
Software Version 2022.4
Document Revision 27

SIEMENS EDA

Tessent™ Diagnosis
User’s Manual

Unpublished work. © 2022 Siemens

This Documentation contains trade secrets or otherwise confidential information owned by Siemens Industry
Software Inc. or its affiliates (collectively, “Siemens”), or its licensors. Access to and use of this Documentation is
strictly limited as set forth in Customer’s applicable agreement(s) with Siemens. This Documentation may not be
copied, distributed, or otherwise disclosed by Customer without the express written permission of Siemens, and may
not be used in any way not expressly authorized by Siemens.

This Documentation is for information and instruction purposes. Siemens reserves the right to make changes in
specifications and other information contained in this Documentation without prior notice, and the reader should, in
all cases, consult Siemens to determine whether any changes have been made.

No representation or other affirmation of fact contained in this Documentation shall be deemed to be a warranty or
give rise to any liability of Siemens whatsoever.

If you have a signed license agreement with Siemens for the product with which this Documentation will be used,
your use of this Documentation is subject to the scope of license and the software protection and security provisions
of that agreement. If you do not have such a signed license agreement, your use is subject to the Siemens Universal
Customer Agreement, which may be viewed at https://www.sw.siemens.com/en-US/sw-terms/base/uca/, as
supplemented by the product specific terms which may be viewed at https://www.sw.siemens.com/en-US/sw-
terms/supplements/.

SIEMENS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENTATION INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. SIEMENS SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES, LOST DATA OR
PROFITS, EVEN IF SUCH DAMAGES WERE FORESEEABLE, ARISING OUT OF OR RELATED TO THIS
DOCUMENTATION OR THE INFORMATION CONTAINED IN IT, EVEN IF SIEMENS HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS: The trademarks, logos, and service marks (collectively, "Marks") used herein are the property of
Siemens or other parties. No one is permitted to use these Marks without the prior written consent of Siemens or the
owner of the Marks, as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a
source of a product, but is intended to indicate a product from, or associated with, a particular third party. A list of
Siemens' Marks may be viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The
registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a world-wide basis.

About Siemens Digital Industries Software

Siemens Digital Industries Software is a leading global provider of product life cycle management (PLM) software
and services with 7 million licensed seats and 71,000 customers worldwide. Headquartered in Plano, Texas,
Siemens Digital Industries Software works collaboratively with companies to deliver open solutions that help them
turn more ideas into successful products. For more information on Siemens Digital Industries Software products and
services, visit www.siemens.com/plm.

Support Center: support.sw.siemens.com
Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form

https://www.sw.siemens.com/en-US/sw-terms/base/uca/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.siemens.com/plm
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form
https://www.sw.siemens.com/en-US/sw-terms/supplements/
https://www.sw.siemens.com/en-US/sw-terms/supplements/

Revision History ISO-26262

Author: In-house procedures and working practices require multiple authors for documents. All
associated authors for each topic within this document are tracked within the Siemens
documentation source. For specific topic authors, contact Siemens Digital Industries Software
documentation department.

Revision History: Released documents include a revision history of up to four revisions. For
earlier revision history, refer to earlier releases of documentation on Support Center.

Revision Changes Status/
Date

27 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Dec 2022

26 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Sep 2022

25 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Jun 2022

24 Modifications to improve the readability and comprehension of
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the
Tessent Release Notes for this product are reflected in this
document. Approved by Ron Press.

Released
Mar 2022
Tessent™ Diagnosis User’s Manual, v2022.4

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Diagnosis User’s Manual, v2022.44

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table of Contents

Revision History ISO-26262

Chapter 1
The Diagnosis Process . 21

Tessent Diagnosis Features . 22
Overview of the Diagnosis Process . 24

Input File Requirements . 26
Preparing the Test Patterns . 26
The Design Netlist . 28

Preparing the Design Netlist . 28
Flat Models with Different Settings for Stuck-At and At-Speed Patterns 29
ATPG Change Impacts on Flat Netlists . 29

Pattern Verification and the Diagnosis Startup Cache. 31
Diagnosis Startup Cache. 32
Diagnosis Startup Cache Loading Errors . 33
Diagnosis Startup Cache Usage Examples . 34
Turning Off Test Pattern Verification . 36
Displaying Test Pattern Mismatches . 36

Guidelines for Preparing the ATE Failure File . 38
ATE Failure File Format Requirements . 38
Chain Diagnosis Requirements. 39
Logic Diagnosis Requirements . 40
The Cycle-Based Failure File . 41

Cycle-Based Failure File Examples . 45
High Impedance (Z) Handling . 50
Multiple Test Suite Failure Data . 50
Cycle Offset Adjustment for Failure Files . 52

The Pattern-Based Failure File . 55
Pattern-Based Failure File Examples . 59
Guidelines for Mapping ATE Failure Logs to Pattern-Based Failure Files. 61

Failure Truncation Handling. 65
Truncated Failure File Examples . 67

Substituting Instance Text for Diagnosis Reporting. 74
Archiving Data for Re-Running Diagnosis . 76
STDF-V4 2007-Formatted File Support . 77

STDF-V4 2007 Records and Tessent Diagnosis . 77
STDF-V4 2007 Tracking Information . 78
Support for Unknown Captured Values . 80
Multi-Site Support . 80
Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files 80

Diagnosis . 83
Performing Scan Diagnosis . 83
Tessent™ Diagnosis User’s Manual, v2022.4 5

Table of Contents
Batch Mode in Tessent Diagnosis . 85
Gross Delay Defect Diagnosis . 86
Slow Clock Compound Hold-Time Diagnosis . 88
IDDQ Diagnosis . 89
At-Speed Failure Diagnosis . 92

Guidelines for Customizing the Diagnostic Session . 97
Log File Generation . 97
System Mode Toggles . 97
Reported Suspects. 98
Saved Diagnosis Reports . 98
Diagnosis Time Limit . 99
Displayed Failure File Errors/Mismatches . 99

Chapter 2
Diagnosis Reporting and Troubleshooting . 101

Diagnosis Reporting . 102
Front Matter and Diagnosis Summary . 103
Chain Diagnosis Section. 105

Diagnosis Summary . 105
Symptom Descriptions . 107
Suspect Scores in Chain Diagnosis . 111
Layout Information in the Chain Diagnosis Report . 111
Multi-Bit Flip-Flop Handling . 112
Global Signal Suspect Reporting . 115
Masking Scan Patterns for Chain Diagnosis Failures . 116
Chain Diagnosis Reporting for Failure Files Missing Failing Scan Test Information. . . 117

Logic Diagnosis Section . 118
Logic Diagnosis Summary . 119
Symptom Information Section . 119
Suspect Details . 120
Suspect Tags. 122
Suspect Scores in Logic Diagnosis. 123
Logic Diagnosis Report Examples . 124
Failure Signature Information in the Diagnosis Report . 126

MD5 Signature Information in the Diagnosis Report. 128
CSV Diagnosis Report Format . 128

Graphical Results in Tessent Visualizer . 133
Displaying Suspects in the Schematic View. 133
Viewing Failing Paths for a Pattern . 136
Viewing Failing Paths for a Suspect. 138

Diagnosis Improvements and Retrieving Internal Scan Cell Information. 141
Iterative Diagnosis . 142

When To Use Iterative Diagnosis. 142
Performing Iterative Diagnosis. 143
Iterative Logic Diagnosis Examples. 144
Iterative Scan Chain Diagnosis Examples . 148

Techniques for Finding Internal Scan Cells in a Compressed Pattern 150
Internal Scan Cell Profiling for Compressed Patterns . 151
6 Tessent™ Diagnosis User’s Manual, v2022.4

Table of Contents
1hot Compressed Pattern Expansion . 154
Performing 1hot Compressed Pattern Expansion. 155
One-Hot Compressed Pattern Expansion Examples . 155

Troubleshooting . 158
Pattern and Failure File Mismatches . 159

Data Consistency Checks . 159
Pattern Verification Unsuccessful . 161
Failure File Errors. 162

Unexpected Diagnosis Results . 164
Very Few Total Failing Patterns. 164
Many Suspects for One Symptom . 165
Low Score for Suspects . 165
Large Faulty Scan Cell Range in Chain Diagnosis . 165
Too Many Suspects, Symptoms, or Unexplained Patterns in Logic Diagnosis 166

Fault Injection Issues . 167
Abort Conditions for Chain Diagnosis . 168

Cannot Identify Faulty Chain . 168
No “Usable” Scan Patterns for Chain Diagnosis . 169
Too Many Failing Scan Chains . 169
Too Few Failing Cycles . 170
Compound Diagnosis Abort Logic Diagnosis Part . 171
No Failing 1-hot Chain Masking Patterns . 172

Long Logic Diagnosis Runtimes . 172

Chapter 3
Layout-Aware Diagnosis and Reporting . 175

Layout-Aware Diagnosis Flow . 177
Layout Database . 178
Layout-Aware Diagnosis Requirements and Limitations. 179
Diagnosis Output Files . 180

Layout Verification and Layout Database Creation Process . 181
Performing Layout Verification and LDB Creation . 181
Estimation of Resources Required for Generating LDBs. 185
Layout Database Compression and Decompression. 186
Parallel Operations With the Same LDB . 187

Layout Verification Reporting. 188
Example Layout Verification Report Format . 188
Layout Verification Report Details. 192

Design Cell Instance Mismatches Summarized by Design Modules. 192
Information on Mismatches Due to DesignModuleCell Violations. 195
Layout Rule Violation Summary . 196
Mismatch Report . 196
Design and Layout Match Percentage . 198

Rules That Directly Impact the Match Percentage . 199
Layout and Design Mismatch Debugging . 200

Suggested Flow for Debugging Layout Verification Report Undefined Cell Instances . . 201
Multiple Top DEF Files Debug . 202

Net Topology Extraction Debugging. 206
Tessent™ Diagnosis User’s Manual, v2022.4 7

Table of Contents
The Net Topology Extraction Transcript . 206
Debugging Net Topology Extraction Failures . 209

Layout-Aware Diagnosis . 216
Performing Layout-Aware Diagnosis with Tessent Diagnosis. 216
Diagnosis for Root Cause Deconvolution Analysis . 221

Preparing for RCD Analysis in Tessent YieldInsight . 223
Diagnosis for Design for Manufacturability Analysis . 227

Supported DFM RDB Violation Types . 229
What Constitutes a DFM Hit . 231
RDB-to-Layout Database Verification Results . 232
Performing DFM Diagnosis . 236
Dofile Examples for DFM Diagnosis. 240

Cell-Aware Diagnosis. 243
Running Cell-Aware Diagnosis . 245
Performing Cell-Aware Diagnosis With RCD. 247
Cell-Aware Diagnosis Report. 248
Chip-Level Layout Marker File Results Viewing . 251

Considerations for At-Speed Diagnosis . 252
Source/Sink Polygon Layout Markers for Open Diagnosis Suspects 253

Open Suspect Diagnosis and Layout Marker File Generation . 253
Using Calibre RVE to View Source/Sink Cell Polygons . 255

Guidelines for Viewing the Diagnosis Results in Calibre DESIGNrev 259
Viewing Results in Pre-Calibre 2010.1 Software . 259
Viewing Results in Calibre 2010.1 or Newer Software . 264

Layout-Aware Diagnosis Reporting . 270
The Layout-Aware Diagnosis Report . 271

Layout Status Column . 273
Defect Location Information . 273
The XMAP Table . 276
The Branch Information Table . 279

Power and Ground Bridge Reporting . 281
Inter-Scan Cell Polygon Reporting for Chain Diagnosis . 282
Cell Bridge Port Diagnosis Reporting . 284

Chapter 4
Diagnosis for Hierarchical Designs . 289

Core-Level Layout-Aware Diagnosis . 290
Generating Chip-Mapped Core-Level LDBs . 291
Reverse Mapping Top-Level Failures to the Core . 294
Running Layout-Aware Diagnosis Using a Core-Level LDB . 298
Adding Instance Information to an Existing Core-Level LDB. 301
Validating Reverse Mapping Prior to Core-Level Layout-Aware Diagnosis. 305

Top-Level Layout-Aware Diagnosis . 306
Running Layout-Aware Diagnosis Using a Graybox-Aware Top-Level LDB 306

Chapter 5
Diagnosis for Tessent LogicBIST Designs . 309

Overview . 309
8 Tessent™ Diagnosis User’s Manual, v2022.4

Table of Contents
signatureAnalyze Fault Simulator Diagnosis Flow . 312
signatureAnalyze Flow Requirements . 313
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 314
Preparing the Logic BIST Chain Mapping File . 315

Tessent FastScan Fault Simulator Diagnosis Flow . 318
Tessent FastScan Flow Requirements . 319
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 320
Special Handling for Static Chain Masks . 322

<moduleName>.etSignOff . 322
<manualMaskingConfigFile>.etChainMask.tpl . 322
Generating the New Test Vectors. 324
Generating the Flat Model With Chain Mask Information . 324

Failure File Generation . 327
Generating the Logic BIST Top-Level Failure File . 327
Converting the Top-Level Failure File to a Core-Level Failure File 329
Including User-Defined Auxiliary Flops in the Conversion. 330

Performing Logic BIST Diagnosis in Tessent Diagnosis . 331

Chapter 6
Running Tessent Diagnosis Server . 333

Introduction to Tessent Diagnosis Server . 336
Tessent Diagnosis Server Prerequisites . 336
Creating the Scratch Directory . 337
Automated ATE Failure Log Conversion. 338

Tessent Diagnosis Server Interface . 339
Monitored Directories and Analyzers . 340

Guidelines for Working with Monitored Directories . 340
Guidelines for Working with Analyzers . 342

Setting Up the Tessent Diagnosis Server. 343
Running the Diagnosis. 347
Layout-Aware Diagnosis with the Tessent Diagnosis Server . 349

Layout-Aware Diagnosis Commands . 349
Running Layout-Aware Diagnosis on a Local Layout Database . 350

Dynamic Partitioning-Based Diagnosis. 352
Overview. 352
Preparing for Dynamic Partitioning-Based Diagnosis . 355

Creating the Startup Cache. 355
Bridges and Net Topology Information . 356
Test the Input Files . 357

Running Dynamic Partitioning-Based Diagnosis . 357
Setting Up Manual Dynamic Partitioning-Based Diagnosis . 359

Server Session Status . 362
The Diagnosis Results Directory . 364

Duplicated Failure File Names . 364
Log Files . 364

Server History . 366
Server History Reports . 366
Usage Example: Analyze Diagnosis Performance and Throughput. 369
Tessent™ Diagnosis User’s Manual, v2022.4 9

Table of Contents
History Database Schema . 372
HDB_ANALYZER . 372
HDB_ERROR . 373
HDB_EVENT. 373
HDB_FILE . 374
HDB_HEADER . 375
HDB_MONITOR. 375
HDB_MONITORSET . 375
HDB_OPTION. 376
HDB_QUEUE . 376
HDB_SESSION . 377

Distributed Diagnosis Processing . 379
Setting up LSF or SGE Job Schedulers . 379
Guidelines for Troubleshooting Scheduling Delays . 380
Setting Up a Custom Job Scheduler . 381
Manual Job Scheduling. 383

Running Tessent Diagnosis Server with a Local Host . 384
Running Tessent Diagnosis Server in Batch Mode . 385
The Tessent Diagnosis Server Daemon . 386
Server Session Customizations . 387

Analyzer Time Limits . 387
Tessent Diagnosis Server Variables . 387
Automatic Load Balancing . 391
Time-Based Licensing . 391
Reporting Server Status with Email . 392

Command Reference . 394
add_analyzer . 396
add_design . 400
add_layout. 401
add_monitor . 403
add_pattern . 405
add_partitioner . 406
add_reporting_format . 410
add_reporting_xmap . 411
add_startup_cache. 412
analyze_resource_requirements . 413
check . 415
cleanse_history . 417
clear_monitor . 418
clear_status . 419
delete_analyzer . 420
delete_design . 421
delete_layout . 422
delete_monitor . 423
delete_partitioner . 424
delete_pattern . 425
delete_reporting_format . 426
delete_reporting_xmap . 427
delete_schedule . 428
10 Tessent™ Diagnosis User’s Manual, v2022.4

Table of Contents
dofile . 429
email . 430
exit . 431
help . 432
history . 433
query_history . 434
report_analyzer . 436
report_history . 437
report_licenses . 439
report_log . 440
report_monitor . 441
report_network . 442
report_options . 443
report_partitioner . 444
report_reporting_format . 445
report_reporting_xmap . 446
report_schedule . 447
report_status . 448
report_variable . 449
resume_diagnosis . 450
schedule_email . 451
schedule_licenses . 452
set_diagnosis_options . 453
set_diagnosis_resource_configuration . 465
set_monitor_options . 467
start_diagnosis . 469
suspend_diagnosis . 470
version. 471
watch . 472

Chapter 7
Reversible Scan Chain Diagnosis . 473

Benefits of Reversible Scan . 474
Design Considerations . 474
Reversible Scan Chain Diagnosis Flow. 474
Reversible Scan Chain Insertion . 475
Reversible Scan Suspect Types . 475
Diagnosing Reversed Scan Chain Patterns . 480
Generating Reversed Scan Path Description . 481
Frequently Asked Questions . 482

Appendix A
dlogutil Utility . 485

dlogutil Invocation. 486
dlogutil Utility Commands . 487

extract_stdf_failures . 488
load_fail_map . 490
load_stdf_file . 491
Tessent™ Diagnosis User’s Manual, v2022.4 11

Table of Contents
map_fail_log . 492
report_stdf_conditions . 493
report_stdf_parts . 494
report_stdf_pattern_sequences . 495
write_atdf_file. 496

dlogutil Utility Variables . 497
stdf_cap_data_mapping . 498
stdf_fail_trunc_handling . 500
stdf_selected_parts . 501
stdf_selected_psr_ids . 502
stdf_test_name_source . 503

dlogutil Features for SSN On-Chip Compare . 503

Appendix B
Layout-Aware Diagnosis Layout Verification Rules . 507

The Layout Verification Rules . 508
Chip Boundary Rules . 508
Instance Rules . 508
Layer Definition Rules . 509
Macro Definition Rules . 510
Net Rules. 510
Taper Rules . 512
Via Definition Rules . 512
LEF/DEF Parser Warning Rules. 512

Instance, Net, and Pin Path Names in Layout Rule Violation Reports 516
Name Mismatch Reporting . 516
Instance, Net, and Pin Layout Path Names Suppression in Violation Reporting 517
Instance, Net, and Pin Path Name Violation Examples . 517

Layout Verification Examples . 520
Common Area Example . 520
Low Percentage Match Example . 523
Extra END LIBRARY in the LEF File Example . 524
Missing DEF File Example. 525

Guidelines for Including or Excluding Design Modules From Mismatch Reporting 527
Layout Rule Violation Report Generation . 528
Excluded Area Examples . 528
report_layout_rules Usage Examples . 533

Appendix C
Diagnosis Report Signature Formats . 543

Failure Signature Format . 543
MD5 Signature Format . 545

Appendix D
STDF-V4 2007 ATDF Record Examples . 547

Teradyne Record ATDF Examples . 547
Verigy Record ATDF Examples . 549
12 Tessent™ Diagnosis User’s Manual, v2022.4

Table of Contents
Appendix E
Layout-Aware Diagnosis Marker File Semantics . 551

About the Marker File . 551
Marker File Semantics . 551

Appendix F
Generating DEF from Other Tools . 555

Generating DEF from IC Compiler . 555
Generating DEF from ATopTech APRISA. 557

Appendix G
Logging Failures for SSN On-Chip Compare . 559

Testing and Failure Logging Process. 560
Collecting Failure Data on Automated Test Equipment (ATE) . 574

Appendix H
Getting Help . 577

The Tessent Documentation System . 577
Global Customer Support and Success . 578

Index

Third-Party Information
Tessent™ Diagnosis User’s Manual, v2022.4 13

Table of Contents
14 Tessent™ Diagnosis User’s Manual, v2022.4

List of Figures

Figure 1-1. Tessent Diagnosis Diagnostic Process . 25
Figure 1-2. Truncation of Failing Cycles for all Pins . 67
Figure 1-3. Contiguous Truncation of Failing Cycles Per Pin in Test Suites 69
Figure 1-4. Noncontiguous Truncation of Failing Cycles per Pin in Test Suites 70
Figure 1-5. Diagnostic Report Example Original and With Instance Substitution 75
Figure 1-6. Example Gross Delay Defect Diagnosis Report Excerpt 88
Figure 1-7. Diagnosis Report Containing Compound Hold-Time Results 89
Figure 1-8. Supported IDDQ Failure File Format . 90
Figure 1-9. IDDQ Failure File . 91
Figure 1-10. IDDQ Diagnosis Report . 92
Figure 1-11. Launch-Off-Shift At-Speed Requirements . 95
Figure 1-12. Launch-Off-Capture At-Speed Requirements. 95
Figure 1-13. Example Shmoo Plot for At-Speed Diagnosis . 96
Figure 2-1. Diagnosis Report Structure . 102
Figure 2-2. Chain Fault Types FAST_TO... . 108
Figure 2-3. Chain Fault Types SLOW_TO... . 109
Figure 2-4. Layout Polygon Reporting . 112
Figure 2-5. MBFF Internal Scan Chain Suspect Chain Diagnosis Reporting 113
Figure 2-6. Pin Tagging to Report MBFF Internal Suspect Scan Cell Layout Data 114
Figure 2-7. Global Signal Suspect Diagnosis Report Format . 115
Figure 2-8. Example Logic Diagnosis Section . 118
Figure 2-9. Example Symptom Information Section. 119
Figure 2-10. EQn Suspect Type. 121
Figure 2-11. Example Suspect Details Diagnosis Report Information 121
Figure 2-12. Explained Patterns Different Than Fail_Match . 122
Figure 2-13. Suspect Tags Portion of Diagnostic Report . 123
Figure 2-14. Typical Logic Diagnosis Report Example . 125
Figure 2-15. Logic Diagnosis Report for a Two-Way Bridge Suspect Example 126
Figure 2-16. Diagnosis Report With Failure Signature Information 127
Figure 2-17. Diagnosis Report With MD5 Signature Information . 128
Figure 2-18. Diagnosis Report Viewer (Text View) . 134
Figure 2-19. Diagnosis Report Viewer (Text View) . 137
Figure 2-20. Tessent Visualizer Flat Schematic Window . 138
Figure 2-21. Diagnosis Report Viewer (Tabular View) . 139
Figure 2-22. High-Level Iterative Diagnosis Process . 142
Figure 2-23. Compressed Pattern Expansion Flow . 154
Figure 2-24. Data Consistency Data Flow. 160
Figure 3-1. Layout-Aware Diagnosis Flow . 178
Figure 3-2. DEF Hierarchy Tree Example. 183
Figure 3-3. Example Design for Layout Verification Report . 189
Tessent™ Diagnosis User’s Manual, v2022.4 15

List of Figures
Figure 3-4. Layout Verification Mismatch Report Example . 197
Figure 3-5. Missing DEF Files . 203
Figure 3-6. Multiple Top DEF Files . 203
Figure 3-7. RCD Diagnosis Flow . 222
Figure 3-8. DFM Diagnosis Flow . 228
Figure 3-9. Interconnect Bridge DFM Violation . 229
Figure 3-10. Interconnect Open DFM Violation . 230
Figure 3-11. Cell DFM Violation . 230
Figure 3-12. Cell-Aware DFM Violations. 231
Figure 3-13. Interconnect Bridge DFM Hit . 232
Figure 3-14. Cell DFM Hits and Their Verification Results . 233
Figure 3-15. Bridge DFM Hits and Their Verification Results . 234
Figure 3-16. Open DFM Hits and Their Verification Results . 235
Figure 3-17. Cell-Aware Diagnosis Flow . 244
Figure 3-18. Example Layout-Aware Diagnosis Report . 272
Figure 3-19. Defect Bounding Box . 274
Figure 3-20. Defect Enclosing Circle . 274
Figure 3-21. Diagnosis Report: Layout Defect Bounding Boxes . 275
Figure 3-22. Layout-Aware Diagnosis Report With Layout Locations 276
Figure 3-23. Branch Information Example . 280
Figure 3-24. Multiple Branch Segments Example. 280
Figure 3-25. Example Diagnosis Report With STUCK Suspect Bridging to Power Net . . . 281
Figure 3-26. Visualization of Potential Bridging Defect to a Power Line 282
Figure 3-27. Inter-Scan Cell Polygons for (IN + CELL). 282
Figure 3-28. Inter-Scan Cell Polygons for (CELL + OUT). 283
Figure 3-29. Cell Bridge Port Defect, Propagating . 285
Figure 4-1. Chip-Mapped Core-Level LDB Layout-Aware Diagnosis Flow 290
Figure 4-2. Design With Two Pairs of Identical Cores . 292
Figure 4-3. DEF Corresponding to Design With Two Pairs of Identical Cores 292
Figure 4-4. coreB Instantiation in Design chip_other . 303
Figure 5-1. LogicBIST Diagnosis Flow Using signatureAnalyze . 314
Figure 5-2. LogicBIST Diagnosis Flow Using Tessent FastScan . 319
Figure 5-3. Generating a Logic BIST Top-Level Failure File. 327
Figure 5-4. Top-Level Logic BIST Failure File . 328
Figure 6-1. Tessent Diagnosis Server Configuration Example . 336
Figure 6-2. Dynamic Partitioning-Based Diagnosis Flow. 352
Figure 6-3. Startup Cache . 355
Figure 6-4. Memory Consumption CSV Report Imported into Excel. 369
Figure 6-5. Dynamic Partitioning Time Consumption CSV Report Imported into Excel . . 370
Figure 6-6. Tcl Script for Adding Analyzers Incrementally . 380
Figure 7-1. Reversible Scan Chain L2R Shift . 473
Figure 7-2. Reversible Scan Chain R2L Shift . 473
Figure 7-3. Reversible Scan Chain Diagnosis Flow Chart . 474
Figure 7-4. Scan Chain Example . 475
Figure 7-5. Standard Shift Defect . 476
16 Tessent™ Diagnosis User’s Manual, v2022.4

List of Figures
Figure 7-6. Standard Shift Defect Suspect Topology . 477
Figure 7-7. Reversed Shift Defect . 477
Figure 7-8. Reversed Shift Defect Suspect Topology . 478
Figure 7-9. Defect in Both Shift Directions. 479
Figure 7-10. Both Shift Directions Suspect Topology . 479
Figure B-1. Example Mismatch Report for Layout and Design . 520
Figure B-2. Common Area for the Layout and Corresponding Design. 521
Figure B-3. Net Outside Common Area Example . 522
Figure B-4. Boundary Nets . 523
Figure B-5. Mismatch Report Example for a Low Percentage Match 523
Figure B-6. Example Hierarchy Tree. 529
Figure B-7. Excluded Area With ModD Excluded . 530
Figure B-8. Results of Multiple Exclude Operation . 531
Figure B-9. Excluded Area With modA Included . 532
Figure B-10. Excluded Area When modC an Included Area . 533
Figure F-1. Non-Routed Nets Included in DEF File . 556
Figure G-1. Global and Status Groups. 559
Figure G-2. Single Core Failure Example . 559
Figure G-3. Testing and Failure Logging Process . 561
Figure G-4. OCC With Multiple Core Failures . 563
Figure G-5. Contribution Disable Bits. 566
Figure G-6. Primary Phase Failure Mapping. 568
Figure G-7. Pass 2-n Retest Phase . 569
Figure G-8. Example of Pattern Set With Separate SSN_end Portion 574
Figure G-9. Example of Pattern Set With Split Payload . 575
Figure G-10. Cycle Count for Multiple Payload Segments. 575
Figure G-11. Test Suites for Each Payload . 576
Figure G-12. Failure Mapping . 576
Tessent™ Diagnosis User’s Manual, v2022.4 17

List of Figures
18 Tessent™ Diagnosis User’s Manual, v2022.4

List of Tables

Table 1-1. Compatible Failure-File Formats and NCP Modes . 26
Table 1-2. Compatible Test Pattern Formats for Multiple Test Patterns 27
Table 1-3. Cycle-Based Formatting Keywords . 41
Table 1-4. Pattern-Based Formatting Keywords . 55
Table 1-5. STDF-V4 2007 Records . 77
Table 1-6. Extracted STDF-V4 2007 Tracking Information . 78
Table 1-7. Gross Delay Defect Diagnosis Reporting . 87
Table 1-8. Tessent Diagnosis Invocation Modes . 98
Table 2-1. Diagnosis Report Summary Elements . 103
Table 2-2. Chain Diagnosis Report Summary Elements . 105
Table 2-3. Logic Diagnosis Section Summary Elements . 119
Table 2-4. Logic Diagnosis Suspect Types . 120
Table 2-5. CSV Variables and Data Types . 129
Table 2-6. CSV Report Data Items by Diagnosis Type . 130
Table 2-7. Techniques for Finding Internal Scan Cells . 150
Table 3-1. Design Cells Instance Mismatches Summarized by Design Modules Table Columns

193
Table 3-2. Layout Rules that Matter for Diagnosis . 199
Table 3-3. DFM_RULE_HIT Fields . 239
Table 3-4. layout_status Column Descriptions . 273
Table 3-5. ENCLOSING_CIRCLE Table . 275
Table 6-1. report_history Events . 368
Table 6-2. History Database Tables . 372
Table 6-3. HDB_ANALYZER Table . 373
Table 6-4. HDB_ERROR Table . 373
Table 6-5. HDB_EVENT Table . 374
Table 6-6. HDB_FILE Table . 374
Table 6-7. HDB_HEADER Table . 375
Table 6-8. HDB_MONITOR Table . 375
Table 6-9. HDB_MONITORSET Table . 376
Table 6-10. HDB_OPTION Table . 376
Table 6-11. HDB_QUEUE Table . 376
Table 6-12. HDB_SESSION Table . 377
Table 6-13. Tessent Diagnosis Server Variables . 388
Table 6-14. Time-Based Licensing Commands . 392
Table 6-15. Email Facility Commands . 392
Table A-1. Supported Mapping Values for Unknown Captured Values 498
Table B-1. Chip Boundary Rules . 508
Table B-2. Instance Rules . 509
Table B-3. Layer Definition Rules . 509
Tessent™ Diagnosis User’s Manual, v2022.4 19

List of Tables
Table B-4. Macro Definition Rules . 510
Table B-5. Net Rules . 511
Table B-6. Taper Rules . 512
Table B-7. Via Definition Rules . 512
Table B-8. LEF/DEF Parser Warning Rules . 512
Table B-9. Rules Reporting Instance, Net, and Pin Path Name Violations 516
20 Tessent™ Diagnosis User’s Manual, v2022.4

Tessent™ Diagnosis User’s Manual, v2022.4 21

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
The Diagnosis Process

Tessent Diagnosis uses failure data from manufacturing test, scan test patterns, and design
information. With this data, Tessent Diagnosis identifies the location and classification of the
defect causing the failure. Detailed analysis of devices that fail manufacturing test has been
shown to greatly reduce the failure analysis effort and enables a diagnosis-driven yield analysis
flow.
For the complete list of Tessent-specific terms, refer to the Tessent Glossary.

Tessent Diagnosis Features . 22
Overview of the Diagnosis Process . 24

Input File Requirements . 26
Preparing the Test Patterns . 26
The Design Netlist . 28

Preparing the Design Netlist . 28
Flat Models with Different Settings for Stuck-At and At-Speed Patterns 29
ATPG Change Impacts on Flat Netlists . 29

Pattern Verification and the Diagnosis Startup Cache . 31
Diagnosis Startup Cache. 32
Diagnosis Startup Cache Loading Errors . 33
Diagnosis Startup Cache Usage Examples . 34
Turning Off Test Pattern Verification . 36
Displaying Test Pattern Mismatches . 36

Guidelines for Preparing the ATE Failure File . 38
ATE Failure File Format Requirements . 38
Chain Diagnosis Requirements. 39
Logic Diagnosis Requirements . 40
The Cycle-Based Failure File . 41
The Pattern-Based Failure File . 55
Failure Truncation Handling. 65
Substituting Instance Text for Diagnosis Reporting. 74

Archiving Data for Re-Running Diagnosis . 76
STDF-V4 2007-Formatted File Support . 77

STDF-V4 2007 Records and Tessent Diagnosis . 77
STDF-V4 2007 Tracking Information . 78
Support for Unknown Captured Values . 80
Multi-Site Support . 80
Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files 80

Tessent™ Diagnosis User’s Manual, v2022.422

The Diagnosis Process
Tessent Diagnosis Features

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis . 83
Performing Scan Diagnosis . 83
Batch Mode in Tessent Diagnosis . 85
Gross Delay Defect Diagnosis . 86
Slow Clock Compound Hold-Time Diagnosis . 88
IDDQ Diagnosis . 89
At-Speed Failure Diagnosis . 92

Guidelines for Customizing the Diagnostic Session . 97
Log File Generation . 97
System Mode Toggles . 97
Reported Suspects. 98
Saved Diagnosis Reports . 98
Diagnosis Time Limit . 99
Displayed Failure File Errors/Mismatches . 99

Tessent Diagnosis Features
Tessent Diagnosis operates within the Tessent Shell environment and provides advanced
diagnostics for troubleshooting chips that fail on Automated Test Equipment (ATE). From the
information you gather from the troubleshooting process, you can apply improvements for chip
yield to your design and manufacturing processes.
Tessent Diagnosis provides the following features:

• Analyzes failures compiled by ATE

• Verifies test patterns

As the first step of the diagnosis, Tessent Diagnosis runs a good machine simulation on
the test patterns you specify and compares simulated values with expected values in the
test patterns. The values must match before the diagnosis can continue.

• Verifies failure data

As the second step of the diagnosis, Tessent Diagnosis checks the failure file for
conversion errors and verifies consistency between the expected value of the failed test
patterns in the failure file and the expected values of the failed patterns in the pattern
file.

• Analyzes chain failures

Tessent Diagnosis analyzes multiple faulty chains with single or multiple faults per
chain (of the same type) with chain diagnostics.

• Analyzes logic failures

• Uses compressed or uncompressed patterns

Tessent Diagnosis can use uncompressed or EDT-compressed patterns for diagnosis.

The Diagnosis Process
Tessent Diagnosis Features

Tessent™ Diagnosis User’s Manual, v2022.4 23

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Scores and classifies suspects

Tessent Diagnosis analyzes the ATE failure file to identify the likely suspects for each
failure, and ranks and classifies them into a configurable report. When Tessent
Diagnosis completes diagnosis, the tool produces a report listing the fail subset
(Symptom), possible suspect locations (Suspect), and the related pin, cell, and net paths.

• Displays suspects in physical layout view

The diagnosis report provides links you can use with the Calibre® RVE™ tool for
displaying suspect locations on the physical layout. You can also use the Calibre
DESIGNrev™ tool in Calibre 2005.2 and later releases. This requires access to a Calibre
software tree.

• Displays suspects in netlist logic view

The diagnosis report provides links you can use with Tessent Visualizer for displaying
suspect locations in a schematic representation of the netlist.

Limitations
Tessent Diagnosis currently has thefollowing limitations:

• Test pattern creation — You must create test patterns with Tessent FastScan™ or Tessent
TestKompress™.

• No support for macro test patterns — You must separately save the macro test patterns
separate from the test patterns you use for diagnosis. See “Preparing the Test Patterns.”

Tessent™ Diagnosis User’s Manual, v2022.424

The Diagnosis Process
Overview of the Diagnosis Process

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Overview of the Diagnosis Process
Tessent Diagnosis is used to identify the defects on your chip that caused the scan test patterns
to fail by reporting the location and classification of the faults.
Figure 1-1 shows an overview of the diagnosis process in Tessent Diagnosis and how this fits
into the Automatic Test Pattern Generation (ATPG) process.

The Diagnosis Process
Overview of the Diagnosis Process

Tessent™ Diagnosis User’s Manual, v2022.4 25

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-1. Tessent Diagnosis Diagnostic Process

Input File Requirements . 26

Tessent™ Diagnosis User’s Manual, v2022.426

The Diagnosis Process
Input File Requirements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Input File Requirements
Before running the diagnosis, you must prepare the following input files: test patterns, design
netlist, and ATE failure file.

Note
To ensure the accuracy of the diagnosis, it is critical you synchronize the creation of the
input files. Specifically, you should produce each of the input files from the identical

version of the design, setups, and test pattern files.

You must prepare the following input files for an accurate diagnosis:

• Test patterns — see Preparing the Test Patterns.

• Design netlist — see Preparing the Design Netlist.

• ATE failure file— see Guidelines for Preparing the ATE Failure File.

• Verification data — see Reverse Mapping Top-Level Failures to the Core.

Preparing the Test Patterns
You must create the final version of the test patterns immediately before you save the design’s
flat netlist that you use for diagnosis. These test patterns must also be the same test patterns the
ATE has applied when it produces the failure file for the diagnosis.
Table 1-1 lists the failure-file formats and Named Capture Procedure (NCP) modes that are
compatible with supported test pattern formats for Tessent Diagnosis.

See “Saving Internal and External Patterns” in the TessentScan and ATPG User’s Manual for
complete information.

Table 1-1. Compatible Failure-File Formats and NCP Modes
Test Pattern Format Compatible Failure-File Formats and NCP

Modes
Parallel WGL Format: cycle-based and pattern-based

NCP mode: internal and external
ParallelSTIL Format: cycle-based and pattern-based

NCP mode: internal and external
ASCII Format: pattern-based

NCP mode: internal
Binary Format: pattern-based

NCP mode: internal and external

The Diagnosis Process
Preparing the Test Patterns

Tessent™ Diagnosis User’s Manual, v2022.4 27

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• You can only use WGL and STIL patterns for diagnosis with cycle-based failure files.

Note
The cycle-based format is recommended for use with Tessent Diagnosis.

• Ensure that you are using ATPG cell libraries that model at the gate level. The tool does
not diagnose down to gate-level defects if the ATPG model is at a higher-level block—
for example, a module that includes RAM memories with scan cells and bypass logic—
which can cause loss of diagnostic resolution and skewed RCD analysis results. In
addition, ensure that the gate-level models are synchronized with their corresponding
layout cells.

Procedure
1. Load the test patterns into Tessent Diagnosis using the read_patterns command as

follows:

read_patterns pattern_file_name

This command syntax is for Tessent Diagnosis scan diagnosis mode. The syntax for
Tessent Diagnosis server mode is different—see “Tessent Diagnosis Server Interface.”

By default, the read_patterns command assumes you are loading a single test pattern
file, and replaces the existing test pattern file each time a new file is loaded. To load
multiple test pattern files, you must merge them together with the -append switch.

2. Run the read_patterns command using the -append switch to load each additional test
pattern file. For example:

FAULT> read_patterns pat_file1

FAULT> read_patterns pat_file2 -append

FAULT> read_patterns pat_file3 -append

FAULT> diagnose_failures scan_failure_file_mts_pat123

Also see the multiple test suites example in “Cycle-Based Failure File Examples.”

Table 1-2 identifies the test pattern file compatibilities when using multiple test pattern
files.

Table 1-2. Compatible Test Pattern Formats for Multiple Test Patterns
Test Pattern Compatible With:
WGL WGL, STIL
STIL STIL, WGL
Binary Binary, ASCII
ASCII ASCII, Binary

Tessent™ Diagnosis User’s Manual, v2022.428

The Diagnosis Process
The Design Netlist

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Design Netlist
After generating the final test patterns, you must immediately save your test pattern file and
your flat model. Save the files right after issuing the create_patterns command to guarantee that
the test patterns and netlist reflect the same data and setup parameters.
You must save different flat models if you have different settings for generating stuck-at and at-
speed type of patterns. Refer to “Flat Models with Different Settings for Stuck-At and At-Speed
Patterns” for more information.

Preparing the Design Netlist . 28
Flat Models with Different Settings for Stuck-At and At-Speed Patterns 29
ATPG Change Impacts on Flat Netlists. 29

Preparing the Design Netlist
When preparing your design netlist, avoid using HDL filename extensions such as .v, .vhd, or
.vdhl. Instead, an extension such as .flat is a good mnemonic.
Do not use flat models saved in setup mode or before executing the create_patterns command.

Prerequisites
• You have generated your final test patterns.

Procedure
1. In ATPG analysis mode (scan -pattern context), run the following command:

create_patterns

2. In ATPG analysis mode (scan -pattern context), run the following command to save the
pattern file. For example:

write_patterns pattern_file.stil.gz -stil

3. In ATPG analysis mode (scan -pattern context), run the following command to save the
flat netlist. For example:

write_flat_model flat_model_name.flat.gz

Results
By default, the tool saves and includes the necessary setup information in the flat model. The
diagnosis requires all the same setup information, design rule checks, capture handling,
sequential depth, and so on used to create the original test patterns.

Related Topics
Flat Models with Different Settings for Stuck-At and At-Speed Patterns
ATPG Change Impacts on Flat Netlists

The Diagnosis Process
Flat Models with Different Settings for Stuck-At and At-Speed Patterns

Tessent™ Diagnosis User’s Manual, v2022.4 29

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Flat Models with Different Settings for Stuck-At and
At-Speed Patterns

In ATPG, you must save different flat models if you have different settings for generating
stuck-at and at-speed pattern types. Different settings can introduce different pin constrains and
other settings.
For more information, see “ATPG Change Impacts on Flat Netlists.”

The following example demonstrates saving two flat models when a pin constraint is set to a
different value in order to generate stuck-at and at-speed patterns:

//set up pin constrain to generate stuck-at patterns

SETUP> add_input_constraints clk_sel -c0

...

//default to generate stuck-at faults

ATPG> create_patterns -auto

ATPG> write_patterns tst_sta.stil -stil

ATPG> write_flat_model design.v.sta.flat -all

//In the same atpg process, pin constrain is set to a different value for generating

//transtion patterns

SETUP> add_input_constraints clk_sel -c1

...

ATPG> set_fault_type transition

ATPG> create_patterns -auto

ATPG> write_patterns tst_tra.stil -stil

ATPG> write_flat_model design.v.tra.flat -all

ATPG Change Impacts on Flat Netlists
You must regenerate and save a new flat design model when certain changes occur in ATPG.
If any of the following changes occur in ATPG, regenerate and save a new flat design model:

• Capture handling and clock-off simulation — Changing the split capture or clock-off
simulation using the set_split_capture_cycle or set_clock_off_simulation commands,
respectively, requires a new flat model.

• ATPG constraints — Adding different ATPG constraints requires a new flat model.

• Cell constraints — Using different cell constraints requires a new flat model.

Tessent™ Diagnosis User’s Manual, v2022.430

The Diagnosis Process
ATPG Change Impacts on Flat Netlists

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Pin constraints — Specifying different pin constraints requires a new flat model.

• Force_pi — Changes to force_pi in test procedures even if there is no impact on the test
mode require a new flat model when the force_pi sets different values.

You can use the original flat model without re-saving if you make any of the following changes
in ATPG:

• Capture procedure variations — Using a different sequential depth, with or without
named capture procedures, different pattern types, and so on. For example:

o Using different clock sequential depth

o Turning on or off named capture procedures

o Using different pattern types, with the exception of RAM-sequential patterns, that
cannot be loaded when the clock off simulation is ON

The Diagnosis Process
Pattern Verification and the Diagnosis Startup Cache

Tessent™ Diagnosis User’s Manual, v2022.4 31

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Verification and the Diagnosis Startup
Cache

If the scan and chain patterns were not previously verified, Tessent Diagnosis automatically
performs pattern verification when you issue the first diagnose_failures command.
During pattern verification, Tessent Diagnosis checks the following:

• If simulation values are the same as the expected values stored in pattern. If there is a
binary mismatch (expected value is 1/0, but simulated value is 0/1), then pattern
verification fails.

• If there is a X2B mismatch (expected value is X, simulated value is 0/1) and you run the
following command:

set_diagnosis_options –X2B_mismatch Warning

Then, the Tessent Diagnosis pattern verification automatically flags the X2B mismatch
such that in good machine simulation, the tool changes the simulation to X whenever the
pattern has an expected X.

• If there is a B2X mismatch (expected value is 0/1, simulated value is X) and you run the
following command:

set_diagnosis_options –B2X_mismatch Warning // the default setting

Then, the Tessent Diagnosis pattern verification automatically flags the B2X mismatch
such that if any B2X mismatch shows up in a fail file, the tool removes the mismatch.

• For chain patterns, Tessent Diagnosis reports the verification results as follows:

o Chain pattern verification passes: no message.

o Chain pattern verification fails: warning message and continue.

During verification, the tool can produce the following warnings for failing chain
patterns:

• For EDT, if an observed internal scan chain has no corresponding chain masking
pattern, then the tool issues a warning similar to the following:

Warning: Chain chain_1 has no corresponding masking chain
pattern.

• For non-EDT designs, if all chain patterns for a chain do not cover “00”, “01”,
“10”, and “11” sequences, or for EDT designs, if all masking chain patterns for a
chain do not cover the “00”, “01”, “10”, and “11” sequences, then the tool issues
a warning similar to the following:

Warning: Chain chain_1 does not cover sequence "01”

Tessent™ Diagnosis User’s Manual, v2022.432

The Diagnosis Process
Diagnosis Startup Cache

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, Tessent Diagnosis performs scan and chain pattern verification any time you set or
change the pattern source. You specify the pattern source using the read_patterns command.

Alternatively, you can force pattern verification before you perform diagnosis by using the
Diagnosis Startup Cache.

Diagnosis Startup Cache . 32
Diagnosis Startup Cache Loading Errors . 33
Diagnosis Startup Cache Usage Examples . 34
Turning Off Test Pattern Verification. 36
Displaying Test Pattern Mismatches . 36

Diagnosis Startup Cache
You can create and update a Diagnosis Startup Cache that stores the pattern verification results,
including a masking file, and X2B or B2X mismatches. Using the Diagnosis Startup Cache can
greatly reduce the diagnosis runtime by re-using the pattern verification information without re-
running the verification, assuming you have made no changes to the patterns.
You only need one file as the startup cache. You create or update the Diagnosis Startup Cache
using the verify_patterns command.

Note
Currently, creating and updating a Diagnosis Startup Cache with the verify_patterns
command is limited to the Tessent Diagnosis scan diagnosis point tool. When using the

Tessent Diagnosis Server, you can only load an existing Diagnosis Startup Cache—see the
add_startup_cache server command.

You can update or use an existing cache for as many combinations of tool version, flat model,
pattern, and pattern mask file as you want. In essence, the Diagnosis Startup Cache is a
database. For example, the following command sequence demonstrates loading two different
patterns sets (pattern_set_01.stil and pattern_set_02.stil) into the same Diagnosis Startup Cache
(my_database.db).

read_patterns pattern_set_01.stil

verify_patterns -create_startup_cache my_database.db

diagnose_failures fail1

read_patterns pattern_set_02.stil //assuming pattern_set_02.stil and
//pattern_set_02.stil use the same flatmodel

verify_patterns -load_startup_cache my_database.db

diagnose_failures fail2

The Diagnosis Process
Diagnosis Startup Cache Loading Errors

Tessent™ Diagnosis User’s Manual, v2022.4 33

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For each pattern verification run, Tessent Diagnosis stores an associated timestamp for the run.
During subsequent Diagnosis Startup Cache updates, any previous data more than 300 days old
is deleted automatically from the Diagnosis Startup Cache.

Diagnosis Startup Cache Loading Errors
Tessent Diagnosis may not be able to load the Diagnosis Startup Cache due to matching errors
with an existing startup cache.
The tool provides matching errors for the following circumstances:

• The current flat model MD5 does not match what is stored in the cache. In this case, the
tool produces the following error:

// Error: The specified diagnosis startup cache does not include the
current flat model. Please use "verify_pattern -update
<startup_cache>" command to update the startup cache.

• The current pattern set MD5 does not match what is stored in the cache. In this case, the
tool produces the following error:

// Error: The specified diagnosis startup cache does not include the
current pattern set(s). Please use "verify_pattern -update
<startup_cache>" command to update the startup cache.

• The tool version does not match what was used to create the cache. In this case, the tool
produces the following error:

// Error: The specified diagnosis startup cache does not include the
current version of tool. Please use "verify_pattern -update
<startup_cache>" command to update the startup cache.

• X2B_is_on does not match what is stored in the cache. In this case, the tool produces the
following error:

// Error: The specified diagnosis startup cache does not include the
current X2B flag. Please use "verify_pattern -update
<startup_cache>" command to update the startup cache.

• The specified mask file's (if any) MD5 does not match what is stored in the cache. In this
case, the tool produces the following error:

// Error: The specified diagnosis startup cache does not include the
current mask file(s). Please use "verify_pattern -update
<startup_cache>" command to update the startup cache.

Tessent™ Diagnosis User’s Manual, v2022.434

The Diagnosis Process
Diagnosis Startup Cache Usage Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Startup Cache Usage Examples
In addition to creating a Diagnosis Startup Cache, you can update existing caches, use existing
caches with Tessent Diagnosis server, and run pattern verification without creating a Diagnosis
Startup Cache.

Example: Creating a Diagnosis Startup Cache
In the Tessent Diagnosis scan diagnosis point tool, the following command sequence loads the
test patterns, performs the pattern verification, and creates a Diagnosis Startup Cache named
diagnosis_startup_cache:

read_patterns pat1

read_patterns pat2 -append

verify_patterns –create_startup_cache ./diagnosis_startup_cache

exit

Subsequently, you re-invoke Tessent Diagnosis, load the patterns and newly-created Diagnosis
Startup Cache (diagnosis_startup_cache), and perform diagnosis using the following command
sequence:

read_patterns pat1

read_patterns pat2 -append

verify_patterns –load_startup_cache ./diagnosis_startup_cache

diagnose_failures log1

diagnose_failures log2

……

exit

Example: Updating an Existing Diagnosis Startup Cache
This example command sequence illustrates updating an existing Diagnosis Startup Cache
(diagnosis_startup_cache) for future use by Tessent Diagnosis:

read_patterns pat1

read_patterns pat2 –append

read_patterns pat3 -append

verify_patterns –update_startup_cache ./diagnosis_startup_cache

exit

The Diagnosis Process
Diagnosis Startup Cache Usage Examples

Tessent™ Diagnosis User’s Manual, v2022.4 35

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Subsequently, you re-invoke Tessent Diagnosis, load the patterns and updated Diagnosis
Startup Cache (diagnosis_startup_cache), and perform diagnosis using the following command
sequence:

read_patterns pat1

read_patterns pat2 –append

read_patterns pat3 -append

verify_patterns –load_startup_cache ./diagnosis_startup_cache

diagnose_failures log1

diagnose_failures log2

……

exit

Example: Using an Existing Diagnosis Startup Cache with the Tessent
Diagnosis Server

The following example provides the command sequence you would perform to use an existing
Diagnosis Startup Cache with the Tessent Diagnosis Server:

1. Create the Diagnosis Startup Cache (diagnosis_startup_cache) with the following
commands using the Tessent Diagnosis scan diagnosis point tool:

read_patterns pat1

read_patterns pat2 -append

verify_patterns –create_startup_cache ./diagnosis_startup_cache

exit

2. In the Tessent Diagnosis Server, add the patterns and load the Diagnosis Startup Cache
(diagnosis_startup_cache) using the following command sequence:

add_pattern monitor1 pat1

add_pattern monitor1 pat2 -append

add_startup_cache monitor1 ./diagnosis_startup_cache

...

Example: Running Pattern Verification Without Creating a Diagnosis Startup
Cache

In this example, Tessent Diagnosis does not create a Diagnosis Startup Cache or re-run pattern
verification during diagnosis:

read_patterns pat1

read_patterns pat2 -append

Tessent™ Diagnosis User’s Manual, v2022.436

The Diagnosis Process
Turning Off Test Pattern Verification

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

verify_patterns –diagnosis // assume pattern verfication passed

diagnose_failures log1 // does not re-run pattern verification

Turning Off Test Pattern Verification
By default, each time a read_patterns command is run, the test patterns are reverified before
diagnosis. The verification consists of simulating the test patterns and comparing the captured
values with the values expected by the test patterns.

Prerequisites
• Patterns that have been verified at least once.

• A startup cache created with the “verify_patterns -create_startup_cache” command.

Note
Test pattern verification is required for accurate diagnosis results. Use a startup
cache to reduce run time. See verify_patterns in the Tessent Shell Reference Manual

for details and examples of creating, updating, and loading a startup cache.

Siemens strongly recommends that you do not turn off pattern verification.

Procedure
Use the “verify_patterns -load_startup_cache” command to load a startup cache. This is part of
the recommended method of using a startup cache to achieve run-time savings.

verify_patterns -load_startup_cache <startup_cache_name>

The following deprecated method is strongly discouraged:

• set_diagnosis_options -verify_patterns off

Note
You must not use the “set_diagnosis_options -verify_patterns off” command
without verifying the patterns at least once. You should only use this command if

you are confident that you fully understand its impact.

Displaying Test Pattern Mismatches
In the first step of the diagnosis, the Tessent Diagnosis tool simulates the design and verifies the
test pattern accuracy. If the expected values do not match the simulated values, an error displays
and the diagnosis aborts.

Prerequisites
• You have loaded the design netlist(s) and test patterns.

The Diagnosis Process
Displaying Test Pattern Mismatches

Tessent™ Diagnosis User’s Manual, v2022.4 37

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• You have performed the pattern verification.

Procedure
Use the report_failures command to display the test pattern mismatches. For example, the
following command reports all pattern mismatches

report_failures -exact

Results
A display of the test pattern mismatches.

Tessent™ Diagnosis User’s Manual, v2022.438

The Diagnosis Process
Guidelines for Preparing the ATE Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Guidelines for Preparing the ATE Failure File
Typical industry practice is to create scripts that convert the ATE failure files into the necessary
format. Depending on the ATE, the specific format of the failure file varies, but there are
usually four key pieces of information contained in the failure files.
ATE failure files normally contain the following information:

• Cycle each failure occurred

• Signal on which each failure occurred

• Expected value

• Actual value

Note
In the Tessent Shell environment, if you have used the patterns -scan_retargeting
context to retarget core-level test patterns at the top level, refer to “Reverse Mapping

Top-Level Failures to the Core.” For information about scan pattern retargeting, refer to
“Scan Pattern Retargeting.”

ATE Failure File Format Requirements . 38
Chain Diagnosis Requirements. 39
Logic Diagnosis Requirements . 40
The Cycle-Based Failure File . 41
The Pattern-Based Failure File . 55
Failure Truncation Handling . 65
Substituting Instance Text for Diagnosis Reporting . 74

ATE Failure File Format Requirements
You must convert the ATE failure file into one of two special ASCII formats compatible with
Tessent Diagnosis.
Tessent Diagnosis supports the following ASCII formats:

• Cycle-based format — The cycle-based format is recommended. The cycle-based
format is similar to the format of the ATE failure file, so it is the most accurate and
easiest of the two formats to produce. The cycle-based format is only compatible with
test pattern files saved in parallel WGL and STIL. See “The Cycle-Based Failure File”
for more information.

• Pattern-based format — The pattern-based format is supported, but creating this type of
failure file can be quite difficult and error-prone because failing cycles must be mapped
to the test patterns. See “The Pattern-Based Failure File” for more information.

The Diagnosis Process
Chain Diagnosis Requirements

Tessent™ Diagnosis User’s Manual, v2022.4 39

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chain Diagnosis Requirements
Chain diagnosis is a two-step process: identify the chain that fails and then identify which scan
cells fail on that chain.
The following requirements apply to diagnosing chain failures:

• Include the fail data from the chain tests in the failure file. Tessent Diagnosis uses the
fail data to automatically determine the faulty chains and their fault types. This is the
preferred method.

o The preferred method requires fail data from the chain tests and scan tests.

o There is an alternative method if you only have fail data from the scan tests. You can
specify the failing chains and fault types. For this case, your failure file must include
the fail data from the scan tests only. It may not include any fail data from chain
tests.

• Include the fail data from at least 100 failing scan test patterns to achieve good chain
diagnosis resolution that locates the failing scan cell in the chain.

Tip
We recommend that you use 100 failing scan test patterns for optimal results.

You can estimate the required number of ATE test cycles to collect the scan test pattern
failures by using the formula:

cycles = patterns * length_longest_chain * (percentage_of_failing_cycles / 100)

where:

o patterns — The number of failing scan chain patterns to use for data collection. We
recommend 100 failing scan test patterns.

o length_longest_chain — The length of the longest scan chain in your design.

o percentage_of_failing_cycles — Percentage of cycles that cause a failure. For the
stuck-at fault, the percentage is 50%.

For example, a chain has a stuck-at-zero fault. The length of the chain is 913, but the
longest reported chain is 1195. Using the recommended 100 patterns:

cycles = 100 * 1195 * (50/100)

You should collect 59,750 test cycles on your ATE for the optimal result.

Tessent™ Diagnosis User’s Manual, v2022.440

The Diagnosis Process
Logic Diagnosis Requirements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logic Diagnosis Requirements
To run an accurate diagnosis on logic failures, chains must be functioning correctly. If chains
are not functioning properly, it is unclear whether failures are due to defective chains or
defective logic whose effect is captured in the chains.
Include failures from at least 30 failing scan test patterns to achieve good logic diagnosis
resolution. It is recommended that you use 100 failing scan test patterns for optimal results.

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 41

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Cycle-Based Failure File
The cycle-based failure file format can only be used with test patterns saved in parallel WGL or
STIL format.

Note
If you plan to use Tessent YieldInsight, your ATE failure files must contain certain
keywords in the tracking_info section. See “Requirements for ADB Generation” in the

Tessent YieldInsight User’s Manual for details.

Use the keywords as described in Table 1-3 to create a cycle-based failure file. Precede
comment text with a pair of forward slashes (//).

Table 1-3. Cycle-Based Formatting Keywords
Keyword (s) Usage Rules
format {cycle | pattern} Optional. Use this keyword on the first non-comment line of

the failure file to identify the file format. Depending on the
application, use one of the following arguments:

• cycle — Indicates the failure file uses a cycle-based
format.

• pattern — Indicates the failure file uses a pattern-based
format.

By default, pattern-based is assumed. Use only one format
keyword per failure file.

tracking_info_begin
<user_defined_text>
tracking_info_end

Optional. Use these keywords to place user-defined tracking
information in a failure file. If you plan to use Tessent
YieldInsight, you must add specific keywords in this section
that propagate to the ADB. See “Requirements for ADB
Generation” in the Tessent YieldInsight User’s Manual for a
complete list of supported keywords.
Use the following rules when entering tracking information:

• Use the keywords only once to create a single tracking
information section for the entire file.

• Place the keywords anywhere in the file except within
the failing cycle (failures_begin and failures_end
keywords) information.

This information is not used for diagnosis; it is placed in the
diagnosis report verbatim.

Note: For hierarchical designs, after remapping, the
tracking information contains fields with “core_”, such

as “core_name core1.” The tool uses these fields to detect
the remapping, and they must not be modified or removed.
The “core_instance” pathname is a reflection of the logical
hierarchy in the TCD.

Tessent™ Diagnosis User’s Manual, v2022.442

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_expected_z_handling
<value>

Optional. Use this keyword to identify how the ATE handles
the high impedance (Z) values on tri-state nets. Specify one
of the following values:

• X (unknown)
• H (logic 1)
• L (logic 0)
• Z (high impedance)

Use only one set_expected_z_handling keyword per failure
file. By default, Z values are handled as an unknown (X)
state. See “High Impedance (Z) Handling.”

test_suite_begin <test_suite_id>
test_suite_end

Optional. Use these keywords to list the fail.log data
produced when multiple test sets are used for testing, and the
ATE produces a separate failure.log for each test set. See
“Multiple Test Suite Failure Data.” By default, a single test
pattern set is assumed.

last_cycle_applied
<cycle_number>

Optional. Use this keyword to specify the last cycle applied
to the Design-Under-Test (DUT). By default, the last cycle
in the test set is assumed to be the last cycle applied to the
DUT. If a last cycle is specified, all cycles past the specified
cycle are masked out.
If used, you must put this keyword outside the failures_begin
and failures_end keywords. For example:
failures_begin
.....
failures_end
last_cycle_applied 200

Table 1-3. Cycle-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 43

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

failures_begin
<failing_cycle_number>
<failing_pin_name>
<expected_value>
<faulty_value>
failures_end

Required. Use one set of these keywords to enter all the
failing cycle data from a test set. Place the failing data
between these keywords on separate lines. Enter the cycle
data for all failing patterns up to and including the last failing
pattern.
Place all data for a single failing cycle on one line, in the
following order, from left to right:

• failing_cycle_number — This is the number that
identifies the cycle. Cycle zero must correspond to cycle
zero in the scan test. If the tester applies the scan test set
after other tests, then you must deduct the offset
(corresponding to the total cycles of the test sets
preceding the scan test set) from the cycle number in the
ATE failure file to obtain the correct cycle number.
Cycles can be listed in any order.

• failing_pin_name — This is either a primary output pin
or a scan chain/channel output pin associated with the
specified cycle. The ATE failure file typically lists the
load board pin names. You must convert the load board
pin names into primary output or scan chain/channel
output pin names.

• expected_value — This is the expected test result for the
cycle. Use one of the following characters to indicate the
expected test result value:
--H (logic 1)
--L (logic 0)
--Z (high impedance)
The expected values entered here are compared with the
expected values in the test patterns to check the accuracy
of the converted failure file. Use Z if the ATE
differentiates a Z value from an H or L value.

• faulty_value — This is the actual test result for the cycle.
Use one of the following characters to indicate the actual
test result value:
--H (logic 1)
--L (logic 0)
--Z (high impedance)
Use Z if the ATE differentiates a Z value from an H or L
value.

Table 1-3. Cycle-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

Tessent™ Diagnosis User’s Manual, v2022.444

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cycle-Based Failure File Examples . 45
High Impedance (Z) Handling . 50
Multiple Test Suite Failure Data . 50
Cycle Offset Adjustment for Failure Files. 52

failure_buffer_limit_reached
{none | last_cycle_logged |
<pin_name> | all | unknown}

Optional. Use this keyword to indicate the pins that reach
their failure buffer limit during testing. If the current test
suite (or the fail file if there are no test suites) contains fail
bits and no failure buffer limit keyword applies to the test
suite, then the “unknown” switch is assumed. If no fail bits
are present, the “none” switch is assumed.
See “Failure Truncation Handling” on page 65.

• none — Indicates all pins are within buffer limits and no
cycle adjustments are necessary.

• last_cycle_logged — Indicates the buffer limit was
reached on the last/highest failing cycle in the test set.

• pin_name — Specifies the name of an individual pin that
reaches the failure buffer limit. If necessary, use the
failure_buffer_limit_reached keyword multiple times to
specify additional pins.

• all — Specifies that buffer limits were reached by all
failing pins. This option only applies to per-pin ATE fail
buffers.

• unknown — Specifies using the safest way to handle
ATE log truncations. Equivalent to specifying the
following:
failure_buffer_limit_reached all
last_cycle_applied <last_failed_cycle_number>

Except when specifying multiple single pin names, use the
failure_buffer_limit_reached keyword only once per test
suite. An FBLR on a different test suite does not change the
handling for the current test suite.

total_cycles
<number_of_cycles>

Optional. Use this keyword to specify the total number of
cycles in each test suite. When provided, the number is used
to perform a data consistency check before diagnosis. If the
total number of cycles in the test pattern file supplied for
diagnosis does not match this value, an error message
displays and diagnosis aborts.

failure_file_end Optional. Use this keyword to indicate the end of the failure
file.

Table 1-3. Cycle-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cycle-Based Failure File Examples
A cycle-based failure file contains one fail per row and the information about each fail follows a
four-column format. Optional keywords can provide additional information to generate the
diagnosis results and enable yield learning.

Basic Cycle-Based Failure File
The following example is a basic cycle-based failure file. The columns of data that describe
each fail are summarized below.

• Cycle — the failing cycle number

• Pin_Name — the failing pin name

• Exp — the expected value for that cycle and pin

• Act — the actual value from the ATE

// Cycle Pin_Name Exp Act
 13450 pin100 H L
 15345 pin140 L H
 15900 pin130 H L
 15900 pin140 L H
 17120 pin130 H L
 19201 pin130 L H
 19320 pin130 H L

Keywords in a Cycle-Based Failure File
Tessent Diagnosis can process optional information about the ATE to improve diagnosis
results. Use optional keywords to provide this information. Tessent Diagnosis also uses
keywords to pass tracking information to yield learning tools such as Tessent YieldInsight.
Cycle-based failure files can contain different keywords depending on the use case.

The following example comes from a yield learning exercise that includes three split lots from a
foundry and two wafers from each lot to analyze. Tessent YieldInsight is a tool in the analysis
flow. The example correlates information from the datalog of the ATE test program to the
cycle-based failure file. The following information is pertinent to the example:

• The design name is SL9010A.

• The initial failing die is on wafer number 3 from lot number RA9226.00.

• The ATE handles the high impedence state as a logic 1, or H.

• The pattern set has 60150 total cycles.

• The ATE uses a centralized memory architecture that has a fail memory buffer to collect
the failures of all pins.

• The ATE fail memory buffer is large enough to capture all the failures.

Tessent™ Diagnosis User’s Manual, v2022.446

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• The following lines from the test program datalog contain all the scan fails to diagnose.

Failing cycle 13450 pin pin100 was L expected H
Failing cycle 15345 pin pin140 was H expected L
Failing cycle 15900 pin pin130 was L expected H
Failing cycle 15900 pin pin140 was H expected L
Failing cycle 17120 pin pin130 was L expected H
Failing cycle 19201 pin pin130 was H expected L
Failing cycle 19320 pin pin130 was L expected H

The following cycle-based failure file conveys all this information to the tool using some
optional keywords, shown in red. It presents the scan fails in the four-column format.

// cycle-based failure file
format cycle
set_expected_z_handling H
tracking_info_begin
lot_id RA9226.00
wafer_id RA9226-03
design_id SL9010A
tracking_info_end
failures_begin
13450 pin100 H L
15345 pin140 L H
15900 pin130 H L
15900 pin140 L H
17120 pin130 H L
19201 pin130 L H
19320 pin130 H L
failures_end
total_cycles 60150
failure_file_end

Last Cycle Applied
This example shows the use of the last_cycle_applied keyword in red. All the information of the
previous example remains in effect except the last cycle applied by the ATE is cycle 20000.
This communicates to the tool that pass and fail information to consider for diagnosis ends at
cycle 20000 (that is, the tool does not consider cycle 20001 through the final cycle 60150 as
passing cycles for diagnosis).

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 47

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// cycle-based failure file
format cycle
set_expected_z_handling H
tracking_info_begin
lot_id RA9226.00
wafer_id RA9226-03
design_id SL9010A
tracking_info_end
failures_begin
13450 pin100 H L
15345 pin140 L H
15900 pin130 H L
15900 pin140 L H
17120 pin130 H L
19201 pin130 L H
19320 pin130 H L
failures_end
last_cycle_applied 20000
total_cycles 60150
failure_file_end

Full Failure Buffer Limit
This example shows the use of the failure_buffer_limit_reached keyword in red. All the
information of the previous examples remain in effect except the ATE applies all 60150 cycles.
However, the fail memory buffer of the ATE fills up during cycle 19320 because there are more
scan fails in the test program’s datalog. For brevity, this example uses “…” to represent those
additional failing cycles and pins.

…
Failing cycle 13450 pin pin100 was L expected H
…
Failing cycle 15345 pin pin140 was H expected L
…
Failing cycle 15900 pin pin130 was L expected H
…
Failing cycle 15900 pin pin140 was H expected L
…
Failing cycle 17120 pin pin130 was L expected H
…
Failing cycle 19201 pin pin130 was H expected L
…
Failing cycle 19320 pin pin130 was L expected H

The following cycle-based failure file conveys this information to the tool.

Tessent™ Diagnosis User’s Manual, v2022.448

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// cycle-based failure file
format cycle
set_expected_z_handling H
tracking_info_begin
lot_id RA9226.00
wafer_id RA9226-03
design_id SL9010A
tracking_info_end
failures_begin
…
13450 pin100 H L
…
15345 pin140 L H
…
15900 pin130 H L
…
15900 pin140 L H
…
17120 pin130 H L
…
19201 pin130 L H
…
19320 pin130 H L
failures_end
failure_buffer_limit_reached last_cycle_logged
total_cycles 60150
failure_file_end

Multiple Test Suites
The following example shows how to format the failure data of multiple test suites in a failure
file for diagnosis.

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 49

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

test_suite_begin suite_1 // suite_1 contains all failures in fail_log_1
failures_begin
......
failure_buffer_limit_reached none
failures_end
test_suite_end

test_suite_begin suite_2 // suite_2 not tested on ATE, no failure log
failures_begin
......
failures_end
last_cycle_applied -1 // -1 indicates suite not tested
test_suite_end

test_suite_begin suite_3 // suite_3 contains all failures in fail_log_3
failures_begin
......
failure_buffer_limit_reached all
failures_end
test_suite_end

test_suite_begin suite_4 // fail_log_4 has no failures so suite_4 is

// empty
failures_begin
failure_buffer_limit_reached none
failures_end

test_suite_end

Here is another example:

format cycle

test_suite_begin scanpat_suite1
failures_begin
100 pin1 H L
150 pin1 Z L
100 pin2 L H
failures_end
last_cycle_applied 499
total_cycles 500
test_suite_end

test_suite_begin scanpat_suite2
failures_begin
10 pin1 H L
15 pin1 Z L
8 pin2 L H
failures_end
last_cycle_applied 299
total_cycles 300
test_suite_end
failure_file_end

Tessent™ Diagnosis User’s Manual, v2022.450

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Multiple Test Suites with Full Fail Buffer Limit
The following example shows how the failure_buffer_limit_reached keyword displays when
you have multiple suites.

format cycle

test_suite_begin scanpat_suite1
failures_begin
100 pin1 H L
100 pin2 L H
failure_buffer_limit_reached last_cycle_logged
failures_end
last_cycle_applied 499
total_cycles 500
test_suite_end

test_suite_begin scanpat_suite2
failures_begin
10 pin1 H L
8 pin2 L H
failure_buffer_limit_reached last_cycle_logged
failures_end
last_cycle_applied 299
total_cycles 300
test_suite_end

High Impedance (Z) Handling
Some ATEs measure high impedance (Z) and some do not. Even if a tester can measure the Z
value, it may not be enabled. When the Z measuring capability is off or unavailable, all
expected Z values in the test pattern file are converted to unknown (X) values during the test
program creation. The ATE may perform this conversion dynamically without changing the test
pattern file.
For an effective diagnosis, you must have accurate information on how the ATE handles Z
values. For example, if the ATE enables the Z measuring capability and no fail cycles/bits
appear with expected Z values, then all cycles expecting Z values pass. If the ATE turns off the
Z measuring capability, then it masks the cycles containing Z values and they never fail.

You must determine from the ATE equipment or operator how the Z values are handled during
testing and specify this behavior for diagnosis. Use the set_expected_z_handling keyword in the
failure file to specify the Z handling for diagnosis.

By default, Z values are handled as an unknown (X) state. For information on changing the
default Z handling behavior for Tessent Diagnosis, see the set_z_handling command.

Multiple Test Suite Failure Data
In ATPG, you can break test patterns into multiple pattern files for use on the ATE.

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 51

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example splits the test patterns into two patterns files. The first file contains
patterns 0 to 999, and the second file contains patterns 1000 to 1999:

create_patterns

write_patterns tst_sta_0_999.stil -stil -begin 0 -end 999

write_patterns tst_sta_1000_1999.stil -stil -begin 1000 -end 1999

If you load the two pattern files on the ATE, the ATE can generate two failure files that
correspond to the two test patterns. If you want to run diagnosis with these two test pattern files
in a single diagnosis run, then you must merge the failure files using test_suite_begin keyword
in the failure file.

When a test pattern set is broken into multiple test suites for testing, the ATE produces a
separate fail.log for each test suite. Each fail.log should be represented separately in the failure
file loaded into Tessent Diagnosis—see also “Setting Up the Tessent Diagnosis Server.”

Use the following rules to format the multiple test suite data in a cycle-based or pattern-based
failure file:

• List the failing data between the failures_begin/failures_end keywords.

List the failing data for a test suite as follows:

test_suite_begin suite_1
failures_begin
......
failures_end
test_suite_end

• Document each fail.log.

Specify the multiple test suites as follows:

test_suite_begin suite_1
failures_begin
......
failure_buffer_limit_reached none
failures_end
test_suite_end

o Even if there are no failures in a test suite or a test suite is omitted from testing, the
test suite must still be represented in the failure file as follows:

o Use the following placeholder for each test suite that is omitted from testing:

test_suite_begin <suite_name>
failures_begin
......
failures_end
last_cycle_applied -1
test_suite_end

Tessent™ Diagnosis User’s Manual, v2022.452

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Use the following placeholder for each test suite that contains no failures:

test_suite_begin <suite_name>
failure_buffer_limit_reached none
test_suite_end

• Create one failure file for the entire test set.

Document each fail.log produced for each test suite inside one failure file.

• You must list test suites within the failure file in the same order that you load the test
pattern sets on the ATE.

Each test suite is independent from other test suites, in that the cycle count or pattern
count for each test suite corresponds to the pattern set order you loaded on the ATE. For
example, the first pattern set read in corresponds to the first test suite, the second pattern
set read in corresponds to the second test suite, and so on. You must load the
corresponding test pattern sets into Tessent Diagnosis with the read_patterns -append
command.

Additionally, the failure_buffer_limit_reached settings do not carry from one test suite
to another.

Cycle Offset Adjustment for Failure Files
When you apply a pattern set on the ATE, extra cycles may be introduced, causing cycle offset
issues in the failure file. These issues can cause verification to fail and the diagnosis to abort.
To adjust the cycle offset for a given failure file, enter the following command:

set_diagnosis_options -cycle_offset offset

When you specify this option, Tessent Diagnosis adjusts all failing cycles by the integer value
offset and uses the adjusted cycles for failure verification and diagnosis.

For hierarchical ATPG flows, this option is available in the patterns -failure_mapping context
through the set_failure_mapping_options command. In this context, the option ensures that the
tool correctly translates the failure cycles to the core level during reverse mapping of the top-
level failures to the core. Refer to “Reverse Mapping Top-Level Failures to the Core” for
details.

As shown in the following example, you can create a TCL procedure to automatically identify
the cycle offset by sweeping a range of user-defined cycle offset values.

The Diagnosis Process
The Cycle-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 53

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// flog: failure filename
// cycle_offset_lb: cycle offset lower bound
// cycle_offset_ub: cycle offset upper bound
// return: 0, if one valid cycle offset is found; 1, if no valid cycle

// offset is found; 2, if more than one valid cycle offset is found

proc findValidCycleOffset { flog cycle_offset_lb cycle_offset_ub } {
 set result 0; // return value
 set cycle_offset_list { } ;
 set verbose 0 ; // print out detailed results
 set cycle_offset_identified 0; // true if a single valid offset is found

 // Scan the offset range to find valid offset value(s)
 if { $verbose == 0 } { set_screen_display off }
 for { set offset $cycle_offset_lb } { $offset <= $cycle_offset_ub } { incr offset } {
 puts "*** Try cycle offset ($offset) with failure file ($flog) ***"
 set_diagnosis_options -cycle_offset $offset

 if { [catch { read_failure $flog } res] } {
 puts "Found one invalid cycle offset ($offset), result ($res)" ;
 } else {

puts "Found one possible valid cycle offset ($offset)" ;
lappend cycle_offset_list $offset;

 }
 }

 // Report the valid cycle offset identified
 set_screen_display on
 set num_valid_offset [llength $cycle_offset_list];
 if { $num_valid_offset == 0 } {
 puts "// Error: Failed to identify any valid cycle offset within \[$cycle_offset_lb,

$cycle_offset_ub\]"
 set result 1;
 } else {
 if { $num_valid_offset == 1 } {
 puts "// Found $num_valid_offset valid cycle offset within \[$cycle_offset_lb,

$cycle_offset_ub\] : $cycle_offset_list";

 set cycle_offset_identified 1;
 set final_offset [lindex $cycle_offset_list 0];
 set_diagnosis_options -cycle_offset $final_offset;

puts "// Set diagnosis option '-cycle_offset' to value ($final_offset)"
 //read_failure $flog
 } else {
 puts "// Found $num_valid_offset valid cycle offsets within \[$cycle_offset_lb,

$cycle_offset_ub\] : $cycle_offset_list";
 puts "// Further investigation is needed to determine which offset value should be

used." ;
 puts "// Hint: Another failure file with more failure data may help identify the

right offset value." ;
 set result 2;
 }
 }

 return $result;
}

Tessent™ Diagnosis User’s Manual, v2022.454

The Diagnosis Process
The Cycle-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example illustrates how to use the TCL procedure.

// For a given failure file, identify its cycle offset first,
// then run diagnosis
set min_offset -1;
set max_offset 1;
set flog_list { ./flog1 ./flog2 ./flog3 }

foreach f $flog_list {
 if { [findValidCycleOffset $f $min_offset $max_offset] == 0 } {
 diagnose_failure $f ;
 } else {
 puts "// Error: Can't diagnose '$f' without a valid cycle offset.";
 }
}

The Diagnosis Process
The Pattern-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 55

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Pattern-Based Failure File
By default, Tessent Diagnosis generates pattern-based failure files. As with cycle-based failure
files, you specify formatting keywords.

Note
If you plan to use Tessent YieldInsight, your ATE failure files must contain certain
keywords in the tracking_info section. See “Requirements for ADB Generation” in the

Tessent YieldInsight User’s Manual for details.

Use the keywords as described in Table 1-4 to create a pattern-based failure file. Precede
comment text with a pair of forward slashes (//).

Table 1-4. Pattern-Based Formatting Keywords
Keyword (s) Usage Rules
format {cycle | pattern} Optional. Use this keyword on the first non-comment line of

the failure file to identify the file format. Depending on the
application, use one of the following arguments:

• cycle — Indicates the failure file uses cycle-based
format.

• pattern — Indicates the failure file uses pattern-based
format.

By default, pattern-based is assumed. Use only one format
keyword per failure file.

tracking_info_begin
<user_defined_text>
tracking_info_end

Optional. Use these keywords to place user-defined tracking
information in a failure file. If you plan to use Tessent
YieldInsight, you must use specific keywords in this section
that propagate to the ADB. See “Requirements for ADB
Generation” in the Tessent YieldInsight User’s Manual for a
complete list of supported keywords.
Use the following rules when entering tracking information:

• Use the keywords only once to create a single tracking
information section for the entire file.

• Place the keywords anywhere in the file except within
the failing bit (scan test and chain test information)
information.

This information is not used for diagnosis; it is placed in the
diagnosis report verbatim.

Note: For hierarchical designs, after remapping, the
tracking information contains fields with “core_”, such

as “core_name core1.” The tool uses these fields to detect
the remapping, and they must not be modified or removed.

Tessent™ Diagnosis User’s Manual, v2022.456

The Diagnosis Process
The Pattern-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

failures_begin
<failure_data>
failures_end

Required for pattern-based multiple test suites, otherwise
omit. Use one set of these keywords to enter all the failing
data from a single test set. Place the failing data between
these keywords on separate lines.
See “Multiple Test Suite Failure Data.”

set_expected_z_handling
<value>

Optional. Use this keyword to identify how the ATE handles
the impedance (Z) values on tri-state nets. Specify one of the
following values:

• X (unknown)
• H (logic 1)
• L (logic 0)
• Z (high impedance)

Use only one set_expected_z_handling keyword per failure
file. By default, Z values are handled as an unknown (X)
state.
See “High Impedance (Z) Handling.”

test_suite_begin <test_suite_id>
test_suite_end

Optional. Use these keywords to list the fail.log data
produced when multiple test sets are used for testing, and the
ATE produces a separate fail.log for each test set. See
“Multiple Test Suite Failure Data.” By default, a single test
set is assumed.

Table 1-4. Pattern-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

The Diagnosis Process
The Pattern-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 57

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

chain test
scan test

Required when there is both scan test data and chain test data
in the failure file. Use these keywords to enter the failing
pattern data. If the failure file contains only scan test data,
you do not need to use these keywords. Omit if using an
empty test suite. Use the keywords as follows:

• Place all chain test data before scan test data.
• Place keyword within the failures_begin/failures_end

block.
• Place the keyword on the line immediately before the

failure data it identifies.
• Enter the patterns in ascending order, by number.
• Enter the failing cycle information for all patterns up to

and including the last failing pattern.
• Enter all data for a single failing cycle on one line, in the

following order, from left to right:
• Pattern number — Number of the failing pattern.
• Primary output — Scan channel name or primary output.
• Cycle — Number that identifies the failing cell within a

scan chain. The cycle number is required when the
primary output is a scan chain name. The cycle number
always starts from 0, which is closest to the scan out pin.

• Expected_value — Character that represents the
expected test result for the cycle as follows:
--H (logic 1)
--L (logic 0)
--Z (high impedance)
The expected values listed here are compared with the
expected values in the test patterns to check the accuracy
of the converted failure file. Use Z if the ATE
differentiates a Z value from an H or L value.

• Faulty_value — Character that represents the actual/
faulty value as follows:
--H (logic 1)
--L (logic 0)
--Z (high impedance)

Use Z if the ATE differentiates a Z value from an H or L
value.

Table 1-4. Pattern-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

Tessent™ Diagnosis User’s Manual, v2022.458

The Diagnosis Process
The Pattern-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

failure_buffer_limit_reached
{none | last_pattern_logged |
<pin_name> | all | unknown}

Optional. Use this keyword to indicate the pins that reach
their failure buffer limit during testing. If the current test
suite (or the fail file if there are no test suites) contains fail
bits and no failure buffer limit keyword applies to the test
suite, then the “unknown” switch is assumed. If no fail bits
are present, the “none” switch is assumed.
See “Failure Truncation Handling” on page 65.

• none — Indicates all pins are within buffer limits and no
pattern adjustments are necessary.

• last_pattern_logged — Indicates the buffer limit was
reached on the last/highest failing pattern in the test set.

• pin_name — Specifies the name of an individual pin that
reaches the failure buffer limit. If necessary, use the
failure_buffer_limit_reached keyword multiple times to
specify additional pins.

• all — Specifies that buffer limits were reached by all
failing pins. This option only applies to per-pin ATE fail
buffers.

• unknown — Specifies using the safest way to handle
ATE log truncations. Equivalent to specifying the
following:
last_pattern_applied <last_failed_pattern_number>
failure_buffer_limit_reached all

Except when specifying multiple single pin names, use the
failure_buffer_limit_reached keyword only once per test
suite. An FBLR on a different test suite does not change the
handling for the current test suite.

Table 1-4. Pattern-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

The Diagnosis Process
The Pattern-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 59

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern-Based Failure File Examples . 59
Guidelines for Mapping ATE Failure Logs to Pattern-Based Failure Files 61

Pattern-Based Failure File Examples
The information contained in the pattern-based failure file depends on the formatting keywords
you choose.

last_pattern_applied
<test_pattern_number>

Optional. Use this keyword to identify the last pattern
applied to the Design-Under-Test (DUT). By default, the last
pattern in the test set is assumed to be the last pattern applied
to the DUT. If a last pattern is specified, all patterns past the
specified pattern are masked out.
You can specify one of these keywords for both, the scan test
section and chain test section.
The specified number must be a positive integer, equal to or
less than the total number of test patterns, and not less than
any failing pattern number. For example, if the ATE applied
100 patterns, the last pattern applied would be pattern 99
(patterns are numbered starting at 0 for the first pattern) and
the failure file entry would be:
last_pattern_applied 99

Due to a full failure buffer or a truncated test, the tester may
stop before applying all test patterns. Specifying the last
pattern applied prevents unapplied test patterns from being
interpreted as passing.
If used, you must enclose this keyword with the
failures_begin and failures_end keywords. For example:
failures_begin
last_pattern_applied -1
failures_end

failure_file_end Optional. Use this keyword to indicate the end of the failure
file.

allow_missing_expected_actual_
values

Optional. This is a reverse mapping process generated
keyword for SSN designs that could appear in the
tracking_info section for reverse-mapped failure files. This
keyword instructs the tool to inhibit the failure file
verification for patterns/cycles that are missing expected and
actual values in the failure file.

Table 1-4. Pattern-Based Formatting Keywords (cont.)
Keyword (s) Usage Rules

Tessent™ Diagnosis User’s Manual, v2022.460

The Diagnosis Process
The Pattern-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Suppose you have the following snippet from an ATE failure log:

 9500 pin99L L H
10000 pin100 L H
13450 pin100 H L
15345 pin140 L H
15900 pin130 H L
15900 pin140 L H
17120 pin130 H L
19201 pin130 L H
19320 pin130 H L

The pattern-based failure file format is:

// pattern-based failure file
format pattern
tracking_info_begin
lot_id 12345
wafer_id 98765
chip_id 54820
x_coord 72
y_coord 57
tracking_info_end
set_expected_z_handling H
failures_begin
chain test
0 chain2 0 L H
0 chain3 1 L H
failures_end
last_pattern_applied 1
failures_begin
scan test
75 chain3 10 H L
90 chain20 30 L H
90 chain19 100 H L
90 chain20 100 L H
100 chain19 50 H L
125 chain19 55 L H
125 chain19 200 H L
failures_end
last_pattern_applied 266
failure_file_end

The following example shows how multiple test suite failure data is formatted in the chain
failure file for diagnosis.

The Diagnosis Process
The Pattern-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 61

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tracking_info_begin

 defect_info_begin
 injected_fault STUCK_AT_0 pm7202_core_inst/reg_9_inst/Q
 faulty_chain chain23
 triggering_prob 100
 cell_id 218
 defect_info_end

tracking_info_end

// pattern_id chain/PO_name cell_number expected_value simulated_value
// cell_path_name

test_suite_begin SUITE_1
failures_begin
chain test
0 chain23 2 H L // pm7202_core_inst/reg_93_inst
0 chain23 3 H L // pm7202_core_inst/reg_92_inst
...
last_pattern_tested 13
failures_end
test_suite_end
test_suite_begin SUITE_2
failures_begin
scan test
0 chain22 1197 H L // pm7202_core_inst/reg_11_inst
0 chain22 1198 H L // pm7202_core_inst/reg_10_inst
...last_pattern_tested 5
failures_end
test_suite_end

Guidelines for Mapping ATE Failure Logs to Pattern-
Based Failure Files

There are several challenges in accurately mapping the ATE failure log data to the pattern-based
failure file format. To ensure accurate diagnostics, you need to take special care to map the data
correctly. The following sections describe situations that need special consideration when
mapping the ATE failure log to a pattern-based failure file:

Failures During Scan Chain Unloading
If scan cell failures are detected during unloading of the scan chains, the failure file requires the
names of the chains involved. For example, if a chain is named “chain1” and its primary input
and output pins are named “si_1” and “so_1”, the failure file requires the “chain1” name, not the
pin names.

For STIL test patterns, use the scan chain name in the ScanStructures block.

Tessent™ Diagnosis User’s Manual, v2022.462

The Diagnosis Process
The Pattern-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example, in the following STIL excerpt, the chain name corresponding to the “si_1” and
“so_1” pins is “chain1” (the names are highlighted in bold for clarity):

ScanStructures {
ScanChain chain1 {
ScanLength 26;
ScanInversion 1;
ScanCells "\portb_reg[7] " ! "\portb_reg[6] " ! "\portb_reg[5]

" ! "\portb_reg[4] " ! "\portb_reg[3] " ! "\portb_reg[2] " !
"\portb_reg[1] " ! "\portb_reg[0] " ! "\portc_reg[7] " !
"\portc_reg[6]" ! "\portc_reg[5] " ! "\portc_reg[4] " !
"\portc_reg[3] " ! "\portc_reg[2] " ! "\portc_reg[1] " !
"\portc_reg[0] " ! "\phase_reg[3] " ! "\phase_reg[0]
" ! "regs.†out_reg[7] " ! "regs.†out_reg[6] " ! "regs.†out_reg[5]
" ! "regs.†out_reg[4] " ! "regs.†out_reg[3] " ! "regs.†out_reg[2]
" ! "regs.†out_reg[1] " ! "reg s.†out_reg[0] " ! ;

ScanIn "si_1";
ScanOut "so_1";
ScanMasterClock "clk";

}
}

Failures During Scan Chain Unloading (Compressed Patterns)
Tessent TestKompress (EDT On) outputs a different format when a test fails during scan chain
unloading. In addition to the cycle the failure was detected on during the unload process, you
must provide the name of the external scan channel where the failure occurred as follows:

• Use “edt_channel” followed by the index number of the external scan channel. For
example, if the channel pins are named “my_edt_input7” and “my_last_edt_output”, the
correct name for the external scan channel is “edt_channel7”, assuming the index
number is accurate.

• Verify the index number of the external scan channel reflected in the pin names with the
report_edt_pins command. The pin description column of the report lists the index
number for each channel.

The Diagnosis Process
The Pattern-Based Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 63

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In STIL patterns, you can obtain the channel name from the ScanStructures block. For example,
in the following STIL excerpt, the channel name corresponding to the “my_edt_input7” and
“my_last_edt_output” pins is “edt_channel7” (the names are highlighted in bold for clarity):

ScanStructures {
ScanChain edt_channel7 {

ScanLength 36;
ScanInversion 0;
ScanCells "edt_channel1/cell_35" "edt_channel1/cell_34"

"edt_channel1/cell_33" "edt_channel1/cell_32"
"edt_channel1/cell_31" "edt_channel1/cell_30"
"edt_channel1/cell_29" "edt_channel1/cell_28"
...
"edt_channel1/cell_1" "edt_channel1/cell_0" ;

ScanIn "my_edt_input7";
ScanOut "my_last_edt_output";
ScanMasterClock "clk" "edt_clock";
}

}

Multiple Test Pattern Types in a Set
Test pattern sets typically contain several types of test patterns arranged in a particular order.
The number of cycles in a given test pattern varies depending on the pattern type. Use the
information in the following sections of the Tessent Scan and ATPG User’s Manual to
determine the correct cycle for a given test pattern:

• Basic

• Clock Sequential

• Multiple Load

You should work with the pattern designer in order to understand the types and arrangement of
the patterns in a given pattern set. For an introduction to the different Tessent FastScan/Tessent
TestKompress pattern types, refer to “Tessent FastScan Pattern Types” in the TessentScan and
ATPG User’s Manual.

Reordered Patterns
Patterns are often saved in multiple pattern sets. For example, pattern set #1 might contain
patterns 0 to 999, pattern set #2 might contain patterns 1000 to 1999, and so on. When applied
on the tester, the pattern sets might be reordered (pattern set #2 applied first followed by pattern
set #1 for example). If patterns are reordered, you need to verify and compensate, if necessary,
in the following situations:

• Test_setup procedure

When the patterns are saved in different sets, be aware the tool may or may not include
the test_setup procedure in each individual pattern set, depending on the settings used
when the patterns were saved.

Tessent™ Diagnosis User’s Manual, v2022.464

The Diagnosis Process
The Pattern-Based Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Pattern order

Although the pattern sets are applied in a different order on the tester, the patterns
should be numbered starting from 0 in the pattern-based failure file. In the preceding
example, pattern 0 in the pattern-based failure file should correspond to pattern 1000 of
pattern set #2.

Tip
The recommended practice is to load patterns into Tessent Diagnosis in the same
order the patterns were applied on the tester. This helps prevent conversion errors

due to incorrect determination of pattern boundaries.

• Overlap cycles

In pattern set #1, which is applied later on the tester, be aware that the initial
load_unload cycles in the first pattern load the scan chains but do not result in actual
comparison for the values that are simultaneously shifted out. Comparison only happens
in the load_unload cycles that occur after capture.

Last Pattern Tested not at Pattern Boundary
In some cases, the ATE may only capture a certain number of failing cycles, and the end point
may not be at the boundary of the pattern. For example, in a STIL pattern, if the failure
happened to be a bit in the pattern 2 macro, the actual last pattern tested should be pattern 1
because the scan unloading of pattern 1 happens at the scan chain loading of pattern 2.

The Diagnosis Process
Failure Truncation Handling

Tessent™ Diagnosis User’s Manual, v2022.4 65

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Failure Truncation Handling
For cycle-based (and pattern-based) failure logs, the Tessent Diagnosis failure file format
enables you to specify failures captured in a variety of ways that reflect various tester
configurations, including support for different ways in which failure data may be truncated. In
the failure logs, the failure_buffer_limit syntax reflects any truncations in the logging of failing
cycles.

Note
The tool can detect invalid fail file annotations that may lead to lower diagnosis resolution
or inaccurate diagnosis. See “diagnose_failures” in the Tessent Shell Reference Manual for

more details and limitations.

Two methods of failure logging are typically used by ATE, pin-based and central buffer.

• Pin-based — In pin-based failure logging, each pin has its own failure buffer. This
means each pin can reach the buffer limit independent of other pins.

• Central-buffer — In central-buffer failure logging, there is a common failure buffer
memory where every cycle/pattern stores at least one failing cell. Typically, when
failures are reported externally, only the failing cell information is reported.

By default, Tessent Diagnosis stops observing a failure buffer when it becomes full. Anything
after the last failing bit is truncated (therefore, unknown). Consequently, Tessent Diagnosis
assumes:

• All pass/fail information on failing pins beyond their last failing cycle is not available.

• All pass/fail information on passing pins beyond the last cycle where any pins failed is
not available.

For example:

• Pin A:failing pin, last failing cycle is 200 — pass/fail information beyond cycle 200 is
unavailable for pin A.

• Pin B:failing pin, last failing cycle is 400 — pass/fail information beyond cycle 400 is
unavailable for pin B.

• Pin C:passing pin — pass/fail information beyond cycle 400 is unavailable, but cycles 0
- 400 on pin C passed.

• Pin D:passing pin — pass/fail information beyond cycle 400 is unavailable, but cycles 0
- 400 on pin D passed.

To increase the accuracy of the diagnosis, specify the failure buffers that become full for either
central-buffer or per-pin failure logging architectures.

Tessent™ Diagnosis User’s Manual, v2022.466

The Diagnosis Process
Failure Truncation Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
If you do not specify a failure truncation annotation, the tool defaults to
“failure_buffer_limit_reached unknown” and prints a warning similar to the following:

Warning: Failure truncation was not specified in failure file
'fail_log_name'. Using default failure truncation handling
'failure_buffer_limit_reached unknown' which could impact diagnosis
resolution. Please use appropriate truncation annotation in the
failure file.

Specify last_cycle_applied, which indicates a global buffer filling in addition to any local
buffers. Use one of the following arguments with the failure_buffer_limit_reached (FBLR)
keyword to refine the failure full buffer status:

• none — Indicates all pins are within buffer limits and no cycle/pattern adjustments are
necessary. When the FBLR keyword is not specified, the tool assumes the None
condition.

• pin_name — For per-pin failure logging, specifies the names of individual pins that
reach their failure buffer limit on the last failing cycle/pattern of the pin. All pass/fail
information beyond the last failing cycle/pattern is unavailable.

• all — For per-pin failure logging, specifies that all failing pins reached their failure
buffer limit on the last failing cycle/pattern. If there are no failures in a test suite, then
the tool assumes truncation on all pins and the status is unknown for all pins. If there are
failures in the test suite, the pins that are failing are considered truncated after the last
failure, and the status is unknown after the last failure. The non-failing pins are
considered passing (no truncation).

• last_cycle_logged — For central-buffer failure logging and cycle-based failure file
format, specifies that the central buffer reached its limit at the last failing cycle. All pass/
fail information beyond the last failing cycle on all pins is unavailable.

• last_pattern_logged — For central-buffer failure logging and pattern-based failure file
format, specifies that the central buffer reached its limit at the last failing pattern. All
pass/fail information beyond the last failing pattern on all pins is unavailable.

• unknown — For central-buffer failure logging and per-pin failure logging, specifies the
safest most conservative way to handle truncations. Status is unknown unless a test suite
has no failing bits, in which case it is pass.

For multi-suite scenarios, each suite is treated independently. The tool does not carry over any
truncation information from one test suite to another. Therefore, if the failure buffer limit is
reached in a test suite and the buffer remains full for the next test suite, the failure buffer limit
reached keyword(s) must be specified again for the next suite. If this is not done, the tool
assumes that the failure buffer was reset between test suites.

Truncated Failure File Examples . 67

The Diagnosis Process
Failure Truncation Handling

Tessent™ Diagnosis User’s Manual, v2022.4 67

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Truncated Failure File Examples
The examples illustrate supported failure truncation scenarios.

Example 1: Truncation of Failing Cycles for All Pins
There are three pins in the design: PinA, PinB, and PinC. Assume that the pin truncations occur
for all of the pins in the same cycle, as shown in the figure below, where the blue areas depict
the cycles for which failing cycles were logged. The cross-hatched areas depict the cycles where
no failures were collected and are, therefore, truncated or ignored for diagnosis. The tool makes
no assumptions regarding whether the patterns related to those cycles are passing or failing for
diagnosis.

Figure 1-2. Truncation of Failing Cycles for all Pins

Tessent™ Diagnosis User’s Manual, v2022.468

The Diagnosis Process
Failure Truncation Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The failure_buffer_limit_reached occurs only in the last test suite, test_suite3, as shown below:

format cycle
test_suite_begin test_suite1
failures_begin
100 pinA H L
100 pinB L H
failures_end
last_cycle_applied 499
total_cycles 500
test_suite_end
test_suite_begin test_suite2
failures_begin
101 pinA H L
202 pinB L H
failures_end
last_cycle_applied 299
total_cycles 300
test_suite_end
test_suite_begin test_suite3
failures_begin
320 pinA H L
462 pinB L H
failures_end
failure_buffer_limit_reached last_cycle_logged
last_cycle_applied 599
total_cycles 600
test_suite_end

Example 2: Contiguous Truncation of Failing Cycles Per Pin in Test Suites
There are three pins in the design: PinA, PinB, and PinC. Assume that the pin truncations occur
for all of the pins in different cycles, as shown in the figure below. As in the previous example,
the blue areas depict the cycles for which failing cycles were logged. The cross-hatched areas
depict the cycles where no failures were collected and are, therefore, truncated or ignored for
diagnosis. The tool makes no assumptions regarding whether the patterns related to those cycles
are passing or failing for diagnosis.

The Diagnosis Process
Failure Truncation Handling

Tessent™ Diagnosis User’s Manual, v2022.4 69

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-3. Contiguous Truncation of Failing Cycles Per Pin in Test Suites

In this scenario, the reverse mapping flow ignores the failures for the pin(s) where the failure
buffer limit was reached for the rest of that suite and for all the following test suites, as shown
below:

format cycle
test_suite_begin test_suite1
failures_begin
100 pinA H L
100 pinB L H
150 pinC H L
failures_end
failure_buffer_limit_reached pinB
last_cycle_applied 499
total_cycles 500
test_suite_end
test_suite_begin test_suite2
failures_begin
101 pinA H L
202 pinC L H
failures_end
failure_buffer_limit_reached pinA
failure_buffer_limit_reached pinB
last_cycle_applied 299
total_cycles 300
test_suite_end
test_suite_begin test_suite3
failures_begin
120 pinC H L
422 pinC L H
failures_end
failure_buffer_limit_reached pinC
failure_buffer_limit_reached pinA
failure_buffer_limit_reached pinB
last_cycle_applied 599
total_cycles 600
test_suite_end

Tessent™ Diagnosis User’s Manual, v2022.470

The Diagnosis Process
Failure Truncation Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 3: Noncontiguous Truncation of Failing Cycles Per Pin in Test
Suites (Holes)

Given PinA, PinB, and PinC, assume that the pin truncations occur for all of the pins in different
cycles but the fail buffer for pinB is flushed between test_suite2 and test_suite3 that creates a
noncontiguous “hole” in the test data, as shown in the following figure.

Tessent automatically handles noncontiguous test data by adding an internal record to the
failure file during remapping. See “Internal Records for Failure Buffer Limits” on page 71 for
more information.

Figure 1-4. Noncontiguous Truncation of Failing Cycles per Pin in Test Suites

The Diagnosis Process
Failure Truncation Handling

Tessent™ Diagnosis User’s Manual, v2022.4 71

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

format cycle
test_suite_begin test_suite1
failures_begin
100 pinA H L
100 pinB L H
150 pinC H L
failures_end
failure_buffer_limit_reached pinB
last_cycle_applied 499
total_cycles 500
test_suite_end
test_suite_begin test_suite2
failures_begin
101 pinA H L
202 pinC L H
failures_end
failure_buffer_limit_reached pinA
failure_buffer_limit_reached pinB
last_cycle_applied 299
total_cycles 300
test_suite_end
test_suite_begin test_suite3
failures_begin
120 pinC H L
422 pinB L H
failures_end
failure_buffer_limit_reached pinA
failure_buffer_limit_reached pinC
last_cycle_applied 599
total_cycles 600
test_suite_end

Internal Records for Failure Buffer Limits
When you apply reverse mapping to a top-level failure file for SSN or retargeted patterns in a
hierarchical DFT design, Tessent automatically handles any noncontiguous truncation by
adding an internal record to the failure file to indicate the “hole” in the test data.

Note
The internal records are for internal use by Tessent when remapping. They are not intended
for general use and they are not documented as failure file keywords.

The failure_buffer_limit_reached keyword in failure files indicates that the testing buffer filled
with failures before the end of the patterns. The keyword indicates that failure data may be
truncated after the last failing bit in the failure file. Bits after the buffer limit are considered
“unknown” rather than “passing”. When testing a top-level design with multiple test suites, this
kind of truncation may occur in any of the suites.

If the truncation is in the last suite, the existing failure_buffer_limit_reached keyword can
indicate the truncation. However, if the truncation is in a suite before the last, it results in a
“hole” in the passing bits between the last failing bit of the truncated suite and the beginning of

Tessent™ Diagnosis User’s Manual, v2022.472

The Diagnosis Process
Failure Truncation Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the next suite. For hierarchical test using retargeted patterns, Tessent preserves this information
by automatically adding records to the remapped failure file to indicate the truncated data.

The following example shows a simple multi-suite failure file where failure buffer limits were
reached in the TS1 test_suite:

format cycle

test_suite_begin TS1
failures_begin
 688 bc_2_core_2_blk1_edt_channels_out1 H L
 720 bc_2_core_2_blk1_edt_channels_out1 H L
 752 bc_2_core_2_blk1_edt_channels_out1 H L
failures_end
failure_buffer_limit_reached bc_2_core_2_blk1_edt_channels_out1
test_suite_end

test_suite_begin TS2
failures_begin
 720 bc_2_core_2_blk1_edt_channels_out1 L H
 752 bc_2_core_2_blk1_edt_channels_out1 H L
 816 bc_2_core_2_blk1_edt_channels_out1 L H
failures_end
failure_buffer_limit_reached none
test_suite_end

When you reverse map this failure file to the core level, Tessent combines the test suites into a
single test suite to map the failing bits. To preserve the truncation information at the end of the
TS1 test suite, Tessent automatically adds an internal record that indicates the missing range as
in the remapped failure file:

format pattern

scan_test

failures_begin
 0 blk1_edt_channels_out1 2 H L
 1 blk1_edt_channels_out1 2 H L
 2 blk1_edt_channels_out1 2 H L
 32 blk1_edt_channels_out1 2 L H
 33 blk1_edt_channels_out1 2 H L
 35 blk1_edt_channels_out1 2 L H
failures_end

fail_pattern_unknown_range blk1_edt_channels_out1 2 3 30
failure_buffer_limit_reached none
failure_file_end

The fail_pattern_unknown_range record indicates that there was a channel truncation in pattern
2 starting at cycle 3 and continuing to the end of pattern 30, which is the last pattern in the test
suite.

The Diagnosis Process
Failure Truncation Handling

Tessent™ Diagnosis User’s Manual, v2022.4 73

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Internal Records and Their Usage
Tessent has internal records for scan and chain tests that enable you to specify individual
channels or global for all channels.

Note
The internal records are for internal use by Tessent when remapping. They are not for
general use. Tessent automatically inserts them. They are documented here because you

may see them in the remapped failure files and want to understand their meaning.

Scan Unknown Records
If the top level test suite is truncated in the scan test section with

failure_buffer_limit_reached <channel>

the remapped failure log has the record:

fail_pattern_unknown_range <channel> <startPat> <startCycle> <endPat>

The fail_pattern_unknown_range record indicates the remapped range of unknown bits. The
range is for the specified <channel>. The range starts with the first cycle after the last failing bit
that is specified by <startPat> and <startCycle>. The range ends with the last cycle of
<endPat>.

If the top level fail log is truncated with

failure_buffer_limit_reached all

the failure log is remapped to a fail_pattern_unknown_range for each channel with a failing bit.

If the top level fail log is truncated with

last_cycle_applied

the remapped failure log has the record

fail_pattern_unknown_range_global <startPat> <startCycle> <endPat>

The fail_pattern_unknown_range_global record indicates a global range for all channels. The
range starts with the first cycle after the last failing bit that is specified by <startPat> and
<startCycle>. The range ends with the last cycle of <endPat>.

Chain Unknown Records
Holes in the chain test are represented by

fail_pattern_unknown_range_chain <channel> <startPat> <startCycle> \
<endPat>

fail_pattern_unknown_range_chain_global <startPat> <startCycle> <endPat>

Tessent™ Diagnosis User’s Manual, v2022.474

The Diagnosis Process
Substituting Instance Text for Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

These are identical to the scan unknown records except that the range is part of the chain test. If
the buffer fills in the chain test and extends over the scan test, both chain and scan unknown
records may be output to the remapped failure log.

Modulo Unknown Records
SSN can lead to another form of unknown holes that repeat. These SSN holes are represented
with the following records:

fail_pattern_unknown_modulo_ranges <channel> <startPat> <startOffset> \
<length> <repeatOffset> <endPattern>

fail_pattern_unknown_modulo_ranges_global <startPat> <startOffset> \
<length> <repeatOffset> <endPattern>

fail_pattern_unknown_modulo_ranges <channel> <startPat> <startOffset> \
<length> <repeatOffset> <endPattern>

fail_pattern_unknown_modulo_ranges_global <startPat> <startOffset> \
<length> <repeatOffset> <endPattern>

These specify ranges that start at <startPat> and <startOffset>. The range extends for
<length> bits and repeats at an interval of <repeatOffset> bits from the <startOffset>. The
range ends at the end of <endPattern>. There are channel/global and scan/chain variants.

Substituting Instance Text for Diagnosis Reporting
If you are running diagnosis on multi-core designs, Tessent Diagnosis can perform instance text
substitution for the core names. In the diagnosis report, Tessent Diagnosis substitutes the
instance text, specifically the pin_pathname and net_pathname report fields. You specify this
instance text substitution in the ATE failure file. You can perform the substitution for both scan
and chain diagnosis.
Use the following items as a guide for using instance text substitution:

• The instance_modeled core name must be an instance that exists in the flat model.

• There is no requirement that the core name correspond to a name that exists in the flat
model.

• You cannot use instance text substitution in conjunction with the write_diagnosis
command’s -encoded switch.

• You can specify multiple cores as in the following example:

tracking_info_begin
INSTANCE_SUBSTITUTE core_flat1 core_ATE_fail1
INSTANCE_SUBSTITUTE core_flat2 core_ATE_fail2
tracking_info_end

In the event there are multiple substitutions or substitutions overlap, then Tessent
Diagnosis processes these using an order-dependent method.

The Diagnosis Process
Substituting Instance Text for Diagnosis Reporting

Tessent™ Diagnosis User’s Manual, v2022.4 75

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• An ATE failure file. See “Guidelines for Preparing the ATE Failure File” for more

information.

Procedure
Insert the following keyword and arguments between the tracking_info_begin and
tracking_info_end failure file keywords:

INSTANCE_SUBSTITUTE instance_modeled instance_tested

where:

• instance_modeled — Specifies the core name in the flat model.

• instance_tested — Specifies the core name that failed on the ATE.

Results
Figure 1-5 shows an example chain diagnosis report and the identical report with the instance
text substitution. It shows that Tessent Diagnosis substitutes the name regs with the name
REGISTER_A in the resulting diagnosis report:
Figure 1-5. Diagnostic Report Example Original and With Instance Substitution

Tessent™ Diagnosis User’s Manual, v2022.476

The Diagnosis Process
Archiving Data for Re-Running Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Archiving Data for Re-Running Diagnosis
To re-run diagnosis, you should archive a complete set of ATPG data.

Prerequisites
• Ensure you have a complete set of ATPG data.

• Verified test patterns and other data.

Procedure
1. Before archiving, perform a Verilog simulation to verify the test patterns by saving the

test patterns in a testbench format. For example:

write_patterns pattern_file -verilog

2. Simulate the design to verify ASCII vector file format test patterns.

3. Archive enough information to allow the recreation of the original ATPG scenario as
follows:

• Netlist model

• Dofiles and test procedure files for each test mode and pattern type

• Tool version used to create the patterns

• Parallel binary, STIL, and ASCII (if you want to read and edit them) test patterns

• Log file for each test mode and test pattern type

Results
If the simulation is successful, your binary and ASCII patterns are valid. If the simulation fails,
you must fix the design configuration. The ASCII patterns can be archived with the required
binary patterns, or they can be regenerated from the binary patterns at diagnosis time.

The Diagnosis Process
STDF-V4 2007-Formatted File Support

Tessent™ Diagnosis User’s Manual, v2022.4 77

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STDF-V4 2007-Formatted File Support
Tessent Diagnosis provides the dlogutil utility that you can use to extract scan failures from
STDF-V4 2007 and STDF-V4 2007.1-formatted files and output failure files that you can use
for diagnosis with Tessent Diagnosis.
For more information about dlogutil, see “dlogutil Utility.”

The dlogutil utility supports the following functionality to support scan failures in STDF
format:

• Loading an ATE-generated STDF-V4 2007(.1)-formatted file containing scan test
failure information.

• Reporting information for pattern and device.

• Reporting and extracting scan failures for a given device.

• Reporting and extracting scan failures for devices tested in a multi-site environment.

• Writing an ASCII-formatted ATDF file.

STDF-V4 2007 Records and Tessent Diagnosis . 77
STDF-V4 2007 Tracking Information . 78
Support for Unknown Captured Values . 80
Multi-Site Support . 80
Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files 80

STDF-V4 2007 Records and Tessent Diagnosis
You can verify that your STDF file is version STDF-V4 2007 or later after you write the STDF
file to an ASCII-based ATDF file with the write_atdf_file dlogutil command. If you see an STR
failure record, then your STDF file is STDF-V4 2007 or later.
As described in “Multi-Site Support,” STR records should be located within their associated
PIR/PRR pairs.

The following table shows the STDF-V4 2007 records and their use with Tessent Diagnosis.
See also “STDF-V4 2007 ATDF Record Examples.”

Table 1-5. STDF-V4 2007 Records
Record Name Required or

Optional
Usage Comments

Version Update Record (VUR) Required Record header.

Tessent™ Diagnosis User’s Manual, v2022.478

The Diagnosis Process
STDF-V4 2007 Tracking Information

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STDF-V4 2007 Tracking Information
By default, the dlogutil utility extracts tracking information from the STDF-V4 2007(.1) files
during the conversion process. In the diagnosis report, this information is displayed in the
tracking_info section.
Table 1-6 shows the STDF-V4 2007(.1) source information that dlogutil extracts for Tessent
Diagnosis failure files.

Name Map Record (NMR) Required1 Recommended for Tessent Diagnosis,
ATPG signal names may not be defined in
Pin Map Records (PMR) based on the
STDF V4 standard.

Cell Name Record (CNR) Optional Can produce large data volume. Not
recommended for use with Tessent
Diagnosis.

Scan Structure Record (SSR) Optional Not used by Tessent Diagnosis.
Chain Description Record (CDR) Optional Not used by Tessent Diagnosis.
Pattern Sequence Record (PSR) Required Main record for test pattern file

information.
Scan Test Record (STR) Required Main record for logging scan failures.

1. Required only if the PMR does not contain ATPG signal names.

Table 1-6. Extracted STDF-V4 2007 Tracking Information
Tessent Diagnosis
Keyword

Source STDF-V4 2007 Record

lot_id LOT_ID Master Information Record
(MIR)

wafer_id WAFER_ID Master Results Record
(MRR) or Master
Information Record (MIR)

x_coord X_COORD Part Results Record (PRR)
y_coord Y_COORD Part Results Record (PRR)
part_id PART_ID Part Results Record (PRR)
dlog_temp TST_TEMP MIR

Table 1-5. STDF-V4 2007 Records (cont.)
Record Name Required or

Optional
Usage Comments

The Diagnosis Process
STDF-V4 2007 Tracking Information

Tessent™ Diagnosis User’s Manual, v2022.4 79

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Suite Naming
By default, the dlogutil utility names the test suite based on PSR_INDX for a given STR.

The utility uses the following naming convention:

test_suite_PSR_INDX

where PSR_INDX is the unique PSR_INDX field referenced by the STR. For example:

test_suite_1

You can use the dlogutil report_stdf_pattern_sequences command to determine the
corresponding pattern file for a specific pattern sequence.

For Verigy testers, if the pattern file is stored in the PSR_NAM field of the PSR record, you can
use the stdf_test_name_source dlogutil variable to append the pattern file name to the test suite
name:

set stdf_test_name_source PSR_NAM

Failure Truncation Handling
By default, the dlogutil uses the failure_buffer_limit_reached none keyword for an extracted
failure if all of its failing cycles are logged. Otherwise, the dlogutil utility uses the
failure_buffer_limit_reached unknown keyword.

You can optionally change the handling of truncated failures by setting the following dlogutil
variable:

stdf_fail_trunc_handling unknown | all | last_cycle_logged

dlog_volt string(s) in COND_LST of
first STR record, starting
with "VCC=" or "VDD="

STR

dlog_freq string(s) in COND_LST of
first STR record, starting
with "SHIFT_FREQ=" or
"CAPTURE_FREQ="

STR

unknown keyword string(s) in COND_LST of
first STR record, not covered
by dlog_volt or dlog_freq

STR

Table 1-6. Extracted STDF-V4 2007 Tracking Information (cont.)
Tessent Diagnosis
Keyword

Source STDF-V4 2007 Record

Tessent™ Diagnosis User’s Manual, v2022.480

The Diagnosis Process
Support for Unknown Captured Values

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

There is no support in the dlogutil utility for per-pin-based failure truncation.

Support for Unknown Captured Values
The Tessent Diagnosis failure file only expects the H, L, and Z values for the expected values
and actual values for failing bits. However, the STDF file may contain other values that have
special meanings for testers. For example, Teradyne ultraFlex testers use G to indicate glitches
and M to indicate mid-band voltage. These values are unknown to Tessent Diagnosis.
By default, dlogutil issues an error message for failing bits with unknown values and does not
create failure files for parts with unknown values. However, you can map these values to valid
values to generate valid failure files. To do this, specify the stdf_cap_data_mapping variable.

For more information about the stdf_cap_data_mapping variable, see
“stdf_cap_data_mapping.”

Multi-Site Support
For multi-site testing, the dlogutil utility supports a flexible file structure to accommodate both
synchronous and asynchronous testing environments. The dlogutil utility can extract the failure
information as long as each PIR record comes before its PRR counterpart, and the STR failure
records are located within their PIR/PRR pairs. Each failure record contains a HEAD_NUM
and SITE_NUM reference that dlogutil uses to match each record to its PIR/PRR pair.

Extracting Scan Failures from STDF-V4 2007 Files
and Creating Failure Files

You can use the dlogutil utility either interactively on the command line or in a dofile.
See “dlogutil Utility” for complete dlogutil invocation syntax and arguments.

Prerequisites
• An STDF-V4 2007(.1)-formatted file.

Procedure
1. Load the STDF file using the load_stdf_file command. For example:

load_stdf_file my_test.stdf

2. Report the part or test information from the STDF file executing any of the following
commands:

• report_stdf_conditions

• report_stdf_parts

The Diagnosis Process
Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files

Tessent™ Diagnosis User’s Manual, v2022.4 81

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• report_stdf_pattern_sequences

These report commands are useful for debugging.

3. Extract the information from the STDF file you have loaded using the
extract_stdf_failures command.

Results
A failure file that you can use with Tessent Diagnosis.

Examples
The following dlogutil dofile example provides basic usage instruction.

//loading the STDF file
dlogutil> load_stdf_file stdf/my_test.stdf
// Note: STDF (my_test.stdf) is successfully loaded using schema
(/home/tessent/installDir-rls/public/share/SiliconInsight/stdf/schema/
stdf_V4_2007.schema).
// Warning: No WIR/WRR record found.

//reporting STDF information
dlogutil> report_stdf_conditions

Field Value
___________ ______
Temperature 27C

dlogutil> report_stdf_parts

No. PIR PRR HEAD SITE FLAG #TEST SOFT_BIN TIME PART_ID LOT_ID Results
___ ___ ___ ____ ____ ____ _____ ________ ____ _______ ______ ___________

0 141 146 1 1 8 4 3 1046 1 1 test failed

dlogutil> report_stdf_pattern_sequences

ID CONT_FLG PSR_INDX PSR_NAM OPT_FLG TOTP_CNT LOCP_CNT

___ ________ ________ ___________________________ _______ ________ ______
119 0 1 chain_test1 14 10 10
120 0 2 scan_test1 14 100 100
121 0 3 scan_test2 14 100 100

Tessent™ Diagnosis User’s Manual, v2022.482

The Diagnosis Process
Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

//writing an STDF file into an ATDF file
dlogutil> load_stdf_file stdf/my_test.stdf
dlogutil> write_atdf_file results/my_test.atdf –rep

//extracting scan failures form an STDF file
dlogutil> extract_stdf_failures stdf/my_test.stdf results/flog_base

// Note: STDF (my_test.stdf) is
successfully loaded using schema
(/home/tessent/installDir-rls/public/share/SiliconInsight/stdf/schema/
stdf_V4_2007.schema).
// Warning: No WIR/WRR record found.
// Note: extract 8 failing bits from STR records [145,145], format=CYCLE.
// Note: write failure information for part (0) into file
// (results/flog_base_0).
// Note: faillog (results/flog_base_0) was generated for failure (0).

//extracting failures for a subset of failing parts for selected tests
dlogutil> load_stdf_file stdf/my_test.stdf
dlogutil> report_stdf_pattern_sequences
dlogutil> stdf_selected_psr_ids {1 3}
dlogutil> report_stdf_parts
dlogutil> stdf_selected_parts { 0 1 3 5 }
dlogutil> extract_stdf_failures stdf/my_test.stdf results/flog_base

The Diagnosis Process
Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis
Running scan diagnosis requires you to set the proper context and specify the pathname to the
flat design netlist. You use Tessent Shell to start scan diagnosis.
You can perform scan diagnosis in batch mode in addition to performing other types of
diagnosis such as gross delay defect, slow-clock compound hold-time, IDDQ diagnosis, and at-
speed diagnosis.

Performing Scan Diagnosis . 83
Batch Mode in Tessent Diagnosis . 85
Gross Delay Defect Diagnosis . 86
Slow Clock Compound Hold-Time Diagnosis . 88
IDDQ Diagnosis . 89
At-Speed Failure Diagnosis. 92

Performing Scan Diagnosis
Before Tessent Diagnosis runs scan diagnosis, it simulates the design, verifies test pattern
accuracy, and verifies failure file accuracy.

Prerequisites
• Design netlist — See Preparing the Design Netlist.

• Test patterns — See Preparing the Test Patterns.

• ATE failure file — See Guidelines for Preparing the ATE Failure File.

• Verification data — See Reverse Mapping Top-Level Failures to the Core.

Procedure
1. From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -shell

where Tessent_Tree_Path is the path to where the Tessent Shell application tree is
installed.

2. After Tessent Shell has started, enter:

set_context patterns -scan_diagnosis

3. Enter:

read_flat_model flat_model

where flat_model is the pathname of the flat design netlist.

Tessent™ Diagnosis User’s Manual, v2022.484

The Diagnosis Process
Performing Scan Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information on invoking Tessent Diagnosis, see the tessent shell command in
the Tessent Shell ReferenceManual.

4. Load the test pattern file. Enter the read_patterns command and specify the pathname of
the final test patterns similar to:

read_patterns my_patterns.bin

Where:

• my_patterns.bin — The pathname of the test pattern file to load.

If masking was used for the patterns run on the ATE, you must use the read_patterns
command’s -mask_file switch and provide a masking file that masks out the appropriate
patterns. Check with the engineer that created the final test patterns to see if masking
was used.

See also “Preparing the Test Patterns” for additional information.

5. Run diagnosis on the failure file. Enter the diagnose_failures command and specify the
pathname of the failure file similar to:

diagnose_failures failure_file -output ascii_report

Where:

• failure_file — The pathname of the properly formatted failure file to diagnose.

• -output — A switch that directs the tool to write the diagnosis results report to a file.

• ascii_report — A user-specified pathname for the diagnosis results report. By
default the report displays on screen. This report should be saved to a file for
subsequent analysis.

The diagnosis begins and Tessent Diagnosis performs four tasks in the following order:

a. Simulates the design and verifies the test pattern accuracy. If expected values do not
match the simulated values, an error displays and the diagnosis aborts. Use the
report_failures command to display the test pattern mismatches. For more
information, see the “Displayed Failure File Errors/Mismatches” section in this
chapter.

b. Verifies the failure file accuracy. If the data in the specified failure file contains
errors or does not match the test patterns in the external database, an error displays
and the diagnosis aborts. Use the set_diagnosis_options command to specify how
many errors and pattern mismatches display before diagnosis aborts. For more
information, see the “Displayed Failure File Errors/Mismatches” section in this
chapter.

c. Runs the diagnosis.

The Diagnosis Process
Batch Mode in Tessent Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 85

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
Tessent Diagnosis outputs the results to an ASCII file. For details, refer to “Diagnosis
Reporting.”

Related Topics
Batch Mode in Tessent Diagnosis
Gross Delay Defect Diagnosis
Slow Clock Compound Hold-Time Diagnosis
IDDQ Diagnosis

Batch Mode in Tessent Diagnosis
You can run diagnosis in batch mode by using a dofile to pipe commands into the application.
Dofiles let you automatically control the operations of the tool. The dofile is a text file you
create that contains a list of application commands that you want to run.

Note
Do not include DRC handlings or ATPG settings in the dofile. All the DRCs and ATPG
settings required by Tessent Diagnosis should already be saved in the flat design netlist

written out from Tessent FastScan or Tessent TestKompress.

If you place all commands, including the exit command, in a dofile, you can run the entire
diagnostic session as a batch process.

Create the dofile, and enter the following command to start scan diagnosis in the Tessent Shell
environment and run the dofile:

Tessent_Tree_Path/bin/tessent -shell -dofile my_dofile.do

where:

• Tessent_Tree_Path the path to where the Tessent Shell application tree is installed.

• -dofile is the invocation switch required to run a dofile.

• my_dofile.do is the pathname of the dofile to run.

Tessent Shell invokes and runs the commands listed in the dofile.

Tessent™ Diagnosis User’s Manual, v2022.486

The Diagnosis Process
Gross Delay Defect Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following dofile runs scan diagnosis in batch mode:

// Get the date for the session.
system date

// set_tcl_shell_options -abort_dofile_on_error off
// (useful if there are erroneous failure files and
// you do not want the tool to exit on an error during the batch run).

set_tcl_shell_options -abort_dofile_on_error off

// Set the context.
set_context patterns -scan_diagnosis

//Read in the flat netlist.
read_flat_model my_model

//Load the patterns.
read_patterns my_patterns/pat.bin

// Perform scan diagnosis only.
set_diagnosis_options -mode scan

// run the diagnosis. The following diagnose_failures command:
// 1) Verifies the test patterns.
// 2) Verifies the failure file.
// 3) Runs the diagnosis and saves the results.
diagnose_failures failure_file1 -output diagnosis_file1.txt -replace

// The next (and all subsequent) diagnose_failures commands do not
// reverify patterns until preceded by another read_patterns
// command.

diagnose_failures failure_file2 -output diagnosis_file2.txt -replace

// exit the session.
exit -force

By default, if the tool encounters an error when running one of the commands in the dofile, it
stops dofile execution. You can, however, use the “set_tcl_shell_options
-abort_dofile_on_error” command to turn this setting off.

Gross Delay Defect Diagnosis
You can configure Tessent Diagnosis to perform net open gross delay defect diagnosis. A gross
delay defect has delay that is large enough to slow down a transition at the defect site and cause
failure at all the observation points where the transition propagates to, regardless of the
propagation path delay. A gross delay defect causes no failures if there is no transition at the
defect site; that is, it passes a conventional static scan test. This capability helps separate at-
speed and static defects in cases where it is unknown whether the failures are timing sensitive.

The Diagnosis Process
Gross Delay Defect Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 87

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Enable gross delay defect diagnosis using the following command, depending on whether you
are using scan diagnosis or Tessent Diagnosis Server:

• Tessent Diagnosis — Set the set_diagnosis_options command’s optional -GRoss_delay
argument to ON. For example:

set_diagnosis_options -gross_delay on

• Tessent Diagnosis Server — Set the set_diagnosis_options command’s optional
-GRoss_delay argument to ON. For example:

set_diagnosis_options -gross_delay on

You can perform the gross delay diagnosis with any of the following:

• Stand-alone Tessent Diagnosis

• Layout-aware diagnosis

• Server-based Tessent diagnosis

Tessent Diagnosis performs gross delay diagnosis for net open defects. Currently, the tool does
not support:

• Chain failures

• Gross delay bridges

Gross Delay Diagnosis Reporting
The following table lists the gross delay defect diagnosis reporting, depending on the mode,
done by the tool.

Gross Delay Diagnosis Example
The following table provides an example Tessent Diagnosis tool diagnosis report showing a
gross delay defect.

Table 1-7. Gross Delay Defect Diagnosis Reporting
Mode Diagnosis Report type Diagnosis Report value
Logic diagnosis OPEN/DOM slow/STR/STF
Logic diagnosis using a layout-aware
diagnosis Layout Database (LDB)

OPEN slow/STR/STF

Tessent™ Diagnosis User’s Manual, v2022.488

The Diagnosis Process
Slow Clock Compound Hold-Time Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-6. Example Gross Delay Defect Diagnosis Report Excerpt

Slow Clock Compound Hold-Time Diagnosis
Tessent Diagnosis can perform diagnosis of scan chain compound hold-time faults. A
compound hold-time fault is caused by a spot delay defect in the clock structure resulting in
delayed shift and capture clocks to some cells. This defect can result in a hold-time failure
during shift mode and capture mode.
Enable compound hold-time diagnosis using the following command in either Tessent
Diagnosis or the Tessent Diagnosis server. The option only applies to hold times on shift paths,
not capture paths.

set_diagnosis_options -compound_hold_time_fault_diagnosis on

Compound Hold-Time Diagnosis Reporting
For each chain hold-time suspect, Tessent Diagnosis reports both the source cell and sink cell.
The tool also reports the possible slow clock signals that are causing hold time errors on scan
chains.

The following table shows a Tessent Diagnosis reporting that contains compound hold-time
information.

The Diagnosis Process
IDDQ Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 89

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-7. Diagnosis Report Containing Compound Hold-Time Results

For symptom 2, suspect 1, the source cell has an appendix of (CELL+OUT) for the fault type,
while the sink cell has an appendix of (IN+CELL) for the fault type.

When a hold-time error occurs at sink cell N, the error could be due to one of the following:

• The cell N’s clock comes late.

• The cell (N+1)’s clock comes early.

• The delay is smaller than expected between these two cells.

To determine the cause, you should check from the source cell and its scan output all the way to
the sink cell and its scan input.

IDDQ Diagnosis
Tessent Diagnosis enables you to perform IDDQ diagnosis on patterns that have passed stuck-at
testing but failed IDDQ testing. IDDQ diagnosis can help you pinpoint the locations on
defective devices that are causing the failures. It supports single and multiple defects. The
failure files you use as input to Tessent Diagnosis should include IDDQ measurements for
passing and failing IDDQ patterns.
When you set the set_diagnosis_options -mode auto command, the tool automatically detects
IDDQ failure data from the fail log and runs IDDQ diagnosis. The first line of the fail log must
specify the keyword “iddq_test” as shown below in Figure 1-8.

Tessent Diagnosis Server and layout-aware diagnosis do not support IDDQ mode.

Tessent™ Diagnosis User’s Manual, v2022.490

The Diagnosis Process
IDDQ Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IDDQ Failure File Format
The following example shows the supported failure file format for the IDDQ failure data. For
IDDQ diagnosis, you must convert your failure data to this format.

Figure 1-8. Supported IDDQ Failure File Format

iddq_test
format pattern
tracking_info_begin

lot_id lot_id
part_id part_id
wafer_id wafer_id
x_coord x_coord
y_coord y_coord

tracking_info_end
iddq_jump_size jump_size_value
failures_begin //list of actual current measurements for

//each scan test pattern
pattern_0 iddq_current_0
...
pattern_n iddq_current_n

failures_end

The iddq_jump_size keyword is required to define the current threshold that differentiates the
measured IDDQ current clusters. The threshold determines the status of each pattern. After
sorting the failure patterns in ascending order by IDDQ current, the tool considers a jump to be
any two adjacent patterns with a current differential larger than the specified jump size.

The tool clusters the sorted patterns based on iddq_jump_size. Patterns in the first cluster are
considered passing patterns and other patterns are treated as failing patterns. If the tool only
detects one cluster, it assumes all patterns are passing and identifies no suspects.

Tip
For the IDDQ jump size value, 10% of the average IDDQ current from a good die could be
a good starting point. Ideally, the value should be greater than the hardware current

measurement variation or noise.

Tessent Diagnosis does not support multiple test suites for the IDDQ failure file.

The Diagnosis Process
IDDQ Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 91

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following figure shows an IDDQ failure file:

Figure 1-9. IDDQ Failure File

iddq_test
format pattern
tracking_info_begin
 lot_id ABC
 part_id 1

wafer_id 1
x_coord 2
y_coord 3

tracking_info_end
iddq_jump_size 2
failures_begin
 0 18.5626
 1 18.3624
 2 18.5376
 3 43.8

…
 97 18.5
 98 18.5
 99 18.5251
failures_end

IDDQ Diagnosis Report
The following figure shows a sample IDDQ diagnosis report.

Tessent™ Diagnosis User’s Manual, v2022.492

The Diagnosis Process
At-Speed Failure Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-10. IDDQ Diagnosis Report

tracking_info_begin
 lot_id YA_lot
 part_id 1
tracking_info_end

#diagnosis_modes=1
#logic_symptoms=1
#total_symptoms=1 #total_suspects=10

total_CPU_time=71.25sec

diagnosis_mode=iddq
#symptoms=1 #suspects=10

CPU_time=71.25sec fail_log=flogs.ya/flog_iddq_ya_1
#failing_patterns=23,

#passing_patterns=77
#unexplained_failing_patterns=0

symptom=1 #suspects=10

#explained_patterns=23
70 34 86 85

 53 54 23 82 68 76
59 25 93 31

 90 87 43 42 65 15
11 3 12
suspect score fail_match

pass_mismatch type value pin_pathname cell_name net_pathname

1 100 23 0 STUCK

0 …/C1/Z H250 …/foo_5_1
2 100 23 0 EQ1

0 …/C1/A H250 …/reg_1
3 100 23 0 EQ1

0 …/C1/B H250 …/data_s[5]
4 100 23 0 STUCK

0 …/outbuf/Z SBUF10 …/epwr_70[5]
5 100 23 0 EQ4 0 …/outbuf/A SBUF10 …/foo_5_1
…

At-Speed Failure Diagnosis
You can perform at-speed failure diagnosis with Tessent Diagnosis and subsequently visually
examine, with Tessent Visualizer, any failing paths written to the failure diagnosis report.
See “Viewing Failing Paths for a Pattern” for more information.

Specify performing at-speed failure diagnosis by adding the following switch to the
set_diagnosis_options command:

set_diagnosis_options ... -at_speed on

The following example shows an at-speed failure diagnosis run.

The Diagnosis Process
At-Speed Failure Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 93

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

...

// Finished reading "design.flat". sim_gates=989 PIs=19 POs=23.

FAULT> set_diagnosis_options -mode scan -at_speed on // perform at-speed diagnosis

FAULT> set_pattern_source external pat_good.stil -stil

// Reading STIL input file "pat_good.stil"

FAULT> diagnosis_failures 1.fail -ouput x1.diag -replace -csv x1.csv // create fail report

// Verifying 42 external patterns.

// incorrect_patterns=0, simulated_patterns=42, simulation_time=0.01sec.

FAULT> diagnose_failures 2.fail -output x2.diag -replace -csv x2.csv

... converting 190 cycles to patterns (5038 total cycles loaded)

FAULT> display_diagnosis_report x1.diag // view failure report in Tessent Visualizer

// command: open_visualizer -display debug

FAULT> display_diagnosis_report x1.diag

FAULT> write_failing_paths x1.slow_paths.txt

You cannot use at-speed diagnosis with the layout-aware diagnosis flow. Even though an LDB
may have been opened prior to executing diagnose_failures, at-speed diagnosis results does not
include layout information.

Tessent Diagnosis calculates failing capture cycles for at-speed diagnosis using the following
criteria:

• Launch-off-capture — The failing capture cycles occur during the second capture clock.
The first capture clock is slow speed.

• Launch-off-shift — The failing capture cycles occur on the first and all subsequent
capture cycles.

When performing at-speed diagnosis, for each failing bit, the tool attempts to identify the paths
that can cause a particular failure and converge the paths to a single location. If there are too
many failing bits and too many paths, it cannot isolate a defect location and reports zero
symptoms. When this occurs, adjust the test conditions so that there are fewer failing bits to
diagnose. Do this by adjusting the test conditions closer to passing conditions, such as by
reducing the test frequency or adjusting the voltage on the power supply. Fewer paths should
fail, and Tessent Diagnosis should be able to identify some symptomatic paths.

Note
This is the opposite approach than you would use when running gross delay or static
diagnosis, and should only be applied during at-speed diagnosis.

Tessent Diagnosis expects that there exists a timing and voltage configuration under which the
part passes the test. Additionally, Tessent Diagnosis expects that the test can be made to fail by
only shortening the delay (compared to the passing condition) between clock edge 1 and clock
edge 2.

When You Should Perform At-Speed Diagnosis
At-speed diagnosis provides meaningful results when the failures logged are characterized by
small delays, not gross delays. Both gross delay faults and small delay faults require a transition

Tessent™ Diagnosis User’s Manual, v2022.494

The Diagnosis Process
At-Speed Failure Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

to control them; the difference is in how the tool observes the fault. A gross delay fault causes a
delay large enough that it is observed at all sensitized observe points (scan flops and primary
outputs). A small delay fault, on the other hand, causes a delay large enough to be observed at
one or more sensitized observe points, but not the full set of sensitized observe points. A small
delay fault therefore corresponds to two main kinds of silicon issues:

• A defect introducing a very small delay; that is, a via whose resistance has increased
moderately as a result of electrical stress.

• A path in a defect-free die with insufficient timing slack; that is, a frequency-limiting
path in first silicon that needs to be identified and corrected in a subsequent tape out.

Use at-speed diagnosis to diagnose only small delay failures, whether they be defects or slow
paths.

To differentiate small delay failures from gross delay failures, you must consider the test
conditions required to produce the failures.

• Small delay failures fail only when applying path delay fault patterns or transition fault
patterns (any patterns including multiple, fast clock pulses) at or near the spec operating
frequency defined for the part.

• Gross delay failures are those that persist well below the spec operating frequency
defined for the part.

When you diagnose a small delay failure using at-speed diagnosis, the result is a list of suspects
(nodes and cell pins) that are of type SLOW. If the failure is a defect, this is the preferred report
format. However, if the failure is known to be a slow path in defect-free silicon, you can use the
write_failing_paths command immediately after the diagnose_failures command to generate
report data that can help identify and fix any slow paths.

Perform at-speed diagnosis when the following conditions exist:

• The failures are actual at-speed failures, specifically the following:

o The test pattern should pass at a low speed but fail at a high speed.

o For launch-off-shift, the following figure illustrates how the clk-to-clk edge between
1 and 2 should be smaller than 3 to 1.

The Diagnosis Process
At-Speed Failure Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 95

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-11. Launch-Off-Shift At-Speed Requirements

o For launch-off-capture, the following figure illustrates how the timing between edge
1 and 2 should be smaller than 3 and 1.

Figure 1-12. Launch-Off-Capture At-Speed Requirements

o Consider experimenting on a couple of sampling devices. For example, shmooing is
a good technique. Additionally, sweep the frequency from low to high so you can
determine if the device fails consistently at higher frequencies.

Tessent™ Diagnosis User’s Manual, v2022.496

The Diagnosis Process
At-Speed Failure Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 1-13. Example Shmoo Plot for At-Speed Diagnosis

• Voltage levels: If you lower the voltage, ensure the device passes at low frequency and
fails at high frequency.

When You Should Not Perform At-Speed Diagnosis
Use gross delay diagnosis mode to diagnose gross delay failures. The vast majority of process-
induced manufacturing defects typically introduce gross delays, not small delays. For
diagnosing manufacturing defects in bulk, therefore, gross delay mode is virtually always the
best choice.

In rares cases, you might need to use at-speed diagnosis to diagnose manufacturing defects in
volume when the manufacturing process generates large quantities of delay failures at operating
spec frequency and those failures always pass after reducing the operating frequency.

Small delay failures are most often encountered in early silicon (slow paths) or as defects in
small quantities. Large-volume, frequency-sensitive failures are predominantly gross delay
failures.

The Diagnosis Process
Guidelines for Customizing the Diagnostic Session

Tessent™ Diagnosis User’s Manual, v2022.4 97

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Guidelines for Customizing the Diagnostic
Session

Tessent Diagnosis provides many options for customizing the diagnostic session. Additional
diagnosis capabilities such as chain diagnosis, cell internal analysis, and bridge and open
analysis are available using the set_diagnosis_options command arguments.
You can modify how the diagnosis runs as described in the following topics:

Log File Generation . 97
System Mode Toggles . 97
Reported Suspects . 98
Saved Diagnosis Reports . 98
Diagnosis Time Limit. 99
Displayed Failure File Errors/Mismatches . 99

Log File Generation
Log files provide a useful way to examine the operation of the tool, especially when you run the
tool in batch mode using a dofile. If errors occur, you can examine the log file to see exactly
what happened. The log file contains all software application operations and any notes,
warnings, or error messages that occur during the session.
To generate a log file, use the -Logfile switch when you invoke Tessent Shell as the following
example demonstrates:

shell> Tessent_Tree_Path/bin/tessent -shell -logfile my_logfile.log

You can also create a log file from a Tessent Diagnosis session with the set_logfile_handling
command.

By default, Tessent Diagnosis creates a new log file. If you want to overwrite a previously
generated log file, you must use the -Replace switch.

Note
If you create a log file during a tool session, the log file only contain notes, warnings, or
error messages that occur after you enter the set_logfile_handling command. Therefore, you

should enter it as one of the first commands in the session.

System Mode Toggles
Tessent Diagnosis invokes in either Fault or Good system mode depending on the system mode
of the tool that was used to save the design netlist.

Tessent™ Diagnosis User’s Manual, v2022.498

The Diagnosis Process
Reported Suspects

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 1-8 shows the Tessent Diagnosis invocation modes.

To toggle between system modes, use the set_system_mode command. For example, to toggle
between Fault mode and Good mode:

FAULT> set_system_mode good

GOOD> set_system_mode fault

FAULT>

Reported Suspects
By default, for each symptom, Tessent Diagnosis reports the top three suspects and all suspects
with a score greater than 80. When you start the diagnosis, you can set Tessent Diagnosis to
report a percentage of the suspects with the highest scores for each symptom.
Enter the set_diagnosis_options command with the -Report switch and an integer between 1 and
100 to indicate the percentage. For example, the following command directs Tessent Diagnosis
to report the top 50% of all suspects for each symptom:

set_diagnosis_options -report 50

Saved Diagnosis Reports
You can either view the diagnostic report on screen or save it to a file. By default, the diagnosis
report displays on screen. You can save the diagnosis report to a file by using the
write_diagnosis command or the diagnose_failures command.

• write_diagnosis command — Writes diagnosis reports to ASCII text, layout marker, and
Comma Separated Value (CSV) formats. For example:

write_diagnosis -format text csv -file report_filename

• diagnose_failures command — Writes diagnosis reports to ASCII text and CSV
formats. Enter the diagnose_failures command with the -Output option to direct the tool
to save the diagnostic report in ASCII format. For example:

diagnose_failures -output report_filename

Table 1-8. Tessent Diagnosis Invocation Modes
If netlist is saved from mode... Tessent Diagnosis invokes in this mode...
Atpg or Fault Fault
Good Good
Setup mode Does not invoke

The Diagnosis Process
Diagnosis Time Limit

Tessent™ Diagnosis User’s Manual, v2022.4 99

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Time Limit
By default, the diagnosis continues until all the failures in the specified failure file are analyzed.
You can use the set_diagnosis_command command with the -Time_limit switch to specify the
number of seconds the diagnosis should run before it aborts with an error message.
For example, the following command limits subsequent diagnoses to 60 seconds:

set_diagnosis_options -time_limit 60

Displayed Failure File Errors/Mismatches
The diagnose_failures command verifies the data in the specified failure file is accurately
translated and matches the test patterns in the external database before running diagnosis. By
default, an error displays and the diagnosis aborts when an error or mismatch is encountered.
You can specify the number of error/pattern mismatches that display before diagnosis aborts
with the set_diagnosis_options command.
Enter the set_diagnosis_options command as follows to display all errors and mismatches
before the diagnosis aborts:

set_diagnosis_options -failurefile_mismatch_verbosity all

Enter the set_diagnosis_options command with the -Failurefile_mismatch_verbosity switch and
an integer that specifies the number of errors and mismatches to display before the diagnosis
aborts. The following example displays 50 errors/mismatches before the diagnosis aborts:

set_diagnosis_options -failurefile_mismatch_verbosity 50

For information on troubleshooting failure file errors/mismatches, see the “Pattern and Failure
File Mismatches” section in this manual.

Tessent™ Diagnosis User’s Manual, v2022.4100

The Diagnosis Process
Displayed Failure File Errors/Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Diagnosis User’s Manual, v2022.4 101

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
Diagnosis Reporting and Troubleshooting

Depending on the contents of the failure file, Tessent Diagnosis produces a chain diagnosis
report or a logic diagnosis report.

Note
You should write the diagnosis to a file so you can analyze and manipulate the results at the
conclusion of the diagnosis.

In addition to the chain diagnosis and logic diagnosis reports, this chapter discusses tips for
troubleshooting common Tessent Diagnosis issues.

Diagnosis Reporting. 102
Front Matter and Diagnosis Summary . 103
Chain Diagnosis Section. 105
Logic Diagnosis Section . 118
MD5 Signature Information in the Diagnosis Report. 128
CSV Diagnosis Report Format . 128

Graphical Results in Tessent Visualizer . 133
Displaying Suspects in the Schematic View. 133
Viewing Failing Paths for a Pattern . 136
Viewing Failing Paths for a Suspect. 138

Diagnosis Improvements and Retrieving Internal Scan Cell Information. 141
Iterative Diagnosis . 142
Techniques for Finding Internal Scan Cells in a Compressed Pattern 150
Internal Scan Cell Profiling for Compressed Patterns . 151
1hot Compressed Pattern Expansion . 154

Troubleshooting . 158
Pattern and Failure File Mismatches . 159
Unexpected Diagnosis Results . 164
Fault Injection Issues . 167
Abort Conditions for Chain Diagnosis . 168
Long Logic Diagnosis Runtimes . 172

Tessent™ Diagnosis User’s Manual, v2022.4102

Diagnosis Reporting and Troubleshooting
Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Reporting
All Tessent Diagnosis reports share a common report header followed by one or more
diagnostic mode report sections.
The common report header information is explained in “Front Matter and Diagnosis Summary,”
the chain diagnosis report is detailed in “Chain Diagnosis Section,” and the logic diagnosis
report is detailed in “Logic Diagnosis Section.”

Figure 2-1. Diagnosis Report Structure

Front Matter and Diagnosis Summary . 103
Chain Diagnosis Section . 105
Logic Diagnosis Section . 118
MD5 Signature Information in the Diagnosis Report . 128
CSV Diagnosis Report Format . 128

Diagnosis Reporting and Troubleshooting
Front Matter and Diagnosis Summary

Tessent™ Diagnosis User’s Manual, v2022.4 103

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Front Matter and Diagnosis Summary
The front matter and diagnosis summary reports the Tessent Diagnosis software version,
including the release number, date, and time in addition to tracking information and a diagnosis
summary.

Tracking Information
The tracking information section replicates the tracking information from the failure file
verbatim and is enclosed by the keywords tracking_info_begin and tracking_info_end. The
keywords are included even if the failure file does not contain any tracking information.

Diagnosis Summary
The summary information immediately follows the tracking information. The diagnosis
summary section contains two sets of information: a summary containing the total number of
diagnosis modes, symptoms, suspects, and CPU time; and a similar set of information for each
reported diagnosis mode.

The following table lists the diagnosis report summary elements.
Table 2-1. Diagnosis Report Summary Elements

Report Field Description
#diagnosis_modes Total number of diagnosis mode sections appearing in the

diagnosis report.

#logic_symptoms1 Total number of logic diagnosis symptoms.

#scan_enable_symptoms1 Total number of scan_enable symptoms.

#clock_symptoms1 Total number of clock diagnosis symptoms.

#chain_symptoms1 Total number of chain diagnosis symptoms.

#total_symptoms Total number of symptoms reported in all of the
diagnosis_mode sections.

#total_suspects Total number of suspects reported in all of the
diagnosis_mode sections.

Per diagnosis_mode Summary Elements (repeatable)
diagnosis_mode= Diagnosis mode header followed by one of the following

keywords:
logic | scan_enable | clock | chain

#symptoms Number of symptoms diagnosed. Each symptom represents a
group of failure information (fail subsets) that is linked to a
single probable source defect. Specific failure information
may be linked to multiple symptoms.

Tessent™ Diagnosis User’s Manual, v2022.4104

Diagnosis Reporting and Troubleshooting
Front Matter and Diagnosis Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#suspects Number of suspects diagnosed. A suspect is a circuit location
determined to be a possible cause of a symptom.

CPU_time CPU time used for the diagnosis.
fail_log Name of the failure log associated with the diagnosis.

1. This report element is only reported when a corresponding diagnosis mode appears in the report; otherwise
this entry is suppressed. A diagnosis mode appears only when the number of symptoms for this mode is
greater than 0.

Table 2-1. Diagnosis Report Summary Elements (cont.)
Report Field Description

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 105

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chain Diagnosis Section
The chain diagnosis report lists the results of the chain diagnosis in the diagnosis summary and
symptom descriptions.
Diagnosis Summary . 105
Symptom Descriptions. 107
Suspect Scores in Chain Diagnosis . 111
Layout Information in the Chain Diagnosis Report. 111
Multi-Bit Flip-Flop Handling . 112
Global Signal Suspect Reporting . 115
Masking Scan Patterns for Chain Diagnosis Failures . 116
Chain Diagnosis Reporting for Failure Files Missing Failing Scan Test Information . 117

Diagnosis Summary
The diagnosis summary of the chain diagnosis report summarizes the diagnosis including the
total number of symptoms, and suspects; CPU time; and the failure file path.
Table 2-2 describes the chain diagnosis report summary elements.

Table 2-2. Chain Diagnosis Report Summary Elements
Report Field Description
diagnosis_mode=chain Identifies the Chain Diagnosis section of the report.
#symptoms Number of logic symptoms diagnosed. Each symptom

represents a group of failure information (fail subsets) that is
linked to a single probable source defect. Specific failure
information may be linked to multiple symptoms. One faulty
chain is one symptom.

#suspects Number of suspects diagnosed. A suspect is a circuit location
determined to be a possible cause of a symptom.

CPU_time CPU time used for the diagnosis.
fail_log Name of the failure log associated with the diagnosis.
Per symptom Summary Elements (repeatable)
symptom=n Symptom ID number assigned by the tool.
#suspects Number of suspects diagnosed. A suspect is a circuit location

determined to be a possible cause of the symptom.
faulty_chain=name The chain name associated with the reported symptom.

Tessent™ Diagnosis User’s Manual, v2022.4106

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows a report when no scan pattern failures are present.

tracking_info_begin

defect_info_begin
 injected_fault STUCK upintercomp/compval_reg3/QN
 faulty_chain chain1
 triggering_prob 100
 cell_id 10
defect_info_end

tracking_info_end

#diagnosis_modes=1
#chain_symptoms=1
#total_symptoms=1 #total_suspects=0 total_CPU_time=0.00sec

#symptoms=1 #suspects=0 CPU_time=0.00sec fail_log=fa_stuck_at_1_chain
symptom=1 #suspects=0 faulty_chain=chain1 fault_type=STUCK
// It might have 10 hold time (fast) faults on chain 1.
// 9 hold time (fast) faults could be intermittent fault.
...

fault_type=type When you are diagnosing down to the scan cell, this is the
fault type diagnosed for the faulty scan call. The value may be
one of:

• STUCK
• INDETERMINATE
• FAST
• SLOW

When you are diagnosing down to the scan chain because
there are no scan pattern failures, this is the fault type for the
diagnosed faulty scan chain. The value may be one of:

• STUCK_AT_1
• STUCK_AT_0
• FAST_TO_RISE
• FAST_TO_FALL
• FAST
• SLOW_TO_RISE
• SLOW_TO_FALL
• SLOW
• INDETERMINATE

Note: The fault type is with regard to the faulty scan chain
output.

Table 2-2. Chain Diagnosis Report Summary Elements (cont.)
Report Field Description

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 107

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Symptom Descriptions
For each symptom associated with a particular faulty chain, the tool lists the symptom ID,
number of corresponding suspects, and an information table.
The information table describes the following information for each suspect:

• Suspect — Lists the tool-assigned identification number (ID) of the suspect. The suspect
ID resets to 1 for each symptom.

• Score — Indicates the ranking of a suspect. See “Suspect Scores in Chain Diagnosis.”

• Type — Indicates the fault type for the faulty chain as follows:

STUCK. It has the following three scenarios:

o STUCK(CELL+OUT): Stuck fault if the tool can distinguish a suspect is at scan_in
or scan_out. This type indicates the defect could be one of the following:

• Inside the cell.

• At the scan_out pin of the cell.

• On the scan path from the scan_out pin of the cell to the scan_in of the next cell.

o STUCK(IN+CELL): Stuck fault if the tool can distinguish a suspect is at scan_in or
scan_out. This type indicates the defect could be one of the following:

• Inside the cell.

• At the scan_in pin of the cell.

• On the scan path from the scan_in pin of the cell to the scan_out of the previous
cell.

o STUCK(IN+CELL+OUT): Stuck fault if the tool cannot distinguish a suspect is at
scan_in or scan_out. This type indicates the defect could be one of the following:

• At the scan_in pin of the cell or on the scan path from the scan_in pin of the cell
to the scan_out pin of the previous cell.

• Inside the cell.

• At the scan_out pin of the cell or on the scan path from the scan_out pin of the
cell to the scan_in of the next cell.

FAST_TO_RISE: The fault causes a 0-to-1 transition to occur faster than expected. It
has one scenario:

o (Source Cell:FAST_TO_RISE(CELL+OUT))/(Sink Cell:FAST_TO_RISE(IN+CELL))
pair: The fault causes a 0-to-1 transition to occur faster than expected and indicates
the defect could be one of the following:

• Inside the cell (for example, clock-data race).

Tessent™ Diagnosis User’s Manual, v2022.4108

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• On the scan path from the scan_out pin of the source cell to the scan_in pin of the
sink cell (for example, the shift path delay is smaller than expected).

FAST_TO_FALL: The fault causes a 1-to-0 transition to occur faster than expected. It
has one scenario:

o (Source Cell:FAST_TO_FALL(CELL+OUT))/(Sink Cell:FAST_TO_FALL(IN+CELL))
pair: The fault causes a 1-to-0 transition to occur faster than expected and indicates
the defect could be one of the following:

• Inside the cell (for example, clock-data race).

• On the scan path from the scan_out pin of the source cell to the scan_in pin of the
sink cell (for example, the shift path delay is smaller than expected).

FAST: The fault causes both 0-to-1 and 1-to-0 transitions to occur faster than expected.
It has one scenario:

o (Source Cell:FAST(CELL+OUT))/(Sink Cell:FAST(IN+CELL)) pair: The fault
causes 0-to-1 and 1-to-0 transitions to occur faster than expected and indicates the
defect could be one of the following:

• Inside the cell (for example, clock-data race).

• On the scan path from the scan_out pin of the source cell to the scan_in pin of the
sink cell (for example, the shift path delay is smaller than expected).

Figure 2-2. Chain Fault Types FAST_TO...

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 109

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SLOW_TO_RISE: The fault causes a 0-to-1 transition to occur slower than expected. It
has one scenario:

o SLOW_TO_RISE(IN+CELL): The fault causes a 0-to-1 transition to occur slower
than expected and indicates the defect could be one of the following:

• Inside the cell (for example, clock-data race).

• On the scan path from the scan_in pin of the cell to the scan_out of the previous
cell (for example, the shift path delay is larger than expected).

SLOW_TO_FALL: The fault causes a 1-to-0 transition to occur slower than expected. It
has one scenario:

o SLOW_TO_FALL(IN+CELL): The fault causes a 1-to-0 transition to occur slower
than expected and indicates the defect could be one of the following:

• Inside the cell (for example, clock-data race).

• On the scan path from the scan_in pin of the cell to the scan_out of the previous
cell (for example, the shift path delay is larger than expected).

SLOW: The fault causes both 0-to-1 and 1-to-0 transitions to occur slower than
expected. It has one scenario:

o SLOW(IN+CELL): The fault causes a 0-to-1 and 1-to-0 transition to occur slower
than expected and indicates the defect could be one of the following:

• Inside the cell.

• On the scan path from the scan_in pin of the cell to the scan_out of the cell (for
example, the shift path delay is larger than expected).

Figure 2-3. Chain Fault Types SLOW_TO...

Tessent™ Diagnosis User’s Manual, v2022.4110

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

INDETERMINATE: Diagnosis cannot classify the fault into any of the preceding types.
It has three scenarios:

o INDETERMINATE(CELL+OUT): This type indicates the defect could be one of
the following:

• Inside the cell.

• At the scan_out pin of the cell.

• On the scan path from the scan_out pin of the cell to the scan_in of the next cell.

o INDETERMINATE(IN+CELL): This type indicates the defect could be one of the
following:

• Inside the cell.

• At the scan_in pin of the cell.

• On the scan path from the scan_in pin of the cell to the scan_out of the previous
cell.

o INDETERMINATE(IN+CELL+OUT): Indeterminate fault if the tool cannot
distinguish a suspect is at scan_in or scan_out. This type indicates the defect could
be one of the following:

• At the scan_in pin of the cell or on the scan path from the scan_in pin of the cell
to the scan_out pin of the previous cell.

• Inside the cell.

• At the scan_out pin of the cell or on the scan path from the scan_out pin of the
cell to the scan_in of next cell.

• Value — Indicates the faulty value, 0, 1 or both.

• Pin_pathname — Pin pathname to the location of the suspect. Pin pathname to the
location of the suspect. If the tool cannot distinguish a suspect is at scan_in or scan_out,
for example STUCK(IN+CELL_OUT), the scan_out pins are reported in the
pin_pathname column. Keep in mind that PFA should also check scan-in and cell
internal signals.

• Cell_name — Name of the cell associated with the suspect. The cell name is the top-
level library cell name rather than the model name of scan cell inside the library cell.

• Net_pathname — Net pathname to the location of the suspect. If the tool cannot
distinguish a suspect is at scan_in or scan_out, for example STUCK(IN+CELL_OUT),
the scan_out net is reported in the net_pathname column. Keep in mind that PFA should
also check scan-in and cell internal signals.

• Cell_number — Number of the cell associated with a suspect. For example, a
cell_number of 0 would be the cell closest to the scan output pin.

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 111

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Chain_name — Name of the faulty chain.

• Memory_type — Type name of the reported scan latch (for example, MASTER,
REMOTE, COPY). The tool does not report SHADOW. If any logic gates are between
the scan cells or between latches within one scan cell, then the tool does not report these.

• Shift_clock — Clock name used for shifting each scan latch.

• Lib_internal_pathname — Scan latch instance pathname inside a library.

• Lib_internal_pathname reporting is off by default: you activate the reporting by
specifying the -CHAIN_LIB_internal_pathname ON switch and literal with the
set_diagnosis_options or set_diagnosis_options command.

Suspect Scores in Chain Diagnosis
Suspects found during chain diagnosis are scored based on many factors. To obtain a score of
100, the tool needs to have enough data and no mismatches.
Suspect scores are based on:

• The statistical probability that a suspect cell is an actual defect location. The tool uses a
proprietary statistical formula to calculate this probability. The higher the probability,
the higher the score.

• Population of data that can be used in calculating the statistics. The greater the
population, the higher the score.

• Simulation match and mismatch data. The more simulation matches, the higher the
score.

Layout Information in the Chain Diagnosis Report
The chain diagnosis report includes chain failure layout information that you can find in two
XMAP tables.
The two XMAP tables display the following information:

• CELL_LOCATION: displays the cell polygons for the associated suspect.

• OPEN_LOCATION: displays the net polygons for the associated suspect.

You can import the chain failure results into Tessent YieldInsight and view them in the layout
viewer.

Note
This layout information is only available for scan chain suspects, not for scan_enable and
clock fault suspects.

Tessent™ Diagnosis User’s Manual, v2022.4112

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool reports layout polygons of nets’ branches that belong directly to the suspect’s scan
path, as highlighted in green in the following figure.

Figure 2-4. Layout Polygon Reporting

The following example shows a chain diagnosis report.

Example 2-1. Chain Diagnosis Report Example

suspect score type value pin_pathname cell_name net_pathname cell_number \

chain_name memory_type shift_clock

1 95 STUCK(CELL+OUT) 0 /cpu_i/uCNTR/ix1103/Q sff /cpu_i/uCNTR/$foo[4] 10 \

chain1 MASTER /CLK3 --

XMAP_TABLE_BEGIN

1.0

UNITS_DISTANCE_MICRONS 1000

DIEAREA -4 -4 8881.69 9328

 CELL_LOCATION_BEGIN

 symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 1 CELL NA NA 4410.5000 304.5000 4611.0000 424.5000

 CELL_LOCATION_END

 OPEN_LOCATION_BEGIN

symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 1 route_1 OP 3.26E+02 4431.0000 512.0000 4588.0000 515.0000

1 1 route_1 OP 1.34E+01 4430.5000 511.5000 4434.5000 515.5000

1 1 route_1 OP 1.34E+01 4584.5000 511.5000 4588.5000 515.5000

... OPEN_LOCATION_END

Multi-Bit Flip-Flop Handling
Chain diagnosis reports pin names of suspect scan cells in scan chains. However, for MBFFs,
the suspect scan cells may reside within the MBFF, which is a library-level instance. Pins of
scan cells inside MBFFs are unnamed because they are under the library level, so they cannot be
reported. In addition, connections inside MBFFs do not have names so the tool cannot report net
pathnames either.

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 113

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When there are suspect scan cells within MBFFs, the tool attempts to report the name of the pin
at the MBFF library instance level that connects to the pin of the internal suspect scan cell. In
the following example, suppose internal MBFF element 49 is a STUCK(CELL+OUT) suspect.

Figure 2-5. MBFF Internal Scan Chain Suspect Chain Diagnosis Reporting

In the resulting chain diagnosis report, the report traces the path inside MBFF to detect the
connection between the pin of the internal suspect and the functional pin of the MBFF instance:
pin pathname /U_hh/u1/Q1. In addition, the tool reports the net pathname /U_hh/net23. This is
not a direct connection to the suspect scan cell, but it supplies information about which
accessible pin propagates the faulty signal.

diagnosis_mode=chain

#symptoms=1 #suspects=1 CPU_time=2.87sec fail_log=fal

symptoms=1 #suspects=1 faulty_chain=100 fault_type=STUCK

suspect score type value pin_ cell_ net_ cell_ chain_ memory_ shift_

pathname name pathname number name type clock

--

1 100 STUCK(CELL+OUT) 1 /U_hh/u1/Q1 cmos281 /U_hh/net23 49 100 MASTER /clk_st

--

Pin Tagging to Report MBFF Internal Suspect Scan Cell Layout Data
For layout data, the tool cannot report the physical layout data for internal suspect scan cells
unless you enhance the LEF files and then (re-)generate the LDB. To enhance the LEF file, add
virtual ports to the MBFF instance definition. The following example adds virtual port out_0 to
internal element 49.

END
PIN out_0

DIRECTION OUTPUT ;
PORT

LAYER metal1 ;
RECT 3.07 0.9 3.082 0.905 ;

END
END out_0

Tessent™ Diagnosis User’s Manual, v2022.4114

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Do not connect the virtual pins to nets in the DEF file; they only function to provide additional
layout data. The polygon of each pin should correspond to the actual layout coordinates of pins
inside the MBFF instance.

Note
Boundary pins inside MBFFs do not have virtual names assigned to them because they are
assigned names at the library level. In the figure, the input pin for element 49 is TI and the

output pin for element 48 is Q2.

The tool ignores additional layout data associated with internal scan cells unless you turn on
MBFF pin tagging with the set_diagnosis_options command. When you turn on pin tagging, the
tool searches for the additional data and includes it in the chain diagnosis report.

Suppose the chain diagnosis report for the STUCK(CELL+OUT) suspect corresponding to
internal element 49 lists the following results in the OPEN_LOCATION section before you turn
on pin tagging:

OPEN_LOCATION_BEGIN

symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 3 metal5 OP 9.62E-03 83.4350 45.7100 83.5750 45.8500

1 3 metal5 OP 9.62E-03 126.2925 45.7100 126.4325 45.8500

OPEN_LOCATION_END

Suppose you turn on pin tagging as follows:

set_diagnosis_options -mbff_tag_sci_template in_
set_diagnosis_options -mbff_tag_sco_template out_

Figure 2-6. Pin Tagging to Report MBFF Internal Suspect Scan Cell Layout Data

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 115

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can turn on tagging for either scan inputs or scan outputs of internal MBFF elements
independently. When you specify a template for the scan input, then all internal input pins of
scan elements inside the MBFF (excluding the boundary input pin) are assigned virtual names
in accordance with sci template. When you specify template for the scan output then all internal
output pins of scan elements inside the MBFF (excluding the boundary output pin) are assigned
virtual names in accordance with sco template.

The switches set the internal pin tag naming convention for the SCI and SCO pins for elements
inside the MBFF in the format “<template><N>”, where N is the index for an internal element
in the MBFF. Indexing starts from 0. During diagnosis, the tool checks whether pins of internal
MBFF elements were assigned virtual names. If so, the tool checks the LDB for layout polygon
data associated with the virtual names.

If the template name you specify does not match the virtual SCI and SCO names in the
enhanced LEF file, the tool returns no additional data for pins of internal scan elements inside
the MBFF.

The following example shows the OPEN_LOCATION section with the additional pin polygon
information for the STUCK(CELL+OUT) suspect. The line in bold font corresponds to the
coordinates for out_1.

OPEN_LOCATION_BEGIN

symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 3 metal5 OP 9.62E-03 83.4350 45.7100 83.5750 45.8500

1 3 metal5 OP 9.62E-03 126.2925 45.7100 126.4325 45.8500

1 10 metal1 OP 5.18E-02 128.1010 73.0385 128.1130 73.0435

OPEN_LOCATION_END

You can also turn on MBFF pin tagging when generating reports with the report_scan_path
command as described in the Tessent Shell Reference Manual.

Global Signal Suspect Reporting
Tessent Diagnosis detects and reports potential suspects for global signals (for example,
scan_enable or a clock tree).
Tessent Diagnosis reports the following depending on the global signal:

• scan_enable — STUCK 0

• clock fault — INDETERMINATE both

Figure 2-7 shows the chain diagnosis report syntax Tessent Diagnosis uses when reporting these
suspects.

Figure 2-7. Global Signal Suspect Diagnosis Report Format

Tessent™ Diagnosis User’s Manual, v2022.4116

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The diagnosis of faults on the scan clock tree or scan enable tree is limited to one fault. If the
scan enable signal has a defect, it must make the scan cells affected by the defect always take
the value from the system data input, so chain patterns fail.

The following example shows how a scan enable defect is reported:

#diagnosis_modes=2
#scan_enable_symptoms=1 #chain_symptoms=1
#total_symptoms=2 #total_suspects=3 total_CPU_time= 667.28sec

diagnosis_mode=scan_enable
#symptoms=1 #suspects=1 CPU_time=50sec fail_log=fa5.cyc.ya

symptom=1 #suspects=1 faulty_scan_enable=scan_en fault_type=STUCK
suspect score type value pin_pathname cell_name net_pathname

1 100 STUCK 0 /U102/Z DEL05 /n70

diagnosis_mode=chain
#symptoms=1 #suspects=2 CPU_time=617.28sec fail_log=fa5.cyc.ya

symptom=2 #suspects=2 faulty_chain=chain59 fault_type=STUCK

suspect score type value pin_pathname cell_name net_pathname
cell_number chain_name memory_type shift_clock

1 89 STUCK(IN+CELL+OUT) 0 /...regx10x/SO FD2TQHV /.../n31 255
chain59 MASTER /TCK
2 89 STUCK(IN+CELL) 0 /...regx17x/TI FD2TQHV /.../n31 254
chain59 MASTER /TCK

PIN_TAGS_BEGIN
1.0
……
PIN_TAGS_END

NET_TAGS_BEGIN
1.0
……
NET_TAGS_END

Masking Scan Patterns for Chain Diagnosis Failures
When diagnosing chain failures, you can improve the diagnosis resolution of the failure by
using masking patterns. A masking pattern masks other internal chains and enables only a small
number of internal chains to be observed. If no masking patterns or only a few masking patterns
exist in the pattern set, it may not be possible to isolate the failing scan chain associated with a
specific EDT channel. The ability to isolate the failing scan chain can be improved by including
additional masking patterns.

Diagnosis Reporting and Troubleshooting
Chain Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 117

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The additional masking patterns are created by using the iterative diagnosis
create_diagnosis_patterns command. In general, the more diagnosis patterns you create, the
better the resolution. See “Diagnosis Improvements and Retrieving Internal Scan Cell
Information” for complete information.

Chain Diagnosis Reporting for Failure Files Missing
Failing Scan Test Information

For chain diagnosis, both failing chain test patterns and failing scan test patterns are required. In
some cases, the failure file is either missing or contains insufficient failing scan pattern
information to perform diagnosis. In those cases, chain diagnosis analysis is limited and affects
the diagnosis report produced.
Three such failure file scenarios and the resulting chain diagnosis reporting are described
below:

1. Scenario 1: Failing scan patterns are not logged (only failing chain test patterns are
logged).

a. Point tool diagnosis: Failing chain is reported (current behavior). Additional
message regarding missing failing scan patterns in failure file is reported.

b. Dynamic partitioning flow: Behavior is the same as point tool.

2. Scenario 2: Failing scan patterns do not contain a capture cycle.

a. Point tool diagnosis: Failing chain is reported. Additional message regarding
shortcoming of failing scan patterns in failure file is reported.

b. Dynamic partitioning flow: Behavior is the same as point tool.

3. Failing scan patterns are logged (with capture patterns) but are unrelated to failing chain
or compactor output.

a. Point tool diagnosis: Chain diagnosis is performed but a warning message about
impact to diagnosis resolution due to failure file shortcomings is reported.

b. Dynamic partitioning flow: Chain diagnosis is aborted for the failure file with a
message about the insufficiency of the failure file data.

Tessent™ Diagnosis User’s Manual, v2022.4118

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logic Diagnosis Section
The logic diagnosis section of the diagnosis report contains a logic diagnosis summary,
symptom information, and suspect details.
The following example shows a logic diagnosis section.

Figure 2-8. Example Logic Diagnosis Section

Logic Diagnosis Summary. 119
Symptom Information Section . 119
Suspect Details . 120
Suspect Tags . 122
Suspect Scores in Logic Diagnosis . 123
Logic Diagnosis Report Examples . 124
Failure Signature Information in the Diagnosis Report . 126

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 119

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logic Diagnosis Summary
The logic diagnosis header summarizes the diagnosis details, including the total number of
symptoms, and suspects; CPU time; the failure file path; number of failing patterns; number of
passing patterns; and the number of unexplained patterns.
Table 2-3 describes the logic diagnosis section summary elements.

Symptom Information Section
The symptom information section immediately follows the diagnostic summary, and it lists
symptom, suspect, and failing pattern information.

• symptom — Unique number that identifies the symptom.

• #suspects — Number of suspects identified for the symptom.

• #explained_patterns — Number of failing patterns explained by the symptom along with
their identification (ID) number.

Figure 2-9 shows a representative symptom information section of the report.

Figure 2-9. Example Symptom Information Section

Table 2-3. Logic Diagnosis Section Summary Elements
Report Field Description
diagnosis_mode=logic Identifies the Logic Diagnosis section of the report.
#symptoms Number of logic symptoms diagnosed. Each symptom

represents a group of failure information (fail subsets) that is
linked to a single probable source defect. Specific failure
information may be linked to multiple symptoms.

#suspects Number of suspects diagnosed. A suspect is a circuit location
determined to be a possible cause of a symptom.

CPU_time CPU time used for the diagnosis.
fail_log Name of the failure log associated with the diagnosis.
#failing_patterns Number of failing test patterns in the failure log.
#passing_patterns Number of passing test patterns in the failure log.
#unexplained_failing_patterns Number of failing patterns that cannot be explained. The

number for each unexplained failing pattern is also printed.

Tessent™ Diagnosis User’s Manual, v2022.4120

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Suspect Details
The suspect details section immediately follows the symptom information section, and it lists
symptom, score, fail and pass match, and type information.

• suspect — ID number of the suspect. The suspect ID numbers restart at 1 for each
symptom.

• score — Computed score for each suspect. The higher the score, the more likely the
suspect is the cause of the symptom—see “Suspect Scores in Logic Diagnosis.”

• fail_match — Number of failing patterns that can be explained by the suspect.

• pass_mismatch — Number of passing patterns that cannot be explained by the suspect.

• type — Specifies a suspect type. Table 2-4 lists each type and the corresponding fault
type.

The following figure shows what the output looks like when you have an EQ suspect type.

Table 2-4. Logic Diagnosis Suspect Types
Type Fault Type
STUCK Stuck-at fault.
CELL Cell internal fault. The pin_pathname is one of the pins of the cell with

an internal defect.
SLOW Transition fault when running at-speed.
BRIDGE_2WAY Two-way bridge fault. Each suspect of this type has two components

with the same suspect ID.
BRIDGE_3WAY Three-way bridge fault. Each suspect of this type has three components

with the same suspect ID.
OPEN/DOM Either an open or a dominant bridge victim with unknown aggressor.
RES_OPEN Indicates the open suspect behaves as a resistive open rather than a

complete open.
INDETERMINATE Diagnosis cannot classify the fault into any of the preceding types.
EQ Indicates the suspect type is equivalent to the suspect that precedes it in

the report. See Figure 2-10; applies exclusively to the STUCK,
INDETERMINATE, and OPEN/DOM suspect types.

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 121

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-10. EQn Suspect Type

• value — Indicates a fault value associated with the suspect, which can be 0, 1, or both.
For transition faults (SLOW type), the value can be rise for slow-to-rise, fall for slow-to-
fall, or both for slow-at-both transitions.

• pin_pathname — Pin pathname to the location of the suspect.

• cell_name — Name of the cell associated with the suspect.

• net_pathname — Net pathname to the location of the suspect.

• layout_status — Layout aware diagnosis reports the marker location in the LDB in this
column. This column does not appear for logic-only diagnosis.

Figure 2-11 shows an example suspect details section of a logic diagnosis report.

Figure 2-11. Example Suspect Details Diagnosis Report Information

Explained Patterns and Fail Match
For single defect failing cases, to explain a failing pattern, a suspect needs to be excited and
propagate to all observe points with the exact failing behavior as observed on the ATE.

For multiple defect failing cases, a suspect can team up with other suspects to jointly explain a
failing pattern if their combined failing behavior matches what is observed on the ATE. In this
case, a symptom’s #explained_patterns entry may not match its suspect’s fail_match entry. The

Tessent™ Diagnosis User’s Manual, v2022.4122

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

following figure illustrates a multiple defect failing case and shows the diagnosis report for a die
with two defect locations and three failing patterns, one of which activates both defects. In the
example, Tessent Diagnosis produces two symptoms and only reports this failing pattern in one
of the symptoms.

Figure 2-12. Explained Patterns Different Than Fail_Match

Consequently, the diagnosis report lists these two symptoms and failing patterns as follows:

• symptom 1 #explained_patterns=2

• symptom 2 #explained_patterns=1

In the diagnosis report example, symptom 1 accounts for the failing pattern that activated both
defects, and its suspect has a fail_match=2.

For symptom 2, suspect 1 has a fail_match=2, which accounts for the failing pattern that
activated both defects. Symptom 2’s suspect 2 has a fail_match=1.

In other words, all suspects in one symptom may not have the same fail_match, but all of the
suspects must have a fail_match greater than or equal to the number of patterns explained by the
symptom.

Suspect Tags
The suspect tag information is used by Calibre to display suspect locations in the physical
layout.
Figure 2-13 shows a typical suspect tags portion of the diagnostic report.

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 123

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-13. Suspect Tags Portion of Diagnostic Report

The information in this section is segmented into the following areas:

• Pin pathnames — The tags in this section are enclosed by the keywords:
PIN_TAGS_BEGIN and PIN_TAGS_END. The pin pathname tags for each suspect are
listed between these keywords. Each line respectively provides the beginning and
ending coordinates within the fail log file for each pin pathname. Each coordinate
consists of two integers separated by a period where the first integer is the line number
and the second integer is the column number.

• Net pathnames — The tags in this section are enclosed by the keywords:
NET_TAGS_BEGIN and NET_TAGS_END. The net pathname tags for each suspect is
listed between the keywords. Each line respectively provides the beginning and ending
coordinates within the fail log file for each net pathname. Each coordinate consists of
two integers separated by a period where the first integer is the line number and the
second integer is the column number.

The first line in each section specifies a version number to facilitate tag compatibility—see
“Troubleshooting.”

Suspect Scores in Logic Diagnosis
Suspects found during logic diagnosis are scored using the following formula. The highest
possible score is 100. If the score is less than 1, it is reported as 1. The higher the score, the
more likely the suspect is the cause of the symptom.
The final suspect score is calculated as follows:

final_score = 70* (F / (F+P)) + 10* (F / (F+100P)) + 10* (F / (F+1000P)) + 10* F

Tessent™ Diagnosis User’s Manual, v2022.4124

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

where:

F = (fail_match/max_fail_match) * (total_fails_explained / total_tester_fails)

P = pass_mismatch / total_tester_pass

fail_match = number of failing patterns explained by a specific suspect.

max_fail_match = maximum number of failing patterns explained by any suspect.

total_fails_explained = total number of failing patterns explained by all suspects.

total_tester_fails = number of failing patterns in the fail file used for diagnosis.

pass_mismatch = number of passing patterns that cannot be explained by one specific suspect.

total_tester_pass = number of passing patterns in the fail file used for diagnosis.

Logic Diagnosis Report Examples
The typical logic diagnosis report begins with tracking information and ends with the pin and
net tags.
Example 2-14 shows a typical logic diagnosis report.

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 125

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-14. Typical Logic Diagnosis Report Example

The following example shows a typical logic diagnosis report for a two-way bridge suspect.

Tessent™ Diagnosis User’s Manual, v2022.4126

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-15. Logic Diagnosis Report for a Two-Way Bridge Suspect Example

In this example, the value column states 0 for all of the two-way bridge suspects. This means
that when these nets fail, they fail to 0. The possible results for this column are:

• 0. For all failure patterns, when the net fails, it fails to 0.

• 1. For all failure patterns, when the net fails, it fails to 1.

• Both. For some failure patterns, the net fails to 0, and for other failure patterns, the net
fails to 1.

Failure Signature Information in the Diagnosis Report
In Tessent Diagnosis releases v9.2 or later, each diagnosis report includes, by default, the failure
signature information enclosed with XMAP_TABLE_BEGIN and XMAP_TABLE_END.
Figure 2-16 shows a diagnosis report with failure signature information.

Diagnosis Reporting and Troubleshooting
Logic Diagnosis Section

Tessent™ Diagnosis User’s Manual, v2022.4 127

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-16. Diagnosis Report With Failure Signature Information

Tessent™ Diagnosis User’s Manual, v2022.4128

Diagnosis Reporting and Troubleshooting
MD5 Signature Information in the Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The failure signature information is intended for use by Tessent YieldInsight to create an
Analysis database (ADB) from the diagnosis reports—see “Creating the ADB” in the Tessent
YieldInsight User’s Manual.

By default, each diagnosis report includes the failure signature information with maximum 256
rows per table—see “Failure Signature Format.” You can modify the number of rows per table
by using either of the following methods depending on the used tool before performing the
diagnosis:

• Tessent Diagnosis — The set_diagnosis_options command’s
-INCLude_fail_signatures_size switch to specify the number of rows per table.

• Tessent Diagnosis Server — The set_diagnosis_options command’s
-INCLude_fail_signatures_size switch to specify the number of rows per table.

MD5 Signature Information in the Diagnosis Report
In Tessent Diagnosis releases v9.3 or later, each diagnosis report includes, by default, the MD5
signature information for the pattern or patterns, and flat model Tessent Diagnosis used to
generate the report.
The MD5 signature information is enclosed with XMAP_TABLE_BEGIN and
XMAP_TABLE_END as shown in Figure 2-17.

Figure 2-17. Diagnosis Report With MD5 Signature Information

See also “MD5 Signature Format.”

The MD5 signature information is intended for use by Tessent YieldInsight when creating an
Analysis database (ADB)—see “MD5 Signature Mismatches When Importing Diagnosis
Reports” in the Tessent YieldInsight User’s Manual.

CSV Diagnosis Report Format
When using the Tessent Diagnosis point tool, you can use the diagnose_failures -csv switch to
specify the generation of a CSV file. If the same file is used on multiple diagnose_failures
commands, Tessent Diagnosis performs concatenation of the CSV information.

Diagnosis Reporting and Troubleshooting
CSV Diagnosis Report Format

Tessent™ Diagnosis User’s Manual, v2022.4 129

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When using the Tessent Diagnosis server, set the set diagnostic_CSV variable to true to
generate the CSV information. Alternatively, use the add_reporting_format command to
generate CSV-formatted reports. These files accumulate in the results directory.

The following table lists the CSV report variables and respective data types.
Table 2-5. CSV Variables and Data Types

Column Title Data Type Description
fail_log string Name and location of the failure file.
tracking string Tracking information from the failure file.
faulty_chains integer Number of faulty chains.
symptoms integer Total symptom count in the diagnosis result.
suspects integer Total suspect count in the diagnosis result.
enclosing_circle_diameter floating point Defect enclosing circle—see “Defect Location

Information.” Corresponds to the diameter around
all the bounding boxes for layout layers for the
symptom corresponding to the suspected listed in
the current row.

symptom integer Tool-assigned symptom ID number.
explained_patterns integer Number of explained patterns by the symptom.
suspect integer Tool-assigned ID number of the suspect.
score integer Computed score for each suspect.
fail_match integer Number of failing patterns that can be explained

by the suspect.
pass_mismatch integer Number of passing patterns that cannot be

explained by the suspect.
type string Suspect type.
value string Fault value associated with the suspect.
pin_pathname string Name of the pin associated with the suspect.
cell_name string Name of the cell associated with the suspect.
cell_number integer Number of the cell associated with a suspect.
net_pathname string Name of the net associated with the suspect.
chain_name string Name of the faulty chain.
memory_type string Type name of a reported scan latch.
shift_clock string Clock name used for shifting each scan latch.
lib_internal_pathname string Name of the scan latch instance pathname inside a

library.

Tessent™ Diagnosis User’s Manual, v2022.4130

Diagnosis Reporting and Troubleshooting
CSV Diagnosis Report Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Depending on the failure type under diagnosis, the details of the data appearing in the report
vary. The following table details the data items per diagnosis type, an “X” indicates the data
item is reported; non reported data items are empty fields in the CSV report.

layout_status string Layout status.
layout_layer string Layer of the bounding box in the current row.
category string Defect category—see “The XMAP Table.”
critical_area floating point Critical areas for a defect bounding box.
x_coord1 floating point Bounding box coordinates.
y_coord1 floating point Bounding box coordinates.
x_coord2 floating point Bounding box coordinates.
y_coord2 floating point Bounding box coordinates.
cpu_time string CPU time used for the diagnosis.
fail_patterns integer Number of failing test patterns in the failure file.
passing_patterns integer Number of passing test patterns simulated for the

diagnosis.
unexplained_fail_patterns integer Number of failing patterns that cannot be

explained.
tool string Tool name used for diagnosis.
version string Tessent Diagnosis version number used for the

diagnosis.
date string Date of the diagnosis run.

Table 2-6. CSV Report Data Items by Diagnosis Type
Data Item Layout-

Aware
Diagnosis

Chain
Diagnosis
Down to
Cell

Chain
Diagnosis
Down to
Chain

Scan_
Enable
Diagnosis

Clock
Diagnosis

fail_log X X X X X
tracking X X X X X
faulty_chains X X X X X
symptoms X X X X X
suspects X X X X X
symptom X X X X X

Table 2-5. CSV Variables and Data Types (cont.)
Column Title Data Type Description

Diagnosis Reporting and Troubleshooting
CSV Diagnosis Report Format

Tessent™ Diagnosis User’s Manual, v2022.4 131

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

explained_pattern X
suspect X X X X
score X X X X
fail_match X
pass_mismatch X
type X X X X X
value X X X X
pin_pathname X X X X
cell_name X X X X
cell_number X X
net_pathname X X X X
chain_name X X
memory_type X
shift_clock X
lib_internal_
pathname

X

layout_status X X
layout_layer X X
category X X
critical_area X X
x_coord1 X X
y_coord1 X X
x_coord2 X X
y_coord2 X X
cpu_time X X X X X
fail_patterns X
passing_patterns X

Table 2-6. CSV Report Data Items by Diagnosis Type (cont.)
Data Item Layout-

Aware
Diagnosis

Chain
Diagnosis
Down to
Cell

Chain
Diagnosis
Down to
Chain

Scan_
Enable
Diagnosis

Clock
Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4132

Diagnosis Reporting and Troubleshooting
CSV Diagnosis Report Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

unexplained_fail_
patterns

X

tool X X X X X
version X X X X X
date X X X X X

Table 2-6. CSV Report Data Items by Diagnosis Type (cont.)
Data Item Layout-

Aware
Diagnosis

Chain
Diagnosis
Down to
Cell

Chain
Diagnosis
Down to
Chain

Scan_
Enable
Diagnosis

Clock
Diagnosis

Diagnosis Reporting and Troubleshooting
Graphical Results in Tessent Visualizer

Tessent™ Diagnosis User’s Manual, v2022.4 133

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Graphical Results in Tessent Visualizer
Tessent Visualizer is a graphical user interface available from within Tessent Diagnosis. After
you have run diagnosis and saved the diagnosis report, you can view that report and any failing
paths using the Tessent Visualizer Diagnosis Report Viewer and schematic tabs.
Displaying Suspects in the Schematic View. 133
Viewing Failing Paths for a Pattern. 136
Viewing Failing Paths for a Suspect. 138

Displaying Suspects in the Schematic View
You can display any suspect listed in the diagnosis report in Tessent Visualizer.

Prerequisites
• Tessent Diagnosis must be invoked on the flat design netlist associated with the

diagnosis report you want to view.

• Diagnosis must have run successfully, and the results must be saved to a file.

Procedure
1. At the command line, enter open_visualizer. Tessent Visualizer opens.

2. Select Open > Diagnosis Report Viewer. Open the file browser from the icon in the
toolbar.

3. Browse to and select the diagnosis report to load, and click Open. The Diagnosis Report
Viewer displays all symptom (symptom=1, for example) and suspect locations (pin and
net pathnames) as active links in the diagnosis report. You can choose a textual or a
tabular view for the report.

Tessent™ Diagnosis User’s Manual, v2022.4134

Diagnosis Reporting and Troubleshooting
Displaying Suspects in the Schematic View

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-18. Diagnosis Report Viewer (Text View)

Diagnosis Reporting and Troubleshooting
Displaying Suspects in the Schematic View

Tessent™ Diagnosis User’s Manual, v2022.4 135

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4. Click a link in the diagnosis report to display a representation of the associated circuitry
in the Tessent Visualizer hierarchical schematic tab.

Any object thus displayed can also be selected for display in the flat schematic tab:

Tessent™ Diagnosis User’s Manual, v2022.4136

Diagnosis Reporting and Troubleshooting
Viewing Failing Paths for a Pattern

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Continue to click links to display the desired circuitry as follows:

• Click a symptom to display all the gates/pins listed as suspects for the symptom.

• Click a pin pathname to display the associated gate.

• Click a net pathname to display all the associated gates.

5. Use Tessent Visualizer features as necessary to display the desired suspect information.
For more information, see Tessent Visualizer in the Tessent Shell User’s Manual.

In addition to displaying suspects via the open_visualizer command, Tessent Diagnosis
is capable of opening a diagnosis report and Tessent Visualizer when you use the
display_diagnosis_report command, as shown in “Viewing Failing Paths for a Pattern”
and “Viewing Failing Paths for a Suspect.”

Viewing Failing Paths for a Pattern
A failing path has PI or sequential elements starting points. For a failing path of one failing
pattern, the starting points must have value transition and its end points must have failures.
Besides showing the failing paths, Tessent Visualizer displays all pin values through failing
paths of the failing pattern. The failing paths display in the logic schematic view.

Prerequisites
• Tessent Diagnosis must be invoked on the flat design netlist associated with the

diagnosis report you want to view.

• Diagnosis must have run successfully, and the results must be saved to a file.

Procedure
1. At the command line, enter display_diagnosis_report diagnosis_report_name.

Example:

FAULT> display_diagnosis_report p1.diag

Tessent Visualizer opens and displays the report.

Tip
If you have Tessent Visualizer up and running, you can also view the report by
choosing Open > Diagnosis Report Viewer and browsing to the report.

2. Place the mouse pointer over a symptom, right-click, and select Show all critical paths
as shown in Figure 2-19.

Diagnosis Reporting and Troubleshooting
Viewing Failing Paths for a Pattern

Tessent™ Diagnosis User’s Manual, v2022.4 137

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-19. Diagnosis Report Viewer (Text View)

3. Enter the failure log file or browse to the file.

4. Analyze the results in the Tessent Visualizer Flat Schematic Window as shown in
Figure 2-20.

Tessent™ Diagnosis User’s Manual, v2022.4138

Diagnosis Reporting and Troubleshooting
Viewing Failing Paths for a Suspect

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-20. Tessent Visualizer Flat Schematic Window

Note
This procedure shows how to view the critical paths using the text view of the
Diagnosis Report Viewer. This capability is also available from the table view. See

Diagnosis Report Viewer in the Tessent Shell User’s Manual for more information on
the text view and table view.

Viewing Failing Paths for a Suspect
The failing paths for suspects display in the Tessent Visualizer hierarchical schematic view.

Prerequisites
• Tessent Diagnosis must be invoked on the flat design netlist associated with the

diagnosis report you want to view.

• Diagnosis must have run successfully, and the results must be saved to a file.

Procedure
1. At the command line, enter display_diagnosis_report diagnosis_report_name.

Diagnosis Reporting and Troubleshooting
Viewing Failing Paths for a Suspect

Tessent™ Diagnosis User’s Manual, v2022.4 139

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example:

FAULT> display_diagnosis_report p1.diag

Tessent Visualizer opens and displays the report.

Figure 2-21. Diagnosis Report Viewer (Tabular View)

Tip
If you have Tessent Visualizer up and running, you can also view the report by
choosing Open > Diagnosis Report Viewer, and select the report.

2. Place the mouse pointer over a suspect, right-click, and select Show on Hierarchical
Schematic.

3. Analyze the results.

Tessent™ Diagnosis User’s Manual, v2022.4140

Diagnosis Reporting and Troubleshooting
Viewing Failing Paths for a Suspect

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following figure shows a pictorial view of steps 2 and 3.

Diagnosis Reporting and Troubleshooting
Diagnosis Improvements and Retrieving Internal Scan Cell Information

Tessent™ Diagnosis User’s Manual, v2022.4 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Improvements and Retrieving
Internal Scan Cell Information

You can improve your diagnosis results by generating additional test patterns with iterative
diagnosis, which can improve diagnostic resolution. In addition, for compressed patterns, you
can retrieve internal scan cell information through various techniques, most notably, internal
scan cell profiling.
Iterative Diagnosis . 142
Techniques for Finding Internal Scan Cells in a Compressed Pattern 150
Internal Scan Cell Profiling for Compressed Patterns. 151
1hot Compressed Pattern Expansion. 154

Tessent™ Diagnosis User’s Manual, v2022.4142

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Iterative Diagnosis
Iterative diagnosis is a method of generating additional test patterns in order to improve
diagnostic resolution with Tessent Diagnosis. This technique is available for both scan chain
and logic diagnosis. Better resolution for diagnosis is often a requirement for a Tessent
Diagnosis user that works in a failure analysis lab.
Figure 2-22 shows the high-level iterative diagnosis process.

Figure 2-22. High-Level Iterative Diagnosis Process

When To Use Iterative Diagnosis . 142
Performing Iterative Diagnosis. 143
Iterative Logic Diagnosis Examples . 144
Iterative Scan Chain Diagnosis Examples . 148

When To Use Iterative Diagnosis
Iterative diagnosis is the process of creating additional patterns for use on the ATE in order to
improve diagnostic resolution. Normally, you use the iterative diagnosis flow with Tessent
Diagnosis when a chip fails on the ATE and the subsequent failure files diagnosis does not yield
the desired results.

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 143

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Possible criteria that would merit further refinement of diagnosis results with iterative diagnosis
include the following:

• Too many suspects reported

• No highly-distinguished suspects

• Too few failing patterns

• Too few parts available for Failure Analysis

Performing Iterative Diagnosis
Tessent Diagnosis provides a simple direct test generation flow. You must decide when to use
this functionality: specifically, you must determine on what kind of failure mode or on what
kind of diagnosis situation to run iterative diagnosis.
The following process is exemplified in Iterative Logic Diagnosis Examples 3 and 4.

Prerequisites
• Iterative diagnosis only works if there is a list of suspects reported from a previous

diagnosis report. In other words, if the diagnosis run fails to converge, iterative
diagnosis cannot generate a pattern.

Procedure
1. Collect the failure logs from the ATE on the device of interest using the normal

production pattern.

2. Run diagnosis on the failure logs using Tessent Diagnosis and save the diagnosis report.

3. Run iterative diagnosis with Tessent Diagnosis using the create_diagnosis_patterns
command. Create a targeted pattern set for use on the ATE. Save the patterns using the
write_patterns command. Ensure the new test patterns pass timing simulations.

Note
When you save the new patterns with the write_patterns command, ensure you
check with your designer to find out what switches you should use with this

command.

4. If required, convert the diagnostic pattern into the ATE-required format and modify the
test program to apply the pattern.

5. Collect the failure logs from the ATE on the device of interest using the new iterative
diagnosis pattern.

6. Re-run Tessent Diagnosis with the new pattern and the new failure log.

Tessent™ Diagnosis User’s Manual, v2022.4144

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
It is good practice to include the original failure logs and pattern file during the
iterative diagnosis step, because this data supplies additional information to Tessent

Diagnosis, resulting in a single diagnosis based on the two sets of data. The goal of
iterative diagnosis is to provide as much fail data as possible to Tessent Diagnosis.

Related Topics
Iterative Logic Diagnosis Examples
Iterative Scan Chain Diagnosis Examples

Iterative Logic Diagnosis Examples
Run iterative diagnosis with Tessent Diagnosis using the create_diagnosis_patterns command,
and save the patterns using the write_patterns command.

Example 1
The following example shows the command for specifying a Tessent Diagnosis ASCII
diagnosis report, Prod_A_w200x5y8.diag, for diagnostic ATPG:

create_diagnosis_patterns –diagnosis_report Prod_A_w200_x5y8.diag

write_patterns Prod_A_w200_x5y8.diag.pattern

Upon issuing this command, Tessent Diagnosis reads the contents of this diagnosis report file. If
there are any system logic defects reported in this diagnosis report file Tessent Diagnosis
creates new test patterns to target the stuck-at-0 and stuck-at-1 faults on these candidate signals.

If the diagnosis report contains both logic defects and scan chain defects, then Tessent
Diagnosis generates diagnostic test patterns targeting both the scan chain defect and the system
logic defects. For diagnostic test generation for logic failures, Tessent Diagnosis skips any
command line switches for chain failure diagnostic test generation. For diagnostic test
generation for chain failures, Tessent Diagnosis skips any command line switches used by logic
failure diagnostic test generation. Tessent Diagnosis prints a warning message for each skipped
switch.

Example 2
The following example shows how to run diagnostic ATPG without providing a diagnosis
report file:

read_patterns design_A.pattern

diagnose_failures chip1.fail

create_diagnosis_patterns

write_patterns chip1.diagnosis.pat

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 145

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In this example, the “diagnose_failures chip1.fail” command diagnoses failure file chip1.fail
and creates the diagnosis results. While running the “create_diagnosis_patterns” command, the
internal diagnosis results are used as input to the diagnostic ATPG process.

Example 3
The following example shows the usage scenario that might be encountered by a failure analyst
intending to use iterative diagnosis:

//collect the datalog on the ATE; assume you name the datalog “fail1.log”

//traditional diagnosis
read_patterns src/bridge_patterns.ascii

//diagnose the failure
diagnose_failures results/fail1.flog

//view the results, and if diagnosis is needed, write the diagnosis
//result to a file
write_diagnosis -file results/fail1 –rep

//create_diagnosis_patterns based on the internally stored diagnosis
// result
create_diagnosis_patterns

//save the targeted diagnosis patterns
write_patterns results/fail1.bin.gz

//save Verilog patterns and run simulation to check for mismatches

//go back onto the ATE and collect the datalog with the new pattern;
//assume you name the datalog “fail1_iter_diag.log”

//ITERATIVE DIAGNOSIS

//load the pattern the first datalog was collected with
read_patterns src/bridge_patterns.ascii

//append the diagnostic pattern
read_patterns results/fail1.bin.gz –append

//read in the original fail log
read_failures results/fail1.flog

//read in the diagnostic pattern generated fail log
read_failures results/fail1_iter_diag.flog –append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures –internal

//save the new combined diagnosis result
write_diagnosis -file results/fail1_iter_diag –rep

Tessent™ Diagnosis User’s Manual, v2022.4146

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 4
In the following usage example, a failure analyst has been given five units of the same product
in a failure analysis job. The analyst is to pick one and perform failure analysis on it. The
analyst has already run diagnosis on all five parts. In order to achieve better diagnostic
resolution, the analyst creates a single pattern, collects additional fail data on all five units, and
decides which part would be best for failure analysis.

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 147

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

//diagnosis results already collected and diagnosed
YAlogs = part1.diag, part2.diag, part3.diag, part4.diag, part5.diag

//create_diagnosis_patterns based on the internally stored
//diagnosis result
create_diagnosis_patterns -diagnosis_report part1.diag part2.diag \
part3.diag part4.diag part5.diag

//save the targeted diagnosis patterns
write_patterns results/fail1-2-3-4-5.bin.gz

//take pattern to ATE and collect five more datalogs with the one \
//compound pattern
diagnostic_datalog = part1_iter_diag.log,\
part2_iter_diag.log,part3_iter_diag.log,\
part4_iter_diag.log, part5_iter_diag.log

//load the pattern the first datalog was collected with
read_patterns src/bridge_patterns.ascii

//append the diagnostic pattern
read_patterns results/fail1-2-3-4-5.bin.gz -append

//begin diagnosis – note that the pattern source doesn’t need \
//to be reloaded
read_failures results/part1.flog //read in the original fail log

//read in the diagnostic pattern generated fail log
read_failures results/part1_iter_diag.flog -append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures -internal

//save the new diagnosis result
write_diagnosis -file results/part1_iter_diag -rep

//read in the original fail log
read_failures results/part2.flog

//read in the diagnostic pattern generated fail log
read_failures results/part2_iter_diag.flog -append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures -internal

//save the new diagnosis result
write_diagnosis -file results/part2_iter_diag -rep

//read in the original fail log
read_failures results/part3.flog

Tessent™ Diagnosis User’s Manual, v2022.4148

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

//read in the diagnostic pattern generated fail log
read_failures results/part3_iter_diag.flog -append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures -internal

//save the new diagnosis result
write_diagnosis -file results/part3_iter_diag -rep

//read in the original fail log
read_failures results/part4.flog

//read in the diagnostic pattern generated fail log
read_failures results/part4_iter_diag.flog -append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures -internal

//save the new diagnosis result
write_diagnosis -file results/part4_iter_diag -rep

//read in the original fail log
read_failures results/part5.flog

//read in the diagnostic pattern generated fail log
read_failures results/part5_iter_diag.flog -append

//diagnose both of the fail logs that are stored in internal memory
diagnose_failures -internal

//save the new diagnosis result
write_diagnosis -file results/part5_iter_diag -rep

Iterative Scan Chain Diagnosis Examples
Perform iterative scan chain diagnosis the same way you would iterative logic diagnosis.

Example 1
The following example shows how to specify a diagnosis report for diagnostic ATPG for chain
failures:

create_diagnosis_patterns –diagnosis_report w200x5y8.diag

write_patterns w200x5y8.diag.ascii

In this example the file w200x5y8.diag is a diagnosis report file created by Tessent Diagnosis in
ASCII format. Iterative diagnosis reads the content of this diagnosis report file. If there are any
scan chain failures reported as failing scan chain, new test patterns are created to target the
candidate scan cells of the faulty scan chain.

Diagnosis Reporting and Troubleshooting
Iterative Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 149

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example 2
This example runs diagnostic ATPG with a chain name, cell range, and fault type you specify.

create_diagnosis_patterns –chain chain1 –cell_range 10 20 –fault_type stuck_at_0

write_patterns chain1_10_20_sa0.diag.ascii

The above command creates diagnostic scan ATPG patterns that target fault isolation for scan
cells 10 through 20 of scan chain chain1, the target fault type is stuck-at 0 fault.

Example 3
In this example, iterative chain diagnosis is performed by producing test patterns and saving the
chain-test and the scan-test into separate pattern files. Thus, a multiple test suite fail log must be
employed. An example of the production fail log is below:

// Sample multiple test suite fail log
format cycle
tracking_info_begin
tracking_info_end
test_suite_begin PRODUCTION_CHAIN_TEST
failures_begin
150 PADX L H
...
1704 PADX H L
failure_buffer_limit_reached none
failures_end
test_suite_end
test_suite_begin PRODUCTION_SCAN_TEST
failures_begin
150 PADX L H
...
7801 PADX L H
failure_buffer_limit_reached last_cycle_logged
failures_end
test_suite_end
failure_file_end
system date

Tessent™ Diagnosis User’s Manual, v2022.4150

Diagnosis Reporting and Troubleshooting
Techniques for Finding Internal Scan Cells in a Compressed Pattern

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The dofile for performing iterative diagnosis is below:

// Iterative diagnosis dofile
// Read in multiple test suite production patterns
read_patterns PRODUCTION_CHAIN_TEST_PATTERN.stil.gz
read_patterns PRODUCTION_SCAN_TEST_PATTERN.stil.gz -append
diagnose_failures PRODUCTION_MULTI_SUITE_FAILING_CHAIN_TEST_FLOG.flog

// create_diagnosis_patterns based on the internally stored diagnosis
// result for a chain failure
create_diagnosis_patterns
// Save the targeted diagnosis patterns
write_patterns ITERATIVE_CHAIN_TEST_PATTERN.stil.gz -chain_test -stil
write_patterns ITERATIVE_SCAN_TEST_PATTERN.stil.gz -scan_test -stil

// Go collect the new failure logs and assemble the multiple test suite
// fail data into a new flog called
// ITERATIVE_MULTI_SUITE_FAILING_CHAIN_TEST_FLOG.flog

// Read in all four of the patterns
read_patterns PRODUCTION_CHAIN_TEST_PATTERN.stil.gz
read_patterns PRODUCTION_SCAN_TEST_PATTERN.stil.gz -append
read_patterns ITERATIVE_CHAIN_TEST_PATTERN.stil.gz -append
read_patterns ITERATIVE_SCAN_TEST_PATTERN.stil.gz -append

// Diagnosis execution on two datalogs
read_failures PRODUCTION_MULTI_SUITE_FAILING_CHAIN_TEST_FLOG.flog
read_failures ITERATIVE_MULTI_SUITE_FAILING_CHAIN_TEST_FLOG.flog -append

diagnose_failures -internal
write_diagnosis

Techniques for Finding Internal Scan Cells in a
Compressed Pattern

There are many techniques that you can use to retrieve the internal scan cells for diagnosis
suspects.
Table 2-7 describes various techniques for finding internal scan cells.

Table 2-7. Techniques for Finding Internal Scan Cells
Technique Pros Cons
Internal scan cell profiling Ease of use with

set_diagnosis_options
-internal_failing_cells
command

n/a

1hot pattern expansion If failure is consistent,
should tell you exactly where
the failure is located

You must first know which
compressed patterns failed,
and then create new patterns
and test them

Diagnosis Reporting and Troubleshooting
Internal Scan Cell Profiling for Compressed Patterns

Tessent™ Diagnosis User’s Manual, v2022.4 151

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Internal Scan Cell Profiling for Compressed
Patterns

When debugging failures, it is sometimes necessary to understand which scan chains and which
group of cells on those chains observe the scan failure. When using compressed patterns, this is
difficult to extrapolate from the failing patterns alone because multiple chains are compressed
into a single compactor output. Internal scan cell profiling enables you to report the internal
scan cells and scan chains that have the highest confidence of observing the defect when using
compressed scan patterns. This method is only available after you have performed scan
diagnosis and have reported suspects.
During scan cell profiling, the tool traces the failures back to the scan cells that have the highest
possibility of observing the defect location (suspect). The tool reports the failing pattern and the
chain and cell combination that observe the failing bits. It also includes a confidence number for
the scan chain/cell combination for each of the failing patterns; some failing patterns might be
better for observing a defect.

To enable internal scan cell profiling, specify the following command:

set_diagnosis_options -internal_failing_cells on

When enabled, Tessent Diagnosis appends an “Internal failing cells profiling” section to the
diagnosis report.

The following example shows that there are four failing patterns. However, only patterns 112
and 376 are observed on a compactor output. (The other two failing patterns, 98 and 378, are

Based on the suspect, use the
report_gate command, which
enables you to trace the
suspects’ output logic cones
to find the potential capture
scan cells

Flexible and enables you to
use your own judgement

Labor-intensive and may
lack accuracy

Use the read_failure
command to report all
corresponding scan cells for
a failure bit

Simple technique Results are not specific

Use the report path to report
the control and observe scan
cells

Tool automatically provides
this information

This only applies to at-speed
patterns, and you could have
a significant number of paths

Use a bypass pattern You can precisely locate the
failed scan cell

You must first create the by-
pass pattern and then test it

Table 2-7. Techniques for Finding Internal Scan Cells (cont.)
Technique Pros Cons

Tessent™ Diagnosis User’s Manual, v2022.4152

Diagnosis Reporting and Troubleshooting
Internal Scan Cell Profiling for Compressed Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

observed on a functional output.) The tool reports the failing patterns that failed for a compactor
output.

// command: diagnose_failures injected_1.flog

// Verifying 455 external patterns.

// incorrect_patterns=0, simulated_patterns=455, simulation_time=0.87sec.

Tessent Diagnosis <. . .>

tracking_info_begin

tracking_info_end #diagnosis_modes=1

#logic_symptoms=1

#total_symptoms=1 #total_suspects=10 total_CPU_time=0.14sec

diagnosis_mode=logic

#symptoms=1 #suspects=10 CPU_time=0.14sec fail_log=injected_1.flog

#failing_patterns=4, #passing_patterns=451

#unexplained_failing_patterns=0

symptom=1 #suspects=10 #explained_patterns=4

98 112 376 378

suspect score fail_match pass_mismatch type value pin_pathname cell_name

net_pathname

1 100 4 0 STUCK 0 /cpu_i/uUART/ix1003/Y nor02 /

cpu_i/uUART/nx1002

2 100 4 0 EQ1 1 /cpu_i/uUART/ix1003/A1 nor02 /

cpu_i/uUART/nx3064

3 100 4 0 EQ1 1 /cpu_i/uUART/ix1003/A0 nor02 /

cpu_i/uUART/nx3346

4 100 4 0 EQ1 0 /cpu_i/uUART/ix1013/B0 ao21 /

cpu_i/uUART/nx1002

5 100 4 0 CELL 1 /cpu_i/uUART/ix2571/QB sff /

cpu_i/uUART/nx3064

6 85 4 6 INDETERMINATE 0 /cpu_i/uSDM/ix475/A0 ao22 /

cpu_i/SSFRDI_2_

7 85 4 6 EQ6 0 /cpu_i/uSDM/ix475/A1 ao22 /

cpu_i/uSDM/nx617

8 85 4 6 EQ6 0 /cpu_i/uUART/ix1013/Y ao21 /

cpu_i/SSFRDI_2_

9 81 4 15 INDETERMINATE 0 /cpu_i/uSDM/ix475/Y ao22 /cpu_i/

uSDM/nx474

10 81 4 15 EQ9 0 /cpu_i/uSDM/ix702/C0 aoi221 /

cpu_i/uSDM/nx474

Internal failing cells profiling

 Total failing patterns=4, Total external compressed bits=2

 Failing Pattern 112 has 1 compressed failing bits

 chain=chain23, cell=16, confidence=100.00%

 Failing Pattern 376 has 1 compressed failing bits

 chain=chain9, cell=2, confidence=19.36%

 chain=chain12, cell=2, confidence=80.64%

In this case, the tool reports that for failing pattern 112, one compressed failing bit (failing
cycle) was found in the fail log. The analysis shows that scan chain chain23 and scan cell 16 are
likely to observe the suspects reported in the diagnosis report.

Diagnosis Reporting and Troubleshooting
Internal Scan Cell Profiling for Compressed Patterns

Tessent™ Diagnosis User’s Manual, v2022.4 153

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool also reports that for failing pattern 376, one compressed failing bit (failing cycle) was
found in the fail log. The analysis shows that scan chain chain9 and scan cell 2 or scan chain
chain12 and scan cell 2 may observe the suspects reported in the diagnosis report but with lower
confidence.

Internal scan cell profiling is not supported in server mode.

Tessent™ Diagnosis User’s Manual, v2022.4154

Diagnosis Reporting and Troubleshooting
1hot Compressed Pattern Expansion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

1hot Compressed Pattern Expansion
1hot compressed pattern expansion, like internal scan cell profiling, enables you to report the
internal scan cells for compressed failing patterns. When EDT patterns fail on the ATE, some
users may choose to discover the internal failing flops, mask them, move on and run other tests.
1hot pattern expansion enables you to identify the internal failing flops.
Compressed patterns usually do not observe per internal scan chain. If the compressed patterns
are expanded to be 1hot patterns, then each 1hot pattern can observe the individual internal
chain for an EDT channel. The newly created 1hot patterns are expected to have the same scan
load values into the internal scan chains (except the EDT-related scan cells) as the original
compressed patterns. This ensures that retesting the 1hot patterns maintains the same responses
at the internal chains as their original compressed patterns. The only difference would be that
the individual chain is observed.

Figure 2-23. Compressed Pattern Expansion Flow

Note
If you have a pattern observing an unbalanced number of chains on channels, the tool only
observes a single chain exactly once across all patterns generated to expand the original

compressed pattern. In the case of unbalanced chains for multiple channels, the tool may set
some channels (connected to fewer chains than other channels) to <no_chains_observed>
because you already have patterns observing chains in this channel.

Diagnosis Reporting and Troubleshooting
1hot Compressed Pattern Expansion

Tessent™ Diagnosis User’s Manual, v2022.4 155

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing 1hot Compressed Pattern Expansion . 155
One-Hot Compressed Pattern Expansion Examples . 155

Performing 1hot Compressed Pattern Expansion
When you perform 1hot compress pattern expansion, you can specify a set of selected test
patterns or a set of selected scan chains for expansion. After applying the 1hot patterns on the
ATE, you can retrieve the failing flop IDs based on the ATE failure log.
Compressed pattern expansion applies to either non-masking patterns or partial-masking
patterns. These patterns can be transformed into multiple 1hot patterns, where only a single
internal chain is observed at each channel. You can only use this capability on external pattern
sets. If Tessent Diagnosis detects any internal patterns, then command execution quits and an
error message is generated.

Prerequisites
• A core-level failure file.

Procedure
1. Run production compressed pattern on the ATE. Identify failing patterns on the ATE, or

optionally use the read_failures command to get the failing file, if the failure file is
cycle-based format.

2. Optionally, use set_pattern_filtering to select which patterns to expand.

3. Use expand_compressed_patterns to expand selected patterns to 1hot patterns.

4. Save expanded patterns using the write_patterns command.

5. Run the new patterns on ATE and generate a new failure file.

6. Identify failing scan cells in the Tessent Diagnosis tool using the read_failures
command.

Related Topics
One-Hot Compressed Pattern Expansion Examples

One-Hot Compressed Pattern Expansion Examples
To expand one-hot compressed patterns, use the expand_compressed_patterns command.

Example 1
A design has five edt_channels with chain/channel ratio of 100. A set of 1000 Tessent
TestKompress patterns were tested on the ATE. Some devices passed chain test but failed scan
patterns 57, 58, and 65. Assume that patterns 57, 58, and 65 are compressed patterns, pattern 57

Tessent™ Diagnosis User’s Manual, v2022.4156

Diagnosis Reporting and Troubleshooting
1hot Compressed Pattern Expansion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

and 58 observe all 100 internal scan chains, and pattern 65 observes some of the scan chains, for
example 50 scan chains. To identify the internal scan chain cell that is failing on these three
failing patterns, use the following sequence of commands:

read_patterns production_edt_pat.stil

set_pattern_filtering –external -list 57 58 65

expand_compressed_patterns

// Pattern 57 observes 100 internal chains and is expanded to 100 1hot patterns
// Pattern 58 observes 100 internal chains and is expanded to 100 1hot patterns
// Pattern 65 2 observes 50 internal chains and is expanded to 50 1hot patterns

write_patterns debug_pat_57_58_65_.stil –stil2005

The debug_pat_57_58_65_.stil file contains 250 patterns that were expanded from patterns 57,
58 and 65. After the set_pattern_filtering command, only the original patterns 57, 58, and 65 are
expanded to 1hot test patterns.

The messages from the expand_compressed_patterns command shows how many 1hot test
patterns were created based on patterns 57, 58, and 65. A default map file is created, this map
file maps the new 1hot pattern indices to the original test pattern indices. The default map file
name is <external_pattern_file_name>.map. For this example, the default map file name is
production_edt_pat_.stil.map.

The contents of the map file are similar to the following:

1hot_pat_id original_pat_id observedChainName EdtChannelName
--
 0 57 block1_chain0 edt_block1_channel1
 block1_chain100 edt_block1_channel2
 block1_chain200 edt_block1_channel3
 ...
 block1_chain500 edt_block1_channel5
 1 57 block1_chain1 edt_block1_channel1
 block1_chain101 edt_block1_channel2
 block1_chain201 edt_block1_channel3

 block1_chain501 edt_block1_channel5
 2 57

 99 57 block1_chain99 edt_block1_channel1
 block1_chain199 edt_block1_channel2
 block1_chain299 edt_block1_channel3
 ...
 block1_chain599 edt_block1_channel5
 100 58
 101 58
... <patterns 102-198 omitted from this example>
 199 58
 200 65
... <patterns 210-248 omitted from this example>
 249 65

Diagnosis Reporting and Troubleshooting
1hot Compressed Pattern Expansion

Tessent™ Diagnosis User’s Manual, v2022.4 157

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The expanded 1 hot pattern set can be very large unless the set_pattern_filtering command is
used.

Example 2
Using alternative pattern filtering options can produce very large expanded pattern sets, and
yields a warning from the tool, as shown:

read_patterns production_edt_pat.wgl

set_pattern_filtering –external –clock clkA

expand_compressed_patterns

//Warning: There are 500 TestKompress patterns to expand, it ends up
//with 50,000 patterns. By default, the maximum number of 1hot patterns to
//be created is 1000. You can use the “–max__patterns N” switch for
//“expand_compressed_patterns” command to increase this limit, where N is
//the maximum number of 1hot patterns to create.

Example 3
Expand selected patterns for patterns 37, 38, and 45, and scan chains chain1, chain2, and
chain3. In this example pattern 45 does not observe any of the three scan chains, so pattern 45 is
not expanded as a result of this command sequence.

read_patterns production_edt_pat.stil

set_pattern_filtering –external 37 38 45 // Assuming the users are interested
// in chain1 to chain5

expand_compressed_patterns
–chain chain1 chain2 chain3 // Pattern 37 observes X internal chains and is expanded to Z

// 1hot patterns
// Pattern 38 observes Y internal chains and is expanded to W 1hot patterns
//… similar message for all patterns

write_patterns debug_pat.stil –stil2005

Example 4
If you have a pattern observing an unbalanced number of chains on channels:

Channel 0 – observing chain0, chain1
Channel 1 – observing chain2

This generates the following expanded patterns:

Pattern 0 – observing chain0 (channel 0) and chain2 (channel 1)
Pattern 1 – observing chain 1 (channel 0) and none-observed (channel 1)

For failure on chain2, exactly 1 expanded pattern is expected to fail.

Tessent™ Diagnosis User’s Manual, v2022.4158

Diagnosis Reporting and Troubleshooting
Troubleshooting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Troubleshooting
At times, issues can arise that impact the Tessent Diagnosis results and performance. These
issues include pattern and failure file mismatches, unexpected diagnosis results, fault injection
issues, abort condition for chain diagnosis, and long
Pattern and Failure File Mismatches. 159
Unexpected Diagnosis Results. 164
Fault Injection Issues. 167
Abort Conditions for Chain Diagnosis. 168
Long Logic Diagnosis Runtimes . 172

Diagnosis Reporting and Troubleshooting
Pattern and Failure File Mismatches

Tessent™ Diagnosis User’s Manual, v2022.4 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern and Failure File Mismatches
Pattern and failure file mismatch errors are usually caused by failure of the input data files to
pass the data consistency and accuracy tests performed before the actual diagnosis begins. If
Tessent Diagnosis encounters problems during the run, then the tool aborts the diagnosis and
sends an error message to standard out.
Data Consistency Checks . 159
Pattern Verification Unsuccessful . 161
Failure File Errors . 162

Data Consistency Checks
In the data flow from the test-pattern creation stage to the testing environment, the ATE runs the
patterns with the actual DUT and, subsequently, creates the failure file for subsequent
consumption by Tessent Diagnosis.
Figure 2-24 shows a high-level view of the data flow between the ATPG tools (Tessent
FastScan and Tessent TestKompress), Tessent Diagnosis, and the actual testing environment.

Tessent™ Diagnosis User’s Manual, v2022.4160

Diagnosis Reporting and Troubleshooting
Pattern and Failure File Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-24. Data Consistency Data Flow

Note
The recommended practice is to load patterns into Tessent Diagnosis in the same order the
patterns were applied on the tester. This helps prevent conversion errors due to incorrect

determination of pattern boundaries.

In general, the process of preparing the test patterns for use in the testing environment consists
of the following data translation stages:

• Pattern translation — Post-ATPG pattern processing, specifically creating the program
for use on the ATE. Data corruption can occur during this stage if you modify the
patterns (for example, adding extra cycles).

Diagnosis Reporting and Troubleshooting
Pattern and Failure File Mismatches

Tessent™ Diagnosis User’s Manual, v2022.4 161

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Failure file translation — Converting the raw ATE failure file into the format Tessent
Diagnosis reads.

As Figure 2-24 shows, Tessent Diagnosis uses the unmodified patterns from the test-pattern
creation stage independent of the testing environment and compares these unmodified patterns
to the failure file from the ATE. Before diagnosis, Tessent Diagnosis performs the following
data consistency checks before proceeding to diagnosis:

• Pattern consistency — Compares the simulated capture values to the expected values in
the test patterns—for an example, see “Pattern Verification Unsuccessful.” Identifies
inconsistencies and inaccuracies involving the design netlist, test patterns, or settings—
see “Preparing the Test Patterns.”

• Failure file consistency — Compares pattern expected values with the corresponding
value in the failure file. Identifies erroneous failure file conversions—see “Guidelines
for Preparing the ATE Failure File.”

Consequently, if you do not account for any pattern modifications in the failure file you input to
Tessent Diagnosis, you can encounter data inconsistency warnings and errors. If Tessent
Diagnosis identifies data consistency errors during these checks, then the tool halts diagnosis.
You must resolve any data consistency check errors.

Pattern Verification Unsuccessful
Unsuccessful pattern verification consists of three types of mismatch errors: B2X, X2B, and
binary.
The following list describes the three types of unsuccessful pattern verification:

• B2X mismatch — B2X mismatches occur during pattern verification when the simulator
returns X values instead of the expected binary values. These errors are usually due to
software enhancements to the simulator or using a mask file when reading patterns.

By default, Tessent Diagnosis reports a B2X mismatch as a warning.

• X2B mismatch — X2B mismatches occur during pattern verification when the simulator
returns binary values instead of the expected X values.

The tool most likely introduces X2B mismatches because it removes cell constraints
when performing pattern verification and diagnosis. This enables the tool to perform
diagnosis using one flat model for potentially multiple modes, each of which have
different constraints, or to use flat models that were written at different times.

By default, Tessent Diagnosis ignores X2B mismatches.

• Binary mismatch — Binary mismatches occurring during pattern verification when the
simulator returns incorrect binary values (for example, a 1 instead of an expected 0). In
the event that a binary mismatch occurs, you should investigate and determine the root
cause, otherwise the mismatch could lead to improper diagnosis results.

Tessent™ Diagnosis User’s Manual, v2022.4162

Diagnosis Reporting and Troubleshooting
Pattern and Failure File Mismatches

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, Tessent Diagnosis reports a binary mismatch as an error.

The following example depicts a typical Tessent Diagnosis pattern verification mismatch error
message:

read_patterns tst_fail.ascii

diagnose_failures tst_failure.log -output tst_diag.log -replace

// Verifying patterns.
0 /paddr[9] Z L
0 /paddr[8] Z L
0 /paddr[6] Z L
0 /paddr[4] Z L
0 /debugpc[9] Z L
0 /debugpc[8] Z L
0 /debugpc[6] Z L
0 /debugpc[4] Z L
0 /piccpu_i/edt_so4 Z L
// incorrect_patterns=1, simulated_patterns=32, simulation_time=0.00sec.
// To verify all external patterns, use command ’report_failures -exact’.
// Error: Pattern verification unsuccessful. Diagnosis cannot be performed
// without successful pattern verification.

This error message indicates the test pattern verification was unsuccessful and there are
mismatches in the data. Possible causes include:

• Improper setting of the write_flat_model command when the flat version of the netlist
was saved.

• Not all relevant commands used to set up for ATPG were run prior to saving the flat
model.

• An improper or incomplete ATPG library was used in the pattern creation session in
which the flat model was saved.

To report all the mismatches, including expected binary versus X in external patterns, use the
report_failures -Exact command.

Failure File Errors
Failure files can have issues that cause Tessent Diagnosis to issue errors.

Example 1
The tool issues an error when the tester’s expected value does not match the Tessent Diagnosis
good simulation value.

read_patterns tst_fail.bin

diagnose_failures tst_failure.log -output tst_diag.log -rep

Diagnosis Reporting and Troubleshooting
Pattern and Failure File Mismatches

Tessent™ Diagnosis User’s Manual, v2022.4 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Error: File "tst_failure.log", line number 10: " 80 chain2 19 L H"
fail_log_expected_value=L, pattern_expected_value=H
// Error: Incorrect Failure File Format.

To correct this issue, ensure that the:

• Test patterns loaded in are the same patterns used on the ATE when generating the
failure logs.

• Expected binary values on the ATE are not changed to the opposite state.

• Conversion of the ATE failure log is correct. Verify that you account for any test cycles
applied before the test patterns.

See also “Input File Requirements.”

Example 2
This following error message indicates duplicate lines in the failure file. Delete one to correct
the problem.

diagnose_failures ../Failog/fs_fail_st0.log

// Error: Duplicated fail data at chain chain1 cell 10.
// Error: File "../Failog/fs_fail_st0.log", line number 2: " 69 chain1...

Example 3
The following error message indicates the failure file is empty or contains syntax errors in
keywords. Verify the conversion of the ATE failure log is correct, and that the failure file
contains failing cycles.

diagnose_failures /Failog/fs_fail_st0.log output fs_diag.log replace

//Error: No valid failing pattern(s) in failure file
// …/Failog/fs_fail_st0.log with the specified options.

See “Input File Requirements.”

Tessent™ Diagnosis User’s Manual, v2022.4164

Diagnosis Reporting and Troubleshooting
Unexpected Diagnosis Results

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Unexpected Diagnosis Results
Unexpected diagnosis results can include having too few failing patterns, many suspects for one
symptom, lower than expected suspect scores, too many reported faulty cell suspects, unusable
clock domain patterns, and too many suspects, symptoms, or unexplained patterns in logic
diagnosis.
Very Few Total Failing Patterns . 164
Many Suspects for One Symptom . 165
Low Score for Suspects . 165
Large Faulty Scan Cell Range in Chain Diagnosis . 165
Too Many Suspects, Symptoms, or Unexplained Patterns in Logic Diagnosis 166

Very Few Total Failing Patterns
Very few total failing patterns are reported in the diagnosis report. If there are not many failing
patterns, then the number of failing suspects may become quite large as the tool is unable to
differentiate between a large set of faults.
The most common reasons for a low number of failing patterns are:

• Low excitation or observation of the defect site.

• High number of failing cycles with truncation.

Low Excitation or Observation of the Defect Site
When this happens, Tessent Diagnosis has relatively few patterns able to excite and observe the
defect, which can lead to a very low number of failing patterns: this can translate to low
resolution. In this case, consider performing the following activities:

• Collect as much failing data as possible.

• If multiple patterns induce failures, then you should use multiple test suites to
accumulate the failing patterns.

Make sure that pattern sampling of the failing patterns has been turned off.

High Number of Failing Cycles with Truncation
In this case, a defect that has very high observability causes many cycles to fail. If the datalog
was truncated, then there may only be a small number of failing patterns that were exhaustively
collected. To obtain more failing patterns, you need to collect a much larger number of failing
cycles on the ATE.

Diagnosis Reporting and Troubleshooting
Unexpected Diagnosis Results

Tessent™ Diagnosis User’s Manual, v2022.4 165

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Many Suspects for One Symptom
In some cases, Tessent Diagnosis may report many suspects for one symptom. Use other
physical failure analysis methodologies, such as viewing in Calibre, to determine which net or
even which section of the net is causing the problem.
In the following example, there are 12 suspects total and 11 of them are equivalent to the first
suspect.

suspect score fail_match pass_mismatch type value pin_pathname cell_ ...
--
1 100 70 0 STUCK 0 /U1680/Y inv02 ...
2 100 70 0 EQ1 1 /U1680/A inv02 ...
3 100 70 0 EQ1 1 /U1544/Y nand03...
4 100 70 0 EQ1 0 /U1544/A0 nand03...
5 100 70 0 EQ1 0 /U1544/A2 nand03...
6 100 70 0 EQ1 0 /U1544/A1 nand03...
7 100 70 0 EQ1 0 /U1584/Y and03 ...
8 100 70 0 EQ1 0 /U1584/A2 and03 ...
9 100 70 0 EQ1 0 /U1584/A0 and03 ...
10 100 70 0 EQ1 0 /U1584/A1 and03 ...
11 100 70 0 EQ1 0 /U480/Y inv01 ...
12 100 70 0 EQ1 1 /U480/A inv01 ...

Low Score for Suspects
Tessent Diagnosis may assign suspects lower-than-expected scores. If this is the case, verify the
accuracy of the failure file contents. If the ATE is a per-channel type, adjust the failure file
contents as described.
Tessent Diagnosis assigns a suspect a lower score for any of the following cases:

• There are mismatches between simulated faulty behavior and the behavior that was
observed on the ATE (pass_mismatch).

• There are failing patterns on the ATE that cannot be explained by any suspect
(unexplained_failing_patterns).

• There are multiple symptoms in the report.

In the following example, Tessent Diagnosis assigned a low score when a pattern passed on the
tester, but based on simulation of the suspect, it should have failed.

suspect score fail_match pass_mismatch type value pin_pathname cell_...

1 1 10 20 OPEN/DOM 0 /U1680/Y inv02 ...

Large Faulty Scan Cell Range in Chain Diagnosis
Too many faulty cell suspects may be reported for chain diagnosis.

Tessent™ Diagnosis User’s Manual, v2022.4166

Diagnosis Reporting and Troubleshooting
Unexpected Diagnosis Results

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example:

faulty_chain=chain3 #symptoms=1
symptom=1 #suspects=50

Check to see how many failing scan test patterns are listed in the failure file. Increasing the
number of failing scan patterns should reduce the number of suspects reported. You should use
at least 32 failing scan patterns.

Too Many Suspects, Symptoms, or Unexplained Patterns
in Logic Diagnosis

In general, you should make sure the chain tests are passing. Logic diagnosis assumes that
chains are functioning correctly. Without properly operating chains, it is unclear if the failures
are due to defective chains or defective logic whose effect is captured in the chains and leads to
inaccurate results.
If for a particular die both chain and scan tests fail, but you do not provide information about the
failing chain(s) either by specifying the faulty chain(s) and fault type(s) or by including the
chain test failures in the failure file, then logic diagnosis is performed. This could lead to
inaccurate and poor results.

Lots of Unexplained Patterns with Poor Diagnosis Resolution
In some rare cases, the chain test passes, but the scan test fails, which produces too many
unexplained patterns with poor diagnosis resolution. This can be due to actual defects on the
scan chains.

In general, these type of scan chain defects are power-related scan chain hold-time issues that
exhibit the following behavior:

• Large number of failing bits on one chain/channel compared to others.

• The failures vary with vdd.

For non-EDT designs, you can debug these by determining the fault model (while considering
the chain inversion) and the chain that is failing more frequently. Once you have determined the
fault model, then you can specify the model during diagnosis with the diagnose_failures
command’s option -faulty_chain switch and arguments.

For EDT designs, debugging the issue is more complex. Assume you have N chains associated
with one EDT channel that had most of the failures. In this case, you could diagnose one chain
at a time and compare the scores and #suspects in all diagnosis results, and choose the best
candidates with largest score and minimum #suspects. When using this method, consider the
following issues:

• If N is a large number, then the tool runtime could be impacted.

Diagnosis Reporting and Troubleshooting
Fault Injection Issues

Tessent™ Diagnosis User’s Manual, v2022.4 167

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• If the design has multiple faulty chains in one EDT channel, the tool cannot diagnose
these.

• You should try at least three fault models (fast/fast_to_rise/fast_to_fall) because you
may not know the faulty value is one-sided or double-sided for EDT.

Fault Injection Issues
When you inject faults using the write_failures and report_failures commands, the tool check
the fault types, and issues warnings certain types of faults.
Tessent Diagnosis checks for the following fault types:

• Tied gate — If the gate is a tied gate (Tie0 / Tie1/ TieX / TieZ), Tessent Diagnosis
creates no fail log, skips the fault injection, and issues a warning similar to the
following:

Pin ... is tied to Faul injection skipped.

• Gate driving a clock — If the gate is driving a clock, Tessent Diagnosis issues a warning
similar to the following:

Pin ... drives a clock port of a sequential element.

Injecting a clock fault can cause chain test failures.

• Gate driving a set/reset — If the gate is driving a set/reset, Tessent Diagnosis issues a
warning similar to the following:

Pin ... drives set/reset of a sequential element.

Injecting a fault that causes a scan cell always in set/reset active mode can cause chain
test failures.

• Gate driving a scan_enable — If the gate is driving a scan_enable, Tessent Diagnosis
issues a warning similar to the following:

Pin ... drives scan enable of a sequential element.

Injecting a fault that causes chain always in non-scan mode can cause chain test failures.

For the gate driving a clock, gate driving set/reset, and gate driving a scan_enable, Tessent
Diagnosis simulates the injected fault assuming the scan chain works correctly. You should
ensure the scan chain works even with defective clock, set/reset, or scan_en.

Tessent™ Diagnosis User’s Manual, v2022.4168

Diagnosis Reporting and Troubleshooting
Abort Conditions for Chain Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Abort Conditions for Chain Diagnosis
During chain diagnosis, the Tessent Diagnosis tool can abort chain diagnosis because the tool’s
requirements for the diagnosis are not met.
Cannot Identify Faulty Chain. 168
No “Usable” Scan Patterns for Chain Diagnosis . 169
Too Many Failing Scan Chains. 169
Too Few Failing Cycles . 170
Compound Diagnosis Abort Logic Diagnosis Part . 171
No Failing 1-hot Chain Masking Patterns . 172

Cannot Identify Faulty Chain
Tessent Diagnosis may not be able to identify faulty chains because the failure log does not
contain a chain failure or because, in EDT mode, there are no masking chain patterns or failed
masking chain patterns.

First Case
There is no chain failure in the failure log, but you have specified the following command:

set_diagnosis_options -mode chain

Under this circumstance, the tool aborts diagnosing and does not produce a diagnosis report
written in the transcript, report text file, or CSV file.

The tool issues the following messages and recommendations:

• Tessent Scan Diagnosis

// Note: Cannot identify faulty chains in failure log XXX because
// there is no chain test pattern failures.
// Recommendation: Please use ̀ set_diagnosis_options -mode auto` and
// then run logic diagnosis on this case

• Tessent Diagnosis Server

// Note: Cannot identify faulty chains in failure log XXX because
// there is no chain test pattern failures.
// Recommendation: Please use `set_diagnosis_options <MONITOR>
// -mode auto`
// and then run logic diagnosis on this case"

Diagnosis Reporting and Troubleshooting
Abort Conditions for Chain Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Second Case
In EDT mode, the tool uses the masking chain patterns to determine the faulty chain. If there are
no masking chain patterns or there are no failed masking chain patterns, then the tool cannot
identify the faulty chain. Under this circumstance, the tool aborts diagnosing and does not
produce a diagnosis report written in the transcript, report text file, or CSV file.

The tool issues the following messages and recommendations:

// Note: Cannot identify faulty chains in failure log XXX because there is
// no failed EDT masking chain patterns.
// Recommendation: Please check:
// (1) if there are EDT masking chain patterns in the pattern file
// (2) if these EDT masking failures are truncated

No “Usable” Scan Patterns for Chain Diagnosis
Chain diagnosis requires “usable” failed scan patterns. To be usable, the scan pattern must pulse
the capture clock for at least one scan cell on at least one faulty chain.
IDDQ patterns or other patterns that do not measure scan cells are always not usable for chain
diagnosis. In addition, if a design has multiple clock domains, and if a scan pattern did not pulse
the capture clock of any scan cells on a faulty chain, it is equivalent to a chain pattern for this
specific chain. If a pattern is equivalent to a chain pattern on all failed scan chains, it is not
usable for chain diagnosis.

If there are no “usable” failed scan patterns at all for all failed scan chains, we only report the
faulty chains and their fault type after a message.

The tool issues the following messages and recommendations:

// Note: Cannot find any scan patterns that pulse the capture clock of
// scan cells on faulty chains in failure log XXX.
// Recommendation: Please use diagnostic ATPG to regenerate scan patterns
// for chain diagnosis

Too Many Failing Scan Chains
In some cases, the chain test results show that multiple scan chains had failures in one chip.
There are two possible reasons for this:

• There are indeed multiple defects on multiple scan chains.

• Some global control signals, such as clock tree / scan_enable tree / edt logic have
defects.

Tessent™ Diagnosis User’s Manual, v2022.4170

Diagnosis Reporting and Troubleshooting
Abort Conditions for Chain Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The more scan chains that failed, the higher the possibility of the second reason. Currently, you
can specify when to diagnose global control signals using the following command and switch:

set_diagnosis_options -max_faulty_chains N

Where N specifies the maximum number of failing scan chains within a single datalog that are
diagnosed using a chain fault model. By default, this is N=2.

You can bypass diagnosis when the number of faulty chains (#faulty_chains) is larger than N
specified with the -max_faulty_chains switch by using the set_diagnosis_options switch and the
literal:

set_diagnosis_options –abort_diagnose_many_faulty_chains ON | OFF

The default value is “ON”.

By combining these two set_diagnosis_options switches, you can have the following situations:

1. If set_diagnosis_options –abort_diagnose_many_faulty_chains OFF

a. When the #failed_chains is greater than N, the tool runs diagnosis on clock tree and
scan_enable tree.

b. When the #failed_chains is less than or equal to N, then the tool assumes the defects
are on each of the failed chains and runs diagnosis for each failing chain.

2. If set_diagnosis_options –abort_diagnose_many_faulty_chains ON

a. When the #failed_chains is greater than N, the tool aborts with the following
message:

// Note: The number of faulty chains XX in failure log XXXX
// exceeds the limit N. Abort diagnosing this case.
// Recommendation: Please use ‘set_diagnosis_options
// –max_faulty_chains <N> to change this limit.

b. When the #failed_chains is less than or equal to N, the tool assumes the defects are
on each failed chain and runs diagnosis for each failing chain.

Too Few Failing Cycles
If the chain failing probability is too low, the tool aborts running chain diagnosis.
Chain failing probability is too low if at least one of the following two conditions is satisfied:

1. For a chain pattern that observes the faulty chain, #failing_bits/ chain_length is less than
1%

2. For scan patterns, #failing_scan_patterns / total_number_patterns_applied_on ATE is
less than 0.1%

Diagnosis Reporting and Troubleshooting
Abort Conditions for Chain Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 171

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can change the default by using the following two commands:

set_diagnosis_options –abort_diagnose_minimum_chain_failing_probability
min_chain_fail_prob

Where the min_chain_fail_prob is 1. The minimum is 0 (no abort due to this issue). The
maximum is 100.

This other command is as follows:

set_diagnosis_options –abort_diagnose_minimum_scan_pattern_failing_probability
min_scan_fail_prob

The min_scan_fail_prob default is 0.1. The minimum is 0 (no abort due to this issue). The
maximum is 100.

In this case, the tool aborts with the following message:

// Note: The scan chain failing probability is too low to resume chain
// diagnosis in failure log XXX.

Compound Diagnosis Abort Logic Diagnosis Part
In the default chain diagnosis flow, the tool does not diagnose the logic part of compound
defects. Compound defects are chain defects that can cause both chain failures and logic
failures. The chain diagnosis portion still runs after masking all failing bits caused by logic
defects.
In this case, the tool issues the following messages and recommendations:

• Tessent Scan Diagnosis

// Note: Failure log XXXX contains chain as well as system logic
// defects. Only chain defect is diagnosed.
// Use ‘set_diagnosis_options –abort_diagnose_compound_faults OFF’
// to diagnose logic part as well.

• Tessent Diagnosis Server

// Note: Failure log XXXX contains chain as well as system
// logic defects. Only chain defect is diagnosed.
// Use “set_diagnosis_options <MONITOR>
// –abort_diagnose_compound_faults OFF” to diagnose the logic part
// as well.

You can change this by using the following set_diagnosis_options switch:

set_diagnosis_options –abort_diagnose_compound_faults ON | OFF

The default is set to “ON”, meaning the tool does not diagnose the logic portion of compound
defects.

Tessent™ Diagnosis User’s Manual, v2022.4172

Diagnosis Reporting and Troubleshooting
Long Logic Diagnosis Runtimes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

No Failing 1-hot Chain Masking Patterns
Chain diagnosis requires failed 1-hot chain masking patterns to identify faulty chains.
If there are no failing 1-hot chain masking patterns, the tool reports the following error message:

// Error: Chain diagnosis requires failed 1-hot chain masking patterns
// to identify faulty chain(s).
// Missing failing chain patterns could be the result of an
// intermittent chain defect. In some cases, re-running the chain
// tests at a different test corner could result in more
// predictable defect behavior.

If the tool determines that the 1-hot chain masking patterns were truncated, the tool reports the
following error message:

// Error: Chain diagnosis requires all 1-hot chain patterns to be tested
// to correctly identify faulty chain(s).
// Failure log file contains truncated chain test that does not
// meet this criteria.

Long Logic Diagnosis Runtimes
For logic diagnosis, several factors can account for long runtimes.
These factors are:

• Gate count.

• Number of patterns read in for diagnosis.

• Length of the failure file.

• Split capture and clock-off simulation enabled during ATPG, which may double the
diagnosis processing time.

• Capture has long sequences of sequential events.

To minimize runtimes, consider the following:

• If you are not performing chain diagnosis, you may not need a long failure file. Check
the failure file to see how many failing cycles it contains.

• During the test, you may know that you can only capture failures up to a certain pattern.
In the failure file, use a keyword to define the last pattern tested (for pattern-based
failure files) or last cycle applied (for cycle-based failure files). Without keywords, the
tool simulates all the remaining patterns and assumes they passed the test.

• Use the Tessent Diagnosis pattern sampling feature.

• On the ATE, first apply a stuck-at pattern and then an at-speed pattern.

Diagnosis Reporting and Troubleshooting
Long Logic Diagnosis Runtimes

Tessent™ Diagnosis User’s Manual, v2022.4 173

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• For processing volume diagnosis, use Tessent Diagnosis server to process patterns in
parallel.

For chain diagnosis, consider the following factors for runtimes:

• Diagnosing intermittent faults takes longer than diagnosing permanent faults.

• Diagnosing multiple faulty chains takes longer than diagnosing single fault chains.

• Diagnosing multiple faults per chain takes longer than diagnosing single faults per
chain.

• Diagnosing scan chains with clock/scan_enable takes longer than diagnosing scan
chains only.

• Diagnosing long chains takes longer than diagnosing short chains.

To minimize runtimes, consider the following:

• Do not skip pattern verification. Pattern verification not only guarantees the correct
patterns, it also precalculates some data that can speed up chain diagnosis. Additionally,
you can use a startup cache to save time upon reinvocation of the tool.

• Preferably, run chain diagnosis with EDT enabled rather than in bypass mode.

• Use the appropriate number of scan patterns (between 100 and 1000). If the pattern
number is too small, the tool may have to simulate too many cells. If the pattern number
is too large, the tool has to simulate too many patterns.

Tessent™ Diagnosis User’s Manual, v2022.4174

Diagnosis Reporting and Troubleshooting
Long Logic Diagnosis Runtimes

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Diagnosis User’s Manual, v2022.4 175

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
Layout-Aware Diagnosis and Reporting

The layout-aware diagnosis flow uses your design’s LEF/DEF files to create a Layout Database
(LDB) on which you perform diagnosis and reporting. Using the layout-aware flow, you can
view the diagnosis results in Calibre DESIGNrev, or in a third-party layout viewer.
Layout-Aware Diagnosis Flow . 177

Layout Database . 178
Layout-Aware Diagnosis Requirements and Limitations. 179
Diagnosis Output Files . 180

Layout Verification and Layout Database Creation Process . 181
Performing Layout Verification and LDB Creation . 181
Estimation of Resources Required for Generating LDBs. 185
Layout Database Compression and Decompression. 186
Parallel Operations With the Same LDB . 187

Layout Verification Reporting . 188
Example Layout Verification Report Format . 188
Layout Verification Report Details. 192
Rules That Directly Impact the Match Percentage . 199

Layout and Design Mismatch Debugging . 200
Suggested Flow for Debugging Layout Verification Report Undefined Cell Instances . . 201
Multiple Top DEF Files Debug . 202

Net Topology Extraction Debugging . 206
The Net Topology Extraction Transcript . 206
Debugging Net Topology Extraction Failures . 209

Layout-Aware Diagnosis . 216
Performing Layout-Aware Diagnosis with Tessent Diagnosis. 216
Diagnosis for Root Cause Deconvolution Analysis . 221
Diagnosis for Design for Manufacturability Analysis . 227
Cell-Aware Diagnosis. 243
Considerations for At-Speed Diagnosis . 252

Source/Sink Polygon Layout Markers for Open Diagnosis Suspects 253
Open Suspect Diagnosis and Layout Marker File Generation . 253
Using Calibre RVE to View Source/Sink Cell Polygons . 255

Guidelines for Viewing the Diagnosis Results in Calibre DESIGNrev. 259
Viewing Results in Pre-Calibre 2010.1 Software . 259
Viewing Results in Calibre 2010.1 or Newer Software . 264

Layout-Aware Diagnosis Reporting. 270
The Layout-Aware Diagnosis Report . 271

Tessent™ Diagnosis User’s Manual, v2022.4176

Layout-Aware Diagnosis and Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power and Ground Bridge Reporting . 281
Inter-Scan Cell Polygon Reporting for Chain Diagnosis . 282
Cell Bridge Port Diagnosis Reporting . 284

Layout-Aware Diagnosis and Reporting
Layout-Aware Diagnosis Flow

Tessent™ Diagnosis User’s Manual, v2022.4 177

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Flow
The layout-aware diagnosis flow consists of a series of sequential tasks starting with layout
verification and LDB creation, proceeding to layout verification reporting and mismatch
debugging, and ending with layout-aware diagnosis and reporting.
Figure 3-1 shows a high-level view of the following sequential tasks:

1. Layout Verification and Layout Database Creation Process

2. Layout Verification Reporting

3. Layout and Design Mismatch Debugging

4. Layout-Aware Diagnosis

5. Layout-Aware Diagnosis Reporting

Tessent™ Diagnosis User’s Manual, v2022.4178

Layout-Aware Diagnosis and Reporting
Layout Database

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-1. Layout-Aware Diagnosis Flow

Layout Database . 178
Layout-Aware Diagnosis Requirements and Limitations . 179
Diagnosis Output Files. 180

Layout Database
The LDB you create is a representation of the layout based on the input LEF and DEF files, and
your design’s flat model that the Tessent Diagnosis tool uses for diagnosis. You use this LDB
with Tessent Diagnosis in all subsequent layout-aware diagnosis steps.

Layout-Aware Diagnosis and Reporting
Layout-Aware Diagnosis Requirements and Limitations

Tessent™ Diagnosis User’s Manual, v2022.4 179

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, the LDB includes the following pre-extracted information for all nets in the design:

• All physical neighbors of the net.

• Net topology (net segments of the net).

Note
To ensure proper net topology extraction for net VIAs, during LEF/DEF generation specify
“do not flatten” for net VIAs.

For layout-aware diagnosis, the pre-extracted information stored in the LDB improves
performance and memory usage, particularly for extreme corner cases. Rather than recurring the
cost of processing physical information on the fly during volume diagnosis, you have a one-
time upfront cost for pre-extracting and storing this information.

By creating or opening an LDB with Tessent Diagnosis, you automatically enable layout-aware
diagnosis and reporting.

It is best practice to keep the LDB that Tessent Diagnosis generates on the local hard drive of
the workstation where the layout-aware diagnosis is running. There is a time penalty if Tessent
Diagnosis has to access the LDB over the network. This penalty applies to both the creation of
the LDB and its later usage.

LDB Encryption
You can encrypt the design and layout data within an existing LDB so that you can securely
send it to third parties (such as to foundries). The data within the LDB is encrypted such that it
cannot be decrypted. The only use should be for layout-aware diagnosis in the Tessent
environment.

Refer to the encrypt_layout command in the Tessent Shell Reference Manual for usage details.

Note
The encryption process is destructive in nature because once the names are removed, they
cannot be returned to the LDB. Keep a golden original copy of the LDB for archival

purposes.

Layout-Aware Diagnosis Requirements and
Limitations

To use layout-aware diagnosis, you must provide the standard diagnosis input files and LEF/
DEF files. Layout-aware diagnosis does not support at-speed diagnosis or MBIST diagnosis.

Tessent™ Diagnosis User’s Manual, v2022.4180

Layout-Aware Diagnosis and Reporting
Diagnosis Output Files

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Requirements
Layout-aware diagnosis requires the following files:

• Standard diagnosis input files — Includes design netlist, test patterns, and ATE failure
logs. See “Input File Requirements” for complete information.

• LEF/DEF files — Version 5.3 through 5.8, inclusive. You use the LEF/DEF files to
create the LDB for subsequent diagnosis by the tool. The tool creates the LDB from
these LEF and DEF files.

Limitations
The following Tessent Diagnosis functionality is not supported with layout-aware diagnosis:

• At-speed diagnosis — Layout-aware diagnosis does not apply to at-speed diagnosis. The
LEF/DEF-based layout marker file generation, however, does support at-speed—see
“Considerations for At-Speed Diagnosis.”

• MBIST diagnosis — No support.

Diagnosis Output Files
After performing layout-aware diagnosis, you can write out files that are compatible with
Calibre, Tessent Visualizer, and Tessent YieldInsight.

• Layout-aware report — An enhanced diagnosis report containing the specific layout
information of each suspect. See “Layout-Aware Diagnosis Reporting.”

• Suspect layout viewing and cross probing — Using Calibre® DRC result file syntax for
use with Calibre® DRC/Calibre® RVE™ and other layout tools and viewers to overlay
the Tessent Diagnosis results with the layout. You must have valid Calibre licenses in
order to view the layout markers in Calibre® DESIGNrev. See “Guidelines for Viewing
the Diagnosis Results in Calibre DESIGNrev.”

In addition, the Camelot CAD Navigation tool understands the diagnosis report. Special
options (‘-SHORT -XMAP v2lvs’) must be set in Tessent Diagnosis when writing out
diagnosis results to include the data needed by Camelot. These options are not active by
default.

• Schematic viewing — Tessent Visualizer can read the Tessent Diagnosis layout-aware
diagnosis report. Using this tool you can visualize the diagnosis report in Tessent’s
schematic viewing environment.

• Tessent YieldInsight — Tessent YieldInsight can read the Tessent Diagnosis layout-
aware diagnosis reports and display the results in a polygon viewer. See “Polygon
Layout Viewer Pane” in the Tessent YieldInsight User’s Manual.

Layout-Aware Diagnosis and Reporting
Layout Verification and Layout Database Creation Process

Tessent™ Diagnosis User’s Manual, v2022.4 181

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout Verification and Layout Database
Creation Process

Layout verification and LDB creation is a three-step phase Tessent Diagnosis performs when
you enter the create_layout command.

1. Verification phase — Verifies the LEF/DEF files and the design netlist before creating
the LDB. The tool reports the results of the verification in a summary, including specific
rule violations, just prior to creating the LDB.

If the layout and design percentage match is less than the abort threshold percentage that
you specified with the create_layout command, or less than the default percentage of
85%, you must manually address and fix the verification mismatches. For an extensive
discussion, see “Layout Verification Reporting.”

For net topology, the tool calculates the percentage of nets that it could successfully
trace. If the percentage is less than the abort threshold percentage that you specified with
the create_layout command, or less than the default percentage of 90%, you must fix the
net tracing issues.

In addition, the tool analyzes the vias and merges all LEF and DEF vias with the same
physical information under one via name. This results in consistent via naming in the
reports, which can improve the accuracy of RCD results. For more information, refer to
the applicable example for create_layout -adjust_vias in the Tessent Shell Reference
Manual.

To debug your verification results, see “Layout and Design Mismatch Debugging.” To
debug errors in net tracing, see “Net Topology Extraction Debugging.”

2. LDB Creation phase — Once validation is complete and the mismatch and net topology
percentages meet the requirements for the design, the tool creates a LDB.

3. Pre-extraction phase — After the tool has successfully created the LDB, it proceeds to
computing the bridge and net topology information, and writes out the pre-extracted
bridge and open defect information to the LDB.

Performing Layout Verification and LDB Creation . 181
Estimation of Resources Required for Generating LDBs . 185
Layout Database Compression and Decompression. 186
Parallel Operations With the Same LDB . 187

Performing Layout Verification and LDB Creation
During layout verification and LDB creation, you invoke Tessent Diagnosis with the flat model
of your design, and verify and create a LDB from your design’s LEF and DEF files. You
subsequently use this LDB during the normal diagnosis process.

Tessent™ Diagnosis User’s Manual, v2022.4182

Layout-Aware Diagnosis and Reporting
Performing Layout Verification and LDB Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For the following procedural example, suppose you have the following input files:

• my_flat_model — The flat model of the design.

• my_design_lef.lef — The LEF file for the design.

• my_design_def.def — The DEF file for the design.

Tip
During the design process, validate the LEF/DEF against the flat models of the cores prior
to generating the LDB. This makes it easier to debug any mismatch errors in the design’s

flat model, especially for large designs.

Tip
Prior to performing the process described in this section, run the analyze_layout_hierarchy
command as a one-time setup step. Refer to “Estimation of Resources Required for

Generating LDBs” on page 185.

Prerequisites
• You need a flat model and the LEF/DEF files.

Procedure
1. Invoke Tessent Shell, set the context to scan diagnosis, and specify the flat model.

Tessent_Tree_Path/bin/tessent -shell -logfile my_logfile

set_context patterns -scan_diagnosis

read_flat_model my_flat_model

2. Enter the create_layout command and specify the name you want to call the LDB, and
the input LEF and DEF files.

FAULT> create_layout my_layout_database -lef my_design_lef.lef
-def my_design_def.def

You can improve runtime performance by specifying the -threads and -min_threads
options. These options enable you to check out multiple licenses so that Tessent
Diagnosis can perform some create_layout tasks in parallel.

During verification, the tool tolerates the differences in escapes in instance pathnames
and net pathnames. To turn off tolerant name matching, specify create_layout with the
“-do_tolerant_match off” switch.

In addition, you can specify the create_layout “-compact on” switch to produce a
compact LDB. Refer to create_layout for important considerations.

Layout-Aware Diagnosis and Reporting
Performing Layout Verification and LDB Creation

Tessent™ Diagnosis User’s Manual, v2022.4 183

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tip
For maximum efficiency, run the create_layout command on a disk that is local to
the machine hosting the process. Additionally, because by default this command

reads the entire physical layout information into memory, you should run it on a
machine with sufficient physical memory.

3. Depending on the results as described below, you may need to debug errors before the
tool generates the LDB. For more information, refer to “Layout and Design Mismatch
Debugging” and “Net Topology Extraction Debugging.”

After debugging, you can proceed to “Layout-Aware Diagnosis.”

Results
The tool begins the verification process before creating the LDB:

// Note: Processing syntax check for LEF file my_design_lef.lef
// Note: Processing syntax check for DEF file my_design_def.def
// Note: Processing up-front validation for LEF file my_design_lef.lef
// Note: Processing up-front validation for DEF file my_design_def.def
// Note: Pre-DB Verifying Layout

The tool then returns information about the DEF hierarchy structure. For example, given a
hierarchy structure for the DEF files as shown in Figure 3-2, the transcript output is as shown
below.

Figure 3-2. DEF Hierarchy Tree Example

Tessent™ Diagnosis User’s Manual, v2022.4184

Layout-Aware Diagnosis and Reporting
Performing Layout Verification and LDB Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Start parsing DEF file 'a.def' (1. of 4) in mode \
// COMPLETE_DEF_READ_MODE
// DieArea: minx=-1.000000, miny=-1.000000, maxx=757.000000, \
// maxy=252.000000 in microns
// ---
// The TOP DESIGN A (file=a.def)
// DESIGN=A DIEAREA x1=-1000, y1=-1000, x2=757000, y2=252000, \
// file=a.def
// ---
//
// ---
// HIERARCHY STRUCTURE (COMPLETE_DEF_READ_MODE):
// ---
// DESIGN=A DIEAREA x1=-1000,y1=-1000,x2=757000,y2=252000,file=a.def
// DESIGN=B DIEAREA x1=0, y1=0, x2=367000, y2=180000, file=b.def
// DESIGN=C DIEAREA x1=0, y1=0, x2=187000, y2=70000, file=c.def
// DESIGN=D DIEAREA x1=0, y1=0, x2=330000, y2=140000, file=d.def
// ---
// SUB DEF B is placed in A as instance t1 (100000,0) N
// SUB DEF C is placed in A as instance t2 (500000, 66000) W
// SUB DEF C is placed in D as instance t1d (50000, 0) N
// SUB DEF C is placed in D as instance t2 (100000, 70000) S
// SUB DEF D is placed in B as instance t1b (20000, 30000) N
// --

At the conclusion of verification, the tool reports a summary of rule violations:
// Layout Rule Violation Summary
// Warning: Rule DesignNetMatch violated 2 times out of 5937 checks.
// Note: The command 'report_layout_rules' can be used for detailed
// information on rule violations

The tool generates an error if the match percentage match is less than the abort threshold
percentage that you specified with the create_layout command, or less than the default
percentage of 85%:

// Note: Processing LEF file my_design_lef.lef
// Note: Processing DEF file my_design_def.def
// DieArea: minx=-4.000000, miny=-4.000000, maxx=8881.687000,
// maxy=9328.000000 in microns
// 10% of the layout data has been processed, estimated remaining
// effort: 39.780 sec
...
// 100% of the layout data has been processed

Layout-Aware Diagnosis and Reporting
Estimation of Resources Required for Generating LDBs

Tessent™ Diagnosis User’s Manual, v2022.4 185

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Next, the tool extracts the bridges and net topology:
//--
// Reading physical information from LDB
//--
// Step 1 of 10 complete
// Step 2 of 10 complete
// …
// Completed reading physical information
// ---
// Starting bridge calculation (number of layers: 11)
// ---
// 10% of bridge calculation is complete
// 20% of bridge calculation is complete
// …
// Bridge calculation complete, writing results into layout defects
// database…
// Successfully calculated bridges for 11 layers
// ---
// Starting net topology calculation (number of nets: 10987)
// --
// 10% of net topology calculation is complete
// 20% of net topology calculation is complete
// …
// Net topology calculation complete, writing results into layout defects
// database…
// Successfully calculated net topology for 10985 out of 10987 nets
SETUP>

Estimation of Resources Required for Generating
LDBs

Prior to specifying the create_layout command to create an LDB, you can estimate the resources
required for the LDB generation process. Do this by specifying the analyze_layout_hierarchy
command.
Specify the analyze_layout_hierarchy command once as a setup step prior to loading the flat
model and pattern files, and specifying create_layout. The command generates a layout
hierarchy database that stores the layout hierarchy of the LEF/DEF designs.

After analyzing the layout hierarchy, the tool can estimate the resources required to create the
LDB—full design LDB or chip-mapped core LDB—based on the information extracted from
the LEF/DEF files. This helps you ensure that you have the proper resources for LDB creation.

Tessent™ Diagnosis User’s Manual, v2022.4186

Layout-Aware Diagnosis and Reporting
Layout Database Compression and Decompression

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To view the resource estimation, specify the report_layout_hierarchy command. The generated
report includes a section with the resource estimations. For example:

// LDB resource estimation for design ls169 with 75 nets.
// ---
// LDB resource estimation | Verbose | Compact
// ------------------------------------+-----------+--------------
// Estimated LDB creation time (hrs) | 0.20 | 0.10
// Estimated LDB file size (GB) | 3.00 | 1.50
// Estimated peak RAM (GB) | 2.50 | 2.50
//
// Note: Estimation calculation assumes 'create_layout -threads 16' to
create layout database (recommended).

In addition to resource estimation, use the analyze_layout_hierarchy command for the
following tasks:

• Debugging DEF files — During analysis of the LEF/DEF designs, the
analyze_layout_hierarchy issues an error if there is more than one top DEF module.
Refer to “Multiple Top DEF Files Debug” on page 202.

• Optimizing chip-mapped core-level LDB generation time — The existence of the layout
hierarchy database enables the tool to generate LDBs for cores without reprocessing all
of the LEF/DEF designs. Refer to “Core-Level Layout-Aware Diagnosis” on page 290.

Layout Database Compression and Decompression
By default, Tessent Diagnosis creates an uncompressed LDB when you create the database with
the create_layout command. Several create_layout options allow you to control Tessent
Diagnosis LDB compression operations.
Use the following create_layout options to control LDB compression operations:

Note
Compressed LDBs may increase processing times when you are running many parallel
diagnosis jobs that are accessing the same LDB. Some jobs may hang when querying the

LDB.

• -temp_directory directory option — Specifies an alternative location to store the
uncompressed LDB during the database creation. The default location is the working
directory. When you specify this switch and associated string, the tool writes the
uncompressed LDB to the location and, after successful compression, deletes the
uncompressed LDB.

• -compression on | off option — Specifies whether the tool compresses the LDB. The
default is OFF. With LDB compression, the size of the database on disk can be reduced
up to 70 percent. You can subsequently use the open_layout command to access the
compressed LDB for running layout-aware diagnosis.

Layout-Aware Diagnosis and Reporting
Parallel Operations With the Same LDB

Tessent™ Diagnosis User’s Manual, v2022.4 187

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -keep_uncompressed_database option — Specifies that the tool retains a copy of the
uncompressed LDB as well as a compressed version of the LDB.

Database compression is not synonymous with file compression—for example, using the UNIX
gzip command. Database compression is a fundamental re-structuring of the database,
producing a file that is smaller but contains the same level of information. Its use is
recommended when large file sizes pose a concern.

If you compress the files within an LDB using a file compression utility such as gzip, Tessent
Diagnosis cannot open the database and it turns off the layout-aware diagnosis.

Tessent Diagnosis provides the following two commands you can use to compress or
decompress a LDB outside of the layout-aware database creation operation:

• compress_layout

• uncompress_layout

Note
To use these commands, you must first open the LDB using the open_layout
command.

Parallel Operations With the Same LDB
After you have created a LDB, you can perform several operations in parallel in different tool
sessions.
These operations are:

• Verify various flat models.

• Create designs constants for root cause deconvolution (RCD) for different flat model/
pattern set pairs.

• Verify a flat model and run layout aware diagnosis on a different flat model.

Create design constants for RCD and run layout aware diagnosis on a different flat model/
pattern set pair.

Tessent™ Diagnosis User’s Manual, v2022.4188

Layout-Aware Diagnosis and Reporting
Layout Verification Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout Verification Reporting
Layout verification automatically occurs when you create a new LDB with the create_layout
command or open a previously-created LDB with the open_layout command.
Before creating the LDB, Tessent Diagnosis performs layout verification using a rules-based
approach. Tessent Diagnosis creates the LDB if the design and layout match percentage is
greater than the abort threshold percentage that you specified with the create_layout command,
or greater than the default percentage of 85%. Otherwise, the tool halts processing.

The tool checks for and reports rule violations and mismatches. In addition, the tool checks the
consistency of the LEF/DEF files. The following provides a summary of the major rule
categories the tool uses to check the consistency of the LEF/DEF files before creating the LDB.

• Chip Boundary Rules

• Instance Rules

• Layer Definition Rules

• Net Rules

• Taper Rules

• Via Definition Rules

• Macro Definition Rules

Example Layout Verification Report Format. 188
Layout Verification Report Details . 192
Rules That Directly Impact the Match Percentage . 199

Example Layout Verification Report Format
Upon completion of the layout-verification step, Tessent Diagnosis prints to stdout summaries
of the library cell instance mismatches and layout rule violations, and a mismatch report.
Consider a design with the following hierarchy that consists of four modules: M0, M1, M2, and
M3. The smaller yellow symbols represent library cell instances.

Layout-Aware Diagnosis and Reporting
Example Layout Verification Report Format

Tessent™ Diagnosis User’s Manual, v2022.4 189

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-3. Example Design for Layout Verification Report

Example 1
Suppose you have specified:

FAULT> create_layout MY_LDB
-def top.def M1.def M2.def <-- M3 DEF file not provided
-lef or.lef and.lef <-- LEF for not cell not provided

The resulting report looks as follows. Each section is described in section “Layout Verification
Report Details,” but at a high-level you can see that the Mismatch Report shows that there are 3
undefined design cell instances that, according to the Layout Rule Violation Summary, are due
to two DesignInstanceMatch rule violations and one MacroExistence rule violation error.

In addition, the “Design Cell Instance Mismatches Summarized by Design Modules” section
provides a breakdown of the mismatches. In this section you can see that module M0 is the
source of the MacroExistence error, and module M3 is the source of the two
DesignInstanceMatch errors.

Tessent™ Diagnosis User’s Manual, v2022.4190

Layout-Aware Diagnosis and Reporting
Example Layout Verification Report Format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Design Cell Instance Mismatches Summarized by Design Modules
// (Note: Each row in the table breaks down the design cell instance
// (count in a module into various buckets)
// (Note: The counts in the various columns are aggregated over all
// instances of the module in the design)
// Module Name, Number of Instances of Module in the Design, Design Cell
Instances Included in Reporting, Mismatch due to DesignInstanceMatch,
Mismatch due to MacroExistence
// TOP,0,0,0,0
// M1,2,4,0,0
// M0,1,3,0,1
// M2,2,6,0,0
// M3,2,2,2,0
// Column Sums,-,15,2,1
// End of Design Cell Instance Mismatches Summarized by Design Module
//
…
// Layout Rule Violation Summary
// Warning: Rule DesignInstanceMatch violated 2 times out of 15 checks.
// Warning: Rule MacroExistence violated 1 out 15 checks.
//
// Mismatch Report
// 3 (20.00%) design cell instances undefined (DesignInstanceMatch
rule, MacroExistence rule)
// 12 (80.00%) design cell instances matched with layout (common
area)
// ------------------------
// 15 total number of design cell instances
//
// 6 (37.50%) nets at the boundary of common area (MacroExistence
rule, DesignInstanceMatch rule)
// 10 (62.50%) nets matched with layout
// ------------------------
// 16 total number of design nets
//
// Warning: Design and layout only match to 62.50%
// Mismatch may result in incomplete layout aware diagnosis.
//

Example 2
Now suppose you have specified the following:

FAULT> create_layout MY_LDB
-def top.def M3.def <-- M1 and M2 DEF files not provided
-lef M1.lef M2.lef <-- M1 and M2 are LEF macros instead
-lef or.lef and.lef not.lef

The resulting report looks as follows. You can see that there is a new data point in the “Design
Cell Instance Mismatches Summarized by Design Modules” section called “Mismatches due to
DesignModuleCell” with a total of 12 mismatches that correspond to the 12 undefined design
cell instances in the mismatch report.

Layout-Aware Diagnosis and Reporting
Example Layout Verification Report Format

Tessent™ Diagnosis User’s Manual, v2022.4 191

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DesignModuleCell mismatches generate an additional section in the report called “Information
mismatches due to DesignModuleCell violations” that is described in detail in “Layout
Verification Report Details.”

// Design Cell Instance Mismatches Summarized by Design Modules
// (Note: Each row in the table breaks down the design cell instance
// (count in a module into various buckets)
// (Note: The counts in the various columns are aggregated over all
// instances of the module in the design)
// Module Name, Number of Instances of Module in the Design, Design Cell
Instances Included in Reporting, Mismatch due to DesignModuleCell
// TOP,0,0,0
// M1,2,4,4
// M0,1,3,0
// M2,2,6,6
// M3,2,2,2
// Column Sums,-,15,12
// End of Design Cell Instance Mismatches Summarized by Design Module
/
// Information on mismatches due to
DesignModuleCell violations
// Module Name with Design Module Cell Violation, Mismatch due to this
module
// M1,6
// M2,6
// Column Sum,12
// End of Information on mismatches due to DesignModuleCell violations
//
…
// Layout Rule Violation Summary
// Warning: Rule DesignModuleCell violated 2 times out of 4 checks.
// Warning: Rule DesignInstanceMatch violated 12 times out of 15 checks.
//
// Mismatch Report
// 12 (80.00%) design cell instances undefined (DesignInstanceMatch
rule)
// 3 (20.00%) design cell instances matched with layout (common
area)
// ------------------------
// 15 total number of design cell instances
//
// 10 (62.50%) nets outside of common area (DesignInstanceMatch
rule)
// 4 (25.00%) nets at the boundary of common area (MacroExistence
rule, DesignInstanceMatch rule)
// 2 (12.50%) nets matched with layout
// ------------------------
// 16 total number of design nets
//
// Warning: Design and layout only match to 12.50%
// Mismatch may result in incomplete layout aware diagnosis.
//
…

Tessent™ Diagnosis User’s Manual, v2022.4192

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout Verification Report Details
The layout verification report consists of five sections that provide information about design-
versus-layout mismatches and rule violations.
As shown in section “Example Layout Verification Report Format,” the main elements of the
report, in order, are:

1. Design Cell Instance Mismatches Summarized by Design Modules

2. Information on Mismatches Due to DesignModuleCell Violations

3. Layout Rule Violation Summary

4. Mismatch Report

5. Design and Layout Match Percentage

Design Cell Instance Mismatches Summarized by Design Modules 192
Information on Mismatches Due to DesignModuleCell Violations. 195
Layout Rule Violation Summary . 196
Mismatch Report . 196
Design and Layout Match Percentage . 198

Design Cell Instance Mismatches Summarized by Design
Modules

The first section in the layout verification report is titled “Design Cell Instance Mismatches
Summarized by Design Modules.” This section provides details about library cell instance
mismatches broken down by root cause and module.
The report presents this information in a CSV-style table. Each row in the table breaks down the
design cell instance count in a module into various buckets. The counts in the various columns
are aggregated over all instances of the module in the design.

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Tessent™ Diagnosis User’s Manual, v2022.4 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Example 1 report in section “Example Layout Verification Report Format” shows:

// Design Cell Instance Mismatches Summarized by Design Modules
// (Note: Each row in the table breaks down the design cell instance
// count in a module into various buckets)
// (Note: The counts in the various columns are aggregated over all
// instances of the module in the design)
// Module Name, Number of Instances of Module in the Design, Design Cell
Instances Included in Reporting, Mismatch due to DesignInstanceMatch,
Mismatch due to MacroExistence

// TOP,0,0,0,0
// M1,2,4,0,0
// M0,1,3,0,1
// M2,2,6,0,0
// M3,2,2,2,0
// Column Sums,-,15,2,1
// End of Design Cell Instance Mismatches Summarized by Design Modules

As shown in bold above, the report lists the column headers for the comma-separated data that
follows. Each row in the table applies to one higher level module. The Column Sums line in the
table lists the mismatch count due to each root cause summed over all the modules.

The following table describes the columns that can appear in a report. If a rule is not violated, its
corresponding column does not appear in the report.

Table 3-1. Design Cells Instance Mismatches Summarized by Design Modules
Table Columns

Column Name Column Description
Module Name Name of the non-library cell module for which data is

reported in the current line.
Number of Instance of Modules in
the Design

The number of times the current module is instantiated
in the entire design. The top module is given an instance
count of 0. For example, M1 is instantiated twice in the
design shown in Figure 3-3. Module M0 is instantiated
once.

Design Cell Instances Included in
Reporting

The number of library cell instances in the current
module that are matched against LEF/DEF given that:

• This number is counted only for the current module
and not for any other non-library cell modules
instantiated in the current module.

• The count is aggregated over all the instances of the
current module in the design.

For example, in Figure 3-3 the counts are: M0=3, M1
=2x2=4, M2=2x3=6, and M3=2x1=2.

Tessent™ Diagnosis User’s Manual, v2022.4194

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Missing DEF Files
The Design Cell Instance Mismatches Summarized by Design Modules section of the layout
verification report can help you quickly identify missing DEF files. For example, consider
module M3 in the Example 1 report.

// Module Name, Number of Instances of Module in the Design, Design
Cell Instances Included in Reporting, Mismatch due to
DesignInstanceMatch, Mismatch due to MacroExistence
...
// M3,2,2,2,0
...

The data tells you that there are two instances of this module in the design, a total of two library
cell instances included in the report (because M3 contains one instance of a library cell), and
that neither of these instances were found in the LEF/DEF (DesignInstanceMatch violations).
Given this, there is a high probability that the entire definition of M3 is missing.

Missing LEF Macros
Now consider the scenario in which a LEF macro that is specified for a gate type is not specified
in the create_layout command. In the Example 1 report, this applies to the not gate and the
column header “Mismatch due to MacroExistence” is displayed in the report. The report shows
that this results in a library mismatch error for a M0 library cell instance.

Mismatch due to
DesignInstanceMatch

The number of library cell instances in the current
module that are not found in LEF/DEF. The tool
aggregates this count over all the instances of the current
module in the design.

Mismatch due to MacroExistence The number of library cell instances in the current
module that match with DEF but the corresponding LEF
macro for the instance is not defined. The tool
aggregates this count over all the instances of the current
module in the design.

Mismatch due to DesignModuleCell The number of library cell instances in the current
module that do not match DEF because of a
DesignModuleCell violation. A DesignModuleCell
violation occurs when a non-library cell module in the
design is defined as a LEF macro instead of a DEF
design in LEF/DEF. The tool aggregates this count over
all the instances of the current module in the design.

Table 3-1. Design Cells Instance Mismatches Summarized by Design Modules
Table Columns (cont.)

Column Name Column Description

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Tessent™ Diagnosis User’s Manual, v2022.4 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Module Name, Number of Instances of Module in the Design, Design Cell
Instances Included in Reporting, Design due to DesignInstanceMatch,
Mismatch due to DesignModuleCell, Mismatch due to MacroExistence
 ...
// M0,1,3,0,1
...

Information on Mismatches Due to DesignModuleCell
Violations

Mismatches can occur when a non-library cell module in the design is defined as a LEF macro
instead of a DEF design in LEF/DEF. These violations are called DesignModuleCell violations.
The second section of the layout verification report, “Information on mismatches due to
DesignModuleCell violations,” reports the contribution of each DesignModuleCell violation to
the overall undefined cell instance count.
This section displays in the report only when layout verification results in DesignModuleCell
violations.

As shown below, the snippet from the Example 2 report in section “Example Layout
Verification Report Format” consists of the following two columns:

• Module Name with Design Module Cell Violation — Specifies the name of the design
module that is specified as a LEF macro instead of a DEF design.

• Mismatch due to this module — Lists the library cell instances that do not match in the
LEF/DEF due to the DesignModuleCell violation of the current module. The tool arrives
at this number by first summing the library cell instance counts in the current module
and recursively traversing down the hierarchy to all its children, except those that
themselves have a DesignModuleCell violation. Next it multiplies this sum by the
number of instances of the current module in the entire design.

// Information on mismatches due to DesignModuleCell violations
// Module Name with Design Module Cell Violation, Mismatch due to this
module
// M1,6
// M2,6
// Column Sum,12
// End of Information on mismatches due to DesignModuleCell violations

Design Modules Defined as LEF Macros
The Example 2 report shows that all 12 undefined design cell instances are due to
DesignModuleCell violations. The table shown above breaks down the violations by each
violation of the DesignModuleCell rule. Modules M1 and M2 contain this violation. The M1
violation results in 6 cell instances being undefined (2 cell instances in M1 plus 1 cell instance
in M3 multiplied by 2, the number of instances of M1 in the entire design).

Tessent™ Diagnosis User’s Manual, v2022.4196

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The library cell instances in M2 are not included in the table because M2 itself has a
DesignModuleCell violation.

Similarly, the M2 violation also results in 6 undefined cells (3 cell instances in M2 multiplied
by 2, the number of instances of M2 in the entire design). From these results, you can conclude
that the design modules for M1 and M2 were defined as LEF macros rather than DEF designs.

Layout Rule Violation Summary
The third section of the layout verification report consists of the Layout Rule Violation
Summary.
Consider the Example 1 report in section “Example Layout Verification Report Format.” The
Layout Rule Violation Summary displays as follows:

// Layout Rule Violation Summary
// Warning: Rule DesignInstanceMatch violated 2 times out of 15 checks.
// Warning: Rule MacroExistence violated 1 out 15 checks.

The summary correlates to the Column Sums line near the end of the “Design Cell Instance
Mismatches Summarized by Design Modules” section as follows:

...
// Module Name, Number of Instances of Module in the Design, Design Cell
Instances Included in Reporting, Mismatch due to DesignInstanceMatch,
Mismatch due to MacroExistence
// TOP,0,0,0,0
// M1,2,4,0,0
// M0,1,3,0,1
// M2,2,6,0,0
// M3,2,2,2,0
// Column Sums,-,15,2,1
// End of Design Cell Instance Mismatches Summarized by Design Modules
...

• The column sum for Mismatch due to DesignInstanceMatch shows 2, which displays as
the first warning in the summary.

• The column sum for Mismatch due to MacroExistence shows 1, which displays as the
second warning in the summary.

Mismatch Report
After the layout rule violation summary, the tool issues a layout verification mismatch report to
stdout.
The following figure illustrates a layout verification mismatch report. (This example does not
correspond to a previously illustrated example.) The layout verification mismatch report

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Tessent™ Diagnosis User’s Manual, v2022.4 197

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

summarizes the contribution of the missing design net or library cell instances creating an
overall mismatch between design and layout.

Figure 3-4. Layout Verification Mismatch Report Example

The mismatch report contains the following sections:

• The first section provides details about the library cell instance mismatches.

• The second section contains information about net mismatches.

• The end of the mismatch report displays the overall percentage match between the
design and layout. Refer to “Design and Layout Match Percentage” for details and
“Layout and Design Mismatch Debugging” for information about how to raise this
percentage.

In general, if the layout information for a design net or library cell instance is missing, then this
directly impacts diagnosis.

Layout Rule Violations Related to Library Cells
The verification process checks that all the library cell instances in the design can be found in
the layout. If the tool cannot find a cell instance in the layout then it is considered a mismatch.

Library cell instances in the design do not have corresponding layout information if:

• They are outside the hierarchy (specifically, outside of the topmost common module).
This is due to underlying hierarchical factors.

Tessent™ Diagnosis User’s Manual, v2022.4198

Layout-Aware Diagnosis and Reporting
Layout Verification Report Details

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• They are undefined in the layout. This can be due to two reasons:

o If a design cell instance is missing from the layout as indicated by
DesignInstanceMatch violations.

o If a design cell instance exists in the layout, however, the corresponding LEF macro
is not defined as indicated by violations of the MacroExistence rule.

Layout Rule Violations Related to Nets
Several layout rule violations related to nets can impact diagnosis results.

• Nets outside of common area — The common area is defined as that part of the design
that is in common with the layout. Ideally, the common area should be the entire design;
however, in practice, the common area may be a subset of the design.

If the common area is smaller than the design, then no layout information is available for
nets outside of the common area. The common area is generally smaller than the design
due to hierarchy level differences and design instances missing in the layout
(specifically, violations of the DesignInstanceMatch or MacroExistence rule).

• Nets at the boundary of common area — If a net is connected to a pin that is not in the
common area, then the layout information on such a net is incomplete. The common
area is generally smaller than the design due to hierarchy level differences and design
instances missing in the layout (specifically, violations of the DesignInstanceMatch or
MacroExistence rule).

• Nets not found in layout — This is indicated by violations of the DesignNetMatch rule.

• Nets with pin mismatch — If the pins connected to a net in design do not match the pins
connected to the corresponding net in the layout then the layout information for this net
cannot be used. This situation is indicated by violations of the DesignNetPinMatch or
LayoutNetPinMatch rule.

• Nets with pins undefined — Nets that are connected to library cell instances that have a
DesignCellPinMatch violation have incomplete layout information.

Design and Layout Match Percentage
The last line of the mismatch report shows the design and layout match as a percent.
For example:

// Note: Design and layout match to 99.97%

This number tells you how well the design in the flat model and the LEF/DEF physical layout
match each other. The lower the percentage match, the greater the chance that the diagnosis
results may not correlate with physical data. For this reason, Tessent Diagnosis automatically

Layout-Aware Diagnosis and Reporting
Rules That Directly Impact the Match Percentage

Tessent™ Diagnosis User’s Manual, v2022.4 199

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

aborts LDB creation if this percentage is less than the abort threshold percentage that you
specified with the create_layout command, or less than the default percentage of 85%.

If the match percentage is less than 100 percent, you could end up with suspects that do not have
any layout data. Therefore, you must ensure that the design and layout match is as close to 100
percent as possible.

Note
After the create_layout command’s layout verification stage is complete, you can interrupt
the LDB creation by issuing a Ctrl-C in the invocation shell.

See section “Layout and Design Mismatch Debugging” for debugging tips that can help you
improve your match percentage.

Rules That Directly Impact the Match Percentage
Several layout rules directly impact the layout and design match percentage, and you must
ensure they are clean before proceeding with diagnosis.
For details about debugging mismatch errors, see “Layout and Design Mismatch Debugging.”

Figure 3-1 lists the layout rules that directly impact the match percentage.

lists the layout rules that directly impact the match percentage.

Refer to “Layout-Aware Diagnosis Layout Verification Rules” for detail information about the
layout verification rules.

Table 3-2. Layout Rules that Matter for Diagnosis
Rule Comments
DesignInstanceMatch All instances in the design (library cell instances as well as

higher level instances) must exist in the layout.
MacroExistence A specified component must use a macro that is defined in the

specified LEF files.
DesignNetMatch All design nets must exist in layout

The net layout information must be complete (no boundary nets)
DesignNetPinMatch All pins connected to a net in design must match those in layout
LayoutNetPinMatch
DesignCellPinMatch

Tessent™ Diagnosis User’s Manual, v2022.4200

Layout-Aware Diagnosis and Reporting
Layout and Design Mismatch Debugging

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout and Design Mismatch Debugging
The basic debugging strategy is to fix rule violations and exclude LEF/DEF design blocks that
are missing from the physical layout.
Fix Rule Violations. In general, you use the following approach to debug, fix, and verify
mismatches caused by rule violations:

• View mismatch report to determine the specific rule violations—see “Layout-Aware
Diagnosis Layout Verification Rules” for complete rule descriptions.

o First debug low instance match number.

o Then debug any remaining net problems.

• Look at other rule violations for clues.

• LEF/DEF is normally generated automatically; look for systemic issues.

• Repeat the LDB verification and LDB creation step using the create_layout command.

See “Layout Verification Examples” for step-by-step examples of debugging verification
issues.

Exclude LEF/DEF Design Blocks. In some cases, the LEF/DEF may not exist for some design
blocks. In these cases, you have no option but to exclude these design blocks from verification.
The report_layout_rule command enables you to exclude design blocks that do not have a match
in the physical layout.

In the following example, Tessent Diagnosis stops processing because the match percentage is
only 82.03%, which is below the default threshold of 85%. After reviewing the mismatch
report, you exclude the cpu_edt and the block06 design blocks from verification, which
improves the match percentage up to 99.85%. Then, you re-run create_layout with a lower
threshold setting, knowing that although the match for the entire design is low, it is acceptable
when you exclude blocks you have determined can be excluded.

Layout-Aware Diagnosis and Reporting
Suggested Flow for Debugging Layout Verification Report Undefined Cell Instances

Tessent™ Diagnosis User’s Manual, v2022.4 201

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ANALYSIS> create_layout design.ldb -def design_top.def -lef lib.lef
...
// Mismatch Report
// ...
// Warning: Design and layout only match to 82.03%
// Mismatch may result in incomplete layout aware diagnosis.
//
// Error: The percentage match between the design and layout is lower
// than the threshold of 85.00%
// Due to this low match between design and layout verification
// will abort.
// This threshold can be lowered using the -threshold switch.
// ...
ANALYSIS> report_layout_rules -mismatch_report
// ...
// Warning: Design and layout only match to 82.03%
// Mismatch may result in incomplete layout aware diagnosis.
//
ANALYSIS> report_layout_rules -mismatch_report -exclude cpu_edt
// ...
// Warning: Design and layout only match to 90.82%
// Mismatch may result in incomplete layout aware diagnosis.
//
ANALYSIS> report_layout_rules -mismatch_report -exclude cpu_edt block06
// ...
// Note: Design and layout match to 99.84%
//
ANALYSIS> create_layout design.ldb -def design_top.def -lef lib.lef -
threshold 70 -replace
// ...
// Warning: Design and layout only match to 82.03%
// Mismatch may result in incomplete layout aware diagnosis.
//
// ...
// Note: Violations database opened successfully.
// Note: Created layoutDB (layout.ladb)

Suggested Flow for Debugging Layout Verification Report Undefined Cell Instances 201
Multiple Top DEF Files Debug. 202

Suggested Flow for Debugging Layout Verification
Report Undefined Cell Instances

The main debugging strategy consists of debugging and fixing mismatches caused by rule
violations and excluding (or including) missing design blocks from the reporting.
You can use the following flow to help you debug undefined cell instances in the layout
verification report:

1. Under “Design Cell Instance Mismatches Summarized by Design Modules,” review the
breakdown of the undefined cell instances by root cause: MacroExistence,
DesignModuleCell or DesignInstanceMatch in the Column Sums line.

Tessent™ Diagnosis User’s Manual, v2022.4202

Layout-Aware Diagnosis and Reporting
Multiple Top DEF Files Debug

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. For MacroExistence violations, retrieve the details using the following command:

report_layout_rules MacroExistence

Find and fix the unspecified LEF macros, prioritizing the macros according to those
with the most number of violations.

3. Under “Information on mismatches due to DesignModuleCell violations,” review the
breakdown for the DesignModuleCell violations and specify the DEF files for violating
modules, prioritizing them by their impact on the undefined cell count. Correct the
violations in the LEF files and identify the missing DEFs. For details, use
report_layout_rule designModuleCell.

4. For DesignInstanceMatch violations, check the modules listed under “Design Cell
Instance Mismatches Summarized by Design Modules” for those in which the number
of Mismatch due to DesignInstanceMatch violations is equal to the number of Design
Cell Instances Included in Reporting. This indicates that the DEF files corresponding to
the modules could be missing.

See section “Guidelines for Including or Excluding Design Modules From Mismatch
Reporting” for more about including or excluding missing design blocks.

5. Once the missing DEF files have been identified, debug the remaining
DesignInstanceMatch violations in various modules prioritized by their contribution to
the total undefined cell count.

Multiple Top DEF Files Debug
To create an LDB you should only have one top DEF module. The existence of multiple top
modules causes the tool to stop the verification process and indicates an error in the list of DEF
files you specified with the create_layout command.
To verify that you have only one top DEF module, prior to executing create_layout, specify the
analyze_layout_hierarchy command. This command generates a layout hierarchy database.
However, the layout hierarchy database is only created if one top DEF module exists. When
there are multiple top DEF modules, the tool produces reports for each top module and issues an
error.

To fix the issue, you must identify the DEF files that are missing or unnecessary. The following
sections describe scenarios that could result in multiple top module definitions.

Missing DEF Files
In the figure below, the DEF_C file was missing from the list of DEF files, which results in a
secondary top file, DEF_D1. To complete the design, you would need to provide the DEF_C
file.

Layout-Aware Diagnosis and Reporting
Multiple Top DEF Files Debug

Tessent™ Diagnosis User’s Manual, v2022.4 203

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-5. Missing DEF Files

In this case, allowing the tool to ignore all but the TOP_BLOCK would lead to an incomplete
LDB. This is especially true in cases where each module also has a corresponding LEF macro
definition (that should have been overridden by the missing DEF).

Unnecessary DEF Files
In the following figure, DESIGN_A and DESIGN_B use a common set of sub-DEF files. Each
top module is valid, but for the purposes of creating the LDB you need to remove one top design
by removing the DESIGN_B.def and DEF_X.def files.

Figure 3-6. Multiple Top DEF Files

The Top Module Report
The top module report provides information about the DEF files that are associated with each
top design. You can use this information to help you pinpoint missing DEF files or extra DEF
files that are causing you to have multiple top-level DEF modules.

Tessent™ Diagnosis User’s Manual, v2022.4204

Layout-Aware Diagnosis and Reporting
Multiple Top DEF Files Debug

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For each top DEF design that the tool finds, it reports a list of sub-DEFs instantiated by the top
DEFs, the full pathnames for the DEF modules, and a list of DEFs that you can use with
create_layout to instantiate only that DEF. Because this report is produced for every top
module, you can decide whether the DEF files for the desired top module are relevant and
complete with respect to the design.

The report is divided into three sections. The first section reports the unique modules at each
level of hierarchy and the number of instantiations of that module within its immediate parent.
For example, in the following report, TOP_DEF_A instantiates DEF_A_3 three times, and
DEF_A_3 instantiates DEF_A1_6 six times.

// --

// --

// Top module (1 of 2) : TOP_DEF_A

// DIEAREA x1=-1000, y1=-1000, x2=757000, y2=600000

// --

// --

// MODULE NAME TREE | #INSTANCES IN PARENT MODULE

// -------------------+----------------------------

// TOP_DEF_A | --

// DEF_A_3 | 3

// DEF_A1_6 | 6

// DEF_A2_17 | 17

// DEF_B1_5 | 5

// DEF_A2_17 | 17

// DEF_B2_3 | 3

// DEF_B_4 | 4

// DEF_B1_5 | 5

// DEF_A2_17 | 17

// DEF_B2_3 | 3

// DEF_C1_9 | 9

// DEF_B2_3 | 3

// DEF_C2_9 | 9

// DEF_C_2 | 2

// DEF_A1_6 | 6

// DEF_A2_17 | 17

// DEF_B1_5 | 5

// DEF_A2_17 | 17

// DEF_B2_3 | 3

// DEF_D1_4 | 4

// DEF_C2_9 | 9

// DEF_D2_5 | 5

The second section of the report lists the DEF modules that comprise the top block and paths to
their DEF file definitions. For each DEF module, the tool also reports the number of
instantiations of the module in the design, the number of nets and components for each module,
and the die area for each module.

Layout-Aware Diagnosis and Reporting
Multiple Top DEF Files Debug

Tessent™ Diagnosis User’s Manual, v2022.4 205

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// ---

// MODULE NAME | TOTAL | #COMPONENTS | #NETS | DIEArea | FILENAME

// | #INSTANTIATIONS | IN MODULE | IN MODULE | in um |

// | IN DESIGN | | | |

// ------------+-----------------+-------------+------------+-----------+---------------

// TOP_DEF_A | 1 | 1 | 3 | 50 x 60 | TOP_DEF_A.def

// DEF_A_3 | 3 | 1 | 3 | 50 x 60 | DEF_A_3.def

// DEF_A1_6 | 30 | 3 | 3 | 50 x 60 | DEF_A1_6.def

// DEF_A2_17 | 1275 | 0 | 3 | 50 x 60 | DEF_A2_17.def

// DEF_B1_5 | 45 | 60 | 3 | 50 x 60 | DEF_B1_5.def

// DEF_B2_3 | 243 | 15 | 3 | 50 x 60 | DEF_B2_3.def

// DEF_B_4 | 4 | 1 | 3 | 50 x 60 | DEF_B_4.def

// DEF_C1_9 | 36 | 1 | 3 | 50 x 60 | DEF_C1_9.def

// DEF_C2_9 | 396 | 10 | 3 | 50 x 60 | DEF_C2_9.def

// DEF_C_2 | 2 | 180 | 3 | 50 x 60 | DEF_C_2.def

// DEF_D1_4 | 8 | 1 | 3 | 3 x 3 | DEF_D1_4.def

// DEF_D2_5 | 40 | 1 | 3 | 3 x 3 | DEF_D2_5.def

The third section of the report provides a DEF file list of the modules that make up the
designated top module. Assuming that the report correctly describes the top module, you can
specify the DEF file list verbatim with the create_layout command.

// If the module hierarchy described above accurately represents the top module 'TOP_DEF_A',

// you can specify the DEF file list with the 'create_layout' command using the '-def' switch

// as follows:-def ../data/TOP_DEF_A.def \

 ../data/DEF_A_3.def \

 ../data/DEF_A1_6.def \

 ../data/DEF_A2_17.def \

 ../data/DEF_B1_5.def \

 ../data/DEF_B2_3.def \

 ../data/DEF_B_4.def \

 ../data/DEF_C1_9.def \

 ../data/DEF_C2_9.def \

 ../data/DEF_C_2.def \

 ../data/DEF_D1_4.def \

 ../data/DEF_D2_5.def

Tessent™ Diagnosis User’s Manual, v2022.4206

Layout-Aware Diagnosis and Reporting
Net Topology Extraction Debugging

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Net Topology Extraction Debugging
After debugging and fixing mismatch errors, the tool extracts bridge and net topology. For net
topology, it calculates the percentage of nets that could be successfully physically traced from
their drivers to their sinks. If this percentage falls below 90%, the tool issues an error.
Regardless of the calculation percentage, the tool reports the results of the net topology
extraction. You can use the information reported in the transcript to help you debug electrical
issues with the nets (that is, broken nets).

The Net Topology Extraction Transcript . 206
Debugging Net Topology Extraction Failures. 209

The Net Topology Extraction Transcript
The net topology extraction results transcript is composed of two main sections. The first
section summarizes all the layout rule violations that directly result in topology errors. The
second section provides a detailed categorization of nets into five issue classes, each one
representing a possible reason for unsuccessful topology.
The tool reports the percentage of nets that could not be electrically traced followed by the
summary of the layout rule violations that directly impact topology calculation. For each layout
rule, the tool reports the first violation that would be displayed in the full report generated by the
report_layout_rule command. For example:

Error: Net topology could only be calculated for 43,75% of the nets (7 out of 16 nets)

This means that 56,25% of nets could not be electrically traced from the driver gate

to the sink gate(s).

Please review the violations of the following layout rules for possible causes:

(the first rule violation is reported)

LayerExistenceNet: #fails=3 #checks=119 handling=warning (layer in net not exist).

// Warning: LayerExistenceNet-1: The specified NET net_unknown_layer1 in DEF file.def uses

// a LAYER route_55 which is not specified in the LEF files.

More information: report_layout_rules LayerExistenceNet

PinExistenceMacro: #fails=5 #checks=301 handling=warning (pin not exist in macro).

// Warning: PinExistenceMacro-1: The specified NET net_unknown_layer1 in DEF file.def is

// connected to MACRO ao32 which uses a PIN B11 which is not defined in the LEF files.

More information: report_layout_rules PinExistenceMacro

Next, the tool reports on physical issues that could be causing the net-tracing problems. These
potential problems are divided into five issue classes:

• No driving chip/port pin found: The net is not connected to any macro port that has
direction OUTPUT or INOUT, or to any chip pin with direction INPUT or INOUT.
Therefore, no driver for the net can be found and topology is aborted.

Layout-Aware Diagnosis and Reporting
The Net Topology Extraction Transcript

Tessent™ Diagnosis User’s Manual, v2022.4 207

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• No net segments available: The net has no physical polygons defined in the LEF/DEF
files.

• Minimum of two connections are required: There must be at least two connections to
chip pins or macro ports.

• Macro pin does not exist: The net is connected to at least one macro port that is
undefined in the LEF files. This issue is also reported as a PinExistenceNetMacro layout
rule violation. Resolving all violations of that rule automatically fixes this issue.

• Physical path-tracing errors: The net is physically broken and cannot be traced from
driver to sink cells.

If there is more than one net with the same issue, the tool reports the five nets with the lowest
number of polygons so that it is easier to debug the failing net. Generally, examining the listed
nets can help you discover systemic issues related to the DEF file. To change the number of
displayed nets per issue, specify the create_layout -topology_error_count option.

The following example shows how the tool reports the five issue classes in the event of physical
net-tracing errors. The example displays one net for each issue class.

Tessent™ Diagnosis User’s Manual, v2022.4208

Layout-Aware Diagnosis and Reporting
The Net Topology Extraction Transcript

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// --

// Topology problem route causes:

// --

// Issue-1: Physical path tracing error. Number nets having this issue: 2, e.g. failing

net=cpu_i/nx1265

// ===

// The signal net=cpu_i/nx1265 is connected to 4 components:

// (1) component=cpu_i/ix1264 portName=Y

// The macro=inv02 has 5 ports

// This output port=Y is a possible driver

// (2) component=cpu_i/ix1266 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// (3) component=cpu_i/ix1268 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// (4) component=cpu_i/ix1270 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// Number connections=4, number of chip pins=0, number of segments=12, number placed

vias=16

// GDS2, layerprops and marker files for net=cpu_i/nx1265 (netID=10) has been created.

// GDS2 filename: …/inmemory_ladb/10.gds

// layerprops filename: …/inmemory_ladb/10.gds.layerprops

// Marker filename: …/inmemory_ladb/10.marker

// Analyze failing net with: calibredrv -m …/inmemory_ladb/10.gds -l …/inmemory_ladb/

10.gds.layerprops -rve …/nmemory_ladb/10.marker

// Issue-2: No driving chip/port pin found. Number nets having this issue: 1, e.g. failing

net=cpu_i/nx1229

// ===

// The signal net=cpu_i/nx1229 is connected to 3 components:

// (1) component=cpu_i/ix1230 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// (2) component=cpu_i/ix1232 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// (3) component=cpu_i/ix1234 portName=A

// The macro=inv02 has 5 ports

// This is an input port=A

// Number connections=3, number of chip pins=0, number of segments=33, number placed

vias=26

// Issue-3: No net segments available. Number nets having this issue: 1, e.g. failing

net=no_segments

// ===

// The signal net=no_segments is connected to 1 component:

// (1) component=cpu_i/uALU/ix318 portName=xxxx

// The macro=ao21 has 7 ports

// The macro port=xxxx does not exist

// Number connections=1, number of chip pins=0, number of segments=0, number placed vias=0

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Tessent™ Diagnosis User’s Manual, v2022.4 209

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Issue-4: Minimum of two connections are required. Number nets having this issue: 3, e.g.

failing net=net_one_inst

// ===

// The signal net=net_one_inst is connected to 1 component:

// (1) component=cpu_i/uALU/ix349 portName=B13

// The macro=ao32 has 11 ports

// Number connections=1, Number of chip pins=0, number of segments=1, number placed vias=0

// Issue-5: Macro pin does not exist. Number nets having this issue: 2, e.g. failing

net=net_unknown_layer1

// ===

// The signal net=net_unknown_layer1 is connected to 2 components:

// (1) component=cpu_i/uALU/ix349 portName=B11

// The macro=ao32 has 9 ports

// The macro port=B11 does not exist

// (2) component=cpu_i/uALU/ix345 portName=Y1

// The macro=ao21 has 7 ports

// The macro port=Y1 does not exist

// Number connections=2, number of chip pins=0, number of segments=1, number placed vias=0

Debugging Net Topology Extraction Failures
When debugging net topology extraction failures, you begin by fixing the layout rule violations
listed in the first section of the net topology extraction results transcript to yield a high topology
success rate. Once the layout rule violations are resolved, there could still be some nets that fail
topology because the tool does not perform physical net tracing during layout rule checking.

Prerequisites
• You have run create_layout and successfully resolved mismatch errors.

• This procedure assumes you have experience with the Calibre DESIGNrev (Calibre
DRV) layout viewer. For more information, refer to the Calibre DESIGNrev
documentation.

Procedure
1. From the first section of the net topology extraction transcript, resolve the layout rule

violations.

2. From the second section of the net topology extraction transcript, determine the issue
classes that cause the most number of nets to fail topology extraction. This number
displays as a “Number of nets having this issue: <count>” statement for each issue class.
These issues should get priority over others to resolve. The instructions below can help
you debug and resolve the various issue classes:

a. No driving chip/port pin found: Fix the LEF/DEF files to ensure that each net is
connected to at least one MACRO port that has direction OUTPUT/INOUT, or at
least one chip PIN that has direction INPUT or INOUT. The transcript one example
of a net that does not have any such port/pin connected to it, and there the tool
cannot determine the driver.

Tessent™ Diagnosis User’s Manual, v2022.4210

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

b. No net segments available: Fix the LEF/DEF files so that all nets have physical
polygons associated with them.

c. Minimum of two connections are required: Tessent Diagnosis cannot calculate
topology for dangling nets that are connected to only one MACRO port or chip pin.
Check the LEF/DEF files to discover why dangling nets are present.

d. Macro pin does not exist: Same as the PinExistenceNetMacro layout rule violation.

e. Physical path-tracing errors: Refer to the rest of this procedure for details.

3. In Calibre DRV, as a one-time setup process, activate the following settings:

a. Preserve properties: In the Choose Layout Files dialog box, click Options, and
then click Preserve properties.

b. Show object info popup window: On the Options menu, click Objects, and then
under Selection, click Show object info popup window. The object info popup
window displays when you select GDS elements.

4. Resolve physical path-tracing errors. The tool generates GDS2 and marker files for the
failed nets, which enables you to view the nets in Calibre DRV. For example:

// Analyze failing net with: calibredrv -m …/inmemory_ladb/10.gds -
l …/inmemory_ladb/10.gds.layerprops -rve …/nmemory_ladb/10.marker

When you run the calibredrv command, the tool opens the GDS2 file and the RVE
marker file with Unreachable_Elements and Reachable_Elements on the net displayed.

• Unreachable_Elements: These are the polygons that are physically connected to the
driver of the net.

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Tessent™ Diagnosis User’s Manual, v2022.4 211

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Reachable_Elements: These are the polygons that cannot be physically disconnected
from the driver.

CalibreDRV displays the failing net with its connected pins, macros, and vias viewed as
polygons, and the cell boundaries. If the number of display levels is 0, increase the
number of display levels to 1 so that you see the contents of the macros and vias.

5. In Calibre RVE (the layout marker window), right-click on the top-level cell name (Cell
t), and then click Highlight.

Tessent™ Diagnosis User’s Manual, v2022.4212

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Calibre DRV highlights the reachable and unreachable net segments in two different
colors, with blue reachable and red unreachable.You can see that there is a gap.

6. Turn off highlighting, right-click on the unreachable segment of the net, and click
Properties.

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Tessent™ Diagnosis User’s Manual, v2022.4 213

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In this example, the unreachable net segment is the input of port B and you can see the
gap, on the other side of which starts the reachable segment of the net.

Likewise, you can right-click on the reachable segment of the net to view its properties.
To tool outlines the reachable segment of the net starting from the driver up to the gap.
The net name is t1/n_888231.

In this example, you learn that the unreachable segment is a port segment (LEF) and the
reachable segment is a net segment (DEF). The gap could be caused by:

• Wrong DEF net coordinates.

• Wrong port polygons.

• Wrong macro placement.

• Layer width is too small if all pins, macros/pins, and vias exist.

Results
After debugging net topology extraction failures, your net topology calculation should be
greater than 90%. You can proceed to “Layout-Aware Diagnosis.”

Tessent™ Diagnosis User’s Manual, v2022.4214

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
Besides the Unreachable_Elements and Reachable_Elements, CalibreDRV may also display the
following elements on a net:

• DriverPortPin: The port/pin on the driver.

• ReceiverPort: The port on the receiver.

• ReceiverPin: The pin on the receiver.

You can highlight these net elements the same you would highlight reachable and unreachable
elements. The following figure shows the highlighted polygons that represent the receiver ports

Layout-Aware Diagnosis and Reporting
Debugging Net Topology Extraction Failures

Tessent™ Diagnosis User’s Manual, v2022.4 215

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

(green) and the driver port/pin (pink) in addition to the reachable and unreachable elements
(blue and red, respectively).

Tessent™ Diagnosis User’s Manual, v2022.4216

Layout-Aware Diagnosis and Reporting
Layout-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis
With layout-aware diagnosis, you can perform diagnosis for root cause deconvolution (RCD)
analysis and design for manufacturability (DFM) analysis.
To use the Tessent Diagnosis Server for layout-aware diagnosis, refer to “Layout-Aware
Diagnosis with the Tessent Diagnosis Server.”

Performing Layout-Aware Diagnosis with Tessent Diagnosis . 216
Diagnosis for Root Cause Deconvolution Analysis . 221
Diagnosis for Design for Manufacturability Analysis . 227
Cell-Aware Diagnosis . 243
Considerations for At-Speed Diagnosis . 252

Performing Layout-Aware Diagnosis with Tessent
Diagnosis

When performing layout-aware diagnosis, use the create_layout command to generate the LDB.

Prerequisites
• Flat model of your design

• LEF/DEF files

• Test patterns

• ATE failure log files

Procedure
1. Start scan diagnosis in the Tessent Shell environment. From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -shell -logfile logfile_name

where Tessent_Tree_Path is the path to where the Tessent Shell application tree is
installed.

For example:

% tessent -shell-logfile my_log_file

2. Set the context. After Tessent Shell has started, enter:

set_context patterns -scan_diagnosis

3. Specify the flat netlist. Use the read_flat_model command to specify the flat netlist.

read_flat_model flat_model

where flat_model is the pathname of the flat design netlist.

Layout-Aware Diagnosis and Reporting
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 217

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

4. Perform verification and create the LDB. For example:

create_layout ./src/design.dft.ldb -lef ./src/design.lef -def ./src/design.def

Where:

• ./src/design.dft.ldb — The name of the LDB to create.

• -lef ./src/design.lef — A required switch, and location and name of the source LEF
file.

• -def ./src/design.def — A required switch, and location and name of the source DEF
file.

This step first performs layout verification that checks the consistency of LEF/DEF files
and matches them against the design, and then it proceeds to creating the LDB if the
percentage match is greater than the abort threshold percentage that you specified with
the create_layout command, or greater than the default percentage of 85%.

During verification, the tool tolerates the differences in escapes in instance pathnames
and net pathnames. To turn off tolerant name matching, specify create_layout with the
“-do_tolerant_match off” switch.

For verification troubleshooting and information, see “Layout Verification Reporting.”

5. Open the LDB. Enter the open_layout command and specify the location and name of
the LDB you created.

open_layout ./src/design.dft.ldb

Where:

• design.dft.ldb — The pathname and name of the layout-aware LDB to open.

6. Load the test pattern file. Enter the read_patterns command and specify the pathname of
the test patterns:

read_patterns./src/patterns.ascii

Where:

• ./src/patterns.ascii — The pathname of the test pattern file to load.

7. Run layout-aware diagnosis on the failure file. Enter the diagnose_failures command
and specify the pathname of the failure file similar to:

diagnose_failures ./tester_files/file1.flog

Where:

• ./tester_files/file1.flog — The pathname of the properly formatted failure file to
diagnose.

Tessent™ Diagnosis User’s Manual, v2022.4218

Layout-Aware Diagnosis and Reporting
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. Write results to the disk. Enter the write_diagnosis command and specify the type of
report or reports you want from Tessent Diagnosis:

write_diagnosis -format text layout -file ./results/file1 -replace

Where:

• -format format_choice — A switch specifying the format of the report from the
following formats:

o TEXT— Specifies ASCII text format. This is the default.

o CSV — Specifies comma-separated value (CSV) format.

o LAYout_marker — Specifies layout coordinate format.

• -file base_file_name — A switch specifying the name of the report. The
base_file_name value is used for the report filename, regardless of format, and
identifies the format using the following filename suffixes:

o name.csv — CSV format diagnosis report

o name.diag — ASCII text format diagnosis report

o name.lay — Layout markers

o name.enc.csv — Encoded CSV diagnosis report

o name.enc.diag — Encoded ASCII text diagnosis report

o name.enc.lay — Encoded layout markers

Note
For backwards compatibility with layout viewers, use the write_diagnosis
command’s -SHORT switch.

9. Optionally, close the LDB. Enter the close_layout command and close the LDB.

10. View the layout-aware diagnosis results. See “Layout-Aware Diagnosis Reporting” for
complete information.

Results
Tessent Diagnosis generates the layout-aware diagnosis results in the report format you
specified.

Examples
The following dofile example creates a LDB and runs diagnosis. The current directory is
layout_aware_demo.

Layout-Aware Diagnosis and Reporting
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 219

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// **
//
// LDB creation is necessary only on the first invocation.
// All later invocations can use the generated file directly.
//
// **

create_layout ./src/design.dft.ldb \
-lef ./src/design.lef \
-def ./src/design.def

// **
//
// Open the LDB
//
// **

open_layout ./src/design.dft.ldb

// **
//
// Start the diagnosis session
// You first need to load the pattern set
//
// **

read_patterns ./data/patterns.ascii

// **
//
// Optionally perform a non-layout-aware diagnosis first
//
// **

diagnose_failures ./tester_files/file1.flog
write_diagnosis -file ./results/file1.nolayout -replace
write_diagnosis -encoded -file ./results/file1.nolayout -replace

diagnose_failures ./tester_files/file2.flog
write_diagnosis -format text -file ./results/file2.nolayout
write_diagnosis -xmap v2lvs -format text -file ./results/file2x.nolayout

// **
//
// Now load the LDB and repeat the diagnosis runs
// Save the results in new files for later comparison.
//
// Notice that the options ’-format layout’ and ’-short’ of the command
// ’write_diagnosis’ became available
//
// **

open_layout ./src/design.dft.ldb

diagnose_failures ./tester_files/file1.flog
write_diagnosis -format text layout -file ./results/file1.layout
write_diagnosis -encoded -format text layout -file ./results/file1.layout

Tessent™ Diagnosis User’s Manual, v2022.4220

Layout-Aware Diagnosis and Reporting
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

diagnose_failures ./tester_files/file2.flog
write_diagnosis -format text layout -file ./results/file2.layout
write_diagnosis -short -format text -file ./results/file2s.layout
write_diagnosis -short -xmap v2lvs -format text -file \
./results/file2x.layout

// **
//
// exit Tessent Diagnosis
//
// **

exit

Related Topics
Layout Database Compression and Decompression
Diagnosis Output Files

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 221

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis for Root Cause Deconvolution Analysis
Root cause deconvolution (RCD) is the process of differentiating possible root causes in a
population of failing devices from diagnosis ambiguity (or noise) in a high-volume scan
diagnosis production environment. Tessent YieldInsight provides a signature that identifies the
root causes—for example, M3 open and M5 bridge—of a population of die, which can help you
accurately understand the true root causes leading to device failure, and, through subsequent
drill-down analysis in Tessent YieldInsight, to significantly improve device selection for
physical failure analysis (PFA).
For information about RCD analysis in Tessent YieldInsight, see Root Cause Deconvolution
Analysis.”

Tessent™ Diagnosis User’s Manual, v2022.4222

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-7. RCD Diagnosis Flow

Preparing for RCD Analysis in Tessent YieldInsight. 223

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 223

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Preparing for RCD Analysis in Tessent YieldInsight
To perform RCD analysis in Tessent YieldInsight, you must have previously calculated the
RCD feature statistics as described in this section.
See “Layout-Aware Diagnosis Flow” for an overview of the layout-aware diagnosis flow, steps
for creating a LDB, and other requirements.

Note
You must create the LDB populated with RCD constants by using the Tessent Diagnosis
point tool.

Prerequisites
• Flat model of your design

• LEF/DEF design files

• Test patterns

• ATE failure log files

Procedure
1. Start scan diagnosis in the Tessent Shell environment. From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -shell -logfile logfile_name

2. Set the context. After Tessent Shell has started, enter:

set_context patterns -scan_diagnosis

3. Specify the flat netlist as follows:

read_flat_model flat_model

where flat_model is the pathname of the flat design netlist.

4. Perform verification and create the LDB. For example:

create_layout ./src/design.dft.ldb -lef ./src/design.lef -def ./src/design.def

For verification troubleshooting and information, see “Layout Verification Reporting.”

5. Open the LDB. For example:

open_layout ./src/design.dft.ldb

6. Load the test pattern source file. For example:

read_patterns ./src/patterns.ascii

You can add RCD constants to existing diagnosis reports. See the Examples section
below for more information.

Tessent™ Diagnosis User’s Manual, v2022.4224

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Perform the RCD feature statistics calculation by executing the create_feature_statistics
command as follows:

create_feature_statistics

Tessent Diagnosis determines the bridge pairs, net segments, and cells that are tested,
and it extracts the relevant physical information such as the critical area for each
possible suspect. The RCD constants statistics are stored in dedicated .rcddb files in the
LDB directory. The tool creates one .rcddb file per flat model. If an .rcddb file exists in
the LDB, it indicates that the feature statistics calculation has been performed.

You must create the RCD constants statistics for every flat model and pattern
combination. To do this, you can process the combinations in parallel in different tool
sessions.

If the RCD constants have been created and the .rcddb file exists in the LDB, Tessent
Diagnosis populates the diagnosis reports with RCD constants in the
RCD_CONSTANTS section during diagnosis. To inhibit the population of constants in
the diagnosis report, specify the following command:

set_diagnosis_options -include_rcd_constants off

If you do not want to populate the LDB with the RCD constants, set the
include_rcd_constants variable to false.

8. In Tessent Diagnosis server, add monitors, the design and layout, patterns, and analyzers
in accordance with a typical Tessent Diagnosis server run. Refer to “Setting Up the
Tessent Diagnosis Server” for details.

Note
You can also use the Tessent Diagnosis point tool to run the diagnosis.

9. In Tessent Diagnosis server, perform the diagnosis as described in “Running the
Diagnosis.”

Results
The RCD constants data appear as follows in the XMAP_TABLE within the diagnosis report:

RCD_CONSTANTS_BEGIN (rcd_version)
rcd_feature rcd_constant
rcd_feature rcd_constant
rcd_feature rcd_constant
rcd_feature rcd_constant
...
RCD_CONSTANTS_END

If you have run create_feature_statistics multiple times on different combinations of flat models
and pattern sets, you can use the report_layout_files command to view the flat models and
pattern sets associated with the RCD constants stored in the LDB.

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 225

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In Tessent YieldInsight, you can use RCD constants data to identify the root cause distribution
in a population of devices. The rcd_feature is the same root cause designation that shows up in
the RCD - Sum of Probability signature in Tessent YieldInsight.
The following example shows the RCD_CONSTANTS output.

RCD_CONSTANTS_BEGIN (3.4.1.1.2)
{Area CELL} 6787.98
{Count CELL and02} 0.0280805
{Count CELL and03} 0.00502934
{Count CELL and04} 0.00775356
{Count CELL oai33} 0.000838223
{Count CELL oai332} 0.000209556
{Count CELL or02} 0.00880134
{Count CELL sffr} 0.000628667
{Count CELL sffs} 0.000628667
{Count CELL xnor2} 0.0148785
{Count CELL xor2} 0.0108969
{Count ViaMacro via} 0.641782
{Count ViaMacro via3} 0.37276
{Count ViaMacro via4} 0.3977
{CritArea OPEN VIA} 6.15225
{CritArea OPEN VIA2} 5.38636
{CritArea OPEN VIA4} 2.25199
{CritArea OPEN route_1} 150.435
{CritArea OPEN route_3} 216.29
{CritArea OPEN route_4} 213.319
{CritArea OPEN route_5} 60.964
{CritArea SHORT route_1} 15.1244
{CritArea SHORT route_2} 30.9221
{CritArea SHORT route_3} 23.5965
{CritArea SHORT route_5} 6.22894
{CritArea SHORT_GROUND route_1} 4.01231
{CritArea SHORT_GROUND route_2} 0.00180776
{CritArea SHORT_POWER route_1} 5.01358
{CritArea SHORT_POWER route_2} 0.00350706
...
RCD_CONSTANTS_END

Examples
Adding RCD Constants to Existing Diagnosis Reports

You can add RCD constants to existing diagnosis reports using the annotate_diagnosis
command. To annotate a diagnosis report, you must load the same pattern set and flat model that
you specified with the read_patterns command prior to running diagnosis. The patterns must be
the same as used for diagnosis and creating the RCD constants.

Specify the same pattern set that was used to run diagnosis
and create RCD constants
read_patterns /src/patterns.ascii

Open the LDB
open layout design.dft.ldb
annotate_diagnosis small_diags_rcd_gz

Tessent™ Diagnosis User’s Manual, v2022.4226

Layout-Aware Diagnosis and Reporting
Diagnosis for Root Cause Deconvolution Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
You can set the set_diagnosis_options -missing_rcd_action to warning or error if you want
to be forewarned that an existing LDB does not contain RCD constants for the current flat

model and pattern set.

Related Topics
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 227

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis for Design for Manufacturability Analysis
Design for Manufacturability (DFM) techniques optimize the physical layout of ICs to improve
their yield. With a Calibre®-compatible DFM Results Database (RDB) as input, Tessent
Diagnosis enables you to compare RDB rule violations against layout-aware diagnosis report
defect bounding boxes. The reported failures—or DFM hits—indicate areas where the overlaps
occur.

Note
For information on Calibre DFM, consult your Siemens EDA Calibre documentation.

Figure 3-8 shows the DFM diagnosis flow.

Tessent™ Diagnosis User’s Manual, v2022.4228

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-8. DFM Diagnosis Flow

For information about DFM signature analysis in Tessent YieldInsight, see ‘Design for
Manufacturability Signature Analysis.”

During the DFM diagnosis flow, Tessent Diagnosis stores the RDB rule violations that it
imports from the RDB. Layout-aware diagnosis then uses the violations to generate a diagnosis
report that includes the DFM hits.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 229

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, Tessent Diagnosis performs DFM diagnosis. To inhibit DFM annotation, set the
following command:

set_diagnosis_options
-include_dfm_rules off

Supported DFM RDB Violation Types . 229
What Constitutes a DFM Hit . 231
RDB-to-Layout Database Verification Results . 232
Performing DFM Diagnosis . 236
Dofile Examples for DFM Diagnosis . 240

Supported DFM RDB Violation Types
Tessent Diagnosis supports DFM violation types in three categories: interconnect, cell, and cell-
aware.

Interconnect Violations
For interconnect violations, you must ensure the layer name matches the layer name in the LDB.

• Interconnect bridge: BRIDGE

Figure 3-9. Interconnect Bridge DFM Violation

• Interconnect open: OPEN

Tessent™ Diagnosis User’s Manual, v2022.4230

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-10. Interconnect Open DFM Violation

Cell Violations
By default, rule violations within cells are identified as cell violations and the bounding box for
the cell is flagged. These types of violations are named “CELL.”

Figure 3-11. Cell DFM Violation

Cell-Aware Violations
When you have a UDFM file with Diagnosis Views as generated by Tessent CellModelGen, the
tool is aware of the layout within the cell, thus it can flag open, bridge, and transistors defects
particular to the cell. These are called CELL_OPEN, CELL_BRIDGE, CELL_TOFF, and
CELL_ON defects.

CELL_BRIDGE violations can include bridge violations between layers, called interlayer
bridge violations.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 231

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For cell-aware violations, you must ensure the layer name matches the layer name in the
UDFM.

Figure 3-12. Cell-Aware DFM Violations

What Constitutes a DFM Hit
DFM hit reporting in Tessent Diagnosis identifies RDB rule violations that overlap diagnosis
defect bounding boxes for bridges, opens, and cells. These overlaps are called DFM hits.
Figure 3-13 illustrates a DFM hit for an interconnect bridge DFM violation.

Tessent™ Diagnosis User’s Manual, v2022.4232

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-13. Interconnect Bridge DFM Hit

RDB-to-Layout Database Verification Results
During RDB importation, Tessent Diagnosis verifies the DFM violations in the RDB against the
layout shapes in the LDB. The tool reports the percentage of DFM violations for each rule that
satisfy certain verification conditions.

Note
Verification is intended for reporting purposes only. All violations are imported into the
LDB whether they pass or fail verification.

Figure 3-14 illustrates cell DFM hits and their verification results. Cell DFM hits pass
verification when a RDB cell violation is inside, partially inside, or the same size as a LDB cell
shape. Cell DFM hits fail verification when a RDB cell violation and a LDB cell shape do not
touch at all.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 233

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-14. Cell DFM Hits and Their Verification Results

Figure 3-15 illustrates bridge DFM hits and their verification results. All bridge DFM hits pass
verification.

Tessent™ Diagnosis User’s Manual, v2022.4234

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-15. Bridge DFM Hits and Their Verification Results

Figure 3-16 illustrates open DFM hits and their verification results. Open DFM hits pass
verification when a RDB open violation overlaps a LDB shape in any way. Open DFM hits fail
verification when they do not touch the LDB shape at all.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 235

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-16. Open DFM Hits and Their Verification Results

Tool Messaging During Verification
The following examples show the messages the tool produces during verification:

import_dfm -rdb RDB/route1.rdb -layer route_1 -type bridge

// The specified rule 'rule_cell_1' will be imported into the LDB
// The RDB 'RDB/route.rdb' was loaded successfully

import_dfm -rdb RDB/route1.rdb -layer route_1 -type bridge

// Error: The specified rule 'rule_cell_1' already exist in the LDB file
// and will be ignored
// The RDB 'RDB/route.rdb' was loaded successfully

The tool also checks the RDB design name against the LDB design name. If these names do not
match, then the tool issues a warning.

Tessent™ Diagnosis User’s Manual, v2022.4236

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Verification Results for Cell-Aware Violations
At the beginning of the diagnosis process, the tool verifies the UDFM file and then performs
verification against the LDB’s DFM rule layer names. The tool returns a warning when it finds
DFM rule layers that do not match those in the UDFM file. For example:

diagnose_failure failure.log -output cell_diag.rpt -replace
// Reading UDFM File: ../src/cells.udfm
// UDFM delay definitions read: Total=2, Cells=0, Modules=2,
Instances=0, No Match=0, Static&Delay faults=623

// Warning: DFM rules match some layers (1 out of 3) mentioned in UDFM
file.
// Use 'report_dfm_rules' to see dfm rules and layers.
// Cell internal layers are:
// M0-M1
// M1
// PS

Note
You can override the default layer names used in the UDFM file by using the -layer_map or
-original_layer_transfer options as described in the Tessent CellModelGen Tool Reference.

Performing DFM Diagnosis
When performing DFM diagnosis, you must import the Calibre RDB file into the LDB.
Refer to “Layout-Aware Diagnosis Flow” for an overview of the layout-aware diagnosis flow,
steps for creating an LDB, and other requirements.

Note
You can also perform this procedure in Tessent Diagnosis server. See “Running Tessent
Diagnosis Server” for details about performing layout-aware diagnosis with Tessent

Diagnosis server.

Prerequisites
• Flat model of your design

• LEF/DEF design files

• Test patterns

• ATE failure log files

• Calibre-compatible RDB

• Optimally, for cell-aware diagnosis, you need a UDFM with Diagnosis View. Refer to
“Cell-Aware Diagnosis” for details.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 237

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Start scan diagnosis in the Tessent Shell environment. From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -shell -logfile logfile_name

2. Set the context. After Tessent Shell has started, enter:

set_context patterns -scan_diagnosis

3. Specify the flat netlist as follows:

read_flat_model flat_model

where flat_model is the pathname of the flat design netlist.

4. Perform verification and create the LDB. For example:

create_layout ./src/design.dft.ldb -lef ./src/design.lef -def ./src/design.def

For verification troubleshooting and information, see “Layout Verification Reporting.”
If you specify the create_layout command with the “-compact on” switch, the tool does
not perform DFM rule verification.

To view the DFM rules contained in the LDB, use the get_dfm_rules or
report_dfm_rules command.

5. Open the LDB. For example:

open_layout ./src/design.dft.ldb

6. Load the test pattern source file. For example:

read_patterns ./src/patterns.ascii

7. Import the Calibre RDB file into the LDB. For example:

import_dfm -rdb src/VIA3_VIA4.rdb -layer VIA3 -type OPEN

The import_dfm command verifies that some percentage of the DFM violations in the
RDB match the layout geometries in the LDB. It then populates with LDB with the
DFM rule violations.

The following example shows how to specify the layer for interlayer CELL_BRIDGE
violations.

Note
In the UDFM file, the interlayer CELL_BRIDGE name, for example “M0-M1”, is
equivalent to layer name “M1-M0”. Tessent Diagnosis also considers these layer

names equivalent for the purposes of DFM hit analysis.

import_dfm -rdb inter_layer_bridge_M0_M1.rdb -layer M0-M1 \
-type CELL_BRIDGE -replace

In the import_dfm command, the -rdb, -layer, and -type switches are required.

Tessent™ Diagnosis User’s Manual, v2022.4238

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When using the -layer switch, you must specify an existing layer in the layout-aware
diagnosis layout file; otherwise the tool issues the following error message:

Could not match RDB’s layer in the LayoutDB. The RDB seems to be
invalid for this design.

Tessent Diagnosis generates an error message if you use import_dfm and have not
opened the LDB with the open_layout command.

8. Perform diagnosis.

diagnose_failures

Note
Use the delete_dfm [-rule rule_name] command if you need to eliminate some or all
DFM rules from the LDB.

Results
Tessent Diagnosis creates a diagnosis report that contains the results for DFM hit reporting. In
Tessent YieldInsight, you import the diagnosis results into the ADB to perform DFM signature
analysis.
During diagnosis, cell-aware suspects are compared to previously imported DFM violations.
Any DFM violations that overlap with cell-aware suspects are reported in the DFM_RULE
section of the diagnosis report.
The following example shows the DFM diagnostics results that appear in the diagnosis report.

Note
Due to space constraints, the following results example does not show the x_coord2,
y_coord2, and dfm_properties columns.

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 239

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DFM_RULE_BEGIN

 rule_id hits violations layout_layer category rule_name

1 1 1 M2 OPEN rule_SUSPECT_OPEN_m2

2 3 1 M3 OPEN rule_SUSPECT_OPEM_m3

3 2 2 M2-M3 OPEN rule_SUSPECT_OPEN_m2_m3

 4 1 1 NA CELL_TON rule_SUSPECT_1.2_CELL_TON.D66

 5 1 1 NA CELL_TON rule_SUSPECT_1.5_CELL_TON.D80

 6 1 1 M1 CELL_BRIDGE rule_SUSPECT_1.3_CELL_BRIDGE.D25

 7 1 1 PS CELL_BRIDGE rule_SUSPECT_1.4_CELL_BRIDGE.D42

DFM_RULE_END

DFM_RULE_DESCRIPTION_BEGIN

 rule 1 {

1 1 2 Jun 12 14:42:19 2013

CELL ICV_2522 1 0 0 1 0 0

IL: distxy_1021

}

rule 2 {

1 1 2 Jun 12 14:42:27 2013

CELL ICV_2522 1 0 0 1 0 0

IL: distxy_1023

}

rule 3 {

2 2 2 Jun 12 14:42:14 2013

CELL ICV_2522 1 0 0 1 0 0

IL: distxy_1022

}

...

DFM_RULE_DESCRIPTION_END

DFM_RULE_HIT_BEGIN

symptom suspect rule_id x_dfm1 y_dfm1 x_dfm2 y_dfm2 x_coord1 y_coord1 ...

1 1.1 1 2543.7450 4106.8250 2543.9450 4107.5250 2543.7450 4106.8250 ...

1 1.1 3 2543.7550 4106.8800 2543.9350 4107.0600 2543.7550 4106.8800 ...

...

1 1.2 4 -1949.440 -2208.881 -1949.280 -2208.38 -1949.440 -2208.881 ...

1 1.3 6 -1947.516 -2207.160 -1947.325 -2206.23 -1947.516 -2207.160 ...

1 1.4 7 -1948.180 -2207.810 -1948.030 -2207.65 -1948.180 -2207.810 ...

1 1.5 5 -1949.440 -2206.220 -1949.280 -2205.44 -1949.440 -2206.220 ...

DFM_RULE_HIT_END

The DFM_RULE_HIT table lists the DFM hits. The following table describes the columnized
data provided by the DFM_RULE_HIT table.

Table 3-3. DFM_RULE_HIT Fields
Rule Description
symptom The symptom number to which the matching suspect belongs.
suspect Suspect ID for the matching suspect.
rule_id ID of the rule of the violation in the current row. This ID

references into the DFM_RULE table.
x_dfm1 X coordinate of the lower left corner of the violation box.
y_dfm1 Y coordinate of the lower left corner of the violation box.

Tessent™ Diagnosis User’s Manual, v2022.4240

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Related Topics
Performing Layout-Aware Diagnosis with Tessent Diagnosis

Dofile Examples for DFM Diagnosis
You can update DFM information in existing diagnosis reports and add DFM information to
non-annotated diagnosis reports.

Example 1: Create LDB and Import RDBs to Prepare for DFM Diagnosis
The following dofile shows the configuration step in preparation for running the diagnosis.

x_dfm2 X coordinate of the upper right corner of the violation box.
y_dfm2 Y coordinate of the upper right corner of the violation box.
x_coord1 X coordinate of the lower left corner of the defect bounding box

that matches the rule violation box.
y_coord1 Y coordinate of the lower left corner of the defect bounding box

that matches the rule violation box.
x_coord2 X coordinate of the upper right corner of the defect bounding

box that matches the rule violation box.
y_coord2 Y coordinate of upper right corner of the defect bounding box

that matches the rule violation box.
dfm_properties The DFM properties associated with the violation in the current

row as read in from the RDB file. The DFM properties are
specified as a comma separated list with alternating
property_name and property_value fields. When there are no
properties associated with the violation in the current row, this
column contains “-”.

Table 3-3. DFM_RULE_HIT Fields (cont.)
Rule Description

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Tessent™ Diagnosis User’s Manual, v2022.4 241

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#CREATE AN LDB FROM DEF AND LEF
create_layout ./results/ya_demo6.ldb -def ./src/design.def.gz \

-lef ./src/design.lef.gz -rep

#OPEN THE NEWLY CREATED LDB INTO WHICH THE RDB RULES VIOLATIONS
#ARE WRITTEN
open_layout ya_demo6.ldb

#IMPORT THE RDB FILES
import_dfm -rdb id_route_2_100.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_201.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_1210.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_1001.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_2002.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_2000.rdb -layer route_2 -type OPEN -sample 0

Example 2: Perform DFM Diagnosis with Tessent Diagnosis Server
After you have imported the RDB files, you can perform DFM diagnosis as shown in the
following dofile.

#SETUP THE MONITOR
add_monitor design1 ../6.diag_server_and_annotate/flogs -results ../
results/flogs.ya
add_design design1 ../src/design.flat.gz
add_pattern design1 ../src/design.bin.gz

#ADD THE LDB
add_layout design1 -dft ./results/ya_demo6.ldb

#USE MULTIPLE CPUS FOR THE LOCAL MACHINE
add_analyzer localhost:6

#BEGIN
start_diag

#PROCESS UNTIL THERE ARE NO FAIL LOGS LEFT IN THE QUEUE
while { [check -queued] != 0 && [check -analyzers] > 0 && ![abort] } { }

Example 3: Update DFM Information in Diagnosis Reports
In the process of running trial and error on the DFM rules, you may find that you no longer need
some rules. Rather than starting over, you can delete the particular rules and use the
annotate_diagnosis command to update the diagnosis reports.

When you use the annotate_diagnosis command, Tessent Diagnosis updates the diagnosis
report and performs diagnosis. Use the report_dfm_rules command to view a list of the DFM
rules.

Tessent™ Diagnosis User’s Manual, v2022.4242

Layout-Aware Diagnosis and Reporting
Diagnosis for Design for Manufacturability Analysis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#OPEN THE LDB INTO WHICH THE RULES ARE WRITTEN IF THEY
#DO NOT ALREADY EXIST
open_layout ya_demo6.ldb

#DELETE A RULE FROM THE LDB
delete_dfm -rule "metal_cross_edge_route1"

#GO THROUGH ALL THE EXISTING DIAGNOSIS RESULTS IN THE flogs.ya
#DIRECTORY AND UPDATE THEM
annotate_diagnosis flogs.ya

Example 4: Add DFM Information to Non-Annotated Diagnosis Reports
In addition, you can use the annotate_diagnosis command to add DFM data to older non-
annotated diagnosis reports or to add new DFM rules to an existing diagnosis report (as shown
below).

#OPEN THE LDB INTO WHICH THE RULES ARE WRITTEN IF THEY
#DO NOT ALREADY EXIST
open_layout ya_demo6.ldb

#IMPORT THE RDB FILES
import_dfm -rdb id_route_2_212.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_21.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_1110.rdb -layer route_2 -type OPEN -sample 0
import_dfm -rdb id_route_2_1111.rdb -layer route_2 -type OPEN -sample 0

#GO THROUGH ALL THE EXISTING DIAGNOSIS RESULTS IN THE flogs.ya
#DIRECTORY AND ANNOTATE THEM WITH THE DFM RULES
annotate_diagnosis flogs.ya

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 243

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Cell-Aware Diagnosis
During a typical Tessent Diagnosis run, the tool reports cell failures at the cell boundaries.
These cell-internal defects are reported as bounding boxes for the suspect cells. The cell-aware
diagnosis functionality enables you to diagnose defects within the cells, called cell-aware
defects.

Cell-aware diagnosis uses a user-defined fault model (UDFM) library file as input. UDFM files
provide transistor-level fault simulation data for all library cells. Specifically, you generate a
UDFM with a Diagnosis View file that contains information suitable for diagnosis, such as the
electrical behavior and physical location of each defect. Tessent Diagnosis compares these
defects against the failure file; the best matching defects are reported as cell-aware defect
suspects. Also, design for manufacturability (DFM) violations that overlap the physical
locations of cell-aware defect suspects are reported.

To get the cell-aware defect data, use Tessent CellModelGen to generate UDFM files with
Diagnosis Views. Tessent CellModelGen generates one UDFM file (with Diagnosis View) per
cell. Use the run_export script to concatenate the UDFM files into one library file, which then
becomes the input for cell-aware diagnosis.

For more information about Tessent CellModelGen and how to create UDFM files with
Diagnosis Views, refer to -layout_aware_analysis in the Tessent CellModelGen Tool Reference.

Figure 3-17 shows that the cell-aware diagnosis flow is similar to the layout-aware Tessent
Diagnosis flow. You read in the design’s flat model and pattern files, open the LDB, and then
diagnose failure files. You must also specify the UDFM file with the set_diagnosis_options
command before performing diagnosis.

Note
Tessent Diagnosis does not require automotive-grade UDFM files and does not support
them in diagnosis.

Tessent™ Diagnosis User’s Manual, v2022.4244

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-17. Cell-Aware Diagnosis Flow

Running Cell-Aware Diagnosis. 245
Performing Cell-Aware Diagnosis With RCD . 247
Cell-Aware Diagnosis Report . 248
Chip-Level Layout Marker File Results Viewing. 251

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 245

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Cell-Aware Diagnosis
Use the set_diagnosis_options -cell_faults option to automatically enable cell-aware diagnosis.
When you set this option, the tool performs a series of UDFM checks and provides warning
information about the Spice optimizations that were enabled during UDFM creation with
Tessent CellModelGen.
When cell-aware diagnosis completes, the tool reports cell-aware defects as follows:

• CELL_OPEN: open defect within a cell.

• CELL_BRIDGE: short defect within a cell.

• CELL_TON: defect that causes a transistor to behave as stuck-on.

• CELL_TOFF: defect that causes a transistor to behave as stuck-off.

Restrictions and Limitations
• Cell-aware diagnosis is supported only for flat model files that were created using

Tessent Shell version 2013.2 or later with new kernel enabled.

• Cell-aware diagnosis is supported only for layout-aware diagnosis (server or point tool),
which includes gross-delay defect diagnosis. Because at-speed diagnosis is not layout
aware, it is not supported in the cell-aware diagnosis flow.

• Cell-aware diagnosis only considers defects included in the UDFM with Diagnosis
View files.

• Bit analysis and chain diagnosis are not supported for cell-aware suspects.

• If you have MBFF cells with optimized stimuli in the specified UDFM file, the tool
reports a warning message if you have the following:

o An MBFF has fewer than expected stimuli for 1TF.

o The MBFF has up to 4 bits.

For example:

// Warning: The UDFM for the following cells were created using
optimized stimuli that could impact diagnosis accuracy.
// Please re-create the UDFM for these cells without the
multi-bit definitions:
// SFF_TRAY2_VM_X1 (2 bits)

Prerequisites
• As with the layout-aware diagnosis flow, you need a layout database (LDB), design

netlist, test pattern files, and ATE failure files.

• You need a UDFM file with Diagnosis View that contains layout information for the
cell-aware defects. To generate this file, in Tessent CellModelGen version 2016.2 or
later, enable -layout_aware_analysis before generating the UDFM library files. See

Tessent™ Diagnosis User’s Manual, v2022.4246

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

“Layout-Aware Analyze Settings” in the Tessent CellModelGen Tool Reference for
information about the layout-aware analysis feature.

• As an optional setup step for performing DFM analysis, you have previously imported
DFM violations with the import_dfm command. For more information, see “Performing
DFM Diagnosis” on page 236.

Note
For cell-aware suspects, you must specify the import_dfm command with the layer
names specified in the UDFM file.

Procedure
1. From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -shell

2. After Tessent Shell has started, enter:

set_context patterns -scan_diagnosis

3. Enter:

read_flat_model flat_model

For more information about invoking Tessent Diagnosis, see the tessent shell command
in the Tessent Shell Reference Manual.

4. Load the test pattern file. Enter the read_patterns command and specify the pathname of
the final test patterns similar to:

read_patterns my_patterns.stil.giz

See “Preparing the Test Patterns” for more information.

5. Open the LDB, as follows:

open_layout design.ldb

6. Specify the UDFM with Diagnosis View file, as follows:

When using the point tool:
set_diagnosis_options -cell_faults name.udfm
When using the server:
set_diagnosis_options monitor_id -cell_faults name.udfm

Specifying the -cell_faults option automatically enables cell-aware diagnosis. Tessent
Diagnosis uses the fault models listed in the specified UDFM file to perform cell-aware
diagnosis.

Note
You can only specify one UDFM file. In Tessent CellModelGen, use the run_export
script to merge the cell-related UDFM files it produces (one per cell) into one file.

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 247

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Run diagnosis on the failure file. Enter the diagnose_failures command and specify the
pathname of the failure file similar to:

diagnose_failures failure_file -output ascii_report

Tessent Diagnosis uses the UDFM faults and their tests to diagnose the failure files.

Results
Tessent Diagnosis generates diagnosis reports as described in “Cell-Aware Diagnosis Report.”

Performing Cell-Aware Diagnosis With RCD
The process for performing cell-aware diagnosis that includes RCD constants follows the
regular cell-aware diagnosis process with the addition of specifying the set_diagnosis_options
-rcad on option.
For information about RCD, refer to “Diagnosis for Root Cause Deconvolution Analysis” on
page 221.

For the best results, use the following versions:

• UDFM generated using Tessent CellModelGen version 2018.1 or later.

• Diagnosis reports generated using Tessent Diagnosis version 2018.4 or later.

• RCD constants generated using Tessent Diagnosis version 2019.1 or later.

Prerequisites
• Ensure that the set_diagnosis_options -include_rcd_constants is set to on. This is the

default behavior.

Procedure
1. In Tessent Shell, in the diagnosis context, create RCAD constants and store them in an

existing LDB.

RCAD constants refers to the set of RCD constants plus constants for the cell-internal
layers, which are sourced from the specified UDFM file.

The following sample dofile illustrates this task.

Tessent™ Diagnosis User’s Manual, v2022.4248

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context patterns -scan_diagnosis
read_flat_model flat_model
create_layout ./src/design.dft.ldb -lef ./src/design.lef -def ./src/
design.def
read_patterns ./src/patterns.ascii

// Enable RCAD constant creation
set_diagnosis_options –cell_faults udfmFile -rcad on

open_layout ./src/design.dft.ldb

// Generate RCAD constants
create_feature_statistics -add_processors host:16

Tip
To minimize RCD constant creation processing times, turn on multi-processing
using the create_feature_statistics -add_processors option. The recommended

number of processors is 16.

2. Perform RCAD-enabled diagnosis to produce diagnosis reports that include regular and
cell-internal RCD constants. For example:

set_context patterns -scan_diagnosis
read_flat_model flat_model
read_patterns ./src/patterns.ascii

// Enable RCAD, when -rcad is off tool performs regular CAD
set_diagnosis_options –cell_faults udfmFile -rcad on

open_layout ./src/design.dft.ldb
diagnose_failure failure_log

If you are using the Tessent Diagnosis server, specify:

set_diagnosis_options monitor –cell_faults udfmFile -rcad on

Results
Tessent Diagnosis generates diagnosis reports as described in “Cell-Aware Diagnosis Report.”

Cell-Aware Diagnosis Report
The cell-aware diagnosis report designates cell-aware defect suspects with the following
designators: CELL_BRIDGE, CELL_OPEN, CELL_TON, and CELL_TOFF.
Tessent Diagnosis generates cell-aware diagnosis reports similar to the following example. In
addition, if you have imported DFM data as described in “Performing DFM Diagnosis,” the
cell-aware diagnosis report includes a DFM_RULE section that lists DFM hits for cell-aware
defect suspects.

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 249

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
For cell-aware defects, the value column is not applicable, and the layout_layer and
critical_area are not used.

fail_ pass_
suspect score match mismatch type value pin_pathname cell_name net_pathname
layout_status

1 100 2 0 STUCK 0 /cpu_i/uPMI/ix1420/A1 aoi22 /cpu_i/uPMI/nx1781

INPUT_PIN_FAULT
#potential_open_segments=1,#total_segments=15,#potential_bridge_aggressors=0,#total_neigh

bors=na

#cell_internal_suspects=4,#total_cell_internal_faults=56
suspect score fail_match pass_mismatch type value location layout_layer critical_area

1.1 100 2 0 CELL 0 /cpu_i/uPMI/ix420
1.2 100 2 0 CELL_BRIDGE - D2/NET7_1--C_3/1.0
1.3 100 2 0 CELL_OPEN - D10/NET7_3--NET7_4/1.0G
1.4 95 2 1 CELL_TON - D22/M1_1--M1_2/1.0
1.5 95 2 1 CELL_TOFF - D28/M4_1--M4_2/1.0G
1.6 95 2 1 OPEN 0 B6 route_2 1.85E+02

VIA2 9.59E+00
route_3 1.34E+01

--

In this example, the tool identified four cell-aware defects for cell /cpu_i/uPMI/ix1420. The
summary line indicates that these four cell-aware defects were called out by cell-aware
diagnosis out of a total of 56 cell-aware faults defined for the specific cell instance in the UDFM
file you specified with the set_diagnosis_options command. All cell-aware suspects belonging
to the same cell instance are included in the same table.

The location string describes the suspect information, and it consists of three parts: defect ID,
net1, and net2, and the resistor value. The string is formatted:

DefectID/Net1--Net2/ResistorValue

• Defect ID: a unique ID created by Tessent CellModelGen for each defect for a specific
cell.

• Net1--Net2

o For cell bridge suspects, the nodes that are shorted by the specified defect. For
example, suspect 1.2 in the example is a bridge suspect on layer M1 between node
NET7_1 and C_3.

o For cell open suspects, the nodes indicate where a large resistor is inserted to mimic
the open defect. For example, suspect 1.3 is an open suspect on net NET7 located
between nodes NET7_3 and NET7_4.

Tessent™ Diagnosis User’s Manual, v2022.4250

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o For both cell TON and cell TOFF suspects, the nodes indicate where the drain and
source terminal of that transistor are connected. For example, suspect 1.4 is a TON
suspect for transistor M1, and suspect 1.5 is a TOFF suspect for transistor M4.

• ResistorValue: a small value (1.0) is typically used for bridge suspects and TON
suspects, and a large value (1.0G) is used for open suspects and TOFF suspects.

If the layout information is defined for each UDFM fault in the provided UDFM file, the tool
adds a CELL_DEFECT_LOCATION XMAP table to the layout-aware diagnosis report.

Note
Your layout-aware diagnosis report could show that there are no cell-aware defects yet
greater than zero total cell-aware faults. For example: #cell_internal_suspects=0,

#total_cell_internal_faults=207. This result means that 207 UDFM faults were simulated and
rejected as suspects because they did not match the defect well enough.

Note
If the UDFM file does not contain the cell type that is identified by cell internal diagnosis,
then the total_cell_internal_faults are reported as =0. For example:

#cell_internal_suspects=0, #total_cell_internal_faults=0

The following example shows how the CELL_DEFECT_LOCATION XMAP table reports the
layout information for cell-aware suspects:

CELL_DEFECT_LOCATION_BEGIN

symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 1.2 M1 BR.D2 NA 178.3370 748.1600 178.4330 748.1920
1 1.3 M1 OP.D10 NA 178.4300 748.2540 178.5200 748.2850
1 1.3 COD OP.D10 NA 178.2170 748.3020 178.2830 748.3920
1 1.4 NA TON.D22 NA 178.2890 748.3250 178.3020 748.3570
1 1.5 NA TOFF.D28 NA 178.2890 748.4240 178.3020 748.4440

CELL_DEFECT_LOCATION_END

For example, the first line shows that bridge suspect 1.2 locates within a box with bottom left
corner at (178.3370, 748.1600) and top-right corner at (178.4330, 748.1920) on layer M1. For
open suspect 1.3, two possible locations are reported: the first one is on layer M1, and the
second one is on layer COD (contact to diffusion). For TON/TOFF suspects, you get a bounding
box to show the location of the corresponding transistor without specific layer information.

Note
The tool does not generate the CELL_DEFECT_LOCATION table if the layout information
is not defined in the UDFM file. If this is the case, you need to manually map the cell

suspect based on the defect information in the report (type, Net1, and Net2).

Layout-Aware Diagnosis and Reporting
Cell-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 251

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For cell_bridge suspects, the tool indicates inter-layer defects as shown below. The layout layer
for suspect 1.2 shows “PS-DI.” This means that the cell_bridge defect spans layers PS (poly)
and DI (diffusion).

CELL_DEFECT_LOCATION_BEGIN

symptom suspect layout_layer category critical_area x_coord1 y_coord1 x_coord2 y_coord2

1 1.2 PS-DI BR.D34 NA 387.6840 166.4070 387.6940 166.5410

1 1.4 NA TON.D41 NA 387.8460 166.5410 387.8660 166.6800

Layout information for cell-aware suspects is also reported in the CSV reports and chip-level
layout marker files.

In addition to the CELL_DEFECT_LOCATION table, the tool provides a CELL_AREA table
as shown in the example below. (This example does not follow from the previous examples.)
For the cell areas described by the coordinates in the CELL_DEFECT_LOCATION table, the
CELL_AREA table provides a summary of the areas aggregated by symptom/ layer, where a
layer could contain multiple suspects.

CELL_AREA_BEGIN
 symptom suspect layout_layer category area ratio

1 1 CELL arfadd_01_std_thk_dnd 55987.2 100%
 1 1 CO-PS arfadd_01_std_thk_dnd 724.348 1.3%
 1 1 PS arfadd_01_std_thk_dnd 450.400 0.8%
 1 1 PS-DI arfadd_01_std_thk_dnd 215.964 0.4%
CELL_AREA_END

This example shows the results for one symptom with several layers. The table provides a
correct summation of the area of the rectangles on a given layer by taking into account
overlapping rectangles. That is, areas that overlap are not double-counted. The ratio column
lists the ratio of the cell area for the suspect layer against the overall cell area. The overall cell
area is the first entry in the table, so its ratio is 100%. You can use this table to scan for the
largest ratio so you can investigate those suspects first.

Chip-Level Layout Marker File Results Viewing
One of the results of the cell-aware diagnosis flow is the chip-level layout marker file. Unlike
the cell-level layout marker file produced by Tessent CellModelGen, the chip-level layout
marker file enables you to view the cell-aware suspects against their surrounding layouts or
backgrounds at the chip level.
By using the chip-level layout marker file, you can use CalibreDESIGNrev to view cell-aware
defects inside the cells with chip-level coordinates. You provide the chip-level GDSII and the
chip-level layout marker file.

Refer to “The Calibre GDS Viewer” in the Tessent CellModelGen Tool Reference for detailed
information about viewing the cell-level results in CalibreDESIGNrev. Refer to “Guidelines for
Viewing the Diagnosis Results in Calibre DESIGNrev” in the Tessent Diagnosis User’s Manual
for information about viewing the diagnosis layout marker file.

Tessent™ Diagnosis User’s Manual, v2022.4252

Layout-Aware Diagnosis and Reporting
Considerations for At-Speed Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Considerations for At-Speed Diagnosis
The layout-aware diagnosis flow does not support at-speed diagnosis. You can, however,
perform at-speed diagnosis with Tessent Diagnosis and create layout markers with a diagnosis
LDB.
The following dofile example illustrates the command sequence you use to create a layout-
marker file:

create_layout ./src/design.dft.ldb -lef ./src/design.lef -def ./src/design.def

open_layout ./src/design.dft.ldb

read_patterns my_patterns.asc

set_diagnosis_options -at_speed on

diagnose_failures ./tester_files/file1.flog

write_diagnosis -format layout_marker text csv -file results/file1 -replace

write_diagnosis -short -format layout_marker text csv -file results/file2 -replace

write_diagnosis -encoded -format layout_marker text csv -file results/file3 -replace

report_diagnosis

close_layout

exit

Related Topics
At-Speed Failure Diagnosis

Layout-Aware Diagnosis and Reporting
Source/Sink Polygon Layout Markers for Open Diagnosis Suspects

Tessent™ Diagnosis User’s Manual, v2022.4 253

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Source/Sink Polygon Layout Markers for Open
Diagnosis Suspects

By default, Tessent Diagnosis generates layout marker files for Open suspects in the diagnosis.
The information includes polygons for the sink and source cells for the defect. Calibre RVE
may be used to view a layout marker file.
Open Suspect Diagnosis and Layout Marker File Generation . 253
Using Calibre RVE to View Source/Sink Cell Polygons . 255

Open Suspect Diagnosis and Layout Marker File
Generation

The source and sink cell Open suspect information within the layout marker files is available by
default when the tool generates a layout marker file.

Layout Marker File Generation
The “set_diagnosis_options -include_src_sink_cells_in_marker” command controls the
generation of the Open suspect information in the layout marker files. For example:

set_diagnosis_options -include_src_sink_cells_in_marker on
diagnose_failures -o phyb2_adom_0.diag ../flogs/phyb2_adom_o \
 -output my_diag
write_diagnosis -format layout -file phyb2_adom_0

By default, the tool generates the markers.

Layout Marker Files Keywords
The resulting layout marker file contains the sink and source suspect data located at the ends of
the Open suspect nets. The source and sink cell suspect information is identifiable by the
SOURCE CELL and SINK CELL keywords. For example:

phyb2_adom_0.lay

SUSPECT-1-2.1_SINK CELL 12
1 1 0 Mon Nov 18 04:11:44 GMT 2019
p 1 4
ALL 12
SYMPTOM-1 12
SUSPECT-1-2 12
SUSPECT-1-2.1 12
4513000 1170500
4562000 1170500
4562000 1290500
4513000 1290500

Tessent™ Diagnosis User’s Manual, v2022.4254

Layout-Aware Diagnosis and Reporting
Open Suspect Diagnosis and Layout Marker File Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SUSPECT-1-2.1_SINK CELL 12
1 1 0 Mon Nov 18 04:11:44 GMT 2019
p 1 4
ALL 12
SYMPTOM-1 12
SUSPECT-1-2 12
SUSPECT-1-2.1 12
4570000 1170500
4611000 1170500
4611000 1290500
4570000 1290500

SUSPECT-1-2.1_SOURCE CELL 12
1 1 0 Mon Nov 18 04:11:44 GMT 2019
p 1 4
ALL 12
SYMPTOM-1 12
SUSPECT-1-2 12
SUSPECT-1-2.1 12
4339000 745500
4372500 745500
4372500 865500
4339000 865500

The suspects in the layout marker file correspond to the physical attributes of suspect 2.1 of
symptom 1 in the diagnosis report shown below (highlighted by the red box):

Layout-Aware Diagnosis and Reporting
Using Calibre RVE to View Source/Sink Cell Polygons

Tessent™ Diagnosis User’s Manual, v2022.4 255

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The diagnosis OPEN_LOCATION section shows the polygons for the defect bounding boxes.
The source and sink cell polygons in the layout marker file contain the beginning and ending
segments.

Using Calibre RVE to View Source/Sink Cell
Polygons

You can use Calibre RVE to highlight specific source/sink diagnosis defect and landmark
information contained within a layout marker file. The following procedure assumes that you
have some experience with Calibre RVE.

1. Open Calibre RVE. For example:

$CALIBRE_HOME/bin/calibredrv -64 -m ya_demo.oas

2. To start RVE, click Verification in the menu bar, and then click Start RVE.

3. In the Calibre RVE dialog box, under Database, select the layout marker file you want to
view.

Tessent™ Diagnosis User’s Manual, v2022.4256

Layout-Aware Diagnosis and Reporting
Using Calibre RVE to View Source/Sink Cell Polygons

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The RVE control window displays. The following figure shows that Property
SUSPECT-1-2.1 is select; this corresponds to diagnosis coordinate 1.2.1.

4. Click the “+” symbol next to the property of interest to expand its hierarchy tree.

The following figure shows the SINK CELL and SOURCE CELL bounding boxes
within the list of defect suspects.

5. Select the SINK CELL, and then click the Highlight button in the standard RVE tool
bar. Perform the same task with the SOURCE CELL.

Layout-Aware Diagnosis and Reporting
Using Calibre RVE to View Source/Sink Cell Polygons

Tessent™ Diagnosis User’s Manual, v2022.4 257

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In the resulting layout view, the sink cells and source cells display with their own layer
color attributes in the layer map area:

6. As needed, select and highlight any of the suspects to view them in RVE.

Tessent™ Diagnosis User’s Manual, v2022.4258

Layout-Aware Diagnosis and Reporting
Using Calibre RVE to View Source/Sink Cell Polygons

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can view the polygon coordinate data for any selected layer by accessing the Object
Properties dialog box.

Layout-Aware Diagnosis and Reporting
Guidelines for Viewing the Diagnosis Results in Calibre DESIGNrev

Tessent™ Diagnosis User’s Manual, v2022.4 259

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Guidelines for Viewing the Diagnosis Results
in Calibre DESIGNrev

To view the Tessent Diagnosis layout-area results in Calibre DESIGNrev, you must use a layout
marker file instead of the Tessent diagnosis report. A layout marker file contains coordinate
information that Calibre DESIGNrev uses for displaying the layout-aware results. In general,
you create a layout marker file when you write out the Tessent Diagnosis report.
To view the layout-aware diagnosis results in Calibre DESIGNrev, choose one of the following
topics depending on the Calibre version you are using:

• Viewing Results in Pre-Calibre 2010.1 Software

• Viewing Results in Calibre 2010.1 or Newer Software

To use Calibre DESIGNrev, you must:

• Have access to a Siemens EDA Calibre software tree (version Calibre 2007.3 or newer)
and the following Calibre licenses:

o caldesignrev

o calibreqdb

For complete Calibre licensing information, see the Calibre Administrator’s Guide in
your Calibre software tree or on Siemens EDA Support Center.

For more information about using Calibre DESIGNrev, refer to the Calibre DESIGNrev
Layout Viewer User’s Manual.

• Have generated a Calibre tool-compatible layout marker file as follows;

o Tessent Diagnosis — Use the write_diagnosis -format layout_marker command and
arguments.

o Tessent Diagnosis Server — Use the add_reporting_format -layout_marker
command and argument.

Viewing Results in Pre-Calibre 2010.1 Software . 259
Viewing Results in Calibre 2010.1 or Newer Software. 264

Viewing Results in Pre-Calibre 2010.1 Software
Use the following procedure to view results in Calibre software prior to 2010.1.

Prerequisites
• A layout marker file. You cannot use the diagnosis report. Consult “Guidelines for

Viewing the Diagnosis Results in Calibre DESIGNrev” before you begin.

Tessent™ Diagnosis User’s Manual, v2022.4260

Layout-Aware Diagnosis and Reporting
Viewing Results in Pre-Calibre 2010.1 Software

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Invoke Calibre DESIGNrev from a UNIX/Linux shell using the following syntax:

calibredrv

2. Select File > open_layout, select the layout, and click Open.

You must open the same layout and coordinate space as the LEF/DEF files. In some
cases, you must create a new GDSII or OASIS® layout using the File > Open Database
option in Calibre DESIGNrev.

3. To enable highlighting in different layers/colors (recommended), select Tools > RVE/
CI Setup. In the RVE/CI Setup dialog box, click the Multi-layerHighlights radio
button if not activated, and then click OK.

4. Select Tools > Start RVE

Layout-Aware Diagnosis and Reporting
Viewing Results in Pre-Calibre 2010.1 Software

Tessent™ Diagnosis User’s Manual, v2022.4 261

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

5. Navigate to and select the Tessent Diagnosis layout marker file. Click Open.

Tessent™ Diagnosis User’s Manual, v2022.4262

Layout-Aware Diagnosis and Reporting
Viewing Results in Pre-Calibre 2010.1 Software

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. In the left-hand pane, move the mouse cursor over the Check/Cell column heading, and
click and hold the mouse menu button, and choose Property / Check / Cell option.

7. In the left-hand pane, click a suspect of interest, click and hold the mouse menu button,
and choose Histogram > suspect.

Layout-Aware Diagnosis and Reporting
Viewing Results in Pre-Calibre 2010.1 Software

Tessent™ Diagnosis User’s Manual, v2022.4 263

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. In the Histogram Pane, select the number of divisions and click Update.

Tessent™ Diagnosis User’s Manual, v2022.4264

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9. In the Histogram Pane, move the cursor over the colored histogram area, click and hold
the menu mouse button, and select Show Colormap.

Results
Selecting Show Colormap sends the result to Calibre DESIGNrev.

Viewing Results in Calibre 2010.1 or Newer
Software

Use the following procedure to view results in Calibre 2010.1 or newer software.

Prerequisites
• A layout marker file. You cannot use the diagnosis report. Consult “Guidelines for

Viewing the Diagnosis Results in Calibre DESIGNrev” before you begin.

Procedure
1. Invoke Calibre DESIGNrev from a UNIX/Linux shell using the following syntax:

calibredrv

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Tessent™ Diagnosis User’s Manual, v2022.4 265

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Select File > open_layout Files, select the layout, and click Open.

You must open the same layout and coordinate space as the LEF/DEF files. In some
cases, you must create a new GDSII or OASIS® layout using the File > Open Database
option in Calibre DESIGNrev.

3. Select Verification > Start RVE.

4. Navigate to and select the Tessent Diagnosis layout marker file. Click Open.

5. In RVE, choose Setup > Options.

Tessent™ Diagnosis User’s Manual, v2022.4266

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

On the RVE Options tab, choose the Highlighting category, enable the Zoom to
highlights by option, and set the zoom value to 0.7.

Unselect Clear Existing Highlights Before ShowingNew Highlights.

6. In the Histogram Pane, select Setup > Options. On the RVE Options tab, choose the
Histograms category, and set the Data Distribution Divisions to “2”.

Click Apply.

Click the “x” on the Options tab to close the tab.

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Tessent™ Diagnosis User’s Manual, v2022.4 267

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. In the left-hand pane, move the mouse cursor over the Check / Cell column heading,
and click the mouse menu button, and choose the Property / Check / Cell option.

Tessent™ Diagnosis User’s Manual, v2022.4268

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. In the left-hand pane, click a suspect of interest, click the mouse menu button, and
choose Histogram > suspect.

Layout-Aware Diagnosis and Reporting
Viewing Results in Calibre 2010.1 or Newer Software

Tessent™ Diagnosis User’s Manual, v2022.4 269

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9. In the Histogram Pane, move the cursor over the colored histogram area, click and hold
the menu mouse button, and select Show Colormap.

Results
Clicking Show Colormap for this suspect in Calibre RVE displays the suspect in Calibre
DESIGNrev.

Tessent™ Diagnosis User’s Manual, v2022.4270

Layout-Aware Diagnosis and Reporting
Layout-Aware Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Reporting
The diagnosis report for layout-out aware diagnosis displays additional, layout-related data.
This enhanced reporting is activated automatically when you open the layout in Tessent
Diagnosis. Tessent Diagnosis provides one reporting schema for cell, open, and bridges.
The Layout-Aware Diagnosis Report . 271
Power and Ground Bridge Reporting . 281
Inter-Scan Cell Polygon Reporting for Chain Diagnosis . 282
Cell Bridge Port Diagnosis Reporting . 284

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Tessent™ Diagnosis User’s Manual, v2022.4 271

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Layout-Aware Diagnosis Report
As compared to the regular diagnosis report, the layout-aware diagnosis report enhances the
suspect details section and adds a new section. It follows the principle to add only as much
layout-related information into the suspect section to enable the failure analysis engineer to gain
an overview of the layout-related defects. In this section, only the combined critical area of all
potential defect locations per layer and the name of the layer are listed right after each suspect.
Figure 3-18 illustrates the contents of a diagnosis report showing a typical layout-aware
diagnosis report. In the figure, the report shows a 2-way bridge, with both nets present in the
layout (note the “LOCATION_IN_LAYOUT” comment). Right after both nets of this 2-way
bridge are listed, an indented table reports the combined critical area of all locations in the two
listed layers, where these two nets might bridge.

Tessent™ Diagnosis User’s Manual, v2022.4272

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-18. Example Layout-Aware Diagnosis Report

Via Naming Convention. For two DEF files with local and global via names as follows:

• DEF design “top”: local name, viax, and global name, via1.

• DEF design “core”: local name, viax, and global name, via2.

The reported names are:

top.viax // design name "top" appended with local via name
via1 // global LEF via name
core.viax // design name "core" appended with local via name
via2 // global LEF via name

Layout Status Column. 273

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Tessent™ Diagnosis User’s Manual, v2022.4 273

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Defect Location Information. 273
The XMAP Table . 276
The Branch Information Table . 279

Layout Status Column
The layout status column in the layout-aware diagnosis report provides the status of input pins,
nets, and net names for suspects.
Table 3-4 provides the descriptions of the layout_status column of the report.

Additional detail about each individual potential defect location is shown in the
“BRIDGE_LOCATION”, “CELL_LOCATION”, and “OPEN_LOCATION” tables of the
cross map table towards the end of the report.

Defect Location Information
The layout-aware diagnosis report contains physical defect location information of each suspect
contained in the report.
The diagnosis report lists both the bounding box coordinates (x_coord1, y_coord1, x_coord2,
and y_coord2) and the enclosing circle in the XMAP_TABLE section, as follows:

• Bounding box — A rectangular area on a given layer in the layout containing a
particular physical defect. Figure 3-19 shows an example bounding box.

Table 3-4. layout_status Column Descriptions
layout_status Description
INPUT_PIN_FAULT Only used for STUCK/INDETERMINATE suspects that

are on an input pin of a gate/library cell. The tool is unable
to assign a physical meaning to the suspect. These are
logical failing suspects similar to STUCK/
INDETERMINATE on the input pin of the gate, the
physical defect condition is unknown.

LOCATION_IN_LAYOUT The suspect’s net or nets are available in the layout.
MISSING_FROM_LAYOUT Only used for missing design net names in the layout and

vice versa. No layout-aware features, however, are available
for these nets.

Tessent™ Diagnosis User’s Manual, v2022.4274

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-19. Defect Bounding Box

• Enclosing circle — A diameter around one or more bounding boxes. Figure 3-20 shows
an example enclosing circle. The ENCLOSING_CIRCLE section of the diagnosis report
shows the per symptom minimal enclosing circles for all of the defect bounding boxes
associated with each layout layer. The asterisk in the symptom column indicates all
symptoms. The special name ALL_LAYERS indicates a circle that encompasses all the
bounding boxes on all layers.

Figure 3-20. Defect Enclosing Circle

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Tessent™ Diagnosis User’s Manual, v2022.4 275

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The ENCLOSING_CIRCLE table consists for the following columns:

Figure 3-21 shows the two sections of the diagnosis report that itemize the layout defect
bounding boxes.

Figure 3-21. Diagnosis Report: Layout Defect Bounding Boxes

The single symptom 4 CELL layer has a defect bounding box of:

4 1 CELL ao21 NA 4966.0000 7602.5000 5023.0000 7722.5000

Table 3-5. ENCLOSING_CIRCLE Table
Heading Description
layout_layer Layout layer name that the circle encompasses.

The special name ALL_LAYERS indicates a circle
that encompasses all the bounding boxes on all
layers.

diameter Diameter of the enclosing circle.
center_x X coordinate of the circle.
center_y Y coordinate of the circle.
symptom Symptom number for which the enclosing circle

was calculated. The special symbol “*” indicates a
tally across all symptoms.

Tessent™ Diagnosis User’s Manual, v2022.4276

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The calculated enclosing circle associated with CELL is:

 CELL 132.8495 4994.5000 7662.5000 4

There are two symptom 1 route_1 open features with defect bounding boxes:

1 1.1 route_1 OP1.34E+01 5981.5000 4587.0000 5985.5000 4591.0000
1 1.1 route_1 OP1.34E+01 6022.0000 4587.0000 6026.0000 4591.0000

Together, they are contained by the enclosing circle:

route_1 44.6794 6003.7500 4589.0000 1

The XMAP Table
The entries in the XMAP table provide detailed defect information. The tool indexes the entries
by the symptom and suspect numbers so you can cross-reference back to the pathnames and cell
names reported in the chain and logic diagnosis sections.
Figure 3-22 shows an example XMAP table containing layout details reported for each defect
location. The tool writes the XMAP table to the diagnosis report after it writes all the symptoms
and suspects of the chain and logic diagnosis sections.

Figure 3-22. Layout-Aware Diagnosis Report With Layout Locations

In the report’s category column, you can find additional defect-related location information.

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Tessent™ Diagnosis User’s Manual, v2022.4 277

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• BRIDGE_LOCATION — Identifies the following categories of bridges:

o S2S — Side-to-side bridges. For a S2S bridge, the coordinates mark the lower left
corner of the bridge location.

o C2C — Corner-to-corner bridges. For C2C bridges, the corner with the smaller y-
value is chosen for reporting, and if these y-values are equal, the one with the
smaller x-value is selected.

o DOM — Dominant bridges. These are bridge faults where only one of the two nets,
the ‘victim’, is observable at an observation point (scan flop or primary output). The
other net, the ‘aggressor’, never carries a difference to any observation point, and
thus remains unknown to a strictly logical-based diagnosis too. The reported suspect,
however, is only the victim net, specifically, the observable net. In the indented
table, each remaining layout-derived potential aggressor candidate is listed. With its
net name also the combined critical area of all locations in all listed layers, where
these two nets, the victim and the aggressor, might bridge is reported. DOM entries
are in the indented suspect sub-table below the primary suspect.

• CELL_LOCATION — Always NA.

• OPEN_LOCATION — Identifies the following categories of opens:

o OP — Opens on metal layers.

o via_type_name — For opens on via layers, Tessent Diagnosis reports the type name
of the via instance at this location. This via type name was defined in the LEF file.

• CELL_DEFECT_LOCATION — Identifies the following category of cell-aware
defects.

o defect_location_string — Identifies the defect ID, defect location, and resistor value.
For example: D37/6:73--CIN:15/1.0. Refer to “Cell-Aware Diagnosis” for details.

Pin Location Table
You can include an optional table of pin coordinates in the report. This PIN_LOCATION table
is not present by default. Use the following command to add it.

set_diagnosis_options -report_pin_locations ON

You can also use the diagnosis server version of the command.

set_diagnosis_options Monitor-ID -report_pin_locations ON

Tessent™ Diagnosis User’s Manual, v2022.4278

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The resulting PIN_LOCATION table is similar to the following:

PIN_LOCATION_BEGIN
symptom suspect layout_layer pin_location_x pin_location_y
1 1 metal1 7566.0400 2698.3600
1 2 metal1 7566.0400 2698.4350
2 1 metal1 7566.0400 2698.4350
2 2 metal2 7566.1200 2698.5310
2 2.1 metal2 7566.1250 2698.5300
PIN_LOCATION_END

Cell Defect Location Table
The CELL_DEFECT_LOCATION table provides a list of defect locations from the cell
models. It begins with the keyword CELL_DEFECT_LOCATION_BEGIN and ends with the
keyword CELL_DEFECT_LOCATION_END. This table has the following columns by
default.

• symptom — The symptom number.

• suspect — The suspect number of the corresponding symptom.

• layout_layer — Layer name from the LEF and DEF files.

• category — Defect type and the defect ID.

• critical_area — Critical area of all potential defect locations per layer corresponding to
the layout_layer column.

• x_coord1 — The lower left x-coordinate of the defect bounding box.

• y_coord1 — The lower left y-coordinate of the defect bounding box.

• x_coord2 — The upper right x-coordinate of the defect bounding box.

• y_coord2 — The upper right y-coordinate of the defect bounding box.

An example dataset of this table is similar to the following:

1 1.3 TRAN TON.D23 5.73E-03 107.6850 120.5205 107.7350 120.6550
1 1.4 PS OP.D27 5.02E-03 107.6545 121.3075 107.7350 121.3450
1 1.4 PS OP.D27 8.50E-03 107.6850 121.3450 107.7350 121.5900
1 1.4 PS OP.D27 4.62E-03 107.6850 121.5450 107.7350 121.6355
1 1.5 CO OP.D28 2.77E-03 107.6600 121.2750 107.7250 121.3405
1 1.5 M1 OP.D28 4.78E-03 107.6350 121.2400 107.6925 121.3800
1 1.6 TRAN TOFF.D33 4.62E-03 107.6850 121.5450 107.7350 121.6355
1 1.7 PS-DI BR.D19 5.33E-03 107.6625 121.5450 107.7070 121.6355
1 1.8 M1 BR.D5 5.26E-04 107.6500 120.5580 107.7700 120.6180
1 1.8 CO BR.D5 1.01E-03 107.6500 120.5655 107.7690 120.6105
1 1.8 DI BR.D5 5.57E-03 107.6840 120.5205 107.7350 120.6550
1 1.9 M1 BR.D6 3.85E-04 107.6195 121.3810 107.6650 121.5980
1 1.9 CO-PS BR.D6 4.58E-03 107.6445 121.5660 107.6895 121.6310
1 1.9 CO-PS BR.D6 2.63E-04 107.6295 121.3465 107.6745 121.5660

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Tessent™ Diagnosis User’s Manual, v2022.4 279

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can optionally add a column of UDFM layer names from the data that is available in the
UDFM file. Use the “set_diagnosis_options -add_spice_layers_to_diagnosis_report on”
command, which adds a column named spice_layer after the y_coord2 column. The results rely
on the UDFM to SPICE translation data available in the UDFM file. If data is not available
(such as a missing cell definition or an incomplete mapping) the tool prints “NA”. An example
spice_layer dataset is similar to the following:

NA
{poly}
{poly}
{poly}
{contact}
{metal1}
NA
{poly}-{nsrcdrn,psrcdrn}
{metal1}
{contact}
{nsrcdrn,psrcdrn}
{metal1}
{contact}-{poly}
{contact}-{poly}

The Branch Information Table
The branch information table displays a set of polygons that have the same set of failing sink
gates for OPEN defects. The numbering is internal and unique for each branch.
Figure 3-23 shows an example branch information table from a layout-aware diagnosis run. The
tool produces this table only for OPEN defects.

Tessent™ Diagnosis User’s Manual, v2022.4280

Layout-Aware Diagnosis and Reporting
The Layout-Aware Diagnosis Report

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-23. Branch Information Example

In Figure 3-24, the main report uses “B<numbers>” in the suspect detail section and
corresponding location information in the BRANCH_INFORMATION section of the report.

Figure 3-24. Multiple Branch Segments Example

Layout-Aware Diagnosis and Reporting
Power and Ground Bridge Reporting

Tessent™ Diagnosis User’s Manual, v2022.4 281

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Power and Ground Bridge Reporting
For STUCK suspects, Tessent Diagnosis layout-aware diagnosis analyzes and reports potential
bridging defects between the STUCK suspect net, and a power or ground line.
Figure 3-25 demonstrates a Tessent layout-aware diagnosis report containing a STUCK suspect
potentially bridging to the power net.

Figure 3-25. Example Diagnosis Report With STUCK Suspect Bridging to Power
Net

For these potential power or ground bridging suspects, Tessent Diagnosis reports the suspect’s
type as DOM (see Table 3-25), and POWER or GROUND as the netname. The report also
contains the secondary suspect’s critical area and bounding box for the bridge—see “Defect
Location Information.”

You can turn off this analysis and reporting by setting -INCLUDE_BRIDGE_to_power switch
to “OFF” for the set_diagnosis_options (scan diagnosis) or set_diagnosis_options (server)
command.

You can also view these potential power or ground bridging suspects in Tessent YieldInsight as
shown in Figure 3-26. See “Polygon Layout Viewer Pane” in the Tessent YieldInsight User’s
Manual.

Tessent™ Diagnosis User’s Manual, v2022.4282

Layout-Aware Diagnosis and Reporting
Inter-Scan Cell Polygon Reporting for Chain Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-26. Visualization of Potential Bridging Defect to a Power Line

Inter-Scan Cell Polygon Reporting for Chain
Diagnosis

The Tessent Diagnosis chain diagnosis report includes CELL and OPEN defect polygons for
logic gates located between the scan cells, or inter-scan cell polygons. These polygons also
appear in any associated layout marker files and CSV files.
For example, Figure 3-27 shows a suspect cell with a fault type that includes (IN+CELL). The
tool traces from the scan cell’s fan-in to the previous scan cell. If it encounters any logic gates
along the trace (such as the buffer shown below), it adds that logic’s polygons to the
CELL_LOCATION table of the diagnosis report. In addition, it includes the logic’s ouput net
polygon to the OPEN_LOCATION table.

Figure 3-27. Inter-Scan Cell Polygons for (IN + CELL)

Layout-Aware Diagnosis and Reporting
Inter-Scan Cell Polygon Reporting for Chain Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 283

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If the fault type includes (CELL+OUT) such as shown in Figure 3-28, the tool traces the scan
cell’s fanout to the next scan cell and includes polygons for any logic gates found along the
trace to the CELL_LOCATION and OPEN_LOCATION tables.

Figure 3-28. Inter-Scan Cell Polygons for (CELL + OUT)

If the fault type includes (IN+CELL+OUT), the tool traces both from the suspect scan cell’s
fan-in to the previous scan cell and the suspect scan cell’s fanout to the next scan cell.

To report the inter-scan cell logic, use the report_scan_polygons command. For example,
suppose your chain diagnosis report includes the following for suspect 16:

16 65 STUCK(CELL+OUT) 1
/top_dut/io/data_out/SO FFTX1 \ /top_dut/io/n18 333 chain78

This suspect is associated with chain 78 at scan cell 333. Fault type CELL+OUT means that the
tool searches for logic gates from cell 333 to cell 334 and includes any logic gate’s cell and net
defect polygons in the diagnosis report.

To verify the inter-scan cell logic on the trace from scan cell 333 to scan cell 334 and report the
net and gate polygons associated with the selected scan chain segment, specify the following
command:

report_scan_polygons -chain chain78 -start 333 -stop 334

See report_scan_polygons for more information and for an example of a report.

Note
When you have a chip-mapped core-level LDB from hierarchical layout-aware diagnosis,
prior to specifying the following command and option, you must specify the

set_layout_core_instance command to set the current layout core instance for reporting
purposes.

Tessent™ Diagnosis User’s Manual, v2022.4284

Layout-Aware Diagnosis and Reporting
Cell Bridge Port Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For hierarchical layout-aware diagnosis, the report_scan_polygons command generates reports
with scanned net pathnames at the core level, by default. To generate reports with the scanned
net pathnames for each instance of a given core reported at the chip level, specify:

report_scan_polygons -all_core_instances

Refer to “Diagnosis for Hierarchical Designs” for information about performing hierarchical
layout-aware diagnosis.

Cell Bridge Port Diagnosis Reporting
Cell bridge port defects can cause a propagating fault effect called fault effect back propagation.
This fault effect occurs when a bridge port defect on one cell effects sibling cells on the same
net.
In the following figure, Net1 has one driver cell and three sink cells. All sink cells for the same
net are called sibling cells. Suppose that there is a bridge defect in cell Sink3 between its port a
and an internal signal n1. Because all of Net1 may be affected by this bridge defect, the fault
effect may propagate to not only the output port z of Sink3, but also to the output ports of its
sibling cells, Sink1 and Sink2.

Layout-Aware Diagnosis and Reporting
Cell Bridge Port Diagnosis Reporting

Tessent™ Diagnosis User’s Manual, v2022.4 285

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 3-29. Cell Bridge Port Defect, Propagating

To diagnose and report fault effect back propagation issues arising from cell bridge port defects,
specify the following command:

set_diagnosis_options -cell_port_bridge_analysis on
For Tessent Diagnosis server:
set_diagnosis_options monitor -cell_port_bridge_analysis on

By default, the -cell_port_bridge_analysis option is set to “auto,” which means that it is off for
layout-aware diagnosis and on for cell-aware diagnosis. Cell port bridge diagnosis requires an
LDB. For cell-aware diagnosis, you should use the most current UDFM file.

Layout-Aware Diagnosis Example
The following example shows a layout-aware diagnosis report with cell port bridge diagnosis
turned off.

Tessent™ Diagnosis User’s Manual, v2022.4286

Layout-Aware Diagnosis and Reporting
Cell Bridge Port Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

symptom=1 #suspects=1 #explained_patterns=23

13 16 28 81 89 118 157 162 174 191

195 201 203 208 221 246 335 377 406 412

479 502 506

suspect score fail_match pass_mismatch type

value pin_pathname cell_name net_pathname layout_status

--

1 100 23 0 OPEN/DOM 0 /…/U471/o1 INV_X1 /…/n265

LOCATION_IN_LAYOUT

#potential_open_segments=1, #total_segments=3, #potential_bridge_aggressors=0,

#total_neighbors=na

suspect score fail_match pass_mismatch type value location layout_layer

critical_area

--

1.1 100 23 0 OPEN 0 B1&B2 m1 7.84E-03

v1 1.22E-03

m2 1.14E-02

--

The following example shows the same layout-aware diagnosis report but with cell port bridge
diagnosis enabled. Now two extra CELL_PB suspects are called out for two sink cells, U87 and
U101, for the potential port bridge defect.

symptom=1 #suspects=1 #explained_patterns=23

13 16 28 81 89 118 157 162 174 191

195 201 203 208 221 246 335 377 406 412

479 502 506

suspect score fail_match pass_mismatch type

value pin_pathname cell_name net_pathname layout_status

--

1 100 23 0 OPEN/DOM 0 /…/U471/o1 INV_X1 /…/n265

LOCATION_IN_LAYOUT

#potential_open_segments=1, #total_segments=3, #potential_bridge_aggressors=0,

#total_neighbors=na

suspect score fail_match pass_mismatch type value location layout_layer

critical_area

--

1.1 100 23 0 OPEN 0 B1&B2 m1 7.84E-03

v1 1.22E-03

m2 1.14E-02

--

2 80 23 19 CELL_PB 0 /…/U87/a NAND2_X1 /…/n265

LOCATION_IN_LAYOUT

3 79 23 24 CELL_PB 0 /…/U101/a NAND2_X2 /…/n265

LOCATION_IN_LAYOUT

--

Cell-Aware Diagnosis Example
The following cell-aware diagnosis report shows 2 CELL_PB suspects for the same failure file.
For the CELL_PB suspect 1.2, 14 bridge faults associated with port U87/a are called out as cell-
aware suspects. For CELL_PB suspect 1.3, 11 bridge faults associated with port U101/a are
called out as cell aware suspects.

Layout-Aware Diagnosis and Reporting
Cell Bridge Port Diagnosis Reporting

Tessent™ Diagnosis User’s Manual, v2022.4 287

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

symptom=1 #suspects=1 #explained_patterns=23

13 16 28 81 89 118 157 162 174 191

195 201 203 208 221 246 335 377 406 412

479 502 506

suspect score fail_match pass_mismatch type value pin_pathname cell_name

net_pathname layout_status

--

1 100 23 0 OPEN/DOM 0 /…/U471/o1 INV_X1 /…/n265

LOCATION_IN_LAYOUT

#potential_open_segments=1, #total_segments=3, #potential_bridge_aggressors=0,

#total_neighbors=na

suspect score fail_match pass_mismatch type value location layout_layer

critical_area

1.1 100 23 0 OPEN 0 B1&B2 m1 7.84E-03

v1 1.22E-03

m2 1.14E-02

2 80 23 19 CELL_PB 0 /…/U87/a NAND2_X1 /…/n265

LOCATION_IN_LAYOUT

#cell_internal_suspects=14, #total_cell_internal_faults=137

suspect score fail_match pass_mismatch type value location layout_layer

critical_area

--

2.1 80 23 19 CELL_BRIDGE - D11/a_33--o1_27/1.0

2.2 80 23 19 CELL_BRIDGE - D29/a_29--vcc_28/1.0

2.3 80 23 19 CELL_BRIDGE - D30/a_18--b_24/1.0

2.4 80 23 19 CELL_BRIDGE - D14/o1_27--a_14/1.0

...

2.12 80 23 19 CELL_BRIDGE - D61/o1_18--a_34/1.0

2.13 80 23 19 CELL_BRIDGE - D70/a_18--o1_18/1.0

2.14 80 23 19 CELL_BRIDGE - D72/o1_1--a_1/1.0

3 79 23 24 CELL_PB 0 /…/U101/a NAND2_X2 /…/n265

LOCATION_IN_LAYOUT

#cell_internal_suspects=11, #total_cell_internal_faults=123

suspect score fail_match pass_mismatch type value location layout_layer

critical_area

--

3.1 79 23 24 CELL_BRIDGE - D10/a_26--o1_13/1.0

3.2 79 23 24 CELL_BRIDGE - D29/a_25--vcc_44/1.0

3.3 79 23 24 CELL_BRIDGE - D30/a_15--b_14/1.0

3.4 79 23 24 CELL_BRIDGE - D13/o1_13--a_11/1.0

...

3.9 79 23 24 CELL_BRIDGE - D36/a_15--g1.n1_7/1.0

3.10 79 23 24 CELL_BRIDGE - D46/a_18--o1_16/1.0

3.11 79 23 24 CELL_BRIDGE - D53/a_21--o1_36/1.0

--

Tessent™ Diagnosis User’s Manual, v2022.4288

Layout-Aware Diagnosis and Reporting
Cell Bridge Port Diagnosis Reporting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Diagnosis User’s Manual, v2022.4 289

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
Diagnosis for Hierarchical Designs

For large designs, it is typical to use the Tessent Shell hierarchical RTL and scan DFT insertion
flow, which results in ATPG test patterns for core-level blocks that you retarget to the top level
to create top-level ATPG test patterns. This chapter describes how to perform layout-aware
diagnosis on the core-level test patterns and the top-level test patterns.
Refer to “Tessent Shell Flow for Hierarchical Designs” in the Tessent Shell User’s Manual for
information about the hierarchical DFT insertion flow in Tessent Shell.

Core-Level Layout-Aware Diagnosis . 290
Generating Chip-Mapped Core-Level LDBs . 291
Reverse Mapping Top-Level Failures to the Core . 294
Running Layout-Aware Diagnosis Using a Core-Level LDB . 298
Adding Instance Information to an Existing Core-Level LDB. 301
Validating Reverse Mapping Prior to Core-Level Layout-Aware Diagnosis. 305

Top-Level Layout-Aware Diagnosis. 306
Running Layout-Aware Diagnosis Using a Graybox-Aware Top-Level LDB 306

Tessent™ Diagnosis User’s Manual, v2022.4290

Diagnosis for Hierarchical Designs
Core-Level Layout-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Core-Level Layout-Aware Diagnosis
The hierarchical DFT insertion flow results in the top-level failure files, which are obtained by
applying the top-level retargeted patterns on the testers. However, Tessent Diagnosis requires
core-level flat models as inputs. This means that to diagnose failures at the core level, you must
translate—or reverse map—the top-level failure files back to chip- mapped core-level failure
files after creating core-level LDBs.
For each wrapped core in the design, the high-level flow is:

Figure 4-1. Chip-Mapped Core-Level LDB Layout-Aware Diagnosis Flow

For hierarchical designs, each core is a sub-portion of the complete design, which means the
core LDB is smaller than the LDB for the entire design because it only stores the net, pin, cell,
and core instance locations for a given core LDB. All other data pertaining to top level and other
cores is discarded. The layout hierarchy database contains the hierarchy tree of the entire design
along with the LEF/DEF files required for each core. This enables Tessent Diagnosis to
generate chip-mapped core-level LDBs for any core in a design without re-processing the LEF/
DEF for the entire design.

Diagnosis for Hierarchical Designs
Generating Chip-Mapped Core-Level LDBs

Tessent™ Diagnosis User’s Manual, v2022.4 291

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Additionally, from the information stored in the layout hierarchy database, the tool can estimate
the size of any chip-mapped core LDB and the amount of memory required for processing.

If the same core is instantiated in different chips, you can add the instance information from
both of these chips to the same core-level LDB.

Note
For STDF-V4 2007(.1)-formatted files, you must first use the dlogutil utility to extract the
failures into files formatted for Tessent Diagnosis. Refer to “dlogutil Utility” for details.

Generating Chip-Mapped Core-Level LDBs . 291
Reverse Mapping Top-Level Failures to the Core . 294
Running Layout-Aware Diagnosis Using a Core-Level LDB . 298
Adding Instance Information to an Existing Core-Level LDB . 301
Validating Reverse Mapping Prior to Core-Level Layout-Aware Diagnosis 305

Generating Chip-Mapped Core-Level LDBs
For each core, generate chip-mapped core-level LDBs that store the coordinates, including
placement and orientation in reference to the top-level chip, of all instances of a specified core.
Tessent Diagnosis derives this information from the layout hierarchy database that you specify.
For a specified core, the tool reads only the core LEF/DEF information stored in the database.
Consider the following design with two pairs of identical cores. Two of the cores are
instantiations of CoreA and the other two are instantiations of CoreB. The core-level flat model
files for the two cores are coreA.flat.gz and coreB.flat.gz.

Tessent™ Diagnosis User’s Manual, v2022.4292

Diagnosis for Hierarchical Designs
Generating Chip-Mapped Core-Level LDBs

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-2. Design With Two Pairs of Identical Cores

The corresponding DEF files are:

Figure 4-3. DEF Corresponding to Design With Two Pairs of Identical Cores

Diagnosis for Hierarchical Designs
Generating Chip-Mapped Core-Level LDBs

Tessent™ Diagnosis User’s Manual, v2022.4 293

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• Core-level flat models.

• You have a layout hierarchy database as previously created by the
analyze_layout_hierarchy command. Refer to “Estimation of Resources Required for
Generating LDBs” on page 185.

Procedure
Note

If you already have core-level LDBs, you can add instance information to them as
described in “Adding Instance Information to an Existing Core-Level LDB” on

page 301.

1. The following flow creates a core-level LDB for coreA. Note the following for the
create_layout command:

• The -core option specifies to create an LDB for the core.

• The tool uses the hierarchical LEF/DEF structural information stored in the layout
hierarchy database, which means that you do not have to specify LEF/DEF files. If
you specify both the layout hierarchy database with the -hierdb option and LEF/DEF
files, the tool issues an error.

> tessent -shell
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreA.flat.gz
...
ANALYSIS> create_layout coreA.ldb -core coreA -hierdb hierdb_name
...
ANALYSIS> open_layout coreA.ldb -chip_design_name chip
ANALYSIS> report_layout_core_information
...
ANALYSIS>

2. The following flow creates a core-level LDB for coreB:

> tessent -shell
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreB.flat.gz
...
ANALYSIS> create_layout coreB.ldb -core coreB -hierdb hierdb_name \
...
ANALYSIS> open_layout coreB.ldb
ANALYSIS> report_layout_core_information
...
ANALYSIS>

Results
The tool generates LDBs that include the polygons defined in the DEF file for specified cores
plus sub-DEF files instantiated within the cores. The tool ignores polygon interactions with

Tessent™ Diagnosis User’s Manual, v2022.4294

Diagnosis for Hierarchical Designs
Reverse Mapping Top-Level Failures to the Core

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DEF files located at higher or parallel locations. Thus, some bridge defect inaccuracies might
occur for bridge defects between these polygons and the core polygons.
An error occurs if the DEF design name specified with the -core option does not match a design
name specified with the create_layout command.
By default, core name and core instance path mismatches between the tracking information in
the failure file and the LDB generate errors. You can use the set_diagnosis_options
-core_instance_error option to change the default behavior to warnings. In addition, when
opening an LDB that contains core instances, the layout fails to open with an error if the
-chip_design_name option is unspecified.

Reverse Mapping Top-Level Failures to the Core
The top-level failures come from one or more test suites derived from retargeted patterns
associated with the same test configuration.
The following considerations also apply to reverse mapping top-level failures:

• For repeated top-level patterns that stem from the same core pattern, Tessent Shell
considers only the failures for the first pattern.

• Failures corresponding to different top-level Tessent Core Description (TCD) files
should be logged in separate failure files and reverse mapped separately. Do not merge
failures from multiple core-level patterns that correspond to multiple top-level core
description files together into one failure file with multiple test suites.

Note
Prior to performing reverse mapping of actual silicon top-level failures to the core, you can
create emulated open-socket failure files to test that your hierarchical design diagnosis with

reverse mapping performs correctly. For details, refer to “Validating Reverse Mapping Prior to
Core-Level Layout-Aware Diagnosis” on page 305.

Prerequisites
• Top-level TCD file that resulted from scan pattern retargeting.

• Top-level parallel STIL or parallel WGL test pattern files.

• Top-level failure files.

Procedure
1. In Tessent Shell, set the context as follows:

set_context patterns -failure_mapping

2. Specify the top-level TCD file. For example:

read_core_description top.tcd

Diagnosis for Hierarchical Designs
Reverse Mapping Top-Level Failures to the Core

Tessent™ Diagnosis User’s Manual, v2022.4 295

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Specify the current design. For example:

set_current_design top

This step is optional if you read only one retargeted TCD file into the tool.

4. Set the system mode to analysis, as follows:

set_system_mode analysis

5. Specify the top-level STIL/WGL test pattern files. For example:

read_patterns top.stil

read_patterns top2.stil -append

The pattern files contain the information that the tool requires to reverse map the failing
cycles. The tool extracts only the information that it needs for reverse mapping.
Automatic consistency checking ensures that the top-level TCD matches the top-level
patterns.

To load multiple pattern files, use the -append argument to specify additional pattern
files after the first specified STIL/WGL file. This argument is required if the retargeted
patterns were written to multiple STIL/WGL files, typically by using the write_patterns
-maxloads or -begin/-end arguments.

6. Read the top-level failure file. For example:

read_failures fail1.top

7. Reverse map the top-level failure file into core-level failure files, and write them to a
specified directory. For example:

write_failures ./core_flogs/fail1

By default, the tool verifies the failure file expected values against the top-level pattern
data before generating a core-level failure file. If the tool detects a mismatch, it issues an
error. If the failure file does not have expected values, the tool issues a warning.

Optionally, before writing out the failure files, you can adjust some aspects of the tool’s
reverse mapping behavior with the set_failure_mapping_options command.

Note
The generated filename for the core-level failure log contains escaped characters if
the core instance name contains escapes. In this case, you must specify additional

escape characters when you load this failure log with either the read_failures or
diagnose_failures commands. For example, you specify the filename for an escaped log
file named test.flog__c2_1\[3\]__core2__internal as:

read_failures {test.flog__c2_1\\\[3\\]__core2__internal}

8. Report the unmapped failures. For example:

report_failures -unmapped

Tessent™ Diagnosis User’s Manual, v2022.4296

Diagnosis for Hierarchical Designs
Reverse Mapping Top-Level Failures to the Core

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
Reverse mapping the top-level failure files for the retargeted test patterns results in a set of core-
level failure files that you can diagnose with Tessent Diagnosis. After you reverse map the
failures back to the core level, the tool uses them in conjunction with the ASCII patterns that
were used for retargeting and the core-level flat model to perform diagnosis at the core level.
The following example for a converted core-level failure file named
“top_flog1___core_3.core_2.test__piccpu_maxlen16_1__internal” shows the core description
added into core-level failure files.

// top_flog1___core_3.core_2.test__piccpu_maxlen16_1__internal
format pattern

tracking_info_begin
core_instance "core_3/\core_2.test "
core_name piccpu_maxlen16_1
core_mode internal
core_id core_3.core_2.test__piccpu_maxlen16_1__internal
tracking_info_end

scan_test

failures_begin

 0 blk1_edt_channels_out1 2 L H
 3 blk1_edt_channels_out1 2 H L
 4 blk1_edt_channels_out1 2 L H
 7 blk1_edt_channels_out1 2 H L
…

failures_end

failure_buffer_limit_reached none
failure_file_end

Examples
Sometimes when the ATE reports failures, there is an offset between the reported cycles and the
cycle number that diagnosis expects from the ATPG pattern. You can correct this during reverse
mapping by using the set_failure_mapping_options -cycle_offset command that realigns the
failures to the pattern. For example:

proc findValidCycleOffset { flog cycle_offset_lb cycle_offset_ub } {
 set result 0; // return value
 set cycle_offset_list { } ;
 set verbose 1 ; // print out detailed results
 set cycle_offset_identified 0 ; // true if one valid offset is found

Diagnosis for Hierarchical Designs
Reverse Mapping Top-Level Failures to the Core

Tessent™ Diagnosis User’s Manual, v2022.4 297

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// Scan the offset range to find valid offset value(s)
 if { $verbose == 0 } { set_screen_display off }
 for { set offset $cycle_offset_lb } { $offset <= $cycle_offset_ub } {
incr offset } {
 puts "*** Try cycle offset ($offset) with failure file ($flog)
***"
 set_failure_mapping_options -cycle_offset $offset

 read_failure $flog;

 if { [catch_output { write_failure core_$flog -replace } -output
oVar -result rVar] } {
 puts $oVar;
 puts $rVar;
 puts "Found one invalid cycle offset ($offset)" ;
 } else {
 puts "Found one possible valid cycle offset ($offset)" ;
 puts $oVar
 lappend cycle_offset_list $offset;
 }
 }

 // Report the valid cycle offset identified
 set_screen_display on
 set num_valid_offset [llength $cycle_offset_list];
 if { $num_valid_offset == 0 } {
 puts "// Error: Failed to identify any valid cycle offset within \
[$cycle_offset_lb, $cycle_offset_ub\]"
 set result 1;
 } else {
 if { $num_valid_offset == 1 } {
 puts "// Found $num_valid_offset valid cycle offset within \
[$cycle_offset_lb, $cycle_offset_ub\] : $cycle_offset_list";

set cycle_offset_identified 1;
 set final_offset [lindex $cycle_offset_list 0];
 set_failure_mapping_options -cycle_offset $final_offset;
 puts "// set_failure_mapping_options '-cycle_offset' to value (
$final_offset)"
 //read_failure $flog
 } else {
 puts "// Found $num_valid_offset valid cycle offsets within \
[$cycle_offset_lb, $cycle_offset_ub\] : $cycle_offset_list";
 puts "// Further investigation is needed to determine which offset
value should be used." ;
 puts "// Hint: Another failure file with more failure data may
help identify the right offset value." ;
 set result 2;
 }
 }

 return $result;
}

Tessent™ Diagnosis User’s Manual, v2022.4298

Diagnosis for Hierarchical Designs
Running Layout-Aware Diagnosis Using a Core-Level LDB

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Layout-Aware Diagnosis Using a Core-
Level LDB

Use a core-level LDB to automatically produce chip-level suspect bounding box coordinates in
the diagnosis report while still running diagnosis at the core level.

Prerequisites
• For Tessent Diagnosis and Tessent Diagnosis Server to automatically report chip-level

suspect coordinates in the diagnosis report, you must:

o Provide the pathname of the core instance associated with the failure log by using
the core_instance keyword in the tracking information section of the failure log.

o Ensure that the core instance pathname you specify matches one of the core instance
pathnames stored in the LDB.

o When opening the LDB using the open_layout command, use the
-chip_design_name option to specify the top design that the tool should consider. If
the LDB contains a single chip_design_name, the tool automatically sets the top
design.

• Preparation steps:

o You have performed reverse-mapping as described in “Reverse Mapping Top-Level
Failures to the Core.”

Note
When you use the Tessent Shell pattern retargeting flow to create core-level
failure logs, the tool automatically populates the core_instance keyword with the

correct core instance pathname. In the pattern retargeting flow, the core instance
pathnames in the TCD come from the Verilog design, while the core instance
pathnames in a core-level LDB come from the DEF files. This implies that the
pathname in the Verilog should match the pathname in the DEF files.

o You have verified that the core instance pathnames and hierarchy in the TCD
matches the core instance pathnames and hierarchy in the LDB. Use the
report_tcd_ldb_validation command to perform this verification. If the names do not
match, the tool issues errors.

Procedure
1. Suppose the failure log for coreA in “Generating Chip-Mapped Core-Level LDBs” on

page 291, displays a tracking information section as follows.

Diagnosis for Hierarchical Designs
Running Layout-Aware Diagnosis Using a Core-Level LDB

Tessent™ Diagnosis User’s Manual, v2022.4 299

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

format cycle
tracking_information_begin

lot_id 1
wafer_id 1
chip_id Lot1Wafer1~X12Y17
x_coord 012
y_coord 017
core_instance coreA2

tracking_information_end

The core_instance keyword shows that this failure log originated from the coreA2
instance. The following flow runs layout-aware diagnosis on this failure log.

> tessent -shell
…
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreA.flat.gz
…
ANALYSIS> read_patterns coreA.wgl.gz
…
ANALYSIS> open_layout coreA.ldb -chip_design_name chip
ANALYSIS> report_layout_core_information
ANALYSIS> diagnose_failures coreA.fail_log
…
ANALYSIS> write_diagnosis -format text csv layout -file \

coreA.fail_log

For the diagnosis report, CSV file, and layout marker file, the tool automatically
translates the coreA layout coordinates that are stored in the LDB (which came from the
top.def file as shown “Generating Chip-Mapped Core-Level LDBs”) to 192, 192,
rotated north.

2. The following tracking information section applies to coreB, with the failure log
originating from the block1/coreB1 instance:

format cycle
tracking_information_begin

lot_id 1
wafer_id 1
chip_id Lot1Wafer1~X34Y11
x_coord 034
y_coord 011
core_instance block1/coreB1

tracking_information_end

Tessent™ Diagnosis User’s Manual, v2022.4300

Diagnosis for Hierarchical Designs
Running Layout-Aware Diagnosis Using a Core-Level LDB

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Given this failure log, you would perform diagnosis as follows:

> tessent -shell
…
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreB.flat.gz
…
ANALYSIS> read_patterns coreB.wgl.gz
…
ANALYSIS> open_layout coreB.ldb -chip_design_name chip
ANALYSIS> report_layout_core_information
ANALYSIS> diagnose_failures CoreB.fail_log
…
ANALYSIS> write_diagnosis -format text csv layout -file \

CoreB.fail_log

The tool automatically translates the layout coordinates to 2642, 1755, rotated north.
The tool derives these coordinates from the coordinates for block1 (top.def file) and
coreB1 (block.def file).

x = 192 + 2450 = 2643

y = 1650 + 105 = 1755

Results
By default, the tool returns the core-level pin and net names for both core-level and chip-level
diagnoses. For example:

...
suspect score fail_match pass_mismatch typevalue pin_pathname cell_name

net_pathname layout_status

1 100 118 0 BRIDGE_2WAY 0 /cpu_i/uPMI/ix2092/Y inv02

/cpu_i/uPMI/nx2093 LOCATION_IN_LAYOUT

suspect score fail_match pass_mismatch type value pin_pathname cell_name

net_pathname layout_layer critical_area

1.1 100 118 0 BRIDGE_2WAY 0 /cpu_i/uPMI/ix1024/Y inv02

/cpu_i/uPMI/nx1023 route_3 1.30E+02

--

...

Tessent Diagnosis can generate reports with pin names and net names corresponding to the chip
level when you specify the following command:

set_diagnosis_options -include_core_instance_name on

Diagnosis for Hierarchical Designs
Adding Instance Information to an Existing Core-Level LDB

Tessent™ Diagnosis User’s Manual, v2022.4 301

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example shows the results with chip-level names:
...
suspect score fail_match pass_mismatch typevalue pin_pathname cell_name

net_pathname layout_status

1 100 118 0 BRIDGE_2WAY 0 /tree_branch1/coreB/cpu_i/uPMI/

ix2092/Y inv02 /tree_branch1/coreB/cpu_i/uPMI/nx2093 LOCATION_IN_LAYOUT

suspect score fail_match pass_mismatch type value pin_pathname cell_name

net_pathname layout_layer critical_area

1.1 100 118 0 BRIDGE_2WAY 0 /tree_branch1/coreB/cpu_i/

uPMI/ix1024/Y inv02 /tree_branch1/coreB/cpu_i/uPMI/nx1023 route_3 1.30E+02

--

...

You may receive the following warnings when you specify “set_diagnosis_options
-include_core_instance_name on”. Ensure that you have satisfied the conditions listed in
“Prerequisites” for reporting chip-level suspect coordinates.

Warning: Diagnosis option –include_core_instance_name is set but the layout DB was not opened

with –chip_name. Due to this the suspect layout co-ordinates will be reported at the core

level in the diagnosis results.

Warning: Diagnosis option –include_core_instance_name is set but the tracking info in the

fail log does not specify a core instance name using the ‘core_instance’ keyword. Without

this the pathnames in the diagnosis results will be reported at the core level.

Examples
When you have multiple designs that include instantiations of the same core—such as coreB
within both design top and design top_other as described in the previous section—you must
specify the design when you run diagnosis. Do this by using the open_layout
-chip_design_name option as shown below.

> tessent -shell
…
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreB.flat.gz
…
ANALYSIS> open_layout coreB.ldb -chip_design_name chip_other
…
ANALYSIS> report_layout_core_information

Adding Instance Information to an Existing Core-
Level LDB

You can add core instance information to an existing core-level LDB by using the
add_layout_core_information command.

Tessent™ Diagnosis User’s Manual, v2022.4302

Diagnosis for Hierarchical Designs
Adding Instance Information to an Existing Core-Level LDB

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• The add_layout_core_information command requires a valid LDB opened with the

open_layout command, top-level DEF files that instantiate the core represented by the
currently opened LDB. The core DEF file is optional.

Procedure
Given the design in “Generating Chip-Mapped Core-Level LDBs” on page 291, suppose you
already have a core-level LDB located in the coreB_existing.ldb directory. To automatically
add core instance information to this LDB, use the add_layout_core_information command as
shown below:

> tessent -shell
…
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreB.flat.gz
…
ANALYSIS> open_layout coreB_existing.ldb
ANALYSIS> add_layout_core_information -def chip.def block.def

Optionally, you can include the core DEF file as show below.
ANALYSIS> add_layout_core_information -def chip.def block.def
coreB.def
…

Note
If you only have core-level DEF files, you can manually add chip-mapped core
instance information. Refer to “add_layout_core_information” in the Tessent Shell

Reference Manual.

Examples
You may have a scenario in which the same core is instantiated in multiple designs. For
example, suppose coreB from “Generating Chip-Mapped Core-Level LDBs” is also instantiated
in a design called chip_other.

Diagnosis for Hierarchical Designs
Adding Instance Information to an Existing Core-Level LDB

Tessent™ Diagnosis User’s Manual, v2022.4 303

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 4-4. coreB Instantiation in Design chip_other

Tessent™ Diagnosis User’s Manual, v2022.4304

Diagnosis for Hierarchical Designs
Adding Instance Information to an Existing Core-Level LDB

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Assuming, you have already created the core-level LDB for coreB (coreB.ldb). You can add the
core instance information from chip_other to the coreB.ldb as shown below:

> tessent -shell
…
SETUP> set_context pattern -scan_diagnosis
SETUP> read_flat_model coreB.flat.gz
…
ANALYSIS> open_layout coreB.ldb
ANALYSIS> report_layout_core_information
// Top design name: 'chip'
// Instances of 'coreB':
// Instances:
// --
// Instance Path PlaceX PlaceY Orient
// --
// block1/coreB1 2642 1755 N
// coreB1 2450 192 N
// --
// Current top design not set

ANALYSIS> add_layout_core_information -def chip_other.def
// Note: Processing chip DEF files to load core "coreB"
// Note: Loading core instances from DEF file chip_other.def
// Note: Adding core def file design.def
// Note: Instances:
// Note: ---
// Note: Instance Path PlaceX PlaceY Orient
// Note: ---
// Note: coreB1 192 2450 W
// Note: coreB2 2450 192 E
// Note: ---
…
// Note: Loaded top design 'chip_other' with 2 instances of core 'coreB '

ANALYSIS> report_layout_core_information

// Top design name: 'chip'
// Instances of 'coreB':
// Instances:
// --
// Instance Path PlaceX PlaceY Orient
// --
// block1/coreB1 2642 1755 N
// coreB1 2450 192 N
// --
// Top design name: 'chip_other'
// Instances of 'coreB':
// Instances:
// ---
// Instance Path PlaceX PlaceY Orient
// ---
// coreB1 192 2450 W
// coreB2 2450 192 E
// ---
…

Diagnosis for Hierarchical Designs
Validating Reverse Mapping Prior to Core-Level Layout-Aware Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 305

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Validating Reverse Mapping Prior to Core-Level
Layout-Aware Diagnosis

Prior to performing reverse mapping of actual silicon top-level failures to the core, you can
create emulated open-socket failure files to test that your hierarchical design diagnosis with
reverse mapping performs correctly. You can use this as a final preparatory step before going to
silicon; open-socket failure files enable you to discover issues that would otherwise be unknown
until diagnosis of actual silicon failures.

Prerequisites
• Top-level TCD files that resulted from scan pattern retargeting.

• Top-level parallel STIL or parallel WGL test pattern files.

Procedure
1. Set the Tessent Shell context to patterns -failure_mapping.

2. For all top-level TCD file and test pattern file pairs, run the following command:

create_open_socket_failure failure_filename

This command creates emulated top-level, open-socket failure files that contain a failing
bit for each valid measure cycle in the top-level pattern. Because there is no chip, all the
cycles show as failing. However, you can use these sample cycle-based failure files to
validate your reverse-mapping setup.

3. Perform reverse mapping as described in “Reverse Mapping Top-Level Failures to the
Core” on page 294”.

4. Using the read_failures command, validate the core-level failure log using the core-level
flat model and patterns to confirm that the failing bits are reverse-mapped correctly.

Tessent™ Diagnosis User’s Manual, v2022.4306

Diagnosis for Hierarchical Designs
Top-Level Layout-Aware Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level Layout-Aware Diagnosis
When performing layout-aware diagnosis at the top level, Tessent Diagnosis can automatically
preserve only the external mode layout information of the wrapped cores—that is, the graybox
models. In the bottom-up hierarchical DFT process, graybox models retain the minimum logic
required to generate ATPG patterns for the internal modes of the parent physical blocks.
Likewise, for diagnostic purposes, Tessent Diagnosis does not need to know about the layout
information completely internal to the cores when you are performing layout-aware diagnosis
on parent blocks or the top-level chip.
In the DFT insertion flow, graybox models allow Tessent Shell to connect the wrapped cores at
the top level for logic testing of the chip. However, for layout-aware diagnosis at the top level,
to create an LDB that includes layout information for logic in the graybox model, you would
either use full-chip DEF files or specifically generate DEF files that only include the graybox
layout information. Tessent Diagnosis enables you to perform top-level diagnosis without
producing a graybox DEF model. The LDB that is created from the DEF files skips the data
from the grayboxed cores but includes all the PWR and GND nets from the grayboxed cores as
well as all the physical data from the top level. This may increase the LDB by including some
nets but increases the diagnosis accuracy.

Running graybox-aware layout-aware diagnosis on parent- or top-level designs minimizes the
disc space required for layout data as well as the run time to complete LDB creation and pre-
extraction of bridge and topology features.

Running Layout-Aware Diagnosis Using a Graybox-Aware Top-Level LDB. 306

Running Layout-Aware Diagnosis Using a Graybox-
Aware Top-Level LDB

Layout-aware diagnosis when using a graybox-aware parent-level or top-level LDB follows the
same flow as traditional layout-aware diagnosis with the exception of specifying create_layout
with the -gray_box_detection switch.

Prerequisites
• The same prerequisites for layout-aware diagnosis as described in “Performing Layout-

Aware Diagnosis with Tessent Diagnosis” on page 216.

• A graybox flat model that Tessent Diagnosis can use as a reference.

Procedure
The following dofile shows a simple flow for performing layout-aware diagnosis with a
graybox-aware LDB. When you specify create_layout -gray_box_detection, the tool uses the
graybox flat model to populate the LDB from the full-chip LEF/DEF. Without the
-gray_box_detection option, the tool creates a full-chip LDB that could be much larger in size

Diagnosis for Hierarchical Designs
Running Layout-Aware Diagnosis Using a Graybox-Aware Top-Level LDB

Tessent™ Diagnosis User’s Manual, v2022.4 307

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

than a graybox-aware LDB. The run time to create a full-chip LDB is typically significantly
higher than that of a greybox-aware LDB.

set_context patterns -scan_diagnosis
read_flat_model top_model
create_layout -gray_box_detection ./src/design.dft.ldb \

-lef ./src/top_hier.lef -def ./src/core1.def
-def ./src/core2.dft -def ./src/top_hier.def

open_layout ./src/design.dft.ldb
read_patterns./src/patterns.ascii
diagnose_failures ./tester_files/file1.flog
write_diagnosis -format text layout -file ./results/file1 -replace

Tessent™ Diagnosis User’s Manual, v2022.4308

Diagnosis for Hierarchical Designs
Running Layout-Aware Diagnosis Using a Graybox-Aware Top-Level LDB

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent™ Diagnosis User’s Manual, v2022.4 309

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
Diagnosis for Tessent LogicBIST Designs

Tessent Diagnosis can perform diagnosis on Tessent LogicBIST designs with an existing
LVDB and design workspace with a corresponding ATPG library. This diagnosis flow supports
logic diagnosis, layout-aware diagnosis, and at-speed diagnosis, including the capability to
write out failing paths.
Overview . 309
signatureAnalyze Fault Simulator Diagnosis Flow. 312

signatureAnalyze Flow Requirements . 313
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 314
Preparing the Logic BIST Chain Mapping File . 315

Tessent FastScan Fault Simulator Diagnosis Flow. 318
Tessent FastScan Flow Requirements . 319
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 320
Special Handling for Static Chain Masks . 322

Failure File Generation . 327
Generating the Logic BIST Top-Level Failure File . 327
Converting the Top-Level Failure File to a Core-Level Failure File 329
Including User-Defined Auxiliary Flops in the Conversion. 330

Performing Logic BIST Diagnosis in Tessent Diagnosis . 331

Overview
The diagnosis flow you use for performing Tessent LogicBIST diagnosis depends on whether
you use signatureAnalyze or Tessent FastScan for fault simulation.

Note
As of the version 2015.1 release, signatureAnalyze fault simulation is no longer available.
The signatureAnalyze Fault Simulator diagnosis flow is intended for users of the pre-2015.1

LV flow.

• signatureAnalyze fault simulation — Select this flow if you are using signatureAnalyze
as the fault simulator. See “signatureAnalyze Fault Simulator Diagnosis Flow” for
complete usage.

• Tessent FastScan fault simulation — Select this flow if you are using Tessent FastScan
as the fault simulator. See “Tessent FastScan Fault Simulator Diagnosis Flow” for
complete usage.

Tessent™ Diagnosis User’s Manual, v2022.4310

Diagnosis for Tessent LogicBIST Designs
Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In general, these flows consist of the following aspects:

• Tessent FastScan as the simulator to create a MISR signature and save the flat model at
the core level.

Note
This step is mandatory regardless of which flow you are using.

This flat model includes the core Tessent LogicBIST netlist, the MISR signatures, and
associated settings. Tessent FastScan requires an ATPG library.

• The dlogutil tool, a Tessent Diagnosis utility, is used to translate the top-level failure file
created by Tessent SiliconInsight™ into a core-level failure file.

• The core-level failure file and flat model are used by Tessent Diagnosis for running
logic BIST diagnosis. You can optionally include the LEF/DEF layout data for layout-
aware diagnosis.

Note
If your design contains multiple cores (for example USB and PCI for a design,
ROUTER, and so forth) and each core has its own logicTest controller, the diagnosis

flow must treat each BISTed core individually.

Limitations
The following limitations apply to diagnosis for Tessent LogicBIST:

• There is no support for scan chain diagnosis. If you have chain failures, then Tessent
SiliconInsight cannot create a top-level design failure file.

• Special handling is required for static chain masks. See “Special Handling for Static
Chain Masks.”

Tessent FastScan ATPG Library Requirements
The following ATPG library requirements apply, depending on your diagnosis flow:

• signatureAnalyze diagnosis flow — Tessent FastScan requires an ATPG library that
matches the scan models in your existing LVDB. These scan models are normally
located in the UserScanModels sub-directory of the LVDB directory.

• Tessent FastScan diagnosis flow — You must have completed the ATPG library
verification.

You must use the LibComp utility to create the ATPG library or use the lcVerify utility to verify
an existing ATPG library before using Tessent FastScan. Both of these utilities are available in
your Tessent software tree.

Diagnosis for Tessent LogicBIST Designs
Overview

Tessent™ Diagnosis User’s Manual, v2022.4 311

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Refer to the following sections in the Tessent Cell Library Manual:

• LibComp — “Create Tessent Simulation Models Using LibComp”

• lcVerify — “Verification of Tessent Simulation Models”

Tessent™ Diagnosis User’s Manual, v2022.4312

Diagnosis for Tessent LogicBIST Designs
signatureAnalyze Fault Simulator Diagnosis Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

signatureAnalyze Fault Simulator Diagnosis
Flow

In the LV Flow, Tessent LogicBIST uses the signatureAnalyze command to simulate logic
BIST patterns and generate the MISR signatures.

Note
As of the version 2015.1 release, signatureAnalyze fault simulation is no longer available.
This section is intended for users of the pre-2015.1 LV flow.

The signatureAnalyze fault simulation diagnosis flow consists of the following high-level steps:

1. Using an existing LVDB and a matched ATPG library, generate Tessent FastScan files
that include the flat model, Tessent FastScan dofile, and MISR signatures. This step is
required. Refer to “Creating the Tessent FastScan Flat Model and Verifying the MISR
Signatures.”

Note
Tessent FastScan requires an ATPG library that matches the scan models in your
existing LVDB. These scan models are normally located in the UserScanModels

sub-directory of the LVDB directory.

2. If you are using a LV flow version earlier than v9.5, then you must use ETVerify to
create a logic BIST mapping file if you have static chain masks. Refer to “Preparing the
Logic BIST Chain Mapping File.”

For version v9.5 or later, you can omit this step of the flow.

3. Use Tessent SiliconInsight to create a top-level failure file from the LVDB. Refer to
“Failure File Generation.”

4. Using the dlogutil utility, convert the top-level failure file to a core-level failure file.
Refer to “Converting the Top-Level Failure File to a Core-Level Failure File.”

5. With the core-level failure file and core-level flat model as inputs, use Tessent
Diagnosis to perform the diagnosis. Refer to “Performing Logic BIST Diagnosis in
Tessent Diagnosis.”

Optionally, you can input layout data (LEF/DEF) to enable layout-aware diagnosis.
Refer to “Layout-Aware Diagnosis Flow” for complete information.

signatureAnalyze Flow Requirements . 313
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 314
Preparing the Logic BIST Chain Mapping File . 315

Diagnosis for Tessent LogicBIST Designs
signatureAnalyze Flow Requirements

Tessent™ Diagnosis User’s Manual, v2022.4 313

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

signatureAnalyze Flow Requirements
To run logicBIST diagnosis using signatureAnalyze as the fault simulator, you must prepare
various input files: the ATPG library, LVDB MISR signatures and production patterns, design
image, and design workspace.
Prepare the following files before running logic BIST diagnosis with the signatureAnalyze fault
simulator:

• ATPG library — When using this flow, you must use Tessent FastScan to simulate the
MISR signatures. Consequently, you need an ATPG library in place that matches the
netlist in the existing LVDB.

• LVDB MISR signatures and production patterns — If you are not using Tessent
FastScan as the default simulator, then you must use signatureAnalyze to create and
simulate the MISR signatures and production patterns in the LVDB. Using the LV Flow
tool-produced dofile, you use Tessent FastScan as the simulator to re-generate the MISR
signatures and compare these signatures with those signatureAnalyze had created. If you
are using Tessent FastScan as the default simulator, then you can omit this requirement.

• Design image — Tessent FastScan archives the design image at the core level. You must
convert, using the dlogutil utility, the top-level failure file to a core-level failure file in
order to run logic BIST diagnosis in Tessent Diagnosis.

• Design workspace — In order to create the flat model, you must have a design
workspace.

For example, a typical design directory after final LVDB is ready may have the
following structures:

o final LVDB and it contains:

• ROUTER.lvdb (top level)

• USB.lvdb (core level)

• PCI.lvdb (core level)

o ROUTER_LVWS (top level workspace)

o USB_LVWS (core level workspace) containing

• ETSignOff

o PCI_LVWS (core level workspace) containing

• ETSignOff

The following figure illustrates the signatureAnalyze fault simulation diagnosis flow.

Tessent™ Diagnosis User’s Manual, v2022.4314

Diagnosis for Tessent LogicBIST Designs
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-1. LogicBIST Diagnosis Flow Using signatureAnalyze

Note
As of the v9.5 Tessent Release, the lbist_chain_info is included in the LVDB by default.
Consequently, there is no requirement to regenerate this information using ETVerify.

Creating the Tessent FastScan Flat Model and
Verifying the MISR Signatures

In this step of the flow, you create a flat model (for use by Tessent Diagnosis) and verify the
MISR signatures using either signatureAnalyze or Tessent FastScan.

Diagnosis for Tessent LogicBIST Designs
Preparing the Logic BIST Chain Mapping File

Tessent™ Diagnosis User’s Manual, v2022.4 315

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• signatureAnalyze — See “signatureAnalyze Fault Simulator Diagnosis Flow.”

• Tessent FastScan — See “Tessent FastScan Fault Simulator Diagnosis Flow.”

By default, the LVDB contains 1024 diagnostic vectors with expected values. When you use
Tessent SiliconInsight, the tool-produced failure file can contain up to 1024 vectors with
expected and actual values. If the vector ID is higher than 1024, the failure file contains record
raw data.

If you need to change the number of diagnosis trials with expected value, then you can change
the StoredDiagnosticVectors property value (the default is 1000), re-run signatureAnalyze, and
update the LVDB.

Prerequisites
• A Tessent FastScan ATPG library.

• <moduleName>.fastscan_GenSimPatterns_lbist — The Tessent FastScan dofile created
by the LV Flow. This file is located in the <moduleName>_LVWS/ETSignOff directory.

Procedure
1. In a Linux/UNIX shell, go to your design’s ETSignOff directory and run the following

target:

make fastscan_lbist_faultsim

This step creates the flat model of the design.

2. From within ETSignOff directory, run the following target:

make compare_fs_lv_sigs

This compares the first 256 MISR signatures generated by Tessent FastScan with those
by signatureAnalyze.

Results
The corresponding logic BIST Tessent FastScan flat model is saved as follows:

./LV_WORKDIR/<moduleName> .fastscan_flat_model_lbist.

If the signatures match, then the flat model is correct and ready for you to use.

Related Topics
Special Handling for Static Chain Masks

Preparing the Logic BIST Chain Mapping File
By default, as of the v9.5 Tessent release, the logic BIST fail mapping file (.lbist_chain_info) is
included in LVDB. There is no need to generate this file using ETVerify. The dlogutil requires

Tessent™ Diagnosis User’s Manual, v2022.4316

Diagnosis for Tessent LogicBIST Designs
Preparing the Logic BIST Chain Mapping File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the logic BIST mapping file in order to convert the top-level failure file to a core-level failure
file.

Note
You must ensure you use the Tessent v9.3 (or later) release version of ETVerify, otherwise
the Tessent FastScan chain name information is not included in fail map that may be needed

for static chain masking—see “Special Handling for Static Chain Masks.”

Prerequisites
• An existing LVDB

• If required, modifications for static chain masking. See “Special Handling for Static
Chain Masks”

Procedure
1. In a Linux/UNIX shell, navigate to the top level of the LVDB.

2. Generate or re-generate the logic BIST fail mapping file using ETVerify using the
following syntax:

etv <designName>
-inputLVDBName <pathToLVDB> \
-configFile <pathToCfgFile> \
-lbistVectorDump <ON |OFf |ChainInfo>

For example:

etv top
–inputLVDBName ./designs/top.lvdb \
–configFile ./designs/top.lvdb/top.etManufacturing \
–lbistVectorDump chaininfo

Results
ETVerify generates the logic BIST mapping file and writes the file to the following location in
the LVDB:

./LV_WORKDIR/<LBIST controller id>.lbist_chain_info

Diagnosis for Tessent LogicBIST Designs
Preparing the Logic BIST Chain Mapping File

Tessent™ Diagnosis User’s Manual, v2022.4 317

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This file defines the configuration for mapping the failure file from chip level to core level as in
the following example:

lbist_chain_stitching_configuration {
 version : 0.2;

 controller_id : BP0.WPPPP1; // TAP port id for LBIST controller
 total_chains : 6; // total number of scan chains
 total_misr_segments: 3; // total number of MISR segments

 chain (chain5) {
 length : 0; // length of scan chain
 sci_to_sco_inv : T; // inversion between SCI and SCO
 static_mask : F; // indication of static masking
 misr_segment : misr_s1; // name of MISR segment that chain is

// connected to the
 fastscan_chain_name : lbist4; // corresponding FastScan chain name
 }
 chain (chain6) {
 length : 90;
 sci_to_sco_inv : T;
 static_mask : T;
 misr_segment : misr_s1;
 fastscan_chain_name : lbist;
 }
 chain (chain4) {
 length : 94;
 sci_to_sco_inv : T;
 static_mask : F;
 misr_segment : misr_s2;
 fastscan_chain_name : lbist3;
 }
 chain (chain3) {
 length : 0;
 sci_to_sco_inv : F;
 static_mask : F;
 misr_segment : misr_s2;
 fastscan_chain_name : lbist2;
 }
 chain (chain2) {
 length : 98;
 sci_to_sco_inv : T;
 static_mask : F;
 misr_segment : misr_s3;
 fastscan_chain_name : lbist1;
 }
 chain (chain1) {
 length : 99;
 sci_to_sco_inv : T;
 static_mask : F;
 misr_segment : misr_s3;
 fastscan_chain_name : lbist0;
 }
}

Tessent™ Diagnosis User’s Manual, v2022.4318

Diagnosis for Tessent LogicBIST Designs
Tessent FastScan Fault Simulator Diagnosis Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent FastScan Fault Simulator Diagnosis
Flow

To use Tessent FastScan instead of signatureAnalyze for the fault simulator, you can select
optional targets in ETSignOff. These targets fault grade the logic LBIST patterns with Tessent
FastScan and generate the flat model.
See “Dofile Usage” in the LV Flow User’s Manual for more information.

The Tessent FastScan fault simulation diagnosis flow consists of the following high-level steps:

1. Using an existing LVDB and a matched ATPG library, generate Tessent FastScan files
that include the flat model, Tessent FastScan dofile, and MISR signatures. This step is
required. Refer to “Creating the Tessent FastScan Flat Model and Verifying the MISR
Signatures.”

In addition, refer to “Special Handling for Static Chain Masks.”

Note
You must have completed the ATPG library verification.

2. Using the dlogutil, convert the top-level failure file to a core-level failure file. Refer to
“Converting the Top-Level Failure File to a Core-Level Failure File.”

3. With the core-level failure file and core-level flat model as inputs, use Tessent
Diagnosis to perform the diagnosis. Refer to “Performing Logic BIST Diagnosis in
Tessent Diagnosis.”

Optionally, you can input layout data (LEF/DEF) to enable layout-aware diagnosis.
Refer to “Layout-Aware Diagnosis Flow” for complete information.

Figure 5-2 illustrates this flow.

Diagnosis for Tessent LogicBIST Designs
Tessent FastScan Flow Requirements

Tessent™ Diagnosis User’s Manual, v2022.4 319

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 5-2. LogicBIST Diagnosis Flow Using Tessent FastScan

As of the v9.5 Tessent Release, the lbist_chain_info is included in the LVDB by default.
Consequently, there is no requirement to regenerate this information using ETVerify.

Tessent FastScan Flow Requirements . 319
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures 320
Special Handling for Static Chain Masks . 322

Tessent FastScan Flow Requirements
To run logic BIST diagnosis using Tessent FastScan as the fault simulator, you must prepare the
design image and design workspace files.

Tessent™ Diagnosis User’s Manual, v2022.4320

Diagnosis for Tessent LogicBIST Designs
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prepare the following files before running logic BIST diagnosis with the Tessent FastScan fault
simulator:

• Design image — Tessent FastScan archives the design image at the core level. You must
convert, using the dlogutil utility, the top-level failure file to a core-level failure file in
order to run logic BIST diagnosis in Tessent Diagnosis.

• Design workspace — In order to create the flat model, you must have a design
workspace.

For example, a typical design directory after final LVDB is ready may have the
following structures:

o Final LVDB and it contains:

• ROUTER.lvdb (top level)

• USB.lvdb (core level)

• PCI.lvdb (core level)

o ROUTER_LVWS (top level workspace)

o USB_LVWS (core level workspace) containing

• ETSignOff

o PCI_LVWS (core level workspace) containing

• ETSignOff

Creating the Tessent FastScan Flat Model and
Verifying the MISR Signatures

In this step of the flow, you create a flat model (for use by Tessent Diagnosis) and verify the
MISR signatures.
By default, the LVDB contains 1024 diagnostic vectors with expected values. When you use
Tessent SiliconInsight, the tool-produced failure file can contain up to 1024 vectors with
expected and actual values. If the vector ID is higher than 1024, the failure file contains record
raw data.

If you need to change the number of diagnosis trials with expected value, then you can change
the StoredDiagnosticVectors property value (the default is 1000), re-run signatureAnalyze, and
update the LVDB.

Prerequisites
• A Tessent FastScan ATPG library

Diagnosis for Tessent LogicBIST Designs
Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures

Tessent™ Diagnosis User’s Manual, v2022.4 321

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• <moduleName>.fastscan_GenSimPatterns_lbist — The Tessent FastScan dofile created
by the LV Flow. This file is located in the <moduleName>_LVWS/ETSignOff directory.

Procedure
In a Linux/UNIX shell, go to your design’s ETSignOff directory and run the following target:

make fastscan_lbist_sim_vectors

Results
The corresponding logic BIST Tessent FastScan flat model is saved as follows:

./LV_WORKDIR/<moduleName> .fastscan_flat_model_lbist.

Related Topics
Special Handling for Static Chain Masks

Tessent™ Diagnosis User’s Manual, v2022.4322

Diagnosis for Tessent LogicBIST Designs
Special Handling for Static Chain Masks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Special Handling for Static Chain Masks
Under certain circumstances, unexpected unknown values can be captured by scan cells due to
design overlook or systematic fabrication errors. In this event, the MISR signatures are
corrupted and, consequently, certain scan chains must be masked at the post-silicon phase.
The default Tessent FastScan flat model generated by the “make fastscan_lbist_faultsim” target
does not include the chain mask information. To obtain the correct flat model with the chain
mask information, you must make manual edits to the following configuration files and then
generate the new test vectors:

• The <moduleName>.etSignOff file to specify the chain mask file.

• The <manualMaskingConfigFile>.etChainMask.tpl file to specify the failing flops and
chains.

When you have completed this process, you can generate the flat model with chain mask
information.

<moduleName>.etSignOff. 322
<manualMaskingConfigFile>.etChainMask.tpl . 322
Generating the New Test Vectors. 324
Generating the Flat Model With Chain Mask Information . 324

<moduleName>.etSignOff
To add static chain mask, you must edit the <moduleName>.etSignOff ETVerify configuration
file in the ETSignOff directory.
In this file, specify the chain masking file using the following syntax:

etv (<designName>) {
LogicTestVectors {

LogicBist {
ChainMaskingFile :

<manualMaskingConfigFile>.etChainMasks.tpl;
}

}
}

<manualMaskingConfigFile>.etChainMask.tpl
In the <manualMaskingConfigFile>.etChainMasks.tpl file, you can specify both failing flops
and chains. When a flop is specified, then its corresponding scan chain is masked.

Diagnosis for Tessent LogicBIST Designs
Special Handling for Static Chain Masks

Tessent™ Diagnosis User’s Manual, v2022.4 323

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This file’s syntax is as follows:

MaskData {
: FailingFlops {

<hierarchicalFlipFlopPath> ;
...

}
ChainMasking {

Chain (#) : Output | InputOutput;
}

}

where:

• Chain (#) — The chain number to be masked. For example, Chain (23)

• Output — All logic BIST chains inputs are normally fed by the PRPG, but the output of
the masked chains is forced to zero (0) before going into the MISR. As a result, the
output of these masked chains does not contribute to the signature computation.

• InputOuput — The input and output of the masked chains are forced to zero (0) so that
they not only do not contribute to the signature computation, but also, they are filled
with zeros.

Note
All chains being masked must have the same chain masking mode. The combination
is not allowed that some chains are masked with InputOutput while others are

masked with Output only.

ChainMaskingFile Example
The following example of ChainMaskingFile specifies one failing flop and two chains masked
in InputOutput mode:

MaskData {
: FailingFlops {
: MY_TOP.inst_CIRC0_REG_0.m4.\s_reg[0] ;
: ...
: }
: ChainMasking {
: Chain (23): InputOutput;
: Chain (14): InputOutput;

}
}

Refer to the LV Flow Usage Guide and ETAnalysis Tools Reference for specific information on
chain masking.

Tessent™ Diagnosis User’s Manual, v2022.4324

Diagnosis for Tessent LogicBIST Designs
Special Handling for Static Chain Masks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating the New Test Vectors
After manually editing the <moduleName>.etSignOff and
<manualMaskingConfigFile>.etChainMasks.tpl configuration files, you must re-run the “make
rulea” and “make logictest_vectors” targets to generate new test vectors.

Prerequisites
• You have added the chain mask information to the <moduleName>.etSignOff and

<manualMaskingConfigFile>.etChainMasks.tpl configuration files.

Procedure
1. Re-run the following targets:

• make rulea

• make logictest_vectors

2. Update the LVDB to include those new test vectors. See the ETVerify Tool Reference
and ETAnalysis Tools Reference for more information.

Results
You are now ready to generate the flat model with chain mask information.

Related Topics
Generating the Flat Model With Chain Mask Information

Generating the Flat Model With Chain Mask Information
To generate a Tessent FastScan flat model with chain mask information, you must identify the
chain IDs of the chains to be masked, and then edit the Tessent FastScan doile to include the
chain mask definition.

Prerequisites
• You have completed the process as described in “Generating the New Test Vectors.”

Procedure
1. Identify the chain IDs of the chains to be masked by opening the following file:

./LV_WORKDIR/<moduleName>.ruleainfo_lbist

This file includes definitions for all scan chains and scan flops in logic BIST mode. Each
scan chain is represented with a chain ID (from 1 to maximum number of scan chains)
with all the scan flops listed. For example:

CHAIN 6 LENGTH 17 FREQUENCY 1 PRPG 1 18 MISR 1 18 prpgPhase 0 \
misrPhase 0 ;

Diagnosis for Tessent LogicBIST Designs
Special Handling for Static Chain Masks

Tessent™ Diagnosis User’s Manual, v2022.4 325

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In this example, the chain ID is 6. For MaskData defined with ChainMasking, the chain
ID is given as it is. Additionally, in the example shown in
“<manualMaskingConfigFile>.etChainMask.tpl,” the scan chains with ID 14 and 23 are
masked in InputOutput mode.

For MaskData defined with Failing Flop, do the following in the
<moduleName>.ruleainfo_lbist file:

a. Search for the failing flop name and find its corresponding chain.

b. Write down the chain ID.

In the example, assume the following failing flop:

MY_TOP.inst_CIRC0_REG_0.m4.\s_reg[0]

comes from scan chain with ID 15. It means chain 15 is also masked in InputOutput
mode. In this example, there are a total of three chains (14, 15, and 23) being masked.

2. Edit the Tessent FastScan ETSignOff/<moduleName>.fastscan_GenSimPatterns_lbist
dofile to include the chain mask definition.

The Tessent FastScan chain names for each chain ID are located in the logic BIST fail
mapping file. For example, for scan chain with ID 6, the following definition can be
found where “lbist2” is the corresponding Tessent FastScan chain name.

chain (chain6) {
length : 90;
sci_to_sco_inv : T;
static_mask : F;
misr_segment : misr_s1;
fastscan_chain_name : lbist2;
}

Assume for chain IDs 14, 15, and 23, “lbist7”, “lbist15”, and “lbist16” are identified as
the corresponding Tessent FastScan chain names. These are the chains that are going to
be masked in InputOutput mode.

In the ETSignOff/<moduleName>.fastscan_GenSimPatterns_lbist file, add the chain
mask definition just prior to the fault command, as follows:

• For Output chain masking, add the following command:

add_chain_masks <chain_name> … -unload_value 0

• For InputOutput chain masking, add the following command:

add_chain_masks <chain_name> … -load_value 0 –unload_value 0

Continuing with the example, the following represents the entry:

add_chain_masks lbist7 lbist15 lbist16 -load_value 0 –unload_value 0

Tessent™ Diagnosis User’s Manual, v2022.4326

Diagnosis for Tessent LogicBIST Designs
Special Handling for Static Chain Masks

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Or alternatively:

add_chain_masks lbist7 –load_value 0 –unload_value 0

FAULT> add_chain_masks lbist15 –load_value 0 –unload_value 0

FAULT> add_chain_masks lbist16 –load_value 0 –unload_value 0

3. Run the following targets in the ETSignOff directory:

• make fastscan_lbist_faultsim

• make compare_fs_lv_sigs

This ensures the Tessent FastScan flat model with chain mask information is generated
and MISR signatures match those generated by signatureAnalyze.

Results
The corresponding logic BIST Tessent FastScan flat model is saved as the following:
./LV_WORKDIR/<moduleName> .fastscan_flat_model_lbist

Diagnosis for Tessent LogicBIST Designs
Failure File Generation

Tessent™ Diagnosis User’s Manual, v2022.4 327

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Failure File Generation
To generate a failure file for use with Tessent Diagnosis, you must use Tessent SiliconInsight
ATE or Tessent SiliconInsight Desktop to generate the logic BIST top-level failure file, and
then convert the top-level failure file to a core-level failure file.
Generating the Logic BIST Top-Level Failure File . 327
Converting the Top-Level Failure File to a Core-Level Failure File 329
Including User-Defined Auxiliary Flops in the Conversion. 330

Generating the Logic BIST Top-Level Failure File
You run Tessent SiliconInsight at the top design level; consequently, you must use the default
top-level configuration file, <moduleName>.lvdb/default.config_eta.
Generate the failure file per device and per controller as shown in Figure 5-3:

Figure 5-3. Generating a Logic BIST Top-Level Failure File

Prerequisites
• An existing LVDB.

Tessent™ Diagnosis User’s Manual, v2022.4328

Diagnosis for Tessent LogicBIST Designs
Generating the Logic BIST Top-Level Failure File

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
From a Linux/UNIX shell, invoke Tessent SiliconInsight to create the top-level failure file
using the following syntax:

tessent –siliconinsight -cable signalyzerH4 \
 -lvdb finalLVDB/<moduleName>.lvdb \
 -configfile finalLVDB/<moduleName>.lvdb/default.config_eta \
 -pinmapfile signalyzerH4.pinmap \
 -serverExtraArgs "-allowRawFlopDataCollection TRUE" \
 -outdir ./outDir

If you use Tessent SiliconInsight ATE, then the tool turns on the raw datalog generation
by default without “-serverExtraArgs.”

Results
Example 5-4 provides an example top-level logic BIST failure file produced by Tessent
SiliconInsight. Note the following two keywords:

• controller_id — Indicates the LBIST controller to which this failure file belongs.

The corresponding fail map file can be located here:

./LV_WORKDIR/<controller id>.lbist_chain_info.

• core_instance — Corresponding instance of the core under test. You can use this to help
locate the design files Tessent FastScan used to generate the flat model.

Figure 5-4. Top-Level Logic BIST Failure File

Diagnosis for Tessent LogicBIST Designs
Converting the Top-Level Failure File to a Core-Level Failure File

Tessent™ Diagnosis User’s Manual, v2022.4 329

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

format pattern

tracking_info_begin

controller_id BP4.WBP0 // TAP port id for LBIST controller
test_name logicbistv_2 // used in Tessent SiliconInsight
core_instance top.lbist_core1 //The core under test
lot_id 1
wafer_id 1
chip_id 0-0
part_id 0-0
site_id 1

tracking_info_end

scan_test
failures_begin
1002 tdo 142 H L
1003 tdo 142 H L
1008 tdo 142 H L
1013 tdo 142 H L
1019 tdo 142 H L
raw 1028 tdo
0x03af2b406c28a2958c54b6c006103fccb6994a51d2103d27004d9e03c
raw 1030 tdo
0x160366f5c75512100400240029a83f13c012404903be4ad4c637de486
raw 1031 tdo
0x0d63395273b313f16800150028a03408b9e21c5f4393f1f36edc125c8
raw 1033 tdo
0x2255a6c9220f1ed040000e408c58185a401e05ea02b9d13e37e0c8b12
raw 1037 tdo
0x0f8199a3307dcca4c0000380007f97ce8013a97293cd8d95c1d82f200
first_pattern_applied 1000
last_pattern_applied 1037

failures_end

failure_buffer_limit_reached none

failure_file_end

Converting the Top-Level Failure File to a Core-
Level Failure File

The Tessent Diagnosis tool performs diagnosis at the core level, and the Tessent SiliconInsight
failure file is generated at the top level. Consequently, you must map the failure file from the
chip level to the core level using the dlogutil, a Tessent Diagnosis utility.

Note
This step demonstrates using dlogutil interactively to convert the failure file. Alternatively,
you can include these commands in a dofile and pass the dofile name to the dlogutil during

invocation—see “dlogutil Utility”.

Tessent™ Diagnosis User’s Manual, v2022.4330

Diagnosis for Tessent LogicBIST Designs
Including User-Defined Auxiliary Flops in the Conversion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• A logic BIST fail mapping file (.lbist_chain_info)—see “Preparing the Logic BIST

Chain Mapping File”

• A Tessent SiliconInsight top-level failure file—see “Failure File Generation”

Procedure
1. From a Linux/UNIX shell, invoke the dlogutil utility using the following syntax:

dlogutil

2. Set the failure type to lbist using the following command:

set fail_type lbist

3. Load the logic BIST fail mapping file (.lbist_chain_info) using the load_fail_map
command. For example:

dlogutil> load_fail_map BP4.WBP0.lbist_chain_info

4. Load the Tessent SiliconInsight top-level failure file using the map_fail_log command.
For example:

dlogutil> map_fail_log top_level_failure_file.flog -out core.flog -replace

Once you have loaded the top-level failure file, the dlogutil utility converts the file to a
core-level failure file.

5. Exit the tool.

Results
The default name of the converted core-level failure file is failure_file_name.core.

Related Topics
Preparing the Logic BIST Chain Mapping File
Failure File Generation
Including User-Defined Auxiliary Flops in the Conversion

Including User-Defined Auxiliary Flops in the
Conversion

When converting the top-level failure file into a core-level failure file, dlogutil must consider
any user-defined auxiliary flops so that it can adjust the failing cycle properly and produce a
valid failure file that Tessent Diagnosis can correctly validate and diagnose.

Prerequisites
• A logic BIST fail mapping file with the .lbist_chain_info suffix.

Diagnosis for Tessent LogicBIST Designs
Performing Logic BIST Diagnosis in Tessent Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 331

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• A separate optional file that contains the user-defined auxiliary flops formatted as
described below.

Procedure
1. Ensure that the file that contains the user-defined auxiliary flops lists the indices for all

of the flops, one index per line, and that the file resides in the same directory as the logic
BIST fail mapping file.

2. Append the .lbist_masked_flop_indexes suffix to the file that lists the auxiliary flops.
For example, for the following logic BIST fail mapping file:

./lvdb/LV_WORKDIR/BP6.WBP0.lbist_chain_info

Name the optional auxiliary flop file:

./lvdb/LV_WORKDIR/BP6.WBP0.lbist_masked_flop_indexes

Results
After loading the logic BIST fail mapping file, dlogutil automatically loads the optional
auxiliary flop file if it exists and is named correctly. Tessent Diagnosis uses the auxiliary flop
information to adjust the cycle offset during failure file translation.
If a .lbist_masked_flop_indexes file is not found, dlogutil assumes that there are no auxiliary
flops and does not perform cycle offset adjustments during failure file translation.

Related Topics
Converting the Top-Level Failure File to a Core-Level Failure File

Performing Logic BIST Diagnosis in Tessent
Diagnosis

In general, you perform logic BIST diagnosis with Tessent Diagnosis using the standard
diagnosis flow.

Note
You must be sure you set the number of logic BIST patterns in the Tessent Diagnosis dofile
to the number used in the LVDB. Alternatively, you can also load a LDB to perform layout-

aware diagnosis, which can greatly improve diagnosis resolution.

Prerequisites
• At run time, scan diagnosis requires a design netlist (flat model), patterns, and a failure

file. For logic BIST diagnosis, you use the following as input files to scan diagnosis:

o Design netlist — Use the read_flat_model command to specify the flat Tessent
FastScan model.

Tessent™ Diagnosis User’s Manual, v2022.4332

Diagnosis for Tessent LogicBIST Designs
Performing Logic BIST Diagnosis in Tessent Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o Patterns — Use the set_pattern_source command’s BIST literal as follows:

set_pattern_source bist

o Failure file — Use the core-level failure file you converted with the dlogutil. See
“Converting the Top-Level Failure File to a Core-Level Failure File.”

Procedure
Invoke the tool in Tessent Shell, executing a dofile. For example:

% tessent -shell -dofile td.dofile -log td.log -replace

where, the contents of the td.dofile are as follows:

set_pattern_source bist

//optional if you have the layout-aware database

open_layout flat.v.lvdb

// -num_lbist_patterns sets up the maximum number of logic BIST patterns that

// can be used in diagnosis. It's correlated to the "max: 32000" in "Execute

// and Debug Option".

set_diagnosis_options -num_lbist_patterns 32000

// in case it is defined in FastScan dofile but not saved in flat model

set_split_capture_cycle on

diagnose_failures top_level_failure_file.flog -out diag.rep -replace

Tessent™ Diagnosis User’s Manual, v2022.4 333

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 6
Running Tessent Diagnosis Server

The Tessent Diagnosis server enables you to configure and run diagnosis automatically on
multiple failure files produced by multiple testers while testing one or more designs and
eliminates the need for scripting.

Introduction to Tessent Diagnosis Server . 336
Tessent Diagnosis Server Prerequisites . 336
Creating the Scratch Directory . 337
Automated ATE Failure Log Conversion. 338

Tessent Diagnosis Server Interface . 339
Monitored Directories and Analyzers . 340

Guidelines for Working with Monitored Directories . 340
Guidelines for Working with Analyzers . 342

Setting Up the Tessent Diagnosis Server . 343
Running the Diagnosis. 347
Layout-Aware Diagnosis with the Tessent Diagnosis Server. 349

Layout-Aware Diagnosis Commands . 349
Running Layout-Aware Diagnosis on a Local Layout Database . 350

Dynamic Partitioning-Based Diagnosis . 352
Overview. 352
Preparing for Dynamic Partitioning-Based Diagnosis . 355
Running Dynamic Partitioning-Based Diagnosis . 357
Setting Up Manual Dynamic Partitioning-Based Diagnosis . 359

Server Session Status . 362
The Diagnosis Results Directory . 364

Duplicated Failure File Names . 364
Log Files . 364

Server History . 366
Server History Reports . 366
Usage Example: Analyze Diagnosis Performance and Throughput. 369
History Database Schema . 372

Distributed Diagnosis Processing . 379
Setting up LSF or SGE Job Schedulers . 379
Guidelines for Troubleshooting Scheduling Delays . 380
Setting Up a Custom Job Scheduler . 381
Manual Job Scheduling. 383

Tessent™ Diagnosis User’s Manual, v2022.4334

Running Tessent Diagnosis Server

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Tessent Diagnosis Server with a Local Host . 384
Running Tessent Diagnosis Server in Batch Mode. 385
The Tessent Diagnosis Server Daemon . 386
Server Session Customizations . 387

Analyzer Time Limits . 387
Tessent Diagnosis Server Variables . 387
Automatic Load Balancing . 391
Time-Based Licensing . 391
Reporting Server Status with Email . 392

Command Reference . 394
add_analyzer . 396
add_design . 400
add_layout. 401
add_monitor . 403
add_pattern . 405
add_partitioner . 406
add_reporting_format . 410
add_reporting_xmap . 411
add_startup_cache. 412
analyze_resource_requirements . 413
check . 415
cleanse_history . 417
clear_monitor . 418
clear_status . 419
delete_analyzer . 420
delete_design . 421
delete_layout . 422
delete_monitor . 423
delete_partitioner . 424
delete_pattern . 425
delete_reporting_format . 426
delete_reporting_xmap . 427
delete_schedule . 428
dofile . 429
email . 430
exit . 431
help . 432
history . 433
query_history . 434
report_analyzer . 436
report_history . 437
report_licenses . 439
report_log . 440
report_monitor . 441

Running Tessent Diagnosis Server

Tessent™ Diagnosis User’s Manual, v2022.4 335

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_network . 442
report_options . 443
report_partitioner . 444
report_reporting_format . 445
report_reporting_xmap . 446
report_schedule . 447
report_status . 448
report_variable . 449
resume_diagnosis . 450
schedule_email . 451
schedule_licenses . 452
set_diagnosis_options . 453
set_diagnosis_resource_configuration . 465
set_monitor_options . 467
start_diagnosis . 469
suspend_diagnosis . 470
version. 471
watch . 472

Tessent™ Diagnosis User’s Manual, v2022.4336

Running Tessent Diagnosis Server
Introduction to Tessent Diagnosis Server

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Introduction to Tessent Diagnosis Server
Tessent Diagnosis server can be set up to detect failure files in one or more directories and run
diagnosis on them automatically. These are called monitored directories, or monitors. Once
failure files are detected, Tessent Diagnosis server checks them for syntax errors and
redundancy and then automatically runs diagnosis on them. The failure files are sorted by size,
and the smallest ones are processed first.
A design netlist and pattern set are associated with each monitored directory. When failure files
are detected in a monitored directory, the associated design netlist and pattern set are used to
diagnose them.

Depending on the available system resources, Tessent Diagnosis server can be configured to
monitor multiple directories and use multiple Tessent Diagnosis server diagnosis engines that
are the analyzers. Each analyzer is equivalent to one licensed copy of the Tessent Diagnosis
server tool. The workload is spread equally among all available analyzers to optimize diagnosis
throughput.

The diagnosis results are then output into a directory where they are available for viewing and
subsequent analysis.

Figure 6-1 illustrates a typical Tessent Diagnosis server diagnosis configuration.

Figure 6-1. Tessent Diagnosis Server Configuration Example

Tessent Diagnosis Server Prerequisites . 336
Creating the Scratch Directory. 337
Automated ATE Failure Log Conversion . 338

Tessent Diagnosis Server Prerequisites
To use Tessent Diagnosis server you must satisfy several prerequisites such as system directory,
input file, and licensing requirements.

Running Tessent Diagnosis Server
Creating the Scratch Directory

Tessent™ Diagnosis User’s Manual, v2022.4 337

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The general requirements for using Tessent Diagnosis server are:

• One or more system directories exist that Tessent Diagnosis server can be set up to
monitor.

• One or more test pattern file(s) associated with the design under test (DUT). For more
information, see “Preparing the Test Patterns.”

• Flat design netlist for each set of patterns associated with the DUT. For more
information, see “Preparing the Design Netlist.”

• You should successfully complete diagnosing at least one failure log using the manual
mode of Tessent Diagnosis server. This is required to ensure all input files are
compatible so the diagnosis can run automatically. For more information on using the
manual mode of Tessent Diagnosis server, see “Running the Diagnosis.”

• A Tessent Diagnosis license is available for each analyzer engine in your configuration.
One license is required to set up automatic diagnosis and run one analyzer. Each
additional analyzer requires an additional license.

• If you are performing cell-aware diagnosis, you also need the Tessent Diagnosis Cell-
Aware Op SW license(s). The server only checks out a license when an analyzer is
performing cell-aware diagnosis. The server releases the license when the cell-aware
diagnosis job completes and the analyzer fall idles, the queue is empty, or the analyzer
migrates to another monitor to pick up non-Cell-Aware jobs.

Note
The server checks out Tessent Diagnosis licenses when you specify the
add_analyzer command. However, it checks out Tessent Diagnosis Cell-Aware Op

SW licenses when you specify start_diagnosis later in the flow. If you have insufficient
Cell-Aware licenses, the server may hang at this time.

• Before using Tessent Diagnosis server, you must have converted ATE failure logs. One
of the following methods must be in place to convert ATE failure logs into a failure file
format compatible with Tessent Diagnosis server:

o Manual conversion: Manual or other method to convert the ATE failure logs. For
more information, see “Guidelines for Preparing the ATE Failure File.”

o Automatic conversion: Perl script to automate the conversation as described in
“Automated ATE Failure Log Conversion.”

Creating the Scratch Directory
During invocation, the tool creates the scratch directory in the temporary directory.
It uses the following syntax to create the scratch directory:

.tessent.tmp.username.hostname.process_id

Tessent™ Diagnosis User’s Manual, v2022.4338

Running Tessent Diagnosis Server
Automated ATE Failure Log Conversion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When you exit, the tool deletes this scratch directory.

By default, it stores the scratch directory in the location identified by the TMPDIR environment
variable. If you have not defined the TMPDIR environment variable, the tool creates the scratch
directory in the /tmp directory or in the current directory if the /tmp directory is not available.

You can explicitly specify the location where the temporary
.tessent.tmp.username.hostname.process_id directory is created by setting the
TESSENT_TMP_LOCATION environment variable. The tool creates the temporary
.tessent.tmp.username.hostname.process_id directory in the default location if the location
specified by the TESSENT_TMP_LOCATION environment variable does not exist, is not a
valid directory, or does not have write permission. The tool uses the
TESSENT_TMP_LOCATION environment variable when both TMPDIR and
TESSENT_TMP_LOCATION exist.

Automated ATE Failure Log Conversion
The ya_convert.pl is a Perl script you create for automating ATE failure log conversion into a
file format compatible with the Tessent Diagnosis server. When you put the ya_convert.pl script
in the monitor directory, the Tessent Diagnosis server invokes the ya_convert.pl script that
performs conversion on each incoming failure file.
You create the ya_convert.pl Perl script to automate the following handling of ATE failure logs:

• Converting ATE failure logs to a format compatible with Tessent Diagnosis—see
“Guidelines for Preparing the ATE Failure File.”

• Modifying ATE failure logs.

After you have created the ya_convert.pl script in Perl, you put the script in a monitored
directory you have specified with the add_monitor command. When the Tessent Diagnosis
server detects the ya_convert.pl script in the monitored directory, Tessent Diagnosis server
invokes this script and performs the conversion on each incoming failure file using the
following command line convention:

ya_convert.pl failure_file_name failure_file_name.ya

Where:

• failure_file_name — The name of the incoming ATE failure file. For these input files,
you cannot use the .ya extension for the file name.

• failure_file_name.ya — The name of the resultant ATE failure file that Tessent
Diagnosis server converts or that it modified using the ya_convert.pl script.

Running Tessent Diagnosis Server
Tessent Diagnosis Server Interface

Tessent™ Diagnosis User’s Manual, v2022.4 339

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When you write your ya_convert.pl Perl script, you should adhere to the following guidance:

• Moving or deleting input failure files — There is no requirement to move or delete the
input ATE failure file.

• Naming the converted failure file — You must construct your Perl script to write the
converted output file as failure_file_name.ya

• Handling conversion errors — You should build in error handling into your Perl script.
For instance if you have conversion errors, then your script should not create the output
failure file.

Tessent Diagnosis Server Interface
Tessent Diagnosis server uses commands within the Tcl scripting language. When creating
scripts and dofiles for Tessent Diagnosis server, or issuing instructions from the command line
from within a Tessent Diagnosis server session, you must use Tcl-compliant syntax.
Refer to “The Tessent Tcl Interface” in the Tessent Shell User’s Manual for guidelines for using
the Tessent Tcl interface, include common issues you could encounter when using the Tcl
programming language.

It is recommended that you take advantage of one or more of the excellent books and websites
on the language. The following URL is provided to give you a place to start in your search for
the reference material that works best for you. It is not an endorsement of any book or website.

www.tcl.tk/

http://www.tcl.tk/

Tessent™ Diagnosis User’s Manual, v2022.4340

Running Tessent Diagnosis Server
Monitored Directories and Analyzers

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Monitored Directories and Analyzers
Monitored directories are associated with the test pattern files and design netlists necessary to
perform the diagnosis on failure files that are placed inside.
You can add as many analyzers as you have Tessent Diagnosis licenses; one analyzer is
equivalent to one invocation of the Tessent Diagnosis scan diagnosis tool.

Guidelines for Working with Monitored Directories . 340
Guidelines for Working with Analyzers . 342

Guidelines for Working with Monitored Directories
You can add, delete, or report on specific monitored directories and the associated design
netlists and test pattern files.

• add_monitor — Adds a monitored directory to the Tessent Diagnosis server
configuration.

• delete_monitor — Deletes a monitored directory from the Tessent Diagnosis server
configuration.

• add_design — Associates a specified design netlist with a specified monitored directory.

• delete_design — Deletes the associated design netlist from a specified monitored
directory.

• add_pattern — Associates a specified test pattern file with a specified monitored
directory.

• delete_pattern — Deletes the associated test pattern file from a specified monitored
directory.

• report_monitor — Displays a report on a specified monitored directory including the
associated test pattern file and design netlist. A report similar to the following displays
for each monitored directory:

--- monitors ------------------------------
(1) Alpha
directory: /user/directory/testerAA
results: /user/directory/TESTERA_RESULTS
: adb.sql INACTIVE
design: /user/directory/design.flat.gz
pattern set 0: /user/directory/tester_pat.wgl
48 total (10 duplicates)
0 done [0%]
0 errors (0%)
0 analyzed (0%)
0 diagnosed (0%)
48 queued failure files for 1 monitor

Running Tessent Diagnosis Server
Guidelines for Working with Monitored Directories

Tessent™ Diagnosis User’s Manual, v2022.4 341

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following list describes the lines in the report in ascending order:

o (1) Alpha: indicates the order the monitored directory was defined and the user-
defined alias for the directory. For example, 1 means the monitored directory was
the first one added to the Tessent Diagnosis server configuration and Alpha is the
monitored directory alias.

o directory: /user/directory/testerAA is the pathname of the monitored directory.

o results: /user/directory/TESTERA_RESULTS is the pathname of the directory
where the associated diagnosis results are being written.

o design: /user/directory/design.flat.gz is the pathname of the design netlist associated
with the monitored directory.

o pattern set 0: /user/directory/tester_pat.wgl is the pathname of the test pattern file
associated with the monitored directory.

o 48 total (10 duplicates) is the total number of failure files in the monitored directory,
and the number of these failure files that are duplicates.

o 0 done [0%] is the number of failure files processed.

o 0 errors (0%) is the number of errors encountered.

o 0 analyzed (0%) is the number of failure files analyzed.

o 48 queued failure files for 1 monitor is the summary of all the failure files processed
by all the monitors contained in the report.

Failure File Management
By default, Tessent Diagnosis server creates and uses three subdirectories in the specified
monitor directory for managing processed failure files. These directories are:

• completed.ya

• aborted.ya

• timeout.ya

Failure files waiting to be processed remain in the monitor directory. Upon being processed
successfully, failure files are moved from the monitored directory to the completed.ya
subdirectory. Failure files that cannot be processed successfully are moved to the aborted.ya
subdirectory. Any failure file that exceeds the diagnosis time limit is moved to the timeout.ya
subdirectory. The diagnosis time limit is set by using one of these methods:

• set_diagnosis_options -wall_time_limit command argument

• set_diagnosis_options -time_limit command argument

• set the analyzer_timelimit server variable

Tessent™ Diagnosis User’s Manual, v2022.4342

Running Tessent Diagnosis Server
Guidelines for Working with Analyzers

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can turn off the management of failure files using the monitor_filer variable. This
alternative mode of operation leaves all failure files in their original locations.

Diagnosis Failure File Sorting
Before and during diagnosis, if you add additional failure files to the target directory, Tessent
Diagnosis Server dynamically re-sorts the failure files in the queue based on user-defined
criteria. By default, the failure files are sorted based on file size, and the smallest failure file is
targeted first.

You can change this default by using the following Tessent Diagnosis Server variable:

set faillog_sort_criteria sort_order_value

where sort_order_value is one of the following four possible choices:

• smallest_file — A literal that specifies re-queuing the failure files with the smallest size
first. This is the default.

• largest_file — A literal that specifies re-queuing the failure files with the largest size
first.

• oldest_file — A literal that specifies re-queuing the failure files with the oldest
timestamp first.

• newest_file — A literal that specifies re-queuing the failure files with the newest
timestamp first.

For example, the following Tessent Diagnosis Server command sequence re-queues the fail logs
to process the smallest file first:

set faillog_sort_criteria smallest_file

add_analyzer localhost:1

add_monitor flogs ../flogs/ -results ../results/flogs.ya

add_design flogs ../src/design.flat.gz

add_pattern flogs ../pat/pat.gz

start_diagnosis

Guidelines for Working with Analyzers
One or more analyzers can be initially bound with a specific monitored directory, but once the
directory is empty, the analyzers become free to diagnose failure files in other directories.
You can add, delete, or report on specific analyzers. For more information, refer to the
following commands:

• add_analyzer— Adds an analyzer to the Tessent Diagnosis server configuration.

Running Tessent Diagnosis Server
Setting Up the Tessent Diagnosis Server

Tessent™ Diagnosis User’s Manual, v2022.4 343

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• delete_analyzer — Deletes an analyzer from the Tessent Diagnosis server configuration.

• report_analyzer — Displays a report on a specified analyzer. A report similar to the
following displays:

---- analyzers monitoring -------------------------------
(1) wvbld03 #1 Alpha ... idle (35 secs) waiting to start diagnosis
(2) wvbld05 #1 Alpha ... idle (33 secs) waiting to start diagnosis
(3) wvbld07 #1 Beta ... idle (31 secs) waiting to start diagnosis
(4) wvbld09 #1 Beta ... idle (29 secs) waiting to start diagnosis

The following list describes the fields in the first line from left to right:

o (1) indicates the order an analyzer was defined. For example, 1 means the analyzer
was the first one added to the Tessent Diagnosis server configuration and so on.

o wvbld03 is the name of the host computer running the analyzer. Multiple analyzers
may be running on the same host.

o #1 Alpha is the name of the monitored directory to which the analyzer is currently
assigned.

o idle (35 secs) describes the current state of the analyzer and the number of seconds
the analyzer has occupied the state.

o waiting to start diagnosis describes the state of the analyzer.

Setting Up the Tessent Diagnosis Server
You must configure Tessent Diagnosis server to automatically diagnose failure files as they are
detected in specific directories. The purpose of this step is to create the LDB that you need to
complete the diagnosis.
The user interface remains active during diagnosis allowing you to reconfigure settings, display
session statistics, and interrupt diagnosis at any time during the session.

Prerequisites
• Refer to “Tessent Diagnosis Server Prerequisites” on page 336.

Procedure
1. Invoke Tessent Diagnosis server. From a Linux shell, enter:

Tessent_Tree_Path/bin/tessent -diagserver

where:

• Tessent_Tree_Path — The path to where the Tessent Diagnosis application tree is
installed.

• -diagserver — A required switch that invokes Tessent Diagnosis in server mode.

Tessent™ Diagnosis User’s Manual, v2022.4344

Running Tessent Diagnosis Server
Setting Up the Tessent Diagnosis Server

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, a logfile DiagServer.log of the server diagnosis session is saved in the
directory Tessent Diagnosis server from where it is invoked. If a default logfile from a
previous session exists, it is overwritten. The logfile contains version information and
the sequence of commands and their outputs for the entire session.

For more information on invoke options, see the tessent shell command in the Tessent
Shell Reference Manual.

2. Define the monitored directories. From the Tessent Diagnosis server command prompt,
enter the add_monitor command:

add_monitor monitor_id monitored_directory

where:

• monitor_id — An alternate name you must provide for the monitored directory. This
alias is used as shorthand when you refer to this monitored directory from other
commands.

• monitored_directory — The pathname of the directory for Tessent Diagnosis server
to monitor.

You can define multiple monitored directories. You can also specify a pathname for the
diagnosis results.

3. Load the design netlist(s). From the Tessent Diagnosis server command prompt, enter
the add_design command:

add_design monitor_id flat_design_netlist

where:

• monitor_id — The alias that identifies a monitored directory. The alias is assigned
with the add_monitor command in Step 2.

• flat_design_netlist — The pathname of the flat design netlist to use for diagnosing
the failure files found in the specified monitored directory. If a design netlist is
encrypted, you are prompted for a password before the design is loaded.

The same design netlist can be loaded for multiple monitored directories.

4. Load the test pattern file(s). From the Tessent Diagnosis server command prompt, enter
the add_pattern command:

add_pattern <monitor_id> <test_pattern_file>

where:

• monitor_id — The alias that identifies a monitored directory. The alias is assigned
with the add_monitor command in Step 2.

• test_pattern_file — The pathname of the test pattern file to use for diagnosing the
failure files found in the specified monitored directory. The same test pattern file can
be loaded for multiple monitored directories.

Running Tessent Diagnosis Server
Setting Up the Tessent Diagnosis Server

Tessent™ Diagnosis User’s Manual, v2022.4 345

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Refer to the following Examples section for details about loading multiple test patterns
with multiple test suites.

5. Add the analyzers. From the Tessent Diagnosis server command prompt, enter the
add_analyzer command:

add_analyzer host_name

where:

• host_name — The name of the host computer to invoke and run the analyzer on. Use
localhost:1 to create a single, non-floating, local, analyzer process.

This command invokes a floating analyzer that is controlled by the workload. You can
add several analyzers, specify a job scheduler, or initially bind the analyzer to a specific
monitored directory with this command.

Analyzers can be added across different operating systems. For example: Invoke
Tessent Diagnosis server on a machine running the Sun operating system and then, add
an analyzer that resides on a machine running the Linux operating system.

Results
You now have a LDB that you can use as input to peform diagnosis with the Tessent Diagnosis
server.

Examples
If you use multiple test patterns with multiple test suites, then you must associate a specific
pattern with the add_pattern command to a specific test suite.

Tessent™ Diagnosis User’s Manual, v2022.4346

Running Tessent Diagnosis Server
Setting Up the Tessent Diagnosis Server

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For example, you have the following three multiple test suites entries in your failure file
(fail_file.log):

...
test_suite_begin suite1
failures_begin
67386 PIN_15 H L
203562 PIN_15 H L
...
failure_buffer_limit_reached all
failures_end
total_cycles 2491916
test_suite_end

test_suite_begin suite2
failures_begin
192214 PIN_15 H L
532654 PIN_15 H L
...
failure_buffer_limit_reached all
failures_end
total_cycles 2491916
test_suite_end

test_suite_begin suite3
failures_begin
430522 PIN_15 H L
532654 PIN_15 H L
...
failure_buffer_limit_reached all
failures_end
total_cycles 2491916
test_suite_end

And, you have three different patterns sets, one for each of the test suites. In the server dofile,
you identify these patterns with the add_pattern command using the following method:

add_monitor monitor1 fail_file.log -result fail_file.ya

add_design monitor1 my_design.flat

add_pattern monitor1 patterns/pattern_set_for_suite1.wgl.gz

add_pattern monitor1 patterns/pattern_set_for_suite2.wgl.gz

add_pattern monitor1 patterns/pattern_set_for_suite3.wgl.gz

Running Tessent Diagnosis Server
Running the Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 347

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When using multiple patterns with multiple test suites, you must list the add_pattern commands
so the commands line up with the intended fail file or test suite in a failure file. For example, if
your failure file contains the following test suites:

test_suite_begin suite1
...
test_suite_end

test_suite_begin suite2
...
test_suite_end

and you want to use “patterns1” with suite1 and “patterns2” with suite2, then you list the
add_pattern commands in the following order in the dofile:

add_pattern monitor1 patterns1

add_pattern monitor1 patterns2

See also “Multiple Test Suite Failure Data.”

Running the Diagnosis
The start_diagnosis command assigns analyzers to the specified monitored directories and
launches the automatic monitoring and diagnosis of the associated failure files.
See Table 6-13 — Tessent Diagnosis Server Variables for a list of variables that you can use
with Tessent Diagnosis server.

Prerequisites
• Refer to “Setting Up the Tessent Diagnosis Server.”

Procedure
1. From the Tessent Diagnosis server command prompt, enter:

start_diagnosis monitor_id

The monitor_id is the alias that identifies a monitored directory. The alias is assigned
with the add_monitor command in step 2 of the procedure described in “Setting Up the
Tessent Diagnosis Server.” You can start diagnosis on multiple monitors by entering
multiple space-separated monitor IDs.

2. As needed, suspend and resume Tessent Diagnosis server by using the following
commands:

• suspend_diagnosis — Completes any diagnosis in process and stops initiating any
new diagnoses.

Tessent™ Diagnosis User’s Manual, v2022.4348

Running Tessent Diagnosis Server
Running the Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• resume_diagnosis — Resumes diagnosing failure files where it left off when it was
suspended.

When you resume the diagnosis, the Tessent Diagnosis server picks up where it left
off. For example, if 2523 out of 5000 failure files completed diagnosis before the
diagnosis was stopped, Tessent Diagnosis server resumes diagnosing failure file
2524 and a message similar to the following displays:

// command: add_analyzer hercules -monitor design1_fs skipped
// 2523 previously diagnosed files.

3. Exit Tessent Diagnosis server as follows:

exit

When you exit Tessent Diagnosis server, all in-progress diagnoses are completed,
monitoring of directories is discontinued, and analyzers are shut down.

Depending on the active transactions, Tessent Diagnosis server shuts down after a few
moments.

If you terminate Tessent Diagnosis server without using the exit command, you must
clean up any .lock files left in the monitored directories. The presence of .lock files in a
directory prevents another Tessent Diagnosis server session from monitoring the
directory.

Results
Refer to “The Diagnosis Results Directory” for information. You can also view the server
session status by using the watch command. See “Server Session Status” for more information.

Related Topics
Running Tessent Diagnosis Server with a Local Host
Running Tessent Diagnosis Server in Batch Mode
The Tessent Diagnosis Server Daemon

Running Tessent Diagnosis Server
Layout-Aware Diagnosis with the Tessent Diagnosis Server

Tessent™ Diagnosis User’s Manual, v2022.4 349

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis with the Tessent
Diagnosis Server

You can perform layout-aware diagnosis and hierarchical layout-aware diagnosis with the
Tessent Diagnosis Server using an existing LDB you have created with the Tessent Diagnosis
tool.
To perform layout-aware diagnosis, you must have the following input files:

• Flat model of your design

• LDB

• Test Patterns

• ATE Failure Log Files

See “Layout-Aware Diagnosis Flow” for an overview of the layout-aware diagnosis flow and
steps to create a LDB as well as other requirements. See “Diagnosis for Hierarchical Designs”
for information about performing hierarchical layout-aware diagnosis.

Note
You must create the LDB with the Tessent Diagnosis tool.

Layout-Aware Diagnosis Commands. 349
Running Layout-Aware Diagnosis on a Local Layout Database 350

Layout-Aware Diagnosis Commands
To perform layout-aware diagnosis with the Tessent Diagnosis Server, you must specify the
LDB using the add_layout command with the -dft switch.
The following dofilea illustrates the layout-aware diagnosis flow:

add_analyzer generic:2

add_monitor monitorA my_failure_files -results results/bfails

add_design monitorA my_design.flat

add_pattern monitorA my_patterns.ascii

add_layout monitorA -dft my_layout_aware_file.ldb

start_diagnosis monitorA

Tessent™ Diagnosis User’s Manual, v2022.4350

Running Tessent Diagnosis Server
Running Layout-Aware Diagnosis on a Local Layout Database

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Layout-Aware Diagnosis on a Local
Layout Database

You can configure the Tessent Diagnosis Server to perform layout-aware diagnosis with a
locally cached copy of an existing LDB. When using this method, the Tessent Diagnosis Server
instructs the analyzer to copy the LDB to a host machine’s local disk, and the analyzers on the
host machine use this copy of the LDB for diagnosis.

Note
When using LSF as the job scheduler, the tool automatically determines the required disk
space for the LDB copy and passes the proper resource requirement to LSF using the bsub

command, such that only the host machine with the necessary resource is selected for this job.
For example: set generic_scheduler "bsub -q normal -o /dev/null %command"

Prerequisites
• You must have a locally cached copy of the LDB.

• You have configured the Tessent Diagnosis server and, optionally, a job scheduler as
described in “Setting Up the Tessent Diagnosis Server” and “Distributed Diagnosis
Processing,” respectively.

Procedure
1. Specify the location of the local LDB. Use the add_layout command’s optional -copy /

tmp/local_disk_directory switch/string pair as in the following example:

add_layout monitorA -dft my_layout_aware_file.ldb -copy /tmp/user

Tessent Diagnosis Server instructs an analyzer to copy the LDB to the /tmp/
local_disk_directory location and create a unique subdirectory for the LDB. The tool
creates this subdirectory using the following method:

TDS-host_name-processID-monitor

where:

• TDS — Fixed value specifying the Tessent Diagnosis Server.

• host_name — Host name running the Tessent Diagnosis Server.

• processID — Process ID for the Tessent Diagnosis Server process.

• monitor — The name of the monitor.

For example:

/tmp/user/TDS-my_host-12345-my_monitor/my_layout_database.ldb

2. Run the diagnosis:

run_diagnosis

Running Tessent Diagnosis Server
Running Layout-Aware Diagnosis on a Local Layout Database

Tessent™ Diagnosis User’s Manual, v2022.4 351

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
Tessent Diagnosis server results are written as both an ASCII report and CSV (comma
separated values) data—see “Diagnosis Reporting.”

Examples
The following dofile example illustrates using the method using a custom (generic) scheduler.

set generic_scheduler "bsub -q normal -o /dev/null %command"

set generic_delete "bkill %Job"

add_analyzer generic:2

add_monitor flogs flogs/ -results ./results/flogs2.ya

add_design flogs src/design.flat.gz

add_pattern flogs pat/pat.gz

add_layout flogs -dft "/filer01/layout/YA_demo.db" –copy /tmp/

start_diagnosis

delete_analyzer 1 // assumes the analyzer1 lands on lsf1

exit

In the example, the Tessent Diagnosis Server performs the following operations:

• Schedules two analyzers through the LSF job scheduler. Assume that analyzer1 (2)
lands on the machine lsf1 and lsf2.

• Assigns a monitor (flogs) for the failure logs, and the design and patterns.

• Creates local directories on lsf1 and lsf2 with the following name (assume the host is
my_host and the Tessent Diagnosis Server process ID is 12345):

/tmp/TDS-my_host-12345-flogs/YA_demo.db

The analyzers use these local copies of the LDB for layout-aware diagnosis.

• When the tool deletes the analyzer (1) on lsf1, the tool also removes the local copy of the
LDB. The tool also does the same for lsf2 when the tool exits after finishing the
diagnosis of all the failures.

Tessent™ Diagnosis User’s Manual, v2022.4352

Running Tessent Diagnosis Server
Dynamic Partitioning-Based Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Dynamic Partitioning-Based Diagnosis
By default, the Tessent Diagnosis server spreads the diagnosis workload equally between all
available analyzers. Each analyzer contains the entire netlist in memory. To lessen the amount
of memory required to run a diagnosis, and to lessen runtimes, you can use dynamic
partitioning-based diagnosis to partition the netlist into smaller subnetlists for each failure file
and perform diagnosis on the subnetlists.
Overview . 352
Preparing for Dynamic Partitioning-Based Diagnosis . 355
Running Dynamic Partitioning-Based Diagnosis . 357
Setting Up Manual Dynamic Partitioning-Based Diagnosis . 359

Overview
When you enable dynamic partitioning-based diagnosis, Tessent Diagnosis server initializes a
dynamic partitioner. The partitioner generates partitions for failure files, which are then
distributed to analyzers for processing.
Figure 6-2 shows the Tessent Diagnosis server flow for dynamic partitioning-based diagnosis.

Figure 6-2. Dynamic Partitioning-Based Diagnosis Flow

Running Tessent Diagnosis Server
Overview

Tessent™ Diagnosis User’s Manual, v2022.4 353

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Given a failure file, flog_A, dynamic partitioning-based diagnosis performs as follows:

1. The partitioner analyzes flog_A and generates a flattened model of the subcircuit,
flog_A.subnetlist.

2. The analyzer receives flog_A.subnetlist and performs diagnosis on this subcircuit for the
failure file. The analyzer generates an ID-based diagnosis report, flog_A.diag.id.

3. The partitioner receives flog_A.diag.id, translates the ID-based names to string-based
names, and generates the final diagnosis report, flog_A.diag.

In the dynamic partitioning-based diagnosis flow, the partitioner contains the entire netlist in
memory, and hence, requires a suitable host machine with enough physical memory.
Meanwhile, each analyzer contains only a subnetlist in memory, which means that each
analyzer can run on a host machine with much smaller physical memory. Alternatively, for a
machine with larger physical memory, multiple analyzers can run utilizing more of the CPU
cores.

Prerequisites
• At least one analyzer with enough memory to host the partitioner.

• A startup cache.

• If you are performing layout-aware diagnosis, a layout database (LDB) that contains
bridges and net topology information.

• You have tested the input files to ensure that they are correct.

Limitations
• It only supports one monitor per server run.

• The partitioners need extra startup time before they can create design partitions and
assign jobs to analyzers.

• At-speed, clock, scan enable and compound diagnosis are not supported.

Aborted Failure Handling
Dynamic partitioning-based diagnosis aborts in the following situations:

• The sub-netlist for a failure file includes more than 20% of the gates of the original
netlist. Diagnosis aborts because an analyzer with limited memory may not be able to
handle such a large sub-netlist.

Failures that abort because of oversized sub-netlists could mean that dynamic
partitioning-based diagnosis is not suitable for this data set. In this case, you should use
the normal Tessent Diagnosis server flow for diagnosis.

Tessent™ Diagnosis User’s Manual, v2022.4354

Running Tessent Diagnosis Server
Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Memory usage while diagnosing a failure on an analyzer exceeds the predefined
memory limit. Diagnosis aborts to avoid crashing the analyzer.

The tool moves aborted failure files to a directory named "oversized.ya" under the
failure file directory. You can copy these aborted failures to a new directory and use the
normal Tessent Diagnosis server to process them.

Running Tessent Diagnosis Server
Preparing for Dynamic Partitioning-Based Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 355

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Preparing for Dynamic Partitioning-Based
Diagnosis

To run dynamic partitioning-based diagnosis, you must have a startup cache. If you plan to
perform layout-aware diagnosis, you also must have an LDB that contains bridges and net
topology information. You should also test the input files using Tessent Diagnosis before
running dynamic partitioning-based diagnosis to ensure that the input files are correct.
Creating the Startup Cache . 355
Bridges and Net Topology Information . 356
Test the Input Files . 357

Creating the Startup Cache
The startup cache enables you to run pattern verification only once, and it eliminates the need
for each analyzer to perform additional pattern verification. Additionally, having a startup cache
enables the partitioner to skip pattern verification and clock signature computation, thus
improving performance.
Use Tessent Diagnosis (not Tessent Diagnosis server) to create the startup cache. Figure 6-3
shows the Tessent Diagnosis flow for creating the startup cache.

Figure 6-3. Startup Cache

Prerequisites
• A design (flat model)

• Pattern file(s)

Procedure
1. Inform the tool that the startup cache to be created is for dynamic partitioning-based

diagnosis.

set_diagnosis_options -dynamic_partition master

Tessent™ Diagnosis User’s Manual, v2022.4356

Running Tessent Diagnosis Server
Preparing for Dynamic Partitioning-Based Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You must specify this command before you load the test patterns. If there are existing
patterns, use the delete_pattern -external command before issuing the
set_diagnosis_options -dynamic_partition master command.

2. Read in your pattern file. For example:

read_patterns ./pat/pat.stil.gz

3. Verify the pattern and create the startup cache. For example:

verify_pattern -create_startup_cache ./design.startup_cache

Results
Tessent Diagnosis saves the pattern verification information and clock signature information
into the startup cache database. In addition, it converts pattern files into binary patterns that are
used by analyzers. The tool saves the newly converted binary pattern files in the same directory
as the startup cache. If the original patterns are already binary patterns, they are still saved to the
new binary pattern file. The binary pattern files cannot be moved elsewhere because their
location information is stored in the startup cache and used during dynamic partitioning.
The newly converted binary file ends with the suffix “.bin.gz”. The source binarwy files do not
have to end with a “.bin" or “.bin.gz” suffix. However, if the source binary file is XYZ.bin, the
new pattern file is XYZ.bin.gz. If the source binary file is already XYZ.bin.gz, the new file
remains XYZ.bin.gz.

Examples
The following example creates a startup cache:

set_context patterns -scan_diagnosis
read_flat_model ../src/design.flat.gz
set_diagnosis_options -dynamic_partition master
read_patterns ./pat/pat.stil.gz
verify_pattern -create_startup_cache ./design.startup_cache

Bridges and Net Topology Information
If you plan to perform layout-aware diagnosis, you need to generate an LDB that contains pre-
extracted bridge and net topology information for all the nets in the design. This information is
required when you perform layout-aware diagnosis along with dynamic partitioning-based
diagnosis. It is not required for logic-only diagnosis or chain diagnosis.
By default the create_layout command generates an LDB that includes pre-extracted bridge and
net topology information.

Note
To ensure proper net topology extraction for net VIAs, during LEF/DEF generation specify
“do not flatten” for net VIAs.

Running Tessent Diagnosis Server
Running Dynamic Partitioning-Based Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 357

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After creating the LDB, you must validate it with the open_layout command. This ensures that
the Tessent Diagnosis point tool knows to use the LDB during dynamic partitioning-based
diagnosis.

Test the Input Files
To ensure that Tessent Diagnosis server does not hang during processing or return unexpected
results, perform one diagnosis run with Tessent Diagnosis before performing dynamic
partitioning-based diagnosis.
Load the required input data as shown in Figure 6-2, run diagnosis, and ensure that the input
data is correct.

Running Dynamic Partitioning-Based Diagnosis
Similar to the default Tessent Diagnosis server flow, dynamic partitioning-based diagnosis uses
monitored directories and analyzers. To enable dynamic partitioning-based diagnosis, specify
one or more analyzers to use as partitioners by using the add_partitioner command.

Prerequisites
• You have completed the tasks as described in section “Preparing for Dynamic

Partitioning-Based Diagnosis.”

• A design (flat model), a pattern file or files, and ATE failure files.

Procedure
1. From a shell, run Tessent Diagnosis server using the following syntax:

Tessent_Tree_Path/bin/tessent -diagserver

2. Define the monitored directory and required input files with the following series of
commands. For example:

add_monitor flogs ../flogs/ -results ../results

add_design flogs ../src/design.flat.gz

add_pattern flogs ../pat/pat.stil.gz

3. Specify the startup cache and LDB.

add_startup_cache flogs ./design.startup_cache

#specify the following command if you are using layout-aware diagnosis

add_layout flogs -dft layout.ldb

4. Analyze the resource requirements. For example:

analyze_resource_requirements

Tessent™ Diagnosis User’s Manual, v2022.4358

Running Tessent Diagnosis Server
Running Dynamic Partitioning-Based Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The analyze_resouce_requirements command specifies to the tool to analyze, calculate
and report the memory requirement for each partitioner and analyzer for each
configuration.

5. Specify the configuration and any other options. For example:

set_diagnosis_resource_configuration -balanced -scheduler sge

By default, the tool uses the balanced configuration and assumes the LSF scheduler.

6. Start diagnosis.

start_diagnosis

When you run the start_diagnosis command, the tool begins requesting the partitioner
resource from the scheduler. The partitioner and analyzer resources are requested
incrementally over the run. These requests are automatically made to the scheduler up to
the maximum required diagnosis configuration.

Results
Tessent Diagnosis server generates one report per failure file. See “The Diagnosis Results
Directory” for more information.
You can use the report_monitor command to show you how many failure files have been
partitioned. For example:

// command: report_monitor

---< monitors >---
(1) flogs

directory: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./flogs

results: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./flogs.ya

: yieldinsight.adb Inactive
design: /wv/ststnttmp/TNT_TMPDIR_NETWORK/

gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/../src/design.flat.gz

pattern set 0: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/../pat/pat.gz Verified

layout DB: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./YA_demo5.ladb/layout.ladb

3 total
3 done [100%]
0 errors (0%)
3 partitioned (100%) 0 sec/partition
3 diagnosed (100%) 3 sec/diagnosis

Running Tessent Diagnosis Server
Setting Up Manual Dynamic Partitioning-Based Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 359

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
The following example runs the automated dynamic-partitioning flow. You do not need to
determine the number of partitioners and analyzers. The tool automatically determines the
number of DP-partitioners based on the number of failure files in the given dataset. If the
targeted dataset has 40 failure files, then 4 DP-partitioners and upto 20 DP-analyzers are used.
For another dataset with 8 failure files, single DP-partitioner and upto 10 DP-analyzers are used
by using the same dofile. By default, the LSF grid is used to schedule all jobs. After
“analyze_resource_requirements” successfully determines the job scheduling, the
“start_diagnosis” command starts the DP-server flow to process this dataset. The flow stops
when all failure files are processed and exits. You can insert extra Tcl commands into the Tcl
while loop to print out more information about the progress for monitoring.

// Example2: Run new DP-server flow with partitioner load of 10 using LSF
grid
add_monitor monA flogs/ -results flogs.ya
add_design monA ../src/design.flat.gz
add_pattern monA ../src/pat.gz
add_startup_cache monA ../src/scdb/design.scdb
add_layout monA ../src/ldb

set_diagnosis_resource_configuration
start_diagnosis

while { [check -queued] > 0 && ![abort] } {
// Use Tcl commands to print out more progress messages

}
report_monitor
report_analyzer
exit

Setting Up Manual Dynamic Partitioning-Based
Diagnosis

You can manually set up the Tessent Diagnosis server flow, dynamic partitioning-based
diagnosis that uses monitored directories, and analyzers. To enable dynamic partitioning-based
diagnosis, specify one or more analyzers to use as partitioners by using the add_partitioner
command.

Prerequisites
• You have completed the tasks as described in section “Preparing for Dynamic

Partitioning-Based Diagnosis.”

• A design (flat model), pattern file(s), and ATE failure files.

Procedure
1. From a shell, run Tessent Diagnosis server using the following syntax:

Tessent_Tree_Path/bin/tessent -diagserver

Tessent™ Diagnosis User’s Manual, v2022.4360

Running Tessent Diagnosis Server
Setting Up Manual Dynamic Partitioning-Based Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Define the monitored directory and required input files with the following series of
commands. For example:

add_monitor flogs ../flogs/ -results ../results

add_design flogs ../src/design.flat.gz

add_pattern flogs ../pat/pat.stil.gz

3. Specify the startup cache and (optionally) an LDB that contains bridges and net
topology information.

add_startup_cache flogs ./design.startup_cache

#specify the following command if you are using layout-aware diagnosis

add_layout flogs -dft layout.ldb

4. Add one or more partitioners. For example:

add_partitioner big:2

The add_partitioner command enables dynamic partitioning. Each partitioner can
process a certain number of analyzers. Specifying more than one partitioner can
decrease processing time by minimizing the number of analyzers that are sitting idle at
any given time. You can add partitioners at any time. Additionally, you can delete
partitioners at any time.

If you manually choose the host machine for a partitioner, then it must have enough
physical memory to accommodate the entire netlist, which is roughly the same as
required for an average Tessent Diagnosis point tool run. If you choose to add the
machine through a job scheduler such as SGE or LSF, then Tessent Diagnosis server
automatically requests an appropriate machine.

In addition, you can specify the -dp_work_dir switch to specify a working directory. A
working directory can prevent file storage issues that can occur when the partitioned
files accumulate in analyzer queues waiting for diagnosis. See “add_analyzer” for more
information.

Note
Define the partitioners before you define the analyzers.

5. Add one or more analyzers. For example:

add_analyzer lsf:10 -priority 3

See “add_analyzer” for information about the -hibernation switch that you can use to
specify the number of minutes before idle analyzers enter hibernation mode and
relinquish their licenses.

6. Start diagnosis.

start_diagnosis

Running Tessent Diagnosis Server
Setting Up Manual Dynamic Partitioning-Based Diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 361

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

After you run the start_diagnosis command, the partitioners perform a startup process
before creating subnetlists to assign to analyzers. This startup process may take a long
time depending on the design size. Therefore, it is recommended that you wait until after
a partitioner has partitioned the first failure file before adding the analyzers. You can do
this by adding the following tcl code to the dofile:

while { [check -partitioned] == 0 && ![abort] } { }

add analyzer sge:5

Results
Tessent Diagnosis server generates one report per failure file. See “The Diagnosis Results
Directory” for more information.
You can use the report_monitor command to show you how many failure files have been
partitioned. For example:

// command: report_monitor

---< monitors >---
(1) flogs

directory: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./flogs

results: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./flogs.ya

: yieldinsight.adb Inactive
design: /wv/ststnttmp/TNT_TMPDIR_NETWORK/

gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/../src/design.flat.gz

pattern set 0: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/../pat/pat.gz Verified

layout DB: /wv/ststnttmp/TNT_TMPDIR_NETWORK/
gsub_3974.11.61354f25736ede5a80af2e9f39db70de/
YA_demo5_DPMS3N_template.yielda/results.64/./YA_demo5.ladb/layout.ladb

3 total
3 done [100%]
0 errors (0%)
3 partitioned (100%) 0 sec/partition
3 diagnosed (100%) 3 sec/diagnosis

Examples
Example 1: Manual Dynamic Partitioning-Based Diagnosis Flow

The following example illustrates the manual dynamic partitioning-based diagnosis flow. In this
example, you are performing layout-aware diagnosis so you are specifying a LDB that contains
bridge and net topology information. In addition, you are specifying a working directory.

Tessent™ Diagnosis User’s Manual, v2022.4362

Running Tessent Diagnosis Server
Server Session Status

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

define the monitored directory and input files
add_monitor flogs ../flogs/ -results ../results
add_design flogs ../src/design.flat.gz
add_pattern flogs ../pat/pat.stil.gz

specify the startup cache and LDB
add_startup_cache flogs ./design.startup_cache
add_layout flogs -dft layout.ldb

enable dynamic partitioning and add 2 DP primaries
add_partitioner lsf:2 -dp_work_dir ../flogs/work
report_monitor
report_analyzer

start_diagnosis
while { [check -partitioned] == 0 && ![abort] } { }

add 6 DP secondaries after the first failure file is partitioned
SGE asks machines with 6GB+ memory
add analyzer sge:6

Tessent Diagnosis automatically derives the number of gates in the design from the flat design
model, and the LSF job scheduler uses this number to deliver the appropriate partitioners. The
start_diagnosis command then causes the partitioners to perform the setup and create partitions
for the failure files. As soon as the first partitions become ready on the partitioners, the server
starts allocating the analyzers to them, and the analyzers begin diagnosis.

Example 2
The following example runs the dynamic partitioning-based flow in the manual mode with a
user-defined number of dynamic-partitioning partitioners and dynamic-partitioning analyzers.

add_monitor monA flogs/ -results flogs.ya
add_design monA ../src/design.flat.gz
add_pattern monA ../src/pat.gz
add_startup_cache monA ../src/scdb/design.scdb
add_layout monA ../src/ldb

add_partitioner sge:1
add_analyzer sge:2

start_diagnosis
while { [check -queued] > 0 && ![abort] } { }
report_monitor
report_analyzer
exit

Server Session Status
From the Tessent Diagnosis server command prompt, enter the watch command to display the
server session status.

Running Tessent Diagnosis Server
Server Session Status

Tessent™ Diagnosis User’s Manual, v2022.4 363

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The status of all the analyzers and monitored directories are combined and dynamically
displayed to the screen in the following format.

// command: watch
---< monitors >------------------------------
(1) Alpha
directory: /wv/dft06918/pmc/testerAA
results: /wv/dft06918/pmc/TESTERA_RESULTS
: adb.sql INACTIVE
design: /wv/dft06918/pmc/pmc.flat.gz
pattern set 0: /wv/dft06918/pmc/tester_pat.wgl
48 total
7 done [15%]
0 errors (0%)
7 analyzed (15%)
7 diagnosed (15%)
----< analyzers >-------------------------------
(1) wvbld03 #1 Alpha ... idle (35 secs) diagnosing
(2) wvbld05 #1 Alpha ... idle (33 secs) diagnosing
(3) wvbld07 #1 Beta ... idle (31 secs) diagnosing
(4) wvbld09 #1 Beta ... idle (29 secs) diagnosing
----< status >------------------------------
48 queued failure files for 1 monitor
4 analyzers

For a description of the report, see “Guidelines for Working with Analyzers” and “Guidelines
for Working with Monitored Directories.” This report is not written to the session log.

Press Enter to terminate the dynamic reporting and display the command entry prompt.

Tessent™ Diagnosis User’s Manual, v2022.4364

Running Tessent Diagnosis Server
The Diagnosis Results Directory

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Diagnosis Results Directory
Tessent Diagnosis server results are written as both an ASCII report and CSV (comma
separated values) data.
See “Diagnosis Reporting” for more information.

By default, Tessent Diagnosis server places the diagnosis results in monitored_directory.ya,
where monitored_directory is the name of the associated monitored directory and
monitored_directory.ya is created in the same directory where monitored_directory resides.
You can override the default directory and specify a different directory for the diagnosis results
by using the -results results_directory switch to the add_monitor command

For example, the following command places the diagnosis results from Tessent Diagnosis
server into directory /A/B/C/my_results:

add_monitor foo failure_files -results A/B/C/my_results

Duplicated Failure File Names . 364
Log Files . 364

Duplicated Failure File Names
In the event Tessent Diagnosis server processes different failure files with the identical file
name, the tool appends each diagnosed failure file with a numerical suffix beginning with 2, and
then increments this suffix for multiple failure files with the identical file name.
For example, Tessent Diagnosis server processed two different failure files with the identical
name (failures). In the results directory, Tessent Diagnosis server creates and names the
following diagnosis report files:

-rw-rw-r-- 1 user group 744 Jan 21 14:48 failures.csv
-rw-rw-r-- 1 user group 900 Jan 21 14:46 failures.csv.2
-rw-rw-r-- 1 user group 1259 Jan 21 14:48 failures.diag
-rw-rw-r-- 1 user group 1340 Jan 21 14:46 failures.diag.2

Note
The latest ATE failure file Tessent Diagnosis server processes keep the unaltered file name.
(For example, failures.diag.) The older the file, higher is the appended number.

Log Files
During a Tessent Diagnosis server run, the tool produces a log file named “log” in the results
directory.

Running Tessent Diagnosis Server
Log Files

Tessent™ Diagnosis User’s Manual, v2022.4 365

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If the tool encounters errors during the run, then multiple logfiles are appended with a number
(beginning with 2) representing the order they were created. For example log, log.2, log.3 and
so on.

If the tool encounters no errors during the run, then Tessent Diagnosis server creates an empty
log file.

Tessent™ Diagnosis User’s Manual, v2022.4366

Running Tessent Diagnosis Server
Server History

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Server History
The history database (HDB) provides an SQL record of events that occurred during server
operation.
You can instruct the Tessent Diagnosis server to create an HDB by specifying the -hdb switch.
You can query the HDB to generate reports.

When invoking Tessent Diagnosis in server mode, create a new HDB as follows:

tessent -diagserver options -hdb history_db_name.hdb

Caution
The tool overwrites an HDB with no warning if you repeat the command using the same
name.

The HDB supports session IDs. You can append an existing HDB by adding a “+” in front of an
existing HDB name to indicate append mode. Append mode opens the HDB using a new
session ID. Use the following command to append to the HDB:

tessent -diagserver options -hdb +history_db_name.hdb

See “tessent -diagserver” in the Tessent Shell Reference Manual for more information.

Server History Reports . 366
Usage Example: Analyze Diagnosis Performance and Throughput 369
History Database Schema . 372

Server History Reports
The HDB stores data about various steps performed during the diagnosis and dynamic
partitioning processes, which enables detailed time and memory reporting for different parts of
the diagnosis process for each failure log. From this data, you can track diagnosis performance
and make throughput comparisons between dynamic partitioning and baseline diagnosis runs.
See “History Database Schema” on page 372 for information about how the data within the
HDB is organized.

Running Tessent Diagnosis Server
Server History Reports

Tessent™ Diagnosis User’s Manual, v2022.4 367

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To query the current HDB and generate reports, specify the report_history command. By
default, the tool produces an event-based report that lists the various steps involved in diagnosis
and dynamic partitioning (as applicable). For example:

// command: report_history
History Event Report
--
flog flog_num event time memory PartitionSize
--
flog1.cyc 1 PartitionCreation 23.5 1.53GB 60.31
flog1.cyc 1 PartitionMark 19.3 60.31
flog1.cyc 1 PartitionWrite 4.2 60.31
flog1.cyc 1 DesignLoad 1.19 0.73GB 60.31
flog1.cyc 1 OptionsLoad 0 0.73GB 60.31
flog1.cyc 1 PatternLoad 3.2 0.74GB 60.31
flog1.cyc 1 PatternVerification 0.03 0.74GB 60.31
flog1.cyc 1 OpenLayout 0.15 0.74GB 60.31
flog1.cyc 1 Diagnosis 51.42 0.91GB 60.31
flog1.cyc 1 ReportTranslation 0.03 1.55GB 60.31
flog2.cyc 2 PartitionCreation 2.5 1.55GB 46.65
flog2.cyc 2 PartitionMark 0.8 46.65
flog2.cyc 2 PartitionWrite 1.7 46.65
flog2.cyc 2 DesignLoad 0.87 0.70GB 46.65
flog2.cyc 2 OptionsLoad 0 0.70GB 46.65
flog2.cyc 2 PatternLoad 3.2 0.70GB 46.65
flog2.cyc 2 PatternVerification 0.05 0.70GB 46.65
flog2.cyc 2 OpenLayout 0.26 0.71GB 46.65
flog2.cyc 2 Diagnosis 23.87 0.85GB 46.65
flog2.cyc 2 ReportTranslation 0.05 1.55GB 46.65

Each event that a failure log passes through during the diagnosis process is a separate row
within the table.

To produce a report that consolidates the diagnosis events for each failure log and lists either the
time or memory consumption for each event, specify report_history -pivot time or
report_history -pivot memory, respectively. For example:

// command: report_history -pivot time
History Event Time Report
--
flog PartitionCreation PartitionMark PartitionWrite DesignLoad

OptionsLoad PatternLoad PatternVerification Diagnosis ReportTranslation

phyb2_adom_1 0.1 0 0.1 0.04 0 3.03 0.03 0.34 0.01

phyb2_adom_0 0 0 0 0.24 0 3.03 0.02 0.26 0.01

phy_open_1 0 0 0 0.26 0 3.04 0.02 0.41 0

phyb2_and_1 0 0 0 0.26 0 3.03 0.02 1.43 0.01

phy_open_0 0 0 0 0.26 0.01 3.03 0.02 1.05 0

phyb2_and_0 0 0 0 0.26 0.01 3.03 0.02 1.41 0.01

--

The report_history -pivot memory report also includes a PartitionSize column.

Tessent™ Diagnosis User’s Manual, v2022.4368

Running Tessent Diagnosis Server
Server History Reports

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following table describes the events. With the exception of PartitionCreation and
ReportTranslation, the tool performs all steps regardless of whether dynamic partitioning is
enabled. In the dynamic partitioning flow, the tool performs the events for each failure log.
When you are not using dynamic partitioning, the tool only performs the Diagnosis step for
each failure log; the other steps are performed once for each analyzer.

If any other Tessent Diagnosis server run attempts to use an HDB owned by another process or
with incorrect open status, the tool issues the following warning message with the session
history:

// Warning: history database is already opened by another session.

Session History:

session_id begin_time end_time host process

1 Wed May 27 15:59:52 2009 Wed May 27 16:00:34 2009 myhost 14827

1 Wed May 27 16:00:40 2009 Wed May 27 16:03:18 2009 myhost 14973

1 Wed May 27 16:02:55 2009 Wed May 27 16:03:14 2009 myhost 15675

1 Wed May 27 20:35:49 2009 <<< STILL ACTIVE >>> myhost 18216

Table 6-1. report_history Events
Event Description
PartitionCreation When using dynamic partitioning, Tessent Diagnosis creates a

partition from the design based on the failure log. This step
occurs for each failure log and is omitted when you are not
using dynamic partitioning.

DesignLoad The analyzer loads the partition (portion of the design) on which
diagnosis is performed.

OptionsLoad The analyzer loads the diagnosis options that were specified
with the set_diagnosis_options command. Additionally, it loads
UDFM files for cell-aware diagnosis, as applicable.

PatternLoad The analyzer loads the binary patterns that the tool generates
when it creates the startup cache. See “Diagnosis Startup
Cache” on page 32.

PatternVerification The analyzer loads the pattern verification results stored in the
startup cache and performs verification on the patterns.

OpenLayout The analyzer opens the LDB.
Diagnosis The analyzer performs diagnosis on the partition corresponding

to the failure log.
ReportTranslation The partitioner reads the diagnosis results generated by the

analyzer and translates the results into a completed diagnosis
report. This step is omitted when you are not using dynamic
partitioning.

PartitionSize This column lists the size of the partition created for the failure
log as a percentage of the design.

Running Tessent Diagnosis Server
Usage Example: Analyze Diagnosis Performance and Throughput

Tessent™ Diagnosis User’s Manual, v2022.4 369

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

In addition to the report_history command, use the following the commands to manage the
HDB.

Usage Example: Analyze Diagnosis Performance
and Throughput

You can use the memory and time CSV-formatted history reports to analyze diagnosis
performance. Generate the CSV-formatted reports with the report_history -csv command.
For example, you can compare the results of a baseline diagnosis flow against dynamic
partitioning to calculate the performance improvement of using dynamic partitioning.

Suppose you have generated four history reports that you have saved to CSV files and then
imported into a Microsoft Excel file (on their own sheets): time consumption for baseline
diagnosis, time consumption for dynamic partitioning diagnosis, memory consumption for
baseline diagnosis, and memory consumption for dynamic partitioning diagnosis.

Suppose you have also generated the average for each column of each report. The following
figure shows a baseline diagnosis memory consumption table:

Figure 6-4. Memory Consumption CSV Report Imported into Excel

Calculating Total Diagnosis Time for Dynamic Partitioning
As shown in “Server History Reports” on page 366, the dynamic partitioning history reports
provide visibility into the steps performed for each fail log. Compute the total time used by the

Command Description
cleanse_history Removes or lists the specified rows out of the HDB tables.
query_history Creates a Tcl string result from the history database query.

Tessent™ Diagnosis User’s Manual, v2022.4370

Running Tessent Diagnosis Server
Usage Example: Analyze Diagnosis Performance and Throughput

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

partitioner and analyzers during the diagnosis process. To do this, add three more columns to
the dynamic partitioning time consumption spreadsheet:

• PartitionerTotal: For each row, sum of the PartitionCreation step and the
ReportTranslation step. In the following figure, for the first fail log, this equates to:

=SUM(B2,I2)

• AnalyzerTotal: For each row, the sum of the remaining diagnosis steps—DesignLoad,
OptionsLoad, PatternLoad, PatternVerification, OpenLayout, and Diagnosis. In the
following figure, for the first fail log, this equates to:

=SUM(Table4[@[DesignLoad]:[Diagnosis]])

• TotalDiagnosisTime: For each row, the sum of PartitionerTotal and AnalyzerTotal.

Figure 6-5. Dynamic Partitioning Time Consumption CSV Report Imported into
Excel

Comparing Diagnosis Throughput of Dynamic Partitioning and Baseline
Diagnosis

Using the averages and the totals you added to the default reports generated by report_history,
you can calculate the diagnosis throughput improvements when using dynamic partitioning
relative to using baseline diagnosis. Throughput is generally defined as the product of memory
usage and diagnosis run time.

Use the following series of calculations:

Baseline Throughput =

(Avg. Memory Use * Avg. Diagnosis Time)* N

where N is the number of fail logs.

DP Throughput =

(Avg. Memory Use Partitioner * Avg. Partitioner Total Time) +
((Avg. Memory Use Analyzer * Avg. Analyzer Total Time)* N)

Running Tessent Diagnosis Server
Usage Example: Analyze Diagnosis Performance and Throughput

Tessent™ Diagnosis User’s Manual, v2022.4 371

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

where N is the number of fail logs run in parallel. That is, the ratio of analyzers to one
partitioner. The average memory usage for the partitioner is the larger of the averages for the
PartitionCreation task and the ReportTranslation task. The average memory usage for the
analyzer is the average for the Diagnosis step because that is the most memory-intensive step
for the analyzer.

Given the results for baseline throughput and dynamic partitioning throughput, you can
calculate the throughput improvement of using dynamic partitioning as follows:

Improvement =

(Baseline Throughput * No. of fail logs supported by each partitioner)

 DP Throughput

Tessent™ Diagnosis User’s Manual, v2022.4372

Running Tessent Diagnosis Server
History Database Schema

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

History Database Schema
The History Database (HDB) is an SQL database containing information in tables. Each table
has a series of columns identified by names.
Table 6-2 lists the HDB tables.

HDB_ANALYZER . 372
HDB_ERROR . 373
HDB_EVENT . 373
HDB_FILE . 374
HDB_HEADER . 375
HDB_MONITOR. 375
HDB_MONITORSET . 375
HDB_OPTION . 376
HDB_QUEUE. 376
HDB_SESSION . 377

HDB_ANALYZER
Each row in the HDB_ANALYZER table represents a single processor added by an
add_analyzer command.

Table 6-2. History Database Tables
Table Name Description
HDB_ANALYZER Contains analyzer data.
HDB_ERROR Contains error data.
HDB_EVENT Contains BeginSession, AcquireLicense, ReleaseLicense,

LoadDesign, SendPatterns, VerifyPatterns, Parse, Diagnose, and
ShutdownServer event data.

HDB_FILE Contains file (flat design, patterns) information.
HDB_HEADER Contains global HDB data.
HDB_MONITOR Contains monitor data.
HDB_MONITORSET Represents the state of the internal monitor of the server.
HDB_OPTION Records the options the server uses for a diagnosis run.
HDB_QUEUE Contains the state of the internal file queue of the Tessent Diagnosis

server.
HDB_SESSION Contains Tessent Diagnosis server startup data.

Running Tessent Diagnosis Server
History Database Schema

Tessent™ Diagnosis User’s Manual, v2022.4 373

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 6-3 lists the HDB_ANALYZER table.

HDB_ERROR
The HDB_ERROR table records error information.
Table 6-4 lists the HDB_ERROR table..

HDB_EVENT
The HDB_EVENT table records BeginSession, AcquireLicense, ReleaseLicense, LoadDesign,
SendPatterns, VerifyPatterns, Parse, Diagnose, and ShutdownServer events.
Table 6-5 lists the HDB_EVENT table.

Table 6-3. HDB_ANALYZER Table
Type Attribute Description
analyzer_id INTEGER The primary key of the HDB_ANALYZER table.
analyzer_type TEXT Field showing whether you are dealing with “analyzer”

or “partitioner”.
hostname TEXT The name of the computer the analyzer is running on.

Example: my_host1:4, localhost:8
processor INTEGER Integer that specifies the number of analyzers added.
arch TEXT The host’s architecture.

Example: sun4u
style TEXT One the of following job scheduler types:

MANUAL
LSF
SGE

started INTEGER Date time stamp specifying the start of the job.

Table 6-4. HDB_ERROR Table
Type Attribute Description
error_id INTEGER The primary key of the HDB_ERROR table.
event_id INTEGER The table row number from the HDB_EVENT table.
message TEXT ASCII text of the error message.

Tessent™ Diagnosis User’s Manual, v2022.4374

Running Tessent Diagnosis Server
History Database Schema

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

HDB_FILE
The HDB_FILE table contains information for files on which the server operated.
Table 6-6 lists the HDB_FILE table.

Table 6-5. HDB_EVENT Table
Type Attribute Description
event_id INTEGER The primary key of the HDB_EVENT table.
session_id INTEGER The primary key of the HDB_SESSION table for the

event.
monitorset_id INTEGER The primary key of the HDB_MONITORSET table

for the event.
analyzer_id INTEGER The primary key of the HDB_ANALYZER table for

the event.
queue_id INTEGER The primary key of the HDB_QUEUE table for the

event.
error_id INTEGER The primary key of the HDB_ERROR table for the

event.
begintime INTEGER Date timestamp specifying the beginning of the

event.
endtime INTEGER Date timestamp specifying the ending of the event.
event TEXT ASCII text of the event message.

Table 6-6. HDB_FILE Table
Type Attribute Description
file_id INTEGER The primary key of the HDB_FILE table.
path TEXT The directory path to the files.
basename TEXT The name of the file being operated on. For example,

my_flat_netlist.gz or my_tester_patterns.wgl

type TEXT Description of the file such as design or pattern.
MD5 TEXT The MD5 signature.
file_grp_id INTEGER The file group ID number.

Running Tessent Diagnosis Server
History Database Schema

Tessent™ Diagnosis User’s Manual, v2022.4 375

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

HDB_HEADER
The HDB_HEADER table contains global information about the HDB. For timestamps, queries
into the HDB can be done with either the human readable or the UTC values.
Table 6-7 lists the HDB_HEADER table.

HDB_MONITOR
Each row in the HDB_MONITOR table represents an add_monitor command the server has
processed in addition to the monitor’s associated design, pattern sets, and masks.
Table 6-8 lists the HDB_MONITOR table.

HDB_MONITORSET
The HDB_MONITORSET table represents the state of the internal monitor of the server.
Table 6-9 lists the HDB_MONITORSET table.

Table 6-7. HDB_HEADER Table
Type Attribute Description
header_id INTEGER The primary key of the HDB_HEADER table.
version INTEGER The version of the HDB.
creation INTEGER The creation timestamp of the HDB.
name TEXT The name of the HDB.
md5 TEXT The MD5 signature of the HDB.
password TEXT The password, if any, of the HDB.
isOpened INTEGER (1

during active
session)

Whether the HDB is open or not.

Table 6-8. HDB_MONITOR Table
Type Attribute Description
monitor_id INTEGER The primary key of the HDB_MONITOR table.
synonym TEXT The monitor_id from the add_monitor command.
directory TEXT The monitored_directory from the add_monitor

command.
results TEXT The results_directory from the add_monitor

command.

Tessent™ Diagnosis User’s Manual, v2022.4376

Running Tessent Diagnosis Server
History Database Schema

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

HDB_OPTION
The HDB_OPTION table records the options the server uses for a diagnosis run.
Table 6-10 lists the HDB_OPTION table.

HDB_QUEUE
The HDB_QUEUE represents the state of the internal file queue of the server.
The following table lists the HDB_QUEUE table.

Table 6-9. HDB_MONITORSET Table
Type Attribute Description
monitorset_id INTEGER The primary key of the HDB_MONITORSET

table.
monitor_id INTEGER The primary key of the HDB_MONITOR table

for the monitor.
option_grp_id INTEGER The primary key of the HDB_OPTION table

for the for the monitor.
design_file_id INTEGER The design file ID number.
file_grp_id INTEGER The file group ID number.

Table 6-10. HDB_OPTION Table
Type Attribute Description
option_id INTEGER The primary key of the HDB_OPTION table.
name TEXT The name of the argument specified with the

set_diagnosis_options command.
value TEXT The value for the argument specified with the

set_diagnosis_options command.
option_grd_id INTEGER The option grd ID number

Table 6-11. HDB_QUEUE Table
Type Attribute Description
queue_id INTEGER The primary key of the HDB_QUEUE table.
touched INTEGER Last processing time.
status TEXT Current status of the queue.
diagtime INTEGER The diagnosis time.

Running Tessent Diagnosis Server
History Database Schema

Tessent™ Diagnosis User’s Manual, v2022.4 377

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Explanation of HDB_QUEUE Status Entries
When Tessent Diagnosis server processes files, the tool uniquely inserts this into the table with
one of the following states:

• QUEUED — The file is awaiting processing.

• DIAGNOSING — The file is currently processing.

• DIAGNOSED — The file has been processed.

• ABANDONED — The file is pending as a result of a Tessent Diagnosis server exit.

• ABORTED — The file contains syntax errors.

HDB_SESSION
Each row in the HDB_SESSION table represents a startup of the Tessent Diagnosis server.
Table 6-12 lists the HDB_SESSION table.

monitor_id INTEGER The primary key of the HDB_MONITOR table for the
event.

subdir TEXT The sub directory name.
basename TEXT Name of the failure file.
lot TEXT Lot ID from the failure file.
wafer TEXT Wafer ID from the failure file.
xcoord INTEGER The x coordinate.
ycoord INTEGER The y coordinate.
memory TEXT Memory usage information.

Table 6-12. HDB_SESSION Table
Type Attribute Description
session_id INTEGER The primary key of the HDB_SESSION table.
begin_time INTEGER Server start timestamp.
update_time INTEGER Server update timestamp.
end_time INTEGER Server end session timestamp.
YAversion TEXT Tessent Diagnosis Server software version number.

Table 6-11. HDB_QUEUE Table (cont.)
Type Attribute Description

Tessent™ Diagnosis User’s Manual, v2022.4378

Running Tessent Diagnosis Server
History Database Schema

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

host TEXT The name of the computer the server session is running on.
Example: my_host1:4, localhost:8

pid INTEGER Process ID for the server session.
port INTEGER Port for the server session.

Table 6-12. HDB_SESSION Table (cont.)
Type Attribute Description

Running Tessent Diagnosis Server
Distributed Diagnosis Processing

Tessent™ Diagnosis User’s Manual, v2022.4 379

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Distributed Diagnosis Processing
You can use Load Sharing Function (LSF), Sun Grid Engine (SGE), or custom job schedulers to
facilitate the distribution of the diagnosis processing on multiple host machines. Job schedulers
are used to select host machines for remote processes automatically. You can also specify host
machines for remote processes manually using ssh or rsc.
Specific LSF and SGE options are variable and depend on your site configuration. Consult your
System Administrator for more information.

Note
This documentation refers to SGE, which is a product of Altair.

Setting up LSF or SGE Job Schedulers . 379
Guidelines for Troubleshooting Scheduling Delays . 380
Setting Up a Custom Job Scheduler. 381
Manual Job Scheduling . 383

Setting up LSF or SGE Job Schedulers
You can set up the Tessent Diagnosis server to use either the LSF or SGE job scheduler before
adding any analyzers to your automatic diagnosis configuration.

Prerequisites
• A configured LSF or SGE job scheduler.

• A Tessent Diagnosis license is required for each analyzer you add.

Procedure
1. Invoke Tessent Diagnosis server. For example:

From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -diagserver

where:

• Tessent_Tree_Path is the path to where the Tessent Diagnosis application tree is
installed.

• -diagserver — A required switch that invokes Tessent Diagnosis in server mode.

2. Set the job_options variable to specify command options for Tessent Diagnosis server to
use when submitting a job to the scheduler. For example:

set job_options command_options

Tessent™ Diagnosis User’s Manual, v2022.4380

Running Tessent Diagnosis Server
Guidelines for Troubleshooting Scheduling Delays

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

where:

• command_options — A string value that specifies the submission commands for
either the LSF or SGE job scheduler. Setting the correct value requires knowledge of
the scheduler configuration at your site and the job control submission syntax.

3. Use the add_analyzer command to define the host machines and the number of analyzers
the job scheduler can use with Tessent Diagnosis server. For example:

add_analyzer lsf:4 -monitor designB

where:

• lsf:4 — Specifies the LSF job scheduler and adds four analyzers.

• -monitor designB — Binds all four analyzers with the designB monitored directory.

Results
During Tessent Diagnosis processing, the tool uses the specified job scheduler to job to
facilitate the distribution of the diagnosis processing on multiple host machines,

Guidelines for Troubleshooting Scheduling Delays
When running Tessent Diagnosis Server with multiple analyzers on a heavily-loaded grid (LSF
or SGE), you can encounter a delay in license acquisition and job scheduling. The situation
where only a limited number of licenses are available poses a similar problem.
Tessent Diagnosis Server waits until it has acquired all the required licenses and all required
grid resources before commencing diagnosis. If you use the add_analyzer command to specify
more than one analyzer as in the following example:

add_analyzer generic:10

Then, the Tessent Diagnosis Server must acquire all 10 licenses and CPUs before commencing
diagnosis, which can also lead to a delay in acquisition and job scheduling. By default, the tool
has 10 minutes to complete the acquisition operation before timing out. You can circumvent the
delay in license and resource acquisition by instructing the Tessent Diagnosis Server through
Tcl to incrementally acquire the license and add the analyzer resource.

Figure 6-6 shows a Tessent Diagnosis Server Tcl script that incrementally checks out a license
and adds the analyzer. When the tool successfully adds the analyzer, the diagnosis starts running
immediately.

Figure 6-6. Tcl Script for Adding Analyzers Incrementally

Running Tessent Diagnosis Server
Setting Up a Custom Job Scheduler

Tessent™ Diagnosis User’s Manual, v2022.4 381

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set scheduler_timelimit 2
set max_num_analyzer 10
set loop_i 0
set loop_start_diag -1
while { [check -analyzers] < $max_num_analyzer && $loop_i < 200 &&
 ![check -abort] } {

if { [catch { add_analyzer generic:1 }] != 0} {
puts "Warning: failed to add analyzer at loop [$loop_i] "

}
if { [check -analyzers] == 1 && $loop_start_diag == -1 } {

start_diagnosis
set loop_start_diag $loop_i
puts "Note: start diagnosis after the first analyzer was added at loop

 [$loop_i] "
}
incr loop_i

}
while { [check -queued] > 0 && ![check -abort] && [check -analyzers] > 0
 { }

Note
In your Tcl code, you must ensure that the start_diagnosis command proceeds any looping
constructs for the analyzer, specifically any add_analyzer commands.

Using this looping method, the Tessent Diagnosis Server begins diagnosis as soon as the first
analyzer is acquired. The tool incrementally adds additional analyzers with each iteration
through the loop as the analyzer becomes available.

For example, assume you are using Tessent Diagnosis Server on a the heavily-loaded grid that
is only capable of acquiring licences and resources for 10 analyzers. Using the Tcl code in
Example 6-6, the Tessent Diagnosis Server secures the first analyzer’s license and CPU, and
begins diagnosis immediately with this analyzer.

Subsequently, the tool incrementally adds and begins diagnosis with the other nine analyzers as
licenses and CPUs become available. The Tessent Diagnosis Server keeps trying to acquire the
remaining nine analyzers (for a total of ten analyzers) in the Tcl while loop a total of 200 times.
When a license and resource becomes available, the tool acquires both, and immediately begins
diagnosis with that resource.

Because the tool starts the diagnosis immediately when the first analyzer is available, this Tcl
looping method also works well when you have a limited number of licenses. The tool
continuously adds more analyzers until the limit on available licenses is reached.

Setting Up a Custom Job Scheduler
Use the following procedure to set up Tessent Diagnosis server to use a generic job scheduler
before adding any analyzers to your configuration.

Tessent™ Diagnosis User’s Manual, v2022.4382

Running Tessent Diagnosis Server
Setting Up a Custom Job Scheduler

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Run Tessent Diagnosis server. For example:

From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -diagserver

where:

• Tessent_Tree_Path is the path to where the Tessent Diagnosis application tree is
installed.

• -diagserver — A required switch that invokes Tessent Diagnosis in server mode.

2. Enter information required by the Tessent Diagnosis Server to use a custom job
scheduler (other than SGE and LSF).

a. Specify how to submit a job for the custom job scheduler.

Use the following variable and value pair:

set generic_scheduler "$<root_path>/submit reqmem=%memory %command"

where:

o generic_scheduler

This variable defines the command Tessent Diagnosis Server uses when
submitting a job to the grid.

The value string can contain the following parts:

• $<root_path>/submit

A path you specify to the command script that you want Tessent Diagnosis
Server to use when requesting a remote process from the job scheduler. The
command script contains the submit command specific to the custom job
scheduler

• %memory

A string value that specifies to find a machine with the specified amount of
memory. You can specify memory with the following variations:

• %memoryMB xxxx.xxxMB

• %memoryM xxxx.xxxM

• %memoryGB x.xxxGB

• %memoryG x.xxxG

• %memory x.xxx

• %command

Running Tessent Diagnosis Server
Manual Job Scheduling

Tessent™ Diagnosis User’s Manual, v2022.4 383

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A string value that specifies the location to substitute the Siemens EDA
command script that launches a remote process.

b. Specify how to delete a job previously submitted to the scheduler

Use the following variable and value pair:

set generic_delete "$<root_path>/delete %job"

where:

o generic_delete

This variable defines the command to delete previously submitted scheduler jobs
through Tessent Diagnosis Server.

o $<root_path>/delete

A user-specified command that Tessent Diagnosis Server uses to delete a job
previously submitted on the custom job scheduler when the scheduler is
interrupted by Control-C.

o %job

Tessent Diagnosis server keeps track of the job ID of each successfully
submitted analyzer. The %job is a placeholder that the tool automatically fills in
with the correct job ID of the respective analyzer.

3. Use the add_partitioner command to define that you are using a generic job scheduler
and specify the number of analyzers to use with Tessent Diagnosis server. The tool
automatically adjusts the memory requirements for the partitioner and the other
analyzers by supplying the memory requirements where %memory is specified. For
example:

add_partitioner generic:1

add_analyzer generic:4

Note
A Tessent Diagnosis license is required for each analyzer.

Manual Job Scheduling
In the absence of a job scheduler, you can use the rsh or ssh command to specify which network
machines to host diagnosis processes.

• rsh — The network must allow connection via rsh, and your .rhosts file must allow rsh
access from the master host without specifying a password. The .rhosts file on host
machines must have read permission set for user. Write and execute permission can
optionally be set for user, but must not be set for other and group.

Tessent™ Diagnosis User’s Manual, v2022.4384

Running Tessent Diagnosis Server
Running Tessent Diagnosis Server with a Local Host

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

rsh access is not required for Tessent Diagnosis server to create additional processes on
the master host.

• ssh — The network must allow connection via ssh. To enable use of ssh, enter a Set
command within the tool to set the remote_shell variable to ssh. For example:

set remote_shell ssh

Do this prior to issuing any other Tessent Diagnosis server commands.

Master and remote machines must be correctly specified in the global DNS name server
for reliable network operation, and you need to know either the network name or IP
address of each remote machine you plan to use.

Consult the System Administrator at your site for additional information.

Running Tessent Diagnosis Server with a
Local Host

You can configure the Tessent Diagnosis Server to use a local host as the analyzer. You might
use this option if you have network or grid problems.

Prerequisites
• Ensure that the machine you want to use as the local host has enough virtual memory,

specifically RAM and swap disk. For example, if you have a machine with 32 gigabytes
(GB) of RAM and 80 GB of swap space, and the design needs 45 GB of virtual memory,
then you should add at most two analyzer CPUs on the local host.

Procedure
Declare the local host as follows:

add_analyzer localhost:N

where N is the number of host CPUs on the machine.

Examples
The following dofile example illustrates using a machine with two CPUs:

add_monitor monitor_name Log_fail -result Result_directory

add_design monitor_name design.v.flat

add_pattern monitor_name pat.stil

add_layout monitor_name layout.db

add_analyzer localhost:2 // add two cpus from localhost as analyzers

start_diagnosis

Running Tessent Diagnosis Server
Running Tessent Diagnosis Server in Batch Mode

Tessent™ Diagnosis User’s Manual, v2022.4 385

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Running Tessent Diagnosis Server in Batch
Mode

You can set up and run Tessent Diagnosis server in batch mode using a dofile created with Tcl
scripting features and the Tessent Diagnosis server commands.

Prerequisites
• You have configured Tessent Diagnosis Server as described in “Setting Up the Tessent

Diagnosis Server.”

• As needed, you have configured a job scheduler as described in “Distributed Diagnosis
Processing.”

Procedure
From a Linux/UNIX shell, enter:

Tessent_Tree_Path/bin/tessent -diagserver -dofile my_tcl_dofile.do

where:

• Tessent_Tree_Path is the path to where the Tessent Diagnosis application tree is
installed.

• -diagserver — A required switch that invokes Tessent Diagnosis in server mode.

• my_dofile.do —is the pathname of the dofile to run.

Results
Tessent Diagnosis server invokes and runs the commands listed in the dofile. This is a sample
dofile:

add_monitor design1_fs fail_log_server -results ../diag_rlt_design1
add_design design1_fs netlists/design_fs.v.flat
add_pattern design1_fs pat.wgl
add_monitor design2_tk fail_log_server -results ../diag_rlt_design2
add_design design2_tk netlists/design_tk.v.flat
add_pattern design2_tk pat.wgl
report_monitor
add_analyzer machine1 -monitor design1_fs
add_analyzer machine2 -monitor design1_fs
add_analyzer machine3 -monitor design2_tk
add_analyzer machine4 -monitor design2_tk
watch
report_analyzer -detail
start_diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4386

Running Tessent Diagnosis Server
The Tessent Diagnosis Server Daemon

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The Tessent Diagnosis Server Daemon
You can invoke the Tessent Diagnosis server with a daemon option and a dofile containing
Tessent Diagnosis server commands, allowing the tool to continue running even if you log out.
In daemon mode, the Tessent Diagnosis server operation is identical to the standard batch mode.

Note
When using the server daemon, omit the exit command from your Tessent Diagnosis server
dofile. You specify daemon operations, including exit, through the Tessent Diagnosis server

invocation.

You control the Tessent Diagnosis server daemon using the following switches in conjunction
with the Tessent Diagnosis server command line invocation:

tessent -diagserver options [-daemon [id]]| [-dlist] | [-dstatus id] | [-dexit id] |
[-dterminate id]

• -daemon [id]

An optional switch that invokes the Tessent Diagnosis server in daemon mode. The tool
automatically assigns a process ID. Using the optional id, you can specify a process ID
for the daemon.

• -dlist

An optional switch that lists running daemons, including the id, host, and logfile for
each daemon.

• -dstatus id

An optional switch and integer pair that queries the status of a daemon you identify with
idand displays the status of the monitors and analyzers.

• -dexit id

An optional switch and integer pair that instructs the daemon to exit after the tool
finishes running any diagnosis jobs.

• -dterminate id

An optional switch and integer pair that instructs the daemon to immediately exit
without finishing running any diagnosis jobs.

Running Tessent Diagnosis Server
Server Session Customizations

Tessent™ Diagnosis User’s Manual, v2022.4 387

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Server Session Customizations
Tessent Diagnosis provides many methods for customizing the server session, including setting
time limits for analyzers, using server variables, configuring automatic load balancing, and
using time-based licensing.
Analyzer Time Limits . 387
Tessent Diagnosis Server Variables . 387
Automatic Load Balancing . 391
Time-Based Licensing . 391
Reporting Server Status with Email . 392

Analyzer Time Limits
By default, analyzers run for a unlimited amount of time. You can specify a different time limit
with the analyzer_timelimit variable. This variable must be set prior to adding monitors.
For example:

set analyzer_timelimit 100

where 100 is an integer that specifies the analyzer time limit in seconds.

If you set analyzer_timelimit to 1, and you declare this variable before the add_monitor
command, then the tool applies this global timelimit to all analyzers. The analyzer aborts if this
time limit is reached.

Tessent Diagnosis Server Variables
Several variables available within Tessent Diagnosis server enable you to customize the Tessent
Diagnosis server.
From the Tessent Diagnosis server command prompt, enter:

set_variable variable_name value

where:

• variable_name — The name of the variable.

• value — The new value to set it to.

Use the report_variable command to display the current settings for all the variables displays.

Table 6-13 lists the Tessent Diagnosis server variables.

Tessent™ Diagnosis User’s Manual, v2022.4388

Running Tessent Diagnosis Server
Tessent Diagnosis Server Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 6-13. Tessent Diagnosis Server Variables
Variable Name Data Type Default Value Description
analyzer_timelimit integer 100000 Specifies the maximum time in seconds that

analyzers spend on one diagnosis. For more
information, see the “Analyzer Time
Limits.”
Using the set_diagnosis_options
-Time_limit switch and argument overrides
this variable.

analyzer_restart Boolean false Turns on and off restarting idle analyzers.
Tessent Diagnosis server enables a total of
three restarts per analyzer.

Note: If you specify
“set / set_variable analyzer_restart

on”,
the tool reports the following message:
> // command: set analyzer_restart true

> ... analyzer restart engaged.

> // Warning: analyzer_restart is

deprecated and will be removed in a future

release.

auto_load_balancing Boolean true Turns on and off the automatic load
balancing of analyzers. For more
information, see the “Automatic Load
Balancing” section in this document.

clock_restriction string default Turns on and off ATPG clock restriction
mode. Values are on or off.
The clock restriction setting in the flat
model of the design is the default value for
this variable.

contention_check string default Turns on and off contention checking
during pattern verification. Values are on or
off.
The contention check setting in the flat
model of the design is the default value for
this variable.
For more information, see the
“set_contention_check” section in the
Tessent Shell Reference Manual.

diagnostic_CSV Boolean false Turns on and off the CSV (comma
separated values) formatting of the
diagnostic report.

Running Tessent Diagnosis Server
Tessent Diagnosis Server Variables

Tessent™ Diagnosis User’s Manual, v2022.4 389

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

diagnostic_reports Boolean true Turns on and off the generation of the
diagnostic report.

dp_work_dir string false Specifies a working directory for dynamic
partitioning-based diagnosis. Refer to the
add_analyzer -dp_work_dir option for more
information.

faillog_sort_criteria string smallest_file Specifies the server’s re-queuing behavior
for processing failure files. Choose from the
following:

• smallest_file — A literal that specifies
re-queuing the failure files with the
smallest size first. This is the default.

• largest_file — A literal that specifies re-
queuing the failure files with the largest
size first.

• oldest_file — A literal that specifies re-
queuing the failure files with the oldest
timestamp first.

• newest_file — A literal that specifies re-
queuing the failure files with newest
timestamp first.

generic_delete string Specifies the command used to delete a job
submitted via the generic_scheduler
variable. For more information, see the
“Setting Up a Custom Job Scheduler”
section in this chapter.

generic_scheduler string Specifies the command script to use to
request a remote process from a custom job
scheduler. Formore information, see the
“Setting Up a Custom Job Scheduler”
section in this chapter.

gzip_path string Specifies the path to a gzip design. When
set, the gzip_path is transmitted to the
analyzers upon their launch.
You must have a valid network path to the
gzip design for each host that the
add_analyzer command selects, otherwise
the server produces an error.

job_memreq integer 3 Specifies the minimum memory in GB
required on machines LSF or SGE
scheduled jobs.

Table 6-13. Tessent Diagnosis Server Variables (cont.)
Variable Name Data Type Default Value Description

Tessent™ Diagnosis User’s Manual, v2022.4390

Running Tessent Diagnosis Server
Tessent Diagnosis Server Variables

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

job_options string Specifies command options to append to the
job submission command for the LSF or
SGE job scheduler. Setting a correct value
for thestring requires a knowledge of the
scheduler configuration at your site and the
job control submission syntax. For more
information, see the “Setting up LSF or
SGE Job Schedulers” section in this
chapter.

license_awaken_
timelimit

integer
(seconds)

10 To awaken a hibernating analyzer, the
server attempts to reacquire a license for the
analyzer. This variables specifies the time
limit for which the server waits for the
license to be acquired before trying again.

memory_monitoring Boolean false Checks the analyzer’s memory for each
diagnosis. If set to true, then the tool adds
process size and free memory information
to the HDB_QUEUE table of the HDB.

monitor_filer Boolean true Specifies the processed failure file
management behavior.

monitor_filter string Specifies a string that Tessent Diagnosis
server uses to filter out the failure files to
process. Failure file names that contain the
specified string are processed while all
others are ignored. Valid POSIX Extended
Regular Expression are supported. For
example:
set monitor_filter .*wafer13.*
matches any filename that contains the
string “wafer13”.

remote_shell string rsh Specifies which shell command is used to
manually set up hosts for job scheduling.
Options include: none, rsh, and ssh.

scheduler_timelimit integer 10 Specifies the maximum time in minutes the
job scheduler spends to schedule a remote
machine.

Table 6-13. Tessent Diagnosis Server Variables (cont.)
Variable Name Data Type Default Value Description

Running Tessent Diagnosis Server
Automatic Load Balancing

Tessent™ Diagnosis User’s Manual, v2022.4 391

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Automatic Load Balancing
Automatic load balancing is a process performed by Tessent Diagnosis server to facilitate the
most efficient use of analyzers.
By default, automatic load balancing is enabled and works as follows:

• When new analyzers are added to a Tessent Diagnosis server configuration, they are
assigned to monitored directories based on need.

• When all the failure files in a monitored directory are diagnosed, the assigned analyzers
become idle. The idle analyzers are then reassigned to other directories based on need.

• When analyzers that are initially bound to a specific monitored directory via the
add_analyzer command become idle, they are reassigned to other directories based on
need. The initial binding is dissolved once the analyzer is reassigned to another
monitored directory.

Set the auto_load_balancing variable to false to turn off the automatic load balancing feature.
For example:

set auto_load_balancing false

To turn the auto balancing feature back on, set the auto_load_balancing variable to true.

Time-Based Licensing
Using time-based license management, you can configure the Tessent Diagnosis server to make
analyzer licenses available at different times of the day.

split_capture string default Determines whether ATPG split capture is
used.
The split capture setting in the flat model of
the design is the default value for this
variable.

verify_design_layout Boolean true Determines whether the tool automatically
calculates and validates the MD5 signature
information all at once as part of the server
setup. Specifying false can improve up-
front setup/validation performance, with the
trade off that MD5 verification occurs later
within each analyzer. Any errors are
reported back to the server.

Table 6-13. Tessent Diagnosis Server Variables (cont.)
Variable Name Data Type Default Value Description

Tessent™ Diagnosis User’s Manual, v2022.4392

Running Tessent Diagnosis Server
Reporting Server Status with Email

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 6-14 lists the commands you use for activating and configuring time-based license
management in the Tessent Diagnosis server. You enter these commands at the Tessent
Diagnosis server prompt or in a dofile.

Example 1
The following example schedules five licenses at 5:30 p.m.:

schedule_licenses 5 -at 5:30pm

Example 2
The following example schedules five licenses at 12:00 a.m. every day:

schedule_licenses 5 -at 12:00am -daily

Reporting Server Status with Email
Using the Tessent Diagnosis server’s email facility, you can configure the Tessent Diagnosis
server to automatically send email to subscribed recipients at different times of the day.

Procedure
1. Subscribe recipients for the server email using the email command. The following

example subscribes recipient1 and recipient2:

email -subscribe recipient1@siemens.com recipient2@siemens.com

2. Use the following commands to activate and configure the email facility in the Tessent
Diagnosis server. You enter these commands at the Tessent Diagnosis server prompt or
in a dofile.

Table 6-14. Time-Based Licensing Commands
Command Description
delete_schedule Removes previously-scheduled time-based analyzer

licensing events.
report_schedule Lists currently scheduled time-based license management

events.
schedule_licenses Specifies scheduling setup for time-based analyzer license

management.

Table 6-15. Email Facility Commands
Command Description
delete_schedule Removes previously-scheduled email events.
email Subscribes and unsubscribes email recipients.

Running Tessent Diagnosis Server
Reporting Server Status with Email

Tessent™ Diagnosis User’s Manual, v2022.4 393

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
Subscribers automatically receive email notifications.

Examples
The following example shows Tcl message syntax and sends email to the subscribed recipients
every hour:

schedule_email { query status } -every 1:00

The following example sends email to the subscribed recipients at 5:00 p.m.:

schedule_email “It’s 5 o’clock in the afternoon” -at 5:00pm

The following example sends email at 12:00 a.m. every day:

schedule_email “Midnight Query” -at 12:00am -daily

The following series of commands lists the currently-scheduled email and removes the first
event:

report_schedule

// command: report_schedule

1email

report_schedule Lists currently-scheduled email events.
schedule_email Specifies scheduling setup for the server’s email facility.

Table 6-15. Email Facility Commands (cont.)
Command Description

Tessent™ Diagnosis User’s Manual, v2022.4394

Running Tessent Diagnosis Server
Command Reference

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Command Reference
Tessent Diagnosis supports many dedicated commands that you can use to set the server up to
automatically run diagnosis on failure files as they are placed into pre-specified directories.
These commands use the Tcl embedded scripting language and can be used in conjunction with
all Tcl scripting features—see “Running Tessent Diagnosis Server in Batch Mode.”

add_analyzer . 396
add_design . 400
add_layout . 401
add_monitor . 403
add_pattern . 405
add_partitioner . 406
add_reporting_format . 410
add_reporting_xmap . 411
add_startup_cache . 412
analyze_resource_requirements . 413
check . 415
cleanse_history . 417
clear_monitor . 418
clear_status . 419
delete_analyzer. 420
delete_design. 421
delete_layout. 422
delete_monitor . 423
delete_partitioner. 424
delete_pattern. 425
delete_reporting_format . 426
delete_reporting_xmap . 427
delete_schedule. 428
dofile . 429
email . 430
exit . 431
help . 432
history . 433
query_history . 434

Running Tessent Diagnosis Server
Command Reference

Tessent™ Diagnosis User’s Manual, v2022.4 395

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_analyzer . 436
report_history. 437
report_licenses . 439
report_log . 440
report_monitor. 441
report_network . 442
report_options . 443
report_partitioner . 444
report_reporting_format. 445
report_reporting_xmap. 446
report_schedule . 447
report_status. 448
report_variable. 449
resume_diagnosis . 450
schedule_email . 451
schedule_licenses . 452
set_diagnosis_options. 453
set_diagnosis_resource_configuration . 465
set_monitor_options. 467
start_diagnosis . 469
suspend_diagnosis . 470
version . 471
watch . 472

Tessent™ Diagnosis User’s Manual, v2022.4396

Running Tessent Diagnosis Server
add_analyzer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_analyzer
Scope: Server mode
Sets up one or more analyzers or a job scheduler for automatic diagnosis.

Usage
add_analyzer {host_name... |{sge | lsf | generic | localhost }} [:processors]

[-monitor monitor_id | -bind] [-priority priority]
[-verbose] [-hibernate minutes]

Arguments
• host_name

Required, repeatable string that specifies the name of a computer on which to run the
analyzer. You must have rsh access to specify a host. The string localhost works as a
substitute for local system host name.

• sge | lsf | generic | localhost
Required literal that specifies which job scheduler to use. Depending on the job scheduler,
variables must be set up prior to issuing this command. For more information, see
“Distributed Diagnosis Processing”. Job scheduler options include:

sge — Sun Grid Engine (SGE) job scheduler

Note
This documentation refers to SGE, which is a product of Altair.

lsf — Load Sharing Function (LSF) job scheduler
generic — Customized job scheduler interface as described in “Setting Up a Custom Job

Scheduler” on page 381
localhost — A local host job scheduler

Analyzer restart capability is not supported for analyzers added via custom scheduler
interfaces. See “Tessent Diagnosis Server Variables” analyzer_restart variable for more
information.

• :processors
Optional integer that specifies the number of analyzers to add. When specified, this
argument must be appended (no spaces) to the hostname or the job scheduler argument. For
example, the LSF job scheduler and two analyzers would be: lsf:2

• -monitor monitor_id
Optional switch and string that specifies a monitor to bind the analyzer with. The
monitor_id is the unique name for the monitored directory, specified with the add_monitor
command.

Running Tessent Diagnosis Server
add_analyzer

Tessent™ Diagnosis User’s Manual, v2022.4 397

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The monitor_id can also be the number representing the order that a monitored directory
was defined. For example: “1” would identify the first monitored directory defined. Use the
report_monitor command to determine the order number for a monitored directory.
This option is not applicable to dynamic partitioning-based diagnosis, which only uses one
monitor.

• -bind
Optional switch that specifies to bind the analyzer to the monitor. For example, the analyzer
and monitor may not be bound if you added the analyzers before the monitor or after
specifying the start_diagnosis command.

• -priority priority
Optional switch and integer pair that specifies the switching wait time (in seconds) that the
analyzer remains in an idle state before it migrates to a different monitor that has work
available in it. The higher the priority number, the longer the switching time to a new
monitor. The default is 1.
This option is not applicable to dynamic partitioning-based diagnosis, which only uses one
monitor.

• -verbose
Optional switch that reports the grid scheduler submission command with all the switches
and values that have been determined by the tool.

• -hibernate minutes
Optional switch and string that specifies the number of minutes before idle analyzers enter
hibernation mode and relinquish their licenses. The number must be greater than one. Using
different add_analyzer commands, you can specify a mixture of analyzers with no
hibernation or different hibernation time limits. A hibernating analyzer attempts license
acquisition under control of the license_awaken_timelimit variable as described in “Tessent
Diagnosis Server Variables.”

Description
The add_analyzer command starts the Tessent Diagnosis server and runs the analyzer or
analyzers. The analyzers read in the design and pattern data associated with the specified
monitor.

If multiple analyzers are associated with a monitor, the first analyzer to finish reading the design
verifies the pattern set. If the pattern verification succeeds, all analyzers are ready to start
diagnosing the failure files.

Each analyzer requires a Tessent Diagnosis license that it uses even when the analyzer is idling.
To free up licenses while maintaining an active server session, specify the -hibernate switch.
When an analyzer enters hibernation mode, it frees up a license while remaining ready to
process failure files as they enter its monitor’s queue. When a failure file becomes available, the

Tessent™ Diagnosis User’s Manual, v2022.4398

Running Tessent Diagnosis Server
add_analyzer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

hibernating analyzer attempts to reacquire a license. When it reacquires the license, the analyzer
processes the failure file.

See also “Distributed Diagnosis Processing,” “Running Tessent Diagnosis Server with a Local
Host,” and “Running Tessent Diagnosis Server in Batch Mode.”

Examples
The following example sets up three analyzers to run on the localhost before adding
partitioners.

add_analyzer localhost:3

// command: add_analyzer localhost:3
// Error: No partitioners were added. Please add partitioners first using
“add_partitioner” command.
// command: add_partitioner localhost:1
...
// command: add_analyzer localhost:2
...
// command: report_partitioner
---< partitioners >--
[1] achilles02.wv.mentorg.com #1 flogs Partitioner ... idle (1 secs)
// command: report_analyzer
---< analyzers >--
(1) achilles02.wv.mentorg.com #1 flogs Analyzer ... idle (1 secs)
(2) achilles02.wv.mentorg.com #1 flogs Analyzer ... idle (0 secs)

The following example sets up four analyzers to run on host1 and binds them to the monitor1
monitored directory.

add_analyzer host1:4 -monitor monitor1

The following example sets up eight analyzers to run on the localhost and binds them to the
monitor1 monitored directory.

add_analyzer localhost:8 -monitor monitor1

The following example sets up four analyzers to use the LSF job scheduler and binds them to
the design1 monitored directory:

add_analyzer lsf:4 -monitor design1

The following example specifies the submit script command for submitting jobs to the custom
job scheduler:

set generic_scheduler "$SGE_ROOT/bin/lx24-x86/submit reqmem=%memory %command"

You must use the “%command” string inside the generic_scheduler string to specify the
location to substitute the Siemens EDA command script that launches a remote process. The
%memory string provides the memory requirements.

For a detailed example refer to “Setting Up a Custom Job Scheduler” on page 381.

Running Tessent Diagnosis Server
add_analyzer

Tessent™ Diagnosis User’s Manual, v2022.4 399

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example enables you to incrementally add the hibernation mode to an analyzer
that is already running. It sets analyzer number 5 to hibernate after two minutes of idling.

add_analyzer 5 -hibernate 2

Tessent™ Diagnosis User’s Manual, v2022.4400

Running Tessent Diagnosis Server
add_design

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_design
Scope: Server mode
Specifies the flat design netlist used to diagnose failure files in a specified monitored directory.

Usage
add_design monitor_id flat_design [-password]

Arguments
• monitor_id

Required string that specifies the monitored directory. The monitor_id is the unique name
for the monitored directory, specified with the add_monitor command.
The monitor_id can also be the number representing the order that a monitored directory
was defined. For example: “1” would identify the first monitored directory defined. Use the
report_monitor command to determine the order number for a monitored directory.

• flat_design
Required string that specifies the pathname for the design netlist.

• -password
Optional switch that enables you to enter a password and access password protected
designs. The entered password must match the password saved when the flat netlist was
saved.

Examples
The following example sets up the monitored directory monitor1 to use the design netlist
flat_design1 for diagnosing failure files.

add_design monitor1 flat_design1

Related Topics
delete_design

Running Tessent Diagnosis Server
add_layout

Tessent™ Diagnosis User’s Manual, v2022.4 401

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_layout
Scope: Server mode
Opens an existing Tessent Diagnosis tool-compatible LDB.

Usage
Layout-Aware Diagnosis Flow

add_layout monitor -DFT [-Copy local_disk_directory] [-chip_design_name
top_design_name] layout_database_name

Arguments
• monitor

A required string specifying the name of the monitor.

Layout-Aware Diagnosis Flow
• -DFT

A required switch that specifies the layout-aware diagnosis flow.
• -Copy local_disk_directory

An optional switch and string pair that specifies the local directory location
(local_disk_directory) to store a cached copy of the LDB. Using this method results in
improved performance by avoiding disk access delay over a slow network.
You must prefix the local_disk_directory path with /tmp/, for example:

add_layout monitorA -DFT -copy /tmp/user/ my_layout_database.ldb

The LDB must be accessible by all analyzers associated with the given monitor, and the
local disk directory location for each host must be accessible by all analyzers landed on that
machine. When set, the Tessent Diagnosis Server instructs an analyzer to copy the LDB to
the local disk directory of the machine and performs layout-aware diagnosis on the local
copy of the LDB.
If available, all the analyzers associated with a specific monitor on the same host use the
same local copy of the LDB, specifically the LDB is copied to the local directory just once
per host. When done, Tessent Diagnosis Server instructs the last analyzer on a host to delete
the local copy of the LDB before the analyzer is deleted.
If the copy operation for the LDB fails, Tessent Diagnosis Server issues a warning and uses
the source LDB on the shared file server for diagnosis.
For implementation strategies and examples, see “Running Layout-Aware Diagnosis on a
Local Layout Database.”

• -chip_design_name top_design_name
An optional switch that specifies a top-level design whose core instance information is
included in the specified chip-mapped core LDB. This option only pertains to hierarchical

Tessent™ Diagnosis User’s Manual, v2022.4402

Running Tessent Diagnosis Server
add_layout

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

layout-aware diagnosis and is required when you have a core that is instantiated in more
than one design.

• layout_database_name
A required string that specifies the name of an existing LDB directory created with the
create_layout command. For hierarchical layout-aware diagnosis, the LDB must be a chip-
mapped core LDB.

Description

Layout-Aware Diagnosis Flow
Opens an existing Tessent Diagnosis tool-compatible LDB.

You must create this layout using the Tessent Diagnosis scan diagnosis tool—see the
create_layout command—see “Layout-Aware Diagnosis Flow.”

In hierarchical layout-aware diagnosis, you must use the -chip_design_name option when you
have a core that is instantiated in more than one design. See “Diagnosis for Hierarchical
Designs” for more information.

Layout-Aware Diagnosis Flow with DFM
Opens an existing Tessent Diagnosis tool-compatible LDB and if this database contains
imported DFM information, the layout-aware diagnosis results are annotated with DFM hit
results.

For more information, see “Diagnosis for Design for Manufacturability Analysis.”

Related Topics
delete_layout

Running Tessent Diagnosis Server
add_monitor

Tessent™ Diagnosis User’s Manual, v2022.4 403

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_monitor
Scope: Server mode
Prerequisites: Specified directories must exist.
Sets up a monitored directory.

Usage
add_monitor monitor monitored_directory [-Results results_directory]

Arguments
• monitor

Required string that specifies a unique name for the monitored directory. monitor is used as
shorthand to reference the monitored directory and can be used by subsequent commands.

Note
You cannot prefix monitor with a number (for example, 123monitor).

• monitored_directory
Required string that specifies the pathname to an existing directory for Tessent Diagnosis
server to monitor. You can specify a relative or absolute pathname.

Note
Ensure that you place only fail logs into the monitored directory. After processing,
the tool moves all files into their respective disposition directories. The monitor

operates recursively so it also processes files in subdirectories.

• -Results results_directory
Optional switch and string that specifies the pathname to a directory where you want the
diagnosis results placed. You can specify a relative or absolute pathname. If the specified
directory does not exist, it is created.
By default, Tessent Diagnosis server places the diagnosis results in a directory named
monitored_directory.ya at the same pathname as the associated monitored directory.

Description
The add_monitor command specifies which directories to monitor for incoming failure files.
Once failure files are detected, Tessent Diagnosis server automatically runs diagnosis on them.
Failure files that exist in the specified directory are processed immediately. If sub-directories
exist under monitored_directory, Tessent Diagnosis Server runs diagnosis on the failure files in
sub-directories using the same diagnosis collateral as the parent monitored_directory. The
results directory structure mirrors the directory structure of the monitored_directory.

Tessent™ Diagnosis User’s Manual, v2022.4404

Running Tessent Diagnosis Server
add_monitor

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Examples
The following example defines /user/diagnosis/monitor1 as the monitored directory, names the
monitored directory, monitor1, and specifies a directory, results1, for the diagnosis results.

add_monitor monitor1 /user/disgnosis/monitor1 -results results1

Related Topics
delete_monitor
report_monitor

Running Tessent Diagnosis Server
add_pattern

Tessent™ Diagnosis User’s Manual, v2022.4 405

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_pattern
Scope: Server mode
Specifies the pattern files used for the diagnosis of failure files in a specified monitored
directory.

Usage
add_pattern {monitor_id {pattern ...}} [-NOPadding] [-mask [maskfile]]

Arguments
• monitor_id

Required string that specifies the monitored directory with which to bind the test patterns.
The monitor_id is a unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

• pattern
Required, repeatable string that specifies the pathname for test pattern files to bind with the
specified monitor. Multiple files are appended together and associated with the specified
monitor and optional maskfile. If you are using multiple patterns with multiple test suites,
then see “Examples” under “NO TITLE.”

• -NOPadding
An optional switch specifying that the source test pattern set contains ASCII patterns that
are not padded for the scan load and unload data.

• -mask maskfile
Optional switch and string pair that specifies a maskfile for the specified test pattern file.

Examples
The following example associates the pattern1 test pattern file and the pattern1maskfile to the
monitor1 directory for the automatic diagnosis.

add_pattern monitor1 /user/disgnosis/pattern1 -mask /user/disgnosis/pattern1maskfile

Tessent™ Diagnosis User’s Manual, v2022.4406

Running Tessent Diagnosis Server
add_partitioner

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_partitioner
Scope: Server mode
Sets up one or more partitioners or a job scheduler for automatic diagnosis.

Usage
add_partitioner {host_name... |{sge | lsf | generic | localhost}} [:processors]

[-monitor monitor_id | -bind] [-priority priority]
[-dp_work_dir directory_path] [-verbose] [-hibernate minutes]

Arguments
• host_name

Required, repeatable string that specifies the name of a computer on which to run the
partitioner. You must have rsh access to specify a host. The string localhost works as a
substitute for local system host name.

• sge | lsf | generic | localhost
Required literal that specifies which job scheduler to use. Depending on the job scheduler,
variables must be set up prior to issuing this command. For more information, see
“Distributed Diagnosis Processing”. Job scheduler options include:

sge — Sun Grid Engine (SGE) job scheduler

Note
This documentation refers to SGE, which is a product of Altair.

lsf — Load Sharing Function (LSF) job scheduler
generic — Customized job scheduler interface as described in “Setting Up a Custom Job

Scheduler” on page 381
localhost — A local host job scheduler

• :processors
Optional integer that specifies the number of partitioners to add. When specified, this
argument must be appended (no spaces) to the hostname or the job scheduler argument. For
example, the LSF job scheduler and two partitioners would be: lsf:2

• -monitor monitor_id
Optional switch and string that specifies a monitor to bind the partitioner with. The
monitor_id is the unique name for the monitored directory, specified with the add_monitor
command.
The monitor_id can also be the number representing the order that a monitored directory
was defined. For example: “1” would identify the first monitored directory defined. Use the
report_monitor command to determine the order number for a monitored directory.

Running Tessent Diagnosis Server
add_partitioner

Tessent™ Diagnosis User’s Manual, v2022.4 407

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

This option is not applicable to dynamic partitioning-based diagnosis, which only uses one
monitor.

• -bind
Optional switch that specifies to bind the partitioner to the monitor. For example, the
partitioner and monitor may not be bound if you added the partitioner before the monitor or
after specifying the start_diagnosis command.

• -priority priority
Optional switch and integer pair that specifies the switching wait time (in seconds) that the
partitioner remains in an idle state before it migrates to a different monitor that has work
available in it. The higher the priority number, the longer the switching time to a new
monitor. The default is 1.
This option is not applicable to dynamic partitioning-based diagnosis, which only uses one
monitor.

• -dp_work_dir directory_path
Optional switch and string pair that assigns an alternative location for partitioned files. This
option only pertains to dynamic partitioning-based diagnosis.
The dynamic partitioners produce partitioned flat models in files located in the monitor’s
failure file directory. Because partitioning proceeds at a faster rate than diagnosis, the
partitioned files accumulate until they are used. This can cause file storage issues. When you
specify this option, the partitioners store the files in the specified work directory, and the
partitioners read the files stored inside the work directory. Tessent Diagnosis server deletes
the files from the work directory as they are processed.
You can also specify the working directory with the dp_work_dir variable.

Note
For dynamic-partitioning diagnosis flow, define the partitioners prior to defining the
analyzers.

• -verbose
Optional switch that specifies to report detailed information for each partitioner currently
running.

• -hibernate minutes
Optional switch and string that specifies the number of minutes before idle partitioners enter
hibernation mode and relinquish their licenses. The number must be greater than one. Using
different add_partitioner commands, you can specify a mixture of partitioners with no
hibernation or different hibernation time limits. A hibernating partitioners attempts license
acquisition under control of the license_awaken_timelimit variable as described in “Tessent
Diagnosis Server Variables.”

Tessent™ Diagnosis User’s Manual, v2022.4408

Running Tessent Diagnosis Server
add_partitioner

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Description
The add_partitioners command starts the Tessent Diagnosis server and invokes the partitioner
or partitioners. Then the partitioners read in the design and pattern data associated with the
specified monitor.

If multiple partitioners are associated with a monitor, the first partitioner to finish reading the
design verifies the pattern set. If the pattern verification succeeds, all partitioners are ready to
start diagnosing the failure files.

Each partitioner requires a Tessent Diagnosis license that it uses even when the partitioner is
idling. To free up licenses while maintaining an active server session, specify the -hibernate
switch. When a partitioner enters hibernation mode, it frees up a license while remaining ready
to process failure files as they enter its monitor’s queue. When a failure file becomes available,
the hibernating partitioner attempts to reacquire a license. When it reacquires the license, the
partitioner processes the failure file.

See also “Distributed Diagnosis Processing,” “Running Tessent Diagnosis Server with a Local
Host,” and “Running Tessent Diagnosis Server in Batch Mode.”

Examples
The following example sets up three analyzers to run on the localhost before adding
partitioners.

add_analyzer localhost:3

// command: add_analyzer localhost:3
// Error: No partitioners were added. Please add partitioners first using
“add_partitioner” command.
// command: add_partitioner localhost:1
...
// command: add_analyzer localhost:2
...
// command: report_partitioner
---< partitioners >--
[1] achilles02.wv.mentorg.com #1 flogs Partitioner ... idle (1 secs)
// command: report_analyzer
---< analyzers >--
(1) achilles02.wv.mentorg.com #1 flogs Analyzer ... idle (1 secs)
(2) achilles02.wv.mentorg.com #1 flogs Analyzer ... idle (0 secs)

The following example sets up four partitioners to run on host1 and binds them to the monitor1
monitored directory.

add_partitioner host1:4 -monitor monitor1

The following example sets up eight partitioners to run on the localhost and binds them to the
monitor1 monitored directory.

add_partitioner localhost:8 -monitor monitor1

Running Tessent Diagnosis Server
add_partitioner

Tessent™ Diagnosis User’s Manual, v2022.4 409

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following example sets up four partitioners to use the LSF job scheduler and binds them to
the design1 monitored directory:

add_partitioner lsf:4 -monitor design1

The following example specifies the submit script command for submitting jobs to the custom
job scheduler:

set generic_scheduler "$SGE_ROOT/bin/lx24-x86/submit reqmem=%memory %command"

You must use the “%command” string inside the generic_scheduler string to specify the
location to substitute the Siemens EDA command script that launches a remote process. The
%memory string provides the memory requirements.

For a detailed example see “Setting Up a Custom Job Scheduler” on page 381.

The following example enables you to incrementally add the hibernation mode to a partitioner
that is already running. It sets partitioner number 5 to hibernate after two minutes of idling.

add_partitioner 5 -hibernate 2

Tessent™ Diagnosis User’s Manual, v2022.4410

Running Tessent Diagnosis Server
add_reporting_format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_reporting_format
Scope: Server mode
Enables the writing of diagnosis reports for a specified monitor.

Usage
add_reporting_format [monitor1 monitor2... monitorn] [-ENCoded] [-TEXT] [-CSV]

[-LAYout_marker]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have currently defined.

• -ENCoded
An optional switch used to generate encoded diagnosis reports. The tool encodes a suspect’s
pin pathname, net name, and cell name in the diagnosis output file.

• -TEXT
A switch specifying the ASCII text format. This is the default format.

• -CSV
A switch specifying the comma separated value (CSV) format.

• -LAYout_marker
A switch specifying the layout coordinate format. If you use this switch, you must have
loaded the layout using the add_layout command.

Description
This command also replaces the global diagnostic_CSV variable.

Related Topics
delete_reporting_format
report_reporting_format

Running Tessent Diagnosis Server
add_reporting_xmap

Tessent™ Diagnosis User’s Manual, v2022.4 411

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_reporting_xmap
Scope: Server mode
Enables the writing of SPICE-mapped nets and Verilog module hierarchy in the diagnosis
reports for a specified monitor.

Usage
add_reporting_xmap [monitor1 monitor2... monitorn] [{-v2lvs | -cell_hierarchy}]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have currently defined.

• -v2lvs | -cell_hierarchy
A required switch specifying the data format. You must specify at least one of the following
options:

o -v2lvs — Specifies outputting SPICE-mapped nets.

o -cell_hierarchy — Specifies outputting Verilog module hierarchy.

You can specify any combination of these switches. For example, the following syntax
creates both the SPICE-mapped nets and the Verilog module hierarchy in the diagnosis
report:

add_reporting_xmap monitor1 -v2lvs -cell_hierarchy

Related Topics
delete_reporting_xmap
report_reporting_xmap

Tessent™ Diagnosis User’s Manual, v2022.4412

Running Tessent Diagnosis Server
add_startup_cache

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_startup_cache
Scope: Server mode
Loads an existing Diagnosis Startup Cache you created with the Tessent Diagnosis scan
diagnosis point tool.

Usage
add_startup_cache monitor_id diagnosis_startup_cache_name

Arguments
• monitor_id

A required string that specifies the monitored directory with which to bind the Diagnosis
Startup Cache.
The monitor_id is a unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example, “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

• diagnosis_startup_cache_name
A required string that specifies the name of an existing Diagnosis Startup Cache.

Description
See “Diagnosis Startup Cache” for more information.

Running Tessent Diagnosis Server
analyze_resource_requirements

Tessent™ Diagnosis User’s Manual, v2022.4 413

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

analyze_resource_requirements
Scope: Server mode
Analyzes requirements for all modes and displays them.

Usage
analyze_resource_requirements [-memory memory] [-job_limit job_limit]

Arguments
• -memory memory

An optional switch and integer that specifies the memory in GB available for memory
mode.

• -job_limit job_limit
An optional switch and integer that specifies the maximum number of jobs that can be run.
Each partitioner and analyzer is considered a job. Therefore, for one partitioner and one
analyzer, the job requirement is two jobs. Use this switch to specify the license limits for the
dynamic partition run..

Description
The analyze_resource_requirements command analyzes the requirements for all modes and
displays the number of partitioners and the maximal number of DP-analyzers.

Examples
This example shows the output of analyze_resource_requirements for a population of 10 failure
fails.

Tessent™ Diagnosis User’s Manual, v2022.4414

Running Tessent Diagnosis Server
analyze_resource_requirements

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

/// Example1

// command: analyze_resource_requirements

// Note: ... Analyzing resource requirements

// Note: Since memory target wasn't specified automated target of 9GB will be used.

... Monitor monA initializing 10 failure files.

// ----------------------- -----------------------

// Estimated memory requirement for each resource

// ----------------------- -----------------------

// Partitioner 3

// Analyzer 2

// ----------------------- -----------------------

// Note: Analyzer resource estimate assumes partition size is 20% of original design. Memory

requirement for analyzer is automatically adjusted for partition size before job scheduling.

// Note: Total number of failure files to be diagnosed: 10

// Note: Upto 3 DP-analyzers will be used based on memory limit.

-------------------- ---------- ---------- ---------------- ---------------- -------- -

// Maximal diagnosis # of Total partitioner # of analyzers Total analyzers Total # of

// load per partitioners memory range memory memory jobs

// partitioner range (GB)

// Min Max Min Max Min Max Min Max Min Max

// ---/

/ balanced 1 3 1 10 2 20 5 23 2 11

// memory 1 3 1 3 2 6 5 9 2 4

// runtime 1 3 1 10 2 20 5 23 2 11

// -------------------------------------- -------- --------- ----------------------

Running Tessent Diagnosis Server
check

Tessent™ Diagnosis User’s Manual, v2022.4 415

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

check
Scope: Server mode
Used in Tcl script to query the active diagnosis session for a condition.

Usage
check { -Diagnosed | -Queued | -Total | -Errors | -ANalyzers | -Preanalyzed | |

-DUplicates | -ABort | -PArtitioned | -partitioners | -processors }

Arguments
• -Diagnosed

Required switch that queries the active server session for the number of completed
diagnoses.

• -Queued
Required switch that queries the active server session for the number of queued diagnoses.

• -Total
Required switch that queries the active server session for the total number of diagnoses,
including completed and queued.

• -Errors
Required switch that queries the active server session for the number of diagnosis errors
returned.

• -ANalyzers
Required switch that returns the number of active dynamic analyzers (DP mode) or total
analyzers.

• -Preanalyzed
Required switch that queries the active server session for the number of preanalyzed failure
files.

• -DUplicates
Required switch that queries the active server session for the number of duplicated failure
files containing identical tracking signatures (for example, lot_id or wafer_id).

• -ABort
Required switch that queries the active diagnosis session for a control-C.

• -PArtitioned
Required switch that queries the active server session for the number of fail logs for which
partitions have been created.

• -partitioners
Required switch that returns the number of active dynamic partitioners.

Tessent™ Diagnosis User’s Manual, v2022.4416

Running Tessent Diagnosis Server
check

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -processors
Required switch that returns the total number of active processors in either mode.

Examples
The following example shows how to use the check command to abort the Tessent Diagnosis
server based on the number of diagnosis jobs in the job queue.

while { [check –queued] > 0 && ![check -abort] } { # wait }

Running Tessent Diagnosis Server
cleanse_history

Tessent™ Diagnosis User’s Manual, v2022.4 417

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

cleanse_history
Scope: Server mode
Removes or lists the specified rows from the HDB tables.

Usage
cleanse_history [-AbandonedFiles] | [-Days days] [-Older | -Newer] [-Timestamp timestamp]

[-ListOnly]

Arguments
• -AbandonedFiles

An optional literal that removes all HDB_QUEUE entries having an ABANDONED state.
• -Days days [-Older | -Newer] [-Timestamp timestamp] [-ListOnly]

An optional switch and integer that removes HDB_QUEUE and HDB_EVENT entries by
the number of days back from the current day. You use the -Days days entry in conjunction
with the following options:

-Older | -Newer
The optional -Older and -Newer switches remove the entries either days older or
newer than the current day.

-Timestamp timestamp
An optional switch and date/time construct that specifies the timestamp criteria for
the removal of HDB_QUEUE and HDB_EVENT entries. You specify the timestamp
using the following format:
YYYY/MM/DD HH:MM:SS
Alternatively, you can specify the timestamp using a UTC integer.

-ListOnly
An optional literal that lists the HDB entries days older than the current day.

Related Topics
query_history
report_history

Tessent™ Diagnosis User’s Manual, v2022.4418

Running Tessent Diagnosis Server
clear_monitor

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

clear_monitor
Scope: Server mode
Resets the counters/statistics for the specified monitor.

Usage
clear_monitor [monitors …]

Arguments
• monitors

Optional replaceable string that specifies the name of a monitor to reset.

Description
This command has no effect on the queue or previously diagnosed files. It only provides a
convenient way to set up a monitor for a new batch of failure files without having to delete it.

If no monitor is specified, the counters/statistics for all monitors are reset.

Examples
The following example shows how to reset the counters/statistics for my_monitor.

clear_monitor my_monitor

Related Topics
report_monitor

Running Tessent Diagnosis Server
clear_status

Tessent™ Diagnosis User’s Manual, v2022.4 419

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

clear_status
Scope: Server mode
Clears the accumulated error and warning information displayed in the status area with the
report_status command.

Usage
clear_status

Arguments
None.

Examples
The following example shows how to clear the status area.

clear_status

Related Topics
report_status

Tessent™ Diagnosis User’s Manual, v2022.4420

Running Tessent Diagnosis Server
delete_analyzer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_analyzer
Scope: Server mode
Deletes one or more specified analyzers from the automatic diagnosis configuration.

Usage
delete_analyzer {analyzerID_1 analyzerID_2 ... analyzerID_N [-force] | -clear | -all}

Arguments
• analyzerID_1 analyzerID_2 ... analyzerID_N

Required, repeatable string that specifies the identification number of the analyzer to delete.
• -force

Optional. Use this option when an analyzer fails to respond to the delete_analyzer
command. The -force option is a stronger attempt at removing the named analyzer.

• -clear
Removes analyzers that have died but are still appearing in the server's report_analyzer list.
Use this command when you detect a mismatch between the server's reported analyzer list
and the actual analyzers that are participating.

• -all
Deletes all analyzers.

Description
Any diagnosis in process is completed before the analyzer is deleted.

Examples
The following example deletes analyzers 1, 2, and 3.

delete_analyzer 1 2 3

Related Topics
add_analyzer
report_analyzer

Running Tessent Diagnosis Server
delete_design

Tessent™ Diagnosis User’s Manual, v2022.4 421

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_design
Scope: Server mode
Removes the assigned design netlist from a specified monitored directory.

Usage
delete_design monitor_id

Arguments
• monitor_id

Required string that specifies the monitored directory associated with the specified design
netlist.
The monitor_id is the unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Examples
The following example removes the association of the flat_design1 design netlist from the
monitor1 directory in the automatic diagnosis configuration.

delete_design monitor1 flat_design1

Related Topics
report_monitor

Tessent™ Diagnosis User’s Manual, v2022.4422

Running Tessent Diagnosis Server
delete_layout

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_layout
Scope: Server mode
Releases the Calibre Query Server and deletes the layout from memory.

Usage
delete_layout monitor

Arguments
• monitor

Required string specifying the name of the monitor.

Description
Tessent Diagnosis server no longer generates layout markers if you use this command.

Related Topics
add_layout

Running Tessent Diagnosis Server
delete_monitor

Tessent™ Diagnosis User’s Manual, v2022.4 423

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_monitor
Scope: Server mode
Discontinues the monitoring of a specified directory.

Usage
delete_monitor monitor_id1 monitor_id2... monitor_idN

Arguments
• monitor_id

Required, repeatable string that specifies which monitored directory to remove from the
automatic diagnosis configuration.
The monitor_id is the unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Description
The delete_monitor command directs the Tessent Diagnosis server to quit monitoring and
processing failure files for a specified directory. Any analyzers bound to a deleted monitor are
reinstated when the monitors are re-added with the add_monitor command.

Examples
The following example discontinues the monitoring of the monitor1 and monitor2 directories.

delete_monitor monitor1 monitor2

Related Topics
report_monitor

Tessent™ Diagnosis User’s Manual, v2022.4424

Running Tessent Diagnosis Server
delete_partitioner

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_partitioner
Scope: Server mode
Deletes one or more specified partitioners from the automatic diagnosis configuration.

Usage
delete_partitioner {partitionerID_1 partitionerID_2 ... partitionerID_N [-force] | -clear | -all}

Arguments
• partitionerID_1 partitionerID_2 ... partitionerID_N

Required, repeatable string that specifies the identification number of the partitioner to
delete.

• -force
Optional. Use this option when a partitioner fails to respond to the delete_partitioner
command. The -force option is a stronger attempt at removing the named partitioner.

• -clear
Removes partitioners that have died but are still appearing in the server's report_partitioner
list. Use this command when you detect a mismatch between the server's reported
partitioner list and the actual partitioners that are participating.

• -all
Deletes all partitioners.

Description
Any diagnosis in process is completed before the partitioners is deleted.

Examples
The following example deletes partitioners 1, 2, and 3.

delete_partitioner 1 2 3

Running Tessent Diagnosis Server
delete_pattern

Tessent™ Diagnosis User’s Manual, v2022.4 425

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_pattern
Scope: Server mode
Deletes all the test pattern files associated with a specified monitored directory from the
automatic diagnosis configuration.

Usage
delete_pattern monitor_id

Arguments
• monitor_id

Required string that specifies the monitored directory from where to delete test patterns.
The monitor_id is a unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Examples
The following example deletes the association between all test pattern files and the monitor1
directory for the automatic diagnosis configuration:

delete_pattern monitor1

Related Topics
report_monitor

Tessent™ Diagnosis User’s Manual, v2022.4426

Running Tessent Diagnosis Server
delete_reporting_format

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_reporting_format
Scope: Server mode
Turns off writing of a specified reporting format for the specified monitor.

Usage
delete_reporting_format [monitor1 monitor2... monitorn] [-ENCoded] [-TEXT] [-CSV]

[-LAYout_marker]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have defined.

• -ENCoded
An optional switch specifying encoding a suspect’s pin-pathname, net-name, and cell-name
in the diagnosis output file.

• -TEXT
A switch deleting the ASCII text format report.

• -CSV
A switch deleting the comma separated value (CSV) format report.

• -LAYout_marker
A switch deleting the layout marker format. This switch does not release the Calibre Query
Server license or delete the layout from memory—instead, use the delete_layout command.

Description
This command turns off the format you specify. If you have specified other reporting formats,
this command has no effect on them. For example, if you specify TEXT and CSV, then if you
turn off CSV with this command, the tool still uses the TEXT reporting format.

Related Topics
add_reporting_format
report_reporting_format
delete_layout

Running Tessent Diagnosis Server
delete_reporting_xmap

Tessent™ Diagnosis User’s Manual, v2022.4 427

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_reporting_xmap
Scope: Server mode
Turns off writing of SPICE-mapped nets and the Verilog module hierarchy in the diagnosis
report.

Usage
delete_reporting_xmap [monitor1 monitor2... monitorn] [{-v2lvs | -cell_hierarchy}]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have defined.

• -v2lvs | -cell_hierarchy
A required switch to specify the type of data to turn off. You must specify at least one of the
following options:

o -v2lvs — Turns off the reporting of SPICE-mapped nets.

o -cell_hierarchy — Turns off the reporting of the Verilog module hierarchy.

You can specify any combination of these switches. For example, the following syntax turns
off both the SPICE-mapped nets and the Verilog module hierarchy output:

delete_reporting_xmap -v2lvs -cell_hierarchy

Description
This command turns off the data you specify.

Related Topics
add_reporting_xmap
report_reporting_xmap

Tessent™ Diagnosis User’s Manual, v2022.4428

Running Tessent Diagnosis Server
delete_schedule

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

delete_schedule
Scope: Server mode
Removes previously scheduled time-based analyzer licensing events and previously-scheduled
email events.

Usage
delete_schedule job_number

Arguments
• job_number

A required integer that specifies the licensing or email event you want to remove. You
obtain the number from the report_schedule command.

Related Topics
report_schedule
schedule_licenses
email
schedule_email

Running Tessent Diagnosis Server
dofile

Tessent™ Diagnosis User’s Manual, v2022.4 429

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dofile
Scope: Server mode
Runs the specified dofile.

Usage
dofile dofile [-history] [-CheckOnly]

Arguments
• dofile

Required string that specifies the name of a dofile to run.
• -History

Optional switch that adds commands specified in the dofile to the history buffer. Enables
you to replay the dofile commands.

• -CheckOnly
Optional switch that checks the syntax of the dofile contents.

Description
This is Tcl syntax.

Examples
The following example runs the my_dofile dofile.

dofile my_dofile

Tessent™ Diagnosis User’s Manual, v2022.4430

Running Tessent Diagnosis Server
email

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

email
Scope: Server mode
Subscribes and unsubscribes email recipients.

Usage
email message [

-To recipient1 recipient2...recipientN] | [-Subscribe recipient1 recipient2...recipientN]
| [-Unsubscribe recipient1 recipient2...recipientN] | [-Clear]

Arguments
• message

A required string where you specify a message in the body of the email. If a message
contains more then one word, then bound message with " " (quotation marks): for example,
"A message with more than one word."

• -To recipient1 recipient2...recipientN
An optional switch and string that specifies the email recipients for message.

• -Subscribe recipient1 recipient2...recipientN
An optional switch and string that specifies and subscribes the email recipients you list.

• -Unsubscribe recipient1 recipient2...recipientN
An optional switch and string that specifies and unsubscribes the email recipients you list.

• -Clear
An optional switch that nulls the email subscription list.

Related Topics
delete_schedule
schedule_email
report_schedule

Running Tessent Diagnosis Server
exit

Tessent™ Diagnosis User’s Manual, v2022.4 431

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

exit
Scope: Server mode
Shuts down automatic diagnosis and exits Tessent Diagnosis server.

Usage
exit [-force]

Arguments
• -force

An optional switch that terminates the tool session immediately without finishing active
processes.

Description
All diagnosis in process are completed before automatic diagnosis is shut down. Use the
-Discard option, to immediately exit the program without finishing any currently running
processes.

Examples
The following example quits the tool immediately without finishing active processes.

exit -force

Tessent™ Diagnosis User’s Manual, v2022.4432

Running Tessent Diagnosis Server
help

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

help
Scope: Server mode
Lists commands and associated command syntax.

Usage
help [command ...] [-options] [-all]

Arguments
• command

Optional, repeatable string that specifies the name of a command on which to display help.
By default, all the commands available in the current state of the system display.

• -options
Optional switch that displays all options for the specified command.

• -all
Displays all the commands regardless of the system state and notes the commands currently
unavailable.

Examples
The following example displays command help for the add_analyzer command.

help add_analyzer

Running Tessent Diagnosis Server
history

Tessent™ Diagnosis User’s Manual, v2022.4 433

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

history
Scope: Server mode
Displays a list of previously-run commands.

Usage
history [list_count] [-Nonumbers] [-Reverse] [-Save filename]

Arguments
• list_count

An optional integer that specifies for the tool to display only the specified number
(list_count) of the recently run commands. If no list_count is specified, the tool displays all
previously run commands.

• -Nonumbers
An optional string that specifies for the tool to display the history list without the leading
numbers. This is useful for creating dofiles. The default displays the leading numbers.

• -Reverse
An optional switch that specifies for the tool to display the history list starting with the most
recent command rather than the oldest.

• -Save filename
An optional switch that saves the command history to a named file.

Description
The history command is similar to the Korn shell (ksh) history command in Unix. By default,
this command displays a list of all previously-run commands, including all arguments
associated with each command, starting with the oldest.

Note
The HISTFILE and HISTSIZE ksh environment variables do not control the command
history of the tool.

You can perform command line editing if you set the VISUAL or EDITOR ksh environment
variable to either emacs, gmacs, or vi editing. Please see the ksh(1) man page for specifics on
the various editing modes.

A leading number precedes each command line in the history list that indicates the order in
which the commands were entered.

Tessent™ Diagnosis User’s Manual, v2022.4434

Running Tessent Diagnosis Server
query_history

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

query_history
Scope: Server mode
Creates a Tcl string result from the HDB query.

Usage
query_history [-Sessions] [-Monitors] [-Analyzers] [-Designs] [-QUeue] [-ERrors] [-SQL

sql_query]

Arguments
• -Sessions

An optional switch that returns a Tcl string result from the HDB_SESSION table.
• -Monitors

An optional switch that returns a Tcl string result from the HDB_MONITOR table.
• -Analyzers

An optional switch that returns a Tcl string result from the HDB_ANALYZER table.
• -Designs

An optional switch that returns a Tcl string result from the HDB_FILE table.
• -QUeue

An optional switch that returns a Tcl string result from the HDB_QUEUE table
• -ERrors

An optional switch that returns a Tcl string result from the HDB_ERROR table.
• -SQL sql_query

An optional switch and legal SQL query. You must put the entire SQL expression in " "
(quotation marks). If you embed arguments containing spaces, then put the argument in ' '
(single quotation marks).

Examples
The following example uses the query_history command to exit Tessent Diagnosis server
execution when the average diagnosis time exceeds the $limit

Running Tessent Diagnosis Server
query_history

Tessent™ Diagnosis User’s Manual, v2022.4 435

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set max_num_analyzer 6
set loop_i 0
set loop_start_diag -1
set limit 50

while { [check -analyzers] < $max_num_analyzer && $loop_i < 200 &&

![check -abort] } {

 if { [catch { add_analyzer generic:1 }] != 0} {
 puts "Warning: failed to add analyzer at loop [$loop_i] "

}

 if { [check -analyzers] == 1 && $loop_start_diag == -1 } {
 start_diagnosis
 set loop_start_diag $loop_i
 puts "Note: start diagnosis after the first analyzer was added at loop

[$loop_i] "
 }

 incr loop_i

}

while { [check -queued] < 1 && ![check -abort] } { }
while { [check -queued] > 0 && ![check -abort] && [check -analyzers] > 0
&& [lindex [split [query_history -sql "select avg(q.diagtime) from
hdb_queue as q, hdb_monitor as m where status='ANALYZED' and
q.monitor_id=m.monitor_id and m.synonym='lym';"] "\n"] 1] < $limit } { }
exit

Related Topics
cleanse_history
report_history

Tessent™ Diagnosis User’s Manual, v2022.4436

Running Tessent Diagnosis Server
report_analyzer

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_analyzer
Scope: Server mode
Lists the operational state for the current analyzers.

Usage
report_analyzer host_name... [-verbose]

Arguments
• host_name

Optional, repeatable string that specifies the name of a computer running the analyzer on
which to report. By default, all the current analyzers are listed.

• -verbose
Reports detailed information for each analyzer currently running.

Examples
The following example reports on the analyzers currently running.

report_analyzer

A report similar to the following displays:

// command: report_analyzer ---< analyzers >-----------------------------

(1) blackbird #1 flogs Analyzer ... idle (1 secs)
(2) blackbird #1 flogs Analyzer ... idle (1 secs)
(3) blackbird #1 flogs Analyzer ... idle (1 secs)
(4) blackbird #1 flogs Analyzer ... idle (0 secs)

Related Topics
add_analyzer
delete_analyzer

Running Tessent Diagnosis Server
report_history

Tessent™ Diagnosis User’s Manual, v2022.4 437

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_history
Scope: Server mode
Queries the current HDB and generates reports.

Usage
report_history [-Pivot {time | memory}] [-Csv]

[-Sessions] [-Monitors] [-Analyzers | -Partitioners]
[-Designs] [-Queue] [-Events] [-ERrors] [-SQL sql_query]

Arguments
• -pivot {time | memory}

An optional switch that consolidates the diagnosis events for each failure log and lists either
the time or memory consumption for each event.

• -csv
An optional switch that generates the report history in CSV format that you can pipe to a
separate file to use for analysis purposes. For more information, refer to “Usage Example:
Analyze Diagnosis Performance and Throughput” on page 369.

• -Sessions
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_SESSION table.

• -Monitors
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_MONITOR table.

• -Analyzers
An optional switch that queries the current HDB and returns a list of all analyzers in the
HDB_ANALYZER table.

• -Partitioners
An optional switch that queries the current HDB and returns a list of all partitioners in the
HDB_ANALYZER table.

• -Designs
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_FILE table.

• -Queue
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_QUEUE table.

Tessent™ Diagnosis User’s Manual, v2022.4438

Running Tessent Diagnosis Server
report_history

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -Events
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_EVENT table.

• -ERrors
An optional switch that queries the current HDB and returns a list of all entries in the
HDB_ERROR table.

• -SQL sql_query
An optional switch and legal SQL query. You must put the entire SQL expression in " "
(quotation marks). If you embed arguments containing spaces, then put the argument in ' '
(single quotation marks).

Description
See “Server History” on page 366 for details.

Examples
The following example generates a memory consumption report formatted in CSV and saved to
the file base_diag_memory.csv.

report_history -pivot memory -csv > base_diag_memory.csv

Related Topics
cleanse_history
query_history

Running Tessent Diagnosis Server
report_licenses

Tessent™ Diagnosis User’s Manual, v2022.4 439

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_licenses
Scope: Server mode
Reports licenses currently being used by automatic diagnosis.

Usage
report_licenses [-user]

Arguments
• -user

Optional switch and string pair that displays all licenses currently being used by the current
user. By default, all license usage displays.

Examples
The following example displays all licenses currently being used by the automatic diagnosis
session.

report_licenses

The following report displays:

Licenses:
4 yieldascandiag
2 yieldaedtdiag

Tessent™ Diagnosis User’s Manual, v2022.4440

Running Tessent Diagnosis Server
report_log

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_log
Scope: Server mode
Displays the contents of the named monitor’s log file.

Usage
report_log [monitor_id]

Arguments
• monitor_id

Optional, repeatable string that specifies a monitor. If no monitors are specified, the log files
of all monitors displays.

Description
Use this command to review the contents of the monitor's log file where the instances of the
errors have been written.

Running Tessent Diagnosis Server
report_monitor

Tessent™ Diagnosis User’s Manual, v2022.4 441

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_monitor
Scope: Server mode
Lists the status for all currently monitored directories.

Usage
report_monitor monitor_id ...

Arguments
• monitor_id

Optional, repeatable string that specifies a monitored directory. If no directories are
specified, the status of all monitored directories displays.
The monitor_id is a unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Description
The report_monitor command reports the diagnostic statistics for the monitored directories,
including the associated design and test patterns. In the event that a monitor times out due to a
CPU or wall time limit, the report_monitor command reports time out statistics.

Examples
The following example reports the status of all directories being monitored.

report_monitor

A report similar to the following displays for each monitored directory:

--- monitors ------------------------------
(1) Alpha
directory: /wv/dft06918/pmc/testerAA
results: /wv/dft06918/pmc/TESTERA_RESULTS
: adb.sql INACTIVE
design: /wv/dft06918/pmc/pmc.flat.gz
pattern set 0: /wv/dft06918/pmc/tester_pat.wgl
10 total
10 done [100%]
0 errors (0%)
1 timeout (10%)
10 diagnosed (100%) 75sec/diagnosis

Related Topics
delete_monitor

Tessent™ Diagnosis User’s Manual, v2022.4442

Running Tessent Diagnosis Server
report_network

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_network
Scope: Server mode
Reports the network connectivity between the server and the specified host.

Usage
report_network hostname

Arguments
• hostname

Required string that specifies the name of the host on which to report.

Examples
The following example reports the server connectivity for host1.

report_network host1

Running Tessent Diagnosis Server
report_options

Tessent™ Diagnosis User’s Manual, v2022.4 443

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_options
Scope: Server mode
Reports the optional diagnosis settings for the specified monitor.

Usage
report_options monitor

Arguments
• monitor

Required string that specifies the name of the monitor on which to report.

Examples
The following example reports the set_diagnosis_options settings for monitor1.

report_options monitor1

Tessent™ Diagnosis User’s Manual, v2022.4444

Running Tessent Diagnosis Server
report_partitioner

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_partitioner
Scope: Server mode
Lists the operational state for the current partitioners.

Usage
report_partitioner host_name... [-verbose]

Arguments
• host_name

Optional, repeatable string that specifies the name of a computer running the partitioner on
which to report. By default, all the current partitioners are listed.

• -verbose
Reports detailed information for each partitioner currently running.

Examples
The following example reports on the partitioners currently running.

report_partitioner

A report similar to the following displays:

// command: report_partitioner ---< partitioners >-----------------------

(1) blackbird #1 flogs Partitioner ... idle (9 secs)
(2) blackbird #1 flogs Partitioner ... idle (8 secs)
(3) blackbird #1 flogs Partitioner ... idle (8 secs)

Running Tessent Diagnosis Server
report_reporting_format

Tessent™ Diagnosis User’s Manual, v2022.4 445

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_reporting_format
Scope: Server mode
Reposts reports for the currently selected reporting formats for a specified monitor.

Usage
report_reporting_format [monitor1 monitor2 ... monitorn]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have defined.

Related Topics
add_reporting_format
delete_reporting_format

Tessent™ Diagnosis User’s Manual, v2022.4446

Running Tessent Diagnosis Server
report_reporting_xmap

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_reporting_xmap
Scope: Server mode
Reposts SPICE-mapped net data or Verilog module hierarchy data for the currently selected
XMAP output formats for a specified monitor.

Usage
report_reporting_xmap [monitor1 monitor2 ... monitorn]

Arguments
• monitor1 monitor2... monitorn

An optional string specifying the name of the monitor or multiple monitors. If you specify
no monitor, then the tool applies this command to all monitors you have defined.

Description
Appends a report of SPICE-mapped pin paths and net names, and the Verilog module hierarchy,
in a XMAP table to the diagnosis report.

Related Topics
add_reporting_xmap
delete_reporting_xmap

Running Tessent Diagnosis Server
report_schedule

Tessent™ Diagnosis User’s Manual, v2022.4 447

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_schedule
Scope: Server mode
Lists currently scheduled time-based license management events and currently-scheduled email
events.

Usage
report_schedule

Arguments
None.

Related Topics
delete_schedule
schedule_email
email
schedule_licenses

Tessent™ Diagnosis User’s Manual, v2022.4448

Running Tessent Diagnosis Server
report_status

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_status
Scope: Server mode
Reports on the total number of queued failure files, monitors, and analyzers for the active
diagnosis session.

Usage
report_status

Arguments
None.

Description
Aborted analyzers are reported also. The reported information is a subset of the information
reported with the watch command.

Examples
The following example reports on the total number of queued failure files, monitors, and
analyzers for the active diagnosis session.

report_status

Related Topics
clear_status
watch

Running Tessent Diagnosis Server
report_variable

Tessent™ Diagnosis User’s Manual, v2022.4 449

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_variable
Scope: Server mode
Reports the auto-processing mode variable settings.

Usage
report_variable [variable]

Arguments
• variable

Optional string that specifies the name of the variable to display. For a list of all the
variables, see “Tessent Diagnosis Server Variables.”

Description
Use the Tcl built-in set command to set the variables.

Examples
The following example reports the current settings of the job_options variable.

report_variable job_options

Tessent™ Diagnosis User’s Manual, v2022.4450

Running Tessent Diagnosis Server
resume_diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

resume_diagnosis
Scope: Server mode
Prerequisites: Diagnosis is suspended for a monitored directory with the suspend_diagnosis

command.
Resumes the diagnosis of failure files in the specified monitored directory.

Usage
resume_diagnosis monitor_id ...

Arguments
• monitor_id

Required, repeatable string that specifies a suspended monitored directory.
The monitor _id is the unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Description
The resume_diagnosis command resumes diagnosis after a suspend_diagnosis command is run.
The diagnosis continues where it left off when suspended.

Examples
The following example resumes the diagnosis of the failure files in the monitor1 and monitor2
directories.

resume_diagnosis monitor1 monitor2

Related Topics
suspend_diagnosis

Running Tessent Diagnosis Server
schedule_email

Tessent™ Diagnosis User’s Manual, v2022.4 451

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

schedule_email
Scope: Server mode
Specifies scheduling setup for the server’s email facility.

Usage
schedule_email message { -every every_time | -at time [-daily] }

Arguments
• message

A required string where you specify a message in the body of the email. If a message
contains more then one word, then bound the message with “ ” (quotation marks): for
example, “A message with more than one word.”

schedule_email { query status } -every 1:00

• -every every_time
A required literal and numeric time construct that specifies sending automatic email based
on a fixed time regardless of day. You specify every_time using the following syntax:

hh:mm

• -at time [-daily]
A required literal and numeric-alphabetic time construct that specifies sending automatic
email at a specific time of day. You specify time using the following syntax:

hh:mmam

or
hh:mmpm

Description
The schedule_email command only supports a string message enclosed in “ ” (quotation marks),
or the following commands enclosed with braces ({ }):

• { query status }

• { query_history -sql sql_command }

Related Topics
delete_schedule
report_schedule
email

Tessent™ Diagnosis User’s Manual, v2022.4452

Running Tessent Diagnosis Server
schedule_licenses

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

schedule_licenses
Scope: Server mode
Specifies scheduling setup for time-based analyzer license management.

Usage
schedule_licenses max_licenses -at time [-daily] }

Arguments
• max_licenses

A required integer that specifies the maximum number of licenses the server uses for
analyzers. If the max_licenses count decreases based on schedule, then the server deletes the
analyzer to match the number of scheduled licenses. If the max_licenses count increases
based on schedule, then the server schedules new analyzers using the job scheduler
technique.

• -at time [-daily]
A required literal and numeric-alphabetic time construct that specifies scheduling analyzer
licenses at a specific time of day. You specify time using the following syntax:

hh:mmam

or
hh:mmpm

Related Topics
delete_schedule
report_schedule

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 453

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_diagnosis_options
Scope: Server mode
Specifies optional settings for diagnosis.

Usage
set_diagnosis_options monitor_id...

[-Mode { Auto | Scan | Chain }]
[-Verify_patterns { ON [Noverbose | Verbose] | OFf }]
[-Report { Default | percentage }]
[-AT_speed { ON | OFf }]
[-MAx_suspects { Default | limit }]
[-Time_limit { OFf | seconds }]
[-WALL_time_limit { OFf | seconds }]
[-Pattern_sampling { failing_pattern_limit | OFf } { passing_pattern_limit | OFf }]
[-FAILurefile_mismatch_verbosity { Default | number | All }]
[-BRidge_analysis { ON | OFf }]
[-CHEck_last_shift_value { ON | OFf }]
[-X2B_mismatch { Ignore | Warning [Noverbose | Verbose] | Error }]
[-B2X_mismatch { Ignore | Warning [Noverbose | Verbose] | Error }]
[-CELl_internal_analysis { ON | OFf }]
[-MAX_Faulty_chains failed_chain_threshold]
[-CHAIN_DIAgnosis_result { CEll | CHain }]
[-CHAIN_LIB_internal_pathname { OFf | ON }]
[-JOB_memreq gigabytes]
[-ABORT_DIAGNOSE_COMPOUND_faults { ON | OFf }]
[-ABORT_DIAGNOSE_MANY_faulty_chains { ON | OFf }]
[-ABORT_DIAGNOSE_MINIMUM_Chain_failing_probability number]
[-ABORT_DIAGNOSE_MINIMUM_Scan_pattern_failing_probability number]
[-IGNORE_TOOL_version { OFf | ON }]
[-INCLude_fail_signatures_size { maximum_rows_per_table | MAX }]
[-INCLUDE_BRIDGE_to_power { ON | OFf }]
[-GRoss_delay { ON | OFf }]
[-COMPOUND_Hold_time_fault_diagnosis { ON | OFf }]
[-INCLUDE_DFM_rules { ON | OFf }]
[-INCLUDE_RCD_constants { ON | OFf }]
[-EXPected_value { ON | OFf }]
[-CYcle_offset N]
[-MISSing_rcd_action { Ignore | Warn | Error }]
[-CELL_PORT_BRIDGE_analysis { Auto | ON | OFf }]
[-LANDMARK_polygon_limit integer]
[-INCLUDE_CORE_INSTANce_name { ON | OFf }]
[-CELL_FAULTS udfm_pathname [-RCAD ON]]
[-MBFF_TAG_SCI_TEMPlate template_string]
[-MBFF_TAG_SCO_TEMPlate template_string]

Tessent™ Diagnosis User’s Manual, v2022.4454

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

[-CHAINDIAG_PATTERN_SAMpling { integer | OFf } { integer | OFf }]
[-CORE_INSTANCE_ERROR { ON | OFf }]
[-INCLUDE_SRC_SINK_cells_in_marker { ON | OFf }]
[-REPORT_PIN_LOCations { ON | OFf }]
[-ADD_SPICE_LAYERS_TO_DIAGNOSIS_REPORT { ON | OFf }]

Arguments
• monitor_id

Required, repeatable string that specifies the monitored directory to modify diagnosis
settings for. The diagnosis of all failure files found in the specified directory use the
specified settings.
The monitor_id is a unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

• -Mode { Auto | Scan | Chain }
A switch and literal pair that determines what type of diagnosis is performed. The following
options are available:

Auto — A literal that turns on Tessent Diagnosis server to determine what type of
diagnosis to run based on the contents of the failure file. If the failure file contains a
chain test keyword and chain test failures, the tool performs a chain diagnosis. If the
failure file contains scan test failures, the tool preforms a scan diagnosis.
If the failures include a padding cycle of a scan chain, the tool runs a chain diagnosis.
If chain failures are not preceded by a chain test keyword, use the -faulty_chain
switch with the diagnose_failures command to run chain diagnosis.
If the failure file contains both chain failures and scan failures, you must use the scan
test and chain test keywords to identify the data. This is the default.

Scan — A literal that turns on diagnosis only on failure files that contain scan fail data.
If a padding cycle of a scan chain fails, the scan chain is defective, and the entire
chain is masked out before running logic diagnosis. The diagnosis resolution may
suffer due to masked chain(s). You should run chain diagnosis in this situation.

Chain — A literal that turns on diagnosis only on failure files that contain a chain test
section.

• -Verify_patterns { ON [Noverbose | Verbose] | OFf }
A switch and literal pair that turns on or turns off verification of the patterns you specify
when you enter a start_diagnosis command for the first time.

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 455

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The -verify_patterns switch is deprecated. See verify_patterns in the Tessent Shell
Reference Manual for details and examples of creating, updating, and loading a

startup cache.

Siemens strongly recommends that you do not turn off pattern verification.

ON — A literal that turns on verification of the patterns. If verification is turned on, the
first diagnose_failures command you enter simulates the patterns and compares the
capture values with the expected values in the patterns. The tool stops the verification
process upon the first occurrence of an error and enter an error message. You can then
use the existing command, report_failures -Pdet, to determine the complete set of
failing patterns.
The tool performs this verification just once per tool session for a particular set of
patterns, no matter how many subsequent diagnose_failures commands you enter.
Noverbose — When pattern verification is turned on and a failure file mismatch

occurs, then the tool does not print out the cell pathname associated with the
mismatched bit. When you use this switch, the ‘read failure’ does not produce the
cell paths either.

Verbose — When pattern verification is turned on and a failure file mismatch
occurs, then the tool prints out the cell pathname associated with the mismatched
bit. This is the default.

OFf — A literal that turns off verification of the patterns.

Note
Do not turn off pattern verification to achieve run time reduction. Test pattern
verification is required for accurate diagnosis results. You can reduce execution time

by using a startup cache.

• -Report { Default | percentage }
A switch and value pair that changes the diagnosis report generated by the tool. You have
the following two report choices:

Default — A literal that specifies to report the following for each symptom:
• All suspects with score greater than or equal to 80.

• Up to top three suspects even if the suspects’ scores are less than 80.

• If the suspect beyond the top three has the same score with the 3rd suspect, the
tool reports the suspect only if one of the following occurs:

i. If the suspect has the same score as suspect #3, and the suspect can explain
the same or higher number of failing patterns.

a. If the suspect has the same score and fail_match, the suspect is reported only
if it has the same passing pattern mismatch.

Tessent™ Diagnosis User’s Manual, v2022.4456

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

percentage — An integer in the range 1 to 100 that specifies a percentage of the suspects
the tool should report for each symptom. If you specify 75, for example, and there are
four suspects for a particular symptom, the tool reports the top 75% (top three) of
them.

• -AT_speed { ON | OFf }
A switch and literal pair that specifies performing at-speed failure diagnosis. See “At-Speed
Failure Diagnosis” for complete information, including the conditions Tessent Diagnosis
server uses when diagnosing at-speed failures.

• -MAx_suspects { Default | limit }
A switch and value pair limiting the number of suspects per symptom in the diagnostics
report. Choose one of the following options:

Default — A literal that specifies reporting 100 suspects per symptom.
limit — An integer that specifies to report this number of suspects per symptom.

• -Time_limit { OFf | seconds }
A switch and value pair that specifies a time limit, in seconds, for diagnosing a single failure
file. This time includes the failure file verification time, but not the pattern verification time.
By default, the test patterns and each failure file is verified for consistency when a diagnosis
is run.
Specifying this switch and a time limit overrides the analyzer_timelimit server variable.

• -WALL_time_limit { OFf | seconds }
A switch and value pair that specifies a wall time limit, in seconds, for diagnosing a single
failure file. When you specify a wall time limit (seconds) and a diagnosis job exceeds the
limit, then the tool aborts the diagnosis run with an error message.

Note
The wall time limit is independent of the CPU time limit (using the -Time_limit
switch). If you set to both the CPU and wall time limit, then the tool aborts the

diagnosis when either limit is reached.

If the wall time limit is reached during diagnosis, the tool aborts the diagnosis job and no
diagnosis report file is generated.

• -Pattern_sampling { failing_pattern_limit | OFf } { passing_pattern_limit | OFf }
Optional switch with two values that specifies pattern limits for logic diagnosis. The first
value is for the failing pattern limit, and the second value is for the passing pattern limit. The
default is off for both values.
Use this switch to limit the patterns used for logic diagnosis and reduce run time. By default,
all failing and passing patterns are used for diagnosis. To ensure adequate diagnosis
resolution, the pattern sample must be 32 or greater.

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 457

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logic diagnosis patterns with several capture cycles require more simulation time and have
less resolution. To avoid losing resolution, Tessent Diagnosis server selects patterns with
the least amount of capture cycles for the diagnosis. Pattern sampling options include:

failing_pattern_limit — Must be an integer of 32 or higher.
passing_pattern_limit — Must be an integer of 32 or higher. Specified number of

passing patterns is selected from the first passing patterns in the set.
• -FAILurefile_mismatch_verbosity { Default | number | All }

A switch and value pair that controls the number of pattern mismatches displayed during the
verification of the failure file. You have the following report choices:

Default — A literal that specifies to display 20 failing patterns. This is the default.
number — An integer that specifies to report this number of failing patterns.
All — A literal that specifies to report all failing patterns.

• -BRidge_analysis { ON | OFf }
A switch and literal pair that determines if diagnosis includes an analysis to identify bridge
suspects. A bridge suspect is identified when faulty behavior is observed for the implicated
nets and the appropriate aggressor-victim conditions are met. Currently 2-way and 3-way
bridges are considered and this switch is applicable to both.
Options include:

ON — Bridge analysis is turned on. Default setting.
OFf — Bridge analysis is turned off.

There are two cases where it may be desirable to turn off bridge analysis.
Case 1 — Because the analysis is currently based only on logical responses, it is

possible that a bridge suspect may not be physically possible. In cases where bridge
suspects are verified as not physically possible, you may want to rerun the diagnosis
with bridge analysis turned off.

Case 2 — In cases where very few failing patterns are captured for a failing device, and
bridge analysis may return a large number of suspects, you can turn off the bridge
analysis to reduce the number of suspects.

• -CHEck_last_shift_value { ON | OFf }
An optional switch and literal pair that controls whether last shift values are considered for
transition launching in resistive open diagnosis as well as cell internal diagnosis.

ON — Turns on last shift values consideration for transition launching in resistive open
diagnosis. This is the default.

OFf — Turns off considering last shift values for transition launching in resistive open
diagnosis. Use this option if you believe that the shift is very slow speed such that the
transition launched from last shift is irrelevant.

Tessent™ Diagnosis User’s Manual, v2022.4458

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -X2B_mismatch { Ignore | Warning [Noverbose | Verbose] | Error }
A switch and literal pair that determines how X2B mismatches are handled during
diagnosis. X2B mismatches occur during pattern verification when the simulator returns
binary values instead of the expected X values.
The tool most likely introduces X2B mismatches because it removes cell constraints when
performing pattern verification and diagnosis. This turns on the tool to perform diagnosis
using one flat model for potentially multiple modes, each of which have different
constraints, or to use flat models that were written at different times. You can ignore these
X2B mismatches.

Ignore — This is the default. Does not display X2B mismatch information. Pattern
verification passes.

Warning Noverbose — Warns at the end of pattern verification of any X2B
mismatches. Pattern verification can still pass.

Warning Verbose — Prints during pattern verification any mismatched X2B bits.
Pattern verification can still pass.

Error — Prints the X2B mismatches for the first mismatched pattern and pattern
verification fails that terminates the diagnosis or verify_patterns command.

• -B2X_mismatch { Ignore | Warning [Noverbose | Verbose] | Error }
A switch and literal pair that determines whether B2X mismatches are handled during
diagnosis. B2X mismatches occur during pattern verification when the simulator returns X
values instead of the expected binary values. These mismatches could be introduced by
different problems, for example, software enhancements to the simulator or using a mask
file when reading patterns.

Ignore — Does not display B2X mismatch information. Pattern verification passes.
Warning Noverbose — Warns at the end of pattern verification of any B2X

mismatches. Pattern verification can still pass.
Warning Verbose — Prints during pattern verification any mismatched B2X bits.

Pattern verification can still pass.
Error — Prints the B2X mismatches for the first mismatched pattern and pattern

verification fails that terminates the diagnosis or verify_patterns command.
• -CELl_internal_analysis { ON | OFf }

A switch and literal pair that determines if Tessent Diagnosis server performs analysis to
diagnose defective library cells and distinguish them from defects on nets interconnecting
library cells.

• -MAX_Faulty_chains failed_chain_threshold
An optional switch and integer pair that specifies the maximum number of failing scan
chains within a single datalog that are diagnosed using chain fault model. When a failure log
has multiple failed_chains, there can either be multiple defects in scan chains, or a single
defect affecting the scan control signals. The default failed chain threshold is 2.

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 459

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o If there are one or two failed_chains, then the tool assumes the defect is on each
individual chain and uses the scan chain fault model to run diagnosis. This is the
default behavior of the tool.

o If failed_chains is greater than two, then the tool assumes the defect is on a global
control signal. If “set_diagnosis_options
-ABORT_DIAGNOSE_MANY_faulty_chains” is OFf, it uses the clock/
scan_enable fault model to run diagnosis. Otherwise, the tool aborts diagnosis for
this case.

Changing failed chain threshold from the default value (2) causes the following effects:
o If failed_chains is greater than failed_chain_threshold, then the tool assumes the

defect is on a global control signal. If “set_diagnosis_options
-ABORT_DIAGNOSE_MANY_faulty_chains” is OFf, it uses the clock/
scan_enable fault model to run diagnosis. Otherwise, the tools aborts diagnosis for
this case.

o If there are one, two, ... failed_chain_threshold faulty chains, then the tool assumes
the defect is on each individual chain and uses the scan chain fault model to run
diagnosis on each of the defects.

For example, a failure file contains six failed_chains. You can diagnose each of these six
failed-chains as individual defects by setting this switch as follows:

set_diagnosis_options -max_faulty_chains 6

During chain diagnosis, if the tool reaches the max faulty chains limit, by default the
diagnosis report includes information about the failing chains but not the failing scan cells.
Suppose a failure file contains two failing scan chains and the -max_faulty_chains option is
set to 1. The resulting diagnosis report displays information for the two failing chains. For
example:

#total_symptoms=2 #total_suspects=0 total_CPU_time=0.00sec

diagnosis_mode=chain

#symptoms=2 #suspects=0 CPU_time=0.00sec fail_log=flog1
symptom=1 #suspects=0 faulty_chain=chain1 fault_type=STUCK
symptom=2 #suspects=0 faulty_chain=chain3 fault_type=STUCK

• -CHAIN_DIAgnosis_result { CEll | CHain }
Optional switch and literal pair that determines if a preliminary high-level chain diagnosis is
performed versus a standard diagnosis. A preliminary high-level chain diagnosis only
reports one failure per chain; the dominant failure.
Options include:

CEll — Runs the standard diagnosis of chain plus scan patterns and chain plus scan
failures to determine cell defects. This is the default.

Tessent™ Diagnosis User’s Manual, v2022.4460

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

CHain — Runs a preliminary high-level diagnosis of the chain failures in the failure file
and reports the name, length, and fault type of the chains that failed.

• -CHAIN_LIB_internal_pathname { OFf | ON }
An optional switch and literal pair that reports the internal instance pathname within the
library for each scan latch in a suspect scan cell.
When set to ON, the tool reports this information in the chain diagnosis report’s
“lib_internal_pathname” column. If there is no instance name, the tool reports “”. If you
specify the add_reporting_format command with the -csv switch, then the tool also includes
this information in the CSV output. See “Chain Diagnosis Section.”

• -JOB_memreq gigabytes
An optional switch and integer pair that specifies the amount of memory to allocate for
monitor(s). This option supersedes the job_memreq variable’s value for the specified
monitor(s).

• -ABORT_DIAGNOSE_COMPOUND_faults { ON | OFf }
An optional switch and literal pair that specifies whether or not the tool diagnosis the logic
part of compound defects during chain diagnosis. The default to “ON”, meaning the tool
does not diagnose the logic portion of compound defects.
See “Abort Conditions for Chain Diagnosis.”

• -ABORT_DIAGNOSE_MANY_faulty_chains { ON | OFf }
An optional switch and literal pair that instructs the tool to skip diagnosing when
#faulty_chains is larger than the failed chain threshold specified with the
set_diagnosis_options -MAX_Faulty_chains switch. The default is “ON”.
When you set this option to OFF and the number of faulty chains is greater than the number
specified by -MAX_Faulty_chains, the tool attempts to run scan enable and clock tree
diagnosis that requires failure data for scan patterns. If no failure for scan patterns is
available, the tool errors out with a message that indicates that the number of faulty chains is
greater than the number specified by -MAX_Faulty_chains.
See “Abort Conditions for Chain Diagnosis.”

• -ABORT_DIAGNOSE_MINIMUM_Chain_failing_probability number
An optional switch and integer pair that specifies the minimum chain fail probability for the
tool to abort chain diagnosis. The default is 1. The minimum is 0, which means no abort.
The maximum value you can specify is 100.
See “Abort Conditions for Chain Diagnosis.”

• -ABORT_DIAGNOSE_MINIMUM_Scan_pattern_failing_probability number
An optional switch and floating point pair that specifies the minimum scan pattern fail
probability for the tool to abort chain diagnosis. The default is 0.1. The minimum is 0, which
means no abort. The maximum value you can specify is 100.
See “Abort Conditions for Chain Diagnosis.”

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 461

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -IGNORE_TOOL_version { OFf | ON }
An optional switch and literal pair that instructs the tool to ignore the tool version when
loading a startup cache. If the tool versions are different—that is, the startup cache was
created by an older version—the tool issues a warning. By default, this option functions as
follows with the following verify_patterns options:

o With -create_startup_cache: Has no impact. The tool creates the same startup cache
whether -ignore_tool_version is on or off.

o With -update_startup_cache: Causes a conflict error.

o With -load_startup_cache: Turns off the tool version check and uses the startup
cache regardless of the tool version used generate or update the cache.

When set to OFF, the tool issues an error and does not load the startup cache if the tool
version used to create the startup cache is older than the current tool version.

• -INCLude_fail_signatures_size { maximum_rows_per_table | MAX }
An optional switch and integer pair that specifies the maximum number of rows per table for
reporting failure signature information in the diagnosis report. The default is 256. If you do
not want the failure signatures included in the diagnosis report, then specify 0 (zero) with
this switch. Conversely, if you require all signature information, then use the keyword MAX
with this switch. See “Failure Signature Information in the Diagnosis Report.”

• -INCLUDE_BRIDGE_to_power { ON | OFf }
An optional switch and literal pair that specifies performing analysis and reporting of
potential bridging defects between the STUCK suspect net, and a power or ground line
during layout-aware diagnosis. The default is “ON”.
See “Power and Ground Bridge Reporting.”

• -GRoss_delay { ON | OFf }
An optional switch and literal pair that specifies performing analysis and reporting of gross
delay defects. The default is “OFf”.
See “Gross Delay Defect Diagnosis.”

• -COMPOUND_Hold_time_fault_diagnosis { ON | OFf }
An optional switch and literal pair that specifies performing analysis and reporting of slow
clock compound hold-time defects. The default is “OFf”. This option only applies to hold
times on shift paths, not capture paths.
See “Slow Clock Compound Hold-Time Diagnosis.”

• -INCLUDE_DFM_rules { ON | OFf }
An optional switch and literal pair that specifies to perform DFM hit reporting. The default
is “ON”.
See “Diagnosis for Design for Manufacturability Analysis.”

Tessent™ Diagnosis User’s Manual, v2022.4462

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -INCLUDE_RCD_constants { ON | OFf }
An optional switch and literal pair that specifies to populate the LDB with RCD constants.
The default is “ON”.
See “Diagnosis for Root Cause Deconvolution Analysis.”

• -EXPected_value { ON | OFf }
An optional switch and literal pair that specifies whether to verify expected pattern values
against actual pattern values and return the results in the failure log. When set to OFF, the
tool suppresses this check and ignores any missing expected values.

Caution
The -expected_value switch turns off failure log verification, which means that you
do not know whether there is a discrepancy between the failure log and the patterns.

Use this switch with extreme caution.

• -CYcle_offset N
An optional switch and integer pair that specifies to adjust the cycles in a cycle-based failure
file by the value N. Tessent Diagnosis uses the adjusted cycles for failure verification and
diagnosis. See “Cycle Offset Adjustment for Failure Files.”

• -MISSing_rcd_action { Ignore | Warn | Error }
An optional switch and literal pair that checks whether the LDB is populated with RCD
constants. The tool checks the LDB at the beginning of the diagnosis run and performs one
of the following actions when the RCD constants for the current flat file and pattern set are
not present:

Ignore — Takes no action and diagnosis proceeds.
Warn — Issues a warning and diagnosis proceeds. This is the default.
Error — Issues an error and diagnosis halts.

Use this switch to ensure that the LDB contains the RCD constants required for RCD
analysis with Tessent YieldInsight. The warning and error outputs remind you to run
create_feature_statistics, as needed, to generate the RCD constants.

• -CELL_PORT_BRIDGE_analysis { Auto | ON | OFf }
An optional switch and literal pair that specifies whether to perform cell port bridge
diagnosis. By default, the tool does not perform cell port bridge diagnosis for layout-aware
diagnosis but does perform cell bridge diagnosis for cell-aware diagnosis. For more
information, refer to “Cell Bridge Port Diagnosis Reporting.”

• -LANDMARK_polygon_limit integer
An optional switch and integer that controls the number of landmark polygons that are
written. The tool uses a proximity-to-defect algorithm to limit the number of landmark
polygons for global signals such as power, ground, and scan enable. Specify an integer
greater than 99. The default is 10000.

Running Tessent Diagnosis Server
set_diagnosis_options

Tessent™ Diagnosis User’s Manual, v2022.4 463

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• -INCLUDE_CORE_INSTANce_name { ON | OFf }
An optional switch and literal pair that specifies whether to generate the layout-aware
hierarchical diagnosis report with chip-level pin and net names rather than the default core-
level names. For more information, refer to “Running Layout-Aware Diagnosis Using a
Core-Level LDB.”

• -CELL_FAULTS udfm_pathname
An optional switch and string pair that specifies a UDFM (.udfm) file generated by Tessent
CellModelGen that is required for performing cell-aware diagnosis. For details, refer to
“Cell-Aware Diagnosis.”
When specified, the tool performs a series of validation checks to ensure that within Tessent
CellModelGen, the UDFM file was generated using the proper switches and values, and
issues warnings if this is not the case. In addition, for flat models, the tool verifies the flat
model against the UDFM and issues a warning if the flat model contains cells not defined in
the UDFM file.

• -RCAD ON
An optional switch that turns on RCAD constant creation and performing cell-aware
diagnosis that includes the RCAD constants. Specify this switch with the -cell_faults switch.
For details, refer to “Performing Cell-Aware Diagnosis With RCD” on page 247.

• -MBFF_TAG_SCI_TEMPlate template_string
An option and string pair that specifies to set the default internal pin tag naming convention
for SCI pins for elements inside multi-bit flip-flops in the format “template_string N”,
where N is the index of a master element within the multi-bit flip-flop, starting with 1. For
usage details, refer to “Multi-Bit Flip-Flop Handling” on page 112.

• -MBFF_TAG_SCO_TEMPlate template_string
An option and string pair that specifies to set the default internal pin tag naming convention
for SCOs for elements inside multi-bit flip-flops in the format “template_string N”, where N
is the index of a master element within a multi-bit flip-flop, starting with 1. For usage
details, refer to “Multi-Bit Flip-Flop Handling” on page 112.

• -CHAINDIAG_PATTERN_SAMpling { integer | OFf } { integer | OFf }
An optional switch and integer pair that specifies to limit diagnosis analysis to the specified
number of failing and passing patterns, where the first integer is the number of failing
patterns and the second integer is the number of passing patterns. The minimum value for
integer is 32. This option reduces chain diagnosis run time with a potential minor impact on
the quality of the diagnosis results. You can turn off sampling for either failing or passing
patterns.

• -CORE_INSTANCE_ERROR { ON | OFf }
An optional switch and literal pair that specifies whether core name and core instance path
mismatches between the tracking information in the failure file and an LDB are handled as
warnings or errors. This option is used for hierarchical diagnosis.

Tessent™ Diagnosis User’s Manual, v2022.4464

Running Tessent Diagnosis Server
set_diagnosis_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The default is on, in which mismatches are handled as errors. In addition, when opening an
LDB that contains core instances, the layout fails to open with an error if the
-chip_design_name option is unspecified.

• -INCLUDE_SRC_SINK_cells_in_marker { ON | OFf }
An optional switch and literal pair that specifies whether to include source/sink cell Open
suspect information in layout marker files. For more information, refer to “Source/Sink
Polygon Layout Markers for Open Diagnosis Suspects” on page 253.

• -REPORT_PIN_LOCations { ON | OFf }
An optional switch and literal pair that specifies whether to include a PIN_LOCATION
table in the XMAP table of a layout-aware diagnosis report. The default is off, which does
not print the table.

• -ADD_SPICE_LAYERS_TO_DIAGNOSIS_REPORT { ON | OFf }
An optional switch and literal pair that specifies whether to include a spice_layer column in
the CELL_DEFECT_LOCATION table of a layout-aware diagnosis report. The default is
off, which does not print the column. Turn on this switch and enable cell-aware diagnosis to
add the spice_layer column to the report.

Description
The set_diagnosis_options command specifies global settings that determine the behavior of
subsequent automatic diagnosis sessions associated with a specified monitored directory. These
global settings remain in effect until another set_diagnosis_options command is run.

Examples
The following example runs only scan diagnosis on failure files contained in monitored
directory, monitor1.

set_diagnosis_options monitor1 -mode scan

The following example sets the passing pattern limit to 64.

set_diagnosis_options -pattern_sampling off 64

Related Topics
Tessent Diagnosis Server Variables

Running Tessent Diagnosis Server
set_diagnosis_resource_configuration

Tessent™ Diagnosis User’s Manual, v2022.4 465

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_diagnosis_resource_configuration
Applies diagnosis resource requirements for the specified mode and options.

Usage
set_diagnosis_resource_configuration [-balanced | -memory [memory_target] | -runtime]

[-scheduler sge | lsf] [-job_limit job_limit]

Arguments
• -balanced | -memory [memory_target] | -runtime

An optional switch with optional integer that specifies the mode. The following modes are
available:

-balanced: The tool tries to balance resources used and run time. This is the default.
-memory [memory_target]: The tool sets the best partitioners and analyzers targets

within the provided memory budget memory_target. If memory_target is not
provided, the tool applies a budget of three times the predicted partitioner usage.

-runtime: The tool’s primary concern is the wall time for the DP run.
• -scheduler sge | lsf

An optional switch and literal that specifies the SGE or LSF grid scheduler. The default is
LSF.

• -job_limit job_limit
An optional switch and integer that specifies the limit for the available number of jobs.

Examples
Example 1

This example specifies that a single partitioner is used. Up to 10 dynamic-partitioning analyzers
will be added for this run. Therefore, there are 10 possible scenarios with 1 to 10 analyzers. The
tool reports the number of jobs and total memory usage for each scenario. The tool dynamically
determines whether a new analyzer is needed to maximize the throughput and allocates a new
analyzer when it is needed. The actual number of analyzers used can be up to 10 times the
number of partitioners.

Tessent™ Diagnosis User’s Manual, v2022.4466

Running Tessent Diagnosis Server
set_diagnosis_resource_configuration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

// command: set_diagnosis_resource_configuration
// Note: ... Analyzing resource requirements
// ----------------------- -----------------------
// Estimated memory requirement for each resource
// ----------------------- -----------------------
// Partitioner 3
// Analyzer 2
// ----------------------- -----------------------
// Note: Analyzer resource estimate assumes partition size is 20% of
original design. Memory requirement for analyzer is automatically adjusted
for partition size before job scheduling.// Note: Total number of failure
files to be diagnosed: 10

#Partitioner #Analyzer #Job Memory(GB)
------------ --------- ---- ----------
 1 1 2 5
 1 2 3 7
 1 3 4 9
 1 4 5 11
 1 5 6 13
 1 6 7 15
 1 7 8 17
 1 8 9 19
 1 9 10 21
 1 10 11 23
------------ --------- ---- ----------
// Note: Run DP-server flow using 1 partitioner and upto 10 analyzers ...
// lsf will be used for job scheduling.

Running Tessent Diagnosis Server
set_monitor_options

Tessent™ Diagnosis User’s Manual, v2022.4 467

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_monitor_options
Scope: Server mode
Specifies the number of shifts for patterns for each monitor before diagnosis begins.

Usage
set_monitor_options monitor -number_shifts { default | integer }

[-use_full_fail_log_path_in_server_diagnosis_report { ON | OFf }]

Arguments
• monitor

Required string that specifies a monitor, which is a named reference to a monitored
directory of failure files. See the add_monitor command for more information.

• -number_shifts { default | integer }
Required switch and string or integer pair that specifies the number of shifts.
By default, the tool uses the number of shifts stored in the flat model. If you specify a valid
number of shifts with integer, then the tool uses that number of shifts.

• -use_full_fail_log_path_in_server_diagnosis_report { ON | OFf }
Optional switch and literal pair that specifies whether to print the full path of the fail log in
the diagnosis report. The default is off, which prints only the fail log filename.

#symptoms=1 suspects=3 … fail_log=wafer1.flog

Use “on” to print the fail log filename and its full path.
#symptoms=1 suspects=3 … fail_log=/full/path/to/wafer1.flog

Description
Note

You can only use this command to modify the number of shifts for an EDT design. There is
currently no support for this for non-EDT designs.

By default, the tool uses the number of shifts stored in the flat model. Alternatively, if you
specify a valid number of shifts, then the tool applies this number to each analyzer associated
with the monitor.

Examples
The following example specifies 100 shifts for the flogs monitor.

add_monitor flogs ../flogs/ -results ../results/flogs.ya

set_monitor_options flogs -number_shifts 100 // specify the number of shifts

add_design flogs ../src/design.flat.gz

Tessent™ Diagnosis User’s Manual, v2022.4468

Running Tessent Diagnosis Server
set_monitor_options

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

add_pattern flogs ../pat/pat.gz

add_analyzer localhost:1

start_diagnosis

Running Tessent Diagnosis Server
start_diagnosis

Tessent™ Diagnosis User’s Manual, v2022.4 469

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

start_diagnosis
Scope: Server mode
Prerequisites: Monitored directory and associated test pattern file and design netlist must be set

up.
Initiates the diagnosis of failure files in the specified monitored directory.

Usage
start_diagnosis [monitor_id...] [-count count_number]

Arguments
• monitor_id

Optional, repeatable string that specifies a monitored directory. If you do not use this string,
the tool automatically assigns analyzers specified with the add_analyzer command to all
monitors in a round-robin manner.
The monitor _id is the unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

• -count count_number
Optional switch and value pair that specifies the number of diagnoses to perform. Once the
specified number is reached, automatic diagnosis is suspended.

Description
Create CSV diagnosis output format by setting the diagnostic_CSV variable true (the default is
false), or use the add_reporting_format command to change diagnosis reporting formats.

Examples
The following example initiates the diagnosis of failure files in the monitor1 directory.

start_diagnosis monitor1

Related Topics
add_reporting_format
diagnostic_CSV
add_pattern

Tessent™ Diagnosis User’s Manual, v2022.4470

Running Tessent Diagnosis Server
suspend_diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

suspend_diagnosis
Scope: Server mode
Suspends the diagnosis of the failure files in the specified directory.

Usage
suspend_diagnosis monitor_id ...

Arguments
• monitor_id

Required, repeatable string that specifies a monitored directory.
The monitor _id is the unique name for the monitored directory, specified with the
add_monitor command. The monitor_id can also be the number representing the order that a
monitored directory was defined. For example: “1” would identify the first monitored
directory defined. Use the report_monitor command to determine the order number for a
monitored directory.

Examples
The following example suspends the diagnosis of failure files in the monitor1 and monitor2
directories.

suspend_diagnosis monitor1 monitor2

Related Topics
resume_diagnosis

Running Tessent Diagnosis Server
version

Tessent™ Diagnosis User’s Manual, v2022.4 471

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

version
Scope: Server mode
Displays the version of the Tessent Diagnosis server software that you are currently running.

Usage
version

Arguments
None.

Examples
The following example displays the Tessent Diagnosis server version.

version

Tessent™ Diagnosis User’s Manual, v2022.4472

Running Tessent Diagnosis Server
watch

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

watch
Scope: Server mode
Initiates dynamic reporting to monitor screen.

Usage
watch

Arguments
None.

Description
The watch command displays the progress of the automatic diagnosis on screen. When dynamic
reporting is enabled, you cannot enter any commands.

Press Enter to resume normal command input.

Examples
The following example displays the progress of the automatic diagnosis.

watch

Tessent™ Diagnosis User’s Manual, v2022.4 473

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 7
Reversible Scan Chain Diagnosis

Reversible scan is a 2-dimensional scan architecture in which the scan chain performs both
forward and backward scan shift to diagnose scan faults. In simple terms, each scan cell can
receive shift values from its neighbor cell either on its left or on its right.
The scan chain is stitched together in both directions, enabling shifting scan data from left to
right (denoted as “L2R”) or right to left (denoted as “R2L”), by a control signal DIR that
changes scan shift direction. A simple scan chain example with 3 scan cells is illustrated in
Figure 7-1 and Figure 7-2.

The scan path in red color in Figure 7-1 indicates L2R shift from Cell 2 to Cell 0, whereas the
scan path in green color in Figure 7-2 indicates R2L shift from Cell 0 to Cell 2.

Figure 7-1. Reversible Scan Chain L2R Shift

Figure 7-2. Reversible Scan Chain R2L Shift

Benefits of Reversible Scan . 474
Design Considerations . 474
Reversible Scan Chain Diagnosis Flow . 474
Reversible Scan Chain Insertion . 475
Reversible Scan Suspect Types . 475
Diagnosing Reversed Scan Chain Patterns . 480
Generating Reversed Scan Path Description . 481
Frequently Asked Questions . 482

Tessent™ Diagnosis User’s Manual, v2022.4474

Reversible Scan Chain Diagnosis
Benefits of Reversible Scan

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Benefits of Reversible Scan
Using one dimensional reversible scan architecture, you can design specific scan chain patterns
to achieve perfect diagnostic resolution. Test chip evaluations show 4X increase in diagnostic
resolution and 6X decrease in physical area of a single chain suspect.
As diagnosis only uses chain patterns, it also improves test time and diagnosis times.

Design Considerations
The overall hardware utilization cost for reversible scan is about 5%. A big part of the overhead
is the costly re-stitching of connections outside of MBFFs (multi-bit flip-flops). You can
mitigate this by either making MBFFs non-reversible or only partially reversible.

Reversible Scan Chain Diagnosis Flow
The flow chart below shows the steps of the reversible scan chain diagnosis flow.

Figure 7-3. Reversible Scan Chain Diagnosis Flow Chart

Reversible Scan Chain Diagnosis
Reversible Scan Chain Insertion

Tessent™ Diagnosis User’s Manual, v2022.4 475

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Reversible Scan Chain Insertion
Tessent Shell does not support insertion of reversible scan chains. You can do the insertion
during the default scan insertion procedure or by restitching existing scan chains using the
custom flow in the “dft insertion mode”.
For more information, refer to set_context in the Tessent Shell Reference Manual and Scan
Insertion Flows in the Tessent Scan and ATPG User’s Manual..

Reversible scan chains are stitched together in both directions to enable shifting of scan data
from left to right (denoted as “L2R”) or right to left (denoted as “R2L”). A simple scan chain
example with 5 scan cells (SC_0-SC_4) is illustrated in Figure 7-4. Compared to the
conventional scan chain architecture (link to scan insertion flow), the reverse scan insertion
procedure adds two-input multiplexers to control shift direction for subsequent scan cells.
Inputs i1 and i2 of each inserted multiplexer are connected to the outputs of previous scan cell
and shifted by two positions towards the scan output, respectively. The output of the inserted
multiplexer is connected to scan input of subsequent scan cell.

Figure 7-4. Scan Chain Example

The insertion procedure has the following exceptions to handle implementations with single
direction scan input or scan output ports:

• Input i1 of the last reverse multiplexer (RM_5) is connected to the scan chain input.

• Output of the first reverse multiplexer (RM_0) is connected to scan chain output.

• Input i2 of the first reverse multiplexer (RM_0) is connected to output of last scan cell
(SC_4).

• Input i2 of the next to last reverse multiplexer (RM_1) is connected to scan chain input.

Limitations
Scan chains with multiple clock domains or lockup latches are not supported in the insertion
procedure. Avoid using them in the reversible scan diagnosis flow.

Reversible Scan Suspect Types
Reversed scan chains enable you to unload shifted values in the opposite direction from which
they were loaded. The tool can observe good values being unloaded up until the faulty values

Tessent™ Diagnosis User’s Manual, v2022.4476

Reversible Scan Chain Diagnosis
Reversible Scan Suspect Types

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

begin. In most cases, the tool can pinpoint the faulty cell. When high intermittency occurs, the
tool narrows the suspect range to a subset of cells.
Tessent Diagnosis analyzes the flush patterns and produces more topologically detailed suspect
types. When a fault affects only one shift path, two new suspect type categories appear in the
diagnosis report to indicate these types of failures:

• REV_OUT — Indicates that a failure occurred only in the standard shift direction.

• REV_IN — Indicates that a failure occurred only in the reversed shift direction.

These categories can apply to the fault types STUCK_AT, SLOW, FAST, SLOW_TO_RISE/
FALL, and FAST_TO_RISE/FALL.

Failures can also occur in both directions. In the diagnosis report, they appear as
IN+CELL+OUT suspects.

Standard Shift Defects
For standard shift defects, the standard shift pattern fails, and the tool passes the reversed shift
pattern. The following figure shows a standard shift defect. In the standard shift direction, the
tool observes faulty values after three good cycles. This correlates with the defective cell
position in the chain at cell 3.

Figure 7-5. Standard Shift Defect

In this case, the tool limits the suspect topology to a single-direction MUX and its A0 input net.
It omits the cell_number 3 polygons, which is beneficial for physical failure analysis (PFA)
efforts.

Reversible Scan Chain Diagnosis
Reversible Scan Suspect Types

Tessent™ Diagnosis User’s Manual, v2022.4 477

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-6. Standard Shift Defect Suspect Topology

The diagnosis report displays the REV_OUT fault type category for this type of failure. For
example:

diagnosis_mode=chain

#symptoms=1 #suspects=1 CPU_time=2.87sec fail_log=fal

symptoms=1 #suspects=1 faulty_chain=100 fault_type=STUCK

suspect score type value pin_ cell_ net_ cell_ chain_ memory_ shift_

pathname name pathname number name type clock

--

1 100 STUCK(REV_OUT) 1 /reg/Q SDFF_X1 /bigreg17[21] 3 chain4 MASTER /clk1

--

Reversed Shift Defects
For reversed shift defects, the reversed shift pattern fails, and the tool passes the standard shift
pattern. The following figure shows a reversed shift defect. In the reversed shift direction, the
tool observes faulty values after four good cycles. This correlates with the defective cell
position in the chain at cell 4.

Figure 7-7. Reversed Shift Defect

Tessent™ Diagnosis User’s Manual, v2022.4478

Reversible Scan Chain Diagnosis
Reversible Scan Suspect Types

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The suspect topology is limited to the input MUX and its A1 input net.

Figure 7-8. Reversed Shift Defect Suspect Topology

The diagnosis report displays the REV_IN fault type category for this type of failure. For
example:

diagnosis_mode=chain

#symptoms=1 #suspects=1 CPU_time=2.87sec fail_log=fal

symptoms=1 #suspects=1 faulty_chain=100 fault_type=STUCK

suspect score type value pin_ cell_ net_ cell_ chain_ memory_ shift_

pathname name pathname number name type clock

--

1 100 STUCK(REV_IN) 1 /reg/SI SDFF_X1 /r_mux_146_Z 4 chain4 MASTER /clk1

--

Defects in Both Shift Directions
When a fault affects both shift directions, the failures from both ends converge onto a single cell
and both patterns fail. In the following example, the standard and reversed patterns both fail at
cell 3.

Reversible Scan Chain Diagnosis
Reversible Scan Suspect Types

Tessent™ Diagnosis User’s Manual, v2022.4 479

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 7-9. Defect in Both Shift Directions

When both chain diagnosis patterns for a reversed scan chain fail, the diagnosis suspect
topology is limited to the scan cell itself. Additionally, the tool includes the cell coordinates of
the input side scan selection MUX as well as the entire network of output scan port.

Figure 7-10. Both Shift Directions Suspect Topology

The following diagnosis report shows how the results appear:

diagnosis_mode=chain

#symptoms=1 #suspects=1 CPU_time=2.87sec fail_log=fal

symptoms=1 #suspects=1 faulty_chain=100 fault_type=STUCK

suspect score type value pin_ cell_ net_ cell_ chain_ memory_ shift_

pathname name pathname number name type clock

--

1 100 STUCK(IN+CELL+OUT) 1 /reg/Q SDFF_X1 /bigreg17[21] 2 chain4 MASTER /clk1

--

Tessent™ Diagnosis User’s Manual, v2022.4480

Reversible Scan Chain Diagnosis
Diagnosing Reversed Scan Chain Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
Multiple suspects that originate from a single MBFF instance that does not have reversed
shift capability are reported as a single symptom.

Defects on Chain Input or Output
When a PAD defect affects the chain SI or SO signal, the tool observes faulty values in both
shift directions that do not converge to any cell. The chain’s first and last cells are both suspects
because the defect can be on the scan-in or scan-out.

The diagnosis report displays one symptom using the IN+CELL and the CELL+OUT scenarios.
See “Symptom Descriptions” on page 107 for more information about scenarios.

The following example is for a chain with 49 cells, cell 48 being closest to the scan-in:

diagnosis_mode=chain

#symptoms=1 #suspects=2 CPU_time=0.23sec fail_log=chain.flog

symptom=1 #suspects=2 faulty_chain=chain4 fault_type=STUCK

suspect score type value pin_ cell_ net_ cell_ chain_ memory_ shift_

 pathname name pathname number name type clock

--

1 100 STUCK(CELL+OUT) 0 /reg/Q sff /reg_Q 0 chain4 MASTER /clk

2 100 STUCK(IN+CELL) 0 /reg/SI sff /reg_SI 48 chain4 MASTER /clk

--

Diagnosing Reversed Scan Chain Patterns
For diagnosis, there is no limit to the number of concurrently failing reversed scan chains.

Restrictions and Limitations
• You cannot read in and then write out reversed patterns with the write_patterns

command. The tool assumes the standard cell loading direction, so the written file is
non-reversed.

• The tool does not support designs with IJTAG interfaces.

• The tool does not support dynamic partitioning.

• The tool does not support failure generation via the “write_failures” command. You
must perform serial pattern simulation.

• The tool provides a warning when a truncated failure log indicates that some chains
were untested. It is similar to the following:

// Warning: Failure truncation caused some chains on channel
<channel_name> to be left untested. Last tested pattern is <#>.

For more information, see “Failure Truncation Handling” on page 65.

Reversible Scan Chain Diagnosis
Generating Reversed Scan Path Description

Tessent™ Diagnosis User’s Manual, v2022.4 481

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• You have generated chain patterns for reversible scan chains from a design that includes

shift direction global signals. Refer to create_reversible_patterns for information on
generating reversible test patterns.

• You have run the “report_scan_path -output_file” command against the reversed flat
model. The resulting scan path report (.spr) file provides visibility into the reversed
scan chain configuration.

Procedure
To enable reversed scan chain diagnosis, prior to specifying the diagnose_failures command,
run the set_diagnosis_options command with the following two new options:

• set_diagnosis_options -shift_direction_port name

Use the -shift_direction_port option to specify the name of the shift direction port.
The tool verifies the pattern values on the port so that it distinguishes single-
direction chain patterns (to be used for direction and fault type detection) from
reversed chain patterns (to be used for down-to-cell diagnosis).

Specifying this option triggers reversed chain diagnosis.

• set_diagnosis_options -reverse_scan_configuration spr_file

Use the -reverse_scan_configuration option to specify the scan path report file that
contains the reversed configuration. The tool only enables you to load one flat
model, so this report provides the necessary additional information about the
reversed scan path.

The tool reports an error if you specify the shift direction port name but not the scan
path report file.

The tool loads the file once per diagnosis session. If the tool cannot validate the file,
it reports an error and tries again on the next diagnose_failures command. Errors
could occur in the following cases:

o The tool generated the scan path report with unsupported metadata.

o The length of the scan chains differs from the standard configuration.

o The file is invalid because it was written out with non-default options.

Generating Reversed Scan Path Description
You must provide the scan configuration of the reversed shift direction for the pattern
generation process and diagnosis algorithms. The flat model only contains L2R shift
connections, so you need to provide an additional side file to the tool, which is the Scan Path
Report, generated using the flat model containing R2L shift connections.

Tessent™ Diagnosis User’s Manual, v2022.4482

Reversible Scan Chain Diagnosis
Frequently Asked Questions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
Run the following commands to generate the Scan Path report:

read_verilog <design_with_reversible_hw>.v

read_cell_library < >

dofile <edt_dofile>

add_pin_constraint <shift_direction_port> C1

set_system_mode analysis

report_scan_path -output_file design.rev.spr

Results
The “report_scan_path” command generates the compressed scan description file with the “.gz”
suffix. The tool automatically stores design information in the scan description file in the form
of metadata to provide consistency checking during loading.
You must provide the “design.rev.spr.gz” file during the ATPG step and diagnosis steps.

Frequently Asked Questions
This section contains frequently asked questions and possible solutions about reversible chain
diagnosis.

1. I have a design with dedicated channels for OCC chains. The OCC chains are
directly connected from or to the SI or SO port, while other chains are connected
from or to the decompressor or compressor. Can I apply RVS to this structure?

If you insert reversible logic outside of Tessent for OCC chains, contact Siemens EDA
for support. However, it is recommended that you get the flat model back as soon as
possible for testing. At the very least, provide a skeleton design with such re-stitched
OCCs and a few compressed reversible chains. The Tessent reversible scan insertion
flow does not currently support modifying OCC chains because of tool hardware
manipulation restrictions for these elements. In general, this only comprises a small
number of registers compared to hundreds of thousands in regular chains. If this is
important for you, please contact Siemens EDA.

2. Does RVS support inserted pipeline registers between SI port and decompressor,
and between compressor and SO port?

Yes, you can apply RVS to this structure.

3. We have masked only the OCC chains, but we also have non-reversible elements
such as embedded scan chain memories. Should we also mask the chains, including
embedded scan chain memories?

Reversible Scan Chain Diagnosis
Frequently Asked Questions

Tessent™ Diagnosis User’s Manual, v2022.4 483

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Do this only if a single memory spans the entire chain length. If there are multiple
memory segments, RVS will work, but the resolution will only apply to the segment.
Individual bits are not distinguishable.

4. Should we mask all scan chains that contain non-reversible elements?

No. Refer to #3 above.

Tessent™ Diagnosis User’s Manual, v2022.4484

Reversible Scan Chain Diagnosis
Frequently Asked Questions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix A
dlogutil Utility

The dlogutil utility generates failure files from standard test data format (STDF) files.
The Tessent Diagnosis dlogutil utility extracts scan failures from STDF-V4 2007(.1)-formatted
files and generates failure files that you can use for diagnosis with Tessent Diagnosis. The
following sections describe the features of the dlogutil utility.

• Command line syntax and switches.

• Utility commands and variables.

• Features for SSN on-chip compare.

dlogutil Invocation . 486
dlogutil Utility Commands . 487
dlogutil Utility Variables . 497
dlogutil Features for SSN On-Chip Compare. 503
Tessent™ Diagnosis User’s Manual, v2022.4 485

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Invocation
dlogutil Invocation
Invokes the dlogutil utility, a Tessent Diagnosis utility.

Usage
DLOGUTIL

[-DOFile dofile_name]
[-LOGfile logfile_name [-REPlace]]

Arguments
• -DOFile dofile_name

An optional switch and string pair that specifies the name of a dofile to run upon invocation.
• -LOGfile logfile_name

An optional switch and string pair that specifies the name of the file to which you want
dlogutil utility to write all session information. The default is to display session information
to the standard output. The version banner that indicates the tool, version, date, and platform
on which the log file was produced is included at the beginning of the file.

• -REPlace
An optional switch that overwrites the -Logfile logfile_name if a log file of the same name
already exists.

Description
You use the dlogutil utility to extract scan failures from STDF-V4 2007(.1)- formatted files and
create failure files for use with Tessent Diagnosis. Subsequently, you use the dlogutil output for
diagnosis with Tessent Diagnosis.

Examples
DLOGUTIL -dofile my_test.std
Tessent™ Diagnosis User’s Manual, v2022.4486

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Utility Commands
dlogutil Utility Commands
Use the dlogutil utility commands to extract scan failures from STDF-V4 2007(.1)-formatted
files and output failure files that you can use for diagnosis with Tessent Diagnosis.
extract_stdf_failures . 488
load_fail_map . 490
load_stdf_file . 491
map_fail_log . 492
report_stdf_conditions. 493
report_stdf_parts . 494
report_stdf_pattern_sequences. 495
write_atdf_file . 496
Tessent™ Diagnosis User’s Manual, v2022.4 487

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
extract_stdf_failures
extract_stdf_failures
Extracts failures from an STDF file to generate failure files.

Usage
extract_stdf_failures stdf_filename faillog_base [-REPlace] [-ignorePRR]

Arguments
• stdf_filename

A required string that specifies the name of the STDF file.

Tip
You can use gzipped files without decompressing them. Ensure the file name ends
with the “.gz” extension for the tool to automatically use gzip processing.

• faillog_base
A required string that specifies the base name to use for each failure file. For every failing
part, the utility names the failure file faillog_base_i, where i is the unique ID for this part.

• -REPlace
An optional switch that specifies to replace an existing failure file.

• -ignorePRR
An optional switch to ignore the part results record (PRR) and generate failure files for all
parts.

Description
When you enter this command, the dlogutil utility parses the given STDF file using the default
schema and loads the STDF file into memory. During parsing, the tool ignores invalid records.

The stdf file can include either a single part or multiple parts.

The dlogutil utility automatically extracts valid scan failures for each part from the STR records
based on the STDF V4-2007(.1) standard. The tool writes extracted fails for each part to a
failure file that it names based on your faillog_base string.

Examples
Example 1

The following example extracts fails from the my_test.std file in the stdf directory and generates
a failure file in the results directory for every failing part using the my_part base name.

extract_stdf_failures stdf/my_test.std results/my_part
Tessent™ Diagnosis User’s Manual, v2022.4488

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
extract_stdf_failures
Example 2
The following example generates failure files for every test in the compressed.stdf.gz file. It
uses the failure_file base name when generating a failure file, and it replaces an existing failure
file if it has the same name.

extract_stdf_failures compressed.stdf.gz failure_file -replace -ignorePRR
Tessent™ Diagnosis User’s Manual, v2022.4 489

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
load_fail_map
load_fail_map
Loads the Logic BIST chain mapping file from the LVDB.

Usage
load_fail_map <LBIST_controller_ID>.lbist_chain_info_file

Arguments
• <LBIST_controller_ID>.lbist_chain_info_file

A required string that specifies the .lbist_chain_infofile to load.

Description
The load_fail_map command is used when converting a top-level failure file to a core-level
failure file that Tessent Diagnosis can read. Normally, the logic BIST fail mapping file is stored
at the following location:

./LV_WORKDIR/<LBIST controller id>.lbist_chain_info

See “Converting the Top-Level Failure File to a Core-Level Failure File” for complete
information.

Note
You must load the chain mapping file before you use the map_fail_log command.

Examples
load_fail_map BP4.WBP0.lbist_chain_info
Tessent™ Diagnosis User’s Manual, v2022.4490

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
load_stdf_file
load_stdf_file
Loads the STDF file using the default schema based on the STDF V4-2007(.1) standard.

Usage
load_stdf_file stdf_filename

Arguments
• stdf_filename

A required string that specifies the name of the STDF file.

Tip
You can use gzipped files without decompressing them. Ensure the file name ends
with the “.gz” extension for the tool to automatically use gzip processing.

Description
The tool parses the given STDF file using the specified schema and loads the file into memory.

Examples
Example 1

The following example loads the my_test.std file found in the stdf directory.

load_stdf_file stdf/my_test.std

Example 2
The following example loads the compressed.stdf.gz file from the current working directory.

load_stdf_file compressed.stdf.gz
Tessent™ Diagnosis User’s Manual, v2022.4 491

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
map_fail_log
map_fail_log
Converts a top-level failure file to a core-level failure file for use by Tessent Diagnosis
diagnosis.

Usage
map_fail_log top_level_failure_file [-out core_level_failure_file]

[-replace]

Arguments
• top_level_failure_file

A required string that specifies the name of the top-level failure file to convert to a core-
level failure file.

• -out core_level_failure_file
An optional switch and string pair that specifies the name of the converted core-level failure
file converted by the tool.

• -replace
An optional switch that overwrites the output core-level failure file if it already exists.

Description
See “Converting the Top-Level Failure File to a Core-Level Failure File” for complete
information.

Examples
The following example loads the Tessent SiliconInsight top-level failure file using the
map_fail_log command:

dlogutil> map_fail_log top_level_failure_file.flog -out core.flog -replace
Tessent™ Diagnosis User’s Manual, v2022.4492

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
report_stdf_conditions
report_stdf_conditions
Reports the testing condition under which the loaded STDF file was generated.

Usage
report_stdf_conditions

Arguments
None.

Description
Reports the testing condition under which the loaded STDF file was generated, including the
temperature, shift or capture frequency, voltage, and so on. By default, the testing condition for
the first part is reported.
Tessent™ Diagnosis User’s Manual, v2022.4 493

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
report_stdf_parts
report_stdf_parts
Summarizes the STDF parts tested in table format.

Usage
report_stdf_parts

Arguments
None.

Description
Summarizes the following STDF parts tested in table format:

• Part number

• Range of records for this part

• Tester head/site number

• Number of tests

• Testing time

• Hard/soft bin

• Part ID

• Testing results
Tessent™ Diagnosis User’s Manual, v2022.4494

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
report_stdf_pattern_sequences
report_stdf_pattern_sequences
Reports the pattern sets that are applied for testing.

Usage
report_stdf_pattern_sequences

Arguments
None.

Description
Reports the pattern sets that are applied for testing, including the pattern set name, pattern
count, and cycle offset.
Tessent™ Diagnosis User’s Manual, v2022.4 495

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
write_atdf_file
write_atdf_file
Writes a pre-loaded STDF file into an ASCII ATDF file.

Usage
write_atdf_file atdf_filename [-replace]

Arguments
• atdf_filename

A required string that specifies the name of the ATDF file.
• -replace

An optional argument that enables the tool to overwrite the existing file.

Description
The tool traverses all records of the pre-loaded STDF file and writes the content of each record
into the ATDF file you specify with atdf_filename.

A short summary is provided first. For each field of a given record, the field name and the field
content are separated by a colon.

Examples
write_atdf_file my_test.atd -replace
Tessent™ Diagnosis User’s Manual, v2022.4496

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Utility Variables
dlogutil Utility Variables
In addition to commands, dlogutil supports many variables.
To set a variable, from the dlogutil utility command prompt, enter:

set_variable variable_name value

where:

• variable_name — The name of the variable.

• value — The new value to set it to.

To display a variable, from the dlogutil utility command prompt, enter:

report_variable

A report of the current settings for all the variables displays.

The variables are:

stdf_cap_data_mapping . 498
stdf_fail_trunc_handling . 500
stdf_selected_parts. 501
stdf_selected_psr_ids . 502
stdf_test_name_source. 503
Tessent™ Diagnosis User’s Manual, v2022.4 497

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_cap_data_mapping
stdf_cap_data_mapping
Changes the dlogutil utility default handling for captured values that are not known to Tessent
Diagnosis by supporting user-defined mappings for the unknown values.

Usage
set_variable stdf_cap_data_mapping value1 new_value1 value2 new_value2 ...

Data Type
String.

Default Value
None.

Arguments
• value1 new_value1 value2 new_value2 ...

A required Tcl list that specifies the mapping in pairs such that the first value is the
unknown captured value and the second value is a supported mapped value for the unknown
value.

Description
By default, Tessent Diagnosis recognizes H, L, and Z values for the expected values and actual
values for failing bits. If it encounters any other captured values, it issues an error and does not
generate failure files for failing bits with the unknown values.

To generate valid failure files for parts with unknown captured values, you can map unknown
captured values to the following strings, where the “Mapped Value” column lists the options for
new_value1, new_value2, and so on, in the usage syntax:

Define each unknown captured value once. Multiple mappings for each unknown captured
value cause errors.

Table A-1. Supported Mapping Values for Unknown Captured Values
Mapped Value Description
H Maps to H.
L Maps to L.
Z Maps to Z.
PASS Treats this failing bit as passing and excludes this bit when

generating the failure file.
FAIL Treats this failing bit as failing. The tool attempts to derived

its value from the corresponding expected value. If the
expected value is H or L, the captured value is mapped to L
or H, respectively. Otherwise, the tool issues an error.
Tessent™ Diagnosis User’s Manual, v2022.4498

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_cap_data_mapping
Examples
Suppose your STDF file, my_test.stdf, includes failures with expected values that are unknown
to Tessent Diagnosis: G (glitch) and M (mid-band voltage).

extract_stdf_failures ./my_test.stdf my_flog_try1

...

set_variable stdf_cap_data_mapping “G PASS M Z”

extract_stdf_failures ./my_test.stdf my_flog_try2

...

set_variable stdf_cap_data_mapping "G FAIL M PASS"

extract_stdf_failures ./my_test.stdf my_flog_try3

The first extraction run only generates failure files for failing bits whose expected values are
valid (H, L, or Z). The tool reports the unknown values (G or M) but does not generate a failure
file for the failing parts with any unknown values.

In the second run, dlogutil maps the unknown captured value M to Z, and drops all failing bits
with captured values of G. Now failure files can be extracted for all failing parts.

In the third run, all failing bits with captured values of G are automatically turned into failing
bits assuming that their corresponding expected values are H or L. And all failing bits with
captured values of M are dropped. Similarly failure files are extracted for all failing parts.
Tessent™ Diagnosis User’s Manual, v2022.4 499

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_fail_trunc_handling
stdf_fail_trunc_handling
Changes the dlogutil utility default handling for truncated failures from STDF-V4 2007(.1)
failure files based on the failure file tracking keyword.

Usage
set_variable

stdf_fail_trunc_handling {[all] | [last_cycle_logged] | [unknown]}

Data Type
String.

Default Value
None.

Arguments
None.
Tessent™ Diagnosis User’s Manual, v2022.4500

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_selected_parts
stdf_selected_parts
Specifies all failing parts that should be considered under subsequent failure extraction.

Usage
set_variable stdf_selected_parts selected_part_id_list

Data Type
String.

Default Value
None.

Arguments
• selected_part_id_list

A required Tcl list that specifies the part IDs for all failing parts that the tool targets for
subsequent failure extraction.

Description
You specify selected_part_id_list using a Tcl list.

In the Tcl list, you must specify each part using the part’s unique part ID that is numbered
starting from 0. If you have an STDF loaded, then use the report_stdf_parts to obtain the parts.

If you submit an empty list or do not specify one, then the tool extracts failures for all failing
parts.

Examples
set_variable stdf_selected_parts { 0 1 3 5 }
Tessent™ Diagnosis User’s Manual, v2022.4 501

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_selected_psr_ids
stdf_selected_psr_ids
Specifies all pattern sequences that the tool should consider for subsequent failure extraction.

Usage
set_variable stdf_selected_psr_ids selected_test_psr_index_list

Data Type
String.

Default Value
None.

Arguments
• selected_test_psr_index_list

A required Tcl list that specifies the PSR index for all pattern sequences that are targeted for
subsequent failure extraction.

Description
You specify selected_test_psr_index_list using a Tcl list.

In the Tcl list, you must specify each pattern sequence using the pattern sequences’s unique
PSR_INDX defined in its PSR record. If you have an STDF file loaded, then use the
report_stdf_pattern_sequences to obtain the PSR_INDX.

If you submit an empty list or do not specify one, then the tool extracts failures for all pattern
sequences. Only the failures associated with the targeted pattern sequences are extracted and
written into the failure files.
Tessent™ Diagnosis User’s Manual, v2022.4502

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
stdf_test_name_source
stdf_test_name_source
Appends the pattern file name to the test suite name for STDF-V4 2007(.1) failures files
produced by Verigy testers.

Usage
set_variable stdf_test_name_source PSR_NAM

Data Type
String.

Default Value
None.

Arguments
• PSR_NAM

A required string that specifies where the test name is extracted.

dlogutil Features for SSN On-Chip Compare
The dlogutil utility has several features that support SSN on-chip compare.

Using a Test Pattern in Multiple Tests
Using a test pattern in multiple tests for the same part is a valid use case. SSN’s on-chip
compare feature requires this use case.

You can specify all pattern sequences that the tool considers for failure extraction with the
stdf_selected_psr_ids variable. The dlogutil utility reads the pattern sequence records (PSR) and
extracts all related fails. It does not report an error if it finds a PSR more than once.

The dlogutil utility can determine the individual runs of the same pattern based on the test
number field of the scan test record (STR). The test number field name is TEST_NUM. The
utility generates separate failure files for each run and appends “.test_#” to the base name
(where # is the test number).

The STR has a limit to the number of fails it can hold. If the tester has more fails to record, it
writes an additional STR immediately after the full STR. This STR and any subsequent STRs
from the same test have the continuation flag bit set to indicate that the fails it holds are from the
same test as its predecessor.

Additionally, the dlogutil utility passes test condition fields to each failure file’s tracking_info
section.
Tessent™ Diagnosis User’s Manual, v2022.4 503

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Features for SSN On-Chip Compare
Core Instance Information
If your ATE can use datalog test records (DTR), you can log data to STDF for dlogutil to extract
into the failure files. You can log a list of failing cores to STDF for the top-level failure file for
SSN on-chip compare. Use the core’s SSH instance name from the ICL design.

Note
See the Primary Phase and Retest Phase sections of “Testing and Failure Logging Process”
on page 560 for more information.

For example, if three cores are contributing failures to the SSN bus and their SSH instance
names are corea_instance1, corea_instance2, and corea_instance3, use the ATE to log three
DTRs containing the following (one DTR for each line) immediately after the test’s STRs:

TESSENT ssn_on_chip_compare_enabled_failing_instances begin
corea_instance1 corea_instance2 corea_instance3
TESSENT ssn_on_chip_compare_enabled_failing_instances end

The dlogutil utility reads the DTRs only if they immediately follow the test’s STRs. For this
example, the dlogutil utility writes the SSN core instance information into the chip-level failure
file that it generates for the STRs:

ssn_on_chip_compare_enabled_failing_instances_begin
 corea_instance1
 corea_instance2
 corea_instance3
ssn_on_chip_compare_enabled_failing_instances_end

Retesting to Collect Failures for Specific Cores
If your ATE can use the COND_LST field of STRs, you can log data to STDF for dlogutil to
extract into the failure files. The first test phase for SSN on-chip compare is the primary phase.
The retest phase collects failures for specific cores. You can log the test phase to STDF for the
chip-level failure files.

Note
See the Primary Phase and Retest Phase sections of “Testing and Failure Logging Process”
on page 560 for more information.

For example, if a core contributes failures to the SSN bus, use the ATE to log the following line
into the COND_LST field of the test’s STRs for the primary phase:

ssn_on_chip_compare_test_phase=primary

Use this line for the retest phase:

ssn_on_chip_compare_test_phase=retest
Tessent™ Diagnosis User’s Manual, v2022.4504

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Features for SSN On-Chip Compare
The dlogutil utility reads this information from the STRs and writes the test phases into the
chip-level failure file before it writes the on-chip compare failing instance names. The utility
generates the following for the primary phase:

ssn_on_chip_compare_test_phase primary
ssn_on_chip_compare_enabled_failing_instances_begin
 corea_instance1
 corea_instance2
 corea_instance3
ssn_on_chip_compare_enabled_failing_instances_end

The utility generates the following for the retest phase:

ssn_on_chip_compare_test_phase retest
ssn_on_chip_compare_enabled_failing_instances_begin
 corea_instance1
 corea_instance2
 corea_instance3
ssn_on_chip_compare_enabled_failing_instances_end
Tessent™ Diagnosis User’s Manual, v2022.4 505

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

dlogutil Utility
dlogutil Features for SSN On-Chip Compare
Tessent™ Diagnosis User’s Manual, v2022.4506

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix B
Layout-Aware Diagnosis Layout Verification

Rules

When you perform layout-aware diagnosis, Tessent Diagnosis uses layout verification rules to
perform up-front validation of the design and layer information from the LEF/DEF input.
Refer to “Layout Verification Reporting” for more information about layout verification
reporting.

Refer to “Layout Verification Examples” for a series of examples that walk you through layout
verification debugging.

The Layout Verification Rules . 508
Instance, Net, and Pin Path Names in Layout Rule Violation Reports 516
Layout Verification Examples . 520
Guidelines for Including or Excluding Design Modules From Mismatch Reporting . . 527
Tessent™ Diagnosis User’s Manual, v2022.4 507

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
The Layout Verification Rules
The Layout Verification Rules
Tessent Diagnosis uses various rule categories for validation of the design and layer information
before creating the LDB for subsequent use during diagnosis. By default, the handling for all of
the layout rules is a Warning.
The layout verification rule categories are:

Chip Boundary Rules . 508
Instance Rules . 508
Layer Definition Rules. 509
Macro Definition Rules . 510
Net Rules . 510
Taper Rules . 512
Via Definition Rules. 512
LEF/DEF Parser Warning Rules . 512

Chip Boundary Rules
Chip boundary rules pertain to the top-level module chip boundary issues.
Table B-1 lists the chip boundary rules.

Instance Rules
Instance rules pertains to library cell and other cell instantiations.
Table B-2 lists the instance rules.

Table B-1. Chip Boundary Rules
Rule Name Description
DesignTopModuleMatch The names of the top level modules must match between

design and layout. This rule is only run if you do not
specify any difference in hierarchy between design and
layout. See the create_layout command for information on
specifying hierarchical differences.

DesignTopModulePinMatch All IO pins at the boundary of the chip (specifically, the
top level module) in the design must exist in the top level
module in the layout. This rule is only run if you do not
specify any difference in hierarchy between design and
layout. See the create_layout command for information on
specifying hierarchical differences.
Tessent™ Diagnosis User’s Manual, v2022.4508

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Layer Definition Rules
Layer Definition Rules
Layer definition rules pertain to layer specifications for nets, pins, and so on.
Table B-3 lists the layer definition rules.

Table B-2. Instance Rules
Rule Name Description
DesignCellMatch For all the library cells that are instantiated at least once in

the design, a corresponding LEF macro with the same name
must be found in layout.

DesignCellPinMatch For every library cell instantiated at least once in the design
that passes DesignCellMatch rule, the pins must match
between the cell definition in design and the corresponding
(specifically, matching name) LEF macro in layout.

DesignInstanceMatch All instances in the design (library cell instances as well as
higher level instances) must exist in the layout. This check
is not repeated for the instances belonging to any higher
level design instance that does not exist in the layout.

DesignInstanceTypeMatch For every leaf instance (specifically, instances of library
cells) in the design that passes the DesignInstanceMatch
rule, the library cell name in the design must match the LEF
macro name for the corresponding instances in the layout.
This check is not run for the library cell instances belonging
to any higher level design instance that does not pass the
DesignInstanceMatch rule (that is, missing from the
layout).

DesignModuleCell A higher-level design module (specifically, a non-library
cell module) must not have the same name as a LEF macro
in the layout.
For example, if the ATPG library is defined at a low level
compared to the LEF library. The ATPG library might be
composed of simple gates such as AND, OR, NOT, and on
the layout side, the LEF macros might be defined at a higher
level, for example, ANDOR, half adder, and so on.
If this rule is violated, then the tool most likely produces
DesignInstanceMatch violations because the lower level
instances in the design are not found in the layout.

Table B-3. Layer Definition Rules
Rule Name Description
LayerExistenceNet A specified net must use a layer that is specified in the LEF

files.
Tessent™ Diagnosis User’s Manual, v2022.4 509

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Macro Definition Rules
Macro Definition Rules
Macro definition rules pertain to missing and duplicated macros.
Table B-4 lists the macro definition rules.

Net Rules
Net rules pertain to checking nets and pins.
Table B-5 lists the net rules.

LayerExistencePin A specified pin must use a layer that is specified in the
LEF files.

LayerExistenceMacro A specified macro must use a layer that is specified in the
LEF files.

LayerExistenceNondefaultrule A specified nondefaultrule must use a layer that is
specified in the LEF files.

LayerExistenceVia A specified via must use a layer that is specified in the LEF
files.

LayerExistenceViarule A specified viarule must use a layer that is specified in the
LEF files.

LayerExistenceViarulelayer A specified via rule layer must use a layer that is specified
in the LEF files.

LayerDuplicate A specified layer is already defined in a previously-
specified LEF file. The tool ignores the duplicate layer.

Table B-4. Macro Definition Rules
Rule Name Description
MacroExistence A specified component must use a macro that is defined in

the specified LEF files.
MacroDuplicate A specified macro is already defined in a previously-

specified LEF file or files. The tool ignores the duplicate
macro definition.

MacroDesign A specified DEF design is already defined in a previously
specified LEF file. The tool ignores any duplicate
definition in any LEF files.

Table B-3. Layer Definition Rules (cont.)
Rule Name Description
Tessent™ Diagnosis User’s Manual, v2022.4510

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Net Rules
Table B-5. Net Rules
Rule Name Description
DesignNetMatch All nets in the design, within the common area, must exist

in the layout.
DesignNetPinMatch For each pin connected to a net (that passes the

DesignNetMatch rule) in the design there must be a pin of
the same name connected to the corresponding net in the
layout.

LayoutNetPinMatch For each pin connected to a net (that passes the
DesignNetMatch rule) in the layout there must be a pin of
the same name connected to the corresponding net in the
design.

NetExistenceNondefaultrule A specified NONDEFAULTRULE at a net must be defined
in the LEF or DEF files.
If this rule is violated, then Tessent Diagnosis uses the
standard width/spacing values from the layer definition in
the LEF files. This can result in inaccurate polygon
coordinates in the Tessent Diagnosis diagnosis report,
marker file, and other tool-produced data.

NetExistenceStyle A specified style at a net must be defined in the DEF files.
Net_use In DEF file, net use between POWER and GROUND must

be consistent. Inconsistency in NET-USE statements
associated with DEF-design=design results in a violation of
this rule.

NetExistenceVia A specified via at a net must be defined in the LEF/DEF
files.

Net_pin_use In DEF file, net and pin use between POWER and
GROUND must be consistent. Inconsistency in NET-USE
and PIN-USE statements associated with
DEF-design=design results in a violation of this rule.

Net_port_use Net and port use between POWER and GROUND must be
consistent between the DEF file and the LEF MACRO port.
Inconsistency between NET-USE statements associated
with DEF-design=design and PORT-USE statements in the
LEF file results in a violation of this rule.

PinExistenceMacro A specified net connected to a macro must use a pin that is
defined in the LEF files.
Tessent™ Diagnosis User’s Manual, v2022.4 511

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Taper Rules
Taper Rules
Taper rules pertains to duplicated and missing taper rules.
Table B-6 lists the taper rules.

Via Definition Rules
Via definition rules pertain to duplicated and missing vias.
Table B-7 lists the via definition rules.

LEF/DEF Parser Warning Rules
LEF/DEF parser warning rules check for missing statements in the LEF and DEF files in
addition to other parser warnings.
Table B-8 lists the LEF/DEF parser warning rules.

Table B-6. Taper Rules
Rule Name Description
TaperDuplicate A specified taper rule is already defined in a previously-

defined LEF file or files. The tool ignores the duplicate
taperrule.

TaperExistence A specified taper rule in a macro at a pin must be defined
in the LEF file or files.

Table B-7. Via Definition Rules
Rule Name Description
ViaDuplicate A specified via is already defined in a previously-specified

LEF file or files. The tool ignores the duplicate via
definition.

ViaExistenceMacro A specified via in a LEF macro must be defined in the
LEF/DEF files.

Table B-8. LEF/DEF Parser Warning Rules
Rule Name Description
LefParseMissingVersion This rule is violated if the VERSION statement is missing

from a LEF file. Without this statement version 5.6 is
assumed. If the actual LEF file version is other than 5.6, the
handling becomes unreliable. You can fix this by adding an
appropriate VERSION statement in the corresponding LEF
file.
Tessent™ Diagnosis User’s Manual, v2022.4512

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
LEF/DEF Parser Warning Rules
LefParseMissingCaseSensitive This rule is violated if the NAMESCASESENSITIVE
statement is missing from a LEF file. In this case the names
in the LEF files are assumed to be case sensitive. You can
fix this violation by adding an appropriate
NAMESCASESENSITIVE statement in the corresponding
LEF file.

LefParseMissingBusBitChar This rule is violated if the BUSBITCHARS statement is
missing from a LEF file. In this case the default characters '[
]' are assumed to be the bus bit characters. You can fix this
violation by adding an appropriate BUSBITCHARS
statement in the corresponding LEF file.

LefParseMissingMacroPIN
Polygons

This rule is violated if there is some PIN or PORT
definition in a MACRO without any polygons defined for
the PIN or PORT. The LEF file excerpt below gives an
example of this situation:
...
MACRO buf04
...
PIN VCC

 DIRECTION OUTPUT ;
 USE POWER ;
 PORT
 LAYER route_2 ;
 END
 END VCC
...
END

The PIN/PORT polygons are used for open defect
diagnosis. Missing information about these polygons can
result in incomplete open diagnosis for a net connected to
the corresponding PIN/PORT. You can fix this by adding
the missing polygon information about the PIN/PORT in
the corresponding LEF file.

LefParseEndLibrary This rule is violated if there are some LEF constructs (for
example, MACRO definitions) after an 'END LIBRARY'
statement in a LEF file. Any such constructs are ignored by
the parser and are not used during database creation. You
can fix this by ensuring that there is no data in the LEF file
after an END LIBRARY statement.

Table B-8. LEF/DEF Parser Warning Rules (cont.)
Rule Name Description
Tessent™ Diagnosis User’s Manual, v2022.4 513

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
LEF/DEF Parser Warning Rules
DefParseMissingVersion This rule is violated if the VERSION statement is missing
from a DEF file. Without this statement version 5.7 is
assumed. If the actual DEF file version is other than 5.7, the
handling becomes unreliable. You can fix this by adding an
appropriate VERSION statement in the corresponding DEF
file.

DefParseMissingCaseSensitive This rule is violated if the NAMESCASESENSITIVE
statement is missing from a DEF file. In this case the names
in the DEF files are assumed to be case sensitive. You can
fix this violation by adding an appropriate
NAMESCASESENSITIVE statement in the corresponding
DEF file.

DefParseMissingBusBitChar This rule is violated if the BUSBITCHARS statement is
missing from a DEF file. In this case the default characters
'[]' are assumed to be the bus bit characters. You can fix this
violation by adding an appropriate BUSBITCHARS
statement in the corresponding DEF file.

DefParseMissingDividerChar This rule is violated if the DIVIDERCHAR statementis
missing from a DEF file. In this case the default character '/
'is assumed as the hierarchy divider character. You can fix
this violation by adding an appropriate DIVIDERCHAR
statement in thecorresponding DEF file.

DefParseMissingDesign This rule is violated if the DESIGN statement is missing
from a DEF file. In this case the top module name for the
DEF file is unknown. For hierarchical DEF files this is fatal
error because the hierarchy cannot be properly processed
without this top module name. For non-hierarchical DEF
files the top module name cannot be matched between
design and layout if this rule is violated.You can fix this
violation by adding an appropriate DESIGN statement in
the corresponding DEF file.

DefParseMissingSpecialNet This rule is violated if there is some SPECIALNET type
definition in the DEF file; however no nets are defined for
this SPECIAL NET type. This may indicate missing data
for layout-aware diagnosis. You can fix this by adding
appropriate net definitions for the SPECIAL NET type in
the corresponding DEF file.

Table B-8. LEF/DEF Parser Warning Rules (cont.)
Rule Name Description
Tessent™ Diagnosis User’s Manual, v2022.4514

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
LEF/DEF Parser Warning Rules
DefParseEndDesign This rule is violated if there are some DEF constructs (for
example, NET definitions) after an 'END DESIGN'
statement in a DEF file. Any such constructs are ignored by
the parser and are used during database creation. You can
fix this by ensuring that there is no data in the DEF file after
an END DESIGN statement.

Table B-8. LEF/DEF Parser Warning Rules (cont.)
Rule Name Description
Tessent™ Diagnosis User’s Manual, v2022.4 515

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Instance, Net, and Pin Path Names in Layout Rule Violation Reports
Instance, Net, and Pin Path Names in Layout
Rule Violation Reports

In the layout rule violation mismatch report, Tessent Diagnosis reports the design instance/net/
pin path names for various layout rule violations.
Table B-9 lists the layout rule violations that report instand/net/pin path names.

By default, Tessent Diagnosis reports these instance/net/pin path names in Siemens EDA DFT
format.

Name Mismatch Reporting . 516
Instance, Net, and Pin Layout Path Names Suppression in Violation Reporting 517
Instance, Net, and Pin Path Name Violation Examples . 517

Name Mismatch Reporting
At times the corresponding instance/net/pin path names in the layout format differ from the
names in the DFT format. To remedy this mismatch, Tessent Diagnosis adds the DFT and
layout names to the rule violation reporting.
For the rules in Table B-9, Tessent Diagnosis adds the DFT and layout names to the text of the
violations as follows:

DesignInstanceMatch Violation
DesignInstanceMatch-<ID>: Design instance instance path name in DFT format
(Expected Layout Name: instance path name in layout format) does not exist
in layout.

DesignInstanceTypeMatch Violation
DesignInstanceTypeMatch-<ID>: Design instance instance path name in DFT
format (Expected Layout Name: instance path name in layout format) type
design cell name does not match with type layout cell name used in layout.

DesignNetMatch Violation
DesignNetMatch-<ID>: Design net net path name in DFT format (Expected
Layout Name: net path name in layout format) does not exist in layout.

Table B-9. Rules Reporting Instance, Net, and Pin Path Name Violations
DesignInstanceMatch DesignInstanceTypeMatch
DesignNetMatch DesignNetPinMatch
LayoutNetPinMatch
Tessent™ Diagnosis User’s Manual, v2022.4516

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Instance, Net, and Pin Layout Path Names Suppression in Violation Reporting
DesignNetPinMatch Violation
If both the net and pin names differ between the DFT and layout formats:

DesignNetPinMatch-<ID>: Design pin pin path name in DFT format (Expected
Layout Name: pin path name in layout format) at net net path name in DFT
format (Expected Layout Name: net path name in layout format) does not
exist in layout.

DesignNetPinMatch Violation
If only the net name differs between the DFT and layout format.

DesignNetPinMatch-<ID>: Design pin pin path name in DFT format at net net
path name in DFT format (Expected Layout Name: net path name in layout
format) does not exist in layout.

DesignNetPinMatch Violation
If only the pin name differs between DFT and layout format.

DesignNetPinMatch-<ID>: Design pin pin path name in DFT format (Expected
Layout Name: pin path name in layout format) at net net path name in DFT
format does not exist in layout.

LayoutNetPinMatch Violation
LayoutNetPinMatch-<ID>: Design pin pin path name in layout format at net
net path name in DFT format (Expected Layout Name: net path name in layout
format) does not exist in design.

Instance, Net, and Pin Layout Path Names
Suppression in Violation Reporting

You can suppress the reporting of instance/net/pin layout path names in the violations with the
report_layout_rules command.
Specify the report_layout_rules command with the -no_layout_names switch as follows:

report_layout_rules layout_rule_id-occurrance# -no_layout_names

or

report_layout_rules -all_fails -no_layout_names

Instance, Net, and Pin Path Name Violation
Examples

The following examples demonstrate instance, net, and pin path name violations.
Tessent™ Diagnosis User’s Manual, v2022.4 517

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Instance, Net, and Pin Path Name Violation Examples
Instance Name Violation Example
In this case the instance name in DFT format differs from that in layout format because the last
part of the name is flat. Because the layout is being created from the LEF/DEF the instance path
name in layout format is expected to be as follows:

/core0/cntl_1/mac\/adder\/AND0

Note that in LEF/DEF, then naming convention individual hierarchy delimiters are escaped.

Report the corresponding DesignInstanceMatch rule violation using the following command:

FAULT> report_layout_rules DesignInstanceMatch-1

// DesignInstanceMatch-1: Design instance /core0/cntl_1/mac/adder/AND0
(Expected Layout Name: /core0/cntl_1/mac\/adder\/AND0) not found in
layout.

You can suppress reporting of the layout name for this violation using the report_layout_rules
command as follows:

FAULT> report_layout_rules DesignInstanceMatch-1 –no_layout_names

// DesignInstanceMatch-1: Design instance /core0/cntl_1/mac/adder/AND0 not
found in layout.

Net Name Violation Example
In this example, the following net is not found in the layout:

‘/core0/cache_10/bank2/\dbit[32] ’

In this case, the net name in DFT format differs from the layout format.

Report the corresponding DesignNetMatch rule violation using the following command:

FAULT> report_layout_rules DesignNetMatch-1

DesignNetMatch-<ID>: Design net /core0/cache_10/bank2/dbit[32](Expected
Layout Name: /core0/cache_10/bank2/dbit\[32\]) does not exist in layout.

You can suppress reporting of the layout name for this violation using the report_layout_rules
command as follows:

FAULT> report_layout_rules DesignNetMatch-1 –no_layout_names

DesignNetMatch-<ID>: Design net /core0/cache_10/bank2/dbit[32] does not
exist in layout.
Tessent™ Diagnosis User’s Manual, v2022.4518

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Instance, Net, and Pin Path Name Violation Examples
Pin Name Violation Example
In this example, the following design pin is not found in the layout:

Pin Name: ‘/core0/pll_10/freq_1/OR1/C’

On net: ‘/core0/pll_10/freq_1/\ctl_net[10] ’

In this case, the pin name in layout format is same as in DFT format, however the net name
differs.

Report the corresponding DesignNetPinMatch rule violation using the report_layout_rules
command as follows:

FAULT> report_layout_rules DesignNetPinMatch-1

DesignNetPinMatch-1: Design pin /core0/pll_10/freq_1/OR1/C at net /core0/
pll_10/freq_1/ctl_net[10] (Expected Layout Name: /core0/pll_10/freq_1/
ctl_net\[10\]) does not exist in layout.
Tessent™ Diagnosis User’s Manual, v2022.4 519

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Layout Verification Examples
Layout Verification Examples
Some of the more common issues you could encounter during layout verification and LDB
creation include common area, low percentage match, extra END LIBRARY in the LEF file,
and missing DEF files.
Common Area Example . 520
Low Percentage Match Example . 523
Extra END LIBRARY in the LEF File Example . 524
Missing DEF File Example . 525

Common Area Example
The common area is established by the Tessent Diagnosis tool after instance matching and
represents a defined area of the layout that the tool uses for net-based matching.
Example B-1 illustrates the mismatch report, which reports a design-to-layout match of 95.55
percent. For clarity, the specific rule violations are in bold font. This example highlights the
various sources of layout and design mismatches.

Figure B-1. Example Mismatch Report for Layout and Design

// Mismatch Report
// 13394 (4.45%) design cell instances undefined
// (DesignInstanceMatch rule)
// 287622 (95.55%) design cell instances matched with layout (common
// area)
// ------------------------
// 301016 total number of design cell instances
//
//
// 8767 (2.55%) nets outside of common area (Hierarchy difference,
// DesignInstanceMatch rule)
// 5893 (1.70%) nets at the boundary of common area (Hierarchy
// difference,
// DesignInstanceMatch rule)
// 20 (0.01%) net not found at layout (DesignNetMatch rule)
// 29 (0.01%) nets with mismatched pins (LayoutNetPinMatch rule)
// 328939 (95.72%) nets matched with layout
// ------------------------
// 343648 total number of design nets
//
// Note: Design and layout match to 95.55%

As described in “Mismatch Report” section, the report contains two sections: the first section
reports instance information, the second section reports net information.
Tessent™ Diagnosis User’s Manual, v2022.4520

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Common Area Example
Example B-1 identifies the following information regarding instances:

• 13,394 undefined cells instances in the design that have no corresponding match in the
layout, hence the DesignInstanceMatch rule violation.

• 287,622 matched design cell instances with the layout (common area).

Figure B-2 illustrates the common area for this example.

Figure B-2. Common Area for the Layout and Corresponding Design

In Figure B-2, the Tessent Diagnosis tool establishes the common area of the layout to match
with the design. The design contains additional instances (instF, instG, and instH) that have no
corresponding component in the layout; this produces a DesignInstanceMatch rule violation.
Any elements below instF are outside the common area.

In Example B-1, the net information section reports the following information. For clarity, the
specific rule violations are in bold font
Tessent™ Diagnosis User’s Manual, v2022.4 521

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Common Area Example
// 8767 (2.55%) nets outside of common area (Hierarchy difference,
// DesignInstanceMatch rule)
// 5893 (1.70%) nets at the boundary of common area (Hierarchy
// difference,
// DesignInstanceMatch rule)
// 20 (0.01%) net not found at layout (DesignNetMatch rule)
// 29 (0.01%) nets with mismatched pins (LayoutNetPinMatch rule)
// 328939 (95.72%) nets matched with layout
// ------------------------
// 343648 total number of design nets

In this example, the two items warranting attention are the nets outside the common area, and
the nets on the boundary of the common area.

Figure B-3 illustrates nets outside the common area.

Figure B-3. Net Outside Common Area Example

In the figure, instF, instG, and instH cause a DesignInstanceMatch rule violation because these
instances are present in the design, but not within the common area of the layout. In Figure B-3,
the net shown in blue is an example of a net outside the common area.

Figure B-4 provides an example of boundary nets, which are nets at the boundary of the
common area.
Tessent™ Diagnosis User’s Manual, v2022.4522

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Low Percentage Match Example
Figure B-4. Boundary Nets

In the figure, the net shown in blue is an example of a boundary net.

Low Percentage Match Example
The tool warns you when you have a low mismatch percentage, which you can then debug by
first debugging low instance match numbers and then debugging any remaining net problems.
The following example shows the mismatch report for a low percentage match. The relevant
portions of the example report are in bold font.

Figure B-5. Mismatch Report Example for a Low Percentage Match

Mismatch Report
// 4882 (100.00%) design cell instances undefined
// (DesignInstanceMatch rule)
// 0 (0.00%) design cell instances matched with layout (common area)
// ------------------------
// 4882 total number of design cell instances
// 5413 (100.00%) nets outside of common area (DesignInstanceMatch rule)
// 0 (0.00%) nets matched with layout
// ------------------------
// 5413 total number of design nets
//
// Warning: Design and layout only match to 0.00%
// Mismatch may result in incomplete layout aware diagnosis.
Tessent™ Diagnosis User’s Manual, v2022.4 523

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Extra END LIBRARY in the LEF File Example
You debug this type of design-to-layout mismatch by using the following steps:

1. Start with the mismatch report

a. First debug low instance match number

b. Then debug any remaining net problems

2. Look at other rule violations for clues

In this example, you begin the debugging process by using the report_layout_rules command to
view the specific DesignInstanceMatch violations:

FAULT> report_layout_rules DesignInstanceMatch

DesignInstanceMatch: #fails=4882 #checks=4882 handling=warning (design
instance path name does not match with layout).
...
// Warning: DesignInstanceMatch-3225: Design instance uPORT/ix1490 does
// not exist in layout.
...

According to the warning message, uPORT/ixl490 exists in the design, but has no
corresponding component in the DEF file.

A review of the DEF file shows the file contains an extra layer of hierarchy (cpu_i) that is not
present in the layout.

DESIGN cpu_edt_top ;
 COMPONENTS 7600 ;
 …….
 - cpu_i/uPORT/ix1490 ao21
 + PLACED (1498500 4554000) N ;
 ……..
 END COMPONENTS
END DESIGN

You solve this mismatch problem by using the -extra_layout_hierarchy switch to the
create_layout command as in the following example:

FAULT> create_layout my_layout -extra_layout_hierarchy cpu_i -lef my_lef.lef -def
my_def.def

Extra END LIBRARY in the LEF File Example
An extra END LIBRARY in the LEF file causes MacroExistence and DesignInstanceMatch
rule violations.
The following example shows an example mismatch report caused by an extra END LIBRARY
in the LEF file.
Tessent™ Diagnosis User’s Manual, v2022.4524

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Missing DEF File Example
// Layout Rule Violation Summary
// Warning: Rule DesignInstanceMatch violated 48 times out of 5344
// checks.
// Warning: Rule MacroExistence violated 5335 times out of 7331 checks.
// Warning: Rule LefParseEndLibrary violated 1 times out of 1 checks.
//
// Mismatch Report
// 5344 (100.00%) design cell instances undefined (MacroExistence
// rule,
// DesignInstanceMatch rule)
// 0 (0.00%) design cell instances matched with layout (common
// area)
// ------------------------
// 5344 total number of design cell instances
//
// 5931 (100.00%) nets outside of common area (MacroExistence rule,
// DesignInstanceMatch rule)
// 0 (0.00%) nets matched with layout
// ------------------------
// 5931 total number of design nets
//
// Warning: Design and layout only match to 0.00%
// Mismatch may result in incomplete layout aware diagnosis.

In the example, all design instances are undefined. More importantly, however, is the presence
of the MacroExistence rule warning in the report; this is a clue that the design instance
mismatches were due to a problem with the LEF files.

A review of the LEF file shows an extra END LIBRARY as in the following:

VERSION 5.6 ;
MACRO oai33
...
END oai33

END LIBRARY

MACRO inv01
...
END oai33

...

END LIBRARY

Missing DEF File Example
When you have a missing DEF file during LDB generation, the mismatch report includes the
percentage of nets outside of the common area and the percentage of nets at the boundary of the
common area.
The following example shows an example mismatch report caused by a missing DEF file. The
relevant portions of the example report are in bold font.
Tessent™ Diagnosis User’s Manual, v2022.4 525

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Missing DEF File Example
// Mismatch Report
// 11789 (7.51%) design cell instances undefined (MacroExistence
// rule, DesignInstanceMatch rule)
// 145163 (92.49%) design cell instances matched with layout (common
// area)
// ------------------------
// 156952 total number of design cell instances
//
// 10600 (6.64%) nets outside of common area (MacroExistence rule,
// DesignInstanceMatch rule)
// 4973 (3.11%) nets at the boundary of common area (MacroExistence
// rule, DesignInstanceMatch rule)
// 1 (0.00%) nets not found at layout (DesignNetMatch rule)
// 71 (0.04%) nets with mismatched pins (LayoutNetPinMatch rule)
// 144110 (90.21%) nets matched with layout
// ------------------------
// 159755 total number of design nets
//
// Warning: Design and layout only match to 90.21%
// Mismatch may result in incomplete layout aware diagnosis.

To debug this problem, use the report_layout_rules command to review the warnings for both
the DesignInstanceMatch and MacroExistence rule violations as follows:

FAULT> report_layout_rules DesignInstanceMatch

report_layout_rules DesignInstanceMatch
DesignInstanceMatch: #fails=11722 #checks=156952 handling=warning (design
instance path name does not match with layout).
…………
// Design instance design_jtag/level1/foo_pm does not exist in
// layout.
// Design instance design_jtag/level1/foo_pm does not exist in
// layout.
// Design instance design_jtag/level1/foo_pm does not exist in
// layout.

FAULT> report_layout_rules MacroExistence

MacroExistence: #fails=387102 #checks=839382 handling=warning (macro not
exist).
…………
// The specified COMPONENT my_design_jtag\/level1\/foo_pm uses a
// MACRO foo which is not defined in the specified LEF files.

It is now clear that the DEF file for the foo component is missing, and, consequently, the layout
information is also missing.
Tessent™ Diagnosis User’s Manual, v2022.4526

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Guidelines for Including or Excluding Design Modules From Mismatch Reporting
Guidelines for Including or Excluding Design
Modules From Mismatch Reporting

Under certain circumstances, it may be known that your design contains modules for which
there is no corresponding layout information, specifically the DEF files.
Tessent Diagnosis reports the following layout rule violations for modules with no
corresponding layout information:

• DesignInstanceMatch and DesignNetMatch for library cell instances and nets inside all
instances of such modules.

• DesignNetPinMatch violations for nets on the boundary of all instances of such
modules.

For instances in which the layout information is known to be missing, it is desirable to filter out
the associated layout rule violations. You can filter the reporting of the mismatch violations in
these cases by defining an excluded area using the following switches of the report_layout_rules
command:

• -EXClude design_module_name — If you specify this switch with a design module,
then any instance in the design that can trace its inclusion in a higher-level instance of an
excluded module is considered to be in the excluded area. In other words, the excluded
area comprises all design elements contained below instances of excluded modules.

• -INClude design_module_name — If you specify this switch, then any instance in the
design that cannot trace its inclusion in a higher-level instance of an included module is
considered to be in the excluded area. In other words, the excluded area comprises all
design elements that are not below instances of included modules.

When using the -EXClude or -INClude switches with the report_layout_rules command,
Tessent Diagnosis suppresses the reporting of the DesignInstanceMatch, DesignNetMatch, and
DesignNetPinMatch violations in the excluded area as defined above. Consequently, you can
analyze the other mismatch verification rule violations besides the violations associated with
modules containing missing layout information.

In addition, Tessent Diagnosis reports the percentage match between the design and layout
outside of the instance of the modules that are missing layout information.

Layout Rule Violation Report Generation . 528
Excluded Area Examples . 528
report_layout_rules Usage Examples. 533
Tessent™ Diagnosis User’s Manual, v2022.4 527

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Layout Rule Violation Report Generation
Layout Rule Violation Report Generation
When you define an excluded area, you can regenerate the layout rule violation report using the
–MISmatch_report switch to the report_layout_rules command.
When Tessent Diagnosis completes the report regeneration with the excluded area, the report
provides enhanced metrics about the excluded area as in the following example.

Note
The total number of design cell instances does not count the excluded instances, and the
total numer of design nets does not count the excluded nets.

// Mismatch Report
// 115656 (6.85%) design cell instances excluded from reporting
// For the remaining instances:
// 1186152 (75.43%) design cell instances undefined
// (DesignInstanceMatch rule)
// 386275 (24.57%) design cell instances matched with layout
// (common area)
// ------------------------
// 1572427 total number of design cell instances
// 113816 (6.77%) nets in area excluded from reporting
// 1179 (0.07%) nets at boundary of area excluded from reporting
// For the remaining nets:
// 1074672 (68.57%) nets outside of common area
// (DesignInstanceMatch rule)
// 10964 (0.70%) nets at the boundary of common area
// (DesignInstanceMatch rule)
// 4825 (0.31%) nets with mismatched pins (DesignNetPinMatch

rule, LayoutNetPinMatch rule)
// 476845 (30.42%) nets matched with layout
// ------------------------
// 1567306 total number of design nets

Excluded Area Examples
Tessent Diagnosis can determine the excluded area from the list of excluded/included modules
you provide.

Example 1
The following figure shows a design’s hierarchy tree. Each node in the tree is an instance, and
the nodes are color coded by the corresponding modules.
Tessent™ Diagnosis User’s Manual, v2022.4528

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Excluded Area Examples
Figure B-6. Example Hierarchy Tree

Continuing with Figure B-6, you exclude modD using report_layout_rules command with the
following syntax:

report_layout_rules … -exclude modD

Figure B-7 shows the results of the exclude operation, specifically the shaded region.
Tessent™ Diagnosis User’s Manual, v2022.4 529

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Excluded Area Examples
Figure B-7. Excluded Area With ModD Excluded

Example 2
Using the design hierarchy as shown below, this example uses the report_layout_rules
command to exclude modB and modD.

report_layout_rules … -exclude modD modB

Figure B-8 shows the results of the exclude operation, including the excluded area.
Tessent™ Diagnosis User’s Manual, v2022.4530

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Excluded Area Examples
Figure B-8. Results of Multiple Exclude Operation

Example 3
Using the design hierarchy in the figure below, this example specifies modA as an included
module using the following command:

report_layout_rules … -include modA

Figure B-9 shows the resulting excluded area.
Tessent™ Diagnosis User’s Manual, v2022.4 531

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
Excluded Area Examples
Figure B-9. Excluded Area With modA Included

Example 4
Using the design hierarchy in the figure below, this example specifies modC as an included
module using the following command:

report_layout_rules … -include modC

Figure B-10 shows the resulting excluded area.
Tessent™ Diagnosis User’s Manual, v2022.4532

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
Figure B-10. Excluded Area When modC an Included Area

report_layout_rules Usage Examples
The report_layout_rules command can help you debug mismatches.
The following examples are based on a design for which DEF information is missing for the
following two modules:

• DRAMA — A memory module.

• DRAM_CTL — A memory controller.

Example 1
The following example demonstrates regenerating the layout rule violation mismatch report
without specifying any excluded or included design modules.

FAULT> report_layout_rules -mismatch_report
Tessent™ Diagnosis User’s Manual, v2022.4 533

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
// Note: Recovering mismatch information...
//
// Layout Rule Violation Summary
// Warning: Rule DesignTopModulePinMatch violated 308 times out of 308
// checks.
// Warning: Rule DesignModuleCell violated 2 times out of 405 checks.
// Warning: Rule DesignCellMatch violated 28 times out of 608 checks.
// Warning: Rule DesignInstanceMatch violated 1301808 times out of
// 1688083 checks.
// Warning: Rule DesignNetPinMatch violated 7200 times out of 1489200
// checks.
// Warning: Rule LayoutNetPinMatch violated 107 times out of 1544875

checks.
// Warning: Rule ViaDuplicate violated 406 times out of 420 checks.
// Note: The command 'report_layout_rules' can be used for detailed
// information on rule violations
//
// Mismatch Report
// 1301808 (77.12%)design cell instances undefined
// (DesignInstanceMatch rule)
// 386275 (22.88%)design cell instances matched with layout
// (common area)
// ------------------------
// 1688083 total number of design cell instances
//
// 1125560 (66.91%)nets outside of common area
// (DesignInstanceMatch rule)
// 75071 (4.46%)nets at the boundary of common area
// (DesignInstanceMatch rule)
// 4825 (0.29%)nets with mismatched pins (DesignNetPinMatch
// rule, LayoutNetPinMatch rule)
// 476845 (28.34%)nets matched with layout
// ------------------------
// 1682301 total number of design nets
//
// Warning: Design and layout only match to 22.88%
// Mismatch may result in incomplete layout aware diagnosis.

From the layout rule violation mismatch report, a total of 1,301,808 design library cell instances
are missing from the layout. Tessent Diagnosis identifies these cell instances as missing because
no corresponding design instances of the cells are in the instances of DRAMA and
DRAM_CTL modules.

Example 2
Continuing from Example 1, the following example uses the report_layout_rules command to
exclude the DRAMA module from the layout rule violation mismatch report and reports the
violations of the DesignInstanceMatch from this operation.

FAULT> report_layout_rules DesignInstanceMatch -exclude DRAMA
Tessent™ Diagnosis User’s Manual, v2022.4534

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
DesignInstanceMatch: #fails=115656 #checks=1688083 handling=warning
(design instance path name does not match with layout).
// Warning: DesignInstanceMatch-148270: Design instance core0/
dram_cnt_block/AND1 does not exist in layout.
// Warning: DesignInstanceMatch-148271: Design instance core0/
dram_cnt_block/AND2 does not exist in layout.
// Warning: DesignInstanceMatch-148272: Design instance core0/
dram_cnt_block/OR1 does not exist in layout.
// Warning: DesignInstanceMatch-148273: Design instance core0/
dram_cnt_block/BUF2 does not exist in layout.

The number of violations is now 115,656, which means that the remaining (1,301,808 –
115,656 = 1,186,152) violations are in instances of the DRAMA module. The violation IDs (in
bold font) do not change, but remain the same as if no excluded area was specified.

Example 3
Continuing from Example 2, the following example uses the report_layout_rules command to
regenerate the layout rule violation mismatch report with module DRAMA excluded.

FAULT> report_layout_rules -mismatch_report -exclude DRAMA

1 // Note: Recovering mismatch information...

2 //

3 // Layout Rule Violation Summary

4 // Warning: Rule DesignTopModulePinMatch violated 308 times out of 308

checks.

5 // Warning: Rule DesignModuleCell violated 2 times out of 405 checks.

6 // Warning: Rule DesignCellMatch violated 28 times out of 608 checks.

7

 // Warning: Rule DesignInstanceMatch violated 115656 times out
of 1688083 checks.

8 // Warning: Rule DesignNetPinMatch violated 7200 times out of 1489200

checks.

9 // Warning: Rule LayoutNetPinMatch violated 107 times out of 1544875

checks.
Tessent™ Diagnosis User’s Manual, v2022.4 535

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples

10 // Warning: Rule ViaDuplicate violated 406 times out of 420 checks.

11 // Note: The command 'report_layout_rules' can be used for detailed

information on rule violations

12 //

13 // Mismatch Report

14

 // 1186152 (70.27%)design cell instances excluded from
reporting

15 // For the remaining instances:

16

 // 115656 (23.04%)design cell instances undefined
(DesignInstanceMatch rule)

17 // 386275 (76.96%)design cell instances matched with layout (common

area)

18 // ------------------------

19 // 501931 total number of design cell instances (not counting the

excluded instances)

20 //

21

 // 1074672 (63.88%)nets in area excluded from reporting

22

 // 11798 (0.70%)nets at boundary of area excluded from
reporting

23 // For the remaining nets:

Tessent™ Diagnosis User’s Manual, v2022.4536

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
24 // 50888 (8.54%) nets outside of common area (DesignInstanceMatch rule)

25 // 63273 (10.62%) nets at the boundary of common area

(DesignInstanceMatch rule)

26 // 4825 (0.81%) nets with mismatched pins (DesignNetPinMatch rule,

LayoutNetPinMatch rule)

27 // 476845 (80.03%) nets matched with layout

28 // ------------------------

29 // 595831 total

number of design nets (not counting the excluded nets)

30 //

31

 // Warning: Design and layout only match to 76.96%

32 //Mismatch may result in incomplete layout aware diagnosis.

This example contains a number of lines in bold font, the meaning of which is as follows:

• Line 7 shows that the number of DesignInstanceMatch rule violations drops to 115,656
from 1,301,808 because the remaining violations lie in some instance of the DRAMA
module and are excluded from the report.

• Line 14 identifies 1,186,152 design library cell instances that are in the excluded area.

• Line 16 contains the number of undefined instances, which has dropped to 115,656. The
number specifies that 23.04% of the design cell instances are outside of the excluded
area.

• Lines 21 and 22 provides the number of nets inside (1,074,672) and on the boundary
(11,798) of the excluded area, respectively. In this example, 80.03% of nets outside the
excluded area match with the layout.

• Line 31 shows the overall match percentage (76.96%) outside the excluded area.
Tessent™ Diagnosis User’s Manual, v2022.4 537

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
Example 4
The following example demonstrates using the report_layout_rules command to re-generate the
layout rule violation mismatch report with both the DRAMA and DRAM_CTL modules
excluded.

FAULT> report layout rules -mismatch_report -exclude DRAMA DRAM_CTL

1 // Note: Recovering mismatch information...

2 //

3 // Layout Rule Violation Summary

4 // Warning: Rule DesignTopModulePinMatch violated 308 times out of 308

checks.

5 // Warning: Rule DesignModuleCell violated 2 times out of 405 checks.

6 // Warning: Rule DesignCellMatch violated 28 times out of 608 checks.

7 // Warning: Rule DesignNetPinMatch violated 7200 times out of 1489200

checks.

8 // Warning: Rule LayoutNetPinMatch violated 107 times out of 1544875

checks.

9 // Warning: Rule ViaDuplicate violated 406 times out of 420 checks.

10 // Note: The command 'report_layout_rules'

can be used for detailed information on rule violations

11 //

12 // Mismatch Report

13 // 1301808 (77.12%)design cell instances excluded from reporting

14 // For the remaining instances:

Tessent™ Diagnosis User’s Manual, v2022.4538

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
15 // 386275 (100.00%)design cell instances matched with layout (common
area)

16 // ------------------------

17 // 386275 total number of design cell instances (not counting the

excluded instances)

18 //

19 // 1188488 (70.65%) nets in area excluded from reporting

20 // 12143 (0.72%) nets at boundary of area excluded from reporting

21 // For the remaining nets:

22 // 4825 (1.00%) nets with mismatched pins (DesignNetPinMatch rule,

LayoutNetPinMatch rule)

23 // 476845 (99.00%) nets matched with layout

24 // ------------------------

25 // 481670 total number of design nets (not counting the excluded nets)

26 //

27 // Note: Design and layout match to 99.00%

The layout rule violation mismatch report shows on Line 15 that all the instances outside the
excluded area match with the layout. This is consistent because the DEF files for only DRAMA
and DRAM_CTL are missing. By excluding these known violations, you can focus on the
remaining DesignNetPinMatch and LayoutNetPinMatch rule violations on Line 22.

Example 5
The following example demonstrates using the report_layout_rules command to report the
layout rule violations in a given module using the command’s –INClude switch.

FAULT> report_layout_rules -mismatch_report -include DRAMA

Tessent™ Diagnosis User’s Manual, v2022.4 539

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
1 // Note: Recovering mismatch information...

2 //

3 // Layout Rule Violation Summary

4 // Warning: Rule DesignTopModulePinMatch violated 308 times out of 308

checks.

5 // Warning: Rule DesignModuleCell violated 2 times out of 405 checks.

6 // Warning: Rule DesignCellMatch violated 28 times out of 608 checks.

7 // Warning: Rule DesignInstanceMatch violated 1186152 times out of

1688083 checks.

8 // Warning: Rule LayoutNetPinMatch violated 107 times out of 1544875

checks.

9 // Warning: Rule ViaDuplicat violated 406 times out of 420 checks.

10 // Note: The command 'report_layout_rules'

can be used for detailed information on rule violations

11 //

12 // Mismatch Report

13 // 501931 (29.73%) design cell instances excluded from reporting

14 // For the remaining instances:

15 // 1186152 (100.00%)design cell instances undefined (DesignInstanceMatch

rule)

16 // 0 (0.00%) design cell instances matched with layout (common area)

17 // ------------------------

18 // 1186152 total number of design cell instances (not counting the

excluded instances)
Tessent™ Diagnosis User’s Manual, v2022.4540

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples

19 //

20 // 607629 (36.12%)nets in area excluded from reporting

21 // For the remaining nets:

22 // 1074672 (100.00%)nets outside of common area (DesignInstanceMatch

rule)

23 // 0 (0.00%)nets matched with layout

24 // ------------------------

25 // 1074672 total number of design nets (not counting the excluded nets)

26 //

27 // Warning: Design and layout only match to 0.00%

28 // Mismatch may result in incomplete layout aware diagnosis.

The only the violations that are inside instances of the DRAMA module are included in the
percentage match calculation.
Tessent™ Diagnosis User’s Manual, v2022.4 541

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Layout Verification Rules
report_layout_rules Usage Examples
Tessent™ Diagnosis User’s Manual, v2022.4542

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix C
Diagnosis Report Signature Formats

The Tessent Diagnosis diagnosis report’s XMAP data has two formats depending on the
signature type: failure signature and MD5 signature.
Failure Signature Format . 543
MD5 Signature Format . 545

Failure Signature Format
The failure signature information in the diagnosis report begins with the CHANNEL_BEGIN
section.
See “Failure Signature Information in the Diagnosis Report” for complete information.

The following example describes the XMAP format for the failure signature information (in
bold) in the Tessent Diagnosis diagnosis report.
Tessent™ Diagnosis User’s Manual, v2022.4 543

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Report Signature Formats
Failure Signature Format
XMAP_TABLE_BEGIN
: version
: [ALL_FAILURE_INFO_BEGIN
: [EDT = ON | OFF]
:// EDT = ON | OFF is optional. “EDT = ON” is the default indicates the
:// diagnosis report is for an EDT design, and “EDT = ON” does not show
:// in the diagnosis report. The only time the “EDT = ...” statement
:// is present is when “EDT = OFF” is specified, which indicates the
:// diagnosis report is for a non-EDT design.
: TOTAL_FAILURE_BITS = <F>
: MD5 signature data
: ALL_FAILURE_INFO_END]
: [CHANNEL_BEGIN
: TOTAL_CHANNELS = <C>
: channel pin_name FBR
: PO <PO_PIN1> <PO_PIN1_FBR> <channel_1>
: <channel_pin_1> <channel_1_FBR>
: ...
: <channel_X> <channel_pin_X> <channel_X_FBR>
: CHANNEL_END]
: [CHANNEL_OFFSET_BEGIN
: TOTAL_CHANNEL_OFFSETS = <CO>
: channel pin_name offset FBR
: PO <PO_PIN1> -1 <PO_PIN1_FBR>
: <channel_1> <pin_1> <offset_0> <channe1_1(offset_0)_FBR>
: ...
: <channel_X> <pin_X> <offset_Y> <channel_X(offset_Y)_FBR>
: CHANNEL_OFFSET_END]
: [OFFSET_BEGIN
: TOTAL_OFFSETS = <O>
: offset FBR
: <offset_1> <offset_1_FBR>
: ...
: <offset_k> <offet_k_FBR>
: OFFSET_END]
: [OFFSET_PATTERN_BEGIN
: TOTAL_OFFSET_PATTERNS = <OP>
: offset pattern_id FBR
: <offset_1> <pat0> <offset_1_pat0_FBR>
: ...
: <offset_k> <patW> <offset_k_patW_FBR>
: OFFSET_PATTERN_END]
: [PATTERN_BEGIN
: TOTAL_PATTERN_IDS = <P>
: pattern_id FBR
: <pat0> <pat0_FBR>
: ...
: <patY> <patY_FBR>
: PATTERN_END]
: [CELL_XMAP_BEGIN
: format
: cell type data
: CELL_XMAP_END]
: [SPICE_XMAP_BEGIN
: format
: SPICE name mapping data
: SPICE_XMAP_END]
:XMAP_TABLE_END
Tessent™ Diagnosis User’s Manual, v2022.4544

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Report Signature Formats
MD5 Signature Format
:

MD5 Signature Format
The MD5 signature format is similar to the failure signature format.
See “MD5 Signature Information in the Diagnosis Report” for complete information.

The following example describes the XMAP format for the MD5 signature information in the
Tessent Diagnosis diagnosis report.

XMAP_TABLE_BEGIN
version
[ALL_FAILURE_INFO_BEGIN

[EDT = ON | OFF]
// EDT = ON | OFF is optional. “EDT = ON” is the default indicates the
// diagnosis report is for an EDT design, and “EDT = ON” does not show
// in the diagnosis report. The only time the “EDT = ...” statement
// is present is when “EDT = OFF” is specified, which indicates the
// diagnosis report is for a non-EDT design.

TOTAL_FAILURE_BITS = <F>
design:<abs_path_flat_model> = <netlist md5 string>
[pattern:<abs_path_pattern_1> = <pattern file 1 md5 string>
pattern:<abs_path_pattern_2> = <pattern file 2 md5 string>]

……
ALL_FAILURE_INFO_END]
[CELL_XMAP_BEGIN
format

 cell type data
CELL_XMAP_END]
[SPICE_XMAP_BEGIN

 format
 SPICE name mapping data
 SPICE_XMAP_END]

[CHANNEL_BEGIN
...

CHANNEL_END]
[CHANNEL_OFFSET_BEGIN

...
CHANNEL_OFFSET_END]
[OFFSET_BEGIN

...
OFFSET_END]
[OFFSET_PATTERN_BEGIN

...
OFFSET_PATTERN_END]
[PATTERN_BEGIN

...
PATTERN_END]

XMAP_TABLE_END
Tessent™ Diagnosis User’s Manual, v2022.4 545

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Diagnosis Report Signature Formats
MD5 Signature Format
Tessent™ Diagnosis User’s Manual, v2022.4546

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix D
STDF-V4 2007 ATDF Record Examples

STDF-V4 2007(.1) ATDF records can appear for Teradyne and Verigy ATEs.
Teradyne Record ATDF Examples . 547
Verigy Record ATDF Examples . 549

Teradyne Record ATDF Examples
Teradyne ATDF records include a Name Map Record.

Version Update Record (VUR)
Record[0]: VUR, Type/Subtype=0/30, Length=8
 UPD_NAME : V4-2007

Name Map Record (NMR)
Record[1]: NMR, Type/Subtype=1/91, Length=273
 CONT_FLG : 1
 TOTM_CNT : 48
 LOCM_CNT : 23
 PMR_INDX : 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23
 ATPG_NAM : scan_in1 scan_in10 scan_in11 scan_in12 scan_in13 scan_in14

scan_in15 scan_in16 scan_in17 scan_in18 scan_in19 scan_in2
scan_in20 scan_in21 scan_in22 scan_in23 scan_in24 scan_in3
scan_in4 scan_in5 scan_in6 scan_in7 scan_in8

Pattern Sequence Record (PSR)
Record[4]: PSR, Type/Subtype=1/90, Length=326
 CONT_FLG : 0
 PSR_INDX : 1
 PSR_NAM : my_ATPG_patterns.PAT
 OPT_FLG : 0
 TOTP_CNT : 1
 LOCP_CNT : 1
 PAT_BGN : 0
 PAT_END : 8274
 PAT_FILE : my_stil_patterns.stil
 PAT_LBL : my_ATPG_patterns.PAT
 FILE_UID : My Failures
 ATPG_DSC : Tessent FastScan v9.5...
 SRC_ID : PatternExec

Tessent™ Diagnosis User’s Manual, v2022.4 547

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STDF-V4 2007 ATDF Record Examples
Teradyne Record ATDF Examples
Scan Test Record (STR)
Record[5]: STR, Type/Subtype=15/30, Length=7004
 CONT_FLG : 0
 TEST_NUM : 4100
 HEAD_NUM : 0
 SITE_NUM : 0
 PSR_REF : 1
 TEST_FLG : 192
 LOG_TYP : SWB
 TEST_TXT : My Testing
 ALARM_ID : 'NULL'
 PROG_TXT : An example of testing
 RSLT_TXT : 'NULL'
 Z_VAL : 3
 FMU_FLG : 8
 MASK_MAP :
 FAL_MAP :
 CYCL_CNT : 8274
 TOTF_CNT : 566
 TOTL_CNT : 566
 CYC_BASE : 0
 BIT_BASE : 0
 COND_CNT : 2
 LIM_CNT : 0
 CYC_SIZE : 8
 PMR_SIZE : 2
 CHN_SIZE : 0
 PAT_SIZE : 0
 BIT_SIZE : 0
 U1_SIZE : 0
 U2_SIZE : 0
 U3_SIZE : 0
 UTX_SIZE : 0
 CAP_BGN : 32767
 LIM_INDX :
 LIM_SPEC :
 COND_LST : DC_COND=DC Context = GrossLevels.Nominal
AC_COND=Spec(_per_100) = 0.0000002
 CYC_CNT : 566
 CYC_OFST : 176 177 178 179 180 180 181 182 184 185

...
8038 8040 8042 8046 8070 8072

 PMR_CNT : 566
 PMR_INDX : 27 33 27 33 27 33 33 33 33 27

...
29 29 29 29 25 25

 CHN_CNT : 0
 CHN_NUM :
 EXP_CNT : 566
 EXP_DATA : 76 76 76 72 72 72 72 72 72 72

...
72 72 72 72 72 76

 CAP_CNT : 566
 CAP_DATA : 72 72 72 76 76 76 76 76 76 76

...
76 76 76 76 76 72

 NEW_CNT : 0
Tessent™ Diagnosis User’s Manual, v2022.4548

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STDF-V4 2007 ATDF Record Examples
Verigy Record ATDF Examples
 NEW_DATA :
 PAT_CNT : 0
 PAT_NUM :
 BPOS_CNT : 0
 BIT_POS :
 USR1_CNT : 0
 USR1 :
 USR2_CNT : 0

Verigy Record ATDF Examples
Verigy ATDF records are relatively concise.

Version Update Record (VUR)
Record[2]: VUR, Type/Subtype=0/30, Length=8
 UPD_NAME : V4-2007

Pattern Sequence Record (PSR)
Record[1045]: PSR, Type/Subtype=1/90, Length=64963
 CONT_FLG : 1
 PSR_INDX : 0
 PSR_NAM : testing
 OPT_FLG : 14
 TOTP_CNT : 300
 LOCP_CNT : 200
 PAT_BGN : 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

...
0 0 0 0 0 0 0 0 0

 PAT_END : 0 0 0 0 0 0 0 0 0 0
...
0 0 0 0 0 0 0 0 0

 PAT_FILE : NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
...
NULL NULL NULL NULL NULL NULL NULL NULL NULL

 PAT_LBL : pattern 0 pattern 1 pattern 2 pattern 3 pattern 4 pattern 5
...
pattern 197 pattern 198 pattern 199
Tessent™ Diagnosis User’s Manual, v2022.4 549

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

STDF-V4 2007 ATDF Record Examples
Verigy Record ATDF Examples
Tessent™ Diagnosis User’s Manual, v2022.4550

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix E
Layout-Aware Diagnosis Marker File

Semantics

Layout-Aware Diagnosis with Tessent Diagnosis enables you to write out the layout location of
each suspect. Tessent Diagnosis provides this layout information in addition to the usual layout-
aware diagnosis report and places it into a marker file.
About the Marker File. 551
Marker File Semantics . 551

About the Marker File
Tessent Diagnosis writes the marker file in a format that can be read into and displayed in any
layout viewer that supports the Calibre RVE format. If a layout viewer does not support the
RVE format, it may be necessary to convert from the RVE format into another format. This
section describes the semantics of the marker file such that you can use of the information for
your purposes.
From a high level description, a marker file contains two main pieces of information:

1. X, Y and layer polygons for the suspected defect locations, that enclose the potential
defect location. These locations are called defect bounding boxes.

2. X, Y, and layer polygons that describe the layout of the nets and cells associated with the
defect suspects. This set of polygons are called the landmark polygons.

The marker file follows the Calibre® DRC file syntax. Therefore, Calibre DRC-RVE can read it
and display its content through Calibre DRV.

The full syntax of the file is documented in the Calibre Verification User's Manual section
“ASCII nmDRC Results Database Format.” This section explains the semantics of the marker
file for the LEF/DEF-based flow.

Marker File Semantics
Each marker file starts with the name of the top module or design. Calibre DRV checks this
name when you want to highlight some of the Tessent Diagnosis results. It prompts you for
input and confirmation if the top-module names do not match. After the top-module name,
separated by a white space, the data base precision is given.
Tessent™ Diagnosis User’s Manual, v2022.4 551

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Marker File Semantics
Marker File Semantics
Below is an example based on portions of a marker file. Note that the line numbers were added
for the purpose of this discussion, line numbers are not part of the marker file syntax.

1 cpu_edt_top 2000
2 /cpu_i/uPORT/nx2332 route_2 3
3 32 32 0 Tue Feb 24 06:55:57 GMT 2009
4 p 1 4
5 ALL 3
6 SUSPECT-1-1 3
7 SUSPECT-1-1.1 3
8 SYMPTOM-1 3
9 2027000 4765000
10 2033000 4765000
11 2033000 4893000
12 2027000 4893000
13 p 2 4
14 ALL 3
15 SUSPECT-1-1 3
16 SUSPECT-1-1.1 3
17 SYMPTOM-1 3
18 2061000 4765000
19 2067000 4765000
20 2067000 5312000
21 2061000 5312000

Line 1 is the name of the top module or design. Lines 2 and 3 are the preamble for a sequence of
polygon information in the following lines. Line 2 consists of three parts, separated by white
spaces. The first part is a string representing the “DRC-rule” name. Tessent Diagnosis places
either the name of the net (see line 2) or an identifier of the defect bounding box of a particular
suspect (see lines 42 and 53) there. The second string on the line is the name of the layer the
following polygons are on, followed by a layer ID that is just a unique, numerical identifier (>0)
for the layer name string. The layer ID is used later on in the property statements, as shown in
lines 5 through 8.

Line 3 opens with the number of polygons to follow, that all belong to the entity declared on the
line above, here the net “/cpu_i/uPORT/nx2332” on layer “route_2”. In this example, the net
has 32 polygons on this layer, thus the syntax is “32 32 0”. Each number separated by a white
space. After this, the date and time is printed in the shown format.

The set of lines describing one polygon starts with line 4 and ends with line 12. The next
polygon description, if there is one, follows directly thereafter as shown in lines 13 to 21. Each
sequence starts with an enumerator, here “p 1”, refers to polygon 1 (of 32 in this example),
followed by the number of coordinate pairs (four in this case). All string-number-pairs between
line 4 and the beginning of the coordinate pairs (line 9) are “DRC properties”. The number of
such lines is arbitrary and can be zero. Tessent Diagnosis fills in the property statements to tie
the polygon to a particular symptom and suspect. The key words Tessent Diagnosis uses follow
“ALL layerID”, “SUSPECT-id1-id2 layerID”, and “SYMPTOM-id1 layerID”. id1 always
references the symptom enumerator from the original diagnosis report, and id2 references back
to the suspect number from the original diagnosis report. In the example, the polygon described
Tessent™ Diagnosis User’s Manual, v2022.4552

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Marker File Semantics
Marker File Semantics
by lines 9 through 12 is part of symptom 1 (SYMPTOM-1), suspect 1 of symptom 1
(SUSPECT-1-1) and suspect 1.1 of symptom 1 (SUSPECT-1-1.1), each of them is on the layer
with the ID “3”.

Tessent Diagnosis compacts the marker file in the sense that each polygon is listed exactly once.
Tessent Diagnosis adds as many property statements as necessary. Therefore, it is common to
see that a polygon is part of several symptoms and suspects.

Lines 9 through 12 define the four corner coordinates of the polygon. The coordinates are given
in the common X Y semantic and in a counter-clockwise direction, starting with the lower left
corner.

Directly following the last coordinate line, the next polygon definition, ‘2 of 32’, starts on line
13. The last polygon of the sequence, polygon ‘32 of 32’, is given in lines 22 through 30 to
show the transition to the next set of data (line 31). Note that polygons 3 through 31 have not
been presented here. The next set of data starts in line 31 with a line equivalent to line 2. In this
example, there are 15 polygons following (as declared on line 32), all the polygons belong to the
net “/cpu_i/uPORT/nx2332”, on layer “v_lay2”, with the layer ID “4” (line 31).

22 p 32 4
23 ALL 3
24 SUSPECT-1-1 3
25 SUSPECT-1-1.1 3
26 SYMPTOM-1 3
27 2618000 5427000
28 2626000 5427000
29 2626000 5435000
30 2618000 5435000
31 /cpu_i/uPORT/nx2332 v_lay2 4
32 15 15 0 Tue Feb 24 06:55:57 GMT 2009
33 p 1 4
34 ALL 4
35 SUSPECT-1-1 4
36 SUSPECT-1-1.1 4
37 SYMPTOM-1 4
38 2620000 5307000
39 2624000 5307000
40 2624000 5311000
41 2620000 5311000

Lines 42 and 53 give examples, that a set of data may not start with a net name, but with a defect
bounding box identifier. Tessent Diagnosis computes these polygons out of the layout data, they
don’t exist in the layout. Tessent Diagnosis adds these polygons to the marker file.
Tessent™ Diagnosis User’s Manual, v2022.4 553

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Layout-Aware Diagnosis Marker File Semantics
Marker File Semantics
42 SUSPECT-1-1.1 route_2 11
43 1 1 0 Tue Feb 24 06:55:57 GMT 2009
44 p 1 4
45 ALL 11
46 SYMPTOM-1 11
47 SUSPECT-1-1 11
48 SUSPECT-1-1.1 11
49 2618000 5305000
50 2626000 5305000
51 2626000 5313000
52 2618000 5313000
53 SUSPECT-1-1.1 v_lay2 12
54 1 1 0 Tue Feb 24 06:55:57 GMT 2009
55 p 1 4
56 ALL 12
57 SYMPTOM-1 12
57 SUSPECT-1-1 12
58 SUSPECT-1-1.1 12
59 2620000 5307000
60 2624000 5307000
61 2624000 5311000
62 2620000 5311000

Lines 42 through 52 define the defect bounding box polygon for symptom 1, suspect 1.1, on
layer “route_2”, which has the ID “11”. Lines 54 through 63 define the defect bounding box for
the same symptom and suspect, but on layer “v_lay2”, with ID “12”.

You might have noticed that there are two IDs for the layer names. For example, layer
“route_2” has the IDs 3 and 11. This is for the purpose of distinguishing the actual layers of
nets, from the virtual layers of the defects. Thus, all defect bounding boxes of “route_2” have
the ID 11, and all net polygons on “route_2” have ID 3. The net layer IDs usually start with 1 —
but this cannot be assumed — and enumerate all routing and via layers starting with metal 1
(layer ID ‘m’), in sequence, to the top-most metal layer with id ‘m+n’. The first virtual defect
layer has the ID ‘m+n+1’ and relates to the first layer ID ‘m’. The virtual layer IDs enumerate
all virtual layers parallel to the actual layers from ‘m+n+1’ through ‘m+n+n’.

The marker file ends with the last polygon. There is no end-of-file syntax element.
Tessent™ Diagnosis User’s Manual, v2022.4554

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix F
Generating DEF from Other Tools

You can use Synopsys IC Compiler and AtopTech APRISA tools to generate DEF files for
layout-aware diagnosis.
Generating DEF from IC Compiler . 555
Generating DEF from ATopTech APRISA. 557

Generating DEF from IC Compiler
When you export a design by saving design data in a hierarchical Verilog netlist file, you can
save the physical constraints in a DEF file. To do this, you need to include and exclude
particular DEF sections. Including a section exports and saves it into the DEF file. Excluding a
section leaves it out of the DEF file.

Procedure
1. Specify the DEF file name and select the DEF version.

The choices are 5.6, 5.5, 5.4, and 5.3. The default version is 5.5. The preferred version is
5.6.

2. Ensure that the default value of 1000 is selected for the unit conversion factor.

The tool writes this value in the DEF UNITS DISTANCE MICRONS statement.

3. If you have rotated vias and non-rotated rules (NDRs), ensure that you export
incremental DEF for rotated vias and NDRs so that they are included in the DEF file.

4. Ensure that the following options are deselected so that their corresponding DEF
sections are excluded from the DEF file:

a. Rows/Tracks/GCells

b. Regions/Groups

c. Blockages

d. Scan chain

e. Fixed cells only/Placed cells only

f. Notch/Gap

g. P/G metal fill
Tessent™ Diagnosis User’s Manual, v2022.4 555

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating DEF from Other Tools
Generating DEF from IC Compiler
However, you must include non-routed nets that are required to connect two sub-DEF
files. The followinf figure shows that in B.def, net 3 connects C.def to D.def without
having been routed through B.def, as follows:

-net3 (C pin1) (D pin2)

Figure F-1. Non-Routed Nets Included in DEF File

5. Ensure that the following options are selected so that their corresponding DEF sections
are included in the DEF file:

a. Pins

b. Floating metal fill

c. Output all design nondefault rules

This section is supported only for DEF version 5.6.

d. Vias

However, if you have an option to include all vias, deselect it.

e. Components

f. Nonstandard cells

g. Nets

However, ensure that you exclude any output diode pins.

h. Special nets

However, exclude notch gaps or power and ground metal fill.
Tessent™ Diagnosis User’s Manual, v2022.4556

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating DEF from Other Tools
Generating DEF from ATopTech APRISA
6. Set the following file processing options.

a. Enable the legalization capability.

b. Compress the output, which provides a .gzip format.

c. Enable the verbose option to display all information and warning messages in the
session transcript.

Generating DEF from ATopTech APRISA
In ATopTech APRISA, generate DEF files with the write_def command.

Procedure
The write_def command writes out a DEF file down to, but not including, the standard cells.
The LEF file provided by the library vendor includes the complete standard cell information.
Specify the write_def command as follows:

write_def DEF_filename

Note
Do not use the write_def -all switch. The -all switch includes standard cell
definitions in the DEF in addition to those already in the LEF.
Tessent™ Diagnosis User’s Manual, v2022.4 557

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating DEF from Other Tools
Generating DEF from ATopTech APRISA
Tessent™ Diagnosis User’s Manual, v2022.4558

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix G
Logging Failures for SSN On-Chip Compare

You can use the on-chip compare capability of the SSH to test multiple identical cores
simultaneously. Identical core instances can be grouped into one or more on-chip compare
status groups.
See the section “On-Chip Compare Mode Setup” of the topic On-Chip Compare With SSN in
the Tessent Shell User’s Manual for more details on On-Chip Compare status groups. The tool
uses this global group ID information to provide the correct core instance names that are part of
a status group in the failure file prior to failure mapping.

Figure G-1 shows two distinct cores, CPU and GPU, each with multiple instances in the design.
The global group ID 1 comprises three CPU core instances, and the global group ID 2
comprises six CPU core instances. Similarly, the global group ID 3 comprises eight GPU core
instances, and global group ID 4 and global group ID 5 each comprise 4 GPU core instances.

Figure G-1. Global and Status Groups

You apply scan test patterns to all core instances in a status group. The SSH asserts a register
bit, called a sticky status bit, when it detects a miscompare during the scan test. Each sticky
status bit indicates the pass or fail status of a single core instance within a status group. You can
unload the sticky status bits via the IJTAG output (TDO) pin.

Figure G-2. Single Core Failure Example
Tessent™ Diagnosis User’s Manual, v2022.4 559

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
As shown in Figure G-2, you test all core instances in a status group together; each instance, by
default, “contributes” failing cycles that occur in the status group to the SSN output. If the
single-core instance A1 fails during the test, the SSN output contains failing cycles for core
instance A1, and the tool asserts the sticky status bit associated with core A1 at the end of the
test. If multiple core instances fail within a status group, by default, the SSN output comprises
the failing cycles of all the contributing core instances.

Scan diagnosis requires failing cycle information for each failing core instance. The tester logs
these failing cycles in the failure log. To perform scan diagnosis on the design, you run the
tester failure log through a failure mapping process to create a failure file that can be used
during diagnosis. During the failure mapping process, the tool translates the tester failure log to
the failing pattern and cycle for the specific failing core instance.

Scan diagnosis for on-chip compare may require special handling of the test application and
failure mapping, as described in the following sections.

Testing and Failure Logging Process . 560
Collecting Failure Data on Automated Test Equipment (ATE) 574

Testing and Failure Logging Process
This section provides an overview of the testing and failure logging process for multiple
instances contributing to a status group.
When testing designs that use on-chip compare, you first apply the test patterns to the design.
This is the primary phase. If there are no failing cycles or patterns, the tests have passed.

If you observe any failing cycles or patterns, you use the asserted bits in the global status group
to determine the next steps for test application and failure logging prior to running diagnosis.

The following figure shows an overview of the testing and failure logging process for each
global status group.
Tessent™ Diagnosis User’s Manual, v2022.4560

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
Figure G-3. Testing and Failure Logging Process

The following scenarios describe actions you must take for successful scan diagnosis.

Scenario 1: No Sticky Status Bits are Asserted in any Global Status Group
If the testing did not assert any sticky status bits for any of the global status groups during the
primary test phase, all core instances in each of the respective status groups passed. Failures
observed on the SSN output correspond to the cores in the design that are not part of the on-chip
compare groups. You can pass the failure files through failure mapping using the retargeted
TCD file to produce a core-level failure log for diagnosis.

Scenario 2: A Single Sticky Status Bit is Asserted
In the primary test phase, if the tool asserts a single sticky status bit in a global status group, it
indicates there is only one failing core instance. Multiple global status groups can each have a
single sticky status bit in this scenario.

The failures logged for the on-chip compare groups have all the information needed for scan
diagnosis after failure mapping.

Before running failure mapping, the failure file must indicate the phase of the test and the
failing core instances for each of the global status groups. This information is contained in the
failure file used for failure mapping using the keywords ssn_on_chip_compare_test_phase
primary, ssn_on_chip_compare_enabled_failing_instances_begin, and
ssn_on_chip_compare_enabled_failing_instances_end.
Tessent™ Diagnosis User’s Manual, v2022.4 561

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
format cycle
ssn_on_chip_compare_test_phase primary
ssn_on_chip_compare_enabled_failing_instances_begin
 corea_ssh3
 corea_ssh5
 corea_ssh7
 coreb_ssh2
 coreb_ssh3
ssn_on_chip_compare_enabled_failing_instances_end
…
 failures_begin

You must also include the list of all failing core instances for each status group. You can
produce the failing core instance names by analyzing the sticky status bit and the annotations in
the STIL file. as described in Scenario 3.

In the primary phase, if multiple failure core instances contribute to a single status group, failure
mapping does not map the multiple failing instances in a status group because there is
insufficient information for each of the failing instances. The tool reports the following
warning:

//Warning: Multiple SSH ICL instance names have been specified for global
compare group <#> of SSH ICL module ‘<ssh_module_name>’ in the
‘ssn_on_chip_compare_enabled_failing_instances’ section.
Please note that the failures of those instances will be ignored, i.e.,
those failures will not be mapped to the core level.
To map the failures of this compare group, please perform the retest and
specify one failing SSH ICL instance name of this global compare group in
the ‘ssn_on_chip_compare_enabled_failing_instances’ section of that
failure file.

Scenario 3: Multiple Failing Instances per Status Group
When there are multiple failing instances within a status group, the tool combines the failures
from all instances into the same packets on the SSN bus, and there is no way to distinguish
which bits are associated with each core instance. This necessitates entering a failure collection
loop where only one core instance contributes to the status group. Do the following:

1. Run the test and read the sticky_status bits from the SSN_end section to determine
which instances failed.

2. Patch the contribution disable bits in the SSN_Setup section to disable all cores except
for one of the failing cores in each status group.

3. Re-run the test and log the failures.

4. Repeat steps 2 and 3 until all failing core instances have been logged.

The testing process consists of two phases: primary and retest. The primary phase is the initial
run of the SSN test. In this phase, all core instances contribute to their respective status groups.
The tool collects the failure data for all cores in the test. If there is a need to re-run the test to
collect specific core failures, then this phase is referred to as the retest phase. For each test, there
Tessent™ Diagnosis User’s Manual, v2022.4562

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
is only one primary phase, but you can have as many retest phases as necessary to collect the
failure data.

Figure G-4. OCC With Multiple Core Failures

Pattern Annotations
There are many annotations in the SSN pattern files that define the SSN structure and location
of certain operations. For the process of failure collection with on-chip compare, there are three
sections that you must use. While the patterns can be written in either STIL or WGL, only the
STIL syntax is described here.

Active SSH Section
The first section is the Active SSH section. This is located at the beginning of the pattern file
where the payload vectors are written. The tool uses this section to determine the core instances
in each status group. The two key pieces of information are the ICL instance name and the
global status group. You must create a list of cores in each global status group. The tool uses
Tessent™ Diagnosis User’s Manual, v2022.4 563

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
this information during the retest phase to ensure that it selects no more than one core instance
per status group. This section is shown here:

 Ann {* Begin_Active_Ssh_Section *}
 Ann {* instance =
 {GPS_2/gps_baseband_rtl1_tessent_ssn_scan_host_1_inst} *}
 Ann {* icl_instance =
 {GPS_2.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst} *}
 Ann {* bus_width = 2 *}
 Ann {* packet_size = 16 *}
 Ann {* bits_per_packet = 16 *}
 Ann {* capture_packets = 7 *}
 Ann {* packets_per_capture_pulse = 2 *}
…
 Ann {* initial_bit0_position = 0 *}
 Ann {* initial_bit0_position_of_packet = 0 *}
 Ann {* cycles_until_first_packet = 7 *}
 Ann {* delay_cycles_in_packet = 0 *}
 Ann {* offset = 8 *}
 Ann {* extra_shift_packets = 0 *}
 Ann {* delay_packets = 0 *}
 Ann {* clock_multiplier = 1 *}
 Ann {* on_chip_compare = on *}
 Ann {* on_chip_compare_capture_group_count = 1 *}
 Ann {* on_chip_compare_capture_group = 1 *}
 Ann {* on_chip_compare_capture_global_group_count = 1 *}
 Ann {* on_chip_compare_capture_global_group = 1 *}
 Ann {* min_shift_clock_low_width = 4 *}
 Ann {* min_capture_clock_low_width = 12 *}
 Ann {* total_shift_count = 146 *}
 Ann {* from_scan_out_bits = 4 *}
 Ann {* End_Active_Ssh_Section *}

Note
Use the “on_chip_compare_capture_global_group” and not the
“on_chip_compare_capture_group”. The global group is unique across all cores, but the

capture group is local to the core type.

IJTAG Bit Location Annotations
You can identify the sticky_status and contribution disable bits by annotations in the pattern
file. These are instructions on the IJTAG network and have the “TESSENT_PRAGMA”
keyword. They are either a read operation on the TDO pin or a write operation on the TDI pin.
Since the IJTAG network operates at a much slower speed than the SSN bus, the IJTAG
portions of the pattern can use cycle-scaling to keep the same period on the ATE. When you do
this, it spreads each IJTAG cycle over a number of cycles as defined by the tck_ratio. This
example illustrates a pattern where the IJTAG cycles are spread into 8 SSN cycles. In the
IJTAG portions of the pattern, you have the following annotation:

Ann {* TESSENT_PRAGMA procedure ssn_setup -tck_ratio 8 *}
Tessent™ Diagnosis User’s Manual, v2022.4564

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
To determine which ATE tester cycle they are located on, you must identify in which ATE
cycle the annotation occurs and then read the “relative cycles” value. Then, multiply this value
by the TCK ratio and add it to the cycle where the annotation occurs to determine the cycle
where that variable begins.

Ann {* TESSENT_PRAGMA variable

Ann {* TESSENT_PRAGMA variable
GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst.disable_on_chip_comp
are_contribution -type write -var_bits {0} -pin TDI -relative_cycles {64}
*}

1. Identify cycle with annotation

2. Begin edit at annotation cycle + relative_cycles X tck_ratio

3. Make edits for tck_ratio cycles

Note
If there is no tck_ratio annotation in the pattern, then it is not scaled and the tck_ratio is 1.

Sticky Status Bits
The tool shifts the sticky_status bits out of the IJTAG network on TDO during the SSN_end
section of the test. There is one bit for each core instance that uses on-chip compare to
communicate which instance is failing. The following example illustrates the sticky_status bit
annotation in the ssn_end section of the test:

Ann {* TESSENT_PRAGMA variable
GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst.sticky_status -type
read -var_bits {0} -pin TDO -relative_cycles {12} *}

You must multiply the relative cycles by the tck_ratio and then add this to the cycle where the
annotation occurred to determine the beginning of that variable. In this case, the sticky status bit
for the core “GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst” begins 96 cycles after
this annotation. If this bit fails during the test, this core instance has failed.

Contribution Disable Bits
During the retest phase, the ATE test program must disable the output of some cores from
contributing to the SSN bus. It does this by setting the contribution disable bits for that
particular core. This example illustrates the contribution disable bit for the instance
“GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst”.

Ann {* TESSENT_PRAGMA variable
GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst.disable_on_chip_comp
are_contribution -type write -var_bits {0} -pin TDI -relative_cycles {64}
*}
Tessent™ Diagnosis User’s Manual, v2022.4 565

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
Again, to determine where this variable begins shifting into TDI, you multiply the relative
cycles by the tck_ratio and add this to the cycle where the annotation occurs. In this case, it
begins 512 cycles after the annotation.

This is where the ATE test program must “patch” the vector data to change the value being
shifted, but the tck_ratio determines the number of cycles to be patched.

Figure G-5. Contribution Disable Bits

Primary Phase
During the primary phase, the ATE test program enables all of the core instances for each
compare group so that it writes any failures to the SSN bus, which are observed on the ATE.
The ATE test program logs these failures and you must ensure that these failures conform to the
Tessent failure file format.

Note
If your ATE can log these failures to STDF, and provided that the ATE can use the
supported records and fields to log the core instances and the primary phase, you can use the

Tessent dlogutil utility to extract the data into Tessent failure files.

See “dlogutil Features for SSN On-Chip Compare” on page 503 for details.
Tessent™ Diagnosis User’s Manual, v2022.4566

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
The ATE test program must read the sticky status bits to determine which on-chip compare core
instances have failed. You must ensure that these instances are written into the Tessent failure
file as follows:

ssn_on_chip_compare_enabled_failing_instances begin
failing_instance_name
failing_instance_name
failing_instance_name

ssn_on_chip_compare_enabled_failing_instances end

In this phase, there should be one failing instance written to the failure file for each failing
sticky_status bit. You must also ensure that the ATE test program writes the test phase to the
Tessent failure file as follows:

ssn_on_chip_compare_test_phase primary

Tessent failure mapping uses these keywords in the failure mapping step to ensure that it maps
the failures to the correct core instances for diagnosis. In the case where multiple failing
instances contribute to the same status group, Tessent failure mapping does not map these
failures and reports a warning. Consider the following example, where one SSN test contains
one non-on-chip compare group and two on-chip compare groups. Group 1 is an on-chip
compare group where two core instances are failing. Core B is a non-on-chip compare core and
Group 2 is an on-chip compare group with only one failing core instance. The following
example shows the keywords are written to the fail log:

ssn_on_chip_compare_test_phase primary
ssn_on_chip_compare_enabled_failing_instances begin

GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst
GPS_2.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst
PROC_2.processor_core_rtl1_tessent_ssn_scan_host_1_inst

ssn_on_chip_compare_enabled_failing_instances end

This then goes to the failure mapping step where the tool generates the core-level fail logs. The
test phase keyword tells failure mapping to map the failures for the non-on-chip compare cores
and not the on-chip compare cores with multiple failing cores in the status group. In this
example, the tool does not map the Group 1 failures. It maps the failures from the non-on-chip
compare Core B, and the failures from the processor core (Group 2) because only one instance
failed from that group.
Tessent™ Diagnosis User’s Manual, v2022.4 567

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
Figure G-6. Primary Phase Failure Mapping

If a status group has more than one failing instance, then you must go through the retest phase to
capture the failure data for diagnosis. The test program determines which core instances need
the retest phase.

Retest Phase
The retest phase is solely for the collection of failure data from on-chip compare groups with
multiple failing instances. If only one instance failed from the group, that group does not need to
be retested and the ATE test program must disable all instances from those groups. This ensures
that you do not diagnose the same failing instance multiple times when it is not necessary.

For each group with multiple failing instances, disable all cores except one of the failing
instances by setting the contribution disable bit in the SSN_setup portion of the test. Then re-run
the test and write the failures to the Tessent failure file.

Note
If your ATE can log these failures to STDF, and provided that the ATE can use the
supported records and fields to log the retest phase and core instance, you can use the

Tessent dlogutil utility to extract the data into Tessent failure files.

See “dlogutil Features for SSN On-Chip Compare” on page 503 for details.

You must ensure that the Tessent failure file contains the test phase, as shown below:

ssn_on_chip_compare_test_phase retest
Tessent™ Diagnosis User’s Manual, v2022.4568

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
In the retest phase, the ATE test program runs the same test, which means that it tests all cores
within a status group. It sets the sticky_status bits for all failing cores which, therefore, does not
indicate which instance it logs. The ATE test program must write the core instance that remains
enabled to the Tessent failure file as follows:

ssn_on_chip_compare_enabled_failing_instances begin
GPS_1.gps_baseband_rtl1_tessent_ssn_scan_host_1_inst

ssn_on_chip_compare_enabled_failing_instances end

During the retest phase, the ATE test program can only log one instance per status group. If
there are multiple instances from a status group written to the failure file, Tessent failure
mapping reports an error. Because the on-chip compare cores are already mapped during the
primary phase, Tessent failure mapping does not map them during the retest phase to avoid
duplication.

Figure G-7. Pass 2-n Retest Phase

The ATE test program must reset the contribution disable bits before testing the next device.

Failure Mapping
Use the “set_failure_mapping_options -on_chip_compare_verbose_messages” command and
switch to control the listing of ICL instance names in on-chip compare error and warning
messages. The default setting is off. Turn this setting on to include the ICL instance names,
which can be long depending on the IJTAG network in your design.
Tessent™ Diagnosis User’s Manual, v2022.4 569

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
The tool performs the following checks during failure mapping. Example error or warning
messages that may result are shown.

1. Each ICL instance name corresponds to an SSH.

a. The tool can report the following error message:

// Error: The specified SSH ICL name ’<ssh_name>’ does not match
any SSH in the current design.

Please verify that your pattern file matches the top-level
failure file and/or that the names specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section are
correct and re-read the appropriate files.

2. Specified SSH instances are operating in on-chip compare mode.

a. The tool can report the following error message:

// Error: The specified SSH ICL name ’<ssh_name>’ is not
configured for on-chip compare mode in the current design.

Please verify that your pattern file matches the top-level
failure file and/or that the names specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section are
correct and re-read the appropriate files.

3. A compare group with multiple on-chip compare instances has failures in the top-level
failure file. However, the group has no SSH specified in the
ssn_on_chip_compare_enabled_failing_instances section.

The tool performs this check on core instances with failures in the failure file and
ignores passing instances. It performs this check for both the primary and retest phases.

a. The tool can report the following error messages in the primary phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages off”:

// Error: Global compare group <#> of SSH ICL module
’<ssh_module_name>’ has failures in the failure file, but none of
its SSH ICL instance names were specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section.

Please ensure that all failing instances are represented in
the ’ssn_on_chip_compare_enabled_failing_instances’ section of
the failure file.
Tessent™ Diagnosis User’s Manual, v2022.4570

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
b. The tool can report the following error messages in the primary phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages on”:

// Error: Global compare group <#> of SSH ICL module
’<ssh_module_name>’ has failures in the failure file, but none of
the following SSH ICL instance names were specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section:
’<ssh1_icl_name_of_ssh_module_name_in_group_#>’
’<ssh2_icl_name_of_ssh_module_name_in_group_#>’
…
’<sshN_icl_name_of_ssh_module_name_in_group_#>’

Please ensure that all failing instances are represented in
the ’ssn_on_chip_compare_enabled_failing_instances’ section of
the failure file.

c. The tool can report the following error messages in the retest phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages off”:

// Error: Global compare group <#> of SSH ICL module
’<ssh_module_name>’ has failures in the failure file, but none of
its SSH ICL instance names were specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section.

Please ensure that only one instance is contributing to its
status group and that instance is represented in the
’ssn_on_chip_compare_enabled_failing_instances’ section of the
failure file.

d. The tool can report the following error messages in the retest phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages on”:

// Error: Global compare group <#> of SSH ICL module
’<ssh_module_name>’ has failures in the failure file, but none of
the following SSH ICL instance names were specified in the
’ssn_on_chip_compare_enabled_failing_instances’ section:
’<ssh1_icl_name_of_ssh_module_name_in_group_#>’
’<ssh2_icl_name_of_ssh_module_name_in_group_#>’
…
’<sshN_icl_name_of_ssh_module_name_in_group_#>’

Please ensure that only one instance is contributing to its
status group and that instance is represented in the
’ssn_on_chip_compare_enabled_failing_instances’ section of the
failure file.

4. A compare group has multiple SSH instances.

The tool performs this check on core instances with failures in the failure file and
ignores passing instances. It performs this check for both the primary and retest phases.
Tessent™ Diagnosis User’s Manual, v2022.4 571

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
a. The tool can report the following warning message in the primary phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages off”:

// Warning: Multiple SSH ICL instance names have been specified
for global compare group <#> of SSH ICL module
’<ssh_module_name>’ in the
’ssn_on_chip_compare_enabled_failing_instances’ section.

Please note that the failures of those instances will be ignored,
i.e., those failures will not be mapped to the core level.

To map the failures of this compare group, please perform the
retest and specify one failing SSH ICL instance name of this
global compare group in the
’ssn_on_chip_compare_enabled_failing_instances’ section of that
failure file.

b. The tool can report the following warning message in the primary phase when you
specify “set_failure_mapping_options -on_chip_compare_verbose_messages on”:

// Warning: Multiple SSH ICL instance names have been specified
for global compare group <#> of SSH ICL module
’<ssh_module_name>’ in the
’ssn_on_chip_compare_enabled_failing_instances’ section:
’<ssh1_icl_name_of_ssh_module_name_in_group_#>’
’<ssh2_icl_name_of_ssh_module_name_in_group_#>’
…
’<sshN_icl_name_of_ssh_module_name_in_group_#>’

Please note that the failures of those instances will be ignored,
i.e., those failures will not be mapped to the core level.

To map the failures of this compare group, please perform the
retest and specify one failing SSH ICL instance name of this
global compare group in the
‘ssn_on_chip_compare_enabled_failing_instances’ section of that
failure file.

c. The tool can report the following error message in the retest phase when you specify
“set_failure_mapping_options -on_chip_compare_verbose_messages off”:

// Error: Multiple SSH ICL instance names have been specified for
global compare group <#> of SSH ICL module ’<ssh_module_name>’ in
the ’ssn_on_chip_compare_enabled_failing_instances’ section.

Please ensure that only one instance is contributing to its
status group and that instance is represented in the
’ssn_on_chip_compare_enabled_failing_instances’ section of the
failure file.
Tessent™ Diagnosis User’s Manual, v2022.4572

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Testing and Failure Logging Process
d. The tool can report the following error message in the retest phase when you specify
“set_failure_mapping_options -on_chip_compare_verbose_messages on”:

// Error: Multiple SSH ICL instance names have been specified for
global compare group <#> of SSH ICL module ’<ssh_module_name>’ in
the ’ssn_on_chip_compare_enabled_failing_instances’ section:
<ssh1_icl_name_of_ssh_module_name_in_group_#>
<ssh2_icl_name_of_ssh_module_name_in_group_#>
…
<sshN_icl_name_of_ssh_module_name_in_group_#>

Please ensure that only one instance is contributing to its
status group and that instance is represented in the
’ssn_on_chip_compare_enabled_failing_instances’ section of the
failure file.

5. Use of the ssn_on_chip_compare_test_phase keyword.

a. The tool can report the following error message:

// Error: The ’ssn_on_chip_compare_test_phase’ keyword was not
specified in the failure file.

This keyword is required when there are multiple SSH instances
in the same global compare group.

Please specify the ’ssn_on_chip_compare_test_phase primary |
retest’ keyword/value pair in the failure file and re-read the
file.

Note
If you specify the ssn_on_chip_compare_test_phase keyword, the tool does not
require the ssn_on_chip_compare_enabled_failing_instances section in the

primary phase as long as there are no compare groups with multiples instances
contributing to their status. If you do not specify the
ssn_on_chip_compare_enabled_failing_instances section, the tool assumes all on-
chip compare SSHs are enabled.

However, if you specify the ssn_on_chip_compare_test_phase keyword in the retest
phase, the tool requires the ssn_on_chip_compare_enabled_failing_instances
section.

6. Use of the ssn_on_chip_compare_enabled_failing_instances section in the retest phase.

a. The tool can report the following error message:

// Error: The ’ssn_on_chip_compare_enabled_failing_instances’
section was not specified in the failure file for the retest
phase.

Please ensure that only one instance is contributing to its
status group and that instance is represented in the
’ssn_on_chip_compare_enabled_failing_instances’ section of the
failure file.
Tessent™ Diagnosis User’s Manual, v2022.4 573

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Collecting Failure Data on Automated Test Equipment (ATE)
Collecting Failure Data on Automated Test
Equipment (ATE)

Proper data collection collects the scan failures from the SSN payload patterns. The
sticky_status bits must also be collected from the SSN_end portion of the test. You must take
care to ensure that the sticky_status bits are collected even if the failures in the payload patterns
fill the failure buffer during test.

ATE With Per-Pin Failure Buffers
Some ATE can set a failure buffer on a per-pin basis. This enables the remaining pins to
continue collecting the failure data even after the ATE has reached the buffer limit on other
pins, and ensures that the sticky_status bits can be logged for all patterns. This feature is a
configurable option on some ATE. We recommend that you consult with the field applications
teams for your ATE to ensure it is implemented correctly.

ATE With Central Failure Buffers
If you cannot set buffer limits on a per-pin basis on your ATE, you must split the pattern and run
the SSN_end portion separately from the payload to collect the failures on the sticky_status bits.
During this operation, you must maintain power to the DUT between the patterns to ensure that
the sticky_status bits are not lost. For details on how to write the patterns to separate the
SSN_end portion from the payload, see How To Write JTAG and Payload Procedures
Separately in the Tessent Shell User’s Manual.

The resulting pattern looks like Figure G-8.

Figure G-8. Example of Pattern Set With Separate SSN_end Portion

Collecting Failure Data When the Payload is Split
Many times, you may want to split large payload patterns into multiple smaller patterns. With
SSN, this can impact the failure collection process and may require extra steps. After each
Tessent™ Diagnosis User’s Manual, v2022.4574

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Collecting Failure Data on Automated Test Equipment (ATE)
payload segment, you must run the SSN_end pattern to collect the sticky_status bits and prepare
the SSN for the next payload pattern. Figure G-9 shows an example of the resulting patterns.

Figure G-9. Example of Pattern Set With Split Payload

For failure mapping to work correctly when the payload is split into multiple files, make sure
the ATE creates the failure log where the cycle count begins at 0 for each payload segment. For
details, see the chart in Figure G-10.

Figure G-10. Cycle Count for Multiple Payload Segments

When creating the Tessent failure file for this type of setup, the fail log must contain only the
failure data from the payload patterns, because the tool can only read the payload patterns for
failure mapping. You must place the failures from each payload pattern into a test suite in the
Tessent failure file.
Tessent™ Diagnosis User’s Manual, v2022.4 575

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Logging Failures for SSN On-Chip Compare
Collecting Failure Data on Automated Test Equipment (ATE)
Figure G-11. Test Suites for Each Payload

Note
Tessent failure file mapping can only read the payload patterns. Make sure the order in
which it reads the patterns matches the order of test suites in the Tessent failure file.

Figure G-12. Failure Mapping
Tessent™ Diagnosis User’s Manual, v2022.4576

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Appendix H
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending
on your need, help is available from documentation, online command help, and Siemens EDA
Support.
The Tessent Documentation System . 577
Global Customer Support and Success . 578

The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML
content. From the InfoHub, you can access all locally installed product documentation, system
administration documentation, videos, and tutorials. For users who want to use PDF, you have a
PDF bookcase file that provides access to all the installed PDF files.
For information on defining default HTML browsers, setting up browser options, and setting the
default PDF viewer, refer to the “Documentation Options” in the Siemens® Software and
Mentor® Documentation System manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a
Tessent tool with the -manual invocation switch.

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — ou can get contextual online help within most Tessent
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command
description.
Tessent™ Diagnosis User’s Manual, v2022.4 577

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Getting Help
Global Customer Support and Success
Global Customer Support and Success
A support contract with Siemens EDA is a valuable investment in your organization’s success.
With a support contract, you have 24/7 access to the comprehensive and personalized Support
Center portal.
Support Center features an extensive knowledge base to quickly troubleshoot issues by product
and version. You can also download the latest releases, access the most up-to-date
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login,
register here:

https://support.sw.siemens.com/register
Tessent™ Diagnosis User’s Manual, v2022.4578

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

https://support.sw.siemens.com
https://support.sw.siemens.com/register

Index
Index

— A —
Automatic diagnosis

analyzers, 340, 345
timelimit, 387

command summary, 394
contention checking, 388
distributed processing, 379
dofile example, 386
dynamic reporting, 472
introduction, 336
job scheduler, 379, 389, 390, 396, 406
license

usage, 337, 340
load balancing, 388, 391
mode, 464
monitored directories, 340, 344

status, 441
netlist, 344
optional settings, 443, 464
overview, 336
report, 344
resume, 347, 450
session

logfile, 344
status, 363

setting up, 337
suspend, 347, 450
terminate dynamic reporting, 364
test patterns, 344

sampling, 457
verification, 397, 408

variables, 387, 449
monito r_filter, 390

— C —
Chain diagnosis report

contents of, 105
chaing diagnosis

requirements, 39

— D —
Diagnosis

chain failures, 22
input files, 26
limitations, 23
Macro test patterns, 24
overview, 26
reports

logic diagnosis example, 125, 126

— F —
Failure file

cycle-based, 38, 41
format requirements, 38
pattern-based, 39

keywords, 55
tracking information, 55

preparing, 38
Failure log

preparing, 38
Full failure buffer handling, 65

— I —
Impedance handling, 50

— L —
Logic diagnosis report

example, 125, 126

— M —
Multiple test suites, 51

example, 49

— S —
Suspects

display, 23

— T —
Tcl scripting, 415, 416
Tessent Diagnosis

features, 23
invoking, 84, 344
579Tessent™ Diagnosis User’s Manual, v2022.4

oveview, 22
Test patterns, 22

binary, 26
requirements, 23
STIL, 26
verification, 22
WGL, 26

Test procedures
unsupported, 23
580 Tessent™ Diagnosis User’s Manual, v2022.4

Third-Party Information
Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

	InfoHub
	Bookcase
	Revision History ISO-26262
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 The Diagnosis Process
	Tessent Diagnosis Features
	Overview of the Diagnosis Process
	Input File Requirements

	Preparing the Test Patterns
	The Design Netlist
	Preparing the Design Netlist
	Flat Models with Different Settings for Stuck-At and At-Speed Patterns
	ATPG Change Impacts on Flat Netlists

	Pattern Verification and the Diagnosis Startup Cache
	Diagnosis Startup Cache
	Diagnosis Startup Cache Loading Errors
	Diagnosis Startup Cache Usage Examples
	Turning Off Test Pattern Verification
	Displaying Test Pattern Mismatches

	Guidelines for Preparing the ATE Failure File
	ATE Failure File Format Requirements
	Chain Diagnosis Requirements
	Logic Diagnosis Requirements
	The Cycle-Based Failure File
	Cycle-Based Failure File Examples
	High Impedance (Z) Handling
	Multiple Test Suite Failure Data
	Cycle Offset Adjustment for Failure Files

	The Pattern-Based Failure File
	Pattern-Based Failure File Examples
	Guidelines for Mapping ATE Failure Logs to Pattern- Based Failure Files

	Failure Truncation Handling
	Truncated Failure File Examples

	Substituting Instance Text for Diagnosis Reporting

	Archiving Data for Re-Running Diagnosis
	STDF-V4 2007-Formatted File Support
	STDF-V4 2007 Records and Tessent Diagnosis
	STDF-V4 2007 Tracking Information
	Support for Unknown Captured Values
	Multi-Site Support
	Extracting Scan Failures from STDF-V4 2007 Files and Creating Failure Files

	Diagnosis
	Performing Scan Diagnosis
	Batch Mode in Tessent Diagnosis
	Gross Delay Defect Diagnosis
	Slow Clock Compound Hold-Time Diagnosis
	IDDQ Diagnosis
	At-Speed Failure Diagnosis

	Guidelines for Customizing the Diagnostic Session
	Log File Generation
	System Mode Toggles
	Reported Suspects
	Saved Diagnosis Reports
	Diagnosis Time Limit
	Displayed Failure File Errors/Mismatches

	Chapter 2 Diagnosis Reporting and Troubleshooting
	Diagnosis Reporting
	Front Matter and Diagnosis Summary
	Chain Diagnosis Section
	Diagnosis Summary
	Symptom Descriptions
	Suspect Scores in Chain Diagnosis
	Layout Information in the Chain Diagnosis Report
	Multi-Bit Flip-Flop Handling
	Global Signal Suspect Reporting
	Masking Scan Patterns for Chain Diagnosis Failures
	Chain Diagnosis Reporting for Failure Files Missing Failing Scan Test Information

	Logic Diagnosis Section
	Logic Diagnosis Summary
	Symptom Information Section
	Suspect Details
	Suspect Tags
	Suspect Scores in Logic Diagnosis
	Logic Diagnosis Report Examples
	Failure Signature Information in the Diagnosis Report

	MD5 Signature Information in the Diagnosis Report
	CSV Diagnosis Report Format

	Graphical Results in Tessent Visualizer
	Displaying Suspects in the Schematic View
	Viewing Failing Paths for a Pattern
	Viewing Failing Paths for a Suspect

	Diagnosis Improvements and Retrieving Internal Scan Cell Information
	Iterative Diagnosis
	When To Use Iterative Diagnosis
	Performing Iterative Diagnosis
	Iterative Logic Diagnosis Examples
	Iterative Scan Chain Diagnosis Examples

	Techniques for Finding Internal Scan Cells in a Compressed Pattern
	Internal Scan Cell Profiling for Compressed Patterns
	1hot Compressed Pattern Expansion
	Performing 1hot Compressed Pattern Expansion
	One-Hot Compressed Pattern Expansion Examples

	Troubleshooting
	Pattern and Failure File Mismatches
	Data Consistency Checks
	Pattern Verification Unsuccessful
	Failure File Errors

	Unexpected Diagnosis Results
	Very Few Total Failing Patterns
	Many Suspects for One Symptom
	Low Score for Suspects
	Large Faulty Scan Cell Range in Chain Diagnosis
	Too Many Suspects, Symptoms, or Unexplained Patterns in Logic Diagnosis

	Fault Injection Issues
	Abort Conditions for Chain Diagnosis
	Cannot Identify Faulty Chain
	No “Usable” Scan Patterns for Chain Diagnosis
	Too Many Failing Scan Chains
	Too Few Failing Cycles
	Compound Diagnosis Abort Logic Diagnosis Part
	No Failing 1-hot Chain Masking Patterns

	Long Logic Diagnosis Runtimes

	Chapter 3 Layout-Aware Diagnosis and Reporting
	Layout-Aware Diagnosis Flow
	Layout Database
	Layout-Aware Diagnosis Requirements and Limitations
	Diagnosis Output Files

	Layout Verification and Layout Database Creation Process
	Performing Layout Verification and LDB Creation
	Estimation of Resources Required for Generating LDBs
	Layout Database Compression and Decompression
	Parallel Operations With the Same LDB

	Layout Verification Reporting
	Example Layout Verification Report Format
	Layout Verification Report Details
	Design Cell Instance Mismatches Summarized by Design Modules
	Information on Mismatches Due to DesignModuleCell Violations
	Layout Rule Violation Summary
	Mismatch Report
	Design and Layout Match Percentage

	Rules That Directly Impact the Match Percentage

	Layout and Design Mismatch Debugging
	Suggested Flow for Debugging Layout Verification Report Undefined Cell Instances
	Multiple Top DEF Files Debug

	Net Topology Extraction Debugging
	The Net Topology Extraction Transcript
	Debugging Net Topology Extraction Failures

	Layout-Aware Diagnosis
	Performing Layout-Aware Diagnosis with Tessent Diagnosis
	Diagnosis for Root Cause Deconvolution Analysis
	Preparing for RCD Analysis in Tessent YieldInsight

	Diagnosis for Design for Manufacturability Analysis
	Supported DFM RDB Violation Types
	What Constitutes a DFM Hit
	RDB-to-Layout Database Verification Results
	Performing DFM Diagnosis
	Dofile Examples for DFM Diagnosis

	Cell-Aware Diagnosis
	Running Cell-Aware Diagnosis
	Performing Cell-Aware Diagnosis With RCD
	Cell-Aware Diagnosis Report
	Chip-Level Layout Marker File Results Viewing

	Considerations for At-Speed Diagnosis

	Source/Sink Polygon Layout Markers for Open Diagnosis Suspects
	Open Suspect Diagnosis and Layout Marker File Generation
	Using Calibre RVE to View Source/Sink Cell Polygons

	Guidelines for Viewing the Diagnosis Results in Calibre DESIGNrev
	Viewing Results in Pre-Calibre 2010.1 Software
	Viewing Results in Calibre 2010.1 or Newer Software

	Layout-Aware Diagnosis Reporting
	The Layout-Aware Diagnosis Report
	Layout Status Column
	Defect Location Information
	The XMAP Table
	The Branch Information Table

	Power and Ground Bridge Reporting
	Inter-Scan Cell Polygon Reporting for Chain Diagnosis
	Cell Bridge Port Diagnosis Reporting

	Chapter 4 Diagnosis for Hierarchical Designs
	Core-Level Layout-Aware Diagnosis
	Generating Chip-Mapped Core-Level LDBs
	Reverse Mapping Top-Level Failures to the Core
	Running Layout-Aware Diagnosis Using a Core- Level LDB
	Adding Instance Information to an Existing Core- Level LDB
	Validating Reverse Mapping Prior to Core-Level Layout-Aware Diagnosis

	Top-Level Layout-Aware Diagnosis
	Running Layout-Aware Diagnosis Using a Graybox- Aware Top-Level LDB

	Chapter 5 Diagnosis for Tessent LogicBIST Designs
	Overview
	signatureAnalyze Fault Simulator Diagnosis Flow
	signatureAnalyze Flow Requirements
	Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures
	Preparing the Logic BIST Chain Mapping File

	Tessent FastScan Fault Simulator Diagnosis Flow
	Tessent FastScan Flow Requirements
	Creating the Tessent FastScan Flat Model and Verifying the MISR Signatures
	Special Handling for Static Chain Masks
	<moduleName>.etSignOff
	<manualMaskingConfigFile>.etChainMask.tpl
	Generating the New Test Vectors
	Generating the Flat Model With Chain Mask Information

	Failure File Generation
	Generating the Logic BIST Top-Level Failure File
	Converting the Top-Level Failure File to a Core- Level Failure File
	Including User-Defined Auxiliary Flops in the Conversion

	Performing Logic BIST Diagnosis in Tessent Diagnosis

	Chapter 6 Running Tessent Diagnosis Server
	Introduction to Tessent Diagnosis Server
	Tessent Diagnosis Server Prerequisites
	Creating the Scratch Directory
	Automated ATE Failure Log Conversion

	Tessent Diagnosis Server Interface
	Monitored Directories and Analyzers
	Guidelines for Working with Monitored Directories
	Guidelines for Working with Analyzers

	Setting Up the Tessent Diagnosis Server
	Running the Diagnosis
	Layout-Aware Diagnosis with the Tessent Diagnosis Server
	Layout-Aware Diagnosis Commands
	Running Layout-Aware Diagnosis on a Local Layout Database

	Dynamic Partitioning-Based Diagnosis
	Overview
	Preparing for Dynamic Partitioning-Based Diagnosis
	Creating the Startup Cache
	Bridges and Net Topology Information
	Test the Input Files

	Running Dynamic Partitioning-Based Diagnosis
	Setting Up Manual Dynamic Partitioning-Based Diagnosis

	Server Session Status
	The Diagnosis Results Directory
	Duplicated Failure File Names
	Log Files

	Server History
	Server History Reports
	Usage Example: Analyze Diagnosis Performance and Throughput
	History Database Schema
	HDB_ANALYZER
	HDB_ERROR
	HDB_EVENT
	HDB_FILE
	HDB_HEADER
	HDB_MONITOR
	HDB_MONITORSET
	HDB_OPTION
	HDB_QUEUE
	HDB_SESSION

	Distributed Diagnosis Processing
	Setting up LSF or SGE Job Schedulers
	Guidelines for Troubleshooting Scheduling Delays
	Setting Up a Custom Job Scheduler
	Manual Job Scheduling

	Running Tessent Diagnosis Server with a Local Host
	Running Tessent Diagnosis Server in Batch Mode
	The Tessent Diagnosis Server Daemon
	Server Session Customizations
	Analyzer Time Limits
	Tessent Diagnosis Server Variables
	Automatic Load Balancing
	Time-Based Licensing
	Reporting Server Status with Email

	Command Reference
	add_analyzer
	add_design
	add_layout
	add_monitor
	add_pattern
	add_partitioner
	add_reporting_format
	add_reporting_xmap
	add_startup_cache
	analyze_resource_requirements
	check
	cleanse_history
	clear_monitor
	clear_status
	delete_analyzer
	delete_design
	delete_layout
	delete_monitor
	delete_partitioner
	delete_pattern
	delete_reporting_format
	delete_reporting_xmap
	delete_schedule
	dofile
	email
	exit
	help
	history
	query_history
	report_analyzer
	report_history
	report_licenses
	report_log
	report_monitor
	report_network
	report_options
	report_partitioner
	report_reporting_format
	report_reporting_xmap
	report_schedule
	report_status
	report_variable
	resume_diagnosis
	schedule_email
	schedule_licenses
	set_diagnosis_options
	set_diagnosis_resource_configuration
	set_monitor_options
	start_diagnosis
	suspend_diagnosis
	version
	watch

	Chapter 7 Reversible Scan Chain Diagnosis
	Benefits of Reversible Scan
	Design Considerations
	Reversible Scan Chain Diagnosis Flow
	Reversible Scan Chain Insertion
	Reversible Scan Suspect Types
	Diagnosing Reversed Scan Chain Patterns
	Generating Reversed Scan Path Description
	Frequently Asked Questions

	Appendix A dlogutil Utility
	dlogutil Invocation
	dlogutil Utility Commands
	extract_stdf_failures
	load_fail_map
	load_stdf_file
	map_fail_log
	report_stdf_conditions
	report_stdf_parts
	report_stdf_pattern_sequences
	write_atdf_file

	dlogutil Utility Variables
	stdf_cap_data_mapping
	stdf_fail_trunc_handling
	stdf_selected_parts
	stdf_selected_psr_ids
	stdf_test_name_source

	dlogutil Features for SSN On-Chip Compare

	Appendix B Layout-Aware Diagnosis Layout Verification Rules
	The Layout Verification Rules
	Chip Boundary Rules
	Instance Rules
	Layer Definition Rules
	Macro Definition Rules
	Net Rules
	Taper Rules
	Via Definition Rules
	LEF/DEF Parser Warning Rules

	Instance, Net, and Pin Path Names in Layout Rule Violation Reports
	Name Mismatch Reporting
	Instance, Net, and Pin Layout Path Names Suppression in Violation Reporting
	Instance, Net, and Pin Path Name Violation Examples

	Layout Verification Examples
	Common Area Example
	Low Percentage Match Example
	Extra END LIBRARY in the LEF File Example
	Missing DEF File Example

	Guidelines for Including or Excluding Design Modules From Mismatch Reporting
	Layout Rule Violation Report Generation
	Excluded Area Examples
	report_layout_rules Usage Examples

	Appendix C Diagnosis Report Signature Formats
	Failure Signature Format
	MD5 Signature Format

	Appendix D STDF-V4 2007 ATDF Record Examples
	Teradyne Record ATDF Examples
	Verigy Record ATDF Examples

	Appendix E Layout-Aware Diagnosis Marker File Semantics
	About the Marker File
	Marker File Semantics

	Appendix F Generating DEF from Other Tools
	Generating DEF from IC Compiler
	Generating DEF from ATopTech APRISA

	Appendix G Logging Failures for SSN On-Chip Compare
	Testing and Failure Logging Process
	Collecting Failure Data on Automated Test Equipment (ATE)

	Appendix H Getting Help
	The Tessent Documentation System
	Global Customer Support and Success

	Index
	Third-Party Information
	Documentation Feedback

