
Software Version 2022.4 
Document Revision 27

SIEMENS EDA

Hybrid TK/LBIST Flow 
User’s Manual



Unpublished work. © 2022 Siemens

This Documentation contains trade secrets or otherwise confidential information owned by Siemens Industry 
Software Inc. or its affiliates (collectively, “Siemens”), or its licensors. Access to and use of this Documentation is 
strictly limited as set forth in Customer’s applicable agreement(s) with Siemens. This Documentation may not be 
copied, distributed, or otherwise disclosed by Customer without the express written permission of Siemens, and may 
not be used in any way not expressly authorized by Siemens.

This Documentation is for information and instruction purposes. Siemens reserves the right to make changes in 
specifications and other information contained in this Documentation without prior notice, and the reader should, in 
all cases, consult Siemens to determine whether any changes have been made.

No representation or other affirmation of fact contained in this Documentation shall be deemed to be a warranty or 
give rise to any liability of Siemens whatsoever.

If you have a signed license agreement with Siemens for the product with which this Documentation will be used, 
your use of this Documentation is subject to the scope of license and the software protection and security provisions 
of that agreement. If you do not have such a signed license agreement, your use is subject to the Siemens Universal 
Customer Agreement, which may be viewed at https://www.sw.siemens.com/en-US/sw-terms/base/uca/, as 
supplemented by the product specific terms which may be viewed at https://www.sw.siemens.com/en-US/sw-
terms/supplements/.

SIEMENS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS DOCUMENTATION INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. SIEMENS SHALL NOT BE LIABLE 
FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL OR PUNITIVE DAMAGES, LOST DATA OR 
PROFITS, EVEN IF SUCH DAMAGES WERE FORESEEABLE, ARISING OUT OF OR RELATED TO THIS 
DOCUMENTATION OR THE INFORMATION CONTAINED IN IT, EVEN IF SIEMENS HAS BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGES.

TRADEMARKS: The trademarks, logos, and service marks (collectively, "Marks") used herein are the property of 
Siemens or other parties. No one is permitted to use these Marks without the prior written consent of Siemens or the 
owner of the Marks, as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a 
source of a product, but is intended to indicate a product from, or associated with, a particular third party. A list of 
Siemens' Marks may be viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The 
registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, 
owner of the mark on a world-wide basis.

About Siemens Digital Industries Software

Siemens Digital Industries Software is a leading global provider of product life cycle management (PLM) software 
and services with 7 million licensed seats and 71,000 customers worldwide. Headquartered in Plano, Texas, 
Siemens Digital Industries Software works collaboratively with companies to deliver open solutions that help them 
turn more ideas into successful products. For more information on Siemens Digital Industries Software products and 
services, visit www.siemens.com/plm.

Support Center: support.sw.siemens.com 
Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form 

https://www.sw.siemens.com/en-US/sw-terms/base/uca/
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://www.siemens.com/plm
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form
https://www.sw.siemens.com/en-US/sw-terms/supplements/
https://www.sw.siemens.com/en-US/sw-terms/supplements/


Revision History ISO-26262

Author: In-house procedures and working practices require multiple authors for documents. All 
associated authors for each topic within this document are tracked within the Siemens 
documentation source. For specific topic authors, contact the Siemens Digital Industries 
Software documentation department.

Revision History: Released documents include a revision history of up to four revisions. For 
earlier revision history, refer to earlier releases of documentation on Support Center.

Revision Changes Status/
Date

27 Modifications to improve the readability and comprehension of 
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the 
Tessent Release Notes for this product are reflected in this 
document. Approved by Ron Press.

Released
Dec 2022

26 Modifications to improve the readability and comprehension of 
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the 
Tessent Release Notes for this product are reflected in this 
document. Approved by Ron Press.

Released
Sep 2022

25 Modifications to improve the readability and comprehension of 
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the 
Tessent Release Notes for this product are reflected in this 
document. Approved by Ron Press.

Released
Jun 2022

24 Modifications to improve the readability and comprehension of 
the content. Approved by Lucille Woo.
All technical enhancements, changes, and fixes listed in the 
Tessent Release Notes for this product are reflected in this 
document. Approved by Ron Press.

Released
Mar 2022
Hybrid TK/LBIST Flow User’s Manual, v2022.4

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Hybrid TK/LBIST Flow User’s Manual, v2022.44

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Table of Contents

Revision History ISO-26262

Chapter 1 
Introduction to the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Hybrid TK/LBIST Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Tessent Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Tessent EDT and LogicBIST IP Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test Point Analysis and Insertion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Scan Insertion and X-Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LogicBIST Fault Simulation and Pattern Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Top-Level ICL Network Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Considerations for Top-Down Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Limitations for the Hierarchical TK/LBIST Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 
EDT and LogicBIST IP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

EDT and LogicBIST IP Generation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Hybrid TK/LBIST IP Generation Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Integrating a Third-Party TAP in the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . 25
Clock Controller Connections to the EDT/LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . 26
EDT and LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Clock Control Logic and Named Capture Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Programmable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmable Shift and Capture Pause Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Low-Power Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Warm-Up Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chain Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Asynchronous Set/Reset Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Single Chain Mode Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Controller Chain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
IJTAG Network in EDT/LogicBist IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Burn-In Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LBIST Controller Hardware Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Self-Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IP Generation for Self-Test Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Self-Test Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Performing Self-Test Pattern Generation During IP Creation . . . . . . . . . . . . . . . . . . . . . 62

Generating the EDT and LogicBIST IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Dual Compression Configurations for the Hybrid IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Timing Constraints for EDT and LogicBIST IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Hybrid TK/LBIST Flow User’s Manual, v2022.4 5



Table of Contents
Timing Constraint Generation in the Specification-Based Flow . . . . . . . . . . . . . . . . . . . . 70
LogicBIST Timing Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ECO Implementation in the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3 
Test Point Analysis and Insertion, Scan Insertion, and X-Bounding  . . . . . . . . . . . . . . . . 77

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview . . . . . . . . . . 77
X-Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

X-Bounding Control Signals (Existing or New Scan Cells). . . . . . . . . . . . . . . . . . . . . . . . 83
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Multiple Clock Domain Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
False and Multicycle Paths Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
X-Sources Reaching Primary Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
X-Bounding and no_observe_point and no_control_point Attributes . . . . . . . . . . . . . . . . 85
EDT IP Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
X-Bounding and the Tessent Memory BIST Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Test Point Insertion, Scan Insertion, and X-Bounding Command Summary  . . . . . . . . . . . . 87

Chapter 4 
LogicBIST Fault Simulation and Pattern Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

LogicBIST Fault Simulation and Pattern Creation Overview . . . . . . . . . . . . . . . . . . . . . . . . 89
Initial Static DFT Signal Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Performing LogicBIST Fault Simulation and Pattern Creation. . . . . . . . . . . . . . . . . . . . . . . 92
Specifying Warm-Up Patterns During Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Fault Simulation When There Are Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Fault Coverage Report for the Hybrid IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Fault Simulation and Pattern Creation Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 5 
Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Pattern Generation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Pattern Generation for the TSDB Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Performing Pattern Generation for the TSDB Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Performing Pattern Generation for CCM in the TSDB Flow . . . . . . . . . . . . . . . . . . . . . . . 104
Pattern Generation in Multiple, Shorter Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Pattern Generation for Low Power LBIST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Single Chain Mode Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Pattern Mismatch Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Debug Based on MISR Signature Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Debug Based On Scan Cell Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Usage Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 6 
Top-Level ICL Network Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Top-Level ICL Network Integration Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Performing Top-Level ICL Network Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Top-Level ICL Network Integration Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6 Hybrid TK/LBIST Flow User’s Manual, v2022.4



Table of Contents
Chapter 7 
ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ICL Extraction and Pattern Retargeting Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Performing ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Usage Examples for ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . 133
ICL Extraction and Pattern Retargeting Command Summary  . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 8 
Hybrid TK/LBIST Embedded Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Shared Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Inserted Hybrid TK/LBIST IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Scan Chain Masking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
New LogicBIST Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Programmable Registers Inside Hybrid IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Low-Power Shift Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 9 
Tessent OCC for Hybrid TK/LBIST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Tessent OCC TK/LBIST Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Tessent OCC for TK/LBIST Flow Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NCP Index Decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
OCC Generation and Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Scan Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
OCC EDT/LBIST IP Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
NCP Index Decoder Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Fault Simulation with a Tessent OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Pattern Generation with a Tessent OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Example Tessent OCC TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Generating and Inserting the Tessent OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Tessent OCC Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 10 
Third-Party OCC for Hybrid TK/LBIST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Overview of the Third-Party OCC Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
ThirdPartyOcc TCD File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Usage Examples for Third-Party OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 11 
Observation Scan Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
DFT Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Test Point and Scan Insertion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
LogicBIST Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Pattern Mismatch Debugging Based on Scan Cell Monitoring . . . . . . . . . . . . . . . . . . . . . . . 187
Pattern Mismatch Debugging for Parallel Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Hybrid TK/LBIST Flow User’s Manual, v2022.4 7



Table of Contents
Chapter 12 
Independent Hybrid TK/LBIST Insertion Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Independent Insertion Flow Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Tessent EDT and LogicBIST IP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
EDT and LogicBIST IP Generation Overview (Independent Insertion Flow)  . . . . . . . . . . . 196

IJTAG Network in EDT/LogicBIST IP (Independent Insertion Flow)  . . . . . . . . . . . . . . . 196
LBIST-Related Clock Signals for the Independent Insertion Flow . . . . . . . . . . . . . . . . . . 197

LBIST Load/Unload Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Timing Constraints (SDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

SDC File Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
LBIST-Ready Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Hierarchical STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
STA For Legacy Hierarchical TK/LBIST Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Extended SDC Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SDC Procedure Generation for Hybrid EDTs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SDC Procedures for Hierarchical STA With Independent Insertion Flow  . . . . . . . . . . . 216

Generating EDT and LogicBIST IP for Independent Insertion . . . . . . . . . . . . . . . . . . . . . . . 219
Generating LogicBIST-Ready EDT Child Blocks Without OCC  . . . . . . . . . . . . . . . . . . . 220

Independently Inserting the LogicBIST-Ready EDT in Child Blocks. . . . . . . . . . . . . . . 220
Generating the LogicBIST Controller With Parent Level EDT. . . . . . . . . . . . . . . . . . . . 222

Generating LogicBIST-Ready EDT Child Blocks With OCC . . . . . . . . . . . . . . . . . . . . . . 226
Independently Inserting the LogicBIST-Ready EDT in Child Blocks With OCC  . . . . . 226
Generating the LogicBIST Controller at the Parent Level With EDT and OCC . . . . . . . 228

Generating LogicBIST-Ready Grandchild Blocks with OCC . . . . . . . . . . . . . . . . . . . . . . 232
Independently Inserting the LogicBIST-Ready EDT in Grandchild Blocks . . . . . . . . . . 232
Instrumenting the Child Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Generating the LogicBist Controller at the Grandparent Level With EDT and OCC . . . 236

SSN and Hybrid TK/LBIST Insertion Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Independent Insertion With SSN Flow Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Generating SSN ScanHost IP for Independent Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Independently Inserting the LogicBIST-Ready EDT and SSH in a Child Block  . . . . . . 242
Generating the LogicBIST, EDT, OCC, and SSH in the Parent Level  . . . . . . . . . . . . . . 245
Using ssn_bus_clock as test_clock Bypass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Top-Level LBIST and External Test Mode in Child Cores. . . . . . . . . . . . . . . . . . . . . . . . . . 250
Child-Level OCC Inactive During External Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Child-Level OCC Active During External Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Child-Level Hybrid EDT For Wrapper Chains Active During External Test  . . . . . . . . . . 256

Limitations of the Independent Insertion Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Appendix A 
The Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

EDT and LogicBIST IP Generation Command Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Generating the EDT and LogicBIST IP (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Performing Scan Insertion and X-Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Example Dofiles for Core-Level Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Pattern Generation for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Performing Pattern Generation for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Performing Pattern Generation for CCM in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . 281
8 Hybrid TK/LBIST Flow User’s Manual, v2022.4



Table of Contents
Pattern Mismatch Debugging in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Debug Based on MISR Signature Divergence (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . 285
Debug Based on Scan Cell Monitoring (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Tessent OCC for Hybrid TK/LBIST in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Tessent OCC TK/LBIST (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Tessent OCC for TK/LBIST Flow Configuration (Dofile Flow). . . . . . . . . . . . . . . . . . . 294
NCP Index Decoder (Dofile Flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
OCC Generation and Insertion (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Scan Insertion (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
OCC EDT/LBIST IP Creation (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
NCP Index Decoder Synthesis (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Fault Simulation with a Tessent OCC (Dofile Flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Pattern Generation with a Tessent OCC (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Observation Scan Technology Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Example Tessent OCC TK/LBIST Flow (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Generating and Inserting the Tessent OCC (Dofile Flow). . . . . . . . . . . . . . . . . . . . . . . . 305
Inserting the Scan Chains (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Generating the Hybrid TK/LBIST IP (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Synthesizing and Inserting the LBIST NCP Index Decoder (Dofile Flow). . . . . . . . . . . 309
Generating the EDT Patterns (Dofile Flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Performing the LBIST Fault Simulation (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Tessent OCC Dofile Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
File Examples for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Synthesis Script Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Timing Script Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
ICL Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Appendix B 
Low Pin Count Test Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Low Pin Count Test Controller Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Type-2 LPCT Controller Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Appendix C 
EDT Pattern Generation for the Hybrid IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

EDT Mode Initialization with IJTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
The EDT Setup iProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Usage Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Appendix D 
Interface Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

LogicBIST Controller Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Clock Controller Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
EDT/LogicBIST Wrapper Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Segment Insertion Bit Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Appendix E 
Getting Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

The Tessent Documentation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Hybrid TK/LBIST Flow User’s Manual, v2022.4 9



Table of Contents
Global Customer Support and Success  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Third-Party Information
10 Hybrid TK/LBIST Flow User’s Manual, v2022.4



List of Figures

Figure 1-1. Basic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2-1. TAP Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2-2. Clock Controller Before IP Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 2-3. Clock Controller After EDT/LogicBIST IP Generation . . . . . . . . . . . . . . . . . . . 27
Figure 2-4. Block-Level View of the EDT/LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 2-5. Final Top-Level Netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 2-6. Clocking During EDT Shift Mode of Operation  . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2-7. Default Dead Cycle Pause Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2-8. Dead Cycle Pause Width of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2-9. Chain Test Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 2-10. DFT Signal to Turn Off for Set/Reset Signals During ATPG  . . . . . . . . . . . . . 44
Figure 2-11. DFT Signal to Provide Set/Reset Controllability During LBIST . . . . . . . . . . . 44
Figure 2-12. ControllerChain and Connections Wrappers  . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 2-13. EDT/LogicBIST-Inserted Design for CCM, Segmented Scan Chains . . . . . . . 53
Figure 2-14. EDT/LogicBIST-Inserted Design for CCM, Non-Segmented Scan Chains. . . 54
Figure 2-15. SIBs Insertion and Integration of Cores for Concurrent Flow . . . . . . . . . . . . . 56
Figure 2-16. LBIST Controller Self-Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 3-1. Inverted Feedback Muxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 6-1. Top-Level ICL Network Integration Dofile Example  . . . . . . . . . . . . . . . . . . . . 127
Figure 6-2. DftSpecification Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 8-1. Timing Diagram for the FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 8-2. Timing Diagram for LogicBIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 8-3. Hybrid TK/LBIST Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 8-4. Low-Power Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 9-1. Modified TK/LBIST Flow for Tessent OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 9-2. NCP Index Decoder Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 9-3. OCC/LogicBIST Connection Intercept With Same Signal Source  . . . . . . . . . . 157
Figure 9-4. OCC/LogicBIST Connection Intercept With Different Signal Sources . . . . . . . 158
Figure 9-5. Clock Gating With DFT Signals and OCC in the First Pass  . . . . . . . . . . . . . . . 168
Figure 9-6. Clock Gating With EDT and LogicBIST in the Second Pass. . . . . . . . . . . . . . . 168
Figure 10-1. Hybrid TK/LBIST Flow With Tessent Shell  . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 10-2. Third-Party OCC With Shared Shift Clock Source, Pre-Insertion . . . . . . . . . . 173
Figure 10-3. Third-Party OCC With Shared Shift Clock Source, Post-Insertion . . . . . . . . . 174
Figure 10-4. Third-Party OCC With Different Shift Clock Inputs (Error Condition). . . . . . 175
Figure 11-1. High-Level DFT Insertion Flow with Observation Scan . . . . . . . . . . . . . . . . . 179
Figure 11-2. Observation Scan Observe Point Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 11-3. IJTAG Network in the LogicBIST Controller  . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 11-4. Failing Flop in Schematic Viewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 11-5. Compare Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 12-1. Independent Insertion Flow Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Hybrid TK/LBIST Flow User’s Manual, v2022.4 11



List of Figures
Figure 12-2. Block Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 12-3. LBIST Controller Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 12-4. SIBs Insertion and Integration of Cores for the Independent Insertion Flow. . 197
Figure 12-5. LBIST-Ready Block Before Insertion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 12-6. LBIST-Ready Block After Insertion Using shift_en  . . . . . . . . . . . . . . . . . . . . 198
Figure 12-7. LBIST-Ready Block After Insertion Using capture_en . . . . . . . . . . . . . . . . . . 199
Figure 12-8. LBIST Controller Clock-Gating Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 12-9. LBIST-Ready Block With PI Clocking Scheme and No OCC. . . . . . . . . . . . . 204
Figure 12-10. LBIST-Ready Block With PI Clocking Scheme and OCC. . . . . . . . . . . . . . . 205
Figure 12-11. LBIST-Ready Block With test_clock Clocking Scheme and OCC . . . . . . . . 206
Figure 12-12. LBIST-Ready Physical Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 12-13. LBIST Controller in Parent Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 12-14. Hybrid EDT for External Mode Controlled by Parent-Level LBIST . . . . . . . 209
Figure 12-15. Illustration of the Legacy Hierarchical TK/LBIST Flow . . . . . . . . . . . . . . . . 210
Figure 12-16. LBIST-Ready EDT Child Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 12-17. LBIST Controller Inserted After Second Pass  . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 12-18. LBIST-Ready EDT Child Block With OCC. . . . . . . . . . . . . . . . . . . . . . . . . . 228
Figure 12-19. LBIST Controller With OCC Inserted After Second Pass . . . . . . . . . . . . . . . 231
Figure 12-20. LBIST-Ready Grandchild Block with OCC . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 12-21. LBIST-Ready Grandparent, Intermediate, and Grandchild Block With OCC 239
Figure 12-22. Independent Insertion With SSH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Figure 12-23. Independent Insertion With SSH Child Block Contents. . . . . . . . . . . . . . . . . 241
Figure 12-24. SSH With scan_signals_bypass: controls_only  . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 12-25. SSN-Equipped LBIST -Ready Child Block . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 12-26. Independent Insertion With SSN and OCC at Parent Level . . . . . . . . . . . . . . 248
Figure 12-27. Using ssn_bus_clock as test_clock Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Figure 12-28. Top-Level Functional Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 12-29. Core-Level Chains Driven by Top-Level OCC  . . . . . . . . . . . . . . . . . . . . . . . 251
Figure 12-30. Top-Level Reference Clock and Core-Level PLL . . . . . . . . . . . . . . . . . . . . . 252
Figure 12-31. Core-Level Chains Driven by Core-Level OCC. . . . . . . . . . . . . . . . . . . . . . . 255
Figure 12-32. Hybrid EDT for the External Mode Controlled by Parent-Level LBIST . . . . 256
Figure 12-33. Hybrid EDT for Wrapper Chains Shared Between Core-Level and Parent-Level 

LBIST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Figure 12-34. Single-Pass EDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Figure 12-35. EDT and LBIST Association  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Figure A-1. The Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Figure A-2. Modified TK/LBIST Flow for Tessent OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Figure A-3. NCP Index Decoder Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Figure A-4. OCC/LogicBIST Connection Intercept With Same Signal Source . . . . . . . . . . 300
Figure A-5. OCC/LogicBIST Connection Intercept With Different Signal Sources  . . . . . . 301
Figure A-6. Clock Gating With DFT Signals and OCC in the First Pass . . . . . . . . . . . . . . . 318
Figure A-7. Clock Gating With EDT and LogicBIST in the Second Pass  . . . . . . . . . . . . . . 318
Figure C-1. Example of Tool-Generated Setup iProc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
12 Hybrid TK/LBIST Flow User’s Manual, v2022.4



List of Tables

Table 3-1. Test Point Insertion, Scan Insertion, and X-Bounding Commands  . . . . . . . . . . 87
Table 4-1. Initial Static DFT Signals for Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 4-2. Fault Simulation and Pattern Creation Commands . . . . . . . . . . . . . . . . . . . . . . . 98
Table 6-1. Top-Level ICL Network Integration Commands  . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 7-1. ICL Extraction and Pattern Retargeting Commands . . . . . . . . . . . . . . . . . . . . . . 136
Table 11-1. Modes of Operation for Observation Scan Cells . . . . . . . . . . . . . . . . . . . . . . . . 180
Table A-1. EDT and LogicBIST IP Generation Commands  . . . . . . . . . . . . . . . . . . . . . . . . 265
Table A-2. Output Files, EDT and LogicBIST IP Generation, TSDB Flow  . . . . . . . . . . . . 268
Table A-3. Output Files, EDT and LogicBIST IP Generation, Dofile Flow  . . . . . . . . . . . . 269
Table D-1. LogicBIST Controller Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Table D-2. Clock Controller Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Table D-3. EDT/LogicBIST Wrapper Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Table D-4. SIB Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Hybrid TK/LBIST Flow User’s Manual, v2022.4 13



List of Tables
14 Hybrid TK/LBIST Flow User’s Manual, v2022.4



Hybrid TK/LBIST Flow User’s Manual, v2022.4 15

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 1
Introduction to the Hybrid TK/LBIST Flow

The hybrid TK/LBIST flow combines TestKompress (EDT) functionality with Tessent 
LogicBIST functionality in the Tessent Shell environment. Sharing Tessent EDT and Tessent 
LogicBIST IP functionality reduces hardware overhead. You can implement hybrid TK/LBIST 
as a dofile or specification-based flow, depending on how the command files are written, and as 
bottom-up or top-down, depending on the IP implementation.
This manual describes the flow to generate the hybrid TK/LBIST hardware, integrate it into the 
design, and perform scan insertion, fault simulation and pattern generation. This flow uses the 
configuration-based methodology. For details on using a dofile-based approach, refer to “The 
Dofile Flow” on page 263. Although the tool supports a dofile-based flow, it is recommended to 
migrate to the configuration-based flow to take advantage of its automation, seamless 
integration, and ease-of-use features.

Note
This manual uses the terms “LogicBIST” and “LBIST” interchangeably. 

Hybrid TK/LBIST Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Tessent Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Tessent EDT and LogicBIST IP Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test Point Analysis and Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Scan Insertion and X-Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LogicBIST Fault Simulation and Pattern Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Top-Level ICL Network Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Considerations for Top-Down Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Limitations for the Hierarchical TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



Hybrid TK/LBIST Flow User’s Manual, v2022.416

Introduction to the Hybrid TK/LBIST Flow
Hybrid TK/LBIST Implementation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Hybrid TK/LBIST Implementation
When implementing the hybrid flow with the bottom-up method, you analyze each core in 
isolation. As soon as a core design is available, you can move on to the embedded insertion and 
simulation processes for that core without having to wait for the other cores, including the top-
level core.
Figure 1-1 shows the five-step flow you perform on each of your cores. These steps are the 
same for the bottom-up and top-down flows.

The tool stores the output files for each step in the Tessent Shell Database (TSDB). For 
information about the TSDB, refer to “Tessent Shell Database” in the Tessent Shell Reference 
Manual.

Note
For the Tessent On-Chip Clock Controller (OCC) flow, the tool automatically generates the 
named capture procedures (NCPs) and test setups as inputs to fault simulation. For more 

information, refer to “Tessent OCC for Hybrid TK/LBIST” on page 149.

Figure 1-1. Basic Flow

Tessent Core Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Introduction to the Hybrid TK/LBIST Flow
Tessent Core Description

Hybrid TK/LBIST Flow User’s Manual, v2022.4 17

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent EDT and LogicBIST IP Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test Point Analysis and Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Scan Insertion and X-Bounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LogicBIST Fault Simulation and Pattern Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Top-Level ICL Network Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ICL Extraction and Pattern Retargeting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Considerations for Top-Down Implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Tessent Core Description
The Tessent Core Description (TCD) is a file that contains the description of the hybrid IP core. 
The TCD eliminates the need for multiple dofiles and test procedure files for pattern generation. 
TCD files are created by the tool to represent specific instruments and apply to the following 
steps in the TK/LBIST hybrid flow:

• EDT and LogicBIST IP Generation — See “EDT and LogicBIST IP Generation” on 
page 23.

• LogicBIST Fault Simulation and Pattern Creation — See “LogicBIST Fault 
Simulation and Pattern Creation” on page 89.

The TCD file is used instead of dofile commands to describe the hardware between tool 
invocations. To use a TCD file, you read the file into Tessent Shell, bind it to a specific instance, 
and configure the instance with parameters.

The tool generates the TCD file and other hybrid logic files during IP generation and places 
them in the TSDB directory. The TCD file contains the description of the generated Tessent 
EDT IP and Tessent LogicBIST IP. With a TCD file, Tessent Shell can automatically extract the 
connectivity between the hybrid IP and the chip, adjust test procedures, and enable pattern 
generation.

If your hybrid IP can operate in multiple configurations (for example, low power, bypass, and 
so on), a single TCD file contains all the configurations in contrast to the multiple EDT IP dofile 
usage. During pattern generation, you can specify how you want those parameters of the EDT 
IP configured for that ATPG mode.

Note
Do not use instrument TCD files during pattern retargeting; instead, use the core-level TCD 
files.



Hybrid TK/LBIST Flow User’s Manual, v2022.418

Introduction to the Hybrid TK/LBIST Flow
Tessent EDT and LogicBIST IP Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent EDT and LogicBIST IP Generation
As part of the hybrid IP generation step, you generate the shared Tessent EDT and LogicBIST 
RTL. The tool generates one LogicBIST controller for all EDT and LogicBIST blocks in a core.
You can also configure the low-power scheme to control the switching activity during “shift” to 
reduce power consumption.

There is no TAP controller at the core level. The tool integrates the access mechanism in the 
IJTAG network at the core level. This step of the flow creates new core-level pins 
corresponding to the Segment Insertion Bit (SIB) control signals, tck, and LBIST scan I/O. The 
core-level Verilog patterns operate these pins directly. These pins connect to the TAP controller 
at the top level of the design. See “Top-Level ICL Network Integration” on page 125 for more 
information.

As part of IP generation, the tool writes the following files to the TSDB:

• ICL file — Consists of the ICL module description for the LBIST controller, the NCP 
index decoder, and all EDT and LogicBIST blocks that the controller tests. 

• PDL file — Contains iProcs at the core level that use the ICL modules.

During IP generation, the generated ICL file describes only the LogicBIST, NCP index decoder, 
and EDT modules. The extracted ICL file includes the core-level pin names and connectivity 
found from the core-level design netlist. The tool uses the extracted ICL file during top-level 
pattern generation. See “ICL Extraction and Pattern Retargeting” on page 131 for more 
information. You can write Verilog patterns in this step and simulate them to verify the test 
operation at the core level.

For complete information, see “EDT and LogicBIST IP Generation” on page 23. During 
integration with the top level, the tool adds new top-level test pins or uses existing top-level test 
pins controlled internally by the EDT and LogicBIST IP. 

Logic Synthesis
You must synthesize all of the EDT and LogicBIST blocks and the common LogicBIST 
controller. Synthesis is fully automated. In the gate-level flow, you can use the run_synthesis 
command to synthesize the controllers and the test logic in the TSDB and integrate them into 
the gate-level design. When the run_synthesis command completes successfully, it creates a 
concatenated netlist of the design that contains the synthesized test logic and modified design 
modules and places them in the dft_inserted_designs directory of the TSDB.

In the RTL-level flow, you can use the run_synthesis command to synthesize the test logic 
inserted by the tool, but the netlists are not concatenated.



Introduction to the Hybrid TK/LBIST Flow
Test Point Analysis and Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 19

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Test Point Analysis and Insertion 
Tessent Shell can insert test points in the synthesized netlist. 
Upon completion, you use Tessent Shell to write out the modified design and the scan setup 
files to the TSDB directory. Use these for scan insertion and X-bounding. See “Test Point 
Analysis and Insertion, Scan Insertion, and X-Bounding” on page 77 for more information.

Scan Insertion and X-Bounding
In this step of the flow, you perform scan insertion on the synthesized netlist. You can also 
insert test points along with the scan insertion and, optionally, perform wrapper analysis.
Subsequently, the tool writes the TCD file into the TSDB directory. This file contains the 
information for Logic BIST fault simulation and ATPG. See “Test Point Analysis and Insertion, 
Scan Insertion, and X-Bounding” on page 77 for more information.

LogicBIST Fault Simulation and Pattern Creation 
During this step of the flow, you perform fault simulation and save the parallel LogicBIST 
patterns.
The core-level fault simulation run computes MISR signature, power consumption, and test 
coverage for the core. The following files are stored in the TSDB and are used later in top-level 
ICL extraction and pattern retargeting. Refer to logic_test_cores in the “Tessent Shell Reference 
Manual” for more information.

• PatternDB file — Contains the pattern data and the relevant LBIST register values per 
pattern, such as PRPG, MISR, and low-power registers. 

• Tessent Core Description file (TCD) — Describes relevant information about the core 
for the LogicBIST mode.

For subsequent diagnosis, you can use Tessent Diagnosis to perform diagnosis with the EDT 
patterns. You can use the Single Chain Mode logic for LBIST diagnosis. See “Single Chain 
Mode Logic” on page 47

See “LogicBIST Fault Simulation and Pattern Creation” on page 89 for more information.

Pattern Generation 
In this step of the flow, you generate core-level patterns for the bottom-up method and top-level 
patterns (including a Verilog testbench) for the LogicBIST controller for the top-down method. 
This step also generates chip-level serial patterns that you can apply from the tester.



Hybrid TK/LBIST Flow User’s Manual, v2022.420

Introduction to the Hybrid TK/LBIST Flow
Top-Level ICL Network Integration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

See “Pattern Generation” on page 101 for complete information on all ATPG formats Tessent 
LogicBIST supports. 

Top-Level ICL Network Integration
In this step of the bottom-up flow, you integrate the top-level netlist to instantiate all of the 
LogicBIST implemented cores. 

• Insert IJTAG-compliant SIBs to provide access to cores with LogicBIST inserted and to 
connect these SIBs and cores to the top-level TAP controller. 

• Shadow each core with a separate SIB to provide maximum flexibility for test 
scheduling.

• Connect EDT control signals from the core to the top level.

See “Top-Level ICL Network Integration” on page 125 for complete information.

ICL Extraction and Pattern Retargeting
In this step of the bottom-up flow, you use the fully integrated top-level netlist, the per-core 
LogicBIST files generated at the core level, and the top-level ICL/PDL files for your IJTAG 
instruments such as the TAP controller and clock controller. 
You can extract the ICL description or manually create the top-level ICL. The ICL describes the 
SIB access network and connectivity between your instruments and the LogicBIST cores. You 
can write the final tester patterns out in any of the supported formats.

You must provide a pattern retargeting dofile that includes all LogicBIST cores and the required 
scheduling.

Complete Hybrid TK/LBIST Flow
• Per-core steps (repeat for each core in the design):

o First RTL IP insertion step:

• MBIST, OCC, and IJTAG

o Second RTL insertion step:

• EDT, LBIST, and NCP index decoder

o Gates:

• X-bounding, test point insertion, scan stitching, and wrapper analysis (optional)

• Fault simulation

• Pattern retargeting



Introduction to the Hybrid TK/LBIST Flow
Considerations for Top-Down Implementation

Hybrid TK/LBIST Flow User’s Manual, v2022.4 21

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Top-level steps (perform once with the top-level netlist containing the cores):

o ICL network integration:

• Input files: core netlists and top-level interconnect between cores

• Output: top-level netlist

o ICL extraction and pattern retargeting:

• Hybrid TK/LBIST insertion at the top level if required (steps similar to core-
level insertion)

• Input files: top-level netlist, ICL, and PDL; core TCD, patDB, ICL, and PDL; 
pattern retargeting dofile

• Output: Verilog simulation patterns and tester patterns (WGL and STIL)

Related Topics
ICL Extraction and Pattern Retargeting

Considerations for Top-Down Implementation
When implementing the hybrid flow with the top-down method, the tool analyzes the entire pre-
DFT-inserted view of your chip. The tool analyzes each core within the respective context of its 
parents.
For the top-down method, you use the same steps as when you implement the hybrid TK/LBIST 
flow on the core level except without top-level ICL network insertion and extraction or ICL 
pattern generation (Steps 6 and 7).

Figure 1-1 on page 16 illustrates the steps when using the top-down method. See “Hybrid TK/
LBIST Implementation” for more information. You define blocks for insertion and run Steps 1-
5 as follows:

• EDT and LogicBIST IP Generation — EDT/LogicBIST hybrid IP generation is similar 
to that performed with the bottom-up method except that the TAP controller is present at 
the top level.

• “Test Point Analysis and Insertion, Scan Insertion, and X-Bounding” on page 77 — 
These steps are similar to those performed using the bottom-up method.

• LogicBIST Fault Simulation and Pattern Creation and Pattern Generation — These steps 
are similar to those performed using the bottom-up method.



Hybrid TK/LBIST Flow User’s Manual, v2022.422

Introduction to the Hybrid TK/LBIST Flow
Limitations for the Hierarchical TK/LBIST Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Limitations for the Hierarchical TK/LBIST Flow
When you use a LogicBIST controller at a child level for INTEST and another LogicBIST 
controller at a parent level for EXTEST, your setup must respect these limitations.

OCCs in the Core
An OCC in the core should not be defined with shift_only_mode=on when you do not create the 
top-level LBIST edt_clock DFT signal from other signals. During LBIST EXTEST, the core-
level LBIST controller is off when the top-level LBIST controller is enabled. This limitation 
means that the shift_capture_clock_out of the core-level LBIST controller, sourced by 
test_clock, is unknown during top-level LBIST. If the core-level OCC is built with 
shift_only_mode, it shifts with shift_capture_clock during EXTEST shift. This propagates an 
X.

If you define the OCC without shift_only_mode, it shifts with the core’s fast_clk, which is 
controlled by the parent-level OCC. 

Embedded PLL and Wrapper Chain OCC
If your core includes an embedded PLL and the wrapper chains include the OCC scan chain, the 
core-level OCC must be active. Also, it must be accessible to both the core-level and the top-
level LBIST controllers. This is automated if you are using the independent insertion flow; 
otherwise, you must manually insert custom muxing logic to enable this. See “Child-Level OCC 
Active During External Test” on page 251 for more information.

Mini-OCC in the Wrapper Chain
If you add a mini-OCC to the wrapper chain, the core-level lbist_i/shift_capture_clock must be 
functional. This is similar to the case of an OCC in the core, but there is no workaround such as 
turning off shift_only_mode.

Other Limitations
• The Hybrid TK/LBIST gate-level dofile flow is not supported in the independent Hybrid 

TK/LBIST insertion flow.

• The following DftSpecification/LogicBist/Controller properties have been deprecated:

o pre_post_shift_dead_cycles: this property is replaced by the 
SetLoadUnloadTimingOptions wrapper properties and the 
set_load_unload_timing_options command.

o ShiftCycles/counter_resolution: this property is not configurable. The bit setting is 
now the default.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 23

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 2
EDT and LogicBIST IP Generation

As part of the hybrid IP generation step, you generate the Tessent shared EDT and LogicBIST 
RTL. You can begin with RTL or a gate-level netlist.
The generated EDT and LogicBIST IP can be written out only in Verilog format.

EDT and LogicBIST IP Generation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Hybrid TK/LBIST IP Generation Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Integrating a Third-Party TAP in the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . 25
Clock Controller Connections to the EDT/LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . 26
EDT and LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Clock Control Logic and Named Capture Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Programmable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmable Shift and Capture Pause Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Low-Power Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Warm-Up Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chain Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Asynchronous Set/Reset Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Single Chain Mode Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Controller Chain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
IJTAG Network in EDT/LogicBist IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Burn-In Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LBIST Controller Hardware Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Self-Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Generating the EDT and LogicBIST IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Dual Compression Configurations for the Hybrid IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Timing Constraints for EDT and LogicBIST IP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Timing Constraint Generation in the Specification-Based Flow . . . . . . . . . . . . . . . . . . . . 70
LogicBIST Timing Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ECO Implementation in the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Hybrid TK/LBIST Flow User’s Manual, v2022.424

EDT and LogicBIST IP Generation
EDT and LogicBIST IP Generation Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

EDT and LogicBIST IP Generation Overview
EDT and LogicBIST IP generation stores several files in the TSDB. The dofiles are used for 
LogicBIST fault simulation and pattern creation, while the ICL, PDL, and IP netlist files are 
used as inputs for pattern generation.
Hybrid TK/LBIST IP Generation Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Integrating a Third-Party TAP in the Hybrid TK/LBIST Flow . . . . . . . . . . . . . . . . . . . 25
Clock Controller Connections to the EDT/LogicBIST IP . . . . . . . . . . . . . . . . . . . . . . . . 26
EDT and LogicBIST IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Clock Control Logic and Named Capture Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Programmable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Programmable Shift and Capture Pause Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Low-Power Shift  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Warm-Up Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Chain Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Asynchronous Set/Reset Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Single Chain Mode Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Controller Chain Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
IJTAG Network in EDT/LogicBist IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Burn-In Test Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LBIST Controller Hardware Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Self-Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Hybrid TK/LBIST IP Generation Flow
This section describes the basic steps in IP generation.

Basic Steps in the Flow
• Load the design RTL and gate input files (libraries, configuration files, and so on).

• Specify constraints and clocks.

• Check design rules through system mode transition.

• Run create_dft_specification to EDT and LBIST requirements.

• Generate the IP with process_design_specification.

• Extract ICL.



EDT and LogicBIST IP Generation
Integrating a Third-Party TAP in the Hybrid TK/LBIST Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 25

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

These steps create the ICL, PDL, SDC, TCD, and a BIST-ready netlist. Then they store them in 
the TSDB with a unique design ID.

Overview Details
You use Tessent Shell to generate the shared EDT/LogicBIST RTL. Modular EDT is supported 
in this step, where both shared EDT/LogicBIST IP per block and LogicBIST controller are 
inserted at the same time.

The new core-level pins corresponding to the SIB control signals and TCK, and LogicBIST 
scan I/O are created at this step. The core-level Verilog patterns operate these pins directly. 
These pins are later connected to the TAP controller at the top level of the design (see “Top-
Level ICL Network Integration”).

As part of IP generation, the following files are written out:

• The ICL file consists of the ICL module description for the LogicBIST controller, the 
NCP index decoder, and all EDT blocks tested by this controller. 

• The PDL file contains iProcs at the core level that use the ICL modules written out.

During the IP generation step, the generated ICL file describes only the LogicBIST and EDT 
modules. This extracted ICL includes the core-level pin names and connectivity found from the 
core-level design netlist. The extracted ICL is used during top-level pattern generation—see 
“ICL Extraction and Pattern Retargeting.” Verilog patterns can be written out in this step and 
simulated to verify the test operation at the core level.

Integrating a Third-Party TAP in the Hybrid TK/
LBIST Flow

When you use the DftSpecification wrapper and properties for the Hybrid TK/LBIST flow, the 
tool automatically inserts a Tessent TAP as part of the IJTAG network.
If you want to use a third-party TAP, see “Connecting to a Third-Party TAP” in the Tessent 
Shell User’s Manual for complete information. When using a third-party TAP, ensure that the 
following signals are present.

• tck

• setup_shift_scan_in

• setup_shift_scan_out

• capture_dr

• shift_dr

• update_dr 



Hybrid TK/LBIST Flow User’s Manual, v2022.426

EDT and LogicBIST IP Generation
Clock Controller Connections to the EDT/LogicBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• test_logic_reset 

• tap_instruction_decode 

Figure 2-1 shows the TAP controller with these signals highlighted in red.

Figure 2-1. TAP Controller

Note the following:

• The tool generates the ICL/PDL for the TAP—see “Pattern Generation.”

• The tool automatically inserts a pipeline stage after the last SIB in the tool-produced ICL 
network for the LogicBIST controller to account for designs where the TAP already has 
a retiming flop on the TDO output pin. Consequently, you do not need to modify the 
ICL to account for the retiming flops at the output.

Clock Controller Connections to the EDT/LogicBIST 
IP

The clock controller interfaces only with scan_enable and shift_clock pins. You are responsible 
for creating and instantiating your clock controller in the input design. The clock controller 
should be pre-configured such that it is already usable for ATPG. The clock controller is 
expected to route shift_clock to its clkout pin when scan_enable is 1. It is expected to route the 
programmable internally-generated capture clock to its clkout pin when scan_enable is 0. 
In this flow, the tool controls the scan_enable/shift_clock pins such that during ATPG mode the 
existing connections are used, but during LogicBIST mode they are driven by 
~lbist_capture_en/lbist_shift_clock respectively. 



EDT and LogicBIST IP Generation
Clock Controller Connections to the EDT/LogicBIST IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 27

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-2 shows the Clock Controller before the EDT/LogicBIST IP has been generated.

Figure 2-2. Clock Controller Before IP Generation

Figure 2-3 shows the clock controller connections to the BIST controller after EDT/LogicBIST 
IP generation.

Figure 2-3. Clock Controller After EDT/LogicBIST IP Generation



Hybrid TK/LBIST Flow User’s Manual, v2022.428

EDT and LogicBIST IP Generation
EDT and LogicBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alternatively, the clock controller could have scan_enable/shift_clock_en pins (instead of 
shift_clock). In this case, the tool muxes them with ~lbist_capture_en/lbist_shift_clock_en. The 
clock controller is responsible for using the lbist_shift_clock_en as the clock-gating signal to 
internally generate the shift clock signal.

EDT and LogicBIST IP
An EDT block refers to an independent set of scan chains that are driven by a decompressor and 
observed by a compactor. The EDT block organization can be different from the block 
organization used for physical implementation. In particular, there can be multiple EDT blocks 
inside a single physical block.
Figure 2-4 illustrates a high-level block view of the EDT and LogicBIST IP.

Figure 2-4. Block-Level View of the EDT/LogicBIST IP



EDT and LogicBIST IP Generation
EDT and LogicBIST IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 29

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The EDT/LogicBIST hybrid IP reduces the area overhead compared to a separate 
implementation of EDT and LogicBIST IP. This is done by re-using parts of the IP for both 
EDT and LogicBIST modes. This hybrid logic controls input stimuli generation and output 
response comparison, and is implemented separately for each EDT block. The top-level 
controller including the LogicBIST FSM is then connected to these hybrid IP inserted EDT 
blocks.

For detailed description of Hybrid EDT/LogicBIST IP, refer to the following sections:

• “Shared Logic” on page 137

• “Inserted Hybrid TK/LBIST IP” on page 138

• “Scan Chain Masking” on page 143

• “New LogicBIST Control Signals” on page 143

Figure 2-5 shows the final top-level netlist after IP generation. During IP generation, the tool 
inserts muxes at the shift clock and scan enable clock controller pins and drive them from the 
LogicBIST controller. 

The clock controller’s shift clock input is driven by:

• The LogicBIST shift clock in LogicBIST mode,

• The pre-existing EDT clock connection during EDT mode. 

The clock controller’s scan enable input is driven by:

• The inverted lbist_capture_en signal in LogicBIST mode,

• The pre-existing scan enable connection during EDT mode. 



Hybrid TK/LBIST Flow User’s Manual, v2022.430

EDT and LogicBIST IP Generation
EDT and LogicBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-5. Final Top-Level Netlist

During EDT mode of operation, all EDT control signals except EDT clock, meaning update, 
bypass, and low power enable, are directly connected to the EDT logic without passing through 
the LogicBIST controller. The scan cells are shifted using a top-level shift clock. The Shift 
Clock controller chooses the EDT clock to be delivered to the EDT blocks.

In addition, in EDT mode, the tool calls an automatically generated iProc procedure that 
initializes the hybrid IP.

During LogicBIST mode of operation, the scan cells are shifted using the shift clock output 
from the LogicBIST controller. The shift clock controller chooses a gated version of the 
LogicBIST clock to be delivered to the LogicBIST blocks. This gating ensures that the PRPG 
and MISR are not pulsed during capture as well as the transition between shift and capture 
modes.

The core scan cells receive the capture clock pulses from the clock controller logic. The 
LogicBIST clock input to the PRPG and MISR is turned off during capture.

Figure 2-6 shows the clock and EDT control signals in the LogicBIST IP.



EDT and LogicBIST IP Generation
Clock Control Logic and Named Capture Procedures

Hybrid TK/LBIST Flow User’s Manual, v2022.4 31

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-6. Clocking During EDT Shift Mode of Operation

Clock Control Logic and Named Capture 
Procedures

In the EDT context, you must ensure the generation of proper shift and capture clocks. For 
LogicBIST mode, the controller generates the shift clock and capture enable signals, which are 
connected to the clock control logic. The scan enable output from the LogicBIST controller is 
de-asserted during capture.

Note
NCPs are always required for LogicBIST operation. Other clock control techniques such as 
external clocks and clock_control definitions are not compatible with BIST application.

EDT Mode
All existing EDT capabilities for controlling capture mode clocking can be used in the shared 
EDT/LogicBIST architecture. For example, suppose you have a clock pin that is a design top-
level pin controlled by the tester. When using a PLL, clock control register values for functional 
clocks can be shifted in during scan shift. You can control the number of capture cycles on a per 
pattern basis, either through a named capture procedure or clock_control definition. 



Hybrid TK/LBIST Flow User’s Manual, v2022.432

EDT and LogicBIST IP Generation
Clock Control Logic and Named Capture Procedures

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

LogicBIST Mode
You can describe specific capture clock sequences to be applied using NCPs using the 
following commands:

• add_bist_capture_range 

• set_lbist_controller_options, specifically, the -capture_procedures switch

In general, you associate the percentage of patterns for which each NCP is applied. This should 
reflect the number of faults that can be detected with the specified NCP. The number of cycles 
in capture should be uniform across all NCPs. You can specify the number of BIST clock cycles 
for capture. When not specified, the maximum value possible for the capture counter register in 
the hardware is used.

The LogicBIST controller consecutively applies the NCPs for the specified percentage of 
patterns, with the cycle repeating after 256 patterns. An additional output that identifies the 
index of the currently targeted NCP is available as a counter calculating the total number of 
NCPs. The NCP index is generated by decoding from the least significant bits of the pattern 
counter. 

Again, you must ensure your design generates the correct clock sequence corresponding to the 
NCP based on this index signal bits. 

If you define only a single NCP, then the NCP index output is not generated. You should do this 
in cases where the clock controller is initialized during test_setup to generate a particular 
capture procedure. All patterns in this session use the same capture procedure.

See “LogicBIST Fault Simulation and Pattern Creation Overview” on page 89 for more 
information on NCP generation.

LogicBIST Consideration When Using OCC for Fast Capture Mode
In the hybrid EDT/LBIST flow, you are responsible for ensuring that OCC generates capture 
clock pulses within the capture window (corresponding to the capture state of the LogicBIST 
FSM). When you configure Tessent OCC for fast capture mode, the OCC hardware requires one 
extra slow clock pulse to sample the capture_en trigger and two extra fast clock pulses for the 
synchronizer before the tool generates the capture pulses. When the fast clock and the slow 
clock have the same or similar frequencies, depending on clock balancing, it may take up to four 
pulses before the tool generates the capture pulses. This can result in clock pulses occurring 
outside the capture window, which can generate pattern mismatch errors.



EDT and LogicBIST IP Generation
Programmable Registers

Hybrid TK/LBIST Flow User’s Manual, v2022.4 33

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To ensure that the tool accounts for the extra cycles, generate the LogicBIST capture width 
register with a bigger counter. For example, for an OCC with a four-bit shift register, configure 
the LogicBIST capture width counter to support up to eight cycles in the capture, as follows:

DftSpecification(mymodulename,mymoduleid) {
LogicBist {

Controller(id) {
CaptureCycles {
max : 8 ;

}
}

}
}

Likewise, during fault simulation, OCC is configured as having up to four pulses through NCPs, 
but you can load eight pulses into the capture width register by specifying the following 
command:

set_external_capture_options -fixed_cycles 8

Programmable Registers
Programming of the BIST registers is the same for both TAP and non-TAP cases. The BIST 
controller and EDT blocks use the same control interface. 
When using a TAP, these signals are generated by the TAP controller. When not using a TAP, 
these signals are presented as top-level pins that operate similarly to the TAP controller output 
signals. This is done automatically in the next step of the flow—see “Pattern Generation” on 
page 101.

Related Topics
Programmable Registers Inside Hybrid IP

Programmable Shift and Capture Pause Cycles
During the LBIST controller operation, the tool applies a total of 16 dead cycles before and after 
the capture clocks are pulsed to help with the timing closure of the test logic. To reduce test 
overload due to the dead cycles, you can change the number of dead cycles by using the 
set_lbist_controller_options command.
The following figure shows the default cycle pause width for the dead cycles. The shift pause 
has 8 dead cycles from the last shift clock to the start of the capture, and the capture pause has 8 
dead cycles from the end of the capture to the first clock edge in the shift. In addition, the scan 
enable (shift_phase) signal goes low after the last shift and goes high after the capture. This 
enables maximum setup time transition.



Hybrid TK/LBIST Flow User’s Manual, v2022.434

EDT and LogicBIST IP Generation
Programmable Shift and Capture Pause Cycles

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-7. Default Dead Cycle Pause Width

To change the number of dead cycles in the shift and capture pauses, change the number of dead 
cycles by specifying the pre_post_shift_dead_cycles parameter, as shown below:

LogicBist {
Controller(id) {

parent_instance : name ;
leaf_instance_name : name ;
pre_post_shift_dead_cycles : int ; // default: 8

}
}

The option accepts integer values from 2 to 8, with 8 being the default. When specified, the 
hardware changes so that the requested number of dead cycles is used for both the shift and the 
capture pauses. You cannot use a value of 1 because it might allow the capture enable and shift 
phase signals to toggle on the same clock edge.

Figure 2-8 shows the waveform when you have specified 2 for the dead cycle pause.

Figure 2-8. Dead Cycle Pause Width of 2



EDT and LogicBIST IP Generation
Low-Power Shift

Hybrid TK/LBIST Flow User’s Manual, v2022.4 35

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Low-Power Shift
During EDT and LogicBIST IP generation, you can configure the low-power scheme to control 
the switching activity during “shift” to reduce power consumption. 
Use the DftSpecification/EDT/Controller/LogicBistOptions/ShiftPowerOptions/
SwitchingThresholdPercentage wrapper to create the low-power shift controller for LogicBist. 
For example:

DftSpecification(module_name, id) {
EDT {

Controller(id) {
LogicBistOptions {
ShiftPowerOptions {

SwitchingThresholdPercentage {
hardware_default : 10 ;

}
}

}
}

}
}

For a detailed description of the embedded structure inserted for this purpose, see “Low-Power 
Shift Controller.”

Warm-Up Patterns
At the beginning of pattern generation, several patterns can elapse before the voltage in the chip 
stabilizes. This voltage droop can cause pattern mismatches. To remedy the impact of voltage 
droop, the tool inserts a warm-up pattern count register in the logic BIST controller. Warm-up 
patterns are those for which the scan chain unload values are not accumulated in the MISR, and 
for which no fault credit has been taken during fault simulation.
Figure 2-15 on page 56 shows the placement of the warm-up pattern count register within the 
logic BIST controller. By default, the tool creates an 8-bit register to enable up to 255 warm-up 
patterns. The tool loads the warm-up pattern count register with the value of the pattern count 
register when the warm-up is completed. For example, if there are 13 patterns, 4 of which are 
warm-up patterns, the value in the warm-up pattern count register is 10.

The logic BIST controller operates as follows: The first pattern that the tool uses for fault 
detection during fault simulation corresponds with begin_pattern=0. The PRPG value for this 
pattern is determined by the initial hardware PRPG seed, followed by applying the default 
number of warm-up patterns. When a non-default number of warm-up patterns is applied, the 
PRPG must be loaded such that it still reaches the same initial PRPG value for this first pattern. 
If begin_pattern is not zero, then the PRPG must be loaded such that it reaches the correct value 
that was specified for that pattern during fault simulation. When begin_pattern is zero, the tool 
loads the MISR with the value for that pattern (since the MISR does not update during warm-up 



Hybrid TK/LBIST Flow User’s Manual, v2022.436

EDT and LogicBIST IP Generation
Warm-Up Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

patterns). However, when begin_pattern is non-zero, the tool must load the MISR with the value 
that was computed during fault simulation for that pattern.

The tool masks the scan chain unload values for warm-up patterns to enable the voltage in the 
chip to stabilize. You can specify the number of patterns to mask by setting the 
warmup_pattern_count argument when executing the run_lbist_normal or scan_unload_register 
iCall. If this argument is not provided with the iCall command, the iProc procedure defaults it to 
0.

Use the DftSpecification/LogicBist/Controller/WarmupPatternCount wrapper to change the 
maximum number of warm-up patterns, specify the number of hardware default warm-up 
patterns, or suppress warm-up pattern count register insertion.

Pattern Counts When Using Warm-Up Patterns
During fault simulation, the tool computes the PRPG value at the start of each warm-up pattern 
(without fault crediting and MISR accumulation) for the maximum number of warm-up 
patterns. Fault simulation is then performed for the number of patterns specified by 
set_random_patterns with fault crediting and MISR signature calculation.

Logic BIST patterns are typically applied starting with pattern 0. This is the default for the 
hardware, and is also the default for the run_lbist_normal ICL procedure. The most common 
reason for specifying a non-zero value for begin_pattern is during debug or diagnostic when you 
want to quickly apply a small range of patterns, or just a single failing pattern.

In the following example, the user wants to run LBIST starting from a specific pattern. The 
pattern specification instructs the logic BIST controller to run from patterns 100 to 199 with 16 
warm-up patterns. Since there are 16 warm-up patterns, the tool seeds the PRPG with a seed 
corresponding to pattern 84, which is equal to:

begin_pattern - warmup_pattern_count

In this case, the controller executes 116 patterns but the MISR only observes the last 100 
patterns.



EDT and LogicBIST IP Generation
Warm-Up Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 37

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(coreA,gate,signoff){
  Patterns(LogicBist_coreA){
    ClockPeriods {
      refclk : 10.00ns;
    }
    TestStep(serial_load){
      LogicBist{
        CoreInstance(.){
          run_mode : run_time_prog;
          begin_pattern : 100;
          end_pattern : 199;
          warmup_pattern_count : 16;
        }
      }
    }
  }
}

In the following example, the PRPG initial seed originates from the warm-up PRPG seed-only 
patterns. Beginning from pattern 0, the tool seeds the MISR with d‘0, and the PRPG is based on 
the number of specified warm-up patterns. Suppose your pattern specification states:

PatternsSpecification(coreA,gate,signoff){
  Patterns(LogicBist_coreA){
    ClockPeriods {
      refclk : 10.00ns;
    }
    TestStep(serial_load){
      LogicBist{
        CoreInstance(.){
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 99;
          warmup_pattern_count : 16;
        }
      }
    }
  }
}

Assuming a maximum of 255 warm-up patterns, the PRPG seed starts with the 240th warm-up 
pattern.

With respect to warm-up patterns and the PRPG seeding, scan unload pattern operations 
function the same as described above for logic BIST patterns.

For the hardware default mode, the tool performs the warm-up period within the hardware so no 
additional IJTAG access is required. The number of warm-up patterns, PRPG seed, and low-
power register seeds are hard-coded in the iProc, and these values are checked against the 
PatternDB file to ensure they match. If the iProc values do not match the PatternDB, the tool 
generates an error and the hardware default patterns cannot be saved.



Hybrid TK/LBIST Flow User’s Manual, v2022.438

EDT and LogicBIST IP Generation
Warm-Up Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Fault Simulation
You can use the set_edt_options -decompressor_seed command to change the initial seed of the 
PRPG. This seed applies to both the warm-up patterns and the actual patterns. If you do not 
specify a PRPG seed, the tool uses the value from IP generation. Using the PRPG seed, the tool 
calculates the PRPG seed for the first regular pattern, which it then stores in the Tessent Core 
Description file and flat model.

If you use a different decompressor seed than that used during IP generation, then the hardware 
default mode cannot be used with the current pattern set.

The tool does not include warm-up patterns in the number of logic BIST patterns it simulates, 
which means these patterns do not contribute to fault coverage analysis. For example, if you 
specify set_random_patterns 32000 and you have a maximum of 255 warm-up patterns, then 
the tool creates 255 warm-up patterns followed by 32000 logic BIST patterns.

When creating parallel patterns with the write_patterns -parallel command, the tool excludes the 
warm-up patterns because the parallel patterns are primarily used for validating logic BIST 
operation. However, the PatternDB file includes the warm-up patterns so that the tool can apply 
them during pattern retargeting.

The following TCD file example shows a warm-up pattern register capable of 255 patterns.

Core(CoreA) { 
  LbistMode(lbist) { 
    Registers { 
      PrpgRegister(CoreA_edt_i.lfsm_vec) { 
        length : 31; 
        type : prpg; 
      } 
      WarmupPatternRegister(CoreA_lbist_i.warmup_pattern_count) { 
        length : 8; 
      } 
    } 
  } 
}



EDT and LogicBIST IP Generation
Warm-Up Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 39

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example
In the following example, the logic BIST controller needs to support up to 300 warm-up 
patterns with 128 hardware default warm-up patterns. During IP generation, you would use the 
following values in the WarmupPatternCount wrapper:

DftSpecification(coreA, gate) {
LogicBist {

Controller {
WarmupPatternCount {
max : 300 ;
hardware_default : 128 ;

}
}

}
}

The Logic BIST controller generates a warm-up pattern counter register with 9 bits, enabling up 
to a maximum of 511 warm-up patterns.

The following example illustrates how you can apply the warm-up patterns for various 
scenarios.



Hybrid TK/LBIST Flow User’s Manual, v2022.440

EDT and LogicBIST IP Generation
Warm-Up Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(coreA,gate,signoff) {
  // Run the first 1K patterns with 300 warm-up patterns
  Patterns(warmup_300) {
    ...
    TestStep(serial_load) {
      LogicBist {        
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 1023;
          warmup_pattern_count : 300;
        }
      }
    }
  }

  // Unload the 274th pattern after applying 300 warm-up patterns
  Patterns(diag_warmup_300) {
    ...
    TestStep(diagnosis) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 274;
          end_pattern : 274;
          warmup_pattern_count : 300;
          DiagnosisOptions {
            extract_flop_data : on;
          }
        }
      }
    }
  }

  // Run the first 1K patterns with 16 warm-up patterns
  Patterns(warmup_16) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 1023;
          warmup_pattern_count : 16;
        }
      }
    }
  }

  // Run the HW default pattern, which contains 128 warm-up patterns
  Patterns(hw_default) {
    ...
    TestStep(hw_default) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : hw_default;
        }
      }



EDT and LogicBIST IP Generation
Chain Test Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 41

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

    }
  }

  // Run two controllers in parallel with different
  // warm-up pattern ranges and number of warm-ups
  Patterns(parallel_warmup) {
    ...
    TestStep(serial_load) {
      LogicBist {        
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 1023;
          warmup_pattern_count : 64;
        }
        CoreInstance(w2_B) {
          run_mode : run_time_prog;
          begin_pattern : 1024;
          end_pattern : 2047;
          warmup_pattern_count : 128;
        }
      }
    }
  }
}

Chain Test Patterns
You can create the LBIST controller with dedicated hardware to integrate chain test patterns 
with the scan patterns. To add the chain test hardware, declare the maximum number of allowed 
chain test patterns with the DftSpecification/LogicBist/Controller/ChainTestPatternCount/max 
property.
During fault simulation, you can control how many chain test patterns are created using the 
“-parameter_values {chain_test_pattern_count integer}” option of the add_core_instances or 
set_core_instance_parameters command. If unspecified, the hardware default specified during 
IP generation is used.

When chain test patterns are enabled, they are applied after any warm-up patterns and before the 
asynchronous set/reset and scan patterns. The number of chain test patterns applied count 
towards the total number of random patterns applied. For example, if you request 2000 random 
patterns, and there are seven chain test patterns, then patterns 0:6 are chain test patterns and 
7:1999 are normal scan patterns. During the chain test patterns, the capture procedure does not 
pulse any clocks, and the capture window is one shift cycle wide. The capture_en signal remains 
low during the chain test.



Hybrid TK/LBIST Flow User’s Manual, v2022.442

EDT and LogicBIST IP Generation
Chain Test Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-9. Chain Test Control Signals

Note
Fault simulation can create a dedicated chain test pattern set if the dedicated chain test 
hardware is not present. To do this, use the “-parameter_values {pattern_set chain_test} 

option of the add_core_instances or set_core_instance_parameters commands.

You can enable the chain test patterns with the set_bist_chain_test command when using the 
dofile flow where the add_core_instances or set_core_instance_parameters commands are not 
used.

Example
In the following example, the logic BIST controller needs to support up to 16 chain test patterns 
with seven hardware default patterns. Include the following in the DFT specification to generate 
the IP:

DftSpecification(coreA,dft) {
  LogicBist {
    Controller(1) {
      ChainTestPatternCount {
        max              : 16;
        hardware_default : 7;
      }
    }
  }
}

During fault simulation, the tool overwrites the default seven chain test patterns with 12 chain 
test patterns.

// command: add_core_instances ... -parameter_values
{chain_test_pattern_count 12}
...
//  command: set_random_patterns 2000
//  Note: First 12 patterns will test the chains.

When performing pattern retargeting, you do not need to specify additional properties. You can 
control the number of chain test patterns with the begin_pattern and end_pattern properties.



EDT and LogicBIST IP Generation
Asynchronous Set/Reset Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 43

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(coreA,gate,signoff) {
  // Run the first 1K patterns with 12 chain test patterns
  Patterns(first_1k_with_chain_test) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 1023;
        }
      }
    }
  }
  // Run the first 1K patterns without the 12 chain test patterns
  Patterns(first_1k_without_set_reset) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 12;
          end_pattern : 1035;
        }
      }
    }
  }
  // Run the first 12 patterns to only perform the chain test patterns
  Patterns(set_reset_only) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 11;
        }
      }
    }
  }
}

Related Topics
add_core_instances [Tessent Shell Reference Manual]
set_core_instance_parameters [Tessent Shell Reference Manual]
DftSpecification [Tessent Shell Reference Manual]

Asynchronous Set/Reset Patterns
When the design has scannable flip-flops with asynchronous set/reset pins, the tool adds the 
DFT signals async_set_reset_static_disable and async_set_reset_dynamic_disable. The static 
DFT signal enables all the asynchronous set/reset signals to be completely disabled.



Hybrid TK/LBIST Flow User’s Manual, v2022.444

EDT and LogicBIST IP Generation
Asynchronous Set/Reset Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The dynamic DFT signal, created by combining the static DFT signal with scan_en, disables the 
set and reset signals only during shift (when scan_en is high), as shown in Figure 2-10. The 
state of the functional circuit then determines whether the set/reset signals are active during the 
capture.

Figure 2-10. DFT Signal to Turn Off for Set/Reset Signals During ATPG

In most cases, it is sufficient to test only the set and reset signals during ATPG. However, if you 
want to test the set and reset signals with logic BIST, you can add hardware to achieve this. You 
must declare the dynamic DFT signal, lbist_async_set_reset_dynamic_enable to enable the 
logic BIST controller to pulse the set/reset signals. This DFT signal multiplexes with the 
async_set_reset_dynamic_disable DFT signal using the lbist_en static DFT signal as a select 
signal.

An output port on the logic BIST controller, async_set_reset_en, drives the DFT signal so that 
the tool pulses the set/reset signals during the logic BIST run modes (see Figure 2-11). An 
asynchronous set/reset pattern count register within the logic BIST controller determines which 
patterns are testing the set/reset pins. See Figure 2-15 on page 56 for register placement.

Figure 2-11. DFT Signal to Provide Set/Reset Controllability During LBIST



EDT and LogicBIST IP Generation
Asynchronous Set/Reset Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 45

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool applies the asynchronous set/reset patterns after the warm-up patterns, if any, and 
before the regular scan patterns. When the set/reset patterns are active, the async_set_reset_en 
port is low during the shift. Because these patterns are testing only the asynchronous set/reset 
pins, the capture procedure does not pulse any clocks. The capture window is two shift clock 
cycles wide to ensure sufficient propagation time for the set/reset pulse to reach the flip-flops.

Fault Simulation
The TCD for the logic BIST controller carries forward the size of the asynchronous set/reset 
pattern count register, so that during fault simulation, the default and maximum number of set/
reset patterns are known. You can control the number of asynchronous set/reset patterns to 
simulate with the async_set_reset_pattern_count parameter of the add_core_instances 
command.

The number of asynchronous set/reset patterns applied count towards the total number of 
random patterns applied. For example, if you request 2000 random patterns, and there are seven 
asynchronous set/reset patterns, then patterns 0:6 test the set/reset pins and 7:2000 are normal 
scan patterns. 

Example
In the following example, the logic BIST controller needs to support up to 16 asynchronous set/
reset patterns with seven hardware default patterns. During IP generation, you would have the 
following in the DFT specification:

DftSpecification(coreA,dft) {
  LogicBist {
    Controller(1) {
      AsyncSetResetPatternCount {
        max              : 16;
        hardware_default : 7;
      }
    }
  }
}

During fault simulation, the tool overwrites the default seven asynchronous set/reset patterns 
with 12 asynchronous set/reset patterns.

// command: add_core_instances ... –parameter_values 
{async_set_reset_pattern_count 12}

...
//  command: set_random_patterns 2000
//  Note: First 12 patterns test the asynchronous sets and resets.

When performing pattern retargeting, no additional properties need to be specified. Using the 
begin_pattern/end_pattern properties, you can control the number of asynchronous set/reset 
patterns.



Hybrid TK/LBIST Flow User’s Manual, v2022.446

EDT and LogicBIST IP Generation
Asynchronous Set/Reset Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(coreA,gate,signoff) {
// Run the first 1K patterns with 12 set/reset patterns
Patterns(first_1k_with_set_reset) {

    ...
    TestStep(serial_load) {
      LogicBist {

      CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 1023;
        }
      }
    }
  }

// Run the first 1K patterns without the 12 set/reset patterns
  Patterns(first_1k_without_set_reset) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 12;
          end_pattern : 1047;
        }
      }
    }
  }

// Run the first 12 patterns to test only the sets/resets
  Patterns(set_reset_only) {
    ...
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(w2_A) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 11;
        }
      }
    }
  }
}

Limitations
The testing of asynchronous set/reset pins during logic BIST does not currently support flip-
flops that have both a set and a reset pin. The testing drives both set and reset pins with the same 
enable signal on the logic BIST controller, which means that both pins are active at the same 
time. Therefore, the flip-flop model determines which signal has priority.



EDT and LogicBIST IP Generation
Single Chain Mode Logic

Hybrid TK/LBIST Flow User’s Manual, v2022.4 47

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Consider the example below, where there are three flip-flops: a_reg has a set and reset, b_reg 
has only a set, and c_reg has only a reset. After running process_dft_specification, a_reg has 
both of its set and reset pins driven by the same source when logic BIST is running.

This results in errors during logic BIST fault simulation because the simulation sees both the set 
and reset pin of a_reg active at the same time. To prevent this error, edit the design to move the 
a_reg set or reset pin to be driven by the lbist_en mux i0 source, as shown below:

Single Chain Mode Logic
In the hybrid EDT/LBIST flow, LBIST pattern diagnosis is performed by loading values by the 
PRPG and shifting out the captured scan cell values. To enable this shift out, the tool inserts 
single chain mode logic that concatenates all the short scan chains across all the blocks. This 
logic is built by concatenating the EDT single bypass chain across all the EDT blocks.



Hybrid TK/LBIST Flow User’s Manual, v2022.448

EDT and LogicBIST IP Generation
Controller Chain Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, the tool inserts the logic for single chain mode during IP generation.

The single chain mode logic disables EDT bypass and single bypass pins to ensure that they do 
not interfere with LBIST operation. During diagnosis, a TDR control bit within the logic 
provides access to the single chain mode for scan chain unload.

Note
When you disable either EDT bypass or EDT single bypass in any EDT block, the tool does 
not generate the single chain mode logic. You can turn off bypass and single bypass by 

using the BypassChains wrapper:

DftSpecification(module_name, id)
EDT {

Controller(id) {
BypassChains {
present : off ;
single_bypass_chain : off ;

}
}

}
}

Caution
Setting these properties to off is not recommended because doing so also turns off LBIST 
pattern diagnosis.

Controller Chain Mode
For some safety-critical applications, you must test the test logic itself—that is, the LogicBIST 
and EDT IP blocks—in addition to testing the core design logic. Controller chain mode (CCM) 
enables you to generate ATPG patterns that target the hybrid EDT/LBIST blocks and LBIST 
controller in addition to the single chain mode logic and In-System Test controller.
You can generate CCM patterns within both the specification-based and dofile flows. The 
specification-based flow is described in this section.

Using tck as the Clock Source Rather Than Default test_clock
The hybrid EDT/LBIST controller has a 3-to-1 clock mux that sets shift_clock_src, test_clock, 
and tck as the runtime clock for LogicBIST test. By default, the tool configures this clock mux 
to use test_clock during scan insertion and fault simulation.



EDT and LogicBIST IP Generation
Controller Chain Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 49

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can use either test_clock or tck as the clock when implementing CCM. Specify the clock at 
the time of IP generation. For example, select the tck clock as follows:

DftSpecification(module_name, id) {
LogicBist {

Controller (id) {
ControllerChain {
clock : tck ;

}
}

}
}

When you configure CCM to use tck, perform scan insertion for the CCM mode chains in a 
separate run from regular scan cell insertion. When inserting the CCM mode chains, configure 
the LogicBIST clock mux to choose tck as the clock by setting the controller_chain_mode DFT 
signal to 1. This avoids a situation in which the source of the edt_lbist_clock at the LogicBIST 
controller output differs between scan insertion and pattern generation for CCM mode.

When you implement CCM with the default, test_clock, the scan insertion view remains 
consistent with the CCM pattern generation view, so a separate CCM mode scan insertion run is 
not required.

Usage Details
To enable the generation of CCM logic, specify the following property in the LogicBist 
wrapper:

DftSpecification(module_name, id) { 
  LogicBist {
    Controller (id) {
      ControllerChain {
        present: on ;
      }
    }
  }
}

You can modify the names of CCM-specific ports using the DftSpecification/EDT/
ControllerChain wrapper, as shown in Figure 2-12 on page 51.

As described in “RTL and Scan DFT Insertion Flow With Hybrid TK/LBIST” in the Tessent 
Shell User’s Manual, in the configuration-based flow, you insert the hybrid IP before 
performing scan chain insertion. By default, the tool inserts CCM scan segments for each 
instrument but does not connect them into one chain. This enables flexible scan chain stitching 
during scan insertion.

During scan insertion, configure the controller chains by creating a controller chain scan mode 
with the add_scan_mode command. This scan mode should only contain the CCM scan 
segments as valid scan elements.



Hybrid TK/LBIST Flow User’s Manual, v2022.450

EDT and LogicBIST IP Generation
Controller Chain Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The CCM scan segments in Tessent IP cores are inactive by default in order to not be confused 
with standard scan elements (design flops, segments on sub_blocks, and so on). Therefore, you 
must activate a controller_chain_mode scan mode on Tessent IP instances before adding them 
to the scan mode population. You should also reset the active child scan mode after adding 
CCM scan mode. You can perform these tasks using the DftSpecification/LogicBist/
ControllerChain wrapper.

Note
To benefit from flow automation, use the controller_chain_mode DFT signal as a scan mode 
enable signal. See add_dft_signals in the “Tessent Shell Reference Manual” for more 

information.

Example 2-1. DftSpecification Wrappers to Enable Controller Chain Mode

DftSpecification(module_name, id) {
LogicBist {

  Controller(id) {
    ControllerChain {
      segment_per_instrument : on;
      present : on; 
      clock : tck;
      max_segment_length : unlimited;
    }
  }

}
}

You can generate multiple CCM chains within the EDT or LBIST controller, using a specified 
maximum length to guide the CCM scan chain stitching during IP creation.

Note
The minimum max_segment_length is 32.

For details about scan chain insertion when you are using the configuration-based flow, refer to 
“Perform Scan Chain Insertion” in the Tessent Shell User’s Manual.

For information about generating CCM patterns in the configuration-based flow, refer to 
“Performing Pattern Generation for CCM in the TSDB Flow” on page 104.

To connect the CCM scan segments into one controller scan chain during IP generation, set the 
segment_per_instrument property to “off.”



EDT and LogicBIST IP Generation
Controller Chain Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 51

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To enable generation of CCM logic, set the CCM mode to “on” in the ControllerChain wrapper:

DftSpecification(module_name, id) {
LogicBist {

Controller(id) {
ControllerChain {
present : on;

}
}

}
}

By default, the tool inserts CCM scan segments for each instrument but does not connect them 
into one chain. You perform scan chain insertion prior to inserting the IP, which means that if 
you want to configure the controller chains, you must perform an incremental scan insertion to 
create the CMM scan chain from the segments.

To automatically generate the EDT/LBIST IP with a single RTL scan chain assembled from the 
CCM scan segments in each IP block, set the segment_per_instrument property to “off”:

DftSpecification(module_name, id) {
LogicBist {

Controller(id) {
ControllerChain {
segment_per_instrument : off ;

}
}

}
}

Use the ControllerChain and Connections wrappers to define port names and other properties. 
The complete definition of these wrappers is as follows:

Figure 2-12. ControllerChain and Connections Wrappers



Hybrid TK/LBIST Flow User’s Manual, v2022.452

EDT and LogicBIST IP Generation
Controller Chain Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification(module_name,id) {
EDT {

ControllerChain {
present : on | off ; // default: off
clock : enum ; // legal: tck | edt_clock 
segment_per_instrument : on | off ; // default: on
Interface {
enable   : port_name ; // default: ccm_en
scan_in  : port_name ; // default: ccm_scan_in
scan_out : port_name ; // default: ccm_scan_out
scan_en  : port_name ; // default: ccm_scan_en

}
Connections {
scan_en : port_pin_name ;

// default: OptionalDftSignal(scan_en)
controller_chain_enable : port_pin_name ;

// default: OptionalDftSignal(controller_chain_mode)
controller_chain_scan_in : port_pin_name ;

// default: control_chain_%s_scan_in
controller_chain_scan_out : port_pin_name ;

// default: control_chain_%s_scan_out
}

}
}
LogicBist {

Controller(id) {
ControllerChain {
present                : on | off ;
clock                  : enum ; // legal: tck | edt_clock
segment_per_instrument : on | off ;
max_segment_length     : int | unlimited; // int >= 32

}
Interface {
ControllerChain {

enable   : port_name; // default: ccm_en
scan_in  : port_name; // default: ccm_scan_in
scan_out : port_name; // default: ccm_scan_out
scan_en  : port_name; // default: ccm_scan_en

}
}
Connections {
controller_chain_enable   : port_pin_name ;
controller_chain_scan_in  : port_pin_name ;
controller_chain_scan_out : port_pin_name ;

}
}

}
}



EDT and LogicBIST IP Generation
Controller Chain Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 53

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Controller Chain Mode Architecture
The default inserted design architecture is as follows:

Figure 2-13. EDT/LogicBIST-Inserted Design for CCM, Segmented Scan Chains

The tool inserts CCM scan in and CCM scan out ports, and muxes controlled by the CCM 
enable signal, into each IP instrument that contains CCM scan segments. After IP insertion, the 
ccm_scan_in and ccm_en ports are tied to 0, and the ccm_scan_out is unconnected. The tool 
internally generates the ccm_scan_en signal within in each IP block by AND’ing the ccm_en 
and scan_en signals. The input port (ccm_en) enables the CCM. The tool reuses the existing 
ATPG scan enable for CCM.



Hybrid TK/LBIST Flow User’s Manual, v2022.454

EDT and LogicBIST IP Generation
Controller Chain Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When you set the property segment_per_instrument to “off” so that the tool automatically 
connects the scan segments into one controller scan chain, the inserted architecture design is:

Figure 2-14. EDT/LogicBIST-Inserted Design for CCM, Non-Segmented Scan 
Chains

CCM uses the existing ICL network chain that already contains most of the flops in the 
controllers. Flops that are not in the ICL network are multiplexed into it during the CCM shift. 
The result is a single chain that is accessible through a new scan input (ccm_scan_in) and output 
(ccm_scan_out).

Related Topics
Performing Pattern Generation for CCM in the TSDB Flow
Performing Pattern Generation for the Dofile Flow



EDT and LogicBIST IP Generation
IJTAG Network in EDT/LogicBist IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 55

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IJTAG Network in EDT/LogicBist IP
SIBs are a mechanism to provide flexible access to data registers they control. For the Tessent 
version of a SIB, the data registers are accessible via the IJTAG network when the SIB 
controlling a data register is set to 1, and the data register is bypassed when the SIB is set to 0. 
SIBs are clocked by TCK. To provide flexibility in accessing specified registers in the IJTAG 
network at different times, the SIBs are arranged in a hierarchical tree structure. The top-level 
SIBs use the lbist_tap_instruction signal from the JTAG LogicBIST instruction as the SIB 
enable signal. The SIB enable signals for the child SIBs are controlled by their parents. This is 
how all the SIBs inside the LogicBIST controller, EDT/LogicBIST blocks and single chain 
mode logic are configured.

The EDT/LogicBIST blocks contain SIB registers to provide access to various registers, such as 
the PRPG, the EDT chain mask register, MISR, and programmable NCP count registers. The 
EDT SIBs are clocked by tck, and the data registers they control are clocked by edt_clock. The 
tool adds a lockup cell to avoid clock skew between these two clock domains. A SIB inside the 
LogicBIST controller controls access to the EDT SIBs. The enable output of this LogicBIST 
controller SIB is used as the input enable for the EDT SIBs. 

For each specified NCP, an 8-bit register is created and inserted on the ICL network. These 
registers are loaded at run time so that the number of patterns applied for the NCP is 
programmable. When an integer percentage is provided during IP generation, the NCP registers 
reset to those values when sib_reset is asserted. Otherwise, these registers are reset to equal 
percentages across all NCPs. For more information, see “Generating the EDT and LogicBIST 
IP” on page 64.

Figure 2-15 shows the IJTAG network in a hybrid EDT/LBIST-inserted design.



Hybrid TK/LBIST Flow User’s Manual, v2022.456

EDT and LogicBIST IP Generation
Burn-In Test Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-15. SIBs Insertion and Integration of Cores for Concurrent Flow

Burn-In Test Mode
The hybrid TK/LBIST flow supports wafer-level burn-in tests for use during board-level 
testing. When you enable burn-in test mode, the tool creates additional RTL to enable the 
LogicBIST IP to run for longer periods of time than is normally enabled by the size of the 
LogicBIST pattern counter.



EDT and LogicBIST IP Generation
LBIST Controller Hardware Default Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 57

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Enable burn-in mode by specifying the burn_in property, as defined here:

DftSpecification(module_name, id) {
LogicBist {

Controller(id) {
burn_in : bool ; // default: off {symbols: on off}

}
}

}

When using the pattern specification in the TSDB flow, enable burn-in mode by setting the 
run_mode property to burn_in and specifying the burn_in_time property, as defined here:

PatternsSpecification(design_name, design_id, pattern_id) {
Patterns(patterns_name) {

TestStep(step_name) {
LogicBist {
CoreInstance(icl_instance_name) {

run_mode : burn_in ; 
burn_in_time : tvalue ;     // a time value in seconds

}
}

}
}

}

In burn-in mode, the hardware prevents the LogicBIST controller from reaching an end state in 
its FSM, which enables the PRPG to run continuously for the specified amount of time. Because 
the burn-in runtime can easily exceed the pattern counter, no MISR comparisons are performed 
when the test completes. 

Burn-In Only Fault Simulation
For fault simulation, you can create multiple burn-in configurations, such as different power 
configurations or decompressor seeds, by running a reduced fault simulation for the purposes of 
just creating the data needed to initialize/seed the LogicBIST registers.

To (re-)run fault simulation to generate a dedicated burn-in mode pattern set, do the following:

1. Change the current mode (set_current_mode).

2. Reduce the number of patterns to simulate (set_random_patterns).

3. Make any other changes as needed, such as changing the power configuration or using a 
different decompressor seed.

LBIST Controller Hardware Default Mode
The hardware default run mode of the LBIST controller uses the default (hardcoded) settings 
specified at IP generation (process_dft_specification). Because the settings are all built into the 



Hybrid TK/LBIST Flow User’s Manual, v2022.458

EDT and LogicBIST IP Generation
LBIST Controller Hardware Default Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

hardware, this run mode requires the least amount of time to set up the controller for launching 
the test.
This section documents considerations for configuring hardware default mode.

Configuration of the Hardware Default Values
Use the DftSpecification/LogicBist/Controller wrapper to access sub-wrappers that specify 
hardware_default properties for the controller IP:

• ShiftCycles

• CaptureCycles

• PatternCount

• AsyncSetResetPatternCount

• WarmupPatternCount

Register Initialization
Hardware default mode uses the least initialization for manufacturing patterns of any of the run 
modes. When you run hardware default mode, the LBIST controller synchronously resets the 
PRPG, MISR, pattern_count, and other registers to their hardware_default values. The 
controller performs this reset as part of its “run” operation. Because the controller itself 
initializes these registers (by the synchronous reset), the pattern runtime is reduced because 
there is no need to load those registers with an initial value through the IJTAG network.

Compatibility Restrictions
Running hardware default mode is possible only when hardware_default values hardcoded in 
the IP match fault simulation settings. When incompatible, hardware default mode pattern 
generation is not possible, although regular LBIST pattern generation is always possible.

For example, if you specify the following for IP generation:

DftSpecification(module_name, id) {
  LogicBist {
    Controller(id) {
      ShiftCycles {
        max : 100;
        hardware_default : 30;
      }
    }
  }
}

But after scan insertion, perhaps due to an ECO, some scan chains have a length larger than 30 
flops. In this case, you cannot run hardware default mode because the controller's hardcoded 
shift cycle length is 30.



EDT and LogicBIST IP Generation
LBIST Controller Hardware Default Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 59

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Compatibility Reporting
You can detect compatibility problems with your controller’s configuration that prevent the 
controller from being able to run in hardware default mode. Report compatibility with the 
“report_lbist_configuration -hardware_default_compatibility” command during fault 
simulation. The command compares your hardware_default settings with the values specified 
during fault simulation, and reports which settings are compatible. For some parameters, like 
NCP count, the values have to exactly match to be considered compatible. Other parameters, 
like pattern count, are compatible when more than the hardware_default number of patterns are 
fault-simulated.

The “shift length” setting is hard to predict during IP creation, but you can use a reasonable 
upper bound to set the hardware_default value. When the actual (Fault Simulation) value is less 
than this value, you can use the set_number_shifts command to make the actual value 
compatible with the hardware_default value. When the actual value is greater than the 
hardware_default value, running in hardware default mode is not possible.



Hybrid TK/LBIST Flow User’s Manual, v2022.460

EDT and LogicBIST IP Generation
Self-Test Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Self-Test Mode
The hybrid TK/LBIST flow supports self-testing of the LogicBIST and EDT controllers. This 
enables you to improve latent fault metrics (LFM) in conformance with ISO26262 by 
generating an InSytemTest pattern set or a manufacturing pattern set to test the EDT/LBIST 
controller in a stand-alone mode. You can also use this pattern set to perform an RTL simulation 
and validation of the embedded EDT/LBIST controller when the design RTL is ready.
In Self-Test Mode, the LBIST controller tests itself by directly feeding PRPG data into MISRs. 
The FSM of the LBIST controller goes through all the possible states that it would during a 
normal LBIST run. This confirms that the controller is operating correctly whether or not your 
design is in place.

IP Generation for Self-Test Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Self-Test Pattern Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Performing Self-Test Pattern Generation During IP Creation . . . . . . . . . . . . . . . . . . . . 62

IP Generation for Self-Test Mode
To perform a fast and thorough test of the LBIST controller, the PRPG inputs are connected 
directly to the compactor inputs to bypass the scan chain structures. As in a regular LBIST run, 
the pattern data and signatures are generated from the PRPG and the MISR. The difference is 
that the internal scan chains are bypassed for fast operation (pattern data generated from the 
PRPG is fed directly into the MISR).
For Controller Chain Mode (CCM), the scan chains are bypassed under the control of the CCM 
enable signal (ccm_en in the figure below) using existing muxes.

The scan chains are also bypassed during self-test. When CCM is available, the same muxing 
can be reused with an additional enable signal to enable and disable the self-test, as shown in the 
following figure.



EDT and LogicBIST IP Generation
Self-Test Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 61

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 2-16. LBIST Controller Self-Test

When CCM is not available, the bypass muxes are added along with the self-test enable signal. 

Note
Controller Chain Mode is not required for Self-Test Mode.

The self-test enable signal comes from a TDR. When the self-test signal is enabled, pattern data 
from the PRPG is fed directly into the MISR. The self-test runs in a manner similar to that of a 
normal LBIST run mode, except that the scan chains are bypassed. This requires a different run 
mode. During self-testing, the PRPG and MISR behave similarly to a regular LBIST run, and 
the LBIST controller’s FSM goes through all normal LBIST tests. These tests cover most of the 
registers in the LBIST controller.

Note
Although NCP limits and NCP counters are covered during the operation of the LBIST 
controller FSM, the corresponding NCP for a specific pattern cannot be verified by the self-

test. Any defect in the NCP index logic that propagates to the OCC is covered during Logic 
BIST and the monitoring of the clock outputs during system operation. 

Also, this self-test is not capable of verifying the LBIST controller’s output signals, such as 
scan_en, xbounding_en, mcp_bounding_en, control_point_en, observe_point_en, and 
lbist_async_set_reset_en. These signals must be separately targeted by adding redundancy and 



Hybrid TK/LBIST Flow User’s Manual, v2022.462

EDT and LogicBIST IP Generation
Self-Test Mode

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ensuring that a Single Event Upset (SEU) doesn’t affect the functional operation of the design. 
This is beyond the scope of this feature and is covered separately.

Self-Test Pattern Generation
Self-test patterns can be generated based on either an RTL view (during or after IP creation) or 
on a gate-level netlist.

Note
Self-test pattern generation can only be performed when the Self-Test hardware is available.

During specification-based pattern creation, the create_patterns_specification command creates 
the Self-Test mode if this feature is available in hardware. You can specify the information for 
processing pattern specifications for self-test patterns or use the default values for pattern count, 
shift length, and capture length. You can reconfigure this information, if needed. You can also 
specify the warmup pattern count, low_power settings, and chain masks for self-test patterns. 
All of this information can be specified in the pattern specification configurations. 

When pattern specifications are processed, the Self-Test patterns are simulated and generated 
based on the given pattern specification configurations, and stored in the TSDB. You can create 
multiple sets of pattern data by using different configurations. Whenever the settings (such as 
shift length, capture length, low power settings, chain mask settings, or pattern count) are 
changed, new pattern data is created. For new settings specified with a lower pattern count, 
process_patterns_specification uses the existing pattern data.

Note
Self-Test pattern generation does not require fault simulation results.

See Performing Pattern Generation for the TSDB Flow for an example of how to generate self-
test patterns during IP creation.

Related Topics
create_patterns_specification [Tessent Shell Reference Manual]

Performing Self-Test Pattern Generation During IP 
Creation

This example illustrates the generation of Self-Test patterns during IP creation in the -rtl 
context.



EDT and LogicBIST IP Generation
Self-Test Mode

Hybrid TK/LBIST Flow User’s Manual, v2022.4 63

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Set the context:

SETUP> set_context dft -rtl

2. Read the design RTL:

SETUP> read_verilog ../data/piccpu_rtl.v

3. Read the library file:

SETUP> read_cell_library ../library/adk_complete.tcelllib

4. Elaborate the design:

SETUP> set_current_design piccpu

5. Define the DFT signals:

SETUP> add_dft_signals ltest_en

6. Transition to analysis mode:

SETUP> set_system_mode analysis

7. Create the DFTSpecification:

ANALYSIS> create_dft_specification -sri_sib_list {occ edt lbist}

8. Apply commands to customize the DFTSpecification. For example, using 
read_config_data to enable the self-test hardware:

ANALYSIS> read_config_data -in_wrapper \
DftSpecification(piccpu,rtl) -from_string {
  LogicBist {
    ijtag_host_interface : Sib(lbist);
    Controller(c0) {
      ShiftCycles   { max : 40; }
      CaptureCycles { max : 4; }
      PatternCount  { max : 10000; }
      NcpOptions    { count : 3; }
      self_test : on;
    }
  }
}

9. Process the DFTSpecification for IP insertion:

ANALYSIS> process_dft_specification

10. Find all modules and their ICL descriptions:

SETUP> extract_icl

11. Define the top-level clocks. For example:

SETUP> add_clocks 0 clk -period 10



Hybrid TK/LBIST Flow User’s Manual, v2022.464

EDT and LogicBIST IP Generation
Generating the EDT and LogicBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

12. Generate the test patterns:

SETUP> create_patterns_specification

13. Specify or change any pattern specification requirements. For example, the self-test 
shift_length option can be specified as follows:

SETUP> set_config_value /PatternsSpecification(piccpu,rtl,signoff)/
Patterns(LogicBist_piccpu)/TestStep(self_test)/LogicBist/CoreInstance(.)/
SelfTestOptions/shift_length 10

14. Process and validate the test patterns:

SETUP> process_patterns_specification

15. Run and check the testbench simulations. For example:

SETUP> set_simulation_library_sources -v ../library/Verilog/adk.v -v ../data/picdram.v

SETUP> run_testbench_simulations

SETUP> check_testbench_simulations -report_status

Generating the EDT and LogicBIST IP
To generate the hybrid EDT/LBIST IP, you must create a LogicBIST wrapper, which specifies 
the information used by the process_dft_specification command to build the hybrid IP and 
insert the IP into the design.
You can also use the dofile flow to generate the EDT and LogicBIST IP. See “The Dofile Flow” 
on page 263 for details.

Once you have nested the LogicBIST wrapper within the DftSpecification wrapper, you use 
Tessent Shell to validate and process the wrapper, and create the hybrid IP. The flow is the same 
as that used for EDT, with the addition of the LogicBIST wrapper. Refer to “Validating the 
EDT Specification and Creating the EDT IP” in the Tessent TestKompress User’s Manual for 
details.



EDT and LogicBIST IP Generation
Generating the EDT and LogicBIST IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 65

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The high-level syntax for the LogicBIST wrapper looks as follows:

DftSpecification(module_name,id) {
LogicBist {
ijtag_host_interface : name
Controller(id) {           // configure the LBIST controller

      ...
      ControllerChain {        // configure controller chain mode
        ...
      }
      SingleChainForDiagnosis { // configure single chain mode logic
        ...
      }
      ShiftCycles {             // configure shift cycles
        ...
      }
      CaptureCycles {           // configure capture cycles
        ...
      }
      PatternCount {            // configure the pattern counter
        ...
      }
      WarmupPatternCount {      // configure warm-up pattern count
        ...
      }
      AsyncSetResetPatternCount { // configure asynchronous set/reset 

... // pattern count
}

      NcpOptions {              // configure NCP-related hardware options
        ...
      }

Interface {               // specify interface port names
...

}
      Connections {             // configure controller connections
        ...
      }
    }

NcpIndexDecoder {            // convert LogicBIST NCP index output into
      ...                       // clock sequences for Tessent OCC usage
    }
  }
}

Interactions
When you specify the LogicBist/Controller wrapper, the following interactions apply:

• EDT. By default, all EDT controllers are converted into EDT/LBIST hybrid controllers. 
To create both hybrid and non-hybrid controllers in the same process_dft_specification 
run, set the property DftSpecification/EDT/Controller/LogicBistOptions/present to 
“off.”



Hybrid TK/LBIST Flow User’s Manual, v2022.466

EDT and LogicBIST IP Generation
Dual Compression Configurations for the Hybrid IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• OCC. OCC signals are intercepted by the LogicBIST controller. For proper LogicBIST 
support, generate the OCC with capture enable trigger and static clock control enabled. 
When you generate OCC in the same pass as the LogicBIST controller, these properties 
are automatically configured to support LogicBIST.

• NCP Index Decoder. When you specify the NCP Index Decoder and the LogicBIST 
controller within the same DftSpecification, the tool automatically populates the count 
for NcpOptions from the count specified by the NcpIndexDecoder/Ncp wrapper. You 
cannot manually specify the NcpOptions count parameter. You should use the count 
when the NCP Index Decoder is implemented in a different DftSpecification, or when 
not using a decoder (that is, when the number of NCPs is 1).

Limitations
The following limitations apply when you are using the LogicBist wrapper to generate the 
hybrid IP:

• When the NcpIndexDecoder and LBIST controller are generated in the same pass, they 
are automatically connected. When not inserted together, the user is responsible for the 
connections.

• LogicBIST does not support child OCCs.

• Pre-inserted mini-OCCs, such as those created during MemoryBIST insertion or with 
boundary scan, may not be automatically intercepted. Ensure that you have explicitly 
specified these OCCs by using the add_core_instances command.

• For scan-chain clocking, input design scan chains must have first scan cell clocked by an 
LE clock edge and last scan cell clocked by an TE clock edge.

• Does not support Low Pin Count Controller.

• You must specify the LogicBist/Controller wrapper with its associated EDT wrappers, 
and you can only specify one LogicBIST controller. You must use the LogicBIST 
controller in conjunction with EDT to generate hybrid IP. 

Dual Compression Configurations for the 
Hybrid IP

Using two compression configurations when setting up the EDT logic enables you to easily set 
up and reuse the EDT logic for two different test phases. For example, wafer test versus package 
test.
You can use hybrid IP with dual configuration in EDT mode in either the low or high 
compression configurations (similar to non-hybrid EDT IP). For the LBIST mode of operation, 
the IP is used in the low compression configuration. Specifically on the output side, the MISR 
input taps are always taken from the low compression spatial compactor. 



EDT and LogicBIST IP Generation
Dual Compression Configurations for the Hybrid IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 67

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For more information about dual compression configurations, see “Dual Compression 
Configurations” in the Tessent TestKompress User’s Manual.

The following example IP creation dofile enables dual compression configurations, where “LC” 
is the low compression configuration that uses 8 channels and “HC” is the high compression 
configuration that uses 2 channels. The add_edt_configurations command enables the dual 
compression functionality.

# Set the context to insert DFT into RTL-level design
set_context dft -rtl -design_id rtl1

# Set the location of the TSDB. Default is the current working directory.
set_tsdb_output_directory ../tsdb_outdir

# Read the design
read_verilog <design>
read_design 
set_current_design gps_baseband

# Set the design level as physical_block
set_design_level physical_block

# Use this command to report all DFT signals
report_dft_signal_names

# Add DFT Signals : #Required  for hybrid TK/LBIST
add_dft_signals

# Add input constraints necessary for the design
report_dft_signals

# Specify pre-DFT DRC rules
set_dft_specification_requirements -logic_test on
add_clocks clk -period 2ns
add_clocks lbist_shift_clk -period 8ns

# System mode transition, run DRCs
check_design_rules

# Create and report a DFT Specification
set spec [create_dft_specification -sri_sib_list {edt occ lbist} ]
report_config_data $spec



Hybrid TK/LBIST Flow User’s Manual, v2022.468

EDT and LogicBIST IP Generation
Dual Compression Configurations for the Hybrid IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

# Use report_config_syntax DftSpecification/edt|occ to see full syntax
read_config_data -in $spec -from_string {

# Modify the below specification for your specific design requirements
read_config_data -in $spec -from_string {
  EDT {
    ijtag_host_interface : Sib(edt);

Controller (c1) {
      longest_chain_range : 50, 65;
      scan_chain_count : 60;
      input_channel_count : 2;
      output_channel_count : 2;
      HighCompressionConfiguration {

present : on | off ;
input_channel_count : int ;
output_channel_count : int ;

}
      LogicBistOptions { 
        misr_input_ratio : 1 ;
        ShiftPowerOptions {
          present : on ;
          default_operation : disabled ;
          SwitchingThresholdPercentage {
            min : 25 ;
          }
        }
      }
    }
  }
}



EDT and LogicBIST IP Generation
Dual Compression Configurations for the Hybrid IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 69

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_config_data $spec
read_config_data -in $spec -from_string {
  LogicBist {
    ijtag_host_interface : Sib(lbist);
    Controller(id) {
      burn_in : on ;
      pre_post_shift_dead_cycles : 8 ;
      SingleChainForDiagnosis {
        Present : on ;
      }  
      ControllerChain {
         present : on; 
         clock : tck;
      }
      Connections {
        shift_clock_src:lbist_shift_clk;
      }
  
      NcpOptions {
        count : 1;
      }
  
      ShiftCycles { max :200 ; }   
      CaptureCycles { max : 7; }   
      PatternCount { max : 1024; }   
      WarmupPatternCount { max : 128; }   
    }
  }
}

process_dft_specification

## The ICL for the entire design gets created
extract_icl 

##====== Synthesis and simulation
write_design_import_script  for_dc_synthesis.tcl -replace

# Make patterns
create_pattern_specification 
process_pattern_specification

# Run Simulation
run_testbench_simulations



Hybrid TK/LBIST Flow User’s Manual, v2022.470

EDT and LogicBIST IP Generation
Timing Constraints for EDT and LogicBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing Constraints for EDT and LogicBIST IP
Tessent Shell generates timing constraints for the Hybrid EDT/LogicBIST IP during IP 
generation in Synopsys Design Constraints (SDC) format. The SDC file contains timing 
constraints and exceptions for all modes of operation of the IP.
For the TSDB flow, the tool creates the SDC for the current design when you execute the 
extract_icl command, which does the following:

• Stores the SDC in Tcl procs.

• Writes the SDC to a single file named design_name.sdc, where design_name is the name 
of the current design loaded in Tessent Shell.

The SDC file is located next to the extracted ICL, which is typically in the dft_inserted_designs 
directory as follows:

${tsdb}/dft_inserted_designs/${design_name}_${design_id}.dft_inserted_design

Every instrument type (for example, MBIST, IJTAG) of the current design and all sub-blocks 
that provide SDC constraints are represented by a separate proc in the SDC file. Constraints for 
logic test-related instruments such as OCC, EDT, or LBIST, including logictest-related DFT 
signals, are all grouped under similar placeholder “ltest” instrument procs.

Refer to “Timing Constraints (SDC)” in the Tessent Shell User’s Manual for details about 
specifying timing constraints for logic test instruments when you are using the TSDB flow.

The following sections describe how to generate timing constraints when you are using the 
dofile flow.

Timing Constraint Generation in the Specification-Based Flow. . . . . . . . . . . . . . . . . . . 70
LogicBIST Timing Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Timing Constraint Generation in the Specification-
Based Flow

The tool generates timing constraints when you run the extract_icl command in the 
configuration-based flow.
The tool generates SDC for the following Hybrid IP modes:

• EDT — EDT shift, slow and fast capture. The capture mode constraints are the same for 
EDT and EDT-bypass.

• EDT-bypass — Bypass shift, slow and fast capture. The capture mode constraints are 
the same for EDT and EDT-bypass.



EDT and LogicBIST IP Generation
LogicBIST Timing Constraints

Hybrid TK/LBIST Flow User’s Manual, v2022.4 71

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• LogicBIST — LogicBIST setup, shift, capture and diagnostic modes. The diagnostic 
mode constraints are generated only when single chain mode logic is synthesized in the 
IP.

LogicBIST Timing Constraints
In the dofile flow, the four LogicBIST modes have their own lists of timing constraints/
exceptions.

LogicBIST Setup Mode
This mode is for seeding the BIST registers in the EDT blocks like PRPG, MISR and EDT 
chain mask registers as well as those in the LogicBIST IP like vector counter, shift counter etc. 
The BIST controller is clocked by tck for this mode of operation. 

The TDI and TDO pins of the TAP controller are used for seeding, hence IO delays are defined 
for those pins. These delays are defined with respect to virtual clocks named force_pi and 
measure_po that reflect the timing described in the test procedures. 

The following constraints/exceptions are specified for the LogicBIST Setup mode:

• Set LogicBIST enable TDR bit to 1. Set the BIST setup registers to “001” corresponding 
to the LongSetup mode of operation for the BIST controller.

• Set false paths from EDT control signals that are not used like EDT reset and EDT 
update.

• Set false paths from EDT channel input pins and to EDT channel output pins.

• Set false paths through TAP controller's LogicBIST instruction enable and test logic 
reset outputs. The TAP controller paths for shift, capture and update are enabled.

• EDT chain mask registers are active in this mode. The paths from these registers to the 
design scan cells, specifically the hold paths, where the source and destination are on 
different clock domains are not explicitly disabled. This works correctly because the 
destination design scan cells are not clocked in this mode.

• Set variables for sequentially propagating case analysis constraints through the user 
clock controller.

• Disable clock gating checks on the shift controller clock muxes. This is because only the 
tck path is selected in this mode.

LogicBIST Shift Mode
This mode describes scan chain shifting. The scan cells are driven by the internally generated 
LogicBIST shift clock and the PRPG/MISR are driven by the internally generated LogicBIST 



Hybrid TK/LBIST Flow User’s Manual, v2022.472

EDT and LogicBIST IP Generation
LogicBIST Timing Constraints

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

clock. The BIST controller is clocked by the free running shift clock source. IO pins are not 
involved in this, hence no IO pin delays are specified. 

The following constraints/exceptions are specified for the LogicBIST Shift mode:

• Set LogicBIST enable TDR bit to 1.

• Constrain the internally generated LogicBIST scan enable that reaches the scan cells to 
ON. There is a 4-cycle window around the time the scan enable changes during which 
the design scan cells are not clocked, which enables the scan enable to be described as a 
constant.

• Constrain the prpg_en, misr_en, and scan_en signals to MCP 4, and constrain the 
lbist_reset signal to MCP 3.

• Constrain the internally generated clock controller scan enable to ON.

• Set the clock source for LBIST test. The shift mode constraints TCL procedure takes a 
clock_select parameter to choose from LBIST shift clock source, EDT clock or TCK. 
The default is LBIST clock. To analyze timing when either EDT clock or TCK is used 
for logic test, call the top-level procedure with the required clock parameter. For 
example, lbist_shift_mode edt_clock. Both shift and capture modes run with the same 
clock, so clock_select should be consistent for shift and capture mode.

• Constrain or exclude EDT pins like EDT clock, update, reset and other control signals.

• Exclude all paths from the TAP controller.

• EDT chain mask registers are static throughout test, so declare all paths from these 
registers as false.

• Exclude all paths from SIBs inside the EDT logic. These SIBs are clocked by the faster 
lbist shift clock and hence excluded in this mode.

• Set variables for sequentially propagating case analysis constraints through the user 
clock controller.

• Turn off clock gating checks on the shift controller clock muxes. This is because only 
the free running shift clock source is selected in this mode.

LogicBIST Capture Mode
This mode describes the capture. The clocking for the scan cells is described in the Named 
Capture Procedures. The BIST controller is clocked by the free running shift clock source. IO 
pins are not involved in this mode, hence no IO pin delays are specified. 

The following constraints/exceptions are specified for this mode:

• Set LogicBIST enable TDR bit to 1.



EDT and LogicBIST IP Generation
LogicBIST Timing Constraints

Hybrid TK/LBIST Flow User’s Manual, v2022.4 73

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Constrain the internally generated LogicBIST scan enable that reaches the scan cells to 
OFF. There is a 4 cycle window around the time the scan enable changes during which 
the design scan cells are not clocked, which enables the scan enable to be described as a 
constant.

• Constrain the prpg_en, misr_en, and scan_en signals to MCP 4, and constrain the 
lbist_reset signal to MCP 3.

• Constrain the internally generated clock controller scan enable to OFF.

• Set the clock source for LBIST test. The shift mode constraints TCL procedure takes a 
clock_select parameter to choose from LBIST shift clock source, EDT clock or TCK. 
The default is LBIST clock. To analyze timing when either EDT clock or TCK is used 
for logic test, call the top-level procedure with the required clock parameter. For 
example, lbist_shift_mode edt_clock. Both shift and capture modes run with the same 
clock, so clock_select should be consistent for shift and capture mode.

• Constrain or exclude EDT pins like EDT clock, update, reset and other control signals

• Exclude all paths from the TAP controller

• EDT chain mask registers are static throughout test, so declare all paths from these 
registers as false.

• Set variables for sequentially propagating case analysis constraints through the user 
clock controller

• Turn off clock gating checks on the shift controller clock muxes. This is because only 
the free running shift clock source is selected in this mode

LogicBIST Single Chain Mode
This mode describes shifting through the concatenation of the design scan cells through the 
single chain mode logic, used primarily for LogicBIST diagnostics. The BIST controller and the 
design scan cells are clocked by tck for this mode of operation. The TDI and TDO pins of the 
TAP controller are used for seeding, hence IO delays are defined for those pins. The delays are 
defined with respect to virtual clocks named force_pi and measure_po that reflect the timing 
described in the test procedures. 

The following constraints/exceptions are specified for the LogicBIST Single Chain mode:

• Set LogicBIST enable TDR bit to 1. Set the BIST setup registers to 100 corresponding 
to the SingleChain mode of operation for the BIST controller.

• Constrain or exclude EDT pins like EDT clock, update, reset and other control signals.

• Set false paths from EDT channel input pins and to EDT channel output pins. 

• Set false paths through TAP controller's LogicBIST instruction enable and test logic 
reset outputs. The TAP controller paths for shift, capture and update are enabled.



Hybrid TK/LBIST Flow User’s Manual, v2022.474

EDT and LogicBIST IP Generation
ECO Implementation in the Hybrid TK/LBIST Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• EDT chain mask registers are static throughout test, so declare all paths from these 
registers as false.

• Set the single chain mode TDR bit to 1.

• Set variables for sequentially propagating case analysis constraints through the user 
clock controller.

• Turn off clock gating checks on the shift controller clock muxes. This is because only 
the tck path is selected in this mode.

ECO Implementation in the Hybrid TK/LBIST 
Flow

As part of the IP creation step, the tool ensures that every scan chain starts with a leading edge 
(LE) flip-flop and ends with a trailing edge (TE) flip-flop. The retiming flip-flops are exposed 
as part of the scan chains. You must make sure that the clocking of the boundary flip-flops 
never changes; if you need to add a flip-flop into the design, you must add it in the middle of the 
chain, not at the beginning or end.
The same is true for deleting a flip-flop. Only remove a scan cell that is in the middle of a chain. 
Do not remove a scan cell that is at the boundary because it controls the retiming latches that 
have been added.

In addition, consider the following:

• During IP creation, the tool generates a shift counter that is used during LogicBIST 
mode. By default, the tool adds seven more clock cycles to the number of shift cycles. 
This enables additional flip-flops to be added later through an ECO. Note that this is 
across all scan chains, so many flip-flops can be added in ECO mode if you want. 
However, you should not exceed seven per chain.

Note
This is true only when DftSpecification/LogicBist/Controller/ShiftCycles/
counter_resolution is set to “byte” (the default is “bit”).

• You should specify the size of the pattern counter. Although not directly related to the 
ECO process, you should specify the hardware in such a way that you can double the 
number of LogicTest patterns that you think are necessary during IP generation.

• Handle timing exception paths after placement and routing as follows:

Note
Make sure you declare only the timing exception paths that are discovered late. Do 
not provide the entire SDC or the tool inserts muxes for FP/MCPs that are already 

bounded.



EDT and LogicBIST IP Generation
ECO Implementation in the Hybrid TK/LBIST Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 75

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

a. Use the “set_xbounding_options -xbounding_enable pin_name 
-mcp_bounding_enable pin_name” command to declare the existing enable pin that 
the tool should use to drive the X-bounding and MCP bounding logic. The enable 
signal must be constrained to 1 so that it activates the logic that was inserted in a 
previous path. The xbounding_enable is used for bounding the static X-source like 
primary input and the mcp_bounding_enable is used for bounding the timing 
exception path, that is, the dynamic X-source.

b. Use the “read_sdc new_exception.sdc” command to read the new timing exceptions. 
The new_exception.sdc includes only the FP/MCP newly added by ECO.

c. Use the “add_scan_chains” command as per the defined scan mode. Also, set the 
DFT signal to configure that particular scan mode. You may see S6 violations if the 
scan chains are not defined. It is easier to add all the scan chain by loading the atpg 
setup file. 

d. Use the “add_nonscan_instances -all” command to remove any non-scan cells from 
consideration that the tool sees as scannable. At this point, the netlist is completely 
scanned, so any non-scan cells should remain as is.

e. Use the “set_system_mode analysis” command.

f. Use the analyze_xbounding command to determine where the muxes should be 
inserted. While this command analyzes whether any X-sources have been missed, 
none should have been at this stage.

g. Use the report_xbounding command to show where the muxes should be inserted to 
block those paths.

h. Either insert the muxes yourself as part of the ECO or use the insert_test_logic 
command to let the tool insert them.



Hybrid TK/LBIST Flow User’s Manual, v2022.476

EDT and LogicBIST IP Generation
ECO Implementation in the Hybrid TK/LBIST Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 77

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 3
Test Point Analysis and Insertion, Scan

Insertion, and X-Bounding

In this step of the flow, you read in a gate-level non-scan Verilog netlist of your design, generate 
and insert test points, insert scan chains, and perform X-bounding. You can optionally perform 
these tasks in separate sessions.
Use the synthesized gate-level netlist with the inserted hybrid TK/LBIST IP from the previous 
step for these tasks.

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview  . . . . . . 77
X-Bounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

X-Bounding Control Signals (Existing or New Scan Cells). . . . . . . . . . . . . . . . . . . . . . . . 83
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Multiple Clock Domain Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
False and Multicycle Paths Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
X-Sources Reaching Primary Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
X-Bounding and no_observe_point and no_control_point Attributes . . . . . . . . . . . . . . . . 85
EDT IP Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
X-Bounding and the Tessent Memory BIST Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Test Point Insertion, Scan Insertion, and X-Bounding Command Summary . . . . . . . . 87

Test Point Analysis and Insertion, Scan 
Insertion, and X-Bounding Overview

In the test point analysis and insertion step of the hybrid TK/LBIST flow, you generate and 
insert test points into the netlist to achieve high test coverage. 
During test point analysis and insertion, you add random pattern test points to certain locations 
in your design. By adding these test points, you can increase the testability of the design by 
improving controllability or observability. 

Test Point Analysis and Insertion and Scan Insertion Flow
Use the following process to insert test points and scan:

• Load the design with the read_design command. The inputs are the synthesized gate-
level netlist and the TSDB from the hybrid TK/LBIST insertion step.

• Specify the X-bounding options and settings.



Hybrid TK/LBIST Flow User’s Manual, v2022.478

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Analyze X-bounding.

• Specify scan modes, scan chain families, or scan segments.

• Analyze scan chains.

• Insert test points, X-bounding, scan chains, and (optionally) wrapper chains with the 
insert_test_logic command. This command also automatically updates the TSDB with 
the output files.

At the conclusion of this step, the tool writes out a netlist with test points and scan chains 
inserted, and upon which X-bounding has been performed. Optionally, wrapper analysis may 
also have been performed. This netlist and a Tessent Core Description (TCD) file are available 
in the TSDB directory and are linked to the unique design ID associated with this step.

Requirements
Performing test point analysis and insertion has certain requirements. You must adhere to the 
following:

• Test point insertion needs a gate-level Verilog netlist and a Tessent Cell Library.

• You can read in functional SDC so the tool omits adding any test points to multicycle 
paths or false paths—see the read_sdc command.

• The tool identifies potential scan candidates for correct controllability/observability 
analysis. To ensure that eventual non-scan cells are not used as the destination for 
observe points or source for control points, you should declare all the non-scan memory 
elements during test point insertion using the add_nonscan_instances command.

• You should define black boxes using the add_black_boxes command so that test point 
analysis can incorporate this information.

• If you are performing test point analysis on a pre-scan netlist that has unconnected clock 
gaters, you should add the “set_clock_gating on” command to your dofile.

You can also insert Observation Scan Technology (OST) during this step. For more 
information, see “Observation Scan Technology” on page 177.

For more information on this step, refer to “Test Points for LBIST Test Coverage 
Improvement” in the Tessent Scan and ATPG User’s Manual.

Scan Insertion and X-Bounding
You should adhere to the following during this step:

• Inputs — The modified design netlist with test points and the TCD file you have 
generated using the Tessent Shell insert_test_logic command. 



Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview

Hybrid TK/LBIST Flow User’s Manual, v2022.4 79

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• MCPs and failing paths — You read in SDC to identify MCP/FP, which enables 
X-bounding to add DFT logic that prevents the capture of any transition on such paths. 

Requirements for Using a Third-Party Scan Insertion Tool
Tessent Shell must make certain assumptions about which flip-flops in the design are converted 
to scan and which cells remain non-scan. If you are using a third-party scan insertion tool, then 
these assumptions might not be correct.

Specifically, the primary factors in determining the conversion of non-scan flops to scan flops 
are the S-rule DRC violations and the availability of a suitable scan model. In general, flops 
with S-rule violations are not converted to scan cells unless you use the following command:

set_test_logic -clock on -set on -reset on

You might need to read the design into Tessent Shell and go through DRC. You can 
subsequently post DRC use the report_scan_elements command to report the exact status for 
each flop in the design.

Scan Insertion and X-Bounding Limitations
Be aware of the following:

• If low power is used in the hybrid TK/LBIST flow, the scan chain length must be equal 
to or greater than the decompressor size. The minimum decompressor size in the hybrid 
flow is 31. Therefore, the scan chain length cannot be less than 31. The reason for this 
requirement is that the size of the low-power register and the size of the decompressor 
are the same; to initialize the low-power register, the shift length must be equal to or 
greater than the decompressor size. If the tool generates a larger decompressor, say a 
size of 62 bits, the required minimum shift length is 62.

• X-bounding analysis does not take into account wrapper cells identified with the 
analyze_wrapper_cells command and inserts X-bounding multiplexers at the primary 
input pins that feed the wrapper cells. The workaround is to perform wrapper chain 
identification and insertion in a separate pass, prior to X-bounding. In addition, you 
must constrain the scan enable signal for the input wrapper chains to keep these chains 
in “shift mode” during the capture cycles. This pin constraint prevents insertion of extra 
X-bounding multiplexers at the primary input pins that drive the wrapper cells in 
functional mode.

• The tool performs X-bounding first, and targets each primary input with an X-bounding 
mux. However, when you issue the analyze_wrapper_cells command, the X-bounding 
results change because the primary input pins receive a dedicated wrapper cell, or the 
reachable scan flops become part of the input wrapper chains. This is sufficient to block 
the unknown value from reaching any scan cells during intest.



Hybrid TK/LBIST Flow User’s Manual, v2022.480

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The tool does not remove X-bounding logic for ports specifically excluded from 
wrapper analysis using the -exclude_ports switch of the 

set_wrapper_analysis_options command.

Example
The following example script performs test point analysis and insertion, scan insertion, and 
X-bounding.



Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview

Hybrid TK/LBIST Flow User’s Manual, v2022.4 81

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

# 1. Set merged subcontext to perform both scan and test point 
#    insertion, specify unique design ID
set_context dft -scan -design_id gate_scaninv -test_points -no_rtl

# 2. Point to TSDB that contains outputs of previous steps (hybrid
#    TK/LBIST IP generation)
set_tsdb_output_directory ../1_dft/tsdb_outdir

# 3. Read synthesised netlist and DFT libraries
read_verilog ../2_synth/piccpu_gate.v
read_cell_library ../prerequisites/techlib_adk.tnt/4.3/tessent/ \

adk.tcelllib ../data/picdram.atpglib
read_cell_library ../libs/mgc_cp.lib

# 4. Read all configuration files of previous step (IP insertion) using 
#   read_design_command
read_design piccpu -design_id rtl -no_hdl

# 5. Elaborate the design
set_current_design

# 6. Specify test point analysis and insertion settings
set_test_point_analysis -mini_shift_length 16
set_test_point_type lbist_test_coverage
set_test_point_analysis -pattern_count_target 10 -test_coverage 99.9 \

-total_number 10

# 7. Run design rule checks
set_system_mode analysis

# 8. Analyze test points
analyze_test_points

# 9. Analyze X-bounding
analyze_xbounding

# 10. Specify scan modes as required
add_scan_mode short_chains -edt [get_instance -of_module *_edt_lbist_c0]

# 11. Scan chain analysis
analyze_scan_chains

# 12. Insert all test logic that was analyzed in the previous steps -
#     insert_test_logic command automatically updates the TSDB as well
insert_test_logic



Hybrid TK/LBIST Flow User’s Manual, v2022.482

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
X-Bounding

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

X-Bounding
You must perform the X-bounding to prohibit all X generators (that is, non-scan cells, black 
boxes, and primary inputs) from reaching a scan cell. The source of the X-bounding mux could 
either be existing scan cells in the design or newly inserted scan cells.
Tessent Shell performs the following operations during X-bounding:

• X-sources are identified as part of DRCs, specifically E5 violations.

• All identified X-sources are bounded from reaching scan cells.

• A multiplexer is introduced to block propagation of an X.

• To increase controllability, the second input of the mux is driven by scan cell.

• Clocks for destination cells are analyzed to choose clocks for new scan cell or choose an 
existing scan cell.

Note
There are several limitations you should keep in mind:

• When an X-source does not reach a scan flop or scannable flop, and feeds only a 
small number of combinational gates that may drive output pins, then this signal is 
not x-bounded, but all the affected logic is marked as no_control_point and 
no_observe point, with no_control_reason and no_observe_reason set to xbounding.

• Sometimes, it is not possible to bound the signal directly at the source. In that case, 
any combinational logic that is driven by the X-source and is upstream of the 
X-bounding mux is also marked as no_control_point and no_observe_point, with 
no_control_reason and no_observe_reason set to xbounding.

• If the tool needs to bound an unknown state that originates from a primary input with 
a pad, the X-bounding logic is inserted on the core side of the pad.

X-Bounding Control Signals (Existing or New Scan Cells) . . . . . . . . . . . . . . . . . . . . . . . 83
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Multiple Clock Domain Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
False and Multicycle Paths Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
X-Sources Reaching Primary Outputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
X-Bounding and no_observe_point and no_control_point Attributes . . . . . . . . . . . . . . 85
EDT IP Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
X-Bounding and the Tessent Memory BIST Controller  . . . . . . . . . . . . . . . . . . . . . . . . . 86



Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
X-Bounding Control Signals (Existing or New Scan Cells)

Hybrid TK/LBIST Flow User’s Manual, v2022.4 83

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

X-Bounding Control Signals (Existing or New Scan 
Cells)

By default, the tool identifies existing scan cells with the correct clock domain and uses the 
output from these flip-flops to drive the test mode input of the X-bounding multiplexer. 
Details about how the tool selects the clocks are in the “Clock Selection” section. 

You also can choose to drive the test mode input of the new multiplexers from new scan cells 
using the -connect_to new_scan_cell switch of the set_xbounding_options command. The clock 
signal that drives the new scan cell is selected using the same algorithm that applies when using 
existing scan cells. The new scan cells are merged into existing chains whenever possible. The 
output of the flip-flops directly drives the data input of the new flip-flops.

Clock Selection
The tool analyzes the location of each X-bounding multiplexer to identify the clocks if a new 
flip-flop is chosen to drive the multiplexer. The tool looks at clocks for the controlling flip-flops 
that feed into this location and also the clocks for the flip-flops that are fed from this signal. 
When only a single clock domain is involved, that clock is used to drive the test points. 
However, when multiple clock domains are involved, the behavior depends on the definition of 
the false or multicycle paths. X-bounding could potentially introduce a new false path that 
would not be bounded because the false path did not exist in the original netlist. Therefore, 
when an SDC file is loaded, the tool uses static bounding (forcing a constant 0 or 1 via an AND 
or OR gate) to avoid creating a new false path. When no false or multicycle paths are defined, 
the tool chooses the clock domain that is most frequently used by the memory elements in the 
fanout of the X-source.

Multiple Clock Domain Handling
By default, X-bounding by the tool does not guard cross-clock domain paths. However, if you 
reference these paths in the SDC file (for example, set_false_path -from CLK1 -to CLK2), then 
the tool adds the appropriate bounding hardware at the destination flop. 
For cases when you create at-speed capture procedures that do not explicitly exercise these 
paths, none of these paths need to be bounded. The following command and switch:

set_xbounding_options -exclude_sdc_cross_domain_path on

modify the tool’s behavior such that paths that meet the following criteria are not X-bounded:

1. Identifies all the clock domains that feed into the test point location.

2. Identifies all the clock domains that observe the signal from the test point.



Hybrid TK/LBIST Flow User’s Manual, v2022.484

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
False and Multicycle Paths Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. If there is no overlap between the clocks identified in (1) and (2), then this is considered 
a cross clock domain path that cannot be activated by pulsing only a single clock, and it 
is excluded from X-bounding.

False and Multicycle Paths Handling
The tool can also insert logic to block false and multicycle paths to inhibit these from 
contributing Xs during LogicBIST as follows:

• All destination flops are identified from the SDC file you load into the tool using the 
read_sdc command.

• The destination flops are replaced with holding flops to prevent capturing Xs—see 
“Destination Flop Identification” in the following section.

• The holding mux has an inverter in the feedback loop to enable transition coverage for 
the downstream logic. In Figure 3-1, lbist_en is the signal to control the muxes. 
However, you can use a completely new enable signal to control the select line of these 
muxes. This allows enabling this logic independent of the LogicBIST run. 

The same enable signal (which defaults to lbist_en but can be overridden using the 
mcp_bounding_en dft signal) controls the X-bounding of both false paths as well as 
multicycle paths.

Figure 3-1 shows the holding muxes in black. 

Figure 3-1. Inverted Feedback Muxes

Re-circulating muxes with an inverter in the feedback path are inserted on the D input of the 
destination scan cells of false and multicycle paths. The inversion ensures that the destination 
scan cell output has a transition during broadside test to achieve higher coverage.



Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
X-Sources Reaching Primary Outputs

Hybrid TK/LBIST Flow User’s Manual, v2022.4 85

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Destination Flop Identification
Each false/multicycle path statement in the SDC file is analyzed in the region identified by that 
particular statement. The tool subsequently analyses the ability of signals from the marked 
region to propagate to an observation point. These gates on the propagation path are marked as 
being in the false or multicycle path effect cone.

From this information, the tool looks at the data input(s) of  scannable flops and wrapper cells to 
determine if they are marked in any false or multicycle path effect cone. These gate inputs are 
bounded using a mux and an inverted feedback loop. In addition, if the wrapper cells are 
constructed of separate library cells (for example a separate DFF and MUX), then the tool 
searches the fan-in of the DFF to find a non-scan path input that can be bounded. Note: this only 
works if the wrapper cells are part of existing traced scan chains since that enables the tool to 
differentiate between the shift path and the capture path.

In addition, the tool checks the set and reset ports of each flop and disables any set/reset ports 
that are also marked as false or multicycle paths. In this case, however, a combinational gate 
(either an AND gate or an OR gate) is used to force the set/reset port into the off state.

The inverting loopback path inserted during X-bounding may still be considered as a false path 
during fault simulation if the data-input of the flop is defined as the “-to” gate for the false path. 
To avoid capturing an X at the input of this flop during fault simulation, the tool searches 
forward from the MCP bounding enable signal, identifying these inverting loopback paths, and 
modifying the simulation such that these paths are no longer treated as false paths. The source 
of the MCP bounding enable signal is typically specified as the mcp_bounding_en signal, added 
with add_dft_signals during the logic BIST insertion steps.

X-Sources Reaching Primary Outputs
By default, the tool doesn’t guard an X source that only reaches one or more primary outputs 
but doesn’t reach any scan cell. 
If there is a considerable amount of logic that can be observed at a primary output then inserting 
an observe point at such a primary output is beneficial for improving the test coverage of 
LogicBIST. The tool analyzes the amount of logic that can be observed at a primary output. If 
there are enough library cells that can be observed at a primary output, then the tool guards an X 
source that can reach this primary output. Test point analysis can then safely insert an observe 
point at this primary output.

X-Bounding and no_observe_point and 
no_control_point Attributes

X-bounding adds logic to block the propagation of the X-sources to scan cells. 



Hybrid TK/LBIST Flow User’s Manual, v2022.486

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
EDT IP Handling

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The X-bounding muxes are inserted as close to the X-source as possible. However, there may be 
combinational logic between the X-source and the input of the X-bounding mux. If the test 
point analysis algorithm inserts an observe point at any of these locations, this observe point 
would capture the signal from the X-source. Therefore, the X-bounding algorithm marks all 
gate-pins in the combinational fan-in cone of the functional mode input of the X-bounding mux 
and sets the no_observe_point attribute value to true at those locations. The no_observe_reason 
attribute for these gate-pins returns “xbounding” as the reason.

In addition to marking these locations with the no_observe_point attribute, the tool also sets the 
no_control_point attribute. Inserting a control point at any of these locations cannot improve 
test coverage during Logic BIST because all the logic in the fanout of the control point is 
blocked by X-bounding muxes and is unobservable. The no_control_reason attribute for these 
gate-pins also returns “xbounding” as the reason.

For more information, see DFT Test Logic Attributes no_control_point and no_observe_point 
in the Tessent Scan and ATPG User’s Manual.

EDT IP Handling
When EDT and LogicBIST IP have been inserted in the design, the tool uses information about 
these cores to avoid guarding any “perceived” X-sources in this IP.
This usually happens when you are using the pre-synthesis flow where the EDT IP is inserted 
and synthesized together with the design. The X-bounding analysis happens only after scan 
stitching has been completed and the tool sees a gate-level design. For more information, see 
ICL Extraction and Pattern Retargeting.

In the absence of such information, the tool uses information about the scan chains to avoid 
inserting bounding logic in the scan path and in the paths from the scan chain outputs to the 
primary outputs that are used as channel outputs.   In some cases, particularly when third-party 
IP is involved, the tool may conservatively treat a functional primary output as a channel output. 
In such situations it does not guard an X source that reaches that primary output (see X-Sources 
Reaching Primary Outputs). You should provide the TCD for the EDT IP so that the tool can 
easily identify these instruments and mark them as non-scan sources. Another way to identify 
the EDT instances in the design is to use the set_edt_instances command when the TCD flow is 
not used.

X-Bounding and the Tessent Memory BIST 
Controller

The Tessent Memory BIST controller includes a mechanism that disables all the clocks during 
capture. This is intended to avoid any requirement to add X-bounding hardware for false and 
multi-cycle paths. 



Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Insertion, Scan Insertion, and X-Bounding Command Summary

Hybrid TK/LBIST Flow User’s Manual, v2022.4 87

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

When the memory BIST controller is generated with the DftSpecification AdvancedOptions/
use_multicycle_paths property set to “off”, X-bounding is not necessary. If the controller is 
generated with this property set to “on”, X-bounding is accomplished by doing the following:

• During the dft insertion stage (memory bist + logic bist), you must use 
"add_dft_signals" and specify the following:

add_dft_signals async_set_reset_static_disable

• During dft insertion, the memory BIST controller is generated by default with a clock 
gating cell and includes the static dft signal mcp_bounding_en. This signal is used to 
disable all clocks during capture.

• During the scan insertion stage, do the following:

o Setting mcp_bounding_en to “1” disables all clocks during capture:

set_static_dft_signal_values mcp_bounding_en 1 

Note
Scannable flops inside the MemoryBIST controller that hold state during capture are 
identified as constant, and the tool ignores them during X-bounding analysis.

Test Point Insertion, Scan Insertion, and 
X-Bounding Command Summary

Tessent Shell enables you to perform scan insertion and X-bounding.
Table 3-1 lists the Tessent Shell scan insertion and X-bounding commands.

Table 3-1. Test Point Insertion, Scan Insertion, and X-Bounding Commands 
Command Description
analyze_test_points Specifies the test points analysis and generates a list of test points 

to be inserted by the tool.
analyze_xbounding Performs X-bounding analysis.
insert_test_logic Inserts the test structures you define into the netlist to increase 

the design’s testability. Writes the output files into the TSDB.
read_cell_library Loads one or more cell libraries into the tool. 
read_sdc Reads in the SDC file that describes the false and multicycle 

paths that should be blocked during LogicBIST. 
read_verilog Reads one or more Verilog files into the specified or default 

logical library. 
report_scan_elements Reports information and testability data for the sequential 

instances in the design.



Hybrid TK/LBIST Flow User’s Manual, v2022.488

Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
Test Point Insertion, Scan Insertion, and X-Bounding Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

report_test_points Displays test points inserted with the insert_test_logic command.
report_xbounding Reports the X-sources and the scan cells used in bounding.
set_context Specifies the current usage context of Tessent Shell. You must 

set the context before you can enter any other commands in 
Tessent Shell.

set_scan_signals Sets the pin names of the scan control signals. 
set_system_mode Specifies the operational state you want the tool to enter. 
set_test_point_analysis_options Sets the maximum number of test points, the breakdown in 

control and observe points, the target fault coverage, and the 
number of pseudorandom patterns to be applied. You can also set 
some other parameters to be taken into account during test point 
analysis.

set_test_point_insertion_options Sets parameters related to test point insertion.
set_xbounding_options Enables X-bounding and sets X-bounding parameters. 

Table 3-1. Test Point Insertion, Scan Insertion, and X-Bounding Commands  (cont.)
Command Description



Hybrid TK/LBIST Flow User’s Manual, v2022.4 89

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 4
LogicBIST Fault Simulation and Pattern

Creation

In this step of the flow, you perform fault simulation and save the parallel LogicBIST patterns. 
LogicBIST Fault Simulation and Pattern Creation Overview  . . . . . . . . . . . . . . . . . . . . 89
Initial Static DFT Signal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Performing LogicBIST Fault Simulation and Pattern Creation. . . . . . . . . . . . . . . . . . . 92
Specifying Warm-Up Patterns During Fault Simulation. . . . . . . . . . . . . . . . . . . . . . . . . 93
Fault Simulation When There Are Inversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Fault Coverage Report for the Hybrid IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Fault Simulation and Pattern Creation Command Summary  . . . . . . . . . . . . . . . . . . . . 97

LogicBIST Fault Simulation and Pattern 
Creation Overview

During fault simulation with Tessent Shell, the tool generates files in the TSDB for pattern 
retargeting, such as the PatternDB files. Tessent Shell performs fault simulation at the core 
level, generates the signatures, and computes test coverage. The tool also writes out a parallel 
testbench.

LogicBIST Fault Simulation and Pattern Creation Flow
• Load design (netlist, ICL, PDL, TCD, and so on) from the TSDB

• Specify fault simulation details

• Check DRCs with system mode transition

• Run fault simulation (simulate_patterns)

• Store patterns (patDB, TCD) and Verilog testbench

You must generate NCPs manually. To generate the NCPs and the NCP index decoder, specify 
the LogicBist/NcpIndexDecoder wrapper in the DftSpecification. The NCP description and 
hardware are automatically included in the TSDB. The tool writes out a TCD for the NCP index 
decoder, which is read back during fault simulation.



Hybrid TK/LBIST Flow User’s Manual, v2022.490

LogicBIST Fault Simulation and Pattern Creation
Initial Static DFT Signal Values

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The core level fault simulation run computes the test coverage for the core, MISR signature, and 
power consumption. Running the write_tsdb_data command during this step generates the 
following output files:

• PatternDB — Contains the relevant LogicBIST register values per pattern like PRPG, 
MISR, and low-power registers. 

• Tessent Core Description (TCD) — Contains the description of the core in the 
LogicBIST mode of operation.

• Flat model — Contains the flattened circuit model, the scan trace, and all DRC-related 
information to a specific binary file.

• Fault list — Contains the fault information from the current fault list.

Low-Power Shift Simulation
If you specified a low-power controller during EDT and LogicBIST IP generation, you can 
specify the amount of switching activity required during fault simulation with the following 
commands. For example:

set_system_mode analysis

set_power_control shift on -switching_threshold_percentage 15

...

NCP Order
For fault simulation, the order of the specified NCPs must match the NCP order in the design. 
The tool automatically ensures this ordering when you use an NcpIndexDecoder generated with 
the LogicBist/NcpIndexDecoder wrapper.

Two commands control ordering:

• set_lbist_controller_options — This command reflects the order of the NCPs in the 
hardware. You must specify the NCP list in the same order as implemented in the 
hardware.

• set_lbist_controller_options -capture_procedures — The second order is when you 
specify the activity percentage using this command. The specified NCPs do not have to 
reflect the hardware order as long as you previously specified the NCP list with the 
-programmable_ncp_list option so that the NCP order is known to the tool.

Initial Static DFT Signal Values
Prior to fault simulation, the tool initializes DFT signals created during IP insertion to the values 
required for fault simulation, unless they were user specified with the 



LogicBIST Fault Simulation and Pattern Creation
Initial Static DFT Signal Values

Hybrid TK/LBIST Flow User’s Manual, v2022.4 91

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_static_dft_signal_values or set_test_setup_icall commands. This ensures that the signals are 
properly constrained during fault simulation.

Note
By default, the tool initializes DFT signals in child sub-blocks and child physical blocks. 
Sub-blocks in child physical blocks are not initialized. If you do not want to initialize DFT 

signals in the child physical blocks of a current design level, use “set_lbist_controller_options 
-initialize_dft_signals_in_child_physical_blocks off”.

The following table lists the DFT signals that are required for fault simulation and their default 
initialization values for fault simulation.

The x_bounding_en signal must be set to 1 during LogicBIST operation.

The mcp_bounding_en signal is set to 0 to obtain optimal test coverage when performing fault 
simulation for stuck-at faults. To maintain the disabled state for MCP bounding, the following 
criteria must be met: 

• There are no NCPs that can generate sequential patterns.

• The clocks located in cross-domain paths are not pulsed at the same time.

• There are enough cycles from last shift and first capture.

When performing fault simulation for transition faults, the recommended mcp_bounding_en 
signal value is 1. 

See “X-Bounding and the Tessent Memory BIST Controller” on page 86 for more information.

Table 4-1. Initial Static DFT Signals for Fault Simulation 
DFT Signal Value
async_set_reset_static_disable 1
control_test_point_en 1
ext_ltest_en 0
int_ltest_en 1
ltest_en 1
mcp_bounding_en 0
memory_bypass_en 1
observe_test_point_en 1
se_pipeline_en 0
x_bounding_en 1



Hybrid TK/LBIST Flow User’s Manual, v2022.492

LogicBIST Fault Simulation and Pattern Creation
Performing LogicBIST Fault Simulation and Pattern Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing LogicBIST Fault Simulation and 
Pattern Creation

For LogicBIST, the external mode for NCPs is not relevant and is discarded with a warning 
message. When generating parallel patterns during fault simulation, only the -mode_internal 
patterns are valid. These patterns are the default. An error message is issued when trying to save 
-mode_external patterns.

Prerequisites
• Use the following files that you have generated during EDT and LogicBIST IP 

Generation using the write_edt_files command and during Logic Synthesis:

o tsdb_outdir/dft_inserted_designs/gpu_gate.dft_inserted_design/gpu.vg

o tsdb_outdir/instruments/gpu_gate_edt_lbist.instrument/*.v

o tsdb_outdir/instruments/gpu_gate_lbist.instrument/*.v

Procedure
1. Use this Tessent Shell procedure to perform fault simulation:

2. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell  

After invocation, the tool is in unspecified setup mode. You must set the context before 
you use the fault simulation commands.

3. Set the tool context to fault simulation using the set_context command as follows:

SETUP> set_context patterns -scan

4. Open the TSDB. For example:

SETUP> open_tsdb ../tsdb_outdir

5. Load the design netlist using the read_design command. For example:

SETUP> read_design gpu

6. Load one or more cell libraries into the tool using the read_cell_library command.

SETUP> read_cell_library atpg.lib

7. Set the top design using the set_current_design command as follows:

SETUP> set_current_design top_module

8. Import the configuration settings:

SETUP> import_scan_mode



LogicBIST Fault Simulation and Pattern Creation
Specifying Warm-Up Patterns During Fault Simulation

Hybrid TK/LBIST Flow User’s Manual, v2022.4 93

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9. Specify the capture procedure names with the set_lbist_controller_options command as 
follows; be sure to include all of the NCPs that you want to use in the LBIST mode:

SETUP> set_lbist_controller_options -capture_procedures 
{clkseq1 40 clkseq2 40 clkseq3 10 clkseq4 10}

10. Change the tool’s system mode to fault using the set_system_mode command as 
follows:

SETUP> set_system_mode analysis

During the transition from setup to analysis mode, the tool creates NCPs according to 
the NcpIndexDecoder specification and performs design rule checking.

11. Add faults using the add_faults command as follows:

ANALYSIS> add_faults -all

12. Specify the number of random patterns the tool simulates using the command as 
follows:

ANALYSIS> set_random_patterns 100

13. Set the pattern source to LogicBIST and execute fault simulation using the 
simulate_patterns command as follows:

ANALYSIS> simulate_patterns -source bist -store_patterns all

14. Save the TCD, PatternDB, flat model, and fault list needed for the next step, Pattern 
Generation, using the write_tsdb_data command as follows:

ANALYSIS> write_tsdb_data -replace

By default, the write_tsdb_data command only saves the scan chain data for the first 
1024 patterns. To save more patterns—for example, if you discover during diagnosis 
that additional patterns are required—use the –max_scan_load_unload_size option.

15. Write out the parallel testbench using the write_patterns command as follows:

ANALYSIS> write_patterns lbist_patt_parallel.v -verilog -parallel \

-mode_internal -param ../data/paramfile

Results
Now you are ready to perform Pattern Generation. 

Specifying Warm-Up Patterns During Fault 
Simulation

You can specify the number of warm-up patterns to use in fault simulation. This enables you to 
obtain a known starting seed and improve test program size reduction for InSystemTest 
applications.



Hybrid TK/LBIST Flow User’s Manual, v2022.494

LogicBIST Fault Simulation and Pattern Creation
Fault Simulation When There Are Inversions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Use the “set_lbist_controller_options -warmup_pattern_count” command to specify the number 
of warm-up patterns to use for fault simulation.

When you specify this value for fault simulation, the hardware default PRPG seed and low 
power mask shift register values are used as the starting point for the warm-up patterns. This 
provides a known starting seed and avoids serially loading the registers for InSystemTest 
applications. However, you also lose the ability to change the warm-up pattern count when 
specifying patterns.

To maximize the benefit of test program size reduction for InSystemTest, use a 2022.2 or later 
version of Tessent Shell that generates the decompressor with separate low-power SIBs.

Note
A Tessent Core Description (TCD) for the EDT IP creation is required when using this 
feature.

Fault Simulation When There Are Inversions
Third-party tools may add inversions between the PRPG/phase-shifter and scan chains on the 
input side, and between scan chains and the spatial compactor on the output side. When Tessent 
Shell is unaware of the inversions, simulation of the Verilog patterns may result in MISR 
signature mismatches. To make Tessent Shell aware of these inversions, there are a couple of 
tasks you can perform prior to LogicBIST fault simulation.
Automatically import the inversions from the TCD. To do this, first perform EDT DRC (K 
rules) so that Tessent Shell learns the inversions, and then specify write_core_description to 
save the information into the TCD. Prior to running fault simulation, issue the 
read_core_description command to import the inversions. You must specify 
read_core_description before import_scan_mode.

Tessent Shell attempts to match each EDT block declared in the tool (through 
import_scan_mode or by add_core_instances or add_edt_block) with those described in the 
TCD by matching the SCI and SCO pins. If at least one AtpgMode section is found for the 
current top module, but not all EDT blocks are successfully matched in the TCD, then the tool 
reports a warning:

//  Warning: Could not match the following EDT instance in the TCD file and,
//           as a result, the decompressor to scan chain input and scan chain
//           output to compactor inversions are not imported for them:
//             <instance_name1>
//             <instance_name2>
//           You can specify the inversions manually with the
//           set_scan_chain_options command or provide a TCD that includes
//           all EDT instances.



LogicBIST Fault Simulation and Pattern Creation
Fault Coverage Report for the Hybrid IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 95

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

If you do not run the K rules, then you can specify the inversions manually using the 
set_scan_chain_options command. For example, the following example indicates that there is 
an inversion between the decompressor and SCI at scan chain “chain1”:

set_scan_chain_options -chain_name chain1 -decompressor_to_scan_in_inversion on

When an inversion for the same scan is specified by set_scan_chain_options as well as the 
TCD, the user-specified inversion has priority. If the values do not match, Tessent Shell issues a 
warning.

Fault Coverage Report for the Hybrid IP
The fault coverage report provides statistics about the total faults and the relevant faults found 
during LogicBIST fault simulation. The total faults are those found within the hybrid IP 
controller instances. The relevant faults are those found within the core logic, excluding the 
hybrid IP controller faults.
If the relevant coverage percentile is too low, you can improve the test by adding test points, 
running more patterns, and so on. Faults found within the hybrid IP controller cannot be 
detected or improved upon in this way.

As shown in the example below, the default fault classification for faults found within the 
hybrid IP controller are designated as ATPG untestable (AU) faults with sub-class hybrid 
LBIST (LBIST) if they have not already been identified with another designator, such as unused 
(UU), tied (TI), or blocked (BL). 



Hybrid TK/LBIST Flow User’s Manual, v2022.496

LogicBIST Fault Simulation and Pattern Creation
Fault Coverage Report for the Hybrid IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

//  command: report_statistics

                         Statistics Report

                          Stuck-at Faults

-------------------------------------------------------------------

Fault Classes                      #faults           #faults

                                   (total)       (total relevant)

----------------------------  ---------------- --------------------

  FU (full)                         37280             29117

  --------------------------  ---------------- -------------------- 

UC (uncontrolled)               50  ( 0.13%)       same  ( 0.17%)  

UO (unobserved)                870  ( 2.33%)       same  ( 2.99%)  

DS (det_simulation)          22790  (61.13%)       same  (78.27%)  

DI (det_implication)          3444  ( 9.24%)       same  (11.83%)  

PT (posdet_testable)            53  ( 0.14%)       same  ( 0.18%)  

UU (unused)                    106  ( 0.28%)       same  ( 0.36%)  

TI (tied)                       11  ( 0.03%)       same  ( 0.04%)  

BL (blocked)                     2  ( 0.01%)       same  ( 0.01%)  

AU (atpg_untestable)          9954  (26.70%)       1791  ( 6.15%)

-------------------------------------------------------------------

Fault Sub-classes 

--------------------------  

AU (atpg_untestable)    

PC*  (pin_constraints)       616  ( 1.65%)       same  ( 2.12%)

TC*  (tied_cells)             95  ( 0.25%)       same  ( 0.33%)

MPO   (mask_po)             1039  ( 2.79%)       same  ( 3.57%)

LBIST (hybrid_lbist)        8163  (21.90%)         deleted    

Unclassified                  41  ( 0.11%)       same  ( 0.14%)  

*Use "report_statistics -detailed_analysis" for details.

-------------------------------------------------------------------

Coverage  

--------------------------

test_coverage                        70.67%               90.56%

fault_coverage                       70.44%               90.19%

atpg_effectiveness                   97.46%               97.46%

-------------------------------------------------------------------

#test_patterns                                               10000 

#clock_sequential_patterns                                10000

#simulated_patterns                                          10000

CPU_time (secs)                                                7.8

-------------------------------------------------------------------

The following example shows that these faults appear as AU.LBIST faults in the report 
generated after LogicBIST fault simulation completes. 



LogicBIST Fault Simulation and Pattern Creation
Fault Simulation and Pattern Creation Command Summary

Hybrid TK/LBIST Flow User’s Manual, v2022.4 97

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

FaultInformation {

version : 1;

FaultType (Stuck) {

FaultList {

FaultCollapsing : FALSE;

Format : Identifier, Class, Location;

Instance ("") {

0,  DI.SCAN,   "/u1/STATD_reg_1_/Q";

1,  DI.SCAN,   "/u1/STATD_reg_1_/Q";

...

1,  UU,        "/occ/occNX2/clk_enable_latch_reg/Q";

1,  EQ,        "/occ/occNX2/U7/B";

0,  AU.LBIST,   "/m8051_single_chain_mode_logic_i/tdr_sib_i/sib_reg/Q";

1,  AU.LBIST,   "/m8051_single_chain_mode_logic_i/tdr_sib_i/sib_reg/Q";

...

0,  AU.LBIST,   "/m8051_single_chain_mode_logic_i/tdr_single_bypass_reg/Q";

1,  AU.LBIST,   "/m8051_single_chain_mode_logic_i/tdr_single_bypass_reg/Q";

0,  AU.LBIST,   "/m8051_edt_i/m8051_edt_decompressor_i/m8051_edt_sib_i/U8/A";

0,  EQ,        "/m8051_edt_i/m8051_edt_decompressor_i/m8051_edt_sib_i/U8/B";

...

0,  AU.LBIST,   "/m8051_edt_i/m8051_edt_misr_i/m8051_edt_sib_i/sib_latch_reg/Q";     

1,  AU.LBIST,   "/m8051_edt_i/m8051_edt_misr_i/m8051_edt_sib_i/sib_latch_reg/Q";     

0,  AU.LBIST,   "/m8051_lbist_i/m8051_lbist_ctrl_i/

m8051_lbist_capture_phase_size_reg_i/U9/Z";

1,  EQ,        "/m8051_lbist_i/m8051_lbist_ctrl_i/

m8051_lbist_capture_phase_size_reg_i/U9/A";

...

0,  AU.LBIST,   "/m8051_lbist_i/lbist_scan_out_reg/CP";

1,  AU.LBIST,   "/m8051_lbist_i/lbist_scan_out_reg/CP";   }

}

}

}

When you are not reading ICL during fault simulation, the single chain mode logic instance 
faults are not classified as AU.LBIST.

Optionally, specify the set_relevant_coverage -include AU.LBIST command if you want to 
include the AU.LBIST faults in the relevant fault coverage.

AU.LBIST faults are not reclassified when you use the reset_au_faults command to reclassify 
AU faults.

Fault Simulation and Pattern Creation 
Command Summary

Tessent Shell provides variety of fault simulation and pattern creation commands.



Hybrid TK/LBIST Flow User’s Manual, v2022.498

LogicBIST Fault Simulation and Pattern Creation
Fault Simulation and Pattern Creation Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Table 4-2. Fault Simulation and Pattern Creation Commands 
Command Description
add_bist_capture_range Associates the capture procedure that is used for a specific 

set of patterns.
add_chain_masks Specifies the scan chains that are masked during fault 

simulation and their load and unload values. Used to work 
around design issues.

add_faults Adds faults to the current fault list, discards all patterns in 
the current test pattern set, and sets all faults to undetected 
(actual category is UC). 

read_cell_library Loads one or more cell libraries into the tool. 
read_sdc Reads in the SDC file that describes the false and multicycle 

paths. 
read_verilog Reads one or more Verilog files into the specified or default 

logical library. 
report_misr_connections Reports the MISR connections.
set_bist_debug Sets up a trace of PRPG and MISR values during a pattern's 

shift cycles. 
set_context Specifies the current usage context of Tessent Shell. You 

must set the context before you can enter any other 
commands in Tessent Shell.

set_current_design Specifies the top level of the design for all subsequent 
commands until reset by another execution of this command. 

set_dft_enable_options Enables or disables the control or observe points.
set_edt_options Sets options for EDT IP creation and LogicBIST fault 

simulation.
set_lbist_controller_options Specifies global options to configure the LogicBIST 

controller.
set_lbist_power_controller_optio
ns 

Specifies creation of the low-power shift controller for 
LogicBIST.

set_power_control Specifies the switching threshold in the patterns for fault 
simulation.

set_random_patterns Specifies the number of random patterns the tool simulates.
set_system_mode Specifies the operational state you want the tool to enter.
simulate_patterns Performs simulation by applying the specified pattern 

source. 
write_patterns Writes out parallel patterns and PatternDB files.



LogicBIST Fault Simulation and Pattern Creation
Fault Simulation and Pattern Creation Command Summary

Hybrid TK/LBIST Flow User’s Manual, v2022.4 99

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

write_tsdb_data Writes the design_name.lbist_mode_name directories that 
contain all the files needed to use LogicBIST test mode 
during PatternsSpecification processing and to perform 
diagnosis of the failures.

Table 4-2. Fault Simulation and Pattern Creation Commands  (cont.)
Command Description



Hybrid TK/LBIST Flow User’s Manual, v2022.4100

LogicBIST Fault Simulation and Pattern Creation
Fault Simulation and Pattern Creation Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 101

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 5
Pattern Generation

In this step of the flow, you generate core-level patterns for the bottom-up method and top-level 
patterns (including a Verilog testbench) for the LogicBIST controller for the top-down method.
Pattern Generation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Pattern Generation for the TSDB Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Performing Pattern Generation for the TSDB Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Performing Pattern Generation for CCM in the TSDB Flow . . . . . . . . . . . . . . . . . . . . . . . 104
Pattern Generation in Multiple, Shorter Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Pattern Generation for Low Power LBIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Single Chain Mode Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Pattern Mismatch Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Debug Based on MISR Signature Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Debug Based On Scan Cell Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Usage Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Pattern Generation Overview
For the bottom-up flow, pattern generation creates core-level patterns. For the top-down flow, it 
creates top-level patterns (including a Verilog testbench) for the LogicBIST controller. These 
are the chip-level serial patterns that you can apply from the tester. 

Pattern Generation Flow
• Core-level steps

o Load the design configuration files: netlist, ICL, PDL, patDB, TCD, graybox 
signatures, and the TSDB from LogicBist fault simulation.

o Run design rules through system mode transition.

o Perform pattern generation. Output patterns are stored in the TSDB.

o Perform testbench simulation.

• Top-Level steps

o You can, optionally, have a top-level hybrid TK/LBIST controller. To do this, 
perform all of the core-level steps and then integrate the top-level controller into the 
core-level design.



Hybrid TK/LBIST Flow User’s Manual, v2022.4102

Pattern Generation
Pattern Generation Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

o Perform top-level ICL network extraction, pattern retargeting, and integration, using 
the TSDB data from the core-level pattern generation step. The output extracted 
ICL, retargeted PDL, TCD, and PatDB are stored in the Top-level TSDB.

The tool supports all the formats currently supported for ATPG.

Required Inputs
To program the LogicBIST controller, you use Tessent Shell to retarget the patterns and create 
hardware default mode testbench/vectors and pattern_range specific vectors.

The information you need to program the LogicBIST controller is stored in the TSDB, 
specifically in the ICL and PDL files created during EDT and LogicBIST IP Generation:

• ICL — The ICL file consists of ICL module description for the LogicBIST controller 
and all EDT blocks tested by this controller. 

• PDL — The PDL file contains iProcs at the core level that use the ICL modules written 
out.



Pattern Generation
Pattern Generation for the TSDB Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 103

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Generation for the TSDB Flow
The TSDB stores the various files required for IJTAG and CCM pattern generation. These files 
include the ICL, PDL, and design netlist.
Performing Pattern Generation for the TSDB Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Performing Pattern Generation for CCM in the TSDB Flow . . . . . . . . . . . . . . . . . . . . . 104
Pattern Generation in Multiple, Shorter Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Performing Pattern Generation for the TSDB Flow
The procedure for generating chip-level serial patterns uses the extracted ICL files that are 
stored in the TSDB. Generate the patterns using the create_patterns_specification and 
process_patterns_specification commands.

Prerequisites
• Modified design netlist found in the TSDB.

• The LogicBIST instruments PDL data file found in the TSDB.

• The LogicBIST instruments ICL data file found in the TSDB.

• Top-level ICL describing how the signals at the interface of the LogicBIST controller 
are connected to chip-level pins.

• A PDL that describes the test setup at the chip level if there is any. For example, if there 
is a TAP controller at the top level, then the tool requires an ICL and, optionally, PDL 
for the TAP controller.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell 

2. Set the tool context to IJTAG mode as follows:

SETUP> set_context patterns -ijtag

3. Open the TSDB if it is not already open. For example:

SETUP> open_tsdb tsdb_outdir

4. Unless it is already in memory, read the current design’s extracted ICL. For example:

SETUP> read_icl ./tsdb_outdir/dft_inserted_designs/m01_gate.dft_inserted_design/
m01.icl

5. Set the current design.

SETUP> set_current_design m01



Hybrid TK/LBIST Flow User’s Manual, v2022.4104

Pattern Generation
Performing Pattern Generation for CCM in the TSDB Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Define the top-level clocks. For example:

SETUP> add_clocks refclk -period 10 ns -free_running

SETUP> add_clocks 0 tck

7. Define the pin constraints. For example:

SETUP> add_input_constraints RST -c0

8. Change to analysis mode to generate patterns:

SETUP> set_system_mode analysis

9. Create patterns specification:

SETUP> create_patterns_specification

Note
When the Self-Test or burn-in features are available, pattern specification 
configurations can be specified here according to user requirements.

10. Process patterns specification:

SETUP> process_patterns_specification

11. Point to the simulation library sources so all design files can be found. For example:

SETUP> set_simulation_library_sources -y ./techlib -extensions { v }

12. Simulate the LogicBIST testbenches with the following command:

SETUP> run_testbench_simulations

13. As needed, monitor or check the simulation with the following command:

SETUP> check_testbench_simulations

Results
Upon completion, Tessent Shell outputs the testbench and vectors for the entire pattern set, 
range specific vectors, or hardware default mode as specified in the dofile.

• If you are using the Considerations for Top-Down Implementation, you finished all 
necessary steps in this flow.

• If you are using the Hybrid TK/LBIST Implementation, you are ready to perform the 
Top-Level ICL Network Integration. 

Performing Pattern Generation for CCM in the 
TSDB Flow

Controller chain mode enables you to generate ATPG patterns that target the hybrid-IP logic so 
that you can test the test logic itself.



Pattern Generation
Performing Pattern Generation for CCM in the TSDB Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 105

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

For details, refer to “Controller Chain Mode” on page 48.

Note
When generating CCM patterns, do not use add_core_instances for the EDT/LogicBIST/
OCC instruments. The presence of this command infers non-hybrid EDT pattern generation 

or LogicBIST fault simulation, as applicable.

Prerequisites
• Modified design netlist found in the TSDB.

• The LogicBIST instruments ICL data file found in the TSDB.

• Top-level ICL describing how the signals at the interface of the LogicBIST controller 
are connected to chip-level pins.

• A PDL that describes the test setup at the chip level if there is any. For example, if there 
is a TAP controller at the top level, then the tool requires an ICL and, optionally, PDL 
for the TAP controller.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell 

2. Set the tool context to ATPG pattern generation:

SETUP> set_context pattern -scan

3. Read in the design and libraries. For example:

SETUP> read_design piccpu
SETUP> read_cell_library ../library/tessent/adk.tcelllib ../data/picdram.atpglib
SETUP> set_current_design

4. Import the controller scan chain mode that you created during scan insertion. For 
example:

SETUP> import_scan_mode controller_chain_mode

Refer to the second example below for a dofile that shows the flow when you have 
turned off segmented controller chain generation in favor of connecting the controller 
chain scan segments into one chain during IP generation. See “Usage Details” on 
page 49 for details.

5. Turn off all core clock and reset activity. Set these constraints because the faults in the 
design are not targeted during CCM.

SETUP> add_input_constraints clk -c0
SETUP> add_input_constraints reset -c0
SETUP> add_input_constraints shift_capture_clock -c0



Hybrid TK/LBIST Flow User’s Manual, v2022.4106

Pattern Generation
Performing Pattern Generation for CCM in the TSDB Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Change the system mode to analysis:

SETUP> set_system_mode analysis

7. Target the faults to the EDT/LogicBIST logic. For example:

ANALYSIS> add_faults piccpu_rtl_tessent_lbist  \
piccpu_rtl_tessent_edt_lbist_c0_inst \
piccpu_rtl_tessent_single_chain_mode_logic

8. Create and save the CCM patterns. For example:

ANALYSIS> create_patterns
ANALYSIS> write_patterns ccm_patt.v -verilog -replace -serial

Examples
Example 1: Generating Patterns for Controller Chain Mode, Default Flow for TSDB

set_context pattern –scan
read_design piccpu
read_cell_library ../library/tessent/adk.tcelllib ../data/picdram.atpglib
set_current_design

import_scan_mode controller_chain_mode

add_input_constraints clk -c0
add_input_constraints reset -c0
add_input_constraints shift_capture_clock -c0

set_system_mode analysis
add_faults piccpu_rtl_tessent_lbist \

piccpu_rtl_tessent_edt_lbist_c0_inst \
piccpu_rtl_tessent_single_chain_mode_logic

create_patterns
write_patterns ccm_patt.v -verilog -replace -serial

Example 2: Generating Patterns for Controller Chain Mode, Non-Default Flow for TSDB
The following dofile example generates CCM patterns when you specify to connect the 
controller chain scan segments into one chain during IP generation.

set_context pattern -scan
read_design piccpu
read_cell_library ../library/tessent/adk.tcelllib ../data/picdram.atpglib
set_current_design

# Add edt_clock or tck as the primary clock source for CCM.
# Specify the same clock (edt_clock or tck) that you specified during
# IP generation with the set_lbist_controller_options command. If the
# edt_clock was derived from test_clock or previously specified as a
# DFT signal, then you do not need to specify it with the add_clock
# command
add_clocks 0 edt_clock



Pattern Generation
Pattern Generation in Multiple, Shorter Sessions

Hybrid TK/LBIST Flow User’s Manual, v2022.4 107

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

# Define a scan group. Assuming you defined scan_en as a DFT signal when
# you generated the IP, you can define a scan group without a test
# procedure file
add_scan_groups grp1

# Define scan chains on ports specified during IP creation
add_scan_chains chain1 grp1 control_chain_scan_in control_chain_scan_out

# Define the pin constraint for the ccm_en signal
add_input_constraints control_chain_enable -c1

# Turn off all core clock and reset activity.
add_input_constraints clk -c0
add_input_constraints reset -c0
add_input_constraints shift_capture_clock -c0

# For retargeting, specify to pulse the edt_clock during shift.
# The following command is only required when you use edt_clock for CCM
# and edt_clock is a top-level port, or when you use tck for CCM.
# The tool automatically generates a test procedure file that configures
# the scan_en and shift_capture_clock DFT signals. If the edt_clock is
# derived from test_clock, do not specify the
# set_procedure_retargeting_options command
set_procedure_retargeting_options -pulse_during_shift edt_clock

set_system_mode analysis

add_faults piccpu_rtl_tessent_lbist \
piccpu_rtl_tessent_edt_lbist_c0_inst \
piccpu_rtl_tessent_single_chain_mode_logic

create_patterns
write_patterns ccm_patt.v -verilog -replace -serial

Pattern Generation in Multiple, Shorter Sessions
During pattern generation, you can split LogicBIST tests into multiple, shorter tests for tasks 
such as continuous monitoring of safety critical parts of a design.



Hybrid TK/LBIST Flow User’s Manual, v2022.4108

Pattern Generation
Pattern Generation in Multiple, Shorter Sessions

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Consider the following patterns specification:

PatternsSpecification(top,gate,signoff) {
Patterns(logicbist) {

ClockPeriods {
refclk : 5ns ;

}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 0 ;
end_pattern : 4999 ;

}
}

}
}

}

When you run create_patterns_specification, the tool generates a patterns specification with one 
Patterns wrapper. To run pattern generation in shorter sessions, split the patterns into multiple 
Patterns wrappers.

As an alternative to performing fault simulation for 5000 patterns in a single session, do the 
following:

1. Use the design editing commands as described in the Configuration Data Editing and 
Introspection Commands table in the Tessent Shell Reference Manual to modify the 
patterns specification.

2. Use the begin_pattern and end_pattern properties to specify the pattern subsets. Rename 
the Patterns wrappers accordingly.

For example:

PatternsSpecification(top,gate,signoff) {
Patterns(pat1) {

ClockPeriods {
refclk : 5ns ;

}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 0 ;
end_pattern : 999 ;

}
}

}
}



Pattern Generation
Pattern Generation in Multiple, Shorter Sessions

Hybrid TK/LBIST Flow User’s Manual, v2022.4 109

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Patterns(pat2) {
ClockPeriods {

refclk : 5ns ;
}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 1000 ;
end_pattern : 1999 ;

}
}

}
}

Patterns(pat3) {
ClockPeriods {

refclk : 5ns ;
}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 2000 ;
end_pattern : 2999 ;

}
}

}
}

Patterns(pat4) {
ClockPeriods {

refclk : 5ns ;
}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 3000 ;
end_pattern : 3999 ;

}
}

}
}



Hybrid TK/LBIST Flow User’s Manual, v2022.4110

Pattern Generation
Pattern Generation for Low Power LBIST

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Patterns(pat5) {
ClockPeriods {

refclk : 5ns ;
}
TestStep(test1) {

LogicBist {
CoreInstance(chip) {

run_mode : run_time_prog ;
begin_pattern : 4000 ;
end_pattern : 4999 ;

}
}

}
}

}

Pattern Generation for Low Power LBIST
You can generate patterns for low power LBIST during the fault simulation step. 
The LBIST low power switching threshold is fully programmable during pattern simulation. 
The specified percentage can be any number from 1 to 50, independent of the 
SwitchingThresholdPercentage number specified during IP creation. By default during pattern 
simulation, if you have not specified a switching threshold, the tool uses the threshold defined 
during IP creation.

After generating LBIST low power hardware with LogicBistOptions/ShiftPowerOptions/
default_operation:disabled, you must manually enable low power for pattern generation:

• Enable the lbist_low_power_shift_en signal. (This signal is usually disabled based on 
the IP creation setting default_operation:disabled.)

• Specify the required switching threshold if it is different from the number used during IP 
creation. You must do this before the pattern simulation step “simulate_patterns -source 
lbist -store_patterns all”. 

For more information, see the example below.



Pattern Generation
Single Chain Mode Diagnosis

Hybrid TK/LBIST Flow User’s Manual, v2022.4 111

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example
Assume that you have generated LBIST low power hardware with the following settings:

read_config_data -in $spec -from_string {
  EDT {
    ijtag_host_interface : Sib(edt);
    Controller(c1) {
      longest_chain_range : 50, 65;
      scan_chain_count : 60;
      input_channel_count : 2;
      output_channel_count : 2;
      LogicBistOptions {
        misr_input_ratio : 1 ;
        ShiftPowerOptions {
          present : on ;
          default_operation : disabled ;
          SwitchingThresholdPercentage {
            hardware_default : 25 ;  // default 15
          }
        }
      }
    }
  }
}

Enable LBIST low power with the command below, which uses the edt instrument to set up the 
LBIST low power enable pin. This is because LBIST re-uses EDT IP in the hybrid TK/LBIST 
flow.

set_core_instance_parameter -instrument edt -parameter_values \
{lbist_low_power_shift_en on}

set_system_mode analysis

Now set the low power threshold:

set_power_control shift on -switching_threshold_percentage 15

Any percentage is legal, independent of the percentage specified during IP creation (25% in the 
example above).

Single Chain Mode Diagnosis
Single chain mode diagnosis pinpoints the location of failed scan cells in a design under test.
For a design with one or more blocks, diagnosis for LogicBIST patterns consists of two steps: 

1. Identify the first failing pattern on which a MISR mismatches.

2. Use the scan_unload_register iProc to shift in the failing pattern stimuli using the PRPG, 
capture the results, and shift out the results through the single chain mode logic.



Hybrid TK/LBIST Flow User’s Manual, v2022.4112

Pattern Generation
Single Chain Mode Diagnosis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

By default, during IP generation the tool adds additional SIB logic to each EDT block so that 
their scan cells can be bypassed as needed. During fault simulation, you specify scan chains that 
should be masked. If the scan chain has a bad capture, you can mask only that scan chain with 
an -unload_value during the single chain diagnosis. If a chain has a shift problem, mask the 
chain with a -unload_value and -load_value. During pattern generation, the tool uses the added 
SIB to skip EDT blocks that contain at least one masked chain with a -load_value applied. The 
scan_unload_register iProc automatically skips those blocks during single chain mode 
diagnosis. Single chain diagnosis cannot be performed on those blocks, but the MISR signature 
can still be used even in the presence of masked scan chains. This enables the tool to achieve a 
functional diagnosis on the rest of the blocks in the design.

The tool issues an error message when all the EDT blocks in a design have at least one masked 
chain with a -load_value. You can turn off the default behavior with the 
set_lbist_controller_options -single_chain_mode_skip_edt_blocks switch or the 
DftSpecification/LogicBist/Controller/SingleChainForDiagnosis/skip_edt_blocks property.

Note
You cannot use single chain mode diagnosis on a design in which MISR mismatches occur 
in a block that contains masked scan chains with a -load_value. Because the 

scan_unload_register iProc does not have access to the MISR mismatches, this iProc cannot 
detect and report errors in this scenario. It is your responsibility to determine whether you can 
use single chain mode diagnosis based on the failing EDT block and masked scan chain 
information.



Pattern Generation
Pattern Mismatch Debugging

Hybrid TK/LBIST Flow User’s Manual, v2022.4 113

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Mismatch Debugging
At the pattern generation stage, most simulation mismatches occur because the clocks were not 
configured properly during PDL retargeting. Rather than waiting through a time-consuming 
serial pattern simulation to verify that the clocks are working as expected, the simulation 
mismatch debugging flow provides a means to verify the clocks prior to running serial 
simulation.
Debug Based on MISR Signature Divergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Debug Based On Scan Cell Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Usage Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Debug Based on MISR Signature Divergence
You can verify the BIST registers and clocks at the same time, which in turn enables you to 
identify the patterns corresponding to mismatches (such as MISR) as the mismatches occur. 

Restrictions and Limitations
• Once the TCD file is created as described below, you cannot alter the core hierarchy 

(such as by ungrouping the LogicBIST controller). Altering the core hierarchy causes 
the list of monitor points in the TCD file to become out of sync.

Prerequisites
• You have performed the hybrid TK/LBIST flow through the pattern generation step.

Procedure
1. Verify the clocks.

Enable clock verification by setting the SimulationOptions/logic_bist_debug property in 
the PatternsSpecification wrapper, as follows:

PatternsSpecification(design_name, design_id, pattern_id) {
Patterns(LogicBist) {

ClockPeriods { ... }
SimulationOptions {
logic_bist_debug : setup_and_clock_verify;

}
...

The setup_and_clock_verify value exercises the full 256-pattern NCP count range. If 
you want to run a single pattern per NCP, specify the 
setup_and_clock_verify_one_per_ncp value instead. This is equivalent to specifying 
“one_pattern_per_ncp 1” in the dofile flow.

2. Run Verilog simulation with the LogicBIST debugging feature enabled as shown below, 
and identify any failing LogicBIST patterns.



Hybrid TK/LBIST Flow User’s Manual, v2022.4114

Pattern Generation
Debug Based on MISR Signature Divergence

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Set the SimulationOptions/logic_bist_debug property in the PatternsSpecification 
wrapper as follows:

SimulationOptions {
  logic_bist_debug : bist_registers_and_clock_verify;
}

For both flows, the resulting transcript includes mismatch statements such as those 
shown in bold below. The statements tell you at which pattern the MISR signature 
started to diverge from the expected value.

Note
To display the passing data, specify “+show_passing_regs” when you start the 
simulator.

Setting up controller TLB_coreB_I1.coreB_lbist_i
Number of patterns    : 5 (5 + 0 warm-up patterns)
Pattern Length        : 40
Shift Clk Select      : 0b01
Capture Phase Width   : 0x3 Shift Clock Cycles
PRPG Seed             : 0x66241da0
MISR Seed             : 0x000000

Starting controller TLB_coreB_I1.coreB_lbist_i in Normal mode, 
patterns 0 to 3

Checking that the controller TLB_coreB_I1.coreB_lbist_i DONE 
signal is NO at the beginning of the test

Mismatch at pattern 2 for TLB.coreB_I1.coreB_edt_lbist_i.misr: 
Expected = 83ab37 Actual = 7854d0

Mismatch at pattern 3 for TLB.coreB_I1.coreB_edt_lbist_i.misr: 
Expected = 9b96e3 Actual = 5e161a
Test Complete for controller TLB_coreB_I1.coreB_lbist_i

Checking that signal DONE is YES for controller 
TLB_coreB_I1.coreB_lbist_i
Checking results of controller TLB_coreB_I1.coreB_lbist_i

Expected Signature for controller TLB_coreB_I1.coreB_lbist_i : 
0x9b96e3
Turning off LogicBist controller TLB_coreB_I1.coreB_lbist_i

3. Re-run the simulation so that you can identify the failing flop associated with the 
particular pattern where the MISR started to diverge. 

Regenerate the LogicBist wrapper with the Diagnosis Options/extract_flop_data 
property enabled and execute the run_testbench_simulations command.



Pattern Generation
Debug Based On Scan Cell Monitoring

Hybrid TK/LBIST Flow User’s Manual, v2022.4 115

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(CHIP,gate,signoff) {
  Patterns(LogicBist) {
    TestStep (diagnostic) {
      LogicBist {
        CoreInstance(CHIP) {
          run_mode : run_time_prog ;
          begin_pattern : 2;
          end_pattern : 2;
          DiagnosisOptions {
            extract_flop_data : on ;
          }
        }
      }
    }
  }
}

Examine the results of the re-run simulation to identify the failing flops, noting the 
Verilog simulation results against what fault simulation predicted. Use Tessent 
Visualizer to trace the flops to the cause of the failure. For detailed usage examples, 
refer to “Usage Examples.”

Results
The following transcript example shows a mismatch at an lbist_scan_out pin.

...
300ns:  piccpu MISR Seed           : 0x000000

49300ns:  Starting controller TLB_coreB_I1.coreB_edt_lbist_i in Normal 
mode, patterns 0 to 0
51000ns:  Checking that the controller TLB_coreB_I1.coreB_edt_lbist_i 

DONE signal is NO at the beginning of the test
62800ns:  Test Complete for controller TLB_coreB_I1.coreB_edt_lbist_i
69000ns:  Scanning out capture results of vector 0 for controller 

TLB_coreB_I1.coreB_edt_lbist_i
180024ns: Mismatch at pin           0 name            lbist_scan_out, 
Simulated x, Expected 0
180100ns: Corresponding ICL register:  
TLB_coreB_I1.coreB_edt_single_chain_mode_logic_i.TLB_coreB_I1.coreB_edt_i
nternal_scan_registers_i.coreB_A_chain1[18]
180100ns: Corresponding design object:  coreB_A/u11/PRB_reg/DFF1
181700ns:  Turning off LogicBist controller TLB_coreB_I1.coreB_edt_lbist_i

Debug Based On Scan Cell Monitoring
You can have the tool monitor the scan chains and return information about scan cells 
associated with unexpected unload values.

Restrictions and Limitations
• Once the TCD file is created as described below, you cannot alter the core hierarchy 

(such as by ungrouping the LogicBIST controller). Altering the core hierarchy causes 
the list of monitor points in the TCD file to become out of sync.



Hybrid TK/LBIST Flow User’s Manual, v2022.4116

Pattern Generation
Debug Based On Scan Cell Monitoring

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• You have performed the hybrid TK/LBIST flow through the pattern generation step.

Procedure
1. Verify the clocks as described in step 1 of “Debug Based on MISR Signature 

Divergence” on page 113.

2. If clock verification fails, investigate and fix possible causes as described in step 2 of 
“Debug Based on MISR Signature Divergence” on page 113.

3. Run Verilog simulation with the monitor_scan_cells LogicBIST debugging feature 
enabled as shown below. When specified, the tool monitors the scan chain output pins, 
detects when an unexpected value is unloaded, and reports which shift cycle and scan 
cell failed.

Set the SimulationOptions/logic_bist_debug property in the PatternsSpecification 
wrapper as follows:

SimulationOptions {
logic_bist_debug : bist_registers_and_clock_verify;

}

Results
When a mismatch occurs the tool first reports the scan chain output pin where the mismatch was 
observed, and then maps the mismatch to a pattern, shift cycle, and scan cell. For both messages 
it reports the simulated and expected values. If there is inversion between the scan cell and the 
scan out, the simulated/expected values on these two lines is different. If the failing scan cell is 
within a sub-chain of a hard module, then the message only reports the scan cell and not the pin 
of the scan cell that failed.
The following transcript example shows mismatches when the wrong values are observed on 
scan chain cells. 



Pattern Generation
Usage Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 117

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

#ns: Pattern_set serial_load
#ns: Setting up controller xtea_tk_lbist_ip_tessent_lbist_i
#ns: Number of patterns : 3 (3 + 0 warm-up patterns)
#ns: Pattern Length : 2 #ns: Shift Clk Select : 0b00
#ns: Capture Phase Width : 0x20 Shift Clock Cycles
#ns: PRPG Seed : 0x3e0a
#ns: MISR Seed : 0x000000
#ns: Starting controller xtea_tk_lbist_ip_tessent_lbist_i in Normal mode, 
patterns 0 to 2
#ns: Checking that the controller xtea_tk_lbist_ip_tessent_lbist_i DONE 
signal is NO at the beginning of the test

#ns: Mismatch at pin xtea_tk_lbist_ip_tessent_edt_lbist_c0_inst/
tessent_persistent_cell_edt_scan_out_0_buf/Y, Simulated x, Expected 1
#ns: Corresponding scan cell for pattern 0 at shift cycle 0: 
hard_mod2_inst1/OUT_R_reg_0_, Simulated x, Expected 0

#ns: Mismatch at pin xtea_tk_lbist_ip_dft_tessent_edt_lbist_c0_inst/
tessent_persistent_cell_edt_scan_out_0_buf/Y, Simulated x, Expected 0
#ns: Corresponding scan cell for pattern 0 at shift cycle 11: 
hard_mod2_inst1/IN2_R_reg_3_, Simulated x, Expected 1

#ns: Mismatch at pin xtea_tk_lbist_ip_tessent_edt_lbist_c1_inst/
tessent_persistent_cell_edt_scan_out_2_buf/Y, Simulated x, Expected 1
#: Corresponding scan cell for pattern 1 at shift cycle 0: B_R_reg_2_/Q, 
Simulated x, Expected 1 

Usage Examples
Your debugging efforts may include debugging clock verification and MISR signature 
mismatches. In addition, to help with debugging, you can display passing capture clocks and 
BIST register values. 

Example 1: Clock Verification Debugging
The following example illustrates how you can use the setup_and_clock_verification 
functionality to quickly find a problem with the clocking. Assume the design contains a PLL 
that generates three clocks. The tool inserts Tessent OCCs on each clock along with the 
following NCP Index Decoder that declares the NCPs, the clocks, and how many pulses occur 
in each NCP.



Hybrid TK/LBIST Flow User’s Manual, v2022.4118

Pattern Generation
Usage Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

DftSpecification(cpu, gates2) {
LogicBist {

NcpIndexDecoder {
Ncp(CLK1) {

cycle(0): cpu_gates_tessent_occ_NX1_inst;
cycle(1): cpu_gates_tessent_occ_NX1_inst;

}
Ncp(CLK2) {

cycle(0): cpu_gates_tessent_occ_NX2_inst;
cycle(1): cpu_gates_tessent_occ_NX2_inst;

}
Ncp(CLK3) {

cycle(0): cpu_gates_tessent_occ_NX3_inst;
cycle(1): cpu_gates_tessent_occ_NX3_inst;

}
Ncp(ALL) {

cycle(0): cpu_gates_tessent_occ;
cycle(1): cpu_gates_tessent_occ;

}
Ncp(ALL_1p) {

cycle(0): cpu_gates_tessent_occ;
}

}
}

}

During IP generation, the NCPs CLK1, CLK2, CLK3, ALL, and ALL_1p are specified to 
operate at 10%, 10%, 10%, 60%, and 10%, respectively.

set_lbist_controller_options -capture_procedures {CLK1 10 CLK2 10 CLK3 10 
ALL 60 ALL_1p 10}

During pattern retargeting, you can enable the clock verification functionality using the 
logic_bist_debug property in the PatternsSpecification wrapper.

Example 2: MISR Signature Mismatch Debugging
The following example illustrates how to debug a MISR signature mismatch. For purposes of 
this example, a MISR signature mismatch is triggered by using a Verilog force statement on the 
gate pin A0, which fans into the register pin uINTR/SERVICE_LEVEL_0_reg/D. This 
emulates a stuck-at fault starting at pattern 97.



Pattern Generation
Usage Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 119

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Suppose you have a testbench that runs from pattern 0 to 99 with LogicBIST debugging enabled 
with the logic_bist_debug property. For example:

PatternsSpecification(cpu,gates,signoff) {
  Patterns(lbist_normal) {
    SimulationOptions {
      logic_bist_debug : bist_registers_and_clock_verify;
    }
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(.) {
          run_mode      : run_time_prog;
          begin_pattern : 0;
          end_pattern   : 99;
        }
      }
    }
  }
}

The following is a simulation transcript for this pattern set.

# Pattern_set lbist_normal

#  Setting up controller cpu_gate_tessent_lbist_i

#     Number of patterns  : 100 (100 + 0 warm-up patterns)

#     Pattern Length      : 72

#     Shift Clk Select    : 0b01

#     Capture Phase Width : 0x2 Shift Clock Cycles

#     PRPG Seed           : 0x597fc27a

#     MISR Seed           : 0x000000

#  Starting controller cpu_gate_tessent_lbist_i in Normal mode, patterns 0 to 99

#     Checking that the controller cpu_gate_tessent_lbist_i DONE signal is NO at the 

beginning of the test

# Mismatch at pattern 98 for cpu_inst.cpu_gate_tessent_edt_lbist_i.misr: Expected = 0x11504d 

Actual = 0x665059

# Mismatch at pattern 99 for cpu_inst.cpu_gate_tessent_edt_lbist_i.misr: Expected = 0xc71675 

Actual = 0x33473f

#  Test Complete for controller cpu_gate_tessent_lbist_i

#     Checking that signal DONE is YES for controller cpu_gate_tessent_lbist_i

#  Checking results of controller cpu_gate_tessent_lbist_i

#     Expected Signature for controller cpu_gate_tessent_lbist_i: 0x397758

# Mismatch at pin           1 name      SIB_SCAN_OUT, Simulated 1, Expected 0

# Previous scan out : pin SIB_SCAN_OUT = cpu_gate_tessent_edt_lbist_i.misr[0] 

# Mismatch at pin           1 name      SIB_SCAN_OUT, Simulated 1, Expected 0

# Previous scan out : pin SIB_SCAN_OUT = cpu_gate_tessent_edt_lbist_i.misr[1]

# Mismatch at pin           1 name      SIB_SCAN_OUT, Simulated 1, Expected 0

...

# Previous scan out : pin SIB_SCAN_OUT = cpu_gate_tessent_edt_lbist_i.misr[21] 

# Mismatch at pin           1 name      SIB_SCAN_OUT, Simulated 1, Expected 0

# Previous scan out : pin SIB_SCAN_OUT = cpu_gate_tessent_edt_lbist_i.misr[22] 

# Turning off LogicBist controller cpu_gate_tessent_lbist_i



Hybrid TK/LBIST Flow User’s Manual, v2022.4120

Pattern Generation
Usage Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can now identify the failing flop associated with pattern 97 by creating a diagnostic 
LogicBIST pattern, as follows:

PatternsSpecification(cpu,gates,signoff) {
  Patterns(lbist_diag) {
    TestStep(diagnosis) {
      LogicBist {
        CoreInstance(.) {
          run_mode      : run_time_prog;
          begin_pattern : 97;
          end_pattern   : 97;
          DiagnosisOptions {
            extract_flop_data : on;
          }
        }
      }
    }
  }
}

The simulation transcript for this diagnostic pattern looks as follows:

# Pattern_set lbist_diag
#  Setting up controller cpu_gate_tessent_lbist_i
#     Number of patterns  : 1 (1 + 0 warm-up patterns)
#     Pattern Length      : 72
#     Shift Clk Select    : 0b01
#     Capture Phase Width : 0x2 Shift Clock Cycles
#     PRPG Seed           : 0x5c953748
#     MISR Seed           : 0x6f2d3a
#  Starting controller cpu_gate_tessent_lbist_i in Normal mode, patterns 
97 to 97
#     Checking that the controller cpu_gate_tessent_lbist_i DONE signal is 
NO at the beginning of the test
#  Test Complete for controller cpu_gate_tessent_lbist_i
#  Scanning out capture results of vector 97 for controller 
cpu_gate_tessent_lbist_i
# Mismatch at pin           1 name      SIB_SCAN_OUT, Simulated 0, Expected 
1
# Corresponding ICL register:  
cpu_gate_tessent_single_chain_mode_logic_i.cpu_gate_tessent_edt_internal_
scan_registers_i.chain2[27]
# Corresponding design object:  uINTR/SERVICE_LEVEL_0_reg
#  Turning off LogicBist controller cpu_gate_tessent_lbist_i

The diagnostic pattern identifies uINTR/SERVICE_LEVEL_0_reg as the failing flop. You can 
find the cause of the failure by comparing the simulation waveform results against the 
LogicBIST fault simulation prediction in Tessent Visualizer.

Note
There are several items to consider in this example:

• Without enabling simulation debug, the only failure you would see is the final MISR 
signature that is scanned out and compared at the end of the pattern. To isolate the 



Pattern Generation
Usage Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 121

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

pattern at which the MISR started to fail, you would have to rerun the simulation 
multiple times, possibly with a binary search. This can be time consuming for serial 
simulations for large designs.

• Simulation debug provides two mismatches on the MISR register, observed after the 
capture windows at patterns 98 and 99. Because the MISR comparison occurred before 
the pattern 98 scan chains were unloaded into the MISR, the MISR signature failure 
actually corresponds to the previous pattern, 97.

Example 3: Displaying Passing Capture Clocks and BIST Register Values
By default, the LogicBIST simulation debug feature only displays a message when it detects a 
capture clock or BIST register mismatch. Using two simulator plusargs, you can direct the 
simulator to display passing capture clock and BIST register values as well.



Hybrid TK/LBIST Flow User’s Manual, v2022.4122

Pattern Generation
Usage Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To show the passing BIST register comparisons, use the +show_passing_regs plusarg. As the 
simulation runs, the tool displays the MISR, PRPG, and low-power (if present) values for each 
pattern. For example:

# Pattern_set lbist_normal
#  Setting up controller cpu_gate_tessent_lbist_i
#     Number of patterns  : 3 (3 + 0 warm-up patterns)
#     Pattern Length      : 72
#     Shift Clk Select    : 0b01
#     Capture Phase Width : 0x2 Shift Clock Cycles
#     PRPG Seed           : 0x2070a3dc
#     MISR Seed           : 0x05aed3
#  Starting controller cpu_gate_tessent_lbist_i in Normal mode, patterns 
25 to 27
#     Checking that the controller cpu_gate_tessent_lbist_i DONE signal is 
NO at the beginning of the test
# Expected value 0x2070a3dc after initialization for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lfsm_vec
# Expected value 0x11e23c4d after initialization for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lbist_lp_mask_shift_reg
# Expected value 0x05aed3 after initialization for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.misr
# Expected value 0x4dd3bf15 at pattern 25 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lfsm_vec
# Expected value 0x67bb5c4f at pattern 25 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lbist_lp_mask_shift_reg
# Expected value 0x05aed3 at pattern 25 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.misr
# Expected value 0x04b71551 at pattern 26 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lfsm_vec
# Expected value 0x434886a2 at pattern 26 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lbist_lp_mask_shift_reg
# Expected value 0x3a2db4 at pattern 26 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.misr
# Expected value 0x7a9fb426 at pattern 27 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lfsm_vec
# Expected value 0x3f32bc25 at pattern 27 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.lbist_lp_mask_shift_reg
# Expected value 0xf4968c at pattern 27 for 
cpu_inst.cpu_gate_tessent_edt_lbist_i.misr
#  Test Complete for controller cpu_gate_tessent_lbist_i
#     Checking that signal DONE is YES for controller 
cpu_gate_tessent_lbist_i
#  Checking results of controller cpu_gate_tessent_lbist_i
#     Expected Signature for controller cpu_gate_tessent_lbist_i: 
0x268b4d#  Turning off LogicBist controller cpu_gate_tessent_lbist_i



Pattern Generation
Usage Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 123

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

To show the passing clock comparisons, use the +show_passing_clocks plursarg. As each 
pattern runs, the expected number of pulses for each clock displays, including the currently 
active NCP name. For example:

# Pattern_set lbist_normal
#  Setting up controller cpu_gate_tessent_lbist_i
#     Number of patterns  : 3 (3 + 0 warm-up patterns)
#     Pattern Length      : 72
#     Shift Clk Select    : 0b01
#     Capture Phase Width : 0x2 Shift Clock Cycles
#     PRPG Seed           : 0x2070a3dc
#     MISR Seed           : 0x05aed3
#  Starting controller cpu_gate_tessent_lbist_i in Normal mode, patterns 
25 to 27#     Checking that the controller cpu_gate_tessent_lbist_i DONE 
signal is NO at the beginning of the test
#  2 expected pulses at pattern 25 (NCP 'CLK1') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX1_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 25 (NCP 'CLK1') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX2_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 25 (NCP 'CLK1') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX3_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 26 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX1_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  2 expected pulses at pattern 26 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX2_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 26 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX3_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 27 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX1_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  2 expected pulses at pattern 27 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX2_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 27 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX3_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 28 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX1_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  2 expected pulses at pattern 28 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX2_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  0 expected pulses at pattern 28 (NCP 'CLK2') for clock 
'cpu_inst.cpu_gates_tessent_occ_NX3_inst.tessent_persistent_cell_clock_ou
t_mux.y'
#  Test Complete for controller cpu_gate_tessent_lbist_i
#     Checking that signal DONE is YES for controller 
cpu_gate_tessent_lbist_i
#  Checking results of controller cpu_gate_tessent_lbist_i
#     Expected Signature for controller cpu_gate_tessent_lbist_i: 0x268b4d
#  Turning off LogicBist controller cpu_gate_tessent_lbist_i



Hybrid TK/LBIST Flow User’s Manual, v2022.4124

Pattern Generation
Usage Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can specify +show_passing_clocks and +show_passing_regs at the same time.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 125

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 6
Top-Level ICL Network Integration

In this step of the bottom-up flow, you use the top-level netlist that instantiates all of the 
LogicBIST implemented cores.

Note
You perform this step only when using the “Hybrid TK/LBIST Implementation” on 
page 16.

Chapter topics follow this sequence:

Top-Level ICL Network Integration Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Performing Top-Level ICL Network Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Top-Level ICL Network Integration Command Summary. . . . . . . . . . . . . . . . . . . . . . . 130

Top-Level ICL Network Integration Overview
For top-level ICL network integration, you use the top-level netlist that instantiates all the 
LogicBIST implemented cores. You insert IJTAG compliant SIBs to provide access to each of 
the LogicBIST cores as well as connect these SIBs and cores to the top-level TAP controller.

Network Integration Flow
• Load design configuration files (core level) using the TSDB from the LogicBist fault 

simulation

Netlist, ICL, PDL, PatDB, TCD, Graybox signature

• System mode transition (DRCs)

• Pattern generation

• Testbench simulation

• Top-level ICL network integration 

• Top-level ICL extraction and pattern retargeting



Hybrid TK/LBIST Flow User’s Manual, v2022.4126

Top-Level ICL Network Integration
Performing Top-Level ICL Network Integration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Performing Top-Level ICL Network Integration
It is recommended to shadow each core by a separate SIB to provide maximum flexibility for 
test scheduling. You can connect EDT control signals from the core to the top level as well at 
this time.
You can create a DftSpecification and use the Tessent Shell process_dft_specification 
functionality to automate this task.

Prerequisites
The following input is required for this step of the flow:

• The netlists for all your cores created in EDT and LogicBIST IP Generation.

• Top-level netlist with instantiation of cores and interconnect between them.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell  

After invocation, the tool is in unspecified setup mode. You must set the context before 
you can invoke the top-level SIB network Insertion commands.

2. Set the tool context to dft mode using the set_context command as follows:

SETUP> set_context dft -no_rtl

3. Load the LogicBIST-ready design netlists using the read_verilog command. For 
example:

SETUP> read_verilog top.v <tsdb_dft_inserted_designs_directory>/<core_name_1>.v 
<tsdb_dft_inserted_designs_directory>/<core_name_N>.v

4. Open the TSDB if it is not already open. For example:

SETUP> open_tsdb tsdb_outdir

5. Load one or more cell libraries into the tool using the read_cell_library command. For 
example:

SETUP> read_cell_library atpg.lib

6. Set the top design using the set_current_design command. For example:

SETUP> set_current_design top

7. Implement an optional TCL proc named “process_dft_specification.post_insertion” that 
is executed after processing the DftSpecification and before writing out the top-level 



Top-Level ICL Network Integration
Performing Top-Level ICL Network Integration

Hybrid TK/LBIST Flow User’s Manual, v2022.4 127

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IJTAG network-inserted design. This proc can be used to connect the EDT signals from 
the cores to top-level design pins. For example:

SETUP> proc process_dft_specification.post_insertion {root wrapper} {
create_port edt_clock
create_connection edt_clock [get_pins *_edt_i/edt_clock]
…

}

8. Load the top-level IJTAG network description in DftSpecification format. For example:

SETUP> read_config_data top.dft_spec

9. Validate and implement the IJTAG network using the process_dft_specification 
command. This command generates the RTL description for the IJTAG network 
components and the top-level IJTAG network-inserted design.

SETUP> process_dft_specification

Results
Now you are ready to perform ICL Extraction and Pattern Retargeting.

Examples
The example in the following figure describes a design that has two cores, alu and cpu. The alu 
core has two EDT blocks named B1 and B2. Two instances of the alu core are in the final top-
level design (/w2/A and /w2/B) and a single instance of the cpu core (/c1).

The example shows the Tessent Shell integration dofile for generating the IJTAG network and 
connecting the core-level EDT signals to the top level. The 
process_dft_specification.post_insertion TCL procedure connects the core-level EDT pins to 
the top level of the design. The example demonstrates the creation of shared top-level pins for 
all of the cores corresponding to the EDT control signals, such as edt_clock, edt_update, and 
edt_bypass. The example also shows the creation of dedicated top-level pins for channel inputs 
and outputs for each of the cores.

Figure 6-1. Top-Level ICL Network Integration Dofile Example

set_context dft -no_rtl

read_verilog top.v tsdb_outdir/dft_inserted_designs/alu_gate.dft_inserted_deisgn/alu.v
tsdb_outdir/dft_inserted_designs/cpu_gate.dft_inserted_deisgn/cpu.v

read_cell_library atpg.lib

read_icl {tsdb_outdir/dft_inserted_designs/alu_gate.dft_inserted_deisgn/alu.icl
tsdb_outdir/dft_inserted_designs/cpu_gate.dft_inserted_deisgn/cpu.icl}

set_current_design top

# TCL proc to connect EDT signals from block to top pins

proc process_dft_specification.post_insertion {root args} {

foreach i {alu1_edt_channels_in1 alu1_edt_channels_in2 



Hybrid TK/LBIST Flow User’s Manual, v2022.4128

Top-Level ICL Network Integration
Performing Top-Level ICL Network Integration

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

alu2_edt_channels_in1 alu2_edt_channels_in2 

cpu_edt_channels_in1

edt_clock edt_reset edt_update edt_bypass 

edt_single_bypass_chain} {

create_port -direction input $i

}

foreach o {alu1_edt_channels_out1 alu1_edt_channels_out2

alu2_edt_channels_out1 alu2_edt_channels_out2 

cpu_edt_channels_out1} {

create_port -direction output $o

}

create_connection alu1_edt_channels_in1 w2/A/B1_edt_channels_in1

create_connection alu1_edt_channels_in2 w2/A/B2_edt_channels_in1

create_connection alu2_edt_channels_in1 w2/B/B1_edt_channels_in1

create_connection alu2_edt_channels_in2 w2/B/B2_edt_channels_in1

create_connection cpu_edt_channels_in1 c1/edt_channels_in1

create_connection alu1_edt_channels_out1 w2/A/B1_edt_channels_out1

create_connection alu1_edt_channels_out2 w2/A/B2_edt_channels_out1

create_connection alu2_edt_channels_out1 w2/B/B1_edt_channels_out1

create_connection alu2_edt_channels_out2 w2/B/B2_edt_channels_out1

create_connection cpu_edt_channels_out1 c1/edt_channels_out1

foreach i {edt_clock edt_reset edt_update edt_bypass 

edt_single_bypass_chain} {

create_connection $i w2/A/$i

create_connection $i w2/B/$i

create_connection $i c1/$i

}

}

# Insert IJTAG network using DFT specification

read_config_data top.dft_spec

process_dft_specification

The DftSpecification that is referenced in the dofile follows. In it, the HostScanInterface/
Interface wrapper specifies the top-level TAP controller design pins for the IJTAG interface 
signals. Three SIBs are to be inserted, each of which controls a core whose instance path name 



Top-Level ICL Network Integration
Performing Top-Level ICL Network Integration

Hybrid TK/LBIST Flow User’s Manual, v2022.4 129

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

is specified in the DesignInstance wrapper. The SIBs are inserted one level above the core 
instance as specified in the parent_instance property for SIBs w2_A and w2_B. The SIB for 
core cpu (/c1) is inserted at the top level. The naming of the SIB instances is controlled using 
the leaf_instance_name property. The enable, control signal, and scan IO pin names (the IJTAG 
network interface at the core boundary) are taken from the ICL description of the cores in the 
alu.icl and cpu.icl files.

Figure 6-2. DftSpecification Example

DftSpecification(top, 3sibs_tap) { 
IjtagNetwork { 

HostScanInterface(3sibs_tap) { 
Interface { 
reset_polarity: active_high; 
tck: tck; 
reset: jtag/tlr; 
select: jtag/lbist_inst; 
capture_en: jtag/capture_dr; 
shift_en: jtag/shift_dr; 
update_en: jtag/update_dr; 
scan_in: tdi; 
scan_out: jtag/lbist_reg_out; 

} 
Sib(c1) { 
leaf_instance_name: piccpu_access_sib; 
DesignInstance(/c1) {} 

} 
Sib(w2_B) { 
parent_instance: /w2; 
leaf_instance_name: m8051_B_access_sib; 
DesignInstance(/w2/B) {} 

} 
Sib(w2_A) { 
parent_instance: /w2; 
leaf_instance_name: m8051_A_access_sib; 
DesignInstance(/w2/A) {} 

} 
} 

} 
} 

The RTL and ICL description of the generated IJTAG instruments is written out in the 
tsdb_outdir/instruments/top_3sibs_tap_ijtag.instrument directory. The top-level IJTAG 
network inserted design is written out as tessent_outdir/dft_inserted_designs/
top_3sibs_tap.dft_inserted_design/top.vg. The final top-level netlist can be obtained by 
combining the top.vg file along with the gate-level synthesized netlists of the IJTAG 
instruments. The ICL files generated by this example can be used for downstream steps that use 
IJTAG, such as top-level LBIST pattern retargeting.

Note
For more information about ICL insertion using the DftSpecification, refer to the “IJTAG 
Network Insertion” chapter of the TessentIJTAG User’s Manual.



Hybrid TK/LBIST Flow User’s Manual, v2022.4130

Top-Level ICL Network Integration
Top-Level ICL Network Integration Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level ICL Network Integration Command 
Summary

Tessent Shell provides a variety of commands that are used for top-level SIB network insertion.

Table 6-1. Top-Level ICL Network Integration Commands 
Command Description
create_connections Connects, ports, pins, port objects.
create_instance Instantiates an instance of a module mod_spec inside a design 

module of a current design. 
create_port Creates a port on a specified design module.
process_dft_specification Validates and processes the content contained in a 

DftSpecification wrapper.
read_cell_library Loads one or more cell libraries into the tool.
read_config_data Loads a configuration data file into the Tessent Shell 

environment.
read_verilog Reads one or more Verilog files into the specified or default 

logical library. 
set_context Specifies the current usage context of Tessent Shell. You must 

set the context before you can enter any other commands in 
Tessent Shell.

set_current_design Specifies the top level of the design for all subsequent command 
until reset of another execution of this command. 

write_design Writes the current design to the specified file in Verilog netlist 
format. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4 131

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 7
ICL Extraction and Pattern Retargeting

In this step of the bottom-up flow, you perform ICL extraction and pattern retargeting.

Note
You perform this step only when using the Hybrid TK/LBIST Implementation.

ICL Extraction and Pattern Retargeting Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Performing ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Usage Examples for ICL Extraction and Pattern Retargeting . . . . . . . . . . . . . . . . . . . . 133
ICL Extraction and Pattern Retargeting Command Summary . . . . . . . . . . . . . . . . . . . 136

ICL Extraction and Pattern Retargeting 
Overview

You use the fully integrated top-level netlist, top-level ICL/PDL files for your IJTAG 
instruments such as the TAP controller and clock controller, and the per-core LogicBIST files 
generated at the core level. The final tester patterns can be written out in any of the supported 
formats.

ICL Extraction and Pattern Retargeting Flow
• EDT and LogicBIST IP Generation

Inputs: PDL and ICL files created during EDT and LogicBIST IP Generation

• Pattern Retargeting

Inputs: PatDB and TCD files created during Pattern Generation 

Top-level PDL and ICL files with information about the TAP and SIBs are also required.

Performing ICL Extraction and Pattern 
Retargeting

ICL extraction can be used here instead of manually creating the top-level ICL describing the 
SIB access network and connectivity between your instruments and the LogicBIST cores. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4132

ICL Extraction and Pattern Retargeting
Performing ICL Extraction and Pattern Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
The required inputs for this step of the flow are as follows:

• PDL and ICL files for each core in your design created during EDT and LogicBIST IP 
Generation.

• PatternDB and TCD files for each core in your design generated during Pattern 
Generation.

• Top-level PDL and ICL files that include information about the TAP and SIBs.

Procedure
1. Set the context:

set_context pattern -ijtag -design_id gate

2. Read the cell library:

read_cell_library ./lib/tessent/adk.tcelllib ./lib/tessent/picdram.atpglib

3. Set the location of the TSDB (default: current working directory):

set_tsdb_output_directory ./tsdb_outdir

4. Load and elaborate the design:

read_design piccpu
set_current_design piccpu 

5. Add design constraints and define clocks:

add_clocks 0 clk -period 100ns
add_input_constraint scan_en -c0

6. Perform system mode transition and rule checks:

set_system_mode analysis

7. Read the PatternsSpecification:

read_config_data ./lbist_mbist_pattern.patspec



ICL Extraction and Pattern Retargeting
Usage Examples for ICL Extraction and Pattern Retargeting

Hybrid TK/LBIST Flow User’s Manual, v2022.4 133

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The PatternsSpecification is as follows:

PatternsSpecification(piccpu,gate,signoff) {
  AdvancedOptions {
    ConstantPortSettings {
      scan_en : 0;
    }
  }
  
  Patterns(LogicBist_piccpu) {
    ClockPeriods {
      clk : 100.00ns;
    }
    TestStep(serial_load) {
      LogicBist {
        CoreInstance(.) {
          run_mode : run_time_prog;
          begin_pattern : 0; 
          end_pattern : 7;
        }
      }
    }
  }
}

8. Generate patterns:

process_pattern_specification

9. Set any requirements for simulations and simulate the retargeted patterns:

set_simulation_library_sources -v \
{ ./lib/verilog/adk.v ./lib/verilog/picdram.v  }

run_testbench_simulation 

Usage Examples for ICL Extraction and 
Pattern Retargeting

You can use pattern merging commands to process your core patterns in parallel or sequentially.

Example 1
This example merges all the core patterns to be run in parallel.



Hybrid TK/LBIST Flow User’s Manual, v2022.4134

ICL Extraction and Pattern Retargeting
Usage Examples for ICL Extraction and Pattern Retargeting

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

# Set context for pattern retargeting
set_context patterns -ijtag
# Read output design from the top-level ICL network integration step
read_verilog top_lbist_integrated.vread_cell_library atpg.lib
# Read ICL for cores extracted during block-level LogicBIST pattern 
#    generation
read_icl {alu.icl cpu.icl}
# Read user-provided ICL for top-level components
read_icl {top_sib.icl jtag_controller.icl}
# Set current design and report ICL-matched modules
set_current_design top
report_module_matching -icl

# Define top-level clocks and pin constraints
add_clocks 0 refclk -pulse_always
add_clocks 0 tck
add_input_constraints RST -c0
add_input_constraints edt_reset -c0
# Change to analysis mode and perform ICL extraction
set_system_mode analysis
# Report user settings
report_clocks
report_input_constraints
# Create pattern specification, or you can read in a previously created
# patterns specification file by using the read_config_data command
create_patterns_specification
process_patterns_specification

Example 2
This example shows the pattern merging commands required for running 100 patterns of all 
cores sequentially. The initial setup is the same as the previous full example.



ICL Extraction and Pattern Retargeting
Usage Examples for ICL Extraction and Pattern Retargeting

Hybrid TK/LBIST Flow User’s Manual, v2022.4 135

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

PatternsSpecification(top,gate,signoff) {
  Patterns(LogicBist_Top) {
    TestStep(cpu_serial_load) {
      LogicBist {
        CoreInstance(cpu) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 99;
        }
      }
    }    TestStep(alu1_serial_load) {
      LogicBist {
        CoreInstance(alu1) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 99;
        }
      }
    }
    TestStep(alu2_serial_load) {
      LogicBist {
        CoreInstance(alu2) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 99;
        }
      }
    }
  }
}

Example 3
The following example shows a pattern specification that you can use to run 100 patterns of cpu 
in parallel with 50 patterns of an alu core, followed by another alu core running 50 patterns by 
itself.

PatternsSpecification(top,gate,signoff) {
  Patterns(LogicBist_Top) {
    TestStep(cpu_and_alu1_serial_load) {
      LogicBist {
        CoreInstance(cpu) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 99;
        }
        CoreInstance(alu1) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 49;
        }
      }
    }



Hybrid TK/LBIST Flow User’s Manual, v2022.4136

ICL Extraction and Pattern Retargeting
ICL Extraction and Pattern Retargeting Command Summary

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

    TestStep(alu2_serial_load) {
      LogicBist {
        CoreInstance(alu2) {
          run_mode : run_time_prog;
          begin_pattern : 0;
          end_pattern : 49;
        }
      }
    }
  }

ICL Extraction and Pattern Retargeting 
Command Summary

Tessent Shell provides a variety of commands for ICL extraction and pattern retargeting.

Table 7-1. ICL Extraction and Pattern Retargeting Commands 
Command Description
create_patterns_specification Generates a pattern specification for the specified usage. 

The usage is either signoff or manufacturing.
process_patterns_specification Validates and processes the content of the 

PatternsSpecification wrapper.
read_cell_library Loads one or more cell libraries into the tool. 
read_icl Loads one or more ICL files into the tool. 
read_verilog Reads one or more Verilog files into the specified or default 

logical library. 
set_context Specifies the current usage context of Tessent Shell. You 

must set the context before you can enter any other 
commands in Tessent Shell.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 137

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 8
Hybrid TK/LBIST Embedded Structures

The EDT/LogicBIST hybrid IP reduces the area overhead compared to a separate 
implementation of EDT and LogicBIST IP. This is done by re-using parts of the IP for both 
EDT and LogicBIST modes. This hybrid logic controls input stimuli generation and output 
response comparison and is implemented separately for each EDT block. The top-level 
controller including the LogicBIST FSM is then connected to these hybrid IP inserted EDT 
blocks.
The hybrid TK/LBIST flow utilizes the following during generating and embedding the EDT/
LogicBIST IP into your design.

• EDT and LogicBIST blocks (blocks and ELT cores)

• A decompressor

• Low-Power Shift controller

• LogicBIST controller

• EDT controller

• EDT compactor

• MISR

• Bypass logic

Shared Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Inserted Hybrid TK/LBIST IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Scan Chain Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
New LogicBIST Control Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Clocking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Programmable Registers Inside Hybrid IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Low-Power Shift Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Shared Logic 
The EDT/LogicBIST hybrid IP is shared in a number of ways.



Hybrid TK/LBIST Flow User’s Manual, v2022.4138

Hybrid TK/LBIST Embedded Structures
Inserted Hybrid TK/LBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The sharing is accomplished as follows:

• The EDT decompressor is re-configured as the PRPG by blocking the channel inputs 
during LogicBIST mode. 

• Lockup cells (those placed in between the decompressor and the phase shifter) are re-
used as hold cells when low-power LogicBIST is implemented.

• Biasing gates used when synthesizing EDT low-power hardware is shared with chain 
masking.

• The phase shifter network is used as is for driving scan chains from the PRPG.

• The spatial compactor XOR network is re-used for compacting scan chain outputs into 
MISR inputs.

• Lockup cells required between the EDT/LogicBIST IP and the design scan cells are 
shared between both modes.

Inserted Hybrid TK/LBIST IP
The hybrid TK/LBIST IP is inserted during the IP generation step. The same DFT architecture 
serves two functions: provide a mechanism for compression-based ATPG through EDT 
(decompressor, compactor, and bypass logic) and provide LogicBIST test capability. 
For LogicBIST test, the inserted IP includes a:

• Pseudo Random Pattern Generator (PRPG)

LogicBIST generates patterns internally using a PRPG. In the hybrid TK/LBIST 
architecture, the PRPG is shared with the decompressor, which internally contains a 
linear-feedback shift register (LFSR). When a pattern runs, the PRPG seed determines 
the value to be expected on the MISR signature. In LogicBIST mode, the PRPG 
(decompressor) is controlled by the lbist_en and the lbist_prpg_en signals, which trigger 
test input generation to the design under test (DUT). 

• Multiple Input Signature Register (MISR)

The MISR is a programmable register that connects to the output of the compactor; it is 
part of the shared EDT IP. During LogicBIST mode, the accumulate input 
(misr_accumulate_en) tells the MISR when to accumulate/capture the output of the 
compactor during the shift state. The size of the MISR varies depending on the DUT and 
the Tessent command options specified, but it is comprised of 24-bit and 32-bit 
segments.

The hybrid TK/LBIST flow generates hybrid IP that consists of the following three blocks:

• Hybrid EDT/LogicBIST controller



Hybrid TK/LBIST Embedded Structures
Inserted Hybrid TK/LBIST IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 139

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The hardware shared between EDT and LogicBIST consists of the decompressor/ 
PRPG, the compactor, and the bypass. You can identify this block by its module name 
or instance name with the prefix designname_designID_edt_lbist. This module is 
described in the instruments directory of the TSDB.

• LogicBIST controller

This block contains hardware that is only used during LogicBIST mode and does not 
play a significant role during ATPG, except for some clock paths and multiplexed 
control signal lines that travel through this block. You can identify the controller in the 
netlist with the prefix designname_designID_lbist. This module is described in the 
instruments directory of the TSDB. 

The LogicBIST controller drives the shared hybrid EDT/LBIST block during 
LogicBIST mode and functions as a propagation path for the scan chain in the single 
chain mode.

• Single chain mode controller

This module is responsible for setting the design mode to single chain mode for 
LogicBIST diagnosis. This block is optional.

The LogicBIST controller connects to the hybrid EDT/LBIST controller and the single chain 
mode controller as follows:

The LogicBIST Controller
Internally, the LogicBIST controller block (tessent_lbist) contains the following blocks: 

• Control signals: tessent_lbist_ctrl_signals

• Finite state machine (FSM): tessent_lbist_fsm



Hybrid TK/LBIST Flow User’s Manual, v2022.4140

Hybrid TK/LBIST Embedded Structures
Inserted Hybrid TK/LBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• LogicBIST control: tessent_lbist_ctrl

• SIB that enables the shared EDT/LogicBIST logic: tessent_lbist_edt_signals

• Combinational cloud and some persistent cells feeding into the outputs. (Not discussed.)

The modules are connected as follows. Colored connections are for clarity only.



Hybrid TK/LBIST Embedded Structures
Inserted Hybrid TK/LBIST IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 141

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Control Signals Block
The control signals block generates all necessary control signals to the LogicBIST controller, 
the hybrid EDT/LBIST controller, and the NCP decoder block, and it generates the 
lbist_clock_disable signal.

The tool asserts the lbist_clock_disable signal during setup so that the values being shifted are 
not disturbed. This signal also suspends the clock to the MISR, PRPG, counters, and so on, 
when switching the clock from TCK to the chosen shift clock (shift_clock_src, by default), and 
vice versa. This prevents clock glitches stemming from the 3:1 mux from disturbing flops that 
were just loaded (and scan flops during a LogicBIST diagnostic scan out). The signal is de-
asserted during shift.

The outputs primarily fan out and drive the FSM and the LogicBIST controller. The LogicBIST 
enable, burn-in controls, clock selection signal, and low-power shift enable are outputs of this 
block that control LogicBIST operation.

This block connects to the IJTAG network and is part of the LogicBIST scan chain.

FSM Block
The seven-state FSM ensures that signals generated by the control signals block reach the 
LogicBIST control in the required sequence. That is, the FSM shapes the control signals such as 
lbist_reset, lbist_run_mode, and lbist_enable so that they toggle correctly. The FSM also 
ensures that the prpg_en signal reaches the PRPG, and the misr_accumulate_enable signal 
reaches the MISR.

The state register in the FSM determines the state of the FSM. During LogicBIST, the FSM 
begins in the IDLE state and changes states from IDLE through CAPTURE_PAUSE. If there 
are pending patterns in the CAPTURE phase, the state returns to SHIFT. These iterations 
continue until the LogicBIST test is done. 

Value of State 
Register

State Name Description

0 IDLE LogicBIST tests are not run in this state. The 
controller is at rest.

1 INIT The FSM prepares the LogicBIST controller to start 
shift procedure.

2 SHIFT Start shift procedure as part of LogicBIST. Test 
vectors are applied.

3 SHIFT_PAUSE Shift procedure comes to a stop to prepare for 
capturing the responses.

4 CAPTURE Once the test inputs are applied, the system captures 
the response stimulus.



Hybrid TK/LBIST Flow User’s Manual, v2022.4142

Hybrid TK/LBIST Embedded Structures
Inserted Hybrid TK/LBIST IP

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The following timing diagram applies to the seven values of the state register:

Figure 8-1. Timing Diagram for the FSM

LogicBIST Control
The LogicBIST control block contains the LogicBIST controller block, which is controlled by 
the FSM. The LogicBIST controller block contains a counter and the registers responsible for 
warm up and capture. It also controls which NCP is active. 

The outputs of the LogicBIST controller block control the hybrid EDT/LBIST block.

Integrating the Hybrid TK/LBIST Two-Pin Serial Port Interface
The Two Pin Serial Port (TPSP) interface is an overlay of the TAP that may have two, three, or 
four top-level pins to access and initiate test with any instance on the IJTAG network. The 
TPSP does not require any special handling when integrated with the Hybrid TK/LBIST flow. 
See “DftSpecification/IjtagNetwork/HostScanInterface/TwoPinSerialPort” in the Tessent Shell 
Reference Manual or “How to Avoid Simulation Issues When Using the Two-Pin Serial Port 
Controller” in the Tessent Shell User’s Manual for more information on the TPSP.

Note
TCK is generated inside TPSP with a frequency three times lower than the TPSP clock. To 
create one cycle of pure IJTAG data, you need three cycles of TPSP. When TCK is a BIST 

clock, this is not an efficient solution because the test clock is slow.

5 CAPTURE_PAUSE The captured response and the MISR are triggered to 
enable signature generation for comparison. If there 
are more patterns to be applied, the PRPG is enabled 
and the state returns to SHIFT. When all patterns are 
generated and responses captured, the state changes 
to DONE.

6 DONE Marks the end of the LogicBIST run and what 
follows is signature recognition and whether it is as 
expected or not.

Value of State 
Register

State Name Description



Hybrid TK/LBIST Embedded Structures
Scan Chain Masking

Hybrid TK/LBIST Flow User’s Manual, v2022.4 143

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Scan Chain Masking
The hybrid TK/LBIST IP consists of a LogicBIST controller interfacing with multiple hybrid 
EDT/LBIST blocks connected to scan chains. The EDT logic includes a chain mask register that 
you can use to mask certain scan chains from reaching the MISR. For example, you can mask 
chains that contribute Xs, perhaps because they contain scan cells that fail timing or observe 
unknown values.
Specified chain masking is always applied to the scan outputs and can also be used to optionally 
mask the scan inputs. This is in addition to the per-patterns output masking performed by the 
EDT logic (either 1-or-all or Xpress compactors). The per-pattern masking only applies when 
the hybrid IP is operated in EDT mode. Chain mask registers are supported in both EDT and 
LogicBIST modes.

By default, scan chain masking occurs on a per-chain basis with a 1:1 ratio of chain mask 
register bits to number of scan chains. Specify per-chain scan masking by loading the chain 
masking register with the add_chain_masks command. Per-chain masking is applicable to all 
patterns in the test set.

For large designs, the area impact of the chain mask register can be more than the controllers 
themselves. It can also significantly increase the number of setup cycles to start BIST test. 
Optionally, you can use a single chain mask register bit to mask a group of chains rather than 
only one chain by specifying the set_edt_options -chain_mask_register_ratio option or the 
EDT/Controller/LogicBistOptions/chain_mask_register_ratio wrapper property.

You can specify the ratio on a per EDT block basis, and the ratios can be different, with some 
blocks using single scan chain masking and others using shared masking.

When you specify a chain mask register ratio greater than 1, the EDT logic changes so that you 
have a smaller chain mask register. The ICL, PDL, TCD and patdb files reflect the smaller 
register size. Converting masking information from individual scan chains to masking bit 
groups occurs automatically during LogicBIST fault simulation and EDT pattern generation.

New LogicBIST Control Signals
The new LogicBIST mode control signals are added to the EDT IP when using the hybrid 
hardware.
The lbist_en control signal determines whether the hybrid EDT operates in EDT mode 
(lbist_en=0) or LogicBIST mode (lbist_en=1). There are several other LogicBIST control 
signals like lbist_reset, lbist_prpg_en, and lbist_misr_en added to the Hybrid IP, which are 
driven by the common LogicBIST controller. These control signals have no impact during EDT 
mode of operation, and they are driven appropriately during LogicBIST mode by the 
LogicBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4144

Hybrid TK/LBIST Embedded Structures
Clocking

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Clocking
The input clock to the LogicBIST controller is a free-running clock, which could be a fast PLL 
output clock.
Figure 8-2 presents a timing diagram for EDT/LogicBIST IP.

Figure 8-2. Timing Diagram for LogicBIST

To enable the control signals to change between shift and capture, 8 empty (pause) cycles are 
introduced in between transitions, which helps with timing closure of the test logic.

• SE is a scan enable signal that goes to all the scan flops in the design. It transitions half-
way through the pause states.

• shift_clock_en is a gating signal that could be gated with the free-running input clock to 
generate the shift-clock for the scan cells. This gating logic can either be implemented 
by the tool (when using set_clock_controller_pins shift_clock), or you can generate it as 
part of your clocking logic (when using set_clock_controller_pins shift_clock_en).

• The capture enable signal indicates the start of the capture cycle. This is intended as a 
trigger for the logic that generates programmable capture sequences. This signal is 
connected to the scan enable pin of your clock controller.

• The capture clock signal is shown here for illustration purposes only; this signal is 
generated inside your clock controller.

• The BIST clock signal is supplied to all hybrid EDT/LogicBIST blocks as well as used 
internally by the BIST controller. This clock is pulsed during shift and OFF during 
capture. It also has a pulse during capture pause state to operate the low-power BIST 
logic in the hybrid IP as well as to reset certain registers for each pattern in the BIST 
controller.

You specify the clock controller signals using the set_clock_controller_pins command.



Hybrid TK/LBIST Embedded Structures
Programmable Registers Inside Hybrid IP

Hybrid TK/LBIST Flow User’s Manual, v2022.4 145

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

As stated previously, the LogicBIST clock is typically a free-running clock, but the EDT clock 
should be controllable during test as it is pulsed during load_unload but held at off-state during 
capture. When the test clock is a top-level clock, it can be shared for both EDT and LogicBIST 
modes. When an internal clock, such as a free-running output of a PLL, is to be used for 
LogicBIST, then separate clock sources are required for EDT and LogicBIST modes, where the 
EDT mode clock is still controllable during test. An example of such a configuration is when 
shifting during LogicBIST is to be done at a higher speed than during EDT mode. TCK is used 
for seeding of specific values in the LogicBIST registers.

When internally generated functional clocks are used in the design, a top-level shift clock is 
required for shifting in EDT mode. Typically, a clock controller is used to generate the exact 
sequence of capture clocks and also to switch between shift-mode and capture-mode clocks. 
The clock controller takes a free-running clock, shift clock, and scan enable as inputs. 

When you are using Tessent OCCs and have specified the add_dft_signals edt_clock 
-create_from_other_signals command, the clocking hardware after LogicBIST and EDT 
insertion looks as follows. 

Figure 8-3. Hybrid TK/LBIST Clocking

Programmable Registers Inside Hybrid IP
Some of the registers inside the per-block hybrid IP are programmable.
The following registers are programmable:

• PRPG

• Low-power control registers (toggle, hold, switching, and mask shift)



Hybrid TK/LBIST Flow User’s Manual, v2022.4146

Hybrid TK/LBIST Embedded Structures
Low-Power Shift Controller

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Chain mask register

• MISR

The following registers inside the top-level BIST controller are programmable.

• Capture phase size

• Shift clock select

• Scan length counter (bit or byte counter depending on how you specify the 
set_lbist_controller_options -shift_counter_resolution command)

• Pattern counter (vector counter)

• BIST enable signal registers

Low-Power Shift Controller
The low-power scheme controls the switching activity during “shift” to reduce power 
consumption.
The following figure shows the overall architecture of the low-power shift controller. The 
existing Linear Feedback Shift Machine (LFSM) lockup cells are replaced by a hold register 
(denoted by Hi) which load select signal is controlled by the low-power control logic. By 
controlling when these hold registers update versus when they hold previous cycle values, the 
overall switching at the scan chain inputs can be controlled.

Figure 8-4. Low-Power Controller



Hybrid TK/LBIST Embedded Structures
Low-Power Shift Controller

Hybrid TK/LBIST Flow User’s Manual, v2022.4 147

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The performance of the Low-Power BIST controller depends on the following factors:

• The switching code (SC)

• The Hold value (HV)

• The Toggle value (TV)

The SC, HV, and TV values are automatically calculated by the tool based on the switching 
threshold you set using the set_power_control command during fault simulation.

The 4-bit switching code might assume one of 15 different binary values ranging from 0001 up 
to 1111. The last value can be alternatively used to disable the control register and enter the 
poorly pseudo-random test pattern generation (unless you activate the Hold mode). All codes 
are used to enable certain combinations of AND gates forming biasing logic, and, hence, to 
produce 1s with probabilities 0.5 (0001), 0.25 (0010), 0.125 (0100), 0.0625 (1000), plus their 
combinations obtained due to an additional OR gate. The resultant 0s and 1s are shifted into the 
mask shift register, and, subsequently, they are reloaded to the mask hold register at the 
beginning of a test pattern to enable/disable the hold latches placed between the ring generator 
and its phase shifter.

The duration of how long the entire generator remains in the Hold mode with all latches 
temporarily disabled regardless of the hold register content.

In the Toggle mode (its duration is determined by TV), the latches enabled through the control 
register can pass test data moving from the ring generator to the scan chains. In order to switch 
between these two modes, a weighted pseudo-random signal is produced by a module Encoder 
H/T based on the content of different stages of the ring generator.



Hybrid TK/LBIST Flow User’s Manual, v2022.4148

Hybrid TK/LBIST Embedded Structures
Low-Power Shift Controller

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 149

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 9
Tessent OCC for Hybrid TK/LBIST

The Tessent On-Chip Clock Controller (OCC) can be used in the Hybrid TK/LBIST flow. 
Tessent Shell can generate and insert the Tessent OCCs with programmable capture clock 
sequences for use with Hybrid TK/LBIST applications.
During LBIST mode, the actual clock sequence is parallel loaded into the Tessent OCC. You 
can configure the Tessent OCC so that the values can be loaded through OCC module input 
ports or through a TDR inside the OCC. When an LBIST test uses only one NCP at a time, this 
value can be loaded through the TDR or be available as a constant at the module inputs. If the 
LBIST test uses multiple NCPs, then the tool generates the parallel load clock sequence for the 
currently active NCP, the index for which is provided by the LBIST controller using the NCP 
Index Decoder (NCPID). The NCPID hardware is generated during Hybrid TK/LBIST 
insertion. For additional information, see “NCP Index Decoder” on page 151.

When Tessent OCC is generated with internal IJTAG control (that is, you have specified the 
Occ/ijtag_host_interface property), the static signals for controlling the OCC for LBIST mode 
are included within the OCC. Additionally, when static_clock_control is either internal or both, 
a TDR is included for generating the LBIST capture clock sequence. However, you can use this 
internal TDR only when LBIST test uses only one active NCP.

For additional Tessent OCC-specific information, see “Tessent On-Chip Clock Controller” in 
the Tessent Scan and ATPG User’s Manual.

Tessent OCC TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Tessent OCC for TK/LBIST Flow Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NCP Index Decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
OCC Generation and Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Scan Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
OCC EDT/LBIST IP Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
NCP Index Decoder Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Fault Simulation with a Tessent OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Pattern Generation with a Tessent OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Example Tessent OCC TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Generating and Inserting the Tessent OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Tessent OCC Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



Hybrid TK/LBIST Flow User’s Manual, v2022.4150

Tessent OCC for Hybrid TK/LBIST
Tessent OCC TK/LBIST Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent OCC TK/LBIST Flow
You can perform Tessent OCC insertion during either MBIST insertion or hybrid  TK/LBIST IP 
insertion. Use the information in this chapter as a guide to configure and insert Tessent OCC 
and to interface it with the hybrid TK/LBIST controller.

Figure 9-1. Modified TK/LBIST Flow for Tessent OCC

Tessent OCC for TK/LBIST Flow Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NCP Index Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
OCC Generation and Insertion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Scan Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
OCC EDT/LBIST IP Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
NCP Index Decoder Synthesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Fault Simulation with a Tessent OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Pattern Generation with a Tessent OCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Tessent OCC for Hybrid TK/LBIST
Tessent OCC for TK/LBIST Flow Configuration

Hybrid TK/LBIST Flow User’s Manual, v2022.4 151

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent OCC for TK/LBIST Flow Configuration
The clock controller can be used in two modes for LBIST: using a static sequence loaded 
through an ICL network for all patterns in a session; or, using a set of sequences that are cycled 
through every 256 patterns.
A Tessent OCC configured with capture_en as the capture trigger is used for hybrid TK/LBIST 
flow The slow clock input of the Tessent OCC is connected to TK/LBIST reference input clock 
in LBIST mode. The scan enable input of the Tessent OCC is connected to LBIST shift enable 
output in LBIST mode. The capture enable input of the Tessent OCC is connected to the LBIST 
capture enable output in LBIST mode. The tool adds muxes inside the LBIST controller to 
choose between LBIST and ATPG mode signals. 

TCD for the Clock Controller
The tool writes out a Tessent Core Description file after you run the process_dft_specification 
command when processing the clock controller wrapper. This file is written out in the 
instrument directory for the clock controller with a .tcd filename extension. This file is one of 
the inputs to Tessent Scan to perform scan insertion.

NCP Index Decoder
The NCP index decoder is a simple combinational logic block that decodes the NCP index 
output of the Hybrid TK/LBIST controller into clock sequences to be generated by the Tessent 
OCCs across all capture procedures.
The LBIST controller generates an NCP index that cycles through the NCPs based on the active 
percentage for each NCP. This NCP index is decoded to provide the actual clock sequence that 
is parallel loaded to the OCC. 

You must specify the clocking combinations to be used during TK/LBIST test. The tool 
synthesizes the NCP index decoder and generates named capture procedures based on this 
description. 

You can use the NCP index decoder with only a single clock domain. The NCP index decoder is 
based on the number of unique clocking waveforms, not on the number of clocks. For example, 
with a single clock you can generate two NCPs (a single pulse and double pulse).

To reduce the test time and achieve high coverage, it is possible to activate multiple clock 
domains at the same time. This is a trade-off between test time and hardware cost: the cost 
comes from adding bounding logic for paths crossing clock domains. You may need bounding 
for both stuck-at and transition patterns. Coverage is lost in all blocked paths, but you can 
control the blocking with the McpBoundingEn dft_signal. It is possible to disable blocking at 
run time, but the NCPs can only pulse compatible clocks.



Hybrid TK/LBIST Flow User’s Manual, v2022.4152

Tessent OCC for Hybrid TK/LBIST
NCP Index Decoder

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

One NCP index decoder is synthesized for each LogicBIST controller and can be used for 
controlling all the OCCs involved in LogicBIST. In Figure 9-2, there are three OCCs 
configured for four cycles each. There are two input binary values to the NCP index decoder 
(indicating a maximum of four NCPs), which is decoded as a single control signal per OCC per 
cycle that reflects the required clocking waveform.

Figure 9-2. NCP Index Decoder Connections

The tool generates only one index decoder for all OCCs. The NCP index decoder is instantiated 
by default at the top level, or as controlled with the parent_instance property of the 
NcpIndexDecoder specification.

NCP Index Decoder Creation
The tool inserts the NCP index decoder when the hybrid TK/LBIST IP is generated. Specify the 
NCP index decoder when you create the hybrid TK/LBIST IP, using the DftSpecification/
LogicBist/NcpIndexDecoder wrapper. For a complete description and usage, see 
NcpIndexDecoder in the Tessent Shell Reference Manual. 

If you are using only one NCP, you cannot use the NcpIndexDecoder wrapper because it is 
supported only for external static clock controls and two or more NCPs. Refer to 
“Considerations When Only Using One NCP” on page 159 for fault simulation considerations.

When the NcpIndexDecoder is generated in the same run as the LogicBist IP, the NCP count is 
automatically inferred from the number of Ncp() wrappers in the NcpIndexDecoder wrapper. 
When NcpIndexDecoder is generated in a different run, you must specify the LogicBist/
Controller/NcpOptions/count property = 1.

NCP Index Decoder Creation at the Gate Level
To create the NCP index decoder at the gate level, use the following flow. You can use the 
existing DftSpecification for the gate-level design used to insert the Hybrid TK/LBIST logic. 
When you generate the NCP index decoder, synthesize it separately and read the resulting logic 
in later steps such as fault simulation and pattern generation.



Tessent OCC for Hybrid TK/LBIST
OCC Generation and Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 153

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Note
The NCP index decoder generation requires an elaborated design. For the RTL flow, you 
need the TCD of the OCC. For the gate-level flow, add the Tessent OCC instances with the 

add_core_instances command.

Examples
In the following example, assume the design has two top-level Tessent OCC instances named 
m8051_gate_tessent_occ_clk1_inst and m8051_gate_tessent_occ_clk2_inst of the same 
Tessent OCC module m8051_gate_tessent_occ.

set_context dft -no_rtl
set_tsdb_output_directory ../tsdb_outdir
# You may need to read the synthesized design separately using
# read_verilog content if it is synthesized outside of Tessent
# shell using third-party synthesis tools.
read_design rtl2 -design_id htklb_insertion
read_cell_library atpg.lib
set_current_design
set_design_level physical
add_core_instances -module m8051_gates_tessent_occ
read_config_data -from_string {
  DftSpecification(m8051,rtl2) {
    LogicBist {
      NcpIndexDecoder {
        Connections {
          NcpIndex: m8051_lbist_i/ncp;
        }
        Ncp(stuck) {
          cycle(0): m8051_gate_tessent_occ;
          //Specified using module name, refers to both the OCC instances.
        }
        Ncp(clk1_double_pulse) {
          cycle(0): m8051_gate_tessent_occ_clk1_inst;
          cycle(1): m8051_gate_tessent_occ_clk1_inst;
        }
        Ncp(clk2_double_pulse) {
          cycle(0): m8051_gate_tessent_occ_clk2_inst;
          //Note – cycle(1) is omitted, so no clock activity
          cycle(2): m8051_gate_tessent_occ_clk2_inst;
        }
      }
    }
  }
}
process_dft_specification

OCC Generation and Insertion
You can insert OCC either during MBIST insertion or during logic test insertion. Create the 
OCC-specific DftSpecification to interface the hybrid controller to the OCC. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4154

Tessent OCC for Hybrid TK/LBIST
OCC Generation and Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You should add a separate OCC DftSpecification with controller wrappers for each different 
clock that needs to be programmable during capture. Additionally, you may add OCCs for 
asynchronous reset signals declared as a clock.

Tessent Shell creates TCD files, Verilog RTL, ICL, PDL, and tcd_scan describing the Tessent 
OCC instrument, as well as a Verilog netlist that instantiates the OCC in the user design. Many 
generation and insertion options are available in the DftSpecification to control this process. 
The ICL and TCD outputs are used in later steps like scan insertion, fault simulation, and 
pattern generation to describe the configuration of the generated OCCs as well to identify the 
port functions. The Tessent OCC RTL should be synthesized to a gate-level design, along with 
other logic to be inserted at the RTL level before be used for downstream steps that require a 
gate-level netlist.

The Tessent OCC can be inserted in a design either at RTL or gate level. When inserted at RTL 
level or before EDT IP, the Tessent OCC shift registers can either be merged with design scan 
cells or stitched up into dedicated Tessent OCC scan chains. When you stitch them into 
dedicated chains, these can be either compressed or uncompressed.

Static Clock Control
By default, the Tessent OCC generated by Tessent Shell provides programmability only 
through the clock control shift register suitable for ATPG. To use the OCC on a LBIST design, 
you should add static clock control. Static clock control, which refers to clock sequence not 
decided by ATPG, can be one of the following options:

• Internal — The Tessent OCC is statically programmable using an internal TDR for 
both LBIST and ATPG modes. When using this option, the LBIST test can use only one 
NCP at a time. When multiple NCPs are to be used, it needs to be done in multiple 
pattern sets.

• External  — The Tessent OCC is statically programmable through OCC module ports 
for the LBIST mode. This enables use of multiple NCPs for LBIST test in a single 
pattern set. An NCP index decoder is synthesized to provide the clock sequence for the 
different NCPs based on the ncp_index output from the LBIST controller. The Tessent 
OCC external clock control module port is available only for the LBIST mode and 
unavailable for ATPG.

• Both — This combines both the internal and external options described above. ATPG 
can use the TDR for static clock control. LBIST can use either the TDR or the OCC 
module ports.

Capture Trigger
To use the Tessent OCC for TK/LBIST operation, you should set the capture trigger to capture 
enable. In this case, scan enable is replaced by the LBIST capture enable signal as the trigger. 
To enable either fast capture or slow capture to be used during LBIST, the slow clock signal is 



Tessent OCC for Hybrid TK/LBIST
Scan Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 155

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

connected to the LBIST controller’s output shift capture clock, which pulses on all capture 
cycles. 

The capture enable signal should to be tied to constant-0 or connected to inverted scan enable 
during OCC insertion.

Connection to OCC External Clock Ports
By default, when configuring the Tessent OCC with static_clock_control as either “external” or 
“both’, the tool ties the OCC external clock control module ports to constant-0. These ports are 
not described in the OCC ICL and are not referenced in the OCC setup iProc. In an LBIST 
application with multiple NCPs, these OCC pins would be eventually connected to the NCP 
index decoder.

Scan Insertion
During Tessent OCC insertion, the clock control shift register IO of the Tessent OCCs are left 
unconnected. Integrating these Tessent OCC shift register sub-chains into the design is 
performed outside of the Dft Specification. Scan insertion can be performed using third-party 
tools.
You can insert the Tessent OCC into either a non-scan design or a scan design. 

Non-Scan Design Scan Insertion
When the Tessent OCC is inserted in a non-scan design, the OCC shift registers should be 
declared as sub chains to the scan insertion tool. The scan insertion tool merges these sub-chains 
with other scan cells taking care of scan chain length balancing.

Scan Design Insertion
When the Tessent OCC is inserted in a scan design, the Tessent OCC shift registers should be 
connected into one or more dedicated scan chains by the user, based on the target scan chain 
length. The Tessent OCC scan enable pin is connected to the design scan enable during scan 
insertion. The length of the sub chains should be the length of the Tessent OCC shift register. 
The OCC sub chains are always made part of scan chains considering the EDT mode in contrast 
to LBIST mode where the OCC shift register is bypassed by a single flop. The sub chains are 
internally bypassed within the OCC during LBIST.

OCC EDT/LBIST IP Creation
The method you use for Tessent OCC EDT/LBIST creation depends on which flow you are 
using: pre-synthesis or gate level.



Hybrid TK/LBIST Flow User’s Manual, v2022.4156

Tessent OCC for Hybrid TK/LBIST
OCC EDT/LBIST IP Creation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pre-Synthesis Flow
In pre-synthesis flow, the Tessent OCC is not present in the input skeleton design and the ICL/
TCD files for the OCC cannot be read during IP creation. You should instruct the tool to 
generate LBIST controller compatible with Tessent OCCs. When using this flow, you are 
responsible for making all connections between the LBIST controller, EDT blocks, NCP index 
decoder and OCCs. You do this by using the “set_lbist_controller_options -tessent_occ on” 
command and options.

Gate-Level Flow
During EDT IP creation, you should input into Tessent Shell the Tessent OCC inserted design 
with OCC shift registers included in scan chains should be read. The OCC scan chains can be 
either part of compressed or uncompressed chains. Do not add Tessent OCC uncompressed scan 
chains during IP creation; only add them during pattern generation. You must configure the 
Tessent OCC correctly to pass the IP creation DRC checks, specifically the shift clock, scan 
enable, and capture enable signals of the Tessent OCC are properly connected and operated in 
the incoming test procedures.

During IP creation, you read in the ICL, PDL and Tessent Core Description (TCD) for the OCC. 
This is required to properly setup the Tessent OCC during IP creation. The TCD description is 
bound to a netlist instance by treating it as a core instance, similar to how scan pattern 
retargeting uses TCD. The tool identifies the Tessent OCCs when the tessent_instrument_type 
ICL attribute is set to “mentor::occ”. This attribute value is considered when generating the ICL 
signature, so it cannot be added to user OCCs. When Tessent OCCs are present in the design, 
the LBIST controller is modified to correctly interface with the OCC.

The TK/LBIST compatible Tessent OCCs are required to have the following two features: 
capture trigger using capture enable and static clock control either external or both when using 
multiple NCPs. See “Static Clock Control” on page 154 and “Capture Trigger” on page 154.

Note
Do not mix Tessent OCCs and custom OCCs (defined using set_clock_controller_pins 
command) in the same LBIST controller. The tool performs rule checks to validate this 

requirement.

During EDT IP creation, the Tessent OCC capture enable pins that are not functionally driven 
are driven by the inverted OCC scan enable. The Tessent OCC capture enable pins that are 
functionally driven (that is, by inverted scan enable) are multiplexed between existing 
functional connection and LBIST capture enable.

OCC Connections Interception
During hybrid TK/LBIST and OCC insertion with the TSDB flow, when adding edt_clock, 
shift_capture_clock dft signals as top-level ports, the LogicBIST IP intercepts and multiplexes 



Tessent OCC for Hybrid TK/LBIST
OCC EDT/LBIST IP Creation

Hybrid TK/LBIST Flow User’s Manual, v2022.4 157

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

the existing connections of the OCCs. The tool attempts to reduce the amount of generated 
LogicBIST logic used to complete the intercepts.

If, for a given signal, multiple OCCs have the same signal source, then one mux is sufficient for 
intercepting all of them. The tool considers OCCs as having the same sources if their nets fan in 
from the same net, as observed during LogicBIST validation. As shown in the following figure, 
instead of inserting a mux for each intercept at the OCCs—eight intercepts—the tool inserts 
only four muxes. Optimization occurs for the capture enable and shift clock signals. 

Figure 9-3. OCC/LogicBIST Connection Intercept With Same Signal Source

The signal sources are considered the same if their nets fan in from the same net, as observed 
during LogicBIST validation. The following example shows the case when the fanin nets differ 
for each OCC because one of them resides within a sub-module. The tool treats these OCCs as 
having different sources. It generates a mux for each intercept at the OCCs, leading to four 
generated muxes instead of two.



Hybrid TK/LBIST Flow User’s Manual, v2022.4158

Tessent OCC for Hybrid TK/LBIST
NCP Index Decoder Synthesis

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-4. OCC/LogicBIST Connection Intercept With Different Signal Sources

Capture Procedures
During IP creation, you specify the total number of NCPs used for LBIST. 

This is required to synthesize the NCP index output and NCP activity percentage registers. If 
the exact number of NCPs is not known during IP creation, an upper bound can be used. During 
fault simulation, unused NCP indices can be specified as 0%. If the names and activity 
percentage of the NCPs is specified during IP creation, this is used for the hardware default 
mode. When not specified, the tool defaults to equal activity for all the NCPs for the hardware 
default mode.

NCP Index Decoder Synthesis
The NCP index decoder is synthesized is normally done with a third-party synthesis tool.
The number of NCPs generated should be equal to or less than the number specified during 
hybrid TK/LBIST IP generation.

Fault Simulation with a Tessent OCC
Fault simulation with the Tessent OCCs is similar to a flow that uses custom OCCs. Tessent 
Shell reads in the complete gate level Verilog netlist with EDT and OCC, ICL/PDL, and TCD 
files for EDT and OCC instruments.
Tessent OCC core instances can be added during fault simulation. 



Tessent OCC for Hybrid TK/LBIST
Pattern Generation with a Tessent OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 159

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Tessent Shell automatically adds two internal clocks for each OCC instance:

• A pulse in capture clock at the output of shift register clock gater 
(cgc_SHIFT_REG_CLK/clkg).

• A programmable capture clock at the output of the programmable clock gater 
(cgc_CLK_OUT/clkg) at the output of the mux 
[tessent_persistent_cell_clock_out_mux/Z].

Provide NCPs that refer to these internal clocks. If you have already added internal clocks in the 
same location as the tool would, then Tessent Shell tool recognizes this and does not add 
duplicate clocks. The Design Rule Check R18, which validates whether OCC control register is 
part of scan chains, is bypassed in LBIST mode. Clock control definitions are not generated in 
the LBIST mode. The output core description TCD file includes the parameters that were 
specified for the OCC instruments used in this run.

In the LBIST mode dofile, an internal user-PI is added for the LBIST capture enable signal and 
constrained to 1. For fault simulating chain test patterns, you manually change this constraint to 
0.

Considerations When Only Using One NCP
When you are using only one NCP, you must manually create the NCP description because the 
NcpIndexDecoder, which usually creates the named capture procedure description, cannot be 
used for a single NCP. The OCC can have either an external or internal static clock control. 
During fault simulation, specify the name of the NCP as you would when you have more than 
one NCP.

You can use the create_capture_procedures command to create an NCP description in the tool 
instead of reading a manually-created description from a file. This user-created NCP should 
reflect the waveform that you also provide. For external static clock control, the waveform 
could be constant values provided on the OCC clock_sequence input pins by the netlist. For 
internal static control, this could be the value loaded into the OCC internal clock_sequence 
TDR.

For the internal static clock control, load the clock sequence corresponding to the user-created 
NCP through the ICL network. For Tessent OCCs, you can do this by using the clock_sequence 
core instance parameter. For the external static clock control, connect the Tessent OCC’s clock 
sequence pins to constant values that generate the required NCP clock waveforms.

Pattern Generation with a Tessent OCC
Pattern generation is performed through pattern specification.
The presence of Tessent OCC is identified through the ICL attribute on the OCC modules and is 
matched with TCD description for the OCC. When using Tessent OCCs, the pattern 



Hybrid TK/LBIST Flow User’s Manual, v2022.4160

Tessent OCC for Hybrid TK/LBIST
Pattern Generation with a Tessent OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

specification processing automatically calls the OCC setup iProc with the parameter values that 
were used during fault simulation.



Tessent OCC for Hybrid TK/LBIST
Example Tessent OCC TK/LBIST Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 161

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example Tessent OCC TK/LBIST Flow
As part of the Hybrid TK/LBIST flow, you can insert the OCC and NCP Index Decoder during 
the IP generation step. This example demonstrates an RTL-level flow using the configuration 
based flow. You can use the same methodology for the gate-level flow. 
This example demonstrates a gate-level flow using DFTSpecification for the OCC insertion. 
The flow uses the TSDB (Tessent Shell Database).

Generating and Inserting the Tessent OCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Generating and Inserting the Tessent OCC
The first step to using a Tessent OCC in the TK/LBIST flow is creating the OCC, then 
subsequently insert the Tessent OCC into your design. 

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to “dft” and specify a design identifier (rtl2) for the current 
design.

SETUP> set_context dft -rtl -design_identifier rtl2

3. Point to the TSDB that you used for any previous steps.

SETUP> set_tsdb_output_directory ../tsdb_outdir

4. Read the design and other files from the previous step.

SETUP> read_design m8051 -design_id rtl1

5. Read the cell library. For example:

SETUP> read_cell_library atpg.lib

6. Specify the top-level module of the current design. For example:

SETUP> set_current_design physical_block

7. Set the design level. The physical_block level indicates that the design is a block that is 
synthesized and laid out as an independent block. For example:

SETUP> set_design_level physical_block

8. Specify any constraints and other specific design settings. For more details on 
commands related to IP insertion, see “EDT and LogicBIST IP Generation” on page 23.

9. Perform system mode transition.



Hybrid TK/LBIST Flow User’s Manual, v2022.4162

Tessent OCC for Hybrid TK/LBIST
Generating and Inserting the Tessent OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SETUP> check_design_rules

10. Read the OCC specific configuration data. For example:

ANALYSIS> read_config_data -from_string {
  DftSpecification(m8051, rtl2) {
    reuse_modules_when_possible: on;
    Occ() {
      capture_trigger: capture_en;
      static_clock_control: external;
      Controller(clk) {
        clock_intercept_node: clk;
      }
    }
  }
}

11. Read the DftSpecification for the EDT and LogicBIST controllers per the hybrid TK/
LBIST insertion flow described in EDT and LogicBIST IP Generation. Additionally, 
include the NCP details using the NcpIndexDecoder and NCP sub-wrappers under the 
LogicBIST wrapper. Read in the NCP index decoder specification. For example:

SETUP> read_config_data -from_string {
  LogicBist {

NcpIndexDecoder {
Ncp(pulse_once) {
cycle(0) : m8051_gate1_tessent_occ;

}
Ncp(pulse_twice) {
cycle(0) : m8051_gate1_tessent_occ;
cycle(1) : m8051_gate1_tessent_occ;

}
}

}
}

12. Validate and process the content defined in the DftSpecification wrapper.

ANALYSIS> process_dft_specification

13. Extract ICL to trace the inserted instruments.

ANALYSIS> extract_icl 

Results
The tool creates the Tessent OCC and the NCP index decoder and writes out the relevant output 
files in the instruments sub-directory of the TSDB directory. The output files include TCD files, 
RTLs, ICL, and PDL for both the OCC and NCP index decoder. Both the OCC and the NCP 
index decoder are instantiated in the DFT inserted design that is also written out. 
Following this process, the sequence of steps is the same as described in “Test Point Analysis 
and Insertion, Scan Insertion, and X-Bounding” on page 77, “LogicBIST Fault Simulation and 



Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 163

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Creation” on page 89, and “Pattern Generation” on page 101. During fault simulation, 
the tool reads in the TCD file of the NCP Index decoder.

Tessent OCC Examples
The examples in this section illustrate usage models for using a Tessent OCC in the hybrid TK/
LBIST flow.

Clock Domain Analysis for NCP Decoder Generation
This example shows how to use Tessent Shell to perform clock domain analysis and identify 
NCPs required for LBIST test. It uses a small design that has the following clocks:

• NX1

• NX2

• NX3

The following dofile reports the clock domains and the percentage of faults in each of the 
domains. Since the netlist is non-scan, the dofile instructs Tessent Shell to treat the netlist as a 
full-scan design, using the “add scan groups dummy dummy” command. If the design were 
already scan-inserted, you would instead specify the actual test procedure file and scan chains.

set_context pattern -scan
read_verilog nonscan_netlist.v
read_cell_library atpg.lib
set_current_design
add scan groups dummy dummy
add clock 0 NX1
add clock 0 NX2
add clock 0 NX3
set system mode analysis
add_faults -all
report_statistics -clock_domains summary
report_clock_domains -compatible_clocks –details

The “Clock Domain Summary” section of report_statistics command’s output is shown below:

----------------------------------------------------
Clock Domain Summary % faults Test Coverage

(total) (total relevant)
------------------ ---------- ----------------
/NX1 22.38%  0.00%
/NX2 74.70% 0.00%
/NX3  0.33% 0.00%

----------------------------------------------------



Hybrid TK/LBIST Flow User’s Manual, v2022.4164

Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The output of report_clock_domains command is shown below:

// No. | Clock Name Domain | Clock Compatibility
// -----+--------------------+--------------------
// 1 | '/NX1' (1)  1 |  .
//  2 | '/NX2' (2) 2 | 437  .
//  3 | '/NX3' (56) 3 | 8 44 .
// --------------------------+--------------------
// No. | 1 2 3
//  . = Compatible (non-interacting) clock pair
// <number> = Incompatible (interacting) clock pair
// Compatibility analysis is based on same-edge clock interaction.

From the above reports, there are small number of interacting flops (8) between NX1 and NX3. 
The paths between NX1 and NX3 should be bounded, which can be accomplished by an SDC 
file that describes all paths between these clock domains as false, as shown below (declared at 
the mux output):

create_clock occ_NX1/clock_out -period 40 -name NX1
create_clock occ_NX2/clock_out -period 40 -name NX2
create_clock occ_NX3/clock_out -period 40 -name NX3
set_false_path -from NX1 -to NX3
set_false_path -from NX3 -to NX1

The tool can now treat NX1 and NX3 as compatible clock domains and pulse them together, 
since all interactions between them are blocked during X-bounding. From the prior clock 
activity table, we can divide the design into two clock domains: NX2 and NX1_NX3. 
Consequently, the NX2 and NX1_NX3 domains can be tested for 75% and 25% of the test 
duration, respectively.

During fault simulation, the output of the report_clock_domains command shows that NX1 and 
NX3 are indeed compatible after X-bounding. The functional clocks referred earlier are 
numbered 7-9 in the output below.

//No.| Clock Name Domain | Clock Compatibility
//---+-------------------------------+-----------------------------
// 1| '/RST' (1) 1 | .
// 2| '/refclk' (55) 1 | .  .
// 3| '/shift_clock'(56) 1 | . .  .
// 4| '/tck' (57)  1 | .  .  .  .
// 5| '/edt_clock' (64)  1 | .  .  .  .  .
// 6| '/edt_lbist_int_clock' (73) 1 | .  .  .  .  .  .
// 7| '/NX3' (75) 1 | . .  .  .  .  .  .
// 8| '/NX2' (76) 2 | 9 .  .  .  .  . 36  .
// 9| '/NX1' (77) 1 | .  .  .  .  .  .  . 437 .
// ----------------------------------+-----------------------------
//  No. | 1  2  3  4 5 6 7 8 9
//  . = Compatible (non-interacting) clock pair
// <number> = Incompatible (interacting) clock pair



Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 165

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A sample DftSpecification for this design is as follows:

DftSpecification(m8051,rtl3) {
  LogicBist {
    NcpIndexDecoder {
      Ncp(NX1_NX3_single_pulse) {
        cycle(0): occ_NX1, occ_NX3;
      }
      Ncp(NX2_single_pulse) {
        cycle(0): occ_NX2;
      }
      Ncp(NX1_NX3_double_pulse) {
        cycle(0): occ_NX1, occ_NX3;
        cycle(1): occ_NX1, occ_NX3;
      }
      Ncp(NX2_double_pulse) {
        cycle(0): occ_NX2;
        cycle(1): occ_NX2;
      }
    }
  }
}



Hybrid TK/LBIST Flow User’s Manual, v2022.4166

Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The NCP following shows the index decoder TCD file created from the preceding 
DftSpecification:

Core(m8051_rtl3_tessent_lbist_ncp_index_decoder) {
  LbistNcpIndexDecoder {
    Interface {
      NcpIndex(ncp_index[3:0]) {
        persistent_pin(0): tessent_persistent_cell_ncp_index_buf_0/y;
        persistent_pin(1): tessent_persistent_cell_ncp_index_buf_1/y;
        persistent_pin(2): tessent_persistent_cell_ncp_index_buf_2/y;
        persistent_pin(3): tessent_persistent_cell_ncp_index_buf_3/y;
      }
      ClockSequence(occ_NX1) {
        persistent_pin :
        tessent_persistent_cell_occ1_clock_sequence_buf_0/y;
      }
      ClockSequence(occ_NX2) {
        persistent_pin:
        tessent_persistent_cell_occ2_clock_sequence_buf_0/y;
      }
      ClockSequence(occ_NX3) {
        persistent_pin :
        tessent_persistent_cell_occ3_clock_sequence_buf_0/y;
      }
    }
    CaptureProcedures {
      Ncp(NX1_NX3_single_pulse) {
        Cycle(0) : occ_NX1, occ_NX3 ;
      }
      Ncp(NX2_single_pulse) {
        Cycle(0) : occ_NX2 ;
      }
      Ncp(NX1_NX3_double_pulse) {
        Cycle(0) : occ_NX1, occ_NX3;
        Cycle(1) : occ_NX1, occ_NX3;
      }
      Ncp(NX2_double_pulse) {
        Cycle(0) : occ_NX2;
        Cycle(1) : occ_NX2;
      }
    }
  }
}

Clock Gating When Inserting OCC and Hybrid EDT/LBIST In Different 
Passes

This example illustrates clock-gating with the hybrid TK/LBIST DFT insertion flow with OCC. 
This usage uses the TSDB flow to insert OCC with the edt_clock and shift_capture_clock DFT 
signals in the first insertion pass, followed by inserting EDT and LogicBIST in the second 
insertion pass.

Generate the edt_clock and shift_capture_clock signals by using the add_dft_signals 
-create_from_other_signals command as shown in the following dofile example.



Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Hybrid TK/LBIST Flow User’s Manual, v2022.4 167

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

set_context dft -no_rtl -design_identifier dft_signals
set_tsdb_output_directory tsdb_outdir
read_core_descriptions [lsort [glob design/mem/*.lib]]
read_cell_library ../tessent/adk.tcelllib
read_cell_library design/mem/mems.atpglib

read_verilog design/gate/elt1.v
set_current_design elt1
set_design_level physical_block
set_dft_specification_requirements -memory_test off -logic_test on

add_dft_signals scan_en test_clock edt_update \
-source_node {scan_enable test_clock edt_update}

add_dft_signals edt_clock -create_from_other_signals
add_dft_signals shift_capture_clock -create_from_other_signals
report_dft_signals

add_clocks CLK_F300 -period [expr {1000.0/300.0}]

check_design_rules
set_system_mode analysis
set spec [create_dft_specification -sri_sib_list {occ}]
report_config_data $spec
set_config_value use_rtl_cells on -in_wrapper $spec
read_config_data -in_wrapper $spec -from_string {
  OCC {
    ijtag_host_interface : Sib(occ);
    static_clock_control : external;
    capture_trigger      : capture_en;
    Controller(clk_controller) {
      clock_intercept_node : CLK_F300;
      parent_instance : dft_inst;
    }
  }
}
report_config_data $spec
process_dft_specification
extract_icl
run_synthesis -startup_file \

../prerequisites/techlib_adk.tnt/current/synopsys/synopsys_dc.setup

After the first pass, the OCC slow_clock is driven by the shift_capture_clock gater and the 
edt_clock gater has no fanout.



Hybrid TK/LBIST Flow User’s Manual, v2022.4168

Tessent OCC for Hybrid TK/LBIST
Tessent OCC Examples

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 9-5. Clock Gating With DFT Signals and OCC in the First Pass

After inserting EDT and LogicBIST in the second hybrid DFT insertion pass, the tool creates 
the circuit shown below. The edt_clock gater and shift_capture_clock gaters have been removed 
and their previous connections are now driven by their respective ports on the LogicBIST 
controller.

Figure 9-6. Clock Gating With EDT and LogicBIST in the Second Pass

Note
This is also the resulting circuit when you first run the TSDB flow to insert the DFT signals 
and then the dofile flow to insert the LogicBIST controller. In the dofile flow for LogicBIST 

insertion, the source clock of the DFT signal gaters supply the test_clock to the LogicBIST 
controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 169

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 10
Third-Party OCC for Hybrid TK/LBIST

The hybrid TK/LBIST flow supports using third-party OCCs that have already been inserted 
into the design. To do so, you must first generate Tessent Core Description (TCD) files for each 
third-party OCC instrument. 
Overview of the Third-Party OCC Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
ThirdPartyOcc TCD File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Usage Examples for Third-Party OCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Overview of the Third-Party OCC Flow
After generating OCC TCD files and during hybrid IP insertion, read in the third-party OCCs 
explicitly using the read_core_descriptions command.
As described in “RTL and Scan DFT Insertion Flow With Hybrid TK/LBIST” in the Tessent 
Shell User’s Manual, the high-level Tessent Shell flow with hybrid TK/LBIST is:

Figure 10-1. Hybrid TK/LBIST Flow With Tessent Shell



Hybrid TK/LBIST Flow User’s Manual, v2022.4170

Third-Party OCC for Hybrid TK/LBIST
Overview of the Third-Party OCC Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

During the second DFT insertion pass, for third-party OCC pins to be properly identified during 
process_dft_specification, you must load the TCD file and associate it with the OCC module/
instance with the following two commands:

read_core_descriptions TCD_file_name ...
add_core_instances -module {OCC_module ...}

When using third-party OCCs rather than Tessent OCCs, you must:

• Declare how many NCPs are required. In the DftSpecification, include a LogicBist/
Controller/NcpOptions wrapper with either the count or 
percentage_of_patterns_per_ncp property; these properties are mutually exclusive. For 
example:

DftSpecification(module_name,id) {
LogicBist {

Controller(id) {
NcpOptions { 
count : int ; // default: 1
percentage_of_patterns_per_ncp : int, ... ;

}
}

}
}

• Create the decoding logic. This is the responsibility of the user.

• Hook the decoding logic to the NCP output of the LogicBIST controller. This is the 
responsibility of the user.

• Ensure that the OCC uses the decoded logic to control the clock sequence when the 
OCC is active and creates NCPs for various clocking sequences. 

After inserting the hybrid IP, proceed with the rest of the flow as normal, including DFT signal 
declarations with add_dft_signals.

A mix of Tessent OCC and third-party OCCs is not supported.



Third-Party OCC for Hybrid TK/LBIST
ThirdPartyOcc TCD File Syntax

Hybrid TK/LBIST Flow User’s Manual, v2022.4 171

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ThirdPartyOcc TCD File Syntax
Use the ThirdPartyOCC TCD to define third-party OCCs already inserted in the design.

Usage
Core(module_name) {
  ThirdPartyOcc {
    Interface { 
      ShiftClock(port_name)           {}
      ShiftClockEn(port_name)         {}
      ShiftCaptureClock(port_name)    {}
      ShiftCaptureClockEn(port_name)  {}
      ScanEn(port_name)               {}
      CaptureEn(port_name)            {}
      LbistEn(port_name)              {}
      DiagClockEn(port_name)          {}
      ClockOut(port_name)             {}
      InjectTck(port_name)            {}
    }
  }
}

Description
Describes the interface for one third-party OCC already inserted in the design.

During hybrid IP insertion, the process_dft_specification command:

• Rule checks that no Tessent OCC wrappers are specified.

• Rule checks that Tessent OCCs were not inserted in a previous insertion pass. You may 
have Tessent OCCs present, but they cannot be configured for use with LogicBIST.

• Rule checks that the NcpIndexDecoder wrapper is not specified.

• Validates that the ThirdPartyOCC TCD includes all required interface pins and that 
mutually exclusive pins are not specified. For example, if one OCC uses a shift clock 
and another uses a shift clock enable, the tool issues an error.

• Traces each intercepted OCC pin—that is, ShiftClock and ScanEn—to find a common 
source. This helps prevent redundant muxes from being inserted in the LogicBIST 
controller.

• Disconnects non-intercept OCC pins (except for ClockOut and InjectTck) and 
re-connects them to the LogicBIST controller source pin.

In Tessent Shell, all TCDs are automatically organized under the Core wrapper, which is unique 
for a given module name. Depending on the design, the Core wrapper may include descriptions 
for other core elements in addition to ThirdPartyOCC descriptions. Refer to “Tessent Core 
Description” in the Tessent Shell Reference Manual for more information.



Hybrid TK/LBIST Flow User’s Manual, v2022.4172

Third-Party OCC for Hybrid TK/LBIST
ThirdPartyOcc TCD File Syntax

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Arguments
• Interface/ScanEn(port_name)

A wrapper that specifies the clock controller scan enable input. The inverted LogicBIST 
capture enable output from the controller in LogicBIST mode drives this port.

• Interface/CaptureEn(port_name)
A wrapper that specifies the capture enable trigger LogicBIST clock enable input and is 
typically connected to the LogicBIST capture enable output.

• Interface/ShiftClock(port_name)
A wrapper that specifies the clock controller shift clock input. The LogicBIST shift clock 
output from the controller in LogicBIST mode drives this pin. This property is mutually 
exclusive with ShiftClockEn.

• Interface/ShiftClockEn(port_name)
A wrapper that specifies the clock controller shift clock enable input. The LogicBIST shift 
clock enable output from the controller in LogicBIST mode drives this pin. This property is 
mutually exclusive with ShiftClock.

• Interface/ShiftCaptureClock(port_name)
A wrapper property that specifies an input on the clock controller that needs to receive a 
clock that pulses during shift and capture. This behavior differs from the shift clock, which 
only pulses during the shift mode operation. The LogicBIST shift capture clock output from 
the controller in LogicBIST mode drives the ShiftCaptureClock pin. If you do not specify 
this pin, the tool does not create the output port. This property is mutually exclusive with 
Interface/ShiftCaptureClockEn.

• Interface/ShiftCaptureClockEn(port_name)
A wrapper property that specifies an input on the clock controller that needs to receive a 
shift and capture clock enable signal. This behavior differs from the shift enable and capture 
enable, which are high only during the shift or capture mode operation. The LogicBIST shift 
capture clock enable output from the controller in LogicBIST mode drives the 
ShiftCaptureClockEn pin of the OCC. If you do not specify this pin, the tool does not create 
the LBIST output port. This property is mutually exclusive with Interface/
ShiftCaptureClock.

• Interface/LbistEn(port_name)
A wrapper that specifies the LogicBIST enable pins.

• Interface/DiagClockEn(port_name)
A wrapper that specifies the clock controller diagnosis clock enable input. The LogicBIST 
controller DiagClockEn output drives this pin. If you are using the ShiftClockEn clock 
controller pin, you need a DiagClockEn connection to perform LogicBIST diagnosis. The 
DiagClockEn signal is only legal when DftSpecification/LogicBist/Controller/
SingleChainForDiagnosis/present is on.



Third-Party OCC for Hybrid TK/LBIST
Usage Examples for Third-Party OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 173

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Interface/InjectTck(port_name)
A wrapper that specifies the clock controller pin that injects TCK onto the clock. When 
MemoryBIST is present, the tool connects this port to the tck_select DFT signal, if present.

Usage Examples for Third-Party OCC
The default flow uses the LogicBIST controller as the clock generator.

Default Third-Party OCC Flow With Shared Shift Clock Source
The following example shows that there are three instances of one OCC module. The shift clock 
and scan enable on two of the instances share a common source.

Figure 10-2. Third-Party OCC With Shared Shift Clock Source, Pre-Insertion



Hybrid TK/LBIST Flow User’s Manual, v2022.4174

Third-Party OCC for Hybrid TK/LBIST
Usage Examples for Third-Party OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The TCD file is:

Core(OCC1) {
  ThirdPartyOCC {
    Interface {
      ScanEn(scan_en) {}
      ShiftClock(shift_clock) {}
      ClockOut(clock_out) {}
    }
  }
}

When running Tessent Shell, the relevant commands are:

...
SETUP> read_core_descriptions OCC1.tcd
SETUP> add_core_instances –module OCC1
...
SETUP> set_system_mode analysis
ANALSYIS> create_patterns_specification –sri_sib_list {edt lbist}
...
ANALYSIS> process_dft_specification

When Tessent Shell inserts the LogicBIST IP, it sees that block1_i1/OCC1_i and block1_i2/
OCC1_i share the same shift clock and scan enable sources, and it only inserts one shift clock 
and scan enable mux, as shown below.

Figure 10-3. Third-Party OCC With Shared Shift Clock Source, Post-Insertion



Third-Party OCC for Hybrid TK/LBIST
Usage Examples for Third-Party OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 175

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Default Third-Party OCC Flow With Different Shift Clock Inputs
In the following example, there are two OCC modules and one instance of each. One OCC TCD 
specifies the shift clock input while the other OCC TCD specifies the shift clock enable input.

Figure 10-4. Third-Party OCC With Different Shift Clock Inputs (Error Condition)

The TCD file is:

Core(OCC1) {
  ThirdPartyOCC {
    Interface {
      ScanEn(scan_en) {}
      ShiftClock(shift_clock) {}
      ClockOut(clock_out) {}
    }
  }
}
Core(OCC2) {
  ThirdPartyOCC {
    Interface {
      ScanEn(scan_en) {}
      ShiftClockEn(shift_clock_en) {}
      ClockOut(clock_out) {}
    }
  }
}

In this case, the tool issues an error because the TCD files have mutually exclusive ports.



Hybrid TK/LBIST Flow User’s Manual, v2022.4176

Third-Party OCC for Hybrid TK/LBIST
Usage Examples for Third-Party OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

...
SETUP> read_core_descriptions OCC1.tcd
SETUP> add_core_instances –module {OCC1 OCC2}
...
ANALYSIS> process_dft_specification
...
//  Error: /DftSpecification(xxx,gate)/LogicBist
//         The 'ShiftClock' and 'ShiftClockEn' ports on third party OCC 
modules are mutually exclusive.
//         OCC modules with 'ShiftClock' port:
//           OCC1
//         OCC modules with 'ShiftClockEn' port:
//           OCC2



Hybrid TK/LBIST Flow User’s Manual, v2022.4 177

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 11
Observation Scan Technology

This chapter documents Observation Scan Technology (OST) features within the hybrid TK/
LBIST flow. The flow supports LogicBIST for in-system testing, which requires high test 
coverage in a short time span. Using the observation scan features minimizes test times when 
running LogicBIST in-system by reducing the pattern count needed to achieve a target test 
coverage.

Note
This chapter uses the terms “Observation Scan Technology” and “observation scan” 
interchangeably.

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
DFT Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Test Point and Scan Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
LogicBIST Fault Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Pattern Mismatch Debugging Based on Scan Cell Monitoring. . . . . . . . . . . . . . . . . . . . 187
Pattern Mismatch Debugging for Parallel Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Overview
Observation scan includes the following features:

• The observation scan observe point (OP), which the tool inserts during test point 
insertion. The tool monitors observation scan OPs during every shift cycle and capture 
cycle. This is different than traditional OPs, which the tool monitors only during 
capture. The tool treats each shift cycle as a pseudo-random pattern, and adjusts the 
detection probability and test coverage estimations accordingly.

For example, given a chain length of 100 with 10,000 patterns, the observation scan OPs 
observe for one million cycles.

• Two DFT signals, capture_per_cycle_static_en and 
capture_per_cycle_dynamic_en. See “Observation Scan Observe Point Design” on 
page 179 for details.

• Test point analysis options, -capture_per_cycle_observe_points and 
-minimum_shift_length, which you use together to activate observation scan mode and 
ensure accurate test coverage.



Hybrid TK/LBIST Flow User’s Manual, v2022.4178

Observation Scan Technology
Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Two BIST DRCs, B5 and B6, which the tool applies during fault simulation to ensure 
that the observation scan cells are stitched into their own scan chain and to ensure 
connectivity between the scan cells and observation scan OPs.

Note
You must perform test point insertion and scan insertion in one session if Observation Scan 
Technology (OST) testpoints are enabled. If OST test points are not enabled, you can 

perform these steps in separate sessions.

Licensing
The tool requires an Observation Scan Technology (OST) license to insert observation points in 
the “dft -test_points -scan” sub-context. The tool checks out the license during 
analyze_test_points when “set_test_point_analysis_options 
-capture_per_cycle_observe_points” is set to “on”. In “patterns -scan” context, the OST license 
is required as soon as the tool detects an observation scan during transition to analysis mode. 
This requirement is in addition to the LogicBist license. 

The OST license additionally gives you access to eight child processes. Therefore, one 
LogicBist license plus one OST license enables you to use one parent plus eight child processes 
for fault simulation. Every additional OST license gives you access to an additional eight child 
processes. For example:

• One LogicBist license plus two OST licenses gives you access to one parent and 16 
child processes.

• One LogicBist license plus four OST licenses gives you access to one parent and 32 
child processes.

Additional LogicBist or TestKompress licenses do not increase distribution. For observation 
scan, the only way to increase distribution is by adding more OST licenses.

For additional information about distributed computing in the Tessent environment, see 
“Multiprocessing for ATPG and Simulation” in the Tessent Scan and ATPG User’s Manual.

High-Level Flow
The flow outlined in this chapter follows the basic Tessent Shell RTL and scan DFT insertion 
flow with hybrid TK/LBIST as described in the Tessent Shell User’s Manual. Figure 11-1 notes 
the differing aspects of the flow when you are using observation scan; otherwise, the flow 
remains the same.



Observation Scan Technology
Overview

Hybrid TK/LBIST Flow User’s Manual, v2022.4 179

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-1. High-Level DFT Insertion Flow with Observation Scan

For dofile flow considerations, see “Observation Scan Technology Dofile Flow” on page 303.

Limitations
• The tool does not support performing diagnosis with observation scan patterns. To 

bypass this limitation, rerun fault simulation with the capture_per_cycle_static_en 
signal disabled. The results then support diagnosis as well.

The simulation of shift cycle faults with observation scan only supports static fault 
models. You should turn off observation scan for transition fault types.

• The tool inserts regular OPs instead of observation scan OPs in the fanout cone of 
shadow cells. Regular OPs do not capture the initial unknown values of the shadow cells 
because they do not capture on every cycle. This prevents potential simulation 
mismatches with parallel patterns. 

Observation Scan Observe Point Design
Each observation scan OP consists of several discrete components. The tool implements each 
OP as a single Verilog module and then instantiates in the netlist at the observe location. This 
simplifies the task of finding the hardware for a specific test point within the generated netlist.

Figure 11-2 shows the observation scan OP design.



Hybrid TK/LBIST Flow User’s Manual, v2022.4180

Observation Scan Technology
Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 11-2. Observation Scan Observe Point Design

Observation scan has two mode control signals, OP_en and capture_per_cycle_static_en:

• OP_en — Observe point enable signal that is similar to regular OPs for controlling the 
basic observation functionality of an observe test point.

• capture_per_cycle_static_en — The enable signal for turning observation scan on and 
off. When capture_per_cycle_static_en is turned off, observation scan test points 
activate during capture; that is, they behave as regular observe points. When 
capture_per_cycle_static_en is turned on, the test points activate during both capture 
and shift. The capture_per_cycle_static_en signal is ANDed with an internal FSM-
generated signal to create a dynamic capture_per_cycle_dynamic_en signal that is 
connected to the observation points. The tool connects these signals during scan 
insertion.

The capture_per_cycle_dynamic_en signal ensures that the observation scan cells are 
inactive during warm-up patterns and the first regular LogicBIST pattern shift-in. You 
cannot explicitly specify the signal. However, it is visible through commands that have 
an access to DFT signals, such as get_dft_signal and report_dft_signals.

Table 11-1 lists the modes of operation with observation scan enabled (OP_en=1 and 
capture_per_cycle_static_en=1). Refer to Figure 11-2 to see the signal configurations displayed 
in the table header. The “d”, “s”, and “q” values in the table body represent the current values of 
the D, SI, and Q pins, respectively.

Table 11-1. Modes of Operation for Observation Scan Cells 
Modes SE capture_per_cycle_dynamic_en D SI Q
Shift 1 0 d s s
Shift + Capture 1 1 d s d ⊕ s
Functional Mode 0 0 d s d
Capture 0 1 d s d ⊕ q



Observation Scan Technology
DFT Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 181

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

IJTAG Network in the LogicBIST Controller
When you enable observation scan, the tool inserts an additional TDR, named delay_misr_en, 
on the LogicBIST controller’s IJTAG network. This TDR supports LogicBIST simulations with 
begin patterns greater than 0. 

During observation scan, when you run LogicBIST simulation with patterns greater than 0, the 
tool applies an extra starting pattern with capture_per_cycle_static_en held low. This enables 
the unknown (X) values to be flushed from the observation scan chains. The extra pattern means 
that the tool must delay accumulating the scan chain data in the MISRs by one pattern. The 
delay_misr_en TDR enables this delay. 

Figure 11-3. IJTAG Network in the LogicBIST Controller

DFT Insertion
The DFT insertion process for LogicBIST includes specifying a new static signal, 
capture_per_cycle_static_en. This DFT signal and the existing observe_test_point_en DFT 
signal control the observation scan test points. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4182

Observation Scan Technology
DFT Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Specify the capture_per_cycle_static_en signal with the add_dft_signals command during the 
DFT insertion pass in which you are generating the hybrid TK/LBIST IP. For example:

# Load the design
# Add DFT signals
.
.
.
# Required DFT signals for hybrid TK/LBIST
add_dft_signals control_test_point_en observe_test_point_en x_bounding_en

# Required DFT signal for observation scan
add_dft_signals capture_per_cycle_static_en

add_dft_signals int_ltest ext_ltest_en

set_dft_specification_requirements -logic_test on
.
.
# Create DFT specification
set spec [create_dft_specification -sri_sib_list {occ edt lbist} ]

read_config_data logic_instruments.dftspec -in_wrapper $spec -replace

process_dft_specification
.
.

For details about this process, refer to “Second DFT Insertion Pass: Inserting Top-Level EDT 
and OCC” in the Tessent Shell User’s Manual.

The capture_per_cycle_static_en signal is a static DFT signal with defaults similar to other 
static DFT signals. You can specify it with either a source node or create it with a TDR:

add_dft_signals capture_per_cycle_static_en 
{ -source_node pin_port_spec [-make_ijtag_port] | -create_with_tdr }

Within the DFT specification, the default for Controller/capture_per_cycle_en is “auto.” This 
resolves to “on” when a DFT signal called capture_per_cycle_static_en is present, and it 
resolves to “off” otherwise. 

DftSpecification(module_name,id) {
  LogicBist {
    Controller(id) {
      capture_per_cycle_en : on | off | auto ;  // default: auto
      Connections {
        capture_per_cycle_en :
          OptionalDftSignal(capture_per_cycle_static_en) ;
      }
    }
  }
}



Observation Scan Technology
Test Point and Scan Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 183

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

You can also use the explicit “on” or “off” values to enable or disable capture per cycle. Tessent 
Shell issues an error message when this property is “off” and the capture_per_cycle_static_en 
DFT signal exists.

The Connections/capture_per_cycle_en property connects the signal to the input 
capture_per_cycle_static_en pin in the LogicBIST controller. Scan insertion connects the 
corresponding LogicBIST controller output pin to the observation scan cells.

Timing Constraints
Tessent Shell generates timing constraints for the hybrid IP during IP generation in Synopsys 
Design Constraints (SDC) format. The SDC file contains timing constraints and exceptions for 
all modes of operation of the IP.

The Tessent Shell User’s Manual describes the timing constraints and exceptions for logic test 
instruments in “LOGICTEST Instruments.” For observation scan, the following applies:

• The capture_per_cycle_dynamic_en signal from the LogicBIST controller is a multi-
cycle path exception in the following procs, similar to prpg_en and misr_en:

o tessent_set_ltest_modal_lbist_shift

o tessent_set_ltest_non_modal

• The capture_per_cycle_static_en TDR is a false path exception in the following procs, 
similar to x_bounding_en implemented inside the LogicBIST controller (valid for the 
dofile flow only):

o tessent_set_ltest_modal_controller_chain

o tessent_set_ltest_non_modal

Test Point and Scan Insertion
Observation scan includes functionality that enables you to activate the “dft -test_points” and 
“dft -scan” sub-contexts at the same time. You can use all of the commands from either sub-
context, which means you only need to specify the insert_test_logic command once to insert 
both test points and scan chains. For any actions that differ between the two sub-contexts, such 
as S-rule handling, the merged scenario uses the requirements for scan insertion, which are 
usually stricter than those for test point insertion.
The merged dft -test_points -scan context supports wrapper analysis, X-bounding, test point 
analysis and insertion, scan chain analysis and insertion, and so on. Ensure that you specify the 
following commands in the following order:

1. Test point identification and analysis: analyze_test_points

2. X-bounding: analyze_xbounding



Hybrid TK/LBIST Flow User’s Manual, v2022.4184

Observation Scan Technology
Test Point and Scan Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Wrapper analysis (as needed): analyze_wrapper_cells

4. Scan insertion: analyze_scan_chains

Before scan insertion, the tool automatically stitches the observation scan cells into their own 
scan chains.

Note
Using a third-party tool for test point insertion is limited to inserting test points and stitching 
observation scan observe points into dedicated scan chains. For more information, see “How 

to Create a Test Points and OST Scan Insertion Script for DC or Genus” in the Tessent Scan and 
ATPG User’s Manual and the “set_insert_test_logic_options -generate_third_party_script” 
command description in the Tessent Shell Reference Manual.

Dofile Example
The following dofile example shows a simple test point insertion and scan insertion session:

• Line 1: Set the context to dft -test_points -scan for both test point insertion and scan 
insertion.

• Lines 11-12: Use the “set_test_point_analysis_options 
-capture_per_cycle_observe_points” command to activate observation scan mode. 

In addition, for accurate test coverage estimation, Tessent Shell requires the shift length 
of the observation scan chains during test point analysis. Specify the 
“set_test_point_analysis_options -minimum_shift_length” option, setting the shift 
length to the anticipated scan chain length of the design. This option is required to 
initiate the test point insertion algorithm. 

Note
You cannot generate both regular observe points and observation scan observe 
points in the same run.

• Line 13 (optional): You can use the set_test_point_insertion_options command to 
specify the name of the observation scan enable pin rather than use the default name 
“capture_per_cycle_static_en”.

• Line 31: The insert_test_logic command specified once for both test points and scan 
chains.

1 set_context dft -test_points -scan -no_rtl
2
3 set_tsdb_output_directory tsdb_outdir
4
5 read_verilog piccpu_gate.v
6 read_cell_library ../tessent/adk.tcelllib ../data/picdram.atpglib
7 read_cell_library ../libs/mgc_cp.lib
8 read_design piccpu -design_id rtl -no_hdl
9 set_current_design



Observation Scan Technology
LogicBIST Fault Simulation

Hybrid TK/LBIST Flow User’s Manual, v2022.4 185

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

10
11 set_test_point_analysis_options -capture_per_cycle_observe_points on
12 set_test_point_analysis_options -minimum_shift_length 50
13 # set_test_point_insertion_options -capture_per_cycle_en obs_scan_en
14 set_test_point_type lbist_test_coverage
15
16 set_system_mode analysis
17
18 set_test_point_analysis -pattern_count_target 10 \
19 -test_coverage_target 99.9 -total_number 10
20
21 analyze_test_points
22
23 analyze_xbounding
24
25 add_scan_mode short_chains -edt [get_instance -of_module *_edt_lbist_c0]
26
27 analyze_scan_chains
28
29 write_test_point_dofile -replace -output_file tpDofile.do
30
31 insert_test_logic

LogicBIST Fault Simulation
Observation scan chains capture and accumulate test responses at every capture and every shift 
cycle, in contrast to standard scan chains. Every clock cycle can be thought of as a pattern. 
Stimuli provided during capture cycles are called parent patterns, while stimuli provided during 
shift cycles constitute intermediate patterns.
Intermediate pattern stimuli consist of the parent pattern test responses being shifted out and the 
subsequent parent pattern load values being shifted in. While the tool shifts the data through the 
regular scan chains, the observation scan cells capture and accumulate the circuit’s responses 
every clock cycle. This translates to a faster fault coverage gradient, but it also means that the 
number of fault simulations increases by the number of regular patterns multiplied by the shift 
length.

Note
The number of simulations increases by a factor of the shift length, which means increased 
simulation times and memory requirements. Capture occurs for every shift, and hence there 

is a direct dependency on the shift length. In order to reduce simulation time, you should use 
distributed processing. Turning off multithreading (set_multiprocess_options –multithreading 
off) typically yields the best simulation time reduction.

Simulation Options for Observation Scan
When fault-simulating BIST patterns, Tessent Shell stores and writes out the per-cycle 
snapshots of the observation scan chains into the PatDB. Because the data volume may be 
significant, this only happens for the first 256 patterns, by default. During simulation, when the 



Hybrid TK/LBIST Flow User’s Manual, v2022.4186

Observation Scan Technology
LogicBIST Fault Simulation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tool reaches the limit, it no longer stores all per-cycle data. This can impact the scan cell 
monitoring debugging feature when observation scan is enabled; scan cell monitoring stops 
monitoring observation scans when it reaches the limit of per-cycle snapshots stored in the 
PatDB.

To change the default maximum number of patterns for which the per-cycle data is stored (and 
thus can be monitored for debugging purposes), specify the following command in your fault 
simulation dofile:

set_simulation_options -obs_scan_per_cycle_data_limit integer

The specified integer is the maximum number of patterns that can be written to the PatDB. You 
can write out less per-cycle data into the PatDB by specifying the write_tsdb_data 
-max_per_cycle_pattern switch.

For observation_scan, the tool can write out parallel testbenches that contain a certain number 
of last shift cycles (using “write_patterns -parameter_list {SIM_POST_SHIFT integer}”) if the 
corresponding shift cycle data have been stored during fault simulation. If the parallel patterns 
are within the pattern range specified by “set_simulation_options 
-obs_scan_per_cycle_data_limit,” then for every pattern, the tool stores all of the per-cycle data 
during fault simulation, and you can write out any legal number of last shift cycles for the 
parallel testbenches after fault simulation. 

If the parallel patterns are beyond the specified pattern range for storing all per-cycle data, or 
there are no patterns containing per-cycle data (“set_simulation_options 
-obs_scan_per_cycle_data_limit 0”), by default the tool stores only the data for one shift cycle. 
In this case, if you want to simulate parallel patterns with more shift cycles, use the following 
command to specify the total number of shift cycles to be stored during the fault simulation:

set_simulation_options -obs_scan_last_shift_cycles integer

For integer, specify up to 10% of the total shift length. The tool issues a warning and re-sets the 
integer to 10% of the total shift length if you specify a value greater than this threshold.

BIST DRC Rules for Observation Scan
The following BIST DRC rules are specific to observation scan:

• B5 — Validates that the observation scan cells are connected in their own scan chain 
distinct from other scan cells.

• B6 — Validates the connectivity of the observation scan OPs to the observation scan 
cells to ensure that the scan cells can capture data correctly for every shift cycle. 

For information, see the B5 and B6 rule descriptions in the Tessent Shell Reference Manual.



Observation Scan Technology
Pattern Mismatch Debugging Based on Scan Cell Monitoring

Hybrid TK/LBIST Flow User’s Manual, v2022.4 187

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Pattern Mismatch Debugging Based on Scan 
Cell Monitoring

You can debug serial patterns with observation scan enabled.
Once the data is stored in the PatDB, you can use it to detect the mismatches as soon as an 
unexpected value reaches the observation scan cell. To enable debugging, set the 
SimulationOptions/logic_bist_debug property in the PatternsSpecification wrapper to 
monitor_scan_cells. For details, refer to “Debug Based On Scan Cell Monitoring” on page 115.

In the following example, a stuck-at 0 fault injected at the KEY_SCHEDULE_0/sub_67/U36/Y 
pin forces a mismatch in pattern 1. The fault effect is observed in the observation scan chain 
during shift.

The first lines of the simulation transcript for this pattern set look as follows. Without enabling 
simulation debug, the only failure you would see is the final MISR signature that is scanned out 
and compared at the end of the pattern.

# 100ns: Pattern_set serial_load_initial_settings

# 400ns: Pattern_set serial_load

# 400ns:  Setting up controller xtea_tk_lbist_ip_tessent_lbist_i

# 400ns:     Number of patterns  : 8 (8 + 0 warm-up patterns)

# 400ns:     Pattern Length      : 17

# 400ns:     Shift Clk Select    : 0b00

# 400ns:     Capture Phase Width : 0x7 Shift Clock Cycles

# 400ns:     PRPG Seed           : 0x0a4f

# 400ns:     MISR Seed           : 0x000000

# 27500ns:  Starting controller xtea_tk_lbist_ip_tessent_lbist_i in Normal mode, patterns 0 

to 7

# 29900ns:     Checking that the controller xtea_tk_lbist_ip_tessent_lbist_i DONE signal is 

NO at the beginning of the test

# 35591ns: Mismatch at pin 

KEY_SCHEDULE_0.sub_67.ts_1_osp_465smodp1_i.ts_1_logic_0fsffp1_i.Q, Simulated 1, Expected 0

# 35591ns: Corresponding scan cell for pattern 1 at shift cycle 12: KEY_SCHEDULE_0/sub_67/

ts_1_osp_465smodp1_i/ts_1_logic_0fsffp1_i/Q, Simulated 1, Expected 0

# 35601ns: Mismatch at pin 

KEY_SCHEDULE_0.sub_67.ts_1_osp_467smodp1_i.ts_1_logic_0fsffp1_i.Q, Simulated 0, Expected 1

# 35601ns: Corresponding scan cell for pattern 1 at shift cycle 13: KEY_SCHEDULE_0/sub_67/

ts_1_osp_467smodp1_i/ts_1_logic_0fsffp1_i/Q, Simulated 0, Expected 1

...

With monitor_scan_cells enabled, you can see that the first mismatch was observed in pattern 1 
at shift cycle 12 at the scan cell KEY_SCHEDULE_0/sub_67/ts_1_osp_465smodp1_i/
ts_1_logic_0fsffp1_i/Q.

To find the cause of this mismatch, compare the simulation waveform against LogicBIST fault 
simulation. First, use the add_schematic_objects command to view the failing flop in the 
schematic viewer, and then specify the following command to display the relevant data:

set_gate_report pattern_index 1 -obs_scan_unload_shift_cycle 12



Hybrid TK/LBIST Flow User’s Manual, v2022.4188

Observation Scan Technology
Pattern Mismatch Debugging for Parallel Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

A mismatch reported in shift cycle 0 corresponds to the values at the end of capture phase; 
display these values with the “set_gate_report pattern_index n” command.

Figure 11-4. Failing Flop in Schematic Viewer

You can now compare the fault simulation data with the testbench simulation. The value 
captured in the observation scan cell is 0 in the fault simulation and 1 in the testbench 
simulation waveform. Starting at the OBS input of the observation scan cell, you can trace the 
difference in the simulations to the fault injection site.

Figure 11-5. Compare Simulation Data

In this example, the failure is easy to identify with minimal tracing. In some cases, you may be 
required to trace backwards through many gates to find the point where fault simulation and 
Verilog simulation diverged.

Pattern Mismatch Debugging for Parallel 
Patterns

You can use parallel patterns to validate observation scan simulation on shift cycles, also known 
as pattern mismatch debugging for parallel patterns.
For observation scan fault simulation you can report the simulation values for a given shift cycle 
using the “set_gate_report pattern_index -obs_scan_unload_shift_cycle” command. You can 
then compare the results to the actual Verilog simulation values (or scan cell monitoring results) 
for debugging serial pattern simulation mismatches. For more information, see “Pattern 
Mismatch Debugging Based on Scan Cell Monitoring” on page 187.



Observation Scan Technology
Pattern Mismatch Debugging for Parallel Patterns

Hybrid TK/LBIST Flow User’s Manual, v2022.4 189

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool also enables generating the parallel testbench with last shift cycles for observation scan 
using the “set_simulation_options -obs_scan_last_shift_cycles integer” and “write_patterns 
-parallel -parameter_list {SIM_POST_SHIFT integer}” commands. (See “Simulation Options 
for Observation Scan” on page 185). If there are simulation mismatches on these parallel 
patterns with shift cycles, you can compare the Verilog simulation results with the 
corresponding gate report simulation values (“set_gate_report pattern_index 
-obs_scan_unload_shift_cycle”) for tracing the cause of the simulation mismatches.

For observation scan parallel patterns that simulate shift cycles, the load values of observation 
scan chains for the given last shift cycle are obtained from the corresponding scan cells’ content 
stored during fault simulation. The tool then performs Verilog simulation on the following shift 
and capture cycles after loading the values. 

Because each shift cycle simulation depends on the simulation results of the previous cycle, the 
parallel testbench might not contain enough cycles for tracing the cause of the simulation 
mismatches. The tool does not enable generating a parallel testbench with too many shift cycles: 
only 10% of the total shift length for parallel patterns. For information, see the description of 
“set_simulation_options -obs_scan_last_shift_cycles.”

In this case, either increase the last shift cycles for the parallel patterns (within the maximum 
legal range) to see if you can trace to the cause to the mismatches. Or use serial patterns with 
more complete simulation results. See “Parallel Versus Serial Patterns” in the Tessent Scan and 
ATPG User’s Manual. 

Although the tool does not enable generating the parallel testbench with complete shift cycles, 
generating parallel patterns with some last shift cycles is still a good idea because parallel 
patterns simulate more quickly than serial patterns. Simulating parallel patterns with a number 
of shift cycles provides a way to quickly check if a certain number of the shift cycles are 
simulated as expected.



Hybrid TK/LBIST Flow User’s Manual, v2022.4190

Observation Scan Technology
Pattern Mismatch Debugging for Parallel Patterns

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Hybrid TK/LBIST Flow User’s Manual, v2022.4 191

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Chapter 12
Independent Hybrid TK/LBIST Insertion Flow

The insertion of the LBIST controller and EDT controllers has been decoupled to allow you to 
insert LBIST-ready EDT separately from the LogicBIST. This chapter describes the features 
that support this enhanced flow. Hybrid EDT/LBIST controller and hybrid EDT controller 
references are used interchangeably.

Independent Insertion Flow Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Tessent EDT and LogicBIST IP Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
EDT and LogicBIST IP Generation Overview (Independent Insertion Flow)  . . . . . . . 196

IJTAG Network in EDT/LogicBIST IP (Independent Insertion Flow)  . . . . . . . . . . . . . . . 196
LBIST-Related Clock Signals for the Independent Insertion Flow . . . . . . . . . . . . . . . . . . 197

LBIST Load/Unload Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Timing Constraints (SDC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

SDC File Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Generating EDT and LogicBIST IP for Independent Insertion . . . . . . . . . . . . . . . . . . . 219

Generating LogicBIST-Ready EDT Child Blocks Without OCC  . . . . . . . . . . . . . . . . . . . 220
Generating LogicBIST-Ready EDT Child Blocks With OCC . . . . . . . . . . . . . . . . . . . . . . 226
Generating LogicBIST-Ready Grandchild Blocks with OCC . . . . . . . . . . . . . . . . . . . . . . 232

SSN and Hybrid TK/LBIST Insertion Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Independent Insertion With SSN Flow Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Generating SSN ScanHost IP for Independent Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Top-Level LBIST and External Test Mode in Child Cores. . . . . . . . . . . . . . . . . . . . . . . 250
Child-Level OCC Inactive During External Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Child-Level OCC Active During External Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Child-Level Hybrid EDT For Wrapper Chains Active During External Test  . . . . . . . . . . 256

Limitations of the Independent Insertion Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Independent Insertion Flow Overview
The independent insertion flow enables you to insert an LBIST-ready EDT controller 
independently from the LBIST controller. 
The following enhancements support the independent insertion flow: 

• The LBIST-ready EDT controllers can now be added to child design levels making them 
easier to reuse as sub-blocks in other designs.



Hybrid TK/LBIST Flow User’s Manual, v2022.4192

Independent Hybrid TK/LBIST Insertion Flow
Independent Insertion Flow Overview

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• EDT controllers are now directly on the IJTAG network instead of being on a sub-
network of the LBIST controller’s IJTAG network.

• Simplified single chain mode using the existing IJTAG network chains instead of having 
a separate IJTAG interface for LBIST.

• Sub-blocks now reuse edt_clock/shift_capture_clock gaters so that OCC and EDT 
receive the expected clock pulses.

• New DFT signals provide control signals from the LBIST controller to the sub-blocks. 
These signals enable communication between the two passes when inserting LBIST-
ready blocks and the LBIST controller.

• LBIST load/unload waveforms are now fully programmable during pattern retargeting.

• The LBIST controller now allows OCCs with a shift_en capture trigger. The value 
“auto” for the property DftSpecification/OCC/capture_trigger now resolves to 
capture_en when you specify an LpctType3 wrapper in the same insertion pass; 
otherwise, it resolves to shift_en.

Figure 12-1 illustrates the resulting block diagram after independent insertion. The EDT 
controller has been inserted in Block, which is in a lower design level, and the LBIST controller 
and another hybrid EDT controller have been inserted in the current physical block.

Figure 12-1. Independent Insertion Flow Block Diagram



Independent Hybrid TK/LBIST Insertion Flow
Independent Insertion Flow Overview

Hybrid TK/LBIST Flow User’s Manual, v2022.4 193

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Block contains an LBIST-ready EDT controller at a different design level, and the LBIST 
controller supplies the following new dynamic DFT control signals: lbist_reset, lbist_prpg_en, 
and lbist_misr_accumulate_en. The LBIST controller port lbist_test_clock_out drives the 
test_clock port on Block, and the LBIST controller port edt_update_out drives the edt_update 
port on Block.

Figure 12-2 shows the contents of Block. Typically, when the LBIST controller is inserted in 
the same insertion pass as the EDT controller, the shift_capture_clock and edt_clock gaters are 
moved within the LBIST controller. However, within Block, these gaters remain because there 
is no LBIST controller to move them into. The LBIST controller reuses these gaters to ensure 
that OCC and EDT get the correct clock waveforms.

Figure 12-2. Block Contents

Figure 12-3 shows the contents of the LBIST controller. The lbist_test_clock_out port has its 
own clock gater. During LBIST mode, the LBIST controller pulses the clock during shift, 
capture, and when the edt_lbist_clock needs a single pulse after capture. The clock gaters in 
Block use the test_clock (from lbist_test_clock_out), edt_update, and scan_en signals. This 
ensures that all the desired pulses reach the OCC and EDT.



Hybrid TK/LBIST Flow User’s Manual, v2022.4194

Independent Hybrid TK/LBIST Insertion Flow
Tessent EDT and LogicBIST IP Generation

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-3. LBIST Controller Contents

The single chain mode for the TK/LBIST flow is implemented using the IJTAG network that is 
created when inserting the EDT and LogicBIST controllers. The IJTAG network of the EDT 
uses a SIB that allows access to all scan cells associated with the particular EDT for the single 
chain mode. The IJTAG network for EDT controllers is merged with the child-level IJTAG 
network for other instruments such as MBIST.

In the independent insertion flow, the single chain mode for LBIST pattern diagnosis is 
simplified so that the Single Chain Mode Logic module is not needed to concatenate all of the 
EDT controllers short chains into a single chain. With this flow, each EDT controller contains a 
SIB that provides access to its short chains through the IJTAG network. The DftSpecification 
for the EDT single_bypass_chain property determines whether or not the EDT uses the single 
chain mode. Setting the single_bypass_chain property to on indicates that a single bypass chain 
is present and generates new single chain mode logic in the EDT. All independently generated 
EDT controllers should have the single_bypass_chain property enabled in order to use the 
single chain mode for LBIST pattern diagnosis.

Tessent EDT and LogicBIST IP Generation
As part of the hybrid IP generation step, you generate the shared Tessent EDT and LogicBIST 
RTL. The tool generates one LogicBIST controller for all EDT and LogicBIST blocks in a core.
You can also configure the low-power scheme to control the switching activity during “shift” to 
reduce power consumption.



Independent Hybrid TK/LBIST Insertion Flow
Tessent EDT and LogicBIST IP Generation

Hybrid TK/LBIST Flow User’s Manual, v2022.4 195

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

There is no TAP controller at the core level. The tool integrates the access mechanism in the 
IJTAG network at the core level. This step of the flow creates new core-level pins 
corresponding to the Segment Insertion Bit (SIB) control signals, tck, and LBIST scan I/O. The 
core-level Verilog patterns operate these pins directly. These pins connect to the TAP controller 
at the top level of the design. See “Top-Level ICL Network Integration” on page 125 for more 
information.

As part of IP generation, the tool writes the following files to the TSDB:

• ICL file — Consists of the ICL module description for the LBIST controller, the NCP 
index decoder, and all EDT and LogicBIST blocks that the controller tests. 

• PDL file — Contains iProcs at the core level that use the ICL modules.

During IP generation, the generated ICL file describes only the LogicBIST, NCP index decoder, 
and EDT modules. The extracted ICL file includes the core-level pin names and connectivity 
found from the core-level design netlist. The tool uses the extracted ICL file during top-level 
pattern generation. See “ICL Extraction and Pattern Retargeting” on page 131 for more 
information. You can write Verilog patterns in this step and simulate them to verify the test 
operation at the core level.

For complete information, see “EDT and LogicBIST IP Generation” on page 23. During 
integration with the top level, the tool adds new top-level test pins or uses existing top-level test 
pins controlled internally by the EDT and LogicBIST IP. 

Logic Synthesis
You must synthesize all of the EDT and LogicBIST blocks and the common LogicBIST 
controller. Synthesis is fully automated. In the gate-level flow, you can use the run_synthesis 
command to synthesize the controllers and the test logic in the TSDB and integrate them into 
the gate-level design. When the run_synthesis command completes successfully, it creates a 
concatenated netlist of the design that contains the synthesized test logic and modified design 
modules and places them in the dft_inserted_designs directory of the TSDB.

In the RTL-level flow, you can use the run_synthesis command to synthesize the test logic 
inserted by the tool, but the netlists are not concatenated.



Hybrid TK/LBIST Flow User’s Manual, v2022.4196

Independent Hybrid TK/LBIST Insertion Flow
EDT and LogicBIST IP Generation Overview (Independent Insertion Flow)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

EDT and LogicBIST IP Generation Overview 
(Independent Insertion Flow)

EDT and LogicBIST IP generation stores several files in the TSDB. The dofiles are used for 
LogicBIST fault simulation and pattern creation, while the ICL, PDL, and IP netlist files are 
used as inputs for pattern generation.

IJTAG Network in EDT/LogicBIST IP (Independent Insertion Flow) . . . . . . . . . . . . . 196
LBIST-Related Clock Signals for the Independent Insertion Flow  . . . . . . . . . . . . . . . . 197

IJTAG Network in EDT/LogicBIST IP (Independent 
Insertion Flow)

SIBs are a mechanism to provide flexible access to data registers they control. For the Tessent 
version of a SIB, the data registers are accessible via the IJTAG network when the SIB 
controlling a data register is set to 1, and the data register is bypassed when the SIB is set to 0. 
SIBs are clocked by TCK. To provide flexibility in accessing specified registers in the IJTAG 
network at different times, the SIBs are arranged in a hierarchical tree structure. The SIB enable 
signals for the child SIBs are controlled by their parents. This is how all the SIBs inside the 
LogicBIST controller, EDT/LogicBIST controllers are configured.

Each EDT/LogicBIST controller contains three SIBs. They provide access to the PRPG, EDT 
chain mask register, and MISR, respectively. The EDT SIBs are clocked by tck, and the data 
registers they control are clocked by edt_clock. The tool adds a lockup cell to avoid clock skew 
between these two clock domains. 

For each specified NCP, an 8-bit register is created and inserted on the ICL network. These 
registers are loaded at runtime so that the proportion of patterns applied for each NCP is 
programmable. When an integer percentage is provided during IP creation, the NCP register 
values are reset to the specified values if ijtag reset is asserted. Otherwise, these registers are 
reset to equal percentages across all NCPs. For more information, see “Generating the EDT and 
LogicBIST IP” on page 64.

The following figure shows the IJTAG network in a hybrid EDT/LBIST-inserted design. In this 
case, the EDT controllers can exist in the lower level block. Each EDT controller adds their scan 
chains to the IJTAG network using a SIB. 



Independent Hybrid TK/LBIST Insertion Flow
LBIST-Related Clock Signals for the Independent Insertion Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 197

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-4. SIBs Insertion and Integration of Cores for the Independent 
Insertion Flow

LBIST-Related Clock Signals for the Independent 
Insertion Flow

The independent insertion flow requires LBIST-related clock signal routing. 
The TK/LBIST clock signal routing consists of two steps.

1. Prepare the LBIST-ready block.

2. Insert the LBIST controller.

LBIST-Ready Block Preparation
Figure 12-5 shows the circuit logic for the shift_capture_clock and edt_clock signals. The clock 
gaters for these signals are created by the add_dft_signal command with the 
create_from_other_signals option. OCCs with shift_en trigger are used automatically to reduce 
the number of required connections. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4198

Independent Hybrid TK/LBIST Insertion Flow
LBIST-Related Clock Signals for the Independent Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-5. LBIST-Ready Block Before Insertion

LBIST Controller Insertion
Figure 12-6 shows the design after the LBIST controller is inserted. Here the OCC uses shift_en 
as the capture trigger.

Figure 12-6. LBIST-Ready Block After Insertion Using shift_en



Independent Hybrid TK/LBIST Insertion Flow
LBIST-Related Clock Signals for the Independent Insertion Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 199

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-7 shows the design after the LBIST controller is inserted with OCC, where the OCC 
uses capture_en as the trigger to generate the programmable capture pulses. Use only when you 
have a third-party OCC that uses capture_en, or if the design uses Low Pin Count Test 
controllers.

Figure 12-7. LBIST-Ready Block After Insertion Using capture_en

LBIST Controller Clock Gating Signals
In order for the LogicBist controller to work with the LBIST-ready EDT blocks, it must provide 
lbist_test_clock_output. Figure 12-8 shows how the clock-gating signals are generated inside 
the LBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4200

Independent Hybrid TK/LBIST Insertion Flow
LBIST Load/Unload Timing

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-8. LBIST Controller Clock-Gating Signals

LBIST Load/Unload Timing
The load/unload timing during the LogicBIST operation is fully programmable in the 
independent insertion flow.
The set_load_unload_timing_options command enables you to modify aspects of the timing 
diagram such as the amount of setup and hold margin provided between the shift_capture_clock 
and the controls (scan_en, lbist_prpg_en, misr_accumulate_en, edt_clock, and edt_update). 

The required amount of setup and hold timing for at-speed signals is difficult to predict until 
you have implemented the clock trees and high-fanout distribution buffering schemes during the 
layout implementation step. After synthesis, those are still ideal nets, making it impossible to 
get a precise timing relationship between the clock and the controls. To account for this, use the 
set_load_unload_timing_options command to program the timing for the LogicBIST controller.



Independent Hybrid TK/LBIST Insertion Flow
LBIST Load/Unload Timing

Hybrid TK/LBIST Flow User’s Manual, v2022.4 201

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

See set_load_unload_timing_options in the Tessent Shell Reference Manual for details on 
control signal timing in the independent insertion flow.

When the independent insertion flow is used:

• The scan_en transitions on the positive edge of the shift clock.

• lbist_prpg_en and misr_accumulate_en transition on the negative edge of the clock.

You can add extra setup and hold cycles for the scan_en, edt_update, lbist_prpg_en, and 
misr_accumulate_en signals. See the HardwareDefaults properties in the 
SetLoadUnloadTimingOptions wrapper, and the set_load_unload_timing_options command. 
The scan_en, edt_update, prpg_en, and misr_en signals each get new TDRs that are placed 
behind an SIB so that the number of extra setup/hold cycles can be loaded at runtime. The 
prpg_en and misr_en signals share the same TDR because they have the same timing 
characteristics. Use the SetLoadUnloadTimingOptions wrapper to control the maximum 
number of cycles for the scan_en, setup_en, hold_en, edt_update, prpg_en, and misr_en signals.

During the LBIST controller operation, the tool can apply a total of max cycles before and after 
the capture clocks are pulsed to help with the timing closure of the test logic. By default, the 
lowest possible number of dead cycles are used. There is one dead cycle during shift pause, and 
two in capture pause. This gives a setup martin of 0 extra cycles and a scan_en hold margin of 
one cycle. These are hard-coded values.



Hybrid TK/LBIST Flow User’s Manual, v2022.4202

Independent Hybrid TK/LBIST Insertion Flow
Timing Constraints (SDC)

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Timing Constraints (SDC)
In the TK/LBIST independent insertion flow, child physical blocks may include LBIST-ready 
EDT controller blocks. In this flow, the block-level SDC should constrain these controllers for 
both EDT and LBIST modes.
SDC File Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

LBIST-Ready Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Hierarchical STA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
STA For Legacy Hierarchical TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Extended SDC Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SDC Procedure Generation for Hybrid EDTs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SDC Procedures for Hierarchical STA With Independent Insertion Flow. . . . . . . . . . . . . 216



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 203

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SDC File Contents
Features in certain SDC procedures support LBIST-ready blocks.
LBIST-Ready Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Hierarchical STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
STA For Legacy Hierarchical TK/LBIST Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Extended SDC Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SDC Procedure Generation for Hybrid EDTs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SDC Procedures for Hierarchical STA With Independent Insertion Flow . . . . . . . . . . 216

LBIST-Ready Blocks
You can create LBIST-ready blocks with edt_clock and shift_capture_clock provided by 
primary inputs, or generated internally from the test_clock signal. Depending on the clocking 
scheme and whether the block contains OCC, there are several valid LBIST-ready block 
configurations.



Hybrid TK/LBIST Flow User’s Manual, v2022.4204

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-9. LBIST-Ready Block With PI Clocking Scheme and No OCC



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 205

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-10. LBIST-Ready Block With PI Clocking Scheme and OCC



Hybrid TK/LBIST Flow User’s Manual, v2022.4206

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-11. LBIST-Ready Block With test_clock Clocking Scheme and OCC

Hierarchical STA
You can create LBIST-ready physical blocks in the independent insertion flow with the LBIST 
controller inserted in a parent block. This requires a set of procedures that can retarget SDC 
constraints for the hybrid EDT logic in the individual child physical blocks.
All physical blocks use the same set of timing parameters (for example, the number of scan_en, 
edt_update, prpg_en, and misr_en extra LBIST setup and hold cycles) specified for the current 
design by the set_load_unload_timing_options command.

If your flow requires child LBIST-ready physical block instance netlists, replace your call to the 
LBIST modal procedures with their “*_with_sub_PBs” equivalents (See “SDC Procedures for 
Hierarchical STA With Independent Insertion Flow” on page 216) to enable the blocks 
associated with the LBIST controller. To use these procedures, you must load the full or partial 
(graybox) netlists of the sub-physical LBIST-ready blocks.



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 207

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The SDC extraction infrastructure at the parent level with the LBIST controller provides an 
SDC procedure to prepare all sub-physical blocks and any nested physical blocks for LBIST-
related static timing analysis.

See Figure 12-12 and Figure 12-13 for an example of LBIST-ready physical blocks controlled 
by the LBIST controller in the parent block.

Figure 12-12. LBIST-Ready Physical Block



Hybrid TK/LBIST Flow User’s Manual, v2022.4208

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-13. LBIST Controller in Parent Block 

Hierarchical STA support is also provided for designs where the child physical block has a 
LBIST controller and a separate hybrid EDT for its wrapper chains, and the parent level LBIST 
controller is associated with the ext_mode hybrid EDT from core as shown in Figure 12-14. In 
this case, the call to the LBIST modal procedures are replaced with their “*_with_sub_PBs” 
equivalents. See “SDC Procedures for Hierarchical STA With Independent Insertion Flow” on 
page 216for details.



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 209

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-14. Hybrid EDT for External Mode Controlled by Parent-Level LBIST

STA For Legacy Hierarchical TK/LBIST Flow
The independent insertion flow supports the legacy flow for concurrent hierarchical insertion of 
TK/LBIST. No changes for SDC are required.
In the TK/LBIST concurrent insertion flow for hierarchical designs, there is one LBIST 
controller per physical region, and the LBIST controller is defined with hybrid EDTs in the 
same pass. The LBIST controller inserted into the sub-physical block controls associated hybrid 
EDTs and performs LBIST for int_mode of the core. The LBIST for ext_mode of the sub-
physical block is handled by another LBIST controller inserted at the parent level. The wrapper 
chains of the sub-physical block are part of the int_mode of the parent level design and are 
driven by hybrid EDT from the parent level.

This flow is also supported in the independent insertion flow. The hierarchical STA of LBIST-
related modes does not require any special procedures. You can perform STA independently for 
the sub-physical block and for the parent level by calling the procedure 
tessent_set_ltest_lower_pbs_external_mode.



Hybrid TK/LBIST Flow User’s Manual, v2022.4210

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-15. Illustration of the Legacy Hierarchical TK/LBIST Flow

Extended SDC Procedures
Certain existing SDC procedures are extended for the independent TK/LBIST insertion flow.

• tessent_set_ltest_non_modal

• tessent_set_ltest_modal_shift

• tessent_set_ltest_modal_edt_fast_capture

• tessent_set_ltest_modal_edt_slow_capture

• tessent_set_ltest_create_clocks

• tessent_set_ijtag_non_modal

See “LOGICTEST Instruments” in the Tessent Shell User’s Manual for complete information 
on these procedures.



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 211

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

tessent_set_ltest_non_modal
This procedure provides SDC timing constraints to add to combined functional DFT non-modal 
timing scripts for one-pass synthesis or layout. 

Note
Before running this procedure for an LBIST-ready block, you must specify the 
lbist_shift_clock parameters by setting the <tessent_lbist_shift_clock_name> and 

<tessent_lbist_shift_clock_period> variables. These variables define the name and period of 
the clock that the procedure adds on the appropriate ports of the LBIST-ready block. 

When scan cells are clocked by the functional clock input as shown in Figure 12-9 on page 204, 
the procedure defines lbist_shift_clock on the top-level ports you specify with the 
<tessent_lbist_clock_source_list> global variable.

The independent insertion flow adds the following constraints related to LBIST mode:

• Propagate both fast lbist_shift_clock and slow test_clock to the design cells, and block 
interactions between them.

• Add false paths from the EDT mask registers to all clock domains except TCK.

• When CCM is implemented with the EDT clock as the CCM clock, add false paths 
from:

o the EDT SIBs.

o single chain mode logic SIBs.

• Disable clock gating checks for MUXes that inject TCK. 

• Disable TCK propagation through the edt_lbist clock path of the inject_tck mux.

• Add multi-cycle paths (MCPs) from the scan enable port to the design scan cells using 
the fast lbist_shift_clock. The tool determines the number of cycles with the 
set_load_unload_timing_options procedure. The tool adds this MCP in addition to the 
scan_en MCP for ATPG that uses the same port but the slow test_clock instead.

• Add MCPs from ports that provide the prpg_en, misr_en, LogicBIST async reset, and 
edt_update signals to the hybrid EDT blocks.

tessent_set_ltest_modal_shift
This procedure sets the circuit in scan shift mode. The independent insertion flow adds the 
following constraints related to LBIST mode:

• Add case analysis to set lbist_en to inactive.

• Add false paths from the EDT mask registers.



Hybrid TK/LBIST Flow User’s Manual, v2022.4212

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Set case analysis to disable the EDT controller chain mode.

• Set case analysis to disable LBIST single chain mode concatenation.

tessent_set_ltest_modal_edt_fast_capture
This procedure sets the circuit in EDT fast capture mode. The independent insertion flow adds 
the following constraints related to LBIST mode:

• Add case analysis to set lbist_en to inactive.

• Set case analysis to disable the EDT controller chain mode.

• Set case analysis to disable LBIST single chain mode concatenation.

tessent_set_ltest_modal_edt_slow_capture
This procedure sets the circuit in EDT slow capture mode. The independent insertion flow adds 
the following constraints related to LBIST mode:

• Add case analysis to set lbist_en to inactive.

• Add false paths from the EDT mask registers.

• Set case analysis to disable the EDT controller chain mode.

• Set case analysis to disable LBIST single chain mode concatenation.

• Add false paths from ports providing to signals (lbist_misr_accumulate_en and 
lbist_reset) that control MISR.

tessent_set_ltest_create_clocks
This procedure creates the slow-speed test clocks used during scan mode. The independent 
insertion flow adds the following constraint related to LBIST mode:

• Create a slow test clock on the ports that are specified with the 
tessent_lbist_clock_source_list global variable. This functionality is needed when the 
scan cells are clocked by functional clocks as shown in Figure 12-9 on page 204.

tessent_set_ijtag_non_modal
This procedure creates the clock for TCK and configures input and output delays for ports 
created at the sub_block and physical_block design levels. The independent insertion flow adds 
the following constraints related to LBIST mode:

• Defines the ijtag_tck clock on the appropriate ports of the lbist-ready block (for 
example, test_clock, shift_capture_clock, and edt_clock).



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 213

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Defines the ports to be clocked by ijtag_tck when the scan cells are clocked by a 
functional clock input. These ports are identified with the 
<tessent_lbist_clock_source_list> global variable.

SDC Procedure Generation for Hybrid EDTs
The tool generates the following SDC procedures in the flow when hybrid EDTs are present. 
These procedures are also generated when the block contains hybrid EDTs without LBIST 
controllers for STA purposes.

• tessent_set_ltest_modal_lbist_shift

• tessent_set_ltest_modal_lbist_capture

• tessent_set_ltest_modal_lbist_setup

• tessent_set_ltest_modal_lbist_single_chain

• tessent_set_ltest_modal_lbist_controller_chain

• set_load_unload_timing_options

Note
Before running the tessent_set_ltest_modal_shift and tessent_set_ltest_modal_capture 
procedures for LBIST-ready blocks in STA using the fast lbist_shift_clock, you must 

specify the lbist_shift_clock parameters by setting the tessent_lbist_shift_clock_name and 
tessent_lbist_shift_clock_period variables. These variables define the name and period of the 
clock that the procedure adds on the appropriate ports of the LBIST-ready block.

tessent_set_ltest_modal_lbist_shift
This procedure sets the circuit in LBIST shift mode. You can configure the timing analysis for 
this mode to run with either shift_clock_src (by default) or test_clock.

To run this procedure with timing analysis for shift_clock_src, set the 
tessent_lbist_shift_clock_name and tessent_lbist_shift_clock_period variables before invoking 
the procedure. These variables define the name and period of the clock that will be 
automatically added on the appropriate ports of the LBIST-ready block. 

When the scan cells are clocked by functional clock inputs (see Figure 12-9 on page 204), the 
SDC procedure must define the clock signals (slow test_clock or fast lbist_shift_clock) on the 
top level ports that you specify with the tessent_lbist_clock_source_list global variable. 

The procedure does the following:

• Adds multi-cycle path exceptions on dynamic signals from the ports related to LBIST 
signals to design scan cells and hybrid EDT blocks. These include scan enable, prpg_en, 
misr_en, LogicBIST async reset, and edt_update.



Hybrid TK/LBIST Flow User’s Manual, v2022.4214

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Adds case analysis to set lbist_en to active.

• Adds false paths from the EDT mask registers.

• Sets case analysis to disable EDT controller chain mode.

• Sets case analysis to disable LBIST single chain mode concatenation.

• Adds false paths from all static DFT signals defined on ports, except lbist_en.

tessent_set_ltest_modal_lbist_capture
This procedure sets the circuit in lbist capture mode. Configure the timing analysis for this 
mode as described for tessent_set_ltest_modal_lbist_shift. The procedure does the following:

• Sets case analysis to constrain scan enable to off.

• Adds multi-cycle path exceptions on dynamic signals from the ports related to LBIST 
signals to design scan cells and hybrid EDT blocks. These include prpg_en, misr_en, 
LogicBIST async reset, and edt_update.

• Adds case analysis to set lbist_en to active.

• Adds false paths from the EDT mask registers.

• Sets case analysis to disable EDT controller chain mode.

• Sets case analysis to disable LBIST single chain mode concatenation.

• Adds false paths from all static DFT signals defined on ports, except lbist_en.

tessent_set_ltest_modal_lbist_setup
This mode propagates TCK through the IJTAG network in the hybrid EDT blocks to time the 
LogicBIST test_setup paths that initialize registers such as PRPG and edt_chain_mask, as well 
as test_end paths that read the MISR signature.

This mode does not propagate TCK to the design scan cells. It is only intended to check the 
IJTAG network paths. 

The procedure does the following:

• Adds multi-cycle path exceptions on dynamic signals from the ports related to LBIST 
signals to design scan cells and hybrid EDT blocks. These include prpg_en, misr_en, 
LogicBIST async reset, and edt_update.

• Adds case analysis to set lbist_en to active.

• Sets case analysis to disable the EDT controller chain mode.

• Sets case analysis to disable LBIST single chain mode concatenation.



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 215

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Sets case analysis to propagate TCK through the inject_tck MUX.

• Adds false paths from all static DFT signals defined on ports, except lbist_en.

tessent_set_ltest_modal_lbist_single_chain
This mode is available when single chain mode logic that enables LogicBIST diagnosis is 
enabled during IP generation. This mode propagates TCK through the IJTAG network paths 
and design scan cells, including the concatenation of the internal scan chains for single-chain 
shifting. The LogicBIST scan enable is constrained to 1 to time the shift paths in the design only 
with the TCK signal.

The procedure does the following:

• Sets case analysis to constrain the LogicBist mode scan enable signal to on.

• Adds multi-cycle path exceptions on dynamic signals from the ports related to LBIST 
signals to design scan cells and hybrid EDT blocks. These include prpg_en, misr_en, 
LogicBIST async reset, and edt_update.

• Adds case analysis to set lbist_en to active.

• Adds false paths from the EDT mask registers.

• Sets case analysis to disable the EDT controller chain mode.

• Sets case analysis to enable LBIST single chain mode concatenation.

• Sets case analysis to propagate edt_lbist clock through the inject_tck MUX.

• Adds false paths from all static DFT signals defined on ports, except lbist_en.

tessent_set_ltest_modal_lbist_controller_chain
This mode is available when the controller chain mode (CCM) logic is enabled during IP 
generation. The clock for this mode is either TCK, test_clock, or edt_clock, depending on the 
clocking scheme specified during IP creation. This mode tests only the LogicBIST and hybrid 
EDT controller blocks. Clocks are not propagated to design scan cells.

The procedure does the following:

• Sets input and output pin delays from the top-level ports to EDT blocks.

• Blocks propagation to scan cells by disabling timing for ports that provide the source of 
shift_capture_clock. When the scan cells are clocked by functional clock inputs as 
shown in Figure 12-9 on page 204, the procedure disables timing on the top level ports 
specified by the tessent_lbist_clock_source_list variable.

• Sets case analysis to enable the EDT controller chain mode.

• Sets case analysis to disable LBIST single chain mode concatenation.



Hybrid TK/LBIST Flow User’s Manual, v2022.4216

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• Sets case analysis to propagate TCK through the inject_tck MUX.

• Adds false paths from all static DFT signals defined on ports.

set_load_unload_timing_options
This procedure sets global Tcl timing variable values used in LBIST constraints. These include 
extra setup and hold clock cycles for scan_en, edt_update, prpg_en, and misr_en.

The LBIST-related modal STA procedures generated for designs where not all hybrid EDTs are 
associated with the LBIST controller from the current design level set different constraints for 
EDTs. For the unassociated EDTs, there are applied constraints setting them into the inactive 
state. This rule applies for all modal lbist procedures except for 
<ltest_prefix>_modal_lbist_controller_chain, which includes the same constraints for all 
available hybrid EDTs because this mode is not controlled by the LBIST controller but rather by 
a tester.

SDC Procedures for Hierarchical STA With Independent 
Insertion Flow

If the design contains LBIST-ready or extest LBIST-ready physical blocks, the tool generates 
the following SDC procedures for the flow. 
These procedures are chip-level versions of those described in “SDC Procedure Generation for 
Hybrid EDTs” on page 213. For example, tessent_set_ltest_modal_lbist_shift_with_sub_PBs is 
the hierarchical STA version of tessent_set_ltest_modal_lbist_shift.

• tessent_set_ltest_modal_lbist_shift_with_sub_PBs

• tessent_set_ltest_modal_lbist_capture_with_sub_PBs

• tessent_set_ltest_modal_lbist_setup_with_sub_PBs

• tessent_set_ltest_modal_lbist_single_chain_with_sub_PBs

• tessent_set_ltest_modal_lbist_controller_chain_with_sub_PBs

In addition to these, the tool provides tessent_set_ltest_lower_pbs_logicbist_internal_mode or 
tessent_set_ltest_lower_pbs_logicbist_external_mode (depending on existing child cores) to 
prepare the sub-physical blocks and any nested physical blocks for LBIST-related static timing 
analysis. This procedure performs the following tasks:

• Sets all wrapped sub-physical blocks to internal mode, if the corresponding DFT signals 
are present:

o For tessent_set_ltest_lower_pbs_logicbist_internal_mode:

• int_ltest_en = “1”



Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Hybrid TK/LBIST Flow User’s Manual, v2022.4 217

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• int_mode = “1”

• ext_ltest_en = “0”

• ext_mode = “0”

o For tessent_set_ltest_lower_pbs_logicbist_external_mode:

• int_ltest_en = “0”

• int_mode = “0”

• ext_ltest_en = “1”

• ext_mode = “1”

• ext_lbist_en = “1”

• Disables the clock gating checks on the clock multiplexers for cascaded OCCs from sub-
physical blocks (OCCs for which the fast_clock input is connected to the parent-level 
OCC’s output). Also, timing is disabled on the slow_clock paths of these OCCs because 
they are inactive during LBIST.

Example: STA of the lbist_shift and lbist_capture Modes
# load netlist of lbist-ready PBs and top design
read_verilog <sub-PB_netlist>
read_verilog <top_netlist> 
current_design <top_design_name>
link_design
 
set tessent_lbist_shift_clock_src(lbist_inst0) lbist_clock
source <top_sdc_file> 
# lbist_shift with lbist_clock
create_clock lbist_clock -period 10 -name \
  $tessent_lbist_shift_clock_src(lbist_inst0)
tessent_set_default_variables
tessent_set_ltest_lower_pbs_logicbist_internal_mode lbist_shift
tessent_constrain_<top>_mentor_ltest_modal_lbist_shift_with_sub_PBs 
update_timing
 
# lbist_capture with lbist_clock
reset_design
set tessent_lbist_shift_clock_src(lbist_inst0) lbist_clock
create_clock lbist_clock -period 10 -name \
  $tessent_lbist_shift_clock_src(lbist_inst0)
tessent_set_default_variables
tessent_set_ltest_lower_pbs_logicbist_internal_mode lbist_capture
tessent_constrain_<top>_mentor_ltest_modal_lbist_capture_with_sub_PB
s
update_timing



Hybrid TK/LBIST Flow User’s Manual, v2022.4218

Independent Hybrid TK/LBIST Insertion Flow
SDC File Contents

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Example: STA of the lbist_shift and lbist_capture Modes for Designs 
Containing Cores With Hybrid EDTs for ext_mode

# load netlist of lbist-ready PBs and top design
read_verilog <sub-PB_netlist>
read_verilog <top_netlist> 
current_design <top_design_name>
link_design
 
set tessent_lbist_shift_clock_src(lbist_inst0) lbist_clock
source <top_sdc_file> 
# lbist_shift with lbist_clock
create_clock lbist_clock -period 10 -name \
  $tessent_lbist_shift_clock_src(lbist_inst0)
tessent_set_default_variables
tessent_set_ltest_lower_pbs_logicbist_external_mode lbist_shift
tessent_constrain_<top>_mentor_ltest_modal_lbist_shift_with_sub_PBs 
update_timing
 
# lbist_capture with lbist_clock
reset_design
set tessent_lbist_shift_clock_src(lbist_inst0) lbist_clock
create_clock lbist_clock -period 10 -name \
  $tessent_lbist_shift_clock_src(lbist_inst0)
tessent_set_default_variables
tessent_set_ltest_lower_pbs_logicbist_external_mode lbist_capture
tessent_constrain_<top>_mentor_ltest_modal_lbist_capture_with_sub_PBs
update_timing



Independent Hybrid TK/LBIST Insertion Flow
Generating EDT and LogicBIST IP for Independent Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 219

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating EDT and LogicBIST IP for 
Independent Insertion

You can generate the LogicBIST-ready EDT for independent insertion in a child block with the 
OCC in the parent physical block or with the OCC in the child block with the EDT. 
Generating LogicBIST-Ready EDT Child Blocks Without OCC . . . . . . . . . . . . . . . . . . 220
Generating LogicBIST-Ready EDT Child Blocks With OCC. . . . . . . . . . . . . . . . . . . . . 226
Generating LogicBIST-Ready Grandchild Blocks with OCC. . . . . . . . . . . . . . . . . . . . . 232



Hybrid TK/LBIST Flow User’s Manual, v2022.4220

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating LogicBIST-Ready EDT Child Blocks 
Without OCC

Typically, LBIST-ready EDT blocks are inserted in child blocks. In a subsequent pass, the 
LBIST controller and OCC are added in the parent physical block. 
Independently Inserting the LogicBIST-Ready EDT in Child Blocks . . . . . . . . . . . . . . 220
Generating the LogicBIST Controller With Parent Level EDT . . . . . . . . . . . . . . . . . . . 222

Independently Inserting the LogicBIST-Ready EDT in 
Child Blocks

You can insert the LogicBIST-ready EDT child blocks without OCC independently from the 
LogicBIST controller. 

Prerequisites
• RTL or gate-level netlist for the child block. In a typical two-pass DFT insertion flow, 

this netlist is the output of the MemoryBIST inserted in pass one.

• The OCC is not present in the child block.

• The LBIST NCP index decoder is specified at the parent level.

Procedure
1. Set context to be RTL DFT insertion:

set_context dft -rtl -design_id rtl2

2. Load the cell library and the design from the first insertion pass:

read_cell_library tessent.lib
read_design Block1 -design_id rtl1

3. Set the current design and the design level:

set_current_design Block1
set_design_level physical_block

4. Add the standard DFT signal using -source_node option:

add_dft_signals scan_en edt_update  –source_node {scan_en edt_update}
add_dft_signals edt_clock -source_node edt_clock

5. Run DRC and go from setup mode to analysis mode:

check_design_rules

6. Create the DftSpecification for the EDT child block:

set spec [create_dft_specification -sri_sib_list {edt}]



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 221

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Specify the LBIST-ready EDT for the child block:

read_config_data -in_wrapper $spec -from_string {
EDT {

ijtag_host_interface : Sib(edt);
LogicBistOptions {

present: on;
ShiftCycles {

max : 80;
hardware_default : 60;

}
WarmupPatternCount {

max : 255;
}
// seed declaration
prpg_reference_seed    : 'h1234;

}
Controller(c1) {

scan_chain_count : 100;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;
LogicBistOptions {

misr_input_ratio :1;
prpg_seed : 'h4321;

}
}

}
}

8. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the ICL description with extract ICL:

process_dft_specification
extract_icl

9. Exit the tool. 

Results
A design netlist with the instantiation of the EDT logic and a separate RTL file. Figure 12-16 
shows the LBIST-ready child block that is created in this example. This child block contains 
TK/LBIST EDT and all necessary ports to enable control by an LBIST controller. The names of 
the child block ports were specified by explicitly adding LBIST-related DFT signals with the 
source_node option. 
You are now ready to create the parent-level LogicBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4222

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-16. LBIST-Ready EDT Child Block

Generating the LogicBIST Controller With Parent Level 
EDT

Once you have created your LogicBIST-ready EDT child blocks, you can then independently 
insert and connect the LogicBIST controller with the LBIST-ready blocks and the EDT at the 
parent level. The parent-level netlist will contain the instantiation of the previously generated 
child blocks with LBIST-ready EDT.

Prerequisites
• MBIST inserted netlist from pass one.

• Independently generated ICL and netlist files, such as Block1.icl and Block1.v.

Procedure
1. Load the design and the child block:

set_context dft -rtl -design_id rtl2
read_design parentBlock -design_id rtl1
read_design Block1 -design_id rtl2



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 223

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Set the current design:

set_current_design parentBlock
set_design_level physical_block

3. Define the top-level clocks:

add_clocks 0 clk1 -period 10ns
add_clocks lbist_clock -period 10ns

4. Define DFT signals at the parent level:

add_dft_signals ltest_en int_ltest_en ext_ltest_en int_mode ext_mode 
add_dft_signals scan_en test_clock edt_update -source_node \
        { scan_en test_clock edt_update}
add_dft_signals edt_clock shift_capture_clock -create_from_other_signals

add_dft_signals observe_test_point_en control_test_point_en -create_with_tdr
add_dft_signals x_bounding_en -create_with_tdr
add_dft_signals mcp_bounding_en -create_with_tdr
add_dft_signals async_set_reset_static_disable
add_dft_signals async_set_reset_dynamic_disable -create_from_other_signals

5. Run DRC:

check_design_rules

6. Create the DftSpecification for parent level the OCC, LBIST, and EDT:

set spec [create_dft_specification -sri_sib_list {occ lbist edt}]



Hybrid TK/LBIST Flow User’s Manual, v2022.4224

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Insert the LBIST controller together with EDT in the parent-level block:

read_config_data -in_wrapper $spec -from_string {
Occ {

ijtag_host_interface : Sib(occ);
static_clock_control: external;
Controller(clk1) {

clock_intercept_node : clk1;
}

}
EDT {

ijtag_host_interface : Sib(edt);
Controller(c3) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;
LogicBistOptions {

present : on;
misr_input_ratio :1;

}
}

}
LogicBist {

ijtag_host_interface : Sib(lbist);
Controller(ctrl_lbist) {

burn_in : on;
Connections {

shift_clock_src : lbist_clock;
}
ShiftCycles { max : 80;}
CaptureCycles {max : 3;}
PatternCount {max : 10000;}
WarmupPatternCount {max : 255;}

 
//Block1 is module name and block1 is instance name in the parent
DesignInstance(block1) {}

}
NcpIndexDecoder {

ncp(first) {
cycle(0): Occ(clk1);
cycle(1): Occ(clk1);

}
ncp(second) {

cycle(0): Occ(clk1);
}

}
}

}

8. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the ICL:

process_dft_specification
extract_icl



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks Without OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 225

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

9. Exit the tool.

Results
You have generated the LogicBIST IP for the design at the parent level. Figure 12-17 shows the 
design after the LBIST controller insertion in the second pass. Note in this example, OCC is 
only at the parent level.

Figure 12-17. LBIST Controller Inserted After Second Pass



Hybrid TK/LBIST Flow User’s Manual, v2022.4226

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating LogicBIST-Ready EDT Child Blocks 
With OCC

You can insert the LBIST-ready EDT with a separate OCC in the child blocks. You can then 
insert and connect the LogicBIST controller with the LBIST-ready blocks, OCC, and the EDT 
specified together with the LogicBIST controller.
Independently Inserting the LogicBIST-Ready EDT in Child Blocks With OCC  . . . . 226
Generating the LogicBIST Controller at the Parent Level With EDT and OCC . . . . . 228

Independently Inserting the LogicBIST-Ready EDT in 
Child Blocks With OCC

You can insert the LBIST-ready EDT with a separate OCC in the child blocks. 

Prerequisites
• RTL or gate-level netlist for the child block. In a typical two-pass DFT insertion flow, 

this netlist is the output of the MemoryBIST inserted in pass 1.

Procedure
1. Load the design for the second insertion pass of the current design level using RTL:

set_context dft -rtl -design_id rtl2

2. Load the cell library and the design from the first insertion pass:

read_cell_library tessent.lib
read_design Block1 -design_id rtl1

3. Set the current design and the design level:

set_current_design Block1
set_design_level sub_block

4. Add the standard DFT signals using -source_node option:

add_dft_signals scan_en test_clock edt_update  –source_node \
{scan_en test_clock edt_update}

5. Add the DFT signals needed to create the clock gaters that work with the LBIST 
controller, create shift_capture_clock and edt_clock from other signals:

add_dft_signals edt_clock -create_from_other_signals
add_dft_signals shift_capture_clock -create_from_other_signals

6. Run DRC and go from setup mode to analysis mode:

check_design_rules



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 227

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Create the DftSpecification for the EDT child block with the OCC:

set spec [create_dft_specification -sri_sib_list {edt occ}]

8. Specify the LBIST-ready EDT and OCC for the child block:

read_config_data -in_wrapper $spec -from_string {
Occ {

ijtag_host_interface : Sib(occ);
static_clock_control: external;
Controller(clk) {

clock_intercept_node : clk;
leaf_instance_name : occ_in_core;
Connections {

clock_sequence : clk_seq[%d];
}

}
}

EDT {
ijtag_host_interface : Sib(edt);
LogicBistOptions {

present: on;
ShiftCycles {

max : 80;
hardware_default : 60;

}
WarmupPatternCount {

max : 255;
}
// seed declaration
prpg_reference_seed    : 'h1234;

}
Controller(c1) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;

}
}

}

9. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the ICL:

process_dft_specification
extract_icl

10. Exit the tool. 

Results
You have generated a design netlist with the instantiation of the EDT logic and a separate RTL 
file. Figure 12-18 shows an example of the LBIST-ready child block with a separate OCC that 
is created with LBIST-ready EDT and OCC IPs. You are now ready to create the parent-level 
LogicBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4228

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-18. LBIST-Ready EDT Child Block With OCC

Generating the LogicBIST Controller at the Parent Level 
With EDT and OCC

Once you have created your LogicBIST-ready EDT child blocks with OCC, you can then insert 
and connect the LogicBIST controller with the LBIST-ready blocks and the EDT at the parent 
level. The input parent netlist will contain the instantiation of the previously instantiated EDT 
child blocks.

Prerequisites
• MBIST inserted netlist from pass one.

• Independently generated ICL and netlist files, such as Block1.icl and Block1.v.

Procedure
1. Load the design and the child block:

set_context dft -rtl -design_id rtl2
read_design parentBlock -design_id rtl1
read_design Block1 -design_id rtl2 -view interface



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 229

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

2. Set the current design and design level:

set_current_design parentBlock
set_design_level physical_block

3. Define the parent-level clocks:

add_clocks 0 clk1 -period 10ns
add_clocks lbist_clock -period 10ns

4. Define the DFT signals at the parent level:

add_dft_signals ltest_en int_ltest_en ext_ltest_en int_mode ext_mode 
add_dft_signals scan_en test_clock edt_update -source_node \
        { scan_en test_clock edt_update}
add_dft_signals edt_clock shift_capture_clock -create_from_other_signals

add_dft_signals observe_test_point_en control_test_point_en -create_with_tdr
add_dft_signals x_bounding_en -create_with_tdr
add_dft_signals mcp_bounding_en -create_with_tdr
add_dft_signals async_set_reset_static_disable
add_dft_signals async_set_reset_dynamic_disable -create_from_other_signals

5. Run DRC:

check_design_rules

6. Create the DftSpecification for the OCC, LBIST, and EDT:

set spec [create_dft_specification -sri_sib_list {occ lbist edt}]



Hybrid TK/LBIST Flow User’s Manual, v2022.4230

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Insert the LBIST controller together with EDT and OCC in the parent-level block:

read_config_data -in_wrapper $spec -from_string {
Occ {

ijtag_host_interface : Sib(occ);
static_clock_control: external;
Controller(clk1) {

clock_intercept_node : clk1;
}

}
EDT {

ijtag_host_interface : Sib(edt);
Controller(c3) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;
LogicBistOptions {

present : on;
misr_input_ratio :1;

}
}

}
LogicBist {

ijtag_host_interface : Sib(lbist);
Controller(ctrl_lbist) {

burn_in : on;
Connections {

shift_clock_src : lbist_clock;
}
ShiftCycles { max : 80;}
CaptureCycles {max : 3;}
PatternCount {max : 10000;}
WarmupPatternCount {max : 255;}

 
#Block1 is module name and block1 is instance name in the parent
DesignInstance(block1) {}

}
NcpIndexDecoder {

ncp(first) {
cycle(0): Occ(clk1);
cycle(1): Occ(clk1);

}
ncp(second) {

cycle(0): Occ(clk1);
cycle(1): block1/occ_in_core; 

}
}

}
}

8. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the ICL:

process_dft_specification
extract_icl

9. Exit the tool.



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready EDT Child Blocks With OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 231

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
You have generated the LogicBIST IP for the design at the parent level. Figure 12-19 shows the 
design after the LBIST controller has been inserted and connected with the LBIST-ready blocks 
and the EDT specified with the LogicBIST controller in the second pass.

Figure 12-19. LBIST Controller With OCC Inserted After Second Pass



Hybrid TK/LBIST Flow User’s Manual, v2022.4232

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating LogicBIST-Ready Grandchild Blocks 
with OCC

You can insert the LBIST-ready EDT with a separate OCC deep in the design hierarchy, for 
example, in grandchild blocks.
After inserting the EDT, you insert the LBIST controller. You then connect the controller with 
LBIST ready blocks (OCC and EDT).

Independently Inserting the LogicBIST-Ready EDT in Grandchild Blocks . . . . . . . . . 232
Instrumenting the Child Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Generating the LogicBist Controller at the Grandparent Level With EDT and OCC. 236

Independently Inserting the LogicBIST-Ready EDT in 
Grandchild Blocks

You can insert the LBIST-ready EDT with a separate OCC in a grandchild block. 

Prerequisites
• An RTL or gate-level netlist for the grandchild block. In a typical two-pass DFT 

insertion flow, this netlist is the output of the MemoryBIST inserted in pass one.

Procedure
1. Load the design for the second insertion pass of the current design level using RTL. For 

example:

set_context dft -rtl -design_id rtl2

2. Load the cell library and the design from the first insertion pass:

read_cell_library tessent.lib
read_design Block1 -design_id rtl1

3. Set the current design and the design level:

set_current_design Block1
set_design_level sub_block

4. Add the standard DFT signals using the -source_node option:

add_dft_signals scan_en test_clock edt_update  –source_node \
{scan_en test_clock edt_update}

5. Add the DFT signals needed to create the clock gaters that work with the LBIST 
controller, creating shift_capture_clock and edt_clock from other signals:

add_dft_signals edt_clock -create_from_other_signals
add_dft_signals shift_capture_clock -create_from_other_signals



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 233

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

6. Run DRC and go from setup mode to analysis mode:

check_design_rules

7. Create the DftSpecification for the EDT grandchild block with the OCC:

set spec [create_dft_specification -sri_sib_list {edt occ}]

8. Specify the LBIST-ready EDT and OCC for the grandchild block:

read_config_data -in_wrapper $spec -from_string {
Occ {

ijtag_host_interface : Sib(occ);
static_clock_control: external;
Controller(clk) {

clock_intercept_node : clk;
leaf_instance_name : occ_in_core;
Connections {

clock_sequence : clk_seq[%d];
}

}
}

EDT {
ijtag_host_interface : Sib(edt);
LogicBistOptions {

present: on;
ShiftCycles {

max : 80;
hardware_default : 60;

}
WarmupPatternCount {

max : 255;
}
// seed declaration
prpg_reference_seed : 'h1234;

}
Controller(c1) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;

}
}

}

9. Create the IP, insert the hardware described with the DftSpecification into the design, 
and update the ICL:

process_dft_specification
extract_icl

10. Exit the tool. 



Hybrid TK/LBIST Flow User’s Manual, v2022.4234

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
You have generated a design netlist with the instantiation of the EDT logic and a separate RTL 
file.

Instrumenting the Child Block
You must ensure that connections for the clock_sequence bus are propagated to the boundary of 
the intermediate block (that is, the parent of the grandchild block). The DFT signals 
infrastructure handles the LogicBIST-related DFT signal.

Prerequisites
• An MBIST-inserted netlist from pass one.

• Independently generated ICL and netlist files, such as Block1.icl and Block1.v.

Procedure
1. Load the design and the child block:

set_context dft -rtl -design_id rtl2
read_design ChildBlock1 -design_id rtl1
read_design GrandChildBlock1 -design_id rtl2 

2. Set the current design and design level:

set_current_design ChildBlock1 
set_design_level sub_block

3. Define the clocks at the parent level:

add_clocks 0 clk1 -period 10ns 
add_clocks lbist_clock -period 10ns

4. Define the DFT signals at the parent level: 

add_dft_signals ltest_en int_ltest_en ext_ltest_en int_mode ext_mode 
add_dft_signals scan_en test_clock edt_update -source_node \
{ scan_en test_clock edt_update} 

5. Run DRC:

check_design_rules

6. Create the DftSpecification:

set spec [create_dft_specification]



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 235

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Propagate the clock_sequence connections using the DftSpecification:

read_config_data -in_wrapper $spec -replace -from_string {  
IjtagNetwork {
DataInPorts {

port_naming : clk_seq1[2:0] ;
      connection(2:0) : grand_child_block1/clk_seq[2:0]

{
... // other IJTAG settings

}
} 

8. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the ICL: 

process_dft_specification 
extract_icl

9. Exit the tool.

Results
You have propagated the clock_sequence and DFT signals to the intermediate block. Repeat 
this for every intermediate level. 
Figure 12-20 shows an example of the LBIST-ready grandchild block with a separate OCC that 
is created with LBIST-ready EDT and OCC IPs, and the signal connections to the intermediate 
block. You are now ready to create the grandparent-level LogicBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4236

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-20. LBIST-Ready Grandchild Block with OCC

Generating the LogicBist Controller at the Grandparent 
Level With EDT and OCC

After creating the LogicBIST-ready EDT grandchild blocks with OCC and propagating the 
DFT signals to the intermediate level, you can then insert and connect the LogicBIST controller 
with the LBIST-ready blocks and the EDT at the grandparent level. The input grandparent 
netlist contains the previously instantiated EDT intermediate and grandchild blocks.

Prerequisites
• An MBIST-inserted netlist from pass one.

• Independently generated ICL and netlist files, such as Block1.icl and Block1.v.



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 237

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Procedure
1. Load the design, the child block, and the grandchild block:

set_context dft -rtl -design_id rtl2
read_design parentblock -design_id rtl1
read_design GrandChildBlock1 -design_id rtl2 -view interface
read_design ChildBlock1 -design_id rtl2 -view interface 

2. Set the current design and design level:

set_current_design parentblock 
set_design_level physical_level

3. Define the clocks at the parent level:

add_clocks 0 clk1 -period 10ns 
add_clocks lbist_clock -period 10ns

4. Define the DFT signals at the parent level: 

add_dft_signals ltest_en int_ltest_en ext_ltest_en int_mode ext_mode 
add_dft_signals scan_en test_clock edt_update -source_node \
{ scan_en test_clock edt_update}
 add_dft_signals edt_clock shift_capture_clock -create_from_other_signals

5. Run DRC:

check_design_rules

6. Create the DftSpecification for the OCC, LBIST, and EDT:

set spec [create_dft_specification -sri_sib_list {occ lbist edt}]



Hybrid TK/LBIST Flow User’s Manual, v2022.4238

Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Insert the LBIST controller together with the EDT and OCC in the parent-level block:

Occ { 
  ijtag_host_interface : Sib(occ); 
  static_clock_control: external; 
  Controller(clk1) { 
      clock_intercept_node : clk1; 
   } 
 } 
 EDT { 
   ijtag_host_interface : Sib(edt); 
   Controller(c3) { 
       scan_chain_count : 80; 
       input_channel_count : 2; 
       output_channel_count : 2; 
       longest_chain_range : 2, 80; 
          LogicBistOptions { 
             present : on; 
             misr_input_ratio :1; 
           } 
      } 
   } 
   LogicBist { 
      ijtag_host_interface : Sib(lbist); 
      Controller(ctrl_lbist) { 
          burn_in : on; 
          Connections { 
              shift_clock_src : lbist_clock; 
    } 
    ShiftCycles { max : 80;} 
    CaptureCycles {max : 3;} 
    PatternCount {max : 10000;} 
    WarmupPatternCount {max : 255;} 
    #ChildBlock1 is module name and child_block1 is instance name in the parent 
    DesignInstance(child_block1) {} 
  } 
  NcpIndexDecoder { 
       ncp(first) { 
           cycle(0): Occ(clk1); 
           cycle(1): Occ(clk1); 
       } 
       ncp(second) { 
           cycle(0): Occ(clk1); 
           cycle(1): child_block1/grand_child_block1/occ_in_core; 
        } 
     } 
   } 
}

8. Create the IP, insert the hardware described with the DftSpecification into the design, 
and update the ICL: 

process_dft_specification 
extract_icl

9. Exit the tool.



Independent Hybrid TK/LBIST Insertion Flow
Generating LogicBIST-Ready Grandchild Blocks with OCC

Hybrid TK/LBIST Flow User’s Manual, v2022.4 239

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Results
You have generated a netlist for all three levels of the design with the instantiation of the EDT 
logic and a separate RTL file. 
Figure 12-21 shows an example of the LBIST-ready grandparent, child (intermediate), and 
grandchild blocks with separate OCCs and LBIST-ready EDTs.

Figure 12-21. LBIST-Ready Grandparent, Intermediate, and Grandchild Block 
With OCC



Hybrid TK/LBIST Flow User’s Manual, v2022.4240

Independent Hybrid TK/LBIST Insertion Flow
SSN and Hybrid TK/LBIST Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

SSN and Hybrid TK/LBIST Insertion Flow
The Streaming Scan Network (SSN) effectively distributes scan data for ATPG pattern by 
hosting EDT controllers with ScanHost nodes. This section describes how to prepare and insert 
a ScanHost that handles the LBIST-ready EDT controllers. 

Independent Insertion With SSN Flow Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Generating SSN ScanHost IP for Independent Insertion  . . . . . . . . . . . . . . . . . . . . . . . . 242

Independently Inserting the LogicBIST-Ready EDT and SSH in a Child Block. . . . . . . . 242
Generating the LogicBIST, EDT, OCC, and SSH in the Parent Level  . . . . . . . . . . . . . . . 245
Using ssn_bus_clock as test_clock Bypass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Independent Insertion With SSN Flow Overview
The SSN node, ScanHost (SSH), can be inserted between the LBIST-ready EDT controller and 
LogicBIST controller. The scan control signals generated by the SSH are intercepted by bypass 
multiplexers, which allow them to be driven by the LBIST controller. These signals include 
scan_en, edt_update, and sometimes edt_clock, shift_capture_clock, and test_clock. 
Figure 12-23 shows the resulting block diagram after independent insertion with SSN has 
completed. The LBIST-ready SSH and EDT controller have been inserted in child Block. The 
LBIST controller, SSH, and another hybrid EDT controller have been inserted in the current 
physical block. 

Figure 12-22. Independent Insertion With SSH



Independent Hybrid TK/LBIST Insertion Flow
Independent Insertion With SSN Flow Overview

Hybrid TK/LBIST Flow User’s Manual, v2022.4 241

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-23 shows the contents of the child Block. Typically there is no OCC in an unwrapped 
Block. Use the DftSpecification/SSN/clock_sources_with_no_local_occs property to insert a 
clock multiplexer on the clock source. Specifying this property ensures the shift clock generated 
in the local SSH reach its scan cells. This also guarantees that the capture clock pulses generated 
in the external OCC reach the scan cells. See the SSN wrapper description in the Tessent Shell 
Reference Manual for more information.

Figure 12-23. Independent Insertion With SSH Child Block Contents



Hybrid TK/LBIST Flow User’s Manual, v2022.4242

Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Generating SSN ScanHost IP for Independent 
Insertion

To prepare the SSN ScanHost (SSH) for integration the scan_signals_bypass property should be 
set to either controls_only or on. By default this property’s auto setting resolves to 
controls_only when an LBIST-ready EDT or LogicBIST wrapper is present in the same 
DftSpecification. 
Figure 12-24 shows the resulting SSH with scan_signals_bypass set to controls_only.

Figure 12-24. SSH With scan_signals_bypass: controls_only

Independently Inserting the LogicBIST-Ready EDT and SSH in a Child Block  . . . . . 242
Generating the LogicBIST, EDT, OCC, and SSH in the Parent Level  . . . . . . . . . . . . . 245
Using ssn_bus_clock as test_clock Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Independently Inserting the LogicBIST-Ready EDT and 
SSH in a Child Block

The LogicBIST-ready EDT with SSN can be inserted independently from the LogicBIST 
controller.



Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 243

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Prerequisites
• RTL gate-level netlist for the child block

• Output generated by the MemoryBIST insertion pass

Procedure
1. Load the design for the second insertion pass of the current design level using RTL:

set_context dft -rtl -design_id rtl2

2. Load the cell library and the design from the first insertion pass:

read_cell_library tessent.lib
read_design Block -design_id rtl1

3. Insert the EDT in the child block called Block:

set_current_design Block
set_design_level sub_block

4. Add the standard DFT signal using -source_node option:

add_dft_signals scan_en test_clock edt_update  –source_node {scan_en test_clock 
edt_update}

5. Add the DFT signals needed to create the clock gaters that work with the external 
LBIST controller by creating shift_capture_clock and edt_clock from other signals:

add_dft_signals edt_clock  –create_from_other_signals
add_dft_signals shift_capture_clock  –create_from_other_signals

6. Run DRC and go from setup mode to analysis mode:

check_design_rules

7. Create the DftSpecification for the EDT child block:

set spec [create_dft_specification -sri_sib_list {edt ssn}]



Hybrid TK/LBIST Flow User’s Manual, v2022.4244

Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

8. Specify the LBIST-ready EDT for the child block:

read_config_data -in_wrapper $spec -from_string {
SSN {

clock_sources_with_no_local_occs : clk;
Datapath(1) {

ijtag_host_interface : Sib(ssn);
output_bus_width : 48;

 ScanHost(1) {
ChainGroup (edt) {
}

}
}

}
EDT {

ijtag_host_interface : Sib(edt);
LogicBistOptions {

present: on;
ShiftCycles {

max : 80;
hardware_default : 60;

}
}
Controller(c1) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;

}
}

}

9. Create the IP and insert the hardware described with the DftSpecification into the 
design, and update the IJTAG:

process_dft_specification
extract_icl

10. Exit the tool. 

exit

Results
You have generated a design netlist with the instantiation of the EDT and SSH logic and a 
separate RTL file. Figure 12-25 shows the SSN-equipped LBIST-ready child block that is 
created in this example. This child block contains TK/LBIST EDT, SSN ScanHost, and all of 
the necessary ports with respective nets to enable control by the LBIST controller and SSN 
ATPG pattern generation. You are now ready to create the parent-level LogicBIST controller.



Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 245

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-25. SSN-Equipped LBIST -Ready Child Block

Generating the LogicBIST, EDT, OCC, and SSH in the 
Parent Level

Once you have created your LogicBIST-ready child blocks with SSH, you can then 
independently insert and connect the LogicBIST controller with the LogicBIST-ready blocks 
and the EDT and SSH at the parent level.

Prerequisites
• MBIST inserted netlist from pass one.

• Scan setup dofile and scan setup test proc created by the scan insertion step.

• Independently generated ICL and netlist files, such as Block.icl and Block.v.

Procedure
1. Load the design and the child block:

set_context dft -rtl -design_id rtl2
read_design parentBlock -design_id rtl1
read_design Block -design_id rtl2

2. Set the current design:

set_current_design parentBlock
set_design_level physical_block



Hybrid TK/LBIST Flow User’s Manual, v2022.4246

Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

3. Define the top-level clocks:

add_clocks 0 clk -period 10ns
add_clocks lbist_clock -period 10ns

4. Define the DFT signals at the top level:

add_dft_signals scan_en test_clock edt_update -source_node \
{ scan_en test_clock edt_update}

add_dft_signals edt_clock shift_capture_clock -create_from_other_signals
add_dft_signals ltest_en int_ltest_en ext_ltest_en int_mode ext_mode
add_dft_signals observe_test_point_en control_test_point_en
add_dft_signals x_bounding_en
add_dft_signals mcp_bounding_en
add_dft_signals async_set_reset_static_disable
add_dft_signals async_set_reset_dynamic_disable -create_from_other_signals

5. Run DRC:

check_design_rules

6. Create the DftSpecification for parent level the OCC, LBIST, SSN, and EDT:

set spec [create_dft_specification -sri_sib_list {occ lbist edt ssn}]



Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 247

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

7. Insert the LBIST controller together with EDT and SSH in the parent-level block:

read_config_data -in_wrapper $spec -from_string {
SSN {

Datapath(1) {
ijtag_host_interface : Sib(ssn);
output_bus_width : 48;
ScanHost(1) {

ChainGroup (edt) {
}

}
// Block is the module name and block1 is the instance name in the parent
DesignInstance(block1) {
}

}
}
Occ {

ijtag_host_interface : Sib(occ);
static_clock_control: external;
Controller(clk1) {

clock_intercept_node : clk1;
}

}
EDT {

ijtag_host_interface : Sib(edt);
Controller(c3) {

scan_chain_count : 80;
input_channel_count : 2;
output_channel_count : 2;
longest_chain_range : 2, 80;
LogicBistOptions {

present : on;
}

}
}
LogicBist {

ijtag_host_interface : Sib(lbist);
Controller(ctrl_lbist) {

burn_in : on;
Connections {

shift_clock_src : lbist_clock;
}
ShiftCycles { max : 80;}
CaptureCycles {max : 3;}
PatternCount {max : 10000;}
WarmupPatternCount {max : 255;}

 //Block is module name and block1 is instance name in the parent
DesignInstance(block1) {}

}
NcpIndexDecoder {

ncp(first) {
cycle(0): Occ(clk1);
cycle(1): Occ(clk1);

}
ncp(second) {

cycle(0): Occ(clk1);
}

}



Hybrid TK/LBIST Flow User’s Manual, v2022.4248

Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

}
}

8. Create the IP and insert the hardware described with the DftSpecification into the 
design, and extract ICL:

process_dft_specification
extract_icl

9. Exit the tool.

exit

Results
You have generated the LogicBIST IP for the design at the parent level. Figure 12-26shows the 
DFT IP inserted and connected. For simplicity, the SSN bus is not shown. Note in this example, 
OCC is only at the parent level.

Figure 12-26. Independent Insertion With SSN and OCC at Parent Level

Using ssn_bus_clock as test_clock Bypass
You can integrate the LogicBIST controller with SSH using ssn_bus_clock as test_clock 
bypass.
If you want to use ssn_bus_clock as a test_clock bypass, the LogicBIST controller must 
intercept ssn_bus_clock and use it as test_clock for LogicBist purposes as well. To generate the 
correct connections and a LogicBIST controller that supports this configuration, use the 
procedure from “Generating the LogicBIST, EDT, OCC, and SSH in the Parent Level” on 
page 245 with ssn_bus_clock specified to be the source of the test_clock DFT signal and the 
SSH property set to on: 

add_dft_signals test_clock -source_node {ssn_bus_clock}



Independent Hybrid TK/LBIST Insertion Flow
Generating SSN ScanHost IP for Independent Insertion

Hybrid TK/LBIST Flow User’s Manual, v2022.4 249

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

ScanHost(1) {
  use_ssn_bus_clock_as_test_clock_bypass : on;
  use_clock_shaper_cell : on;
}

Figure 12-27. Using ssn_bus_clock as test_clock Bypass



Hybrid TK/LBIST Flow User’s Manual, v2022.4250

Independent Hybrid TK/LBIST Insertion Flow
Top-Level LBIST and External Test Mode in Child Cores

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Top-Level LBIST and External Test Mode in 
Child Cores

The tool can use child-level physical block wrapper chains for LBIST in the parent physical 
region. 

Child-Level OCC Inactive During External Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Child-Level OCC Active During External Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Child-Level Hybrid EDT For Wrapper Chains Active During External Test  . . . . . . . 256

Child-Level OCC Inactive During External Test
You can provide the functional clock from a primary input or a PLL at the parent level to child 
physical blocks that do not have embedded PLLs.
See Figure 12-28 for an example of core-level physical blocks without embedded PLLs.

Figure 12-28. Top-Level Functional Clock

Figure 12-29 shows such a design after IP insertion. The core-level OCCs are disabled, and the 
wrapper chains are driven by the top-level OCC. The core-level OCCs are transparent, meaning 
that the top-level LBIST can check the external mode of the child cores using the top-level 
OCC.



Independent Hybrid TK/LBIST Insertion Flow
Child-Level OCC Active During External Test

Hybrid TK/LBIST Flow User’s Manual, v2022.4 251

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-29. Core-Level Chains Driven by Top-Level OCC

Child-Level OCC Active During External Test
You can provide a reference clock from a primary input at the parent level to a child physical 
block and generate the functional clock within the child block. This functional clock is provided 
to other child blocks as well as back to the parent level.
See Figure 12-30 for an example of core-level physical blocks with a PLL-generated functional 
clock.



Hybrid TK/LBIST Flow User’s Manual, v2022.4252

Independent Hybrid TK/LBIST Insertion Flow
Child-Level OCC Active During External Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-30. Top-Level Reference Clock and Core-Level PLL

The embedded PLL in the Core_1 module generates the clock for the design. To generate the 
LBIST and NCPID instruments in the Core_1 module and reuse the internal OCC driving the 
wrapper chains for internal-mode LBIST, add the ext_lbist_en DFT signals:

add_dft_signals ext_lbist_en -create_with_tdr

The tool uses this command to generate the appropriate hardware for the LBIST controller and 
the NCP index decoder.



Independent Hybrid TK/LBIST Insertion Flow
Child-Level OCC Active During External Test

Hybrid TK/LBIST Flow User’s Manual, v2022.4 253

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Next, create the LogicBist DftSpecification for Core_1:

OCC {
ijtag_host_interface : Sib(occ);
static_clock_control : external;
shift_only_mode : on;
Controller(clk_controller) {

clock_intercept_node : PLL/out;
}

} 

LogicBist {
ijtag_host_interface : Sib(lbist) ;
Controller(lbist_1) {

// extest_lbist : auto; -> resolves to ‘on’ due to DftSignal 
// ext_lbist_en
ShiftCycles { max : 100 ; }
CaptureCycles { max : 10 ; }
PatternCount { max : 16384; }
WarmupPatternCount { max: 31; }
Connections {

tck              : ijtag_tck ; // default: tck
shift_clock_src  : lbist_clock;
ext_lbist_en : DftSignalOrTiedLow(ext_lbist_en); // -> default

}
Interface {

ext_lbist_en : my_ext_lbist_en; 
}

}
NcpIndexDecoder {

// extest_lbist : auto; -> resolves to ‘on’ due to DftSignal 
// ext_lbist_en
Connections {

ext_ltest_en : DftSignalOrTiedLow(ext_ltest_en) ;
ExtestClockSequence {
Occ(clk_controller) : ext_occ%d_clock_sequence[%d] ; 

// default option which ensures that the corresponding
// port will be created at the boundary of the Core_1 

}
}
Interface {
ext_clock_sequence : my_ext_occ%d_clock_sequence ;

}
Ncp(pulse_x1a) {
cycle(0) : Occ(clk_controller);

}
Ncp(pulse_x2) {
cycle(0) : Occ(clk_controller);
cycle(1) : Occ(clk_controller);

}
}

}
}



Hybrid TK/LBIST Flow User’s Manual, v2022.4254

Independent Hybrid TK/LBIST Insertion Flow
Child-Level OCC Active During External Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

The tool creates the instrumentation of Core_2 without this functionality. Add the Core_1 OCC 
at the parent level to keep it active during top-level LBIST and for use in the DftSpecification of 
the NCP Index Controller:

add_core_instances -instances \ 
Core_1/core_1_dft_tessent_occ_clk_controller_inst

LogicBist {
ijtag_host_interface : Sib(lbist) ;
Controller(lbist_1) {
...
}
NcpIndexDecoder {

Ncp(pulse_x1a) {
cycle(0) : Occ(clk_controller);
cycle(1) : Core_1/core_1_dft_tessent_occ_clk_controller_inst;

}
Ncp(pulse_x2) {

cycle(0) : Occ(clk_controller), \
Core_1/core_1_dft_tessent_occ_clk_controller_inst;

cycle(1) : Occ(clk_controller), \
Core_1/core_1_dft_tessent_occ_clk_controller_inst;

}
}

}
OCC {

ijtag_host_interface : Sib(occ);
static_clock_control : external;
Controller(clk_controller) {

clock_intercept_node : Core_1/clk_out;
}

}

The following figure contains the completed instrumentation of the design.



Independent Hybrid TK/LBIST Insertion Flow
Child-Level OCC Active During External Test

Hybrid TK/LBIST Flow User’s Manual, v2022.4 255

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-31. Core-Level Chains Driven by Core-Level OCC

If Core_1 has more than one embedded OCC, but it does not drive a wrapper, you can keep it 
inactive during top-level LBIST and active in core-level LBIST by not propagating the 
ext_clock_sequence port to the block’s boundary. Do this by skipping that entry in the 
ExtestClockSequence wrapper. The tool optimizes the corresponding hardware of the NCPID 
so that the ext_clock_sequence path is not created for this OCC.

In this example, the second OCC is a mini-OCC from Sib(sti) and is named 
core_1_mbist_tessent_sib_sti_inst:

NcpIndexDecoder {
  Connections {
    ExtestClockSequence {
      Occ(clk_controller) : ext_occ%d_clock_sequence[%d] ;
      // Do not specify the entry for this OCC 
      // (optimal hardware is generated)
    }
  }
  Ncp(pulse_x1a) {
    cycle(0) : Occ(clk_controller);
  }
  Ncp(pulse_x1b) {
    cycle(0) : core_1_mbist_tessent_sib_sti_inst;
  }
  Ncp(pulse_x2) {
    cycle(0) : Occ(clk_controller);
    cycle(1) : Occ(clk_controller);
  }
}



Hybrid TK/LBIST Flow User’s Manual, v2022.4256

Independent Hybrid TK/LBIST Insertion Flow
Child-Level Hybrid EDT For Wrapper Chains Active During External Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Child-Level Hybrid EDT For Wrapper Chains Active 
During External Test

You can control embedded hybrid EDT blocks with parent-level LBIST controllers or with 
LBIST controllers in both the core and at the parent level. The choice between these two 
scenarios depends on the implementation of the scan chain architecture.
If the wrapper chains are connected to the EDT that handles the internal mode of the core, the 
separate hybrid EDT for the external mode can only be controlled by the parent-level LBIST as 
shown in Figure 12-32.

Figure 12-32. Hybrid EDT for the External Mode Controlled by Parent-Level 
LBIST

Figure 12-33 shows that the wrapper chains of the core are connected only with the EDT that 
handles external mode, and therefore the EDT must be controlled by LBIST controllers from 
both the parent and the child core. The required DFT signals in each case are passed through the 
child-level LBIST to the child-level hybrid EDT.



Independent Hybrid TK/LBIST Insertion Flow
Child-Level Hybrid EDT For Wrapper Chains Active During External Test

Hybrid TK/LBIST Flow User’s Manual, v2022.4 257

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-33. Hybrid EDT for Wrapper Chains Shared Between Core-Level and 
Parent-Level LBIST

Example
You can create the DFT structure shown in Figure 12-34 in a single insertion pass by specifying 
the associated_edt and ext_mode_edt_present properties for the LogicBist instrument indicating 
which EDT should be controlled by the core-level LBIST and letting the tool auto-infer the 
ext_lbist_en DFT signal:

Edt {
  Controller(c1) {
  }
  Controller(c2) {
  }
}
LogicBist {
  extest_lbist : on; // This option set to on will infer
                     // ext_lbist_en DFT signal on port
  ext_mode_edt_present : on;
  Controller(l1) {
      associated_edt : Edt(c1) ;
  }
}



Hybrid TK/LBIST Flow User’s Manual, v2022.4258

Independent Hybrid TK/LBIST Insertion Flow
Child-Level Hybrid EDT For Wrapper Chains Active During External Test

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-34. Single-Pass EDT



Independent Hybrid TK/LBIST Insertion Flow
Child-Level Hybrid EDT For Wrapper Chains Active During External Test

Hybrid TK/LBIST Flow User’s Manual, v2022.4 259

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Alternately, if you use the EDT controllers’ mode_enable properties to indicate the scan modes 
for which they operate, you can leave the LBISTs’ associated_edt and ext_mode_edt_present 
properties unspecified:

Edt {
  Controller(c1) {
    Connections {
      mode_enables : DftSignal(int_mode);
    }
  }
  Controller(c2) {
    Connections {
      mode_enables : DftSignal(ext_mode);
    }
  }
}
LogicBist {
  extest_lbist : on; 
  // ext_mode_edt_present : on; // can be unspecified because mode_enables
                                // indicates EDT mode
  Controller(l1) {
      // associated_edt : Edt(c1); // can be unspecified because 
                                   // mode_enables indicates EDT mode
  }
}

Next, at the parent design level you can reuse the embedded hybrid EDT to drive the core’s 
wrapper chains for parent-level LBIST. Ensure that all EDTs from the core are properly 
associated with the parent-level LBIST controller. If no EDTs in the design (both in the child 
core and at the current design level) have modes assigned by mode_enables property, use the 
following DftSpecification:

Edt {
  Controller(c3) {
  }
}
LogicBist {
  Controller(l2) {
    DesignInstance(core1) {
      associated_edt : c2;
    }
  }
} 

The EDT controller c3 is automatically associated with LBIST l2 (shown in Figure 12-35) 
because by default, all of the hybrid EDTs from the same insertion pass are automatically 
assumed to be controlled by the LBIST controller.



Hybrid TK/LBIST Flow User’s Manual, v2022.4260

Independent Hybrid TK/LBIST Insertion Flow
Limitations of the Independent Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

Figure 12-35. EDT and LBIST Association

Note
It is important to ensure that the core instance of EDT c2 is loaded in the LBIST fault 
simulation script.

Limitations of the Independent Insertion Flow
The integration of LBIST and SSN has certain limitations you must take into account.

• The use of the ThirdPartyOCC TCD is not fully supported in the SSN-ATPG mode of 
operation. Carefully examine SSN capabilities in terms of clock and enable signal 
generation so that both LBIST and SSN-ATPG modes of operation work properly. 
Currently, SSN can generate ShiftCaptureClock and ScanEn signals; in spite of that, the 
ShiftClock, ShiftClockEn, and CaptureEn signals for ThirdPartyOCC are automatically 
sourced by respectively created ports of the LBIST controller, without being intercepted 
by an SSN ScanHost.

• Inserting a LogicBIST controller in the presence of SSN when the edt_clock and 
shift_capture_clock signals are specified with the -source_nodes option is not supported.

• Inserting a LogicBIST controller without specifying test_clock and scan_en DFT signals 
specified with the -source_nodes option is not supported.



Independent Hybrid TK/LBIST Insertion Flow
Limitations of the Independent Insertion Flow

Hybrid TK/LBIST Flow User’s Manual, v2022.4 261

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

• When implementing the Controller Chain Mode (CCM) of LogicBIST and Hybrid EDT 
controllers, you should consider the impact of SSH. A CCM chain at a given level 
should be an uncompressed chain and not driven from local SSH. When generating 
CCM patterns, you should disable SSH by setting set_ssn_options off.



Hybrid TK/LBIST Flow User’s Manual, v2022.4262

Independent Hybrid TK/LBIST Insertion Flow
Limitations of the Independent Insertion Flow

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Appendix A
The Dofile Flow

The hybrid TK/LBIST flow supports a dofile flow that does not use the TSDB. In the dofile 
flow, the tool does not write output files to the TSDB. The five steps used for the TSDB bottom 
up method remain the same, as do the two additional steps used for the top-down method.
The following figure shows the steps you perform on each of your cores with the dofile flow. 
Refer to “Hybrid TK/LBIST Implementation” for details. For the dofile flow, the differences 
are:

• In Step 3, the tool does not store the output EDT, LogicBIST ICL and PDL files, or 
EDT/LogicBIST IP netlist in the TSDB. These files are direct inputs to pattern 
generation (Step 5).

• In Step 4, the output graybox, patternDB file, TCD file, testbenches, patterns, and so on 
are direct inputs to pattern generation (Step 5). The tool does not store these in the 
TSDB.

• During Step 3, logic synthesis is not fully automated. To synthesize the EDT/Tessent 
LogicBIST blocks and the common LogicBIST controller, you must use the synthesis 
script that the tool generates. You use the synthesized gate-level netlist output from your 
synthesis tool (for example, the output of the logic synthesis step with Synopsys Design 
Compiler®) as the input to the next step of the flow.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 263

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Figure A-1. The Dofile Flow

EDT and LogicBIST IP Generation Command Summary . . . . . . . . . . . . . . . . . . . . . . . 265
Generating the EDT and LogicBIST IP (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Performing Scan Insertion and X-Bounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Example Dofiles for Core-Level Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Pattern Generation for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Performing Pattern Generation for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Performing Pattern Generation for CCM in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . 281
Hybrid TK/LBIST Flow User’s Manual, v2022.4264

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
EDT and LogicBIST IP Generation Command Summary
Pattern Mismatch Debugging in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Debug Based on MISR Signature Divergence (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . 285
Debug Based on Scan Cell Monitoring (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Tessent OCC for Hybrid TK/LBIST in the Dofile Flow  . . . . . . . . . . . . . . . . . . . . . . . . . 292
Tessent OCC TK/LBIST (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Observation Scan Technology Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Example Tessent OCC TK/LBIST Flow (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Tessent OCC Dofile Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
File Examples for the Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

EDT and LogicBIST IP Generation Command 
Summary

Tessent Shell provides a numbers of commands for performing EDT and LogicBIST IP 
generation.

Table A-1. EDT and LogicBIST IP Generation Commands 
Command Description
read_cell_library Loads one or more cell libraries into the tool. 
read_verilog Reads one or more Verilog files into the specified or 

default logical library. 
report_clock_controller_pins Reports the clock controller pins.
report_lbist_configuration Reports the global LogicBIST controller configuration 

parameters.
report_lbist_pins Reports the pins specified using the set_lbist_pins 

command. 
set_clock_controller_pins Specifies the connection information for the clock 

controller pins.
set_context Specifies the current usage context of Tessent Shell. 

You must set the context before you can enter any 
other commands in Tessent Shell.

set_current_design Specifies the top level of the design for all subsequent 
commands until reset by another execution of this 
command. 

set_edt_options Sets options for EDT IP creation.
set_lbist_controller_options Specifies global options to configure the LogicBIST 

controller.
set_lbist_instances Specifies the instance in which the LogicBIST 

controller or single chain mode logic is placed.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 265

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
Generating the EDT and LogicBIST IP (Dofile 
Flow)

When generating the hybrid EDT and LogicBIST IP, you read in a TCD and bind it to a core 
instance in the design.
You can define dual compression configurations for the hybrid IP. See “Dual Compression 
Configurations for the Hybrid IP” on page 66 for an example.

Prerequisites
• You need the scan insertion dofile and BIST-ready netlist you created during Test Point 

Analysis and Insertion, Scan Insertion, and X-Bounding.

Procedure
1. From a shell, invoke Tessent Shell:

% tessent -shell 

After invocation, the tool is in unspecified setup mode. You must set the context before 
you use the IP generation commands.

2. Set the tool context to EDT/LogicBIST generation using the set_context command as 
follows:

SETUP> set_context dft -edt -logic_bist -no_rtl

3. Set the TSDB location if necessary. For example:

SETUP> set_tsdb_output_directory top_level.tsdb

set_lbist_pins Specifies the connection information for LogicBIST 
controller pins.

set_lbist_power_controller_options Specifies creating the low-power shift controller for 
LogicBIST.

set_system_mode Specifies the operational state you want the tool to 
enter. 

set_tsdb_output_directory Enables changing the TSDB directory name where the 
generated files and modified netlists are stored.

write_design Writes out the modified netlist. 
write_edt_files Creates the files that implement EDT logic. 

Table A-1. EDT and LogicBIST IP Generation Commands  (cont.)
Command Description
Hybrid TK/LBIST Flow User’s Manual, v2022.4266

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
4. Load the LogicBIST-ready design netlist using the read_verilog command. For 
example:

SETUP> read_verilog my_modified_design.v

5. Load one or more cell libraries into the tool using the read_cell_library command:

SETUP> read_cell_library atpg.lib

6. Set the top design using the set_current_design command. For example:

SETUP> set_current_design top_module

7. Extract the ICL using the extract_icl command. For example: 

SETUP> extract_icl

8. Read in the design_name_tessent_occ.tcd file from the TSDB directory using the 
read_core_descriptions command. For example:

SETUP> read_core_descriptions ./top_level.tsdb/instruments/
my_design_occ.instrument/my_design_tessent_occ.tcd

9. Bind the core description in memory with the specified core instance in the design using 
the add_core_instances command. For example:

SETUP> add_core_instances -instance block_inst1/my_occ

The add_core_instances command also provides a method of specifying the core 
instance parameters. See “Core Instance Parameters” in the Tessent TestKompress 
User’s Manual for more information. 

10. Read in the dofile you generated with Tessent Shell that contains the scan insertion and 
X-bounding information using the dofile command. See “Test Point Analysis and 
Insertion, Scan Insertion, and X-Bounding” on page 77 for more information. For 
example:

SETUP> dofile my_setup.dofile

11. Set additional EDT/LogicBIST IP generation options depending on your design 
objective using the following commands:

• set_clock_controller_pins 

• set_edt_options 

• set_lbist_controller_options 

• set_lbist_instances 

• set_lbist_pins 

• set_lbist_power_controller_options 

• set_lpct_controller
Hybrid TK/LBIST Flow User’s Manual, v2022.4 267

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
See also “Low-Power Shift” on page 35, “Controller Chain Mode” on page 48, and 
“Low Pin Count Test Controller” on page 325.

12. Change the tool’s system mode to analysis using the set_system_mode command as 
follows:

SETUP> set_system_mode analysis

During the transition from setup to analysis mode, the tool performs design rule 
checking.

13. You can optionally report the clock controller pins, global LogicBIST controller 
configuration parameters, or specified pins results using the following commands:

• report_clock_controller_pins 

• report_lbist_configuration 

• report_lbist_pins 

14. Use the write_edt_files command with the -tsdb option to create EDT/LBIST files and 
insert the generated hardware into the design. For example, the following command 
generates timing constraints and writes out the EDT/LBIST files into the instruments 
directory within the TSDB:

ANALYSIS> write_edt_files -tsdb

The tool transitions to insertion mode after inserting the EDT/LBIST logic into the 
design and writes the modified netlist to the dft_inserted_designs directory within the 
TSDB. 

For the dofile flow, specify the write_edt_files command as follows:

ANALYSIS> write_edt_files my_edt_logic -timing_constraints

Results
The following files are generated in during this step:

Table A-2. Output Files, EDT and LogicBIST IP Generation, TSDB Flow 
File Contents
<prefix>.synthesis_dictionary A Tcl dictionary-formatted file that is used by the 

run_synthesis command. This command processes 
the dictionary to create a synthesis script 
compatible with the chosen synthesis tool.

<prefix>.tcd File containing the IP core description.
<prefix>.icl ICL file describing hybrid EDT/LBIST logic for 

EDT and LBIST modes — to be used during EDT 
pattern generation and BIST fault simulation.
Hybrid TK/LBIST Flow User’s Manual, v2022.4268

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
Examples
The following example shows a single EDT/LogicBIST block. The design has X-bounding, 
control, and observe points controlled by the same design pin named lbist_en. This design does 
not use low-power hybrid IP.

// Set context for generating hybrid EDT/LogicBIST IP

set_context dft -edt -logic_bist

// Read design and DFT library

<prefix>.pdl PDL file describing test_setup initialization of 
hybrid EDT/LBIST logic for EDT pattern 
generation and BIST fault simulation.

<prefix>.v RTL for the hybrid TK/LBIST IP.

Table A-3. Output Files, EDT and LogicBIST IP Generation, Dofile Flow 
File Contents
<prefix>_bypass_shift_sdc.tcl EDT bypass shift mode timing constraints file.
<prefix>_dc_script.scr Synopsys script for synthesizing EDT and BIST 

logic.
<prefix>_<design_name>_edt.tcd File containing the EDT IP core description. 
<prefix>_<design_name>_lbist.tcd File containing the LBIST IP core description. 
<prefix>_edt_fast_capture_sdc.tcl Capture mode timing constraints file for EDT or 

EDT-bypass mode.
<prefix>_edt_shift_sdc.tcl EDT shift mode timing constraints file.
<prefix>_edt_top_rtl.v Gate-level netlist that instantiates the EDT and 

BIST logic.
<prefix>_ltest.icl ICL file describing hybrid EDT/LBIST logic for 

EDT and LBIST modes — to be used during EDT 
pattern generation and BIST fault simulation.

<prefix>_ltest.pdl PDL file describing test_setup initialization of 
hybrid EDT/LBIST logic for EDT pattern 
generation and BIST fault simulation.

<prefix>_lbist.v Per-block MISRs and top-level BIST controller.
<prefix>_lbist_sdc.tcl File containing all LogicBIST modes including 

LBIST setup, shift, capture, and single chain 
mode.

Table A-2. Output Files, EDT and LogicBIST IP Generation, TSDB Flow  (cont.)
File Contents
Hybrid TK/LBIST Flow User’s Manual, v2022.4 269

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
read_verilog my_core_scan_xbound.v

read_cell_library atpg.lib

set_current_design

// Define clocks and pin constraints

add_clocks 0 occ/occNX1/U7/Z -internal -pin_name NX1 //Internally generated capture clock 

add_clocks 0 occ/occNX2/U7/Z -internal -pin_name NX2 // Internally generated capture clock 

add_clocks 0 shift_clock

add_clocks 0 refclk -pulse_always

add_input_constraint shift_clock -c0

add_input_constraint scan_en -c0

// Scan chains and test procedure file from scan insertion

add_scan_groups grp1 scan_setup.testproc

for {set i 1} {$i <= 16} {incr i} {

add_scan_chains chain$i grp1 scan_in$i scan_out$i

}

// Configure EDT logic

set_edt_options -location internal

// Configure LogicBIST controller

set_edt_options -lbist_misr_input_ratio 4

set_lbist_controller -max_shift 400 -max_capture 3 -max_pattern 10000 \ 

-capture {clk_once 100}

// Specify LogicBIST pins

set_lbist_pins clock refclk

set_lbist_pins scan_en scan_en

set_dft_enable_options -type xbounding_en -pin_name lbist_en

set_dft_enable_options -type control_point_en -pin_name lbist_en

set_dft_enable_options -type observe_point_en -pin_name lbist_en

// Specify clock controller pins

set_clock_controller_pins shift_clock occ/shift_clock

set_clock_controller_pins scan_en occ/scan_en
Hybrid TK/LBIST Flow User’s Manual, v2022.4270

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
set system mode atpg

// Report user settings

report_edt_configuration

report_lbist_configuration

report_lbist_pins

report_clock_controller_pins

// Generate EDT files

write edt files -tsdb -replace

// For the dofile flow, do not use the -tsdb option. For example:

// write_edt_files created -replace

This is a modular IP generation example. The scan chains are defined at internal pins at the 
block boundary. The design has a TAP controller to which the LogicBIST controller is 
connected during IP generation. Separate control registers are synthesized in the LogicBIST 
controller for independently controlling X-bounding, control and observe points. There are 
multiple clock controllers in the design. The design has multiple NCPs that are used in 
LogicBIST test in the proportion specified.

// Set context for generating hybrid EDT/LogicBIST IP

set_context dft -edt -logic_bist

// Read BIST-ready block designs and TOP level

read_verilog TOP.v my_core_scan_xbound.v piccpu_scan_xbound.v

read_cell_library atpg.lib

set_current_design TOP

// Define clocks and RAM control signals

add_scan_groups grp1 TOP_scan_setup.testproc

add_clocks 0 NX1 NX2 clk ramclk

add_read_control 0 ramclk

add_write_control 0 ramclk

add clock 0 XCLK -pulse_always

add pin constraint scan_en c0

add pin constraint RST c0

// Configure LogicBIST controller
Hybrid TK/LBIST Flow User’s Manual, v2022.4 271

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Generating the EDT and LogicBIST IP (Dofile Flow)
set_lbist_controller_options -max_shift 400 -max_capture 2 -max_pattern 256000

set_lbist_controller_options -capture {pulseC1P 60 pulseC2P 35 pulseR 5}

set_lbist_controller_options -burn-in on # enable burn-in mode

set_edt_options -location internal

set_lbist_instances -controller_location /dftblk

// Define LogicBIST pins

set_lbist_pins tck tck

set_lbist_pins clock XCLK

set_lbist_pins scan_en scan_en

set_dft_enable_options -type xbounding_en -pin_name lbist_en

set_dft_enable_options -type mcp_bounding_en -pin_name mcp_bound_en

set_dft_enable_options -type control_point_en -pin_name tp_ctrl_en

set_dft_enable_options -type observe_point_en -pin_name tp_obs_en

// Define TAP pins for connecting to LogicBIST controller

set_lbist_pins setup_shift_scan_in tdi

set_lbist_pins setup_shift_scan_out { tdo jtag/scanCfgReg_so }

set_lbist_pins shift_dr { - jtag/shift_dr }

set_lbist_pins capture_dr { - jtag/capture_dr }

set_lbist_pins update_dr { - jtag/update_dr }

set_lbist_pins test_logic_reset { - jtag/tlr }

set_lbist_pins tap_instruction_decode { - jtag/scanCfgReg_en }

// Define clock controller pins

set_clock_controller_pins lbist_en {cc_clk/lbist_en cc_NX1/lbist_en cc_NX2/lbist_en}

set_clock_controller_pins shift_clock_en {cc_clk/shift_clock_en cc_NX1/shift_clock_en 
cc_NX2/shift_clock_en}

set_clock_controller_pins scan_en {cc_clk/scan_en cc_NX1/scan_en cc_NX2/scan_en}

set_clock_controller_pins capture_procedure_index {NCPdecoder/i[1] NCPdecoder/i[0]}

// Define EDT block my_core_A of "my_core" design

add_edt_block my_core_A

for {set i 1} {$i <= 16} {incr i} {

add_scan_chain -internal my_core_A_chain$i grp1 my_core_A/scan_in$i my_core_A/
scan_out$i
Hybrid TK/LBIST Flow User’s Manual, v2022.4272

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Scan Insertion and X-Bounding
}

set_edt_power_controller shift enabled -min_switching 15

set_lbist_power_controller shift enabled -min_switching 12

set_edt_instance -block_location /dftblk

// Define EDT block my_core_B of "my_core" design

add_edt_block my_core_B

for {set i 1} {$i <= 16} {incr i} {

add_scan_chain -internal my_core_B_chain$i grp1 my_core_B/scan_in$i my_core_B/
scan_out$i

}

set_edt_power_controller shift enabled -min_switching 15

set_lbist_power_controller shift enabled -min_switching 12

set_edt_instance -block_location /dftblk

// Define EDT block piccpu of design "piccpu"

add_edt_block piccpu

for {set i 1} {$i <= 8} {incr i} {

add_scan_chain -internal piccpu_chain$i grp1 piccpu/edt_si$i piccpu/edt_so$i

}

set_edt_power_controller shift enabled -min_switching 25

set_lbist_power_controller shift enabled -min_switching 25

set_edt_instance -block_location /dftblk

report_lbist_configuration

report_lbist_pins

report_clock_controller_pins

report_edt_configuration -all_blocks

write_edt_files -tsdb -replace

// For the dofile flow, do not use the -tsdb option. For example:

// write_edt_files created -replace -timing_constraints

Performing Scan Insertion and X-Bounding
Before inserting the scan and X-bounding logic, you characterize the scan signals with the 
set_scan_signals command and X-bounding with the set_xbounding_options command.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 273

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Scan Insertion and X-Bounding
Prerequisites
• Design netlist with test points and dofile that are output by Tessent Shell during Test 

Point Analysis and Insertion, Scan Insertion, and X-Bounding.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell 

After invocation, the tool is in unspecified setup mode. You must set the context before 
you can use the X-bounding and scan insertion commands.

2. Set the tool context to scan insertion using the set_context command as follows:

SETUP> set_context dft -scan

3. Load the non-scan gate-level Verilog netlist containing the test points using the 
read_verilog command. 

SETUP> read_verilog my_modified_netlist.v

4. Load one or more cell libraries into the tool using the read_cell_library command.

SETUP> read_cell_library atpg.lib

5. Using the dofile command, load the Tessent Shell tool-produced dofile you generated 
during test point analysis and insertion. For example:

SETUP> dofile lbist_scan_setup.dofile

This dofile loads the netlist and the Tessent cell library. It also includes the necessary 
commands to set up the circuit for DRC.

6. If required in your design flow, load the SDC file using the read_sdc command. 

SETUP> read_sdc my_sdc

The SDC file should describe false and multicycle paths that should be blocked during 
LogicBIST.

7. Set the scan insertion options using the set_scan_signals command.

SETUP> set_scan_signals -ten t_enable

8. Set the X-bounding options with the set_xbounding_options command. For example:

SETUP > set_xbounding_options -xbounding_enable my_enable1

This command specifies the name of the top-level pin that enables the X-bounding 
signals.

9. Change the tool’s system mode to analysis using the set_system_mode command.

SETUP> set_system_mode analysis
Hybrid TK/LBIST Flow User’s Manual, v2022.4274

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Dofiles for Core-Level Simulation
During the transition from setup to analysis mode, the tool performs design rule 
checking and inserts the scan chains.

10. Perform the X-bounding analysis using the analyze_xbounding command.

ANALYSIS> analyze_xbounding

The tool reports a summary of how many bounding muxes were added.

11. Optionally report the results of the X-bounding analysis using the report_xbounding 
command.

ANALYSIS> report_xbounding

12. Perform scan insertion and X-bounding logic insertion using the insert_test_logic 
command.

ANALYSIS> insert_test_logic

This command modifies the internal representation of the netlist to include the X-
bounding muxes, as well as performing scan cell replacement and stitching. This 
command triggers a transition from analysis to insertion mode.

13. Write out the modified design using the write_design command. For example:

INSERTION> write_design -output design_with_scan.v

14. Write out the test procedure file and dofile using the write_atpg_setup command as 
follows:

INSERTION> write_atpg_setup my_scan_setup

You need this file for subsequent steps in the process.

Results
In this example, the tool produces the following two files that are to be used as input for the next 
step of the flow:

• my_scan_setup.dofile 

• my_scan_setup.testproc 

Now you are ready to perform “EDT and LogicBIST IP Generation.” 

Example Dofiles for Core-Level Simulation
In the dofile flow, the tool uses the write_core_description and write_patterns commands.
The following example shows this flow.

set_context patterns -scan

read_verilog alu_edt_top_gate.v
Hybrid TK/LBIST Flow User’s Manual, v2022.4 275

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Dofiles for Core-Level Simulation
read_cell_library atpg.lib

set_current_design

dofile alu_lbist.dofile

set_lbist_controller_options -programmable_ncp_list {clkseq1 clkseq2 clkseq3 clkseq4}

set_lbist_controller_opt -capture_procedures {clkseq1 40 clkseq2 40 clkseq3 10 clkseq4 10}

set_system_mode analysis

add_faults -all 

set_random_patterns 100

simulate_patterns -source bist

write_core_description alu.tcd -replace

write_patterns alu.patdb -patdb -replace
Hybrid TK/LBIST Flow User’s Manual, v2022.4276

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Pattern Generation for the Dofile Flow
Pattern Generation for the Dofile Flow
Generating IJTAG patterns with the dofile flow requires a pattern retargeting dofile template. 
This dofile is a template with Tcl-style comments that you must modify with the information 
specific to your design before using the dofile in Tessent Shell. Generating CCM patterns 
requires the created_ccm.dofile that was generated during IP creation.
For IJTAG pattern generation, you can use the following pattern retargeting dofile template.

######################################################################## 
#Set the following variables before sourcing this dofile: 
#  Required variables: 
#        set edt_lbist_icl_file_list   <filenames> 
#        set edt_lbist_pdl_file_list   <filenames> 
#        set edt_lbist_tcd_file        <filenames> 
#        set edt_lbist_patdb_file_list <filenames> 
#        set edt_lbist_reference_clock <clockname> 
# 
#  Optional variables: 
#        set edt_lbist_tester_clock_period        <period> 
#        set edt_lbist_user_iproc                 <procname> 
#        set edt_lbist_write_hw_default_patterns  <0|1: default=0> 
#        set edt_lbist_write_diag_patterns        <0|1: default=0> 
#########################################################################
#
#Set context to ijtag pattern retargeting 
set_context pattern -ijtag 

# 
#Read library and design 
read_cell_library ../data/atpg.lib 
read_verilog created_edt_top_gate.v
# 
#Read fault simulation data 
read_config_data  $edt_lbist_tcd_file

# 
#Read ICL files 
read_icl $edt_lbist_icl_file_list 
# 
#Set top level module for ijtag retargeting 
set_current_design m8051 

# 
#Define top-level clocks 
if {[info exists edt_lbist_tester_clock_period]} { 

add_clocks $edt_lbist_reference_clock -period 
$edt_lbist_tester_clock_period ns -free_running 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 277

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Pattern Generation for the Dofile Flow
} else { 
add_clocks $edt_lbist_reference_clock -free_running 

} 
add_clocks 1 tck 

# 
#Define pin constraints 
add_input_constraints RST -c0 
add_input_constraints edt_reset -c0 

# 
#Change to analysis mode to generate patterns 
set_system_mode analysis 
if {[get_context -extraction]} { 

write_icl -o m8051.icl -replace 
}
foreach patdb_file $edt_lbist_patdb_file_list { 

open_patdb $patdb_file 
} 
report_open_patdb

# 
#Read PDL files 
foreach pdlfile $edt_lbist_pdl_file_list { 

source $pdlfile 
} 

# 
#Write regular LBIST patterns 
set begin_pattern 0 
set end_pattern  31 
set warmup_pattern_count 0 
open_pattern_set lbist_normal 
if {[info exists edt_lbist_user_iproc]} { 

iCall $edt_lbist_user_iproc 
} 
iCall run_lbist_normal lbist_clock $begin_pattern $end_pattern lbist 
$warmup_pattern_count 
close_pattern_set 
write_patterns m8051_lbist_normal_${begin_pattern}_${end_pattern}.v
-pattern_set lbist_normal -verilog -replace 

# 
#Write hardware default LBIST patterns 
if {[info exists edt_lbist_write_hw_default_patterns]&& 
$edt_lbist_write_hw_default_patterns} { 

open_pattern_set lbist_hw_default 
if {[info exists edt_lbist_user_iproc]} { 

iCall $edt_lbist_user_iproc 
} 
iCall run_lbist_hw_default lbist 
close_pattern_set 
write_patterns m8051_lbist_hw_default.v -pattern_set 

lbist_hw_default -verilog -replace 
}

# 
#Write diagnostic LBIST patterns 
Hybrid TK/LBIST Flow User’s Manual, v2022.4278

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for the Dofile Flow
set diag_begin_pattern 0 
set diag_end_pattern   1 
set diag_warmup_pattern_count 0 
if {[info exists edt_lbist_write_diag_patterns] && 
$edt_lbist_write_diag_patterns} { 

open_pattern_set lbist_diag 
if {[info exists edt_lbist_user_iproc]} { 

iCall $edt_lbist_user_iproc 
} 
iCall scan_unload_register lbist_clock $diag_begin_pattern 

$diag_end_pattern lbist $diag_warmup_pattern_count 
close_pattern_set
write_patterns 

m8051_lbist_diag_${diag_begin_pattern}_${diag_end_pattern}.v -pattern_set 
lbist_diag -verilog -replace 
}

exit

Performing Pattern Generation for the Dofile Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Performing Pattern Generation for CCM in the Dofile Flow . . . . . . . . . . . . . . . . . . . . . 281

Performing Pattern Generation for the Dofile Flow
The procedure for generating chip-level serial patterns uses a pattern retargeting dofile that you 
have created for your design. The write_patterns command specified in the dofile writes out the 
PatternDB files.

Prerequisites
• Modified design netlist.

• PDL data file, my_edt_logic_ltest.pdl, produced by the write_edt_files command.

• ICL data file, my_edt_logic_ltest.icl, produced by the write_edt_files command.

• Top-level ICL describing how the signals at the interface of the LogicBIST controller 
are connected to chip-level pins.

• A PDL that describes the test setup at the chip level if there is any. For example, if there 
is a TAP controller at the top level, then the tool requires an ICL and, optionally, PDL 
for the TAP controller.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell 

2. Set the tool context to IJTAG mode using the set_context command as follows:

SETUP> set_context patterns -ijtag
Hybrid TK/LBIST Flow User’s Manual, v2022.4 279

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for the Dofile Flow
3. Execute the modified pattern retargeting dofile. For example:

SETUP> dofile ./test_retarget.dofile

Results
Upon completion, Tessent Shell outputs the testbench/vectors for the entire pattern set, range 
specific vectors, or Hardware default mode as specified in the dofile.

• If you are using the Considerations for Top-Down Implementation, you finished all 
necessary steps in this flow.

• If you are using the Hybrid TK/LBIST Implementation, you are ready to perform the 
Top-Level ICL Network Integration. 

Examples
Example 1

In the following example, the core-level ICL IJTAG dofile uses the TCD and PatternDB files to 
generate a Verilog testbench for core-level pattern verification.

set_context patterns -ijtag

read_verilog alu_edt_top_gate.v

read_cell_library atpg.lib

read_icl alu_ltest.icl

set_current_design

set_system_mode analysis

source alu_ltest.pdl

// save the extracted ICL; used at the top level

write_icl -o alu.icl -replace

open_pattern_set alu_core_patt

iCall run_lbist_normal

close_pattern_set

write_patterns alu_core_patt.v -verilog -replace

Example 2
When you perform an iCall to the same controller within the same pattern, you receive an error 
because some iReadVar variables are not uniquified across the pattern set. The following 
example shows two iCalls that are applied to the same LBIST controller in the same pattern set 
and the resulting error. 
Hybrid TK/LBIST Flow User’s Manual, v2022.4280

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for CCM in the Dofile Flow
open_pattern_set lbist_normal
iCall run_lbist_normal lbist_clock 6 31 lbist
iCall run_lbist_normal lbist_clock 6 31 chain_test

Error: iReadVar variable 'bist_done_start[0]' already exists in ICL 
instance 'piccpu_lbist_i'.
Error: The iCall of iProc 'run_lbist_normal', which is associated with the 
ICL module 'piccpu', failed.

To prevent this type of error, use the teststep_name argument in the iProc. This argument adds a 
unique string for each iRead. For example:

open_pattern_set lbist_normal
iCall run_lbist_normal lbist_clock 6 31 lbist      0 1 lbist_mode
iCall run_lbist_normal lbist_clock 6 31 chain_test 0 1 chain_test_mode

close_pattern_set
write_patterns piccpu_lbist_normal_6_31.v -pattern_set lbist_normal

-verilog -replace
exit

Performing Pattern Generation for CCM in the 
Dofile Flow

When generating CCM patterns using the dofile flow, you must use the CCM dofile, 
create_ccm.dofile, and the CCM .testproc file, created_ccm.testproc, that are generated during 
IP creation. 
For details, refer to “Controller Chain Mode” on page 48.

Prerequisites
• Modified design netlist.

• ICL description of the current design.

• A PDL that describes the test setup at the chip level if there is any. For example, if there 
is a TAP controller at the top level, then the tool requires an ICL and, optionally, PDL 
for the TAP controller.

Procedure
1. From a shell, invoke Tessent Shell using the following syntax:

% tessent -shell 

2. Set the tool context to ATPG pattern generation:

SETUP> set_context pattern -scan

3. Read in the design and libraries. For example:

SETUP> read_verilog created_edt_top_gate.v
SETUP> read_cell_library ../data/atpg.lib
Hybrid TK/LBIST Flow User’s Manual, v2022.4 281

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for CCM in the Dofile Flow
4. Source the created_ccm.dofile generated during IP creation:

SETUP> dofile created_ccm.dofile

The created_ccm.dofile calls the CCM .testproc file, created_ccm.testproc, that was also 
generated during IP creation. For details, refer to the examples that follow.

5. Change the system mode to analysis:

SETUP> set_system_mode analysis

6. Add the CCM faults.

ANALYSIS> add_ccm_faults

The add_ccm_faults() TCL proc is contained within the created_ccm.dofile. This proc 
targets the faults to the hybrid IP.

7. Create and save the CCM patterns. For example:

ANALYSIS> create_patterns
ANALYSIS> write_patterns ccm_patt.v -verilog -replace -serial

Examples
The follow example generates CCM patterns.

set_context pattern -scan

read_verilog created_edt_top_gate.v
read_cell_lib ../data/atpg.lib

dofile created_ccm.dofile

set_system_mode analysis

add_ccm_faults

create_patterns
write_patterns ccm_patt.v -verilog -replace -serial

Example created_ccm.dofile
The following example shows a snippet of the CCM dofile, created_ccm.dofile, that was 
generated during IP creation. When a TAP is present, the tool places the TAP controller in the 
run-test-idle state to ensure that the IJTAG control signals are in a known state. IJTAG control 
signals that are top-level pins are constrained to their inactive values, as shown below.
Hybrid TK/LBIST Flow User’s Manual, v2022.4282

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for CCM in the Dofile Flow
add_scan_groups grp1 created_ccm.testproc
add_scan_chains ccm_chain grp1 ccm_scan_in ccm_scan_out
add_clocks 0 tck

add_input_constraints ijtag_reset c0
add_input_constraints ijtag_sel c0
add_input_constraints ijtag_ce c0
add_input_constraints ijtag_se c0
add_input_constraints ijtag_ue c0
add_input_constraints ccm_en c1

proc add_ccm_faults {} { // Adding faults only on the hybrid logic
add_faults {lbist_instance}
add_faults {edt_instances}
add_faults {single_chain_mode_logic_instance}
}

Example CCM .testproc file
The generated CCM .testproc file, created_ccm.testproc, is identical to the LBIST and EDT 
.testproc files except for minor modifications for use with CCM. Most notably, CCM .testproc 
files do not include internal signals (internal_shift_clock, internal_scan_en, 
internal_capture_en) and capture procedures. See the annotations in the following example.

set time scale 1.000000 ns ;
set strobe_window time 100 ; 

timeplate gen_tp1 =
force_pi 0 ; 
measure_po 100 ;
pulse clk_ 200 100; //No internal_shift_clock
pulse ramclk 200 100;
pulse refclk 200 100;
pulse reset 200 100;
pulse shift_clock 200 100;
pulse tck 200 100; //Controller chain clock set to default tck
period 400 ;

end;

always =
pulse refclk ;

end;
Hybrid TK/LBIST Flow User’s Manual, v2022.4 283

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Performing Pattern Generation for CCM in the Dofile Flow
procedure test_setup = //Capture procedures are not necessary
timeplate gen_tp1 ;
// cycle 1 starts at time 0

cycle =
force edt_clock 0 ;
force refclk 0 ;
force reset 0 ;
force scan_enable 0 ;
force shift_clock 0 ;
force test_logic_reset 1 ;
pulse refclk ;

end ;
// cycle 2 starts at time 400
cycle =

force test_logic_reset 0 ;
pulse refclk ;

end;
end;

procedure shift =
scan_group grp1 ;
timeplate gen_tp1 ;
// cycle 1 starts at time 0
cycle =

force_sci ;
force tck 0 ;//Force tck to 0 rather than internal_shift_clock to 1
measure_sco ;
pulse refclk 
pulse shift_clock ;
pulse tck ; //Pulsing tck rather than internal_shift_clock

end;
end;

procedure load_unload =
scan_group grp1 ;
timeplate gen_tp1 ;
// cycle 1 starts at time 0
cycle =

force clk_ 0 ;
force edt_clock 0 ; //no internal_capture_en, internal_scan_en,
force ramclk 0 ; //and internal_shift_clock
force refclk 0 ;
force reset 0 ;
force scan_enable 1 ;/
force shift_clock 0 ;
force tck 0 ;
force test_logic_reset 0 ;
pulse refclk ;

end ;
apply shift 16;

end;
Hybrid TK/LBIST Flow User’s Manual, v2022.4284

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Pattern Mismatch Debugging in the Dofile Flow
Pattern Mismatch Debugging in the Dofile 
Flow

You can use a dofile debugging flow to verify clocks prior to running serial pattern simulation.
Debug Based on MISR Signature Divergence (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . 285
Debug Based on Scan Cell Monitoring (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Debug Based on MISR Signature Divergence (Dofile 
Flow)

You can verify the BIST registers and clocks at the same time, which in turn enables you to 
identify the patterns corresponding to mismatches (such as MISR) as the mismatches occur. 

Restrictions and Limitations
• Once the TCD file is created as described below, you cannot alter the core hierarchy 

(such as by ungrouping the LogicBIST controller). Altering the core hierarchy causes 
the list of monitor points in the TCD file to become out of sync.

Prerequisites
• You have performed the hybrid TK/LBIST flow through the pattern generation step.

Procedure
1. Verify the clocks.

Modify the default LogicBIST retargeting dofile template that the tool creates during 
fault simulation (with the write_lbist_register_data command).The following example 
shows the default LogicBIST retargeting dofile template. To verify the clocks, 
uncomment and set the edt_lbist_setup_and_clock_verification_patterns variable to 1.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 285

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on MISR Signature Divergence (Dofile Flow)
##################################################################
#Set the following variables before sourcing this dofile:
#  Required variables:
#       set edt_lbist_icl_file_list   <filenames>
#       set edt_lbist_pdl_file_list   <filenames>
#       set edt_lbist_tcd_file        <filenames>
#       set edt_lbist_patdb_file_list <filenames>
#       set edt_lbist_reference_clock <clockname>
#
#  Optional variables:
#       set edt_lbist_tester_clock_period        <period>
#       set edt_lbist_user_iproc                 <procname>
#       set edt_lbist_write_hw_default_patterns  <0|1: default=0>
#       set edt_lbist_write_diag_patterns        <0|1: default=0>
#       set edt_lbist_setup_and_clock_verification_patterns <0|1: \

default=0>
##################################################################

...
#
#Write setup and clock verification LBIST patterns
if {[info exists edt_lbist_setup_and_clock_verification_patterns] 
&& $edt_lbist_setup_and_clock_verification_patterns} {

set one_pattern_per_ncp 1
open_pattern_set lbist_setup_and_clock_verification
if {[info exists edt_lbist_user_iproc]} {

iCall $edt_lbist_user_iproc
}
iCall cpu_gates_tessent_occ_NX1_inst.setup fast_capture_mode \

 on capture_window_size 2 static_clock_control external 
iCall cpu_gates_tessent_occ_NX2_inst.setup fast_capture_mode \

 on capture_window_size 2 static_clock_control external 
iCall cpu_gates_tessent_occ_NX3_inst.setup fast_capture_mode \

 on capture_window_size 2 static_clock_control external 
iCall lbist_setup_and_clock_verification lbist_clock lbist \

$one_pattern_per_ncp
close_pattern_set
write_patterns cpu_lbist_setup_and_clock_verification.v \

 -pattern_set lbist_setup_and_clock_verification -verilog -replace
}

exit

This is the syntax for the lbist_setup_and_clock_verification iProc:

iProc lbist_setup_and_clock_verification { {clock_select lbist_clock}
{mode_name lbist} {one_pattern_per_ncp 0} {teststep_name ""} } {…}

As shown in the example iCall, the generated template sets the one_pattern_per_ncp 
variable to 1 by default. This means that if you have four NCPs, the tool runs four tests, 
one for each NCP. 

The default pattern run is 256. To exercise the full pattern range, in the generated 
template, change the line “set one_pattern_per_ncp 1” from 1 to 0.
Hybrid TK/LBIST Flow User’s Manual, v2022.4286

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on MISR Signature Divergence (Dofile Flow)
2. If clock verification fails, investigate and fix possible causes, such as:

a. The On-Chip Clock Controller (OCC) is not set up correctly. Ensure that the 
arguments are specified correctly if you are using an iCall to setup the OCC.

b. Ensure that you have correctly set any primary input pin asserts that are needed for 
the clocks to operate.

c. You may find that while debugging the clock verification failures the capture 
window is too small. That is, capture clock pulses occur outside the window where 
“capture_en=1.” If this is the case, return to LogicBIST IP generation and specify 
the following command to increase the capture window:

set_lbist_controller_options -max_capture_cycles #

3. Run Verilog simulation with the LogicBIST debugging feature enabled as shown below, 
and identify any failing LogicBIST patterns.

The resulting transcript includes mismatch statements such as those shown in bold 
following. The statements tell you at which pattern the MISR signature started to 
diverge from the expected value.

Note
To display the passing data, specify “+show_passing_regs” when you start the 
simulator.

...
Setting up controller TLB_coreB_I1.coreB_lbist_i

Number of patterns    : 5 (5 + 0 warm-up patterns)
Pattern Length        : 40
Shift Clk Select      : 0b01
Capture Phase Width   : 0x3 Shift Clock Cycles
PRPG Seed             : 0x66241da0
MISR Seed             : 0x000000

Starting controller TLB_coreB_I1.coreB_lbist_i in Normal mode, 
patterns 0 to 3

Checking that the controller TLB_coreB_I1.coreB_lbist_i DONE 
signal is NO at the beginning of the test

Mismatch at pattern 2 for TLB.coreB_I1.coreB_edt_lbist_i.misr: 
Expected = 83ab37 Actual = 7854d0

Mismatch at pattern 3 for TLB.coreB_I1.coreB_edt_lbist_i.misr: 
Expected = 9b96e3 Actual = 5e161a
Test Complete for controller TLB_coreB_I1.coreB_lbist_i

Checking that signal DONE is YES for controller 
TLB_coreB_I1.coreB_lbist_i
Checking results of controller TLB_coreB_I1.coreB_lbist_i

Expected Signature for controller TLB_coreB_I1.coreB_lbist_i : 
0x9b96e3
Turning off LogicBist controller TLB_coreB_I1.coreB_lbist_i
...
Hybrid TK/LBIST Flow User’s Manual, v2022.4 287

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on MISR Signature Divergence (Dofile Flow)
Enable the debugging feature by specifying sim_monitor with the run_lbist_normal 
iProc. This is the syntax:

iProc run_lbist_normal { {clock_select lbist_clock} {begin_pattern 0} {end_pattern 31}
{mode_name lbist} {warmup_pattern_count 0} {misr_compares 1}
{sim_monitor off} {teststep_name ""} } {…}

For example:

set sim_monitor 1
open_pattern_set lbist

iCall run_lbist_normal lbist_clock 980 999 lbist 0 0 $sim_monitor
close_pattern_set

4. Re-run the simulation so that you can identify the failing flop associated with the 
particular pattern where the MISR started to diverge. 

Use the scan_unload_register iProc, as shown in the following sample dofile template. 
Set the edt_lbist_write_diag_patterns variable to 1, and adjust the diag_begin_pattern 
and diag_end_pattern settings accordingly. For example, if the MISR signature failed at 
pattern 2, you would set the begin and end patterns to 2.
Hybrid TK/LBIST Flow User’s Manual, v2022.4288

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on MISR Signature Divergence (Dofile Flow)
##################################################################
#Set the following variables before sourcing this dofile:
#  Required variables:
#        set edt_lbist_icl_file_list   <filenames>
#        set edt_lbist_pdl_file_list   <filenames>
#        set edt_lbist_tcd_file        <filenames>
#        set edt_lbist_patdb_file_list <filenames>
#        set edt_lbist_reference_clock <clockname>
#
#  Optional variables:
#        set edt_lbist_tester_clock_period        <period>
#        set edt_lbist_user_iproc                 <procname>
#        set edt_lbist_write_hw_default_patterns  <0|1: default=0>#        
set edt_lbist_write_diag_patterns        <0|1: default=0>
#        set edt_lbist_setup_and_clock_verification_patterns <0|1: 
# default=0>
##################################################################
...
#
#Write diagnostic LBIST patterns
set diag_begin_pattern 2
set diag_end_pattern 2
set diag_warmup_pattern_cnt 0
if {[info exists edt_lbist_write_diag_patterns] && 
$edt_lbist_write_diag_patterns} {

open_pattern_set lbist_diag
if {[info exists edt_lbist_user_iproc]} {

iCall $edt_lbist_user_iproc
}
iCall cpu_gates_tessent_occ_NX1_inst.setup fast_capture_mode 

on capture_window_size 2 static_clock_control external 
iCall cpu_gates_tessent_occ_NX2_inst.setup fast_capture_mode 

on capture_window_size 2 static_clock_control external 
iCall cpu_gates_tessent_occ_NX3_inst.setup fast_capture_mode 

on capture_window_size 2 static_clock_control external 
iCall scan_unload_register lbist_clock $diag_begin_pattern 

$diag_end_pattern lbist $diag_warmup_pattern_cnt
close_pattern_set
write_patternscpu_lbist_diag_${diag_begin_pattern}_

${diag_end_pattern}.v -pattern_set lbist_diag -verilog -replace
}

Results
The following transcript example shows a mismatch at an lbist_scan_out pin.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 289

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on Scan Cell Monitoring (Dofile Flow)
...
300ns:  piccpu MISR Seed           : 0x000000

49300ns:  Starting controller TLB_coreB_I1.coreB_edt_lbist_i in Normal 
mode, patterns 0 to 0
51000ns:  Checking that the controller TLB_coreB_I1.coreB_edt_lbist_i 

DONE signal is NO at the beginning of the test
62800ns:  Test Complete for controller TLB_coreB_I1.coreB_edt_lbist_i
69000ns:  Scanning out capture results of vector 0 for controller 

TLB_coreB_I1.coreB_edt_lbist_i
180024ns: Mismatch at pin           0 name            lbist_scan_out, 
Simulated x, Expected 0
180100ns: Corresponding ICL register:  
TLB_coreB_I1.coreB_edt_single_chain_mode_logic_i.TLB_coreB_I1.coreB_edt_i
nternal_scan_registers_i.coreB_A_chain1[18]
180100ns: Corresponding design object:  coreB_A/u11/PRB_reg/DFF1
181700ns:  Turning off LogicBist controller TLB_coreB_I1.coreB_edt_lbist_i

Debug Based on Scan Cell Monitoring (Dofile Flow)
You can have the tool monitor the scan chains and return information about scan cells 
associated with unexpected unload values.

Restrictions and Limitations
• Once the TCD file is created as described below, you cannot alter the core hierarchy 

(such as by ungrouping the LogicBIST controller). Altering the core hierarchy causes 
the list of monitor points in the TCD file to become out of sync.

Prerequisites
• You have performed the hybrid TK/LBIST flow through the pattern generation step.

Procedure
1. Verify the clocks as described in step 1 of “Debug Based on MISR Signature 

Divergence (Dofile Flow)” on page 285.

2. If clock verification fails, investigate and fix possible causes as described in step 2 of 
“Debug Based on Scan Cell Monitoring (Dofile Flow)” on page 290.

3. Run Verilog simulation with the monitor_scan_cells LogicBIST debugging feature 
enabled as shown below. When specified, the tool monitors the scan chain output pins, 
detects when an unexpected value is unloaded, and reports which shift cycle and scan 
cell failed.

Specify sim_monitor with the run_lbist_normal iProc and include the monitor_scan_cell 
argument. For example:

set sim_monitor 1
open_pattern_set lbist

iCall run_lbist_normal lbist_clock 980 999 lbist 0 0 \
monitor_scan_cell $sim_monitor

close_pattern_set
Hybrid TK/LBIST Flow User’s Manual, v2022.4290

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Debug Based on Scan Cell Monitoring (Dofile Flow)
Results
When a mismatch occurs the tool first reports the scan chain output pin where the mismatch was 
observed, and then maps the mismatch to a pattern, shift cycle, and scan cell. For both messages 
it reports the simulated and expected values. If there is inversion between the scan cell and the 
scan out, the simulated/expected values on these two lines is different. If the failing scan cell is 
within a sub-chain of a hard module, then the message only reports the scan cell and not the pin 
of the scan cell that failed.
The following transcript example shows mismatches when the wrong values are observed on 
scan chain cells. 

#ns: Pattern_set serial_load
#ns: Setting up controller xtea_tk_lbist_ip_tessent_lbist_i
#ns: Number of patterns : 3 (3 + 0 warm-up patterns)
#ns: Pattern Length : 2 #ns: Shift Clk Select : 0b00
#ns: Capture Phase Width : 0x20 Shift Clock Cycles
#ns: PRPG Seed : 0x3e0a
#ns: MISR Seed : 0x000000
#ns: Starting controller xtea_tk_lbist_ip_tessent_lbist_i in Normal mode, 
patterns 0 to 2
#ns: Checking that the controller xtea_tk_lbist_ip_tessent_lbist_i DONE 
signal is NO at the beginning of the test

#ns: Mismatch at pin xtea_tk_lbist_ip_tessent_edt_lbist_c0_inst/
tessent_persistent_cell_edt_scan_out_0_buf/Y, Simulated x, Expected 1
#ns: Corresponding scan cell for pattern 0 at shift cycle 0: 
hard_mod2_inst1/OUT_R_reg_0_, Simulated x, Expected 0

#ns: Mismatch at pin xtea_tk_lbist_ip_dft_tessent_edt_lbist_c0_inst/
tessent_persistent_cell_edt_scan_out_0_buf/Y, Simulated x, Expected 0
#ns: Corresponding scan cell for pattern 0 at shift cycle 11: 
hard_mod2_inst1/IN2_R_reg_3_, Simulated x, Expected 1

#ns: Mismatch at pin xtea_tk_lbist_ip_tessent_edt_lbist_c1_inst/
tessent_persistent_cell_edt_scan_out_2_buf/Y, Simulated x, Expected 1
#: Corresponding scan cell for pattern 1 at shift cycle 0: B_R_reg_2_/Q, 
Simulated x, Expected 1 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 291

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC for Hybrid TK/LBIST in the Dofile Flow
Tessent OCC for Hybrid TK/LBIST in the Dofile 
Flow

The Tessent On-Chip Clock Controller (OCC) can be used in the Hybrid TK/LBIST flow. 
Tessent Shell can generate and insert the Tessent OCCs with programmable capture clock 
sequences for use with Hybrid TK/LBIST applications.
During LBIST mode, the actual clock sequence is parallel loaded into the Tessent OCC. You 
can configure the Tessent OCC so that the values can be loaded through OCC module input 
ports or through a TDR inside the OCC. When an LBIST test uses only one NCP at a time, this 
value can be loaded through the TDR or be available as constants at the module inputs. If the 
LBIST test uses multiple NCPs, then the tool generates the parallel load clock sequence for the 
currently-active NCP, the index for which is provided by the LBIST controller.

When Tessent OCC is generated with internal IJTAG control (that is, you have specified the 
Occ/ijtag_host_interface property), the static signals for controlling the OCC for LBIST mode 
are included within the OCC. Additionally, when static_clock_control is either internal or both, 
a TDR is included for generating the LBIST capture clock sequence. However, you can use this 
internal TDR only when LBIST test uses only one active NCP.

For additional Tessent OCC-specific information, see “Tessent On-Chip Clock Controller” in 
the Tessent Scan and ATPG User’s Manual.

Tessent OCC TK/LBIST (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Observation Scan Technology Dofile Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Example Tessent OCC TK/LBIST Flow (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Tessent OCC Dofile Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
File Examples for the Dofile Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Hybrid TK/LBIST Flow User’s Manual, v2022.4292

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Tessent OCC TK/LBIST (Dofile Flow)
The Tessent OCC TK/LBIST flow varies from the standard TK/LBIST flow. Use the 
information in this section as a guide to configure and insert the Tessent OCC, and interface the 
Tessent OCC with the hybrid TK/LBIST flow controller.
In general, you use the standard TK/LBIST Hybrid TK/LBIST Implementation with the 
modifications specific to the TK/LBIST flow as illustrated in Figure A-2. See also Example 
Tessent OCC TK/LBIST Flow for a step-by-step illustration of the Tessent OCC TK/LBIST 
flow.

Figure A-2. Modified TK/LBIST Flow for Tessent OCC

Tessent OCC for TK/LBIST Flow Configuration (Dofile Flow) . . . . . . . . . . . . . . . . . . . 294
NCP Index Decoder (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
OCC Generation and Insertion (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Scan Insertion (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
OCC EDT/LBIST IP Creation (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
NCP Index Decoder Synthesis (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Fault Simulation with a Tessent OCC (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Pattern Generation with a Tessent OCC (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Hybrid TK/LBIST Flow User’s Manual, v2022.4 293

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Tessent OCC for TK/LBIST Flow Configuration (Dofile 
Flow)

The clock controller can be used in two modes for LBIST: using a static sequence loaded 
through an ICL network for all patterns in a session; or, using a set of sequences that are cycled 
through every 256 patterns.
A Tessent OCC configured with capture_en as the capture trigger is used for hybrid TK/LBIST 
flow The slow clock input of the Tessent OCC is connected to TK/LBIST reference input clock 
in LBIST mode. The scan enable input of the Tessent OCC is connected to LBIST shift enable 
output in LBIST mode. The capture enable input of the Tessent OCC is connected to the LBIST 
capture enable output in LBIST mode. The tool adds muxes inside the LBIST controller to 
choose between LBIST and ATPG mode signals. 

TCD for the Clock Controller
The tool writes out a Tessent Core Description file after you execute the 
process_dft_specification command when processing the clock controller wrapper. This file is 
written out in the instrument directory for the clock controller with .tcd_occ filename extension. 
This file is for input into the Tessent Scan insertion tool.

NCP Index Decoder (Dofile Flow)
The NCP index decoder is a simple combinational logic block that decodes the NCP index 
output of the Hybrid TK/LBIST controller into clock sequences to be generated by the Tessent 
OCCs across all capture procedures.
The LBIST controller generates an NCP index that cycles through the NCPs based on the active 
percentage for each NCP. This NCP index is decoded to provide the actual clock sequence that 
is parallel loaded to the OCC. 

You must specify the clocking combinations to be used during TK/LBIST test. The tool 
synthesizes the NCP index decoder and generates named capture procedures based on this 
description. 

You can use the NCP index decoder with only a single clock domain. The NCP index decoder is 
based on the number of unique clocking waveforms, not on the number of clocks. For example, 
with a single clock you can generate two NCPs (a single pulse and double pulse).

To reduce the test time and achieve high coverage, it is possible to activate multiple clock 
domains at the same time. This is a trade-off between test time and hardware cost: the cost 
comes from adding bounding logic for paths crossing clock domains. You may need bounding 
for both stuck-at and transition patterns. You lose coverage in all blocked paths, but you can 
control the blocking with the McpBoundingEn dft_signal. It is possible to disable blocking at 
runtime, but the NCPs can only pulse compatible clocks.
Hybrid TK/LBIST Flow User’s Manual, v2022.4294

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
One NCP index decoder is synthesized for each LogicBIST controller and can be used for 
controlling all the OCCs involved in LogicBIST. In Figure A-3, there are three OCCs 
configured for four cycles each. There are two input binary values to the NCP index decoder 
(indicating a maximum of four NCPs), which is decoded as a single control signal per OCC per 
cycle that reflects the required clocking waveform.

Figure A-3. NCP Index Decoder Connections

The tool generates only one index decoder for all OCCs. The NCP index decoder is instantiated 
by default at the top-level, or as controlled with the parent_instance property of the 
NcpIndexDecoder specification.

NCP Index Decoder Creation
Specify the NCP index decoder with the DftSpecification/LogicBist/NcpIndexDecoder 
wrapper. For a complete description and usage, see NcpIndexDecoder in the Tessent Shell 
Reference Manual. 

If you are using only one NCP, you cannot use the NcpIndexDecoder wrapper because it is 
supported only for external static clock controls and two or more NCPs. Refer to 
“Considerations When Only Using One NCP” on page 159 for fault simulation considerations.

When the NcpIndexDecoder is generated in the same run as the LogicBist IP, the NCP count is 
automatically inferred from the number of Ncp() wrappers in the NcpIndexDecoder wrapper. 
When NcpIndexDecoder is generated in a different run, you must specify the LogicBist/
Controller/NcpOptions/count property = 1.

Note
NCP index decoder generation requires an elaborated design and Tessent OCC instances 
you have added with the add_core_instances command.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 295

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Examples
In the following example, assume the design has two top-level Tessent OCC instances named 
m8051_gate_tessent_occ_clk1_inst and m8051_gate_tessent_occ_clk2_inst of the same 
Tessent OCC module m8051_gate_tessent_occ.

LogicBist
NcpIndexDecoder {

Connections {
NcpIndex: m8051_lbist_i/ncp;

}
Ncp(stuck) {

cycle(0): m8051_gate_tessent_occ;
//Specified using module name, refers to both the OCC instances.

}
Ncp(clk1_double_pulse) {

cycle(0): m8051_gate_tessent_occ_clk1_inst;
cycle(1): m8051_gate_tessent_occ_clk1_inst;

}
Ncp(clk2_double_pulse) {

cycle(0): m8051_gate_tessent_occ_clk2_inst;
//Note – cycle(1) is omitted, so no clock activity

cycle(2): m8051_gate_tessent_occ_clk2_inst;
}

}

Assuming the above specification is in a file named ncp.dft_spec, the following Tessent Shell 
dofile synthesizes and inserts the NCP index decoder.

set_context dft -no_rtl
read_verilog \

tsdb_outdir/dft_inserted_designs/m8051_gates.dft_inserted_design/
m8051.vg
read_verilog tsdb_outdir/instruments/m8051_gates_occ.instrument/
m8051_gate_tessent_occ.vg
read_cell_library atpg.lib
set_current_design
read_core_description \ 

tsdb_outdir/instruments/m8051_gates_occ.instrument/
m8051_gate_tessent_occ.tcd

add_core_instances -module m8051_gates_tessent_occ
report_core_instances
read_config_data ncp.dft_spec
set_design_level physical_block
process_dft_specification

OCC Generation and Insertion (Dofile Flow)
You create an OCC-specific DftSpecification to interface the hybrid controller to the OCC. 
Then you use Tessent Shell to process this specification. 
You define the OCC DftSpecification using DftSpecification configuration syntax. A separate 
OCC DftSpecification with controller wrappers should be added for each different clock that 
Hybrid TK/LBIST Flow User’s Manual, v2022.4296

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
needs to be programmable during capture. Additionally, OCCs may be added for asynchronous 
reset signals declared as a clock.

Tessent Shell creates Verilog RTL, ICL, PDL, TCD files, and TCD scan describing the Tessent 
OCC instrument, as well as a Verilog netlist that instantiates the OCC in the user design. Many 
generation and insertion options are available in the Dft Specification to control this process. 
The ICL and TCD outputs are used in later steps like EDT/LBIST IP creation to describe the 
configuration of the generated OCCs as well identifying the port functions. The Tessent OCC 
RTL should be synthesized to a gate level design before it is used for downstream steps that 
require a gate level netlist.

The Tessent OCC can be inserted in a design either at RTL or gate level. When inserted at RTL 
level or before EDT IP, the Tessent OCC shift registers can either be merged with design scan 
cells or stitched up into dedicated Tessent OCC scan chains. When using stitched into dedicated 
chains, these can be either compressed or uncompressed. When OCC is inserted after EDT IP, 
the OCC shift registers have to be stitched into dedicated OCC scan chains and handled as 
uncompressed chains driven directly by the tester.

Static Clock Control
By default, the Tessent OCC generated by Tessent Shell provides programmability only 
through the clock control shift register suitable for ATPG. To use the OCC on a LBIST design, 
you should add static clock control. Static clock control, which refers to clock sequence not 
decided by ATPG, can be one of the following options:

• Internal — The Tessent OCC is statically programmable using an internal TDR for 
both LBIST and ATPG modes. When using this option, the LBIST test can use only one 
NCP at a time. When multiple NCPs are to be used, it needs to be done in multiple 
pattern sets.

• External  — The Tessent OCC is statically programmable through OCC module ports 
for the LBIST mode. This enables use of multiple NCPs for LBIST test in a single 
pattern set. An NCP index decoder is synthesized to provide the clock sequence for the 
different NCPs based on the ncp_index output from the LBIST controller. The Tessent 
OCC external clock control module port is available only for the LBIST mode and 
unavailable for ATPG.

• Both — This combines both the internal and external options described above. ATPG 
can use the TDR for static clock control. LBIST can use either the TDR or the OCC 
module ports.

Capture Trigger
To use the Tessent OCC for TK/LBIST operation, you should set the capture trigger to capture 
enable. In this case, scan enable is replaced by the LBIST capture enable signal as the trigger. 
To enable either fast capture or slow capture to be used during LBIST, the slow clock signal is 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 297

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
connected to the free running LBIST controller input clock so that it pulses on all capture 
cycles. 

The capture enable signal should to be tied to constant-0 or connected to inverted scan enable 
during OCC insertion.

Connection to OCC External Clock Ports
By default, when configuring the Tessent OCC with static_clock_control as either “external” or 
“both’, the tool ties the OCC external clock control module ports to constant-0. These ports are 
not described in the OCC ICL and are not referenced in the OCC setup iProc. In an LBIST 
application with multiple NCPs, these OCC pins would be eventually connected to the NCP 
index decoder.

Scan Insertion (Dofile Flow)
During Tessent OCC insertion, the clock control shift register IO of the Tessent OCCs are left 
unconnected. Integrating these Tessent OCC shift register sub-chains into the design is 
performed outside of the Dft Specification. Scan insertion can be performed using third-party 
tools.
You can insert the Tessent OCC into either a non-scan design or a scan design. 

Non-Scan Design Scan Insertion
When the Tessent OCC is inserted in a non-scan design, the OCC shift registers should be 
declared as sub chains to the scan insertion tool. The scan insertion tool merges these sub-chains 
with other scan cells taking care of scan chain length balancing.

Scan Design Insertion
When the Tessent OCC is inserted in a scan design, the Tessent OCC shift registers should be 
connected into one or more dedicated scan chains by the user, based on the target scan chain 
length. The Tessent OCC scan enable pin is connected to the design scan enable during scan 
insertion. The length of the sub chains should be the length of the Tessent OCC shift register. 
The OCC sub chains are always made part of scan chains considering the EDT mode in contrast 
to LBIST mode where the OCC shift register is bypassed by a single flop. The sub chains are 
internally bypassed within the OCC during LBIST.

OCC EDT/LBIST IP Creation (Dofile Flow)
The method you use for Tessent OCC EDT/LBIST creation depends on which flow you are 
using: pre-synthesis or gate level.
Hybrid TK/LBIST Flow User’s Manual, v2022.4298

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Pre-Synthesis Flow
In pre-synthesis flow, the Tessent OCC is not present in the input skeleton design and the ICL/
TCD files for the OCC cannot be read during IP creation. You should instruct the tool to 
generate LBIST controller compatible with Tessent OCCs. When using this flow, you are 
responsible for making all connections between the LBIST controller, EDT blocks, NCP index 
decoder and OCCs. You do this by using the “set_lbist_controller_options -tessent_occ on” 
command and options.

Gate-Level Flow
During EDT IP creation, you should input into Tessent Shell the Tessent OCC inserted design 
with OCC shift registers included in scan chains should be read. The OCC scan chains can be 
either part of compressed or uncompressed chains. Do not add Tessent OCC uncompressed scan 
chains during IP creation; only add them during pattern generation. You must configure the 
Tessent OCC correctly to pass the IP creation DRC checks, specifically the shift clock, scan 
enable, and capture enable signals of the Tessent OCC are properly connected and operated in 
the incoming test procedures.

During IP creation, you read in the ICL, PDL and Tessent Core Description (TCD) for the OCC. 
This is required to properly setup the Tessent OCC during IP creation. The TCD description is 
bound to a netlist instance by treating it as a core instance, similar to how scan pattern 
retargeting uses TCD. The tool identifies the Tessent OCCs when the tessent_instrument_type 
ICL attribute is set to “mentor::occ”. This attribute value is considered when generating the ICL 
signature, so it cannot be added to user OCCs. When Tessent OCCs are present in the design, 
the LBIST controller is modified to correctly interface with the OCC.

The TK/LBIST compatible Tessent OCCs are required to have the following two features: 
capture trigger using capture enable and static clock control either external or both when using 
multiple NCPs. See “Static Clock Control” on page 154 and “Capture Trigger” on page 154.

Note
Do not mix Tessent OCCs and custom OCCs (defined using set_clock_controller_pins 
command) in the same LBIST controller. The tool performs rule checks to validate this 

requirement.

During EDT IP creation, the Tessent OCC capture enable pins that are not functionally driven 
are driven by the inverted OCC scan enable. The Tessent OCC capture enable pins that are 
functionally driven (that is, by inverted scan enable) are multiplexed between existing 
functional connection and LBIST capture enable.

OCC Connections Interception
During hybrid TK/LBIST and OCC insertion with the TSDB flow, when adding edt_clock, 
shift_capture_clock dft signals as top-level ports, the LogicBIST IP intercepts and multiplexes 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 299

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
the existing connections of the OCCs. The tool attempts to reduce the amount of generated 
LogicBIST logic used to complete the intercepts.

If, for a given signal, multiple OCCs have the same signal source, then one mux is sufficient for 
intercepting all of them. The tool considers OCCs as having the same sources if their nets fan in 
from the same net, as observed during LogicBIST validation. As shown in the following figure, 
instead of inserting a mux for each intercept at the OCCs—eight intercepts—the tool inserts 
only four muxes. Optimization occurs for the capture enable and shift clock signals. 

Figure A-4. OCC/LogicBIST Connection Intercept With Same Signal Source

The signal sources are considered the same if their nets fan in from the same net, as observed 
during LogicBIST validation. The following example shows the case when the fanin nets differ 
for each OCC because one of them resides within a sub-module. The tool treats these OCCs as 
having different sources. It generates a mux for each intercept at the OCCs, leading to four 
generated muxes instead of two.
Hybrid TK/LBIST Flow User’s Manual, v2022.4300

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Figure A-5. OCC/LogicBIST Connection Intercept With Different Signal Sources

Capture Procedures
During IP creation, you specify the total number of NCPs used for LBIST. 

This is required to synthesize the NCP index output and NCP activity percentage registers. If 
the exact number of NCPs is not known during IP creation, an upper bound can be used. During 
fault simulation, unused NCP indices can be specified as 0%. If the names and activity 
percentage of the NCPs is specified during IP creation, this is used for the hardware default 
mode. When not specified, the tool defaults to equal activity for all the NCPs for the hardware 
default mode.

NCP Index Decoder Synthesis (Dofile Flow)
The NCP index decoder is synthesized is normally done with a third-party synthesis tool.
The number of NCPs generated should be equal to or less than the number specified during 
hybrid TK/LBIST IP generation.

Fault Simulation with a Tessent OCC (Dofile Flow)
Fault simulation with the Tessent OCCs is similar to a flow that uses custom OCCs. Tessent 
Shell reads in the complete gate level Verilog netlist with EDT and OCC, ICL/PDL, and TCD 
files for EDT and OCC instruments.
Tessent OCC core instances can be added during fault simulation. 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 301

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC TK/LBIST (Dofile Flow)
Tessent Shell automatically adds two internal clocks for each OCC instance:

• A pulse in capture clock at the output of shift register clock gater 
(cgc_SHIFT_REG_CLK/clkg).

• A programmable capture clock at the output of the programmable clock gater 
(cgc_CLK_OUT/clkg) at the output of the mux 
[tessent_persistent_cell_clock_out_mux/Z].

Provide NCPs that refer to these internal clocks. If you have already added internal clocks in the 
same location as the tool would, then Tessent Shell tool recognizes this and does not add 
duplicate clocks. The Design Rule Check R18, which validates whether OCC control register is 
part of scan chains, is bypassed in LBIST mode. Clock control definitions are not generated in 
the LBIST mode. The output core description TCD file includes the parameters that were 
specified for the OCC instruments used in this run.

In the LBIST mode dofile, an internal user-PI is added for the LBIST capture enable signal and 
constrained to 1. For fault simulating chain test patterns, you manually change this constraint to 
0.

Considerations When Only Using One NCP
When you are using only one NCP, you must manually create the NCP description because the 
NcpIndexDecoder, which usually creates the named capture procedure description, cannot be 
used for a single NCP. The OCC can have either an external or internal static clock control. 
During fault simulation, specify the name of the NCP as you would when you have more than 
one NCP.

You can use the create_capture_procedures command to create an NCP description in the tool 
instead of reading a manually-created description from a file. This user-created NCP should 
reflect the waveform that you also provide. For external static clock control, the waveform 
could be constant values provided on the OCC clock_sequence input pins by the netlist. For 
internal static control, this could be the value loaded into the OCC internal clock_sequence 
TDR.

For the internal static clock control, load the clock sequence corresponding to the user-created 
NCP through the ICL network. For Tessent OCCs, you can do this by using the clock_sequence 
core instance parameter. For the external static clock control, connect the Tessent OCC’s clock 
sequence pins to constant values that generate the required NCP clock waveforms.

Pattern Generation with a Tessent OCC (Dofile Flow)
Pattern generation is performed through pattern specification.
The presence of Tessent OCC is identified through the ICL attribute on the OCC modules and is 
matched with TCD description for the OCC. When using Tessent OCCs, the pattern 
Hybrid TK/LBIST Flow User’s Manual, v2022.4302

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Observation Scan Technology Dofile Flow
specification processing automatically calls the OCC setup iProc with the parameter values that 
were used during fault simulation.

Observation Scan Technology Dofile Flow
There are observation scan considerations when you are using the legacy hybrid TK/LBIST 
dofile flow.

Test Point and Scan Insertion
Perform test point insertion as usual, with the addition of the following option to trigger 
observation scan logic insertion:

set_test_point_analysis_options -capture_per_cycle_observe_points on

By default, the tool creates a pin named “capture_per_cycle_static_en” if you haven’t 
previously named the enable signal for observation scan OPs using the add_dft_signals 
command. Optionally, you can assign your own name to the pin with the following command: 

set_test_point_insertion_options -capture_per_cycle_en path_name

Specify these commands prior to analyze_test_points. Perform X-bounding and wrapper 
analysis as usual. The number of observe points is controlled the same way as without 
observation scan by using the -observe_points_number or -total_number options.

In the same session, perform scan insertion as usual. You must perform test point insertion and 
scan insertion together.

Note
When using the skeleton hybrid TK/LBIST dofile flow, in which you insert IP prior to 
performing test point and scan insertion, you must specify the 

“set_test_point_insertion_options -capture_per_cycle_en” command to identify the observation 
scan output pin on the LogicBIST controller. For example: lbist_i/
capture_per_cycle_dynamic_en.

IP Generation
The set_dft_enable_options command supports the pin type capture_per_cycle_static_en for 
observation scan. This pin is required for observation scan.

set_dft_enable_options –type capture_per_cycle_static_en
–pin_name name [ –intercept {on | off} ]

For -pin_name, specify the name you defined with the set_test_point_insertion_options 
-capture_per_cycle_static_en option. 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 303

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Observation Scan Technology Dofile Flow
In addition, the command supports the -intercept switch, which is only available when the pin 
type is capture_per_cycle_static_en.

Fault Simulation
In the generated fault simulation dofile, fault simulation for observation scan is indicated by an 
“on” value for capture_per_cycle_static_en. For example:

set_dft_enable_options –type capture_per_cycle_static_en \
–pin_name design_id_tessent_lbist_inst/capture_per_cycle_static_en
–value on

If you want to disable capture per cycle, set -value to off.

Pattern Generation
Perform pattern generation as usual.

If you need to perform pattern simulation mismatch debugging on observation scan cells, you 
can do so by enabling scan chain output monitoring. Set the iProc sim_monitor argument and 
specify monitor_scan_cells with the iCall. For example:

set sim_monitor 1
open_pattern_set lbist

iCall run_lbist_normal lbist_clock 980 999 lbist 0 0 monitor_scan_cell \
$sim_monitor
close_pattern_set
Hybrid TK/LBIST Flow User’s Manual, v2022.4304

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
In the OCC flow, you insert Tessent OCC and scan chains before generating the hybrid IP. 
Unlike the non-OCC hybrid flow, you also need to insert the LogicBIST NCP index decoder 
before generating your patterns and performing fault simulation.
This example demonstrates a gate-level flow using DFTSpecification for the OCC insertion. 
The flow uses the TSDB (Tessent Shell Database).

Generating and Inserting the Tessent OCC (Dofile Flow). . . . . . . . . . . . . . . . . . . . . . . . 305
Inserting the Scan Chains (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Generating the Hybrid TK/LBIST IP (Dofile Flow)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Synthesizing and Inserting the LBIST NCP Index Decoder (Dofile Flow)  . . . . . . . . . . 309
Generating the EDT Patterns (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Performing the LBIST Fault Simulation (Dofile Flow) . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Generating and Inserting the Tessent OCC (Dofile Flow)
The first step to using a Tessent OCC in the TK/LBIST flow is creating the OCC, then 
subsequently insert the Tessent OCC into your design. 

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to “dft” and specify a design identifier (gate1) for the 
current design.

SETUP> set_context dft -no_rtl -design_identifier gate1

3. Read in the design netlist. For example:

SETUP> read_verilog m8051_nonscan.v

4. Read the cell library. For example:

SETUP> read_cell_library atpg.lib

5. Specify the top-level module of the current design. For example:

SETUP> set_current_design

6. Set the design level. The physical_block level indicates the design is a block that is 
synthesized and laid out as an independent block. For example:

SETUP> set_design_level physical_block

7. Read the OCC specific configuration data. For example:.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 305

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
ANALYSIS> read_config_data-from_string {
  DftSpecification(m8051, gate1) {
    reuse_modules_when_possible: on;
    Occ {
      capture_trigger: capture_en;
      static_clock_control: external;
      Controller(clk) {
        clock_intercept_node: clk;
      }
    }
  }
}

8. Validate and process the content defined in the DftSpecification wrapper.

ANALYSIS> process_dft_specification

9. Synthesize the generated RTL.

ANALYSIS> run_synthesis 

10. Exit the tool.

ANALYSIS> exit

Results
After OCC insertion, the created hardware is synthesized and replaces the inserted RTL 
modules with gate-level modules in the Tessent Shell Data Base (TSDB).

Inserting the Scan Chains (Dofile Flow)
During scan insertion, the top level shift clock reaches all the design scan cells, hence the entire 
design is treated as a single clock domain design.

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to ‘dft’ and the design identifier, in this case to gate2.

SETUP> set_context dft -scan -design_identifier gate2

3. Reload the design created in the OCC insertion. For example:

SETUP> read_design m8051 -design_identifier gate1

4. Read the cell library. For example:

SETUP> read_cell_library atpg.lib
Hybrid TK/LBIST Flow User’s Manual, v2022.4306

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
5. Set the current design. For example:

SETUP> set_current_design 

6. Add signal constraints. For example:

SETUP> add_input_constraint RST -c0

7. The OCCs are automatically marked as hard macros.

8. Go to analysis mode.

SETUP> set_system_mode analysis

9. Perform X-bounding analysis to identify memory elements that might capture an 
unknown during Logic BIST. For example:

ANALYSIS> analyze_xbounding 

10. Specify the scan chain mode. In this case the scan chain mode is edt and the chain count 
is 16. For example: 

ANALYSIS>  add_scan_mode edt -chain_count 16

11. Run scan chain analysis to distribute the scan elements into new chains. For example:

ANALYSIS> analyze_scan_chains

12. Insert the test structures in to the netlist and stitch up the scan chains. For example:

ANALYSIS> insert_test_logic

13. Write the test procedure file and dofile that describe the chains created during scan 
insertion. For example

ANALYSIS> write_atpg_setup -replace

14. Exit the tool.

SETUP> exit

Generating the Hybrid TK/LBIST IP (Dofile Flow)
To generate the hybrid TK/LBIST IP, you read in the scan-inserted design with the Tessent 
OCC chains integrated with design scan cells. The Tessent OCC is thus part of compressed 
chains driven by the EDT decompressor.

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell
Hybrid TK/LBIST Flow User’s Manual, v2022.4 307

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
2. Set the Tessent Shell context to ‘dft -edt -logic_bist’. Specify the design identifier for, in 
this case it is gate3. For example:

SETUP> set_context dft -edt -logic_bist -design_identifier gate3

3. Reload the design created during scan insertion.For example:

SETUP> read_design m8051 -design_identifier gate2

4. Read the cell library. For example:

SETUP> read_cell_library atpg.lib

5. Set the current design. For example:

SETUP> set_current_design

6. Add the core instances. For example:

SETUP> add_core_instances –module m8051_gate1_tessent_occ

7. Setup up scan and constrain the inputs as required. The dofile and procedure were 
created by the write_atpg_setup command. For example:

SETUP> dofile scan_setup.dofile
SETUP> tessent_scan_setup edt

8. Setup the EDT IP. For example:

SETUP> set_edt_options -location internal -channels 1

9. Setup the LBIST controller. For example: 

SETUP> set_lbist_controller_options -max_shift 100 -max_capture 3 \
-max_pattern 100000

SETUP> set_lbist_controller_options -capture_procedures 2
SETUP> set_lbist_pins clock REFCLK
SETUP>set_lbist_pins scan_en scan_en
SETUP>set_lbist_pins xbounding_en lbist_en
SETUP>set_clock_controller_pins capture_procedure_index \ 

-no_connection

10. Go to analysis mode.

SETUP> set_system_mode analysis

11. Write the IP into the Tessent Shell Data Base (TSDB). For example:

ANALYSIS> write_edt_files -tsdb -replace

12. Run synthesis. For example:

ANALYSIS> run_synthesis 

13. Exit the tool.
Hybrid TK/LBIST Flow User’s Manual, v2022.4308

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
SETUP> exit

Synthesizing and Inserting the LBIST NCP Index Decoder 
(Dofile Flow)

You can use Tessent Shell to read the synthesized gate-level netlist and identify the clock usage 
in the design.
The “report_clock_domains –compatible_clocks –details” command provides information that 
can be used to design effective NCP sequences for LogicBIST.

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to ‘dft’.

SETUP> set_context dft -no_rtl -design_identifier gate4

3. Read in the design. For example:

SETUP> read_design m8051 -design_identifier gate4

4. Read the cell library. For example:

SETUP> read_cell_library atpg.lib

5. Set the current design. For example:

SETUP> set_current_design

6. Set the design level. For example:

SETUP> set_design_level physical_block

7. Add the OCC instances. For example:

SETUP>  add_core_instances -module m8051_gate1_tessent_occ
Hybrid TK/LBIST Flow User’s Manual, v2022.4 309

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
8. Read in the NCP index decoder specification. For example:

SETUP> read_config_data -from_string {
  DftSpecification(m8051, gate4) {
    LogicBist {
      NcpIndexDecoder {
        Ncp(pulse_once) {
          cycle(0): m8051_gate1_tessent_occ;
        }
        Ncp(pulse_twice) {
          cycle(0): m8051_gate1_tessent_occ;
          cycle(1): m8051_gate1_tessent_occ;
        }
      }
    }
  }
}

9. Process the NCP index decoder specification. For example:

SETUP> process_dft_specification 

10. Setup and run synthesis. For example:

SETUP> run_synthesis

11. Exit the tool.

SETUP> exit

Generating the EDT Patterns (Dofile Flow)
To switch between capture modes, you only need to change the OCC setup iProc parameters. 

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell

2. Set the Tessent Shell context to ‘patterns -scan’.

SETUP> set_context patterns -scan -design_identifier gate4

3. Reload the EDT-inserted design. For example:

SETUP> read_design m8051 

4. Read the cell library. For example:

SETUP> read_cell_library atpg.lib

5. Set the current design. For example:

SETUP> set_current_design
Hybrid TK/LBIST Flow User’s Manual, v2022.4310

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
6. Extract the ICL. For example:

SETUP> extract_icl 

7. Add signal constraints. For example:

SETUP> add_input_constraint RST -c0

8. Add the core instances including the EDT core. For example:

SETUP> add_core_instances -module m8051_gate1_tessent_occ \
       -param {fast_capture_mode 1}
SETUP> add_core_instances -module m8051_gate3_tessent_edt_lbist

9. Set the fault type. For example:

SETUP> set_fault_type transition

10. Set other parameters as required by your design style. For example:

SETUP> set_output_masks on
SETUP> add_input_constraints -all –hold
SETUP> set_pattern_type -sequential 2

11. Change the system mode to analysis to run DRCs. 

SETUP> set_system_mode analysis

12. Read in the procedure file and setup the capture options. For example:

ANALYSIS> read_procfile external_capture_options \      
external_capture.testproc

ANALYSIS> set_external_capture_options -capture_procedure \ 
ext_fast_cap_proc

13. Create and write out the patterns. For example:

ANALYSIS> create_patterns
ANALYSIS> write_patterns edt_patt_fast_capture.v -verilog \
          -serial -replace

14. Exit the tool.

ANALYSIS> exit

Performing the LBIST Fault Simulation (Dofile Flow)
The final phase of the hybrid flow for OCC is to use Tessent Shell to perform the LBIST fault 
simulation. 

Procedure
1. Invoke Tessent Shell from the shell prompt.

% tessent -shell
Hybrid TK/LBIST Flow User’s Manual, v2022.4 311

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Example Tessent OCC TK/LBIST Flow (Dofile Flow)
2. Set the Tessent Shell context to ‘patterns -scan’.

SETUP> set_context patterns -scan -design_identifier gate4

3. Reload the design. For example:

SETUP> read_design m8051

4. Read cell library to enable creation of some instances such as muxes. For example:

SETUP> read_cell_library ../data/atpg.lib

5. Set the current design. For example:

SETUP> set_current_design

6. Extract the ICL. For example:

SETUP> extract_icl 

7. Add signal constraints. For example:

SETUP> add_input_constraints  RST -c0

8. Add the core instances. For example:

SETUP> add_core_instances –module m8051_gate1_tessent_occ
SETUP> add_core_instances –module m8051_gate3_tessent_edt_lbist
SETUP> add_core_instances –module m8051_gate3_tessent_lbist

9. Set the LBIST controller options. For example:

SETUP>dofile tsdb_outdir/instruments/ \  
m8051_gate4_lbist_ncp_index_decoder.instrument/ \
m8051_gate4_tessent_lbist_ncp_index_decoder.dofile
SETUP> set_lbist_controller_options –capture_procedure \

{clkseq1 40 clkseq2 40 clkseq3 10 clkseq4 10}

10. Change the system mode to analysis to run DRCs. 

SETUP> set_system_mode analysis

11. Read in the NCP index decoder test procedure file for the TSDB instruments directory 
using the read_procfile command. For example:

read_procfile tsdb_outdir/instruments/ \
m8051_gate4_lbist_ncp_index_decoder.instrument/ \
m8051_gate4_tessent_lbist_ncp_index_decoder.testproc

12. Set capture options. For example:

ANALYSIS> set_external_capture_options -fixed 4

13. Add faults. For example:

ANALYSIS> add_faults
Hybrid TK/LBIST Flow User’s Manual, v2022.4312

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
14. Specify the pattern count and add the faults. For example:

ANALYSIS> set_random_patterns 100

15. Perform the LBIST simulation. 

ANALYSIS> simulate_patterns -source bist -store_patterns all

16. Exit the tool.

ANALYSIS> exit

Tessent OCC Dofile Examples
The examples in this section illustrate usage models for using a Tessent OCC in the hybrid TK/
LBIST flow.

Clock Domain Analysis for NCP Decoder Generation
This example shows how to use Tessent Shell to perform clock domain analysis and identify 
NCPs required for LBIST test. It uses a small design that has the following clocks:

• NX1

• NX2

• NX3

The following dofile reports the clock domains and the percentage of faults in each of the 
domains. Since the netlist is non-scan, the dofile instructs Tessent Shell to treat the netlist as a 
full-scan design, using the “add scan groups dummy dummy” command. If the design were 
already scan-inserted, you would instead specify the actual test procedure file and scan chains.

set_context pattern -scan
read_verilog nonscan_netlist.v
read_cell_library atpg.lib
set_current_design
add scan groups dummy dummy
add clock 0 NX1
add clock 0 NX2
add clock 0 NX3
set system mode analysis
add_faults -all
report_statistics -clock_domains summary
report_clock_domains -compatible_clocks –details
Hybrid TK/LBIST Flow User’s Manual, v2022.4 313

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
The “Clock Domain Summary” section of report_statistics command’s output is shown below:

----------------------------------------------------
Clock Domain Summary % faults Test Coverage

(total) (total relevant)
------------------ ---------- ----------------
/NX1 22.38%  0.00%
/NX2 74.70% 0.00%
/NX3  0.33% 0.00%

----------------------------------------------------

The output of report_clock_domains command is shown below:

// No. | Clock Name Domain | Clock Compatibility
// -----+--------------------+--------------------
// 1 | '/NX1' (1)  1 |  .
//  2 | '/NX2' (2) 2 | 437  .
//  3 | '/NX3' (56) 3 | 8 44 .
// --------------------------+--------------------
// No. | 1 2 3
//  . = Compatible (non-interacting) clock pair
// <number> = Incompatible (interacting) clock pair
// Compatibility analysis is based on same-edge clock interaction.

From the above reports, there are small number of interacting flops (8) between NX1 and NX3. 
The paths between NX1 and NX3 should be bounded, which can be accomplished by an SDC 
file that describes all paths between these clock domains as false, as shown below (declared at 
the mux output):

create_clock occ_NX1/clock_out -period 40 -name NX1
create_clock occ_NX2/clock_out -period 40 -name NX2
create_clock occ_NX3/clock_out -period 40 -name NX3
set_false_path -from NX1 -to NX3
set_false_path -from NX3 -to NX1

The tool can now treat NX1 and NX3 as compatible clock domains and pulse them together, 
since all interactions between them are blocked during X-bounding. From the prior clock 
activity table, we can divide the design into two clock domains: NX2 and NX1_NX3. 
Consequently, the NX2 and NX1_NX3 domains can be tested for 75% and 25% of the test 
duration, respectively.

During fault simulation, the output of the report_clock_domains command shows that NX1 and 
NX3 are indeed compatible after X-bounding. The functional clocks referred earlier are 
numbered 7-9 in the output below.
Hybrid TK/LBIST Flow User’s Manual, v2022.4314

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
//No.| Clock Name Domain | Clock Compatibility
//---+-------------------------------+-----------------------------
// 1| '/RST' (1) 1 | .
// 2| '/refclk' (55) 1 | .  .
// 3| '/shift_clock'(56) 1 | . .  .
// 4| '/tck' (57)  1 | .  .  .  .
// 5| '/edt_clock' (64)  1 | .  .  .  .  .
// 6| '/edt_lbist_int_clock' (73) 1 | .  .  .  .  .  .
// 7| '/NX3' (75) 1 | . .  .  .  .  .  .
// 8| '/NX2' (76) 2 | 9 .  .  .  .  . 36  .
// 9| '/NX1' (77) 1 | .  .  .  .  .  .  . 437 .
// ----------------------------------+-----------------------------
//  No. | 1  2  3  4 5 6 7 8 9
//  . = Compatible (non-interacting) clock pair
// <number> = Incompatible (interacting) clock pair

A sample DftSpecification for this design is as follows:

LbistNcpIndexDecoder {
LbistNcpIndex: m8051_lbist_i/ncp;
Ncp(NX1_NX3_single_pulse) {

cycle(0): occ_NX1, occ_NX3;
}
Ncp(NX2_single_pulse) {

cycle(0): occ_NX2;
}
Ncp(NX1_NX3_double_pulse) {

cycle(0): occ_NX1, occ_NX3;
cycle(1): occ_NX1, occ_NX3;

}
Ncp(NX2_double_pulse) {

cycle(0): occ_NX2;
cycle(1): occ_NX2;

}
}

The following NCPs are generated for the above DftSpecification:

procedure capture NX1_NX3_single_pulse =
timeplate gen_tp1; 
cycle = 

force_pi;
force occ_NX2_clock_out 0;
force shift_clock 0;
pulse occ_NX1_clock_out; 
pulse occ_NX3_clock_out; 

end; 
end;
Hybrid TK/LBIST Flow User’s Manual, v2022.4 315

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
procedure capture NX2_single_pulse =
timeplate gen_tp1;
cycle =

force_pi;
force occ_NX1_clock_out 0;
force occ_NX3_clock_out 0;
force shift_clock 0;
pulse occ_NX2_clock_out;

end;
end;

procedure capture NX1_NX3_double_pulse = 
timeplate gen_tp1;
cycle =

force_pi; 
force occ_NX2_clock_out 0; 
force shift_clock 0;
pulse occ_NX1_clock_out; 
pulse occ_NX3_clock_out;

end; 
cycle = 

pulse occ_NX1_clock_out; 
pulse occ_NX3_clock_out; 

end;
end;

procedure capture NX2_double_pulse =
timeplate gen_tp1;
cycle =

force_pi;
force occ_NX1_clock_out 0;
force occ_NX3_clock_out 0;
force shift_clock 0;
pulse occ_NX2_clock_out;

end;
cycle =

pulse_occ_NX2_clock_out;
end;

end;

Clock Gating When Inserting OCC and Hybrid EDT/LBIST In Different 
Passes

This example illustrates clock-gating with the hybrid TK/LBIST DFT insertion flow with OCC. 
This usage uses the TSDB flow to insert OCC with the edt_clock and shift_capture_clock DFT 
signals in the first insertion pass, followed by inserting EDT and LogicBIST in the second 
insertion pass.

Generate the edt_clock and shift_capture_clock signals by using the add_dft_signals 
-create_from_other_signals command as shown in the following dofile example.
Hybrid TK/LBIST Flow User’s Manual, v2022.4316

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
set_context dft -no_rtl -design_identifier dft_signals
set_tsdb_output_directory tsdb_outdir
read_core_descriptions [lsort [glob design/mem/*.lib]]
read_cell_library ../tessent/adk.tcelllib
read_cell_library design/mem/mems.atpglib

read_verilog design/gate/elt1.v
set_current_design elt1
set_design_level physical_block
set_dft_specification_requirements -memory_test off -logic_test on

add_dft_signals scan_en test_clock edt_update \

-source_node {scan_enable test_clock edt_update}

add_dft_signals edt_clock -create_from_other_signals

add_dft_signals shift_capture_clock -create_from_other_signals

report_dft_signals

add_clocks CLK_F300 -period [expr {1000.0/300.0}]

check_design_rules

set_system_mode analysis

set spec [create_dft_specification -sri_sib_list {occ}]

report_config_data $spec

set_config_value use_rtl_cells on -in_wrapper $spec

read_config_data -in_wrapper $spec -from_string {

    OCC {

        ijtag_host_interface : Sib(occ);

        static_clock_control : external;

        capture_trigger      : capture_en;

        Controller(clk_controller) {

            clock_intercept_node : CLK_F300;

            parent_instance : dft_inst;

        }

    }

}

report_config_data $spec

process_dft_specification

extract_icl

run_synthesis -startup_file ../prerequisites/techlib_adk.tnt/current/synopsys/

synopsys_dc.setup

After the first pass, the OCC slow_clock is driven by the shift_capture_clock gater and the 
edt_clock gater has no fanout.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 317

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
Tessent OCC Dofile Examples
Figure A-6. Clock Gating With DFT Signals and OCC in the First Pass

After inserting EDT and LogicBIST in the second hybrid DFT insertion pass, the tool creates 
the circuit shown below. The edt_clock gater and shift_capture_clock gaters have been removed 
and their previous connections are now driven by their respective ports on the LogicBIST 
controller.

Figure A-7. Clock Gating With EDT and LogicBIST in the Second Pass

Note
This is also the resulting circuit when you first run the TSDB flow to insert the DFT signals 
and then the dofile flow to insert the LogicBIST controller. In the dofile flow for LogicBIST 

insertion, the source clock of the DFT signal gaters supply the test_clock to the LogicBIST 
controller.
Hybrid TK/LBIST Flow User’s Manual, v2022.4318

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
File Examples for the Dofile Flow
This section provides various dofile file examples for the Hybrid TK/LBIST flow.
Synthesis Script Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Timing Script Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
ICL Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Synthesis Script Example
The following example excerpt shows the tool-produced script for synthesizing the EDT/
LogicBIST logic.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 319

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
#************************************************************************ 
#  Synopsys Design Compiler synthesis script for created_edt.v 
#  Tessent TestKompress version: 2013.1-snapshot_2013.01.29_06.01 
#  Date:                         Tue Jan 29 11:21:40 2013 
#************************************************************************ 
 
# Bus naming style for Verilog  
set bus_naming_style {%s[%d]} 
set hdlin_ff_always_async_set_reset true 
 
# Read input design files  
read_file -f verilog created_edt.v 
read_file -f verilog created_lbist.v 
 
 
# Synthesize EDT IP  
current_design my_core_edt 
 
# Check design for inconsistencies  
check_design 
 
# Timing specification  
create_clock -period 10 -waveform {0 5} edt_clock 
 
# Avoid clock buffering during synthesis. However, remember  
# to perform clock tree synthesis later for edt_clock  
set_clock_transition 0.0 edt_clock 
set_dont_touch_network edt_clock 
 
# Avoid reset signal buffering during synthesis. However, remember  
# to perform reset tree synthesis later for edt_reset  
set_drive 0 edt_reset 
set_max_fanout 1000 edt_reset 
 
# Avoid assign statements in the synthesized netlist.  
set_fix_multiple_port_nets -feedthroughs -outputs -buffer_constants 
 
# Compile design  
uniquify 
compile -map_effort medium 
 
# Report design results for EDT IP  
report_area > created_dc_script_report.out 
report_constraint -all_violators -verbose >> created_dc_script_report.out 
report_timing -path full -delay max >> created_dc_script_report.out 
report_reference >> created_dc_script_report.out 
 
write -f verilog -hierarchy -o created_my_core_edt_gate.v 
 
# Synthesize single chain mode logic  
current_design my_core_single_chain_mode_logic 
... 
 

Hybrid TK/LBIST Flow User’s Manual, v2022.4320

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
Timing Script Example
The following example excerpt shows a tool-produced timing script.

#************************************************************************ 
#  Timing constraints for EDT/LBIST logic in module my_core during LBIST
# mode 
#  Tessent TestKompress version: 2013.1-snapshot_2013.01.29_06.01 
#  Date:                         Tue Jan 29 11:21:41 2013 
#************************************************************************ 
 
# The following variables can be set to customize this script before
# sourcing this file: 
#   lbist_clock_latency_min        [default=0] 
#   lbist_clock_latency_max        [default=0] 
#   lbist_clock_uncertainty_setup  [default=0] 
#   lbist_clock_uncertainty_hold   [default=0] 
# 
#   tck_clock_latency_min          [default=0] 
#   tck_clock_latency_max          [default=0] 
#   tck_clock_uncertainty_setup    [default=0] 
#   tck_clock_uncertainty_hold     [default=0] 
# 
#   lbist_pins_input_delay         [default=0] 
#   lbist_pins_output_delay        [default=0] 
# 
#   reg_suffix                     [default=_reg] 
# 
#   reg_output                     [default=Q] 
# 
 
# Create lbist clock 
proc create_lbist_clock {} { 
   create_clock -period 40 -waveform {20 30} refclk 
 
   global lbist_clock_latency_min lbist_clock_latency_max 
lbist_clock_uncertainty_setup lbist_clock_uncertainty_hold 
   set cmin [expr {[info exists lbist_clock_latency_min] ? 
$lbist_clock_latency_min : 0}] 
   set cmax [expr {[info exists lbist_clock_latency_max] ? 
$lbist_clock_latency_max : 0}] 
   set csetup [expr {[info exists lbist_clock_uncertainty_setup] ? 
$lbist_clock_uncertainty_setup : 0}] 
   set chold [expr {[info exists lbist_clock_uncertainty_hold] ? 
$lbist_clock_uncertainty_hold : 0}] 
 
   set all_lbist_clocks [list refclk] 
   set_clock_latency -min $cmin $all_lbist_clocks 
   set_clock_latency -max $cmax $all_lbist_clocks 
   set_clock_uncertainty -setup $csetup $all_lbist_clocks 
   set_clock_uncertainty -hold $chold $all_lbist_clocks 
} 
... 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 321

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
ICL Example
The following example shows an ICL output written by the tool.
Hybrid TK/LBIST Flow User’s Manual, v2022.4322

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
//*********************************************************************** 
//  ICL script for module my_core 
// 
//  Tessent TestKompress version: 2013.1-snapshot_2013.01.29_06.01 
// Tue Jan 29 06:11:31 GMT 2013 
//  Date:                         01/29/13 11:21:40 
//*********************************************************************** 
  
  
Module my_core_lbist { // {{{ 
    TCKPort             tck; 
    ClockPort           edt_clock; 
    ClockPort           shift_clock_src; 
    ToClockPort         lbist_clock      { Source shiftClkSelected_MUX;} 
    ScanInPort          from_edt_scan_out; 
    ScanInPort          lbist_scan_in; 
    ScanOutPort         lbist_scan_out   { Source lbist_scan_out_ff; } 
    DataOutPort         lbist_en         { Source bist_en; } 
    ResetPort           sib_reset; 
    SelectPort          sib_en; 
    CaptureEnPort       sib_capture_en; 
    ShiftEnPort         sib_shift_en; 
    UpdateEnPort        sib_update_en; 

ToSelectPort  edt_sib_en { Source my_core_lbist_edt_sib_i.to_enable; }
  
    ScanInterface host { 
       Port lbist_scan_in; 
       Port lbist_scan_out; 
    } 
    ScanInterface client { 
       Port from_edt_scan_out; 
       Port lbist_scan_out; 
       Port edt_sib_en; 
    } 
  

Alias lbist_ctrl_sib      = my_core_lbist_sib_bist_registers_i.sib; 
Alias lbist_ctrl_signals_sib = my_core_lbist_sib_control_registers_i.sib; 
Alias bist_done           = bist_en { RefEnum YesNo;} 

  
    Instance my_core_lbist_edt_sib_i Of my_core_lbist_sib { 
        InputPort reset         = sib_reset; 
        InputPort enable        = sib_en; 
        InputPort scan_in       = lbist_scan_in; 
        InputPort capture_en    = sib_capture_en; 
        InputPort shift_en      = sib_shift_en; 
        InputPort update_en     = sib_update_en; 
        InputPort tck           = tck; 
        InputPort from_scan_out = from_edt_scan_out; 
    } 
  
    // 
    // Bist registers 
    // 
    ScanRegister capture_phase_size[1:0] { 
        ScanInSource    my_core_lbist_edt_sib_i.scan_out; 
    } 
    ScanRegister shift_clock_select[1:0] { 
        ScanInSource    capture_phase_size[0]; 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 323

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



The Dofile Flow
File Examples for the Dofile Flow
        ResetValue      2'b01; 
    } 

 ScanRegister warmup_pattern_count[8:0] { 
ScanInSource    shift_clock_select[0]; 

 } 
 
... 
Hybrid TK/LBIST Flow User’s Manual, v2022.4324

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Appendix B
Low Pin Count Test Controller

The hybrid flow supports low pin count test (LPCT) type-1 and type-2 controllers but not type-3 
LPCT controllers. 
Low Pin Count Test Controller Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Type-2 LPCT Controller Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Low Pin Count Test Controller Overview
The LPCT controller internally generates the EDT clock, and, when operating in LBIST mode, 
the tool modifies the controller to generate a free-running clock to enable using EDT clock for 
LBIST test. The LBIST controller’s shift_clock_src and tck clock inputs are not impacted by 
using LPCT.
For hybrid IP generation and insertion, you specify the scan enable and TAP controller pins 
using the set_lbist_pins command. Similarly, for LPCT controller generation and insertion, you 
specify the scan enable and TAP controller pins when using type-2 LPCT using the 
set_lpct_pins command, as follows:

set_lpct_pins scan_en

When using LPCT with hybrid IP, the scan_enable signal using the set_lbist_pins and 
set_lpct_pins are handled as follows:

• When only LPCT scan enable is specified, the value is also used for the LBIST 
controller.

• When only LBIST scan enable signals are specified, the first specified scan enable is 
used for the LPCT controller.

• When neither LPCT nor LBIST scan enable signals are specified, the tool issues an error 
message.

• For type-2 LPCT, the tool ignores the scan enable signals for the LBIST controller and 
instead uses the scan enable generated by the LPCT controller.

Similarly, the TAP pins for the LBIST and LPCT controllers are handled as follows:

• When either LBIST or LPCT pins only are specified for tck, active-high 
test_logic_reset, shift_dr, capture_dr and update_dr signals, they are also used for the 
other controller.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 325

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Low Pin Count Test Controller
Type-2 LPCT Controller Example
• When both LPCT and LBIST pins are specified, they are both used for connecting to the 
respective test logic IP.

• When neither LPCT nor LBIST pins are specified, default pin names are used for 
sharing between both controllers.

• The LBIST tap_instruction_decode signal is not shared with LPCT test_mode signal 
because these are controlled by separate TAP instructions or internal test logic.

The hybrid flow supports Controller Chain Mode (CCM) with both type-1 and type-2 LPCT 
controllers. You can use CCM with either edt_clock or tck with type-1 LPCT. The type-2 LPCT 
only supports the edt_clock option. This is because tck is used to operate the TAP controller to 
generate the scan enable, which disturbs the controller logic scan cells due to these extra tck 
pulses in pre-shift and post-shift cycles.

When using IJTAG with TAP controller, you must preserve the state of the IJTAG network 
using the following command:

set_ijtag_retargeting_options -test_setup_network_end_state keep

This requirement applies to both the hybrid IP and EDT-only type-2 LPCT controller. Since the 
network state is kept instead of reset, the BIST controller setup registers should be explicitly 
changed to the Idle state to enable EDT pattern generation. Refer to the following example for a 
pattern generation dofile.

Type-2 LPCT Controller Example
The following DftSpecification generates a TAP controller, excluding boundary scan cells for 
the primary IO pins. Three user TAP instructions are synthesized.

• An LPCT instruction to generate the LPCT test_mode signal and provide access to EDT 
channels using TDI/TDO.

• An LBIST instruction to provide the IJTAG scan interface for the LBIST controller.

• A STATIC instruction that generates a TDR for controlling OCC and EDT static ports.
Hybrid TK/LBIST Flow User’s Manual, v2022.4326

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Low Pin Count Test Controller
Type-2 LPCT Controller Example
DftSpecification(m8051, tap)  {
use_rtl_cells: on;
IjtagNetwork {
HostScanInterface(dft) {

Interface {
tck: tck;
tdo_en_polarity: active_high;

}
Tap(dft) {

HostIjtag(lpct) {
}
HostIjtag(lbist) {
}
HostIjtag(static) {

Tdr(static) {
Interface {

reset_polarity: active_high;
}
DataOutPorts {

port_naming: test_mode, fast_capture_mode,
capture_cycle_width[1:0], edt_bypass;

}
}

}
}

}
}

}

DftSpecification(m8051, occ) {
use_rtl_cells: on;
reuse_modules_when_possible: on;
OCC {

DefaultConnections {
slow_clock: tck;
StaticExternalControls {

test_mode: m8051_tap_tessent_tdr_static_inst/test_mode;
fast_capture_mode: m8051_tap_tessent_tdr_static_inst/

fast_capture_mode;
capture_cycle_width:

m8051_tap_tessent_tdr_static_inst/capture_cycle_width;
}

}
capture_trigger: capture_en;
static_clock_control: external;
Controller(NX1) {
clock_intercept_node: NX1g/Z;

}
Controller(NX2) {
clock_intercept_node: NX2g/Z;

}
}

}

Hybrid TK/LBIST Flow User’s Manual, v2022.4 327

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Low Pin Count Test Controller
Type-2 LPCT Controller Example
To configure the hybrid IP with a type-2 LPCT controller given the DftSpecification shown 
above, you would specify:

#
#EDT settings
set_edt_options -location internal -channel 1
set_edt_pins input 1 tdi
set_edt_pins output 1 tdo \

m8051_tap_tessent_tap_dft_inst/host_lpct_from_so
set_edt_pins bypass - m8051_tap_tessent_tdr_static_inst/edt_bypass

#
#Type-2 LPCT settings
set_lpct_controller -generate_scan_enable on -tap_controller_interface on
set_lpct_pins clock tck
set_lpct_pins output_scan_en scan_en
set_lpct_pins reset - reset_inverter_dft/y
set_lpct_pins capture_dr - m8051_tap_tessent_tap_dft_inst/capture_dr_en
set_lpct_pins shift_dr - m8051_tap_tessent_tap_dft_inst/shift_dr_en
set_lpct_pins update_dr -  m8051_tap_tessent_tap_dft_inst/update_dr_en
set_lpct_pins atpg_enable - \

m8051_tap_tessent_tap_dft_inst/host_lpct_to_sel

#
#Tk/Lbist hybrid settings
set_lbist_controller_options -max_shift 100 -max_capture 7 \

-max_pattern 100000 -capture_procedure 3
set_lbist_pins clock {- pll/pll_clock_0}
set_lbist_pins scan_en scan_en
set_lbist_pins tck tck
set_lbist_pins test_logic_reset {- reset_inverter_dft/y}
set_lbist_pins tap_instruction_decode {-

m8051_tap_tessent_tap_dft_inst/host_lbist_to_sel}
set_lbist_pins shift_dr {- m8051_tap_tessent_tap_dft_inst/shift_dr_en}
set_lbist_pins update_dr {- m8051_tap_tessent_tap_dft_inst/
update_dr_en}set_lbist_pins capture_dr {-

m8051_tap_tessent_tap_dft_inst/capture_dr_en}
set_lbist_pins setup_shift_scan_in tdi
set_lbist_pins setup_shift_scan_out {tdo

m8051_tap_tessent_tap_dft_inst/host_lbist_from_so}
set_dft_enable_options -type xbounding -pin_name xbnd_en
set_clock_controller_pins capture_procedure_index -no_connection 

The mapping flow for EDT pattern generation setup using TCD is shown below.
Hybrid TK/LBIST Flow User’s Manual, v2022.4328

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Low Pin Count Test Controller
Type-2 LPCT Controller Example
read_core_descriptions {created_m8051_edt.tcd created_m8051_lpct.tcd}
add_core_instances -module {*_tessent_occ *_edt *_lpct}

add_input_constraint RST -c0
add_input_constraint tms -c0
add_input_constraint trst -c1
add_clocks 0 tck -pulse_always       ;#reference clock to pll
add_clocks 0 pll/pll_clock_0 -pin_name fast_clock -pulse_always
set_procfile_name ../data/scan_setup.testproc

#
#Load LPCT instruction to enable EDT channels access to tdi/tdo
iProcsForModule m8051
iProc load_lpct_instruction {} {

iWrite m8051_lbist_i.bist_setup Idle
iWrite m8051_tap_tessent_tap_dft_inst.instruction HOSTIJTAG_LPCT
iApply

}
set_test_setup_icall "load_lpct_instruction" -append
set_ijtag_retargeting_options -compare_constant_capture_values off \

-test_setup_network_end_state keep 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 329

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Low Pin Count Test Controller
Type-2 LPCT Controller Example
Hybrid TK/LBIST Flow User’s Manual, v2022.4330

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Appendix C
EDT Pattern Generation for the Hybrid IP

The EDT technology within the hybrid IP functions as described in the Tessent TestKompress 
Users Manual. In addition, EDT mode contains functionality specific to the hybrid IP.
EDT Mode Initialization with IJTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
The EDT Setup iProc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Usage Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

EDT Mode Initialization with IJTAG
IJTAG designs contain hardware components such as TDRs and SIBs, and an ICL network to 
provide access to IJTAG compatible instruments. The design should have either a TAP 
controller or top-level pins to operate the IJTAG circuitry. ICL describes the instruments and 
access network, and PDL describes the procedures for operating the instruments. The hybrid IP 
always includes IJTAG hardware and generates ICL and PDL (iProcs) for hybrid LBIST and 
EDT instruments.
Using iProcs is required for LBIST mode. Different LBIST pattern sets such as runtime 
programmable, hardware default, and diagnostics use different LBIST mode iProcs.

Using iProcs is optional for EDT mode with one exception. When EDT reset is not synthesized, 
the tool must use the EDT setup iProc to generate the initialization sequence for the chain 
masking register. In this case, the tool automatically provides the values for the EDT static 
control signals based on the iProc parameters. When iProcs are not used, the test procedures 
should provide the values required for EDT static control signals.

You can initialize the chain masking register either by adding an EDT reset signal to the 
hardware or by using IJTAG for seeding values into this register. By default, the tool initializes 
the chain masking register by using IJTAG. This reduces the need for extra hardware.

You can change the default behavior by synthesizing the EDT reset signal. Specify the 
following command during IP creation:

set_edt_options -reset asynchronous

The EDT Setup iProc
During the EDT and LogicBIST generation step, you use the write_edt_files command to 
generate several EDT files needed for subsequent flow steps, such as test pattern generation. 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 331

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



EDT Pattern Generation for the Hybrid IP
Usage Examples
Among these files, the tool creates a PDL file that is linked to a generated ICL module. The 
PDL file includes one EDT iProc named “setup” in addition to several LogicBIST iProcs for 
LBIST mode.
The tool-generated EDT setup iProc contains parameters for EDT static signals (EDT bypass, 
EDT single-chain bypass, EDT low power and EDT dual configuration), the EDT reset signal, 
and serial-load initializing of chain mask registers. The parameters for the EDT static signals 
and EDT reset are present in the iProc only when the corresponding hardware is synthesized. 
You use the static EDT control signals as you would for non-hybrid EDT. 

The default values for the iProc parameters are:

• edt_reset = on

• edt_bypass = off

• edt_single_bypass_chain = off

• edt_configuration = low compression configuration

• edt_low_power_shift_en = on when the EDT low-power hardware is synthesized and 
enabled during IP creation and off when it is disabled

Refer to “EDT IP Setup for IJTAG Integration” for more information.

Usage Examples
To add parameters to the setup iProc, specify iCalls with the set_test_setup_icall command in 
the EDT pattern generation dofile.
Hybrid TK/LBIST Flow User’s Manual, v2022.4332

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



EDT Pattern Generation for the Hybrid IP
Usage Examples
For the following usage examples, suppose you have a tool-generated setup iProc as shown in 
Example C-1:

Figure C-1. Example of Tool-Generated Setup iProc

iProcsForModule piccpu_edt 
iProc setup {args} { 
   if {[expr [llength $args]%2 != 0]} { 
      display_message -error "Odd number of arguments. Expecting parameter 
and value pairs." 
      return -code error 
   } 
 
   set edt_reset 1 
   set edt_configuration low_compression_cfg 
   set edt_low_power_shift_en 1 
   set edt_bypass 0 
   set edt_single_bypass_chain 0 
   set edt_chain_mask 1111111111111111 
   set iwrite_chain_mask 0 
   foreach {param value} $args { 
      set param [string tolower $param] 
      if {$param == "edt_reset"} { 
         set edt_reset $value 
      } elseif {$param == "edt_configuration"} { 
         set edt_configuration $value 
      } elseif {$param == "edt_low_power_shift_en"} { 
         set edt_low_power_shift_en $value 
      } elseif {$param == "edt_bypass"} { 
         set edt_bypass $value 
      } elseif {$param == "edt_single_bypass_chain"} { 
         set edt_single_bypass_chain $value 
      } elseif {$param == "tessent_chain_masking"} { 
         foreach chain $value { 
            if {$chain < 1 || $chain > 16} { 
               display_message -error "Invalid chain index '$chain'. Must 
be 1 to 16." 
               return -code error 
            } 
            set pos [expr {[string length $edt_chain_mask]-$chain}] 
            set edt_chain_mask [string replace $edt_chain_mask $pos $pos 0] 
         } 
         set iwrite_chain_mask 1 
         continue 
      } else { 
         display_message -error "Invalid parameter '$param'. Valid 
parameters are 'edt_reset', 'edt_configuration', 
'edt_low_power_shift_en', 'edt_bypass', 'edt_single_bypass_chain' and 
'tessent_chain_masking'." 
         return -code error 
      } 
      if {$param == "edt_configuration"} { 
         if {$value == "low_compression_cfg" || $value == 
"high_compression_cfg" || [string is boolean -strict $value]} { 
            set edt_configuration $value 
         } else { 
            display_message -error "Invalid EDT configuration value 
Hybrid TK/LBIST Flow User’s Manual, v2022.4 333

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



EDT Pattern Generation for the Hybrid IP
Usage Examples
'$value'. Valid values are boolean, 'low_compression_cfg' and 
'high_compression_cfg'." 
            return -code error 
         } 
      } elseif {![string is boolean -strict $value]} { 
         display_message -error "Invalid non-boolean value '$value' for 
parameter '$param'." 
         return -code error 
      } 
   } 
 
   if {$edt_reset} { 
      iWrite edt_reset on 
      iApply 
      iWrite edt_reset off 
      iApply 
   } 
   if {![string is boolean -strict $edt_configuration]} { 
      iWrite edt_configuration $edt_configuration 
   } elseif {$edt_configuration} { 
      iWrite edt_configuration high_compression_cfg 
   } else { 
      iWrite edt_configuration low_compression_cfg 
   } 
   if {$edt_low_power_shift_en} { 
      iWrite edt_low_power_shift_en on 
   } else { 
      iWrite edt_low_power_shift_en off 
   } 
   if {$edt_bypass} { 
      iWrite edt_bypass on 
   } else { 
      iWrite edt_bypass off 
   } 
   if {$edt_single_bypass_chain} { 
      iWrite edt_single_bypass_chain on 
   } else { 
      iWrite edt_single_bypass_chain off 
   } 
   if {$iwrite_chain_mask} { 
      iWrite bist_chain_mask 0b$edt_chain_mask 
      iWrite bist_chain_mask_load_en 0b0 
   } 
   iApply 
} 

Example 1: EDT Reset
Suppose the EDT reset signal is asserted as part of test_setup—for example, through power-on-
reset—and you do not want to pulse edt_reset in the EDT setup iProc. Specify the following 
command:

set_test_setup_icall {piccpu_edt_i.setup edt_reset off}
Hybrid TK/LBIST Flow User’s Manual, v2022.4334

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



EDT Pattern Generation for the Hybrid IP
Usage Examples
Example 2: Static Chain Masking
To support static chain masking, the tool uses the tessent_chain_masking parameter. The term 
“internally” distinguishes this masking, which is performed by the IP, from masking performed 
outside the IP by user-added chain masking.

The value of this parameter is a Tcl list of chain indexes, counted from 1 for the first chain 
connected to the specified EDT block.

The tool handles internally masked chains as follows depending on whether the edt_reset 
parameter is present in the setup iProc:

• Without edt_reset, always initialize the chain mask register.

• With edt_reset, initialize the chain mask register only when the parameter is explicitly 
specified. You can use an empty list ({}) to load the chain mask register to all 1’s 
(unmasked).

Suppose the design has edt_reset and was pulsed in test_setup, but you want to serial load the 
mask chain register for EDT mode later in the setup iProc. Specify the following command:

set_test_setup_icall {piccpu_edt_i.setup edt_reset off tessent_chain_masking {}}

In the following example, assume that chains “chain1” and “chain2” are broken and need to be 
output masked for EDT. Also assume they are the first 2 scan chains in the design. Chain 
indices 1 and 2 corresponds to chains “chain1” and “chain2.”

add_chain_mask chain1 chain2 -unload 0

set_test_setup_icall {piccpu_edt_i.setup tessent_chain_masking {1 2}}

Example 3: EDT Static Control Signals
In the following example, the first iCall generates patterns with EDT low power disabled and 
with a high compression configuration. The second iCall generates uncompressed EDT bypass 
patterns.

set_test_setup_icall {piccpu_edt_i.edt_low_power_shift_en off edt_configuration 
high_compression_cfg}

set_test_setup_icall {piccpu_edt_i.edt_bypass on}
Hybrid TK/LBIST Flow User’s Manual, v2022.4 335

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



EDT Pattern Generation for the Hybrid IP
Usage Examples
Hybrid TK/LBIST Flow User’s Manual, v2022.4336

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Appendix D
Interface Pins

The interface pins on the various hybrid IP hardware components enable you to control various 
aspects of the hybrid IP.
LogicBIST Controller Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Clock Controller Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
EDT/LogicBIST Wrapper Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Segment Insertion Bit Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

LogicBIST Controller Pins
The following table lists the pin names on the LogicBIST controller.

Table D-1. LogicBIST Controller Pins 
Pin Name Type Description
capture_dr: ijtag_se Input capture_dr output pin from the TAP 

controller.
clock: shift_clock_src Input LogicBIST clock pins.
edt_lbist_clock Output Drive the edt_clock port on the EDT 

block(s) and supply the lbist_clock 
during LBIST operation.

edt_update_in Input Used by the shift_capture_clock gater 
duplicated inside the LBIST controller.

edt_update_out Output edt_update enable pin.
control_point_en: control_point_en Output Control point enable pins.
lbist_test_clock_out Output Output of shift_capture_clock and 

edt_lbist_clock.
mcp_bounding_en: mcp_bounding_en Output MCP bounding enable pins.
observe_point_en: observe_point_en Output Observe point enable pins.
scan_en: scan_en_in Input Scan enable pin and, optionally, the 

internal pin corresponding to the pad 
input.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 337

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Interface Pins
Clock Controller Pins
Clock Controller Pins
The following table lists the pin names on the clock controller for connecting to your clock 
controller in the design.

scan_en: scan_en_out Output Scan enable pin and, optionally, the 
internal pin corresponding to the pad 
output.

setup_shift_scan_in: ijtag_si Input Seeding register input connection pin.
setup_shift_scan_out: ijtag_so Output Seeding register output connection pin. 
shift_dr: ijtag_se Input shift_dr output from the TAP controller.
tap_instruction_decode: ijtag_sel Input Instruction decoder output connection.
tck: ijtag_tck Input JTAG TCK input.
test_en: test_en_in Input Test enable pins.
test_en: test_en_out Output Test enable pins.
test_logic_reset: ijtag_reset Input test_logic_reset output connection from 

the TAP controller.
update_dr: ijtag_ue Input update_dr output from the TAP 

controller.
x_bounding_en: x_bounding_en Output X-bounding enable pins.

Table D-2. Clock Controller Pins 
Pin Name Type Description
capture_procedure_index: ncp Output NCP signal that identifies the NCP used for the 

current pattern.
capture_phase Output Indicates Capture BIST controller FSM is in 

capture state.
lbist_en: lbist_en Output LogicBIST enable pins. 
scan_en: shift_phase Output Indicates BIST controller FSM is in shift state.
shift_clock_en: shift_clock_en Output Clock controller shift clock enable pins.
shift_clock: shift_clock_in Input Clock controller shift clock pins.
shift_clock: shift_clock_out Output Clock controller shift clock pins.
scan_en: shift_en_in Input Clock controller scan enable pins.

Table D-1. LogicBIST Controller Pins  (cont.)
Pin Name Type Description
Hybrid TK/LBIST Flow User’s Manual, v2022.4338

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Interface Pins
EDT/LogicBIST Wrapper Pins
EDT/LogicBIST Wrapper Pins
The following table lists the pin names for the LogicBIST-related pins on the EDT module.

scan_en: shift_en_out Output Clock controller scan enable pins.
shift_capture_clock: 
shift_capture_clock_out

Output When issuing the “add_dft_signals edt_clock 
shift_capture_clock -create_from_other_signals” 
command during LBIST, supply the Tessent OCC 
slow_clock pins with a gated shift capture clock.

shift_capture_clock: 
shift_capture_clock_in

Input During ATPG mode, shift_capture_clock_out 
provides gated shift capture clock or PI clock 
source, via this port.

capture_en: capture_en_in Input OCC capture enable pins.
capture_en: capture_en_out Output OCC capture enable pins.
edt_clock_en Input Supplied by the LPCT during EDT mode, this port 

is used by the clock gater that creates the 
edt_lbist_clock signal that drives the EDT 
controller(s).

Table D-3. EDT/LogicBIST Wrapper Pins 
Pin Name Type Description
edt_clock Input Clock for shared EDT/BIST IP.
lbist_en Input Active high enable signal that indicates 

BIST mode of operation.
misr_accumulate_en Input Active high enable signal that enables 

MISR to compress input.
lbist_misr Output A parallel output bus that combines all 

the MISRs inside the EDT block. For 
example, if a design contains two 24-bit 
MISRs, then this pin is a 48-bit output. 
The tool does not automatically connect 
this signal to any design pins.

lbist_prpg_en Input Active high enable signal that enables 
decompressor to run as PRPG.

lbist_reset Input Synchronous reset signal from the 
LogicBIST controller.

Table D-2. Clock Controller Pins  (cont.)
Pin Name Type Description
Hybrid TK/LBIST Flow User’s Manual, v2022.4 339

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Interface Pins
Segment Insertion Bit Signals
Segment Insertion Bit Signals
The following table lists the IJTAG-style signals for controlling the SIBs inside the shared 
EDT/LogicBIST IP.

ijtag_si Input Shift register input for LogicBIST 
register seeding.

ijtag_so Output Shift register output for LogicBIST 
register seeding.

Table D-4. SIB Pins 
Pin Name Type Description
sib_capture_en Input Active high signal that indicates 

TAP is in capture-DR state.
sib_en Input Active high enable SIB enable 

signal, connected to decoded 
LogicBIST instruction from TAP 
controller.

sib_reset Input Active low signal that indicates TAP 
is in test logic reset state.

sib_shift_en Input Active high signal that indicates 
TAP is in shift-DR state.

sib_update_en Input Active high signal that indicates 
TAP is in update-DR state.

tck Input 1149.1 test clock input.

Table D-3. EDT/LogicBIST Wrapper Pins  (cont.)
Pin Name Type Description
Hybrid TK/LBIST Flow User’s Manual, v2022.4340

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Appendix E
Getting Help

There are several ways to get help when setting up and using Tessent software tools. Depending 
on your need, help is available from documentation, online command help, and Siemens EDA 
Support.
The Tessent Documentation System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Global Customer Support and Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

The Tessent Documentation System
At the center of the documentation system is the InfoHub that supports both PDF and HTML 
content. From the InfoHub, you can access all locally installed product documentation, system 
administration documentation, videos, and tutorials. For users who want to use PDF, you have a 
PDF bookcase file that provides access to all the installed PDF files.
For information on defining default HTML browsers, setting up browser options, and setting the 
default PDF viewer, refer to the Siemens® Software and Mentor® Documentation System 
manual.

You can access the documentation in the following ways:

• Shell Command — On Linux platforms, enter mgcdocs at the shell prompt or invoke a 
Tessent tool with the -manual invocation switch. 

• File System — Access the Tessent InfoHub or PDF bookcase directly from your file 
system, without invoking a Tessent tool. For example:

HTML:

firefox <software_release_tree>/doc/infohubs/index.html

PDF:

acroread <software_release_tree>/doc/pdfdocs/_tessent_pdf_qref.pdf

• Application Online Help — ou can get contextual online help within most Tessent 
tools by using the “help -manual” tool command. For example:

> help dofile -manual

This command opens the appropriate reference manual at the “dofile” command 
description.
Hybrid TK/LBIST Flow User’s Manual, v2022.4 341

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Getting Help
Global Customer Support and Success
Global Customer Support and Success
A support contract with Siemens Digital Industries Software is a valuable investment in your 
organization’s success. With a support contract, you have 24/7 access to the comprehensive and 
personalized Support Center portal.
Support Center features an extensive knowledge base to quickly troubleshoot issues by product 
and version. You can also download the latest releases, access the most up-to-date 
documentation, and submit a support case through a streamlined process.

https://support.sw.siemens.com

If your site is under a current support contract, but you do not have a Support Center login, 
register here:

https://support.sw.siemens.com/register
Hybrid TK/LBIST Flow User’s Manual, v2022.4342

Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.

https://support.sw.siemens.com
https://support.sw.siemens.com/register


Third-Party Information
Details on open source and third-party software that may be included with this product are available in the
<your_software_installation_location>/legal directory.
Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.



Note - Viewing PDF files within a web browser causes some links not to function. Use HTML for full navigation.


	InfoHub
	Bookcase
	Revision History ISO-26262
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction to the Hybrid TK/LBIST Flow
	Hybrid TK/LBIST Implementation
	Tessent Core Description
	Tessent EDT and LogicBIST IP Generation
	Test Point Analysis and Insertion
	Scan Insertion and X-Bounding
	LogicBIST Fault Simulation and Pattern Creation
	Pattern Generation
	Top-Level ICL Network Integration
	ICL Extraction and Pattern Retargeting
	Considerations for Top-Down Implementation

	Limitations for the Hierarchical TK/LBIST Flow

	Chapter 2 EDT and LogicBIST IP Generation
	EDT and LogicBIST IP Generation Overview
	Hybrid TK/LBIST IP Generation Flow
	Integrating a Third-Party TAP in the Hybrid TK/ LBIST Flow
	Clock Controller Connections to the EDT/LogicBIST IP
	EDT and LogicBIST IP
	Clock Control Logic and Named Capture Procedures
	Programmable Registers
	Programmable Shift and Capture Pause Cycles
	Low-Power Shift
	Warm-Up Patterns
	Chain Test Patterns
	Asynchronous Set/Reset Patterns
	Single Chain Mode Logic
	Controller Chain Mode
	IJTAG Network in EDT/LogicBist IP
	Burn-In Test Mode
	LBIST Controller Hardware Default Mode
	Self-Test Mode
	IP Generation for Self-Test Mode
	Self-Test Pattern Generation
	Performing Self-Test Pattern Generation During IP Creation


	Generating the EDT and LogicBIST IP
	Dual Compression Configurations for the Hybrid IP
	Timing Constraints for EDT and LogicBIST IP
	Timing Constraint Generation in the Specification- Based Flow
	LogicBIST Timing Constraints

	ECO Implementation in the Hybrid TK/LBIST Flow

	Chapter 3 Test Point Analysis and Insertion, Scan Insertion, and X-Bounding
	Test Point Analysis and Insertion, Scan Insertion, and X-Bounding Overview
	X-Bounding
	X-Bounding Control Signals (Existing or New Scan Cells)
	Clock Selection
	Multiple Clock Domain Handling
	False and Multicycle Paths Handling
	X-Sources Reaching Primary Outputs
	X-Bounding and no_observe_point and no_control_point Attributes
	EDT IP Handling
	X-Bounding and the Tessent Memory BIST Controller

	Test Point Insertion, Scan Insertion, and X-Bounding Command Summary

	Chapter 4 LogicBIST Fault Simulation and Pattern Creation
	LogicBIST Fault Simulation and Pattern Creation Overview
	Initial Static DFT Signal Values
	Performing LogicBIST Fault Simulation and Pattern Creation
	Specifying Warm-Up Patterns During Fault Simulation
	Fault Simulation When There Are Inversions
	Fault Coverage Report for the Hybrid IP
	Fault Simulation and Pattern Creation Command Summary

	Chapter 5 Pattern Generation
	Pattern Generation Overview
	Pattern Generation for the TSDB Flow
	Performing Pattern Generation for the TSDB Flow
	Performing Pattern Generation for CCM in the TSDB Flow
	Pattern Generation in Multiple, Shorter Sessions

	Pattern Generation for Low Power LBIST
	Single Chain Mode Diagnosis
	Pattern Mismatch Debugging
	Debug Based on MISR Signature Divergence
	Debug Based On Scan Cell Monitoring
	Usage Examples


	Chapter 6 Top-Level ICL Network Integration
	Top-Level ICL Network Integration Overview
	Performing Top-Level ICL Network Integration
	Top-Level ICL Network Integration Command Summary

	Chapter 7 ICL Extraction and Pattern Retargeting
	ICL Extraction and Pattern Retargeting Overview
	Performing ICL Extraction and Pattern Retargeting
	Usage Examples for ICL Extraction and Pattern Retargeting
	ICL Extraction and Pattern Retargeting Command Summary

	Chapter 8 Hybrid TK/LBIST Embedded Structures
	Shared Logic
	Inserted Hybrid TK/LBIST IP
	Scan Chain Masking
	New LogicBIST Control Signals
	Clocking
	Programmable Registers Inside Hybrid IP
	Low-Power Shift Controller

	Chapter 9 Tessent OCC for Hybrid TK/LBIST
	Tessent OCC TK/LBIST Flow
	Tessent OCC for TK/LBIST Flow Configuration
	NCP Index Decoder
	OCC Generation and Insertion
	Scan Insertion
	OCC EDT/LBIST IP Creation
	NCP Index Decoder Synthesis
	Fault Simulation with a Tessent OCC
	Pattern Generation with a Tessent OCC

	Example Tessent OCC TK/LBIST Flow
	Generating and Inserting the Tessent OCC

	Tessent OCC Examples

	Chapter 10 Third-Party OCC for Hybrid TK/LBIST
	Overview of the Third-Party OCC Flow
	ThirdPartyOcc TCD File Syntax
	Usage Examples for Third-Party OCC

	Chapter 11 Observation Scan Technology
	Overview
	DFT Insertion
	Test Point and Scan Insertion
	LogicBIST Fault Simulation
	Pattern Mismatch Debugging Based on Scan Cell Monitoring
	Pattern Mismatch Debugging for Parallel Patterns

	Chapter 12 Independent Hybrid TK/LBIST Insertion Flow
	Independent Insertion Flow Overview
	Tessent EDT and LogicBIST IP Generation
	EDT and LogicBIST IP Generation Overview (Independent Insertion Flow)
	IJTAG Network in EDT/LogicBIST IP (Independent Insertion Flow)
	LBIST-Related Clock Signals for the Independent Insertion Flow

	LBIST Load/Unload Timing
	Timing Constraints (SDC)
	SDC File Contents
	LBIST-Ready Blocks
	Hierarchical STA
	STA For Legacy Hierarchical TK/LBIST Flow
	Extended SDC Procedures
	SDC Procedure Generation for Hybrid EDTs
	SDC Procedures for Hierarchical STA With Independent Insertion Flow


	Generating EDT and LogicBIST IP for Independent Insertion
	Generating LogicBIST-Ready EDT Child Blocks Without OCC
	Independently Inserting the LogicBIST-Ready EDT in Child Blocks
	Generating the LogicBIST Controller With Parent Level EDT

	Generating LogicBIST-Ready EDT Child Blocks With OCC
	Independently Inserting the LogicBIST-Ready EDT in Child Blocks With OCC
	Generating the LogicBIST Controller at the Parent Level With EDT and OCC

	Generating LogicBIST-Ready Grandchild Blocks with OCC
	Independently Inserting the LogicBIST-Ready EDT in Grandchild Blocks
	Instrumenting the Child Block
	Generating the LogicBist Controller at the Grandparent Level With EDT and OCC


	SSN and Hybrid TK/LBIST Insertion Flow
	Independent Insertion With SSN Flow Overview
	Generating SSN ScanHost IP for Independent Insertion
	Independently Inserting the LogicBIST-Ready EDT and SSH in a Child Block
	Generating the LogicBIST, EDT, OCC, and SSH in the Parent Level
	Using ssn_bus_clock as test_clock Bypass


	Top-Level LBIST and External Test Mode in Child Cores
	Child-Level OCC Inactive During External Test
	Child-Level OCC Active During External Test
	Child-Level Hybrid EDT For Wrapper Chains Active During External Test

	Limitations of the Independent Insertion Flow

	Appendix A The Dofile Flow
	EDT and LogicBIST IP Generation Command Summary
	Generating the EDT and LogicBIST IP (Dofile Flow)
	Performing Scan Insertion and X-Bounding
	Example Dofiles for Core-Level Simulation
	Pattern Generation for the Dofile Flow
	Performing Pattern Generation for the Dofile Flow
	Performing Pattern Generation for CCM in the Dofile Flow

	Pattern Mismatch Debugging in the Dofile Flow
	Debug Based on MISR Signature Divergence (Dofile Flow)
	Debug Based on Scan Cell Monitoring (Dofile Flow)

	Tessent OCC for Hybrid TK/LBIST in the Dofile Flow
	Tessent OCC TK/LBIST (Dofile Flow)
	Tessent OCC for TK/LBIST Flow Configuration (Dofile Flow)
	NCP Index Decoder (Dofile Flow)
	OCC Generation and Insertion (Dofile Flow)
	Scan Insertion (Dofile Flow)
	OCC EDT/LBIST IP Creation (Dofile Flow)
	NCP Index Decoder Synthesis (Dofile Flow)
	Fault Simulation with a Tessent OCC (Dofile Flow)
	Pattern Generation with a Tessent OCC (Dofile Flow)

	Observation Scan Technology Dofile Flow
	Example Tessent OCC TK/LBIST Flow (Dofile Flow)
	Generating and Inserting the Tessent OCC (Dofile Flow)
	Inserting the Scan Chains (Dofile Flow)
	Generating the Hybrid TK/LBIST IP (Dofile Flow)
	Synthesizing and Inserting the LBIST NCP Index Decoder (Dofile Flow)
	Generating the EDT Patterns (Dofile Flow)
	Performing the LBIST Fault Simulation (Dofile Flow)

	Tessent OCC Dofile Examples
	File Examples for the Dofile Flow
	Synthesis Script Example
	Timing Script Example
	ICL Example



	Appendix B Low Pin Count Test Controller
	Low Pin Count Test Controller Overview
	Type-2 LPCT Controller Example

	Appendix C EDT Pattern Generation for the Hybrid IP
	EDT Mode Initialization with IJTAG
	The EDT Setup iProc
	Usage Examples

	Appendix D Interface Pins
	LogicBIST Controller Pins
	Clock Controller Pins
	EDT/LogicBIST Wrapper Pins
	Segment Insertion Bit Signals

	Appendix E Getting Help
	The Tessent Documentation System
	Global Customer Support and Success

	Third-Party Information
	Documentation Feedback

