
Verdi® User Guide and
Tutorial

Version O-2018.09-SP2, March 2019

Copyright Notice and Proprietary Information
 2019 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license
agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided
by the license agreement.

Third-Party Software Notices
Verdi® Automated Debug Platform includes or is bundled with software licensed to Synopsys under free or open-
source licenses. For additional information, see the third_party_notices.txt file in the INSTALL_PATH/doc directory
of the Verdi software installation.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

www.synopsys.com

Contents

Verdi User Guide and Tutorial iiiFeedback

Contents

About This Book 8

Purpose... 8
Audience .. 9
Book Organization ... 10
Conventions Used in This Book .. 11
Related Publications... 12

Introduction 14

Overview.. 14
Technology Overview.. 15

User Interface 20

Overview.. 20
Common User Interface Features .. 22
nTrace User Interface... 31
nWave User Interface .. 37
nSchema User Interface ... 45
nState User Interface.. 48
Flow View User Interface.. 50
Transaction/Message User Interface.. 53
nCompare User Interface ... 58
nECO User Interface.. 60
nAnalyzer User Interface ... 60

Before You Begin 62

Installation and Setup... 62
Demo Details ... 63

Launching Techniques 64

Dumping Elaboration Database ... 64
Reference Source Files on the Command Line.. 68
Compile Source Code into a Library ... 69
Reference Design and FSDB on the Command Line 69
Perform Behavior Analysis on the Command Line................................... 70

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Contents'

Contents

iv Verdi User Guide and Tutorial Feedback

Replay a File .. 70
Start Verdi Without Specifying Any Source Files..................................... 71
Loading when Design and FSDB Hierarchies do not Match..................... 73

User Interface Tutorial 74

Overview.. 74
Start Verdi Platform... 74
Using the Welcome Page ... 75
Saving and Restoring a Session ... 76
Changing the Default Frame Location... 77
Maximizing the Display... 77
Modifying the Menu/Toolbar .. 78
Searching for a Command ... 79
Customizing Bind Keys ... 79
Customizing Toolbar Icons.. 81

nTrace Tutorial 84

Overview.. 84
Traverse the Design Hierarchy in nTrace .. 85
Access a Block’s Source Code .. 86
Trace Drivers and Loads.. 88
Edit Source Code ... 92
Use Active Annotation... 93
Trace the Active Driver ... 96
Use Verdi Executable to Import Design from UFE................................... 97

nSchema Tutorial 98

Overview.. 98
Start nSchema .. 99
Manipulate the Schematic View .. 101
Trace Signals.. 107
Show RTL Block Diagram in a More Meaningful Way.......................... 109
Generate Partial Schematics .. 111
Use Active Annotation to Show Signal Values 117

nWave Tutorial 118

Start nWave and Open a Simulation Result File 118
Add Signals .. 120
Manipulate the Waveform View.. 126
Change Signal/Group Attributes.. 135

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter ’Contents’

Contents

Verdi User Guide and Tutorial vFeedback

Create New Signals/Buses from Existing Signals 140
Save and Restore Signals ... 143
Calculate Toggle Coverage.. 145
Define Events and Complex Events .. 150

nState Tutorial 160

Overview.. 160
Start nState ... 161
Manipulate the State Diagram View.. 162
State Animation ... 166
State Machine Analysis.. 169

Smart Log Tutorial 170

Overview.. 170
Invoking Smart Log ... 172
Navigating Smart Log.. 182
Browse Views .. 185
Specifying Time Unit in UVM/OVM Log File 190
Using Hyperlink Rule File ... 191
Configuring a New Partitioning Rule .. 194
Applying Partitioning Rule .. 205
Opening Multiple Smart Log Windows and Synchronizing with nWave206
Locating Objects .. 208
Searching, Filtering, and Reloading the Log File 214
Debugging in Verdi Frames... 221
Using Smart Log in Interactive Debug .. 223
Known Issues and Limitations... 228

OneSearch 230

Overview.. 230
GUI Use Model.. 231
Search Domains ... 233
Search Modes... 234
Support for Multiple Line Results ... 235
Support for Synonyms ... 237
Command Line Use Model .. 239
Usage Examples... 240

Temporal Flow View Tutorial 242

Overview.. 242

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Contents'

Contents

vi Verdi User Guide and Tutorial Feedback

Open a Temporal Flow View... 260
Manipulate the View.. 263
Show Active Statements .. 265
Display Source Code.. 266
Add Signals from the Temporal Flow View to nWave 268
Compact Temporal Flow View.. 269

Debug a Design with Simulation Results Tutorial 274

Find the Active Driver ... 274
Generate Fan-in.. 277
Debug Memory Content .. 279

nCompare Tutorial 282

Overview.. 282
Start nCompare and Compare Waveforms .. 283
View Errors .. 286
Error Report File .. 288

Application Tutorials 290

Searching Backward for Value Causes.. 290
Debug Memories.. 297
Debug Gate vs. RTL Simulation Mismatch... 317
Behavior Trace for Root Cause of Simulation Mismatches 323
Debug Unknown (X) Values ... 329
Debug Forced Signals .. 336
Debug with SystemVerilog.. 347
Debug with SystemVerilog Assertions (SVA) .. 358
SVA Evaluation of Runtime Assertions .. 371
Debug with Transactions ... 376

Appendix A: Supported Waveform Formats 392

Overview.. 392
Fast Fourier Transformers (FFT) ... 393
EVCD... 398
Analog Waveform Example .. 400

Appendix B: Supported FSM Coding Styles 404

Overview.. 404
One-Process (Always) ... 405

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter ’Contents’

Contents

Verdi User Guide and Tutorial viiFeedback

Two-Process (Always)... 408
One-Hot Encoding ... 412
Shift Arithmetic Operation .. 415
Case-Statement vs. If-Statement .. 417
Gate-Like FSM .. 420
Next_State = signal .. 422
Next_State = Current_State + N .. 424
VHDL Record Type... 425

Appendix C: Enhanced RTL Extraction 428

Overview.. 428
Instance Array.. 430
For Loop... 431
Aggregate... 432
Partial Bits Assignment.. 435
Displaying Pure Memory Blocks... 438

Appendix D: Additional Transaction Example 440

Extracting Transactions Using SVA.. 440

Integration Features 446

Native Integration of Verdi and VCS .. 447
Unified Transaction Debug- Verdi and Protocol Analyzer Integration... 461
Unified UVM Library .. 462
Scope-Based Peak Analysis ... 463

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Contents'

About This Book: Purpose

 Verdi User Guide and Tutorial 8Feedback

About This Book

Purpose
This book is designed to allow you to quickly become proficient in the Verdi
platform. This manual focuses on the most commonly used commands without
going into detail on everything. For detailed descriptions of individual
commands, please refer to the appropriate chapter of the Verdi and Siloti
Command Reference Manual.

The manual should be read from beginning to end, although you may skip any
sections with which you are already familiar.

• If you are new to the Verdi platform, begin with the User Interface,
Launching Techniques and various Tutorials chapters. After you are
familiar with the individual modules, review the Application Tutorials
chapter.

• If you are familiar with the Verdi platform but want to learn new ways to
apply it, review the Application Tutorials chapter.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

About This Book: Audience

9 Verdi User Guide and Tutorial Feedback

Audience
The audience for this manual includes engineers who are familiar with languages
and tools used in design and verification such as Verilog, VHDL, SystemVerilog,
simulators, timing analyzers, and transactions. The application of these
languages may be for System-on-Chip (SoC), Application Specific Integrated
Circuit (ASIC), and Field Programmable Gate Array (FPGA) designs.

This document assumes that you have a basic knowledge of the platform on
which your version of Verdi platform runs: Unix or Linux, and that you are
knowledgeable in design and verification languages, simulation software, and
digital logic design.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

About This Book: Book Organization

 Verdi User Guide and Tutorial 10Feedback

Book Organization
The Verdi User Guide and Tutorial is organized into the following chapters:

• About This Book provides an introduction to this manual and explains how
to use it.

• Introduction provides an overview of the Verdi platform and introduces its
unique debugging tools, capabilities, and methodology.

• User Interface provides details regarding the interface, including toolbars,
icons, and commands.

• Before You Begin provides details on setting up the environment and demo
cases.

• Launching Techniques provides details on different methods for starting the
Verdi platform.

• nTrace Tutorial gives step-by-step instructions on nTrace.

• nSchema Tutorial gives step-by-step instructions on nSchema.

• nWave Tutorial gives step-by-step instructions on nWave.

• nState Tutorial gives step-by-step instructions on nState.

• SmartLog Tutorial gives step-by-step instructions on SmartLog.

• OneSearch Tutorial gives step-by-step instructions on OneSearch.

• Temporal Flow View Tutorial gives step-by-step instructions on nTrace.

• Debug a Design with Simulation Results Tutorial ties together all the
modules in a simple debug scenario.

• Appendix A: Supported Waveform Formats lists the supported waveform
formats.

• Appendix B: Supported FSM Coding Styles lists the supported finite state
machine (FSM) coding styles.

• Appendix C: Enhanced RTL Extraction describes instance array, for loop
statements, and creating detailed extracted schematics.

• Appendix D: Additional Transaction Example includes additional
information for generating and extracting transactions.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

About This Book: Conventions Used in This Book

11 Verdi User Guide and Tutorial Feedback

Conventions Used in This Book
The following conventions are used in this book:

• Italic font is used for module names, emphasis, book titles, section names,
application names, and design names within paragraphs.

• Bold is used to emphasize text and highlight titles, menu items, and other
Verdi terms.

• Courier type is used for program listings and text messages that the
Verdi platform displays on the screen. You can also use for file paths, and
file names.

• NOTE describes important information, warnings, or unique commands.

• Menu -> Option identifies the path used to select a menu command.

• Left-click or Click means click the left mouse button on the indicated item.

• Middle-click means click the middle mouse button on the indicated item.

• Right-click means click the right mouse button on the indicated item.

• Double-click means click twice consecutively with the left mouse button.

• Shift-left-click means press and hold the <Shift> key then click the left
mouse button on the indicated item.

• Drag-left means press and hold the left mouse button, then move the pointer
to the destination, and release the button.

• Drag means press and hold the middle mouse button on the indicated item
then move and drop the item to the other window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

About This Book: Related Publications

 Verdi User Guide and Tutorial 12Feedback

Related Publications
• Installation & System Administration Guide - explains how to install the

Verdi and Siloti systems.

• Verdi and Siloti Command Reference Manual - gives detailed information
on the Verdi and Siloti command sets.

• Verdi and Siloti Quick Reference Guide - provides a quick reference for
using the Verdi and Siloti systems with typical debug scenarios.

• Linking Novas Files with Simulators and Enabling FSDB Dumping - gives
detailed information on linking Novas object files with supported
simulators for FSDB dumping and the related dumping commands.

• nAnalyzer User Guide and Tutorial - detailed information on using the
nAnalyzer Design Analysis module.

• nECO User Guide and Tutorial - detailed information on using the nECO
Automated Netlist Modification module.

• Release Notes - for current information about the latest software version.
Refer to the View release notes link on the product downloads page.

• Language Documentation

Hardware description (Verilog, VHDL, SystemVerilog, and so on) and
verification language reference materials are not included in this manual.
For language related documents, refer to the appropriate language standards
board (www.ieee.org, www.accellera.org) or vendor (www.synopsys.com,
www.cadence.com) websites.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

About This Book: Related Publications

13 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'About This Book'

Introduction: Overview

 Verdi User Guide and Tutorial 14Feedback

Introduction

Overview
The Verdi® Automated Debug Platform is an advanced solution for debugging
your digital designs that increases design productivity with complex System-on-
Chip (SoC), ASIC, and FPGA designs. Traditional debug tools rely on structural
information alone and the engineer’s ability to infer the design behavior from its
structure. The Verdi platform provides powerful technology to help you
comprehend complex and unfamiliar design behavior, automate difficult and
tedious debug processes, unify diverse and complicated design environments,
and infer the dynamic behavior of a design over time.

In addition to the standard features of a source code browser, schematics,
waveforms, state machine diagrams, and waveform comparison (for comparing
simulation results in FSDB format), the Verdi platform includes advanced
features for automatic tracing of signal activity using temporal flow views,
assertion-based debug, power-aware debug, and debug and analysis of
transaction and message data. All of this is available in a graphical user interface
using the Qt platform that supports multiwindow docking and is easily
customizable.

The Verdi platform enable engineers to locate, isolate, understand, and resolve
bugs in a fraction of the time of traditional solutions. This maximizes the
efficiency and productivity of expensive engineering resources, significantly
reduces costs, and dramatically accelerates the process of getting silicon to
market.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

Introduction: Technology Overview

15 Verdi User Guide and Tutorial Feedback

Technology Overview
A technology base has been constructed that is optimized for design exploration,
understanding, and debugging. The Verdi platform's unique architecture features
powerful compilers, interfaces, databases, analysis engines and visualization
tools in an integrated system for complete debugging.

Figure: Verdi Technology Overview

Compilers, Interfaces and Interoperability
The Verdi platform has compilers for the most common design/verification
languages and provides several interfaces for standard simulators.

• Compilers: The Verdi platform provides compilers for the languages used
in most design and verification environments, such as Verilog, VHDL and
SystemVerilog (both design and verification code) and power code (CPF or
UPF). As the code is analyzed and compiled, it is checked for syntax and
semantic errors.

• Interfaces: The Verdi platform's readers import industry-standard VCD and
SDF data from all simulators and timing tools. The results are read in from
the detection tool and stored in the Fast Signal Database (FSDB). Direct
dumping to FSDB through the object files linked to a verification tool
(simulator) results in smaller waveform files and flexible access to post-
simulation data.

• Interoperability: The Verdi platform's comprehensive, documented, and
supported interfaces provide interoperability with all popular logic

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

Introduction: Technology Overview

 Verdi User Guide and Tutorial 16Feedback

simulators, as well as many formal verification and timing analysis
applications. These interfaces also provide the ability to integrate other
verification applications using Tcl and C-language application
programming interfaces (APIs). Synopsys has partnered with dozens of
design and verification companies to integrate their tools with the Verdi
platform, which saves the time and expense of learning multiple interfaces
by providing a consistent view throughout the entire verification and debug
flow.

Databases
The Verdi platform provides two databases. All analysis engines and
visualization tools use these databases.

• Knowledge Database (KDB): As it compiles the design, the Verdi platform
uses its internal synthesis technology to recognize and extract specific
structural, logical, and functional information about the design and stores
the resulting detailed design information in the KDB.

• Fast Signal Database (FSDB): The FSDB stores the simulation results,
including transaction data and logged messages from SVTB or other
applicable languages, in an efficient and compact format that allows data to
be accessed quickly. Synopsys provides the object files that can be linked to
common simulators to store the simulation results in FSDB format directly.
You can generate FSDB either from the provided routines or after reading
and converting your VCD file. In addition, FSDB read/write API routines
are provided for customers and partners to use.

Analysis Engines
Using the information from the KDB and FSDB, the Verdi platform provides a
set of analysis engines for different applications, including:

• Structure Analysis: analyze design structure to show how components are
connected.

• Behavior Analysis: analyze design and simulation results to display design
operation over time.

• Assertion Evaluation: answer questions and search for details about design
operation from a previous simulation.

• Transaction/Message Analysis: analyze transaction and message (log)
data in the FSDB file and visualize in nWave and a spreadsheet view.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

Introduction: Technology Overview

17 Verdi User Guide and Tutorial Feedback

• Power State Evaluation: evaluate the power state based on the power
intent description in the CPF/UPF and the values of related signals in the
FSDB file.

Graphical User Interface
The graphical user interface uses the Qt platform and provides the following
functions:

• A Welcome page summarizing the available resources in a single location.

• History support enabling easy restoration of previous sessions.

• Typical work modes with predefined window layouts making the debug
content easy to locate.

• A unique Spotlight function searches for a command without exhaustively
searching through all the drop-down menus.

• Several customization options:

• System frames and toolbar icons can be undocked, moved to a new
location, and then docked again.

• A pane can be maximized by double-clicking the pane banner so the
content is more visible. Shrinking to the original size is another double-
click.

• The visible toolbar icons can be selected through a menu option.

• Bind key values and drop-down menu names and locations can be
customized through a provided customization form.

Visualization
The Verdi platform provides unparalleled temporal visualization capabilities in
the form of the Temporal Flow View. This revolutionary tool extracts and
displays multicycle temporal behavior from the design data and simulation
results.

In addition, the Verdi platform includes state-of-the-art structure visualization
and analysis tools: nTrace for source code, nWave for waveforms, nSchema for
schematic/ logic diagrams, and nState for finite state machines (FSMs). These
tools focus on analyzing the structure of the design in the form of the signal
relationships in the RTL, physical connections in schematic/logic diagrams,
states and transitions in FSM bubble diagrams, and value changes in waveforms.

The Property Tools window in the Verdi platform provides integrated support for
assertions and enables quick traversal from an assertion failure to the related

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

Introduction: Technology Overview

 Verdi User Guide and Tutorial 18Feedback

design activity. While the Transaction/Message Analyzer enables debug and
analysis at higher levels of abstraction from transaction or log information saved
to the FSDB file. The Power Manager window provides visualization of the
power intent and supports cross-probing with other Verdi platform windows.

All of these views are fully integrated. For example, you can select any portion
of the design source code and instantly generate corresponding hierarchical or
flattened logic diagrams. You can rapidly explore a design and its verification
results by clicking on context-sensitive hyperlinked objects and signals in any of
the views. You can quickly and easily change the current view to locate and
isolate the specific information necessary to understand any portion of the design
and resolve any problems.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

Introduction: Technology Overview

19 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Introduction'

User Interface: Overview

 Verdi User Guide and Tutorial 20Feedback

User Interface

Overview
The Verdi® Automated Debug Platform has a highly customizable graphical user
interface with a contemporary look. The following figures illustrate the look of
the Verdi platform.

Figure: Verdi Main Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Overview

21 Verdi User Guide and Tutorial Feedback

Figure: Verdi Window With Welcome Page

The Verdi platform has a large number of commands, including many that are
invoked through mouse clicks or drags rather than selecting from pull-down
menus at the top of each window. Read this chapter to become familiar with the
interface conventions of the Verdi platform before proceeding further.

This chapter covers the following topics:

• Common User Interface Features

• nTrace User Interface

• nWave User Interface

• nSchema User Interface

• nState User Interface

• Flow View User Interface

• Transaction/Message User Interface

• nCompare User Interface

• nECO User Interface

• nAnalyzer User Interface

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

 Verdi User Guide and Tutorial 22Feedback

Common User Interface Features
The features described below are common to nWave, nTrace, nSchema, nState,
and Flow View components. Refer to the User Interface Overview section of the
Introduction chapter in the Verdi and Siloti Command Reference Manual for
additional information.

Frame Banner
The banner at the top of each pane identifies the application, frame number (such
as <nWave:2>), and file, unit, or scope displayed in that pane. The asterisk (*)
character appearing at the front of the banner indicates that the pane is the active
one.

Double-click the pane banner bar to maximize a pane or to shrink the pane back
to the previous size as shown in the following figure.

Figure: Maximize the Source Code Pane

Right-click the banner of a dockable pane to display a configuration option menu
that lists all the available dockable panes and toolbar categories. Toggle the

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

23 Verdi User Guide and Tutorial Feedback

option to hide/show the entire pull-down menu, dockable pane, or toolbar
category.

Figure: Configuration Option Menu to Hide/Show Dock Panes/Toolbar Categories

Pull-Down Menu Commands
A pull-down menu bar is located just below the banner for panes that are also
windows. Each menu item contains several commands that display when the
menu is selected. The pull-down menu can be hidden or displayed by selecting
the right-click Menu option invoked from the window banner, menu bar, or
toolbar.

When the Menu option is toggled off, the pull-down menu of the pane or window
is hidden. You can press the Alt key within the pane or window to display or hide
the pull-down menu again. Also, when the cursor is clicked elsewhere in the pane
or window, the menu is automatically hidden again.

When the Menu option is toggled on (the value on means always show the
pull-down menu), the pull-down menu cannot be shown/hidden by pressing the
Alt key.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

 Verdi User Guide and Tutorial 24Feedback

For each sub-window or window in the Verdi platform, custom commands can
be added using the Tools -> Customize Menu/Toolbar command.

Mnemonic Keys
The pull-down menus support Meta key invocation using mnemonics. The
mnemonic for each item is indicated by an underline. For example, to display the
File -> Open menu (meta -fo), press and hold the <Meta> key on your keyboard
(the diamond key/<Alt> key on Sun keyboards or the <Alt> key on Windows’
keyboards) and press the "f" key, then release the <Meta> key and press the letter
"o" key.

Bind Keys
A command can be bound to either a keystroke or a mouse button. After the bind
keys are defined, commands can be invoked with a keystroke or mouse click. For
example, the Source -> Active Annotation command can be invoked using the
“X” key (the defined bind key is the letter after the command in the menu). The
bind keys of the menu commands can be customized using the Tools ->
Customize Menu/Toolbar command.

Toolbars
A row of icons appears beneath the pull-down menu bar on panes that are also
windows. These icons provide access to frequently used commands for the
current window.

The available toolbar icons may be modified using one of the following methods:

• Enable/disable the icon category using the main window right-click option
menu.

• Left-click to select the separator bar and then drag left or right to decrease
or increase the associated space. When the space is decreased such that
some icons are no longer visible, a double arrow (>>) symbol is displayed
to the right of the category. Clicking this symbol displays the hidden icons.

• Left-click to select the gray bar and then drag up or down to undock the
category and then move to a new location on the toolbar or to left/right/
below the window. Available slots are highlighted with a blue dashed line.

• Define/modify/add toolbar icons and categories using the Tools ->
Customize Menu/Toolbar command. Refer to the nTrace chapter of the
Verdi and Siloti Command Reference Manual for details.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

25 Verdi User Guide and Tutorial Feedback

Mouse Operation
The mouse is most often used to select objects by clicking the left mouse button.
A range of objects can be selected by dragging with the left mouse button over
the objects or by using the <Shift> key along with left-clicking. To add or remove
individual objects to or from the selection, use the <Ctrl> key along with the
left-click.

The Verdi platform also makes use of drag-and-drop to move information from
one pane/window to another. Normally drag-and-drop is performed by pressing
the middle mouse button or left mouse button to select the object, holding the
button as the mouse is moved to a new location, and then releasing the button to
“drop” the object into a new location.

The drag-and-drop operation can be performed between different pane types, for
example, dragging a signal from the nWave pane and dropping it to the source
code pane executes tracing connectivity of the selected signal. If the pane is in
the background (displayed as a tab), moving the dragged object to the tab name
and dropping it changes the tab to the foreground and drops the object. The
resulting behavior is the same as if the object was dropped directly in the pane.

Right Mouse Button Menus
Right-click an object to display a menu with commands appropriate for that
object type. These menus are described in detail in the Right-Click Commands
sections of the Verdi and Siloti Command Reference Manual.

Undock/Dock
The main window of the Verdi platform consists of dockable panes that can be
released (undocked) from the main window. The dockable panes can be docked
to the main window again.

Every dockable pane has its own banner or title bar. The dockable panes can be
moved from one dock area to another by dragging the pane banner. A dockable
pane can attach above, below, left, right or over another dockable pane. A tab is
created when you dock a pane over another dockable pane. Refer to the following
figures for examples.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

 Verdi User Guide and Tutorial 26Feedback

Figure: Undock Design Browser Pane from Main Window

Figure: Re-Dock Design Browser Pane to Main Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

27 Verdi User Guide and Tutorial Feedback

Figure: Dock nWave to the Right of the Design Browser Pane

Figure: Dock nWave above the Design Source Code Pane

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

 Verdi User Guide and Tutorial 28Feedback

Figure: Dock nWave over the Design Source Code Pane to become a Tab

A pane can also be docked/undocked by clicking the Dock/Undock icons on the
pane banner. Some major dockable panes, like nWave and nSchema, can be
released to become stand-alone windows. Other panes (such as, message and
source code panes) that belong to the nTrace main window can also be released
to become widgets.

Refer to the Icons for User Interface Overview section in the Introduction chapter
of the Verdi and Siloti Command Reference Manual for more information.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

29 Verdi User Guide and Tutorial Feedback

Figure: nSchema Docked as a Pane

Figure: nSchema Undocked as a Window

Right-click on any pane banner to display a configuration option menu that lists
all the available dockable panes and toolbar categories. Toggle the option to hide
or show the entire pull-down menu, any dockable pane, or toolbar category.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Common User Interface Features

 Verdi User Guide and Tutorial 30Feedback

The layout of the main framework can be saved or restored by invoking the
Window -> Save/Restore User Layout command. To switch to the previous or
next layout, invoke Window -> Previous Layout or Next Layout commands
respectively.

Refer to the Window/Frame Right-Click Options sections of the Verdi and Siloti
Command Reference Manual for details.

On-line Help
The nTrace main window and the stand-alone nWave/nSchema windows provide
online help, which can be accessed through the Help menu.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

31 Verdi User Guide and Tutorial Feedback

nTrace User Interface
When you start the Verdi platform, the nTrace main window displays and serves
as the main window from which other frames/windows are created. When you
import a new design into the nTrace main window (using the File -> Import
Design command), the Verdi platform closes existing nWave and nSchema
panes/windows started from the open session.

The nTrace main window contains three re-sizable panes:

• Design browser pane

• Source code pane

• Message pane

An example nTrace main window is shown below:

Figure: nTrace Example Window

When you open a design with the Verdi platform, the HDL source code of the
top-level unit is displayed in the Source Code pane.

The top-level unit is shown as the root of the design hierarchy in the design
browser (refer to the nTrace Design Browser Pane section below).

The message pane reports errors or other information related to the Verdi
platform’s operation.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

 Verdi User Guide and Tutorial 32Feedback

nTrace Design Browser Pane
Located on the left side of the nTrace main window, the Design Browser pane
displays the design hierarchy and provides a way to navigate through the
hierarchy (see nTrace Example Window figure above).

The Instance tab in the nTrace Design Browser pane consists of the following
two columns:

• Hierarchy

• Module

The Hierarchy column can be sorted in ascending, descending, or type order by
clicking the heading of the column. By default, the columns are sorted in the type
order.

The Module column can be sorted in ascending or descending order by clicking
the heading of the column.

You can also filter and search the Instance tab for a specific node. See Design
Browser Frame Right-Click Options section in the Verdi and Siloti Command
Reference Guide for more information.

This window contains the following icons and symbols:

Symbol Name Description

Plus

Minus

Click these symbols to either expand (plus) or
collapse (minus) the display of the selected
unit’s hierarchy.

Opened-folder

Indicates that the relevant design scope is
active and the related source code is displayed
in the Source Code frame. The letter on the
folder is a mnemonic for the scope type, such as
M for module, L for library, T for task, and F
for function.

Closed-folder

Indicates the relevant design scope is
non-active. As in the Opened-folder symbol,
the letter on the closed-folder symbol indicates
the type of design scope.

Icon with a
bookmark

Indicates the relevant design scope is set with a
bookmark.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

33 Verdi User Guide and Tutorial Feedback

Highlighted
Design Scope

The highlighted design scope is selected and
acting as the target scope for further relevant
operations in the design browser.

Symbol Name Description

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

 Verdi User Guide and Tutorial 34Feedback

nTrace Source Code Pane
The source code pane appears on the right side of the nTrace main window.
Multiple source code files can be displayed as multiple tabs. If a module is
described in multiple source files, multiple tabs are opened to display the
complete source code when the node is set as an active scope. Each tab is
undockable.

Figure: nTrace Multiple Source Code Tabs

The source code view displays the source code for the active unit in the design
browser. This window is divided into the following two areas:

• Source Code Area

• Indicator Area

Source Code Area
The source code area contains the HDL source code. The Verdi platform
color-codes the source code to differentiate syntax elements. You can set the
syntax colors to your preferences. Some colors change during debugging. For
example, signals that are traced are displayed in green to highlight the trace
history. You can reset all the traced signals' colors to their default settings using
the Trace -> Reset Traced Signal’s Color command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

35 Verdi User Guide and Tutorial Feedback

Indicator Area
The indicator area contains line numbers and graphical indicators that result from
load tracing, driver tracing, connectivity tracing, and bookmarking. The
following table lists and describes the symbols used in the indicator area:

The indicator area also shows interactive simulation controls such as break points
and current active statement arrows.

nTrace Message Pane
The message pane at the bottom of the nTrace main window contains General,
Compile, Trace, Search, and Interconnection tabs.

You can drag-and-drop a signal from the Source Code pane to the Trace or the
Search tab to list the results of Trace Driver or the search results respectively.

A Find field appears above the message tabs when the Find toolbar icon is
clicked. Refer to the Message Frame section in the nTrace chapter of the Verdi
and Siloti Command Reference Manual for details.

Symbol Definition

Driver - result from last trace command. Multiple drivers are
possible.

Active driver - selected driver from last active trace command or
current Show command.

Load - result from last trace command. Multiple loads are possible.

Possible driver - result from the possible analyzed traced result.

Unanalyzed driver - result from the unanalyzed traced result.

Bookmark - marks a selection for easy referral.

Pass through load - result from the pass-through driver traced
results.

Pass through driver - result from the pass-through load traced
results.

Pass through connectivity - result from the pass-through
connectivity traced results.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nTrace User Interface

 Verdi User Guide and Tutorial 36Feedback

Figure: nTrace Find Bar on the Message Frame

nTrace Toolbar Icons
Refer to the Toolbar Icons and Fields section in the nTrace chapter of the Verdi
and Siloti Command Reference Manual for information regarding available
toolbar icons.

NOTE: The default toolbar can be modified through the Tools -> Customize
Menu/Toolbar command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

37 Verdi User Guide and Tutorial Feedback

nWave User Interface
You can open a new nWave pane from the nTrace main window by clicking the
New Waveform icon or choosing the Tools -> New Waveform command. An
nWave pane can be released from the main window to become a stand-alone
window by clicking the Undock toolbar icon. An example nWave stand-alone
window is shown below.

Figure: Example nWave Standalone Window

An example docked nWave pane is shown below.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

 Verdi User Guide and Tutorial 38Feedback

Figure: Example nWave Dock Pane

The nWave pane/stand-alone window consists of three re-sizable sub-windows
(also known as panes):

• Signal pane

• Value pane

• Waveform pane

nWave Signal Pane
The Signal pane displays signals and group names on the left side of the nWave
display. You can use the Signal pane to select and manipulate signals and groups
of signals. Three types of objects appear in the Signal pane:

• Signal name

• Signal cursor

• Group name

Signal Name
A signal name appears to the left of its waveform. In addition to identifying the
waveforms, the signal names are selectable areas; clicking on a signal name
selects that signal for manipulation. The signal name can be displayed as either

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

39 Verdi User Guide and Tutorial Feedback

a full hierarchical name or a local name. By default, nWave right-justifies the
signal name. However, you can change the justification. If a name is too long, use
the horizontal scroll bar or adjust the window size to see the entire name.

Signal Cursor
The signal cursor marks the insertion point for signal commands: Add, Move,
Paste, Overlay Signals, and Create Bus. Middle-click to set the signal cursor.

Group Name
You can place similar signals in the same group. The group name can be changed
from the default of G1, G2, and so on.

nWave Value Pane
The Value pane is next to the Signal pane and displays the value of each signal at
the cursor time in the Waveform pane. You can select the display format for
signals. For example, they can be displayed as hex, octal, binary, decimal value,
or user-defined alias text.

Preferences for what is displayed (for example, leading zeros, marker value), can
be set through the Value pane menu or the Tools -> Preferences command.

For any value change of a signal, nWave displays the old value to the new value
in the Value pane indicating that the value is changed from 0 to 1 or 1 to 0. If the
value (such as the value change of the long bus value) is not fully visible due to
the width of the Value pane, move the cursor on top of that value in the Value
pane, and the value is displayed in the tip window.

nWave Waveform Pane
The Waveform pane appears to the right and displays the waveforms. In addition,
the Waveform pane contains the following objects:

• Cursor

• Marker

• Zoom scale ruler

• Full scale ruler

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

 Verdi User Guide and Tutorial 40Feedback

Cursor
The cursor is used to show the current simulation time for all windows and to
provide one end point for delta time calculations. To set the cursor, left-click the
moues button. The toolbar displays the cursor time.

Note the following when setting the cursor:

• The setting affects the time display (and, therefore, the results) in all panes/
windows that display values.

• If you click inside the Waveform pane and choose the Waveform -> Snap
Cursor to Transitions command (“s” key), the cursor can only be set
where there is a signal transition.

• If you de-select the Waveform -> Snap Cursor to Transition command,
you can set the cursor to any location.

Marker
The marker is used to provide the second point of a delta calculation. To set the
marker, click the middle mouse button. The toolbar displays the amount of time
between the cursor and the marker (the delta time).

Note the following when setting the marker:

• If you click inside the Waveform pane and choose the Waveform -> Snap
Cursor to Transitions command (“s” key), the marker can only be set
where there is a signal transition.

• If you de-select the Waveform -> Snap Cursor to Transition command,
you can set the marker to any location.

• If you choose the Waveform -> Fix Cursor/Marker Delta Time command
(“x” key), cursor or marker is spaced at the same delta time.

• If you de-select the Waveform -> Fix Cursor/Marker Delta Time
command, cursor or marker is not spaced at the same delta time.

NOTE: After you set the cursor time and the marker time, right-click to zoom
and fit the waveform display to the time range between the cursor and
the marker times.

Zoom-Scale Ruler
The zoom-scale ruler appears at the top of the Waveform pane and displays the
current displayed time range.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

41 Verdi User Guide and Tutorial Feedback

Full-Scale Ruler
The full-scale ruler appears at the bottom of the Waveform pane. This ruler
displays the time range of all the results (not just the displayed portion) and
indicates where the cursor and marker positions are in this range. You can change
cursor and marker times by clicking on the full-scale ruler. Selecting a range
(dragging with the left mouse button) zooms the display so that the selected area
zooms the display in the Waveform pane to the selected area.

nWave Toolbar Icons
Refer to the Toolbar Icons and Fields section in the nWave chapter of the Verdi
and Siloti Command Reference Manual for information regarding available
toolbar icons.

NOTE: The default toolbar can be modified through the Tools -> Customize
Menu/Toolbar command.

Get Signals
The nWave window does not display any signals by default; signals are added by
dragging from other windows or by selection in the Get Signals form (using the
Signal -> Get Signals command). Signals are displayed hierarchically based on
the design unit selected in the design hierarchy box on the left side of the form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

 Verdi User Guide and Tutorial 42Feedback

Figure: nWave Get Signal Form

To select signals, navigate the design tree in the Design Hierarchy pane to find
the desired signals, then either drag them to the mirror signal pane in the
right-side pane (which mirrors the signals in the Waveform pane) or select the
signals and click Apply. When you have selected all of the signals of interest,
click OK.

NOTE: The design hierarchy of the simulation files may not match that of the
currently opened design source. You can display waveform data
independent of the design that is loaded.

The mirror signal pane allows you to manipulate the arrangement of the signals
displayed in the Get Signals form without immediately affecting the waveform
pane. After finishing the signal arrangement, click Apply to synchronize the
waveform pane. Click OK to apply the arrangement and close the form.

Refer to the Get Signals command description in the nWave chapter of the Verdi
and Siloti Command Reference Manual for details.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

43 Verdi User Guide and Tutorial Feedback

nWave Mouse Operations
The following tables list the nWave mouse actions:

Mouse Action nWave - Signal Pane

Left-click De-select the current selected signals/group and select the
signal under the mouse button.

Left-click drag-and-drop
Select the object first and then drag-and-drop the object to
the new location using the left mouse button on the
indicated item.

Left-click the plus/minus
icon of a group containing
signals

Unhide/hide the signals of the selected group.

Left-click a Group
De-select the current selected signals/group and select the
group under the mouse button.

Middle-click
Set the Signal Cursor position for the destination of
commands: Move, Paste, Add, Overlap and Create Bus.

Right-click
Open a context-sensitive menu that provides some
commands, which apply to the signal/group under the
mouse button.

Double-click a bus Expand or collapse bus member.

Double-click a power
domain signal

Expand to three member signals to display value changes
for power state, power nominal (for CPF; power nominal
will be power alias when a UPF file is loaded), and power
voltage.

Double-click an interface
sub-group Expand or collapse the node.

Drag & Drop
Move the selected signals to the Signal cursor position.
NOTE: The Signal Cursor position is moved along with the
dragged mouse pointer.

Drag & Drop a signal to a
schematic frame/window

Display the schematic in which the signal is found and
select it.

Drag & Drop a signal to a
source frame/window

Trace signal's connectivity and highlight the result by
symbols in the indicator area of the source code pane.

Drag & Drop a signal to a
Temporal Flow View

Highlight the corresponding signal if it exists. Add the
signal and driving instance as a reference if it doesn't exist.
The global cursor time is used to identify the signal.

Drag-left Area selection for multiple signals.

Drop an interface signal Adds an expanded sub-group node with all interface signals
at current position.

Shift-left-click a signal Add to selection list for multiple signal selection.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nWave User Interface

 Verdi User Guide and Tutorial 44Feedback

Mouse Action nWave - Value Pane

Right-click on bus or
signal

Open a context-sensitive menu that provides some commands,
which apply to a bus (such as Radix, Notation) or a signal (such
as Edit Alias, Remove Alias).

Mouse Action nWave - Waveform Pane

Left-click Set the Cursor position.

Middle-click Set the Marker position.

Right-click
Zoom to time range between the Cursor and Marker
position.

Double-click Find the signal's driver statements in source code frame.

Drag & Drop
Move the selected signals to the Signal cursor position.
NOTE: The Signal Cursor position is moved along with
the dragged mouse pointer.

Drag & Drop a signal to a
schematic frame/window

Display the schematic in which the signal is found and
selected.

Drag & Drop a signal to a
Temporal Flow View
window

Highlight the corresponding signal if it exists. Add the
signal and driving instance for the current cursor time if it
doesn't exist.

Drag & Drop a signal to a
source frame

Trace signal's connectivity and highlight the result by
symbols in the indicator area of the source code frame.

Drag-left horizontally on a
waveform window, full
scale ruler and zoom scale
ruler

Zoom into the time range of the dragged time interval.

Drag-left vertically on an
analog signal

Zoom into the value range of the dragged value interval.

Ctrl + Mouse Wheel Zoom-in or zoom-out the time range.

Right-click a signal
waveform

Open a context-sensitive menu that shows Temporal Flow
View debug commands (that is, Temporal Flow View,
Trace This Value, Show Fan-in, and so on.)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nSchema User Interface

45 Verdi User Guide and Tutorial Feedback

nSchema User Interface
You can open a new nSchema pane from the nTrace main window by clicking on
the New Schematic icon or using the Tools -> New Schematic from Source ->
New Schematic command. The schematic for the active unit in the design
browser frame (nTrace) will be displayed in the nSchema frame, as shown in the
example below.

Figure: Example nSchema Frame

The schematic window displays the schematic generated from the corresponding
HDL source code and provides another design view for debugging. You can
debug the design using menu commands or mouse operations.

In nSchema, VDD, VCC, VEE, POWER and PWR net names are treated as
supply nets and VSS, GND and GROUND net names are treated as ground nets.
These nets are case insensitive. When a signal is treated as a power/ground global
signal, trace actions are skipped.

An nSchema pane can be released from the main window to become a
stand-alone window by clicking the Undock toolbar icon. An nSchema
stand-alone window is shown below.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nSchema User Interface

 Verdi User Guide and Tutorial 46Feedback

Figure: nSchema Stand-Alone Window

nSchema Toolbar Icons
Refer to the Toolbar Icons and Fields section in the nSchema chapter of the Verdi
and Siloti Command Reference manual for information regarding available
toolbar icons.

NOTE: The default toolbar can be modified through the Tools -> Customize
Menu/Toolbar command.

nSchema Mouse Operations
The following table lists the nSchema mouse actions.

Mouse Action Schematic Window

Left-click a signal/instance
De-selects the current selection and select the signal/
instance.

Left-click drag-and-drop
Select the object first and then drag-and-drop the object
to the new location using the left mouse button on the
indicated item.

Shift-left-click a signal/
instance

Adds the signal to a selection list for multiple signals/
instances selection.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nSchema User Interface

47 Verdi User Guide and Tutorial Feedback

Left-click anywhere without a
signal/instance De-selects all.

Drag-left Zooms in an area.

Right-click Opens a context-sensitive menu.

Double-click a signal
Highlights the connection (driving instance to loading
instances with the connecting net) for the selected
signal.

Double-click an instance Pushes view into the schematic for the instance.

Drag & Drop an instance to a
waveform frame/window

Displays the corresponding instance's I/O signal
waveform.

Drag & Drop an RTL block to
a waveform frame/window

Displays the corresponding RTL block's I/O signal
waveform.

Drag & Drop a signal to a
waveform frame/window

Displays the corresponding signal's waveform.

Drag & Drop an instance to a
source frame/window

Finds and highlights the associated instance in source
code pane/window.

Drag & Drop an RTL block to
a source frame/window

Finds and highlights the corresponding source code of
the RTL block.

Drag & Drop an instance /
RTL block to a Temporal
Flow View window

Highlights the corresponding instance's output signal if
it exists. Adds the instance as a reference if it doesn't
exist. The global cursor time is used to identify the
signal.

Drag & Drop a signal to a
Temporal Flow View window

Highlights the corresponding signal if it exists. Adds
the signal and driving instance as a reference if it doesn't
exist. The global cursor time is used to identify the
signal.

Drag & Drop a signal to a
source frame/window

Traces the signal's connectivity in the source code pane/
window.

Drag & Drop any state from
nSchema to nState

When you drag an FSM block from a schematic pane/
window to an nState window, nState displays the state
diagram of that FSM block.

Drag & Drop any state from
nSchema to nWave

When you drag an FSM block from a schematic pane/
window to an nWave pane/window, nWave adds all the
I/O and state signals of that FSM block to the location
of the cursor bar in the nWave pane/window.

Ctrl + Mouse Wheel Zooms-in or zooms-out an area.

Ctrl + Drag-left Pans the nSchema window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nState User Interface

 Verdi User Guide and Tutorial 48Feedback

nState User Interface
To open an nState frame, double-click the finite state machine (FSM) symbol
(see left) in the nSchema pane/window. An nState pane can be released from the
main window to become a stand-alone window by clicking the Undock toolbar
icon. An example nState window/pane is shown below:

Figure: Example nState Frame

The nState window displays the generated bubble diagram for the corresponding
state machine and provides another design view for debugging and
understanding your finite state machine. You can debug your finite state machine
using the menu commands or mouse actions in this window.

nState Toolbar Icons
Refer to the Toolbar Icons and Fields section in the nState chapter of the Verdi
and Siloti Command Reference manual for information regarding available
toolbar icons.

NOTE: The default toolbar can be modified through the Tools -> Customize
Menu/Toolbar command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nState User Interface

49 Verdi User Guide and Tutorial Feedback

nState Mouse Operations
The following table lists the nState mouse actions.

Mouse Action nState Window

Right-click a transition
in a nState window

A transition-context-sensitive menu opens for the commands:
Jump to From State, Jump to To State, Fit Select Set,
Transition Condition, and Properties.

Left-click
drag-and-drop

Select the object first and then drag-and-drop the object to the
new location using the left mouse button on the indicated item.

Right-click a state in a
nState window

A state-context-sensitive menu opens for the commands: State
Action, Fit Select Set, and Properties.

Right-click the white
space in a nState
window

A finite-state-machine-context-sensitive menu opens for the
commands: Zoom All, Last View, Edit Search Sequence,
Print, and Properties.

Double-click a port in
a nState window

If there are two ports, a properties dialog box opens to select
the state. If there is only one port, go to the state properties
directly.

Ctrl + Drag-left Pans the nState window.

Drag & Drop any state
or transition from
nState to nSchema

When you drag any state or transition from inside an nState
window to a Schematic window, nSchema displays the
schematic with the corresponding FSM block whose state
diagram is shown in that nState window.

Drag & Drop any state
or transition from
nState to nTrace

When you drag any state or transition from inside an nState
window to the Source code pane, the corresponding source
code is highlighted.

Drag & Drop any state
or transition from
nState to nState

When you drag a state or transition from one nState window to
another nState window, the target nState window displays the
same state diagram as in the source nState window; that is, the
two nState windows are synchronized. The same state or
transition is highlighted in both windows.

Drag & Drop any state
from nSchema to
nState

When you drag an FSM block from an nSchema window to an
nState window, nState displays the state diagram of that FSM
block.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Flow View User Interface

 Verdi User Guide and Tutorial 50Feedback

Flow View User Interface
The Flow View pane can be invoked from the nTrace main window or nWave
pane through the Temporal Flow View -> New Temporal Flow View
command. A Flow View pane can be released from the main window to become
a stand-alone window by clicking the Undock toolbar icon. An example of a
Temporal Flow View pane/window is shown below.

Figure: Example Temporal Flow View Window

The Flow View window displays a generated view of your design over time,
starting from the selected reference signal and time. This provides another view
in which to debug your design using the menu commands or mouse actions.

From a Temporal Flow View window, you can open the Temporal Register Flow
View or the Compact Temporal Flow View. Refer to the Verdi and Siloti
Command Reference manual for detailed information regarding these views.

Flow View Toolbar Icons
Refer to the Toolbar Icons and Fields section in the Flow View chapter of the
Verdi and Siloti Command Reference manual for information regarding available
toolbar icons.

NOTE: The default toolbar can be modified through the Tools -> Customize
Menu/Toolbar command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Flow View User Interface

51 Verdi User Guide and Tutorial Feedback

Flow View Mouse Operations
The following table lists the Flow View mouse actions:

Mouse Action Temporal Flow View

Left-click a signal or instance or
instance pin

De-selects the current selection and selects the
signal/instance/port.

Left-click drag-and-drop
Select the object first and then drag-and-drop the
object to the new location using the left mouse
button on the indicated item.

Ctrl-left-click a signal/instance
Adds the signal/instance to the selection for
multiple signals/instances selection.

Left-click anywhere without a
signal/instance Deselects all.

Drag-left in main display area
(pan mode) Pans left, right, up, or down

Drag-left in main display area
(pointer mode) Zooms in area.

Drag-left on time ruler Zooms in area.

Right-click instance or instance
pin

Opens a context-sensitive menu.

Double-click an instance pin Traces the signal's drivers.

Drag & Drop an instance to a
waveform window

Displays the corresponding instance's I/O signal
waveform.

Drag & Drop an instance pin to a
waveform window

Displays the corresponding signal's waveform.

Drag & Drop an instance to a
source window

Finds and highlights the source code associated
with the instance.

Drag & Drop an instance pin to a
source window

Traces the signal's connectivity in the source code
frame.

Drag & Drop an instance pin to an
nSchema window

Changes the scope to the signal's hierarchy and
highlights the corresponding signal.

Drag & Drop an instance to an
nSchema window

Changes to the instance's hierarchy and highlights
the corresponding instance.

Left-click an instance with
nWave icon enabled

Adds the instance IO to nWave if they don't exist.
Highlights the instance output if it exists.

Left-click an instance output port
with Show Source Code icon
enabled

Finds and highlights the source code associated
with the output signal.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Flow View User Interface

 Verdi User Guide and Tutorial 52Feedback

Left-click an instance with Show
Source Code icon enabled

Finds and highlights the source code associated
with the instance.

Ctrl + Mouse Wheel Zooms-in or zooms-out an area.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Transaction/Message User Interface

53 Verdi User Guide and Tutorial Feedback

Transaction/Message User Interface
The transaction/message FSDB file is loaded into nWave the same way as a
general FSDB file. A stream name is shown in the Signal pane; begin time, end
time, and attributes are shown in the Value pane; and the transaction/message is
shown in the Waveform pane as rectangles enclosing all the attributes.

Detailed Transaction/Message View in nWave
The following figure summarizes the different aspects of transaction/message
viewing in nWave.

Figure: Detailed Transaction/Message View

Although there is a begin time and end time in a transaction/message, when you
click a transaction/message, the cursor is located at the begin time. When you
select a stream, you can click the Search Backward/Search Forward icons
(left/right arrows) on the nWave toolbar to step through the transactions/
messages. A dashed line under the transaction/message box indicates there are
more attributes than are currently displayed. You can increase (decrease) the
height of the stream in the Signal pane to show more (less) attributes.

Alternatively, you can move the cursor on top of the transaction/message
attributes in the Value pane (middle column) to activate a yellow tip window
showing all attributes as displayed in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Transaction/Message User Interface

 Verdi User Guide and Tutorial 54Feedback

Figure: Transaction/Message Tip

Individual transactions/messages can be selected by clicking on the label in the
Waveform pane; the background color of the selected transaction/message
changes to light blue. Pressing the Search Backward/Search Forward toolbar
icons will not change the selected transaction/message but will change waveform
cursor time.

The selection is important for viewing covered or obscured transactions/
messages when there is a time overlap for multiple transactions/messages. The
top triangle is used to select the underlying transaction/message and bring it to
the front. You can also select a stream and then click Waveform -> Classic
Transaction -> Expand/Shrink Overlapping or Waveform -> Classic
Message -> Expand/Shrink Overlapping commands to remove transaction/
message overlap.

If there are transactions/messages related to the selected one, the related
transaction/message is highlighted with a pink background color, similar to the
following example.

Figure: Transaction/Message Relationships

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Transaction/Message User Interface

55 Verdi User Guide and Tutorial Feedback

Transaction/Message Properties
Transactions/Messages contain a lot of data. You can view attributes and
relationships of a selected transaction/message in a tabular format. To open the
Transaction Property or Message Property form, select a transaction or a
message, right-click to open the context menu, and choose the Properties
command. The Attributes tab summarizes the transaction/message attributes, as
shown in the following example:

Figure: Transaction Property Dialog Window - Attributes

You can view the selected transaction relationships by selecting the Relationship
tab in the Transaction Property form.

Transaction/Message Attributes
You can use string matching to search attributes. In nWave, click the Waveform
-> Set Search Attributes command to open the Search Attribute Value form.
Alternatively, you can left-click the Search By: icon on the toolbar and select the
Transaction Attribute Values option.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Transaction/Message User Interface

 Verdi User Guide and Tutorial 56Feedback

Figure: Search Attribute Value Form

You can specify the attribute name and value. After you’ve entered the search
criteria and clicked OK, you can use the Search Forward/Search Backward
icons on the nWave toolbar to step through the transactions/messages of the
selected streams.

Analyzing Transactions/Messages
In addition to the waveform viewing capability for transactions/messages, you
can open the Transaction Analyzer window by clicking the Tools -> Classic
Transaction -> Analysis Window command (or the Tools -> Classic Message
-> Analysis Window command) from nWave. After the window is open, you can
load one or more streams individually or merge multiple streams together.

The window is similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: Transaction/Message User Interface

57 Verdi User Guide and Tutorial Feedback

Figure: Transaction Analyzer Window

For the current selected stream (or merged streams), you can use the View ->
Search command to locate a string or pattern, or the View -> Filter/Colorize
command to filter and display transactions/messages whose attributes match
user-specified conditions. These commands allow you to navigate the streams
quickly and focus on the transactions/messages of interest. After clicking the
Sync. Signal Selection Enabled icon (see left) on both the Transaction Analyzer
pane and the nWave pane, you can select a transaction/message in the spreadsheet
view and the corresponding transaction/message gets selected in the waveform.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nCompare User Interface

 Verdi User Guide and Tutorial 58Feedback

nCompare User Interface
The nCompare pane compares simulation results stored in FSDB dump files
using flexible, user-specified comparison criteria. Optimized for extremely fast
comparison of large data sets, the nCompare pane is fully integrated with the
Verdi platform to intuitively display any differences between runs.

The nCompare pane can be invoked by invoking the Tools -> nCompare
command from the nWave pane. After the pane is opened and the waveform
comparison is completed, the nCompare pane is displayed as shown below.

Figure: nCompare Pane

Comparing Different Simulation Runs
The nCompare pane is used to compare different simulation runs to find the
mismatch simulation errors between pre-synthesis/post-synthesis, different
clock speed of same design, different technology, or simulation files which are
generated from different simulators.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nCompare User Interface

59 Verdi User Guide and Tutorial Feedback

Rule File
The rule file is described using Tcl language. The nCompare module uses Tcl
language and nCompare-defined-Tcl-extended comparison commands to
describe the comparison rules and specify comparison options.

A basic rule file should have at least the following three parts:

1. Specification of golden and secondary simulation files.

2. Specification of compared signal pairs.

3. Start time-based comparison.

The following is a simple rule file that would compare all signals in 1.fsdb and
2.fsdb:

cmpOpenFsdb 1.fsdb 2.fsdb
cmpSetSignalPair top -level 0
cmpCompare

Compare Waveforms and View Errors
After the rule file is created and the comparison is completed in the GUI or using
the nCompare utility, the nCompare pane shows the mismatch errors. The errors
can be sorted by design or time and easily traversed.

nCompare Mouse Operations
The default mouse action in the nCompare pane is summarized in the table
below.

Mouse Action Command Operations

Double-click a mismatch error node

This action launches the waveform tool, adds
the mismatch signals into the waveform tool
and changes the cursor time of the waveform
tool to the mismatch time.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nECO User Interface

 Verdi User Guide and Tutorial 60Feedback

nECO User Interface
The nECO module provides the ability to perform gate-level engineering change
orders (ECOs) in the flexible schematic views. The nECO module takes full
advantage of the sophisticated capabilities in the Verdi platform to propagate
changes throughout the design hierarchy and automatically create any new nets
and ports that are required.

Refer to the User Interface chapter of the nECO User’s Guide and Tutorial for
details.

nAnalyzer User Interface
The nAnalyzer module provides the ability to analyze clock and reset trees
(including crossing paths), to qualify Clock Tree Synthesis (CTS), to annotate
standard delay format (SDF) files and CTS results, to load and display timing
results from standard timing analysis tools, and to perform switching analysis on
the design. These functions build on top of the functional debug aspects of the
Verdi platform. The nAnalyzer module uses the same interface as nSchema.

Refer to the nAnalyzer User’s Guide and Tutorial for details.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

User Interface: nAnalyzer User Interface

61 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface'

Before You Begin: Installation and Setup

 Verdi User Guide and Tutorial 62Feedback

Before You Begin

Before you begin the tutorial, you (or your system manager) must have installed
the Verdi and Siloti platforms as described in the accompanying Installation and
System Administration Guide.

NOTE: The optional demo package (for example, Verdi-J-201412-demo.tar.gz
where J corresponds to the version, 2014 corresponds to the year, and
12 corresponds to the month) must be installed.

Installation and Setup
You must also complete the following actions to set up the Verdi environment
and the files required for this tutorial:

1. Add the Verdi application (binary) to the search path and specify the search
path to the license file:

Refer to the Setting Up the Environment and Running the Software section
in the Installation and System Administration Guide for details.

2. Create a working directory:
% mkdir <working_dir>

3. All of the tutorial data resides in the $VERDI_HOME/demo directory. Make
a copy of these demo files in your working directory:
% cp -r $VERDI_HOME/demo <working_dir>

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Before You Begin'

Before You Begin: Demo Details

63 Verdi User Guide and Tutorial Feedback

Demo Details
The primary demo design used in this section is a simple microprogrammed CPU
design delivered with the installation. The example represents a complete design
spanning the behavioral, RTL, and gate levels.

Most tutorials use the Verilog design demo. However, be sure to check the
instructions for each tutorial to ensure that you are running the correct demo that
was included with your installation. Use the following commands to set the
tutorial data:

• For Verilog Design:
% cd <working_dir>/demo/verilog/cpu

• For VHDL Design:
% cd <working_dir>/demo/vhdl/rtl

• For Mixed Design:
% cd <working_dir>/demo/mixed/rtl

• For SystemVerilog Design:
% cd <working_dir>/demo/systemverilog

• For Transactions:
% cd <working_dir>/demo/transaction

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Before You Begin'

Launching Techniques: Dumping Elaboration Database

 Verdi User Guide and Tutorial 64Feedback

Launching Techniques

This chapter summarizes the various methods for starting the Verdi platform,
loading the design, and loading the simulation results stored in the Fast Signal
Database (FSDB).

Dumping Elaboration Database

Overview
In previous releases, Verdi elaborated the design at runtime. As a result, loading
a complex design took a lot of time and memory. Starting from the Verdi L-
2016.06 release, a new elaboration process is introduced. Verdi elaborates the
design and saves the elaboration database to the disk in batch mode. The
elaboration time and memory usage is reduced significantly by using this new
process.

Use Model
The following sections provide a detailed description for creating/generating the
elabDB flow:

• Interactive Debug Flow

• Post-Simulation Debug Flow

Interactive Debug Flow
You can perform interactive simulation debugging by creating/generating the
elabDB flow. The following sections describe how to elaborate your design and
load the generated elaboration database into Verdi in interactive simulation
debug mode.

• Generating Verdi Elaboration Database Using VCS

• Loading Verdi Elaboration Database into Verdi

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Dumping Elaboration Database

65 Verdi User Guide and Tutorial Feedback

Generating Verdi Elaboration Database Using VCS
You can generate the Verdi KDB using the VCS -kdb option either in the VCS
two-step flow or three-step flow. In the VCS two-step flow, add the -kdb option
to the command line to generate the KDB. In case of VCS three-step flow, add
the -kdb option in all the vlogan/vcs command lines.

When you specify the -kdb option, VCS creates the Verdi KDB and dumps the
design into the libraries specified in the synopsys_sim.setup file. To determine
which databases are to be generated, specify one of the following arguments with
the -kdb option:

•-kdb=only

Generates only the Verdi KDB that is needed for both post-process and
interactive simulation debug with Verdi.

In VCS two-step flow, this option does not generate the VCS compile data/
executable, and does not disturb the existing VCS compile data/executables.

For example,

% vcs -kdb=only <compile_options> <source files>

In VCS three-step flow, this option dumps the minimum data required at
analysis stage, and does not disturb the existing VCS compile data/
executables.

% vlogan –kdb=only <vlogan_options> <source files>

The following is the sample flow:

% vlogan test.v -sverilog
% vcs top –debug_access
% simv

// When the simulation fails, you can debug it in Verdi.
// You can only generate the KDB database for debugging with
Verdi, and do not need to remove anything here.

% vlogan -kdb=only test.v -sverilog // This step creates the
KDB database.
// There is no need of vcs compilation step as the simv was
already generated successful in the previous steps.
//You can invoke Verdi to do interactive simulation debug.

% simv -gui=verdi
//You can also invoke Verdi to do post-simulation debug.
% verdi -simflow –simBin <simv_path/simv> -ssf novas.fsdb

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Dumping Elaboration Database

 Verdi User Guide and Tutorial 66Feedback

NOTE: If you want to compile a design that includes packages in the pre-
compiled KDBs that were previously compiled with the -kdb=only
option, you can only use the vericom/vhdlcom utility to include the
pre-compiled KDB libraries.

For more information, see the VCS User Guide.

Loading Verdi Elaboration Database into Verdi
When the elaboration database is generated as described in the Generating
Verdi Elaboration Database with Unified Compiler Front End section and
the simv simulator executable is generated, you can invoke Verdi in interactive
simulation debug mode using the -gui/-verdi/-gui=verdi options.

Example1:

% simv <simv_options> -verdi [-verdi_opts “<verdi_options>”]

Example2:

% simv <simv_options> –gui=verdi [-verdi_opts
“<verdi_options>”]

The elaboration database file is imported into the invoked Verdi automatically in
interactive simulation debug mode.

Post-Simulation Debug Flow
You can perform post-simulation debug by creating or generating the elabDB
flow. The following sections describe how to elaborate the design and load the
generated elaboration database into Verdi with or without the FSDB file.

• Generating Verdi Elaboration Database with Unified Compiler Front End

• Generating Elaboration Database Using VCS Elaboration Command

• Loading Verdi Elaboration Database into Verdi

Generating Verdi Elaboration Database with Unified Compiler Front
End
Creating/generating the elabDB flow is supported in both VCS two-step and
three-step flows with Unified Compiler Front End. The following method is used
to generate the elaboration database:

• Generate the elaboration database during VCS elaboration (see the
Generating Elaboration Database Using VCS Elaboration Command
section).

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Dumping Elaboration Database

67 Verdi User Guide and Tutorial Feedback

Generating Elaboration Database Using VCS Elaboration Command
The -kdb option is provided on the VCS command line to generate the KDB and
elaboration database of your design. For example,

VCS two-step flow

% vcs -kdb <vcs options> -verdi_opts "<verdi_options>"

The generated KDB and elaboration database are saved in the work.lib++ and
kdb.elab++ directories. The work.lib++ directory is saved in the same
directory as simv and the kdb.elab++ directory is saved under the
simv.daidir directory.

The other usage for the VCS two-step flow is to generate the work.lib++ and
kdb.elab++ directories by specifying -kdb=only. If you simply want to do
static debug and do not want to run simulation, specify the only value and VCS
only generates elaborated KDB and does not generate simv for simulation.

VCS three-step flow

% vlogan -kdb <vlogan options> <source files>
% vhdlan -kdb <vhdlan options> <source files>
% vcs -kdb <top_name>

The generated KDB are saved in the work.lib++ directory, same as the
analysis database of vlogan and vhdlan. The elaboration database
kdb.elab++ directory is saved in the simv.daidir directory.

Loading Verdi Elaboration Database into Verdi
When the elaboration database is generated, you can import it into Verdi using
the -elab <elabDB path without the .elab++ postfix >
option. For example,

Example 1: Load the ./kdb.elab++ elabDB

% verdi –elab kdb

Example 2: Load the ./myelab/mydesign.elab++ elabDB

% verdi –elab ./myelab/mydesign -ssf novas.fsdb

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Reference Source Files on the Command Line

 Verdi User Guide and Tutorial 68Feedback

Reference Source Files on the Command
Line

This method loads the design directly from the source files. It is not
recommended for mixed language designs.

1. Use the following command to reference the source files on the command
line:
% verdi -f <source_file_name>

Where, source_file_name is a file that lists all of the HDL source files.

2. Use the File -> Open Waveform File command to load the FSDB.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Compile Source Code into a Library

69 Verdi User Guide and Tutorial Feedback

Compile Source Code into a Library
This method must be used if you have a mixed language design.

1. Use the utility program vhdlcom (supplied with the Verdi and Siloti
installation) to compile your VHDL source code into a library and use
vericom for Verilog code:
% vericom -lib <libName> block1.v block2.v ...
% vhdlcom -lib <libName> block1.vhd block2.vhd ...

2. Use the following command to load the compiled design:
% verdi -lib <libName> -top <TopBlock>

Where, libName is the compiled library and TopBlock is the highest-level
block you wish to see.

Reference Design and FSDB on the
Command Line

1. Use the following commands to reference both the source files and the
FSDB on the command line:
% verdi -f <source_file_name> -ssf <fsdb_file_name>

Where, source_file_name is the source file name and fsdb_file_name is the
name of the FSDB file.

2. Use the following commands to reference both the compiled library and the
FSDB on the command line:
% verdi -lib <libName> -top <TopBlock>
-ssf <fsdb_file_name>

Where, libName is the compiled library, TopBlock is the highest-level block
you wish to see, and fsdb_file_name is the name of the FSDB file.

NOTE: If the specified FSDB file is an Essential Signal FSDB, you are
presented with a Question dialog related to Data Expansion. If you plan
to use the Siloti system, click Yes; otherwise, click No. Data Expansion
can always be started or the options changed by invoking the Tools ->
Visibility -> Data Expansion -> Setup Data Expansion command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Perform Behavior Analysis on the Command Line

 Verdi User Guide and Tutorial 70Feedback

Perform Behavior Analysis on the Command
Line

To perform Behavior Analysis on the command line, you must specify the -ba
option.

1. Referencing the source files:
% verdi -f <source_file_name> -ba -ssf <fsdb_file_name>

Where, source_file_name is the source file name and fsdb_file_name is the
name of the FSDB file.

2. Referencing the compiled library:
% verdi -lib <libName> -top <TopBlock> -ba
-ssf <fsdb_file_name>

Where, libName is the compiled library, TopBlock is the highest-level block
you wish to see, and fsdb_file_name is the name of the FSDB file.

NOTE: The -ba option executes Behavior Analysis using the Behavior
Analysis settings from the novas.rc resource file unless you specifically
include them on the command line. Refer to the verdi utility description
in the Verdi and Siloti Command Reference for a list of Behavior
Analysis options.

Replay a File
1. Use the following command to replay a file containing commands that load

both the design and the FSDB (and perform a variety of other tasks):
% verdi -play <command_file_name>

Where, command_file_name is a file with a number of Tcl commands.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Start Verdi Without Specifying Any Source Files

71 Verdi User Guide and Tutorial Feedback

Start Verdi Without Specifying Any Source
Files

1. Use the following command to start the Verdi platform:
% verdi

A blank nTrace main window is displayed.

2. From the main menu, choose the File -> Import Design command (or the
Import Design icon on the toolbar) to open an Import Design form, similar
to the example below:

Figure: Example Import Design Window

3. If you are loading the design from the source files directly, do the following:

a. Click the From File tab at the top of the window.

b. Select the HDL language in the Language selection field.

c. To open a folder, click the folder name. A list of sub-folders and/or files
appears to the right.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Start Verdi Without Specifying Any Source Files

 Verdi User Guide and Tutorial 72Feedback

d. Double-click the name of the files or click the Add button to the right of
the window to add the file to the path name, which appears in the white
space directly above the two windows in which you are working.

e. Select the design file(s) of interest. The recommendation is to use a run
file where the individual design files are listed.

f. Click the Add button.

g. Click the OK button.

4. If you are loading the design from a compiled library, do the following:

a. Click the From Library tab at the top of the window.

b. To select a library, click the library name. A list of design units appears
to the right.

c. Select the top design unit.

d. Click the Add button.

e. Click the OK button.

5. Use the File -> Open Waveform File command to load the FSDB.

You should see an nTrace main window with the design information
displayed.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

Launching Techniques: Loading when Design and FSDB Hierarchies do not Match

73 Verdi User Guide and Tutorial Feedback

Loading when Design and FSDB Hierarchies
do not Match

Use the following command if you have dumped the FSDB file for the entire
design, but only want to load a portion of the design for debug:

% verdi -f <source_file_name> -ssf <fsdb_file_name>
-vtop <map_file_name>

Where, source_file_name is the source file name, fsdb_file_name is the
name of the FSDB file, and map_file_name is the name of the map file.

The map file is used to match the design hierarchy to the hierarchy in the FSDB
file so the simulation results are correctly annotated on the source code and
schematic views. The Verdi platform automatically generates a virtual hierarchy
in the design according to the definitions in the map file. The syntax is as follows:

module_name = hierarchical_instance_path

NOTE: The map file matches the case sensitivity of the associated language.
For example, Verilog is case sensitive so if the module definition is all
capitalized, the map file description needs to be as well (that is, cpu
does not equal CPU). VHDL is not case sensitive (that is, cpu equals
CPU).

If you incorrectly enter the module name in the map file, you may see an error
similar to the following in the compiler.log (File -> View Import Log):

Error view cpu is not defined for inst i_cpu
“virtual_top_autov_15123.gen:, 7:

This error needs to be eliminated. Check the module definition in the source code
and confirm that the map file matches it exactly.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Launching Techniques'

User Interface Tutorial: Overview

 Verdi User Guide and Tutorial 74Feedback

User Interface Tutorial

Overview
The Verdi platform is a multi-window docking application with a flexible and
easy-to-use graphical user interface (GUI).

The Verdi platform layout can be customized by dragging a frame away from its
original position (undocking) and then dropping it in a new position (docking) to
attach it to the left, right, above, below, or on top of another frame. Similarly, a
toolbar category can be moved to the left, right, above, or below the relevant
frame. The bind key of any command can be changed and the toolbar categories
arranged fairly easily.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter.

Refer to the Launching Techniques chapter for more information on starting the
Verdi platform, and refer to the User Interface chapter for more details regarding
the interface.

Start Verdi Platform
1. Change the directory to <working_dir>/demo/verilog/rtl.

% cd <working_dir>/demo/verilog/rtl

2. Start the design using the following command:
% verdi -f run.f

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Using the Welcome Page

75 Verdi User Guide and Tutorial Feedback

Using the Welcome Page
1. Choose the Help -> Welcome command if the Welcome page is not

displayed.

Figure: Welcome Page

2. On the Welcome page, click the What’s New icon and then click the
Application Notes icon. You can see the application note files and the FAQ
file here.

3. Click the Home Page icon to go back to the Welcome page and then click
the Work Modes icon.

Figure: Work Modes Page

4. Select the Testbench Debug Mode option and then click the Go to Work
button.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Saving and Restoring a Session

 Verdi User Guide and Tutorial 76Feedback

The window layout of the Verdi platform adds the Constraint, Inheritance,
FSDB_Msg and the Static frames for testbench code browsing and message
debugging purposes.

5. Click the Welcome icon in the lower right corner of the main window
to display the Welcome page.

6. Click the Work Modes icon to show to the Work Modes page again.

7. Select the Hardware Debug Mode option and then click the Go to Work
button.

The window layout of the Verdi platform is now optimized for Hardware
Debug Mode.

NOTE: The work mode may also be specified on the Verdi command line with
the -workMode option.

Saving and Restoring a Session
1. Choose the File -> Save Session command and save the current session to

“my.ses”.

2. Go to the Welcome page and click the History icon to show the History
page.

3. Select the my.ses option on the History page. A screen shot of the session is
displayed to the right as shown in the following figure:

Figure: Session Preview

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Changing the Default Frame Location

77 Verdi User Guide and Tutorial Feedback

4. Select the novas_autosave.ses option.

The image shows the time the session was saved.

NOTE: If you do not see this file, exit the Verdi session and start it again. The
file is automatically created on exit.

5. Click the Restore Session button to restore the novas_autosave.ses
session.

6. Go back to the History page and restore the my.ses session.

Changing the Default Frame Location
1. Click the New Waveform icon to open an nWave window.

The nWave frame is added as a new tab on top of the Message frame.

2. Click the frame banner of the nWave frame and drag it to the left.

The nWave frame is now floating (undocked).

3. Drag the nWave frame around and see that the dockable area (outlined with
a dashed line) is changing along with the cursor position.

4. Drop the nWave frame to dock it.

5. Undock and dock the nWave frame (or another frame) to different positions
several times to become familiar with the usage.

Maximizing the Display
1. Click the Undock icon on the nWave toolbar to make it a stand-alone

window.

2. Click the Dock icon on the nWave stand-alone window.

The nWave frame is docked to the main window again.

3. Double-click the nWave frame banner. This maximizes the nWave frame
size and makes it easy to see the content of the frame more clearly.

4. Double-click the nWave frame banner again and the nWave frame goes back
to its original size.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Modifying the Menu/Toolbar

 Verdi User Guide and Tutorial 78Feedback

Modifying the Menu/Toolbar
1. Right-click the nWave frame banner to display the right-click command

menu and select the Menu option to hide the menu bar.

Figure: nWave Configuration Menu

2. After the Menu option is turned off, press the Alt key within the nWave
frame’s central area to show the menu bar. Pressing the Alt key again will
hide the menu.

3. Turn on the Menu option in the right-click command menu.

4. On the right-click command menu, select the Open option to hide the icons
associated with the Open toolbar category.

The Open category disappears from the toolbar of the nWave frame.

5. On the right-click command menu, select the Open option again to restore
the Open toolbar category.

6. Click the left handle (vertical bar) of the Open toolbar category and drag a
little. The Open toolbar category is floating.

7. Drag it around and observe the dockable area (outlined with dashed line) is
changing along with the cursor position.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Searching for a Command

79 Verdi User Guide and Tutorial Feedback

Figure: Relocating Toolbar Icons

8. Drop the Open toolbar category to dock it.

9. Move the Open toolbar category several times to become familiar with the
usage.

Searching for a Command
1. On the top right corner of the main window, select the Menu option, type

“pref” in the Spotlight text field and press the Enter key. This displays a
list of commands matching the pattern.

2. Select one of the commands from the list, for example, Preferences, and
then the Preferences command is invoked.

Figure: Spotlight Search Results

Customizing Bind Keys
1. Choose the Tools -> Customize Menu/Toolbar command from the main

window.

2. Type “trace” in the text field and click the Search icon to locate the
Trace menu.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Customizing Bind Keys

 Verdi User Guide and Tutorial 80Feedback

Figure: Customize Bind Key

3. Double-click the Shortcut cell of the Driver command. Press the D key on
the keyboard to change the command’s bind key to D.

4. Similarly, double-click the Shortcut cell of the Load command. Press the L
key on the keyboard to change the command’s bind key to L.

5. Click the OK button to complete the setting.

6. In the Source Code frame, select any signal and press the D key to execute
the Driver command.

7. Press the L key and the Load command is executed. This is useful when
you want to execute frequently used commands with bind keys you favor.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Customizing Toolbar Icons

81 Verdi User Guide and Tutorial Feedback

Customizing Toolbar Icons
1. Click the Undock icon on the nWave frame to make it become a stand-alone

window.

2. Choose the Tools -> Customize Menu/Toolbar command from the nWave
window.

3. Click the Add Custom Toolbar icon in the upper right section of the
Customize Menu/Toolbar form to add a new toolbar category named “new
toolbar”.

Figure: Add New Toolbar Category

4. Select the Open command under the File menu section in the left pane.

5. Click the Add Selected Command to Toolbar button to add the Open
command to the newly created “new toolbar” toolbar category.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Customizing Toolbar Icons

 Verdi User Guide and Tutorial 82Feedback

Figure: Add Commands to New Toolbar Icon Category

6. Similarly, add the Zoom In, Zoom Out and Zoom All commands under the
Zoom menu section to the newly created “new toolbar” category.

7. Click the OK button to complete the setting. The new toolbar is added to
the nWave toolbar area.

Figure: New Toolbar Icon Category

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

User Interface Tutorial: Customizing Toolbar Icons

83 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'User Interface Tutorial'

nTrace Tutorial: Overview

 Verdi User Guide and Tutorial 84Feedback

nTrace Tutorial

Overview
The nTrace main window is a source code viewer and analyzer that operates on
the KDB to display the design hierarchy and source code (Verilog, VHDL,
SystemVerilog, mixed) for selected design blocks. The Verdi platform quickly
identifies signal connectivity information (drivers and loads) without any
simulation overhead. With the FSDB, the simulation results can be
back-annotated in the source code and then the Verdi platform can analyze and
determine a signal's active driver at a particular simulation time.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter.

Refer to the Launching Techniques chapter for more information on starting the
Verdi platform and opening the nTrace main window, which is the default
window. Also refer to the User Interface chapter for more details regarding the
nTrace interface.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Traverse the Design Hierarchy in nTrace

85 Verdi User Guide and Tutorial Feedback

Traverse the Design Hierarchy in nTrace
You can traverse the design hierarchy to understand the design structure.

1. Change to the demo directory.
% cd <working_dir>/demo/verilog/cpu/src

2. Start the design using the following command:
% verdi -f run.f -workMode hardwareDebug &

NOTE: This tutorial uses a Verilog design example. The same capability is
available for VHDL or mixed designs.

3. To expand a block hierarchy on the Instance tab in the design browser
frame, click the plus symbol to the left of the i_CPUsystem block instance
name to reveal its i_CPU and i_pram sub-blocks.

Figure: Expand the Hierarchy in nTrace

4. Click the plus symbol to the left of the i_CPU block instance name to reveal
its i_ALUB, i_CCU, and i_PCU sub-blocks.

5. To collapse the hierarchy, click the minus symbol to the left of the name.

The plus/minus symbols to the left of the block instance names in the design
browser frame are used to expand/collapse the display of the selected block's
hierarchy.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Access a Block’s Source Code

 Verdi User Guide and Tutorial 86Feedback

Access a Block’s Source Code
1. To access source code, double-click the i_CPU unit instance name in the

design browser frame. The source code is displayed in the Source Code
frame, as shown in the following figure:

Figure: Source Code for the CPU Block

By default, the name of the block (CPU) is highlighted in the source code.

2. Double-click CPU to change the source code context to the calling block,
which is CPUsystem (the corresponding i_CPUsystem block instance name
is automatically highlighted in the design browser frame).

By default, the instantiation of the previous block (i_CPU) is highlighted in
the source code.

3. Double-click i_CPU to return the source code context to the CPU block.

4. You can also click the right mouse button to access a menu with the Show
Calling and Show Definition commands to display the calling or definition
of the block.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Access a Block’s Source Code

87 Verdi User Guide and Tutorial Feedback

Find Scope
1. To locate a scope, choose the Source -> Find Scope command (or bind key

“S”).

A Find Scope form displays, similar to the following example:

Figure: Find Scope Form

2. Enter *CU* in the Filter box and press Enter on the keyboard.

The top frame updates to display the modules matching the search string.

3. Left-click to select PCU.

The bottom frame lists all hierarchical paths for the module. In this case
there is one path.

4. Click Go To to locate the associated module in the Source Code frame.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Trace Drivers and Loads

 Verdi User Guide and Tutorial 88Feedback

Trace Drivers and Loads
The OneTrace -> Driver and OneTrace -> Load commands (or their equivalent
toolbar icons) trace all of the drivers and loads, respectively, that are associated
with a selected signal. The OneTrace ->Connectivity command (only found in
the menus) traces drivers and loads simultaneously. These commands can also be
accessed by right-clicking a signal in the Source Code frame.

Figure: Trace Driver/Load Icons in nTrace

Find String
1. In the nTrace main window, double-click i_CPU in the design browser

frame to display the associated source code.

2. To find a certain string to trace, choose the Source -> Find String
command (or bind key “/”).

A Find String form displays, similar to the following example:

Figure: Find String Form

3. Enter data in the Pattern box.

4. Click Find All and then click Close.

The results are displayed in the Search tab of the message frame.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Trace Drivers and Loads

89 Verdi User Guide and Tutorial Feedback

5. Double-click the result cpu.v(53):inout[7:0]data; to highlight the
associated line in the source code.

NOTE: The Source -> Find Signal/Instance/Instport command can also be
used to locate a scope or a signal name anywhere in the hierarchy.

Trace Driver
As a result of Find String, you can view an 8-bit group of inout signals called
data:

 :
inout [7:0] data;
 :

1. To begin the trace, double-click data or click the Trace Driver toolbar icon
 or either of the following:

• From the main menu, choose the OneTrace -> Driver command.

• Or right-click the signal, and choose the Trace Driver command from
that menu.

The source code displays immediately changes to the pram block and
highlights the signal data in the driving statement, as follows:

 :
 assign data = R_W ? dataout :8'hz;
 :

Drivers are indicated in the Source Code frame with left-handed
semi-circle next to the line number. The message frame also displays all
of the drivers of the selected signal including any pass-throughs (the
term "pass-throughs" refers to any intermediate nets on the path
between the driver and the load as the path passes through different
hierarchical levels in the design).

The Show Previous in Hierarchy toolbar icon is now enabled.

If other drivers exist in the same hierarchy, the Show Next or Show
Previous toolbar icons may also become enabled.

NOTE: The icons that are enabled are all dependent on the results of a trace.

2. Click the Show Previous in Hierarchy icon to go to the ExtData driver in
the PCU block.

The Show Previous in Hierarchy toolbar icon is now disabled, and
the Show Next in Hierarchy toolbar icon is enabled.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Trace Drivers and Loads

 Verdi User Guide and Tutorial 90Feedback

3. Click the Show Next in Hierarchy icon to return to the data driver in the
pram block.

Add Bookmarks
You can add a bookmark to any line number to mark it for future reference. To
add a bookmark from Trace Driver results:

1. Click line 31 in i_pram where data is assigned.

2. Click the Set/Unset Bookmark icon on the tool bar.

 The bookmark symbol appears, as shown in the following figure:

Figure: Example of a Bookmarked Source Code Line

Trace Load
1. To locate the first load on this net, highlight data, and use the Trace Load

toolbar icon .

• You can also choose the OneTrace -> Load command from the main
menu.

• Or right-click the signal, and choose the Trace Load command from
that menu.

Loads are indicated in the Source Code frame with right-handed semi-circle
next to the line number. The message frame also displays all of the loads of
the selected signal including any pass-throughs (the term "pass-throughs"

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Trace Drivers and Loads

91 Verdi User Guide and Tutorial Feedback

refers to any intermediate nets on the path between the driver and the load
as the path passes through different hierarchical levels in the design).

The source code display changes to the pram block and highlights the signal
data in the loading statement as follows:

 :
macroram[addr]=data;
 :

Trace Connectivity
1. To find a bookmarked line, choose the Source -> Manage Bookmarks

command, then select the line from the list that displays (1. pram.v(41)).

2. To trace the connectivity of a signal, highlight a signal, and choose the
OneTrace -> Connectivity command from the main menu or the right
mouse button menu.

The results of the trace are displayed in OneTrace tab of the message
frame in the nTrace main window, similar to the following example:

Figure: Example of nTrace Window With Trace Connectivity Results

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Edit Source Code

 Verdi User Guide and Tutorial 92Feedback

3. The Show Next toolbar icon is now enabled. Click this icon to locate
the next load (this is equivalent to using the Trace -> Show Next
command).

4. Note that the Show Previous toolbar icon is now enabled. Click this
icon to locate the previous load/driver (same as using the Trace -> Show
Previous command).

Save Trace Result and Reset History
There are two methods for saving the trace results.

1. Use the Save command:

a. On the OneTrace tab of the Message frame, click the right mouse
button and choose the Save command.

b. Enter the file name and click OK.

2. Use the Save icon:

a. On the tab bar of the Message frame, click the Show Toolbar icon .
A Message frame toolbar is displayed as shown in the following figure.

b. Click the Save icon.

3. To reset the history of all signals, choose the Trace -> Reset History
command from the main menu.

Edit Source Code
After you have located the source code which needs to be edited, you can modify
the source code from the nTrace main window. After the code is modified you
need to re-compile and load the design and also re-generate the simulation results
file.

1. In the nTrace main window, choose the Tools -> Preferences command to
open the Preferences form.

2. Expand the Editor folder.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Use Active Annotation

93 Verdi User Guide and Tutorial Feedback

3. Select the page for the editor, for example, nEditor, and turn on the Set as
Default Editor option.

NOTE: If the editor you require is not listed, you can specify your own edit
command on the Other page.

4. Click OK.

5. In the nTrace main window, double-click i_ALUB in the design browser
frame to display the associated source code.

6. Click the Edit Source File icon to open a second source viewer.
Alternatively, choose the Source -> Edit Source File command in the
nTrace main window.

Use Active Annotation
Active AnnotationTM allows you to view your verification results in the context
of the source code. Active Annotation allows you to view - in one place - the
value resulting from a logic expression coupled with the values of the arguments
feeding that expression.

NOTE: Active Annotation can also be used to display verification results in
other views.

Before using Active Annotation, you must first load a set of simulation results in
the form of a FSDB.

NOTE: Other formats can be loaded and are automatically converted.

1. Load the simulation results using the File -> Open Waveform File
command in the nTrace main window which opens the Load Simulation
Results form.

2. In the Load Simulation Results form, move up one directory from the
current directory.

3. Select CPUsystem.fsdb.

4. Click OK to load the file.

5. In the design browser frame, double-click i_ALUB.

6. Choose the Source -> GoTo -> Line command, and enter 85.

7. Click OK.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Use Active Annotation

 Verdi User Guide and Tutorial 94Feedback

8. Choose the Source -> Active Annotation command (or “x” key after
putting the cursor in the Source Code frame) to activate Active Annotation.
The values associated with each signal (as the time 0) are displayed under
the signals and a new sub-toolbar appears, as shown in the following figure:

Figure: Sub-toolbar on nTrace Window Main Toolbar

NOTE: The XX Active Annotation symbol shown under the signals reflect the
un-initialized condition of these signals at time 0.

9. Select the RESET signal, and click the Search Forward and Search
Backward icons on the new Active Annotation sub-toolbar. Note that the
display updates to reflect the transitions from value to value at the time in
which it occurs.

10. Search for rising edge changes on the RESET signal by changing the search
By selection to Rising Edge and continue to click the Search
Forward and Search Backward icons.

11. On the toolbar, choose the Source -> Go To -> Line command.

12. In the Go To Line form, enter 82 and click OK.

13. On the toolbar, enter 777 in the Cursor Time box.

14. Press the <Enter> key on the keyboard.

The nTrace main window updates the display similar to the following
figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Use Active Annotation

95 Verdi User Guide and Tutorial Feedback

Figure: Active Annotation

All the signals in the design are assigned to non-X values.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Trace the Active Driver

 Verdi User Guide and Tutorial 96Feedback

Trace the Active Driver
1. Using the results from the previous section, go to line 44, and select AluOut.

2. Right-click, and choose the Active Trace command from the menu (or the
bind key, Ctrl-t).

The source code displays changes to the active driving unit, and the signal
in the driving statement is highlighted, as shown in the following figure:

Figure: Active Trace

AluOut changed names to out as it crossed hierarchy boundary. See the
message frame in the figure above for example.

The time field in the toolbar may also change to reflect when this
assignment to the signal is made. This information is also presented in an
Information dialog window.

3. Check the equation, and note that 55 appears from signal a.

4. Select a, and choose Active Trace again.

You can continue to Active Trace until you locate the source of a value.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nTrace Tutorial: Use Verdi Executable to Import Design from UFE

97 Verdi User Guide and Tutorial Feedback

Use Verdi Executable to Import Design from
UFE

The Unified Compiler Flow (UFE) uses VCS with the -kdb option and the
generated simv.daidar includes the KDB information.

Verdi supports the following use models to import design from simv.daidir
related files:

• "verdi -dbdir simv.daidir"

• "verdi -simflow -simBin simv"

• "verdi -simBin simv"

• "verdi -ssf novas.fsdb"

The priority to import design from UFE is as following (from high to low):

1. Use the new -dbdir option to specify the simv.daidir directory

Similar to: dve -dbdir simv.daidir

2. Use the -simflow -simBin options to specify simv

Load simv.daidir from the same directory as simv. An error is
reported if simv.daidir is not available.

NOTE: The import options -top, -elab, -lib, -f, and -ridb
cannot be specified for this usage.

3. Use the -simBin option to specify simv

Load simv.daidir from the same directory as simv and invoke Verdi if
simv.daidir is not available.

4. Use the -ssf option to specify FSDB file and the design is automatically
loaded.

Load KDB automatically from FSDB. The FSDB file needs to be generated
from “vcs -kdb” with VCS K-2015.09-SP2 or later.

NOTE: The FSDB or all FSDB files in virtual FSDB should be generated by the
same simv that is generated by VCS with the -kdb option.

The import options -top, -elab, -lib, -f, and -ridb
cannot be specified for this usage.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nTrace Tutorial'

nSchema Tutorial: Overview

 Verdi User Guide and Tutorial 98Feedback

nSchema Tutorial

Overview
nSchema is a schematic viewer and analyzer that generates interactive
debug-specific logic diagrams displaying the structure of the selected portions of
a design. RTL diagrams show the interconnection of finite state machines,
storage elements, and multiplexers. Gate-level diagrams show the
interconnection of semiconductor vendor cells and special flattened diagrams cut
through the design hierarchy to isolate connected design elements. nSchema
dynamically generate partial schematics to focus on the circuits of interest in a
large design.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter. Refer to the User Interface chapter for general information on the
nSchema window.

The nSchema window is used to display auto-generated schematics and logical
diagrams, the frame can be undocked to be a standalone nSchema window, as
shown in the following example:

Figure: Example of nSchema Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Start nSchema

99 Verdi User Guide and Tutorial Feedback

nSchema generates the schematic for both RTL and gate-level designs. For RTL
designs, the Verdi platform extracts certain types of synthesizeable function
blocks from the HDL code, such as registers, latches, multiplexers, pure
combinatorial or sequential circuits, and so on. With this capability, you can get
a clear picture of the design intent, especially for a design with which you are
unfamiliar. For gate-level designs, the Verdi platform uses standard symbols,
such as nand, nor, inverter, and so on, to make the schematic more readable and
understandable. To perform certain functions, such as signal tracing or intuitive
searching, you can drag-and-drop items between windows to cross-link the tools.

Start nSchema
1. Change the directory to <working_dir>/demo/verilog/cpu/src, and execute

the following command to import the sample CPU design:
% verdi -f run.f -workMode hardwareDebug &

You can continue from the previous Verdi session if the window is still
open.

2. In the nTrace main window, highlight the folder tb_CPUsystem in the
Instance tab of the design browser frame.

3. Click the New Schematic icon on the toolbar in the nTrace main
window (or choose the Tools -> New Schematic from Source -> New
Schematic command), the nSchema window is displayed. Click the
Undock icon in the upper right of the nSchema window, a separate window
showing the schematic of the current module (tb_CPUsystem) displays, as
follows:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Start nSchema

 Verdi User Guide and Tutorial 100Feedback

Figure: nSchema Window Displaying tb_CPUsystem Schematic

Click the New Schematic icon to create a new schematic frame in full
hierarchical view. Each new schematic frame initially shows the schematic
view of the HDL source module currently displayed in the source code
frame.

4. Drag-and-drop the instance, i_CPUsystem, in the design browser frame to
the separate schematic window to display the instance's schematic.

The results are displayed similar to the schematics displayed in the
following figure:

Figure: Displaying CPU Block as Schematic

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

101 Verdi User Guide and Tutorial Feedback

Manipulate the Schematic View
Double-click the i_CPUsystem, i_CPU and i_CCU module names in the design
browser frame to access the source code of the module CCU.

You can change the view of the schematic using the following zoom commands:

• Zoom In - View more details of the schematic by moving the view
50% from the center point in both the horizontal and vertical directions.
Invoke this command in one of following three ways:

• Toolbar icon

• Bind key "Z"

• Menu View -> Zoom -> Zoom In command

• Zoom Out - View more contents of the schematic by expanding the
view 2X from the center point, both horizontally and vertically. Invoke this
command in one of the following three ways:

• Toolbar icon

• Bind key "z"

• Menu View -> Zoom -> Zoom Out command

• Zoom All - View the entire contents of the schematic. Invoke this
command in one of the following three ways:

• Toolbar icon

• Bind key "f"

• Menu View -> Zoom -> Zoom All command

• Zoom Area - View more details in a specific area of the schematic by
dragging-left to form a rectangle over the area.

NOTE: You can change if the right mouse button or the left mouse button
performs the zoom on the General page under the General folder of the
Preferences form (invoked with the Tools -> Preferences command).
This example assumes that the left mouse button is set to zoom.

You can move the viewing area of the schematic in different directions:

• Scrolling - Click or drag the scroll bar of the schematic window
horizontally or vertically.

• Panning - Move the viewing area up, down, left, or right using the arrow
keys on your keyboard or the menu commands: View -> Pan -> Pan Up,
View -> Pan -> Pan Down, View -> Pan -> Pan Left, and View -> Pan ->
Pan Right.

In addition, you can use the View -> Last View command or the bind key "l".

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

 Verdi User Guide and Tutorial 102Feedback

5. In the nSchema window, choose the Tools -> New Schematic -> Current
Scope command from the main menu to create a new nSchema window
with the same schematic view.

6. To close schematic windows that are no longer required use the window
manager's control button (the ‘X’ icon in the upper right) or the menu File
-> Close Window command.

Change the Schematic View Among Instances
1. Using the middle mouse button, drag the instance i_ALUB from the design

browser frame and drop it into the nSchema window to show the
corresponding schematic.

Figure: Displaying i_ALUB Schematic

2. Move your cursor over various symbols or nets in the schematic view, and
notice the name is identified in nSchema’s lower bar. The name information
is shown in the lower bar of the main window if the nSchema windows is
not undocked as a standalone window.

3. Right-click the schematic window, select Pop View Up in the shortcut
menu and the schematic view changes from the child module ALUB to its
parent module CPU with ALUB block highlighted as the selected object.

4. Choose the View -> Push View In command or its corresponding toolbar
icon to update the schematic view to the selected module ALUB.

5. Choose the View -> Pop View Up command or its corresponding toolbar
icon to change the schematic view to module CPU.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

103 Verdi User Guide and Tutorial Feedback

Figure: Displaying CPU Module With ALUB Block Highlighted

6. Choose the View -> Last View command or the bind key L or its
corresponding toolbar icon to roll back the schematic view to module
ALUB.

Enable Viewing Objects
You can enable or disable viewing for different objects (for example, nets,
instances, ports, and so on) in the schematic window.

1. In nSchema, choose the Tools -> Preferences command to open the
Preferences form.

2. Select the Color/Font page under the Schematics folder.

a. Change the Type field from the default Background selection to
Selected Set.

b. Change the Color to red and the Line Style to dashed.

Notice the changes that affect the open schematic.

3. Select the View page under the Display Options folder and turn on the
Local Net Name, Instance Name, and IO Port Name options.

4. Click OK to close this form and apply the changes.

5. In the nSchema window, open the View menu and select the Net Name,
Instance Name, and IO Port Name commands individually. The net,
instance and port names are removed from this schematic.

The options on the Preferences form affects all schematics - a global setting. The
View menu only affects the current schematic - a local setting.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

 Verdi User Guide and Tutorial 104Feedback

Find an Instance or a Signal in a Schematic
1. Display the i_ALUB module in the nSchema window and then drag-left

around the multiplexor in the upper left corner to zoom in.

2. Choose the Schematic -> Find in Current Scope command (or “a” bind
key) to display the Find form as shown in the following figure:

Figure: Find Form

Select the Instance option or the Signal option to list all the instances or
signals under the current module in the alphabetical order.

NOTE: If the Schematic -> Auto Fit Found Object(s) toggle command is
enabled or the Auto Fit Selection option is enabled on the Schematics
-> Select page of the Preferences form (invoked with the Tools ->
Preferences command) and a target instance/signal is selected, its
corresponding object is immediately selected in the schematic window
and the schematic view scales properly to make the target object
viewable.

3. Select the Signal option, and uncheck the Match Case option.

4. In the Find text field, enter alu* and press <Enter>.

5. Select AluBuf[7:0].

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

105 Verdi User Guide and Tutorial Feedback

The signal is highlighted in the schematic view, as shown in the following
figure:

Figure: Find Form With Highlighted Signal

6. Click Close to close the form.

7. In nSchema, double-click the multiplex or instance attached to the AluBuf
signal. A View Source Code window opens displaying the associated source
code lines.

8. With the same multiplex or instance selected, use the middle mouse button
to drag the instance to the Source Code frame to display the source code in
context.

9. In the Instance tab of the design browser frame, double-click i_CCU to
locate the source code.

10. Locate the signal declaration for IXR_load in the Source Code frame.

11. From the Source Code frame, drag-middle and drop the signal in any open
nSchema window.

The schematic is updated and the signal is highlighted.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Manipulate the Schematic View

 Verdi User Guide and Tutorial 106Feedback

Change the Color of the Selected Signal
1. To identify certain signals in a schematic clearly, choose the Schematic ->

Change Color command.

A Change Selection Color form displays the selected signal name and its
color, as shown below:

Figure: Change Selection Color Form

2. Click a color in the color map to change the FirstDataInRdy signal’s color
instantly. Click Default if you want to reset a signal color.

3. Click Close to close the form.

4. To return everything to the default colors, in the nSchema window, choose
the Schematic -> All Objects to Default Color command.

5. Close all open schematic windows.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Trace Signals

107 Verdi User Guide and Tutorial Feedback

Trace Signals
The following sections are based on the schematic of i_CPUsystem. Before you
begin, double-click i_CPUsystem in the design browser frame, and click the New
Schematic icon to display the schematic. Then click the Undock icon in
upper right to open a standalone nSchema window.

Find the Drivers of a Signal
The Trace Driver function shows all drivers of a selected signal on the
schematic.

1. For example, choose the Schematic -> Find in Current Scope command
to locate and select data[7:0] in the schematic window.

2. Choose the Trace -> Driver command (or click the icon) on the selected
bus, data[7:0]. The result is shown in the following figure:

Figure: Example Results of Trace Driver on data[7:0]

The figure above shows a driver found in module pram. Since no other
drivers exist in that module, the Show Previous and Show Next icons are
disabled. You can access the Show Next in Hierarchy icon because drivers
exist in other modules.

3. To show the schematic of PCU and the traced drivers in that module, click
Show Next in Hierarchy. The Show Previous in Hierarchy becomes
enabled.

4. To return to the schematic view of module pram, click Show Previous in
Hierarchy.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Trace Signals

 Verdi User Guide and Tutorial 108Feedback

Find the Load of a Signal
The Trace Load function shows all loads of a selected signal or the schematic.

1. Use the pop view up icon to go back to the CPUsystem schematic.

2. Highlight data[7:0].

3. Choose the Trace -> Load command or the toolbar icon .

Find the Connectivity of a Signal and Generate a New
Schematic from Trace Results

To narrow the debugging scope, you can generate a partial schematic containing
only the trace results.

1. Use the pop view up icon to go back to the i_CPUsystem schematic.

2. In the i_CPUsystem schematic, choose the Trace -> Connectivity
command on the selected bus, data[7:0]. The schematic updates with the
highlights of the trace results.

3. Choose the Tools -> New Schematic -> From Trace Result command to
create a new schematic frame with only the trace results. Click the Undock
icon in upper right to make the frame a standalone nSchema window.

Figure: Displaying Trace Results for data[7:0] as a Schematic

4. Close all open schematic windows.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Show RTL Block Diagram in a More Meaningful Way

109 Verdi User Guide and Tutorial Feedback

Show RTL Block Diagram in a More
Meaningful Way

The Verdi platform can recognize some specific hardware elements and display
them using meaningful RTL block-diagram symbols. See Appendix C: Enhanced
RTL Extraction for a complete list of symbols. When you want to see the boolean
equivalent views, perform the following steps:

1. Open the i_CCU block in nSchema:

Figure: Displaying RTL Block as a Schematic

Note that the function symbol is in the upper right side.

2. Double-click the function symbol to see the associated source code (or drag
to the source code frame and drop).

3. To enable the detailed RTL view, choose the Tools -> Preferences
command to open the Preferences form.

4. On the Preferences form, select the RTL page under the Schematics folder
and then turn on the Enable Detailed RTL option.

5. Click OK.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Show RTL Block Diagram in a More Meaningful Way

 Verdi User Guide and Tutorial 110Feedback

The results are displayed similar to the schematics displayed in the
following figure:

Figure: Displaying RTL Block in Detail

The function symbol is gone and has been replaced with an xor, and, and
nor gate.

NOTE: The preferences affect all windows. Use the View -> Detail RTL
command to only change one window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

111 Verdi User Guide and Tutorial Feedback

Generate Partial Schematics

Hierarchical
Often, the top level block diagram is too cluttered and you want to be able to
focus on a couple of blocks or signals.

1. In the design browser frame, select i_CPU, and open a new schematic
frame.

2. In the nSchema frame, select the ALUB block.

3. Press the <Shift> key and, select the PCU block. (The same thing can be
accomplished with multiple nets.)

4. Choose the Tools -> New Schematic -> Browser Window command.

A new schematic frame with the selected block and connections is
displayed. Click the Undock icon in upper right to create a standalone
nSchema window, as shown below:

Figure: nSchema Partial Hierarchical View

The CCU block is not included in the above window.

5. Double-click the ALUB block and notice that there is a reduced logic
display and therefore a partial hierarchical view.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

 Verdi User Guide and Tutorial 112Feedback

6. Go back to the previous hierarchy using the Pop View Up icon.

7. Choose the View -> InstPort Name command to annotate the instance port
names on the schematic.

8. Double-click the AluOut[7:0] port on the ALUB block (upper right) to
expand the connecting logic. (Any port can be expanded).

9. Click the Undo toolbar icon to get back to the previous view.

10. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

Flattened Window
The following topics work equally well for RTL designs, a gate-level design is
more interesting.

1. Before you start, close the current Verdi session, and change the directory to
<working_dir>/demo/verilog/gate.

2. Set the environment variables:
% setenv NOVAS_LIBPATHS $VERDI_HOME/share/symlib/32
% setenv NOVAS_LIBS lsi10k_u

3. Invoke the Verdi platform:
% verdi -f run.f -workMode hardwareDebug

4. In the Instance tab of the design hierarchy frame, expand system, i_cpu,
and then double-click i_ALUB to display the source code.

5. In the Find String box on the toolbar, enter U250.

6. Click the Find Next icon to find the instance on line 639.

7. Choose the Tools -> New Schematic from Source -> Flattened Window
command.

The associated NAND gate is displayed in nSchema. Click the Undock icon
is the upper right to change the nSchema window to a standalone window.

8. Double-click the output port to expand the loading logic.

The symbol of a box with a cross in it indicates a crossed hierarchy

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

113 Verdi User Guide and Tutorial Feedback

Figure: nSchema Expanded Logic

9. Choose the View-> Instance Name command.

10. Select the instance U313, and click the Remove icon to delete the gate
from the view.

11. Click the Undo icon to add it back to the schematic.

Fan-in and Fan-out
The Fan-in and Fan-out functions automatically generate the fan-in or fan-out
cones for the selected instance or net.

1. Continue from the gate design.

2. Select U250 in the Flattened Window schematic window.

3. In the nSchema window, choose the Tools -> New Schematic -> Fan-in
command. Click the Undock icon in upper right to create the View Trace
Fan-In Cone Result window from the nSchema window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

 Verdi User Guide and Tutorial 114Feedback

Figure: nSchema Displaying Fan-in Cone

Several hierarchies are represented and tracing automatically stops on
storage elements.

4. In the Source Code frame, select U251, line 640, of i_ALUB.

5. Use the middle mouse button to drag U251 to the View Trace Fan-In Cone
Result schematic view, and drop it.

Note that U251 is not connected to any of the existing logic.

6. Change the design browser frame to i_CCU, and open the source code.

7. Find U248 on line 832.

8. Use the middle mouse button to drag U248 to the View Trace Fan-In Cone
Result schematic view, and drop it.

Note that it automatically connects to an existing storage element.

In partial flattened schematics, you can easily add logic by double-clicking
to expand ports or dragging and dropping instances or nets from other
windows.

Trace Between Two Points
Tracing between two points isolates connecting logic between two storage
elements and display the results.

1. Close the existing nSchema windows.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

115 Verdi User Guide and Tutorial Feedback

2. In the nTrace main window, choose the Source -> Find String command.

3. In the Find String form, enter IDR_reg in the pattern box.

4. Turn on the In All Files option.

5. Click the Find All button. The results are listed in the Search tab of the
message frame.

6. Double-click the text line associated with IDR_reg[7].

7. In the nTrace main window, click the New Schematic icon to open the
nSchema frame. Click the Undock icon on upper right to change the
nSchema window to a standalone nSchema window.

8. Drag the instance name \IDR_reg[7] from the Source Code frame and drop
to the nSchema window. The instance is highlighted.

9. Zoom in around the highlighted instance by dragging the left mouse button
over the area.

10. Choose the Trace -> Two Points command. The Trace Two Points form is
displayed as follows:

Figure: Trace Two Points Form

11. Use the middle mouse button to select the Q output port of \IDR_reg[7],
and then drag and drop it in the From box of the form.

12. Move the form out of the way while you find the next point.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Generate Partial Schematics

 Verdi User Guide and Tutorial 116Feedback

13. In the nTrace main window, search for IXR_reg using Find String.

14. Double-click the text associated with \IXR_reg[7] in the Search tab of the
message frame.

15. In the Source Code frame, drag and drop \IXR_reg[7] to the To box of the
Trace Two Points form, and select D in the Port name column.

16. In the Trace Two Points form, confirm the Create Window option is
enabled (depressed), and click Trace.

The results are displayed in a new nSchema window, click Undock icon to
create the View Trace Result schematic window:

Figure: Results of Trace Two Points

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nSchema Tutorial: Use Active Annotation to Show Signal Values

117 Verdi User Guide and Tutorial Feedback

Use Active Annotation to Show Signal
Values

The Schematic -> Active Annotation command allows you to display signal
values from simulation directly on the schematic. The display style can appear in
either text value or line coloring (for values 0, 1, z, and x only).

1. In the nTrace main window, choose the File -> Load Simulation Results
command to load the gate.fsdb results file.

2. In the nTrace main window, select the i_PCU unit in the Instance tab of the
design browser frame, and open a new schematic.

3. Zoom in around the upper right corner.

4. In nSchema, choose the Schematic -> Active Annotation command or use
the ‘x’ hot key to display the waveform values on the schematic.

5. Select the ALU[7:0] signal and use the Search Forward icon on the
toolbar to step through value changes. You can also Search Backward.

6. Add line coloring annotation by turning on the Schematic -> Annotate in
Color toggle command.

The definitions of the annotation text and colors are as follows:

• 1: logic high (green)

• 0: logic low (yellow)

• x: unknown (red)

Change the Color or the Line Style for Annotations
1. To change the color or the line style for annotation, choose the Tools ->

Preferences command in the nTrace main window to display the
Preferences form.

2. Select the Color/Font page under the Schematics folder.

3. Click the Type option menu.

4. Set the color and line style (including the annotation line coloring for value
1, value 0, value x, and value z) for the list of objects displayed.

5. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nSchema Tutorial'

nWave Tutorial: Start nWave and Open a Simulation Result File

 Verdi User Guide and Tutorial 118Feedback

nWave Tutorial

nWave is a state-of-the-art graphical waveform viewer and analyzer that is fully
integrated with the source code, schematic, and flow views of the Verdi platform.
A waveform search engine combined with backward and forward navigation
allows you to search for signal transitions, bus values, discrepancies, or
user-defined events easily. nWave also offers flexible signal group management,
user-customizable glitch detection, a built-in logic analyzer, logical operations,
events, display of delays back-annotated from SDF files, mixed analog/digital
(A/D) display capabilities (including overlap, vertical zoom, delta x and y,
arithmetic operations, analog- to-digital signal conversion, and others), and
transaction/message display.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter. Refer to the User Interface chapter for more details regarding the nWave
interface.

Start nWave and Open a Simulation Result
File

Before you start, change the directory to <working_dir>/demo/verdi_mixed, and
use the following commands to import the sample CPU design:

% vericom -autoalias -f run_verilog.f
% vhdlcom -f run_vhdl.f
% verdi -top tb_CPUsystem -workMode hardwareDebug &

1. After the Verdi platform is started, click the New Waveform icon on
the toolbar to start nWave (or choose Tools -> New Waveform command).
Click the Undock icon in upper right corner to change the nWave window
to a stand-alone nWave window.

2. Choose the File -> Open command or click the toolbar icon .

The Open Dump File form displays, as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Start nWave and Open a Simulation Result File

119 Verdi User Guide and Tutorial Feedback

Figure: Open Dump File Form

3. Go to the directory where the FSDB file resides. In this example, it is the
current directory.

4. Select the rtl_ova.fsdb file in the File list.

5. Click Add File or double-click rtl_ova.fsdb to add the simulation
results file to the File Name section.

6. Click OK or double-click rtl_ova.fsdb to open the simulation results file.

NOTE: On the Open Dump File form, confirm that the Open File by Time
Range option is not enabled. If it is enabled, a Put in Time Range form
is displayed. If it is not enabled, the FSDB file loads into nWave.

You can add multiple FSDB files before clicking OK.

The signal pane displays one default group named G1. The signal
cursor is initially located under group G1. (The signal cursor is the
default location where signals are inserted.)

If you open a VCD file, the Verdi platform automatically converts it to
an FSDB file and appends .fsdb to the file name.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

 Verdi User Guide and Tutorial 120Feedback

Add Signals
There are two primary methods to add signals as follows:

• Drag and drop signals from other Verdi frames or windows.

• Use the Get Signals form to search and add signals.

Add Signals from Other Windows
Perform the following steps to add signals to the nWave window:

1. In the design browser frame, expand i_cpusystem to display i_cpu.

2. Use the middle mouse button to drag and drop the i_cpu to the signal pane
of nWave and display the I/O signals.

NOTE: The horizontal yellow line in the signal pane moves so that it is under
the signal added to the display. This line is the signal cursor, which
marks the insertion point for signal commands for example, Add,
Move, Overlay, and Create Bus. Right-click in the signal pane to
access related commands.

3. In the design browser frame, expand i_cpu and double-click i_ALUB to
display the source code.

4. In the Source Code frame, scroll to line 70 and select AluBuf from the signal
declaration and drag to G2 to drop.

NOTE: To select individual, non-contiguous signals, press and hold the <Ctrl>
key and click the signals you want. To select a large range of signals,
drag the mouse over the selection or select the first line in the range and
hold the <Shift> key while selecting the last line in the range.

You can also drag and drop signals or instances from other Verdi
windows such as nSchema or the Temporal Flow View.

Use Get Signals to Add Signals
Perform the following steps to add signals using the Get Signals form. There are
four panes in this form.

1. To display signals of interest, choose the Signal -> Get Signals command
or click the toolbar icon .

2. In the Get Signals form, click CHILD1 in the design hierarchy box.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

121 Verdi User Guide and Tutorial Feedback

The signal list displays all the signals in CHILD1, as shown in the following
figure:

Figure: Get Signals Window

3. Click the middle button on group G3 in the mirror signal pane. This
selection moves the signal cursor bar from group G2 to group G3,
indicating that the insertion point for adding new selected signals is changed
to group G3.

4. Click the Select/Deselect All Signals icon to select all signals.

5. Click the Add Selected Signals icon to add the signals to the mirror
signal pane.

NOTE: You can rearrange the signal sequence in the mirror signal pane using
the middle button to drag the signals to a new location.

6. Click OK to display the waveforms of the selected signals. The results are
similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

 Verdi User Guide and Tutorial 122Feedback

Figure: Signal Display in nWave

Search for Signals to Add
You can also search for signals to add in the Get Signals form.

1. Type 'g' in the waveform pane to invoke the Signal -> Get Signals
command using the hot key. The Get Signals form appears.

2. Expand i_cpusystem and i_cpu and then click i_CCU.

3. Set the signal cursor position under group G4 in the mirror signal pane.

4. In the Get Signals form, click Options.

5. On the Search tab of the Options form, turn on the Search Signals with
Case Matching option.

6. Click Close.

7. Type clo* in the Find Signal field.

8. Press <Enter>.

Note that no signals match.

9. Now type CLO* in the Find Signal field.

10. Press <Enter>.

Signals with names starting with CLO are listed.

11. Drag-left in the middle pane to select CLOCK1, CLOCK2, CLOCK3, and
CLOCK4.

12. Click Apply.

13. In the Get Signals form, click Options.

14. On the Search tab of the Options form, turn on the Search Signals in
Sub-Scopes option and click the Close button.

15. Click i_cpusystem.

16. Type sel* in the Find Signal field.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

123 Verdi User Guide and Tutorial Feedback

17. Press <Enter>.

Signals with names starting with sel in all scopes are listed.

18. Double-click sel[2:0] in the middle frame to add it to the right-hand
window.

19. Click OK.

The selected signals are displayed in nWave window.

Creating a Parent Group With Sub-Groups
When adding an array of interface with the same parent, it creates a parent group
to contain these sub-groups, as illustrated in the following figure:

Figure: Array of interface added With the Same Parent Name

If the array of interfaces is added without the same parent name, then it creates a
parent group first to contain these sub-groups. The location for adding it depends
on the cursor position of the horizontal yellow line in the signal pane as
illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

 Verdi User Guide and Tutorial 124Feedback

Figure: Array of interface added Without the Same Parent Name

If you right-click to add array of interfaces to the waveform and the signals are
not available in the group, then it creates a parent group to contain these
sub-groups. However, when a group is not empty, and Add to New Group option
is turned on, it creates a parent group to contain these sub-groups. If the Add to
New Group option is turned off and you right-click to add array of interface, it
creates parent group to contain these sub-groups.

When adding an interface or a scope to signal pane, it adds the complete interface
including the nested interface to the waves and organizes them hierarchically as
illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Add Signals

125 Verdi User Guide and Tutorial Feedback

Figure: Added Nested Interface

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

 Verdi User Guide and Tutorial 126Feedback

Manipulate the Waveform View
nWave displays a cursor and a marker in the waveform pane. Use the cursor/
marker to measure time differences, perform a fast zoom, or examine signal
values. The cursor appears as a dashed yellow line, and the marker is a dashed
white line. You can also add grid lines to make it easier to line up multiple signal
transitions.

Set the Cursor/Marker Positions
1. Left-click the signal R_W under group G1 where it transitions from 0 to 1 at

time 276 in the nWave window and note the following:

• A vertical cursor line appears in the waveform pane.

• The simulation time (276 ns) associated with the cursor's current
location is displayed in the toolbar.

• The value pane is automatically updated to reflect the values on the
signals at the current cursor time.

• The Active Annotation values (if enabled) in the source code frame are
automatically updated to reflect the values on the signals at the current
cursor time.

NOTE: You can also use the Waveform -> Go To -> Time command to set the
cursor position to the specified time.

2. Click the middle button on the next transition (0 to 1) of the signal
addr[7:0] under group G1 and note the following:

• A vertical marker appears in the waveform pane.

• The simulation time (425 ns) associated with the marker's current
location is displayed in the toolbar.

• The delta (time difference) between the cursor and marker is displayed
in the toolbar.

NOTE: By default, the cursor and marker snaps to the closest transition on the
selected signal. (You can turn on the Waveform -> Snap Cursor to
Transitions toggle command to allow you to set the cursor/marker to
any location.)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

127 Verdi User Guide and Tutorial Feedback

Figure: Example of Time Delta Between Cursor and Marker in nWave Window

3. In the nWave window, choose the View -> Zoom -> Zoom All command
(or the toolbar icon or the “f” key) to display the entire simulation results for
the signals currently on display.

Zoom Cursor With Three Clicks
You can set the cursor and marker positions using left-click and middle-click in
a signal's waveform, then click the Delta Time icon on the toolbar to zoom
in and view the waveform between the cursor and the marker.

Fast Zoom on the Full Scale Ruler
A full-scale ruler appears at the bottom of the waveform pane. The ruler shows
the full simulation time span of the opened dump file. To view a time range
quickly, left-click and middle-click the specified time along this ruler, then click
the Delta Time icon on the toolbar to view the waveform between the two
points. You can also drag-left along the full-scale ruler for Fast Zoom.

Pan the Waveform
To pan different time ranges or signals, use the waveform pane's horizontal or
vertical scroll bars and the up, down, left, and right arrow keys.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

 Verdi User Guide and Tutorial 128Feedback

Use Bind Key Commands
The following table lists the bind keys that you can use to view the waveforms
quickly and easily:

Turn On/Off Signal Grids
1. In the nWave window, zoom in around the 0 to 1000 time range.

2. Select CLOCK1.

3. Choose the View -> Grid Options command to open the Grid Options
form. Turn on the Grid on option and select the Rising Edge in the option
field.

4. Turn on the Grid Count with Start Number option and input 1 in the
associated text field. The Grid Options form is similar to the following:

Bind Key Action

Up Arrow Key Pan Up

Down Arrow Key Pan Down

Left Arrow Key Pan Left

Right Arrow Key Pan Right

z Zoom Out

Z Zoom In

f Zoom All

l Last View

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

129 Verdi User Guide and Tutorial Feedback

Figure: Grid Option form

5. Click Apply to show the numbering along with each grid line starting from
the current cursor time.

6. Disable the Grid on option and click OK to remove grids.

Add Marker Labels
1. In the waveform pane, place the cursor on the 3 to a transition of signal

alubuf[7:0] at time 825.

2. Choose the Waveform -> Marker command (or use the shift-m bind key)
to open the Marker form.

3. In the Marker form, specify ALUFail in the Name field.

4. Click Get Cursor Time .

5. Click Add.

The Marker form is similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

 Verdi User Guide and Tutorial 130Feedback

Figure: Marker Form

6. Click Close.

The marker label is added to the top of the waveform view at the
appropriate time and the Goto Marker field is added to the tool bar.

Figure: Marker Label Additions

Change the Display Sequence of Signals
To rearrange signals, you can drag-left to select and drag-middle to move or
remove signals from the waveform pane with the Cut icon. The signals are
copied to the clipboard. You can then use the Paste command to copy signals
from the clipboard to the signal cursor position.

1. To rearrange the display sequence of signals, drag-left in the signal pane to
select four signals under group G1. For example, RESET, VMA, R_W, and
BUSY.

2. Use the middle mouse button to drag them to right after the signal
addr[7:0].

3. Click the Cut icon to remove the RESET, VMA, R_W, and BUSY
signals. Then middle-click to set the signal cursor position under group G3.

4. Click the Paste icon to insert the four signals at the current signal cursor
position.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

131 Verdi User Guide and Tutorial Feedback

5. Click the Undo icon . The four newly inserted signals are deleted.

6. Click Undo again and the signals are inserted back under group G3. You
can undo for one level only.

Search for Signal Value Transitions
You can search a signal by Any Changes, Rising Edge, Falling Edge, Analog
Values, Bus Values, Mismatches, or Search Constraint.

1. Select the signal CLOCK1.

2. Click the Search Forward icon on the toolbar. The cursor jumps to the
next signal transition.

3. Click the Search Backward icon to move the cursor to the previous
transition.

4. Click the Search By AnyChanges icon to change the search
criteria to Rising Edge.

5. Search again and notice the difference.

6. Select the signal data[7:0].

7. Click the Search By AnyChanges icon to change the criteria to Bus
Values.

8. In the Search Value form, enter 20 in the Signal Value field.

NOTE: You can also search for value to value transitions (including
mnemonics) by entering ‘value1 -> value2’ in the Signal Value field.

9. Click OK.

To change the bus value, choose the Waveform -> Set Search Value
command or change the value on the tool bar to define the search value.

10. Click the Search Forward or Search Backward icons to find the value of
20 at time 4650 ns.

11. With data still selected and a bus value of 20, choose the Waveform -> Set
Search Constraint command.

The Set Search Constraint form displays.

12. Change the Value of <Search By> is stable for menu to <= and enter 100
in the x 1ns box, as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

 Verdi User Guide and Tutorial 132Feedback

Figure: Set Search Constraint Box Filled

13. Click OK.

14. Use Search Forward and Search Backward icons to find any occurrences
of the value 20 on data, stable for less than 100 ns.

There is one at time 1576 ns.

15. Change Search Constraint back to NONE, and Search By to any
transition.

Add Comments
You can insert comments to indicate items of interest.

1. Continue from the previous example and place the cursor under data[7:0].

2. Choose the Signal -> Comment -> Insert command to add a comment
field to the waveform.

The cursor should still be at time 1576 where data value 20 is less than 100.
You want to identify this location with a comment.

3. Choose the Signal -> Comment -> Add Attached Square Box command.

4. Left-click near the value of 20 between the red comment lines to add the
comment box.

After the comment box is added, you can reposition it with the left mouse
button.

5. Place the cursor over the Comment Box text and select the text by
double-clicking.

6. Press Delete on the keyboard to remove the text.

7. Type ‘This is where the width is too small.’ to enter the
new comment text.

8. Re-size the comment box as needed.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

133 Verdi User Guide and Tutorial Feedback

Compress Time Ranges
You can compress time ranges to make viewing different times easier.

1. In nWave, choose the View -> Compress Time Range command to open
the Compress Time Range form.

2. In the Compress Time Range form, enter 1000 in the From Time field and
13000 in the To Time Field.

3. Click Insert.

4. In the waveform, click the Zoom All toolbar icon. The nWave window is
similar to the following figure:

Figure: Compress Time Range

The yellow vertical bar indicates where time is compressed. Only the
waveform view is affected.

5. In the Compress Time Range form, click Delete All and Close to remove the
compressed time range.

Split the Waveform View
You can split the waveform window to keep a standard set of signals in the top
part of the window while you scroll through the remaining signals.

1. In nWave, choose the Window -> Horizontal Split command to split the
window.

You can select the separating bar and drag to change the split size.

2. In the upper split, scroll to display addr[7:0] and data[7:0].

3. In the lower split, scroll to display the signals in group G4. The nWave
window is similar to the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Manipulate the Waveform View

 Verdi User Guide and Tutorial 134Feedback

Figure: nWave Split Window

4. Choose the Window -> Stop Split command to return to a single window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Change Signal/Group Attributes

135 Verdi User Guide and Tutorial Feedback

Change Signal/Group Attributes

Search for a Group
1. Scroll to the bottom of the waveform list.

2. Right-click the signal pane. A Signal right mouse button command menu
appears.

3. Select the group on the Go To sub-menu to jump among groups.

4. Go to group G1.

Change the Group Name
1. Right-click the group G1. A Signal right mouse button command menu

displays.

2. Choose the Rename command. G1 turns orange.

3. Drag-left to highlight G1.

4. Type CPU and press <Enter>. The group name G1 changes to CPU.

NOTE: You may need to use delete or backspace to remove the existing group
name.

5. Change group G2 to ALUB, and change group G3 to MISC.

6. Double-click the ALUB group to collapse.

NOTE: You can also create hierarchical groups by choosing the View -> Group
Manager command.

Modify the Display Format in the Value Window
1. Zoom the waveform to the time range between 6500 and 7500.

2. In the signal pane, search for the bus addr[7:0]. The bus values displayed
on the waveform are in hexadecimal format.

3. In the value pane, right-click the value of addr[7:0]. A data format menu
appears.

4. Choose the Radix -> Binary command. The value displayed for addr[7:0]
changes to binary format.

5. Change back to hexadecimal format.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Change Signal/Group Attributes

 Verdi User Guide and Tutorial 136Feedback

Display Hierarchical Signal Names
1. Choose the View -> Hierarchical Name command to display the signal

names with their full hierarchical paths.

2. To make the signal pane bigger, drag the boundary between the signal pane
and the value pane to widen the signal name pane. This change allows you
to view the full hierarchical names.

The nWave window is similar to the following figure:

Figure: Full Hierarchical Names

3. Choose the View -> Hierarchical Name command again to restore the
signals to their base names.

Add Alias to Display Bus Values
You can display logic states in a more meaningful way than by only viewing the
plain logic values using the alias mechanism in nWave. You can associate
mnemonics with logic states using the Waveform -> Signal Value Radix ->
Add Alias from File command. Using a symbolic alias can make your
debugging process easier.

1. In the signal pane click the signal data[7:0].

2. Choose the Waveform -> Signal Value Radix -> Add Alias from File
command.

The Open Alias File form displays, as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Change Signal/Group Attributes

137 Verdi User Guide and Tutorial Feedback

Figure: Example Open Alias File Form

3. Select the CPU.alias file under the <working_dir>/demo/verilog_mixed
directory and click OK.

The values displayed on the waveform for signal data[7:0] change to alias
strings, which are more readable and meaningful. Use a text editor to create
your own alias file by following the format in the CPU.alias file.

NOTE: You can add color to the alias values by choosing the Waveform ->
Signal Value Radix -> Edit Alias command while the aliased signal is
selected. This opens the Alias Editor form where you can specify a
background color for the alias values.

4. Create a copy of the signal data[7:0].

a. In the signal pane, place the cursor above data[7:0].

b. Select data[7:0].

c. Click the Copy icon on the toolbar and then click the Paste icon.

5. Place the cursor over the value in the value column for the data[7:0] signal
copy and right-click to view the right mouse button menu.

6. Choose the Remove Local Alias command.

The values displayed on the waveform for data[7:0] signal copy change
back to hexadecimal values. Now you can see the numeric value and the
mnemonic value simultaneously.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Change Signal/Group Attributes

 Verdi User Guide and Tutorial 138Feedback

Change the Spacing and Signal Height
You can change the spacing equally among all displayed signals. You can also
change the signal height for each signal individually.

1. Disable the Signal -> Select Group Mode toggle command (Group/
Signal). This allows you to easily select all signals in a group instead of the
group name.

2. Click group MISC to select all the signals under that group.

3. Choose the Waveform -> Height command and type 20 in the Signal
Height field in the Signal Height form, shown in the following figure:

Figure: Signal Height Form

4. Click Apply to change the signal height to 20 pixels.

5. Click Default to go back to default height.

6. Choose the Waveform -> Spacing command to change the signal spacing.

NOTE: The height and spacing can be changed globally through the Waveform
-> Default Value folder -> Display Signal page on the Preferences
form (invoked with the Tools -> Preferences command).

7. Turn on the Signal -> Select Group Mode toggle command (Group/
Signal).

This allows you to select group names.

Change Signal Color/Pattern
To change a signal’s color or line width/style, perform the steps following steps:

1. Choose the Waveform -> Color/Pattern command. The color palette is
displayed, as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Change Signal/Group Attributes

139 Verdi User Guide and Tutorial Feedback

Figure: Example Color/Pattern Palette

2. Select the signals you want to change and the preferred color from the color
palette. The color for the selected signals changes accordingly.

3. You can also change the signal's line width and line style by setting the
corresponding option menu.

4. Click Default on the color/pattern palette to change the selected signals to
their default color/pattern.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Create New Signals/Buses from Existing Signals

 Verdi User Guide and Tutorial 140Feedback

Create New Signals/Buses from Existing
Signals

Sometimes it may be necessary to manipulate signals for better understanding or
to test a theory. There are two methods to perform this function:

• Logical Operations

• Bus Creation

Anything created with these commands can be saved to the signal file.

Logical Operations
If you want to view what the waveform looks like if BUSY was combined with
inverted VMA signal.

1. In the CPU group, select BUSY and VMA (press and hold the <Ctrl> key to
select multiple signals).

2. Choose the Signal -> Logical Operation command.

The Logical Operation form displays, as shown in the following figure:

Figure: Logical Operation Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Create New Signals/Buses from Existing Signals

141 Verdi User Guide and Tutorial Feedback

3. Enter newsig in the Name field.

4. In the Expression field, highlight the “&” symbol and delete using the
Delete key on the keyboard.

5. With the cursor between the signals, left-click the |:B-or, R-or button under
the Expression field to insert the new operator.

6. Put the cursor in front of the string for VMA and insert the ~:B-negation
operator.

7. Click Create/Modify to create the new signal. The nWave window is
similar to the following figure:

Figure: Logical Expression

The new signal is added to the waveform at the current cursor location.

8. Click Close.

Bus Creation
This exercise describes how to create a bus from the displayed signals.

1. Put the cursor in group G4.

2. Select signals CLOCK1, CLOCK2, CLOCK3, and CLOCK4 in group G4.

3. Choose the Signal -> Bus Operations -> Create Bus command, or use the
right mouse button and choose the Bus Operations -> Create Bus
command.

The Create Bus form displays, as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Create New Signals/Buses from Existing Signals

 Verdi User Guide and Tutorial 142Feedback

Figure: Create Bus Form

4. Enter CBUS in the Bus Name field.

CBUS is the new name for the created bus.

5. Click the Reverse button.

CLOCK 4 becomes the MSB.

6. Click OK.

The created bus CBUS[3:0] is added to the waveform at the signal cursor
position.

Expand or Collapse the Bus
To expand a bus to its individual members, double-click the bus in the signal
pane. You can also choose the Signal -> Expand Bus command.

1. Double-click CBUS. Signals CLOCK1, CLOCK2, CLOCK3, and CLOCK4
are displayed after CBUS[3:0].

2. Double-click CBUS again to collapse the bus.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Save and Restore Signals

143 Verdi User Guide and Tutorial Feedback

Save and Restore Signals

Save the Displayed Signals
nWave saves all the displayed signals and their signal attributes such as color,
height, and other information to a save signal file. You can easily restore the same
waveforms later by restoring this file.

1. Choose the File -> Save Signal command.

The Save Signal form displays.

2. Click Options, and decide which attributes to save.

3. Enter demo.rc as the file name and click OK. By default, the file name is
saved as signal.rc.

Restore Previously Saved Signals
1. In the nTrace main window, choose the File -> Exit command to close the

Verdi session.

2. Start the Verdi platform and nWave again.

3. Choose the File -> Restore Signal command and select demo.rc in the file
name list.

4. Click OK.

nWave displays the signals you saved in the last session.

Create a Second Waveform Window and Restore Other
Signals

1. Choose the Tools -> New Waveform command to create a name nWave
window. Click the Undock icon to make the new nWave window as a
standalone nWave window.

2. Open the <working_dir>/demo/verdi_mixed/CPUsystem.fsdb file that
contains the results from a different RTL simulation.

3. Restore the file demo.rc.

Note that the signal arrangement used for the first nWave window is now
shown in the second nWave window.

If no file is currently open, the File -> Restore Signal command opens the
simulation result file specified in the demo.rc file and restores the signals.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Save and Restore Signals

 Verdi User Guide and Tutorial 144Feedback

If a file is open, the File -> Restore Signal command ignores the file
specified in demo.rc and restores the signals in the open file.

4. After you have two waveforms open, you can choose the Window ->
Change to Primary command to change the primary waveform window.
This command selects which FSDB file will be used for active annotation.

The primary nWave window is identified with a red square in the lower right
corner.

NOTE: If you load multiple FSDB files in the same nWave window, you can
specify the active file by choosing the File -> Set Active command.
This opens the Active File form, where you can select the desired file
and turn on the Apply to Active Annotation option.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Calculate Toggle Coverage

145 Verdi User Guide and Tutorial Feedback

Calculate Toggle Coverage
Sometimes, it is not easy to determine if the test patterns toggle all the signals in
the design. The Toggle Coverage Report command analyzes all signals in the
design for transitions using a post-simulation FSDB file.

1. After the FSDB file is loaded, choose the Tools -> Toggle Coverage
Report command in the nWave window to open the Toggle Coverage form
as shown in the following figure.

Figure: Toggle Coverage Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Calculate Toggle Coverage

 Verdi User Guide and Tutorial 146Feedback

The Toggle Coverage form provides several options to direct the coverage
analysis.

2. In the Scope section, uncheck the CHILD1, CHILD2, CHILD3, and
MASTER scopes.

3. Click Full Range to add the entire FSDB time range.

4. Confirm Full is selected in the Toggle Criterion section. That is, the
signals that go from 0 to 1 and then 1 to 0 or signals that go from 1 to 0 and
then 0 to 1 are identified as one toggle.

5. Turn on the Skip Glitch option so glitches are not included in the toggle
counts.

6. Click Apply to start the toggle coverage analysis. During the analysis
process an Information dialog window is opened.

7. Click OK on the Information dialog window.

When the toggle coverage analysis is complete, the results are displayed in
the Result section of Toggle Coverage form.

Figure: Result Section of Toggle Coverage Form

The description of each item in the Result section is listed below:

• Total Samples: Total number of analyzed signals.

• Toggled: Signals that are toggled.

• Not Toggled: Signals that are not toggled.

• Toggle Rate: The percentage of toggled signals divided by the analyzed
signals (that is, Toggled / Total Samples).

8. In the Toggle Coverage form, click Report to open the Toggle Coverage
Report form. The default displays the Not Toggled signal list.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Calculate Toggle Coverage

147 Verdi User Guide and Tutorial Feedback

Figure: Not Toggled Results

The un-toggled signals are listed in red. The total number of signals
analyzed and the current list are summarized in the bottom of the form.

9. Select the Toggled option to display the toggled signal list. The toggled
signals are listed in green.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Calculate Toggle Coverage

 Verdi User Guide and Tutorial 148Feedback

Figure: Toggled Results

10. In the Toggle Coverage Report form, click Save to open the Save Report To
form and specify a file name for the saved report. The information in the
saved text file includes all the settings and information related to the current
toggle coverage analysis.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Calculate Toggle Coverage

149 Verdi User Guide and Tutorial Feedback

Figure: Toggle Coverage Text Summary

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

 Verdi User Guide and Tutorial 150Feedback

Define Events and Complex Events
nWave allows you to create events to help figure out complex conditions.
Through previous events, you can then capture the designated conditions clearly.

Create a Single Event
Simple events can be created through a fixed combination of signals. For
example, to capture a synchronous read and write cycle, you can specify the
correct signals and values. Simple events can then be used to form a complex
event (for example, limit the duration, the occurred sequence, or the number of
times the event must be issued).

1. Close the previous Verdi session.

2. Change directories to the <working_dir>/demo/verilog/rtl directory and
then invoke the Verdi platform as follows.
% cd <working_dir>/demo/verilog/rtl
% verdi -f run.f -ssf rtl.fsdb -workMode hardwareDebug &

3. In the nWave window, choose the Signal -> Get Signals command to open
the Get Signals form.

4. In the Get Signals form, select the R_W, clock, and reset signals under the
system/i_cpu scope and click the OK button.

5. Choose the Waveform -> Go To -> Time command to open the Search
Time form.

6. Enter 400 in the Time Value field and click the OK button.

The cursor changes to time 400 in the waveform pane.

7. With the three signals selected, choose the Signal -> Event command to
open the Event Window.

8. In the Event Window, click Insert to create event 0.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

151 Verdi User Guide and Tutorial Feedback

Figure: nWave Event Window

An event is inserted using the selected signals current values as the event
conditions.

9. In the Event Window, click Edit.

10. In the Edit Event form, change the name to read_cycle in the Event Name
field. Do not change the expression which should be:
“clock”=== `b1 && “reset” === `b1 && “R_W” === `b1

11. Click OK and the read_cycle event is added into Event Window.

12. Click Capture to view the related waveform. Leave the Event Window
open.

Save and Reload Events
1. In the Event Window, click Save and save the event to a file named

read_cycle.rc

2. Exit the Verdi session.

3. Start the Verdi platform again with:
% verdi -f run.f –ssf rtl.fsdb -workMode hardwareDebug &

4. In the nWave window, choose the Signal -> Event command.

5. In the Event Window, click the Restore button and load the read_cycle.rc
file. The read_cycle event is listed in Event tab.

6. Select the read_cycle event and click Capture, you find that the read_cycle
event is added to the nWave window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

 Verdi User Guide and Tutorial 152Feedback

Create a Complex Event
1. In the Event Window, click the Complex Event tab to add complex events.

2. On the Complex Event tab, click Edit. The Edit Complex Event form
opens.

3. In the Edit Complex Event form stay at level 0 and perform the following:

a. In the Complex Event Name field, enter level_trigger1.

b. Change the condition to IF read_cycle LASTS (click OCCURS to
change the action) 25ns THEN trigger.

After the changes, the form is similar the following figure:

Figure: nWave Edit Complex Event Form

c. Click OK to create this complex event and close the Edit Complex
Event form.

4. In the Event Window, click Capture to capture the event. The event is added
to the nWave window with signal name level_trigger1 as shown in the
following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

153 Verdi User Guide and Tutorial Feedback

Figure: level_trigger1 Captured in nWave

Create a Complex Event with a Timer
Two built-in timers are provided that can be used to compose the complex event.
Timers are used to trace the period of a complex event. They can be controlled
with different options: START, STOP, PAUSE, and CONT. The timer is globally
set. If no value is set for the timer in the sub-conditions, then the value is inherited
from the global setting. The sub-condition can have its own setting with a priority
higher than the global ones.

Example 1
1. In the Event Window, Complex Event tab, click Edit to open the Edit

Complex Event form.

2. In the Edit Complex Event form, stay at level 0 and perform the following:

a. In the Complex Event Name field, enter level_trigger2.

b. Change the condition to IF read_cycle LASTS 25 ns THEN goto level
1 (click trigger to change the action).

c. Leave the remaining fields unchanged.

d. Increase the level number from Level 0 to Level 1 by clicking the right
arrow.

3. In the Edit Complex Event window, stay at level 1 and perform the
following:

a. Change Timer1 to START

b. Change the condition to IF timer1 == 5 ns THEN trigger

c. Leave the remaining fields unchanged.

4. Click OK to create this complex event and close the Edit Complex Event
form.

5. In the Event Window, turn on the Also Capture Timer and Counter option
and click the Capture button to capture the event.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

 Verdi User Guide and Tutorial 154Feedback

The event is added to the nWave window with signal name level_trigger2.
When the state jumps from level0 to level1, timer1 is started, and then after
5 ns, the trigger occurs as shown as in the following figure:

Figure: level_trigger2 Captured in nWave

Example 2
1. In the Event Window, Complex Event tab, click Edit to open the Edit

Complex Event form.

2. In the Edit Complex Event form, stay at level 0 and perform the following:

a. In the Complex Event Name field, enter level_trigger3.

b. Change Timer1 to START.

c. Change the condition to IF read_cycle LASTS 25 ns THEN goto level
1 (click trigger to change the action).

d. Leave the remaining fields unchanged.

e. Increase the level number from Level 0 to Level 1 by clicking the right
arrow.

3. In the Edit Complex Event window, stay at level 1 and perform the
following:

a. Change Timer1 to STOP.

b. Change the condition to IF timer1 > 5 ns THEN trigger.

c. Leave the remaining fields unchanged.

4. Click OK to create this complex event and close the Edit Complex Event
form.

5. In the Event Window, turn on the Also Capture Timer and Counter option
and click Capture to capture the event.

The event is added to the nWave window with signal name level_trigger3.
When the state jumped to level1, timer1 is stopped, but the “IF” condition is
checked at the same time. At this time point, timer1 is still larger than 5, so
the trigger occurs as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

155 Verdi User Guide and Tutorial Feedback

Figure: level_trigger3 Captured in nWave

Example 3
1. In the Event Window, Complex Event tab, click Edit to open the Edit

Complex Event form.

2. In the Edit Complex Event form, stay at level 0 and perform the following:

a. In the Complex Event Name field, enter level_trigger4.

b. Change Timer1 to STOP.

c. Change the condition to IF read_cycle LASTS 25 ns THEN goto level
1 (click the trigger button to change the action).

d. Leave the remaining fields unchanged.

e. Increase the level number from Level 0 to Level 1 by clicking the right
arrow.

3. In the Edit Complex Event window, stay at level 1 and perform the
following:

a. Change Timer1 to STOP.

b. Change the condition to IF timer1 > 5 ns THEN trigger.

c. Leave the remaining fields unchanged.

4. Click OK to create this complex event and close the Edit Complex Event
form.

5. In the Event Window, turn on the Also Capture Timer and Counter option
and click Capture to capture the event.

The event is added to the nWave window with signal name level_trigger4.
The timer is not started. When the state jumped to level1, it checks the
“ELSE” condition and stays in level1 as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

 Verdi User Guide and Tutorial 156Feedback

Figure: level_trigger4 Captured in nWave

6. Exit the Verdi session.

Create Complex Event with a Counter
Two built-in counters are provided that are used for counting if some condition
occurs or not. Counters can be controlled with different options: INC, DEC, or
RESET. The counters are also set globally and they do not stop counting when
the level changes unless you reset them.

1. Start the Verdi platform again with:
% verdi -f run.f –ssf rtl.fsdb -workMode hardwareDebug

2. In the nWave window, choose the Signal -> Event command.

3. In the Event Window, click Restore and load the read_cycle.rc file. The
read_cycle event is listed in Event tab.

4. Select the read_cycle event and click Capture, you find the read_cycle
event is added to the nWave window.

Example 1
1. In the Event Window, Complex Event tab, click Edit to open the Edit

Complex Event form.

2. In the Edit Complex Event window stay at level 0 and perform the
following:

a. In the Complex Event Name field, enter counter_trigger1.

b. Change the condition to IF read_cycle OCCURS 2 Times THEN goto
level 0. When you click the trigger button to change the value to “goto
level 0”, the Actions form opens.

c. In the Actions form, turn on Counter1 and choose INC, then click
Apply.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

157 Verdi User Guide and Tutorial Feedback

d. Click More.

e. Change the ELSE IF condition to ELSE IF counter1 == 2 Times
THEN trigger.

f. Click trigger to open the Actions form.

g. In the Actions form, turn on Counter1 and choose RESET, then click
Apply.

h. Leave the remaining fields unchanged.

3. Click OK to create this complex event and close the Edit Complex Event
form.

4. In the Event Window, turn on the Also Capture Timer and Counter
option, and then click Capture to capture the event.

The event is added to the nWave window with signal name
counter_trigger1. The system is operating in real time, not sequential, so
the transition of read_cycle is checked twice when the state jumped to
level0 as shown in the following figure:

Figure: counter_trigger1 Captured in nWave

Example 2
1. In the Event Window, Complex Event tab, click Edit to open the Edit

Complex Event form.

2. In the Edit Complex Event window stay at level 0 and perform the
following:

a. Click New to clear the previous event description.

b. In the Complex Event Name field, enter counter_trigger2.

c. Change the condition to IF read_cycle OCCURS 2 Times THEN goto
level 0.

d. Click More.

e. Change the ELSE IF condition to ELSE IF counter1 == 2 Times
THEN trigger.

f. Leave the remaining fields unchanged.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

 Verdi User Guide and Tutorial 158Feedback

3. Click OK to create this complex event and close the Edit Complex Event
form.

4. In the Event Window, click Capture to capture the event.

The event is added to the nWave window with signal name
counter_trigger2. As counter1 is not increased in the condition; it does not
reach 2, so no trigger occurs as shown in the following figure:

Figure: counter_trigger2 Captured in nWave

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nWave Tutorial: Define Events and Complex Events

159 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nWave Tutorial'

nState Tutorial: Overview

 Verdi User Guide and Tutorial 160Feedback

nState Tutorial

Overview
nState is a Finite State Machine (FSM) viewer and analyzer that generates bubble
diagrams for visualization of state machines that are automatically recognized by
the Verdi platform when compiling the Verilog/VHDL source code modules.
States and transitions are annotated with logic conditions and animated with
simulation results. nState analyzes the simulation results to determine state and
transition coverage.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter.

The Verdi platform automatically recognizes any FSMs and indicates them in
nSchema with a symbol containing three linked circles, as shown in the following
figure:

Figure: Example of FSM Symbol in the nSchema Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: Start nState

161 Verdi User Guide and Tutorial Feedback

Start nState
1. Change the directory to <working_dir>/demo/verilog/cpu/src, and execute

the following command to import the FSM design:
% verdi -f run.f -workMode hardwareDebug &

2. Open a schematic window by double-clicking to select i_BJkernel in the
Instance tab of the design browser frame.

3. Click the New Schematic icon on the toolbar. The nSchema window
is displayed, as shown in the Example of FSM Symbol in the nSchema
Window figure above.

NOTE: If the nSchema window does not look like the above figure, confirm the
Enable Detail RTL option is turned on. This option is available on the
RTL page under the Schematics folder of the Preferences form
(invoked with the Tools -> Preferences command).

4. Double-click the FSM block in the nSchema window to view the state
diagram in an nState frame. An nState frame opens as a new tab in the same
area as the nSchema window:

Figure: nState Frame Displaying FSM

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: Manipulate the State Diagram View

 Verdi User Guide and Tutorial 162Feedback

Manipulate the State Diagram View
You can change the view of the state diagram using the following zoom
commands:

• Zoom In - You can view more details of the state diagram by moving the
view 50% from the center point in both the horizontal and vertical
directions. Invoke this command using one of the following methods:

• Toolbar icon

• Bind key Z

• View -> Zoom -> Zoom In command

• Zoom Out - You can view more contents of the state diagram by expanding
the view 2X from the center point, both horizontally and vertically. Invoke
this command using one of the following methods:

• Toolbar icon

• Bind key z

• View -> Zoom -> Zoom Out command

• Zoom All - You can view the entire contents of the state diagram. Invoke
this command using one of the following methods:

• Toolbar icon

• Bind key f

• View -> Zoom -> Zoom All command

• Zoom Area - You can view a specific area of the state diagram by dragging-
left to form a rectangle over the zoomed area.

You can move the viewing area of the state diagram in different directions using
the following methods:

• Scrolling - Click or drag the scroll bar of the nState window either
horizontally or vertically.

• Panning - Move the view up, down, left, or right using the arrow keys or
menus: View -> Pan -> Pan Up, View -> Pan -> Pan Down, View -> Pan
- > Pan Left, and View -> Pan -> Pan Right.

In addition, you can use the View -> Last View command or the bind key "l"
(lowercase L) to return to the last view.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: Manipulate the State Diagram View

163 Verdi User Guide and Tutorial Feedback

Enable Viewing Objects
You can enable or disable viewing for different objects (for example, state
actions, transition conditions, and so on) in the nState frame.

1. In nState frame, choose Tools -> Preferences command to open the
Preferences form.

2. Select the View Options page under the FSM folder and turn on the State
Action, Transition Action, and Transition Condition options.

3. Click OK to close this form and apply the changes.

4. Choose Tools -> Duplicate Window command to open another nState
frame and see the additional information. The nState frame is displayed as
follows:

Figure: nState Frame With Viewing Objects

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: Manipulate the State Diagram View

 Verdi User Guide and Tutorial 164Feedback

5. In the original nState frame, open the View menu and select the State
Action, Transition Action, and Transition Condition commands
individually. The state action and transition details are added to this view.

6. Choose Tools -> Preferences command to open the Preferences form again,
select the View Options page under the FSM folder. Turn off the State
Action, Transition Action, and Transition Condition options, and click
OK to close the form.

The options on the Preferences form affect all new nState frames - a global
setting. The View menu only affects the current nState frame - a local setting.

Find the Start and End States of a Transition
You can view the state that a transition is coming from and going to by clicking
the toolbar commands.

1. Click any transition in the nState frame.

For example, the transition leaves from the Evaluate state with a transition
condition of (!NewCard). Notice that the starting point of a transition arrow
represents the starting point of the transition.

After you have selected a transition, the Jump to From State and Jump to
To State icons on the toolbar are enabled.

2. Click the Jump to From State icon to see where the selected
transition is from.

The Evaluate state is highlighted with red color, that is, the selected
transition is starting from the Evaluate state.

3. Click the Jump to To State icon .

The Compare16 state is highlighted with red color, which indicates that the
selected transition ends in the Compare16 state.

4. Click any of the transitions to view what state the transition is coming from
and going to.

5. Select any transition and use the middle mouse button to drag the state and
drop it in the source code frame. The transition is automatically located and
loaded into the source code frame. All the statements associated with the
transition are highlighted.

6. Repeat the drag and drop action for any state for example, the Compare16
state. The statements associated with the state are automatically highlighted.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: Manipulate the State Diagram View

165 Verdi User Guide and Tutorial Feedback

Create a Partial Finite State Machine Frame
When your state machine is very large with many states, you may focus on a
portion only.

1. Select the MoreCard state.

2. Press and hold the <Shift> key, and select states Evaluate and Compare16.

3. Choose Tools -> Partial FSM command to open a new nState frame
showing only the selected states.

Figure: nState Frame Displaying Partial FSM

4. Click the Undock icon in upper right to make the partial FSM frame a
standalone window. From the full nState frame, select the Compare21 state
and drag it to the partial frame.

The state connection is added.

5. Close the Partial FSM frame.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: State Animation

 Verdi User Guide and Tutorial 166Feedback

State Animation
One of the challenges of state machine debug is seeing how the state machine
changes based on the current stimulus. You can use nState, nWave, and State
Animation to understand the flow.

Continue the following steps with an opened nState frame.

1. In the nTrace main window, choose File -> Load Simulation Results
command to open the Load Simulation Results form and load the simulation
results.

2. Select the <working_dir>/demo/verilog/cpu/CPUsystem.fsdb, and click
OK to load the simulation result file.

3. Click the New Waveform icon in the nTrace main window, the nWave
frame displays in the bottom.

The simulation file loaded in Step 1 is used as the loaded simulation result
file in nWave.

NOTE: For information on getting signals into the nWave window, refer to the
nWave Tutorial chapter.

4. In nSchema, select the FSM symbol and use the middle mouse button to
drag and drop to nWave. The FSM signals are added, as shown in the
following figure:

Figure: nWave Frame Displaying FSM Signals

NOTE: The state variable signal displays state aliases.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: State Animation

167 Verdi User Guide and Tutorial Feedback

5. After the simulation results are loaded, turn on the FSM -> State
Animation toggle command in the nState frame to enable state animation.

The nState frame shows the value changes by highlighting the state(s) and
transition, while the nWave window shows the value changes in the
waveform format. Compare the state signal State[2:0] in the waveform
pane of the nWave window with the state signal in the nState window. The
following figure shows nState and nWave at cursor time 700.

Figure: nState and nWave During State Animation

6. In nState, change the cursor time to 300ns by typing 300 in the Cursor
Time text box on the toolbar and press Enter on the keyboard.

nState highlights in pink the state(s) and the transition at the specified
cursor time in the nState frame. The Start state, MoreCard state are
highlighted. The cursor time in the nWave window synchronizes with the
Cursor Time text box in the nState window.

7. Click the Next State icon to move to the next state event.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: State Animation

 Verdi User Guide and Tutorial 168Feedback

The MoreCard state, the Evaluate state, and the transition in between are
highlighted. Notice that the cursor time changes to 400. This time change
indicates that the next value change occurs at the cursor time of 400.

8. Click the Previous State icon .

The Start state, the MoreCard state, and the transition in between are
highlighted, and the cursor time is 300.

NOTE: Sometimes when the next/previous state is the same as the current state,
the highlight on the nState frame remains the same but the cursor time
changes.

In addition to Next State and Previous State icons, the State List text box can
be used to go to a state. Following are the functions of the State List box:

• Finding the state in the nState window.

• Defining the state or state sequence for the Search Forward and
Search Backward icons.

9. Set the Search By criteria to State in the toolbar of the nState frame.

10. Use the State List box to find the state in the nState window. For example,
select Evaluate in the State List box.

nState finds and highlights the Evaluate state in the nState window (the state
changes from a blue background to a red background).

11. Click the Search Backward icon and Search Forward icon .

The Cursor Time text box shows the time when the state signal value
changes for the Evaluate state.

12. Choose FSM -> Edit Search Sequences command to open the Search
form.

13. In the Search form, click New to open the New Search Sequence form.

14. Type test in the Name text field.

15. Double-click Morecard, Evaluate, and Compare16 (or single-click and then
add by clicking on the Add State icon).

16. Click OK on the New Search Sequence form and Close on the Search form.

The Search By automatically changes to Search by Sequences and the
state list box displays the sequence, test.

17. Click the Search Backward and Search Forward icons.

The Cursor Time text box shows the time when the state sequence occurs.
This sequence occurs several times during this simulation.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

nState Tutorial: State Machine Analysis

169 Verdi User Guide and Tutorial Feedback

State Machine Analysis
After the simulation results are loaded, you can analyze the state machine further
based on the stimulus used.

1. Choose FSM -> Analysis Report command to open the Analysis Report
form as shown in the following figure. Notice that there are three tabs - with
the Source Code tab as the default tab.

2. Click the State tab.

Figure: Analysis Report Window

The number of times a state is accessed during the simulation is
summarized. Also, any states that are not covered are listed.

3. Click the Transition tab.

The number of times a transition is accessed during the simulation is
summarized. Also, any transitions that are not covered are listed.

4. In the nState frame, choose File -> Close Window command to close the
FSM window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nState Tutorial'

Smart Log Tutorial: Overview

 Verdi User Guide and Tutorial 170Feedback

Smart Log Tutorial

Overview
The Smart Log engine can be used to read and traverse log files in a readable
view. Smart Log loads a log file with a specific format that shows a structured
presentation of the log contents, thus providing a flexible and convenient use
model for debugging. The connection between the log file and the Verdi platform
is built according to the hyperlink rule files and the partitioning rule files.

Click the hyperlink to the log content in the Smart Log window to link to the
Verdi platform, for example, link to the source code location. The hyperlink rule
can be further customized with Tcl commands to execute a specific action in
Verdi. A partitioning rule can also be used to group the messages in Smart Log
for systematic and convenient log navigation.

Figure: Smart Log shows an example where you can jump to the specified time
and click the hyperlink in the Smart Log pane to directly link to the Source Code
pane in Verdi.

Figure: Smart Log

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Overview

171 Verdi User Guide and Tutorial Feedback

Smart Log offers the following features:

• Two browsing views to display log in the following modes:

• File View for sequential information

• Structure View for grouped information

• Identify and filter out the desired log messages

• Synchronize with the cursor in the nWave frame

• Unified usage for interactive simulation console

• Customization of hyperlink rules and partitioning rules

This chapter comprises of the following sections:

• Invoking Smart Log

• Navigating Smart Log

• Browse Views

• Specifying Time Unit in UVM/OVM Log File

• Using Hyperlink Rule File

• Configuring a New Partitioning Rule

• Applying Partitioning Rule

• Opening Multiple Smart Log Windows and Synchronizing with nWave

• Locating Objects

• Searching, Filtering, and Reloading the Log File

• Debugging in Verdi Frames

• Using Smart Log in Interactive Debug

• Known Issues and Limitations

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

 Verdi User Guide and Tutorial 172Feedback

Invoking Smart Log
Figure: Smart Log Flow illustrates the stepwise flow for invoking Smart Log and
loading a log file to Smart Log.

Figure: Smart Log Flow

The following steps describe how to invoke Smart Log and load a log file:

1. Click the Smart Log icon to open the Smart Log pane in the Verdi
main window, as illustrated in Figure: Invoke Smart Log Using Smart Log
Icon.

Figure: Invoke Smart Log Using Smart Log Icon

The Smart Log pane opens as illustrated in Figure: Smart Log Pane.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

173 Verdi User Guide and Tutorial Feedback

Figure: Smart Log Pane

2. Click the icon in the Smart Log pane to open a log file. The Open Log
form is invoked where you can select a log file in the Log File tab, as
illustrated in the following figure:

To specify partition rule files, click the Partition Rule Files tab.

• Specify a predefined partition rule file in the Predefined tab; click the
file you want to open and click on the arrow to include it to the Selected
Partitioning Rule Files section.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

 Verdi User Guide and Tutorial 174Feedback

• Specify a user-defined partition rule file in the User Defined tab; click
the file you want to open, click on the arrow to include it to the Selected
Partitioning Rule Files section.

The User Defined tab in the Partitioning Rule Files section lists all
directories and files with the .rc extension under the root directory. You can
configure the root directory and the change is saved in the novas.rc file.

Smart Log records the previously selected partitioning rule files in the
novas.rc file and displays these rule files in the Selected Partitioning Rule
Files section by default.

To specify a hyperlink rule file, click the Hyperlink Rule File tab,

• Select a predefined hyperlink rule file in the Predefined Hyperlink
Rules section.

• Select a user-defined or customized hyperlink rule file using the
icon.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

175 Verdi User Guide and Tutorial Feedback

3. Click the Open button in the Open Log form.

If there is an SML file for the specified log file, the SML file is
automatically used for partitioning the log file in Structure View.

NOTE: If the log file is generated by VCS with the -sml -l
<log_file_name> simulation option, <log_file_name>.sml is also
generated at the same time.

If the selected log file has a corresponding SML file, the Partitioning Rule Files
section is hidden.

Figure: Displaying a Log File in Smart Log illustrates an example of Smart Log
displaying a UVM log file with the rule file.

Figure: Displaying a Log File in Smart Log

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

 Verdi User Guide and Tutorial 176Feedback

Opening multiple log files is also supported. Each log file is loaded in the
corresponding tab. The hyperlink rule file and the partitioning rule file specified
in different tabs are independent.

Auto Select Rules
This section describes the auto select rules in the following sub-sections:

• Checking Mapping Rule File

• Predicting Mapping Rule

• Auto Select Rule Mode

Checking Mapping Rule File
A mapping rule file contains multiple mapping rule sets and a mapping rule set
contains the following three items:

1. patternInFileName (regular expression) or patternInLogHeader (regular
expression)

1.1 patternInFileName: is used to match the log's file name

1.2 patternInLogHeader: is used to match the log's first 30 lines

2. hyperlinkRule: is applied if the pattern matches

3. partitionRules: is applied if the pattern matches

The absolute path to the mapping rule file is specified in novas.rc, and SmartLog
parses the specified file.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

177 Verdi User Guide and Tutorial Feedback

Example
• If the file name of the selected log starts with "sim" and ends with ".log", for

example, "simulation.log", the following mapping rule set gets selected:

• If any line of the first 30 lines of the log file contains "listModFile", the
following mapping rule set gets selected:

Predicting Mapping Rule
SmartLog predicts suitable partition rule files and hyperlink rule file for the
selected log, if the selected log does not match any mapping rule set in the
mapping rule file.

The user-defined partition rule files are included in predicting a rule, if the
directory which contains the user-defined partition rule files is specified in the
novas.rc file.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

 Verdi User Guide and Tutorial 178Feedback

Auto Select Rule Mode
You can change the auto select rule mode using the Auto Select Rule Mode field
in the Open File form.

The following options are available in the Auto Select Rule Mode field:

• Always On: Enables auto-select rule.

• Normal: Enables auto-select rule.

The Normal mode changes to the Always Off mode, if any partition rule
files or hyperlink rule file is added or removed in the Open Log form and if
the Open button is clicked in the Open Log form.

• Always Off: Disables auto select rule.

The Auto Select Rule Mode field is illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

179 Verdi User Guide and Tutorial Feedback

Displaying ANSI Colors in SmartLog
If a log file has an ANSI flag, by default, SmartLog shows the ANSI flag directly,
as illustrated in the following figure:

To enable SmartLog to parse the ANSI flags present in a log file and display
ANSI colors in the opened log file, perform the following steps:

1. In the Open Log form, enable/check the Parse ANSI check box.

2. Select a log file and click Open.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

 Verdi User Guide and Tutorial 180Feedback

The Open Log form is illustrated in the following figure:

On selecting the Parse ANSI check box, SmartLog displays the log file with
ANSI colors as follows:

NOTE: Enabling the Parse ANSI option while opening a log file may cause
performance issue, therefore, you must enable it only if required.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Invoking Smart Log

181 Verdi User Guide and Tutorial Feedback

Opening a Log File Using Verdi Commands
You can use the following commands to open a log file in Smart Log:

• -smlog logfile

Loads the specified log file with Smart Log.

• -smlog_hyper | -smlog_h ruleFile

Specifies the hyperlink rule file for the specified log.

NOTE: This option must be used with the -smlog option.

• -smlog_partition | -smlog_p "ruleFile1
ruleFile2...ruleFileN"

Specifies the partitioning rule file(s) for the specified log. A pair of double
quotes (") must be used to enclose the partitioning rule file(s).

NOTE: This option must be used with the -smlog option.

Examples
The following are some examples to demonstrate use cases to open log file(s)
using Verdi commands:

Example 1 - To open a specified log (test.log) with specified partitioning rule file
(parRule1.rc) and hyperlink rule file (hyperRule.rc), use the following
command:

%> verdi -smlog test.log -smlog_hyperlink hyperRule.rc
-smlog_partition “parRule1.rc”

Example 2 - To open a specified log (test.log) with specified partitioning rule
files (parRule1.rc, parRule2.rc) and hyperlink rule file (hyperRule.rc), use the
following command:

%> verdi -smlog test.log -smlog_hyperlink hyperRule.rc
-smlog_partition “parRule1.rc parRule2.rc”

Example 3 - To open specified log files (test1.log, test2.log) with the same
specified partitioning rule files (parRule1.rc, parRule2.rc) and hyperlink rule file
(hyperRule.rc), use the following command:

%> verdi -smlog test1.log -smlog test2.log -smlog_hyperlink
hyperRule.rc -smlog_partition “parRule1.rc parRule2.rc”

Example 4 - To open multiple log files (test1.log, test2.log) with different
partitioning rule files and hyperlink rule files, use the following command:

%> verdi -smlog test1.log -smlog_hyperlink hyperRule1.rc
-smlog_partition “parRule1.rc” -smlog test2.log

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Navigating Smart Log

 Verdi User Guide and Tutorial 182Feedback

-smlog_hyperlink hyperRule2.rc -smlog_partition
“parRule2.rc”

NOTE: You can also use the viaLogViewerOpenLog Tcl command to open
a log file. For details on SmartLog Tcl commands, see the SmartLog
chapter in Verdi and Siloti Tcl Reference Guide.

Navigating Smart Log
Smart Log provides a toolbar with frequently used commands to navigate the log
files, as illustrated in Figure: Smart Log Layout.

Figure: Smart Log Layout

The icons in the toolbar can be used to navigate the displayed content in Smart
Log for the currently displayed log file.

Shortcut Keys for Smart Log
Following is the list of shortcut keyboard keys that can be used to navigate
through the Smart Log tabs:

• Ctrl + PageDown - Use this shortcut to move to the next Smart Log tab.

• Ctrl + PageUp - Use this shortcut to move to the previous Smart Log tab.

• Ctrl + w - Use this shortcut to close the Smart Log tab.

• Ctrl + f - Use this shortcut to select the search field in the Smart Log pane.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Navigating Smart Log

183 Verdi User Guide and Tutorial Feedback

Figure: Search Field in SmartLog Window

Wrapped Text
In the SmartLog window, if the text is a long string which is too long to be
displayed in the window, you can enable the text wrap functionality to fit the text
in the available width of the window. To enable the text wrap functionality, click
the Text Wrap Mode Switch icon, as illustrated in the following figure:

Figure: Text Wrap Mode in SmartLog Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Navigating Smart Log

 Verdi User Guide and Tutorial 184Feedback

The wrapped text is also displayed in the ToolTip that appears next to it, as
illustrated in the following figure:

Figure: ToolTip in SmartLog Window

You can use the Ctrl +T shortcut key to open the ToolTip Viewer and read or copy
the complete string. If the long string contains a hyperlink, you can view and
click the hyperlink in the ToolTip viewer. The following figure shows the ToolTip
viewer:

Figure: ToolTip Viewer

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Browse Views

185 Verdi User Guide and Tutorial Feedback

Browse Views
Smart Log has two browse views: File View and Structure View, which display
the context of the log files. After loading a log file into the Smart Log pane, click
the icon to switch File View and Structure View to display the context. These
views are described in the following sections:

• File View

• Structure View

File View
As illustrated in Figure: Displaying a Log File in Smart Log, File View displays
the log text row by row, accompanied with some keywords as hyperlinks.

When a hyperlink is clicked upon, the corresponding action described in the
hyperlink rule file is triggered. Smart Log uses the hyperlink rule written in a *.rc
file to define where to set the hyperlink, and what to do after clicking the
hyperlink keyword. Click the icon to configure an existing hyperlink rule or
customize your own hyperlink rule (for details about the usage of the hyperlink
rule file, see the Using Hyperlink Rule File section).

Structure View
The Structure View displays the content of the log file in a spreadsheet. As
illustrated in Figure: Structure View, the content is grouped into several blocks
based on attributes (such as time, severity, file name and so on) specified in the
partitioning rule file. Each block delivers one message and contains time,
severity, and entire content for the message. For details about the partitioning
rule file, see the Applying Partitioning Rule section.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Browse Views

 Verdi User Guide and Tutorial 186Feedback

Figure: Structure View

The following columns are present in the Structure View:

• Time

The simulation time of a block in the log file is displayed in the Time
column, when the specified partitioning rule file contains the Time attribute.
If the partitioning rule file does not contain the Time attribute, the value 0 is
displayed in the field for each block.

NOTE: The value of the Time attribute is assumed as an unsigned integral type.
The values should monotonically increase with the rows in the log file.

• Severity

The severity of a block is displayed in the Severity column.

The font color of the block is determined by the severity type, as follows:

• If the severity type is Fatal or Error, the block font color is red.

• If the severity type is Warning, the block font color is orange.

• In other cases, the block font color is black.

You can also customize the displayed text and the text color for the severity
list using the Severity page in the SmartLog folder of the Preferences form
in Verdi.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Browse Views

187 Verdi User Guide and Tutorial Feedback

Figure: SmartLog Page in Preferences Form

NOTE: Empty spaces can not be entered in the Display Text field.

• Message

The entire content of a block is displayed in the Message column. The
hyperlink rule is also applied to the text. The behavior in the Message
column is the same as that in File View.

Use Time and Severity right-click options on the heading of the columns to hide
or display the corresponding column.

• Code

The code of a block in the log file is displayed in the Code column. This
column is hidden by default. To display this column, right-click on the
heading of the columns and enable the Code option.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Browse Views

 Verdi User Guide and Tutorial 188Feedback

• Type

The type of a block in the log file is displayed in the Type column. This
column is hidden by default. To display this column, right-click on the
heading of the columns and enable the Type option.

NOTE: You can rearrange the sequence of the columns in the Structure view by
clicking and dragging a column.
You can restore the last display settings for columns including column
width and column sequence from the novas.rc file.

User Specified Columns
SmartLog allows users to extract valuable information from a specific log and
create a new column in the Structure view to store that information.

To add the user specified column,

1. Click the Configure Partitioning Rule icon present on the SmartLog
toolbar.

2. In the Rule Pattern Definition section in the Configure Partitioning Rule
form, click the icon.

3. In the Configure User Specified Types form, edit the user specified types by
clicking Add and Delete buttons.

Figure: Configure User Specified Types Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Browse Views

189 Verdi User Guide and Tutorial Feedback

Once the configuration is done, the new types are added in the dropdown
list, as illustrated in the following figure:

The user-specified columns (if any) are displayed by default in SmartLog.

Rearranging the Columns
You can also rearrange the column sequence as desired, by clicking and dragging
the columns towards left or right. The following figures show rearrangement of
Time and Severity columns.

Restoring Previous Column Display Settings
You can restore the previous settings for display of columns using the novas.rc
settings file. The width of the columns, sequence of the columns, and the show/
hide settings for columns are restored on using the novas.rc file.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Specifying Time Unit in UVM/OVM Log File

 Verdi User Guide and Tutorial 190Feedback

Specifying Time Unit in UVM/OVM Log File
SmartLog acquires the timing information from the following time units;

• Log Time Unit

The log time unit is applied on time without a unit and affects the time
value.

For example, if the time 10 without unit is recognized by SmartLog and log
time unit is set as ns, SmartLog considers it as 10ns.

If the log time unit is not specified correctly, it breaks down the
synchronization between SmartLog, nWave, and Transaction and Protocol
Analyzer.

• Display Time Unit

The display time unit does not affect the time value, it only impacts how the
time is displayed.

For example, if the time is 1000ns, SmartLog shows 1000 with display time
unit ns, and shows 1 with display time unit ms.

Specifying the Log Time Unit
You can specify the log time unit using any of the following methods:

• Click the Time -> Setup Log Time Unit menu command.

• Specify through the partition rule. For details, see Creating Log Time Unit
Rule.

If the log time unit is not fixed, it is recommended to always print time with unit
in the log file. For example, in SV HDL code, use $timeformat in the
testbench to display time with unit in the log file.

Specifying the Display Time Unit
You can specify the display time unit using the Time -> Setup Display Time
Unit menu command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Hyperlink Rule File

191 Verdi User Guide and Tutorial Feedback

Using Hyperlink Rule File
For a loaded log file in Smart Log, the specified hyperlink rule file can be
manually configured and updated as a new hyperlink rule file in the GUI
interface. The configurations of currently loaded hyperlink rule file gets
displayed in the Configure Rule Set form, when you click on the icon or use
the Rule -> Configure Hyperlink Rule command in the Smart Log pane. This
is also illustrated in Figure: Configure Hyperlink Rule Form.

Figure: Configure Hyperlink Rule Form

Click the Import or the Import Default button to get the configurations in
another hyperlink rule file or the default file. After importing the rule file, the
configurations are displayed in Rule Set, Rule Pattern Definition, and Action
sections. Edit the sections to customize the rules.

The following are rule sets, rule pattern definitions, and actions in the Configure
Hyperlink Rule form:

• Rule Set: This section displays all rule sets in the imported hyperlink rule
file. When a rule set is selected in the Rule Set section, the corresponding
rule pattern is displayed in the Rule Pattern Definition section. The rule
set in the higher row has a higher priority in this hyperlink rule file. Use

 or icons to increase or decrease the priority.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Hyperlink Rule File

 Verdi User Guide and Tutorial 192Feedback

Use or icons to add or delete a rule set in the Rule Set section.
Double-click a rule set to change the name of the rule set.

• Rule Pattern Definition: This section shows how to bind a hyper link in
the log file using regular expressions. If the content in the log file matches
the pattern specified in the Pattern field, a hyper link binds to the content
and is displayed in the Smart Log pane, as illustrated in Figure: Hyperlink
Binding.

Figure: Hyperlink Binding

When a pattern is selected in the Rule Pattern Definition section, the
corresponding action is displayed in the Action section. The variable name is
specified in the Variable field for a pattern or sub-pattern as the variable used in
the corresponding action. Use or icons to add or delete a rule pattern.

If a rule includes multiple patterns, the content in the log file matching pattern is
bound to the hyper link line by line. As illustrated in Figure: Line By Line
Pattern, the matched text in the log file matches the pattern specified in Line 0
and then matches the pattern specified in Line 1 in-order. Use or
icons to move up or down the orders of the patterns.

Figure: Line By Line Pattern

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Hyperlink Rule File

193 Verdi User Guide and Tutorial Feedback

• Action: This section shows what action (written in Tcl) is executed in Verdi
after clicking the hyperlink shown in the Smart Log pane. The variable
specified in the Rule Pattern Definition section can be used in the Tcl
commands with the dollar sign ($) character prefix, as illustrated in Figure:
Variable Usage.

Figure: Variable Usage

After changing the configurations, click the OK button to save the changes to the
hyperlink rule file and apply the rules to the loaded log file. The current log file
and the other log files that use the same hyperlink rule file are automatically
refreshed based on the updated hyperlink rule file.

Additionally, use the Save As button to save as another hyperlink rule file with
.rc file name extension.

NOTE: If the Configure Rule Set form is closed by clicking the Cancel button,
save and save as actions are not reverted.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 194Feedback

Configuring a New Partitioning Rule
You can also create or edit multiple partitioning rule files to partition a log into
several blocks and extract the properties (Time, Code, Severity) into the blocks.
You can save these partitioning rule files so that these can be used based on the
requirement later.

Perform the following steps to configure or write a new partitioning rule:

1. Click the Configure Partitioning Rule icon present on the Smart
Log toolbar. The Configure Partitioning Rule form opens up as follows:

Figure: Configure Partitioning Rule Form

NOTE: Each log file can imply multiple partitioning rule files.
Each partitioning rule file has multiple rules and must have exclusive
type name.
Each rule has one pattern.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

195 Verdi User Guide and Tutorial Feedback

2. In the Rule Pattern Definition field, select the type of sub-pattern using the
predefined combo box (as illustrated in the figure below). You can select
one of the following types:

• Severity

• Time

• Code

NOTE: Severity/Time/Code can be selected once in one pattern.

Example to Demonstrate Creating a Customized Partition
Rule File
If you want to partition your log file, perform the following steps:

1. Click the icon in the Smart Log pane to open the log file.

2. In the Open Log form, select the log file and click Open.

Figure: Open Log Form

3. Click the Configure Partitioning Rule icon present in the Smart Log
toolbar.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 196Feedback

4. In the Configure Partitioning Rule form, click the Add Rule Set icon,
enter a name for the new rule set in the File Name(.rc) field, and click OK,
as illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

197 Verdi User Guide and Tutorial Feedback

5. In the Configure Partitioning Rule form, click the Add Rule icon in
the Rule Set section, enter a name for the new rule in the Rule Name field,
and click OK, as illustrated in the following figure:

6. To edit the partitioning pattern based on the syntax of the opened log file,
click the Edit Rule Pattern icon in the Rule Pattern Definition
section, enter the partitioning pattern, and click OK, as illustrated in the
following figure:

In this example, the MY_(\w+) +\[(\w+)\] +@([0-9]+) pattern is
used.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 198Feedback

Double-click the Type field in the Rule Pattern Definition section and select
the sub-pattern type, as illustrated in the following figure:

7. Select the severity and edit the pattern (if needed) in the Severity Mapping
section, as illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

199 Verdi User Guide and Tutorial Feedback

8. Click the Save As button in the Configure Partition Rule form. The Save As
form opens up, enter the file name and click the Save button in the Save As
form. Then, click on the OK button in the Configure Partition Rule form.

The new partitioning rule file gets saved with the specified customized settings
mentioned in the preceding steps.

Creating Log Time Unit Rule
SmartLog allows you to create a log time unit rule and if the specified pattern in
the rule matches a line in the opened log file, the log time unit is set
automatically.

To create a log time unit rule, perform the following steps:

1. Click the Configure Partitioning Rule icon present in the Smart Log
toolbar.

2. In the Configure Partitioning Rule form, click the partitioning rule for
which you want to create a log time unit rule in the Using Partitioning Rule
section and then click the Add Log Time Unit Rule icon, as
illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 200Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

201 Verdi User Guide and Tutorial Feedback

3. Click the Edit Pattern icon in the Rule Pattern Definition section and
enter the pattern in the Edit Rule Pattern form, as illustrated in the
following figure:

4. Double-click the Type column in the Rule Pattern Definition section and
select LogTime for the defined pattern, as illustrated in the following figure:

5. Click the Save As button to save the log time unit rule.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 202Feedback

SmartLog searches the log file for the pattern specified in the newly created log
time unit rule; if any line in the log file matches the pattern, the log time unit
would be set automatically.

As an example (illustrated in the previous steps), the pattern of log time unit rule
is: timeScale : (\d+(fs|ps|ns|us|ms|s|FS|PS|NS|US|MS|S)
and the Type of LogTime is set to
(\d+(fs|ps|ns|us|ms|s|FS|PS|NS|US|MS|S)). As a result, the
timescale in the log file gets set to 66fs automatically, as illustrated in the
following figure. You can view the log time unit for the log file using the
Time -> Setup Log Time Unit menu option.

Backward Compatibility for Customized Partitioning
Rule File Created Using Tcl Commands

If a customized/user-defined partitioning rule file is created using Tcl command
entry, the par_rule_USER.rc file gets generated and saved in the
novasLog directory.

You can open the customized/user-defined log file and apply the partitioning rule
using the par_rule_USER.rc file by performing the following steps:

1. Open the par_rule_user.rc file using the icon in the Smart Log
pane.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

203 Verdi User Guide and Tutorial Feedback

2. In the Open Log form, select the User Defined tab. In the User Defined tab,
click the par_rule_USER.rc file and click the icon to select the
par_rule_USER.rc file.

3. Click the Configure Partitioning Rule icon present in the Smart Log
toolbar. The Configure Partitioning Rule form opens that displays the
par_rule_USER.rc partitioning rule and it’s rule set.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Configuring a New Partitioning Rule

 Verdi User Guide and Tutorial 204Feedback

If time syntax is applied in the customized partitioning rule, the Configure
Partitioning Rule form displays the Time Syntax field. This is illustrated in
the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Applying Partitioning Rule

205 Verdi User Guide and Tutorial Feedback

Applying Partitioning Rule
The Structure View in Smart Log groups and displays the log file based on the
partitioning rule. If the line text in the log file matches the specified format in the
partitioning rule, a block is created and the text in the following line that does not
match the specified format belongs to the block.

As described in the beginning of this chapter, select one partitioning rule in the
invoked Select Partitioning Rule form while loading a log file.

Figure: Applied Partitioning Rule illustrates an example for a UVM log file
applying the UVM partitioning rule.

Figure: Applied Partitioning Rule

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Opening Multiple Smart Log Windows and Synchronizing with nWave

 Verdi User Guide and Tutorial 206Feedback

Opening Multiple Smart Log Windows and
Synchronizing with nWave

You can also debug multiple logs and their corresponding waveforms at the same
time by opening multiple Smart Log windows and synchronizing each log to a
certain waveform.

To open a new Smart Log window, click the Tools -> New SmartLog menu
option, as illustrated in the following figure:

Alternatively, you can open a new Smart Log window using the New SmartLog
 icon present on the Verdi toolbar.

To enable or disable synchronization between multiple Smart Log panes and
nWave panes, click the synchronization icon in the Smart Log pane.

If multiple nWave windows are opened, the Sync to Waveform form opens up (as
illustrated in the figure below) and you can select the nWave window to be
synchronized.

When enabling synchronization with nWave for the first time, by default, none
of the synchronized waveforms is selected in the Sync to Waveform form;
otherwise the previously specified nWave window is selected in this form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Opening Multiple Smart Log Windows and Synchronizing with nWave

207 Verdi User Guide and Tutorial Feedback

Figure: Sync to Waveform Form

The tooltip of the synchronization icon shows the synchronization status of an
already synchronized nWave window as illustrated in the following figure:

Additionally, the SmartLog window and the log file tab that are synced to the
primary nWave window display the * symbol in the title, for example,
*<SmartLog:4> and *sim.log.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

 Verdi User Guide and Tutorial 208Feedback

The following figure illustrates an example of multiple Smart Log windows
synchronized with multiple nWave windows:

Locating Objects
The following sections describe how to locate a specified point in the log file
using Smart Log:

• Locating a Specified Line Number

• Locating a Specified Time Point

• Synchronizing the Cursor in the nWave Pane

• Locating the Previous/Next Point

Locating a Specified Line Number
The line numbers are displayed in the File View of Smart Log. Specify a line
number in the Line field and press Enter to jump the cursor to the specified line
and highlight the same, as illustrated in Figure: Jumping to the Specified Line.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

209 Verdi User Guide and Tutorial Feedback

Figure: Jumping to the Specified Line

In Structure View, use this feature to jump to the corresponding line, however, the
line number is not displayed. Specifying a line that is filtered out has no effect
and no action is performed.

Locating a Specified Time Point
The Time Cursor field indicates the value of the time cursor in the Time Ruler
section. You can jump the cursor to a block for which time is the closest and does
not exceed the specified time using any of the following methods:

• Specify a time in the Time Cursor field and press Enter.

• Click a point within the Time Ruler section to move the time cursor.

Figure: Jumping to the Specified Time

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

 Verdi User Guide and Tutorial 210Feedback

Setting the Scroll Offset
You can define or set the scroll offset as follows:

1. Click the Tools -> Preferences command to open the Preferences form.

2. In the General page in the SmartLog folder, specify the scroll offset in the
Scroll Offset field, as illustrated in the following figure:

3. Click Apply and OK to save the settings.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

211 Verdi User Guide and Tutorial Feedback

Locating the Specified Line Number With Scroll Offset
After the scroll offset is set, you can locate the line number specified in the Line
field easily. For example, if the scroll offset is set to 10, the cursor jumps to the
specified line with 10 lines above it. This is also illustrated in the following
figure:

Locating the Specified Time Point With Scroll Offset
After the scroll offset is set, you can locate the time point specified in the Time
Cursor field easily. For example, if the scroll offset is set to 10, the cursor jumps
to the specified time with 10 lines above it. This is also illustrated in the
following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

 Verdi User Guide and Tutorial 212Feedback

Synchronizing the Cursor in the nWave Pane
Click the synchronization icon in the Smart Log pane to enable or disable
synchronization between the time cursor in the Smart Log pane and in the nWave
pane. When it is enabled, the nWave cursor is synchronized with the time
specified in the Time Cursor field or with the time that is specified by clicking
a point in the Time Ruler section and vice versa. This is also illustrated in
Figure: Time Cursor Synchronization.

Figure: Time Cursor Synchronization

In Structure View, click the Time column to synchronize the time cursor in the
nWave pane, as illustrated in Figure: Time Cursor Synchronization by Clicking
Time Column.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Locating Objects

213 Verdi User Guide and Tutorial Feedback

Figure: Time Cursor Synchronization by Clicking Time Column

The default time unit of the log file is ns. Time unit mismatches between nWave
and Smart Log panes causes synchronization mismatches. Configure the log time
unit by using the Time -> Setup Log Time Unit command in Smart Log to
invoke the Setup Log Time Unit form, as illustrated in Figure: Log Time Unit
Configuration.

Figure: Log Time Unit Configuration

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

 Verdi User Guide and Tutorial 214Feedback

Locating the Previous/Next Point
Use the following features to jump the cursor to the previous/next time or block:

• Jump Cursor to Previous/Next time

Different lines in the log file may have the same time information. The
current time is the time of the first message (line) in the displayed content.
Use or icons to jump to the previous or the next time for the first
message in previous or next messages group with the same time.

• Jump Cursor to Previous/Next block

Use or icons to jump cursor to the previous or the next blocks.

Searching, Filtering, and Reloading the Log
File

The following sections describe how to search and filter out the content of the log
file in Smart Log:

• Setting the Message Filter

• Setting the Time Filter

• Searching

• Displaying the Search Result Section

• Reloading the Log File

Setting the Message Filter
In Structure View, click the icon to filter out the log file with the specified
message type, message severity, and error code. These three filter categories
interact with AND logic and have level order. The higher level filter impacts the
number of count in the lower level filters.The level sequence is: Message type >
Message severity > Error code. As illustrated in Figure: Message Filter Setting,
select the specified type, severity, and error in the invoked Message Filter form
and click the OK button. Smart Log displays the blocks that match the filtering
criteria in Structure View.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

215 Verdi User Guide and Tutorial Feedback

Figure: Message Filter Setting

Select the Use Regular Expression checkbox to filter code by regular expression
patterns. For example, you can enter TE to match TEST and CREATE. You can
also click to create a new code filter and you can filter multiple codes
simultaneously.Click to remove codes for filtering.

Figure: Message Filter-Multiple Codes Filter

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

 Verdi User Guide and Tutorial 216Feedback

If user specified columns are added in Smartlog, the Message Filter form shows
the User Specified section, as illustrated in the figure below. You can filter the
user specified columns as per the specified keywords.The number of filter
objects within the User Specified section is decided by the number of
user-specified columns specified by the user.

Figure: Message Filter for User Specified Columns

Setting the Time Filter
Click , , or icons to zoom in/out/all the range of the time ruler.

In Structure View, use the range of the time ruler to filter out a block if the time
of the block is out of the range of the time ruler using the following method:

• Click within the Time Ruler section.

• Drag and drop the region to create a blue rectangle. The time ruler duration
occupied by the blue rectangle is the new range of the time ruler.

This is also illustrated in Figure: Time Filter Setting.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

217 Verdi User Guide and Tutorial Feedback

Figure: Time Filter Setting

Searching
In Structure View, you can search the log file to highlight a string and filter out
the blocks that do not contain the matched string. Specify a string (with or
without the plus character (+) prefix) in the Search field and click the icon
or press Enter. Only the blocks with messages that meet the searched criteria are
displayed, as illustrated in Figure: Searching the Log File. Continue clicking the
icon or press Enter to search the result in another line. Click the icon to go
back to the previously searched result.

In File View, you can search a string without filtering the other content.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

 Verdi User Guide and Tutorial 218Feedback

Figure: Searching the Log File

The option of searching with multiple strings is also available. The multiple
strings are separated by space. To restore the original content, search an empty
string.

Furthermore, to search the exception string, add the minus character (-) before
the exception string, as illustrated in Figure: Searching With an Exception String.
The string following the minus character (-) is considered as a must-not-have
pattern for search.

NOTE: If the plus character (+) is the prefix of a string, the string following the
+ character with the whole pattern is recognized as a key word of the
inclusion string. The string is considered as a must have pattern for
search.
To search for the exact match of a string, enclose it in double quotes
(such as, "test").

Figure: Searching With an Exception String

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

219 Verdi User Guide and Tutorial Feedback

Example Use Cases
The following are some examples to demonstrate the search functionality:

• Search string: +clk +module +top

SmartLog searches for the line that contains "clk", "module", and "top". It
highlights "clk", "module", and "top" for the matched line.

• Search string: clk module top

SmartLog searches for the line that contains "clk" or "module" or "top". It
highlights "clk", "module" and "top" for the matched line.

• Search string: -clk -module -top

SmartLog searches for the line that does not contain "clk", "module", and
"top". It highlights nothing.

• Search string: +clk +module top

SmartLog searches for the line that contains "clk" and "module". It
highlights "clk", "module" and "top" for the matched line.

• Search string: +clk +module -top

SmartLog searches for the line that contains "clk" and "module", but not
"module". It highlights "clk" and "module" for the matched line.

• Search string: clk module -top

SmartLog searches for the line that contains "clk" or "module", but not
contain "top". It highlights "clk" and "module" for the matched line.

• Search string: +clk module -top

SmartLog searches for the line that contains "clk" but not "top". It
highlights "clk" and "module" for the matched line.

• Search string: "A = 3"

SmartLog searches for the line that contains "A = 3". It highlights "A = 3"
for the matched line.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Searching, Filtering, and Reloading the Log File

 Verdi User Guide and Tutorial 220Feedback

Displaying the Search Result Section
Click the icon to display the Search Result section that shows the lines
containing the matched string, as illustrated in Figure: Search Result Section.

Figure: Search Result Section

In the Search Result section, click a row to highlight it in the log file. The search
result can be further filtered by specifying a string in the Filter field. Set the
numbers of the start and end lines in the Range (Start-End) field to view the
search result with the specified range, as illustrated in Figure: Filtering Search
Result.

Figure: Filtering Search Result

Reloading the Log File
If a log file is changed or appended, you can reload the log file using the Refresh
Log icon present in the Smart Log toolbar or using the Rule -> Refresh
Log command. The log file gets refreshed with the original hyperlink/
partitioning rule settings. Smart Log automatically refreshes the log when the
hyperlink/partitioning rule changes.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Debugging in Verdi Frames

221 Verdi User Guide and Tutorial Feedback

Debugging in Verdi Frames
Use the right-click command menu to display the object in the corresponding
panes for a selected signal or an instance.

Use the following steps to debug a selected item:

1. Select the full hierarchy path of a signal or an instance string.

Alternatively, right-click on a full hierarchy path of a signal or an instance
string and the string is selected automatically.

You can change the auto-selection rule for a string as follows:

 1. Click the Tools -> Preferences command to open the Preferences form.

 2. In the General page in the SmartLog folder, specify the additional
characters in the Specify additional character(s) for word selection
field, as illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Debugging in Verdi Frames

 Verdi User Guide and Tutorial 222Feedback

NOTE: Auto-selection rule on a word is applied when you double-click on a
word/text or right-click on a word/text.
The auto-selection region is extended when the text matches the regular
expression pattern (\w) or the character(s) specified by users in the
Preferences form.

For example, if you right-click on the g character of the Signal[0:9]
string,

• The word Signal gets selected, if additional characters are not
specified in the Preferences form.

• The word Signal[0:9] gets selected, if additional characters
specified in the Preferences form are:[]

2. Use the Show Source right-click menu option to show the source code in
the source code pane.

3. Use the Show Schematic right-click menu option to show and highlight
selected signal or instance in the nSchema pane.

4. Use the Add to Waveform right-click menu option to add selected signal or
scope to the nWave pane.

5. Use the Show in Hierarchy right-click menu option to show the selected
instance in the hierarchy tree of the Verdi Instance tab.

6. Use the following Trace right-click menu option to perform the tracing
features for the selected signal in the Verdi platform:

• Driver: Traces all possible drivers for the selected signal.

• Load: Traces all possible loads for the selected signal.

• Connectivity: Traces all possible drivers and loads for the selected
signal.

• Chain Driver: Traces through buffer/inverter chains and stops at the
first non-single input driver.

• Active Trace: Locates the active driver in the source code pane for the
selected signal.

7. Use the following Save right-click menu options to perform the saving
features:

• Contents: Saves the entire content of the log file into a text file.

• Selected Text: Saves the selected text of the log file into a text file.

8. When the SML file exists, use the Show $display Source right-click
command to show the source code in the source code pane which prints the
selected message.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Smart Log in Interactive Debug

223 Verdi User Guide and Tutorial Feedback

9. Use the Set Waveform Cursor as Block Time right-click command in a
block to synchronize the time of the block to the cursor time of the nWave
pane.

The drag and drop feature is also available. Drag one of the following texts from
Smart Log and drop it to other panes in the Verdi platform:

• A signal with full hierarchy path

• An instance with full hierarchy path

• The Top module

Using Smart Log in Interactive Debug
Smart Log is also available in Interactive Console in the Verdi platform and the
new Interactive console is enhanced with Smart Log engine. If the VCS
simulator is used to generate an SML file, you can also use it with the SML file.

NOTE: This is available starting with the Verdi J-2014.12-SP1 version.

The following sections describe how to invoke Smart Log in interactive debug in
Verdi and how to use its features:

• Invoking Interactive Debug

• Command Entry

• Scroll Bar Behavior

Invoking Interactive Debug
You can invoke Verdi interactive debug with -i and -simType options in the
Verdi command line. For example:

%> verdi -sv test.sv -i -simType VCS

To invoke interactive debug with the VCS-SML flow, add the -sml=verdi
simulation option. For example:

%> verdi -sv test.sv -i -simType VCS -simOpt
"-sml=verdi"

Alternatively, configure interactive simulation settings in the Simulation page of
the Preferences form as follows:

1. Use the Tools -> Preferences menu command to invoke the Preferences
form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Smart Log in Interactive Debug

 Verdi User Guide and Tutorial 224Feedback

2. Select the Simulation page and enable the Enable Smart Log option.

3. To invoke the VCS-SML flow, select VCS as the simulator in the
Simulator field.

Figure: Enable Smart Log from Preferences

4. Use the Simulation -> Invoke Simulator command to enable Interactive
Simulation mode.

Smart Log is invoked and the heading of the pane is Interactive Console. The
predefined UVM hyperlink rule stored in the UVM_i_rule.rc file is automatically
applied to create the hyperlinks.

If VCS-SML flow is enabled, the partition rule in the Interactive Console frame
follows the rules recorded in the VCS generated SML file.

If the -sml=verdi option has not been specified, all the predefined partition
rules are considered as partition rules.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Smart Log in Interactive Debug

225 Verdi User Guide and Tutorial Feedback

Figure: Interactive Console of Smart Log

The synchronization icon is turned on by default, that is, the cursor time of
nWave and Interactive Console panes are synchronized by default.

You can start to debug your design and monitor the log with Smart Log in the
Interactive Simulation mode.

Command Entry
At the bottom of the Interactive Console pane, as illustrated in Figure:
Interactive Console of Smart Log, enter the simulation commands in the
SimCMD> field and press Enter or click the SimCMD> button to execute the
commands. The command string and returned result are displayed in the
Interactive Console pane.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Smart Log in Interactive Debug

 Verdi User Guide and Tutorial 226Feedback

Figure: Command Entry

To get the historical typed-in commands, use up "↑" and down "↓" keys in the
command entry.

Scroll Bar Behavior
When Interactive Mode is enabled, behavior of the scroll bar in the File View is
as follows:

• While the simulation is running, scroll up the scroll bar to read previous
lines.

• When simulation output is received in the Interactive Console pane and the
scroll bar is not in the bottom, the output message is printed without
scrolling down to the bottom.

• If a command is entered in the command entry, the command output is
appended and the scroll bar is scrolled to the bottom.

Applying User Defined Partitioning Rules
In Interactive Mode, you can apply the user-defined partitioning rules by
performing the following steps:

1. Specify a directory to save the user-defined partitioning rules under the
[VIA.parRule] section with the parRulePathInterForm key. The
default directory is ""; Interactive console does not use user defined
partitioning rule file if the default value is "".

2. Change the directory using the novas.rc configuration file.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Using Smart Log in Interactive Debug

227 Verdi User Guide and Tutorial Feedback

3. Interactive console uses the predefined partitioning rule files and all the rule
files under the user-defined directory to perform partitioning.

Example
Predefined Rules ($Verdi_path/share/VIA/Apps/PreDefinedParRules/):

par_rule_UVM.rc
par_rule_OVM.rc
par_rule_VCS.rc
par_rule_LP.rc

User Defined Rules (/CAD/IAParRule):

myRule_1.rc
myRule_2.rc

If you do not specify novas.rc, Interactive console uses the predefined rules
(mentioned above) and novas.rc (mentioned below).

novas.rc

...
[VIA.parRule]
parRulePathInterForm = ""
...

If you specify novas.rc, Interactive console uses both predefined and user defined
rules as follows:

myRule_1.rc
myRule_2.rc
par_rule_UVM.rc
par_rule_OVM.rc
par_rule_VCS.rc
par_rule_LP.rc

Additionally, Interactive console uses novas.rc as follows:

novas.rc

...
[VIA.parRule]
parRulePathInterForm = "CAD/IAParRule/"
...

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Known Issues and Limitations

 Verdi User Guide and Tutorial 228Feedback

Known Issues and Limitations
The following known issues and limitations exist in the Smart Log feature:

• When multiple keywords are entered in the search field, if the second or
later keywords are numbers, the line number of the log file is considered as
a part of context and is searched. For example, if "UVM_INFO 200" key
words are entered in the search field, the lines of the blocks meeting the
following situations are displayed in the search result:

• The line with the 'UMV_INFO' string

• The line number of the line with the '200' string

• To solve performance issues caused by regular expressions, a maximum
number of characters in each hyperlink line of the Smart Log pane should be
specified. If a character number exceeds the specified value, the hyperlink
in the line is not available (that is, only text is shown). The default is 4096.
The following environment variable is set to modify the maximum number:

%> setenv VGIF_MAX_LENGTH_PER_LINE 4096

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

Smart Log Tutorial: Known Issues and Limitations

229 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Smart Log Tutorial'

OneSearch

 Verdi User Guide and Tutorial 230Feedback

OneSearch

Overview
The OneSearch capability in Verdi works like a web search engine and helps you
to search through various aspects or domains within your design. The OneSearch
interface is simple, intuitive, and easy to use; wherein you can enter a search
query and get ranked and sorted results, view the results, modify your query, and
refine your search.

OneSearch supports search in Sources, Logs, Identifiers, and Docs domains
with domain-specific search engines, generates ranked matches, and stores
results in domain-specific results file.

OneSearch is also aware of the current Verdi Work Mode (coverage/power debug
and so on) and generates results based on the work mode. For example, the
coverage search engine is available only in the Coverage mode.

The following figure illustrates the default view of the OneSearch pane that
appears in the Verdi GUI:

Figure: OneSearch Default View

This chapter comprises of the following sections:

• GUI Use Model

• Search Domains

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

231 Verdi User Guide and Tutorial Feedback

• Search Modes

• Support for Multiple Line Results

• Support for Synonyms

• Command Line Use Model

• Usage Examples

GUI Use Model
The OneSearch tab appears by default when the Verdi GUI is invoked.

To open the OneSearch pane, click the OneSearch tab as illustrated in the
following figure:

To search for a keyword using OneSearch capability,

• Enter the desired keyword or search query (such as, "clk", "clk module Top"
and "clk files:*.sv") in the left text field in the OneSearch pane.

• Click the icon or press the Enter key.

The top ranking matches for each domain are displayed in the ALL domain.

To view more matches and more information for each match in a specific
domain, click the desired domain from Sources, Logs, Identifiers, or Docs link.

Alternatively, to search your design using the OneSearch capability,

• Click the Spotlight icon and select the Verdi OneSearch option as
illustrated in the following figure.

• Enter the search query and click the Spotlight icon.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

 Verdi User Guide and Tutorial 232Feedback

Figure: ONE Search Shortcut

Results matching the specified query are displayed in the OneSearch pane.

The following figure illustrates an example of the results appearing in the
OneSearch pane:

Figure: Example of OneSearch Results

NOTE: To view the help information for OneSearch, click the Show Help
icon present in the OneSearch toolbar.
Clicking on this icon in the Overview Mode displays the help
information in the All domain OneSearch results pane.
Clicking on this icon in the Single-domain Mode displays the help
information in the selected domain OneSearch results pane.

You can apply preference settings for OneSearch using the Show Preferences
 icon. Clicking on this icon opens the Preferences form (OneSearch page).

For details, see the OneSearch chapter in Verdi and Siloti Command Reference
Guide.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

233 Verdi User Guide and Tutorial Feedback

Search Domains
The search domains for OneSearch capability are described as follows:

• Sources

The Sources domain covers all (System)Verilog, VHDL, or other input files
used in the design. The file list is extracted from the KDB (if available) or
the VCS elaboration (if available) files. If none of these files is available, all
files matching
\.[ch]|\.[ch]pp|\.[ch]xx|\.(cc|hh)|\.svh|\.pli|\.v|\.vrh|\.sv|\.sva|\.vhdl|\.vhd
and Makefile|synopsys_sim\.setup|\.tcl|\.[a-z]?sh|\.upf are searched.

To specify an additional file list, use the
VERDI_SEARCH_SOURCES_FILE environment variable.

file: and files: are the supported keywords to filter the list of files matching
the specified pattern only (such as, files:a*.sv matches only files starting
with a and ending with .sv).

• Logs

The Logs domain covers log files generated from compilation and
simulation matching ucli\.key|.*\.rpt|.*\.log(\.gz).

To specify an additional file list, use the VERDI_SEARCH_LOGS_FILE
environment variable.

file: and files: are supported keywords to filter the list of files matching the
specified pattern only (such as, files:sim* matches only files starting with
sim).

• Identifiers

The Identifiers domain covers HDL design and testbench elements of VCS
simulation. Any identifier (that is, anything with a name) in the design is
searched.

• Docs

The Docs domain covers all Verdi documentation (PDF) files.

To specify an additional file list, use the VERDI_SEARCH_DOCS_FILE
environment variable.

file: and files: are supported keywords to filter the list of files matching the
specified pattern only (such as, files:*plan* matches only files containing
plan).

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

 Verdi User Guide and Tutorial 234Feedback

Search Modes
OneSearch supports the following search modes that decide where to search and
how to display the search results:

• Overview Mode

• Single Domain Mode

Overview Mode
This is the default mode for OneSearch.

This mode is intended as the first step in a search and provides a quick
overview of the results in the entire design. In this mode, scrolling in the
OneSearch results window moves entire domain groups but does not move
matches within a group. When you refine (modify) the search query, such
as, by adding another pattern to the query, and click the search button again,
then a new search over all the domains is started.

Every group ends with a summary line that indicates the total number of
results (not just the visible count). It also contains an indicator for ongoing
searches.

Figure: Overview Mode

Single Domain Mode
This mode is intended as the second step to view more matched results from
a single domain. To switch from Overview mode to Single-domain mode,
click on any of the domain links: Sources, Logs, Identifiers, or Docs.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

235 Verdi User Guide and Tutorial Feedback

On clicking on a domain name, OneSearch does not trigger a new search
but displays the matches from the previous search for the selected single
domain. All matches from the selected domain are displayed.

Figure: Single Domain Mode

Support for Multiple Line Results
OneSearch ranks the matches for documentation not only within a single line, but
also combines the matches for multiple lines based on the distance between the
matching words; therefore, multiple matches within a paragraph are assigned a
higher ranking. A configurable upper limit ensures that these words are not too
far from each other.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

 Verdi User Guide and Tutorial 236Feedback

Overview Mode
In Overview mode, Verdi only displays the first line of the search result, which
contains a brief summary of all matches.

The following code snippet illustrates an example output in overview mode for
the search term: loading.

=== Docs === Showing 3 of 278 matches ==== (0 errors / 0 warnings) =====
/verdi/doc/CoverageTut.pdf:p4 (text): when loading succeeds …the loading
times…when loading fails …

/verdi/doc/CoverageTut.pdf:p1 (text): After loading an exclusion… after
loading related...

/verdi/doc/FsdbReader.pdf:p118 (text): and loading fails. It is therefore
highly recommended
INFO Found 278 matches in 24 files. Searching all 24 files (12MB) took
0.7s.

A four line, a two line, and a single line result is illustrated in the preceding
snippet.

• Single-line results are displayed in the same manner as in previous releases
(see result 3).

• Multi-line results include a brief summary of the matches to fit a maximum
of 3 highlighted matches into the line. This limit is imposed by onegrep due
to space limitations (see result 1).

The following code snippet illustrates an example output in overview mode for
multiple search terms:

=== Docs === Showing 4 of 518 matches ==== (0 errors / 0 warnings) ======
/verdi/doc/CoverageTut.pdf:p36 (text): reviewed after the reset… property
of this module…

/verdi/doc/CoverageTut.pdf:p96 (text): After resetting an exclusion file…
The property of the system to…

/verdi/doc/FsdbReader.pdf:p18 (text): when the reset property of… when
reset succeeds… another property is…

/verdi/doc/FsdbReaderSummary.pdf:p1 (text): A property of an FSDB…
incomplete resetting of …
INFO Found 518 matches in 24 files. Searching all 24 files (12MB) took
0.7s.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

237 Verdi User Guide and Tutorial Feedback

Single-Domain Mode
In Single-domain mode, Verdi displays the complete details of the search result.

The following code snippet illustrates an example output in single-domain mode
for the search term: loading.

=== Docs === Showing 278 of 278 matches ==== (0 errors / 0 warnings) ====
/verdi/doc/CoverageTut.pdf:p4 (text): when loading succeeds …the loading

times…when loading fails …
 handled otherwise? The main idea

is that when loading succeeds,
the system has to take to the
loading times into account.
Otherwise,
loading is deferred until the
system has decided based on this
property. In general, loading of
these data structures is based on

/verdi/doc/CoverageTut.pdf:p1 (text): After loading an exclusion… after
loading related...by the system,
which is done automatically. After
loading an exclusion file and after
loading related data (see section
5.3.1), it

/verdi/doc/FsdbReader.pdf:p118 (text): and loading fails. It is therefore
highly recommended

[the other 275 matches are truncated in this figure]

Support for Synonyms
OneSearch automatically searches synonyms for terms in search queries based
on a predefined synonym database. This functionality provides you the capability
to search results for words with the same (or very similar) meaning.

NOTE: This feature is applicable to Sources, Logs, and Docs domains.

If the search query entered by you contains terms for which synonym(s) are
defined in OneSearch, an additional message appears in the Results pane
indicating that the search results also include synonym(s)’ search results. If you
do not want to view the search results for the indicated synonym(s), you need to
enclose the search term in double quotes (""). An example of the message is
illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

 Verdi User Guide and Tutorial 238Feedback

Figure: Example for OneSearch Query

NOTE: Quoted search terms as well as keywords and their arguments are not
subject to synonym search.
OneSearch ranks exact matches/results to the search query higher than
the search query’s synonyms’ results.

Example Use Case
If the search query is start_transaction, OneSearch looks for the synonyms of
start and transaction. If start yields the synonym begin and there is no synonym
defined for transaction, then OneSearch shows results for two query terms:
start_transaction and begin_transaction.

If additional synonyms for transaction are also found, these are searched in the
same manner.

Specifying an Additional Synonym Database
You can specify an additional synonym search database file (text file) using the
VERDI_SEARCH_SYNONYM_FILE environment variable. The set of
synonyms listed in this text file are added to the original pre-defined synonyms
database, however, the predefined synonyms cannot be removed.

The text file must contain a set of synonyms (comma-separated list of words) in
every line. All words in a line can be replaced by each other.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

239 Verdi User Guide and Tutorial Feedback

For example, assume that the synonym database contains the following three
lines, which signifies that A, B, and C are synonyms to each other; B and D can
be used interchangeably; and D, E, and F can also be used interchangeably.

A,B,C

B,D

D,E,F

If the search query contains the search term B, the synonym search checks the
database line by line for the occurrence of the search term B and includes all
synonyms into the search query. Thus, the search for B includes the synonyms:
A, C, and D, but not E and F.

Limitations
The following limitations apply to this feature:

• Synonym search only applies to alphanumeric words. Special characters,
such as -, _, !, @, #, $ are not supported.

• Stemming of search terms is not supported, that is, inflection of nouns,
pronouns, adjectives, and articles is not recognized. Derived forms of verbs
are also not recognized.

• Words and sub-words are only subject to synonym search, if they are
completely capitalized, or uncapitalized, or only the first letter is
capitalized. For example, the following words (and their sub-words) are not
subject to synonym search: BeGIn, AMbA_tRANSMISSION, pOpULate,
mY_OwN_USBRegister.

• Using this feature may impact OneSearch performance.

Command Line Use Model
Besides the integration of OneSearch into the Verdi GUI, the onesearch
command line option is also available, which can be executed in the design root
directory.

The onesearch command line option supports the following options:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

 Verdi User Guide and Tutorial 240Feedback

The options listed below are optional.

The option listed below is mandatory

Usage Examples
The following are some of the examples for search capability:

• To search for words: xbus_transfer and addr in all Sources, Logs,
Identifiers, and Docs domains and report top ranking matches for each
domain, enter the following command:
onesearch xbus_transfer addr

• To search for words: xbus_transfer and addr in all files matching *.svh by
using all Sources, Logs, Identifiers, and Docs domains and report top
ranking matches for each domain, enter the following command:
onesearch xbus_transfer addr "files:*.svh"

Option Description

--help Prints brief help messages explaining all the search domains.

--help <domain>:
Prints the detailed help messages for the specified search
domain.

--maxresults
[<matches>][:<lines>]

Specifies the maximum number of matches and maximum
number of lines per match (in case of multi-line matches).
0 means no limit.
Settings apply to both overview (four matches, only one line
per match by default) and an individual domain (3000
matches, no line limit per match).

--plain Creates pure ASCII output without color and/or bold format.

--regexp
Specifies the regular expression style for wildcards. The
default is glob style (such as, "*.sv").

--rootdir <dir>
Specifies the root directory to search. The default is the current
working directory.

Option Explanation

[--] <query>
Specifies the words and keywords to query. Use double quotes
to enclose multiple words (such as, "as is").

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

OneSearch

241 Verdi User Guide and Tutorial Feedback

• To search for words: xbus_transfer and addr only in the Identifier search
domain and report top ranking matches, enter the following command:
onesearch xbus_transfer addr Identifiers:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'OneSearch'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 242Feedback

Temporal Flow View Tutorial

Overview
To debug a design, you need to understand the structure and the behavior of the
design. Understanding the structure allows you to visualize the connection
between blocks or signals. Also, understanding the behavior allows you to know
the relationship between driver-signals, loader-signals, driver triggers, and the
value transition. Visualizing the structure and behavior of the design is very
useful and convenient to become familiar with the design and then debug it.

The flow views are unique temporal views and analysis tools that allow the
visualization and analysis of the design's behavior through time. The Temporal
Flow View identifies and displays causal control and data paths - the registers and
signals that actually caused the erroneous value to occur - through multi-level
combinational logic within one or more register-to-register transfer stages. The
mechanism helps to quickly find the bug without repeatedly looking at the driver
or fan-in signals of the signal of interest and the intelligently filtered temporal
representation allows you to locate and identify problems in the most efficient
manner possible without going through the different source code, schematic and
waveform windows. However, the flow views also can be used to drive the
source code, nWave (waveforms), nState (state machines) and nSchema
(schematics) frames as needed.

The display in the Temporal Flow View frame is similar to the following
example:

Figure: Example Temporal Flow View Frame With Expanded Statements

In the Temporal Flow View frame notice the following items:

• The input data signals are on the left and output data signals are on the right
of the symbol.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

243 Verdi User Guide and Tutorial Feedback

• On top of the gray vertical line, the number shown indicates that the clock
active edge for that signal is at that time in ns. If you click the symbol
associated with the register, the number appears in the box of the toolbar,
That is, the value of the register changed at that time.

• The input control signals are on the bottom of the symbol. (An example of a
control path is a multiplexer's select input, and an example of a data path is
a multiplexer's data signals.)

• Some input ports are pink (signal is actively contributing to the output
value) or gray (signal is not actively contributing). (Turn on the View ->
Signal -> Active Nodes Only toggle command to see all nodes or just
active ones.)

• The red dot associated with some ports indicates that these fan-in registers
have value transition in their previous clock edges.

• The clock that drives the located register can be shown without tracing
through combinational logic cones and correlating the clocks manually.

• The annotated simulations values (blue numbers).

• The signal names.

• The bus contention and active fan-in information can be clearly viewed in a
single view.

• The cause of a specific data pattern on a partial bus can also be isolated.

The Temporal Flow View traces to the root cause automatically with two major
mechanisms. That is, behavior analysis engine and automatic cause and effect
tracing.

Behavior Analysis Engine
From the KDB and FSDB, Verdi builds an internal model of actual design
behaviors using the synthesis and formal technology. Traditionally, the tracing
stops at the problematic signals when debugging. If further tracing is required,
then you must invoke and configure the tracing manually. Now, with the behavior
analysis engine, the Temporal Flow View traces based on the behavior of the
design automatically.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 244Feedback

Figure: Temporal Flow View Traces Automatically to Debug

The following tracing features are available:

• Unrolls the function over time.

• Differentiates the data from control signals.

• Determines the clocking.

• Prunes inactive elements.

Automatic Cause and Effect Tracing
The Temporal Flow View traces not only to the problematic signal but to the root
cause of the error. The Temporal Flow View provides a complete environment
that helps in visualizing the behaviors with time and structure easily. The root
cause and the trace path can be viewed holistically.

Figure: Temporal Flow View Traces to Root Cause of Error

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

245 Verdi User Guide and Tutorial Feedback

The following scenarios show some of the best situations to benefit from
advantages of root cause tracing of the Temporal Flow View:

• Understand the design behaviors and locate the root cause of a wrong value.

Figure: Locate Root Cause of Wrong Value

• Trace the memory content that is not in FSDB and locate the memory write.

Figure: Trace Memory Content That is not in FSDB

• Locate the root cause of unknown (X) values.

Figure: Locate Root Cause of Unknown Values

• Locate the cause of different results between two simulation runs.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 246Feedback

Figure: Locate Root Cause of Different Results Between Two Simulation Runs

Trace to Root Cause Automatically

From nTrace
In nTrace, the root cause of an issue can be traced automatically with one of these
commands: Trace This Value or Trace X. Select a signal in the nTrace source
code pane, and click the Auto Trace toolbar icon. The Temporal Flow View
opens and automatically performs the trace as described in the following
commands:

• Trace This Value: For the current time if the current value is known.

• Trace X: For the current time if the current value is unknown.

NOTE: The icon is only available when the Active Annotation option is turned
on.

Figure: Temporal Flow View Traces Root Cause With One Command in nTrace

From nWave
In nWave, the root cause of issue can be traced automatically with one of these
commands: Trace This Value or Trace X. Select a transition in the waveform

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

247 Verdi User Guide and Tutorial Feedback

pane, and click the Auto Trace toolbar icon. The Temporal Flow View opens and
automatically performs the trace as described in the following commands:

• Trace This Value: For the current time if the current value is known.

• Trace X: For the current time if the current value is unknown.

Figure: Temporal Flow View Traces Root Cause With One Command in nWave

Open Temporal Flow View

Setup Temporal Flow View
1. Invoke the Preferences form with the Tools -> Preferences command.

2. In the Preferences -> Trace page, select trace by cycle or transition by
specifying the Cycle-based or Transition-based option in the Default
Trace Method section. The default is Transition-based.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 248Feedback

Figure: Specify Trace Method in Preferences Form

Create Temporal Flow View
1. In nTrace or nWave, select a signal transition and invoke the Temporal

Flow View -> New Temporal Flow View command in the right-click menu
command.

2. The Temporal Flow View frame appears in the bottom of the main window
of nTrace and nWave.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

249 Verdi User Guide and Tutorial Feedback

Figure: Temporal Flow View Created in nTrace

Trace with Cycle-Based Method
Tracing with the cycle-based method, the design behavior is unrolled based on
clock cycles. Signals are displayed and traced according to the final stable value
within a single clock cycle. The Temporal Flow View collects the clock domain
information for each signal.

Figure: Trace With Cycle-Based Method

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 250Feedback

Trace With Transition-Based Method
Tracing with the transition-based method, input signals that trigger the output
transition are automatically traced. The transition-based method are used to
visualize the propagation of signal transitions throughout the design over time
and is very useful for gate-level debug. The note distinguishes the transition-
based tracing from the cycle-based tracing in the Temporal Flow View.

Figure: Trace With Transition-Based Method

Temporal Flow View Features to Trace Automatically

Trace This Value
Use the Trace -> Trace This Value command to trace back the data path
automatically.

• Unroll the path on time axis, and find the root cause.

• Use the View -> Signal -> Active Data Nodes Only command or the View
Signal -> Active Nodes Only command to simplify the view and display
active nodes only.

Figure: Trace This Value in Temporal Flow View

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

251 Verdi User Guide and Tutorial Feedback

Show Marker for Control with Transition
Perform the following steps to show the output nodes with transition on the
control signal in the tracing path:

1. Invoke the Preferences form with the Tools -> Preferences command.

Figure: Enable Display Marker for Control with Transition in Preferences Form

2. In the Preferences -> Temporal Flow View -> View -> Display page,
enable the Display Marker for Control with Transition option. A yellow
exclamation point are placed over output nodes in the Temporal Flow View
pane.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 252Feedback

Figure: Yellow Exclamation Point Placed over Output Notes

Correlate Other Panes

Display Source Code Automatically
Toggle on the Show Source Code Automatically icon or the View -> Show
Source Code Automatically option to view the corresponding source code of a
selected node.

Figure: Corresponding Source Code of the Selected Node

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

253 Verdi User Guide and Tutorial Feedback

Show Traced Signals in nWave
In the Temporal Flow View, invoke the Tools -> Show All Traced Signals on
nWave command to add traced results to nWave to show traced signals in the
waveform.

Figure: All Traced Signals Shown on nWave

Show Fan-in Signals in nSchema
Invoke the Tools -> Show Fan-ins on nSchema -> Active Only command in
nSchema after selecting a signal to view the fan-in of a signal.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 254Feedback

Figure: Show Fan-ins of Signal on nSchema

Temporal Flow View Application

Trace Unknown Values
Traditionally, unknown values (Xs) typically propagate through the design over
multiple combinational statements.

Figure: Traditional Unknown Value Trace

However, the following issues occur to debug unknowns using traditional
methods:

• Display the original signal in the waveform.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

255 Verdi User Guide and Tutorial Feedback

• Search the source code to find all the driving signals.

• Display the driving signals in the waveform to identify the signals that are
unknown.

• Repeat this process until the root cause of the unknown is found.

Tracing features of the Temporal Flow View can solve the above mentioned
issues. The following methods are available:

Trace X in Verdi
1. Select the unknown signal in the Temporal Flow View and then invoke the

Trace X command in the right-click menu.

2. Select the unknown transition in the waveform pane in nWave and invoke
the Trace X command in the right-click menu.

Figure: Trace X in Verdi

Trace X Setting
After invoking the Trace X command in the right-click menu to open the Trace
Triggering X Setting form, the following settings can be configured:

• Follow default settings for tracing X.

• Disable the Show Paths on Flow View option to only view the final result
in the Trace Triggering Results frame.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 256Feedback

Figure: Trace Triggering X Settings Form

Trace Triggering X Results
The Trace Triggering X Results pane opens and display the cause(s) of the X
(unknown) in a tabular format. The reason of root cause is explained in the Note
field.

The following right-click commands are available to continue tracing in Verdi:

• Show Source Code on nTrace

• Add All Fan-in Signals to nWave

• Add Active Fan-in Signals to nWave

• Add Reference Signal

• Continue to Trace Selected Signal

• Expand Selected Cause / Merge Causes on the Same Signal

Figure: Trace Trigerring X Results Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

257 Verdi User Guide and Tutorial Feedback

Summary of Steps to Trace Unknown Values
1. Select the unknown signal in Temporal Flow View, invoke the Trace X

right-click command to trace the root cause of the unknown.

• Set tracing constraints in the resulting Trace X Triggering Settings
form.

2. The cause is listed in a tabular form.

• The reason is explained in the Note field.

Debug Memory

Locate Last Write on Specific Address Location
When a memory output value is incorrect, the possible reason includes:

• The wrong data is written into a location.

• The data is read from a wrong location.

There are two ways to locate the last write to a memory location:

• Double-click the memory signal in the Temporal Flow View.

• Select the memory signal in nTrace and invoke the Debug Memory ->
Trace Memory Write right-click command.

Verdi summarizes the results of the Trace Memory Write command in the
Information form.

Verdi performs the following steps to capture the last write:

• Analyzes the control logic for the memory.

• Locates the values of these signals in the FSDB file.

• Determines when the last write to this location occurred.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

 Verdi User Guide and Tutorial 258Feedback

Figure: Trace Memory Write in nTrace

Display Calculated Memory Content
The following methods are available to display the calculated memory content:

• In Temporal Flow View, invoke the Tools -> Show Memory Contents
command.

• In nTrace, select the memory signal and invoke the Debug Memory ->
Show Memory Content right-click command.

Select the Calculated by Verdi tab in the Get Memory Variable form. The
memory content is shown in the tabular format. Specify the time to display
correct values in the Time field for displaying the correct memory content. The
display mode can be changed by commands under the Options menu option.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Overview

259 Verdi User Guide and Tutorial Feedback

Figure: Configure Settings in Calculated by Verdi Tab

Figure: Specify Time to Display Correct Values in Time Field

Dump Memory Content to FSDB
The following methods are available to dump the calculated memory content to
a new FSDB file:

• In Temporal Flow View, invoke the Tools -> Dump memory Waveform To
FSDB command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Open a Temporal Flow View

 Verdi User Guide and Tutorial 260Feedback

• In nTrace, select the memory signal and invoke the Debug Memory ->
Dump memory Waveform To FSDB right-click command.

Enter the memory range and time period for the calculated memory content.
FSDB file can be loaded and shown on nWave or nMemory automatically.

Figure: Dump Memory Content to FSDB

This tutorial focuses on the Temporal Flow View. The same commands can be
applied to the Temporal Register View and the Compact Temporal Flow View.
After reviewing the tutorial, refer to the Behavior Trace for Root Cause of
Simulation Mismatches, Debug Memories, Debug Unknown (X) Values and
Searching Backward for Value Causes sections in the Application Tutorials
chapter for examples of how the Temporal Flow View can be applied in different
debug scenarios.

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter.

Open a Temporal Flow View
1. Change your context to the verdi_mixed sub-directory, in which the demo

source code files are located:
% cd <working_dir>/demo/verdi_mixed

2. Compile the mixed design to create a work.lib++:
% ./compile.verdi

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Open a Temporal Flow View

261 Verdi User Guide and Tutorial Feedback

3. Start the Verdi platform by referencing the compiled design and the FSDB
file CPUsystem.fsdb (contains a set of simulation results) on the command
line:
% verdi -lib work -top tb_CPUsystem -ssf CPUsystem.fsdb
-workMode hardwareDebug &

4. Resize the nWave window to a comfortable viewing size and locate it under
the source code frame on your screen such that you can view both the
windows.

5. In the Instance tab of the design browser frame, click the plus symbol to the
left of the i_cpusystem block instance name to reveal its i_cpu and i_pram
sub-blocks.

6. Click the plus symbol to the left of the i_cpu block instance name to reveal
its i_ALUB, i_CCU, and i_PCU sub-blocks.

7. Double-click i_ALUB to display the associated source code.

8. In the Find String box on the toolbar, enter AluBuf.

9. Click the Find Next icon (see left) to find the signal.

10. Click middle mouse button to drag and drop AluBuf from the Source Code
frame to the nWave window.

11. Click the AluBuf signal in nWave window close to the transition from the 3
value to the aa value and observe the following:

• A vertical cursor appears in the waveform pane.

NOTE: By default, the cursor snaps to the closest transition on the selected
signal - the transition from 3 to aa in this case. (You can turn off the
Waveform -> Snap Cursor to Transitions toggle command to allow
you to set the cursor to any location.)

• The simulation time of 825 associated with the cursor's current location
is displayed in nWave's toolbar.

12. Right-click alubuf in the waveform pane on the transition from 3 to aa at
time 825 and choose the Temporal Flow View -> New Temporal Flow
View command from the right mouse button menu.

NOTE: You can also access the Create Temporal Flow View form from the
nTrace main window through the Tools -> Temporal Flow View ->
New Temporal Flow View command.

A Temporal Flow View window opens as a new tab in the same area as the
nWave window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Open a Temporal Flow View

 Verdi User Guide and Tutorial 262Feedback

Figure: Temporal Flow View Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Manipulate the View

263 Verdi User Guide and Tutorial Feedback

Manipulate the View
You can change the view of the Temporal Flow View using the following zoom
commands:

• Zoom In - View more details of the Flow View by moving the view 50%
from the center point in both the horizontal and vertical directions. Invoke
this command in one of following three ways:

• Toolbar icon

• Bind key "Z"

• Menu View -> Zoom -> Zoom In command

• Zoom Out - View more contents of the Flow View by expanding the view
2X from the center point, both horizontally and vertically. Invoke this
command in one of following three ways:

• Toolbar icon

• Bind key "z"

• Menu View -> Zoom -> Zoom Out command

• Zoom All - View the entire contents of the Flow View. Invoke this
command in one of following three ways:

• Toolbar's icon

• Bind key "f"

• Menu command View -> Zoom -> Zoom All command

• Zoom Area - View more details in a specific area of the Flow View by
dragging-left to form a rectangle over the area in pointer mode.

You can move the viewing area of the Flow View in different directions as
follows:

• Scrolling - Click or drag the scroll bar of the Flow View window
horizontally or vertically.

• Panning - Move the viewing area up, down, left, or right using the arrow
keys on your keyboard or dragging left on the Flow View in Pan mode.

NOTE: You can switch between pan/pointer mode by toggling the View ->
Switch to Pointer Mode/Pan Mode command or using the Flow View
toolbar icon.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Manipulate the View

 Verdi User Guide and Tutorial 264Feedback

Display More Information
Extra information about your design can be shown using the TIP feature. You can
enable the TIP feature by turning on the View -> Turn on Tip toggle command
from the Temporal Flow View window. When the option is enabled, a yellow tip
window is displayed when you put the mouse on top of a node.

1. In the Temporal Flow View frame, choose the Tools -> Preferences
command.

2. In the Preferences form, click the Display page under the Temporal Flow
View -> View folder.

3. Check the Source Code option in the Tip section. The corresponding line
of source code is shown on the tip.

4. Check the Hierarchical Name option to see the full path to a signal.

The Preferences form is similar to the following:

Figure: Temporal Flow View Preferences Form

5. Click OK.

6. In the Temporal Flow View frame, click the View -> Turn on Tip command
to turn on the TIP feature.

7. Move your cursor over the alubuf node to view the associated line of code
and hierarchical path.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Show Active Statements

265 Verdi User Guide and Tutorial Feedback

Figure: Tip for alubuf

Show Active Statements
An active statement is the logic statement that generates the value for the driver
signals of the current statement.

1. Double-click the aluouttemp[7:0] signal on the Temporal Flow View. You
can also right-click the aluouttemp node in the Temporal Flow View and
choose the Show Active Statement command.

Figure: Temporal Flow View Displaying Active Statements

Note that another symbol (a function block) is added to the Temporal Flow
View. You can continue tracing active statements on any input node.

2. Double-click a[7:0] to expand and display another function symbol.

3. Double-click b[7:0] to expand and display a mux.

4. You can use the View -> Signal -> Active Nodes Only command to toggle
between viewing all nodes or only the active nodes. (Active nodes have a
pink color to the port stub on the symbol.)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Display Source Code

 Verdi User Guide and Tutorial 266Feedback

Figure: Temporal Flow View Displaying Active Nodes Only (in pink)

5. Use the zoom icons to manage the display. Click the Fit Time icon to
perform a full zoom of the symbols.

6. Turn off the View -> Signal -> Active Nodes Only toggle command again.

Display Source Code
Select the display area of the source code from the Temporal Flow View. You can
choose to display the source code in an existing nTrace window or a new
window.

1. Choose the Tools -> Preferences command.

2. Select the Automatic Command page under the Temporal Flow View
folder, and choose the preferred method for Show Source Code
Automatically on.

3. In this tutorial, select the New nTrace Window option.

4. Click OK.

5. In the Temporal Flow View, click the Enable Show Source Automatically
icon on the toolbar.

6. Click the alubuf node at time 825.

The corresponding active (driving) statement is located and highlighted in a
new tab of the source code frame:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Display Source Code

267 Verdi User Guide and Tutorial Feedback

Figure: nTrace Window Displaying Source Code from Temporal Flow View

The source code statement shows how the AluOutTemp and RESET signals
functionally contribute to the contents of the AluBuf register. In particular,
observe that AluBuf is assigned the value from AluOutTemp in a VHDL
process.

Note that this is a mixed language design so the signal is alubuf in the
waveform and flow views and AluBuf in the source code.

7. In the Temporal Flow View, click the output node o[7:0] of the function
symbol.

Note that a single line in a Verilog case statement is highlighted.

8. Click the aluina[7:0] output node of the second (left-most) function
symbol.

Note that a single line in a VHDL process is highlighted.

9. Click the Disable Show Source Code Automatically icon to disable the
showing source code.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Add Signals from the Temporal Flow View to nWave

 Verdi User Guide and Tutorial 268Feedback

Add Signals from the Temporal Flow View to
nWave

There are several methods for adding signals to nWave from the flow view.

1. To simplify things, drag-left over all of the signal names in the signal pane
to select the signals and then select the Signal -> Cut command to remove
the signals from the display.

2. Click alubuf in the Temporal Flow View to select it, and then select Ctrl+W
to add the signal’s waveform to the nWave window.

3. Select Ctrl+K to add the clock signal of the register to the nWave window.

4. Select the output node o[7:0] of the function symbol.

5. Select Ctrl+A to add all the fan-in signals to the nWave window.

6. Select the output node aluina[7:0].

7. Select Ctrl+F to add only the active fan-in signals to nWave.

Note that only the selected signal and the input ports with red colors
(datain, opbusmode) are added.

NOTE: You can change where and how the signals are added through the
options in the nWave section of the Automatic Command page under
the Temporal Flow View folder on the Preferences form.

The nWave results are similar to the following figure:

Figure: nWave Window Displaying Results of Adding Signals from Temporal Flow View

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Compact Temporal Flow View

269 Verdi User Guide and Tutorial Feedback

Compact Temporal Flow View
The Compact Temporal Flow View displays a global view of the usage/definition
of design signals and variable elements where the control signal and data signal
interactions are presented at the statement and signal level. This representation
and view is complete with data/control signals active/inactive identifications,
signal dependencies, and timing annotations.

You can open a Compact Temporal Flow View from a Temporal Flow View:

1. In a Temporal Flow View frame, left-click a signal to select it (for example,
alubuf[7:0]).

2. In the Temporal Flow View window, choose the Tools -> Open Flow View -
> Compact Temporal Flow View command.

3. In the Compact Temporal Flow View window, double-click a node to see
which statement defines the value for it.

The Compact Temporal Flow View window updates to reflect your choices,
similar to the following example:

Figure: Active Statements - Compact Temporal Flow View

From the figure above, note the following:

• The yellow rectangular box associated with AluBuf at time 825
indicates that AluBuf is a register, and its clock edge arrives at time 825.

• The yellow octagon associated with out at time 800 indicates out is an
internal signal.

• The gray line linking AluOut to out indicates that AluOut is driven by
out.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Compact Temporal Flow View

 Verdi User Guide and Tutorial 270Feedback

• The red line surrounding the a, b, cin, and select signals. This indicates
that these signals are inputs to the statement and the output is the out
signal.

• The small red dot to the upper left of the octagon associated with
AluOut indicates that the last assignment to this signal has a value
change.

• A vertical dashed line at time 800 indicates that out signal can be traced
back to registers activated at time 800. That is, ignoring delay of the
combinational logic, the out signal is generated at time 800.

NOTE: The yellow box and yellow octagon associated with AluBuf and out,
respectively, indicate that these are "output nodes." This does not imply
that they are primary outputs. However, they are the outputs associated
with their respective assignment statements in the source code.

• "D" and "C" characters indicate if these signals are contributing data
and/or control values.

NOTE: After enabling the source code display, the source code can be
displayed similar to the Temporal Flow View by clicking on “output”
nodes.

NOTE: Signals in the Compact Temporal Flow View can be added to the
waveform in a similar manner to the Temporal Flow View through drag
and drop or bind keys.

Showing Statement Flow in an nSchema Frame
In a Compact Temporal Flow View window, perform the following steps to show
the statement flow of a debug path in an nSchema window:

1. In the Compact Temporal Flow View window, turn on the View-> Enable
Flow Schematic Automatically toggle command to turn on the schematic
display mode.

2. In the Compact Temporal Flow View window, click an output node to select
it.

A symbol representing the statement is shown in an nSchema window.

3. In the Compact Temporal Flow View window, click another output node to
add its associated symbol to the nSchema window.

4. Turn off the View-> Disable Flow Schematic Automatically toggle
command to disable the schematic display mode.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Compact Temporal Flow View

271 Verdi User Guide and Tutorial Feedback

Temporal Register View
The Temporal Register View displays the design interaction at the register level
only. All the intra-cycle combinational interaction is abstracted away. This view
is possible only using the cycle-based engine. Similar to the Temporal Flow View,
this representation and debug view is annotated with timing, activity, and control/
data signals functionality.

You can open a Temporal Register View window from a Temporal Flow View
window as follows:

1. In the Temporal Flow View frame, select a signal (for example, alubuf) and
choose the Tools -> Open Flow View -> Temporal Register View
command. A Temporal Register View window appears.

2. Double-click a fan-in register to see the active registers. You can also select
either of the following methods to view the active registers:

• Use the right mouse button and choose Show Fan-in Registers.

• From the main menu, choose the Trace -> Show Fan-In Registers
command.

The Temporal Register View window is updated, as shown in the following
figure:

Figure: Active Registers in Temporal Register View

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Compact Temporal Flow View

 Verdi User Guide and Tutorial 272Feedback

Refer to the figure above and note the following:

• In Temporal Register View notation, the box on top of the arrow
represents the fan-out register, and the boxes below the arrow represent
the set of fan-in registers or primary inputs.

• The gray vertical line represents the clock edge of the output register.

• If you click the box associated with any register, a number appears in
the time box on the toolbar, which indicates the time the register
changed. The active clock edge is also displayed.

NOTE: Selection can be changed choosing the Mouse Click or Automatically
Select When Mouse over options on the Miscellaneous page under the
Temporal Flow View folder of the Preferences form (invoked with the
Tools -> Preferences command). For the value shown in the figure
above, each fan-in register represents the value before the active clock
edge of AluBuf. These are the stable values of the fan-in and primary
input at this cycle.

• Note the "C" and "D" characters in the fan-in register boxes. These
characters indicate if the fan-in registers are contributing control and/or
data paths to AluBuf. (An example of a control path is a multiplexer's
select input, while an example of a data path is a multiplexer's data
signals.) In particular, note that CWR has both a "D" and a "C," which
indicate that some of this register's bits are acting as data and others are
providing control.

• The boxes associated with the CWR, ACC, and IDR registers are pink,
which indicate that these fan-in nodes are actively contributing to the
value in AluBuf at time 825. By comparison, the IXR and PC registers
are gray, which indicates that these fan-in notes are not actively
contributing to the value in AluBuf at time 825.

• There is a red dot on the left upper corner on ACC, PC, and CWR. That
is, these fan-in registers have value transition in its previous clock edge.
Since ACC and CWR are also active fain-in registers, they are active
fan-in with transition.

NOTE: After enabling the source code display, the source code can be
displayed similar to the Temporal Flow View by clicking on “output”
nodes.

NOTE: Signals in the Temporal Register View can be added to the waveform in
a similar manner to the Temporal Flow View through drag and drop or
bind keys.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Temporal Flow View Tutorial: Compact Temporal Flow View

273 Verdi User Guide and Tutorial Feedback

Trace the Root-cause of glitches in the Design
You can debug a glitch in Temporal Flow View by identifying annotated glitches
and locating the root source of the glitch. The GUI commands are available only
when the selected signal contains glitches in its value. This command does not
create a report but only helps trace signals with glitches.

Add the following options during simv runtime to dump the glitch
information:+fsdb+glitch=0 +fsdb+sequential before you begin
tracing a signal glitch.

When you invoke the Trace Glitch command from the nWave menu option, or
from the right click command on the Temporal Flow View, the Display Glitch
option is automatically turned on.

If a reference signal in the Temporal Flow View has a glitch, it is marked with a
* symbol and the complete transition value is displayed, even if it is on the input
side of the function block as shown in the following figure:

To trace the glitches in a signal, select Trace -> Trace Glitch command from the
right-click command menu in the Temporal Flow View.

When you trigger this command on a reference signal, the path in the Temporal
Flow View is expanded along all the fan-in signals that contain glitch values.The
fan-in does not need to be active or have value change in order to continue tracing
along that path as shown in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Temporal Flow View Tutorial'

Debug a Design with Simulation Results Tutorial: Find the Active Driver

 Verdi User Guide and Tutorial 274Feedback

Debug a Design with
Simulation Results Tutorial

Before you begin this tutorial, follow the instructions in the Before You Begin
chapter.

This tutorial shows you how to use the Verdi platform to debug a simulation
failure in a RTL design. A Verilog example is used; however, the same debug
techniques apply to VHDL or mixed designs.

Find the Active Driver
Assume the transition from 3 to 55 of ALU[7:0] at time 951 is wrong, and you
have to discover the real cause(s).

1. Change the directory to <working_dir>/demo/verilog/rtl. Execute the
following command to import the design and load the simulation results:
% verdi -f run.f -ssf rtl.fsdb -workMode hardwareDebug &

2. In the Instance tab of the Design Browser frame, click the "+" of
i_cpu(CPU) folder to expand the hierarchy.

3. Drag and drop i_ALUB(ALUB) into nWave frame to display the signals.

NOTE: You can also use Get Signals in nWave to select the signals of interest.

4. Choose the Source -> Active Annotation command to annotate the
simulation results into the Source Code frame.

5. In nWave, double-click the transition from 3 to 55 of ALU[7:0] at time 951
ns to locate the source of the transition.

This action displays the active driver of the signal transition in the Source
Code frame. For this example, it is signal out on line 52 of i_alu(alu), as
shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Find the Active Driver

275 Verdi User Guide and Tutorial Feedback

Figure: Active Driver of Signal Transition

NOTE: ALU has crossed a hierarchical boundary, and changed names to out.
Look at the equation for out. It is an OR of a, b. and cin. Which signal
matches the incorrect value of 55?

With active annotation, it is clear the source of the 55 value is signal a.

6. Locate all drivers of a by double-clicking a on line 52.

There are five drivers reported in the message frame. It would take time to
trace back the logic of all drivers.

Let’s find the real active driver a to dramatically reduce the effort.

Note that the time is 951 ns.

7. Click the Backward History icon (see left) on the nTrace main window
toolbar to return to previous step.

8. With signal a selected, click the right mouse button menu, and choose
Active Trace to find the real driver (or Ctrl+T).

Now, X0 in line 81 is selected, which means that the real driver is coming
from this line.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Find the Active Driver

 Verdi User Guide and Tutorial 276Feedback

Figure: Partial nTrace Window Displaying Active Trace for Real Driver

NOTE: Signal a changes the name to X0 in ALUB.v because of its connectivity.

An Information dialog window displays (shown below) to denote a 1ns
change in time.

Figure: Information Window Displaying Change in Time

9. Click OK on the Information dialog.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Generate Fan-in

277 Verdi User Guide and Tutorial Feedback

Generate Fan-in
Active trace can be performed multiple times until the cause is located. However,
you may need to display a schematic that shows only the logic driving IDB (the
active driver of X0), independent of hierarchy.

1. To generate the Fan-In for IDB, select IDB in line 81 on source code frame.

2. Choose the Tools -> New Schematic from Source -> Fan-in command.

A flattened nSchema frame opens as a new tab in the same area as the
source code frame, displaying the logic driving IDB. You can select specific
blocks, and find they are from different hierarchies.

3. In the nSchema frame, choose the Schematic -> Active Annotation
command to annotate the simulation results in the Fan-in window.

Figure: nSchema Frame Displaying Annotated Fan-in Schematic

4. Use the zoom function (drag-left in the upper right around the three
registers and mux) to view the values on the nets in detail.

Let’s analyze the generated Fan-in to locate the real cause of the result.

5. Choose the View -> Net Name command to display signal names on the
schematic.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Generate Fan-in

 Verdi User Guide and Tutorial 278Feedback

IDB is driven by a mux, so it is important to know the value of the select
line in order to determine which input is active. In this scenario, the current
value on the select line is 0, making the topmost input your starting point.
The top input of the mux is coming from a storage element.

6. Select IDR[7:0] (the output pin of the storage element driving the mux
input) and click the Search Backward icon on the toolbar to locate its
transition to ‘0->55’.

The time should now be 850ns.

7. Double-click the input pin of the storage element to trace the logic back. It
is a mux.

NOTE: Fan-In stops at storage elements, functional blocks, FSMs, and primary
IOs.

8. You want to know when the register input transitions to 55. Select the net
(TDB0[7:0]) between the register and mux and click the Search Backward
icon on the toolbar.

Note the time changes to 800 and the value on the control signal of the mux
is 1.

Continue tracing the 55 value back through the signal by completing the
following steps:

9. Double-click the second data input pin of the mux to expand the driving
logic. It is driven by a latch.

10. Double-click the data input of the latch, which is driven by a pair of tri-state
devices.

At this point, the schematic is getting a little cluttered, so let’s continue on a
fresh schematic.

11. Select the output of the tri-state and then choose the Tools -> New
Schematic -> Fan-in command to generate another Fan-in.

In the new nSchema frame, a schematic with its output driven by two tri-
states and memory component is displayed, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Debug Memory Content

279 Verdi User Guide and Tutorial Feedback

Figure: Example Tri-State and Memory Component

12. Annotate simulation results using the Schematic -> Active Annotation
command (or use the ‘x’ bind key).

The enable pin of the tri-state is active low, and its current value is 1, which
indicates that the output is driven by the memory component.

Debug Memory Content
You know the bad value is related to the memory. Now you want to look at the
memory. Use the following steps to load memory content.

1. In the nTrace main window or the nWave frame, choose the Tools ->
Memory -> Memory/MDA command, which opens an nMemory frame in
the lower right.

2. In the nMemory frame, choose the File -> Get Memory Variable
command.

3. On the Dumped by Simulator tab of the Get Memory Variable form, select
system.i_pram.macroram.

4. In the Display Range text fields, specify 0 for start address and 64 for the
end address.

You know this is the only part of the memory that is used during this
simulation. The form will be similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Debug Memory Content

 Verdi User Guide and Tutorial 280Feedback

Figure: Get Memory Variable

5. Click the OK button. The specified memory and address range will be
loaded into nMemory, similar to the following:

Figure: nMemory Window

Use the following steps to look for the new data.

6. In the nMemory frame, turn on the Time -> Sync Cursor Time toggle
command.

7. Click the Next Dump icon (see left) on the memory toolbar until you see
one of the addresses highlighted in red.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

Debug a Design with Simulation Results Tutorial: Debug Memory Content

281 Verdi User Guide and Tutorial Feedback

Figure: nMemory frame Displaying a Address Highlighted in Red

In this case, the data value at address[20] is 55 at a simulation time of 1600
ns.

Use the following steps to trace memory content in nWave.

8. In the nMemory window, choose the Search -> Find command.

9. In the Find form, enter 55, and use the binocular icons (Find Next or Find
Previous) to search for the other value of 55, which is located at address[2].
Another location is address[20].

10. Select the address locations with value 55 by holding the Ctrl key to select
multiple locations.

11. Use the middle mouse button to drag and drop the data to nWave frame to
see the waveform, as shown below:

Figure: Memory Waveform

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Debug a Design with Simulation Results Tutorial'

nCompare Tutorial: Overview

 Verdi User Guide and Tutorial 282Feedback

nCompare Tutorial

Overview
The nCompare frame compares simulation results stored in FSDB dump files
using flexible, user-specified comparison criteria. Optimized for the extremely
fast comparison of large data sets, the nCompare frame is fully integrated with
Verdi platform to intuitively display any differences between runs.

The details about what to compare are described in a rule file that is written in
Tcl. The nCompare module uses Tcl language and nCompare-defined-Tcl-
extended comparison commands (refer to the Appendix D in the Verdi and Siloti
Command Reference Manual for details) to describe the comparison rules and
specific comparison options.

The following three parts should be included in a basic rule files:

1. Specify golden and secondary simulation files.

2. Specify compared signal pairs.

3. Start time-based comparison.

Follow this tutorial to learn how to use nCompare's basic functionality.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: Start nCompare and Compare Waveforms

283 Verdi User Guide and Tutorial Feedback

Start nCompare and Compare Waveforms
After the nCompare frame is opened in the Verdi platform, the frame can be used
to import a rule file in one tab and to compare and view the mismatches in
another tab.

Perform the following steps to open an nCompare frame and import a rule file:

1. Change to the nCmp_demo1 directory.
% cd <working_dir>/demo/nCompare/nCmp_demo1

2. Invoke the Verdi platform.
% verdi -workMode hardwareDebug &

3. In the main window, choose Tools -> New Waveform command to open
the nWave window.

4. In the nWave window, choose Tools -> nCompare command to open the
nCompare frame. The nCompare frame opens as a new tab in the same
location as the source code frame, as illustrated in the following figure:

Figure: nCompare Frame

5. In the nCompare frame, choose File -> Open Rule File command. The
Open Rule File form opens, as illustrated in the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: Start nCompare and Compare Waveforms

 Verdi User Guide and Tutorial 284Feedback

Figure: Open Rule File Form

6. Select the demo.ncr file in the Open Rule File form. The opened rule file is
displayed as another tab in the top half of the nCompare frame, as illustrated
in the following figure:

Figure: Current Opened Rule File

7. To start the waveform comparison, choose Comparison -> Run command
or click the Run icon on the toolbar of the nCompare frame to start the
waveform comparison.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: Start nCompare and Compare Waveforms

285 Verdi User Guide and Tutorial Feedback

8. To pause or stop the comparison process during the comparing process,
choose Comparison -> Pause or Comparison -> Stop commands.
Alternatively, click the Pause or Stop icons on the toolbar.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: View Errors

 Verdi User Guide and Tutorial 286Feedback

View Errors
Following are three main methods for viewing the errors: time view, hierarchy
view, or in the waveform.

Sorted by Time
After the waveform comparison is completed, the nCompare frame shows the
mismatches on the result window and sorts them by design hierarchy or
mismatch time sequence depending on the view setting.

To view the mismatches by time sequence, choose View -> View By Time
command.

The following figure shows the nCompare frame with the results sorted by time
sequence.

Figure: nCompare Results Sorted by Time Sequence

Sorted by Hierarchy
Alternatively, to view the mismatches by design hierarchy, choose View -> View
By Hierarchy command. The following figure shows the nCompare frame with
the results sorted by design hierarchy.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: View Errors

287 Verdi User Guide and Tutorial Feedback

Figure: nCompare Results Sorted by Design Hierarchy

In the Waveform
The nCompare frame is tightly integrated with the nWave window for viewing
mismatches. Perform the following steps to view the errors in nWave:

1. Confirm the View -> View By Hierarchy command is enabled and then
click the + in the hierarchy view of the nCompare frame to view the
mismatches.

2. Double-click a mismatch error node to add the compared signals into the
nWave window (the nWave window is opened automatically if it is not
opened). The cursor time in the nWave window is changed to the mismatch
time. The result is similar to the following figure.

Figure: View Errors With the nWave Window

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: Error Report File

 Verdi User Guide and Tutorial 288Feedback

Error Report File

Save the Current Error File
The error report can be saved to a file for debug at a later time. To save the error
file, perform the following steps:

1. In the nCompare frame, choose File -> Save Error command.

2. Type error.nce in the file name text field in the Save Error As form as shown
in the following figure:

Figure: Saving the Error Report File

3. Click OK.

NOTE: The recommendation is to save the error file with the *.nce extension.

Load the Previous Error File
An error report file that is previously saved can be loaded for additional debug.
To load the previously saved error report file, perform the following steps:

1. In the nCompare frame, choose File -> Open Error File command.

2. In the Open Error File form, select the error.nce error file.

3. Click OK.

The mismatch error report is displayed in the nCompare frame by time
sequence (the default view). Errors can be viewed in the nCompare frame
by following the steps in the View Errors section.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

nCompare Tutorial: Error Report File

289 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'nCompare Tutorial'

Application Tutorials: Searching Backward for Value Causes

 Verdi User Guide and Tutorial 290Feedback

Application Tutorials

Searching Backward for Value Causes
When you trace the root cause of the signal value by the flow views, the values
on the active fan-in signals are compared with the fan-out signal. If there are
matching values, then they are taken as new root nodes and the operation
continues. This allows you to track the first occurrence of a value of interest
using a single command.

Assume that from your testbench, the alubuf_out signal in instance i_ALUB
follows the sequence 0, 1, 2, 3, 4, 5 commencing at time 0. However, it actually
follows the sequence 0, 1, 2, 3, aa, 4, 5. You need to find out the reason and the
location from where the aa value is generated.

Before you begin this application, follow the instructions in the Before You Begin
chapter.

Open a Temporal Flow View
1. Change your context to the verdi_mixed sub-directory, where all the demo

source code files are located:
% cd <working_dir>/demo/verdi_mixed

2. Compile the mixed design to create a work.lib++:
% ./compile.verdi

3. Start the Verdi platform by referencing the compiled design and the FSDB
file CPUsystem.fsdb (contains a set of simulation results) on the command
line:
% verdi -lib work -top tb_cpusystem -ssf CPUsystem.fsdb
-workMode -hardwareDebug &

4. Resize the nWave frame to a viewable size and locate it under the source
code frame on your screen such that you can see both frames.

The advanced drag-and-drop technology in Verdi platform allows you to quickly
locate and display information related to selected objects.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

291 Verdi User Guide and Tutorial Feedback

5. In the Instance tab of the design browser frame, click the plus symbol to the
left of the i_cpusystem block instance name to reveal its i_cpu and i_pram
sub-blocks.

6. Double-click the i_cpu block instance name in the design browser frame to
access the source code of this module, which is displayed in the source code
frame and reveals its i_ALUB, i_CCU, and i_PCU sub-blocks.

7. Double-click i_ALUB to access the source code of this module.

8. Enter AluBuf in the Find String text box on the toolbar, and press <Enter>
to find the signal.

NOTE: Names are case sensitive.

9. Use the middle mouse button to drag AluBuf from the source code frame,
and drop in the signal pane on the left-hand side of the main nWave frame.

10. Right-click alubuf in nWave's waveform pane on the transition from 3 to aa
at time 825, and choose the Temporal Flow View -> New Temporal Flow
View command.

11. The Temporal Flow View frame is created as a new tab in the same location
as the nWave frame.

Figure: Temporal Flow View Frame

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

 Verdi User Guide and Tutorial 292Feedback

Show Active Statements
An active statement is the logic statement that generates the value for the driver
signals of the current statement.

1. Double-click the aluouttemp[7:0] signal in the Temporal Flow View frame.
You can also right-click the aluouttemp node in the Temporal Flow View
frame, and choose Show Active Statement.

The Temporal Flow View frame updates, as shown below:

Figure: Temporal Flow View Frame Displaying Active Statements

Another symbol (a function block) is added to the Temporal Flow View
window. You can continue tracing active statements on any input node.

Trace This Value Automatically
After you have traced back one statement and seen the function symbol, assume
that you want to know where the 55 value on signal a[7:0] at time 800 comes
from. You can use the Trace This Value command, which compares values on
the active fan-ins with that of the fan-out signal. If matched values are found,
they will be taken as new root nodes and the operation continues. This allows the
first occurrence of a value of interest to be tracked down using a single command.

1. Choose the Tools -> Preferences command to open the Preferences form
and set all the options for the Trace This Value command.

2. In the Preferences form, select the Cycle Based page under the Temporal
Flow View -> Trace folder.

The form is similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

293 Verdi User Guide and Tutorial Feedback

Figure: Preferences Form - Trace This Value Options

You have four options to customize the Trace This Value command:

• Trace the Same Value(s) on Data Path: If matched values are found
among the active data path, they are taken as new root nodes and the
trace continues.

• Continue Tracing if Only One Active Data Path: If there is only
single active data fan-in, it is taken as a new root node and the operation
continues.

• Continue Tracing if Only One Transition on Active Fan-ins: If there
is only one active fan-in with transition, it is taken as a new root node
and the operation continues.

• Stop When Control Has Transition: If the control signal has a
transition, tracing stops.

Confirm that the first three options are enabled and the last option is
disabled.

3. Click the OK button on the Preferences form.

4. Right-click a[7:0] in the Temporal Flow View window, and choose Trace
This Value from the menu.

5. Click the Fit Time icon (see left) on the toolbar to see the entire results.

The Temporal Flow View frame updates similar to the following figure:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

 Verdi User Guide and Tutorial 294Feedback

Figure: Trace This Value Results

The Trace This Value command traces back several fan-in cones and stops
at a memory symbol at time 650.

6. Zoom in around the memory symbol, as shown below:

Figure: Memory Symbol

7. Double-click the macroram[addr] input node of the memory symbol to find
the driving statement.

The following message displays:

Figure: Information Dialog Window

This message means that the memory content is initialized in the initial
block and its value is 55. No further tracing on the Temporal Flow View
frame is possible. Refer to the Debug Synthesizeable Memory Models
section for more details.

8. Click the OK button on the Information dialog window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

295 Verdi User Guide and Tutorial Feedback

You can also complete any of the previous steps using either the Compact
Temporal Flow View or Temporal Register View windows. These views can be
opened from the Tools -> Open Flow View command, or use the right mouse
button and choose Open Flow View. The same cause will be located. However,
the view will look different.

Trace Another Path
Now that you have traced one path on the Temporal Flow View frame, assume
you also want to trace the 55 value on b[7:0] (where b[7:0] is another input node
on the function symbol).

1. Right-click b in the Temporal Flow View window, and select Trace This
Value.

2. Click the Fit Time icon.

Note that another path will display.

3. Zoom in from time 700-825 to more easily see the details. The frame will be
similar to the following:

Figure: Trace Multiple Paths

Although a and b follow different paths initially, at time 700 they come
from the same register.

4. Turn on the View -> Signal -> Active Nodes Only toggle command to
display only the active signals and reduce the clutter.

5. Turn off the View -> Signal -> Active Nodes Only toggle command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Searching Backward for Value Causes

 Verdi User Guide and Tutorial 296Feedback

Show Signals on nWave
At any time, you can select a node and add its waveform to nWave. You can also
add all fan-in signals for a node.

1. Select the output node o[7:0] on the right most function symbol.

2. Use Ctrl+W to add its waveform to nWave.

3. Use Ctrl+A to add all its fan-in signals to nWave.

You can also select a symbol to drag and drop to nWave; for example, the
register symbol for AluBuf.

4. When you are done tracing paths in the Temporal Flow View frame and
adding signals to nWave, choose the File -> Exit command in the nTrace
main window to close the Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

297 Verdi User Guide and Tutorial Feedback

Debug Memories
The Verdi platform provides a set of features that allow you to debug memories
without rewriting your design to note memory contents or adding special tasks to
dump memory contents to a file during simulation.

For memory models that can be synthesized, the Verdi platform can calculate
memory values dynamically, display memory contents in the waveform display
and identify the most recent write time for a specific memory location. All these
features are enabled by the Behavior Analysis engine and does not require you to
dump the memory contents to a file during simulation.

For memory models that cannot be synthesized, the Verdi platform provides the
Memory Definition Table (MDT) template that can be used to define the control
signals like write, enable, address and data for a memory. After the memory
model is defined through the template, you can view the memory contents,
display them in the waveform window, and identify the most recent write time of
any address location.

This tutorial illustrates these memory debug features on a simple design.

This section covers the following topics:

• Debug Synthesizeable Memory Models

• Debug Non-synthesizeable Memory Models

• Debug PLI Memory Models

Before you begin this application, follow the instructions in the Before You Begin
chapter.

Debug Synthesizeable Memory Models
In this example, you will trace the value in an incorrect transition on signal ACC
back to its source - an instance of a memory model. You will then use the memory
debug features to inspect the memory and determine when the value was stored.

Locate the Cause of a Value on a Signal
Enter the following commands to start the tutorial:

1. Change to the demo directory.
% cd <working_dir>/demo/verilog/cpu/src

2. Start the Verdi platform and reference the file run.f in the current directory
and the FSDB file CPUsystem.fsdb in the parent directory:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 298Feedback

% verdi -f run.f -ssf ../CPUsystem.fsdb
-workMode hardwareDebug &

3. Display the waveform for signal ACC[7:0] in module instance i_ALUB in
nWave. You can do this by dragging the signal from the source code to the
waveform pane or by using the Get Signals form in nWave.

4. Zoom out in nWave until you see 55 at time 801 ns.

In this example, you will locate the cause of a value in the nWave frame instead
of a Temporal Flow View frame. The Behavior Analysis engine is still used -- the
results are displayed in a more familiar format. See the Searching Backward for
Value Causes section for details on using the Temporal Flow View window.

5. Click the ACC signal in the nWave frame somewhere close to the transition
from the 00 value to the 55 value and note the following:

• A vertical cursor appears in the waveform pane.

• The simulation time of 801 associated with the cursor's current location
is displayed in the nWave toolbar.

NOTE: By default, the cursor snaps to the closest transition on the selected
signal, the transition from 00 to 55 in this case.

6. Choose the Tools -> Preferences command to set up the preferences for
tracing on nWave. Then, in the Preferences form:

a. Select the Automatic Command page under the Temporal Flow View
folder.

b. Turn on the Highlight Signal Value When Trace on nWave option.

c. Click the OK button.

7. Right-click ACC in nWave on the transition from 00 to 55 and choose the
Trace This Value command to trace the propagation of 55 across multiple
cycles.

8. In the Question dialog window for Behavior Analysis, click Yes.

9. In the Behavior Analysis form, click the OK button.

Several signals display in nWave in a new group, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

299 Verdi User Guide and Tutorial Feedback

Figure: Display of New Group of Signals in nWave

The Verdi platform traces several cycles back and locates the origin of the 55,
which is signal dataout. This signal is the output of a memory. You can confirm
this by double-clicking the transition from 34-55 on dataout to find the driving
statement. In the source code frame, you will see dataout assigned by
macroram[addr].

In the waveform, you will see that the control signals for the memory were
automatically included.

The command stops at the statement that reads memory element
macroram[addr] into dataout signal. At the time the addr signal has a value of 2
and the memory content that is being read out is 55.

The memory content did not get dumped out during simulation. The Verdi
Behavior Analysis engine infers the value from the circuit description and
simulation dump file.

Locate the Last Write of a Specific Address Location
When a memory output value is wrong, it is usually caused by one of two
problems:

• The wrong data was written into the location you are reading.

• You are reading from the wrong address.

First, let’s find out when the 55 was written into address 2:

1. In the nWave frame, double-click the transition from 34-55 on dataout to
find the driving statement.

2. In the source code frame, right-click macroram[addr] on line 88 (confirm
the cursor is over the macroram) and choose the Debug Memory -> Trace
Memory Write command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 300Feedback

The Verdi platform locates the last write, which was during initialization in
this case.

Figure: Question Dialog Window

The Verdi platform analyzes the control logic for the memory, locates the values
of these signals in the FSDB file, and determines when the last write to this
location occurred.

NOTE: If you had traced the 55 value of ACC in the Temporal Flow View
window, you only need to double-click the memory node to locate the
last write.

3. Click the OK button on the Information dialog window.

The initialization statement for the memory will be displayed in the source
code frame.

Now, assume that the initialization file is correct, and you want to know if any
other memory locations contain the correct data.

Show Memory Contents
The Behavior Analysis engine can calculate the memory contents at any time you
specify:

1. In nWave, double-click dataout at the 34-55 transition to go to the memory
statement again.

2. With macroram[addr] selected, right-click and choose the Debug Memory
-> Show Memory Contents command.

The Get Memory Variable form with the Calculated by Verdi tab selected
displays, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

301 Verdi User Guide and Tutorial Feedback

Figure: Get Memory Variable - Calculated by Verdi

The default values of the start and end addresses are the same as the
declaration of the memory in the RTL code. The time value is set to the time
selected in the waveform (or flow view) by default. In this example, you
have specified that you want the Verdi platform to calculate the memory
contents from address 0 to address 255 at time 650.

3. Confirm 650 is entered in the Time text field and 0:255 is entered in the
Display Range text fields.

4. Click the OK button.

The memory values are calculated and displayed in the nMemory frame (in
the lower right of the main window), as shown below:

Figure: Show Memory Contents in nMemory

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 302Feedback

Search Values in the nMemory Frame
1. Choose the Search -> Find command to open the Find form, as shown

below:

Figure: Find Form

2. Enter a value to search for. For example, 04.

3. Click the Find Next/Previous icons to search for the value.

The desired value is highlighted in the nMemory window, as shown below:

Figure: nMemory Window with Highlighted Value

4. Click the Close button on the Search Pattern form.

Synchronize the nMemory Frame with nWave
1. Turn on the Time -> Sync Cursor Time toggle command to synchronize

the time in the nMemory frame with nWave.

When you move the cursor in nWave, the contents in the nMemory frame
are updated.

2. Move the cursor in nWave to time 1550.

Note that the value at address 20 changed from X to 55, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

303 Verdi User Guide and Tutorial Feedback

Figure: nMemory Frame with Synchronized Time

Change Address and Time in the nMemory Frame
1. On the nMemory toolbar, change the end address in the Display Range field

(second text field) to 63 and press Enter on the keyboard.

2. Change Time to 2000 and press Enter on the keyboard.

The nMemory frame updates, as shown below:

Figure: Reduced Address Range in nMemory

Customize the nMemory Window
1. Choose the Options -> Preferences command to customize the nMemory

display.

The Preferences form displays, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 304Feedback

Figure: nMemory Preferences Form

2. Enter 4 in the Words Shown in One Row text field.and 30 in the Cell
Column Width text box and disable the Show Cell Bit Range with
Address option.

3. Click the OK button. The nMemory frame re-displays with the new options:

Figure: nMemory Frame with New Display Options

Display Calculated Memory Contents in nWave
1. In the source code frame, right-click the macroram[addr] memory variable,

and choose the Debug Memory -> Dump Memory Waveform to FSDB
command to open the Dump Memory Waveform To FSDB form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

305 Verdi User Guide and Tutorial Feedback

2. In the Dump Memory Waveform To FSDB form, specify the start (0) and end
(255) address, the start (0) and end (2501) time, and the name of the FSDB
file that you want to write to. Use the values shown in the following figure:

Figure: Dump Memory Waveform to FSDB Form

3. Click the Add button.

4. Click the Start Dumping button to create the FSDB file and display a new
nWave frame with the FSDB file loaded

[Optional] You can also load the new FSDB file into the original nWave
frame. Choose the File -> Open command and select the appropriate FSDB
file.

5. In nWave, choose Get Signals to select the memory to display in the
waveform.

NOTE: In the Find Signal box in the Get Signals form, you can specify which
memory range to add. For example, entering macroram[255:250] will
only list those address elements for that selection.

6. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 306Feedback

Debug Non-synthesizeable Memory Models
Non-synthesizeable memory models are those HDL models described using
non-synthesizeable constructs. Since the Verdi platform cannot infer the read/
write operation from these HDL models, the memory content cannot be extracted
automatically. The Verdi platform provides a way for you to enter the read/write
operation manually to extract memory content.

In this tutorial, two static RAM models are used to illustrate the usage:

• 1-port Static RAM

• Multiple-port Static RAM

These examples will show you how to describe the Verdi templates for memory
model for non-synthesizeable one or multiple-port memories. After you have
described the templates, you can use the Verdi platform to trace memory contents
and dump memory content to FSDB.

1-port Static RAM
Enter the following commands to start the tutorial:

1. Change to the demo directory:
% cd <working_dir>/demo/verilog/memory_demo/1port

2. Invoke the Verdi platform using a command file:
% verdi –play demo.cmd

This loads the design and FSDB, and opens the GUI.

Create a Memory Model Definition for the 1-port Static RAM
1. In the source code frame, select mem[addr] in hierarchy tb.s0.

NOTE: This should automatically be highlighted by the command file.

The following figure shows the concurrent block that describes the write
operation to the 2-D array.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

307 Verdi User Guide and Tutorial Feedback

Figure: Source Code Frame

2. Right-click mem[addr], and choose the Debug Memory -> Memory
Definition Table command.

The Memory Definition Table form displays. Confirm the default Module
name is sram and the default Array is mem.

3. In the Memory Definition Table form, click the Add button to add the
memory module name to the list.

4. In the Operation List section, toggle to select Write, and click the Add
button. The Memory Definition Table Editing Window displays as below.

Figure: Memory Definition Table Editing Window - Write Operation

5. Enter the following, or drag and drop from nTrace to this table:

• Clock/Event Expression: @(posedge clk)

• Write Condition: strb && ~rw_

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 308Feedback

• Write Address: select the By Expression option and enter addr

• Data In: select the By Expression option and enter temp_data

The Use New Value option specifies that the new value should be used for
the calculation if there is a value change on temp_data at the clock
expression; for example, the positive edge of clk. Because temp_data is
assigned and used within the same “always” statement, you need to make
sure the Verdi platform uses the new values if there are any value changes
on temp_data at the clock positive edge.

6. Turn on the Use New Value option for the Data In field.

7. Click the OK button in the Memory Definition Table Editing Window form.

This definition is saved, and the list is shown in the Memory Definition
Table - Operation List.

Figure: Memory Definition Table Form

8. [Optional] click the Save button to save the definition to a file for future
use.

9. Click the OK button to close the window and load the memory definition in
the Verdi platform.

You can use the Verdi memory debug features on this one-port static RAM.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

309 Verdi User Guide and Tutorial Feedback

Trace the Memory Contents
1. In the source code frame, select the 2D-array signal mem[addr].

2. Right-click mem[addr] and choose the Debug Memory -> Show Memory
Contents command and click Yes the on the Question dialog window to
perform Behavior Analysis.

3. In the Behavior Analysis form, click OK.

4. The Get Memory Variable form opens.

Suppose you want to see the memory content for element 0 to 63 at time
80000.

5. On the Calculated by Verdi tab of the Get Memory Variable form, enter
80000 in the Time text field, and click the OK button.

An nMemory frame displays the specified memory, as shown below:

Figure: nMemory Frame Displaying Memory Content

6. Click the value for any address element.

The Verdi platform will report when the memory element was written on the
toolbar.

Display the Memory Contents in nWave
1. In the source code frame, select the 2D-array signal mem[addr].

2. Right-click mem[addr], and choose the Debug Memory -> Dump
Memory Waveform to FSDB command.

3. Set the following in the table:

• Start Display Range: 0

• End Display Range: 63

• Start Time: 0

• End Time: 80000

4. Click the Add button and then the Start Dumping button.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 310Feedback

The Verdi platform will display a new nWave window loaded with
memory.fsdb, which contains the calculated memory contents.

5. In the new nWave window, choose the Signal -> Get All Signals command
to display the memory, click OK on the Confirmation question box.

6. In nWave, double-click the memory signal to expand and show every
address of the memory.

7. Zoom out until you can see values on mem[0]. Note that mem[0] changes to
“a649_e902” at time 44450, as shown in the figure below:

Figure: nWave Frame Displaying Memory Contents

To verify that the memory location 0 has a write operation, check the memory
control logic.

8. Move the new nWave frame to a docking position above the original nWave
frame and arrange the two waveform frames so that you can see both. You
can hide the nMemory frame or other frames if necessary.

For example rearrange the frame as shown in the following figure.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

311 Verdi User Guide and Tutorial Feedback

Figure: Rearrange to See Both nWave Frames

9. In the nWave frame that is loaded with memory.fsdb, choose the Window ->
Sync Waveform View command to synchronize both waveform frames.

10. Click mem[0] at the transition “a649_e902” at time 44450. This will also
change the cursor time in the other frame to 44450.

11. Locate the control signals strb and rw_ in the waveform. You can see that
they are performing a “write” operation at this time and the address is 0.

[Optional] You can also load the new FSDB file into the original nWave window.
Choose the File -> Open command, and select the appropriate FSDB file.

12. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

Multiple-port Static RAM
Enter the following commands to start the tutorial:

1. Change to the demo directory:
% cd <working_dir>/demo/verilog/memory_demo/mport

2. Start the Verdi platform:
% verdi –play demo.cmd

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 312Feedback

Create a Memory Model Definition for the Multiple-port Static RAM
1. In the Instance tab of the design browser frame, select hierarchy tb.s0.

The following figure shows the concurrent block that describes the write
operation to the 2-D array.

Figure: nTrace Code Excerpt

2. Select mem[addr1], and then choose the Tools -> Memory Definition
Table command to create the model.

3. In the Memory Definition Table form, enter sram in the Module text box,
mem in the Array text box.

4. Click the Add button to add the memory to the list.

5. In the Operation List section, toggle to the Write condition, and click the
Add button.

6. In the Memory Definition Table Editing Window form, enter the following,
or drag and drop from nTrace to this table:

• Clock/Event Expression: @(posedge clk)

• Write Condition: ~ce_&&~pe1_

• Write Address: select the By Expression option and enter addr1

• Data In: select the By Expression option and enter din1

7. Click the OK button.

8. In the Operation List section, click the Add button again to create a second
write operation.

9. In the Memory Definition Table Editing form, enter the following:

• Clock/Event Expression: @(posedge clk)

• Write Condition: ~ce_ && ~pe2_

• Write Address: select the By Expression option and enter addr2

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

313 Verdi User Guide and Tutorial Feedback

• Data In: select the By Expression option and enter din2

10. Click the OK button in the Memory Definition Editing form.

11. Click the OK button on the Memory Definition Table form.

The template is created, and you can calculate and display the memory
contents as previously described.

12. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

Debug PLI Memory Models
The Verdi platform can help to trace the content of PLI memory models. The
following shows an example of how it works in the Verdi platform.

Create a PLI Memory Definition File
Enter the following commands to start the tutorial.

1. Change to the demo directory:
% cd <working_dir>/demo/verilog/memory_demo/PLI_memory

2. Invoke the Verdi platform:
% verdi –play demo.cmd

This loads the design, and the FSDB file.

3. Double-click the instance tb.s0 in the design hierarchy frame to display the
associated source code.

The module defines the PLI tasks for defining memory and the timing for
read/write into the memory.

Figure: Code Excerpt for Defining a PLI Memory

Figure: Code Excerpt for Reading a PLI Memory

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 314Feedback

Figure: Code Excerpt for Writing a PLI Memory

The first step is to prepare a PLI memory function definition file. This file
tells the Verdi platform what the function is for the PLI declaration and what
the function is for memory write.

4. Create a new file that contains the following three lines:
API_MEM_DECL $damem_declare(MNAME, ADDR_LEFT, ADDR_RIGHT,
RANGE_LEFT, RANGE_RIGHT);
API_MEM_WRITE $damem_write(MNAME, ADDR, DATAIN);
API_MEM_READ $damem_read(MNAME, ADDR, DATAOUT);

5. Save the file as pli_memory.def.

The first line indicates the PLI memory is defined using the
$damem_declare function. MNAME is a keyword. It means the first
parameter of the function is the memory name in the HDL design.

The second line indicates data is written into the PLI memory using the
$damem_write function. ADDR is a keyword, which means the second field
represents the address. DATAIN is a keyword, which means the third field
represents the data to be written into the PLI memory.

The third line indicates data is read from PLI memory using the
$damem_read function. ADDR is a keyword, which means the second field
represents the address. DATAOUT is a keyword, which means the third field
represents the data to be read from the PLI memory.

Load the PLI Memory Definition File
Perform Behavior Analysis, and load the PLI memory definition file:

1. Choose the Tools -> Preferences command, and then select the Memory
Definition page under the Behavior Analysis folder.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

315 Verdi User Guide and Tutorial Feedback

2. Enter the PLI memory definition file (pli_memory.def) in the PLI Memory
Definition File field, as shown in the figure below:

Figure: Load PLI Memory Definition File

3. Click the OK button to perform Behavior Analysis.

The Verdi platform performs analysis on the design and extracts the write
conditions for the PLI memory that will be used to trace memory content.

Trace the Content of the PLI Memory
After loading the PLI definition file, you are ready to trace the content of the PLI
memory.

1. In the source code frame, locate mem in
$damem_declare("mem",0,63,0,31); on line 75.

2. Right-click mem, and choose the Debug Memory -> Show Memory
Contents command.

Although it may look unselectable because the text is black, double-clicking
on mem will select it.

3. On the Calculated by Verdi tab of the Get Memory Variable form, enter the
address range and the simulation time.

For example, enter 0 and 63 in the Display Range text fields and 50000 in
the Time text field, as shown below.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Memories

 Verdi User Guide and Tutorial 316Feedback

Figure: Get Memory Variable - Calculated by Verdi

4. Click the OK button.

The Verdi platform will analyze the content of the PLI memory from 0 to 63
at time 50000 and display the results in the nMemory frame:

Figure: nMemory Frame for PLI Memory

5. Click any memory element whose value is not X.

The table will report when the content has been written into the address.

You can also dump PLI memory waveform to FSDB as previously described in
1-port Static RAM.

6. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

317 Verdi User Guide and Tutorial Feedback

Debug Gate vs. RTL Simulation Mismatch
Before you begin this application, follow the instructions in the Before You Begin
chapter.

This tutorial will guide you through a scenario explaining how to debug a design
if discrepancies occur between RTL and gate-level simulations. In this example,
you will debug a mismatch on carry_flag.

nWave provides a comprehensive comparison capability to compare simulation
results from different simulation runs automatically. nWave graphically displays
the mismatches in the waveform window after comparison. You can step through
each mismatch to analyze the differences.

Locate the Signal to Compare
Typically you must build a gate-level symbol library for your design using the
following command:

% syn2SymDB synopsys.lib

NOTE: synopsys.lib is not included in the Verdi package. It is available from
other Synopsys tool packages.

For this example, the symbol library is already built and is included in the
installation.

1. Set the environment variables for the symbol library using the following
commands:
% setenv NOVAS_LIBPATHS <VERDI_INST>/share/symlib/32
% setenv NOVAS_LIBS lsi10k_u

2. cd to <working_dir>/demo/verilog/gate.

3. Compile the gate-level design using the following command:
% vericom -f run.f

4. Load the compiled design using the following command:
% verdi -lib work -top system -workMode hardwareDebug &

5. In the main window, choose the Source -> Find String command to find
carry_flag through a string search.

A Find String form displays, as shown below.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

 Verdi User Guide and Tutorial 318Feedback

Figure: Find String Form

6. Enter carry_flag in the Find Pattern text box.

7. Select In All Files.

8. Click the Find All button.

In the Search tab of the message frame, you will see that carry_flag is the
output of carry_flag_reg.

9. Click the Close button on the Find String form.

10. In the Search tab of the message frame, double-click the driver, FD2, which
takes you to the corresponding line in the source code.

Figure: Find String Results

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

319 Verdi User Guide and Tutorial Feedback

Load Simulation Results and Display Waveforms
1. From the main window, choose the Tools -> New Waveform command or

click the New Waveform icon on the toolbar open the nWave frame.

2. In the nWave frame, choose the File -> Open command to open the Open
Dump File form and load the gate-level simulation results.

3. Select gate.fsdb.

4. Click the Add button and then the OK button.

5. In the opened nWave frame, choose the Tools -> New Waveform command
to open another nWave frame.

6. From this new nWave frame, choose the File -> Open command to load the
RTL simulation result.

7. In the Open Dump File form, select ../rtl/rtl.fsdb.

8. Click the Add button and then the OK button.

9. Move the new nWave frame to a docking position above the original nWave
frame and arrange the two waveform frames so that you can see both. For
example rearrange the frames as shown in the following figure.

Figure: Compare Two nWave Frames

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

 Verdi User Guide and Tutorial 320Feedback

10. Drag and drop the instance carry_flag_reg to both nWave frames.

NOTE: You can determine the gate waveform by looking at nWave’s title bar
for gate.fsdb. In the gate-level nWave frame, choose the Window ->
Sync Waveform View command. However, you can tile windows in
any nWave window.

11. In the both nWave frames, choose the Window -> Sync Waveform View
command to synchronize the viewing based on the simulation time.

12. Use the Pan Left and Pan Right keys (arrow keys on keyboard) to see the
effect with synchronized viewing.

All the viewing operations and cursor and marker positions under one frame
are reflected to the other frame except for the Pan Up and Pan Down
scrolling.

Compare the Simulation Results
1. Select carry_flag in both nWave frames.

2. In the gate-level nWave frame, choose the Tools -> Waveform Compare ->
Compare Selected Signals command to compare the simulation results.

After the comparison is complete, nWave displays a dialog window that
shows that there is 1 mismatch and the Search By toolbar would be
changed to Search By Mismatches.

Figure: Comparison Result Message Window

3. On the Comparison Results window, click the Close button.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

321 Verdi User Guide and Tutorial Feedback

4. In the gate-level nWave frame, locate the mismatch (indicated by red hatch
marks) by clicking the right arrow (Search Forward) icon on the toolbar.

Figure: Mismatch Results in nWave frames

The input (carry) to the register in the gate-level design changes too close to the
clock edge, thereby causing the mismatch.

Isolate the Problem
1. To find the active driver in the source code frame, double-click the rising

edge of carry in the gate nWave frame.

2. In the nTrace main window, choose the Tools -> New Schematic from
Source -> Fan-In command to generate the fan-in cone for carry.

NOTE: It will take a couple of seconds for this to occur due to the fact that the
fan-in cone is quite large which makes it difficult to debug.

3. In the gate-level nWave frame, select carry and put the cursor on the rising
edge of carry at time 11460.

4. Choose the Tools -> Active Fan-In command and specify 10 in the Back
Trace Time Period field.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Gate vs. RTL Simulation Mismatch

 Verdi User Guide and Tutorial 322Feedback

Figure: Active Fan-in Cone Window

5. Click the Apply button. The Fan-in logic has been reduced to four gates
and is now ready for further analysis.

Figure: Active Fan-in Results

6. Exit the Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

323 Verdi User Guide and Tutorial Feedback

Behavior Trace for Root Cause of Simulation
Mismatches

Simulation mismatches between two simulation runs for the same design occur
due to any of the following reasons:

• Different optimization levels applied in a simulator.

• Different versions of a simulator or libraries.

• Different compile-time options.

• Different simulators.

Using the Verdi platform, you can locate the cause of this simulation mismatch
by tracing back the behavior and comparing the results of two simulation files to
identify the root cause of the mismatches.

This feature is different from the nCompare module or waveform compare in the
Verdi platform in which the goal is to find all the mismatches between two FSDB
files.

Before you begin this application, follow the instructions in the Before You Begin
chapter.

Locate the Simulation Mismatch
Enter the following commands to start the tutorial and then use waveform
compare to locate the signal and time that mismatches.

1. Change to the demo directory:
% cd <working_dir>/demo/verilog/cpu/src

2. Start the Verdi platform and reference the file run.f in the current directory
and the FSDB file CPUsystem.fsdb in the parent directory:
% verdi -f run.f -ssf ../CPUsystem.fsdb
-workMode -hardwareDebug &

3. Display the waveform for AluBuf signal from the ALUB module in the
nWave frame by dragging from the source code frame or using Get Signals.

4. Open another nWave frame by clicking the New Waveform icon on the tool
bar of the main window.

5. In the new nWave frame, choose the File -> Open command to load the
../CPUsystem_fix.fsdb file.

6. In the Open Dump File form, click Add and then OK to complete the load.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

 Verdi User Guide and Tutorial 324Feedback

7. Move the new nWave frame to a docking position above the original nWave
frame and arrange the two waveform frames so that you can see both. For
example, rearrange the frames as shown in the following figure.

Figure: Compare Two Waveforms

8. Drag and drop the AluBuf signal from the first nWave frame to the second
nWave frame.

9. Choose the Window -> Sync Waveform View command in both nWave
frames to synchronize the two nWave frames.

10. Select the AluBuf signal on both nWave frames.

11. In the original nWave frame (the one that displays CPUsystem.fsdb in the
toolbar), choose the Tools -> Waveform Compare -> Compare 2 signals
command.

The Comparison Results dialog window opens, indicating 11 mismatches, as
shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

325 Verdi User Guide and Tutorial Feedback

Figure: Comparison Result Window

12. Click the Close button on the Comparison Result dialog window.

13. Use the Search Forward icon in the original nWave frame to locate the first
mismatch at time 826ns. One has value aa and the other is 4.

Now that a mismatch point is located, let’s find out the cause.

14. Continue with the next section, Behavior Trace for the Root Cause of
Mismatch.

Behavior Trace for the Root Cause of Mismatch
1. Click the AluBuf signal in the first nWave frame at time 826.

2. Right-click, and choose the Temporal Flow View -> New Temporal Flow
View command to create the Temporal Flow View frame.

3. In the Temporal Flow View frame, select the File -> Load 2nd Waveform
for Trace Mismatch command to load the CPUsystem_fix.fsdb file.

4. Before tracing the mismatch, choose the Tools -> Preferences command to
open the Preferences form and customize the options.

In the Preferences form, select the Temporal Flow View folder -> Trace
folder -> Trace Mismatch page, similar to the following form:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

 Verdi User Guide and Tutorial 326Feedback

Figure: Preferences Form - Trace Mismatch Options

• Ask Every Time: the option form will open every time you start the
behavior trace.

• Trace Back N Cycles/Statements at a Time: specify how many cycles
or statements to trace back and compare.

• Jump to Earliest Difference to Trace: for the fan-in signal that has a
different value, instead of continuing the same Behavior Analysis
process at the time the value is different, jump to the earliest time there
is a difference in the FSDB and continue the trace process.

5. In the Preferences form, turn off the Ask Every Time and Jump to
Earliest Difference to Trace options and change the Trace Back value to
20.

6. Click the OK button to close the form.

7. Right-click AluBuf in the Temporal Flow View frame, and choose the
Behavior Trace for FSDB Mismatch command.

8. After the results are displayed, zoom in around time 800-825 by
dragging-left on the time display.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

327 Verdi User Guide and Tutorial Feedback

Figure: Behavior Trace Mismatch Results

The value of AluBuf in the two FSDB files is different at time 800 as shown
in the right-most function symbol. The b path is automatically traced. The
Behavior Trace command works in the following way:

• First the fan-in cone of the selected signal is expanded.

• Then, the Behavior Analysis engine is used to determine what the value
is and when it happens for the fan-in signals to produce the value of the
selected signal.

• The value and time of these fan-in signals is then used to compare them
with those in the second FSDB. A mismatch mark is set on the fan-in
signals that have different values.

9. Scroll to the left end and note that there is still a mismatch on the b path at
time 575. The next element to the left is a memory - it does not have a
mismatch.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Behavior Trace for Root Cause of Simulation Mismatches

 Verdi User Guide and Tutorial 328Feedback

Figure: Memory without Mismatch

10. Double-click the memory input node to find out when it was written.

It was initialized to the value.

In this example, a different microrom initialization file was used for each
simulation run. This is what produced the different values for AluBuf at time
826.

11. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

329 Verdi User Guide and Tutorial Feedback

Debug Unknown (X) Values
If a signal has an unknown value X, the root cause of the X needs to be found.
Using the Verdi platform, you can locate the first X with one command. The
Verdi platform will analyze the design and report the possible causes of the X or
the path causing the X can be visualized over multiple cycles.

Assume that the signal ZFout has an unknown value X at time 2777ns, and you
need to find out the root cause of the X. A typical way to debug this problem is
to display the signal in the waveform, refer to the source code to find the driving
signals, display those signals in the waveform to identify those that are X, and so
on. Eventually, and if you are persistent, you will locate the first occurrence of
an X.

Before you begin this application, follow the instructions in the Before You Begin
chapter.

Locate the Root Cause of the “X” Value on ZFout
Enter the following commands to start the tutorial and then use the Behavior
Analysis engine to automatically locate the cause of an unknown value with one
command.

1. Change to the demo directory:
% cd <working_dir>/demo/verilog/cpu/src

2. Start the Verdi platform, and reference the file run.f in the current directory
and the FSDB file CPUsystem.fsdb in the parent directory:
% verdi -f run.f -ssf ../CPUsystem.fsdb
-workMode hardwareDebug &

3. In the main window, turn on the Source -> Active Annotation toggle
command.

4. Display the waveform for ZFout from the ALUB module in the nWave
frame.

5. Zoom out in the nWave frame until you see “X” at time 2777ns. Your task is
to locate the cause of this unknown value.

Figure: ZFout with Unknown Value

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

 Verdi User Guide and Tutorial 330Feedback

6. Click the ZFout signal in nWave somewhere close to the transition from the
0 value to the X value, and note the following:

• A vertical cursor appears in the waveform pane.

• The simulation time of 2777 associated with the cursor's current
location is displayed in nWave frame toolbar.

NOTE: By default, the cursor snaps to the closest transition on the selected
signal, the transition from 0 to X in this case.

7. Right-click the ZFout in the nWave frame at the transition from 0 to X, and
select Trace X.

A Question dialog window displays, indicating that you need to perform
Behavior Analysis.

8. Click the Yes button on the Question dialog window.

9. In the Behavior Analysis form, click the OK button.

The Trace X Settings form displays, as shown below:

Figure: Trace X Setting Form

The Trace X Setting form has several options, including:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

331 Verdi User Guide and Tutorial Feedback

• If you select Stop at Black Box Output, tracing will stop at these
outputs instead of finding the inputs to the black box that are X and
continuing the trace from those points.

• The Stop at Fan-in that is X but No Transition in Its Last Cycle
option instructs the tool to trace back only those fan-in signals that
make signal transition.

• The Snap to Value Change and Continue option tells the tool to snap
to the closest value change point and continue the tracing process.

10. Click the Trace button.

The results will display as a new tab in the same position as the source code
frame, as shown in following figure.

Figure: Trace Triggering X Results Frame

The Verdi platform stops at the signal aluInA at time 2776 with the reason
that the Fanin that is X but has no transitions in its last cycle. The fan-in
signal that is X in this case is DataIn. This means there is an assignment of
X to DataIn but this assignment is not the one that causes the value
transition in the waveform. This will be investigated later.

The following table describes the possible causes of an unknown value:

Possible X cause Comment

Fan-in that is X but no transition in
its last cycle

Trace-X algorithm stops because all the fan-ins that
are X do not change value in the cycle being
evaluated. The algorithm stops because the bug
may come from the fan-in signals that are not X but
have value changes. The cause will only appear
when user turns on the option “Stop at fan-in that is
X but no transition in its last cycle.”

No fan-in that is X
None of the fan-in signals is X, or the X signal has
no fan-in.

X from primary input of the work
scope

The trace-X algorithm stops at the input signal of
the work scope

Load constant ‘X’ Loads a ‘X’ value into a signal, e.g. s1 = 1’bx

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

 Verdi User Guide and Tutorial 332Feedback

11. To see the source code for the cause, right-click the
tb_CPUsystem.i_CPUsystem.i_CPU.i_ALUB.aluInA signal in the Trace
Active X Results frame, and select the Show Source Code on nTrace
command. The RTL statement that drives the signal is highlighted on the
source code frame, as shown below:

Figure: Source Code for Unknown

12. Right-click the signal in the Trace Active X Results frame again, and select
the option Add Active Fan-in Signals to nWave.

The active fan-in signals of aluInA displays on the nWave frame, similar to
the figure below:

Memory net (assigned value ‘x’
during initialization)

The memory element has been assigned a ‘X’ value
during initialization

Memory net (not initialized) The memory element has not been initialized

Black box output
Trace-X algorithm stops at the output of a
blackbox. This message appears only when the
option “Stop at blackbox output” is turned on.

Possible X cause Comment

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

333 Verdi User Guide and Tutorial Feedback

Figure: Active Fan-ins for aluInA

13. To determine if there has been a value change in the last cycle or not, you
need to know the clock cycle. In the waveform pane, right-click DataIn near
the 2x value, and select Show Clock (Domain).

The waveform frame displays similar to the following figure:

Figure: Clock for DataIn

You can see the clock for DataIn is CLOCK3. The value change for the
unknown of DataIn comes from several cycles before the ZFout signal goes
unknown. If this is not the cause of unknown, you may continue the trace
back process.

14. In the Trace Active X Results frame, select the Action -> Continue to Trace
Selected Signal command.

15. Click Trace on the Trace X Setting form that displays.

Trace active X will continue on the selected net and will stop at a memory
output. The cause for this X is that the memory net has been assigned an
unknown value during initialization.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

 Verdi User Guide and Tutorial 334Feedback

Figure: Trace Active X Results

16. Close the Trace Active X Results frame.

Visualize the Active Paths in the Temporal Flow View
Another way of tracing active X is to visualize the propagation path on the flow
view.

1. Click the ZFout signal in the waveform pane of the nWave frame
somewhere close to the transition to the X value at time 2777.

2. Right-click the ZFout signal on the transition from 0 to X, and choose the
Temporal Flow View -> New Temporal Flow View command. A
Temporal Flow View frame opens.

3. In the Temporal Flow View frame, right-click the ZFout signal at time 2777,
and select the Trace X command.The Trace Triggering X Setting form
appears.

4. Turn off the Stop at Fan-in that is X but No Transition in Its Last Cycle
option.

5. Turn on the Show Paths on Flow View option.

6. Change the value for Trace Back N Cycles/Statements at a Time to 20.

7. Click the Trace button.

An Information dialog window opens indicating the memory was assigned
during initialization.

8. Click the OK button on this dialog window.

9. The Trace Triggering X Results frame opens, and the path is traced in the
Temporal Flow View frame.

10. Click the Fit Time icon in the Temporal Flow View frame to see the entire
path.

The Temporal Flow View frame display updates, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Unknown (X) Values

335 Verdi User Guide and Tutorial Feedback

Figure: Trace X Results in Temporal Flow View Window

By default all nodes are displayed. The tracing stops at the memory output
macroram[7].

11. Choose the View -> Signal -> Nodes with Value ‘X’ Only toggle
command to remove the known nodes from the display.

Figure: Unknown Nodes in Temporal Flow View Frame

12. Double-click any node to see its driver in the source code frame.

13. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 336Feedback

Debug Forced Signals
In Verilog, a "force" statement applied to a variable overrides a procedural
assignment, a continuous assignment, or an assign procedural continuous
assignment to the variable. The value of the variable is 'forced' until a release
procedural statement is executed on the same variable. In addition, the force and
release PLI or UCLI commands can be used to impact variables in interactive
simulation debug mode. This makes it difficult for you to know the real driver of
the variable just by looking at the source code or waveform.

The Force Debug features provide visibility into the force and release actions.
When an FSDB file containing dumped forced information is loaded, you are
able to view and debug the forced signal through the annotated source code,
schematic and waveform. The force/release statement is also be considered as the
root cause during tracing. In addition, the forced, deposited, and released events
of the specified signals can be extracted to a report file.

Enable Force Debug
Perform the following steps to enable the Force Debug features.

1. Specify these environment variables to setup your environment and
simplify scripting:
> setenv VERDI_HOME <VERDI_INST_DIR>

2. To enable the capability of force debug dumping, the -debug_access
compile options are required during compile time for the VCS compiler. For
example:
> vcs -full64 -sverilog -debug_access+all ./design.sv -lca

NOTE: The current available simulators are VCS version I-2014.03 and later.

NOTE: The -debug_access compile options are required to enable force
features with VCS for force/release statements coming from an external
source (e.g. UCLI commands), not in the source code. The
-debug_access option is an LCA option in VCS, refer to the VCS
documentation for details.

3. There are two methods to enable dumping force/release information into the
FSDB file. You can set the environment variable:
> setenv FSDB_FORCE 1

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

337 Verdi User Guide and Tutorial Feedback

Alternatively, you can use the +fsdb+force runtime option during
simulation. For example:

> ./simv +fsdb+force

The dumped force/release information includes the following:

• Signal name

• Time point to be forced

• Force/Release type: deposit or freeze type

Debug in Source Code

Trace Signal
In the source code frame, the results of trace driver (invoked by the Driver
command in the right-click command menu) for a selected signal include force/
release statements. After the FSDB file containing dumped force information is
loaded into the Verdi platform, you can use the Active Trace command to only
show the tracing results with those forced/released events that impact the range
of the variable at a specified time. As shown in the following figure, a forced
event will be treated as a real driver even when the force event does not cause a
value change.

Figure: Force/Release as the Active Trace Result

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 338Feedback

When the force or release event is caused by UCLI (e.g. use the force command
in UCLI mode) or PLI commands, the external command will be listed at the end
of the original result as another category of the active tracing result.

Figure: External Force Command as the Active Trace Result

If the signal is frozen forced, <force driver> is shown as the result for the
selected signal (refer to the figure above). If the signal is deposit forced, <deposit
driver> is shown (refer to the figure below). If all bits of the selected signal are
released, <release driver> will be shown. If partial bits are still forced and partial
bits are released for the selected signal, <force driver> will be shown.

Figure: External Deposit Command as the Active Trace Result

Active Annotation
After the FSDB file containing dumped force information is loaded into the Verdi
platform, the annotation value will be displayed with a force mark. In the source
code and Signal List frames, use the Source -> Active Annotation command to
see the current forced value annotated below the signal with the caret "^"
character. As shown in following figures, the caret "^" character is annotated to
highlight the force/release event.

Figure: Active Annotation for Forced Value

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

339 Verdi User Guide and Tutorial Feedback

Figure: Forced Value in Signal List

If a value change is caused by a force/release command, the transition will be
annotated with values. For example, if the value change from '1' to '0' is caused
by a force command, the annotate value will be '1->^0' to indicate the value
change is caused by a force command, as shown in the following figure.

Figure: Value Change with Forced Value

In the Watch Expressions frame (invoked by the Tools -> Watch Expressions
command), the forced values are also annotated with the caret "^" character for
the variables, as shown in the following figure.

Figure: Forced Value in Watch Expression

NOTE: The expression value in the Watch Expressions frame will not show the
force information.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 340Feedback

Debug in the Waveform View
When an FSDB file containing dumped forced information is loaded into the
Verdi platform, the force/release information is also automatically shown in the
nWave frame with special icons to highlight the force/release events.

Icons in the Waveform Pane
As shown in the following figure, the force, release, and deposit values, and the
forced status are shown with corresponding icons in the waveform pane. The
value will be annotated with the caret "^" character in the value pane if the
current value is forced.

Figure: Forced Value in Watch Expression

The following table shows the attributes of the forced icons in the nWave frame.

If there is a value change with an icon in the nWave frame, you can double-click
the icon to trace the force, deposit, or release statement in the main window.

Show Tips
In the waveform pane, you can turn on the Enable Tip option in the Waveform
-> View Options -> Waveform Pane -> General page of the Preferences form
(invoked with the Tools -> Preferences command) to show a tip window when

Icons Attributions

The value is forced.

The value is released.

The value is deposited.

The status of the value is forced.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

341 Verdi User Guide and Tutorial Feedback

the cursor is placed over an force/release event. The following figure shows the
examples for the tips.

Figure: Tip in Waveform Pane

Search by Force/Deposit/Release
As shown in the following figures, you can select the Force/Deposit/Release
option in the Search By list on the toolbar and click the or buttons to
search backward or forward for values of the selected signal that are the result of
a force, deposit, or release event.

Figure: Force/Deposit/Release Option in the Search By List

Figure: Tip in Waveform Pane

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 342Feedback

Debug in the Schematic View
After an FSDB file containing dumped force information is loaded into the Verdi
platform, you can also see the force values in the nSchema frame. In the nSchema
frame, use the Schematic -> Active Annotation command to annotate the
current forced value below the signal with the caret "^" character, as shown in the
following figure.

Figure: Forced Value in nSchema

When the Trace -> Active Fan-in command is invoked for the selected signal,
and if a force, deposit, or release event causes a value change of the signal, the
event will be regarded as the fan-in tracing result. Active fan-in tracing will stop
at the cell if its output signal is in one of the following time durations or time
points:

• Forced state

• The time point of the forced state changed to release

• The time point of a deposit event

Debug in the Temporal Flow View
In the Temporal Flow View frame, the force, deposit, or release events will be
considered as the cause when tracing the selected signal. As shown in Figure 13,
you can see the forced value is shown with the caret "^" character and the
(forced), (deposited) or (released) strings suffix. If a value is forced with
unknown value, the "^x" will be added as the root cause for the forced value, as
shown in the following figure.

Figure: Forced Value in Temporal Flow View

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

343 Verdi User Guide and Tutorial Feedback

Figure: Forced with Unknown Value in Temporal Flow View

NOTE: If the force or release command is in the design, the command and the
selected tracing signal should be in the same scope.

In the Compact Temporal Flow View frame, the forced value is also shown with
the (forced), (deposited) or (released) strings suffix.

Figure: Forced Value in Compact Temporal Flow View

Practice
Complete the following steps to dump the force/release information into the
FSDB file and then debug the design with forced values in the Verdi platform.

1. Set following variable for facilitating the script:
> setenv VERDI_HOME <VERDI_INST_DIR>

2. Change to your local directory and copy the demo case to your local
directory:
> cd
> cp $VERDI_HOME/demo/verilog/cpu/src .

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 344Feedback

3. To illustrate the Verdi Force Debug features with this demo case, modify the
design to use a force statement to postpone the appearance of the 'ACE'
signal. Add the following code in the BJsource.v file:
//to force Card_i at 600ns and release it after 100ns
initial
begin
 $fsdbDumpvars("+all");
 #600 force Card_i = 32'h0;
 #100 release Card_i;
end

4. Set the environment variable:
> setenv FSDB_FORCE 1

5. Compile the design, enable force debug dumping features, and run the
simulation:
> vcs -full64 -sverilog -line -debug_access+all -f run.f -lca
> ./simv

6. Import the design and load the generated FSDB file into the Verdi platform:
> verdi -f run.f -ssf novas.fsdb -nologo &

7. In the nWave frame, click the icon to add signals.
Double-click the ACE signal of the tb_CPUsystem scope to add it to nWave.
Refer to the following figure, select the i_BJsource scope and the following
highlighted signals, and click the OK button in the Get Signals form.

Figure: Select Signals in the Get Signals Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

345 Verdi User Guide and Tutorial Feedback

As shown in the following figure, you can see the waveform of the raising
edge of the ACE signal and the related signals. Also, the forced event and
duration of the Card_i signal has been marked.

Figure: ACE and related signals waveform

8. Drag and drop the Card_i signal from the nWave frame to the source code
frame. The results of trace connectivity are shown in the OnesTrace tab of
the Message frame. The force/release statements are also regarded as results
of drivers.

Figure: Tracing Result

9. In the nWave frame, select the Card_i signal and use the
icons to find the first force event. The cursor is located at 600ns.

10. In the main nTrace window, invoke the Source -> Active Annotation
command. The value change with the current force values of the Card_i
signal are annotated in the source code and Signal List frames.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug Forced Signals

 Verdi User Guide and Tutorial 346Feedback

11. 7.In the nSchema frame, invoke the Schematic -> Active Annotation
command. The current force values are annotated.

12. Select the Card_i signal and invoke the Trace -> Active Fan-in command.
As shown in the following figure, the forced event causes a value change of
the Card_i signal and the active fan-in tracing stops at the cell whose output
signal is in the force state.

Figure: Fan-in Cone Result of Card_i

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

347 Verdi User Guide and Tutorial Feedback

Debug with SystemVerilog
Before you begin this application, follow the instructions in the Before You Begin
chapter.

The Verdi platform provides a set of features that allow you to debug
SystemVerilog designs.

The design is based on the standard Verdi CPU case; however, it has been
re-written in SystemVerilog. There are also some assertions coded in SVA.

Import the Design
There are two methods for importing the design: load the files directly or create
a compiled library.

1. Change your context to the systemverilog sub-directory, which is where all
of the demo source code files are located:
% cd <working_dir>/demo/systemverilog

2. Modify the SETUP file to point to the correct Verdi and simulator
installation paths in your environment and source the file.
% source ./SETUP

Refer to the Language Support chapter of the Verdi and Siloti Command
Reference manual for complete details on compiling and importing different
languages.

Load Files Directly
Since the code is all SystemVerilog, you can compile and load the source files
directly without pre-compiling.

1. Start the Verdi platform by referencing the design files. If you do not use a
common file extension, you need specify the -sv command line option.
% verdi -f run.f -sv -workMode hardwareDebug &

Alternatively, if all files have the same file extension (e.g. .sv, .SV) you can
specify the +systemverilogext+ option instead. Refer to the RUN script in
the demo directory for an example.

The Verdi platform opens to display the SystemVerilog design source code.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

 Verdi User Guide and Tutorial 348Feedback

Figure: nTrace with SV Code Loaded

Use Compiled Library - Optional
You can compile the SystemVerilog design into a work.lib++ compiled library
and load from there. For designs that are mixed-language, it is recommended to
compile the design first and then load. This includes designs that are mixed
Verilog/SystemVerilog as you may have a Verilog design (that is not
SV-compliant) and add code (including SVA) that is in SystemVerilog.

1. Compile the library. By default work.lib++ is created. If all files have the
same file extension (e.g. .sv, .SV) you can specify the +systemverilogext+
option.
% vericom -f run.f +systemverilogext+.sv+.SV+

Alternatively, if you do not use a common file extension, you need specify
the -sv command line option. Refer to the COMPILE script in the demo
directory for an example.

2. Load the compiled library.
% verdi -lib work &

Visualize SystemVerilog Source Code
The Verdi platform provides advanced visualization capabilities that allow you
to quickly understand SystemVerilog code.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

349 Verdi User Guide and Tutorial Feedback

Design Browser Frame
1. In the Instance tab of the design browser frame, click the plus symbol to the

left i_pram block instance name to expand its sub-blocks. You will see an
interface, pram_intf.

Figure: SV in nTrace

2. Double-click i_pram to display its associated source code.

Figure: SVA Properties and Sequences in nTrace

3. In the design browser frame, click the plus symbol to the left i_cpu,
i_ALUB, i_alu and i_Nbit_adder block instance names to expand their
sub-blocks.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

 Verdi User Guide and Tutorial 350Feedback

4. Click the plus symbol to the left addbit[0] and addbit[1] under
i_Nbit_adder to expand the generate instances. They each contain 5
primitives.

Figure: Generate Instances

Each generate instance is a scope in the design browser frame with its
elements within.

5. Double-click addbit[0] and then addbit[1] to display the associated source
code.

You will go to the same place in the source code but the corresponding
simulation data will be annotated based on your current active scope.

Source Code
1. In the design browser frame, double-click i_ALUB to display its source

code.

2. In the source code frame, double-click S1 to trace drivers.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

351 Verdi User Guide and Tutorial Feedback

Figure: Trace Driver Results for S1

The source code changes to the driver location for S1 and the message
frame displays the results summary.

3. In the design browser frame, double-click pram_intf(pram_interface) to
display the source code.

4. In the source code frame, left-click to select data.

5. Right-click to open the right mouse button menu and select the
Connectivity command to trace connectivity for data.

The OneTrace tab of the message frame indicates there are 2 drivers, 2
loads and several pass-throughs. You can double-click any line in the
message frame to go to the equivalent code.

6. In the nTrace main window, click the Show Previous/Show Next icons to
step through driver/load results in the current scope (i_pram).

7. Click the Show Previous in Hierarchy icon to locate results in a different
scope (i_PCU).

After tracing drivers or loads or both, you can easily traverse the hierarchy
to locate the results.

Schematic
1. In the design browser frame, double-click system to display the associated

source code.

On the toolbar, click the New Schematic icon to open an nSchema frame of
the top level design.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

 Verdi User Guide and Tutorial 352Feedback

Figure: Schematic for system

2. Drag with left mouse button to zoom in on the lower right corner. Note the
interface port symbols on pram and pram_interface.

3. Click the Zoom All icon.

4. Double-click the CPU block in the lower left to descend to the next level.

5. Double-click the ALUB block on the left to descend to the next level.

Figure: Schematic for ALUB

6. In the nSchema frame, choose the File -> Close Window command.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

353 Verdi User Guide and Tutorial Feedback

View SystemVerilog Simulation Results
You have loaded the source code and used the Verdi platform to understand
SystemVerilog designs. Now you will load simulation results into the system to
utilize the full power of the Verdi platform. A simulation results file (sv.fsdb)
already exists; however, you can dump the simulation results again (including
assertion results) from your simulator (VCS was used in this example). See the
SETUP and SIMULATE scripts in the demo directory for details on appropriate
simulator commands.

In this example, system.sv calls $fsdbDumpfile to specify the output FSDB file
(sv.fsdb), $fsdbDumpSVA to dump SVA data, and $fsdbDumpvars to dump
standard RTL design data.

After simulation, the FSDB data can be loaded into the Verdi platform so you can
view waveforms, annotate on source code, and use the automatic tracing
capabilities.

NOTE: To dump the successful assertion, you must perform any one of the
following:

Set the environment variable as follows:

% setenv FSDB_SVA_SUCCESS 1
Or

Add the +fsdb+sva_success option at runtime as follows:

% simv +fsdb+sva_success

Waveform
1. In the nTrace main window, click the New Waveform icon to open the

nWave frame. Alternatively, you can choose the Tools -> New Waveform
command.

2. In the nWave frame, choose the File -> Open command to open the FSDB
file or click the Open File icon on the toolbar to open the Open Dump File
form.

3. In the Open Dump File form, left-click to select sv.fsdb and click Add and
then OK to load the file.

NOTE: You can also load the FSDB file on the command line when you first
bring up the Verdi platform. For example:
% verdi -sv -f run.f -ssf sv.fsdb ...

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

 Verdi User Guide and Tutorial 354Feedback

4. In the design browser frame, select i_ALUB and use the middle mouse
button to drag and drop the scope to the nWave frame.

Figure: SV in nWave

5. Zoom in around time 800-1500.

You can search for any changes in the waveform.

6. In the nWave frame, left click to select ALU[7:0].

7. Choose the Waveform -> Set Search Value command to open the Search
Value form.

8. In the Search Value form, enter 55 in the Signal Value field and click the
OK button.

The search By: field on the nWave toolbar changes to Search by Bus Value.

9. On the nWave toolbar, click the Search Forward icon to locate the value of
55 on ALU at time 950.

10. Double-click the 3->55 transition on ALU[7:0] to locate the active driver in
the source code frame.

Source Code
Another very convenient method to visualize simulation data is through active
annotation which allows you to see simulation results under the corresponding
variable in the source code frame.

1. In the main window, choose the Source -> Active Annotation command
(or press the bind key X on the keyboard) to enable active annotation.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

355 Verdi User Guide and Tutorial Feedback

Figure: Active Annotation in the Source Code Frame

You will see the simulation values under the signal names. The time is
synchronized with the cursor time in the nWave frame. If you change the
cursor in nWave, the values annotated will change accordingly.

2. Left-click to select op.a on line 233.

3. Right-click to open the right mouse button menu and select Active Trace to
locate the active driver for op.a.

Figure: Active Trace Results for op.a

The driver is a complex signal structure in the ALUB.

4. In the nTrace main window, choose the View -> Signal List command to
open the Signal List frame.

5. In the Signal List frame, select alu_operand. The frame will be similar to
the following.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

 Verdi User Guide and Tutorial 356Feedback

Figure: Signal List Frame

The Signal List frame makes it easier to view and understand complex signals.
You can drag and drop between this frame and source code or nWave as needed.

Generate Constructs
For generate constructs, genvars are not dumped to FSDB during simulation.
However, the Verdi platform can elaborate the values of genvars and also build
the correct hierarchy for the generated instances in the design browser frame.
These elaborated values can also be annotated.

1. In the design browser frame, double-click addbit[1] to change the scope.
You will see the annotation under the design signals, and you can also see
the value for i which is a genvar.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog

357 Verdi User Guide and Tutorial Feedback

Figure: Parameter Annotation

2. Double-click addbit[3] under the ALUB hierarchy to change the scope
again and you will see 3 annotated for i.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 358Feedback

Debug with SystemVerilog Assertions (SVA)
Before you begin this application, follow the instructions in the Before You Begin
chapter.

The Verdi platform provides a set of features that allow you to debug assertions.

The design is based on the standard Verdi CPU case; however, it has been
re-written in SystemVerilog. There are also some assertions coded in SVA. This
application assumes and uses simulation-based assertion checking. In particular,
VCS (2006.06) was used to generate the SV(A) data.

Import the Design
There are two methods for importing the design: load the files directly or create
a compiled library.

1. Change your context to the systemverilog sub-directory, which is where all
of the demo source code files are located:
% cd <working_dir>/demo/systemverilog

2. Modify the SETUP file to point to the correct Verdi and simulator
installation paths in your environment and source the file.
% source ./SETUP

Refer to the Language Support chapter of the Verdi and Siloti Command
Reference manual for complete details on compiling and importing different
languages.

Load Files Directly
Since the code is all SystemVerilog, you can compile and load the source files
directly without pre-compiling.

1. Start the Verdi platform by referencing the design files. If you do not use a
common file extension, you need to specify the -sv command line option.
% verdi -f run.f -sv -workMode hardwareDebug &

Alternatively, if all files have the same file extension (e.g. .sv, .SV) you can
specify the +systemverilogext+ option instead. Refer to the RUN script in
the demo directory for an example.

The Verdi platform opens to display the SystemVerilog source code. The nTrace
main window serves as the main view from which the other views can be started.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

359 Verdi User Guide and Tutorial Feedback

Figure: nTrace with SV and SVA Code Loaded

Use Compiled Library - Optional
You can compile the SystemVerilog design into a work.lib++ compiled library
and load from there. For designs that are mixed-language, it is recommended to
compile the design first and then load. This includes designs that are mixed
Verilog/SystemVerilog as you may have a Verilog design (that is not
SV-compliant) and add code (including SVA) that is in SystemVerilog.

1. Compile the library. By default work.lib++ is created. If all files have the
same file extension (e.g. .sv, .SV) you can specify the +systemverilogext+
option.
% vericom -f run.f +systemverilogext+.sv+.SV+

Alternatively, if you do not use a common file extension, you need to
specify the -sv command line option. Refer to the COMPILE script in the
demo directory for an example.

2. Load the compiled library.
% verdi -lib work -workMode hardwareDebug &

Visualize SVA Source Code
The Verdi platform provides advanced visualization capabilities that allow you
to quickly understand SystemVerilog Assertions. These capabilities are even

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 360Feedback

more critical to design teams when new methodologies such as assertions are
introduced into the flow.

Design Browser and Source Code
1. In the design browser frame, click the plus symbol to the left i_cpu block

instance name to expand its sub-blocks. You will see four assertions: 3
asserts (INCPC, INCPC2, LD) and a cover (COVER_e_r3).

Figure: SVA in nTrace

2. Click the plus symbol to the left of the i_ALUB block instance name to
display several more assertions, including one cover directive.

3. Double-click INCPC to display its underlying property (e_INC) and
associated source code. You can expand any assertion to see the underlying
properties the assertion is built upon.

4. Click the plus symbol to the left e_INC to display its underlying sequences
(e_l and e_r). You can expand any property to see the sequences it is built
upon.

Figure: SVA Properties and Sequences in nTrace

5. Display the source code for INCPC2 by double-clicking on INCPC2 in the
design browser frame.

6. In the source code frame, double-click the e_INC2 property to trace to its
description.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

361 Verdi User Guide and Tutorial Feedback

7. Left click to select e_r2, right-click to view the right mouse button context
menu and select Show Definition to trace back to its description (it is a
sequence).

NOTE: Both double-click and the Show Definition command will display the
description for properties or sequences.

Note that e_r2 has a local variable, ALU_prev. SVA allows local variables
which in turn permits users to write powerful assertions. However, local
variable and assertions containing them are difficult to debug since
assertions by their nature can each have multiple attempts with several
sequence threads within. Synopsys provides for the capture and advanced
visualization of local variables.

8. In the design browser frame, click the plus symbol to the left genblk[0] and
genblk[1] under i_ALUB to expand the generate instances. They each
contain a cover directive, cv.

Figure: Generate Instances

Each generate instance is a scope in the design browser with its elements
(assertion / property / sequence) within.

9. Double-click genblk[0] and then genblk[1] to display the associated source
code.

You will go to the same place in the source code but the corresponding
simulation data will be annotated based on your current active scope.

View SVA Simulation Results
You have loaded the source code and used the Verdi platform to understand
designs containing assertions. Now you can load simulation results into the

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 362Feedback

system to utilize the full power of the Verdi platform. A simulation results file
(sv.fsdb) already exists; however, you can dump the simulation results again
(including assertion results) from your simulator (VCS was used in this
example). See the SETUP and SIM_SVA scripts in the demo directory for details
on appropriate simulator commands.

In this example, system.sv calls $fsdbDumpfile to specify the output FSDB file
(sv.fsdb), $fsdbDumpSVA to dump SVA data, and $fsdbDumpvars to dump
standard RTL design data.

After simulation, the FSDB data can be loaded into the Verdi platform so you can
view waveforms, annotate on source code, and use the automatic tracing
capabilities.

1. In the nTrace main window, select the Window -> Assertion Debug Mode
command to enable more frames to assist with assertion debug.

2. In the nWave frame, choose the File -> Open command to open the FSDB
file or click the Open File icon on the toolbar to open the Open Dump File
form.

3. In the Open Dump File form, left-click to select sv.fsdb and click Add and
then OK to load the file.

NOTE: You can also load the FSDB file and enable the assertion debug work
mode on the command line when you first bring up the Verdi platform.
For example:
% verdi -sv -f run.f -ssf sv.fsdb
-workMode assertionDebug

Statistics Frame
On the Statistics frame, the assertion results can be shown in a tabular
spreadsheet-like format. The FSDB Statistics tab summarizes the results for one
or more FSDB files and the Property Statistics tab displays the results for
individual assertions from all FSDB files. The Property Details table displays
results for individual assertions.

1. In the Statistics frame, click the FSDB Statistics tab, select the cell with
value 6 in the Assert row under the Fail column.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

363 Verdi User Guide and Tutorial Feedback

Figure: FSDB Statistics

2. Double-click the cell to add all failing assertions to the Property Details
table.

Figure: Property Details

You can select the vertical bar between column headers and drag-left to
change the column width.

3. In the Statistics frame, click the Options icon to open the Preferences form.
The options allow you to control the time range, the property status/type
and the fields for display.

4. In the Preferences form, select the Property folder -> Property Details
folder -> View page, and then specify *i_cpu in the Scope field.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 364Feedback

Figure: Preferences Form - Property Details Page

5. Click the OK button. Only the properties for scope i_cpu will be displayed.

6. Click the + symbol associated with INCPC to display failure and success
groups. Click the + symbol on failure/success group to display the
individual failures/successes.

Figure: Assertion Failures

The failures are named F1 to Fn starting from the first failure in time.
Successes are named S1 to Sn starting from the first success in time.

Waveform
There are a variety of ways to add signals to the waveform. You can drag and
drop assertions, properties, sequences, or instances from the design browser
frame, the source code frame, or the Statistics frame. You can also use the Get
Signals command. The best method is to select properties and failures of interest
from the Property Details section of the Statistics frame and have them
automatically added to the nWave frame.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

365 Verdi User Guide and Tutorial Feedback

1. In the Statistics frame, click the Options icon to open the Preferences form.

2. In the Preferences form, select the Property folder -> Property Details
folder -> Mischellaneous page and turn on the Sync Cursor Time with
Selected Property and Add Selected Property to nWave When Not
Found options.

3. Select the Property folder -> Analyzer page and turn on the Add
Evaluated Signals to nWave Automatically option.

4. In the Property Details section of the Statistics frame, scroll down to the
row containing INCPC2 and select it. The property is added to the nWave
frame and the time changes to its first failure.

5. In the Property Details section of the Statistics frame, scroll back up and
select the row containing F2 under INCPC. INCPC is automatically added
to the waveform and the cursor is located at the failure end point for F2. The
assertions waveforms will be similar to the following:

Figure: SVA in nWave

Both INCPC2 and INCPC are temporal assertions. The nWave frame shows
the time the assertion started evaluating to when it passed or failed using a
horizontal line.

6. Zoom in around time 300-1100.

It is quite difficult to make out the different assertion start times and pass/
fail times because of overlapping. In such cases, you can expand the number
of rows that are used to display the assertion waveform.

7. Select INCPC2 (or INCPC) and choose the Waveform -> Property ->
Expand Overlapping command.

Figure: INCPC2 Expanded in nWave

The number of rows used to display the waveform for INCPC2 will expand
to 2 so that there is no overlap.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 366Feedback

8. Choose the Waveform -> Property -> Shrink Overlapping command to
go back to a single row.

You can search for assertion passes, fails, and evaluation begins in the waveform.

9. In the nWave frame, click the By: menu on the toolbar and select the
No-Match/Failure option (red vertical line/down arrow).

Figure: Search By Options

10. With INCPC2 selected, click the Search Forward or Search Backward
icons (right or left arrows), to move the cursor to the next or previous
failure.

Let’s debug the first failure of the INCPC2 assert.

11. In the waveform pane of the nWave frame, double-click the first failure of
INCPC2 (at 700 ns) to expand the underlying signals, properties, and
sequences from which the assertion is created.

NOTE: If associated signals are not added into the nWave frame, click the
Options icon in the Statistics frame, go to the Property -> Analyzer
page and turn on the Add Evaluated Signals to nWave Automatically
option.

All associated properties, signals, and local variables will be expanded, and
sub-groups will be created automatically. All properties which associated
with the assert are calculated by Verdi dynamically.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

367 Verdi User Guide and Tutorial Feedback

Figure: Expand Assertions, Properties and Sequences

In addition, the failure will be evaluated and displayed in the Analyzer frame.
Refer to the Analyze SVA Assertions section for details.

Source Code
Another convenient method to visualize simulation data is through active
annotation that allows you to see simulation results under the corresponding
variable in the source code frame. This capability has been extended to assertion
elements as well.

1. In the design browser frame, double-click e_INC2 to display the associated
source code.

2. In the main window, choose the Source -> Active Annotation command
(or press X on the keyboard) to enable active annotation.

Figure: Active Annotation in Source Code Frame

You can see the simulation values under the variable names. For assertions,
the following notations are used:

• Green up arrow / Green vertical line: Success / Match

• Red down arrow / Red vertical line: Fail / No-match

• SE: Start Evaluation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 368Feedback

• UE: Under Evaluation

• NF: Not Found in FSDB file

• NV: No Value at current time

Active annotation will display NF for assertion-related variables
(assertions, properties, sequences, local variables) if you are not in the
scope where the variables are referenced. To see the values (instead of NF),
change scope to the appropriate assertion, property, or sequence.

The time is synchronized with the cursor time in the nWave frame. If you change
the cursor in the nWave frame, the values annotated change accordingly.

Generate Constructs
For generate constructs, genvars are not dumped to FSDB during simulation.
However, the Verdi platform can elaborate the values of genvars and also build
the correct hierarchy for the generated instances in the design browser frame.
These elaborated values can also be annotated.

1. In the design browser frame, double-click genblk[1] to change the scope.
You can see the annotation for cv (cover), ALU (a design signal), and i
which is a genvar.

Figure: Parameter Annotation

You can see the value of i annotated as 1.

2. Double-click genblk[2] under the ALUB hierarchy to change the scope
again and you can see 2 annotated for i.

Analyze SVA Assertions
In addition to manually debugging the assertions using the waveform and source
code, you can use the Assertion Analyzer to automatically debug the assertion
and quickly locate the failing expression and signals.

1. In the Property Details section of the Statistics frame, select the row
containing F2 under INCPC2.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

369 Verdi User Guide and Tutorial Feedback

2. Click the Analyze Property button. The Analyzer frame updates to display
the results. The frame is similar to the following:

Figure: Property Tools Window - Analyzer Tab

The Analyzer frame is specifically designed for debugging assertions. The
Verdi platform adds the related properties so you can easily see the
relationship between assertion and property. The extracted source code and
the annotated results are displayed the values are annotated according to the
time it was evaluated.

Assertion failures always come from the violation of an expression. You can
see that ALU does not have the correct value so you can use standard Verdi
debug techniques to locate the root cause.

NOTE: In addition to analyzing an assertion from the Statistics frame, you can
start the analysis from a failing signal in the nWave frame (just
double-click) or in the source code frame (select Assertion Analyzer
from the right mouse button menu).

NOTE: If you are using a FSDB file that was generated from the Assertion
Evaluator, the local variables will not be saved in the file itself;
however, when you analyze the assertion, the local variable value will
be calculated on the fly.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with SystemVerilog Assertions (SVA)

 Verdi User Guide and Tutorial 370Feedback

Evaluate SVA Assertions
Assume you either have a simulation results file that does not contain SVA
results or you have a FSDB file with SVA that you want to re-check. Rather than
run the simulation again and dump the SVA results as well, let’s use the Assertion
Evaluator engine to check SVA against an existing FSDB file.

See the SETUP, SIM_RTL and SIM_SVA scripts and sim_sva_fsdb.do file in the
demo directory for details on the appropriate simulator commands if you want to
re-simulate the design file or use the simulator to check and dump SVA.

In this example, check the currently loaded FSDB file (sv.fsdb) again.

1. In the main window, choose the Tools -> Property Tools -> Evaluator
command to open the Evaluate Properties form.

2. In the left pane click the i_ALUB scope (under system -> i_cpu), all
assertions under the scope will be listed in the middle pane.

3. In the middle pane of the Evaluate Properties form, drag-left on assertions
ALUB_SUB and ALU_ZERO to select, and then click the Add Selected
Properties icon to add them to the right pane. These two assertions are
flagged to be re-calculated by Verdi. The form will be similar to the
following:

Figure: Evaluate Properties Form

4. In the Evaluate Properties form, click the Evaluate button.

5. Click Yes on the first Question dialog window and OK on the second.

The Assertion Evaluator will generate an FSDB file called
sva_checker_results.fsdb.vf containing the assertions and design signals.
The General tab of the Message frame will be brought forward with a
summary of the evaluation results. Select the Statistics frame to see the new
FSDB file loaded in the FSDB Statistics tab. Now you can debug assertion
failures as described previously.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: SVA Evaluation of Runtime Assertions

371 Verdi User Guide and Tutorial Feedback

SVA Evaluation of Runtime Assertions
The Assertion Evaluation Engine from the Verdi Automated Debug Platform
provides a runtime assertion mechanism to add assertions during runtime without
recompiling and reloading the design again.

In general, assertions are added in the design, compiled with the design, and then
the results are checked by the Assertion Debug functions after they are loaded
and undergo simulation. The Assertion Evaluation Engine can also check
assertions against a signal level FSDB trace file for the design.

If any modifications are needed for assertion demands, the design, including the
newly added assertion code must be compiled, loaded, and simulated again. The
Verdi platform now provides an interface that makes it easy to insert assertions
without modifying the original design and then quickly check the failure or
success of the assertion. The tedious re-compiling, re-loading, and re-simulating
efforts are no longer needed.

Import Designs and Assertions
The design and SystemVerilog Assertions (SVA) can be imported into the Verdi
platform.

See the Language Support and Compile/Import Methods chapter in the Verdi and
Siloti Command Reference manual for details.

Evaluate with Temporary Assertions
Use the following steps to evaluate assertions:

1. From the Tools -> Property Tools -> Evaluator pane, select the Evaluator
pane to open it. Or click the Evaluator button in the Add Temporary
Assertions form.

The assertions that are temporarily added will be displayed in blue color to
distinguish it from the original assertions.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: SVA Evaluation of Runtime Assertions

 Verdi User Guide and Tutorial 372Feedback

Figure: Add Temporary Assertions Form

2. Enter the Scope or click Get Active Scope to automatically enter the active
scope.

3. Edit the assertion statement in the Add Assertions field as shown in the
following figure.

4. Click the Commit command.

The Compile Log field displays the compilation results of the new assertion
code.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: SVA Evaluation of Runtime Assertions

373 Verdi User Guide and Tutorial Feedback

Figure: Add Temporary Assertion Example

Save Temporary Assertions
Perform the following steps to save temporary assertions:

1. Select Tools -> Property Tools -> Add Temporary Assertion command.
The Add Temporary Assertion form opens.

2. After editing the assertion statements, click Save to save the assertions and
scope to a file with .tsva extension as shown in the following figure.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: SVA Evaluation of Runtime Assertions

 Verdi User Guide and Tutorial 374Feedback

Figure: Save Temporary Assertion

Load Temporary Assertions
Perform the following steps to save temporary assertions:

1. Select Tools -> Property Tools -> Add Temporary Assertion command.
The Add Temporary Assertion form opens.

2. Click Load to load the assertions and scope from a file with a.tsva
extension as shown in the following figure.

Figure: Load Temporary Assertion Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: SVA Evaluation of Runtime Assertions

375 Verdi User Guide and Tutorial Feedback

Note the following:
The SVA evaluation of runtime assertions mechanism only supports the
hierarchy name for those signals that belong to or are under the active scope. For
example, as shown in the following figure, the active scope is CPU,
ALU.signal_A is the allowed signal and system.MEM.MCU.signal_B is not.

Figure: A Design Sample

• The SVA evaluation of runtime assertions mechanism only supports the
assertion in a scope. Only one scope in the Scope text field is allowed.

• The SVA evaluation of runtime assertion mechanism does not support the
following:

• Immediate assertions

• Property and sequence built-in functions

• PSL related nodes

• Using macros in the newly added SVA syntax

• The mechanism used for SVA evaluation of runtime assertions cannot
commit an assertion with the same name in the same scope in the design.

• Previously committed assertions are removed after committing a new
assertion.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 376Feedback

Debug with Transactions
Before you begin this application, follow the instructions in the Before You Begin
chapter.

Transactions are an important piece of abstraction in system design and debug.
System design is in an early stage of the whole design process. Therefore, a
powerful viewing mechanism for transactions is mandatory for system designers.

For testbench verification, if the entire system is to be verified, transaction level
checking is efficient and easy to focus comparisons of system behavior against
system specification. When an error is found in the transaction level, the signal
level is then investigated.

This section covers the following topics:

• What is a Transaction?

• Generating Transaction Data

• View Transactions in nWave

• View Transactions in Transaction Table View Window

What is a Transaction?
Transactions are higher level abstractions of signal-level detailed activity and are
organized into streams. Transaction streams can be dumped into FSDB format
using dumping libraries provided by Synopsys and its partners or using the Open
Transaction Interface (OTI) extension of the FSDB Writer API.

Streams hold transactions. Each transaction consists of a set of attributes and is
independent of one another. That is, there is no such concept as "transaction
type", as in SCV, even if the sets of attributes that constitute two transactions are
the same.

When you create a transaction, you must follow the steps below:

1. Create a stream.

2. Create attributes.

3. Create a transaction.

4. Create relationships between existing transaction.

Generating Transaction Data
The transaction data can be obtained from the following sources.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

377 Verdi User Guide and Tutorial Feedback

Provided FSDB Dumpers
Dump transaction data from languages directly with native FSDB dumpers.

• SystemC/SCV -- supported OSCI and NCSC simulators.

• Specman/e

• SystemVerilog testbench in conjunction with simulator support (VCS,
ModelSim)

• Vera

Refer to the SystemC Linking chapter in the Linking Novas Files with Simulators
and Enabling FSDB Dumping manual for details on linking native FSDB
dumpers, SystemC SCV, and HVL simulators.

Transaction IP Partners
Contact Denali (PCI-Express) or Spiratech (AMBA AXI, AHB) directly for
details on dumping FSDB format from their available intellectual property (IP).

SVA Extraction
You can add SystemVerilog Assertions (SVA) constructs to your design code to
represent transactions. The transactions can then be extracted from a signal level
FSDB. Refer to the Extracting Transactions Using SVA section in Appendix D for
more details.

FSDB Writer API and the Open Transaction Interface
(OTI)
If you are unable to generate transaction data in FSDB format from any of the
previously mentioned methods, you can use the Open Transaction Interface
(OTI) extension of the FSDB writer API to dump transaction data.

SVTB Automatic Logging of OVM/UVM Component and
Port Transactions
SVTB-based testbench environments are typically built on top of an SVTB
verification library/methodology like OVM/UVM. Synopsys has leveraged the
infrastructure provided in OVM/UVM to record component and port
transactions flowing up and down the testbench into the FSDB file. The
Synopsys mechanism uses the OVM/UVM’s transaction recording capability to
record OVM/UVM testbench transactions into the FSDB file for debug and
analysis in the Verdi platform.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 378Feedback

View Transactions in nWave
This tutorial familiarizes you with transaction viewing and search operations. All
nWave manipulation functions (zoom, cursor, marker, re-size, etc.) are available
with FSDB files containing transactions.

1. Change the directory to <working_dir>/demo/transaction.
% cd <working_dir>/demo/transaction

2. Execute Verdi to import the FSDB file:
> verdi -ssf ahb32.bus.fsdb -workMode hardwareDebug &

The Verdi platform opens and the FSDB file is loaded.

NOTE: This tutorial only has an FSDB file that contains transactions and there
is not a related design.

3. In the nWave frame, choose the Signal -> Get Signals command to open the
Get Signals form.

The transaction FSDB is loaded displaying BusTop as the top hierarchy and
MyAHB_1(_AHB_) as the first hierarchical level which is for different
protocols.

4. Click MyAHB_1 to show the streams under this hierarchy.

The results will be similar to the following example:

Figure: Get Signals - Displaying Streams

5. Select AhbTransfer and AhbTransaction, then click OK.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

379 Verdi User Guide and Tutorial Feedback

6. In the nWave frame, re-size the signal and value panes to more readily
display the text and zoom in on the waveform pane to see the transaction
details.

7. In the signal pan, click the AhbTransaction stream to select it.

8. Click the Search Forward icon (right arrow) in the toolbar to step through
the transactions.

The cursor moves to the begin time of each transaction.

9. Since there are more attributes than the default signal height can display,
you can adjust the height by dragging the small grey line in the lower left
corner of the stream name in the signal pane.

10. In the value pan, move the mouse cursor over the attributes to show the
details in a tip.

11. With the AhbTransaction stream selected, choose the Waveform -> Classic
Transaction -> Expand Overlapping command to make it easier to see the
transaction overlap.

12. Choose the Waveform -> Classic Transaction -> Shrink Overlapping
command to return to the overlapped view.

13. Click the By: icon in the nWave toolbar and choose the last option,
Transaction Attribute Values.

14. In the Set Search Attributes form, enter “BurstType” for Attributes and
“incr 4” for Value.

The form will be similar to the following:

Figure: Set Search Attributes

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 380Feedback

15. Click the Add button.

16. Click the Search Forward/Search Backward icons on the Set Search
Attributes form to locate a matching transaction at 4810000ps.

17. Click the transaction in the waveform pane at time 4,810,000ps, which is
burst read of “incr 4” type.

There will be 4 AhbTransfer burst read command transactions and 3 busy
ones as the children of the selected transaction. The child transactions are
highlighted in pink.

Figure: Search Results with Related Transactions

18. With the same transaction selected, right-click to open the right mouse
button context menu and choose Properties to open the Transaction
Property form which shows all the attributes and relationships for the
selected transaction.

View Transactions in Transaction Table View Window
This tutorial will familiarize you with transaction viewing and search operations
in a spreadsheet-like view.

1. Change the directory to <working_dir>/demo/transaction.
% cd <working_dir>/demo/transaction

2. Execute Verdi to import the FSDB file:
> verdi -ssf ahb32.bus.fsdb -workMode hardwareDebug &

The nTrace main window and nWave frame open and the FSDB file is
loaded.

NOTE: This tutorial only has an FSDB file that contains transactions and there
is not a related design.

3. In the nWave frame, choose the Signal -> Get Signals command to open the
Get Signals form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

381 Verdi User Guide and Tutorial Feedback

The transaction FSDB is loaded displaying BusTop as the top hierarchy and
MyAHB_1(_AHB_) as the first hierarchical level which is for different
protocols.

4. Click MyAHB_1 to show the streams under this hierarchy.

5. Select AhbTransfer and AhbTransaction and then click OK.

Add/Remove Transaction Streams
After loading a FSDB file with transaction data, you can view and manipulate the
results in the Transaction Table View frame.

1. In the nWave frame, choose the Tools -> Classic Transaction -> Analysis
Window command. The Transaction Table View frame will be opened as a
new frame in the right half of the nWave frame, the FSDB file currently
loaded in nWave will be the default in the Transaction Table View frame.

2. In the Transaction Table View frame, choose the Stream -> Get Stream
command to open the Select Stream form.

The form will be similar to the following:

Figure: Select Stream Form

All of the transaction streams available in the FSDB file will be listed in a
tree-like format.

3. Double-click AhbTransfer to automatically add the stream to the
Transaction Table View frame. The stream name changes to gray and is
appended with a red dot.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 382Feedback

4. Left-click to select AhbTransaction and click OK to add the stream and
close the form.

The Transaction Table View frame will be similar to the following:

Figure: Transaction Table View Frame with Streams Loaded

There are two streams, AhbTransfer and AhbTransaction, in the Transaction
Table View frame. Each stream has a tab of its own. You can select the
stream name to see the details of the stream. The currently selected stream
name is in blue. You can change the width of the columns by selecting the
vertical line in the column header and dragging-left.

5. Left-click to select the AhbTransaction.

6. Choose the Stream -> Close Stream command. Note the stream has been
removed from the Transaction Table View frame.

Merge Transaction Streams
You can also merge two or more streams in the Transaction Table View frame.
When streams are merged you can search and filter all the transaction attributes
simultaneously.

NOTE: The Merge Stream command only merges the transaction streams for
viewing purposes; it does not effect the FSDB file.

1. In the Transaction Table View frame, choose the Stream -> Merge Stream
command to open the Merge Stream form.

The form will be similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

383 Verdi User Guide and Tutorial Feedback

Figure: Merge Stream Form

All of the transaction streams available in the FSDB file will be listed in a
tree-like format in the Stream Name column.

2. Click the button to move all streams to the Merged Stream column.
After the stream is added, its name becomes gray with a red dot in the
Stream Name column and can not be selected again.

3. Left-click to select the Error stream in the Merged Stream column.

4. Click the button to move the selection back to the Stream Name
column. The stream name is changed to black and is selectable again.

5. Left-click to select the AhbTransaction stream in the Merged Stream
column.

6. Click the Default button to automatically generate the merged stream name
which will consist of each stream name linked with an underscore.

7. Click the OK button.

The Transaction Table View frame will be similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 384Feedback

Figure: Merged Stream in the Transaction Table View Frame

If the different streams have transactions at the same time, both will be
displayed.

Manipulate the Stream View
There are several ways to manipulate the streams in the Transaction Table View
frame. You can change which columns (attributes) are displayed and in what
order. You can also filter the transactions based on one or two attribute
conditions.

Set the Cursor/Marker
In this example, you’ll set the cursor/marker position in the Transaction Table
View frame and learn how to synchronize it with the other Verdi frames.

1. In the Transaction Table View frame, select the AhbTransfer stream.

2. Left-click anywhere on the row for Index 13 to set the cursor time. The
selected row is highlighted in yellow.

3. Scroll until you can see Index 25.

4. Middle-click anywhere on the row for Index 25 to set the marker time. The
selected row is highlighted in red.

5. Choose the View -> Sync Cursor Time command to synchronize the
cursor globally.

6. Left-click anywhere on the row for Index 18 to set the cursor time. Note the
cursor time changes in the nWave frame as well. If you had a design loaded
and active annotation enabled, the cursor time would change in the source
code frame and nSchema frame as well.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

385 Verdi User Guide and Tutorial Feedback

Change the Column (Attribute) Display
In this example, you’ll select some columns (attributes) to remove from the
display and re-order the remaining columns.

1. In the Transaction Table View frame, select the AhbTransfer stream.

2. Choose the View -> Column Configuration command to open the Config
Bus Table form.

The form will be similar to the following:

Figure: Config Bus Table Form

By default, all the columns (attributes) will be listed in the Show Column
section.

3. Select Label in the Show Column section.

4. Click the button to move it to the Hide Column section.

5. Repeat the previous steps for Response, Slave, and EndTime individually.
Only one attribute can be selected at a time.

6. In the Show Column section, select Index.

7. Click the Down button multiple times until Index is at the bottom of the
list.

8. In the Show Column section, select BurstType.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 386Feedback

9. Click the Up button multiple times until BurstType is located below
Command.

10. Click OK.

The Transaction Table View frame will be updated as follows:

Figure: Modified Attribute Display for AhbTransfer Stream

Note four columns have been removed from the display and the remaining
columns have been re-ordered. The Index column is now the right-most
column and BurstType is next to Command.

11. Left-click the Command column to sort by the command attribute types.

Filter the Transactions
In this example, you will filter the transactions based on certain attributes.

1. In the Transaction Table View frame, select the AhbTransfer stream.

2. Choose the View -> Filter/Colorize command to open the Filter/Colorize
form.

3. Toggle the Attributes: field and select Command.

Toggle the Operator to ==(wildcard) and enter single write in the Value:
field, then click Add button. The form will be similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

387 Verdi User Guide and Tutorial Feedback

Figure: Filter/Colorize Form - Command = single write

4. Click the Apply button.

The Transaction Table View frame will be updated to display transactions
whose command attribute is of type single write, similar to the following:

Figure: Filter Results for Command single write

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 388Feedback

At this point you have several options. You can sort the current results by
clicking another column header or you can further reduce the display by
specifying another filter or you can restore the stream and start over. Let’s
specify another filter.

5. In the Filter/Colorize form (which should still be open unless you closed it),
toggle the Attributes: field and select SizePerBeat.

6. Toggle the Operator: to >= and enter 2 byte in the Value: field, and click
Add button.

The form will be similar to the following:

Figure: Filter/Colorize Form - SizePerBeat >= 2byte

7. Click the Apply button.

The Transaction Table View frame will be updated to display transactions
whose command attribute is of type single write and whose SizePerBeat
attribute value is greater than or equal to 2 bytes, similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

389 Verdi User Guide and Tutorial Feedback

Figure: Filter Results for Command single write with SizePerBeat >= 2 bytes

Enable the Sync to Waveform option in the Filter/Colorize form and then
the transaction stream in the waveform will also be filtered.

8. Click the Sync. Signal Selection Enabled icon (see left) on both the
Transaction Table View frame and the nWave frame to synchronize the
views.

9. In the Transaction Table View frame, select the row containing Index 37.
The waveform will automatically update and select the related transaction.
You can also select a transaction in the waveform and the appropriate row
will be highlighted.

You can continue sorting the current results by clicking another column header
or you can further reduce the display by specifying another filter or you can
restore the stream and start over. You can restore the stream and start over.

Generate Statistics
In addition to viewing and manipulating the transactions in a spreadsheet-like
view, you can generate a variety of statistics for the stream.

1. In the Transaction Table View frame, select the
AhbTransaction_AhbTransfer merged stream.

NOTE: Although this example will use the entire merged stream, you can filter
the stream first and then generate statistics based on the reduced
display.

2. Choose the Tools -> Statistics Window command to open the Perform
Statistical Calculation form.

The form will be similar to the following:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

 Verdi User Guide and Tutorial 390Feedback

Figure: Perform Statistical Calculation Form

You have several options for setting up the form. In this example you want
to view the frequency of BurstType for the entire simulation range.

3. Click the Full Range button to automatically enter the from and to times.

4. Toggle the Category Column field and select BurstType.

5. Click OK.

A Statistics frame similar to the following will open as a new tab in the
same location as the Transaction Table View frame.

Figure: Bar Chart for BurstType

For the stream combination, you can easily see the frequency of the burst
types. At this point, you can capture the results in PNG format. You can also
change the view to a pie chart or table, or duplicate the window.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Application Tutorials: Debug with Transactions

391 Verdi User Guide and Tutorial Feedback

6. In the Statistics frame, choose the View -> Pie Chart command.

The frame is updated similar to the following.

Figure: Bar Chart for BurstType

7. Choose the File -> Close command to close the Statistics frame.

You can generate more statistics for different attribute types.

8. In the nTrace main window, choose the File -> Exit command to close the
Verdi session.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Application Tutorials'

Appendix A: Supported Waveform Formats: Overview

 Verdi User Guide and Tutorial 392Feedback

Appendix A: Supported
Waveform Formats

Overview
In addition to the FSDB waveform format, the following formats are supported:

• VCD (Value Change Dump)

• EVCD (Extended Value Change Dump)

• Analog - Powermill, Spice

This appendix covers the following topics:

• Fast Fourier Transformers (FFT)

• EVCD

• Analog Waveform Example

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Fast Fourier Transformers (FFT)

393 Verdi User Guide and Tutorial Feedback

Fast Fourier Transformers (FFT)
nWave provides the capability of viewing and analyzing analog signals in the
frequency domain. An FFT window in nWave is used to display and process
frequency waveforms. nWave can process analog signals through FFT to get the
frequency results.

Getting Data from Analog Signal
After analog signals are imported into nWave, choose the Analog -> FFT
command to access the FFT window.

Figure: Open FFT from nWave

The FFT window is created without any waveforms displayed.

Choose the Signal -> Add FFT Signal command in the FFT window.

The FFT Input Parameters form displays, as shown below. You can specify
parameters for FFT in this form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Fast Fourier Transformers (FFT)

 Verdi User Guide and Tutorial 394Feedback

Figure: Add FFT Signal Form

Target signal can be specified through nWave window selection or drag from
nWave into the Signal Name text box. The Start and Stop times have to be
specified to define the range of the FFT process.

Seven types of window functions (rectangular, Blackman, Hamming, Hanning,
Parzen, Triangular and Welch) can be used in nWave. The resolution of the FFT
result can be specified with sample point number or sample rate.

Different FFT methods on the same target signal can be compared in the FFT
window.

Select the signal in the FFT window, then use the Edit -> Calculate Selected
command. The different parameters are specified in the FFT Input Parameters
[2] form (shown below), and the re-calculated waveform are displayed for
comparison.

Enable the Override option to overwrite the original result.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Fast Fourier Transformers (FFT)

395 Verdi User Guide and Tutorial Feedback

.
Figure: FFT Input Parameters [2] Form

The FFT results of analog waveforms can be saved in the FSDB, and restored for
use later. You can also export the FFT result to an ASCII format text file.

Data Manipulation in FFT Window
The FFT window provides several methods to change data display formats for
analysis under the Options -> Preferences command.

In the Preferences form, the Display Option tab contains several setting for data
manipulation, as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Fast Fourier Transformers (FFT)

 Verdi User Guide and Tutorial 396Feedback

Figure: Preferences Form

The Y-axis can be changed to Magnitude decibels (dB) as conventional
notation. Changing the Ibase value can modify the offset value of Y-axis in dB.

For example, changing Ibase value from 1 to 10 means the dB offset value
changed from 0 to -20. If Ibase is specified as 0.1, the offset value is changed to
+20.

The Ibase value only affects analog waveform FFT results.

The following figures are example FFT waveforms fixed are -40 dB:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Fast Fourier Transformers (FFT)

397 Verdi User Guide and Tutorial Feedback

Figure: FFT Waveform

Figure: FFT Waveform

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: EVCD

 Verdi User Guide and Tutorial 398Feedback

EVCD
A EVCD (Extended VCD) file saves the instance ports' logic and driver
information. It is valuable if it can be read as a waveform and back annotated to
the design source code and schematics. The capabilities for supporting EVCD
are listed below.

• Convert EVCD to FSDB -- You can convert your dumped EVCD to FSDB
by vfast.

• The converted FSDB retains full range of values to represent logic and
driver information. The values include 25 port values, 8 strengths for 0 and
8 strengths for 1.

• nWave displays full range of values to represent logic and driver
information -- nWave can display 25 port values, 8 strengths for 0 and 8
strengths for 1. In total, nWave can display 1600 patterns (25*8*8) for
EVCD. Through the Preferences form (Waveform folder, Extended VCD
page), you can configure all of the patterns as you like.

Figure: EVCD Preferences Form

• Map the logic and driver information to standard VCD value -- For bus
ports, values are mapped to IEEE standard Verilog value space (0,1,z.x). To
see each individual port's value, you can expand the bus port to single bit
ports as shown below:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: EVCD

399 Verdi User Guide and Tutorial Feedback

Figure: Example Expanded Bus Ports

• Map values of all single bit ports to IEEE standard Verilog value space by
turning on the Normalize EVCD Display Value option under the
Waveform folder -> General page of the Preferences form (invoked with
the Tools -> Preferences command).

Figure: Example Normalized EVCD Display Value

• Support search value for any changes, rising and falling -- The search value
for bus ports is the same as VCD since their values have been mapped to
IEEE standard Verilog value space. When you search value for single bit
ports, the Verdi platform maps them to IEEE standard Verilog value space
internally. For example, the Verdi platform maps L(str0,str1)->H(str0,str1)
to 0->1 and recognize it as a rising change.

• Annotate EVCD value or the mapped VCD value to nTrace and nSchema --
In nTrace, port value is annotated. In nSchema, port value and direction are
annotated.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Analog Waveform Example

 Verdi User Guide and Tutorial 400Feedback

Figure: Annotate EVCD / Mapped VCD Value to nTrace and nSchema

The following features are not supported:

• Utilities (fsdb2vcd, fsdbextract, fsdbmerge, fsdbReport) for converted
FSDB.

• Trace-X and List-X for the converted FSDB.

Analog Waveform Example
This section covers the following topics:

• View the Analog Waveform

• Manipulate the Analog Waveform

• View Different Simulation Results in the Same Window

• Overlap Analog Signals from Different Simulation Results

View the Analog Waveform
1. Change your context to the analog sub-directory, which is where all of the

demo source code files are located:
% cd <working_dir>/demo/analog

2. Start nWave.
% nWave &

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Analog Waveform Example

401 Verdi User Guide and Tutorial Feedback

3. Choose the File -> Open command, and type *.* in the Filter text box of
the Open Dump File form.

4. Select the file PowerMill.out and click the Add and then the OK button.

5. Click the Yes button on the Question dialog window for direct read.

6. Choose the Signal -> Get All Signals command.

7. Click the Yes button on the Confirmation dialog window.

An analog waveform is displayed in nWave, as shown below:

Figure: Analog/Digital Waveforms in nWave

The nWave frame displays analog waveforms differently from digital
waveforms in two ways:

• nWave makes analog signals taller than digital signals.

• nWave uses different colors to display each newly added analog signal.

Manipulate the Analog Waveform
Similar to the way you change display formats for digital signals, you can change
the format for analog signals by clicking-right on the value pane to change to the
desired format. The supported analog display formats are: V, mV, A, mA, and uA.

NOTE: Choose the Analog -> Format & Precision command, to open the
Format form and set the Analog Format to Scientific or Engineering
first.

Change the Signal Height
1. Select the signals i(1) and i(2).

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Analog Waveform Example

 Verdi User Guide and Tutorial 402Feedback

2. Choose the Waveform -> Height command, and enter 200 pixels for the
new signal height.

The signal height increases, and only one signal can be seen in the nWave
window.

3. Maximize the window to see both signals.

NOTE: nWave limits the minimum signal height to the signal name height and
the maximum signal height to the height of the waveform window.
After you resize an nWave window, nWave changes the signal height
automatically if the signal height is taller than the waveform pane.

Display the Analog Ruler
1. Choose the Analog -> Ruler command to display the Analog Ruler form.

2. Enter 10000 in the Grid Step field to display the vertical grid step at every
10000 value unit.

3. Click Apply to display the ruler on the selected signals.

4. Click the Cancel button to close the Analog Ruler form.

View Different Simulation Results in the Same Window
You can open multiple simulation result files in the same nWave window. This
capability is especially useful for analyzing analog waveforms from different
simulation runs or different simulators. For example, you can mix your Verilog
VCD waveforms with waveforms from PowerMill.

1. Highlight the existing signals in nWave (use the Signal -> Select All
command), and use the Cut icon to remove them from the display.

2. Choose the Signal -> Get Signals command.

3. Select the signals i(cin) and i(node1), and click the OK button.

4. Select group G1.

5. Right-click and choose Rename to change the group name G1 to PwrMill.

6. Set the signal cursor under group G2.

7. Choose the File -> Open command to open the Open Dump File form.

8. Select the file SmartSpice.out, and click the Add and then the OK button.

9. Click the OK button on Information dialog window.

10. Choose the Signal -> Get Signals command.

11. Select the signals i(cin) and i(node1), and click the OK button.

12. Select group G2.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix A: Supported Waveform Formats: Analog Waveform Example

403 Verdi User Guide and Tutorial Feedback

13. Right-click and choose Rename to change the group name G2 to SmtSpice.

You should now see two simulation results in the same window.

14. If you want to add more signals from the first open file, choose the File ->
Set Active command to switch the current active file. nWave places no
logical limit on the number of files you can open.

Overlap Analog Signals from Different Simulation
Results

1. Set the signal cursor under group G3.

2. Select the signal i (node1) from group PwrMill and the signal i (node1)
from group SmtSpice (hold the <Ctrl> key to select multiple non-contiguous
signals).

3. Choose the Signal -> Overlay command to overlap the two signals.

4. Choose the Analog -> Ruler command to turn on the ruler.

Figure: Overlapped Analog Waveforms

Now you can analyze the differences between these two signals.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix A: Supported Waveform Formats'

Appendix B: Supported FSM Coding Styles: Overview

 Verdi User Guide and Tutorial 404Feedback

Appendix B: Supported FSM
Coding Styles

Overview
Finite State Machine (FSM) Coding is very common in RTL design. The Verdi
platform extracts FSM from the source code automatically and provides a visual
state diagram and state animation to trace whole FSM actions. It is very helpful
for an IC designer to analyze and debug an RTL design, especially for large
FSMs. There are various kinds of FSM coding styles. The Verdi platform
supports the following FSM coding styles:

• One-Process (Always)

• Two-Process (Always)

• One-Hot Encoding

• Shift Arithmetic Operation

• Case-Statement vs. If-Statement

• Gate-Like FSM

• Next_State = signal

• Next_State = Current_State + N

• VHDL Record Type

The following sections give Verilog and VHDL code examples for the different
coding styles listed above.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Process (Always)

405 Verdi User Guide and Tutorial Feedback

One-Process (Always)
The definition of a one-process FSM is that all of its functions are specified in
one VHDL process or one Verilog always statement. The following sections
contain examples of one-process FSMs:

• Example 1 - Verilog (one_process.v)

• Example 2 - VHDL (one_process.vhd)

The functions of these two FSMs are equal. In nState, the state diagrams of these
two FSMs are identical.

Example 1 - Verilog (one_process.v)
module FSM1_BAD (Clock, SlowRAM, Read, Write);
 input Clock, SlowRAM;
 output Read, Write;
 reg Read, Write;
 integer State;
 always @(posedge Clock)
 begin: SEQ_AND_COMB
 case (State)
 0 :
 begin
 Read = 1;
 Write = 0;
 State = 1;
 end
 1 :
 begin
 Read = 0;
 Write = 1;
 if (SlowRAM == 1)
 State = 2;
 else
 State = 0;
 end
 2 :
 begin
 Read = 0;
 Write = 0;
 State = 0;
 end
 endcase
 end
 endmodule

Refer to Figure: Verilog (one_process.v) for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Process (Always)

 Verdi User Guide and Tutorial 406Feedback

Figure: Verilog (one_process.v)

Example 2 - VHDL (one_process.vhd)
Library IEEE;
Use IEEE.STD_Logic_1164.all;
Entity FSM1_BAD is
 port (Clock: in std_logic;
 SlowRAM: in std_logic;
 Read,Write: out std_logic);
End entity FSM1_BAD;
Architecture RTL of FSM1_BAD is
Begin
 SEQ_AND_COMB: process
 variable State: integer;
 begin
 wait until rising_edge(Clock);
 case State is
 when 0=>
 Read <= '1';
 Write <= '0';
 State := 1;
 When 1=>
 Read <= '0';
 Write <= '1';
 if (SlowRAM = '1') then
 State := 2;
 Else
 State := 0;
 end if;
 when 2=>

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Process (Always)

407 Verdi User Guide and Tutorial Feedback

 Read <= '0';
 Write <= '0';
 State := 0;
 When others=> null;
 end case;
 end process SEQ_AND_COMB;
 end architecture RTL;

Refer to Figure: VHDL (one_process.vhd) for the nState diagram.

Figure: VHDL (one_process.vhd)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Two-Process (Always)

 Verdi User Guide and Tutorial 408Feedback

Two-Process (Always)
In two-process FSM, the FSM is split into a combinational circuit and a
sequential circuit. The combinational circuit of the FSM is written in one process
statement and the sequential circuit is written in the other process statement.
Synopsys strongly recommends using this type of FSM. The following sections
contain examples of two-process FSMs:

• Example 1 - Verilog (two_process.v)

• Example 2 - VHDL (two_process.vhd)

Example 1 - Verilog (two_process.v)
module FSM1_GOOD (Clock, Reset, SlowRAM, Read, Write);
 input Clock, Reset, SlowRAM;
 output Read, Write;
 reg Read,Write;
 reg [1:0] CurrentState, NextState;
 always @(posedge Clock)
 begin: SEQ
 if (Reset)
 CurrentState = 0;
 else
 CurrentState = NextState;
 end
 always @(CurrentState or SlowRAM)
 begin: COMB
 case (CurrentState)
 0 :
 begin
 Read = 1;
 Write = 0;
 NextState = 1;
 end
 1 :
 begin
 Read = 0;
 Write = 1;
 if (SlowRAM)
 NextState = 2;
 else
 NextState = 0;
 end
 2 :
 begin
 Read = 0;
 Write = 0;
 NextState = 1;
 end
 default :

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Two-Process (Always)

409 Verdi User Guide and Tutorial Feedback

 begin
 Read = 0;
 Write = 0;
 NextState = 0;
 end
 endcase
 end
endmodule

Refer to Figure: Verilog (two_process.v) for the nState diagram.

Figure: Verilog (two_process.v)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Two-Process (Always)

 Verdi User Guide and Tutorial 410Feedback

Example 2 - VHDL (two_process.vhd)
library IEEE;
use IEEE.STD_Logic_1164.all;
entity FSM1_GOOD is
 port (Clock, Reset: in std_logic;
 SlowRAM: in std_logic;
 Read, Write: out std_logic);
end entity FSM1_GOOD;
architecture RTL of FSM1_GOOD is
 type StateType is (ST_Read, ST_Write, ST_Delay);
 signal CurrentState,NextState: StateType;
begin
 SEQ: process
 Begin
 wait until rising_edge(Clock);
 if (Reset = '1') then
 CurrentState <= ST_Read;
 Else
 CurrentState <= NextState;
 end if;
 end process SEQ;
 COMB: process (CurrentState)
 Begin
 case CurrentState is
 when ST_Read =>
 Read <= '1';
 Write <= '0';
 NextState <= ST_Write;
 when ST_Write =>
 Read <= '0';
 Write <= '1';
 if (SlowRAM = '1') then
 NextState <= ST_Delay;
 Else
 NextState <= ST_Read;
 end if;
 when ST_Delay =>
 Read <= '0';
 Write <= '0';
 NextState <= ST_Read;
 when others =>
 Read <= '0';
 Write <= '0';
 NextState <= ST_Read;
 end case;
 end process COMB;
end architecture RTL;

Refer to Figure: VHDL (two_process.vhd) for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Two-Process (Always)

411 Verdi User Guide and Tutorial Feedback

Figure: VHDL (two_process.vhd)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Hot Encoding

 Verdi User Guide and Tutorial 412Feedback

One-Hot Encoding
State-encoding is the way in which binary numbers are assigned to states. The
different state encoding formats commonly used are sequential, gray, johnson,
one-hot, and define-your-own. The Verdi platform supports sequential, gray,
johnson, and one-hot. However, one-hot is written in a different manner than the
other formats. An example of Verilog one-hot format is as follows:

module prep3 (clk, rst, in, out) ;
input clk, rst ;
input [7:0] in ;
output [7:0] out ;
parameter [2:0]
 START = 0 , SA = 1 ,
 SB = 2 , SC = 3 ,
 SD = 4 , SE = 5 ,
 SF = 6 , SG = 7 ;
reg [7:0] state, next_state ;
reg [7:0] out, next_out ;
always @ (in or state) begin
 // default values
 next_state = 8'b0 ;
 next_out = 8'bx ;
 case (1'b1) // synopsys parallel_case full_case
 state[START]:
 if (in == 8'h3c) begin
 next_state[SA] = 1'b1 ;
 next_out = 8'h82 ;
 end
 else begin
 next_state[START] = 1'b1 ;
 next_out = 8'h00 ;
 end
 state[SA]:
 case (in) // synopsys parallel_case full_case
 8'h2a:
 begin
 next_state[SC] = 1'b1 ;
 next_out = 8'h40 ;
 end
 8'h1f:
 begin
 next_state[SB] = 1'b1 ;
 next_out = 8'h20 ;
 end
 default:
 begin
 next_state[SA] = 1'b1 ;
 next_out = 8'h04 ;
 end
 endcase
 state[SB]:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Hot Encoding

413 Verdi User Guide and Tutorial Feedback

 if (in == 8'haa) begin
 next_state[SE] = 1'b1 ;
 next_out = 8'h11 ;
 end
 else begin
 next_state[SF] = 1'b1 ;
 next_out = 8'h30 ;
 end
 state[SC]:
 begin
 next_state[SD] = 1'b1 ;
 next_out = 8'h08 ;
 end
 state[SD]:
 begin
 next_state[SG] = 1'b1 ;
 next_out = 8'h80 ;
 end
 state[SE]:
 begin
 next_state[START] = 1'b1 ;
 next_out = 8'h40 ;
 end
 state[SF]:
 begin
 next_state[SG] = 1'b1 ;
 next_out = 8'h02 ;
 end
 state[SG]:
 begin
 next_state[START] = 1'b1 ;
 next_out = 8'h01 ;
 end
 endcase
 end
// build the state flip-flopsalways
 always @(posedge clk or negedge rst)
 begin
 if (!rst) begin
 state <= #1 8'b0 ;
 state[START] <= #2 1'b1 ;
 end
 else
 state <= #1 next_state ;
 end
 endmodule

Refer to Figure: One-Hot State-Encoding FSM for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: One-Hot Encoding

 Verdi User Guide and Tutorial 414Feedback

Figure: One-Hot State-Encoding FSM

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Shift Arithmetic Operation

415 Verdi User Guide and Tutorial Feedback

Shift Arithmetic Operation
FSMs with the next state using simple shift-left arithmetic operations are
supported, which is another way to specify one-hot FSM transitions.

An example of Verilog shift arithmetic format is as follows:

module sig_control(clock);
parameter
 S0 = 0,
 S1 = 1,
 S2 = 2,
 S3 = 3;
input clock;
reg [3:0] state;
always @(posedge clock)
begin
 case (1'b1)
 state[S0]:
 begin
 state = 1<<S1;
 end
 state[S1]:
 begin
 state = 1<<S2;
 end
 state[S2]:
 begin
 state = 1<<S3;
 end
 state[S3]:
 begin
 state = 1<<S0;
 end
 endcase
end
endmodule

Refer to Figure: FSM Using Shift Arithmetic Operation for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Shift Arithmetic Operation

 Verdi User Guide and Tutorial 416Feedback

Figure: FSM Using Shift Arithmetic Operation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Case-Statement vs. If-Statement

417 Verdi User Guide and Tutorial Feedback

Case-Statement vs. If-Statement
Designers often use a case statement to specify the relationship between the
current state and next state. The Verdi platform also allows designers to use if
statements to do this, even for the conditional operator.

Two Verilog examples are as follows:

Example 1
module FSM_1ProcIf;
wire clk, rst;
wire a, b;
reg [1:0] cs, ns;
parameter [1:0] S0=2'b00, S1=2'b01,
 S2=2'b10, S3=2'b11;
always @(posedge clk or posedge rst or a or cs)
begin
 if (rst)
 cs=S3;
else
 if (cs==S0 && a)
 cs=S1;
 else
 if (cs==S1)
 if (b)
 cs=S2;
 else
 cs=S3;
 else
 if (cs==S2)
 cs=S0;
 else
 if (cs==S3)
 if (a & b)
 cs=S2;
 else
 cs=cs;
 else
 cs=S0;
end
endmodule

Refer to Figure: FSM Using if Statement - 1 for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Case-Statement vs. If-Statement

 Verdi User Guide and Tutorial 418Feedback

Figure: FSM Using if Statement - 1

Example 2
module FSM_2Passign;
wire clk, rst;
wire a, b;
reg [1:0] cs;
wire [1:0] ns;
parameter [1:0] S0=2'b00, S1=2'b01,
 S2=2'b10, S3=2'b11;
always @(posedge clk or rst)
if (rst)
 cs=S3;
else
 cs = ns;
assign ns = ((cs == S0) & a) ? S1 :
 (cs == S1) ? ((b) ? S2 : S3) :
 (cs == S2) ? S0 :
 (cs == S3) ? ((a & b) ? S2 : S3) : S0;
endmodule

Refer to Figure: FSM Using if Statement - 2 for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Case-Statement vs. If-Statement

419 Verdi User Guide and Tutorial Feedback

Figure: FSM Using if Statement - 2

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Gate-Like FSM

 Verdi User Guide and Tutorial 420Feedback

Gate-Like FSM
Gate-like FSM is a special type of FSM. Some high performance ASIC vendors
prefer this type of FSM because designers perform the optimization themselves,
writing it as an RTL statement, as shown in the following example:

module state_machine (clk,a,b,c,d,e,f,g,h,i,j,k,l);
input clk,a,b,c,d,e,f,g,h,i,j,k,l;
output STATE0,STATE1,STATE2,STATE3,STATE4, STATE5,STATE6,STATE7;
wire STATE0,STATE1,STATE2,STATE3, STATE4,STATE5,STATE6,STATE7;
wire NSTATE0,NSTATE1,NSTATE2,NSTATE3,
NSTATE4,NSTATE5,NSTATE6,NSTATE7;
assign NSTATE0 = (STATE5 & !a & b & !c) |
 (STATE0 & !d & !e) |
 (STATE7 & f & !c) |
 (STATE1 & !g & !c) |
 (STATE0 & c) |
 (h) |
 (i);
assign NSTATE1 = (STATE0 & !i & !h & d & !c) |
 (STATE1 & !i & !h & g) |
 (STATE1 & !i & !h & c);
assign NSTATE2 = (STATE0 & !i & !h & !d &
 e & !c) |(STATE2 & !i & !h & c) |
 (STATE2 & !i & !h& !j);
assign NSTATE3 = (STATE2 & !i & !h & !c & j) |
 (STATE3 & !i & !h & !k) |
 (STATE3 & !i & !h & c);
assign NSTATE4 = (STATE3 & !i & !h & k & !c) |
 (STATE4 & !i & !h & !f) |
 (STATE4 & !i & !h & c);
assign NSTATE5 = (STATE4 & !i & !h & f & !c) |
 (STATE5 & !i & !h & !b) |
 (STATE5 & !i & !h & c);
assign NSTATE6 = (STATE5 & !i & !h & a & b
 & !c) | (STATE6 & !i & !h & !l) |
 (STATE6 & !i & !h & c);
assign NSTATE7 = (STATE6 & !i & !h & l & !c) |
 (STATE7 & !i & !h & !f) |
 (STATE7 & !i & !h & c);
 sffp #(1)
STATE0l(.ck(clk), .d(NSTATE0), .q(STATE0));
 sffp #(1) STATE1l(.ck(clk), .d(NSTATE1), .q(STATE1));
 sffp #(1) STATE2l(.ck(clk), .d(NSTATE2), .q(STATE2));
 sffp #(1) STATE3l(.ck(clk), .d(NSTATE3), .q(STATE3));
 sffp #(1) STATE4l(.ck(clk), .d(NSTATE4), .q(STATE4));
 sffp #(1) STATE5l(.ck(clk), .d(NSTATE5), .q(STATE5));
 sffp #(1) STATE6l(.ck(clk), .d(NSTATE6), .q(STATE6));
 sffp #(1) STATE7l(.ck(clk), .d(NSTATE7), .q(STATE7));
endmodule
module sffp(ck, q, d);
 parameter width = 1;

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Gate-Like FSM

421 Verdi User Guide and Tutorial Feedback

 parameter init = {width {1'b0}};
 output [width-1:0] q;
 input ck;
 input [width-1:0] d;
 reg [width-1:0] q;
 reg [width-1:0] m;
 always @(posedge ck) q <= m;
 always @(negedge ck) m <= d;
endmodule

Refer to Figure: Gate-like FSM for the nState diagram.

Figure: Gate-like FSM

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Next_State = signal

 Verdi User Guide and Tutorial 422Feedback

Next_State = signal
Usually, FSMs are written as next_state = constant_value. If
next_state = signal, the signal's value cannot be determined. This kind
of statement is created as a transition to a special bundle node, which means that
it may have many undeterminable transitions. The following example shows this
type of FSM:

module sig_control(clock);
parameter
 S0 = 2'h1,
 S1 = 2'h2,
 S2 = 2'h3,
 S3 = 2'h0;
input clock;
reg [3:0] current_state;
reg reset,enable;
reg [3:0] return;
always @(posedge clock)
begin
 if (reset)
 return <= S0;
 else
 begin
 case (current_state)
 S0: begin
 return <= S1;
 if (enable)
 current_state <= S3;
 else
 current_state <= S0;
 end
 S1: current_state <= S2;
 S2: current_state <= S0;
 S3: current_state <= return;
 default: current_state<= S0;
 endcase
 end
end
endmodule

Refer to Figure: next_state = signal FSM for the nState diagram.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Next_State = signal

423 Verdi User Guide and Tutorial Feedback

Figure: next_state = signal FSM

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: Next_State = Current_State + N

 Verdi User Guide and Tutorial 424Feedback

Next_State = Current_State + N
For a one process state machine, you may write current_state =
next_state within the sequential circuit part, and next_state =
current_state + N (N: positive integer) within the combinational circuit
part. The value of next_state value is computed automatically.

module FSM(Clock,Read,Write);
 input Clock;
 output Read,Write;
 reg Read,Write;
 reg [1:0] State;
 wire [1:0] next_state;
 assign next_state = State + 1;
 always @(posedge Clock)
 begin: SEQ_AND_COMB
 parameter S0=0,S1= 1,S2=2,S3=3;
 case (State)
 S0:
 State = next_state;
 S1:
 begin
 if (Read)
 State = next_state;
 end
 S2:
 State = S0;
 endcase
 end
endmodule

Refer to Figure: next_state = current_state + N FSM for the nState diagram.

Figure: next_state = current_state + N FSM

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: VHDL Record Type

425 Verdi User Guide and Tutorial Feedback

VHDL Record Type
The FSM extractor in the Verdi platform supports the VHDL record type.
Usually, the register is the whole record, for example:

 process
 begin
 wait until rising_edge(Clock);
 r <= v;
 end process SEQ;
 process
 begin
 case r.state is
 IDLE=> v.state <= WAIT; -- state transitions

 endcase
 end

NOTE: One-hot coding style using record is not supported.

library IEEE;
use IEEE.STD_Logic_1164.all;
package RecordTypes is
 type StateType is (ST_Read, ST_Write, ST_Delay);
 type R1_Type is record
 State: StateType;
 Output:std_logic;
 end record;
end package RecordTypes;
library IEEE;
use IEEE.STD_Logic_1164.all,
IEEE.Numeric_STD.all;
use work.RecordTypes.all;
entity FSM2_GOOD is
 port (Clock: in std_logic;
 SlowRAM: in std_logic;
 Read, Write: out std_logic);
end entity FSM2_GOOD;
architecture RTL of FSM2_GOOD is
signal r,v: R1_Type;
begin
 SEQ: process
 begin
 wait until rising_edge(Clock);
 r <= v;
 end process SEQ;
 COMB: process (r)
 begin
 case r.State is
 when ST_Read =>
 Read <= '1';
 Write <= '0';

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: VHDL Record Type

 Verdi User Guide and Tutorial 426Feedback

 v.Output <= '1';
 v.State <= ST_Write;
 when ST_Write =>
 Read <= '0';
 Write <= '1';
 v.Output <= '1';
 if (SlowRAM = '1') then
 v.State <= ST_Delay;
 else
 v.State <= ST_Read;
 end if;
 when ST_Delay =>
 Read <= '0';
 Write <= '0';
 v.Output <= '1';
 v.State <= ST_Read;
 when others =>
 Read <= '0';
 Write <= '0';
 v.Output <= '0';
 v.State <= ST_Read;
 end case;
 end process COMB;
end architecture RTL;

Refer to Figure: VHDL Record Type for the nState diagram.

Figure: VHDL Record Type

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix B: Supported FSM Coding Styles: VHDL Record Type

427 Verdi User Guide and Tutorial Feedback

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix B: Supported FSM Coding Styles'

Appendix C: Enhanced RTL Extraction: Overview

 Verdi User Guide and Tutorial 428Feedback

Appendix C: Enhanced RTL
Extraction

Overview
nSchema can display instance array, for loop statements and create detailed
extracted schematic view. Typically, these complex functions are displayed with
a function symbol. The RTL can be extracted to show more detailed view.

To turn on detail RTL extraction feature, choose the Tools -> Preferences option
to open the Preferences form and then turn on the Enable Detail RTL option on
the RTL page under the Schematics folder. With this option turned on, the Verdi
platform extracts more RTL as follows.

• Expand instance array to individual instance bit.

• Expand contents of for loop statement.

• Handle aggregate with positional notation, named notation and others.

• For partial bit assignment, split constant, concatenation and aggregate
correctly according to their specific bit range.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Overview

429 Verdi User Guide and Tutorial Feedback

The following figure shows a list of recognized RTL blocks:

Figure: List of Recognized RTL Blocks

The following sections are examples of the enhanced detail RTL extractions:

• Instance Array

• For Loop

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Instance Array

 Verdi User Guide and Tutorial 430Feedback

• Aggregate

• Partial Bits Assignment

• Displaying Pure Memory Blocks

Instance Array
The instance array can be expanded to individual bits. In the following example,
U1[3:0] can be expended to U1[0], U1[1], U1[2] and U1[3] with correct port
connections.

Figure: Instance Array

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: For Loop

431 Verdi User Guide and Tutorial Feedback

For Loop
The for loop can be expanded. In the following for loop example, net is expended
to net(1), net(2) and net(3).

NOTE: Nested for loops are not supported.

Figure: For Loop

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Aggregate

 Verdi User Guide and Tutorial 432Feedback

Aggregate
1. Positional notation: ('1', 'a', 'b')

In the following example, the extracted RTL shows the following:

Y(3) <= a;
Y(2) <= '1';
If (c = '1') Y(1) <= '1' else Y(1) <= b;
If (c = '1') Y(0) <= '1' else Y(0) <= '1';

Figure: Aggregate: Positional Notation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Aggregate

433 Verdi User Guide and Tutorial Feedback

2. Named notation: (2=>'a', 3=>'b', 0=>'0', 1 => '0')

Figure: Aggregate: Named Notation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Aggregate

 Verdi User Guide and Tutorial 434Feedback

3. Others: (2=>'a', 3=>'b', others=>'1')

Figure: Aggregate: Others

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Partial Bits Assignment

435 Verdi User Guide and Tutorial Feedback

Partial Bits Assignment
1. Constant

Figure: Partial Bits Assignment: Constant

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Partial Bits Assignment

 Verdi User Guide and Tutorial 436Feedback

2. Concatenation

Figure: Partial Bits Assignment - Concatenation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Partial Bits Assignment

437 Verdi User Guide and Tutorial Feedback

3. MultiConcatenation

Figure: Partial Bits Assignment -- Multi-Concatenation

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Displaying Pure Memory Blocks

 Verdi User Guide and Tutorial 438Feedback

Displaying Pure Memory Blocks
To show the pure memory block in nSchema, the memory block is separated from
other circuits.

For example, in the case of the FIFO, FIFO_r is used to store information.
WrPntr_r/RdPntr_r is a pointer that increases or decreases as the FIFO is
pushed or popped:

Pointers_Proc : process is
 begin -- process Pointers_Proc
 wait until Clk = '1';
 case PushnPopn is
 when "00" => -- Push and pop at same
clock
 -- no change to pointers or status
 FIFO_r(WrPntr_r) <= data_in; -- store data
 when "01" => -- Push, no pop
 FIFO_r(WrPntr_r) <= data_in; -- store data
 WrPntr_r <= (WrPntr_r + 1) mod Depth_g;
 -- right argument must evaluate to a constant integer
power of 2
 when "10" => -- no push, pop
 RdPntr_r <= (RdPntr_r + 1) mod Depth_g;
 when "11" => -- no push, no pop
 null;
 when others => null;
 end case;
 if Resetn = '0' then
 WrPntr_r <= 0;
 RdPntr_r <= 0;
 FIFO_r <= (others => (others => '0'));
 end if;
 end process Pointers_Proc;
 DataOut_r <= FIFO_r(RdPntr_r);

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix C: Enhanced RTL Extraction: Displaying Pure Memory Blocks

439 Verdi User Guide and Tutorial Feedback

The detail RTL view of this example is shown in the following figure:

Figure: Memory Block

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix C: Enhanced RTL Extraction'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

 Verdi User Guide and Tutorial 440Feedback

Appendix D: Additional
Transaction Example

This appendix introduces how to extract transactions using SystemVerilog
Assertions (SVA).

Extracting Transactions Using SVA
SystemVerilog Assertions (SVA) are added to your design and then extracted to
display as transactions.

Before you can extract transactions from SVA, you must do the following:

1. Add the SVA code to your design either inlined or as a separate file.

2. Generate an FSDB file containing design data with your preferred
simulator.

3. Load the design and FSDB files into the Verdi GUI.

After the design and FSDB files are loaded into the Verdi GUI, you can extract
the transactions by invoking the Tools -> Transaction -> Evaluator command
in the nTrace main window. This opens the Transaction Evaluator form where
all SVA assert signals are listed.

Figure: Transaction Evaluator Form

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

441 Verdi User Guide and Tutorial Feedback

In the Transaction Evaluator form, the design hierarchy is displayed in the left
pane. After you have traversed to the scope of interest, the transactions are listed
in the middle pane. You can select the assertions to be extracted and click either
the Add Selected Transaction button or Add All Transactions button to move
the selection to the Evaluation Enable List pane. You can also drag any of the
assertions to the source code frame to see the related code.

After you click Evaluate, the transactions are extracted from the assertion code
and are saved to the specified file. This FSDB file is automatically loaded into
the Verdi GUI and you can start using all transaction viewing and analysis
commands for debug in addition to the standard Verdi capability.

NOTE: You need to add the transaction waveforms using the Get Signals
command of nWave. Transaction signals have an _nTX suffix appended
to the assertion name.

SVA Code
The following sections contain a summary of recommended and unsupported
coding styles:

• Recommended Coding Style

• Unsupported Coding Style

• Code Example

 Recommended Coding Style
The following coding styles are recommended for optimum transaction
extraction results:

• Only “assert” directive is supported.

• Most SVA constructs are supported. For details, see Unsupported Coding
Style.

• Using constructs, the sequence layer is recommended for modeling
transactions. Deep nesting range repetition and unbound range delay, for
example ##[0:$], are not recommended as it impacts performance.

• SVA local variables, including those declared in the sub-sequence of a
specific assertion, are recorded as attributes of transactions. Therefore, it is
not recommended to declare local variables with the same name across
different sequences or properties.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

 Verdi User Guide and Tutorial 442Feedback

Example 1:

sequence single_read;
 logic [31:0] addr;
 logic [31-1:0] data;
 int ws;

 @(posedge hclk)
 (`true,ws = 0) ## 0
 (hready) ##1
 (!hready && hsel) [*0:$] ##1
 ((hready && hsel && `SR_CTRL), addr = haddr) ##1
 ((!hready && hsel), ws = ws + 1) [*0:$] ##1
 (hready, data = hrdata);

endsequence

SINGLE_READ: assert property(single_read);

The addr, data, and ws local variables of the single_read sequence
are recognized as the attributes of the assertion statement, SINGLE_READ.

Example 2:

sequence s1;
 int localvar;
 ...

endsequence
sequence s2;

 int localvar;
 ...

endsequence
a_trans1: assert property(@(posedge clk) s1 and s2);

You can modify the sequence as follows:

sequence s1;
 int localvar1;
 ...

endsequence
sequence s2;

 int localvar2;
 ...

endsequence
a_trans1: assert property(@(posedge clk) s1 and s2);

• You can specify the transaction label name of a specific sequence by
declaring a string type local variable named label_nTX, and assigning a
label name to it. For example, if you specify the following for a sequence/
property, the transaction label name is my_single_read:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

443 Verdi User Guide and Tutorial Feedback

sequence single_read;
 string label_nTX;
 (..., label_nTX = “my_single_read”,...) ...;
endsequence

If you specify the following for an assertion statement, the label_nTX
variable (if exists) of the sub-sequence/property is used as its transaction
label:

sequence s1;
 string label_nTX;
 (..., label_nTX = “my_s1”,...) ...;
endsequence

sequence s2;
 string label_nTX;
 (..., label_nTX = “my_s2”,...) ...;
endsequence

a_s1 : assert property((@posedge clk) s1 ##1 s2);

In this case, the label is either my_s1 or my_s2.

Unsupported Coding Style
The following coding styles are not supported for transaction extraction:

• Multiple clocking is not supported.

• Immediate assertion is not supported.

• cover and assume directives of SVA are not supported. Only the
assert directive is supported.

• Three types of assertion successes are not recognized as a transaction:

• The vacuous success of the implication is not recognized as a
transaction.

• The abort success of disable iff is not recognized as a transaction.

• Empty matches, for example seq1[*0];, are not recognized as a
transaction.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

 Verdi User Guide and Tutorial 444Feedback

Code Example
Consider the following SVA code example:

bind test assert_checker bind_transaction_evaluator(
.EN (test.uFL_AMBA_SRAM.ram_2kx32.mem.EN),
.WE (test.uFL_AMBA_SRAM.ram_2kx32.mem.WE),
.ADDR (test.uFL_AMBA_SRAM.ram_2kx32.mem.ADDR),
.DI (test.uFL_AMBA_SRAM.ram_2kx32.mem.DI),
.DO (test.uFL_AMBA_SRAM.ram_2kx32.mem.DO),
.CLK (test.uFL_AMBA_SRAM.ram_2kx32.mem.CLK),
.RST (test.uFL_AMBA_SRAM.ram_2kx32.mem.RST),
.RDInvalid (test.uFL_AMBA_SRAM.uSMI.iXOEN_d)
);

module assert_checker (
 input EN,
 input WE,
 input [10:0] ADDR,
 input [31:0] DI,
 output [31:0] DO,
 input CLK,
 input RST,
 input RDInvalid
);

sequence core_memory_write;
 logic [10:0] Addr;
 logic [31:0] Data;

 (1) ## 0
 (EN == 1'b1 && WE == 1'b1, Addr = ADDR, Data = DI) ##1
 (!(EN == 1'b1 && WE == 1'b1));
endsequence

sequence core_memory_read;
 logic [10:0] Addr;
 logic [31:0] Data;

 (1) ## 0
 (WE==1'b0 && RST==1'b0 && RDInvalid==1'b0, Addr = ADDR) ##1
 (RDInvalid == 1'b0) ##1
 (1, Data = DO);
endsequence

CORE_MEM_WRITE : assert property(@(posedge CLK)
core_memory_write);
CORE_MEM_READ : assert property(@(posedge CLK)
core_memory_read);

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Appendix D: Additional Transaction Example: Extracting Transactions Using SVA

445 Verdi User Guide and Tutorial Feedback

endmodule

The example is extracted and displayed as transaction waveforms similar to the
following:

Figure: Extracted Transaction Waveform

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Appendix D: Additional Transaction Example'

Integration Features:

 Verdi User Guide and Tutorial 446Feedback

Integration Features

This chapter provides the information about the following native integrations
that are available as part of the Verdi platform:

• Native Integration of Verdi and VCS

• Unified Compile Front End

• Unified Debug Solution

Interactive and Post Simulation Debug Flow

UCLI Dump Command for FSDB Dumping

• Optimized Performance of Gate-Level Designs Using Native FSDB
Gate

• Unified Transaction Debug- Verdi and Protocol Analyzer Integration

• Unified UVM Library

The following section provides the information about the enhancements of
Switching Analysis that are available as part of the Verdi platform J-2014.12-SP1
release:

• Scope-Based Peak Analysis

All these features are Limited Customer Availability (LCA). Limited Customer
Availability features are features available with the select functionality. These
features will be ready for a general release, based on customer feedback and
meeting the required feature completion criteria. LCA features do not need any
additional license keys.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

447 Verdi User Guide and Tutorial Feedback

Native Integration of Verdi and VCS
This section consists of the following native integrations that are available as part
of Verdi:

• Unified Compile Front End

• Interactive and Post Simulation Debug Flow

• UCLI Dump Command for FSDB Dumping

• Optimized Performance of Gate-Level Designs Using Native FSDB Gate

Unified Compile Front End
This section consists of the following subsections:

• Introduction

• Prerequisite

• Generating Verdi KDB With Unified Compile Front End

Introduction
Unified Compile Front End uses VCS compiler scripts to compile the
Knowledge Database (KDB) for Verdi. Consequently, only one common
compiler script needs to be maintained for both VCS and Verdi, which ensures
consistency between their databases.

The benefits offered by Unified Compile Front End are as follows:

• Single VCS and Verdi compilation

• Consistent HDL language support

• Consistency in utilizing or handling VCS and Verdi options

Prerequisite
Specify the VCS_HOME environment variable to the VCS installation path.

For example:

%> setenv VCS_HOME <VCS Install Path>

Set the UNIX PATH variable to $VCS_HOME/bin as follows:

%> set path =($VCS_HOME/bin $path)

OR

%> setenv PATH $VCS_HOME/bin:$PATH

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 448Feedback

Generating Verdi KDB With Unified Compile Front End
Unified Compile Front End is supported in both the VCS two-step and three-step
flows. In the VCS two-step flow, add the -kdb option to the command line to
generate the KDB. In case of the VCS three-step flow, add it in all the vlogan/
vhdlan/vcs command lines.

When you specify the -kdb option, Unified Compile Front End creates the Verdi
KDB and dumps the design into the libraries specified in the
synopsys_sim.setup file.

For example:

• -kdb

Generates both the VCS database for simulation and the Verdi KDB for
debugging. The Verdi KDB is required for both post-process and interactive
simulation debug. For example:

// Compile design using VCS and generate both the VCS
// database and the Verdi KDB

// -kdb in the VCS two-step flow
% vcs -kdb <compile_options> <source files>

// -kdb in the VCS three-step flow
%> vlogan -kdb <vlogan options> <source files>
%> vhdlan -kdb <vhdlan options> <source files>
%> vcs -kdb <top_name>

• -kdb=only

To generate only the Verdi KDB and skip the simulation database
generation, specify the following argument with the -kdb option:

-kdb=only

Generates only the Verdi KDB that is needed for both post-process and
interactive simulation debug with Verdi.

This option is supported only in the VCS two-step flow. It is not supported
in the VCS three-step flow.

In the VCS two-step flow, this option does not generate the VCS compile
data/executable, and does not disturb the existing VCS compile data/
executables.

For example:

% vcs -kdb=only <compile_options> <source files>

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

449 Verdi User Guide and Tutorial Feedback

Reading Compiled Design With Verdi
To read a compiled design, add the -simflow option to the Verdi command
line. The -simflow option imports the KDB compiled by Unified Compile and
enables the Verdi platform and its utilities to use the library mapping from the
synopsys_sim.setup file. For example:

%> verdi -simflow -lib work

You can also use the -simBin option to import design directly from the KDB
library paths. For more details about the -simBin option usage, see the
Interactive and Post Simulation Debug Flow section. For example:

%> verdi -simflow -simBin <simv_path>

You can perform the same operations through the Verdi GUI as follows:

1. Click File -> Import Design.

2. In the Import Design form, select the From Library tab.

In the From field, select the VC/VCS Native Compile option, as shown in the
figure below.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 450Feedback

Figure: The Import Design Form

You can also add the -simdir <path> option to the Verdi command line to
ensure that VCS and Verdi use the same data from the
synopsys_sim.setup file. For example:

%> verdi -simflow –simdir [<path>] -lib work -top [<your top
module>]

The <path> argument points to the directory from where the simv (VCS
simulation executable) is executed. Use this option if you want to invoke Verdi
from a working directory that is different from the VCS working directory.

NOTE: When compile in the 64-bit platform machine, add -full64 to
vlogan/vhdlan/vcs. This is because Verdi selects the executable
automatically according to the current platform, but VCS uses 32-bit
executable, by default. It causes problem for Verdi 64-bit executable to
read the KDB generated from 32-bit VCS. For example:

% vcs -full64 -kdb <compile_options> <source files>

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

451 Verdi User Guide and Tutorial Feedback

Notes
• The vericom utility exists in Verdi. For VCS users, Unified Compile flow

is recommended to generate KDB for data consistency and better
performance. For third-party simulator users, the compile flow does not
change and continues to use vericom. When loading the compiled design
library (KDB) from the GUI (loading from the command line stays the
same), ensure that the Verdi Compile option is selected in the From field in
the From Library tab of the Import Design form.

• As VCS and vericom are different Verilog compilers, there are some
behavioral differences between them. In such cases, Unified Compile
follows the behavior of vlogan (VCS) for consistency reasons. The
supported language subset also follows the supported subset of VCS.

• All the compilation information including the compile log of the Verdi KDB
is logged to the regular VCS compiler log file.

• The library mapping information is obtained from the
synopsys_sim.setup file in the VCS three-step flow. The library
mapping information in the novas.rc resource file is ignored in the VCS
three-step unified compile flow.

• Unified Compile does not apply to the import-from-file flow of Verdi. The
import-from-file flow continues to use the vericom parser to read in the
Verilog source code directly. It uses the library mapping information from
the novas.rc resource file similar to the Verdi behavior.

• In the VCS two-step flow, the vcs generated KDB is saved as the
work.lib++ directory in the same working directory as simv.daidir.

• In the VCS three-step flow, the vlogan generated KDB is saved as a
work.lib++ directory in the same working directory as AN.DB. You can
verify the KDB in the directory where it is generated. Note that you can
specify the working directory with the -work option of vlogan. Use the
verdi -simflow -lib option to specify the working directory to load
KDB.

Limitations
The following are the limitations with Unified Compile:

• Verilog-AMS (AMS) and Property Specification Language (PSL) are not
supported. Verdi can parse constructs successfully without an error
message. However, Verdi has a limited support for debug functionality for
AMS and PSL.

• Parallel compilation is not supported.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 452Feedback

• Fault tolerance compilation is not supported.

Interactive and Post Simulation Debug Flow
This section consists of the following subsections:

• Introduction

• Prerequisites

• Interactive Simulation Debug Flow

• Key Points to Note

• Post-Simulation Debug Flow

• Limitations

Introduction
To debug a simulation failure in a design and to bring up the desired debugger
GUI, you may need to remember and explore different options, which result in
spending a lot of time on setting up debugging tools rather than real debugging.
Additionally, you need to manually configure Verdi to perform interactive
simulation debugging in Verdi with VCS. You also need to manually load the
design to Verdi to perform post-simulation debugging.

After the Verdi Knowledge Database (KDB) is generated using Unified Compile,
you can invoke Verdi with the KDB in a single step for the following debug
modes respectively:

• Interactive Simulation Debug Mode

You can automatically invoke Verdi with the KDB through the simulator
command-line option to perform interactive simulation debugging in Verdi
without other configurations.

• Post-Simulation Debug Mode

The KDB and the synopsys_sim.setup file information is
automatically loaded into Verdi through a command-line option to perform
post-simulation debugging. There is no need to manually specify the
compiled design. VCS and Verdi get the same information from the
synopsys_sim.setup file.

Prerequisites
The following is the prerequisite to perform interactive simulation debugging
using the Unified Debug solution:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

453 Verdi User Guide and Tutorial Feedback

• Specify the VCS_HOME environment variable to the VCS installation path.
For example:
%> setenv VCS_HOME <VCS Install Path>

• Generate the Verdi KDB using Unified Compile. For more information, see
Unified Compile Front End.

The following are the prerequisites to perform post-simulation debugging using
the Unified Debug solution:

• Specify the VCS_HOME environment variable to the VCS installation path.
For example:
%> setenv VCS_HOME <VCS Install Path>

• Generate the Verdi KDB using Unified Compile. For more information, see
Unified Compile Front End.

• Specify the -debug_access+<option> compile-time option on the
VCS command line. This option automatically picks up the Novas tab file
and the Novas PLI file and there is no need to pass these files explicitly
during compilation. For example,
// Add -debug_access[+<option>] in the VCS two-step flow
% vcs -kdb -debug_access+all <source files>

For more information on this option, see the VCS documentation.

NOTE: To enable the complete set of debug capabilities, specify the
-debug_access+all option.

• Enable FSDB file dumping using the dumping tasks present in the source
file or at runtime using fsdbDumpvars from the UCLI command line.

Interactive Simulation Debug Flow
When executing the simv simulator executable, perform one of the following
steps to invoke Verdi within the interactive simulation debug mode:

• Add the -gui/-verdi/-gui=verdi options to specify Verdi as the
debug tool. For example:
// invoke Verdi
%> simv <simv_options> -verdi [-verdi_opts “<verdi_options>”]
%> simv <simv_options> –gui=verdi [-verdi_opts
“<verdi_options>”]

• Set the SNPS_SIM_DEFAULT_GUI environment variable to verdi to
specify Verdi as the debug tool. For example:
// invoke Verdi
%> setenv SNPS_SIM_DEFAULT_GUI verdi

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 454Feedback

%> simv <simv_options> –gui [-verdi_opts “<verdi_options>”]

Key Points to Note
• Use the -verdi_opts options to specify other Verdi-specific options.

• The UVM Interactive Debug in Verdi is enabled by default while using the
Unified Debug solution.

• If the design includes SystemC and the default.ridb is not available in
the simv.daidir directory, Verdi generates it automatically.

Post-Simulation Debug Flow
To automatically load the KDB compiled by Unified Compile, use the following
Verdi command-line options:

• -simflow

Enables Verdi and its utilities to use the library mapping from the
synopsys_sim.setup file and import a design from the KDB library
paths.

• -simBin <simv_path>

Specifies the path of the simv executable. This ensures that VCS and Verdi
have the same data from the synopsys_sim.setup file.

For example:

%> verdi –simflow –simBin [<simv_path>]

//import the FSDB file into Verdi
%> verdi –simflow –simBin [<simv_path>] –ssf novas.fsdb

After specifying the path of simv, you can also directly start the Verdi
Interactive Simulation Debug mode by using the Tools -> Run Simulation
menu command in the Verdi nTrace.

If the design contains SystemC and the default.ridb file exists in the
simv.daidir directory, the default.ridb file is also loaded into the
KDB for SystemC debugging.

NOTE:
* When the -simflow and -simBin options are used together, all
other options related to importing KDB are ignored.
* If you are trying to perform the post-simulation debug from a
directory different than the compilation directory, you must specify the
absolute physical path mapping in the synopsys_sim.setup file.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

455 Verdi User Guide and Tutorial Feedback

• -simdir <path>

Specifies the path of the library directory when you want to invoke Verdi
from a working directory that is different from the VCS working directory.
For more information, see Unified Compile Front End.

Limitations
The following is the limitation when performing power debug with UPF:

• The UPF file needs to be manually imported into Verdi both for Interactive
and Post-simulation debug flows:

• In Interactive simulation debug flow, add the -upf <UPF file>
option to import your UPF file.

For example:

%> vlogan -kdb <compile_options> <source files>
%> vcs -kdb -upf <UPF file>
%> simv -gui -upf <UPF file>

• In the Post-simulation debug flow, add the -upf <UPF file>
option to import your UPF file.

For example:

%> vlogan -kdb <compile_options> <source files>
%> vcs -kdb -upf <UPF file>
%> simv
%> verdi –ssf novas.fsdb –simflow –simBin <simv_path/simv> -upf
<UPF file>

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 456Feedback

UCLI Dump Command for FSDB Dumping
This section consists of the following subsections:

• Introduction

• Use Model

• Enhanced and New UCLI Dump Options

• Limitation

Introduction
The UCLI dump command is enhanced to dump the Fast Signal Database
(FSDB) file in addition to the VPD and EVCD file dumping.

Now, you can use the UCLI dump command to dump the FSDB file by default,
instead of calling the FSDB system tasks or using FSDB commands on the UCLI
command prompt.

You can also perform the following operations using the dump command:

• Simultaneously open single VPD, EVCD, and FSDB dump files and
manage them individually.

• Simultaneously open multiple FSDB dump files and manage them
individually.

Use Model
The following steps describe the use model:

1. The default dump type of VCS is VPD. You can use the following
environment variable to set the default GUI as Verdi and the default dump
type as FSDB
% setenv SNPS_SIM_DEFAULT_GUI verdi

2. Set VERDI_HOME as provided in the following command line:
% setenv VERDI_HOME <novas_path>

3. Compile your designs with the -debug_access+cbk option, as
provided in the following command line:
% vcs -debug_access+cbk <file_name>

OR

Compile your designs with a debug option (that is, -debug, -debug_pp,
or -debug_all), as provided in the following command line:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

457 Verdi User Guide and Tutorial Feedback

% vcs debug_option -p novas.tab pli.a <file_name>

NOTE: If you use -debug, -debug_pp, and -debug_all options, you
must specify novas.tab and pli.a files in the vcs command line.
The -debug_access+cbk option automatically sets the
novas.tab and pli.a files.

Key Points to Note
• If a single dump file is open, it is not required to specify the -fid

argument with the dump commands that follow the dump -file
command. If multiple dump files are open, you must specify the -fid
argument with the dump commands that follow the second dump
-file command.

• During simulation, if the number of open dump files return to one, you
can exclude the -fid argument. VCS issues an error message, if a
dump command is specified without the -fid argument when multiple
dump files are open

Enhanced and New UCLI Dump Options
Several UCLI dump options are enhanced and new added for dumping FSDB
file. For details, see the VCS documentation.

Limitation
For details, see the VCS documentation.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 458Feedback

Optimized Performance of Gate-Level Designs Using
Native FSDB Gate

This section consists of the following subsections:

• Introduction

• Prerequisites

• Using the FSDB Gate Feature

• Limitations

Introduction
Verdi provides the Fast Signal Database (FSDB)-Gate feature for gate-level
designs without Standard Delay Format (SDF) information. You can invoke the
FSDB-Gate feature using VCS, which supports optimized FSDB gate-level
dumping.

To enable this feature, use the VCS +fsdb+gate runtime option. It directs
VCS to analyze essential signals and the netlist information including the
signature, function table, and partition mapping, and uses the FSDB Dumper to
record this information in an FSDB file. Applications, such as Waveform Viewer
and FSDB Reader, retrieve the mapping data stored in the FSDB file. The
retrieved data is further used by the VCS computation engine to generate the
complete signal data during debugging.

Additionally, if you enable the VCS force capability along with the -debug,
-debug_all, or -debug_access+f+fwn compilation options, the VCS
dynamic de-aliasing capability is also enabled while dumping forced signals into
the FSDB file. The FSDB Reader then interprets the event and generates the
related waveform in Verdi.

The FSDB Gate and dynamic de-aliasing acceleration features reduce the FSDB
file dumping size and optimize the VCS simulation time for specific coding
styles and forced signal flows.

Prerequisites
These features are available starting with the following versions:

• VCS simulator 2014.12

• Verdi 2014.12

• FSDB Reader 5.2 (for user of FSDB reader API)

• If the API libraries of the FSDB Reader are used to read the FSDB file with
new format, a Verdi license is required.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

459 Verdi User Guide and Tutorial Feedback

Using the FSDB Gate Feature
Use the +fsdb+gate runtime option in the VCS simulation command line to
enable these features.

For example,

%> ./simv +fsdb+gate

Alternatively, set the following environment variable before starting the
simulation:

%> setenv FSDB_GATE 1

Key Points to Note
• After simulation, a new format of the FSDB file is generated.

• FSDB cannot be read by previous Verdi version, for example 2014.03.

• Expect to see a higher simulation speed in the SystemVerilog
Gate-Level design without SDF.

• FSDB reading performance (CPU or memory) when using Verdi debug
might be impacted.

Limitations
The following are the limitations for the FSDB-Gate feature:

• The +fsdb+gate option is disabled with a warning message, if you
add any of the following FSDB Dumper options in the simulation
command line or if you specify them using the setenv command:

- +fsdb+glitch=<num> (its corresponding environment variable is
NOVAS_FSDB_ENV_MAX_GLITCH_NUM or FSDB_GLITCH): If the
<num> argument is not equal to 1, the +fsdb+gate option is
disabled.

- +fsdb+dumpon_glitch+time and
+fsdb+dumpoff_glitch+time

- +fsdb+region (its corresponding environment variable is
FSDB_REGION)

- +fsdb+sequential (its corresponding environment variable is
NOVAS_FSDB_ENV_DUMP_SEQ_NUM)

- +fsdb+strength=on (its corresponding environment variable is
NOVAS_FSDB_STRENGTH)

- +fsdb+esdb (its corresponding environment variable is
FSDB_ESDB)

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Native Integration of Verdi and VCS

 Verdi User Guide and Tutorial 460Feedback

• If the +fsdb+gate option is enabled, the +strength option in
dumping tasks is ignored with a warning message.

• The FSDB Gate acceleration does not support VCS MVSIM Native
flow to have the optimized performance.

• The FSDB utilities require many computations. A performance
slowdown is expected when using the FSDB utilities.

• Siloti Data Expansion does not work with FSDB-GATE. The following
message is displayed when a Data Expansion setup is applied on the
FSDB-GATE FSDB:

Figure: Warning Message Displayed -Siloti Data Expansion and FSDBGATE

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Unified Transaction Debug- Verdi and Protocol Analyzer Integration

461 Verdi User Guide and Tutorial Feedback

Unified Transaction Debug- Verdi and
Protocol Analyzer Integration

This section consists of the following subsections:

• Introduction

• Use Model

Introduction
Protocol Analyzer and Verdi are now integrated for VIP to improve the
productivity in protocol, transaction, and signal-level debugging. With this
integration, you can directly invoke Protocol Analyzer from Verdi and the
protocol-related information is automatically loaded into Protocol Analyzer.
After Protocol Analyzer is launched, it gets synchronized with Verdi
automatically. You can also directly invoke Verdi with the loaded FSDB file from
Protocol Analyzer. This invoking mechanism reduces the time consumed in
setting different configurations for Verdi and Protocol Analyzer, and in
comparing the corresponding objects at different levels. This also enables more
efficient protocol-level analysis and signal-level debugging of issues, and
increases the productivity of the debug process.

Additionally, transaction-based FSDB can be directly generated or converted
from the result of VIP simulation and the FSDB files can be used in both Protocol
Analyzer and Verdi.

The transaction debug capability offers the following features:

• Integrating Verdi and the Protocol Analyzer GUI

• Generating Transaction-Level FSDB File for VIP

• Reading Transaction-Based FSDB in Protocol Analyzer

• Loading Protocol Extension Files into Verdi

Use Model
For the details about the features, see the New Transaction Debug Platform in
Verdi application note.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Unified UVM Library

 Verdi User Guide and Tutorial 462Feedback

Unified UVM Library
This section consists of the following subsections:

• Introduction

• Use Model

Introduction
The unified UVM library is now provided to integrate the instrumented UVM
libraries of VCS and Verdi. With the introduction of the unified UVM library,
VCS and Verdi transaction recorder and message catcher now coexist and are
compiled together. You can directly use the unified UVM library with the
Verdi-provided recording mechanism during simulation, and for debugging with
Verdi. Thus, accelerating the overall verification cycle. The unified UVM library
also improves the debug productivity while debugging UVM-based
environments with VCS and Verdi, as both the tools use the same UVM library.
This eliminates the disparity between simulation and debug libraries.

Single compilation, UUM and UVM-VMM interoperability flows are supported
in the unified UVM library. The unified UVM library can also be qualified and
validated using Synopsys VIPs.

Use Model
For the details about its usage, see the New Transaction Debug Platform in Verdi
application note.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

463 Verdi User Guide and Tutorial Feedback

Scope-Based Peak Analysis
The scope-based peak analysis is now provided to analyze which time has the
most transitions (peak analysis) based on the scope for the design and FSDB file.
The report of the analysis is displayed in the scope-based table view. You can also
check the result in the waveform and in a Comma Separated Values (CSV)
format. After checking the report, you can further generate the What-if
configuration files to perform advanced power estimation based on the checking
result.

The scope-based peak analysis capability offers the following features:

• Viewing reports in the scope-based table view

• Generating waveform of certain scopes

• Saving and restoring report as an XML file

• Dumping report in the Comma Separated Values (CSV) format

• Exporting the What-if configuration file

NOTE:
* Only a trigger at the top scope of the same net is counted.
* The following two triggered types are not counted as a trigger:
 - A value changes to X
 - X changes to a value

This section consists of the following subsections:

• Use Model

• Generating Waveform With Report Entry

• Exporting the What-if Configuration File

Use Model
To enable this feature, specify the following environment variable before starting
the Verdi platform to enable this feature:

%> setenv TFV_SCOPE_PEAK_ANALYSIS 1

After loading your design and the FSDB file, use the Tools -> Switching
Analysis -> New Query command to invoke the Switching Analysis form.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

 Verdi User Guide and Tutorial 464Feedback

Figure: Switching Analysis Form

Enable the following options to configure the scope-based peak analysis for
power estimation:

• Include Instances under the Hierarchy

Includes sub-scopes of the specified scope to the analysis. If this option is
not enabled, the analysis only includes the selected scope.

• Time Grouping for the Peak Activity Report

Groups time in the report based on the time window size and sliding delta
specified respectively in the Time Window Size and With Sliding Delta
fields. It is strongly recommended to enable this option and specify the time
window size and sliding delta.

• Report Type: Scope Based Peak Activity Report

Enables to generate the scope-based peak activity report.

You can also generate the report with the following options:

• Output to File

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

465 Verdi User Guide and Tutorial Feedback

Generates the output file with the specified file type (based on the enabled
Save as XML File or Save as CSV File toggle options) for the report. The
output file is generated while the analysis is completed and the report is
ready.

• Save as XML File

When the file is saved as an XML format, the XML file can be loaded in the
Switching Analysis Report form using the File -> Load from XML file
command.

• Save as CSV File

When the file is saved as a CSV format, the CSV file is readable and is used
in the power estimation flow.

After completing the configurations, click the OK button in the Switching
Analysis form and click the Yes button in the Question dialog to open the
Behavior Analysis form.

Click the OK button to perform the behavior analysis and the scope-based peak
analysis.

NOTE: If the behavior analysis is performed in the current working directory,
the dialog box is not displayed.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

 Verdi User Guide and Tutorial 466Feedback

The analysis report is shown in the invoked Switching Analysis Report frame.

You can see the transition counts and accumulative counts for the module in the
Module, Transition Count, and Accumulative Count columns accordingly.

The time windows, for example, 0~99, 100~199, 200~299, are displayed based
on the values specified in the Time Window Size and With Sliding Delta fields
of the Switching Analysis form. You can also change them in the Switching
Analysis Report frame.

You can enter a scope name in the Scope filter and click the Filter button to select
the scope..

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

467 Verdi User Guide and Tutorial Feedback

Generating Waveform With Report Entry
You can select a report entry and use the Add Selections to Waveform
right-click command or the Tools -> Add Selections to Waveform menu
command to add the selected entry into the nWave frame.

The selected entry is added in the nWave frame as a computed signal.

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

 Verdi User Guide and Tutorial 468Feedback

Exporting the What-if Configuration File
After checking the analysis report, you may want to perform the What-if
correlation flow for power estimation with the specified scope and time duration.
You can use the File -> Export What-if Configuration File command to
generate the What-if configuration file and its related scripts that are needed in
the What-if flow. The generated configuration file and script files make it easy
for you to complete the configurations during the What-if flow.

To generate the configuration file and script files, perform the following steps:

1. In the Switching Analysis Report frame, use the
File -> Export What-if Configuration File command to invoke the Export
What-if Configuration File form.

2. Specify the FSDB file, scope, and time period in the corresponding fields.

3. Click the OK button.

 The following configuration file and script files are generated accordingly:

• wi_config_file

The configuration file for the What-if flow.

• vcs_wi_compile.rc

The VCS compilation script used in the What-if flow.

• vcs_wi_run.rc

The VCS simulation script used in the What-if flow.

• ius_wi_compile.rc

The IUS compilation script used in the What-if flow

• ius_wi_run.rc

The IUS simulation script used in the What-if flow

The following is the example of the configuration file and VCS script files:

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

Integration Features: Scope-Based Peak Analysis

469 Verdi User Guide and Tutorial Feedback

//wi_config_file

set FSDB = ./srsn.fsdb

set Scope = tb

set Map = <Required>

set Begin_Time = 200

set End_Time = 249

set Time_Unit = 1s

set Simulation_Compile_Script= ./vcs_wi_compile.rc

set Simulation_Run_Script= ./vcs_wi_run.rc

#For IUS user======================================

#set Simulation_Compile_Script= ./ius_wi_compile.rc

#set Simulation_Run_Script= ./ius_wi_run.rc

//vcs_wi_compile.rc

setenv VCS_HOME <cad tool path>/Synopsys/VCS_vE-2011.03-3

setenv VERDI_HOME <Verdi_Install_path>

setenv PATH ${VCS_HOME}/tools/bin:${VERDI_HOME}/bin:${PATH}

setenv tab ${VERDI_HOME}/share/PLI/VCS/LINUX64/novas.tab

setenv pli ${VERDI_HOME}/share/PLI/VCS/LINUX64/pli.a

setenv LD_LIBRARY_PATH ${VERDI_HOME}/share/PLI/VCS/
LINUX64:${VERDI_HOME}/share/PLI/lib/LINUX64

alias vcs "\vcs -P $tab $pli +vcsd +memcbk +cli+4 -full64 -debug"

vcs -sverilog -f wi_run.f

//vcs_wi_run.rc

setenv VCS_HOME <cad tool path>/Synopsys/VCS_vE-2011.03-3

setenv VCSI_HOME $VCS_HOME

setenv LM_LICENSE_FILE 27005@sps403:$LM_LICENSE_FILE

setenv VERDI_HOME <Verdi_install_path>

setenv tab ${VERDI_HOME}/pliProd/PLI/VCS/LINUXAMD64/novas.tab

setenv pli ${VERDI_HOME}/pliProd/PLI/VCS/LINUXAMD64/pli.a

setenv LD_LIBRARY_PATH ${VERDI_HOME}/pliProd/PLI/VCS/
LINUXAMD64:${VERDI_HOME}/pliProd/PLI/lib/LINUXAMD64

alias vcs "\vcs -P $tab $pli +vcsd +memcbk +cli+4 -full64 -debug"

./simv

mailto:support_center@synopsys.com?subject=Feedback on [Verdi][Documentation][Verdi User Guide and Tutorial]&body=Type your comments here for Chapter 'Integration Features'

	Contents
	About This Book
	Purpose
	Audience
	Book Organization
	Conventions Used in This Book
	Related Publications

	Introduction
	Overview
	Technology Overview
	Compilers, Interfaces and Interoperability
	Databases
	Analysis Engines
	Graphical User Interface
	Visualization

	User Interface
	Overview
	Common User Interface Features
	Frame Banner
	Pull-Down Menu Commands
	Mnemonic Keys
	Bind Keys
	Toolbars
	Mouse Operation
	Right Mouse Button Menus
	Undock/Dock
	On-line Help

	nTrace User Interface
	nTrace Design Browser Pane
	nTrace Source Code Pane
	Source Code Area
	Indicator Area

	nTrace Message Pane
	nTrace Toolbar Icons

	nWave User Interface
	nWave Signal Pane
	Signal Name
	Signal Cursor
	Group Name

	nWave Value Pane
	nWave Waveform Pane
	Cursor
	Marker
	Zoom-Scale Ruler
	Full-Scale Ruler

	nWave Toolbar Icons
	Get Signals
	nWave Mouse Operations

	nSchema User Interface
	nSchema Toolbar Icons
	nSchema Mouse Operations

	nState User Interface
	nState Toolbar Icons
	nState Mouse Operations

	Flow View User Interface
	Flow View Toolbar Icons
	Flow View Mouse Operations

	Transaction/Message User Interface
	Detailed Transaction/Message View in nWave
	Transaction/Message Properties
	Transaction/Message Attributes
	Analyzing Transactions/Messages

	nCompare User Interface
	Comparing Different Simulation Runs
	Rule File
	Compare Waveforms and View Errors

	nCompare Mouse Operations

	nECO User Interface
	nAnalyzer User Interface

	Before You Begin
	Installation and Setup
	Demo Details

	Launching Techniques
	Dumping Elaboration Database
	Overview
	Use Model
	Interactive Debug Flow
	Generating Verdi Elaboration Database Using VCS
	Loading Verdi Elaboration Database into Verdi

	Post-Simulation Debug Flow
	Generating Verdi Elaboration Database with Unified Compiler Front End
	Generating Elaboration Database Using VCS Elaboration Command
	Loading Verdi Elaboration Database into Verdi

	Reference Source Files on the Command Line
	Compile Source Code into a Library
	Reference Design and FSDB on the Command Line
	Perform Behavior Analysis on the Command Line
	Replay a File
	Start Verdi Without Specifying Any Source Files
	Loading when Design and FSDB Hierarchies do not Match

	User Interface Tutorial
	Overview
	Start Verdi Platform
	Using the Welcome Page
	Saving and Restoring a Session
	Changing the Default Frame Location
	Maximizing the Display
	Modifying the Menu/Toolbar
	Searching for a Command
	Customizing Bind Keys
	Customizing Toolbar Icons

	nTrace Tutorial
	Overview
	Traverse the Design Hierarchy in nTrace
	Access a Block’s Source Code
	Find Scope

	Trace Drivers and Loads
	Find String
	Trace Driver
	Add Bookmarks
	Trace Load
	Trace Connectivity
	Save Trace Result and Reset History

	Edit Source Code
	Use Active Annotation
	Trace the Active Driver
	Use Verdi Executable to Import Design from UFE

	nSchema Tutorial
	Overview
	Start nSchema
	Manipulate the Schematic View
	Change the Schematic View Among Instances
	Enable Viewing Objects
	Find an Instance or a Signal in a Schematic
	Change the Color of the Selected Signal

	Trace Signals
	Find the Drivers of a Signal
	Find the Load of a Signal
	Find the Connectivity of a Signal and Generate a New Schematic from Trace Results

	Show RTL Block Diagram in a More Meaningful Way
	Generate Partial Schematics
	Hierarchical
	Flattened Window
	Fan-in and Fan-out
	Trace Between Two Points

	Use Active Annotation to Show Signal Values
	Change the Color or the Line Style for Annotations

	nWave Tutorial
	Start nWave and Open a Simulation Result File
	Add Signals
	Add Signals from Other Windows
	Use Get Signals to Add Signals
	Search for Signals to Add
	Creating a Parent Group With Sub-Groups

	Manipulate the Waveform View
	Set the Cursor/Marker Positions
	Zoom Cursor With Three Clicks
	Fast Zoom on the Full Scale Ruler
	Pan the Waveform
	Use Bind Key Commands

	Turn On/Off Signal Grids
	Add Marker Labels
	Change the Display Sequence of Signals
	Search for Signal Value Transitions
	Add Comments
	Compress Time Ranges
	Split the Waveform View

	Change Signal/Group Attributes
	Search for a Group
	Change the Group Name
	Modify the Display Format in the Value Window
	Display Hierarchical Signal Names
	Add Alias to Display Bus Values
	Change the Spacing and Signal Height
	Change Signal Color/Pattern

	Create New Signals/Buses from Existing Signals
	Logical Operations
	Bus Creation
	Expand or Collapse the Bus

	Save and Restore Signals
	Save the Displayed Signals
	Restore Previously Saved Signals
	Create a Second Waveform Window and Restore Other Signals

	Calculate Toggle Coverage
	Define Events and Complex Events
	Create a Single Event
	Save and Reload Events
	Create a Complex Event
	Create a Complex Event with a Timer
	Example 1
	Example 2
	Example 3

	Create Complex Event with a Counter
	Example 1
	Example 2

	nState Tutorial
	Overview
	Start nState
	Manipulate the State Diagram View
	Enable Viewing Objects
	Find the Start and End States of a Transition
	Create a Partial Finite State Machine Frame

	State Animation
	State Machine Analysis

	Smart Log Tutorial
	Overview
	Invoking Smart Log
	Auto Select Rules
	Checking Mapping Rule File
	Example

	Predicting Mapping Rule
	Auto Select Rule Mode

	Displaying ANSI Colors in SmartLog
	Opening a Log File Using Verdi Commands
	Examples

	Navigating Smart Log
	Shortcut Keys for Smart Log
	Wrapped Text

	Browse Views
	File View
	Structure View
	User Specified Columns
	Rearranging the Columns
	Restoring Previous Column Display Settings

	Specifying Time Unit in UVM/OVM Log File
	Specifying the Log Time Unit
	Specifying the Display Time Unit

	Using Hyperlink Rule File
	Configuring a New Partitioning Rule
	Example to Demonstrate Creating a Customized Partition Rule File
	Creating Log Time Unit Rule
	Backward Compatibility for Customized Partitioning Rule File Created Using Tcl Commands

	Applying Partitioning Rule
	Opening Multiple Smart Log Windows and Synchronizing with nWave
	Locating Objects
	Locating a Specified Line Number
	Locating a Specified Time Point
	Setting the Scroll Offset
	Locating the Specified Line Number With Scroll Offset
	Locating the Specified Time Point With Scroll Offset

	Synchronizing the Cursor in the nWave Pane
	Locating the Previous/Next Point

	Searching, Filtering, and Reloading the Log File
	Setting the Message Filter
	Setting the Time Filter
	Searching
	Example Use Cases

	Displaying the Search Result Section
	Reloading the Log File

	Debugging in Verdi Frames
	Using Smart Log in Interactive Debug
	Invoking Interactive Debug
	Command Entry
	Scroll Bar Behavior
	Applying User Defined Partitioning Rules
	Example

	Known Issues and Limitations

	OneSearch
	Overview
	GUI Use Model
	Search Domains
	Search Modes
	Overview Mode
	Single Domain Mode

	Support for Multiple Line Results
	Overview Mode
	Single-Domain Mode

	Support for Synonyms
	Example Use Case
	Specifying an Additional Synonym Database
	Limitations

	Command Line Use Model
	Usage Examples

	Temporal Flow View Tutorial
	Overview
	Behavior Analysis Engine
	Automatic Cause and Effect Tracing
	Trace to Root Cause Automatically
	From nTrace
	From nWave

	Open Temporal Flow View
	Setup Temporal Flow View
	Create Temporal Flow View
	Trace with Cycle-Based Method
	Trace With Transition-Based Method

	Temporal Flow View Features to Trace Automatically
	Trace This Value
	Show Marker for Control with Transition

	Correlate Other Panes
	Display Source Code Automatically
	Show Traced Signals in nWave

	Show Fan-in Signals in nSchema
	Temporal Flow View Application
	Trace Unknown Values
	Trace X in Verdi
	Trace X Setting
	Trace Triggering X Results

	Summary of Steps to Trace Unknown Values
	Debug Memory
	Locate Last Write on Specific Address Location
	Display Calculated Memory Content
	Dump Memory Content to FSDB

	Open a Temporal Flow View
	Manipulate the View
	Display More Information

	Show Active Statements
	Display Source Code
	Add Signals from the Temporal Flow View to nWave
	Compact Temporal Flow View
	Showing Statement Flow in an nSchema Frame
	Temporal Register View
	Trace the Root-cause of glitches in the Design

	Debug a Design with Simulation Results Tutorial
	Find the Active Driver
	Generate Fan-in
	Debug Memory Content

	nCompare Tutorial
	Overview
	Start nCompare and Compare Waveforms
	View Errors
	Sorted by Time
	Sorted by Hierarchy
	In the Waveform

	Error Report File
	Save the Current Error File
	Load the Previous Error File

	Application Tutorials
	Searching Backward for Value Causes
	Open a Temporal Flow View
	Show Active Statements
	Trace This Value Automatically
	Trace Another Path
	Show Signals on nWave

	Debug Memories
	Debug Synthesizeable Memory Models
	Locate the Cause of a Value on a Signal
	Locate the Last Write of a Specific Address Location
	Show Memory Contents
	Search Values in the nMemory Frame
	Synchronize the nMemory Frame with nWave
	Change Address and Time in the nMemory Frame
	Customize the nMemory Window
	Display Calculated Memory Contents in nWave

	Debug Non-synthesizeable Memory Models
	1-port Static RAM
	Create a Memory Model Definition for the 1-port Static RAM
	Trace the Memory Contents
	Display the Memory Contents in nWave

	Multiple-port Static RAM
	Create a Memory Model Definition for the Multiple-port Static RAM

	Debug PLI Memory Models
	Create a PLI Memory Definition File
	Load the PLI Memory Definition File
	Trace the Content of the PLI Memory

	Debug Gate vs. RTL Simulation Mismatch
	Locate the Signal to Compare
	Load Simulation Results and Display Waveforms
	Compare the Simulation Results
	Isolate the Problem

	Behavior Trace for Root Cause of Simulation Mismatches
	Locate the Simulation Mismatch
	Behavior Trace for the Root Cause of Mismatch

	Debug Unknown (X) Values
	Locate the Root Cause of the “X” Value on ZFout
	Visualize the Active Paths in the Temporal Flow View

	Debug Forced Signals
	Enable Force Debug
	Debug in Source Code
	Trace Signal
	Active Annotation

	Debug in the Waveform View
	Icons in the Waveform Pane
	Show Tips
	Search by Force/Deposit/Release

	Debug in the Schematic View
	Debug in the Temporal Flow View
	Practice

	Debug with SystemVerilog
	Import the Design
	Load Files Directly
	Use Compiled Library - Optional

	Visualize SystemVerilog Source Code
	Design Browser Frame
	Source Code
	Schematic

	View SystemVerilog Simulation Results
	Waveform
	Source Code
	Generate Constructs

	Debug with SystemVerilog Assertions (SVA)
	Import the Design
	Load Files Directly
	Use Compiled Library - Optional

	Visualize SVA Source Code
	Design Browser and Source Code

	View SVA Simulation Results
	Statistics Frame
	Waveform
	Source Code
	Generate Constructs

	Analyze SVA Assertions
	Evaluate SVA Assertions

	SVA Evaluation of Runtime Assertions
	Import Designs and Assertions
	Evaluate with Temporary Assertions
	Save Temporary Assertions
	Load Temporary Assertions
	Note the following:

	Debug with Transactions
	What is a Transaction?
	Generating Transaction Data
	Provided FSDB Dumpers
	Transaction IP Partners
	SVA Extraction
	FSDB Writer API and the Open Transaction Interface (OTI)
	SVTB Automatic Logging of OVM/UVM Component and Port Transactions

	View Transactions in nWave
	View Transactions in Transaction Table View Window
	Add/Remove Transaction Streams
	Merge Transaction Streams
	Manipulate the Stream View
	Set the Cursor/Marker
	Change the Column (Attribute) Display
	Filter the Transactions

	Generate Statistics

	Appendix A: Supported Waveform Formats
	Overview
	Fast Fourier Transformers (FFT)
	Getting Data from Analog Signal
	Data Manipulation in FFT Window

	EVCD
	Analog Waveform Example
	View the Analog Waveform
	Manipulate the Analog Waveform
	Change the Signal Height
	Display the Analog Ruler

	View Different Simulation Results in the Same Window
	Overlap Analog Signals from Different Simulation Results

	Appendix B: Supported FSM Coding Styles
	Overview
	One-Process (Always)
	Example 1 - Verilog (one_process.v)
	Example 2 - VHDL (one_process.vhd)

	Two-Process (Always)
	Example 1 - Verilog (two_process.v)
	Example 2 - VHDL (two_process.vhd)

	One-Hot Encoding
	Shift Arithmetic Operation
	Case-Statement vs. If-Statement
	Example 1
	Example 2

	Gate-Like FSM
	Next_State = signal
	Next_State = Current_State + N
	VHDL Record Type

	Appendix C: Enhanced RTL Extraction
	Overview
	Instance Array
	For Loop
	Aggregate
	Partial Bits Assignment
	Displaying Pure Memory Blocks

	Appendix D: Additional Transaction Example
	Extracting Transactions Using SVA
	SVA Code
	Recommended Coding Style
	Unsupported Coding Style
	Code Example

	Integration Features
	Native Integration of Verdi and VCS
	Unified Compile Front End
	Introduction
	Prerequisite
	Generating Verdi KDB With Unified Compile Front End
	Reading Compiled Design With Verdi
	Notes
	Limitations

	Interactive and Post Simulation Debug Flow
	Introduction
	Prerequisites
	Interactive Simulation Debug Flow
	Key Points to Note
	Post-Simulation Debug Flow
	Limitations

	UCLI Dump Command for FSDB Dumping
	Introduction
	Use Model
	Key Points to Note

	Enhanced and New UCLI Dump Options
	Limitation

	Optimized Performance of Gate-Level Designs Using Native FSDB Gate
	Introduction
	Prerequisites
	Using the FSDB Gate Feature
	Key Points to Note

	Limitations

	Unified Transaction Debug- Verdi and Protocol Analyzer Integration
	Introduction
	Use Model

	Unified UVM Library
	Introduction
	Use Model

	Scope-Based Peak Analysis
	Use Model
	Generating Waveform With Report Entry
	Exporting the What-if Configuration File

