting_options command is
greater than one, the tool adjusts TCK automatically to the next nearest power of two. However,
the “open_pattern_set -tck_ratio” command gives an error when using it to set the TCK ratio to
an even value that is not a power of 2. If the custom timeplate defines TCK as a non-return-to-
zero waveform, the minimum TCK ratio of 2 is required.

Tessent™ IJTAG User’s Manual, v2022.4208

IJTAG Network Performance
FastIJTAG Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FastIJTAG Examples
The examples show how to use FastIJTAG solutions with the Tessent flow.

• Scan Input Pipelining — How to set up a scan input pipeline using SIBs.

• Selective TCK Stretching — How to perform selective clock stretching for TCK.

TDI Scan Input Pipelining . 208
Selective TCK Stretching . 210

Step One: Establish Stretching Requirements . 210
Step Two: Generate Patterns with Stretching . 211

TDI Scan Input Pipelining
This example describes how to set up a scan input pipeline using SIBs in an IJTAG network
with the Tessent flow.
The example uses the DefaultsSpecification property to instruct the DftSpecification creation to
add scan-in pipelining on SIBs that the tool adds in front of child physical blocks.

IJTAG Network Performance
FastIJTAG Examples

Tessent™ IJTAG User’s Manual, v2022.4 209

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 9-1. Using Tessent Shell to add a Pipeline

Load placement information for placement-aware IJTAG stitching.
SETUP> read_def my_chip.def
Instruct Tessent Shell to add a pipeline to all physical blocks SIBs
SETUP> set_defaults_value \
 DftSpecification/IjtagNetwork/to_scan_in_feedthrough_on_pb_sibs \
 pipeline
Create the DftSpecification
SETUP> check_design_rules
ANALYSIS> set dft_spec [create_dft_specification]
Report out the DftSpecification
ANALYSIS> report_config_data $dft_spec
DftSpecification(parent,rtl) {
 IjtagNetwork {
 HostScanInterface(tap) {
 Interface {
 tck : tck;
 }
 Tap(main) {
 HostIjtag(1) {
 Sib(sri) {
 Attributes {
 tessent_dft_function : scan_resource_instrument_host;
 }
 Sib(pb1) {
 to_scan_in_feedthrough : pipeline;
 DesignInstance(child) {
 scan_interface : ijtag;
 }
 }
 }
 }
 }
 }
 }
}

Tessent™ IJTAG User’s Manual, v2022.4210

IJTAG Network Performance
FastIJTAG Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Selective TCK Stretching
This example describes how to perform selective TCK stretching for an IJTAG network with
the Tessent flow. Selective TCK stretching provides flexibility to relax timing constraints on
critical IJTAG control signals.
First, you must determine any selective TCK stretching requirements using your synthesis or
timing closure tool. You may need to establish the stretching requirements for the IJTAG
control ports of a physical block or the control signal registers inside the TAP controller. If you
have problems closing timing on these paths, use your timing tool to determine the stretching
requirements, such as how many extra setup or hold cycles to use to meet the slack
requirements.

Second, using a side file, hand off the information to pattern generation to ensure consistency
with the timing tool.

Suppose for an example design, the TCK frequency is 100 MHz (10 ns period) and timing
analysis tools can resolve slack issues using one extra 10 ns cycle. You specify the number of
additional pulses and the desired TCK period.

Step One: Establish Stretching Requirements
Step one occurs during synthesis and static timing analysis of your design outside the Tessent
environment.
For this example design named “chip1”, you need one extra cycle to meet the timing needs for a
10 ns TCK period. Create a side file, such as in the following example, and source it in your
timing script. Add the source statement between the calls to tessent_set_default_variables and
tessent_set_non_modal, as shown in the following example.

Verify that the new multicycle paths resolve the timing violations. If they do, you are ready to
use the side file for pattern generation in step two.

Note
Refer to “Timing Constraints (SDC)” and “Example Scripts using Tessent Tool-Generated
SDC” in the Tessent Shell User's Manual for more information.

Example Side File
The following code example is a side file to add one extra cycle for a 10 ns TCK period to meet
the slack requirements necessary to close timing. Hand the side file off to pattern generation and
source it in Tessent Shell to ensure timing consistency.

IJTAG Network Performance
FastIJTAG Examples

Tessent™ IJTAG User’s Manual, v2022.4 211

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 9-2. Side File for Pattern Generation

Side file enable_tessent_fastIJTAG.tcl
Replace with your own values.

set tck_period 10
set_ijtag_retargeting_options -extra_control_setup_hold_cycles 1 \
 -extra_tms_setup_hold_cycles 1 \
 -tck_period "${tck_period}ns"

Example Timing Script
The following code example is part of a timing script that sources the side file to apply the
correct SDC timing constraints consistently.

Example 9-3. Partial Script Sourcing the Side File

...
source <tsdb_outdir>/chip1.sdc
tessent_set_default_variables
source the side file to set the multicycle paths
source ../data/enable_tessent_fastIJTAG.tcl
tessent_set_non_modal
update_timing
...

Step Two: Generate Patterns with Stretching
Step two occurs within the Tessent environment.
After creating the side file with the required extra pulses and TCK clock period, you must
source it in Tessent Shell before pattern generation to enable the FastIJTAG feature.

Reporting Pattern Processing Details
The following example shows how to source the side file to enable FastIJTAG with the correct
SDC values to maintain consistency. It also shows how to report the pattern processing details
of the process_patterns_specification command by using a callback.

Note
Currently, process_patterns_specification only supports TCK ratios that are a power of 2.

Tessent™ IJTAG User’s Manual, v2022.4212

IJTAG Network Performance
FastIJTAG Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 9-4. Sourcing a Side File and Using a Callback

After loading and elaborating the design in the "patterns -ijtag"
context, source the side file to enable the FastIJTAG feature during
pattern generation.
SETUP> source ../data/enable_tessent_fastIJTAG.tcl

Print pattern details like tester_period and TCK ratio
proc report_pattern_sets_post {args} {
 report_pattern_sets
}
register_callback process_patterns_specification.pre_write report_pattern_sets_post

Check lower physical blocks with chip level testbench
SETUP> set_defaults_value \
PatternsSpecification/SignOffOptions/simulate_instruments_in_lower_physical_instances on

Create default patterns specification
SETUP> create_patterns_specification
SETUP> process_patterns_specification

Appendix A
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending
on your need, help is available from documentation, online command help, and Siemens EDA
Support.
The Tessent Documentation System . 213
Global Customer Support and Success . 214

The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML
content. From the InfoHub, you can access all locally installed product documentation, system
administration documentation, videos, and tutorials. For users who want to use PDF, you have a
PDF bookcase file that provides access to all the installed PDF files.
For information on defining default HTML browsers, setting up browser options, and setting the
default PDF viewer, refer to the Siemens® Software and Mentor® Documentation System
manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a
Tessent tool with the -manual invocation switch.

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — ou can get contextual online help within most Tessent
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command
description.
Tessent™ IJTAG User’s Manual, v2022.4 213

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Getting Help
Global Customer Support and Success
Global Customer Support and Success
A support contract with Siemens EDA is a valuable investment in your organization’s success.
With a support contract, you have 24/7 access to the comprehensive and personalized Support
Center portal.
Support Center features an extensive knowledge base to quickly troubleshoot issues by product
and version. You can also download the latest releases, access the most up-to-date
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login,
register here:

https://support.sw.siemens.com/register
Tessent™ IJTAG User’s Manual, v2022.4214

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

https://support.sw.siemens.com
https://support.sw.siemens.com/register

Third-Party Information
Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

	InfoHub
	Bookcase
	Revision History ISO-26262
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction to Tessent IJTAG
	Tessent IJTAG Flow
	ICL and PDL Limitations
	License Usage/Requirements

	Chapter 2 ICL and PDL Modeling
	ICL Instrument Description
	How to Build an ICL Netlist
	How to Model Global Reset, Local Reset and Embedded TAPs
	ScanInterfaces and Associations Between Ports and ScanInterfaces
	Modules With Explicitly Specified ScanInterfaces
	DRCs for Explicitly Specified ScanInterfaces
	Inferred Associations Between Ports and Explicitly Specified ScanInterfaces

	Modules Without Explicitly Specified ScanInterfaces
	Checking ICL Module Ports
	Anonymous ScanInterface Creation

	How to Define an iProc
	How to Call an iProc

	Chapter 3 A Typical PDL Retargeting Flow
	The Basic PDL Retargeting Flow
	Invoke Tessent Shell
	Set the IJTAG Context and System Modes
	Read ICL Files
	Read PDL Files
	Set the Retargeting Level
	Define Clocks and Timing
	Test Clock
	Synchronous System Clock
	Asynchronous System Clock

	Design Rule Checks
	Create Pattern Sets
	Write PDL, Pattern, and Testbench Files
	Comments and Annotations in Tessent IJTAG
	Exit the Tool

	Optional Elements of a PDL Retargeting Flow
	Test Setup and Test End Procedures
	How to Define and Use Clocks Outside ICL
	How to Constrain Inputs
	Report Generation
	IJTAG Introspection
	PDL Retargeting With Symbolic Variables
	Specifying Symbolic Variables in PDL
	Retargeted Symbolic Variables
	Symbolic Variables Specific to Boundary Scan Patterns

	How to Run iCalls in Parallel
	PDL Specialties and Exceptions
	iMerge Conflict Reporting

	PDL Retargeting Commands
	Introspection and Reporting Commands

	Chapter 4 ICL Extraction
	ICL Extraction Flow
	Required Inputs for ICL Extraction
	Optional Inputs for ICL Extraction

	Performing ICL Extraction
	Top-Down and Bottom-Up ICL Extraction Flows
	Top-Down ICL Extraction Flow
	Bottom-Up ICL Extraction Flow

	ICL Extraction Design Rule Checks
	Debugging DRC Violations With Tessent Visualizer

	How to Influence the ICL Extraction Process
	How to Influence ICL Extraction Through Commands
	How to Influence ICL Extraction Through ICL Module Attributes

	ICL Network Extraction of Parameterized Modules
	ICL Extraction Commands

	Chapter 5 IJTAG Network Insertion
	The IJTAG Network Insertion Flow
	IJTAG Network Insertion Example
	Placement-Aware IJTAG Stitching
	Modification of the IJTAG Network Insertion Flow

	How to Edit or Modify a DftSpecification
	DftSpecification Examples
	Examples

	Chapter 6 IJTAG and ATPG in Tessent Shell
	IJTAG ATPG Flow Overview
	IJTAG Features of ATPG in Tessent Shell
	EDT IP Setup for IJTAG Integration
	How to Set Up Embedded Instruments Through Test Procedures
	How to Set Up Embedded Instruments Through the Dofile
	Implicit and Explicit iReset Commands

	A Detailed IJTAG ATPG Flow

	Chapter 7 IJTAG Examples
	ICL Modeling versus Verilog Modeling
	ICL Namespaces
	PDL Namespaces
	Skipping the Run-Test/Idle State
	How to Define Default Values in ICL
	Attributes of the ICL Extraction Flow
	Scan Chain Integrity Test in Tessent IJTAG
	How to Define Auto-Return Values in ICL
	How to Model Addressable Registers in ICL
	How to Model a ScanMux Selection Preference

	Chapter 8 Verification and Debug of IJTAG Instruments and Networks
	General Guidelines for Debugging Simulation Results
	Creating ICL Verification Patterns
	Using ICL Verification Patterns
	ICL Verification Patterns Summary
	Displaying the Comparison Failure Counter
	Conclusion

	Chapter 9 IJTAG Network Performance
	IJTAG Network Performance Optimization
	FastIJTAG Solutions
	DFT Specification Implementations
	Scan Input Pipelining
	SIB Output Retiming Stage

	Clock Tree Balancing
	Software Clock Stretching
	Selective TCK Stretching
	TCK Ratio and Single Period Tester
	TCK Ratio Greater Than One
	Multiple Period Tester
	Custom TCK Timeplate and Duty Cycle
	Non-TCK Clocks and Selective TCK Stretching
	Impact on Timing
	Impact on SSN Patterns
	Additional Flow Information

	Backward Compatibility
	FastIJTAG Limitations
	FastIJTAG Examples
	TDI Scan Input Pipelining
	Selective TCK Stretching
	Step One: Establish Stretching Requirements
	Step Two: Generate Patterns with Stretching

	Appendix A Getting Help
	The Tessent Documentation System
	Global Customer Support and Success

	Third-Party Information
	Documentation Feedback

