
Power Compiler™ User Guide

Version U-2022.12-SP3, April 2023

Copyright and Proprietary Information Notice
© 2023 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Power Compiler™ User Guide
U-2022.12-SP3

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .17

Related Products, Publications, and Trademarks .17

Conventions .18

Customer Support . 19

Part 1: Power Compiler Concepts

1. Introduction to the Power Compiler Tool . 21

Power Compiler Methodology . 21

Power Library Models . 22

Power Analysis . 23

Power Optimization . 24

Getting Started With the Power Compiler Tool .24
Library Requirements . 25
Command-Line Interface . 25
Graphical User Interface .26
License Requirements . 26
Reading and Writing Designs .27

2. Power Compiler Design Flow .28

Power in the Design Cycle . 28

Power Optimization and Analysis Flow .29
Simulation . 31
Enable Power Optimization . 31
Synthesis and Power Optimization .31
Power Analysis and Reporting . 31

3. Power Modeling and Calculations .32

Power Types . 32
Static Power . 32

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Dynamic Power .32
Switching Power .33
Internal Power . 33

Calculating Power . 34
Leakage Power Calculation . 34

Multithreshold Voltage Libraries . 36
Internal Power Calculation . 36

NLDM Models .37
State and Path Dependency . 39
Rise and Fall Power .40
Switching Power Calculation . 40

Dynamic Power Calculation . 40
Dynamic Power Unit Derivation . 41

Power Calculation for Multirail Cells .42

Using CCS Power Libraries . 43

Voltage Scaling . 44
Script Examples for Voltage Scaling . 44

Part 2: Power Analysis

4. Generating SAIF Files .47

About Switching Activity . 47

Introduction to SAIF Files . 48

Generating SAIF Files .49
Generating SAIF Files From Simulation .49

Generating SAIF Files From SystemVerilog or Verilog Simulations50
Generating SAIF Files From Gate-Level Simulation 51
VCS MX Toggle Commands . 52
Generating SAIF Files From VHDL Simulation . 58

Generating SAIF Files From VCD Files . 59
Converting a VCD File to a SAIF File . 60

Generating SAIF Files From FSDB Output Files . 60

Verilog Switching Activity Examples . 61
RTL Example . 61

Verilog Design Description . 61
RTL Testbench . 62
RTL SAIF File .63

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Gate-Level Example . 65
Gate-Level Verilog Module .65
Verilog Testbench . 66
Gate-Level SAIF File . 67

VHDL Switching Activity Example .68
VHDL Design Description .68
RTL Testbench . 68
RTL SAIF File . 69

5. Annotating Switching Activity . 70

Types of Switching Activity to Annotate . 70

Annotating Switching Activity Using RTL SAIF Files . 71
Using the Name-Mapping Database . 71
Integrating the RTL Annotation With the PrimePower tool73

Annotating Switching Activity Using Gate-Level SAIF Files 74
Reading SAIF Files Using the read_saif Command .74
Reading SAIF Files Using the merge_saif Command . 75

Annotating Inferred Switching Activity .76

Annotating Switching Activity Using the set_switching_activity Command 77

Fully Versus Partially Annotating the Design . 79

Analyzing Switching Activity Annotation . 80
Using the report_saif Command to Report Switching Activity 81
Using the report_activity Command to Report Switching Activity81
Retrieving Switching Activity on a Pin or Net .82

Removing the Switching Activity Annotation .82

Design Objects Without Annotated Switching Activity . 83
Default Switching Activity Values . 83
Propagating the Switching Activity . 84
Deriving the State- and Path-Dependent Switching Activity84

6. Performing Power Analysis . 85

Overview . 85

Identifying Power and Accuracy . 86
Factors That Affect the Accuracy of Power Analysis . 87

Switching Activity Annotation . 87

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Delay Model . 87
Switching Activity Correlation .88
Overriding Library Cell Power Characterization .88

Performing Gate-Level Power Analysis . 89
Using the report_power Command .89
Using the report_power_calculation Command . 91

Analyzing Power With Partially Annotated Designs . 92

Power Correlation . 93
Performing Power Correlation . 93
Power Correlation Script .94

Analyzing the Design For Power Analysis . 94

Characterizing a Design for Power .95

Reporting the Power Attributes of Library Cells . 97

Using Power Derate Factors .97

Generating Power Reports . 98
Power Report Summary . 98
Net Power Report . 100
Cell Power Report . 101
Group Report . 102
Wire and Pin Switching Power Report . 103
Hierarchical Power Report . 103
Power Report for Block Abstractions . 104
Register Clock-Pin Internal Power Report . 105

Part 3: Power Reduction

7. Clock Gating . 109

Introduction to Clock Gating . 110

Using Clock-Gating Conditions . 112
Clock-Gating Conditions . 112

Enable Condition . 113
Setup Condition . 115

Enabling or Disabling Clock Gating on Design Objects 116

Inserting Clock Gates . 117
Using the compile_ultra -gate_clock Command .117

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Clock-Gate Insertion in Multivoltage Designs .117

Clock Gating Flows . 117
Inserting Clock Gates in the RTL Design .118
Inserting Clock Gates in Gate-Level Design . 119

Specifying Clock-Gate Latency . 120
The set_clock_latency Command .120
The set_clock_gate_latency Command . 121
Applying Clock-Gate Latency . 123
Resetting Clock-Gate Latency . 123
Comparison of the Clock-Gate Latency Specification Commands 123

Calculating the Clock Tree Delay From Clock-Gating Cell to Registers 124

Specifying Setup and Hold . 125
Predicting the Impact of Clock Tree Synthesis .127
Choosing a Value for Setup . 128
Choosing a Value for Hold . 129

Clock-Gating Styles .129
Default Clock-Gating Style . 130
Selecting Clock-Gating Styles . 132

Choosing Gating Logic .133
Choosing an Integrated Clock-Gating Cell .133
Choosing a Configuration for Discrete Gating Logic 135
Choosing a Simple Gating Cell by Name . 139
Choosing a Simple Gating Cell and Library by Name 139
Designating Simple Cells Exclusively for Clock Gating 140
Choosing a Specific Latch and Library . 141
Choosing a Latch-Free Style . 141
Improving Testability .142
Connecting the Test Ports Throughout the Hierarchy 147
Using Instance-Specific Clock-Gating Styles . 148

Modifying the Clock-Gating Structure . 150
Changing a Clock-Gated Register to Another Clock-Gating Cell 151
Removing Clock-Gating Cells From the Design .151
Rewiring Clock Gating After Retiming . 152

Integrated Clock-Gating Cells . 152
Integrated Clock-Gating Cell Attributes . 153
Pin Attributes .154
Timing Considerations . 155

Clock-Gating Naming Conventions . 156

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Example Script for Naming Style . 158
Example Script of Output Netlist . 158

Keeping Clock-Gating Information in a Structural Netlist . 159
Identifying and Preserving Clock-Gating Cells . 159

Identification of Clock-Gating Cells . 159
Explicit Identification of Clock-Gating Cells . 160
Preserving the Identified Clock-Gating Cells . 161
Identified Clock-Gating Cells and dont_touch . 163
Handling Clock-Gating Edge Conflicts .163

Comparison of Clock-Gate Identification Methods . 164
Usage Flow With the write_script Command .164
Usage Flow With the identify_clock_gating Command 166

Replacing Clock-Gating Cells . 166

Inserting Clock Gates With Safety Registers . 169

Clock-Gate Optimization Performed During Compilation . 171
Hierarchical Clock Gating . 171
Enhanced Register-Based Clock Gating . 172
Multistage Clock Gating . 174

Multistage Clock-Gating Flow . 175
Clock Gate Merging . 176
Placement-Aware Clock Gating in Design Compiler Graphical 179
Clock Gating Multibit Registers . 180

Performing Clock-Gating on DesignWare Components . 181

Reporting Clock Gates . 181
The report_clock_gating Command . 182

8. Self-Gating . 190

Self-Gating Concepts . 190

Self-Gating Flows . 193

Library Requirements for Self-Gating . 194

Inserting Self-Gates .195
Specifying Objects for Self-Gating . 195
Specifying Options for Self-Gating . 196

Querying and Reporting Self-Gates . 196

9. Power Optimization . 200

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Overview . 200

Gate-Level Power Optimization . 201
Leakage Power Optimization . 202
Dynamic Power Optimization . 202
High-Effort Power Optimization . 203

Enabling Power Optimization . 203
Leakage Optimization for Multicorner-Multimode Designs 204
Leakage Power Optimization Based on Threshold Voltage 204

Multiple Threshold Voltage Library Attributes . 204
The set_multi_vth_constraint Command . 205

Performing Power Optimization . 205
Settings for Power Optimization . 206
Power Optimization in the Physical Guidance Flow .206

Settings for Low-Power Placement . 206

10. Multivoltage Design Concepts . 208

Multivoltage and Multisupply Designs .208

Library Requirements for Multivoltage Designs . 209
Liberty PG Pin Syntax . 209
Level-Shifter Cells .210

PG Pin Configuration Support . 210
Support for NOR-Type Enable Level-Shifter Cells211

Isolation Cells . 211
Using Standard Cells as Isolation Cells .212
Single-Rail and Dual-Rail Isolation Cells . 212
NOR-Style Isolation Cells .213
Isolation Cells With Asynchronous Set or Reset Pins 213

Requirements of Level-Shifter and Isolation Cells . 215
Retention Register Cells .215

Multithreshold-CMOS Retention Registers . 215
Power-Switch Cells . 217
Always-On Logic Cells . 218

Power Domains . 218
Shut-Down Blocks .220

Marking Pass-Gate Library Pins . 220

Voltage Areas . 220

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

11. UPF Multivoltage Design Implementation . 222

Multivoltage Design Flow Using UPF . 223

Power Intent Concepts . 226
UPF Script Example . 229

Defining Power Intent With UPF Commands . 232
Name Spacing Rules for UPF Objects and Attributes 232
Defining the Power Intent in the GUI . 233
UPF Diagram View . 235

Setting the UPF Command Scope . 235

Creating Power Domains . 237
Power Domain Boundaries .239
Excluding Elements From Power Domains . 240
Representation of Power Domain in the UPF Diagram View 241

Scope . 242
Expanding and Collapsing Power Domains in the GUI 243

Viewing Hierarchical Cell and Power Domain Boundaries 244

Creating Atomic Power Domains . 245
Examples .246
Reporting Atomic Power Domains . 247
Hierarchical Flow Support for Atomic Power Domains247
Top-Down Hierarchical Flow .247
Bottom-Up Hierarchical Flow . 248

Creating Supply Ports . 252
Adding Port State Information to Supply Ports .254
Representation of Supply Ports in the UPF Diagram View 254

Creating Supply Nets . 255
Creating Custom Resolution Functions . 256
Specifying Primary Supply Nets for a Power Domain 256
Representing Supply Nets in the UPF Diagram View 257

Connecting Supply Nets . 258
Interpreting PG Connections From the RTL .259
Converting PG Information in the RTL to UPF .259
Preserving Assign Statements on PG Nets . 262

Specifying Supply Sets . 263
Creating Supply Sets . 264
Creating Supply Set Handles . 267

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Restricting Supply Sets Available to a Power Domain268

Refining Supply Sets .268
Associating Supply Sets . 270
Rules for Associating Supply Sets . 271
Refining Bias Supply Functions Automatically . 271

Example 1: No Bias Functions Defined . 272
Example 2: Implicit Supply Sets With Resolved Power and Ground 273
Example 3: Implicit Supply Sets With Unresolved Power and Ground274
Example 4: N-Well Only Support . 274

Defining the Power States for a Supply Set .275
Specifying Supply Expressions . 276
Specifying Logic Expressions . 280
Successive Refinement . 283
Correlated Grouping of Supply Voltage Triplets .284

Querying for Supply Sets . 285
Limitations . 285

Querying for Related Supply Sets . 285

Always-On Logic . 286
Attributes for Always-On Cells . 286
Always-On Optimization . 287
Always-On Optimization on Feedthrough Nets . 288
Always-On Optimization on Disjoint Voltage Area . 289
Always-On Tie Cells . 290

Basic Always-On Tie Cell Mapping . 290
Enhanced Constant Propagation . 291
Enhanced Always-On Tie Cell Mapping . 292

UPF Support for Custom Always-On Wrapper Cells . 292
leaf_cell_as_domain_boundary Design Attribute . 294
upf_control_signal_trace Port Attribute . 294
Example . 295

Fixing Multivoltage Violations . 296

Comparing Voltage Levels and Voltage Status .297

Specifying Level-Shifter Strategies . 298
Controlling Level-Shifter Locations . 300
Resolving Level Shifter Strategy Precedence . 303
Automatically Deriving Level Shifter Strategies for DFT Paths 303
Using Specific Library Cells With the Level-Shifter Strategy 304
Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets305
Representing Level-Shifter Strategies in the UPF Diagram View305

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Specifying Isolation Strategies . 308
Isolation Cells With Multiple Control Signals . 311
Using the set_isolation_control Command . 313
Rules for the Location Fanout Option . 314
Order of Precedence of Isolation Strategies . 315

Resolving Isolation Strategy Conflicts . 315
Automatically Deriving Isolation Strategies for DFT Paths315
Using Specific Library Cells With Isolation Strategies 316
Aligning Isolation Strategies to Constant Drivers . 317
Optimizing Isolation Cell Insertion on Constants . 320
Preventing Unnecessary Isolation Cell Insertion . 320
Isolation Cells and Heterogeneous Loads . 320

Insertion of Isolation Cells on Heterogeneous Fanout Paths 324
Isolation Handling on Control Signals . 325
Smart Derivation of -no_isolation Strategy .326
Macro Cells With Internal NOR Isolation Cells .328

Voltage Checking . 329
Representing Isolation Strategies in the UPF Diagram View 329

Merging and Cloning Multivoltage Cells . 331
Limitations . 332

Setting UPF Attributes on Ports and Hierarchical Cells . 332
Setting Attributes on Ports . 332
Setting Attributes on Macros . 334
Setting Design Attributes on Supply Nets and Logic Nets 336
Modeling Unconnected Pins on Macros .336
Specifying Analog Nets . 336
Setting Attributes on Hierarchical Cells . 337

Setting Terminal Boundaries . 339

Querying for UPF Design and Port Attributes .340

Assigning Supplies to Pad Ports . 342

Specifying Retention Strategies . 343
Specifying Elements to Include in the Retention Strategy 344
Resolving Retention Strategy Precedence .346
Using the Retention Supply as the Primary Supply . 347
Choosing Specific Library Cells With Retention Strategies 348
Zero-Pin Retention Support . 350
Inferring Complex Retention Cells . 350
Retention Strategy and Clock-Gating Cells . 352

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Representing Retention Strategies in the UPF Diagram View 352

Specifying Repeater Strategies .353
Specifying Supplies for Repeaters . 355

Deferring Element Definitions in Power Management Strategies 357

Matching Tool and IEEE LRM Defaults . 357

Creating Power Switches . 358
Representation of Power Switches in the UPF Diagram View 359

Power Models . 361
Configuring Power Compiler for Power Models . 361
Defining and Applying a Power Model . 362
Excluding Designs From Using Power Models . 362
Hard and Soft Macros . 362

Power State Tables . 363
Default Power States . 363
Power State Propagation . 364
Creating Power State Tables . 365

Hierarchical Power State Tables . 366
Creating Power State Groups in Hierarchies Having State Propagation
Enabled . 368

Example . 368
Bottom-Up Hierarchical Flow . 369
Top-Down Hierarchical Flow . 371

Reconciling Voltages in Power State Tables . 375
Reporting Power State Tables . 378
Visually Analyzing Power State Tables in the UPF Diagram View 379

Support for Well Bias . 381

Using a Non-Bias Block in a Bias-Enabled Design . 382

Skipping Bias Checks . 383

Inserting Power Management Cells . 383
Relaxing PVT Library Constraints for Power Management Cells 385

Reviewing the UPF Specifications . 385
Commands to Query and Edit Design Objects . 386
Reviewing the Power Intent Using the Design Vision GUI 387
Applying Power Intent Changes . 392

Examining and Debugging UPF Specifications . 392
The analyze_mv_feasibility Command . 393

Reporting Resolved Strategies . 393

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Reporting Cell Mapping Feasibility . 396
Generating HTML Cell Mapping Reports .400

The check_mv_design Command . 401
Multivoltage Design Violations in the GUI . 402
Generating Design Violation Reports .403
Examining Design Violations in the MV Advisor Violation Browser 405
Exploring the Violations . 407

The analyze_mv_design Command . 410
Analyzing Multivoltage Design Connections in the GUI411

Writing the Power Information .413
Preserving the Command Order in the UPF’ File . 414
Controlling the Line Width in the UPF’ File . 415

Writing and Reading Verilog Netlists With Power and Ground Information416
Power and Ground Supply Connection Syntax . 417
Supply Sets .418
Power Switches . 418
Reading Verilog Netlists With Power and Ground Supply Connections 419
Specifying Design Instances Using SystemVerilog Elements 419

The Golden UPF Flow . 420

Reporting Commands for the UPF Flow .422

UPF-Based Hierarchical Multivoltage Flow Methodology . 422
Hierarchical UPF Design Methodology .423

Block-Level Implementation . 423
Top-Level Implementation . 427
Assembling the Design . 428

Characterization of Supply Sets and Supply Nets . 428
Automatic Inference of Related Supply Nets . 429
Top-Level Design Integration . 432

Power Domain Merging . 432
Legacy Blocks .433

12. Library Setup for Power Optimization . 436

Basic Library Requirements for Multivoltage Designs . 436
Power and Ground Pin Syntax .436
Converting Libraries to PG Pin Library Format . 436

Using the FRAM View . 437
Using Tcl Commands . 437
Tcl Commands for Low-Power Library Specification 439

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Macro Cells With Fine-Grained Switches .439

Library Usage in Multicorner-Multimode Designs . 440
Link Libraries With Equal Nominal PVT Values . 440

Setting the dont_use Attribute on Library Cells . 442
Distinct PVT Requirements .442
Automatic Detection of Driving Cell Library . 444
Relating the Minimum Library to the Maximum Library 444
Unique Identification of Libraries Based on File Names445

Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells . . .446
Using the set_opcond_inference Command . 446

Deviating From the Inferred Operating Condition and Its Impact446

13. Power Optimization in Multicorner-Multimode Designs 450

Optimizing Multicorner-Multimode Designs .450
Optimizing for Leakage Power . 450
Optimizing for Dynamic Power Using Low-Power Placement 453

Reporting Commands . 453
report_scenarios Command . 453
Reporting Examples for Multicorner-Multimode Designs 454

Script Example for Multicorner-Multimode Flow . 456

Appendixes

A. Lower-Domain Boundary Support .461

Overview of Power Domain Boundaries . 461

Applying Isolation and Level-Shifter Strategies . 463
Specifying Domain Boundaries With the -applies_to Option 464
Defining Cell Placement With the -location Option . 464

B. Integrated Clock-Gating Cell Example . 467

Library Description . 467

Example Schematics .470
Rising-Edge Latch-Based Integrated Cells .470
Rising-Edge Latch-Free Integrated Cells . 472

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Falling Edge Latch-Based Integrated Cells . 473
Falling-Edge Latch-Free Integrated Cells .475

C. Attributes for Querying and Filtering . 477

Derived Attribute Lists . 477

Usage Examples . 479

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This User Guide
This user guide describes the Power Compiler tool, its methodology, and its use. The
Power Compiler tool assists you in analysis and optimization of your design for power.

The Power Compiler User Guide builds on concepts introduced in Design Compiler
publications. It is assumed in this user guide that the user has some familiarity with Design
Compiler products.

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the Power Compiler
Release Notes on the SolvNetPlus site.

Related Products, Publications, and Trademarks
For additional information about the Power Compiler tool, see the documentation on the
Synopsys SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler®

• Design VisionTM

• DesignWare® components

• TestMAXTM DFT

• IC CompilerTM II

• Library CompilerTM

Power Compiler™ User Guide
U-2022.12-SP3

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This User Guide
Conventions

Feedback

• Formality®

• PrimePower

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false
[] Denotes optional arguments in syntax, such as

write_file [-format fmt]

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Power Compiler™ User Guide
U-2022.12-SP3

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This User Guide
Customer Support

Feedback

Customer Support
Customer support is available through SolvNetPlus.

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

Power Compiler™ User Guide
U-2022.12-SP3

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

Feedback

Part 1: Power Compiler Concepts

The following topics provide an introduction to the Power Compiler tool:

• Introduction to the Power Compiler Tool

• Power Compiler Design Flow

• Power Modeling and Calculations

Power Compiler™ User Guide
U-2022.12-SP3

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

1
Introduction to the Power Compiler Tool

The Power Compiler tool is part of the Synopsys Design Compiler synthesis family. The
tool performs both RTL and gate-level power optimization and gate-level power analysis.
By applying the tool's power reduction techniques, including clock-gating, multivoltage
optimization, and leakage power optimization, you can achieve power savings and area
and timing optimization in front-end synthesis.

For information about the tool's methodology, see the following topics:

• Power Compiler Methodology

• Power Library Models

• Power Analysis

• Power Optimization

• Getting Started With the Power Compiler Tool

Power Compiler Methodology
Low-power designs have become crucial elements for product success. For example, the
static power (leakage power) consumption is more critical as the technology becomes
more smaller and faster.

The Power Compiler tool provides a complete methodology for low-power design, which
consist of the following:

• Power analysis

The tool analyzes the design and computes average power consumption based on the
switching activity of the nets.

You can perform power analysis at the register transfer level using RTL simulation or at
the gate level using RTL or gate-level simulation.

• Power optimization

The tool optimizes the design for power consumption. It computes average power
consumption based on the activity of the nets in the design.

Power Compiler™ User Guide
U-2022.12-SP3

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Power Library Models

Feedback

The tool performs the following types of power optimization:

◦ Leakage power or static power optimization

▪ Multivoltage threshold power optimization

▪ Power switching

◦ Dynamic power optimization

▪ Clock gating

▪ Self-gating

▪ Low-power placement

◦ Multivoltage and multicorner-multimode support

Power Library Models
The power library model analyzes leakage, switching, and internal power. For more
information about library modeling and characterization for power, see the Library
Compiler documentation.

The Power Compiler gate-level power model supports the following features:

• Composite Current Source (CCS) library support

• Lookup tables based on output pin capacitance and input transition time

• Cells with multiple output pins

• State-dependent and path-dependent internal power

• Leakage power, including state-dependent and path-dependent internal power

• Separate specification of rise and fall power in the internal power group

In addition, you can use CCS power models, which represent the physical circuit
properties more closely than other models to the simulated data obtained during
characterization with SPICE. It is a current-based power model that contains the following
features:

• One library format suitable for a wide range of applications, including power analysis
and optimization

• Power analysis with much higher time resolution compared to NLPM models

• Dynamic power characterized by current waveforms stored in the library. The charge
can be derived from the current waveform.

Power Compiler™ User Guide
U-2022.12-SP3

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Power Analysis

Feedback

• Leakage power modeled as the actual leakage current. The leakage current does not
artificially depend on the reference voltage, as is the case with leakage power. This
facilitates voltage scaling.

• Standard-cell and macro modeling

Power Analysis
The Power Compiler tool analyzes a design for net switching power, cell internal power,
and leakage power. The tool also enables you to perform power analysis of a gate-level
design using switching activity from RTL, gate-level simulation, or user annotation.

When analyzing a gate-level design, the Power Compiler tool requires a gate-level
netlist and switching activity for the netlist. The tool enables you to capture the switching
activity of primary inputs, primary outputs, and outputs of sequential elements during
RTL simulation. After you annotate the captured activity on design elements, the tool
propagates switching activity through the nonannotated portions of your design.

Using power analysis with switching activity from RTL simulation provides a faster
turnaround than analysis using switching activity from gate-level simulation.

If you require more accuracy during the later stages of design development, you can
annotate some or all of the nets of your design with switching activity from full-timing gate-
level simulation.

The Power Compiler tool supports the following power analysis features:

• Performs gate-level power analysis

• Analyzes net switching power, cell internal power, and leakage power

• Accepts input as user-defined switching activity, switching activity from RTL or gate-
level simulation, or a combination

• Propagates switching activity during power analysis to nonannotated nets

• Supports sequential, hierarchical, gated clock, and multiple-clock designs

• Supports RAM and I/O modeling using a detailed state-dependent and path-dependent
power model

• Performs power analysis in a single, integrated environment at multiple phases of the
design process

• Reports power at any level of hierarchy to enable quick debugging

Power Compiler™ User Guide
U-2022.12-SP3

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Power Optimization

Feedback

• Reports capability to validate your testbench

• Supports interfaces to NC-Sim, MTI, VCS-MX, and Verilog-XL simulators for toggle
data

Power Optimization
You can optimize your design for power using the following capabilities:

• RTL clock gating

• Gate-level multivoltage and dynamic power optimization

RTL clock gating is a high-level optimization technique that can save a significant
amount of power by adding clock gates to registers that are not always enabled and
with synchronous load-enable or explicit feedback loops. This greatly reduces the power
consumption of the design by reducing switching activity on the clock inputs to registers
and eliminating the multiplexers. It also results in a lower area consumption. RTL clock
gating optimizes for dynamic power.

When a gate-level power optimization constraint is set in the design, by default, the tool
performs optimization to meet the constraints for design rule checking, timing, power and
area in that order of priority.

The tool provides the following gate-level power optimization features:

• Push-button user interface to reduce power consumption

• Multivoltage libraries for leakage optimization with short turnaround time

• Simultaneous optimization for timing, power, and area

• Optimization based on circuit activity, capacitance, and transition times

• Power analysis and optimization with the same detailed power library models

• Compatibility with the Synopsys Design Compiler, TestMAX DFT, and Formality tools

Getting Started With the Power Compiler Tool
This section provides information about the basic requirements to use the Power Compiler
tool.

Power Compiler™ User Guide
U-2022.12-SP3

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Getting Started With the Power Compiler Tool

Feedback

Library Requirements
The Power Compiler tool uses logic libraries characterized for power. You can characterize
your library with the following power features:

Internal Power

To optimize for dynamic power, the Power Compiler tool requires libraries
characterized for internal power. This is the minimum library requirement to
characterize for power. This characteristic accounts for short-circuit power
consumed internal to gates.

Leakage Power

To optimize for static power, the tool requires libraries characterized for leakage
power. This characteristic accounts for the power dissipated while the device is
not in use. The tool also supports multivoltage libraries.

State and Path Dependency

To optimize for varying modes of operation, the Power Compiler tool requires
libraries characterized for state-dependency. To optimize for varying power
consumption based on various input to output paths, the tool requires libraries
characterized for path-dependency.

To capture state-dependent and path-dependent switching activity from
simulation, library cells must have state- and path-dependent information in the
lookup tables for internal power and pin capacitance. The Power Compiler tool
uses state-dependent and path-dependent switching activity to compute state-
dependent and path-dependent switching power.

If you are developing libraries to use with Synopsys power products, see the Library
Compiler documentation. The Power Compiler tool supports nonlinear power models,
scalable polynomial equation power models, and composite current source libraries.

Command-Line Interface
The Power Compiler tool is accessible from the Design Compiler command-line interface if
you have an appropriate license. See License Requirements.

Using the Design Compiler command-line interface, power optimization takes place during
your dc_shell optimization session. For more information about its command-line interface,
see the Design Compiler documentation.

The Power Compiler tool also works within the Design Compiler topographical domain
shell (dc_shell-topo). Whereas dc_shell uses wide-load models for timing and area power
optimizations, dc_shell-topo uses placement timing values instead. For more information,
see the Design Compiler documentation.

Power Compiler™ User Guide
U-2022.12-SP3

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Getting Started With the Power Compiler Tool

Feedback

Note:
Unless otherwise noted, all functionality described in this manual pertains
to both dc_shell and dc_shell-topo. Unless otherwise noted, this manual
uses "dc_shell" as a generic term that also applies to the Design Compiler
topographical domain.

Graphical User Interface
The Power Compiler tool is accessible from Design Vision, the graphical user interface
(GUI) for the Synopsys logic synthesis environment. You must have the Design Vision
license and other appropriate licenses to perform power analysis and optimizations. For
more details, see License Requirements.

Design Vision supports menus and dialog boxes for the frequently used synthesis
features. The Power menu in the GUI allows you to specify, modify, and review your power
architecture.

For more details on specifying power intent using the GUI, see Chapter 11, UPF
Multivoltage Design Implementation. For details about general usage of Design Vision, see
the Design Vision User Guide.

License Requirements
Power analysis and optimization using the Power Compiler tool requires one of the
following combinations of licenses:

• Power-Optimization

• Power-Analysis + Power-Optimization-Upgrade

These licenses also allow you to perform multivoltage power optimization and analysis.

The Power Compiler tool is part of the Design Compiler tool. You must have licenses for
the Design Compiler tool in addition to the power licenses.

Design Vision License

You can also perform power analysis and power optimization using the Design Vision GUI.
To use Design Vision, you must have the Design-Vision license. To use Design Vision in
topographical mode, you must have a Design-Vision license, a DesignWare license, and
the DC Ultra package.

How the Licenses Work

When you invoke dc_shell, a power license is checked out only if you use a Power
Compiler feature. When the activity is completed, the power license is released.

Power Compiler™ User Guide
U-2022.12-SP3

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Power Compiler Tool
Getting Started With the Power Compiler Tool

Feedback

Synopsys licensing software and the documentation describing it are separate from
the tools that use it. You install, configure, and use a single copy of Synopsys Common
Licensing (SCL), which provides a single, common licensing base for all Synopsys tools.

For more information, see the Synopsys Common Licensing Administration Guide. This
guide provides detailed information about SCL installation and configuration, including
examples of license key files and troubleshooting guidelines.

Reading and Writing Designs
When using dc_shell, you read designs from disk before working on them, make changes
to them, and write them back to the disk.

The tool can read or write a gate-level netlist in any of the formats shown in Table 1.

Table 1 File Formats and Extensions

Format Default
extension

File type Special license
key required

db .db Synopsys internal database format No

ddc .ddc Synopsys Design Compiler database
format (the default)

No

equation .eqn Synopsys equation format No

LSI .NET LSI Logic Corporation netlist format Yes

MENTOR .neted Mentor Graphics® intermediate netlist
format

Yes

PLA .pla Berkeley (Espresso) PLA format No

ST .st Synopsys state table format No

TDL .tdl Tegas Design Language (TDL) netlist
format

Yes

Verilog .v Hardware Description Language Yes

VHDL .vhd VHSIC Hardware Description Yes

Note:
NLPM and CCS are the supported power models in the library.

Power Compiler™ User Guide
U-2022.12-SP3

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Power Compiler Design Flow

As you create a design, it moves from a high level of abstraction to its final implementation
at the gate level. The Power Compiler tool offers analysis and optimization throughout the
design cycle, from RTL to the gate level.

For information about the design flow, see the following topics:

• Power in the Design Cycle

• Power Optimization and Analysis Flow

Power in the Design Cycle
At each level of abstraction, use simulation, analysis, and optimization to refine your
design before moving to the next lower level of design abstraction. The relationship of
these three processes is shown in Figure 1.

Figure 1 Power Flow at Each Abstraction Level

Simulation Analysis

Optimization

Switching
activity

Design
refinement
loop

Simulation, analysis, and optimization occur at each level of abstraction. Design
refinement loops occur within each level. Simulation and the resultant switching activity

Power Compiler™ User Guide
U-2022.12-SP3

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow

Feedback

give analysis and optimization the necessary information to refine the design before going
to the next lower level of abstraction. The entire flow is shown in Figure 2.

Figure 2 Power Flow From RTL to Gate-Level

Register

Transfer

Level

Optimization

Optimization

Simulation

Simulation

Analysis

AnalysisGate-Level

Switching
Activity

Switching
Activity

Using the Power Compiler tool, you can analyze and optimize at the RTL and gate levels.
The higher the level of design abstraction, the greater the power savings you can achieve.

Power Optimization and Analysis Flow
Figure 3 shows a high-level power optimization and analysis flow.

Power Compiler™ User Guide
U-2022.12-SP3

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow

Feedback

Figure 3 Power Optimization and Analysis Flow

Simulation

Gate-Level
Simulation

Optional

Back-Annotation

File

Capacitance

RTL
Design

SAIF File

Technology
Library

Enable
Power
Optimization

Synthesis and
Power
Optimization

Power
Analysis and
Reporting

Gate-Level
Power Optimized
Design

dc_shell

The power optimization starts with the specified RTL design and logic library and results in
a power-optimized gate-level netlist.

During analysis and optimization, the Power Compiler tool uses information in the logic
library. To optimize or analyze dynamic power and leakage power, the logic library must be
characterized for internal power. To optimize or analyze static power, the logic library must
be characterized for leakage power.

You can use the Power Compiler tool to analyze the gate-level netlist produced by the
Design Compiler tool or the power-optimized netlist produced by the Power Compiler tool.

Power Compiler™ User Guide
U-2022.12-SP3

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow

Feedback

Simulation
Most of the steps in the flow occur within the Design Compiler environment, dc_shell.
However, Figure 3 shows that the power flow requires a SAIF file, which is generated by
simulation.

Simulation generates information about the design’s switching activity and creates a
Switching Activity Information Format (SAIF) file, which is used for annotation purposes.
For information, see Chapter 4, Generating SAIF Files.

During power analysis, the Power Compiler tool uses annotated switching activity to
evaluate the power consumption of your design. During power optimization, the tool uses
annotated switching activity to make optimization decisions about your design. For more
information, see Chapter 5, Annotating Switching Activity.

Enable Power Optimization
The Power Compiler tool provides several techniques for optimizing power, such a clock
gating and self-gating. Power optimization achieved at higher levels of abstraction has an
increasingly important impact on reduction of power in the final gate-level implementation.

Synthesis and Power Optimization
The Design Compiler and Power Compiler tools work together within the dc_shell
environment to synthesize your design to a gate-level netlist optimized for power.
Synthesis with power optimization occurs during the Design Compiler compile operation.

In the Synopsys physical guidance flow, the tool can perform low-power placement to
reduce the dynamic power consumption of the design. For more details, see Power
Optimization in the Physical Guidance Flow.

Power Analysis and Reporting
You can use the Power Compiler tool for analysis of a gate-level design at several points
in the flow. Figure 3 shows power analysis after power optimization, which results in a
detailed report of your power-optimized netlist.

You can also analyze power before synthesis and power optimization, for example, after
annotating the switching activity from a SAIF file to verify that the annotation is correct.
Analysis before power optimization provides an optional reference point for comparison
with the power-optimized netlist.

Power Compiler™ User Guide
U-2022.12-SP3

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Power Modeling and Calculations

The Power Compiler tool can analyze both the static and dynamic power consumption of a
design.

For information about power modeling, see the following topics:

• Power Types

• Calculating Power

• Using CCS Power Libraries

• Voltage Scaling

Power Types
The power dissipated in a circuit falls into two broad categories:

• Static power

• Dynamic power

Static Power
Static power is the power dissipated by a gate when it is not switching, that is, when it is
inactive or static.

Static power is dissipated in several ways. The largest percentage of static power results
from source-to-drain subthreshold leakage, which is caused by reduced threshold voltages
that prevent the gate from completely turning off. Static power is also dissipated when
current leaks between the diffusion layers and the substrate. For this reason, static power
is often called leakage power.

Dynamic Power
Dynamic power is the power dissipated when the circuit is active. A circuit is active
anytime the voltage on a net changes due to some stimulus applied to the circuit. Because
voltage on an input net can change without necessarily resulting in a logic transition on the

Power Compiler™ User Guide
U-2022.12-SP3

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Power Types

Feedback

output, dynamic power can be dissipated even when an output net does not change its
logic state.

The dynamic power of a circuit is composed of two kinds of power:

• Switching power

• Internal power

Switching Power
The switching power of a driving cell is the power dissipated by the charging and
discharging of the load capacitance at the output of the cell. The total load capacitance
at the output of a driving cell is the sum of the net and gate capacitances on the driving
output.

Because such charging and discharging are the result of the logic transitions at the
output of the cell, switching power increases as logic transitions increase. Therefore, the
switching power of a cell is a function of both the total load capacitance at the cell output
and the rate of logic transitions.

Internal Power
Internal power is any power dissipated within the boundary of a cell. During switching,
a circuit dissipates internal power by the charging or discharging of any existing
capacitances internal to the cell. Internal power includes power dissipated by a momentary
short circuit between the P and N transistors of a gate, called short-circuit power.

To illustrate the cause of short-circuit power, consider the simple gate shown in Figure 4.
A rising signal is applied at IN. As the signal transitions from low to high, the N type
transistor turns on and the P type transistor turns off. However, for a short time during
signal transition, both the P and N type transistors can be on simultaneously. During this
time, current Isc flows from Vdd to GND, causing the dissipation of short-circuit power (Psc).

For circuits with fast transition times, short-circuit power can be small. However, for circuits
with slow transition times, short-circuit power can account for 30 percent of the total power
dissipated by the gate. Short-circuit power is affected by the dimensions of the transistors
and the load capacitance at the gate’s output.

In most simple library cells, internal power is due mostly to short-circuit power. For more
complex cells, the charging and discharging of internal capacitance might be the dominant
source of internal power.

Library developers can model internal power by using the internal power library group. For
more information about modeling internal power, see the Library Compiler User Guide.

Figure 4 shows a simple gate and illustrates where static and dynamic power are
dissipated.

Power Compiler™ User Guide
U-2022.12-SP3

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

Figure 4 Components of Power Dissipation

Time

Voltage

GND

V
dd

C
load

I
lk

Leakage current

Rising signal

I
sc

Short-circuit current

I
lk

I
sw

I
sw

Switching current

IN OUT

N

P

I
sc

I
lk

Time

Voltage

Falling signal

at OUTat IN

Calculating Power
Power analysis calculates and reports power based on the equations that accompany
this chapter. The Power Compiler tool uses these equations and the information modeled
in the specified logic library to evaluate the power of your design. This chapter includes
information about library modeling for power where equations for power types appear.

For more information about modeling power in your library, see the Library Compiler User
Guide.

Note:
The power calculations described in this section only apply to NLPM power
calculations.

Leakage Power Calculation
The Power Compiler tool computes the total leakage power of a design by summing the
leakage power of the design’s library cells, as shown in the following equation:

Power Compiler™ User Guide
U-2022.12-SP3

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

Where:

PLeakageTotal = Total leakage power dissipation of the design

PCellLeakagei = Leakage power dissipation of each cell i

Library developers annotate the library cells with appropriate total leakage power
dissipated by each library cell. They can provide a single leakage power for all cells in the
library by using the default_cell_leakage_power attribute or provide leakage power per
cell with the cell_leakage_power attribute.

If the cell_leakage_power attribute is missing or negative, the tool assigns the value of
the default_cell_leakage_power attribute. If this is not available, the tool assumes a
default of 0.

To model state-dependent leakage, use the leakage_power attribute. You can also use
Boolean expressions to define the conditions for different cell leakage power values.

To calculate cell leakage, the Power Compiler tool determines the units based on the
leakage_power_unit attribute. It checks for the leakage_power attribute first. The
leakage value for each state is multiplied by the percentage of the total simulation time at
that state and summed to provide the total leakage power per cell.

If the state is not defined in the leakage_power attribute, the value of the
cell_leakage_power attribute is used to obtain the contribution of the leakage power at
the undefined state.

Figure 5 shows the leakage power calculation performed on a NAND gate with state-
dependent values.

Power Compiler™ User Guide
U-2022.12-SP3

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

Figure 5 Leakage Power Calculation for a NAND Gate With State Dependent Values

library

leakage_power_unit : 1nW ;

cell (NAND) …

cell_leakage_power : 0.5 ;

leakage_power () {

when : "A&B"

value : 0.2

For a total power consumption

time of 600, the cell is at the state

defined by the condition A&B for

33% of the time. For the

remaining 67% of the simulation

time, the default is assumed.

Therefore, the total cell leakage

value is:

(.33 * .2nW) + (.67*.5nW)=.4nW

A

B
Z

Multithreshold Voltage Libraries
Static power dissipation has an exponential dependence on the switching threshold of the
transistor’s voltage. In order to address low-power designs IC foundries offer technologies
that enable multiple threshold voltage libraries.

Each type of logic gate is available in two or more different threshold voltage (vth) groups.
The threshold voltage determines the speed and the leakage characteristics of the cell.
Cells with low-threshold transistors switch quickly but have higher leakage and consume
more power. Cells with high threshold transistors have lower leakage and consume less
power but switch more slowly.

For leakage power optimization, the Power Compiler tool supports multiple mechanisms
for swapping high and low-threshold voltage cells appropriately, based on power and
timing requirements.

For more details about using the multithreshold voltage libraries, see Multiple Threshold
Voltage Library Attributes.

Internal Power Calculation
When computing internal power, power analysis uses information characterized in the
logic library. The internal_power library group and its associated attributes and groups

Power Compiler™ User Guide
U-2022.12-SP3

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

define scaling factors and a default for internal power. Library developers can use the
internal power table to model internal power on any pin of the library cell.

A cell’s internal power is the sum of the internal power of all of the cell’s inputs and outputs
as modeled in the logic library. Figure 6 shows how Synopsys power tools calculate the
internal power for a simple combinational cell, U1 with path-dependent internal power
modeling.

Figure 6 Internal Power Model (Combinational)

A

B

Z

Cell U1

P
Int

= Sum_{i=A,B} E_{i->Z} x PathWeight
i
x TR

Z

E
{i->Z}

= f[C_Load, Trans
i
]

Sum_{i = A,B} PathWeight_i =1

PInt Total internal power of the cellE

Ez Internal energy for output Z as a function of input transitions,
output load, and voltage

TRz Toggle rate of output pin Z, transitions per second

TRi Toggle rate of input pin i, transitions per second

Transi Transition time of input i

WeightAvg(Trans) Weighted average transition time for output Z

The Power Compiler tool calculates the input path weights based on the input toggle
rates, transition times, and functionality of the cell. The tool supports NLDM (table-based)
models.

NLDM Models
To compute the internal power consumption of NLDM models, the Power Compiler tool
uses the weighted average transition time as an index to the internal power associated
with the output pin. As an additional index to the power table, the tool uses the output load
capacitance. The two indexes enable access to the two-dimensional lookup table for the
output, as shown in Figure 7.

Power Compiler™ User Guide
U-2022.12-SP3

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

Figure 7 Two-Dimensional Lookup Table

Weighted average
Output load

Energy/

0.20

0.56

0.72

1.23

10.2 30.8 58.7

99.9

151.6
capacitance

transition

input transition
time

x

y
0.34

110.1

z

For cells in which output pins have equal or opposite logic values, the tool can use a three-
dimensional lookup table. The tool indexes the three-dimensional table by using input
transition time and both output capacitances of the equal (or opposite) pins. The three-
dimensional table is well suited to describing the flip-flop, which has Q and Q-bar outputs
of opposite value.

The internal_power library group supports one-, two-, or three-dimensional lookup
tables. Table 2 shows the types of lookup tables, whether they are appropriate to inputs or
outputs, and how they are indexed.

Table 2 Lookup Tables

Lookup table Defined on Indexed by

One-dimensional Input Input transition

Output Output load capacitance

Two-dimensional Output Input transition and output load
capacitance

Three-dimensional Output Input transition and output load
capacitances of two outputs that
have equal or opposite logic values

Power Compiler™ User Guide
U-2022.12-SP3

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

For more information about modeling internal power and library modeling syntax and
methodology, see the Library Compiler User Guide.

For various operating conditions, the table model supports scaling factors for the internal
power calculation, as follows:

• k_process_internal_power

• k_temp_internal_power

• k_volt_internal_power
These factors do not accurately model the nonlinear effects of the operating conditions.
Therefore, most vendors generate separate table-based libraries for different operating
conditions.

State and Path Dependency
Cells often consume different amounts of internal power, depending on which input pin
transitions or depending on the state of the cell. These are state and path dependent.

To demonstrate path-dependent internal power, consider the following simple library cell,
which has several levels of logic and a number of input pins:

A
B

C

D Z

Input A and input D can each cause an output transition at Z. However, input D affects only
one level of logic, whereas input A affects all three. An output transition at Z consumes
more internal power when it results from an input transition at A than when it results from
an input transition at D. You can specify multiple lookup tables for outputs, depending on
the input transitions.

The Power Compiler tool chooses the appropriate path dependent internal power table for
an output by checking the related_pin attribute in the library. Based on the percentage
of toggles on each input pin, the total power due to transitions on the output pin is
calculated by accessing the correct table or equation for each related pin and applying the
percentage contribution per input pin.

An example of a cell with state-dependent internal power is a RAM cell. It consumes a
different amount of internal power depending on whether it is in read or write model You
can specify separate tables or equations depending on the state or mode of the cell.

Power Compiler™ User Guide
U-2022.12-SP3

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

If the toggle rate information is provided for each state defined in the power model, the
tool accesses the appropriate information. If only the input or output toggle information
is available, the tool averages the tables for the different states to compute the internal
power of the cell.

For more information about how the toggle information affects the internal power analysis,
see Performing Power Analysis.

Rise and Fall Power
When a signal transitions, the internal power related to the rising transition is different
from the internal power related to the falling transition. The Power Compiler tool supports
a library model that enables you to designate a separate rising and falling power value,
depending on the transition.

Switching Power Calculation
The Power Compiler tool calculates switching power (Pc) as follows:

Where:

Pc Switching power of the design

TRi Toggle rate of net i, transitions per second

Vdd Supply voltage

CLoadi is the total capacitive load of net i, including parasitic capacitance, gate
capacitance, and drain capacitance of all the pins connected to the net i.

The tool obtains CLoadi from the wire load model for the net and from the logic library
information for the gates connected to the net. You can also back-annotate capacitance
information after physical design.

Dynamic Power Calculation
Because dynamic power is the power dissipated when a circuit is active, the equations for
switching power and internal power provide the dynamic power of the design.

Dynamic power = Switching power + Internal power

For more information about the library models, see the Library Compiler User Guide.

Power Compiler™ User Guide
U-2022.12-SP3

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

Dynamic Power Unit Derivation
The unit for switching power and the values in the internal_power table is a derived unit.
It is derived from the following function:

(capacitive_load_unit * voltage_unit2)/time_unit

The function’s parameters are defined in the library. The result is scaled to the closest
MKS unit: micro, nano, femto, or pico. This dynamic power unit scaling effect needs to be
taken into account by library developers when generating energy values for the internal
power table.

The following is an example of how the Power Compiler tool derives dynamic power units
(if the library has the following attributes):

capacitive_load_unit (0.35, ff);
voltage_unit: "1V"
time_unit: "1ns";

To obtain the dynamic power unit, complete the following steps:

1. Find the starting value.

starting value = capacitive_load_unit*voltage_unit2/
time_unit
starting value = .35e-15*(1^2)/1e-9
starting value = 3.5e-7W

The starting value consists of a base unit (1e-7W) and a multiplier (3.5).

2. Select an MKS base unit that converts the multiplier of the starting value found in step
1 to an integer number. For example, select an MKS unit between the range of att
[1e-18] and giga [1e+12] watts, which converts the starting value’s multiplier into an
integer value.

The MKS base unit that meets this requirement in this example is nano [1e-9]. This is
because the starting value of 3.5e-7W expressed in nW becomes 350nW. The original
multiplier of 3.5 is converted to an integer value (350) by selecting the nW MKS base
unit.

converted value = 350e-9W
converted value multiplier = 350
base unit = 1e9W = 1nW

3. Determine the base unit multiplier by selecting a power of 10 integer (for example, 1,
10, 100, ...) closest in magnitude to the converted value multiplier found in step 2.

converted value multiplier = 350 (from step 2)
base unit multiplier = 100

Power Compiler™ User Guide
U-2022.12-SP3

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Calculating Power

Feedback

4. Combine the base unit multiplier obtained in step 3 and the base unit obtained in step 2
to obtain the dynamic power unit.

base unit = 1nW (from step 2)
base unit multiplier = 100 (from step 3)
dynamic power unit = (100) 1nW = 100nW

In this example, each cell’s dynamic power calculated by the tool is multiplied by 100nW.

Power Calculation for Multirail Cells
The Power Compiler tool supports the power analysis of libraries which contain cells with
multiple rails for which power values are defined per voltage rail.

For multivoltage cells which contain separate power tables for each power level, the tool
determines the internal and leakage power contribution for each power rail and sums it to
report the total power consumption.

For more information about defining per-rail power tables, see the Library Compiler User
Guide.

The following example shows example cells that contain power tables per rail.

cell (AND2_1) {
 area : 1.0000;
 cell_footprint : MV12AND2;
 rail_connection (PV1, VDD1);
 rail_connection (PV2, VDD2);

 pin (a) {
 direction : input;
 capacitance : 0.1;
 input_signal_level : VDD1;
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 }
 pin (b) {
 direction : input;
 capacitance : 0.1;
 input_signal_level : VDD1;
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 }
 pin (y) {
 direction : output;
 function : "a & b";
 output_signal_level : VDD2;

Power Compiler™ User Guide
U-2022.12-SP3

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Using CCS Power Libraries

Feedback

 timing () {
 related_pin : "a";
 timing_sense : positive_unate;
 cell_rise (scalar) { values ("1.0"); }
 rise_transition (scalar) { values ("1.0"); }
 cell_fall (scalar) { values ("1.0"); }
 fall_transition (scalar) { values ("1.0"); }
 }
 timing () {
 related_pin : "b";
 cell_rise (scalar) { values ("1.0"); }
 rise_transition (scalar) { values ("1.0"); }
 cell_fall (scalar) { values ("1.0"); }
 fall_transition (scalar) { values ("1.0"); }
 }
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 internal_power () {
 power_level : VDD2;
 power (scalar) { values ("2.0"); }
 }
 }
 leakage_power () {
 power_level : VDD1;
 value : 1.0;
 }
 leakage_power () {
 power_level : VDD2;
 value : 2.0;
 }
 cell_leakage_power : 10;
 }

Using CCS Power Libraries
CCS power libraries contain unified library data for power and rail analysis and
optimization, which ensures consistent analysis and simplification of the analysis flow. By
capturing current waveforms in the library, you can provide more accurate identification of
potential problem areas.

Both CCS and NLPM data can coexist in a cell description in the .lib file. That is, a cell
description can have only NLPM data, only CCS data, or both NLPM and CCS data. The
tool uses either NLPM data or CCS data for the power calculation.

Use the power_model_preference nlpm | ccs variable to specify your power model
preference when the library contains both NLPM and CCS in it. The default is nlpm. Using
CCS or NLPM power libraries does not change the use model.

Power Compiler™ User Guide
U-2022.12-SP3

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Voltage Scaling

Feedback

For more information about CCS power libraries and how to generate them, see the
Library Compiler User Guide.

Voltage Scaling
The Power Compiler tool uses the scaling library groups to implement temperature and
voltage scaling. For voltage scaling, the libraries in the scaling group must contain CCS
and NLPM power models.

To enable the scaling feature and specify the membership of libraries to scaling
library groups, use the define_scaling_lib_group command. You can specify
different scaling library groups for different design objects or subdesigns by using the
set_scaling_lib_group command. To create an intermediate operating condition, use
the create_operating_conditions command. Use the set_operating_conditions
command to set intermediate voltage or temperature conditions. With the specified
operating conditions, the tool performs interpolation between the libraries in the library
groups to obtain accurate delay information.

For more information about defining and setting the scaling library groups, see the related
command man pages.

To perform both voltage and temperature scaling at the same time, use four libraries in
the scaling group rather than two, representing the four possible combinations of voltage
and temperature extremes: high voltage and high temperature, high voltage and low
temperature, low voltage and high temperature, and low voltage and low temperature.

The tool supports power scaling on both single-rail and multirail cells.

Script Examples for Voltage Scaling
Example 1 shows an example script to perform voltage scaling in a multivoltage design.

Example 1 Voltage Scaling in Multivoltage Designs
read_verilog rtl.v
current_design top
link
define_scaling_lib_group -name group1{slow_0p81v.db slow_1p2v.db}
set_scaling_lib_group -min group1 -max group1
create_operating_conditions -name scaled_pvt -library slow_0p81.v \
 -process 1 -voltage 1.0 -temperature -40
set_operating_conditions -help

Power Compiler™ User Guide
U-2022.12-SP3

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Power Modeling and Calculations
Voltage Scaling

Feedback

Example 2 shows an example script to perform voltage scaling in a multicorner-multimode
design.

Example 2 Voltage Scaling in Multicorner-Multimode Designs
read_verilog rtl.v
current_design top
link
define_scaling_lib_group -name group1{slow_0p81v.db slow_1p2v.db}
set_scaling_lib_group -min group1 -max group1
create_operating_conditions -name scaled_pvt -library slow_0p81.v \
 -process 1 -voltage 1.0 -temperature -40

create_scenario s1
read_sdc s1.sdc
set_operating_conditions scaled_pvt
set_tlu_plus_files -max_tluplus tlu_file1 -tech2itf_map map_file1
set_scaling_lib_group {group1}

Power Compiler™ User Guide
U-2022.12-SP3

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 2: Power Analysis

The following topics provide information about the power analysis features of the Power
Compiler tool:

• Generating SAIF Files

• Annotating Switching Activity

• Performing Power Analysis

Power Compiler™ User Guide
U-2022.12-SP3

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Generating SAIF Files

The Power Compiler tool requires information about the switching activity of a design to
perform power analysis and power optimization. You can use simulation tools to generate
switching activity information in the Switching Activity Interchange Format (SAIF).

For information about SAIF files, see the following topics:

• About Switching Activity

• Introduction to SAIF Files

• Generating SAIF Files

• Verilog Switching Activity Examples

• VHDL Switching Activity Example

About Switching Activity
The dynamic power component usually accounts for a large percentage of the total power
consumption in a combinational circuit. Dynamic power is the sum of the internal power of
cells and the switching power. Switching power is the rate of energy usage resulting from
the charging and discharging of capacitive loads during transitions between the two logic
states, 0 and 1. Switching power depends on the clock rate and also the rate at which
toggling occurs between logic states on each net. The toggle rate depends on the data
being processed during typical usage of the logic circuit.

The Power Compiler tool models switching activity based on the following:

• Static Probability

The fraction of time that a signal is at the logic 1 state. For example, a static probability
of 0.8 means that the signal is in the logic 1 state 80 percent of the time and the logic 0
state 20 percent of the time.

• Toggle Rate

The rate at which a signal changes from 0 to 1 and from 1 to 0, in number of transitions
per time unit.

Power Compiler™ User Guide
U-2022.12-SP3

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Introduction to SAIF Files

Feedback

When the switching activity information is available, you should annotate this information
on the design objects so that the tool can use the switching activity information during
power optimization and analysis.

For more information about annotating switching activity, see Annotating Switching
Activity.

Introduction to SAIF Files
The accuracy of power calculations depends on the accuracy of the switching activity data.
This data is generated using RTL simulation or gate-level simulation and is stored in a
SAIF file. You should use the SAIF file to annotate switching activity information on the
design objects before you perform power optimization and analysis.

SAIF is an ASCII format supported by Synopsys to facilitate the interchange of information
between various Synopsys tools (see the IEEE 1801 Standard, Annex J). Use the
read_saif command to read the SAIF file and the write_saif command to write out the
SAIF file.

For more information, see the read_saif and the write_saif command man pages.

Early in the design cycle, you can use RTL simulation to determine the high-level switching
and power characteristics of the design. Later in the design cycle, you can use gate-
level simulation to get more detailed switching data to annotate your design. The detailed
switching data increases the accuracy of the power optimization and power analysis.

Table 3 summarizes the various methods of generating SAIF files and their accuracies.

Table 3 Comparing Methods of Capturing Switching Activity

Simulation Captured Not captured Trade-offs

RTL Synthesis-invariant
elements

1. Internal nodes 2.
Correlation of non-
synthesis-invariant elements
3. Glitching 4. State and path
dependencies

Fast runtime
at expense of
some accuracy

Zero-delay
and unit-delay
gate-level

1. Synthesis-invariant
elements 2. Internal nodes
3. Correlation 4. State
dependencies 5. Some
path dependencies

1. Some path dependencies
2. Glitching

More accurate
than RTL
simulation, but
significantly
higher runtime

Full-timing
gate-level

1. All elements of design
2. Correlation 3. State and
path dependencies

Highest accuracy, but
runtime can be very long

Correlation
between primary
inputs

Power Compiler™ User Guide
U-2022.12-SP3

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

Generating SAIF Files
You can generate a SAIF file either from RTL simulation or gate-level simulation. This
section discusses both RTL and gate-level simulation using Synopsys VCS. VCS supports
Verilog, SystemVerilog, and VHDL formats.

Figure 8 shows two ways of generating a SAIF file. The solid lines indicate the suggested
SAIF flow while the dotted lines indicate the alternative method of SAIF flow using various
Synopsys tools.

Figure 8 SAIF File Generation and its Usage With Various Synopsys Tools

RTL Design

VCS MX

Design Compiler/
Power Compiler

Name-mapping file
 (output of

 saif_map -type)

Gate-Level Design

PrimePower

vcd2saif/fsdb2saif

Design SAIFDesign SAIF
(direct)

Design VCD/FSDB

The following topics describe ways of generating SAIF files:

• Generating SAIF Files From Simulation

• Generating SAIF Files From VCD Files

• Generating SAIF Files From FSDB Output Files

You can read the SAIF file into the Power Compiler tool and generate a mapping file for all
the name changes of the nodes. You then read the name-mapping file and the synthesized
gate-level netlist in the PrimePower tool to perform averaged power analysis

Generating SAIF Files From Simulation
VCS MX can generate the SAIF file directly from simulation. This direct SAIF file is smaller
than VCD or FSDB files. Your input design for simulation can be an RTL or gate-level
design. The design can be in Verilog, SystemVerilog, VHDL, or mixed HDL formats. When

Power Compiler™ User Guide
U-2022.12-SP3

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

your design is in Verilog or SystemVerilog formats, you must specify system tasks to VCS
MX using toggle commands. If your design is in VHDL format, use the power command as
described in Generating SAIF Files From VHDL Simulation.

For more information about the various supported formats and mixed language formats,
see the VCS MX User Guide.

When generating the SAIF file during simulation, use the default monitoring policy (see
the VCS MX User Guide for more information). This monitoring captures the switching
activity of only the synthesis-invariant objects such as ports, tristate cells, black box cells,
flip-flops, latches, retention registers, and hierarchical cells other than clock-gating cells.
Integrated clock-gating cells and latch-based isolation cells are synthesis-dependent
objects and therefore not captured.

If the library forward SAIF file contains details of state and path dependencies, the
backward SAIF file generated also contains these details. For more information, see
Capturing State- and Path-Dependent Switching Activity.

The steps to generate SAIF files from simulation are discussed in the following topics:

• Generating SAIF Files From SystemVerilog or Verilog Simulations

• Generating SAIF Files From Gate-Level Simulation

• VCS MX Toggle Commands

• Generating SAIF Files From VHDL Simulation

Generating SAIF Files From SystemVerilog or Verilog Simulations
Using VCS MX, you can generate SAIF files from both RTL and gate-level Verilog designs.
When your design is in Verilog format, you must specify system tasks to VCS MX. These
system tasks are also known as toggle commands. The system tasks specify the module
for which switching activity is to be recorded and reported in the SAIF file. They also
control the toggle monitoring during simulation.

For details about the toggle commands, see VCS MX Toggle Commands.

Generating SAIF Files From RTL Simulation
Figure 9 presents the methodology to capture switching activity using RTL simulation. RTL
simulation captures the switching activity of primary inputs, primary outputs, and other
synthesis-invariant elements.

Power Compiler™ User Guide
U-2022.12-SP3

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

Figure 9 RTL Simulation Using VCS MX

RTL Design
Testbench

RTL
Simulation

Using VCS MX

SAIF File

To capture the switching activity using RTL simulation, specify the appropriate testbench
and run the simulation.

The SAIF file contains the switching activity information of the synthesis-invariant elements
in your design. To use the SAIF file for synthesis in the Power Compiler tool, annotate the
switching activity, as described in Annotating Switching Activity.

Generating SAIF Files From Gate-Level Simulation
Figure 10 presents the methodology to capture switching activity using gate-level
simulation. Gate-level simulation captures switching activity of pins, ports, and nets in your
design.

Power Compiler™ User Guide
U-2022.12-SP3

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

Figure 10 Gate-Level Simulation Using VCS MX

To capture switching activity using gate-level simulation, specify the appropriate toggle
commands in the testbench and run the simulation.

The SAIF file contains information about the switching activity of the pins, ports, and nets
in your design. It can represent the pin-switching activity, based on rise and fall values, if
your logic library has separate rise and fall power tables.

To use the SAIF file for synthesis in the Power Compiler tool, annotate the switching
activity as described in Annotating Switching Activity.

VCS MX Toggle Commands
To generate the SAIF file from RTL or gate-level Verilog of SystemVerilog, use toggle
commands to specify system tasks to VCS MX. Using the toggle commands, you can
specify the subblock for toggle counting and define specific periods for toggle counting
during simulation. You can also control the start and stop of toggle counting.

Figure 11 presents an overview of the toggle commands in your testbench file. Each
toggle command starts with the $ symbol. For simplicity, the figure does not show optional
commands.

Power Compiler™ User Guide
U-2022.12-SP3

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

Figure 11 Toggle Command Flow

The system tasks that you specify to VCS MX using the toggle commands are

1. Define the toggle region.

The $set_toggle_region command specifies the module instance for which the
simulator records the switching activity in the generated SAIF file. The syntax of this
command is as follows:

$set_toggle_region(instance [, instance]);

When you explicitly mention one or more module instances as the toggle region, the
simulator registers these objects and monitors them during simulation.

Note:
For gate-level simulation, if the logic library cell pins have rise and fall power
values, their switching activity is monitored and reported for rise and fall
separately.

2. Begin toggle monitoring.

Use the $toggle_start command to instruct the simulator to start monitoring the
switching activity. The syntax of this command is as follows:

$toggle_start();

During simulation, the tool starts monitoring the switching activity of the module
instances that are defined in the toggle region.

Power Compiler™ User Guide
U-2022.12-SP3

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

3. End toggle monitoring.

Use the $toggle_stop command to instruct the simulator to stop monitoring the
switching activity.

4. Report toggle information in an output file.

Use the $toggle_report command to write monitored gate and net switching activity
to an output file. You can invoke $toggle_report any number of times using different
parameters. For more details and examples of SAIF files, see RTL SAIF File.

The syntax for the $toggle_report command is as follows:

$toggle_report (filename,[synthesis_time_unit],instance_name_string);

The values for the various options and parameters are as follows:

◦ filename

This is the name of the switching activity output file.

◦ synthesis_time_unit

This optional parameter is the time unit of your synthesis library, in seconds.
For example, if the time unit in your synthesis library is 10 picoseconds, specify
1.0e-11.The $toggle_report command uses this number to convert simulation
time units to synthesis time units. The Power Compiler tool obtains the simulation
time unit from simulation. If you don’t specify the synthesis time unit parameter, the
default is 1 ns (1.0e-9).

◦ instance_name_string

This required parameter is the full instance path name of the block from the top of
your simulation environment down to the name of the block instance to be reported.

Example
$toggle_report ("file.saif", 1.0e-11, "test.DUT");

In this example, the file written out is file.saif, the synthesis time unit is 10 picoseconds,
and the name of the monitored instance is test.DUT. The output file format is SAIF, which
is the default.

Resetting the Toggle Counter
Use the $toggle_reset command to set the toggle counter to 0 for all the nets in the
current toggle region. This command starts a new toggle monitoring period in a simulation
session.

Power Compiler™ User Guide
U-2022.12-SP3

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

For example, when using $toggle_start, $toggle_stop or $toggle_reset with
$toggle_report, you can create SAIF output files for specific periods during simulation.
The syntax of this command is as follows:

$toggle_reset();

Use the $toggle_reset command only after you have written out the previous results with
the $toggle_report command.

Capturing State- and Path-Dependent Switching Activity
By default, the Power Compiler tool estimates the state- and path-dependent power
information that is required for power calculations. However, if you want to obtain this
information through simulation, you can use the lib2saif command before simulation.
In this case, given a logic library, you can run the utility to obtain a library SAIF file that
contains the directives for generating state- and path-dependent switching information.
This file is called the library forward SAIF file. This file becomes an input to gate-level
simulation.

The library forward SAIF file contains information from the logic library about cells that
have state and path dependencies. It can have rise and fall information if the library has
separate rise and fall power tables.

To read the library forward SAIF file into the simulator, use the $read_lib_saif
command. This command registers the state- and path-dependent information for
monitoring during simulation.

The syntax of the $read_lib_saif command is as follows:

$read_lib_saif(input_file);

For gate-level simulation, you must use the $read_lib_saif command to register state-
and path-dependent cells and, by default, all internal nets in the design. The command
registers state-dependent and path-dependent cells by reading the library forward SAIF
file. In addition, you must also set the toggle region for monitoring. If you do not use the
$read_lib_saif command, the simulator registers all internal nets for monitoring by
default.

You can use the $read_lib_saif command as often as you require during simulation;
however, you must use this command before defining the toggle region using
the $set_toggle_region command. When you define the toggle region, the
$set_toggle_region command checks for the presence or absence of a previous
$read_lib_saif command and registers internal nets accordingly.

Example 3 shows an example of a SAIF file generated by the lib2saif command.

Example 3 File Generated by lib2saif
(SAIFILE
(SAIFVERSION "2.0" "lib")

Power Compiler™ User Guide
U-2022.12-SP3

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

(DIRECTION "forward")
(DESIGN)
(DATE ...)
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "Power Compiler lib2saif") (VERSION ...) (DIVIDER /)
 (LIBRARY "example"
 (MODULE "AND2"
 (PORT
 (Z
 (IOPATH A IOPATH B)
)
)
)
 (MODULE "DFF1"
 (LEAKAGE
 (COND Q
 COND !Q
 COND_DEFAULT)
)
)
 (MODULE "EXOR3"
 (PORT
 (Z
 (COND ((!B * !A) | (B * A)) RISE_FALL (IOPATH C)
 COND ((!B * A) | (B * !A)) RISE_FALL (IOPATH C)
 COND ((!C * !A) | (C * A)) RISE_FALL (IOPATH B)
 COND ((!C * A) | (C * !A)) RISE_FALL (IOPATH B)
 COND ((!C * !B) | (C * B)) RISE_FALL (IOPATH A)
 COND ((!C * B) | (C * !B)) RISE_FALL (IOPATH A)
 COND_DEFAULT RISE_FALL (IOPATH A IOPATH B IOPATH C))
)
)
)
 (MODULE "MUX21"
 (PORT
 (Z
 (COND (B * !A) RISE_FALL (IOPATH S)
 COND (!B * A) RISE_FALL (IOPATH S)
 COND_DEFAULT RISE_FALL (IOPATH A IOPATH B IOPATH S))
)
)
 (LEAKAGE
 (COND (B * S * A)
 COND (!B * S * A)
 COND (!B * !S * A)
 COND (!A * S * B)
 COND (!A * !S * B)
 COND_DEFAULT)
)
)
 (MODULE "NAND2"
 (PORT
 (Z

Power Compiler™ User Guide
U-2022.12-SP3

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

 (IOPATH A IOPATH B)
)
)
)
 (MODULE "OR2"
 (PORT
 (Z
 (IOPATH A IOPATH B)
)
)
)

....

 (MODULE "iopad6"
 (PORT
 (PAD
 (COND !TS RISE_FALL (IOPATH DI)
 COND_DEFAULT RISE_FALL)
)
 (DI
 (COND TS RISE_FALL
 COND_DEFAULT RISE_FALL)
)
 (DO
 (IOPATH PAD IOPATH_DEFAULT)
)
)
)
)

Overriding Default Registration of Internal Nets
After you have run the read_lib_saif command in the testbench, you can override the
default net monitoring behavior using the $set_gate_level_monitoring command. This
command turns on or turns off the registration of internal nets.

The following is the syntax of the $set_gate_level_monitoring command:

$set_gate_level_monitoring ("on" | "rtl_on", "mda" | "sv");

"on"
This string explicitly registers all internal nets for simulation. Thus, simulation
monitors any internal net in the region defined by the $set_toggle_region
command.

"rtl_on"
The registers in the toggle region are monitored and the nets in the toggle region
are not monitored during simulation.

Power Compiler™ User Guide
U-2022.12-SP3

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

"mda"
Use this argument for Verilog memories and multidimensional arrays.

"sv"
Use this argument for SystemVerilog data objects.

The $set_gate_level_monitoring command is optional. If you use it, you must do so
before invoking the $set_toggle_region command.

Generating SAIF Files From VHDL Simulation
You can use VCS MX to generate SAIF files from RTL or gate-level simulation of VHDL
designs. The methodology to generate the SAIF file is similar to the methodology used
for Verilog designs, shown in Figure 9 and Figure 10. However, you cannot use the toggle
commands to specify the system tasks to the simulator.

For RTL-level VHDL files, variables are not supported by the simulator for monitoring.
However, VHDL constructs such as generates, enumerated types, records, and arrays of
arrays are supported by VCS MX for simulation.

The use model to generate a SAIF file from VHDL simulation consists of using the
power command at the VCS MX command line interface, simv. The syntax of the power
command is as follows:

power
 -enable
 -disable
 -reset
 -report file_name synthesis_time_unit scope
 -rtl_saif file_name
 [test_bench_path_name]
 -gate_level on| off | rtl_on
 region_signal_variable

• The -enable option enables the monitoring of the switching activity.

• The -disable option disables the monitoring of the switching activity.

• The -reset option resets the toggle counter.

• The -report option reports the switching activity to an output SAIF file.

• The -rtl_saif option reads the RTL forward-SAIF file.

Power Compiler™ User Guide
U-2022.12-SP3

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

• You can use on, off, or rtl_on with the -gate_level option. Table 4 summarizes the
monitoring policy for VHDL simulation.

Table 4 Monitoring Policy for VHDL Simulation

Monitoring policy Ports Signals Variables

on Yes Yes No

off No No No

rtl_on Yes Yes No

• You can specify either the hierarchical path to the signal name or the toggle region and
its children to be considered for monitoring.

System Task List for SAIF File Generation From VHDL Simulation
The following example script shows a task list that you specify to the simulator to generate
a SAIF file. The design name in the example is test1. You can either specify each of these
commands at the VCS MX command prompt or run the file that contains these commands.

power test1
power -enable
run 10000
power -disable
power -report vhdl.saif 1e-09 test
quit

Generating SAIF Files From VCD Files
You can generate SAIF files from VCD files. To generate a SAIF from a VCD file generated
by the VCS tool, use the vcd2saif utility. Follow these steps to generate the SAIF file and
to annotate the switching activity:

1. Run the simulation to generate VCD file.

2. Use the vcd2saif utility to convert the VCD file to a SAIF file.

3. Annotate the switching activity within the SAIF file as described in Annotating Switching
Activity.

The disadvantage of using this method is that VCD files can be very large, especially for
gate-level simulation, requiring more time for processing. Also, the SAIF file generated by
the vcd2saif utility lacks state-dependent and path-dependent information.

Power Compiler™ User Guide
U-2022.12-SP3

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Generating SAIF Files

Feedback

Converting a VCD File to a SAIF File
The vcd2saif utility converts the RTL or gate-level VCD file generated by VCS into
a SAIF file. This utility has limited capability when the VCD is generated from the
SystemVerilog simulation as described in Limited SystemVerilog Support in the vcd2saif
Utility.

The vcd2saif utility is platform-specific and is located in install_dir/$ARCH/syn/bin.
The $ARCH environment variable represents the specific platform (architecture) of your
Synopsys software installation, such as linux.

You can use compressed VCD files (.Z) and gzipped VCD files (.gz). In addition, for VPD
files, you can use the utility located at $VCS_HOME/bin/vpd2vcd, and for FSDB files, you
can use the utility located at $SYNOPSYS/bin/fsdb2vcd.

The vcd2saif utility does not support state-dependent and path-dependent switching
activity. For information about each option, use the vcd2saif -help command.

Limited SystemVerilog Support in the vcd2saif Utility
The vcd2saif utility supports only a limited set of SystemVerilog constructs for VCD
files generated from SystemVerilog simulation. Table 5 shows the list of SystemVerilog
constructs that are supported by the vcd2saif utility.

Table 5 SystemVerilog Constructs Supported by the vcd2saif Utility

char int shortint longint bit byte logic

shortreal void enum typedef struct union arrays
(packed and
unpacked)

Generating SAIF Files From FSDB Output Files
There are two ways to generate a SAIF file from an FSDB file:

1. Using the fsdb2saif utility

2. Using the fsdb2vcd utility and then using the vcd2saif utility.

For more information about the FSDB utilities, see the Verdi3 and Siloti Command
Reference Manual. After generating the SAIF file, annotate the switching activity from the
SAIF file as described in Annotating Switching Activity.

Power Compiler™ User Guide
U-2022.12-SP3

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

Verilog Switching Activity Examples
The following examples demonstrate RTL and gate-level descriptions with Verilog-
generated switching activity data.

RTL Example
This Verilog RTL example includes the following elements:

• RTL design description

• RTL testbench

• SAIF output file from simulation

Verilog Design Description
Example 4 shows the description for a state machine called test.

Example 4 RTL Verilog Design Description
`timescale 1 ns / 1 ns
module test (data, clock, reset, d_out);

input [1:0] data;
input clock;
input reset;
output d_out;
wire d_out;
wire [1:0] NEXT_STATE;
reg [1:0] PRES_STATE;

parameter s0 = 2'b00;
parameter s5 = 2'b01;
parameter s10 = 2'b10;
parameter s15 = 2'b11;

function [2:0] fsm;
 input [1:0] fsm_data;
 input [1:0] fsm_PRES_STATE;

 reg fsm_d_out;
 reg [1:0] fsm_NEXT_STATE;

begin
 case (fsm_PRES_STATE)
 s0: //state = s0
 begin
 if (fsm_data == 2'b10)
 begin
 fsm_d_out = 1'b0;

Power Compiler™ User Guide
U-2022.12-SP3

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

 fsm_NEXT_STATE = s10;
 end
 else if (fsm_data == 2'b01)
 //....
 end

 s5: //state = s5
 begin
 // ...
 end

 s10: //state = s10
 begin
 // ...
 end

 s15: //state 15
 begin
 // ...
 end
 endcase

 fsm = {fsm_d_out, fsm_NEXT_STATE};
end

endfunction

assign {d_out, NEXT_STATE} = fsm(data, PRES_STATE);

always @(posedge clock)
begin
 if (reset == 1'b1)
 begin
 PRES_STATE = s0;
 end
 else
 begin
 PRES_STATE= NEXT_STATE;
 end
end
endmodule

RTL Testbench
The Verilog testbench in Example 5 simulates the design test described in Example 4. The
testbench instantiates the design test as U1.

Example 5 RTL Testbench
`timescale 1 ns / 1 ns
module stimulus;

reg clock;

Power Compiler™ User Guide
U-2022.12-SP3

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

reg [1:0] data;
reg reset;
wire d_out;
test U1 (data,clock, reset, d_out);

always
 begin
 #10 clock = ~clock;
 end

initial
begin
$set_toggle_region(stimulus.U1);
$toggle_start();
clock = 1'b0;
data = 2'b00;
reset = 1'b1;
#50 reset = 0;
#25 data = 3; #20 data = 0;
#20 data = 1; #20 data = 2;
// ...
$toggle_stop();
$toggle_report("my_rtl_saif", 1.0e-12, "stimulus");
#80 $finish;
end

RTL SAIF File
The RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The $toggle_report command creates
this file.

Example 6 is a SAIF file created for the RTL Verilog description that is also shown in
Example 4 and for the testbench shown in Example 5.

Example 6 RTL SAIF File
/** There is no explicit set_gate_level_monitoring command, **/
/** and the default behavior is to monitor internal nets **/
(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(DATE "Fri Feb 5 14:21:20 2021")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "VCS I-2014.03-SP1")
(VERSION "1.0")
(DIVIDER /)
(TIMESCALE 1 ps)
(DURATION 135000.00)
(INSTANCE stimulus
 (INSTANCE U1

Power Compiler™ User Guide
U-2022.12-SP3

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

 (NET
 (data\[1\]
 (T0 115000) (T1 20000) (TX 0)
 (TC 2) (IG 0)
)
 (data\[0\]
 (T0 95000) (T1 40000) (TX 0)
 (TC 3) (IG 0)
)
 (clock
 (T0 70000) (T1 65000) (TX 0)
 (TC 13) (IG 0)
)
 (reset
 (T0 85000) (T1 50000) (TX 0)
 (TC 1) (IG 0)
)
 (d_out
 (T0 0) (T1 0) (TX 135000)
 (TC 0) (IG 0)
)
 (NEXT_STATE\[1\]
 (T0 0) (T1 0) (TX 135000)
 (TC 0) (IG 0)
)
 (NEXT_STATE\[0\]
 (T0 0) (T1 0) (TX 135000)
 (TC 0) (IG 0)
)
)
)
)
)

Understanding the SAIF File
Table 6 summarizes the definitions for SAIF file terminology.

Table 6 Definitions of SAIF File Terms

T0 Duration of time found in logic 0 state.

T1 Duration of time found in logic 1 state.

TX Duration of time found in unknown “X” state.

TC The sum of the rise (0-to-1) and fall (1-to-0) transitions
that are captured during monitoring.

IG Number of 0 - X - 0 and 1 - X - 1 glitches captured
during monitoring.

RISE Rise transitions in a given state.

Power Compiler™ User Guide
U-2022.12-SP3

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

Table 6 Definitions of SAIF File Terms (Continued)

FALL Fall transitions in a given state.

Duration refers to the time span between $toggle_start and $toggle_stop commands
in the testbench during simulation. During this time span, ports, pins, and nets are
monitored for toggle activity.

Gate-Level Example
This Verilog gate-level example illustrates the following elements:

• Verilog cell description and schematic

• Verilog testbench

• SAIF output file from simulation

Gate-Level Verilog Module
Figure 12 shows the schematic for a simple multiplexer.

Figure 12 Schematic of Multiplexer Circuit: MUX21

c1
c2

c3
c4

sel

in1

in2

out

Example 7 is the Verilog module that describes the MUX21 design.

Example 7 Verilog Module of Multiplexer Circuit: MUX21
/*'timescale 10ps/ 1ps
*/
module MUX21(out,d1,d2,sel);
input d1, d2, sel;
output out;
 IV c1(.Z(sel_),.A(sel));
 AN2 c2(.Z(d1m),.A(d1),.B(sel_));
 AN2 c3(.Z(d2m),.A(d2),.B(sel));

Power Compiler™ User Guide
U-2022.12-SP3

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

 OR2 c4(.Z(out),.A(d1m),.B(d2m));
endmodule

Verilog Testbench
The Verilog testbench in Example 8 tests the MUX21 design by simulating it and
monitoring the various signals.

Example 8 Verilog Testbench for MUX21
 /* Begin test.v */
'timescale 1ns/ 10ps
module top;
 reg in1, in2, sel;
 parameter hazrate = 0.99;
 parameter haztime = 0.23;

 MUX21 m1(out,in1,in2,sel);

 initial
 begin
 // start monitoring
 $monitor($time,,,"in1=%b in2=%b sel=%b
 out=%b",in1,in2,sel,out);

 // read SAIF file of state or path dependent information
 $read_lib_saif (cell.saif);

 // define the monitoring scope
 $set_toggle_region (m1);

 $toggle_start;

 // test first data line passing 0
 sel = 0;
 in1 = 0;
 in2 = 0;

 // test first data line passing 1
 #10 in1 = 1;

 #10 sel = 1;

 // test second data line passing 1
 #10 in2 = 1;

 $toggle_stop;
 $toggle_report("my_1st", 1.0e-9,"top.m1", hazrate, haztime);

 // exit simulation
 $finish(2);
end
endmodule

Power Compiler™ User Guide
U-2022.12-SP3

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
Verilog Switching Activity Examples

Feedback

The $set_toggle_region command sets the monitoring scope in module m1 (the
testbench instantiation of MUX21). All subsequent toggle commands affect only registered
design objects and designs instantiated in registered objects. Thus, under m1, simulation
monitors internal nets and state- and path-dependent cells (in this simple example,
however, there are no subdesigns in m1).

The testbench example invokes $toggle_report command before exiting the simulation.
Make sure that you declare any parameters you use for $toggle_report command in
your testbench. These parameters appear at the top of the testbench in Example 8.

Gate-Level SAIF File
Example 9 shows a SAIF file generated from gate-level simulation of MUX21.

Example 9 $toggle_report Output File in SAIF
(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(DATE "Fri Oct 6 18:58:58 2000")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "VCS-MX Power Compiler")
(VERSION "3.3")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 99999.00)
(INSTANCE tb
 (INSTANCE dut
 (NET
 (n12159
 (T0 99529) (T1 470) (TX 1)
 (TC 46) (IG 0)
)
 (n12480
 (T0 0) (T1 99998) (TX 0)
 (TC 0) (IG 0)
)
 (n12117
 (T0 61) (T1 99938) (TX 0)
 (TC 26) (IG 0)
)
)
 (INSTANCE U12053
 (PORT
 (Z
 (T0 10) (T1 99989) (TX 0)
 (COND A (RISE)
 (IOPATH B (TC 0) (IG 0)
)
 COND A (FALL)
 (IOPATH B (TC 0) (IG 0)

Power Compiler™ User Guide
U-2022.12-SP3

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example

Feedback

)
 COND B (RISE)
 (IOPATH A (TC 0) (IG 0)
)
 COND B (FALL)
 (IOPATH A (TC 1) (IG 0)
)
 COND_DEFAULT (TC 1) (IG 0)
)
)
)
)
)
)
)

VHDL Switching Activity Example
This VHDL RTL example includes the following elements:

• RTL design description

• RTL testbench

• SAIF output file from simulation

VHDL Design Description
Example 10 shows the description for a design called ABC.

Example 10 RTL VHDL Design Description
library ieee;
use ieee.std_logic_1164.all;
entity ABC is
architecture beh of ABC is
 signal clk: std_logic := '0';
begin
 clk <= not clk after 5 ns;
end beh;

RTL Testbench
The RTL testbench in Example 11 simulates the design test described in Example 10. The
testbench instantiates the design ABC as ABC_ins.

Power Compiler™ User Guide
U-2022.12-SP3

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Generating SAIF Files
VHDL Switching Activity Example

Feedback

Example 11 RTL Testbench
library ieee;
use ieee.std_logic_1164.all;
entity test is
end entity
architecture testbench of test is
 component ABC is
 end component;
begin
 ABC_ins: ABC;
end testbench;

RTL SAIF File
This RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The power -report command creates
this file.

Example 12 is a SAIF file for the RTL VHDL description that is shown in Example 10.

Example 12 RTL SAIF File
/** There is no explicit set_gate_level_monitoring command, **/
/** and the default behavior is to monitor internal nets **/
(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(DATE "Tue May 5 05:56:35 2009")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "VCS-Scirocco-MX Power Compiler")
(VERSION "1.0")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 10000.00)
(INSTANCE TEST
 (INSTANCE ABC_INS
 (NET
 (CLK
 (T0 5000) (T1 5000) (TX 0)
 (TC 1999) (IG 0)
)
)
)
)
)

Power Compiler™ User Guide
U-2022.12-SP3

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Annotating Switching Activity

You can annotate switching activity on designs to generate accurate power calculations.

For information about the different types of switching activity information and how to
annotate it on gate-level designs, see the following topics:

• Types of Switching Activity to Annotate

• Annotating Switching Activity Using RTL SAIF Files

• Annotating Switching Activity Using Gate-Level SAIF Files

• Annotating Inferred Switching Activity

• Annotating Switching Activity Using the set_switching_activity Command

• Fully Versus Partially Annotating the Design

• Analyzing Switching Activity Annotation

• Removing the Switching Activity Annotation

• Design Objects Without Annotated Switching Activity

Types of Switching Activity to Annotate
The power of a design depends on the switching activity of the nets and cell pins. The
switching activity is used by the report_power command during power calculation.

The following types of switching activity can be annotated on design objects:

• Simple switching activity on design nets, ports, and cell pins. Simple switching activity
consists of the static probability and the toggle rate. The static probability is the fraction
of the time that the object is at logic 1. The toggle rate is the rate at which the design
object switches between logic 0 and logic 1.

• State-dependent toggle rates on input pins of leaf cells. As explained in Power
Modeling and Calculations, the internal power characterization of an input pin of a
library cell can be state dependent. The input pins of instances of such cells can be
annotated with state dependent toggle rates.

Power Compiler™ User Guide
U-2022.12-SP3

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files

Feedback

• State-dependent and path-dependent toggle rates on output pins of leaf cells. As
explained in Power Modeling and Calculations, the internal power characterization
of output pins can be state dependent and path dependent. Output pins of cells with
state- and path-dependent characterization can be annotated with state- and path-
dependent toggle rates.

• State-dependent static probability on leaf cells. Cell leakage power can be
characterized using state dependent leakage power tables (see Power Modeling and
Calculations). Such cells can be annotated with state-dependent static probability.

Annotating Switching Activity Using RTL SAIF Files
Optimal power analysis and optimization results occur when switching activities reported
in the RTL SAIF file are accurately associated with the correct design objects in the
gate-level netlist. For this to occur, the RTL names must map correctly to their gate-level
counterparts. During synthesis, however, mapping inaccuracies can occur that can affect
your annotation.

To ensure proper name mapping and annotation for RTL SAIF files, do the following:

1. At the beginning of synthesis, specify the saif_map -start command.

This command causes the Design Compiler tool to create a name-mapping database
during synthesis optimization that the Power Compiler tool then uses for power
analysis and optimization.

2. Before compiling, specify the read_saif -auto_map_names command to perform RTL
SAIF annotation using the name-mapping database.

Using the Name-Mapping Database
You can access the name-mapping database by using the saif_map command, which
allows you to query, report, modify, save, clear, and load the database. If the object names
require modification, use the read_saif -auto_map_names command. You can read a
regular, uncompressed file or a compressed file in gzip format by using the -input option
of the saif_map command.

After you run the read_saif -auto_map_names command, review the name-mapping
database using the following commands:

read_saif -auto_map_names -input ../sim/rtl.saif \
 -instance_name tb/dut -verbose
report_saif -hier -rtl_saif -missing

Power Compiler™ User Guide
U-2022.12-SP3

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files

Feedback

You can manually add a mapping entry with the saif_map -add_name command as
follows:

reset_switching_activity
saif_map -add_name "Ax_ins" [get_ports AX_usr_ins]
read_saif -auto_map_names -input ../sim/rtl.saif \
 -instance_name tb/dut

In this example, you manually map the Ax_ins RTL SAIF object and the AX_usr_ins
design object . When you run the read_saif -auto_map_names command, the tool
performs annotation again using the modified database.

The name-mapping mechanism no longer requires initialization. With this methodology, the
saif_map -start command is no longer required before reading RTL source files.

Instead, dclink callback functions are registered automatically during the analyze,
elaborate, or read command. The call-back functions used to track the mapping are
registered only when you initiate the saif_map -start command. Thus, the name-
mapping database can be initialized even without any SAIF files.

Figure 13 shows the flow diagram for the recommended flow.

Figure 13 Recommended flow

The UI is consistent with the Fusion Compiler and IC Compiler II tools, where the
saif_map -start command needs to be called to start the tracking of the name
database.

To turn off this feature, set the following variable to FALSE:

set pwr_saif_map_auto_start FALSE
saif_map -start

Power Compiler™ User Guide
U-2022.12-SP3

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files

Feedback

If you have not set up a saif_name for an object in the SAIF file using the -set_name or
-add_name options, the saif_map -get_name command derives a saif_name and returns
it.

To force the inclusion of all synthesis invariant points in the mapping file regardless of
whether or not the objects have undergone a major name change, use the -essential
option of the saif_map -write_map -type ptpx command. The -essential option only
applies to the PrimePower format mapping file in which the following objects are included:

• All primary inputs

• All register output pins

• All pre-existing integrated clock-gating (ICG) output pins

• All macro input and output pins

Integrating the RTL Annotation With the PrimePower tool
The PrimePower tool requires accurate RTL-to-gate name-mapping correspondence
to perform accurate power analysis. Use the Power Compiler tool to output the name-
mapping files that the PrimePower tool uses for RTL-to-gate name mapping.

After using the read_saif command, specify the saif_map command as follows to
generate a name-mapping file that can be read directly into PrimePower:

saif_map -type primepower -write_map file_name

The name-mapping output file appears as follows:

set_rtl_to_gate_name -rtl{clk_sn} -gate clk_sn
set_rtl_to_gate_name -rtl{rx_top/data_i[9]} \
 -gate rx_top_data_i_reg<9>
...

Example 13 shows the recommended flow using RTL SAIF file to ensure optimal power
analysis during synthesis and get the proper names for PrimePower.

Power Compiler™ User Guide
U-2022.12-SP3

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files

Feedback

Example 13 Annotating Switching Activity Using RTL SAIF Files Flow
saif_map -start
read_verilog rtl_design.v
link
create_clock clk
read_saif -auto_map_names -input ../sim/rtl.saif \
 -instance_name tb/dut
report_saif -hierarchy -rtl_saif
compile_ultra
report_saif -hierarchy -rtl_saif
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output mapped_design.v
saif_map -type primepower -write_map saifmap.primepower.tcl

Annotating Switching Activity Using Gate-Level SAIF Files
You can use either the read_saif or merge_saif command to annotate switching activity.
The read_saif command reads a SAIF file and annotates switching activity information
on the nets, pins, and ports of the design.

The merge_saif command reads a list of SAIF files, computes the toggle rates and static
probability, and annotates the switching activity information on the nets, pins, and ports of
the design. This command creates a merged-output SAIF file.

Reading SAIF Files Using the read_saif Command
To annotate gate-level switching activity onto the gate-level netlist, use the read_saif
command. For example,

dc_shell> read_saif -input myfile.saif -auto_map_names \
 -instance_name T1/DUT/U1
In this example, the read_saif command annotates the information in the input file
named myfile.saif onto the current gate-level design, U1. The -instance_name option
identifies the hierarchical location of the current design in the simulation environment.

The input file specified using the -input option of the read_saif command can be a text
file or a compressed gzip file with a .gzip extension. For example,

dc_shell> read_saif -input myfile.gzip -instance_name T1/DUT/U1
A SAIF file is usually generated in the HDL simulation flow, where a simulation testbench
instantiates the design being simulated and provides simulation vectors. The generated
SAIF file contains the switching activity information organized in a hierarchical fashion,
where the hierarchy of the SAIF file reflects the hierarchy of the simulation testbench. If a
design is instantiated in the testbench (tb) as the instance i, then the SAIF file contains the
switching activity information for the design under the hierarchy tb/i. In this case, specify

Power Compiler™ User Guide
U-2022.12-SP3

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files

Feedback

the tb/i instance name to the -instance_name option when reading the SAIF file as
follows:

dc_shell> read_saif -input des.saif -instance_name tb/i
Specifying an invalid instance name results in having all or most of the switching activity
stored in the SAIF file not read properly. An error message is printed if none of the
information stored in the SAIF file is read by the read_saif command.

The SAIF file contains time duration values and specifies a time unit which is usually the
time unit used during simulation. When reading the SAIF file, the read_saif command
automatically converts the SAIF time units to the synthesis time units. The synthesis time
units are obtained from the time units of the target or link library. When the synthesis time
units cannot be obtained, the read_saif command prints a warning message and uses a
default time unit of 1 ns. In such cases, you can use the -scale and -unit_base options
to specify the intended synthesis time unit. For example, if a target library with the time
unit of 100 ps is used for synthesis and a SAIF file is being read before the library is used
(for linking or synthesis), use the options as follows:

dc_shell> read_saif ... -scale 100 -unit_base ps
Valid arguments for the -unit_base option are s, ms, us, ns, ps, and fs. The argument of
the -scale option can be any floating-point numerical value.

After reading the SAIF file, the report_lib command gives the time units specified in
a logic library. The report_power command gives the synthesis library time units used
during power calculations.

Reading SAIF Files Using the merge_saif Command
The merge_saif command can be used to read switching activity information from
multiple SAIF files. Input SAIF files are given individual weights, and a weighted sum of
the switching activities is annotated. This command can be used in flows where different
SAIF files are generated for different modes of the same design. The switching activity
from all the different modes can then be used for power calculations and optimization.

The following example shows how to use the merge_saif command. In this example,
the design has three modes: standby, slow, and fast; and the SAIF files are standby.saif,
slow.saif, and fast.saif. Depending on the expected use of the design, specify the following
weight for each SAIF file, with the total weight always equal to 100 percent:

standby.saif: 80%; slow.saif: 5%; fast.saif: 15%

Power Compiler™ User Guide
U-2022.12-SP3

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Inferred Switching Activity

Feedback

The SAIF files are read as shown in the following example:

dc_shell> merge_saif -input_list \
 { -input standby.saif -weight 80 \
 -input slow.saif -weight 5 \
 -input fast.saif -weight 15 } \
 -instance_name tb/i
The -output option of the merge_saif command can be used to generate a SAIF file
containing the weighted sum of the switching activities. When the output file is specified
with the .gzip extension, the tool writes a compressed file in gzip format. If the output file is
specified with the .saif extension, the tool writes an uncompressed SAIF format file.

After the merge_saif command reads each individual SAIF file, the tool uses a switching
activity propagation mechanism to estimate the switching activity of design nets that are
not included in the SAIF file. You can use the following command to generate a gate-level
SAIF file with estimated switching activity information from an RTL SAIF file:

dc_shell> merge_saif -input_list { -input rtl.saif -weight 100} \
 -instance_name tb/i -output estimate.saif
The -simple_merge option can be used to switch off the switching activity propagation
mechanism when the information in the SAIF files is being merged.

The syntax of the merge_saif command is the same as that of the read_saif command
with the following exceptions:

• A weighted input file list is specified instead of a single input file.

• The -simple_merge and -output options can be used with the merge_saif
command.

Annotating Inferred Switching Activity
The infer_switching_activity command detects the drivers of special pins such as
asynchronous set, asynchronous clear, synchronous set, and synchronous clear, and
suggests values for toggle rate and static probability.

The infer_switching_activity command reports the current and proposed static
probability and toggle rate, as shown in the following example:

dc_shell> infer_switching_activity
Information: Updating design information... (UID-85)

Created by infer_switching_activity ...

 Current Current Proposed Proposed
 Static Toggle Static Toggle

Power Compiler™ User Guide
U-2022.12-SP3

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using the set_switching_activity Command

Feedback

Objects Type Probability Rate Probability Rate

U646/Z driver None None 1.0 0.0
U645/ZN driver None None 1.0 0.0

When you specify the -apply option, the proposed switching activity is annotated on the
drivers listed in the output. After applying the switching activity, the Power Compiler tool
uses the applied values to report the power consumption.

Use the -sci_based option to report or apply activity on essential points based on the
type of special control inputs in the load. The -sci_based option can be one of the
following values: sci, non_sci, or all.

To specify which scenario to apply annotation or which scenario to report, use the
-scenarios option.

The -scenarios option can be used to specify which set of scenarios to infer switching
activity. The -sci_based option allows you to customize which objects to infer switching
activity. The -sci_based option has the following values: sci, non_sci, or all.

Annotating Switching Activity Using the set_switching_activity
Command

The set_switching_activity command annotates switching activity on design objects
such as pins, ports, nets, and cells. The types of activity that you can annotate include
state- and path-dependent toggle rates and state-dependent static probabilities.

Use the -static_probability option to specify the static probability value, which is a
floating-point number between 0.0 and 1.0. Static probability is the fraction of time that the
signal is at logic 1.

Use the -toggle_rate option to specify the toggle rate value, which is a floating point
number. Toggle rate is the number of low-to-high or high-to-low transitions made by the
signal during a period of time.

The -toggle_rate option differs from the toggle rate used for modeling switching activity.
The -toggle_rate option expresses the sum of the rise and fall transitions that the signal
makes during an entire simulation, clock period, or other period you specify. The Power
Compiler tool uses the -toggle_rate and -period (or -clock) options to determine the
actual toggle rate per unit of time.

The following example specifies that the net net1 is at logic 1 for 20 percent of the time,
and that it transitions between logic values 0 and 1 an average of 10 times in 1000 time

Power Compiler™ User Guide
U-2022.12-SP3

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using the set_switching_activity Command

Feedback

units. The time unit used for the toggle rate is the time unit defined in the target library. The
-period option is optional and defaults to a value of 1, when it is not specified.

 dc_shell> set_switching_activity [get_nets net1] \
 -static_probability 0.2 -toggle_rate 10 -period 1000
Use the -state_condition option to annotate state-dependent toggle rates on pins or
state-dependent static probabilities on cells. The state-dependent toggle rates can be
annotated only if the library is characterized with state-dependent power tables for internal
power, for the pins of the library cell. Similarly, state-dependent static probabilities can be
annotated only if the library is characterized with state-dependent power tables for leakage
power, for the library cells.

The following example shows how to use the -state_condition option to annotate the
state-dependent toggle rates on pins. It specifies that the pin ff1/Q toggles 0.01 times
when the pin D is at logic 1, and 0.03 times when the pin D is at logic 0.

dc_shell> set_switching_activity [get_pins ff1/Q] -toggle_rate 0.01 \
 -state_condition "D"
dc_shell> set_switching_activity [get_pins ff1/Q] -toggle_rate 0.03 \
 -state_condition "!D"
Use the -rise_ratio option to specify the ratio of rise transitions to the total transitions
for the specified toggle rate. You can also use this option with state-dependent toggle rates
to specify the ratio of rise transitions to fall transitions for the specified state. The following
example specifies that the xor1/Y pin toggles 0.01 times when the cell is in A state, and
that 90 percent of these toggles are rise toggles.

dc_shell> set_switching_activity [get_pins xor1/Y] -toggle_rate 0.01 \
 -state_condition "A" -rise_ratio 0.9
Use the -path_sources option to specify the path-dependent toggle rates. The following
example specifies that the and1/Y pin toggles 0.02 times because of a toggle on the input
pin A, but never toggles because of a toggle on the B pin. Toggle rates that are both state-
and path-dependent are specified by using the -state_condition and -path_sources
options together.

dc_shell> set_switching_activity [get_pins and1/Y] -toggle_rate 0.02 \
 -path_sources "A"
dc_shell> set_switching_activity [get_pins and1/Y] -toggle_rate 0.00 \
 -path_sources "B"
The state-dependent static probabilities can be annotated using the -state_condition
option. The following example specifies that the cell named AND1 is at the A & B state for
10 percent of the time, at the A & !B state for 70 percent of the time, and at the !A state for
20 percent of the time.

dc_shell> set_switching_activity [get_cells AND1] \
 -static_probability 0.1 -state_condition "A & B"

Power Compiler™ User Guide
U-2022.12-SP3

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Fully Versus Partially Annotating the Design

Feedback

dc_shell> set_switching_activity [get_cells AND1] \
 -static_probability 0.7 -state_condition "A & !B"
dc_shell> set_switching_activity [get_cells AND1] \
 -static_probability 0.2 -state_condition "!A"
To implicitly select outputs or cells to annotate, use the -type option and specify a list of
following types of objects:

• Input, output, inout ports of design or input, output, inout pin of hierarchical cells

• Output of registers, output of sequential cells

• Output of black box cells

• Output of tristate cells

• Output of flip-flops clocked by the specified clocks

• Output of clock-gating cells

• Output of memory cells

• Nets

When you use the set_switching_activity command to annotate switching activity
on all inputs, this includes the clock inputs as well. This results in overriding the switching
activity on the clock inputs. To avoid overriding the switching activity on clock inputs,
specify all inputs except the clock inputs, as shown in the following example:

dc_shell> set_switching_activity [remove_from_collection \
 [all_inputs] clk] \
 -static_probability sp_value -toggle_rate tr_value \
 -period period_value

Fully Versus Partially Annotating the Design
For the highest accuracy of power analysis, annotate all the elements in your design. To
annotate all design elements, you must use gate-level simulation to monitor all the nodes
of the design.

Using gate-level simulation, you can perform the following activities:

• Capture state- and path-dependent switching activity

• Capture switching activity that considers glitching (full-timing gate-level simulation only)

After layout, you can increase accuracy further by annotating wire loads with more
accurate net capacitance values. However, if the design layout is performed at the foundry,
you might not have access to the post-layout information.

Power Compiler™ User Guide
U-2022.12-SP3

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Analyzing Switching Activity Annotation

Feedback

If you annotate some design elements, the Power Compiler tool uses an internal zero-
delay simulation to propagate switching activity through nonannotated nets in your design.
The tool uses internal simulation if it encounters nonannotated nets during power analysis.

During switching activity propagation, the tool tracks which design elements are user-
annotated with the set_switching_activity command and which are not. In calculating
power, the tool does not overwrite user-annotated switching activity with propagated
switching activity.

Power analysis and power optimization both require that you annotate at least the
following:

• Primary inputs

• Outputs of synthesis-invariant elements such as black box cells

• Three-state devices

• Sequential elements

• Hierarchical ports

Note:
When performing power analysis on a partially annotated design, it is
recommended that you specify a clock before running the report_power
command. The internal zero-delay simulation requires a real or virtual clock to
properly compute and propagate switching activity through the design. Use the
create_clock command to create a clock. If no clock is available, you get a
PWR-80 warning message. This does not stop propagation but the estimated
switching activity might not be accurate.

Analyzing Switching Activity Annotation
To report the annotated switching activity, use the report_saif or the report_activity
commands. To query the activity on a pin or net, use the get_switching_activity
command.

This section covers the following topics:

• Using the report_saif Command to Report Switching Activity

• Using the report_activity Command to Report Switching Activity

• Retrieving Switching Activity on a Pin or Net

Power Compiler™ User Guide
U-2022.12-SP3

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Analyzing Switching Activity Annotation

Feedback

Using the report_saif Command to Report Switching Activity
The report_saif command can be used to display information about the annotated
switching activity. The report generated by this command shows the number and
percentage of nets, ports, and pins annotated with user-annotated switching activity,
default switching activity, and propagated switching activity, respectively. The command
does not consider clock-gating cells as synthesis-invariant because these cells can be
deleted or inserted during the optimization step. The following example shows the report
generated by the command:

dc_shell> report_saif -hierarchy

**
Report : saif
 -hierarchy
Design : des
Version: ...
Date : ...
**

 User Default Propagated
Object type Annotated (%) Annotated (%) Activity (%) Total

 Nets 251(99.21%) 1(0.40%) 1(0.40%) 253
 Ports 59(98.33%) 1(1.67%) 0(0.00%) 60
 Pins 251(99.60%) 0(0.00%) 1(0.40%) 252

If the -hierarchy option is used, the switching activity information is generated for all
design objects in the design hierarchy starting from the current instance. If this option
is missing, then only design objects in the hierarchical level of the current instance are
considered.

If the -rtl_saif option is used, switching activity information for RTL-invariant objects is
reported. Otherwise switching activity information for all design nets, ports, and pins are
reported. You can use the -rtl_saif option after reading an RTL SAIF file.

The -missing option can be used to display the design objects that do not have user-
annotated switching activity information.

Using the report_activity Command to Report Switching Activity
The report_activity command displays information about the annotated switching
activity for the following activity types:

• Annotated

• Default

Power Compiler™ User Guide
U-2022.12-SP3

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Removing the Switching Activity Annotation

Feedback

• Inferred

• Propagated

• Simulated

To display a report showing the annotation on RTL-invariant objects similar to the report
generated by the read_saif -rtl_saif -hierarchy command, use the -rtl option.

Retrieving Switching Activity on a Pin or Net
To get the activity on a pin, port, cell, or net, use the get_switching_activity command.

The following example shows the activity for a repeater output pin:

dc_shell> get_switching_activity APSHOLD_15/Z -related_clock
(probability = 0.173116,toggle_rate = 0.167328, type = propagated,
 related_clock = Rclk)

In this example, the activity was derived by propagating activity along the logic path rather
than being annotated from constraints or from a SAIF file. The related clock (Rclk) is the
clock used for deriving default activity for this pin.

Removing the Switching Activity Annotation
Switching activity annotation can be removed from all current design objects using the
reset_switching_activity command. This command removes all the simple and state-
and path-dependent switching activity information.

In the following example, an RTL SAIF file is read before a design is compiled with power
constraints and then a more accurate gate-level SAIF file is used to generate power
reports:

 read_saif -map_names -input rtl.back.saif -instance_name tb_rtl/i
 compile_ultra
 ...
 reset_switching_activity
 read_saif -input gate.back.saif -instance_name tb_gate/i
 report_power

Note that in this example, the SAIF map is already initialized.

You can selectively remove the switching activity information from individual design objects
using the following command:

dc_shell> set_switching_activity objects

Power Compiler™ User Guide
U-2022.12-SP3

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity

Feedback

Design Objects Without Annotated Switching Activity
The Power Compiler tool needs switching activity information for all design nets and state-
and path-dependent information for all design cells and pins to calculate power. Switching
activity that is not user annotated is estimated automatically before power is calculated.
This is performed in the following stages:

• The user-annotated and default-annotated switching activities are used to derive the
simple static probability and toggle rate information for the rest of the design nets.

• The simple switching activity information (user-annotated or estimated) is used to
derive the non-annotated state- and path-dependent switching activity.

Default Switching Activity Values
The following types of nets are automatically annotated with switching activity based on
the logic of the design:

• Nets driven by constants: A toggle rate value of 0.0 is used. A static probability value of
0.0 is used for logic 0 constants, while a value of 1.0 is used for logic 1 constants.

• Nets driven by clocks: The toggle rate and static probability are derived from the clock
waveform.

• Nets driving or driven by buffers: The switching activity of a nonannotated buffer input
or output is set to match the switching activity already determined for the other side of
the buffer.

• Nets driving or driven by inverters: The switching activity of the inverter input or output
is based on the switching activity already determined for the other side of the inverter.
The toggle rate is the same and the static probability is complementary.

• Flip-flop outputs: If a flip-flop cell has both Q and QN output ports and only one of the
outputs is annotated, then the other output is assigned the same toggle rate and the
complementary static probability.

• Inputs and outputs of black box cells: The switching activity cannot be propagated
through a black box. Therefore, the default switching activity is annotated on the
outputs of a black box.

The default switching activity depends on the value of the
power_default_static_probability and power_default_toggle_rate
variables. The default static probability is 0.5. To specify a different value, set the
power_default_static_probability variable to the required value.

The default toggle rate is 0.1 multiplied by the related clock frequency specified by the
-clock option of the set_switching_activity command. In other words, the net is

Power Compiler™ User Guide
U-2022.12-SP3

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Annotating Switching Activity
Design Objects Without Annotated Switching Activity

Feedback

assumed to toggle one time every 10 clock periods on average. If no related clock is
specified for a net, the clock with the highest frequency is used. To specify a different
toggle rate multiplier, set the power_default_toggle_rate variable to the required
multiplier value (default 0.1).

Propagating the Switching Activity
For nets that are not user-annotated and not assigned switching activity information by
default, the tool users a zero-delay simulator to propagate switching activity from known
nets. Random simulation vectors are generated for the user and default annotated nets
depending on the annotated toggle rate and static probability values. The zero-delay
simulator uses the functionality of the design cells and the random vectors to obtain the
switching activity on nonannotated cell outputs.

The number of simulation steps performed by this mechanism depends on the analysis
effort option applied to the report_power command. User and default annotated switching
activity values are never overwritten by values derived by the propagation mechanism.

However, if a design net is not annotated with both toggle rate and static probability
values, then the switching activity on this net cannot be used by the propagation
mechanism. For such nets, the nonannotated value is estimated by the propagation
mechanism.

Deriving the State- and Path-Dependent Switching Activity
If an RTL SAIF file or a gate-level SAIF file without state- and path-dependent switching
information is used to annotate the design switching activity, the Power Compiler tool
needs to estimate the required state- and path-dependent switching activity information.
After obtaining the simple switching activity (from user annotation, or by switching activity
propagation), the tool estimates the state-dependent static probability information for every
cell, and the state- and path-dependent toggle rate information for every cell pin. This
information is obtained from the switching activities of each cell input and output pins.
Although the state- and path-dependent estimation mechanism produces accurate power
calculations, for best power results, use the gate-level SAIF files with state- and path-
dependent information.

Power Compiler™ User Guide
U-2022.12-SP3

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Performing Power Analysis

The Power Compiler tool analyzes and reports the power consumption of elements in the
design.

For information about power analysis, see the following topics:

• Overview

• Identifying Power and Accuracy

• Performing Gate-Level Power Analysis

• Analyzing Power With Partially Annotated Designs

• Power Correlation

• Analyzing the Design For Power Analysis

• Characterizing a Design for Power

• Reporting the Power Attributes of Library Cells

• Using Power Derate Factors

• Generating Power Reports

Overview
The report_power command analyzes and reports the power consumption of the various
elements of the design. Before you execute this command, you must capture the switching
activity, map the design to gates, and annotate the design.

The tool creates power reports for the following design elements:

• Design

• Modules

• Nets

• Cells or groups of cells of a specific type

• Scenarios, for multicorner-multimode designs

Power Compiler™ User Guide
U-2022.12-SP3

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Identifying Power and Accuracy

Feedback

The report_power command uses a Power Compiler license. When the command is
completed, the license is released. If a license is not available, the command terminates
with an error message.

To keep the license after completing the report_power command, set the following
variable:

dc_shell> set_app_var power_keep_license_after_power_commands true

Identifying Power and Accuracy
The Power Compiler tool uses several methods to compute the power of the design. The
tool considers the type and amount of switching activity annotated on the design and
chooses the most accurate method to compute the power. The method used depends on
whether you annotate some or all of the elements in your design.

To analyze a gate-level design, the following inputs are required:

• Switching activity

• Logic library

• Gate-level netlist

Figure 14 shows the inputs for the Power Compiler tool.

Figure 14 Inputs to the Power Compiler Tool

Gate-Level
Simulation

RTL
Simulation

Power Compiler

Technology
Library

Power Report

Gate-Level
Netlist

or

For best results, use logic libraries that have been characterized with power information.
If the library has only pin capacitance and voltage, but no power information, the Power
Compiler tool reports only the switching power of the net. The switching power is a
function of the pin capacitance, voltage, and toggle frequency. Use the report_power
command to display the results.

Power Compiler™ User Guide
U-2022.12-SP3

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Identifying Power and Accuracy

Feedback

Factors That Affect the Accuracy of Power Analysis
The following factors can affect the accuracy of power analysis:

• Switching activity annotation

• Delay model

• Correlation

• Complex cells

Switching Activity Annotation
Annotating switching activity relies on the ability to map the names of the synthesis-
invariant objects in the RTL source to the equivalent object names in the gate-level netlist.
Mapping inconsistencies might cause the SAIF file to be incorrectly or incompletely
annotated, which might affect the power analysis results. In turn, the quality of these
results affects the results of power optimizations that rely on the annotation. For more
information, see Annotating Switching Activity Using RTL SAIF Files.

Clock Frequency Scaling
If a design is synthesized at a frequency that is different from the frequency the simulation
is run, the SAIF file generated from the simulation reflects this difference. This causes a
mismatch in timing and affects dynamic power analysis.

To correct this problem, the Power Compiler tool allows you to scale the clock frequency,
resulting in a more accurate dynamic power analysis.

To enable clock frequency scaling, set the power_enable_clock_scaling variable to
true. Then, run the set_power_clock_scaling command to specify clock scaling for
power analysis. The command accepts either the -period option, which specifies the
clock period to which the clock is to be scaled, or the -ratio option, which specifies a
scaling value to be applied to the toggle rates of pins and nets.

When you use the set_power_clock_scaling command, the tool scales only the
switching activity applied with the read_saif command. The tool does not scale the
switching activity applied with the set_switching_activity command.

Delay Model
The Power Compiler tool uses a zero-delay model for internal simulation and for
propagation of switching activity during power analysis. This zero-delay model assumes
that the signal propagates instantly through a gate (with no elapsed time).

The zero-delay model has the advantage of enabling fast and relatively accurate
estimation of power dissipation. The zero-delay model does not include the power
dissipated due to glitching. If your power analysis must consider glitching, use power

Power Compiler™ User Guide
U-2022.12-SP3

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Identifying Power and Accuracy

Feedback

analysis after annotating switching activity from full-timing gate-level simulation. The
internal simulation is used only for nodes that do not have user-annotated switching
activity.

Switching Activity Correlation
Although the tool propagates switching activity through the design, the logic states of
gate inputs might have interdependencies that affect the accuracy of a statistical model.
Such interdependency of inputs is called correlation. Correlation affects the accuracy of
propagation of toggle rates, which subsequently affects the accuracy of power analysis.

The Power Compiler tool considers correlation within combinational and sequential
logic, resulting in more accurate analysis of switching activity for many types of designs.
The types of circuits that exhibit high internal correlation are designs with reconvergent
fanouts, multipliers, and parity trees. However, the tool has no access to information about
correlation external to the design. If correlation exists between the primary inputs of the
design, the Power Compiler tool does not recognize the correlation.

The Power Compiler tool considers correlation only within certain memory and CPU
thresholds, beyond which correlation is ignored. As the design size increases, the tool
might reach its memory limit and cannot fully consider all internal correlation.

As an example of correlation, consider a 4-bit arithmetic logic unit (ALU) that performs
five instructions. The data bus is 4 bits wide, and the instruction lines are 3 bits wide.
The assumption of uncorrelated inputs is valid for the data bus inputs but fails for the
instruction inputs if some instructions are used more often.

If the design has black boxes, such as RAM, ROM, or macro cells, you can annotate
switching activity at the outputs of these elements.

Overriding Library Cell Power Characterization
The set_cell_internal_power command sets or removes the power_value attribute
on specified pins. The power_value attribute represents the power consumption for a
single toggle of the pin. If a cell has at least one such annotated pin, its internal power
is calculated by summing the products of the annotated power values and pin toggle
rates. If the command is issued without setting the power_value attribute, the existing
power_value attributes are removed from the specified pins. If the power_value attribute
is specified without a unit, the power unit of the library is used. If the library does not have
a defined unit, the tool issues an error message.

Use the set_cell_internal_power command to override a cell's library power
characterization in situations where that characterization does not apply. This is most
common when you manually replace a piece of logic with a single cell and you want
the single cell's power consumption to represent the replaced logic. For example, if
you replace a clock tree with a single buffer cell, you can set the power_value attribute
on the output pin of the buffer cell with the value of the power consumption for one
clock toggle of the entire clock tree. Although the library cell is characterized, its power

Power Compiler™ User Guide
U-2022.12-SP3

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis

Feedback

consumption is calculated using the value of the power_value attribute set by the
set_cell_internal_power command.

Performing Gate-Level Power Analysis
After you annotate the design with switching activity, use the report_power command to
report the power of the design.

To perform power analysis on a partially annotated design, specify a clock with the
create_clock command before invoking the report_power command. The internal zero-
delay simulation requires a real or virtual clock to properly compute switching activity.

Using the report_power Command
The report_power command calculates and reports power for a design. When you do
not annotate switching activity on the nets, the command performs zero-delay simulation
to propagate switching activity for the nets. To compute the switching activity for internal
nets, the command uses the switching activity for startpoint nets (if available). The nets
that are annotated using the set_switching_activity or the read_saif command are
not overwritten during switching activity propagation.

If you annotate switching activity on all the elements of the design, the Power Compiler
tool does not propagate any switching activity through the design. Instead, the tool uses
the annotated gate-level switching activity.

Command options modify the report with different sorting modes and with verbose and
cumulative options. By default, the tool prints a power summary for the subdesign that
contains the specified instance subdesign in the context of the higher-level design.

Power analysis uses net loads during the power calculation. For nets that do not have
back-annotated capacitance, the tool estimates the net load from the appropriate wire load
model from the logic library.

In topographical mode, the report_power command reports the correlated power of the
design as the sum of estimated clock tree power and netlist power. For more information,
see Generating Power Reports.

The report_power command calculates and reports static and dynamic power for the
current design. The tool uses user-annotated switching activity to calculate the net
switching power, cell internal power, and cell leakage power. When you do not specify any
options, the report_power command displays the summary of power values only for the
current design. If you specify a cell instance, the command reports the summary power
values for the specified instance. The command options allow you to specify cells, nets,
scenarios, and other conditions.

Power Compiler™ User Guide
U-2022.12-SP3

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis

Feedback

Some of the options for the report_power command are as follows:

-sort_mode mode
The report_power -cell command uses the cell_internal_power value
as the default for the -sort_mode option. For example, if the logic library does
not have any internal power modeling for leaf cells, the report_power -cell
-nworst 10 command reports only the worst ten cells.

When you use the report_power -net command, the net_switching_power
value is the default for the sorting mode. If both the -net and -cell options are
specified and a sort mode is explicitly specified, the selected sort mode is used
for both the cell and net reports. If both options are specified without an explicit
sort mode, the sort mode is by total dynamic power.

-histogram
This option prints a histogram-style report with the number of nets in each power
range. Use the -exclude_leq and -exclude_geq options, to exclude data
values less than or greater than specified threshold values. The -histogram
option must be used with one or both of the -net or -cell options.

-groups list_of_cell_group
This option reports power for the specified power groups. Without this option,
the report uses the predefined groups listed in Table 7. The -groups option is
mutually exclusive with the -net, -hierarchy, -levels, and -only options.

Table 7 lists the power groups and the cell types that belong to the group in
descending order of priority.

-hierarchy
This option enables you to view internal, switching, and leakage power
consumed in your design hierarchy, on a block-by-block basis. The hierarchical
levels of the design are indicated by indentations.

-levels level_value
Use this option only with the -hierarchy option. This option enables you to
limit the depth of the hierarchy tree displayed in the report. The level_value
setting should be an integer number greater than or equal to 1. For example, to
see the power results for all blocks up to 2 levels from the top, use the following
command:

dc_shell> report_power -hierarchy -levels 2

Power Compiler™ User Guide
U-2022.12-SP3

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis

Feedback

-scenarios
This option reports the power details for the specified list of scenarios for a
multimode design. Inactive scenarios are not reported. When this option is not
used, only the current scenario is reported.

Table 7 Groups and Their Cell Types in Descending Order of Priority

Group Cell types belonging to the group

io_pad Cells defined in the pad_cell group in the library

memory Cells defined in the memory group in the library

black_box Cells that do not have any functional description in the library

clock_network Cells in the clock network, excluding the io_pad cells

register Latches and flip-flops driven by the clock network, excluding the
io_pad and black_box cells

sequential Latches and flip-flops clocked by signals that are not in the
clock network

combinational Cells that have a functional description and are not sequential
cells

Using the report_power_calculation Command
The Power Compiler tool calculates both dynamic and leakage power. The dynamic power
consists of internal power on pins and switching power on nets. Both internal and leakage
power might be state-dependent.

The report_power command provides a comprehensive report. In addition, the
report_power_calculation command shows how the reported power numbers are
derived from inputs such as the library, simulation data, the netlist, and parasitics. The
report_power_calculation command does not work on libraries that have built-in
security to protect the power table numbers. This restriction does not apply to switching
power.

Power Compiler™ User Guide
U-2022.12-SP3

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Analyzing Power With Partially Annotated Designs

Feedback

Analyzing Power With Partially Annotated Designs
If you invoke power analysis without annotating any switching activity, the Power Compiler
tool uses the following defaults for the primary inputs of your design:

• P1 = 0.5 (the signal is in the 1 state 50 percent of the time)

P1 is the probability that input P is at logic state 1. For definitions of static probability,
P1 and toggle rate (TR), see Types of Switching Activity to Annotate.

• TR = 0.1 * fclk (the signal switches one time, every 10 clock cycles)

fclk is the frequency of the input signal's related clock, as defined by the
set_switching_activity command. You can specify the related clock explicitly with
its clock name or implicitly with the asterisk symbol (*). In the latter case, the tool infers
a related clock automatically. If the input port does not have a related clock, the tool
uses the fastest clock in the design.

The defaults for static probability and toggle rate are often reasonable choices for data bus
lines. However, the defaults might be unacceptable for some signals, such as a reset or a
test-enable signal.

If you do not annotate toggle information for primary inputs, these inputs assume the
default toggle value. If the input or logic connected to this input is heavily loaded, the
results might be significantly different from what you expect.

To change the defaults for switching activity and static probability, set the following
variables:

• power_default_static_probability
This variable sets the static probability to use for unannotated nets. The default is 0.5.

• power_default_toggle_rate
This variable sets the toggle rate for unannotated nets. The default is 0.1.

• power_default_toggle_rate_type
The default is fastest_clock, which causes the tool to calculate the default toggle
rate by multiplying the fastest clock frequency by the default toggle rate. Set this
variable to absolute when the design object does not have a specified related clock.
In this case, the tool uses the value of the power_default_toggle_rate variable.

The following command sets the default static probability to 0.3:

dc_shell> set_app_var power_default_static_probability 0.3

Power Compiler™ User Guide
U-2022.12-SP3

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Power Correlation

Feedback

The following command sets the default toggle rate to 0.4 times the toggle rate of the
highest-frequency clock:

dc_shell> set_app_var power_default_toggle_rate 0.4

Power Correlation
Power correlation refers to the relationship between two power calculations: power after
logic synthesis and power after place and route. Power after place and route is the final
power, and you might want to know this number early in the process so you can take
corrective action if the number exceeds your limits. Power correlation is supported only in
Design Compiler topographical mode.

In dc_shell, the power reported after logic synthesis is often significantly different from the
final power, and is therefore not a good predictor for final power. This differential is caused
by three factors:

• Logic synthesis uses wire load models.

• High-fanout nets are not synthesized.

• Clock trees do not exist in the design at the time of synthesis.

Performing logic synthesis within the Design Compiler topographical domain shell
addresses the first two factors because this shell uses a virtual layout, not wire load
models, and high-fanout nets are synthesized automatically.

To eliminate the differential caused by the third factor. perform clock-tree estimation within
dc_shell-topo.

To improve correlation in cases with abnormal floor plans, use the physical constraints
extracted from the floor plan.

Performing Power Correlation
Correlated power refers to the design power that is added to the estimated clock-tree
power after logic synthesis in Design Compiler topographical mode. Correlated power is
also referred to as estimated total power.

To calculate the correlated power, enable the power prediction feature by using the
set_power_prediction command.

Specify the clock tree references by using the -ct_references option to perform clock-
tree estimation, which improves the correlation results.

When the power prediction feature is enabled, the report_power command reports the
correlated power after the design has been mapped to technology-specific cells. When

Power Compiler™ User Guide
U-2022.12-SP3

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Analyzing the Design For Power Analysis

Feedback

the power prediction feature is disabled, the report_power command reports only the
total power, static power, and dynamic power, without considering the estimated clock-tree
power.

The power prediction setting is saved with the design if the design is saved in the .ddc
(Synopsys logical database format) binary file format.

Power Correlation Script
The following example script correlates power after you have set up the design
environment and applied synthesis constraints:

read_verilog
set_power_prediction
compile_ultra
report_power
write -format ddc -output design.ddc

In Design Compiler topographical mode, the report_power command reports estimated
total power, which includes the clock-tree contributions for internal, net-switching, and
leakage power.

Analyzing the Design For Power Analysis
Follow these steps to get quick results from gate-level power analysis:

1. Create a SAIF file.

This step requires RTL simulation. For information, see Generating SAIF Files.

2. Compile the design to gates, using various suitable options.

3. Annotate switching activity on primary inputs and other synthesis-invariant elements of
the gate-level design.

For information about using SAIF files from RTL simulation to annotate switching
activity, see Generating SAIF Files.

4. Use the report_power command to analyze your design’s power.

The tool uses an internal zero-delay simulation to propagate switching activity through
nonannotated elements of the design.

5. Repeat steps 1 through 4 for other architectures and coding styles.

Quick gate-level power analysis enables you to see the results of changes in your RTL
design.

Power Compiler™ User Guide
U-2022.12-SP3

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Characterizing a Design for Power

Feedback

Figure 15 shows the steps that are followed in design exploration using the Power
Compiler tool.

Figure 15 Analyzing the Design for Power Analysis

RTL Design

Synthesis

Analysis

Meets Power
Target?

Higher-Effort
Synthesis

Switching
Activity

No

Yes

After you refine an RTL design within the iterative loop of design exploration, the design is
ready for higher-effort synthesis.

Characterizing a Design for Power
The -power option of the characterize command is useful in power analysis and
optimization. This option characterizes annotated or propagated switching activity from the
instance of a subdesign to the nets of the subdesign referenced by the instance. There
must be a one-to-one correspondence between the nets in the instance and the nets in the
referenced subdesign.

As shown in Figure 16, consider a design hierarchy in which A is a design instance of
SUB_DESIGN in TOP_DESIGN. Instance A references SUB_DESIGN. When you invoke

Power Compiler™ User Guide
U-2022.12-SP3

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Characterizing a Design for Power

Feedback

power analysis on TOP_DESIGN, the switching activity propagates on nets that are not
already user-annotated.

dc_shell> report_power top_design

Figure 16 Switching Activity for TOP_DESIGN

TOP_DESIGN
SUB_DESIGN

Switching activity

A

The switching activity can be propagated from primary inputs and synthesis-invariant
elements. In this example, user-annotated on individual design elements using
set_switching_activity commands, or both.

However, if you set the current instance to A and characterize for power, the
characterize command writes the switching activity of instance A onto SUB_DESIGN.

dc_shell> current_design TOP_DESIGN
dc_shell> characterize A -power
After characterization, you can report the power of SUB_DESIGN with the newly
characterized switching activity. If you have a Power Compiler license, you can compile
SUB_DESIGN with the newly characterized switching activity.

The -power option of the characterize command requires a one-to-one correspondence
between the nets of the referenced SUB_DESIGN cell and its instance A. If you compile
the subdesign before characterizing instance A or make any changes that alter the nets
or names of nets, the one-to-one net correspondence is lost and the characterize
command fails.

After compiling a subdesign and before reanalyzing or compiling TOP_DESIGN, be sure to
relink the designs.

Before recompiling the subdesign, follow some or all of the following steps:

• Relink the designs.

• Generate new switching activity for changed designs.

• Annotate or propagate new switching activity on designs.

• Characterize before reanalyzing or recompiling the subdesign.

Power Compiler™ User Guide
U-2022.12-SP3

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Reporting the Power Attributes of Library Cells

Feedback

Reporting the Power Attributes of Library Cells
Use the report_lib -power command to report which library cells have power
characterization and what type of characterization exists on each library cell. The
report_lib -power commands reports the following information for each cell:

• Leakage power attribute

• Internal power attribute

• Attribute for separate rise and fall power

• Attribute for average rise and fall power

• Toggling pin specified by the internal power table

• When conditions (for state-dependent power)

• The related_pin or related_input for path-dependent power

Using Power Derate Factors
Power derate factors are scalar multiplicative factors that affect power analysis results in
power reporting and power optimization.

Use the set_power_derate command to set a power derate value on a list of design
objects. You can set derate factors on library cells, leaf cells, hierarchical cells, power
groups, or the entire design. By default, the Power Compiler tool uses a factor of 1.0. The
order of precedence is as follows, in decreasing order of precedence:

• Leaf cells (either from a setting directly on the cell or from a setting on a power group)

• Hierarchical cells

• Cells without explicitly specified factors but inheriting factors from the hierarchical
parent cells

• Library cells

• Entire design

You can use options of the set_power_derate command to set factors specifically for
leakage power, internal power, or switching power, or to specify a scenario.

If you set a power derate factor more than one time on a specific object, the last value
overrides any previously specified values.

Power Compiler™ User Guide
U-2022.12-SP3

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

To list the power derate factors for a specific object, use the get_power_derate
command. This command accepts other Tcl commands as arguments, such as the
get_cells command.

To report power derate factors for a list of objects, use the report_power_derate
command.

To reset power derate factors to a value of 1.0, use the reset_power_derate command.

Generating Power Reports
This section contains examples of reports generated with the report_power command.

The report_power command in topographical mode reports the correlated power,
consisting of estimated clock tree power and netlist power. If the tool cannot perform clock
tree estimation, the Power Compiler tool issues a warning that the clock tree estimation
could not be performed.

Examples of power reports are as follows:

• Power Report Summary

• Net Power Report

• Cell Power Report

• Group Report

• Wire and Pin Switching Power Report

• Hierarchical Power Report

• Power Report for Block Abstractions

• Register Clock-Pin Internal Power Report

Power Report Summary
Example 14 shows a power report summary.

Power Compiler™ User Guide
U-2022.12-SP3

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

Example 14 Summary Report of the report_power Command
dc_shell> report_power -analysis_effort high -verbose
**
Report : power
 -analysis_effort high
 -verbose
Design : DESIGN_1
...
**
Library(s) Used:
 slow (File: slow.db)

Operating Conditions:
Wire Loading Model Mode: Inactive
Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Unit = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW
 Cell Internal Power Breakdown

 Combinational = 3.0975 mW (10%)
 Sequential = 22.3222 mW (72%)
 Other = 0.0000 mW (0%)

 Combinational Count = 13470
 Sequential Count = 2382
 Other Count = 0
Information: Reporting correlated power. (PWR-620)

 Cell Internal Power = 27.2572 mW (76%)
 Net Switching Power = 8.6208 mW (24%)

Total Dynamic Power = 35.8779 mW (100%)
Cell Leakage Power = 2.6586 uW

Power Compiler™ User Guide
U-2022.12-SP3

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

Power Breakdown

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Power (mW) Power (mW) (% Cell/Tot) Power (nW)

Netlist Power 110.6964 117.6087 2.283e+02 (48%) 2.370e+04
Estimated Clock Tree Power N/A N/A N/A N/A
---=-----------------------

 Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs

io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 5.6978 7.5225e-04 1.0238e+04 5.9088 (0.00%)
black_box 0.0000 0.7594 0.0000 0.7594 (0.33%)
clock_network 0.2417 1.9775 162.6490 2.2194 (0.97%}
register 60.5457 21.1285 3.8973e+03 81.7167 (35.79%)
sequential 6.2925e-03 1.5848e-02 2.7066 2.2143e-02 (0.01%}
combinational 43.9830 93.7028 9.4943e+03 137.6785 (60.30%)

Total 110.4746 mW 117.5849 mW 2.3705e+04 nW 228.3049 mW

Net Power Report
Example 15 shows a net power report sorted by the net switching power and filtered to
display only the five nets with the worst switching power.

Example 15 Net Power Report, Sorting, and Display Options
dc_shell> report_power -net -flat -sort_mode net_switching_power -nworst 5

**
Report: power
 -net
 -nworst 5
 -flat
 -sort_mode net_switching_power
Design: DESIGN_1
...
**
Library(s) Used:
 power_lib.db (File: /remote/libraries/power_lib.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Power Compiler™ User Guide
U-2022.12-SP3

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

 Attributes

 a - Switching activity information annotated on net
 d - Default switching activity information on net

 Total Static Toggle Switching
Net Net Load Prob. Rate Power Attrs

U_TAP_DBG_U_DBG_net5051 0.463 0.374 0.1968 0.1195
U_CORE/U_A7S_pencadd 0.248 0.374 0.1968 0.0641
U_CORE/U_A7S_dataio_net5298 0.247 0.374 0.1968 0.0637
U_CORE/U_MUL8_net5450 0.232 0.374 0.1968 0.0599
U_CORE/U_AREG_net5593 0.194 0.374 0.1968 0.0501

Total (5 nets) 357.2614 uW

Cell Power Report
Example 16 displays a cell power report containing the cumulative cell power report. The
cells are sorted by cumulative fanout power values, only the top five are reported.

Example 16 Cell Power Report Containing Cumulative Cell Power
dc_shell> report_power -cell -analysis_effort low \
-sort_mode cell_internal_power
**
Report : power
 -cell
 -analysis_effort low
 -sort_mode cell_internal_power
Design : DESIGN_3
...
**
Library(s) Used:

 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Information: Reporting correlated power. (PWR-620)

Power Compiler™ User Guide
U-2022.12-SP3

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

 Attributes

 h - Hierarchical cell

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power Leakage
Cell Power Power (% Cell/Tot) Power Attrs
--
CLOCK_TREE_EST 1.8375 3.1021 4.940 (37%) 9.9144
U_CORE 21.7118 N/A N/A (N/A) 2226.6487 h
U_TAP_DBG_U_DB 0.0123 N/A N/A (N/A) 1.4392 h
U_TAP_DBG_U_SCAN1 0.0106 2.472e-04 1.09e-02 (98%) 0.1458
...
--
Totals (2474 cells) 27.368mW N/A N/A (N/A) 2.658uW

Group Report
Example 17 shows the report generated by the report_power command when you use
the -groups option.

Example 17 Cell Report for Groups
dc_shell> report_power -groups "io_pad memory combinational"

**
Report : power
 -analysis_effort low
Design : RISC_CORE
...
**

Library(s) Used:
 t65pwc_ccs (File: t65pwc_pg.db)
 t65pwcd9_ccs (File: t65pwcd9_pg.db)
 t65pwcd72_ccs (File: t65pwcd72_pg.db)
 t65pwc0d_ccs (File: t65pwc0d_pg.db)

Global Operating Voltage = 1.08
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Power Compiler™ User Guide
U-2022.12-SP3

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

 Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs

io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
combinational 6.0868e-02 7.1321e-02 777.9665 0.1330 (100.00%)

Total 6.0868e-02 mW 7.1321e-02 mW 777.9665 nW 0.1330 mW

 Net Switching Power = 71.3213 uW (53.95%)
 Cell Internal Power = 60.8676 uW (46.05%)

 Total Dynamic Power = 132.1889 uW (100%)

 Cell Leakage Power = 777.9665 nW
1

Wire and Pin Switching Power Report
If you set the power_report_separate_switching_power variable to true, the group
report contains separate columns for wire switching power and pin switching power
instead of the total switching power, as shown in Figure 17.

dc_shell> set_app_var power_report_separate_switching_power true
dc_shell> report_power

Figure 17 Wire and Switching Power Report

Hierarchical Power Report
Example 18 shows the results of the report_power command using the -hierarchy
option. This option shows the internal, switching, and leakage power consumed in the
design hierarchy on a block-by-block basis.

Power Compiler™ User Guide
U-2022.12-SP3

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

Example 18 Hierarchical Power Report
dc_shell> report_power -hierarchy

**
Report : power
 -hierarchy
 -analysis_effort low
Design : DESIGN_4
...
**

Library(s) Used:
 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW
Information: Reporting correlated power. (PWR-620)
--
 Switch Int Leak Total
Hierarchy Power Power Power Power %
--
A7S_top 8.683 27.368 2.66e+03 36.054 100.0
CLOCK_TREE_EST 3.102 1.837 9.914 4.940 13.7
 U_CORE (A7S_core) 4.318 21.712 2.23e+03 26.032 72.2

Power Report for Block Abstractions
When you use the create_block_abstraction command, the power information is
saved as attributes on the block abstractions. If you annotate the switching activity, either
by using the SAIF file or the set_switching_activity command, the switching activity
is used to calculate the power information of the block abstractions, as shown in the
following example:

Current design is 'test11_0
create_block_abstraction
 internal power = 62.508907
 leakage power = 227754.921875
 net switching power = 17.909983, dyn_unit = 1mW, leak_unit = 1nW

Power Compiler™ User Guide
U-2022.12-SP3

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

By default, the report_power command reports the total power of the block, using the
power information saved as attributes on the model, as shown in the following example:

...
Information: u_test11_3 test11_3 is block, internal power = 61.429829 mW
Information: u_test11_2 test11_2 is block, internal power = 60.608749 mW
Information: u_test11_1 test11_1 is block, internal power = 63.291779 mW
Information: u_test11_0 test11_0 is block, internal power = 62.508907 mW
Information: u_test11_core is block, leakage power = 122.281441 uW
Information: u_test11_3 test11_3 is block, leakage power = 222.416214 uW
Information: u_test11_2 test11_2 is block, leakage power = 224.137466 uW
Information: u_test11_1 test11_1 is block, leakage power = 228.666733 uW
Information: u_test11_0 test11_0 is block, leakage power = 227.754929 uW
Information: u_test11_3 test11_3 is block, net switching power =
17.291439mW
Information: u_test11_2 test11_2 is block, net switching power =
17.869442 mW
Information: u_test11_1 test11_1 is block, net switching power =
18.588411 mW
Information: u_test11_0 test11_0 is block, net switching power =
17.909983 mW
 Internal Switching Leakage Total
Power Group Power Power Power Power (%) Attrs
--
io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 271.0595 85.7838 1.0253e+06 357.8686 (18.53%)
clock_network 0.9882 1.5616e+03 117.9128 1.5625e+03 (80.89%)
register 3.9093 0.3665 2.3101e+04 4.2989 (0.22%)
sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)
combinational 1.2514 5.6117 5.5759e+04 6.9189 (0.36%)
--
Total 277.2083 mW 1.6533e+03 mW 1.1042e+06 nW 1.9316e+03 mW
1

For more information about block abstractions, see the Design Compiler User Guide.

Register Clock-Pin Internal Power Report
The report_power command includes register clock-pin
internal power in the clock network power group when the
power_clock_network_include_register_clock_pin_power variable is set to true.

Power Compiler™ User Guide
U-2022.12-SP3

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

Enabling this variable aligns the Design Compiler power report with the default IC
Compiler II power report:

The following report shows the tool output when the
power_clock_network_include_register_clock_pin_power variable is set to false
(the default):

Internal Switching Leakage Total
Power Group Power Power Power Power (%)
Attrs

io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)
clock_network 514.1058 7.8403 2.1341e+09 2.6560e+03 (20.35%)
register 882.8593 6.0360 4.6494e+09 5.5383e+03 (42.44%)
sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)
combinational 447.1125 13.9511 4.3956e+09 4.8567e+03 (37.21%)

Total 1.8441e+03 uW 27.8273 uW 1.1179e+10 pW 1.3051e+04 uW

The following report shows the tool output when the
power_clock_network_include_register_clock_pin_power variable is set to true:

Attributes

i - Including register clock pin internal power

 Internal Switching Leakage Total
Power Group Power Power Power Power (%)
Attrs

io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)
memory 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)
clock_network 1.6048e+03 7.8403 2.1341e+09 2.6560e+03 (20.35%)
register -2.0782e+02 6.0360 4.6494e+09 5.5383e+03 (42.44%)
sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)

Power Compiler™ User Guide
U-2022.12-SP3

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Performing Power Analysis
Generating Power Reports

Feedback

combinational 447.1125 13.9511 4.3956e+09 4.8567e+03 (37.21%)

Total 1.8441e+03 uW 27.8273 uW 1.1179e+10 pW 1.3051e+04 uW

Power Compiler™ User Guide
U-2022.12-SP3

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Part 3: Power Reduction

The following topics provide information about the power reduction techniques available in
the Power Compiler tool:

• Clock Gating

• Self-Gating

• Power Optimization

• Multivoltage Design Concepts

• UPF Multivoltage Design Implementation

• Library Setup for Power Optimization

• Power Optimization in Multicorner-Multimode Designs

Power Compiler™ User Guide
U-2022.12-SP3

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
Clock Gating

Power optimization at higher levels of abstraction has a significant impact on reduction of
power in the final gate-level design. Clock gating is an important technique for reducing
the power consumption of a design.

For information about clock gating in the Power Compiler tool, see the following topics:

• Introduction to Clock Gating

• Using Clock-Gating Conditions

• Inserting Clock Gates

• Clock Gating Flows

• Specifying Clock-Gate Latency

• Calculating the Clock Tree Delay From Clock-Gating Cell to Registers

• Specifying Setup and Hold

• Clock-Gating Styles

• Modifying the Clock-Gating Structure

• Integrated Clock-Gating Cells

• Clock-Gating Naming Conventions

• Keeping Clock-Gating Information in a Structural Netlist

• Replacing Clock-Gating Cells

• Inserting Clock Gates With Safety Registers

• Clock-Gate Optimization Performed During Compilation

• Performing Clock-Gating on DesignWare Components

• Reporting Clock Gates

Power Compiler™ User Guide
U-2022.12-SP3

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Introduction to Clock Gating

Feedback

Introduction to Clock Gating
Clock gating applies to synchronous load-enable registers, which are flip-flops that share
the same clock and synchronous control signals. Synchronous control signals include
synchronous load-enable, synchronous set, synchronous reset, and synchronous toggle.

Synchronous load-enable registers are represented by a register with feedback loop
which maintains the same logic value through multiple cycles. Clock gating applied to
synchronous load enable registers reduces the power needed when reloading the register
banks.

Figure 18 shows a simple register bank implementation using a multiplexer with feedback
loop.

Figure 18 Synchronous Load-Enable Register With Multiplexer

Flip-

Flop Register

Bank

QD

ENCLK

Multiplexer

DATA

OUT

0

1

Control

Logic

DATA IN

When the synchronous load enable signal (EN) is at logic state 0, the register bank is
disabled. In this state, the circuit uses the multiplexer to feed the Q output of each storage
element in the register bank back to the D input. When the EN signal is at logic state 1, the
register is enabled, allowing new values to load at the D input.

Such feedback loops can unnecessarily use power. For example, if the same value is
reloaded in the register throughout multiple clock cycles (EN equals 0), the register bank
and its clock net consume power while values in the register bank do not change. The
multiplexer also consumes power.

Clock gating eliminates the feedback net and multiplexer shown in Figure 18 by inserting a
gate in the clock net of the register.

Power Compiler™ User Guide
U-2022.12-SP3

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Introduction to Clock Gating

Feedback

Note:
While applying the clock-gating techniques, the tool considers generated clocks
similar to defined clocks.

The clock-gating cell selectively prevents clock edges, thus preventing the gated-clock
signal from clocking the gated register.

Figure 19 shows a latch-based clock-gating cell and the waveforms of the signals are
shown with respect to the clock signal, CLK.

Figure 19 Latch-Based Clock Gating

The clock input to the register bank, ENCLK, is gated on or off by the AND gate. ENL is
the enabling signal that controls the gating; it derives from the EN signal on the multiplexer
shown in Figure 18. The register bank is triggered by the rising edge of the ENCLK signal.

The latch prevents glitches on the EN signal from propagating to the register’s clock pin.
When the CLK input of the 2-input AND gate is at logic state 1, any glitching of the EN
signal could, without the latch, propagate and corrupt the register clock signal. The latch
eliminates this possibility because it blocks signal changes when the clock is at logic state
1.

In latch-based clock gating, the AND gate blocks unnecessary clock pulses by maintaining
the clock signal’s value after the trailing edge. For example, for flip-flops inferred by HDL
constructs of rising-edge clocks, the clock gate forces the gated clock to 0 after the falling
edge of the clock.

Power Compiler™ User Guide
U-2022.12-SP3

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Using Clock-Gating Conditions

Feedback

By controlling the clock signal for the register bank, you can eliminate the need for
reloading the same value in the register through multiple clock cycles. Clock gating
inserts clock-gating circuitry into the register bank’s clock network, creating the control to
eliminate unnecessary register activity.

Clock gating reduces clock network power dissipation, relaxes datapath timing, and
reduces routing congestion by eliminating feedback multiplexer loops. For designs that
have large register banks, clock gating can save power and area by reducing the number
of gates in the design. However, for smaller register banks, the overhead of adding logic
to the clock tree might not compare favorably to the power saved by eliminating a few
feedback nets and multiplexers.

Using Clock-Gating Conditions
Before gating the clock signal of a register, the Power Compiler tool checks to see if
certain clock-gating conditions are satisfied. The tool inserts a clock gate only if all the
clock-gating conditions are satisfied:

• The circuit demonstrates synchronous load-enable functionality.

• The circuit satisfies the setup condition.

• The register bank or group of register banks satisfies the minimum number of bits
you specify with the set_clock_gating_style -minimum_bitwidth command. The
default minimum bitwidth is 3.

After clock gating is complete, the status of clock-gating conditions for gated and ungated
register banks appears in the clock-gating report. For information about the clock-gating
report, see Reporting Clock Gates.

Clock-Gating Conditions
The register must satisfy the following conditions for the Power Compiler tool to gate the
clock signal of the registers:

• Enable condition

If the register bank’s synchronous load-enable signal is a constant logic 1, reducible to
logic 1, or logic 0, the condition is false and the circuit is not gated. If the synchronous
load-enable signal is not a constant logic 1 or 0, the condition is true and the setup
condition is checked. The enable condition is the first condition that the tool checks.

• Setup condition

This condition applies to latch-free clock gating only. The enable signal must come
from a register that uses the same clock as the register being gated. The setup
condition is checked only if the register satisfies the enable condition.

Power Compiler™ User Guide
U-2022.12-SP3

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Using Clock-Gating Conditions

Feedback

• Width condition

The width condition is the minimum number of bits for gating registers or groups
of registers with equivalent enable signals. The default is 3. You can set the width
condition by using the -minimum_bitwidth option of the set_clock_gating_style
command. The width condition is checked only if the register satisfies the enable
condition and the setup condition.

Enable Condition
The enable condition of a register or clock gate is a combinational function of nets in the
design. The enable condition of a register represents the states for which a clock signal
must be passed to the register. The enable condition of a clock gate corresponds to the
states for which a clock is passed to the registers in the fanout of the clock gate. the tool
uses the enable condition of the registers for clock-gate insertion.

Enable conditions are represented by Boolean expressions for nets. For example:

module TEST (en1, en2, en3, in, clk, dataout);
 input en1, en2, en3, clk;
 input [5:0] in;
 output [5.0] dataout;
 reg [5.0] dataout;

 wire enable;

 assign enable = (en1 | en3) & en2;

always @(posedge clk) begin
 if(enable)
 dataout <= in;
 else
 dataout <= dataout;
end

endmodule

In this example, the enable condition for the register bank dataout_reg* can be expressed
as en1 en2 + en3 en2.

Excluding Specific Signals From the Enable Condition
You can specify signals to be excluded from the enable condition of clock gating. For
example, you can specify a late arriving signal to be excluded from the enable condition, to
prevent it from becoming a critical path.

The exclusion of a signal from the enable condition depends on the Boolean expression
of the enable condition. In Figure 20, the enable signal of the register is an AND function
of inputs A and B. To exclude the signal A from the computation of the enable condition of

Power Compiler™ User Guide
U-2022.12-SP3

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Using Clock-Gating Conditions

Feedback

the clock gate, the tool connects input A to the enable pin of the register and input B to the
enable pin of the clock-gating cell.

Figure 20 Excluding Signal A From Clock Gating

Register

A

Register

Before Clock-Gating the Register After Clock-Gating the Register

B
CLK

D Q

EN

D Q

EN

CLK

B

A

clock-gating cell

In Figure 21, the enable signal of the register is an OR function of inputs A and B. The tool
does not exclude input A from clock-gating because it is not feasible to gate the register
when one of the inputs is at logic 1.

Figure 21 Cannot Exclude Signal A. Clock-Gating is not Performed for the Register

D

EN

Register

Q

A

B

D

EN

Register

Q

A

B
CLK

CLK

Before Clock-Gating the Register
Cannot exclude signal A.

Clock-gating is not performed

You can exclude a signal from the enable expression of a register, if removing the signal
from the enable expression does not result in a constant 0 or a constant 1.

Use the set_clock_gating_enable -exclude command to specify the objects whose
signals are to be excluded from the enable condition. You can specify objects such as
primary input ports, output pins of sequential cells, sequential cells, black box cells, and
macro cells to be excluded from the enable condition.

The specified signal is excluded from clock-gating when you run the compile_ultra
-gate_clock command or any subsequent compile_ultra -incremental

Power Compiler™ User Guide
U-2022.12-SP3

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Using Clock-Gating Conditions

Feedback

-gate_clock command. Using the exclusion criteria, the compile_ultra command
checks the feasibility of excluding the specified signals from clock gating. If exclusion is
feasible, the command modifies the enable expression of the clock-gating signal and the
enable signal of the register.

If it is not feasible to exclude the specified signal from clock-gating, the tool does not clock-
gate the register. If the register is already clock-gated using the signal that is specified
for exclusion, the tool removes the clock-gating cell. The set_clock_gating_objects
-force_include command or the power_cg_all_registers variable setting does not
prevent the tool from removing the clock-gating cell.

Use the set_clock_gating_enable -undo command to remove the exclusion constraint.

The report_clock_gating -ungated command reports the details of registers that are
not clock-gated, including the reasons for not gating them.

The write_script command writes out the exclusion constraint that you specify. You
can source the file written by the write_script command, in the Design Compiler tool to
support ASCII flow or in third-party tools.

Setup Condition
To perform clock gating, the Power Compiler tool requires that the enable signal of the
register bank is synchronous with its clock. This is the setup condition.

For latch-based or integrated clock gating, the tool can insert clock gating irrespective of
the enable signal’s and the clock’s clock domains. If the enable signal and the register
bank reside in different clock domains, you must ensure that the two clock domains are
synchronous and that the setup and hold times for the clock-gating cell meet the timing
requirements.

For latch-free clock gating, if any of the following characteristics exist, the setup condition
is false and the register bank is not gated:

• If the register bank and its controlling logic (including flip-flops) belong to different clock
domains, the setup condition is false.

• If the register bank and its controlling logic (including flip-flops) are driven by different
edges of the same clock signals, the setup condition is false.

Power Compiler™ User Guide
U-2022.12-SP3

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Using Clock-Gating Conditions

Feedback

• If the controlling logic is driven by a combinational path from the input port, the setup
condition is false, unless:

◦ For primary input ports, you specified a clock with the set_input_delay command.

◦ You specified power_cg_derive_related_clock true, which enables clock
propagation of the related clocks from parent hierarchies for inputs on subdesigns.
The default is false.

These two special cases specify that an input port is synchronous with a given clock;
therefore, the setup condition is true.

Specify power_cg_ignore_setup_condition true to ignore the setup condition for
latch-free clock gating.

Enabling or Disabling Clock Gating on Design Objects
You can enable or disable clock gating on certain design objects by overriding all
necessary conditions set by the clock-gating style. The set_clock_gating_objects
command specifies the design objects on which clock gating should be enabled
or disabled during the compile_ultra -gate_clock command. If you use the
compile_ultra -gate_clock command, you must run the uniquify command before
inserting the clock gates.

The following example includes and excludes the specified registers from clock gating:

dc_shell> set_clock_gating_objects \
 -force_include ADDER/out1_reg[*] \
 -exclude ADDER/out2_reg[*]
The following example excludes all registers in the subdesign ADDER, except the
out1_reg bank. The out1_reg bank is clock gated according to the specified clock-gating
style:

dc_shell> set_clock_gating_objects \
 -exclude ADDER \
 -include ADDER/out1_reg[*]
The following example sets and then removes the inclusion and exclusion criteria specified
by the -include and -exclude options:

dc_shell> set_clock_gating_objects \
 -include ADDER/out1_reg[*] \
 -exclude ADDER/out2_reg[*]

dc_shell> set_clock_gating_objects \
 -undo {ADDER/out1_reg[*] ADDER/out2_reg[*]}

Power Compiler™ User Guide
U-2022.12-SP3

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Inserting Clock Gates

Feedback

Inserting Clock Gates
The Power Compiler tool inserts clock-gating cells to your design if you compile your
design using the -gate_clock option of the compile or compile_ultra command.

Using the compile_ultra -gate_clock Command
During the compilation process, the Power Compiler tool can insert clock-gates to your
design if you use the -gate_clock option of the compile_ultra command. With the
-gate_clock option, the compile_ultra command can perform clock-gate insertion on
the gate-level netlist, RTL netlist, as well as GTECH netlist. By default, when you use the
-gate_clock option, the tool inserts clock gates only in the same level of hierarchy as the
registers gated by the clock gate. For the tool to perform clock gating across the design
hierarchy, set the compile_clock_gating_through_hierarchy variable to true. For
more details about hierarchical clock gating, see Hierarchical Clock Gating.

The compile_ultra -gate_clock command can also perform clock gating on
DesignWare components. For more details, see Performing Clock-Gating on DesignWare
Components.

In Design Compiler topographical mode, when you perform clock gating by using the
compile_ultra -incremental -gate_clock command, the tool performs incremental
placement and gate-level clock gating.

Clock-Gate Insertion in Multivoltage Designs
In a multivoltage design, the different hierarchies of the design can have different
operating condition definition and use different target library subsets. While inserting clock-
gating cells in a multivoltage design, the Power Compiler tool chooses the appropriate
library cells based on the specified clock-gating style as well as the operating conditions
that match the operating conditions of the hierarchical cell of the design. If you do not
specify a clock-gating style, the tool chooses a suitable clock-gating style. If the tool does
not find a library cell that suites the clock-gating style and the operating conditions, a
clock-gating cell is not inserted and a warning message is issued.

For more information about clock-gating style, see Selecting Clock-Gating Styles.

Clock Gating Flows
The clock-gating flows supported by the tool are described in the following sections:

• Inserting Clock Gates in the RTL Design

• Inserting Clock Gates in Gate-Level Design

Power Compiler™ User Guide
U-2022.12-SP3

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock Gating Flows

Feedback

Inserting Clock Gates in the RTL Design
To insert clock gating logic in your RTL design and to synthesize the design with the clock-
gating logic, follow these steps:

1. Read the RTL design.

2. Use the compile_ultra -gate_clock command to compile your design.

During the compilation process the clock gate is inserted on the registers qualified for
clock-gating. By default, during clock-gate insertion, the compile_ultra command
uses the default settings of the set_clock_gating_style command, and also honors
the setup, hold, and other constraints specified in the logic libraries. To override the
setup and hold values specified in the library, use the set_clock_gating_style
command before compiling your design.

The compile_ultra command uses the default settings of the
set_clock_gating_style command during clock-gate insertion. The default settings
of the set_clock_gating_style command is suitable for most designs. For more
information about the default clock-gating style, see Default Clock-Gating Style.

3. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and the test_mode ports or pins of the integrated clock-gating cells.

4. Use the report_clock_gating command to report the registers and the clock-gating
cells in the design. Use the report_power command to get information of the dynamic
power used by the design after the clock-gate insertion.

In the following example, clock gating is performed during the compilation process.
The default settings of the set_clock_gating_style command are used during the
clock-gate insertion. The -scan option of the compile_ultra command enables the
examination of your design for scan insertion.

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name CLK
dc_shell> compile_ultra -gate_clock -scan
dc_shell> insert_dft
dc_shell> report_clock_gating
dc_shell> report_power

Power Compiler™ User Guide
U-2022.12-SP3

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock Gating Flows

Feedback

Inserting Clock Gates in Gate-Level Design
To insert clock gating logic in your gate-level netlist and to resynthesize the design with the
clock gating logic, follow these steps:

1. Read the gate-level netlist.

2. Use the compile_ultra -gate_clock -incremental command to compile your
design.

During the compilation process, clock-gating cells are inserted on the registers qualified
for clock gating. During this process, by default, the compile_ultra command

◦ Reads the setup and hold constraints that are specified in the logic libraries.

◦ Propagates these constraints up the hierarchy.

To override the setup and hold values specified in the library, use the
set_clock_gating_style command before compiling your design. Use the
compile_ultra -gate_clock command to perform clock-gate insertion on
DesignWare components. For more information about clock-gate insertion on
DesignWare components, see Performing Clock-Gating on DesignWare Components.

The compile_ultra -gate_clock command uses the default settings of the
set_clock_gating_style command, during the clock-gate insertion. The default
settings of the set_clock_gating_style command are suitable for most designs. For
more information about the default clock-gating style, see Default Clock-Gating Style.

3. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and test_mode ports or pins of the integrated clock-gating cells.

4. Use the report_clock_gating command to report the registers and the clock gating
cells in the design. Use the report_power command to get details of the dynamic
power used by the design after the clock-gate insertion.

In the following example, clock gating is implemented in the design during the compilation
process. The default settings of the set_clock_gating_style command are used during
the clock-gate insertion.

dc_shell> read_ddc design.ddc
dc_shell> compile_ultra -incremental -gate_clock -scan
dc_shell> insert_dft
dc_shell> report_clock_gating
dc_shell> report_power

Power Compiler™ User Guide
U-2022.12-SP3

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Clock-Gate Latency

Feedback

Specifying Clock-Gate Latency
During synthesis, Design Compiler assumes that the clocks are ideal. An ideal clock incurs
no delay through the clock network. This assumption is made because real clock-network
delays are not known until after clock tree synthesis. In reality clocks are not ideal and
there is a non-zero delay through the clock network. For designs with clock gating, the
clock-network delay at the registers is different from the clock-network delay at the clock-
gating cell. This difference in the clock-network delay at the registers and at the clock-
gating cell results in tighter constraints for the setup condition at the enable input of the
clock-gating cell.

For Design Compiler to account for the clock network delays during the timing
calculation, specify the clock network latency using either the set_clock_latency or the
set_clock_gate_latency command. The set_clock_gate_latency command can be
used for both, gate-level and RTL designs.

For more information, see the following topics:

• The set_clock_latency Command

• The set_clock_gate_latency Command

• Applying Clock-Gate Latency

• Resetting Clock-Gate Latency

• Comparison of the Clock-Gate Latency Specification Commands

The set_clock_latency Command
Use the set_clock_latency command to specify clock network latency for specific clock-
gating cells.

As illustrated in Figure 22, lat_cgtoreg is the estimated delay from the clock pin of the
clock-gating cell to the clock pin of the gated register and lat_reg is the estimated clock-
network latency to the clock pins of the registers without clock gating.

Power Compiler™ User Guide
U-2022.12-SP3

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Clock-Gate Latency

Feedback

Figure 22 Clock Latency With Clock-Gating Design

Clock-gating

cell

Register

(lat_reg)

(lat_cgtoreg)

Clock
tree

delay

Clock
tree

delay

Clock
port

For all clock pins of registers (gated or ungated) in the design that are driven by a specific
clock, use the lat_reg value for the set_clock_latency command. For clock pins of
all the clock-gating cells, use the difference between the lat_reg and lat_cgtoreg values
for the set_clock_latency command. Because the purpose of setting the latency
values is to account for the different clock-network delays between the registers and the
clock-gating cell, it is important to get a reasonably accurate value of the difference. The
absolute values used are less important, unless you are using these values to account for
clock-network delay issues not related to clock gating.

The set_clock_gate_latency Command
When you use the compile_ultra -gate_clock command, clock gates are inserted
during the compilation process. To specify the clock network latency before the clock-
gating cells are inserted by the tool, use the set_clock_gate_latency command. This
command lets you specify the clock network latency for the clock-gating cells as a function
of the clock domain, clock-gating stage, and the fanout of the clock-gating cell. The latency
that you specify is annotated on the clock-gating cells when they are inserted by the
compile_ultra -gate_clock command. You can manually annotate the latency values
on the existing clock-gating cells in your design using the apply_clock_gate_latency
command. For more details, see Applying Clock-Gate Latency.

Figure 23 shows the definitions for the clock-gate stages and the fanouts.

The clock-gating cell C drives 200 registers. So the fanout of the cell C is 200. Because C
drives registers, and not other clock gating cells, the clock gating stage for the cell C is 1.

The clock-gating cell B drives a set of 75 registers and a clock gating cell C. So the fanout
of the clock-gating cells B is 76. The clock-gating stage for the cell B is 2; clock gating
stage of cell C plus 1.

Power Compiler™ User Guide
U-2022.12-SP3

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Clock-Gate Latency

Feedback

Similarly, the clock-gating stage of cell A is 3 and the fanout is 1. The clock-gating stage of
all the registers is stage 0.

Figure 23 Clock-Gating Stages and Fanouts

The following example script shows how to specify the latency values for the various clock
gate stages and fanouts using the set_clock_gate_latency command for the design
shown in Figure 23.

set_clock_gate_latency -clock CLK -stage 0 \
 -fanout_latency {1-inf 2.0}
set_clock_gate_latency -clock CLK -stage 1 \
 -fanout_latency {1-30 1.8, 31-100 1.5, 101-inf 1.1}
set_clock_gate_latency -clock CLK -stage 2 \
 -fanout_latency {1-5 0.9, 6-20 0.5, 21-100 0.4, 101-inf 0.3}
set_clock_gate_latency -clock CLK -stage 3 \
 -fanout_latency {1-10 0.28, 11-inf 0.11}
To specify clock latency value for the clock-gated registers, use the -stage option with
a value 0. Because you are specifying the latency value for the clock gated registers,
the value for the -fanout_latency option should be 1-infinity, as shown in the following
example:

set_clock_gate_latency -clock CLK -stage 0 \
 -fanout_latency {1-inf 1.0}

Power Compiler™ User Guide
U-2022.12-SP3

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Clock-Gate Latency

Feedback

Applying Clock-Gate Latency
The clock latency specified using the set_clock_gate_latency command is annotated
on the registers during the compile_ultra -gate_clock command when the clock-
gating cells are inserted. However, if you modify the latency values on the clock gates after
the compilation, you must manually apply the latency values on the existing clock-gating
cells using the apply_clock_gate_latency command.

Note:
After you modify the clock-gate latency using the set_clock_gate_latency
command, if you compile your design using the compile_ultra or
compile_ultra -incremental command, it is not necessary to use the
apply_clock_gate_latency command to apply the latency values. The tool
annotates the specified value during compilation.

Resetting Clock-Gate Latency
To remove the clock latency information specified on the clock-gating cells, use the
reset_clock_gate_latency command. This command removes the clock latency
values on the specified clocks. If you do not specify the clock, the clock latency values
on all the clock-gating cells are removed. This command removes the clock latency on
the specified clocks, irrespective of whether the latency values were specified using the
set_clock_latency or set_clock_gate_latency command.

Comparison of the Clock-Gate Latency Specification Commands
Table 8 compares various commands that you can use to specify the clock-gate latency.

Table 8 Comparison of Clock-Gating Latency Specification Commands

set_clock_gate_latency set_clock_gating style
-setup -hold

set_clock_gating check set_clock_latency

Recommended for use
with the compile_ultra
-gate_clock command

Default settings are
recommended for
most designs. Use this
command only if the default
settings are not suitable for
your design

To specify the clock-gate
latency on existing
clock-gating cells.

To modify
clock-gate latency
on existing
clock-gating cells.

To specify clock-gate
latency before the clock
gates are inserted by
the compile_ultra
-gate_clock command

Specification is on the
instance. So, specify on
each clock-gating cell.

Specification is on
the instance. So,
specify on each
clock-gating cell

Power Compiler™ User Guide
U-2022.12-SP3

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Calculating the Clock Tree Delay From Clock-Gating Cell to Registers

Feedback

Table 8 Comparison of Clock-Gating Latency Specification Commands (Continued)

set_clock_gate_latency set_clock_gating style
-setup -hold

set_clock_gating check set_clock_latency

To modify the clock-gate
latency settings on
existing clock-gating cells

To specify the setup and
hold values before the
clock gates are inserted

Specification overrides the
setup and hold values in
the library

The latency setting
specifies the clock
arrival time at the
clock-gating cell

The latency setting
specifies the clock arrival
time at the clock-gating
cell

The specification overrides
the setup and hold values
defined in the library

Specification is based
on clock domain,
clock-gating state and
fanout

Generic settings for all the
clock gates in the design

Calculating the Clock Tree Delay From Clock-Gating Cell to
Registers

If your clock tree synthesis tool does not insert buffers after the clock-gating cell, then
the total delay between the clock-gating cell and the registers is equal to the delay of the
clock-gating cell (clock pin to clock out signal) plus the wire delay between the clock-gating
cell and the registers. If your clock tree synthesis tool inserts buffers after the clock-gating
cell, add an estimate of the clock-network delay to the total delay between the clock-gating
cell and the registers. You can use an estimate based on the fanout of the clock-gating cell
and the driving capacity of typical clock tree buffers or use data from earlier designs.

For most designs, the enable signal arrives early and is not affected by clock-network
delay issues. For late arriving enable signals, it is advised to be conservative (high value)
in the selection of the delay from the clock-gating cell to the registers. A low value might
mean an enable signal which is unable to meet arrival time constraints at the clock-gating
cell after the clock tree is inserted. However, a high value might over constrain the enable
signal leading to higher area or power and ensures that the enable signal arrives in time at
the clock-gating cell.

After placement and clock tree synthesis, you can back-annotate delay information by
using the set_propagated_clock command for Design Compiler to use real delay data
for the clock-network delay. For more information, see the Design Compiler User Guide.

Power Compiler™ User Guide
U-2022.12-SP3

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Setup and Hold

Feedback

Specifying Setup and Hold
During insertion of clock gates, the setup and hold time that you specify defines the
margins within which the enable signal (EN) must operate to maintain the integrity of the
gated-clock signal.

The setup and hold values for the integrated clock-gating cell are specified in the logic
library. The values specified in the logic library are honored by the compile_ultra
-gate_clock command during the clock-gate insertion. However, you can override these
values in the following ways:

• Specifying the -setup and -hold options of the set_clock_gating_style command.
By doing so, all the clock gates in the design should have the setup and hold time that
you specify.

• For the clock-gating cells already existing in your design, use the
set_clock_gating_check command to specify your setup and hold time.

You use the report_timing -to command to the enable pin of the clock-gating cell to
verify that the new values are correct.

The following example uses the set_clock_gating_style command to specify the setup
and hold values:

set_clock_gating_style \
 -max_fanout 16 -positive_edge_logic integrated \
 -setup 6 -hold 2
compile_ultra -gate_clock
to validate the user-specified setup or hold time for
integrated clock gating
report_timing -to clk_gate_out_top_reg/EN
report_timing -to clk_gate_out_top_reg_1/EN
The clock gate must not alter the waveform of the clock, other than turning the clock signal
on and off. If the enable signal operates outside the chosen margins specified by the
-setup and -hold options, the resulting gated signal might be clipped or corrupted.

Figure 24 and Figure 25 show the relationship of setup and hold time to a clock waveform.
Figure 24 shows the relationship with an AND gate as the clock-gating element. Figure 25
shows the relationship with an OR gate as the clock-gating element.

Power Compiler™ User Guide
U-2022.12-SP3

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Setup and Hold

Feedback

Figure 24 Setup and Hold Time for an AND Clock Gate

ENL

CLK

D

CLK

ENL

Setup Time

AND

Clock

Gate

EN

Latch

CLK

Q

ENCLK

Register

Bank

Hold Time

No Change Interval

Noncontrolling

Value

Controlling

Value

0

1

Enable after latch (ENL) signal must be stable before the clock input (CLK) makes a
transition to a non-controlling value. The hold time ensures that the ENL is stable for the
time you specify after the CLK returns to a controlling value. The setup and hold time
ensures that the ENL signal is stable for the entire time that the CLK signal has a non-
controlling value, which prevents clipping or glitching of the ENCLK clock signal.

You might need to add latency by using the set_clock_latency command. Use this
command for non-clock-gating registers. For more information, see Specifying Clock-Gate
Latency and the Design Compiler documentation.

Power Compiler™ User Guide
U-2022.12-SP3

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Setup and Hold

Feedback

Figure 25 Setup and Hold Time for an OR Clock Gate

No Change Interval

CLK

ENL

D Q

CLK

ENL

Setup Time Hold Time

Clock

Gate

ENCLK

1

0 Non

Controlling

Value

OR

EN

Latch

CLK

controlling

value

Note:
When using PrimeTime for static timing analysis, use the -setup and -hold
options of the set_clock_gating_check command to change the setup and
hold values for the gating check. PrimeTime performs clock-gating checks on all
gated clocks using 0.0 as the default for setup and hold.

Predicting the Impact of Clock Tree Synthesis
Clock tree synthesis can affect your choice of setup and hold time. However, during clock
gating, the clock tree does not exist yet: clock tree synthesis normally occurs much later in
the design process than clock gating. Without the clock tree, it can be difficult to precisely
predict the impact of clock tree synthesis on the delay of the design. For this reason, you
might find it necessary to alter your setup and hold time after clock tree synthesis.

Power Compiler™ User Guide
U-2022.12-SP3

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Specifying Setup and Hold

Feedback

Choosing a Value for Setup
Choose a value for the setup time that estimates the impact of the delay of the clock tree
from the clock gate to the gated register bank. In latch-based clock gating, the value for
setup mimics the delay of the clock tree from the clock gate to the register bank.

Figure 26 Setup and Hold Time for Clock Tree Synthesis

Flip-

Register

Bank

D Setup

Latch

EN

Combo
Cloud

CLK

ENL

D Hold

Clock Tree

Synthesis

Delay

CLK

ENCLK

Clock Tree

Synthesis/

Layout Delay

Main

Gate

Flop

Your setup time constrains the ENL signal so that after gate-level synthesis, there is still
enough timing slack for the addition of the clock tree during clock tree synthesis.

In latch-free clock gating, the value for setup must consider the clock signal duty cycle. For
example, in a design using a latch-free clock gate:

1. Estimate the delay of the clock tree between the clock gate and the gated register (as
you would for the latch-based clock gate).

2. From the value you estimate in step 1, add the worst-case (largest possible) clock low
time (typically half of the clock-cycle time).

This is appropriate for flip-flops triggered on the clock’s rising edge. For flip-flops
triggered on the clock’s falling edge, add the worst-case (largest possible) clock high
time.

If the setup time is too small, the ENL signal must be reoptimized after back-annotation
from layout to fit the tighter timing constraints. If the value of -setup is too large, the ENL
signal is too constrained and optimization of combinational control logic results in larger
area and power to satisfy the tighter timing constraints.

Power Compiler™ User Guide
U-2022.12-SP3

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Choosing a Value for Hold
Latch-based clock gating has the timing requirement that the transition of the ENL signal
occur at the 2-input clock gate after the trailing edge (rising edge for falling-edge flip-flop)
of the clock signal. This timing requirement is usually satisfied because the addition of
a latch because of clock gating, increases the delay on the ENL signal. In rare cases,
however, after clock tree synthesis and physical design, additional delay in the clock
signal might cause the CLK signal to arrive after the ENL signal. This is due to clock skew
between the clock signal driving the clock-gating latch and the clock signal driving the 2-
input gate.

If you expect this timing violation, you can set the -hold value during clock gating to
artificially define a hold constraint on the ENL signal. Gate-level synthesis adds buffers in
the ENL signal if they are necessary to satisfy your hold constraint.

If the value of -hold is too small, you might have to reoptimize the ENL signal after back-
annotation from layout to ensure the integrity of the gated clock signal. If the value of
-hold is too large, you might find a chain of buffers delaying the ENL signal before the
clock gate.

Clock-Gating Styles
The Power Compiler tool inserts the clock-gating cells in the design based on
the styles that you specify. When you do not specify a clock-gating style, the tool
uses a set of predefined styles for the clock gates. The default settings of the
set_clock_gating_style command are suitable for most designs.

The following sections discuss in detail, the default clock-gating style and using specific
clock-gating styles:

• Default Clock-Gating Style

• Selecting Clock-Gating Styles

The compile_ultra -gate_clock command prevents clock-gate insertion when the
target library does not contain cells for the defined clock-gating style and operating
condition and issues the PWR-763 information message. You must redefine the clock-
gating style or the operating conditions, based on the clock-gating cells available in the
target library.

Power Compiler™ User Guide
U-2022.12-SP3

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Default Clock-Gating Style
When you specify the set_clock_gating_style command, the default style used by the
tool is different from the default style used when you do not specify the command.

When you specify the set_clock_gating_style command with only a few options, the
tool uses the default specified in Table 9 for the unspecified option.

Table 9 Defaults for Clock-Gating Style

Parameter Default used when the
set_clock_gating_style
command is specified without
any option

Sequential cell Latch

Minimum bit-width 3

Setup constraint Library value

Hold constraint Library value

Positive edge logic and

Negative edge logic or

Control point none

Control signal scan_enable

Observation point false

Observation logic depth 5

Maximum fanout infinite

Number of stages 1

No sharing false

When you specify the set_clock_gating_style command multiple times, the last setting
overrides the previous settings.

Power Compiler™ User Guide
U-2022.12-SP3

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

When you do not specify a clock-gating style, the Power Compiler tool derives a default
clock-gating style based on the specified libraries. The cells are chosen from the library in
the following decreasing order of priority:

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic integrated \
 -control_point before -control_signal scan_enable

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic integrated -control_point after \
 -control_signal scan_enable

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic integrated -control_point before \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic integrated -control_point after \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic integrated

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic or -control_point after \
 -control_signal scan_enable

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic or -control_point before \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic or -control_point after \
 -control_signal test_mode

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic or -control_point after \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic integrated \
 -negative_edge_logic or

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic integrated -control_point before \
 -control_signal scan_enable

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic integrated -control_point after \
 -control_signal scan_enable

Power Compiler™ User Guide
U-2022.12-SP3

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic integrated -control_point before \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic integrated -control_point after \
 -control_signal test_mode -observation_point true

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic integrated

• set_clock_gating_style -positive_edge_logic and \
 -negative_edge_logic or

The following example inserts clock-gating cells by choosing a suitable default style:

read_verilog low.v
compile_ultra -gate_clock
report_clock_gating -style
compile_ultra -incremental

Selecting Clock-Gating Styles
Use the set_clock_gating_style command to select the clock-gating style. The
compile_ultra -gate_clock command uses the specified clock-gating style to insert
the clock-gating cells. The default settings of the set_clock_gating_style command
is suitable for most designs. If the default setting does not suit your design, use the
set_clock_gating_style command to change the default setting.

The clock-gating style that you specify is applied to the entire design. You can also apply
the clock-gating style only to specific power domains or hierarchical cells of the design.
For more information about specifying clock-gating styles on specific instances, see Using
Instance-Specific Clock-Gating Styles.

The following topics describe how to use the set_clock_gating_style command:

• Choosing Gating Logic

• Choosing an Integrated Clock-Gating Cell

• Choosing a Configuration for Discrete Gating Logic

• Choosing a Simple Gating Cell by Name

• Choosing a Simple Gating Cell and Library by Name

• Designating Simple Cells Exclusively for Clock Gating

• Choosing a Specific Latch and Library

• Choosing a Latch-Free Style

Power Compiler™ User Guide
U-2022.12-SP3

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

• Improving Testability

• Connecting the Test Ports Throughout the Hierarchy

• Using Instance-Specific Clock-Gating Styles

Choosing Gating Logic
The following options of the set_clock_gating_style command specify the type of
clock-gating logic or clock-gating cell used for implementing clock gating:

-positive_edge_logic [gate_list]
-negative_edge_logic [gate_list]

You can specify a configuration of 1-input and 2-input gates (simple gating cells) to use
for clock gating, or an integrated clock-gating cell already defined in the target library.
An integrated cell is a dedicated clock-gating cell that combines all of the simple gating
logic of a clock gate into one fully characterized cell, possibly with additional logic such as
multiple enable inputs, active-low enabling logic, or an inverted gated clock output.

Choosing an Integrated Clock-Gating Cell
You can use the -positive_edge_logic and -negative_edge_logic options of the
set_clock_gating_style command to specify the integrated clock-gating cell for clock
gating:

-positive_edge_logic [gate_list]
-negative_edge_logic [gate_list]

The first cell found that meets the clock-gating requirements is used and possibly sized
up or down to meet the design rule violations if the library has integrated cells of different
sizes. Use the power_do_not_size_icg_cells variable to prevent this behavior.

Choosing an Integrated Cell by Functionality

When selecting an integrated cell by functionality, clock gating searches your library
for integrated cells having the correct value of the clock_gating_integrated_cell
attribute.

Use the set_clock_gating_style command to specify the functionality of the integrated
cell you want clock gating to look for.

The Power Compiler tool uses the first integrated cell it finds in your library that matches
the requirements you specify with the set_clock_gating_style command. For example,
if you enter

set_clock_gating_style -negative_edge_logic {integrated}

Power Compiler™ User Guide
U-2022.12-SP3

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

The tool uses the first integrated cell it finds in your logic library that has the
clock_gating_integrated_cell attribute, as follows:

clock_gating_integrated_cell : "latch_negedge";

When you do not specify the sequential option, the tool uses the default latch-based
gating. For more information about attributes for integrated cells and library syntax, see
the Library Compiler documentation.

Choosing an Integrated Cell by Name

Choose an integrated cell by name when you require a specific integrated cell or if you
have more than one integrated cell with the same clock_gating_integrated_cell
attribute. For example,

set_clock_gating_style -positive_edge_logic {integrated:my_cell}

In this example, clock gating chooses an integrated cell called my_cell from the logic
library. For more information about attributes for integrated cells and Library syntax, see
the Library Compiler documentation.

Specifying a Subset of Integrated Clock Gates

Use the set_dont_use -power command to limit clock gate insertion to a specific set of
integrated clock gate cells from one or more libraries. This command guarantees that the
specified cells is not used for power optimization. For example,

set_dont_use -power [get_lib_cells a1.db/icg_a1_*]
set_dont_use -power [get_lib_cells b2.db/icg_b2_*]
set_dont_use -power [get_lib_cells c3.db/icg_c3_*]
set_clock_gating_style -positive_edge_logic {integrated}
compile_ultra -gate_clock

In this example, the set_clock_gating_style command directs the compile_ultra
-gate_clock command to use all integrated cells except the cells that have the dont_use
attribute.

Using Setup and Hold for Integrated Cells

Setup and hold constraints are built into the integrated cell when you create it with Library
Compiler, but you can override the values by using either the set_clock_gating_style
command or the set_clock_gating_check command.

If you provide -setup and -hold values on the command line when using an integrated
cell, the values are overridden.

The following example uses an integrated cell to gate rising-edge-triggered registers and
uses simple cells to gate falling-edge-triggered registers using latch-free style.

set_clock_gating_style -sequential_cell none
-setup setup_value

Power Compiler™ User Guide
U-2022.12-SP3

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

-hold hold_value
-positive_edge_logic {integrated}
-negative_edge_logic {inv nor buf}

The setup_value and hold_value apply not only to the integrated cell, but also to the clock
gate built for falling-edge-triggered registers using simple cells (INV, NOR, and BUF gates
in this example). For more information about integrated clock-gating cells and timing, see
the Library Compiler User Guide.

Choosing a Configuration for Discrete Gating Logic
The -positive_edge_logic and -negative_edge_logic options can have up to three
string parameters that specify the type of clock gating logic:

• The type of 2-input clock gate (AND, NAND, OR, NOR)

• An inverter or buffer on the clock network before the 2-input clock gate

• An inverter or buffer on the clock network after the 2-input clock gate

The positions of the string parameters determine whether clock gating places a
buffer or inverter before or after the 2-input clock gate. For example, if the value of
-positive_edge_logic is {and buf}, clock gating uses an AND gate and places a buffer
in the fanout from the AND gate. If the value is {inv nor}, clock gating uses a NOR gate
and places an inverter in the fanin of the NOR gate. Both of these examples result in AND
functionality of the clock gate.

The type of logic that is appropriate for gating your circuit depends on whether the gated
register banks are inferred by rising-edge or falling-edge clocks in your HDL code and
whether you use latch-based or latch-free clock gating.

If you use latch-free clock gating, you must specify both the -positive_edge_logic and
-negative_edge_logic options.

For proper operation of the gated design, use the -positive_edge_logic and
-negative_edge_logic options of the set_clock_gating_style command to choose
any combination of gates that provide the appropriate functionality shown in Table 10 and
Table 11. Table 10 provides information for the latch-based clock-gating style and Table 11
provides information for the latch-free clock-gating style

Note:
If the Power Compiler tool adds an inverter on the clock line to a rising-edge-
triggered register, the Design Compiler tool might infer a falling-edge-triggered
register during later synthesis if one is available in your library. If the Power
Compiler tool removes an inverter from the clock line to a falling-edge-triggered
register, the Design Compiler tool might infer a rising-edge-triggered register if
one is available in your library. These actions are normal.

Power Compiler™ User Guide
U-2022.12-SP3

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

For example, to achieve AND functionality, you can simply use an AND gate. However,
AND functionality also results from the combination of an INV and a NOR gate. Any
combination of individual gates is allowable if the combination results in the appropriate
functionality shown in Table 10 and Table 11.

With the following options, latch-based clock gating uses an AND gate for gating clocks
of rising-edge-triggered register banks and an OR gate for gating clocks of falling-edge-
triggered register banks. The enable input of the OR gate has an inverter to ensure correct
functionality when using clock gating.

-positive_edge_logic {and} -negative_edge_logic {or}

With the following options, latch-based clock gating chooses a NOR gate for gating clocks
of rising-edge-triggered register banks. Clock gating inserts an inverter in the fanin to the
2-input clock gate and a buffer in the fanout from the 2-input clock gate. This combination
results in AND functionality.

-positive_edge_logic {inv nor buf} -negative_edge_logic {inv and inv}

For falling-edge-triggered register banks in this example, clock gating uses an AND gate
to gate the clock. Clock gating inserts inverters in the fanin and fanout of the 2-input clock
gate. This combination results in OR functionality. The enable input of the OR gate already
has an inverter. This cancels the effect of the additional inverter on the enable input signal.
Therefore, only the clock pin of the main gate is inverted.

Table 10 Gating Functionality for Latch-Based Clock Gating

Latch-based clock gating

Rising-edge-triggered registers Falling-edge-triggered registers

Gating logic
-pos{} or -neg{}

Valid Remarks Valid Remarks

{and} Yes

{or} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating.

{nand} Yes Clock gating adds an inverter
to the clock line to the register.

{nor} Yes Clock gating removes the
inverter from the clock line to
the register.

{and inv} Yes Clock gating adds an inverter
to the clock line to the register.

Power Compiler™ User Guide
U-2022.12-SP3

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Table 10 Gating Functionality for Latch-Based Clock Gating (Continued)

Latch-based clock gating

Rising-edge-triggered registers Falling-edge-triggered registers

Gating logic
-pos{} or -neg{}

Valid Remarks Valid Remarks

{or inv} Yes Clock gating removes the
inverter from the clock line to
the register.

{nand inv} Yes

{nor inv} Yes

{inv and} Yes Clock gating removes the
inverter from the clock line to
the register.

{inv or} Yes Clock gating adds an inverter
to the clock line to the register.

{inv nand} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating. This cancels the
effect of the additional inverter
on the enable input signal.
Therefore only the clock pin of
the main gate is inverted.

{inv nor} Yes

{inv and inv} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating. This cancels the
effect of the additional inverter
on the enable input signal.
Therefore only the clock pin of
the main gate is inverted.

{inv or inv} Yes

{inv nand inv} Yes Clock gating removes the
inverter from the clock line to
the register.

{inv nor inv} Yes Clock gating adds an inverter
to the clock line to the register.

Power Compiler™ User Guide
U-2022.12-SP3

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Table 11 Gating Functionality for Latch-Free Clock Gating

Latch-free clock gating

Rising-edge-triggered registers Falling-edge-triggered registers

Gating logic
-pos{} or -neg{}

Valid Remarks Valid Remarks

{and} Yes

{or} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating.

{nand} Yes Clock gating removes the
inverter from the clock line to
the register.

{nor} Yes Clock gating adds an inverter
to the clock line to the register.

{and inv} Yes Clock gating removes the
inverter from the clock line to
the register.

{or inv} Yes Clock gating adds an inverter
to the clock line to the register.

{nand inv} Yes

{nor inv} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating.

{inv and} Yes Clock gating adds an inverter
to the clock line to the register.

{inv or} Yes Clock gating removes the
inverter from the clock line to
the register.

{inv nand} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating. This cancels the
effect of the additional inverter
on the enable input signal.
Therefore only the clock pin of
the main gate is inverted.

Power Compiler™ User Guide
U-2022.12-SP3

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Table 11 Gating Functionality for Latch-Free Clock Gating (Continued)

Latch-free clock gating

Rising-edge-triggered registers Falling-edge-triggered registers

Gating logic
-pos{} or -neg{}

Valid Remarks Valid Remarks

{inv nor} Yes

{inv and inv} Yes The enable input of the OR
gate has an inverter to ensure
correct functionality when using
clock gating. This cancels the
effect of the additional inverter
on the enable input signal.
Therefore only the clock pin of
the main gate is inverted.

{inv or inv} Yes

{inv nand inv} Yes Clock gating adds an inverter
to the clock line to the register.

{inv nor inv} Yes Clock gating removes the
inverter from the clock line to
the register.

Choosing a Simple Gating Cell by Name
The -positive_edge_logic and -negative_edge_logic options allow you to use a
specific clock-gating cell during clock gating. To use a specific gating cell from the target
library, specify the cell name after the element type, separated by a colon.

With the following option for rising-edge-triggered register banks, latch-based clock gating
chooses the specific AND gate named MYAND2 from the target library. In this example,
the tool inserts a buffer in the fanout of the clock gate.

-positive_edge_logic {and:MYAND2 buf}

Choosing a Simple Gating Cell and Library by Name
In some cases, you might have more than one target library with cell names that are the
same. In such cases, you can use a specific cell from a specific library for clock gating.
The -positive_edge_logic and -negative_edge_logic options allow you to indicate a
specific library and cell for clock gating, as follows:

target_library = { "CMOS8_MAX.db" "tech_lib1.db" "tech_lib2.db" }

-positive_edge_logic {and:tech_lib1/MYAND2 buf:tech_lib2/ MYBUF2}

Power Compiler™ User Guide
U-2022.12-SP3

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

In this example, clock gating uses a particular AND cell and BUF cell from different logic
libraries. The AND cell is MYAND2 from the tech_lib1 library, and the buffer is MYBUF2
from the tech_lib2 library. You must have previously specified these libraries as target
libraries by setting the Design Compiler target_library variable.

Designating Simple Cells Exclusively for Clock Gating
During technology mapping, the Design Compiler tool builds clock-gating logic, using the
generic representation created by the Power Compiler tool and cells from your library.
Unless you are using an integrated cell for gating, there is nothing to prevent the Design
Compiler tool from using the same cells for mapping other parts of the design.

You can designate certain cells to be used exclusively or preferentially for gating clocks.
Such cells can be the 2-input clock gate, inverters, buffers, or latches used in the latch-
based style of clock gating.

To use a specific cell for clock gating and preclude its use in other areas of the design, set
the following Library Compiler attributes to true in the library description of the cell:

• dont_use
When set to true, this attribute prevents the Design Compiler tool from choosing the
cell when mapping the design to technology.

• is_clock_gating_cell
This is an attribute of type Boolean for the cell group. When set to true, this attribute
identifies the cell for use in clock gating. If dont_use and is_clock_gating_cell are
both set to true, the cell is used only in clock-gating circuitry.

You can set dont_use and is_clock_gating_cell on

• 2-input clock gates

Examples of 2 clock gates are AND, NAND, OR, and NOR library cells that are used to
gate clocks.

• 1-input clock gates

Examples of 1 clock gates are buffer and inverter library cells that are used in the fanin
and fanout of the 2 clock gate.

• 2-input D latches

These latches can be active high or low and must have a noninverting output.

To use a cell preferentially in clock gating, set only the is_clock_gating_cell attribute
to true. Clock gating uses such cells preferentially when inserting clock-gating circuitry.
Later, the Design Compiler tool can use them when mapping other parts of the design to
the target technology.

Power Compiler™ User Guide
U-2022.12-SP3

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

For more information about the syntax and use of Library Compiler attributes, see the
Library Compiler documentation.

The 2-input clock gate has an enabling input and a clock input that is connected to
ENL and CLK signals in Figure 19. If the clock attribute is set on one of the pins of
the 2-input clock gate, the Power Compiler tool recognizes the remaining input pin as
the enable pin. However, library cell syntax allows you to explicitly designate an input
pin as the enabling input. In the pin group of the library description for the cell, set the
clock_gate_enable_pin attribute to true. This is an attribute of type Boolean for the pin
group.

If the tool finds neither a clock attribute nor a clock_gate_enable_pin attribute, the tool
checks for the existence of setup and hold time on the pins. If setup and hold time are
found on a pin, the tool uses that pin as the enable pin. For more information about Library
Compiler syntax and cell descriptions, see the Library Compiler documentation.

Choosing a Specific Latch and Library
The -sequential_cell option of set_clock_gating_style command allows you to
select a clock-gating style that uses latches or avoids the use of latches. Figure 19 shows
an example of the latch-based clock-gating style. An example of a circuit with the latch-
free clock-gating style is shown in Figure 27.

The -sequential_cell option allows you to use a specific latch when inserting clock-
gating circuitry. To use a specific latch from the target library, specify the name of the latch
after the element type, separating the two with a colon (:). For example:

-sequential_cell latch:LAH10

In the following example, clock gating uses the LAH10 latch from the SPECIFIC_TECHLIB
library.

-sequential_cell latch:SPECIFIC_TECHLIB/LAH10

Choosing a Latch-Free Style
To specify a latch free clock gating style, use the -sequential_cell none option of the
set_clock_gating_style command. For example, in the latch-free style in Figure 27,
clock pulses to the register bank are gated by the OR gate and it prevents the trailing clock
edge. A latch-free clock gate for rising-edge-triggered logic prevents the falling clock edge.

Eliminating the latch can reduce power dissipation and area slightly. However, the latch-
free method has a significant drawback: The EN signal must be stable at its new value
before the falling clock edge. If the EN signal is not stable before the falling clock edge,
glitches on the EN signal can corrupt the clock signal to the register. Any glitches on the
EN signal after the trailing edge of the clock lead to glitching and corruption of the gated
clock signal. See Figure 27 for an example of latch-free clock gating.

Power Compiler™ User Guide
U-2022.12-SP3

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Figure 27 Latch-Free Clock Gating

Flip-
Flop

EN

CLK

EN

ENCLK

Register
Bank

QD

DATA
IN

DATA
OUT

ENCLK

CLK

CLK

Control
Logic

EN

EN

Glitch

Improving Testability
Clock gating introduces multiple clock domains in the design. Introducing multiple
clock domains can affect the testability of your design unless you add logic to enhance
testability.

In certain scan register styles, a gated register cannot be included in a scan chain,
because gating the register’s clock makes it uncontrollable for test (assuming there is no
dedicated scan clock). Without the register in the scan chain, test controllability is reduced
at the register output and test observability is reduced at the register input. If you have
many gated registers, this can significantly reduce the fault coverage in your design.

You can improve the testability of your circuit by using the options of the
set_clock_gating_style command to determine the amount and type of testability logic
added during clock gating. Follow these steps to improve testability:

• Add a control point for testing

• Choose test_mode or scan_enable

• Add observability logic

Power Compiler™ User Guide
U-2022.12-SP3

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Inserting a Control Point for Testability
A control point increases the testability of your design by restoring the clock signal to its
ungated form during test. The control point is an OR gate that eliminates the function of
the clock gate during test, which restores the controllability of the clock signal.

Figure 28 shows a control point (OR gate) connected to the scan_enable port. The control
point is before the latch in this example.

Figure 28 Control Point in Gated Clock Circuitry

Levels of
Design

Hierarchy

EN ENL

ENCLK

CLK

SCAN_ENABLE

DATA
IN

Register
Bank

QD

DATA
OUT

CLK

Control
Logic

LQ

LATCH

LD

LG

Flip-
Flop

CLK

ENCLK

SCAN_ENABLE

When the scan_enable signal is high, the test signal overrides clock gating, thus making
the ENCLK and CLK signals identical during shift mode. The test solution in Figure 28
has the advantage of achieving testability with the addition of only one OR gate. This
configuration has fault coverage comparable to that of a design without clock gating.

Power Compiler™ User Guide
U-2022.12-SP3

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

The set_clock_gating_style command has two options to determine the location and
type of the control point for test:

• -control_point none | before | after
The default is none. The -control_point option inserts your control point before or
after the clock-gating latch. When using the latch-free clock-gating style, before and
after are equivalent.

• -control_signal test_mode | scan_enable
The default is scan_enable. This option creates a scan_enable or test_mode test
port and connects the port to the control-point OR gate. The TestMAX DFT tool
interprets test_mode and scan_enable in a specific manner. The -control_signal
option also applies to any observability logic inserted by the -observation_point
option. You can use the control_signal option only if you have used the
-control_point option.

When creating the control point, the Power Compiler tool creates and names a new test
port and assigns appropriate attributes to the port. Table 12 shows variables that the tool
checks when naming the new port and when setting attributes on it.

Table 12 Test Port Naming and Attribute Assignment

Setting of
-control_signal

Variable that determines test port name Attributes on test port are the
same as those set by

scan_enable test_scan_enable_port_naming_style set_dft_signal -type
ScanEnable

test_mode test_mode_port_naming_style set_attribute
test_port_clock_gating
set_dft_signal -type
TestMode

To connect the test port of the clock-gating design to the test port of your design, use the
insert_dft command. For more information, see Connecting the Test Ports Throughout
the Hierarchy.

Latch-based clock gating requires that the enable signal always arrive after the trailing
edge (rising edge for falling-edge signal) of the clock. If you insert the control point before
the latch, it is impossible for the control point to violate this requirement. However, your
test tool might not support positioning the control point before the clock-gating latch. In
such cases, use -control_point after to insert the control point after the clock-gating
latch.

Power Compiler™ User Guide
U-2022.12-SP3

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Note:
If you insert the control point after the latch, the scan_enable signal or
test_mode signal must transition after the trailing edge (rising edge for falling-
edge signal) of the clock signal during test at the foundry; otherwise glitches in
their resulting signal corrupts the clock output.

Scan Enable Versus Test Mode
Scan enable and test mode differ in the following way:

• Scan enable is active only during the scan mode.

• Test mode is active during the entire test (scan mode and parallel mode).

Scan enable typically provides higher fault coverage than test mode. Fault coverage
with scan enable is comparable to a circuit without clock gating. However, there can be
situations in which you must use test mode. For example, you might need to use test
mode if you place the control point before the latch and your test tool does not support this
position of the control point with scan enable.

Improving Observability With Test Mode
When using test mode, the EN signal and other signals in the control logic are untestable.
If your test methodology requires that you use test_mode, you might need to increase
your fault coverage. You can increase fault coverage with test mode by adding
observability logic during clock gating.

Note:
When using the -control_signal scan_enable option, increasing
observability with observability logic is not necessary.

The set_clock_gating_style command has two options for increasing observability
when using the -control_signal test_mode option:

• -observation_point true | false
The default is false. When you set this option to true, clock gating adds a cell that
contains at least one observability register and an appropriate number of XOR trees
(if there is only one signal to be observed, an XOR tree is unnecessary). The scan
chain includes the observability register, but the observability register’s output is not
functionally connected to the circuit.

• -observation_logic_depth depth_value
The default is 5. The value of this option determines the depth of logic of the XOR tree
that -observation_point option builds during clock gating. If this value is set to 0,
each ENL signal is latched separately and no XOR tree is built. The XOR tree reduces
the number of observability registers needed to capture the test signature.

Power Compiler™ User Guide
U-2022.12-SP3

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

Figure 29 shows a gated clock, including an observability register and an XOR tree.

Figure 29 Gated Clock With High Observability

CLK

Control

Logic

Flip-

Flop

EN

ENCLK

ENL

CLK

CLK

TEST_MODE

ENCLK

TEST_MODE
DATA

IN

Gated

Register

Bank

QD

DATA

OUT

Observability

Register
XOR

Tree

Observability Circuitry

OBS_EN

CLK

ENL2

ENL3

ENL

LQ

LATCH

LD

LG

During test, observability circuitry allows observation of the ENL signal. During normal
operation of the circuit, the XOR tree does not consume power, because the NAND gate
blocks all ENL signal transitions. This test solution has high testability and is power-
efficient, because the XOR tree consumes power only during test and the clock of the
observability register is gated.

To connect the test port of the clock-gating design to the test port of your design, see
Connecting the Test Ports Throughout the Hierarchy.

Choosing a Depth for Observability Logic
Use the -observation_logic_depth option of the set_clock_gating_style command
to set the logic depth of the XOR tree in the observability cell. The default is 5.

The Power Compiler tool builds one observability cell for each clock-gated design. Each
gated register in the design provides a gated enable signal (OBS_EN in Figure 29) as
input to the XOR tree in the observability cell.

Power Compiler™ User Guide
U-2022.12-SP3

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees
(and associated registers) to provide enough XOR inputs to accommodate signals from all
the gated registers. Each additional XOR tree adds some overhead for area and power.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree
with plenty of inputs. However, too large a tree can cause the delay in the observability
circuitry to become critical.

Use the following guidelines in choosing or changing the logic depth of your XOR tree.
Choose a value that is

• High enough to cause the construction of as few XOR trees as possible

• Low enough to keep the delay in the observability circuitry from becoming critical

Connecting the Test Ports Throughout the Hierarchy
You use the insert_dft command to connect the test ports through various level of the
design hierarchy.

If you have used the clock-gating feature with the testability options, you must connect the
test ports using the insert_dft command. After you have compiled all the lower level
hierarchies of the design, use the command on the top level of the design.

There are two types of test ports: the test_mode port and the scan_enable port. A port
can be recognized as a test port if it is designated as a scan_enable or a test_mode port
using the set_dft_signal command. Alternatively, a port can be designated as a test
port by setting the test_port_clock_gating attribute on it.

A scan_enable (test_mode) port is only connected to other scan_enable (test_mode)
ports in the design hierarchy. If a scan_enable (test_mode) port exists at a particular level
of the hierarchy, it is connected to scan_enable (test_mode) ports at all higher levels
of the hierarchy. If a scan_enable (test_mode) port does not exist at a higher level of
hierarchy, the scan_enable (test_mode) port is created.

The insert_dft command connects the test ports on all levels of the design hierarchy to
the test_mode or scan_enable pins of the OR gate in the clock gating logic and the XOR
gates in the clock-gating observability logic. If the design does not have a test port at any
level of hierarchy, a test port is created. If a test port exists, it is used.

Using the insert_dft Command
You use the insert_dft command to connect the top-level test ports to the test pins of
the clock-gating cells through the design hierarchy. A test port is created if the design does
not have a test port at any level of the hierarchy. To identify the test ports, the tool uses the
options you specified using the set_dft_signal command. The following example shows
the usage of the insert_dft command to connect to the clock-gating cells. When you
specify the value clock_gating to the -usage option of the set_dft_signal command,

Power Compiler™ User Guide
U-2022.12-SP3

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

during the execution of the insert_dft command, the tool connects the specified signal
to the test pin of the clock-gating cells.

dc_shell> read_ddc design.ddc
dc_shell> set_clock_gating_style -control_signal scan_enable \
 -control_point before
dc_shell> compile_ultra -scan -gate_clock
dc_shell> set_dft_signal -type ScanEnable -port test_se_1
dc_shell> set_dft_signal -type ScanEnable -port test_se_2 \
 -usage clock_gating
dc_shell> create_test_protocol
dc_shell> dft_drc -verbose
dc_shell> preview_dft
dc_shell> insert_dft

Using Instance-Specific Clock-Gating Styles
The Power Compiler tool supports setting and removing clock-gating styles on specific
design instances and on power domains. You can also enable and disable clock gating
by overriding the specified styles. These instance-specific clock-gating styles are honored
only by the compile_ultra -gate_clock command, as described in the following
sections:

• Specifying Clock-Gating Style on Design Objects

• Instance-Specific Clock-Gating Style Example

• Removing the Instance-Specific Clock-Gating Style on Design Objects

Specifying Clock-Gating Style on Design Objects
The clock-gating style specified using the set_clock_gating_style command are
applied to the entire design by default. To restrict the clock-gating style to specific objects
of the design, follow these steps:

1. Set the power_cg_iscgs_enable variable to true. The default is false.

2. Use the -instances or the -power_domains option of the set_clock_gating_style
command to restrict the clock-gating styles to be applied to the specified instances or
power domains, respectively.

The clock-gating cells are inserted, based on the clock-gating style that you specified.

When you set the power_cg_iscgs_enable variable set to true, and a specific instance
does not have a specified clock-gating style, the tool chooses a clock-gating style in the
following decreasing order of priority:

• The style specified on the power domain containing the instance

• The style of the hierarchical cell containing the instance

Power Compiler™ User Guide
U-2022.12-SP3

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Styles

Feedback

• The style of the higher level hierarchical cell contains the instance

• When you do not specify the clock-gating style, the tool derives a default clock-gating
style based on the specified libraries. For more information, see Default Clock-Gating
Style.

Note:
If you set the power_cg_iscgs_enable variable to true, and do not use the
-instances or the -power_domains option, the clock-gating style is applied
only to the current design.

If you use the -instances or the -power_domains option of
the set_clock_gating_style command without setting the
power_cg_iscgs_enable variable to true, the tool issues a PWR-815 error
message.

Instance-Specific Clock-Gating Style Example
For the design example in Figure 30, the set_clock_gating_style command is
specified as follows:

Specify the clock gating Style
dc_shell> set_clock_gating_style -designs {design_A}
dc_shell> set_clock_gating_style -instances {Y2}
dc_shell> set_clock_gating_style -instances {U1}
dc_shell> set_clock_gating_style -power_domains {PD_A}

Figure 30 Instance Specific Clock-Gating Style Example

Power Compiler™ User Guide
U-2022.12-SP3

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Modifying the Clock-Gating Structure

Feedback

The priority rules defined is applied from the bottom of the hierarchy to the top. Also, the
Power Compiler tool considers power domains to be more specific than design instances.
In the design example of Figure 30,

• The clock-gating style specified for Y2 instance is applied to the Y2 instance.

If a clock-gating style is defined for a hierarchical cell inside the instance Y2, the clock-
gating style of the hierarchical cell is applied to Y2. This is because, the precedence
rule is applied from the bottom of the hierarchy to the top.

The clock-gating style specified for Y2 instance has higher precedence than clock-
gating style defined for PD_A power domain.

• The clock-gating style specified for U1 instance is applied to U1 instance, design
design_A design, and PD_A power domain.

• The clock-gating style specified for the TOP design is applied to W1 and V1 instances.

Removing the Instance-Specific Clock-Gating Style on Design Objects
Use the remove_clock_gating_style command to remove the instance-specific clock-
gating style that you specified on the design objects. However, this command can be used
only when you set the power_cg_iscgs_enable variable to true.

Modifying the Clock-Gating Structure
While performing RTL clock gating, you can specify the set_clock_gating_style
-max_fanout command to limit the number of registers that are gated by a single clock-
gating element. The results can be multiple clock-gating elements that have the same
enable signal and, logically, the same gated-clock signal. All clock-gating cells with the
same enable signal belong to the same clock-gating group. All registers gated by a single
clock-gating element belong to the same clock-gating subgroup.

The gated registers inserted by the compile_ultra -gate_clock command are
partitioned into subgroups. These partitions are not based on timing or placement
constraints. So the placement tool tries to place the clock-gated registers close to the
clock-gating cell, but this might not happen because of other design constraints. The result
is a suboptimal partition of gated registers into subgroups.

You can correct this problem by moving clock-gated registers between the clock-gating
cells belonging to the same clock-gating group. Because these clock-gating cells are
logically equivalent, the rewired circuit is functionally valid.

To rewire or remove clock gating in your design, use the rewire_clock_gating or
remove_clock_gating command.

Power Compiler™ User Guide
U-2022.12-SP3

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Modifying the Clock-Gating Structure

Feedback

Changing a Clock-Gated Register to Another Clock-Gating Cell
To selectively rewire a clock-gated register from one clock-gating cell to another logically
equivalent clock-gating cell, use the rewire_clock_gating command.

However, if a dont_touch attribute is set on a clock-gating cell or any of its parent in the
hierarchy, the tool does not perform rewiring of such clock-gating cells.

You can use the -undo option to remove any rewiring you specified with the
rewire_clock_gating command. Based on the options specified, the -undo option
deletes the directives specified by the previously specified rewire_clock_gating
command. Use the -undo option before you use the compile -incremental command.
The compile command modifies the netlist to rewire the gated registers.

Because rewiring the gated registers alters the clock-gating cell that gates the registers,
any path-based timing exception that goes through the old clock-gating cell to a gated
register is no longer relevant and is lost.

Removing Clock-Gating Cells From the Design
The Power Compiler tool performs clock gating at the RTL level during the
compilation process when you use the compile_ultra -gate_clock command. The
remove_clock_gating command lets you selectively remove the clock gates without
having to start at RTL again. The subsequent compile_ultra command removes the
selected clock-gating cells. As a result you have the ability to use aggressive clock-gating
strategies initially and selectively remove clock-gating cells, if needed.

This command removes redundant clock-gating cells that are no longer connected to any
clock-gating cells. Any associated test observation logic is also optimized. However, if a
dont_touch attribute is set on a clock-gating cell or any of its parent in the hierarchy, the
tool does not remove such cells.

All the registers that are not driven by the clock-gated signals are remapped to new
sequential cells. This might result in new pin names for the registers. If there are pin-
based timing exceptions set on the original register, these exceptions might not transfer
properly during the transformation, if the new and the original pin names do not match.
Pin-based timing exceptions are specified by using the set_max_delay, set_min_delay,
set_multicycle_path, and set_false_path commands.

The remove_clock_gating command displays a warning if there are pin-based timing
exceptions on the register to be ungated. Cell based timing exceptions are not affected
because the ungated registers retain their name. It is advisable to use the cell-based
timing exceptions with clock-gating registers.

For information, see the Design Compiler documentation.

Power Compiler™ User Guide
U-2022.12-SP3

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Integrated Clock-Gating Cells

Feedback

Rewiring Clock Gating After Retiming
The Power Compiler tool supports the -balance_fanout option to the
rewire_clock_gating command.

This command is used to rebalance the fanout of the clock gates within the design after
modifications have been made during retiming. During optimization, the tool automatically
balances the register banks based on the minimum and maximum fanout requirements.
However, when you run the compile -ungroup or optimize_registers commands
that perform retiming, unconnected registers are removed to improve timing. For clock
tree synthesis, ensure that the clock gates have equivalent fanout loads by using the
-balance_fanout option.

Use the rewire_clock_gating -balance_fanout command either after retiming or after
compilation to restore a balanced fanout. When you use this command, the tool compares
the changed fanout of each equivalent clock-gating cell. The registers are moved around
so that each equivalent clock-gating cell now has a balanced set of registers and honors
the -max_fanout option that you specified originally. Any register banks not meeting the
minimum_bitwidth requirement are ungated. However, if a dont_touch attribute is set
on a clock-gating cell or any of its parent in the hierarchy, the tool does not perform fanout
balancing on such cells.

Note:
The command is not intended for use after the balance_registers command.

Integrated Clock-Gating Cells
An integrated clock-gating cell integrates the various combinational and sequential
elements of a clock gate into a single cell located in the logic library. An integrated clock-
gating cell is a cell that you or your library developer creates to use especially for clock
gating.

Consider using an integrated clock-gating cell if you are experiencing timing problems,
such as clock skew, caused by the placement of clock-gating cells on your clock line.

Use the Library Compiler tool to create an integrated cell for clock gating. For detailed
information, see the Library Compiler documentation.

The Library Compiler tool assigns a black box attribute to the complex sequential
cells such as integrated clock-gating cells. The Design Compiler tool does not
use the integrated cells for general logic synthesis. However, the Power Compiler
tool uses these integrated clock-gating cell for clock gating. The selection of the
clock-gating cell is determined either by the default or the values specified with the
set_clock_gating_style command. Each integrated clock-gating cell in the library must
contain the Library Compiler clock_gating_integrated_cell attribute. This attribute

Power Compiler™ User Guide
U-2022.12-SP3

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Integrated Clock-Gating Cells

Feedback

can be set to either the string generic or to one of 26 strings that represent specific
clock-gating types. The generic setting causes the Library Compiler tool to infer the
clock_gating_integrated_cell attribute from the functionality of the clock-gating cell.
Using one of the 26 standard strings specifies the functionality explicitly according to
established conventions. For more details, see Appendix B, Integrated Clock-Gating Cell
Example.

Integrated Clock-Gating Cell Attributes
The clock_gating_integrated_cell attribute should be set to one of 26
function-specific strings, such as latch_posedge_postcontrol. Each string is a
concatenation of up to four strings that describe the cell’s functionality. The library
developer specifies the attribute when the integrated cell is created. When you set the
clock_gating_integrated_cell attribute to generic, the Power Compiler tool infers the
value from the Library Compiler attribute.

For more information, see the Library Compiler User Guide.

The clock_gating_integrated_cell attribute can have any one of 26 different values.
Table 13 contains a short list of example values and their meanings.

Table 13 Examples of Values for Integrated Clock-Gating Cell

Value of clock_gating_integrated_cell Integrated cell must contain

latch_negedge Latch-based gating logic
Logic appropriate for gating falling-edge-triggered
registers

latch_posedge_postcontrol Latch-based gating logic
Logic appropriate for gating rising-edge-triggered
registers
Test control logic located after the latch

latch_negedge_precontrol Latch-based gating logic
Logic appropriate for gating falling-edge-triggered
registers
Test control logic located before the latch

none_posedge_control_obs Latch-free gating logic
Logic appropriate for gating rising-edge-triggered
registers
Test control logic (no latch)
Observability port

For more examples, see Appendix B, Integrated Clock-Gating Cell Example.

Power Compiler™ User Guide
U-2022.12-SP3

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Integrated Clock-Gating Cells

Feedback

The set_clock_gating_style command determines the integrated cell that the Power
Compiler tool uses for clock gating. The tool searches the library for the integrated
cell that has the attribute value corresponding to the options you specify with the
set_clock_gating_style command.

For example, consider the following command:

set_clock_gating_style -sequential_cell latch \
 -positive_edge_logic {integrated} -control_point before \
 -control_signal test_mode -observation_point true

The -sequential_cell latch and -control_point before options result in a latch-
based style, and the tool searches for an integrated clock-gating cell with control as the
third string parameter of the clock_gating_integrated_cell attribute.

The tool selects a latch-based positive-edge integrated clock-gating cell because
you specified the -positive_edge_logic {integrated} option. If your library
does not contain a positive-edge integrated clock-gating cell, the tool chooses
a nonintegrated clock-gating cell that meets the current clock-gating style. If the
power_cg_permit_opposite_edge_icg is true, the tool can choose a negative-edge
integrated clock-gating cell with an inverter to achieve the positive-edge trigger.

If more than one integrated cell has the correct attribute value, the Power Compiler tool
chooses the first integrated cell that it finds in the target library. If you have a preference,
specify the integrated cell by name.

The Power Compiler tool does not check the function of the integrated cell to ensure
that it complies with the value of the clock_gating_integrated_cell attribute. The
correct functionality is checked by the Library Compiler tool when the integrated cell is
initially created. The Power Compiler tool searches for an integrated clock-gating cell that
contains the specified attribute value.

Pin Attributes
The Power Compiler tool requires certain Library Compiler attributes on the pins of your
integrated clock-gating cell. Table 14 lists the required pin attributes for pin names that
pertain to clock gating. Some pins, such as the pins for test and observability are optional;
however, if a pin is present, it must have the corresponding attribute listed in Table 14.

Table 14 Pin Attributes for Integrated Clock-Gating Cells

Integrated cell pin name Input or output Required Library Compiler
attribute

clock Input clock_gate_clock_pin

enable Input clock_gate_enable_pin

Power Compiler™ User Guide
U-2022.12-SP3

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Integrated Clock-Gating Cells

Feedback

Table 14 Pin Attributes for Integrated Clock-Gating Cells (Continued)

Integrated cell pin name Input or output Required Library Compiler
attribute

test_mode or scan_enable Input clock_gate_test_pin

enable_clock Output clock_gate_out_pin

observability Output clock_gate_obs_pin

Other tools used in your synthesis and verification flow might require additional pin
attributes that are not specific to clock gating and are not listed in Table 14.

For more information about Library Compiler attributes and library syntax, see the Library
Compiler documentation.

Timing Considerations
Clock gating requires certain timing arcs on your integrated clock-gating cell.

For latch-based clock gating,

• Define setup and hold arcs on the enable pin with respect to the clock pin.

For the latch-based gating style, these arcs are defined with respect to the controlling
edge of the clock that is driving the latch.

• Define combinational arcs from the clock and enable inputs to the output.

For latch-free clock gating,

• Define no-change arcs on the enable pin with respect to the clock pin.

For the integrated latch-free gating style, these arcs must be no-change arcs, because
they are defined with respect to different clock edges.

• Define combinational arcs from the clock and enable inputs to the output.

For more detailed information about timing your integrated cell, see the Library Compiler
documentation.

Power Compiler™ User Guide
U-2022.12-SP3

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Naming Conventions

Feedback

Clock-Gating Naming Conventions
Clock-gating creates subdesigns containing clock-gating logic. Default naming
conventions are shown in Figure 31.

Figure 31 Default Naming Conventions

Latch

Module Name: SNPS_CLOCK_GATE_HIGH_design_name

Reference Cell Name: clk_gate_register

net62

(not net52 see

netlist below)

The name of this net is randomly

generated. Ex: net52 in the

Verilog netlist

EN

CLK

Main Gate

The Verilog netlist looks as follows:

module SNPS_CLOCK_GATE_HIGH_ff_03 (CLK, EN, ENCLK);
 input CLK, EN;
 wire net50, net52, net53, net56;
 assign net50 = CLK;
 assign net50 = CLK;
 assign ENCLK = net52;
 assign net53 = EN;

 L_CSLDP1NQW latch (.D(net53), .ENN(net50),
.Q(net56));
 L_CSAN2 main_gate (.A(net56), .B(net50), .Z(net52));
 endmodule
 module ff_03 (q, d, clk, e, clr);
 output [2:0] q;
 output [2:0] q;
 input [2:0] d;
 input clk, e, clr;
 wire N0, net62;

 L_CSFD2QP \q_reg[2] (.D(d[2]), .CP(net62), .RN(clr),
.Q(q[2]));
 L_CSFD2QP \q_reg[1] (.D(d[1]), .CP(net62), .RN(clr),
.Q(q[1]));
L_CSFD2QP \q_reg[0] (.D(d[0]), .CP(net62), .RN(clr),

Power Compiler™ User Guide
U-2022.12-SP3

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Naming Conventions

Feedback

.Q(q[0]));
 SNPS_CLOCK_GATE_HIGH_ff_03 clk_gate_q_reg (.CLK(clk),
.EN(N0),
.ENCLK(net62));
 L_CSIV1 U5 (.A(e), .Z(N0));
 endmodule

The module_name(SNPS_CLOCK_GATE_..), reference cell_name(clk_gate..) and
the gated_clock enable net name(net62) could be changed according to your
preferences.

Set the power_cg_module_naming_style, power_cg_cell_naming_style,
and power_cg_gated_clock_net_naming_style variables before running the
compile_ultra -gate_clock command.

Use the variables either in .synopsys_setup.dc file or before clock-gate insertion. The
details of the implementation are as follows:

Usage: set power_cg_module_naming_style
"prefix_%e_%l_midfix_%p_%t_%d_suffix"
 where,
 prefix/midfix/suffix are just examples of any constant
strings that can
be specified.
 %e - edge type (HIGH/LOW)
 %l - library name of integrated clock gating cell library
 or concatenated target_library names
 %p - immediate parent module name
 %t - top module (current design) name
 %d - index added if there is a name clash

Usage: set power_cg_cell_naming_style
"prefix_%c_%n_midfix_%r_%R_%d_suffix"
 where,
 %c - clock
 %n - immediate enable signal name
 %r - first gated reg bank name
 %R - all gated reg banks sorted alphabetically
 %d - index for splitting or name clash resolution

Usage: set power_cg_gated_clock_net_naming_style
"prefix_%c_%e_%g_%d_suffix"
 %c - original clock
 %e - immediate enable signal name
 %g - clock gate (instance) name
 %d - index for splitting or name clash resolution

Note:
If %d is not specified, the tool assumes a %d at the end.

Power Compiler™ User Guide
U-2022.12-SP3

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gating Naming Conventions

Feedback

Example Script for Naming Style
set power_cg_module_naming_style Synopsys_%e_mid_%t
set power_cg_cell_naming_style cg_%c_%n_mid_%R
set power_cg_gated_clock_net_naming_style gclk_%c_%n

define_design_lib WORK -path ./work_writable
set target_library cstarlib_lvt.db
set link_library { cstarlib_lvt.db }

set_clock_gating_style -sequential_cell latch -max_fanout 3 \
 -minimum_bitwidth 1
analyze -format verilog -library WORK ff_03.v
 elaborate ff_03
 compile_ultra -gate_clock
 uniquify
 create_clock -name "clk" -period 5 \
 -waveform {"0" "2.5" } { "clk" }
 compile_ultra
 current_design ff_03
 write -format verilog -output 3.ff_03.vg -hierarchy

Example Script of Output Netlist
 module Synopsys_HIGH_mid_ff_03_0 (CLK, EN, ENCLK);
 input CLK;
 input EN;
 output ENCLK;
 wire net15, net12, net11, net9;
 assign net12 = EN;
 assign ENCLK = net11;
 assign net9 = CLK;

 L_CSAN2 main_gate (.A(net15), .B(net9), .Z(net11));
 L_CSLDP1NQW latch (.D(net12), .ENN(net9), .Q(net15));
 endmodule

 module ff_03 (q, d, clk, e, clr);
 output [2:0] q;
 input [2:0] d;
 input clk;
 input e;
 input clr;
 wire N1, gclk_clk_N1_0;

 Synopsys_HIGH_mid_ff_03_0 cg_clk_N1_mid_q_reg_0 (
.CLK(clk), .EN(N1),
 .ENCLK(gclk_clk_N1_0));
 L_CSFD2QP \q_reg[2] (.D(d[2]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[2])
);

Power Compiler™ User Guide
U-2022.12-SP3

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

 L_CSFD2QP \q_reg[1] (.D(d[1]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[1])
);
 L_CSFD2QP \q_reg[0] (.D(d[0]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[0])
);
 L_CSIV1 U3 (.A(e), .Z(N1));
 endmodule

Keeping Clock-Gating Information in a Structural Netlist
The Power Compiler tool applies several clock-gating attributes to the design and
to the clock-gating cells and gated registers in the design. Commands such as
report_clock_gating, rewire_clock_gating, remove_clock_gating and several
placement optimization algorithms depend on these attributes for proper operation.

The power_cg_flatten variable specifies whether to flatten the clock-gating cells when
you use commands that perform ungrouping, such as ungroup, compile -ungroup_all,
or balance_registers. By default, the variable is set to false and the clock-gating
cells are not flattened. This is recommended for most situations because ungrouping the
discrete clock gates could cause problems.

You can write a clock-gated structural netlist in ASCII format after synthesis. Reading back
the structural netlist in ASCII format causes the clock-gating attributes to be lost, possibly
preventing clock-gating and optimization from operating properly.

The tool can automatically retrieve the clock-gating attributes and identify the clock-
gating cells when you read the ASCII netlist. For more information, see Identifying and
Preserving Clock-Gating Cells.

Identifying and Preserving Clock-Gating Cells
The clock-gate identification feature helps the tool to recognize the clock-gating cells that
it inserted in the netlist in the previous run or the clock-gating cells that you instantiated in
the ASCII netlist.

Identification of Clock-Gating Cells
The Power Compiler tool can identify clock-gating cells, including the hierarchical
integrated clock-gating cells that exist in an ASCII netlist or the discrete hierarchical clock-
gating cells inserted in a previous run of the tool.

To identify the clock-gating cells inserted by the tool and annotate the related attributes,
either set the power_cg_auto_identify variable to true before reading in the design or
use the identify_clock_gating command without specifying any options.

Power Compiler™ User Guide
U-2022.12-SP3

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

The following example shows how to use the power_cg_auto_identify variable to
identify and report the identified clock-gating cells.

set power_cg_auto_identify true
read_verilog my_design.v
current_design my_design_top
report_clock_gating

Explicit Identification of Clock-Gating Cells
If the identify_clock_gating command used without options cannot identify specific
clock-gating cells, specify the -gating_elements option to explicitly identify clock-gating
cells. The tool sets the pwr_cg_preservation_type attribute on the specified cell.

To explicitly identify a clock-gating cell, the cell must have at the least two input pins and
one output pin; one of the input pins must be a clock pin.

Explicit identification provides you the flexibility to identify the clock-gating cells that differ
from the configuration expected by the Power Compiler tool for automatic identification.
However the explicitly identified clock-gating cells have additional optimization restrictions.

When a cell could be automatically identified but was explicitly identified, the tool sets the
pwr_cg_preservation_type attribute to preserve on the cell, and you can remove the
attribute. When a cell is identified explicitly and could not be automatically identified, the
tool sets the pwr_cg_preservation_type attribute to unmodifiable_read_only and you
cannot remove the attribute.

For more information on the pwr_cg_preservation_type attribute, see Preserving the
Identified Clock-Gating Cells.

The following example shows how to identify a specific clock-gating element using the
-gating_elements option of the identify_clock_gating command.

dc_shell> read_verilog design.v
dc_shell> current_design top
dc_shell> link
Defining the clock is not a prerequisite for clock-gate identification
Identifies all the clock-gating cells inserted by the tool
dc_shell> identify_clock_gating

Identifies the specified clock-gating cell
dc_shell> identify_clock_gating -gating_elements CG_1
dc_shell> report_clock_gating
For more details, see Usage Flow With the identify_clock_gating Command.

Power Compiler™ User Guide
U-2022.12-SP3

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

Preserving the Identified Clock-Gating Cells
To preserve the identified clock-gating cells, use the set_preserve_clock_gate
command. The command sets the pwr_cg_preservation_type attribute to one of the
following values on the specified clock-gating cells:

• preserve

• dont_modify_fanout

• dont_modify_enable

• unmodifiable

Note:
When you specify a non clock-gating cell with the set_preserve_clock_gate
command, the Power Compiler tool ignores the command without any warning
message.

The following example and Figure 32 illustrate clock-gating optimization when the
pwr_cg_preservation_type attribute is set to preserve:

set power_cg_reconfig_stages true
set_clock_gating_style -num_stages 1
identify_clock_gating
set_preserve_clock_gate [get_cells UICG_1]

Figure 32 Optimization When pwr_cg_preservation_type is Set to Preserve

EN2 EN1

UICG_1 UICG_2 compile_ultra
-gate_clock

UICG_1

clk_gate_Out2_reg

EN2

EN1

EN2

Out1_reg

Out2_reg

Out1_reg

Out2_reg

Power Compiler™ User Guide
U-2022.12-SP3

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

When the power_cg_reconfig_stages attribute is set to true and a clock gate is
specified with a maximum stage of 1, the tool collapses existing multilevel clock gate
instances into a single stage.

In Figure 32, the UICG_1 instance is marked to be preserved with the
set_preserve_clock_gate command. The tool can still modify the enable logic
and the fanout when no additional options are specified. After optimization, the
clock gate instances restrict the maximum number of stages allowed. When the
set_preserve_clock_gate command is used, the UICG_1 name is preserved.
Otherwise, the tool chooses new names for resulting instances.

The following table describes the behavior of the set_preserve_clock_gate command
and the pwr_cg_preservation_type attribute values:

Table 15 Behavior of the set_preserve_clock_gate Command and the
pwr_cg_preservation_type Attribute

set_preserve_clock_gate pwr_cg_preservation_type Behavior

No options given preserve Preserve the specified clock-gating
cell; allow all clock-gating optimizations
if the cell and its name are conserved
after compile_ultra -gate_clock
command.

-dont_modify_fanout dont_modify_fanout Preserve the specified clock-gating
cell and prevent any clock-gating
optimization in the direct fanout of the
specified clock-gating cell.

-dont_modify_enable dont_modify_enable Preserve the specified clock-gating
cell and prevent any clock-gating
optimization in the clock-gating enable
logic.

-dont_modify_fanout
-dont_modify_enable

unmodifiable Prevent any further clock-gating
optimization on the clock-gating fanout
and clock-gating enable logic of the
specified clock-gating cell.

Note:
The -dont_modify_fanout and -dont_modify_enable options restrict only
clock-gating optimizations. Any other compile optimization is still allowed, such
as remapping, buffering, boundary retiming, and so on.

Power Compiler™ User Guide
U-2022.12-SP3

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

When you use the set_preserve_clock_gate command for a clock-gating cell,

• If the -dont_modify_fanout option is not used, the tool optimizes the cell if it does not
drive any load or does not meet the minimum bitwidth.

• The remove_clock_gating command does not remove these cells

During clock-gate merging, the tool preserves the cell that has the
pwr_cg_preservation_type attribute set as shown in Figure 43.

To remove the pwr_cg_preservation_type attribute, use the remove_attribute
command. However, you cannot remove it if the pwr_cg_preservation_type attribute is
set to unmodifiable_read_only during explicit clock-gating identification.

Identified Clock-Gating Cells and dont_touch
When you use the set_dont_touch command on identified clock-gating cells, the cells
are affected in the following ways:

• No rewiring of the clock gate

• No removal of the clock gate

• No merging or splitting of the clock gates

The dont_touch setting also affects the fanout of the clock-gating cells in the following
ways:

• No further addition of clock-gating cells

• No fanout balancing of flip-flops that were gated

• No addition or removal of loads on the fanout of the clock-gating cell

Handling Clock-Gating Edge Conflicts
Instantiated clock-gating cells that drive registers with a different activation edge are
identified and optimized like any other clock-gating cell. The clock gating style for these
cells are honored if they do not invert the clock signal. For example, suppose you have the
following code:

set_clock_gating_style -minimum_bitwidth 3
identify_clock_gating
compile_ultra -gate_clock

With the example shown in Figure 33, the tool removes the clock-gating cell named CG1
because its activation edge is the same as the register it gates. However, it does not
remove the positive-edge clock-gating cell named CG2 because it gates a register with a
negative-edge activation edge.

Power Compiler™ User Guide
U-2022.12-SP3

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

Figure 33 Optimization of Same-Edge Activation Clock-Gating Cell

D QA

D Q
A

CLK

CG1

CG2

D Q

A

D Q
A

CLK

CG2

E

Comparison of Clock-Gate Identification Methods
The advantages and disadvantages of the methods of clock-gate identification are
summarized in Table 16.

Table 16 Identifying Clock-Gated Designs

Command Used Advantages Disadvantages

write_script Clock-gating attributes are written
using the set_attribute and
set_preserve_clock_gate
commands to save the current
settings. This method uses familiar
commands and procedure.

Netlist changes are not
supported.

identify_clock_gating Netlist changes performed outside
of Design Compiler are supported.

You must run this command
at the right place. Some
attributes such as max_fanout
might be lost unless the
set_clock_gating_style
command is used.

Usage Flow With the write_script Command
Follow these steps to retrieve the clock-gating information in the ASCII netlist using the
write_script command.

1. Set up the environment, read in the RTL design, and insert the clock-gating logic.

2. Compile the design with the required constraints.

3. Run the change_names command to conform to the specified rules.

Power Compiler™ User Guide
U-2022.12-SP3

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist

Feedback

4. Write out the netlist.

5. Save current attributes and settings by using the write_script -hierarchy
command. Use the -output option of the command to write the output to a file. This
command writes out all the attributes set by the set_attribute command.

6. Exit the Design Compiler session. Make sure you do not make any changes to the
netlist before quitting.

7. Read in the design netlist.

8. Source the file written by the write_script command. This sets all the required
attributes on the design, including the clock-gating cells, for proper execution
throughout the flow.

If you do not need clock-gating information, use the -no_cg option of the write_script
command. This results in a smaller script file.

The following example script shows the output file created by the write_script
command.

##

Created by write_script -format dctcl on February 6, 2020 11:22 am

##
Set the current_design
current_design module4

set_local_link_library {CORELIB8DLL.db}
set_attribute -type int [current_design] power_cg_max_fanout 2048
set_attribute -type boolean [get_cells clk_gate_out1_reg] \
clock_gating_logic true
set_attribute -type boolean [get_cells clk_gate_out1_reg] \
hpower_inv_cg_cell false
set_attribute -type integer [get_cells {out1_reg[0]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[1]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[2]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[3]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[4]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[5]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells clk_gate_out1_reg] \
power_cg_gating_group 0
set_size_only [get_cells latch] true

Power Compiler™ User Guide
U-2022.12-SP3

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Replacing Clock-Gating Cells

Feedback

Usage Flow With the identify_clock_gating Command
This section describes the steps you follow to retrieve the clock-gating information using
the identify_clock_gating command.

After you have saved the design that has the clock-gating information, follow these steps
to retrieve the clock-gating information:

1. Read in the structural netlist that already has clock-gating cells inserted.

2. Set the set_clock_gating_style command. This ensures that the settings are the
same as before saving the design. Otherwise, a few attributes such as max_fanout are
not retained.

3. Use the identify_clock_gating command without any options to identify all clock-
gating elements. This step traverses the design, searches appropriately for the clock-
gating structure recognized by the power Compiler tool, and annotates the attributes
needed for later operations.

Your design now contains all the clock-gating information. You can verify this using the
report_clock_gating command.

Note:
Identify the clock-gating elements before optimizing the design so that
the enable logic of the clock-gating elements can be optimized by the
compile_ultra -gate_clock command.

Replacing Clock-Gating Cells
The Power Compiler tool detects clock-gating circuitry at the block or module level. At the
module level, the clock-gating circuit can be either an instantiated or inferred logic. The
tool replaces this logic with an integrated clock-gating cell or discrete cells according to the
attributes that the set_clock_gating_style command specified. This cell replacement
is performed using the replace_clock_gates command. This feature allows you to
use the integrated clock-gating cell that is recognized by the report_clock_gating,
remove_clock_gating, and rewire_clock_gating commands, for further operations.

Follow these steps to perform module-level replacement of clock-gating cells:

1. Set clock-gating directives and styles (optional).

The default settings of the set_clock_gating_style command is suitable for most
designs. You can choose a value for the clock-gating conditions and a clock-gating
style that is compatible with the clock-gating cell that is being replaced using the
set_clock_gating_style command. Note that the replace_clock_gates command
only operates on clock gate composition when using the style settings. It does not use
the -num_stages option.

Power Compiler™ User Guide
U-2022.12-SP3

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Replacing Clock-Gating Cells

Feedback

2. Read the RTL design.

3. Define the clock ports.

The clock port must be identified using the create_clock command before performing
the replacement operation.

4. Replace manually-instantiated clock-gating cells.

To replace manually-inserted clock gates with tool-inserted clock gates, use the
replace_clock_gates command. To perform the replacement hierarchically, use the
-global option. If you have not specified a clock-gating styles, the tool uses the default
clock-gating style.

Note:
This command replaces only combinational logic. It does not replace
observability logic.

5. Compile the design.

The replaced clock-gating logic is unmapped. Use the compile_ultra command to
compile your design.

6. Report the registers.

Use the report_clock_gating command to get the list of cells as shown in the
following example:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> replace_clock_gates
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating
dc_shell> report_power
In the following example, replacement is performed on a gating cell that is driving
registers in a black box cell:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> set_replace_clock_gates -rising_edge_clock RAM/clk
dc_shell> replace_clock_gates
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating

Power Compiler™ User Guide
U-2022.12-SP3

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Replacing Clock-Gating Cells

Feedback

In the following example, replacement is performed only on selected gating cells:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> set_replace_clock_gates -exclude_cells {SUB/C10}
dc_shell> replace_clock_gates
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating
Example 19 shows a clock-gate replacement report.

Example 19 Clock-Gate Replacement Report
Current clock gating style....
Sequential cell: none
Minimum register bank size: 3
Minimum bank size for enhanced clock gating: 6
Maximum fanout: 2048
Setup time for clock gate: 1.300000
Hold time for clock gate: 0.000000
Clock gating circuitry (positive edge): or
Clock gating circuitry (negative edge): and
 Note: inverter between clock gating circuitry
 and (negative edge) register clock pin.
Control point insertion: none
Control signal for control point: scan_enable
Observation point insertion: false
Observation logic depth: 5
Maximum number of stages: 5
1
replace_clock_gates -global
 Loading target library 'ssc_core_typ'
 Loading design 'regs'
Information: Performing clock-gating on design regs
Clock Gate Replacement Report
==
| Clock | | Include | Clock | Edge | | Setup | Gate |
| Root | Cell Name | Exclude | Fanin | Type | Func. | Cond. | Repl. |
==
| clk | | | | | | | |
| | C7 | - | 1 | fall | and | yes | yes |
==

Summary:
 number percentage
Replaced cells (total): 1 100
Cell not replaced because
 Cell was excluded: 0 0
 Multiple clock inputs: 0 0
 Mixed or unknown clock edge type: 0 0
 No compatible clock gate available: 0 0
 Setup condition violated: 0 0
Total: 1 100

Power Compiler™ User Guide
U-2022.12-SP3

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Inserting Clock Gates With Safety Registers

Feedback

Clock Gate Insertion Report
===
| Gated | Flip-Flop | Include | | Enable | Setup | Width | Clock |
| Group | Name | Exclude | Bits | Cond. | Cond. | Cond. | Gated |
===
	GATED						
	REGISTERS						
cg0			4	yes	yes	yes	yes
	q2_reg[3]	-	1				
	q2_reg[2]	-	1				
	q2_reg[1]	-	1				
	q2_reg[0]	-	1				
cg1			4	yes	yes	yes	yes
	q3_reg[3]	-	1				
	UNGATED						
	REGISTERS						
	si_reg	-	1	no	??	??	no
	ti_reg	-	1	no	??	??	no
	q4_reg[0]	-	1	no	??	??	no
===
Summary:
Flip-Flops Banks Bit-Width
 number percentage number percentage
Clock gated (total): 3 30 12 54
Clock not gated because
 Bank was excluded: 0 0 0 0
 Bank width too small: 0 0 0 0
 Enable condition not met: 7 70 10 45
 Setup condition violated: 0 0 0 0
Total: 10 100 22 100

Clock gates in design number percentage
 Replaced clock gates: 1 16
 Inserted clock gates: 3 50
 Factored clock gates: 2 33
Total: 6 100

Multistage clock gating information
 Number of multistage clock gates: 2
 Average multistage fanout: 2.0
 Number of gated cells: 16
 Maximum number of clock gate stages: 3
 Average number of clock gate stages: 2.2

Inserting Clock Gates With Safety Registers
You can gate triple modular redundancy (TMR) registers using the same clock gate, for all
safety registers, without touching or modifying the voting logic.

Power Compiler™ User Guide
U-2022.12-SP3

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Inserting Clock Gates With Safety Registers

Feedback

Figure 34 Gating of TMR Register

The Design Compiler NXT tool automatically detects whether safety registers are used
and inserts clock gates accordingly. The tool always ensures that the safety registers
within the same safety group share the same clock and that the voting logic remains
untouched.

Self gating is not supported for safety registers. When the tool cannot gate safety
registers, the report_clock_gating -ungated command shows the new Safety
register not supported reason.

For example, the following figure shows the ungated reasons report issued by the
report_clock_gating -ungated command:

Power Compiler™ User Guide
U-2022.12-SP3

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Clock-Gate Optimization Performed During Compilation
To further increase the power saving of your design, the Power Compiler tool uses certain
techniques during compilation to reduce the number of clock-gating cells in the design.
These techniques are described in the following sections:

• Hierarchical Clock Gating

• Enhanced Register-Based Clock Gating

• Multistage Clock Gating

• Clock Gate Merging

• Placement-Aware Clock Gating in Design Compiler Graphical

• Clock Gating Multibit Registers

Hierarchical Clock Gating
Clock-gating techniques in the Power Compiler tool extract common enable conditions that
are shared across the registers within the same block.

In hierarchical clock gating, during the clock-gate insertion, the tool extracts the common
enables shared across registers in different levels of hierarchy in the design. This
technique looks for globally shared enables while inserting clock-gating cells. This
increases the clock-gating opportunities and also reduces the number of clock gates
inserted. This technique, combined with proper placement, improves the power savings.

Note:
During hierarchical clock gating, the tool honors the boundary optimization
settings. If you disable boundary optimization, the tool does not perform
hierarchical clock-gate insertion.

The Power Compiler tool inserts hierarchical clock-gating cells at various levels of design
hierarchy. As a result, additional ports are created for the clock-gated enable signal as
shown in Figure 35. These additional ports are added to the subdesigns. The Formality
tool verifies the designs successfully when the designs being compared have the same
number of primary ports.

Power Compiler™ User Guide
U-2022.12-SP3

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Figure 35 Ports Added During Hierarchical Clock Gating

The Power Compiler tool can perform hierarchical clock gating on RTL netlists as well
as gate-level netlists. To perform hierarchical clock gating by using the compile_ultra
-gate_clock command, you must set the compile_clock_gating_through_hierarchy
variable to true before compiling your design.

The following example shows hierarchical clock gating using the compile_ultra
command:

Set your target library and link library
Set the clock-gating style (optional)
Following command is optional. Use for global clock gating
dc_shell> set compile_clock_gating_through_hierarchy true

Read your design
dc_shell> create_clock -name clk -period 10
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating -verbose -gating_elements -gated
dc_shell> report_power

Enhanced Register-Based Clock Gating
The regular register-based clock gating requires certain conditions in order for successful
implementation. One of these conditions is the minimum bit-width of the register bank to
be gated. If the minimum bit-width is less than 3, which is the default, there is no clock-
gating opportunity. This width constraint ensures that the overhead of using the clock-
gating cell does not overcome the power savings.

The Power Compiler tool can factor out the common enable signal EN shared between
three register banks and insert one clock-gating cell for these register banks, which would
normally not be clock gated due to the width condition. The result is shown in Figure 36.

Power Compiler™ User Guide
U-2022.12-SP3

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Figure 36 Design With Common Enable Signal
Width Condition Violation (W=2):

No Clock Gating

Register
Bank

Register
Bank

Register
Bank

Register
Bank

Register
Bank

Register
Bank

EN

EN

EN

B

A

C

CLK

Clock

Gate

GCLK

EN

CLK

A

B

C

Common Enable Factoring

The default total minimum bit-width of registers for enhanced clock gating to be
implemented is twice that of regular clock gating. Because the default for regular register
clock gating is 3, for the enhanced clock gating the register width should be at least 2 * 3,
which is 6.

Enhanced clock gating is the default behavior when you use the compile_ultra
-gate_clock command.

In the following example, automated clock gating with enhanced clock gating is
implemented if the clock-gating conditions are met.

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating

Power Compiler™ User Guide
U-2022.12-SP3

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Multistage Clock Gating
When a clock-gating cell drives another or a row of clock-gating cells, it is called
multistage clock gating. For additional power savings, the tool identifies common enables
and factoring using another clock-gating cell as shown in Figure 37.

Figure 37 Multistage Clock Gating With set_clock_gating_style -num_stages 2

Stage 1

clock gate

Register

BankStage 1

clock gate

Stage 1

clock gate

b

a
Stage 1

clock gate

Stage 1

clock gate

Stage 1

clock gate

Stage 2

clock gate

EN

EN

Register

Bank

Register

Bank

CLK

c

c

b

a

CLK

Register

Bank

Register

Bank

Register

Bank

To perform multistage clock gating, you should set the maximum number of
stages for multistage clock gating by using the -num_stages option of the
set_clock_gating_style command. The default of the -num_stages option is 1. After
setting the maximum number of stages, use the compile_ultra -gate_clock command
to perform multistage clock gating.

However, the compile_ultra command performs the following additional clock-gate
optimization steps during multistage clock gating:

• Reconfiguring the number of clock-gating stages

If you set the power_cg_reconfig_stages variable to true, the tool reconfigures
the number of clock-gating stages. The reconfiguration complies with the value of the
-num_stages option of the set_clock_gating_style command. This is done only on
the clock gates inserted by the tool or identified by the tool.

Power Compiler™ User Guide
U-2022.12-SP3

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

• Balancing the number of clock-gating stages

If you set the power_cg_balance_stages variable to true, the tool balances the
number of the existing clock-gating stages across various register banks. Balanced
clock-gate stages ensure uniform clock latency across register banks. Figure 38 shows
the transformation for balancing the clock-gating stages.

Figure 38 Balancing the Number of Stages

CG

CG

CG

CG

CG

CGCLK

EN1

EN2

CLK

EN2

EN1

EN2

EN1

STAGE-1

STAGE-1

STAGE-2

STAGE-1

STAGE-1

STAGE-1

Multistage Clock-Gating Flow
Follow these steps to build a multistage clock-gating structure for a design that does not
have clock-gating cells:

1. Set clock-gating styles and directives.

Use the set_clock_gating_style command to specify the clock gating stages and
other clock gating conditions. You can set the number of stages for multistage clock
gating as shown in the following example:

set_clock_gating_style -num_stages 5

2. Read your design.

Read in the design using a read command.

Power Compiler™ User Guide
U-2022.12-SP3

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

3. Perform multistage clock gating.

Use the compile_ultra -gate_clock command.

4. Report the gate elements registers.

Use the report_clock_gating command to get the list of cells and the report_power
command to see the design power after the multistage clock gating.

The following is an example script to perform multistage clock gating using the
compile_ultra -gate_clock command:

set the target library and the link library

dc_shell> set_clock_gating_style -num_stages 5
dc_shell> read_ verilog design.v
dc_shell> create_clock -name clk -period 10
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating -verbose -gating_elements \
 -gated -multi_stage
dc_shell> report_power

Clock Gate Merging
When your design has multiple clock-gating cells as shown in Figure 39, the Power
Compiler tool can merge two clock-gating cells, into one clock-gating cell.

Figure 39 Two Integrated Clock-Gating Cells

EN2EN1

ICG1

CLK

ICG2

User

Instantiated

Clock-Gating

User

Instantiated

Clock-Gating

Register

Bank

D Q

Power Compiler™ User Guide
U-2022.12-SP3

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Example 20 shows how to insert, identify, and merge ICG1 and ICG2 clock-gating cells
shown in Figure 40:

Example 20 Example to Insert, Identify, and Merge Clock-Gating Cells
dc_shell> set power_cg_auto_identify true
dc_shell> set power_cg_reconfig_stages true
dc_shell> set_clock_gating_style -positive_edge_logic {integrated}\
 -num_stages 1
dc_shell> compile_ultra -gate_clock

Figure 40 Two Integrated Clock-Gating Cells Merged by AND Operation of the Enable Inputs

D
Register

Bank

Q

EN1
EN2

ICG1_ICG2

CLK

In Figure 41, one of the clock-gating cells in Figure 39 is set for preservation.

Figure 41 One Integrated Clock-Gating Cell With Preservation

EN2EN1

ICG1

CLK

ICG2

User

Instantiated

Clock-Gating

Cell

User

Instantiated

Clock-Gating

Register

Bank

D Q

Example 21 shows how to insert, identify, preserve the ICG1 cell, and merge clock-gating
cells as show in Figure 42. The preserved clock gate retains its name.

Power Compiler™ User Guide
U-2022.12-SP3

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Example 21 Example to Insert, Identify, Preserve, and Merge Clock-Gating Cells
dc_shell> set power_cg_reconfig_stages true
dc_shell> set_clock_gating_style -positive_edge_logic {integrated} \
 -num_stages 1
dc_shell> identify_clock_gating
dc_shell> set_preserve_clock_gate [get_cells ICG1]
dc_shell> compile_ultra -gate_clock

Figure 42 Merged Clock-Gating Cells With Preserved Cell Name Remaining

D

CLK_G1

Register

Bank

Q

EN

EN2

ICG1

CLK

(preserved)

In Figure 43, one of the clock gates to be merged has the pwr_cg_preservation_type
attribute set, and the other does not. The tool merges the clock gates by preserving the
cell that has the pwr_cg_preservation_type attribute set.

Figure 43 Merging Clock Gates When One of the Identified Clock-Gating Cell Does Not
Have the pwr_cg_preservation_type Attribute Set

Register

BankCLK

User

Instantiated

Clock-Gating

Cell

(preserve)

EN1

Register

Bank

User

Instantiated

Clock-Gating

Cell

EN1

CLK

Register

Bank

Register

Bank

CLK

User

Instantiated

Clock-Gating

Cell

EN1

Q Q

Q
Q

After Clock-Gate MergingBefore Clock-Gate Merging

ICG1

ICG2

ICG1

Power Compiler™ User Guide
U-2022.12-SP3

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Placement-Aware Clock Gating in Design Compiler Graphical
In the Synopsys physical guidance flow, the Design Compiler Graphical tool can
restructure the connection between the integrated clock-gating cell and the registers that
it drives so that the clock-gating cell and the registers can be placed close to each other.
This restructuring is used by the IC Compiler II tool during placement optimization, which
improves the overall timing and area of the design.

To enable the restructuring of the integrated clock-gating cell and the registers, set
the power_cg_physically_aware_cg variable to true. The default is false. When
the power_cg_physically_aware_cg variable is set to true, the annotation of clock-
gate latency values is disabled during compile. Any new, tool-inserted clock gates do
not have any latency annotation. This also means any latency values set using the
set_clock_latency command are unused, and the apply_clock_gate_latency
command has no effect. However, any previously annotated clock-gate latency values on
clock-gating cells are left unchanged.

Figure 44 shows the physical guidance flow for placement-aware clock-gating in the
Design Compiler Graphical and IC Compiler II tools.

Note:
When placement-aware clock gating is enabled, clock-gating identification
is performed during the compile_ultra command to obtain a better
correlation with the IC Compiler II tool. This is independent of the value of the
power_cg_auto_identify variable.

Power Compiler™ User Guide
U-2022.12-SP3

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation

Feedback

Figure 44 Physical Guidance Flow for Placement-Aware Clock Gating

Specify physical and logical
constraints

Set
power_cg_physically_aware_cg

true

insert_dft

compile_ultra

-incremental -gate_clock -spg

-scan

Read RTL design

Synopsys Physical Guidance

Flow in Design Compiler

Graphical
IC Compiler Flow

Read design

Specify physical and logical
constraints

place_opt -spg

-optimize_icgs

Continue with the flow (clock_opt
and route_opt)

Clock Gating Multibit Registers
The Power Compiler tool supports insertion of clock-gating cells on multibit registers. The
enable pins for all the registers must be the same for clock gating to occur. All the clock-
gating commands are supported for multibit registers.

To enable clock gating on multibit registers, set the hdlin_infer_multibit variable to
default_all. For more information, see SolvNetPlus article 000025387, “Multibit Register
Synthesis and Physical Implementation Application Note.”

To set the maximum fanout value for the clock-gating cells, use the
set_clock_gating_style -max_fanout command. When calculating the max_fanout
value for multibit registers, use the required register count as the fanout value.

For example, if you specify set_clock_gating_style -max_fanout 4, the
compile_ultra -gate_clock command inserts a clock-gating cell that can drive up to

Power Compiler™ User Guide
U-2022.12-SP3

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/040041.html
https://solvnet.synopsys.com/retrieve/040041.html

Chapter 7: Clock Gating
Performing Clock-Gating on DesignWare Components

Feedback

4 registers whether they are 4 single-bit or 4 multibit registers or a combination of the two
types of registers.

It is important to note that while max_fanout is calculated as the actual load on the clock-
gating cell, the min_bitwidth value is the minimum number of bits to either gate or
ungate whether it is a multibit register or not. For example, if you set the min_bitwidth
value to 3, you can clock gate four single-bit registers if they share the same clock and
enable lines. The multibit mapping feature converts the four single-bit registers into a
single 4-bit multibit register. Both configurations—the four single bit registers or the single
4-bit multibit register—satisfy the minimum bitwidth setting of three.

The report_clock_gating command generates a report that includes details of the
decomposition of multibit registers.

Note:
The Power Compiler tool does not support self-gating on multibit registers.

Performing Clock-Gating on DesignWare Components
The Power Compiler tool provides the ability to perform clock gating on DesignWare
components instead of treating them as black box cells. The compile_ultra
-gate_clock command performs clock gating on DesignWare components, by default.

The following example script performs clock gating on DesignWare components:

set target_library [list my_lib.db cg_integ_pos.db]
set synthetic_library dw_foundation.sldb
set link_library [list "*" my_lib.db
dw_foundation.sldb cg_integ_pos.db]
set_clock_gating_style -minimum_bitwidth 1 -sequential_cell latch \
 -positive_edge_logic {integrated:CGLP} # Optional
read_verilog cpurd_fifo.v
write -format verilog -hierarchy -output elab.v
compile_ultra -gate_clock
insert_dft
write -format verilog -hierarchy -output comp.v

You can view the DesignWare clock-gated registers using the report_clock_gating
-gated command. The DesignWare clock gates are designated by a (*) in the report.

Reporting Clock Gates
The report_clock_gating command reports the clock-gating cells and the registers with
and without clock-gating signals in the current design. To see the dynamic power savings
due to clock-gate insertion, use the report_power command.

Power Compiler™ User Guide
U-2022.12-SP3

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

For more information, see the following topics:

• The report_clock_gating Command

The report_clock_gating Command
The Power Compiler tool provides detailed reporting of clock gates with the
report_clock_gating command. As a prerequisite, clock gates must be identified by
using one of the following methods:

• Set the power_cg_auto_identify variable to true before reading in the design.

• Execute the identify_clock_gating command without specifying any options.

If you use the report_clock_gating command without any options, the report includes a
summary table of the clock-gating elements and a table that shows the origins of the clock
gates.

An example of the default report is shown in Example 22.

Example 22 Default Clock-Gating Report
dc_shell> report_clock_gating
**
Report : clock_gating
Design : low_design
Version: ...
Date : ...
**
 Clock-Gating Summary
+---+
Number of clock gating elements	2
Number of gated registers	8 (80.00%)
Number of ungated registers	2 (20.00%)
Total number of registers	10
+---+

Power Compiler™ User Guide
U-2022.12-SP3

182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

 Clock-Gating Report by Origin
+--+------------------+
| | Actual (%) |
| | Count |
+--+------------------+
Number of tool-inserted clock gating elements	1 (50.00%)
Number of pre-existing clock gating elements	1 (50.00%)
Number of gated registers	8 (80.00%)
Number of tool-inserted gated registers	4 (40.00%)
Number of pre-existing gated registers	8 (80.00%)
Number of ungated registers	2 (20.00%)
Number of registers	10
+--+------------------+

If the design contains multibit registers, the default report also contains information
about the number and percentage of gated and ungated bits with respect to both tool-
inserted and previously existing clock gates, as shown in Example 23. The Actual Count
column represents the count of the cells in the design. The Single-bit Equivalent column
represents the register count if every multibit register is converted to an equivalent number
of single-bit registers.

Example 23 Clock-Gating Report for a Design With Clock-Gated Multibit Registers
 Clock Gating Multibit Decomposition
+--------------------------------+------------+------------+
| | Actual | Single-bit |
| | Count | Equivalent |
+--------------------------------+------------+------------+
Number of Gated Registers		
1-bit	0	0
4-bit	1	4
Total	1	4
Number of Ungated Registers		
1-bit	1	1
4-bit	0	0
Total	1	1
Total Number of Registers		
1-bit	1	1
4-bit	1	4
Total	2	5
+--------------------------------+------------+------------+

The percentages in the report are calculated with respect to the total number of registers
or bits. In a multistage design, registers and bits can be simultaneously gated by both

Power Compiler™ User Guide
U-2022.12-SP3

183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

tool-inserted and previously existing clock gates. For this reason, some of the reported
percentages might not add up to 100 percent.

When you use the -gating_elements option, the report includes the label (d) next to the
name of a clock-gating cell to indicate that the cell or its parent hierarchical cell has been
marked by the set_dont_touch command. This means that this clock-gating cell is not
modified or removed. Example 24 shows an example report using the -gating_elements
option. The report includes a similar section for each clock gating bank.

Example 24 Clock-Gating Report Using the -gating_elements Option
--
 Clock-Gating Cell Report
--
 Clock Gating Bank : clk_gate_out1_reg (ss_hvt_0v70_125c: 0.7)

STYLE = latch, MIN = 2, MAX = unlimited, HOLD = 0.00, OBS_DEPTH = 5

 INPUTS :
 clk_gate_out1_reg/CLK = clk
 clk_gate_out1_reg/EN = N6
 clk_gate_out1_reg/TE = test_se
 OUTPUTS :
 clk_gate_out1_reg/ENCLK = net107

Example 25 shows an example report using the -ungated, -gated, -gating_elements,
and -verbose options. Tables display all the ungated and gated registers in the current
design. The -ungated option shows the specific registers that are not clock-gated and the
reasons for not gating them.

Example 25 Clock-Gating Report With Gated and Ungated Elements
--
 Clock Gating Cell Report
--
 Clock Gating Bank : clk_gate_C7

STYLE = none, MIN = 3, MAX = 2048, HOLD = 0.0, SETUP = 1.3, OBS_DEPTH = 5
 TEST INFORMATION :
 OBS_POINT = NO, CTRL_SIGNAL = scan_enable, CTRL_POINT = none
 INPUTS :
 clk_gate_C7/CLK = clk
 clk_gate_C7/EN = xi
 OUTPUTS :
 clk_gate_C7/ENCLK = xclk
 RELATED REGISTERS :
 q4_reg[3]
 q4_reg[2]
 q4_reg[1]
 q4_reg[0]
--

Power Compiler™ User Guide
U-2022.12-SP3

184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

 Gated Register Report
--
 Clock Gating Bank | Gated Register
--
 |
 clk_gate_C7 | q4_reg[0]
 | q4_reg[1]
 | q4_reg[2]
 | q4_reg[3]
 |
 clk_gate_q3_reg | q3_reg[0]
 | q3_reg[1]
 | q3_reg[2]
 | q3_reg[3]
 |
--
 Ungated Register Report
--
 Ungated Register | Reason | What Next ?
--
 q1_reg | Min bitwidth not met |
 q2_reg | Min bitwidth not met |
 q5_reg | Min bitwidth not met |
--
 Clock Gating Summary
 +--+
 | Number of clock gating elements | 0 |
 | | |
 | Number of gated registers | 0 (0.00%) |
 | | |
 | Number of ungated registers | 4 (100.00%) |
 | | |
 | Total number of registers | 4 |
 +--+

Example 26 shows a report generated with the -multi_stage and -no_hier options for
a hierarchical multistage clock gated design. A multistage clock gate is a clock-gating cell
that is driving another clock-gating cell.

Power Compiler™ User Guide
U-2022.12-SP3

185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

Example 26 Clock-Gating Report Using the -no_hierarchy and -multi_stage Options
 Clock Gating Summary
 --
 | Number of clock gating elements | 6 |
 | | |
 | Number of gated registers | 16 (72.73%) |
 | | |
 | Number of ungated registers | 6 (27.27%) |
 | | |
 | Total number of registers | 22 |
 | | |
 | Number of multi-stage clock gates | 2 |
 | | |
 | Average multi-stage fanout | 2.0 |
 | | |
 | Number of gated cells | 16 |
 | | |
 | Maximum number of stages | 3 |
 | | |
 | Average number of stages | 2.2 |
 --

Figure 45 shows the enable conditions of a clock-gating cell. The enable condition for
the clk_gate_q_reg clock-gating cell is represented by the RTL invariant object names
during synthesis. In this example, these objects are the sequential output pins (the Q pin
coming from the m_reg register) and hierarchical input pins (the h_en1 pin). These objects
are put into one basic logical expression representing when the clock signal is disabled.

Figure 45 Example of Enable Conditions for Clock-Gating Cells

q_reg[]

m_reg

CLK

TOP
MID

D Q

h_en

clk_gate_q_reg

The report_clock_gating -enable_conditions command prints a report, as shown in
Example 27.

Power Compiler™ User Guide
U-2022.12-SP3

186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

Example 27 Example of Clock Gating Report for Enable Conditions
**
Report : clock_gating
 -enable_conditions
Design : top
Version: ...
Date : ...
**

 Enable Conditions Report

 Clock Gating Bank | Gated Register
--
 |
MID/clk_gate_q_reg | MID/q_reg

Enable condition:
MID/h_en & MID/m_reg/Q

The all_clock_gates command includes the -origin origin_spec option that
specifies the origins of the cells returned. Accepted values include pre_existing and
tool_inserted. The -origin option can also be combined with other existing options.

• pre_existing: Use this argument to return the origin of all the preexisting clock gates.
The tool displays an information message when the pre_existing argument is used
without initially running the identify_clock_gates command.

Figure 46 and Figure 47 show the all_clock_gates command output with and without
initially running the identify_clock_gates command:

Figure 46 Output of the all_clock_gates command after initially running the
identify_clock_gates command

Power Compiler™ User Guide
U-2022.12-SP3

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

Figure 47 Output of the all_clock_gates command without initially running the
identify_clock_gates command

• tool_inserted: Use this argument to return the origin of all the clock gates inserted
by the tool.

The report_clock_gating command issues a comprehensive summary of the reasons
for not gating and the percentage of registers being impacted by each reason in the
design. The table is sorted by the frequency of the ungated reason, from highest to lowest.
The tool does not support self gating.

Power Compiler™ User Guide
U-2022.12-SP3

188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Clock Gating
Reporting Clock Gates

Feedback

Figure 48 shows the histogram output of the report_clock_gating -ungated command:

Figure 48 Histogram Output

The histogram report includes the following parameters:

• Reason for not gating: The reason for not gating the register

• Regs: Number of ungated registers for each reason

• Regs %: Percentage of registers ungated due to the specific reason

• Bits: Number of ungated bits for each reason

• Bits %: Percentage of bits ungated due to the specific reason

Power Compiler™ User Guide
U-2022.12-SP3

189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
Self-Gating

Self-gating is an advanced clock-gating technique that reduces dynamic power
consumption. Self-gating turns off the clock signal during specific clock cycles when the
data in the register is unchanged.

For more information, see the following topics:

• Self-Gating Concepts

• Self-Gating Flows

• Library Requirements for Self-Gating

• Inserting Self-Gates

• Querying and Reporting Self-Gates

Self-Gating Concepts
The self-gating technique reduces the dynamic power of a design by turning off the clock
signal of registers during clock cycles when the data in the register remains unchanged.
For example, an XOR gate can be used to compare the data stored in the register with
the data arriving at the data pin of the register. The XOR gate output controls the enable
condition for gating. If the data is unchanged, the unnecessary clock cycles are gated by
the output of the XOR gate. Figure 49 shows the XOR gate that generates the enable
signal.

Self-gating is available in topographical mode in the Design Compiler and Design
Compiler NXT tools.

Figure 49 XOR Self-Gating Cell

CLK

D Q

Power Compiler™ User Guide
U-2022.12-SP3

190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Self-Gating Concepts

Feedback

By default, the tool supports self-gating only on registers that are not gated.

Registers with an enable condition that cannot be inferred from the existing logic can only
be gated using the self-gating technique. They cannot be gated using traditional clock
gating. By default, the tool supports self-gating only on registers that are not gated. You
can use the set_self_gating_options command to allow self-gating on these registers.
However, the time duration that the clock signal is turned off might increase for these
registers.

To ensure QoR improvements, the self-gating algorithm takes timing and power into
consideration. The tool employs self-gating if both of these conditions are true:

• There is enough timing slack available at the register's data pin.

For designs with multiple scenarios, the tool considers the timing of the worst case
among active scenarios that are enabled for both setup and dynamic power. The tool
issues a PWR-949 information message that reports the scenario on which self-gating
is based.

• Internal dynamic power of the circuit is reduced.

For designs with mutiple scenarios, the tool uses the average internal dynamic power
among active scenarios that are enabled for both setup and dynamic power.

If the design contains multiple scenarios but none of them are enabled for setup or
dynamic power, the tool does not perform self-gating and issues a PWR-948 information
message.

The Power Compiler tool does not support the following types of sequential cells for self-
gate insertion:

• Level-sensitive sequential cells

• Level-sensitive scan design registers

• Master-slave flip-flops

• Retention registers

• Single-bit and multibit registers that belong to shift registers

• Multibit registers with multiple clock pins

• Cells that are scan-stitched prior to self-gating

To minimize the area and power overhead, a self-gating cell can be shared across a
few registers by creating a combined enable condition with a tree of comparator gates.
If the self-gated registers are driven by synchronous set or reset signals, these signals
are also included in the construction of the enable signal so that the circuit remains
functionally unchanged. Figure 50 is an example of a self-gating cell that is shared across
two registers (4 bits). One of the self-gated registers is a multibit register and the other

Power Compiler™ User Guide
U-2022.12-SP3

191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Self-Gating Concepts

Feedback

register is a single-bit register. The tool can also self-gate a group of multibit registers or a
group of single-bit registers.

Figure 50 Shared Comparator Cells for Self-Gating

CLK

D0 Q0

D2 Q2
D1 Q1

D Q

EN

If the following conditions are met, two or more registers can be gated by the same self-
gating cell:

• The registers belong to the same hierarchy

• The registers belong to the same clock domain

• The set and reset signals are driven by the same type of signals, either one of the
following:

◦ Synchronous set and synchronous reset

◦ Asynchronous set and asynchronous reset

The Power Compiler tool supports using XOR, OR, and NAND gates for comparator gates
in a self-gating flow. OR and NAND gates are typically smaller and faster than XOR cells.
However, the optimal choice in terms of power consumption depends on factors such the
static probability of the data pin, its toggle rate, and the power consumption of the specific
library cells involved (the registers being gated, the self-gates, and the combinational cells
used as comparator cells). You can allow the tool to select the type of comparator cell to
use in self-gating or specify the type of comparator cell to use.

Power Compiler™ User Guide
U-2022.12-SP3

192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Self-Gating Flows

Feedback

Self-Gating Flows
During self-gating, the Power Compiler tool identifies registers where self-gate insertion
can potentially save dynamic power without degrading the timing. Dynamic power is
calculated using the switching activity annotated on the design. If the switching activity is
not available, the tool uses the default activity.

By default, the tool groups registers to create self-gating banks with a minimum size of
four bits and a maximum size of eight bits.

In addition, the Design Compiler NXT tool groups registers with similar D pin toggle rates,
which limits the detrimental power effects of high toggle rates.

The self-gating comparator cells are inserted without a hierarchical wrapper.

Figure 51 illustrates the general flow for self-gating. The general flow uses logic libraries
and a SAIF, RTL, or .ddc file.

Figure 51 General Self-Gating Flow

Design Compiler Topographical

read_saif -input in.saif
or

set_switching_activity

compile_ultra -self_gating [-gate_clock] […]

write_script -hierarchy -output
write_script.out

SAIF RTL/.ddc file Libraries

Reports write_script.out
.ddc file, netlist

When an ASCII netlist with self-gating cells is read into the Power Compiler tool, all
attribute information is lost and the tool does not recognize the self-gating cells for
reporting or optimization. The Power Compiler tool supports the self-gating ASCII flow
using the write_script command, as shown in Figure 52. Use the write_script
-hierarchy -output file_name command to save the current attributes of the design.
When the design is read back into the tool, use the source command to source the file

Power Compiler™ User Guide
U-2022.12-SP3

193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Library Requirements for Self-Gating

Feedback

written by the write_script command. This sets all the required attributes on the design,
including the self-gating cells, for reporting and optimization.

Figure 52 Self-Gating ASCII Flow

write_script.out Verilog netlist Libraries

Design Compiler Topographical

source write_script.out

compile_ultra -self_gating -incremental
[-gate_clock] […]

write_script -hierarchy -output
write_script.out

Reports

Library Requirements for Self-Gating
To perform self-gating, the logic library should contain XOR, OR, and AND gates for the
corresponding operating conditions. The integrated clock-gating cells in the library that
have the following configurations are used as self-gating cells.

• Sequential cell: latch

• Control point: before

• Control signal: scan_enable

• Observation point: none

If the library does not contain cells with these configurations for the corresponding
operating conditions, the tool does not insert self-gating cells. If an integrated clock gate
compatible with self-gating is specified through the set_clock_gating_style command,
the tool uses the same integrated clock gate or the clock gate that is most similar to the
one specified.

Power Compiler™ User Guide
U-2022.12-SP3

194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Inserting Self-Gates

Feedback

Inserting Self-Gates
To insert self-gates, use the compile_ultra -self_gating command. Perform the
following steps before you run the compile_ultra command:

1. Apply switching activity by using the read_saif or set_switching_activity
command.

2. (Optional) Specify self-gating settings by using the set_self_gating_options
command.

3. (Optional) Override the default selection of self-gating objects by using the
set_self_gating_objects command.

Specifying Objects for Self-Gating
To specify objects for self-gating, use the set_self_gating_objects command. You
can specify registers, hierarchical cells, power domains, or designs. The options are as
follows:

• -force_include object_list
Specifies a list of objects to be self-gated, regardless of the
set_self_gating_options command settings.

• -exclude object_list
Specifies a list of objects to be excluded from self-gating.

• -include object_list
Specifies a list objects for which self-gating honors the set_clock_gating_options
command settings. This is the default for all registers in the design.

• -undo object_list
Removes all inclusion, exclusion, and forced criteria on the listed objects.

• -type combinational_logic_type
Specifies the type of combinational cells to use. This option is available only in the
Design Compiler NXT tool. Valid settings are xor, or, nand, and auto settings to allow
the use of different types of comparator cells. The default is auto, in which case the
tool automatically decides which comparison logic to use based on switching activity
information. This might help to reduce the area while optimizing power. You must use
this option with the -include or -force_include options.

The Design Compiler tool always uses XOR comparator cells for self-gating and does
not support the -type option.

Power Compiler™ User Guide
U-2022.12-SP3

195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Querying and Reporting Self-Gates

Feedback

The following command excludes the D_OUT_reg register bank of the MID subdesign
from self-gating:

dc_shell-topo> set_self_gating_objects -exclude MID/D_OUT_reg[*]

Specifying Options for Self-Gating
To specify conditions for self-gating and define the interaction with clock gating, use the
set_self_gating_options command. The options are as follows:

• -min_bitwidth bitwidth
Controls the minimum size for self-gating banks. The default is 4.

• -max_bitwidth bitwidth
Controls the maximum size for self-gating banks. The default is 8.

• -interaction_with_clock_gating interaction_type
Registers gated by user-instantiated clock-gating cells are candidates for self-gating.
Valid arguments are none (skip registers gated by tool-inserted clock gates), insert
(the default; insert self-gates on gated registers), and collapse (collapse tool-inserted
clock gates if they are in the same hierarchy).

The following command specifies to insert self-gates for a minimum of two bits and a
maximum of nine bits:

dc_shell-topo> set_self_gating_options -min_bitwidth 2 -max_bitwidth 9

Querying and Reporting Self-Gates
Use the all_self_gates command to get a collection of self-gating cells or pins of self-
gating cells in the current design. For example, the following command returns the self-
gating cells that gate registers clocked by CLK:

dc_shell-topo> all_self_gates -clock CLK
Use the report_self_gating command to report the number of registers with self-gates
and optional information about registers without self-gates in the current design.

Power Compiler™ User Guide
U-2022.12-SP3

196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Querying and Reporting Self-Gates

Feedback

Example 28 shows the report generated by the report_self_gating command when no
option is specified.

Example 28 Report Generated by the report_self_gating Command
 Self-Gating Summary
--
Number of self gating cells	7
Number of self gated registers	50 (50.00%)
Number of registers not self-gated	50 (50.00%)
Total number of registers	100
--
 Self Gating Multibit Decomposition
+--------------------------------------+------------+------------+
| | Actual | Single-bit |
| | Count | Equivalent |
+--------------------------------------+------------+------------+
Number of Self Gated Registers		
1-bit	3	3
4-bit	3	12
Total	6	15
Number of Registers not Self-Gated		
1-bit	0	0
4-bit	0	0
Total	0	0
Total Number of Registers		
1-bit	3	3
4-bit	3	12
Total	6	15
+--------------------------------------+------------+------------+

Power Compiler™ User Guide
U-2022.12-SP3

197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Querying and Reporting Self-Gates

Feedback

Use the report_self_gating -ungated command to obtain a report that describes why
self-gating did not occur and suggests how to get self-gating to occur on these registers.
The report is similar to Example 29.

Example 29 Report From the report_self_gating -ungated Command
--
 Ungated Register Report
--
Ungated Register| Reason | What Next?
--
 y_reg[9] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[8] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[7] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[6] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[5] | Self gating creates negative slack on path
 | Relax timing constraints on this path

 Self Gating Summary
 --
 | Number of self-gating cells | 0 |
 | | |
 | Number of self gated registers | 0 (0.00%) |
 | | |
 | Number of registers not self-gated | 5 (100.00%) |
 | | |
 | Total number of registers | 5 |
 --

Power Compiler™ User Guide
U-2022.12-SP3

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Self-Gating
Querying and Reporting Self-Gates

Feedback

Use the report_self_gating -gated command to display information about self-gating
banks. The report is similar to Example 30.

Example 30 Report From the report_self_gating -gated Command

 Self-Gated Register Report

 Self-Gating Bank | Gated Register

 self_gate_q_reg |
 | q_reg[0]
 | q_reg[1]
 | q_reg[2]
 | q_reg[3]
 Total | 4
--
 self_gate_y_reg |
 | y_reg[0]
 | y_reg[1]
 | y_reg[2]
 | y_reg[3]
 Total | 4

 Sum Total 2 | 8

Power Compiler™ User Guide
U-2022.12-SP3

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Power Optimization

The Power Compiler tool performs additional steps to optimize the design for dynamic and
leakage power.

For information about power optimization, see the following topics:

• Overview

• Gate-Level Power Optimization

• Enabling Power Optimization

• Performing Power Optimization

Overview
Transistor threshold voltage has an exponential effect on the transistor's leakage power.
Minimizing leakage power is an important goal of IC design.

Every design contains both critical and noncritical timing paths. Using a lower-speed cell
on a noncritical path does not affect the performance of the design. A slower cell usually
allows the use of a higher threshold voltage, which reduces leakage power dramatically.
Optimizing high-speed and low-speed cells on different timing paths leads to a balanced
design with high performance and low leakage power.

Figure 53 illustrates the inputs and outputs of the gate-level power optimization flow.

Power Compiler™ User Guide
U-2022.12-SP3

200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Gate-Level Power Optimization

Feedback

Figure 53 Power Optimization Flow

Power Options

Gate-Level Netlist

Libraries

Power Optimized

RTL or
Gate-Level
Netlist

Power

Optimization in

Logical

Synthesis

Switching
Activity

The inputs for gate-level power optimization are as follows:

• RTL or gate-level netlist and optional floor plan. This netlist is not optimized for power.

• Power options to enable power optimization

• Libraries

The Power Compiler tool selects different library cells to modify the netlist for power
optimization. Providing libraries with multiple threshold voltages is highly recommended
to facilitate leakage optimization.

• Switching activity information, which is required for dynamic and total power
optimization, and recommended for high accuracy in leakage optimization.

The output of gate-level power optimization is a new gate-level netlist that has been
optimized for power. The optimization is implemented with the compile or compile_ultra
commands.

Gate-Level Power Optimization
To perform power optimization, the Power Compiler tool reduces power consumption on
paths with positive timing slack. The more paths in the design with positive slack, the more
opportunity exists for the tool to reduce power consumption by using low-power cells.

Power Compiler™ User Guide
U-2022.12-SP3

201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Gate-Level Power Optimization

Feedback

Designs with excessively restrictive timing constraints have little or no positive slack to
trade for power reduction.

Designs that have opaque cells such as RAM and ROM cells and customized subdesigns
that have the dont_touch attribute can benefit from power optimization.

To enable total power optimization, set the
compile_enable_total_power_optimization variable to true (the default is false).
This feature is available only in the Design Compiler NXT tool in the Synopsys physical
guidance flow, With total power optimization, the tool uses placement and sizing
techniques to reduce power consumption. For better accuracy, annotate the switching
activity from RTL simulation.

Leakage Power Optimization
Leakage power optimization is an additional step to timing optimization. During leakage
power optimization, the tool tries to reduce the leakage power of the design without
affecting the performance. Leakage power optimization is performed on paths that are
not timing-critical. When the target libraries are characterized for leakage power and
contain cells characterized for multiple threshold voltages, the tool uses library cells with
appropriate threshold voltages to reduce the leakage power of the design.

Dynamic Power Optimization
Dynamic power optimization is an additional step to the timing optimization. After the
optimization, the design consumes less dynamic power without affecting the performance.
Dynamic power optimization requires information about the switching activity. Optimizing
dynamic power incrementally provides better QoR and take less runtime.

Annotating the correct switching activity information by using a SAIF file improves the
dynamic power optimization. You can annotate switching activity in the following ways:

• Read the SAIF file

Use the read_saif command to read a SAIF file to annotate the switching activity
information on nets, pins, ports, and cells in the design.

• Use the set_switching_activity command

You can also use the set_switching_activity command to annotate the switching
activity information.

If switching activity is not annotated, the default toggle rate is applied to the primary inputs
and outputs of opaque cells. The Power Compiler tool propagates the default toggle
rate throughout the design. The propagated toggle rates are used for dynamic power
optimization.

Power Compiler™ User Guide
U-2022.12-SP3

202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Enabling Power Optimization

Feedback

High-Effort Power Optimization
In the Design Compiler NXT tool, you can specify high-effort total power optimization
by using the set_compile_power_high_effort command. The tool performs
aggressive optimization to reduce power at the compile_ultra -spg, compile_ultra
-incremental -spg, and optimize_netlist -area commands. You can use the
set_compile_power_high_effort command only in physical guidance mode.

High-effort total power optimization might increase runtime and might affect other QoR
metrics such as area and timing.

The -total option of the set_compile_power_high_effort command requires a Power
Compiler license. If you set this option to true (the default is false), the tool ignores the
-leakage option. The -leakage option does not require a Power Compiler license.

Enabling Power Optimization
Leakage power optimization is automatically enabled for all Design Compiler tools except
DC Expert. When using the DC Expert tool, use the following command to enable leakage
optimization:

set_leakage_optimization true
To enable dynamic optimization in all tools, use the following command:

set_dynamic_optimization true
When both leakage and dynamic power options are enabled in the DC Expert tool, the tool
performs leakage power optimization.

The following example script shows the default usage model for power optimization.

Specify all multivoltage threshold libraries
set_app_var target_library "hvt.db nvt.db lvt.db"
set_app_var link_library "* $target_library"

read_verilog rtl.v
link
compile_ultra
report_power

Note:
The report_power and report_constraint commands use state-dependent
information to calculate leakage power.

Power Compiler™ User Guide
U-2022.12-SP3

203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Enabling Power Optimization

Feedback

Leakage Optimization for Multicorner-Multimode Designs
For multicorner-multimode designs, you can specify the leakage power optimization for
specific scenarios, using the set_scenario_options command.

For more information about leakage power optimization for multicorner-multimode design,
see Power Optimization in Multicorner-Multimode Designs.

Leakage Power Optimization Based on Threshold Voltage
Leakage power optimization can use single threshold voltage or multiple threshold voltage
libraries. However, multiple threshold voltage libraries can save more leakage power.

Leakage power is very sensitive to threshold voltage. The higher the threshold voltage, the
lower the leakage power. On the other hand, the lower the threshold voltage, the faster the
timing.

For designs that have strict timing constraints, you can optimize for leakage power only
on the paths that are not timing-critical by using the higher threshold-voltage cells from
the multiple threshold voltage libraries. If the design has a relatively easy-to-meet timing
constraint, you might have a large number of low threshold voltage cells in the design,
resulting in higher leakage power consumption. One way to avoid this situation without
having to change your target library settings is to use the set_multi_vth_constraint
command to specify a low percentage usage value for the lower threshold voltage cells.
For optimum results, start by specifying 1 to 5 percent of the number of cells in the design
for the low threshold voltage cells. Gradually increase the percentage until the timing
constraint is met. With this technique, the design can meet the timing constraint while
minimizing the leakage power consumption.

Multiple Threshold Voltage Library Attributes
For accurate multiple threshold voltage leakage optimization, define threshold voltage
groups in the libraries. Use the set_attribute command and add the following attributes:

• Library-level attribute:

default_threshold_voltage_group :string;

• Library-cell-level attribute:

threshold_voltage_group :string;

With these attributes, the threshold voltages are differentiated by the string you specify.
When the library has at least two threshold voltage groups, or if you have defined
threshold voltage groups for your library cells using the set_attribute command, the
library cells are grouped by the threshold voltage.

Power Compiler™ User Guide
U-2022.12-SP3

204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Performing Power Optimization

Feedback

The set_multi_vth_constraint Command
Use the set_multi_vth_constraint command to set the multiple threshold voltage
constraint. This command has options to specify the constraint in terms of area or number
of cells of the low threshold voltage group. You can also specify whether this constraint
should have higher or lower priority than the timing constraint.

The set_multi_vth_constraint command supports the -type option to specify the type
of the constraint. When you specify -type hard, the Power Compiler tool tries to meet this
constraint, even if this results in timing degradation. When you specify -type soft, the
tool tries to meet this constraint without degrading the timing.

Note:
The -type soft option is supported only in Design Compiler topographical
mode.

When calculating the percentage of low threshold voltage cells in the design, the tool does
not consider opaque cells. To consider these cells in the percentage calculation, specify
the -include_blackboxes option.

After synthesis, use the report_threshold_voltage_group command to report the
percentage of the total design, by cell count and by area, that is occupied by the low-
threshold voltage cells.

In the following example, the maximum percentage of low threshold voltage cells in
the design is set to 15 percent. When the tool tries to meet this constraint, the timing
constraint is not compromised.

dc_shell-topo> set_multi_vth_constraint \
 -lvth_groups {lvt svt} -lvth_percentage percentage \
 -type soft -include_blackboxes
The set_multi_vth_constraint command takes precedence over leakage optimization.

Performing Power Optimization
The compile_ultra command performs power optimizations, by default, along with the
timing and area optimizations.

An incremental compile uses the existing netlist as a starting point for continued
optimization. Usually, this ensures improvement for timing, power, and area (or for
other active constraints you define). If you have a design goal that is not met (a violated
constraint), a subsequent optimization session attempts to meet the violated constraint by
sacrificing lower-priority design goals.

Power Compiler™ User Guide
U-2022.12-SP3

205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Performing Power Optimization

Feedback

Settings for Power Optimization
The power optimization and prediction settings are used when you run the compile_ultra
or compile_ultra -incremental command to perform accurate power estimation. The
tool also uses these settings to get accurate post-synthesis power numbers comparable
with the place-and-route numbers. Design Compiler Graphical supports IEEE 1801, also
known as Unified Power Format (UPF), in the physical guidance flow. For more details on
UPF, see UPF Multivoltage Design Implementation.

To enable clock-gate optimization, use the -gate_clock option and the -spg option of the
compile_ultra command. The Power Compiler tool inserts, modifies, or deletes clock-
gating cells, except where you have set the dont_touch attribute on a clock-gating cell or
its parent hierarchical cell.

When you enable the power prediction feature by using the set_power_prediction
command, the tool performs clock tree estimation during the last phase of the
compile_ultra command.

The report_power command reports the correlated power when the design is mapped
to technology-specific cells. When the power prediction feature is disabled, the
report_power command reports only the total power, static power, and dynamic power
used by the design without accounting for the estimated clock-tree power. For more details
about using the low-power placement feature in multicorner-multimode designs, see
Optimizing for Dynamic Power Using Low-Power Placement.

Power Optimization in the Physical Guidance Flow
The Synopsys physical guidance feature enables Design Compiler Graphical to save the
physical guidance information and pass this information to the IC Compiler II tool. This
section discusses the settings required for the low-power placement feature. For general
details of the physical guidance flow, see the Design Compiler User Guide.

Settings for Low-Power Placement
Use the following command and variable settings to enable low-power placement:

• set_dynamic_optimization true

• power_low_power_placement true
When you enable the low-power placement feature, the tool optimizes the dynamic power
by shortening the net lengths of high-switching activity nets. Since the dynamic power
saving is based on the switching activity of the nets, annotate the switching activity by
using the read_saif command. Then, synthesize the design using the compile_ultra
-spg command. Example 31 shows how to enable and use the low-power placement
feature.

Power Compiler™ User Guide
U-2022.12-SP3

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Power Optimization
Performing Power Optimization

Feedback

Example 31 Enabling and Using the Low-Power Placement Feature
set_dynamic_optimization true
set_app_var power_low_power_placement true
read_saif -input s1.saif -instance_name inst_1
compile_ultra -spg
report_power

It is recommended, but not required, to read in the RTL SAIF file before optimization.
If the RTL SAIF file is not available, the tool uses the defaults, a static probability
of 0.5 and a toggle rate of 0.1. If you want to annotate your own values, use the
set_switching_activity command.

Note:
The power_low_power_placement variable is not supported in
the Design Compiler NXT tool. When using the Design Compiler
NXT tool, you can enable total power optimization by setting the
compile_enable_total_power_optimization variable to true.

Power Compiler™ User Guide
U-2022.12-SP3

207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10
Multivoltage Design Concepts

In multivoltage designs, the subdesign instances operate at different voltages. In
multisupply designs, the voltages of the various subdesigns are the same, but the blocks
can be powered on and off independently. In this user guide, unless otherwise noted, the
term multivoltage includes multisupply and mixed multisupply-multivoltage designs.

For information about multivoltage designs and library requirements, see the following
topics:

• Multivoltage and Multisupply Designs

• Library Requirements for Multivoltage Designs

• Power Domains

• Voltage Areas

Multivoltage and Multisupply Designs
The logic synthesis tools support the following types of low-power designs:

• Multivoltage

• Multisupply

• Mixed multivoltage and multisupply

To reduce power consumption, multivoltage designs typically make use of power domains.
The blocks of a power domain can be powered up and down, independent of the power
state of other power domains (except where a relative always-on relationship exists
between two power domains).

Multivoltage designs have nets that cross power domains to connect cells operating
at different voltages. Some power domains can be always-on, that is, they are never
powered down, while others might be always-on relative to some specific power domain.
Some power domains shut down and power up independently, but might require isolation
and other special cells. In general, voltage differences are handled by level shifters, which
step the voltage up or down from the input side of the cell to the output side. The isolation
cells isolate the power domain. Note that an enable-type level shifter can be used as
isolation cells.

Power Compiler™ User Guide
U-2022.12-SP3

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

Library Requirements for Multivoltage Designs
To synthesize a multivoltage design using the Power Compiler tool, the logic libraries must
conform to the Liberty syntax. the libraries should also contain special cells such as clock-
gating cells, level-shifters, isolation cells, retention registers, and always-on buffers and
inverters. To support synthesis of multivoltage designs, the tool supports multiple libraries
characterized at different voltages. The following topics describe the types of cells that
support multivoltage or low-power designs:

• Liberty PG Pin Syntax

• Level-Shifter Cells

• Isolation Cells

• Requirements of Level-Shifter and Isolation Cells

• Retention Register Cells

• Power-Switch Cells

• Always-On Logic Cells

Liberty PG Pin Syntax
In the traditional, non-multivoltage designs, all components of the designs are connected
to a single power supply at all times. Therefore the logic libraries used for synthesizing
such designs do not contain details of power supply and ground connections of cells
because all the cells are connected to the same type of VDD and VSS.

For the synthesis of multivoltage designs, it is necessary to specify the power supplies
that can be connected to specific power pins of a cell. The Liberty syntax supports the
specification of power rail connection to the power supply pins of the cells. This power and
ground (PG) pin information allows the synthesis tool to optimize the design for power and
to analyze the design behavior where multiple supply voltages are being used.

Before loading multicorner-multimode libraries, you can set the
mv_align_library_pg_pins variable to true to get a consistent ordering of the power
pins across the libraries. The default is false.

For specific information about the PG pin syntax and the modeling of power supply pin
connections, see the Advanced Low Power Modeling chapter in the Library Compiler User
Guide.

For an older library that does not contain PG pins, you can convert the library into PG pin
library format in Design Compiler. For more details, see Converting Libraries to PG Pin
Library Format.

Power Compiler™ User Guide
U-2022.12-SP3

209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

Level-Shifter Cells
In a multivoltage design, a level shifter is required where a signal crosses from one power
domain to another. The level shifter operates as a buffer with one supply voltage at the
input and a different supply voltage at the output. Thus, a level shifter converts a logic
signal from one voltage level to another, with a goal of having smallest possible delay from
input to output.

Level-shifter cells are of three types:

• Level shifters that convert from high voltage to low voltage (H2L)

• Level shifters that convert from low voltage to high voltage (L2H)

• Level shifter that can do both, high to low and low to high conversion

PG Pin Configuration Support
In addition to the different types of voltage conversions, the Power Compiler tool supports
level-shifter cells with different PG pin configurations as specified by the Library Compiler
models:

• Single-rail level shifter

• Dual-rail level shifter which has two PG pins. One pin is designated as the main rail
and connected to the primary power supply while the other pin is connected to a
secondary rail.

• Level shifter with a feedthrough standard cell main rail (SCMR) PG pin enables shifting
of always-on signals between shutdown power domains. The feedthrough SCMR PG
pin is connected to the domain’s primary supply, which is not part of either the power
domains involved in the level shifting.

• Level shifter inside a macro cell, which is connected directly to the macro cell’s input
pins. This model eliminates the need to insert external level shifters.

• Enable level shifter, which performs both level shifting and isolation functions. There
are two types of enable level shifters. In all the following cases, the enable pin’s PG pin
is connected to the isolation supply.

Power Compiler™ User Guide
U-2022.12-SP3

210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

◦ A cell that is modeled as a level shifter followed by an isolation cell. For this cell,
the input data pin is powered by one supply while the enable and output pins are
powered by another supply.

◦ A cell that is modeled as an isolation cell followed by a level shifter cell. This cell
has four terminal pins, and it can be modeled as follows:

▪ input, enable, and output pins are each powered by a different supply

▪ input and enable pins are powered by one supply, and the output pin is powered
by another supply

Support for NOR-Type Enable Level-Shifter Cells
The Power Compiler tool supports the following NOR-type enabled level-shifter cells:

• NOR-type enabled level-shifter cells

◦ Single-rail overdriven

◦ Dual rail

◦ Always-on with placeholder std_cell_main_rail Liberty attribute

• NOR-type isolation and level shifter combination cells

◦ Dual rail

◦ Always-on with placeholder std_cell_main_rail Liberty attribute

These cells are inferred by using an explicit or empty isolation supply expression in the
set_isolation command. For example,

set_isolation -isolation_supply {}
set_isolation -isolation_supply {PD.primary}

For more information about modeling level shifters, see the Library Compiler User Guide.

Isolation Cells
Isolation cells are required when a logic signal crosses from a power domain that can be
powered down to a domain that is not powered down. The cell operates as a buffer when
the input and output sides of the cell are both powered up, but provides a constant output
signal when the input side is powered down.

A cell that can perform both level-shifting and isolation functions is called an enable level-
shifter cell. This type of cell is used where a signal crosses from one power domain to
another, where the two voltage levels are different and the first domain can be powered
down.

Power Compiler™ User Guide
U-2022.12-SP3

211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

For more information about creating and using isolation cells and enable level-shifter cells,
see the Library Compiler User Guide.

Using Standard Cells as Isolation Cells
When your target library does not contain a complete set of isolation cells, you can use the
basic 2-input AND, OR, NAND, and NOR gates as isolation cells. This flexibility allows you
to use these basic cells for their usual logic as well as for isolation logic. Only the following
types of basic gates can be used as isolation cells:

• 2-input AND, OR, NAND, and NOR gates

• 2-input AND, OR, NAND, and NOR gates with one of the inputs inverted

To enable this feature, you must set the mv_use_std_cell_for_isolation variable to
true. You must then set the following attributes using the set_attribute command:

• Set the library cell-level attribute ok_for_isolation to true on the library cell.

This attribute denotes that the library cell can be used as a standard logic cell as well
as an isolation cell. The following example shows how to set the ok_for_isolation
attribute on the library cell A:

set_attribute [get_lib_cells lib_name/A] ok_for_isolation true

• Set the isolation_cell_enable_pin attribute to true on the library cell pin. This
attribute specifies the pin to be used as the control pin of the isolation cell.

The following example script shows how to set the isolation_cell_enable_pin
attribute to true on the in pin of the library cell A:

set_attribute [get_lib_pins lib_name/A/in] \
 isolation_cell_enable_pin true

Single-Rail and Dual-Rail Isolation Cells
When selecting an isolation cell for mapping, the tool automatically selects single-rail or
dual-rail cells based on the isolation cell’s rail information and location.

Typically, you use a single-rail isolation cell if the cell is inserted in a domain where the
primary rail remains on during shutdown mode. Use a dual-rail isolation cell when the
isolation cell needs to be inserted in the shutdown domain and requires a secondary
rail connection, so the cell continues to be powered during shutdown mode by a backup
supply. You can create exceptions to this rule by using the use_interface_cell
command to restrict the availability of cells. The tool can insert a conflicting cell if the
proper cell is not available. For example, if only single-rail cells are available, the tool
inserts them even in a shutdown region. However, the tool does issue a warning message.
The tool checks and reports warnings for rail violations, for example, a single-rail isolation
cell used in a shutdown domain or a dual-rail isolation cell used in a domain that is
powered on more than the shutdown domain.

Power Compiler™ User Guide
U-2022.12-SP3

212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

NOR-Style Isolation Cells
The Power Compiler tool automatically selects and inserts NOR-style (or clamp-to-zero)
isolation cells in the shutdown domain. This isolation cell is a single-rail cell that clamps its
output to ground (zero) when the domain’s primary supply is turned off. The tool can also
optimize dual-rail isolation cells to a single NOR-style isolation cells to reduce the power
and area used.

To specify a NOR-style isolation cell, specify the isolation strategy with the set_isolation
command and the -isolation_supply option. The -clamp_value option must be set to
zero. For example,

dc_shell> set_isolation ISO1 -domain PD_BLK -isolation_supply {} \
 -clamp_value 0 -applies_to outputs
Note:

Since the empty isolation supply set {} indicates that the isolation cell has no
power supply when operating in isolation mode, the tool uses a clamp-to-zero
isolation cell (or a NOR-type isolation cell).

The tool optimizes the design using NOR-type isolation cells when it can. For example,

dc_shell> set_isolation ISO1 -domain PD_BLK \
 -isolation_supply {TOP_AO_SS} -clamp_value 0 \
 -applies_to outputs
The tool optimizes the implemented isolation cell to use the domain’s primary supply,
PD_BLK.primary, by using a NOR-type isolation cell.

For more details on modeling and using NOR-style isolation cells, see SolvNetPlus article
2370685, “Single-Rail Clamp-to-0 Nor-Type Isolation Cells.”

Isolation Cells With Asynchronous Set or Reset Pins
An isolation cell with a clamp value set to latch might have an asynchronous set or reset
pin. To insert this type of isolation cell with the set_isolation command, you must use
the -async_set_reset option to specify the net name of the asynchronous control signal
and its sensitivity (high or low).

For example, the following command creates isolation strategy ISO1 for a latch-type
isolation cell. The command specifies that net RS1 is an asynchronous set or reset control
signal that is active in the high state:

dc_shell> set_isolation ISO1 -domain PD1 \
 -clamp_value latch -async_set_reset {RS1 high}

Power Compiler™ User Guide
U-2022.12-SP3

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/2370685.html
https://solvnet.synopsys.com/retrieve/2370685.html

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

You can optionally use the -async_clamp_value option to specify whether the pin is a
set input (with an argument of 1) or a reset input (with an argument of 0). The following
command specifies that the asynchronous control pin on the isolation cell is a reset pin:

dc_shell> set_isolation ISO1 -domain PD1 \
 -clamp_value latch -async_set_reset {RS1 high} \
 -async_clamp_value 0
You might not want to specify whether the asynchronous pin should act as a set or
reset pin at the time of isolation strategy definition. In this case, use the set_isolation
command without the -async_clamp_value option. Then you can later use the
set_port_attributes command to set the UPF_async_clamp_value attribute on specific
ports outside the isolation strategy to 1 for set or 0 for reset, as shown in the following
example:

dc_shell> set_port_attributes {port1 port2} \
 -attribute {UPF_async_clamp_value 0}
The Power Compiler tool honors the set_isolation command options as follows:

• If either or both of the -async_clamp_value or -async_set_reset options are
specified for an isolation strategy but the -clamp_value option is not set to latch, the
tool issues an error message.

• If a net name is specified with the -async_set_reset option but the sensitivity is not
set for that signal, the tool issues an error message.

• If a conflict exists between the -async_clamp_value option of the set_isolation
command and the UPF_async_clamp_value attribute for a specific pin, the tool honors
the attribute setting and issues a warning.

• If the set_isolation command uses the -async_set_reset option but there is no
clamp value set on the specified pin using either the -async_clamp_value option or
the UPF_async_clamp_value attribute, the tool ignores the -async_set_reset option
with a warning.

• If the -async_set_reset option is not used, the tool ignores and drops the
-async_clamp_value option with a warning when the tool executes an action
command (such as the check_mv_design, save_upf, compile, and insert_mv_cells
commands). In this case, the strategy becomes a normal isolation latch strategy.

• If the -async_set_reset option is not defined for the isolation strategy associated with
the port, the tool silently ignores the UPF_async_clamp_value attribute.

For more information about creating this type of isolation cell, see the Library Compiler
User Guide.

Power Compiler™ User Guide
U-2022.12-SP3

214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

Requirements of Level-Shifter and Isolation Cells
The following are the requirements of level-shifter and isolation cells:

• Two power supplies.

• Buffer-type and enable-type level-shifter library cells must have the is_level_shifter
library attribute set to true.

• Enable-type level shifters must also have the level_shifter_enable_pin library
attribute set on the enable pin.

• Isolation library cells must have the is_isolation_cell library attribute set to true.

• Isolation cells must have the isolation_cell_enable_pin library attribute set on the
enable pin.

• Level shifters and isolation cells are selected by the logic synthesis tool from the target
libraries. Therefore, at least one of the libraries must contain these required cells.

• Level-shifter and isolation cells can only be inserted on unidirectional ports.

Retention Register Cells
In a design with power switching, one of the ways to save register states before power-
down and restore them upon power-up is to use retention registers. These registers can
maintain their state during power-down by means of a low-leakage register network and
an always-on power supply. Retention cells occupy more area than regular flip-flops.
These cells continue to consume power when the power domain is powered down.

Multithreshold-CMOS Retention Registers
Retention cells are sequential cells that can hold their internal state when the primary
power supply is shut down and that can restore the state when the power is brought up.
So the retention registers are used to save leakage power in power-down applications.
During normal operation, there is no loss in performance and during power-down mode,
the register state is saved. These features are possible with the addition of a state-saving
latch, which holds the data from the active register. Figure 54 shows the basic elements of
the retention register.

Power Compiler™ User Guide
U-2022.12-SP3

215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

Figure 54 Retention Register Components

Regular Flip-Flop

or Latch (low voltage)

State-Saving

Latch (high voltage)

VDD VDD
sleep

CLK SLEEP WAKE

QD

The retention register consists of two separate elements:

• Regular flip-flop or latch

The regular flip-flop or latch consists of low-threshold voltage MOS transistors for high
performance

• State-saving latch

The state-saving latch consists of a balloon circuit modeled with high-threshold voltage
MOS transistors. It is has a different power supply: VDDSLEEP

The behavior of these elements depends on the circuit mode. During active mode, the
regular register operates at speed and the retention latch does not add to the load at the
output. During sleep mode, the Q data is transferred to the state-saving latch, and the
power supply to the flip-flop is shut off, thus eliminating the high-leakage standby power.
When the circuit is activated with the wake-up signal, the data in the retention latch is
transferred to the regular register for continuous operation.

Along with the separate power supplies, additional signals such as SLEEP and WAKE are
required to enable the data transfer from the regular register to the state-saving latch and
back again, based on the mode of operation.

Based on the application, different retention register types are available to address
the clocking of the data from the register to the latch and back again. Library Compiler
supports modeling of retention registers with two control pins as well as only one control
pin. Figure 55 shows a retention register that has two control signals, save and restore,
to save and restore the data. In this figure, triggering the Save pin puts the register in the
active mode meaning the register works as a regular D flip-flop. Triggering the Restore pin
puts it in sleep mode meaning the register works as a state-saving latch.

Power Compiler™ User Guide
U-2022.12-SP3

216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs

Feedback

Figure 55 Two-Pin Retention Register

D
Flip-Flop

Balloon
Logic

QD

CLOCK

RESTORE

SAVE

VDD VSS

VDDG VSSG

The Library Compiler tool also supports single-pin retention registers. For single-pin
retention registers, the control pin, called a save_restore pin, saves and restores the
state of the cell depending on the voltage state of the pin. Single-pin retention registers
behave like the two-pin control retention register in Figure 55. The only difference is that
the control pin is a single pin instead of two pins. For a single-pin retention register to
work like a regular latch (D flip-flop, in this case), the save_restore pin needs to be put
into "save" mode. When the retention register is put into "restore" mode, it works like a
retention cell. That is, the D-input of the register is not passed to the balloon logic. Thus,
the balloon logic of the retention register has the last known value saved in it. This value is
fed to the Q-output when restore mode is enabled.

An example of a retention library cell might be defined as follows:

RETENTION_PIN: (save_restore, 1)

The disable value is 1, which means the retention cell is working in normal save mode
when the save_restore pin is driven to 1 (high) and working in restore mode when the
save_restore pin is driven to 0 (low).

For a UPF file specification, you need to define the retention register control in the UPF file
as follows to make this work correctly:

set_retention_control PD1_RFF -domain PD1 -save_signal {SRPG1 high} \
 -restore_signal {SRPG1 low}

Power-Switch Cells
In a design with power switching, the power-switch cells provide the supply power for cells
that can be powered down. The library description of a power-switch cell specifies the

Power Compiler™ User Guide
U-2022.12-SP3

217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Power Domains

Feedback

input signal that controls power switching, the pin or pins connected to the power rail, and
the pin or pins that provide the virtual or switchable power.

There are two types of power-switch cells, the header type and the footer type. A header
type power switch connects the power rail to the power supply pins of the cells in the
power-down domain. A footer type power switch connects the ground rail to the ground
supply pins of the cells in the power-down domain.

For more information about creating power-switch cells, see the Library Compiler User
Guide.

Always-On Logic Cells
Multivoltage designs can contain some power domains that can be shut down during
the operation of the design. These are also called power-down domains. In some of
the power-down domains, logic cells need to remain powered on even when the power
domain is shut down. Such cells are called always-on cells. The control signals of the
always-on cells should also be powered on when the power domain is shut down. These
control signal paths are called always-on paths.

The always-on cells can be of two types:

• Single-power standard cell

Buffers and inverters from the standard cell libraries can be used as always-on cells.
For the Power Compiler tool to use the standard cells as always-on cells, you must

◦ Define the power domain as a shutdown domain.

For more details on always-on logic, see Shut-Down Blocks.

◦ Set the always_on_strategy attribute to cell_type and single_power.

• Dual-power special cell

Special cells in the target library, such as buffers and inverters with dual power, can
be used for always-on logic. The tool automatically infers the backup power supply for
these cells based on the supply load on these cells. For more details, see Always-On
Logic.

For more information about always-on logic, see Shut-Down Blocks.

Power Domains
Multivoltage designs contain design partitions which have specific power behavior
compared to the rest of the design. A power domain is a basic concept in the Synopsys
low-power infrastructure, and it drives many important low-power features across the flow.

Power Compiler™ User Guide
U-2022.12-SP3

218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Power Domains

Feedback

By definition, a power domain is a logical grouping of one or more logic hierarchies in a
design that share the same power characteristics, including:

• Primary voltage states or voltage range (that is, the same operating voltage)

• Process, voltage, and temperature (PVT) operating condition values (all cells of the
power domain except level shifters)

• Power net hookup requirements

• Power down control and acknowledge signals, if any

• Power switching style

• Same set or subset of nonlinear delay model (NLDM) target libraries

Thus, a power domain describes a design partition, bounded within logic hierarchies, that
has a specific power behavior with respect to the rest of the design.

Each power domain has a supply network consisting of supply nets and supply ports
and might contain power switches. The supply network is used to specify the power and
ground net connections for a power domain. A supply net is a conductor that carries a
supply voltage or ground. A supply port is a power supply connection point between the
inside and outside of the power domain. Supply ports serve as the connection points
between supply nets. A supply net can carry a voltage supply from one supply port to
another.

When used together, the power domain and supply network objects allow you to specify
the power management intentions of the design.

Every power domain must have one primary power supply and one primary ground. In
addition to the primary power and ground nets, a power domain can have any number of
additional power supply and ground nets.

A power domain has the following characteristics:

• Name

• Level of hierarchy or scope where the power domain is defined or created

• The set of design elements that comprise the power domain

• Associated set of supply nets that are allowed to be used within the power domain

• Primary power supply and ground nets

• Synthesis strategies for isolation, level-shifters, always-on cells, and retention registers

Note:
A power domain is strictly a synthesis construct, not a netlist object.

Power Compiler™ User Guide
U-2022.12-SP3

219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Voltage Areas

Feedback

Shut-Down Blocks
Multivoltage designs typically have some power domains that are shut down and powered
up during the operation of the chip while other power domains are always powered up.
The always-on paths starting from an always-on block must connect to the specific pins
of always-on cells in the power-down block. These cells can be special, dual power cells
(isolation cells, enable-type level shifters, retention registers, special RAMs, and so on)
or standard cells that when placed are confined to special always-on site rows within the
power-down block.

Specific commands are supported by the tool can be used to specify the always-on
methodology to be applied to a particular power-down block. If special cells are used, they
need to be marked appropriately so that the tool can determine the always-on paths and
correctly optimize these paths.

Only buffers and inverters can be used as dual-power, always-on cells. They must have
two rails connections: a primary rail that is connected to a shut-down power supply, and a
secondary rail that is connected to an always-on power supply.

Marking Pass-Gate Library Pins
In the current implementation, the tool has the ability to stop always-on cells from
connecting to cells with pass gate inputs. An always-on buffer should not drive a gate that
has pass transistors at the inputs (pass-gate). Pass-gate input cells should be driven by a
standard cell in a shut-down power domain. Therefore, if your library contains any of these
cells, you must mark them as pass-gates in each session.

For example, to mark the pin A of the mux cell MUX1, run the following command as part
of a Design Compiler script:

set_attribute [get_lib_pins lib_name/MUX1/A] pass_gate true

Voltage Areas
Corresponding to the power domains of logic synthesis, you define voltage areas in
physical synthesis as placement areas for the cells of the power domains. Except for level
shifter cells, all cells in a voltage area operate at the same voltage.

There must be an exact one-to-one relationship between logical power domains and
physical voltage areas. The Design Compiler and IC Compiler II tools can align the logic
hierarchies of the power domains with their voltage areas with appropriate specifications.
The power domain name and the voltage area name should be identical.

If you do not make these specifications, you are responsible for ensuring that the logic
hierarchies are correctly aligned, as well as being correctly associated with the appropriate
operating conditions.

Power Compiler™ User Guide
U-2022.12-SP3

220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Multivoltage Design Concepts
Voltage Areas

Feedback

A voltage area is the physical implementation of a power domain. A voltage area is
associated with a power domain in a unique, tightly bound, one-to-one relationship. A
voltage area is the area in which the cells of specific logic hierarchies are to be placed.
A single voltage area must correspond to another single power domain, and vice versa.
The power domains of a design are defined first in the logical synthesis phase and then
the voltage areas are created in the physical implementation phase, in Design Compiler
topographical mode or in the IC Compiler II tool. The information that pertains to logic
hierarchies, which belongs to a voltage area boundary is derived from a corresponding
power domain. Also, all the cells that belong to a given voltage area have the power
behavior described by the power domain characteristics.

Power Compiler™ User Guide
U-2022.12-SP3

221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

11
UPF Multivoltage Design Implementation

The IEEE 1801 specification, also known as Unified Power Format (UPF), provides a
standard set of commands that define how to synthesize multivoltage designs in the
Power Compiler tool.

For more information about multivoltage design concepts and UPF, see the following
topics:

• Multivoltage Design Flow Using UPF

• Power Intent Concepts

• Defining Power Intent With UPF Commands

• Setting the UPF Command Scope

• Creating Power Domains

• Creating Atomic Power Domains

• Creating Supply Ports

• Creating Supply Nets

• Connecting Supply Nets

• Specifying Supply Sets

• Refining Supply Sets

• Querying for Supply Sets

• Querying for Related Supply Sets

• Always-On Logic

• Comparing Voltage Levels and Voltage Status

• Specifying Level-Shifter Strategies

• Specifying Isolation Strategies

• Merging and Cloning Multivoltage Cells

Power Compiler™ User Guide
U-2022.12-SP3

222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Multivoltage Design Flow Using UPF

Feedback

• Setting UPF Attributes on Ports and Hierarchical Cells

• Querying for UPF Design and Port Attributes

• Assigning Supplies to Pad Ports

• Specifying Retention Strategies

• Specifying Repeater Strategies

• Deferring Element Definitions in Power Management Strategies

• Matching Tool and IEEE LRM Defaults

• Creating Power Switches

• Power Models

• Power State Tables

• Support for Well Bias

• Using a Non-Bias Block in a Bias-Enabled Design

• Skipping Bias Checks

• Inserting Power Management Cells

• Reviewing the UPF Specifications

• Examining and Debugging UPF Specifications

• Writing the Power Information

• Writing and Reading Verilog Netlists With Power and Ground Information

• The Golden UPF Flow

• Reporting Commands for the UPF Flow

• UPF-Based Hierarchical Multivoltage Flow Methodology

Multivoltage Design Flow Using UPF
The Unified Power Format (UPF) is a standard set of Tcl-like commands used to specify
the low-power design intent for electronic systems. UPF commands provide the ability to
specify the power intent early in the design process.

Power Compiler™ User Guide
U-2022.12-SP3

223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Multivoltage Design Flow Using UPF

Feedback

To synthesize the multivoltage design, the recommended method is to use the top-down
approach. With the power intent defined in the UPF file, follow these steps to synthesize a
multivoltage design:

1. Read the RTL file.

2. Read the power definitions for the multivoltage design using the load_upf command.

In the UPF flow, the RTL file cannot have power definitions. The Power Compiler tool
issues an error message if it encounters power definitions in the RTL file. All the power
definitions must be specified in the UPF file. The UPF file can be used for synthesis,
simulation, equivalence checking, and sign off.

By default, the load_upf command executes the commands in the associated UPF
file in the current level of hierarchy. If the identifiers do not adhere to the naming rules
specified in the UPF standard, the following error message is issued.

Error:Symbol symbol_name violates the UPF naming conventions (UPF-200.

The Design Compiler commands and variables and the UPF commands and variables
defined in the UPF file share the same namespace. While executing the load_upf
command, the tool checks for namespace conflicts for the commands and variables
already defined, and those in the UPF file being read.

For more information, see Name Spacing Rules for UPF Objects and Attributes.

If you have modified the UPF file after reading it, you can use the remove_upf
command to remove the UPF constraints. However, you cannot use the remove_upf
command after synthesizing the design or if you read a synthesized design.

After updating or removing a UPF file, use the load_upf command to reload the file.

Note:
The Design Vision GUI supports the Visual UPF dialog box, which is
accessible from the Power menu. Using the Visual UPF dialog box, you
can define the power domains, their supply network, connections with other
power domains, and relationships with elements in the design hierarchy.

For more information see Defining the Power Intent in the GUI.

3. Specify the set of target libraries to be used.

The target library must comply with the power and ground pin Liberty library syntax.
The target library should also support special cells such as isolation cells and retention
registers.

For more details on the target library requirement for multivoltage implementation see
Library Setup for Power Optimization. For more information about the PG pin Liberty

Power Compiler™ User Guide
U-2022.12-SP3

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Multivoltage Design Flow Using UPF

Feedback

library syntax, see the Advanced Low-Power Modeling chapter in the Library Compiler
User Guide.

4. Use the set_operating_conditions command to set the operating condition on the
top level of the design hierarchy and to derive the process and temperature conditions
for the design.

Use the set_voltage command to set the current operating voltage value for the
power and the ground supply nets.

5. Specify power optimization requirements.

When you use any of the power optimization constraints in the Design Compiler
topographical technology, the tool also enables power prediction using the clock
tree estimation. For more information about power prediction, see Performing Power
Correlation.

6. Check whether isolation and enable level shifter cells in the design can be mapped
successfully by using the analyze_mv_feasibility command. If any cell cannot be
mapped, the tool generates a report that lists the elements that cannot be mapped and
the reasons.

By default, the analyze_mv_feasibility command analyzes both isolation and
enable level shifter cells. Use the -isolation option to analyze only isolation cells or
the -enable_level_shifter option to analyze only enable level shifter cells. You can
generate a detailed HTML report by using the -format html option. This report lists all
the library cells that the tool would attempt to map but that would be discarded, along
with the reason for discarding it.

7. Compile the design by using the compile_ultra command.

Note:
When you synthesize the design for the first time using Design Compiler
topographical mode, use the compile_ultra -check_only command. The
-check_only option checks the design and the libraries for all the data that
is required by the compile_ultra command to successfully synthesize the
design. For more information, see the Design Compiler User Guide.

8. Use the check_mv_design command to check for multivoltage violations.

The command checks the design for inconsistencies between the design and the target
libraries and for violations related to power management cells and their strategies. Use
the -verbose option to get the details of the violations. The -max_messages option
controls the number of violations that are reported.

To identify the multivoltage inconsistencies, use the MV Advisor feature of the Design
Vision GUI. For more information, see Examining and Debugging UPF Specifications.

Power Compiler™ User Guide
U-2022.12-SP3

225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

9. Write the synthesized design using the write -format command. When you write the
design in the ASCII format, use the change_names command before you write out the
design.

To generate the multivoltage reports, use the various reporting commands such as
report_power_domain. For more details on multivoltage reporting commands, see
Reporting Commands for the UPF Flow.

10. Use the save_upf command to save the updated power constraints in another UPF
file.

After completing the synthesis process, the UPF file written by the Design Compiler
tool is used as input to the downstream tools, such as the IC Compiler II, PrimeTime,
PrimePower, and Formality tools. This file is similar to the one read into the Design
Compiler tool, but with the following additions:

◦ A comment on the first line of the UPF file generated by the Design Compiler tool.
An example is as follows:

#Generated by Design Compiler(H-2013.03) on Wed Feb 20 14:26:58 2011

◦ Explicit power connections to special cells such as level-shifter cells and dual
supply cells.

◦ Any additional UPF commands that were specified at the command prompt in the
Design Compiler session.

If you have specified UPF commands at the Design Compiler command prompt
during synthesis, update the UPF file along with the RTL design with these
commands. Without this update to the UPF file, the Formality tool does not verify
the design successfully.

An alternative method to maintain the UPF power intent of the design is called
the golden UPF flow. In this method, the original UPF file that you specify is used
throughout the synthesis, physical implementation, and verification steps along with
supplemental UPF files generated by the tools. For more information, see The Golden
UPF Flow.

Power Intent Concepts
The UPF language provides a way to specify the power requirements of a design, but
without specifying explicitly how those requirements are implemented. The language
specifies how to create a power supply network to each design element, the behavior
of supply nets with respect to each other, and how the logic functionality is extended to
support dynamic power switching to design elements. It does not contain any placement
or routing information. The UPF specification is separate from the RTL description of the
design.

Power Compiler™ User Guide
U-2022.12-SP3

226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

In the UPF language, a power domain is a group of elements in the design that share a
common set of power supply needs. By default, all logic elements in a power domain use
the same primary supply and primary ground. Other power supplies can be defined for a
power domain as well. A power domain is typically implemented as a contiguous voltage
area in the physical chip layout, although this is not a requirement of the language.

Each power domain has a scope and an extent. The scope is the level of logic hierarchy
designated as the root of the domain. The extent is the set of logic elements that belong to
the power domain and share the same power supply needs. The scope is the hierarchical
level at which the domain is defined and is an ancestor of the elements belonging to the
power domain, whereas the extent is the actual set of elements belonging to the power
domain.

Each scope in the design has supply nets and supply ports at the defined hierarchical
level of the scope. A supply net is a conductor that carries a supply voltage or ground
throughout a given power domain. A supply net that spans more than one power domain is
said to be “reused” in multiple domains. A supply port is a power supply connection point
between two adjacent levels of the design hierarchy, between the parent and child blocks
of the hierarchy. A supply net that crosses from one level of the design hierarchy to the
next passes through a supply port.

A supply set is an abstract collection of supply nets, consisting of two supply functions,
power and ground. A supply set is domain-independent, which means that the power and
ground in the supply set are available to be used by any power domain defined within the
scope where the supply set was created. However, each power domain can be restricted
to limit its usage of supply sets within that power domain.

You can use supply sets to define power intent at the RTL level, so you can synthesize
a design even before you know the names of the actual supply nets. A supply set is an
abstraction of the supply nets and supply ports needed to power a design. Before such a
design can physically implemented (placed and routed), its supply sets must be refined, or
associated with actual supply nets.

A supply set handle is an abstract supply set created for a power domain. By default,
a power domain has supply set handles for the domain’s primary supply set, a default
isolation supply set, and a default retention supply set. These supply set handles let you
synthesize a design even before you create any supply sets, supply nets, and supply ports
for the power domain. Before such a design can be physically implemented, its supply
set handles must be refined, or associated with actual supply sets; and those supply sets
must be refined so that they are associated with actual supply nets.

A power switch (or simply switch) is a device that turns on and turns off power for a supply
net. A switch has an input supply net, an output supply net that can be switched on or off,
and at least one input signal to control switching. The switch can optionally have multiple
input control signals and one or more output acknowledge signals. A power state table
lists the allowed combinations of voltage values and states of the power switches for all
power domains in the design.

Power Compiler™ User Guide
U-2022.12-SP3

227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

A level shifter must be present where a logic signal leaves one power domain and enters
another at a substantially different supply voltage. The level shifter converts a signal from
the voltage swing of the first domain to that of the second domain.

An isolation cell must be present where a logic signal leaves a switchable power domain
and enters a different power domain. The isolation cell generates a known logic value
during shutdown of the domain. If the voltage levels of the two domains are substantially
different, the interface cell must be able to perform both level shifting (when the domain
is powered up) and isolation (when the domain is powered down). A cell that can perform
both functions is called an enable level shifter.

In a power domain that has power switching, any registers that must retain data during
shutdown must be implemented as retention registers. A retention register has a separate,
always-on supply net, sometimes called the backup supply, which keeps the data stable in
the retention register while the primary supply of the domain is shut down.

Figure 56 Power Intent Specification Example

External Multivoltage Power Supply

VDD1 VDD2 VDD3 GND

PD3 Always-
on power
domain

Block3

save

restore

Enable level
shifter

level shifter

Enable level
shifter

PD2 Always-
on power
domain

Block2

PD_TOP
Always-on

power
domain

Top level (chip
level)

Block1

PD1 Switched
(power-down)

domain

Retention
RegisterPower-

domain
controller

block

The power network example shown in Figure 56 demonstrates some of the power intent
concepts. This chip is designed to operate with three power supplies that are always on
(although the UPF syntax also supports externally switchable power supplies), at three
different voltage levels. The top-level chip occupies the top-level power domain, PD_TOP.
The domain PD_TOP is defined to have four supply ports: VDD1, VDD2, VDD3, and GND.
The black squares along the border of the power domain represent the supply ports of that

Power Compiler™ User Guide
U-2022.12-SP3

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

domain. Note that this diagram shows the connections between power domains and is not
meant to represent the physical layout of the chip.

In addition to the top-level power domain, PD_TOP, there are three more power domains
defined, called PD1, PD2, and PD3, created at the levels of three hierarchical blocks,
Block1, Block2, and Block3, respectively. Each block has supply ports (shown as black
squares in the diagram) to allow supply nets to cross from the top level down into the block
level.

In this example, PD_TOP, PD2, and PD3 are always-on power domains that operate at
different supply voltages, VDD1, VDD2, and VDD3, respectively. PD1 is a power domain
that has two supplies: a switchable supply called VDD1g and an always-on supply from
VDD1. The always-on power supply maintains the domain’s retention registers while
VDD1g is powered down.

A power switch shuts off and turns on the power net VDD1g, either by connecting or
disconnecting VDD1 and VDD1g. A power-down controller logic block at the top level
generates the control signal for the switch. It also generates the save and restore signals
for the retention registers in domain PD1 and the control signals for the isolation cells
between domain PD1 and the always-on domains PD2 and PD3. These isolation cells
generate known signals during times that VDD1g is powered down.

Because domains PD1, PD2, and PD3 operate at different supply voltages, a level shifter
must be present where a signal leaves one of these domains and enters another. In the
case of the signals leaving PD1 and entering PD2 or PD3, the interface cells must be able
to perform both level shifting and isolation functions, because PD1 can be powered down.

UPF Script Example
Example 32 shows the UPF script that defines the various concepts supported by UPF.

Example 32 UPF Script to Define the Power Intent
CREATE POWER DOMAINS
create_power_domain TOP
create_power_domain PD_ALU -elements {I_ALU} -scope I_ALU
create_power_domain PD_STACK_TOP -elements {I_STACK_TOP} \
-scope I_STACK_TOP
create_power_domain PD_REG_FILE -elements {I_REG_FILE} -scope I_REG_FILE

SUPPLY NETWORK - PD_ALU
create_supply_net VDD -domain I_ALU/PD_ALU
create_supply_net VSS -domain I_ALU/PD_ALU

create_supply_port VDD -domain I_ALU/PD_ALU
create_supply_port VSS -domain I_ALU/PD_ALU

connect_supply_net I_ALU/VDD -ports {I_ALU/VDD}
connect_supply_net I_ALU/VSS -ports {I_ALU/VSS}

Power Compiler™ User Guide
U-2022.12-SP3

229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

set_domain_supply_net I_ALU/PD_ALU -primary_power_net I_ALU/VDD
-primary_ground_net I_ALU/VSS

SUPPLY NETWORK - PD_STACK_TOP
create_supply_net VDDT -domain I_STACK_TOP/PD_STACK_TOP
create_supply_net VSS -domain I_STACK_TOP/PD_STACK_TOP

create_supply_port VDDT -domain I_STACK_TOP/PD_STACK_TOP
create_supply_port VSS -domain I_STACK_TOP/PD_STACK_TOP
connect_supply_net I_STACK_TOP/VDDT -ports {I_STACK_TOP/VDDT}
connect_supply_net I_STACK_TOP/VSS -ports {I_STACK_TOP/VSS}

set_domain_supply_net I_STACK_TOP/PD_STACK_TOP
 -primary_power_net I_STACK_TOP/VDDT -primary_ground_net I_STACK_TOP/VSS

SUPPLY NETWORK - PD_REG_FILE
create_supply_net VDDT -domain I_REG_FILE/PD_REG_FILE
create_supply_net VSS -domain I_REG_FILE/PD_REG_FILE

create_supply_port VDDT -domain I_REG_FILE/PD_REG_FILE
create_supply_port VSS -domain I_REG_FILE/PD_REG_FILE

connect_supply_net I_REG_FILE/VDDT -ports {I_REG_FILE/VDDT}
connect_supply_net I_REG_FILE/VSS -ports {I_REG_FILE/VSS}

set_domain_supply_net I_REG_FILE/PD_REG_FILE
-primary_power_net I_REG_FILE/VDDT -primary_ground_net I_REG_FILE/VSS

SUPPLY NETWORK - TOP
create_supply_port VDD
create_supply_port VSS
create_supply_port VDDT

create_supply_net VDD -domain TOP
create_supply_net VSS -domain TOP
create_supply_net VDDT -domain TOP

set_domain_supply_net TOP -primary_power_net VDD -primary_ground_net VSS

connect_supply_net VDDT -ports {VDDT I_STACK_TOP/VDDT I_REG_FILE/VDDT}
connect_supply_net VSS
-ports {VSS I_ALU/VSS I_STACK_TOP/VSS I_REG_FILE/VSS}
connect_supply_net VDD -ports {VDD I_ALU/VDD}

LEVEL-SHIFTER STRATEGY
set_level_shifter ls_alu -domain I_ALU/PD_ALU -applies_to inputs \
-rule both -location self
set_level_shifter ls_stack_top -domain I_STACK_TOP/PD_STACK_TOP \
-applies_to inputs -rule both -location self
set_level_shifter ls_reg_file -domain I_REG_FILE/PD_REG_FILE \
-applies_to inputs -rule both -location self

Power Compiler™ User Guide
U-2022.12-SP3

230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Intent Concepts

Feedback

set_level_shifter ls1_alu -domain I_ALU/PD_ALU -applies_to outputs \
-rule both -location self
set_level_shifter ls1_stack_top -domain I_STACK_TOP/PD_STACK_TOP \
-applies_to outputs -rule both -location parent
set_level_shifter ls1_reg_file -domain I_REG_FILE/PD_REG_FILE \
-applies_to outputs -rule both -location parent

ISOLATION STRATEGY
set_isolation iso_stack_top -domain I_STACK_TOP/PD_STACK_TOP
-isolation_power_net VDD -isolation_ground_net VSS -clamp_value 1 \
-applies_to outputs -diff_supply_only TRUE
set_isolation iso_reg_file -domain I_REG_FILE/PD_REG_FILE \
-isolation_power_net VDD -isolation_ground_net VSS -clamp_value 1 \
-applies_to outputs -diff_supply_only TRUE

POWER STATE TABLE
CREATE PORT STATES
add_port_state VDD -state {TOP 1.08}
add_port_state VDDT -state {BLOCK 0.864} -state {BLOCK_off off}

OPERATING VOLTAGES
create_pst risc_core_pst -supplies {VDD VDDT}
add_pst_state s0 -pst risc_core_pst -state {TOP BLOCK}
add_pst_state s1 -pst risc_core_pst -state {TOP BLOCK_off}

set_port_attributes -elements {I_ALU} -applies_to outputs \
-attribute repeater_power_net I_ALU/VDD \
-attribute repeater_ground_net I_ALU/VSS
set_port_attributes -elements {I_STACK_TOP} -applies_to inputs \
-attribute repeater_power_net VDD -attribute repeater_ground_net VSS
set_port_attributes -elements {I_REG_FILE} -applies_to inputs \
-attribute repeater_power_net VDD -attribute repeater_ground_net VSS

Figure 57 shows the UPF Diagram in the Design Vision GUI, for the UPF specification in
Example 32.

Power Compiler™ User Guide
U-2022.12-SP3

231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent With UPF Commands

Feedback

Figure 57 UPF Diagram in the GUI for the Specified UPF

UPF Diagram Tab

Defining Power Intent With UPF Commands
The Power Compiler tool supports UPF commands to define, review, and examine the
power intent specification. Alternatively, you can use the Design Vision GUI to define and
examine the power intent specification.

This section discusses how to use the UPF commands and the GUI to specify the power
intent.

Name Spacing Rules for UPF Objects and Attributes
The Power Compiler tool verifies the object names created by the UPF commands to
ensure that the names do not conflict with the names of existing objects in the same logic

Power Compiler™ User Guide
U-2022.12-SP3

232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent With UPF Commands

Feedback

hierarchy. The tool checks the names of ports, power domains, power state tables, power
switches, supply sets and nets, or signal nets. Table 17 shows the name spacing rules
applied by the tool for UPF commands:

Table 17 Name Spacing Rules Applied for UPF Commands

UPF command names Name spacing rule

create_power_domain,
create_power_switch,
create_pst,
create_supply_set

Within a logic hierarchy, a power domain cannot have the same name
as an existing cell, instance, logic port, supply port, logic net, supply net,
power switch, power domain, supply set, or power state table.

create_logic_net,
create_supply_net

Within a logic hierarchy, a net cannot have the same name as an existing
cell, instance, logic net, supply net, power switch, power domain, supply
set, or power state table.

create_logic_port,
create_supply_port

Within a logic hierarchy, a port cannot have the same name as an existing
cell, instance, logic port, supply port, power switch, power domain, supply
set, or power state table.

set_isolation,
set_level_shifter,
set_retention

The isolation, level-shifter, and retention strategies in a power domain must
have unique names.

add_port_state One or more connected ports cannot have the same port-state names.
However, two ports of a mutually connected network can have the same
port state (the name and value are same).

add_power_state A supply set cannot have power states with the same name. However,
two ports of a mutually connected network can have the same power state
(both name and value are same).

add_pst_state The power state table cannot have states with the same name as the
already existing states.

Defining the Power Intent in the GUI
The Power menu in the GUI allows you to specify, modify, and review your power
architecture. It also lets you view the UPF diagram to examine the UPF specification
defined in your design.

The Visual UPF dialog box in the GUI allows you to define, edit, and review your power
intent. You can also generate a UPF script for your power intent.

To open the Visual UPF dialog box,

• Choose Power > Visual UPF

When you open the Visual UPF dialog box, it appears as shown in Figure 58.

Power Compiler™ User Guide
U-2022.12-SP3

233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Defining Power Intent With UPF Commands

Feedback

Figure 58 Logic Hierarchy View of the Visual UPF

If you have not yet defined the power intent for your design, use the Power Domains and
Power Domain Properties sections to create the power domains and other components,
such as power switches and level shifters. For the first power domain that you create, the
tool assigns the name TOP by default.

If you have already defined the power intent for your design, the Visual UPF displays
the details of your power specification. Using the Power Domains and Power Domain
Properties sections, you can edit the power definitions. Allowable edits include adding new
components, redefining the association of the hierarchical cells with the power domains,
and deleting a power domain.

For more details about how to review the UPF intent in the GUI, see Reviewing the Power
Intent Using the Design Vision GUI.

Power Compiler™ User Guide
U-2022.12-SP3

234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting the UPF Command Scope

Feedback

UPF Diagram View
The UPF diagram view displays the UPF power intent as it is defined in the design
database. When you change the database, for example by entering a UPF command, the
tool reflects the updates in the UPF diagram immediately. You can view the UPF diagram
at any point in the design flow.

To open the UPF diagram view:

• Choose Power > UPF Diagram > New UPF Diagram View.

When the UPF diagram view appears, Design Vision displays a tab at the bottom of the
workspace area, as shown in Figure 58. You can use this tab to return to the UPF diagram
view after working with other views.

The UPF diagram view represents each power object with a unique symbol. For more
information about these symbols, see the “UPF Diagram Symbols and Standards” topic in
Design Vision Help. The tool uses default colors to differentiate the types of power objects.
You can customize the diagram by using the View Settings panel to change object colors
or apply a color theme.

For more information, see the “Changing UPF Diagram Display Properties” topic in Design
Vision Help.

Setting the UPF Command Scope
The scope of a UPF command is the level of design hierarchy to which the UPF command
applies. The following terms describe aspects of scope definition:

• The root scope is the top-level scope in the design hierarchy.

• The design top module is the module for which the UPF file that expresses the power
intent has been written.

• The current scope is an instance that is either the design top instance or a descendant
of the top instance (represented by a relative path name from the design top instance).

• A design-relative hierarchical name is interpreted relative to the design top instance
by removing the leading slash character (/) and interpreting the remainder as a rooted
name in the scope of the current design top instance.

Set the scope in the one of the following ways:

• Use the load_upf command with the -scope option to specify the new design top
instance. The tool changes the current scope, the design top instance, and the design
top module, then executes the UPF commands. After completion, the tool restores the
design top instance and design top model to their previous values.

Power Compiler™ User Guide
U-2022.12-SP3

235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting the UPF Command Scope

Feedback

If you use the load_upf command without the -scope option, the tool executes the
UPF commands in the current scope and does not modify the current scope, the
design top instance, or the design top module.

• Use the apply_power_model command to apply a power model to specified instances.
The tool changes the current scope, the design top instance (to the macro instance to
which the model is being applied), and the design top module, then executes the UPF
commands. After completion, the tool restores the design top instance and design top
model to their previous values.

• Use the set_scope command to change the current scope locally. If you use the
command without an argument, the scope is the top level of the current design.
You can optionally specify an instance name as an argument to change the scope.
However, you can only change the scope within the current design subtree. In other
words, you cannot set the scope to a scope above the design top instance or below a
leaf-level instance.

The set_scope command returns the name of the previous scope as a design-relative
hierarchical name.

The tool interprets arguments of the set_scope command as follows:

◦ The set_scope / command sets the current scope to the current design top
instance.

◦ The set_scope . command does not change the current scope.

◦ The set_scope .. command changes the current scope to the parent scope.
However, if the current scope is the current design top instance, the current scope
is unchanged and the tool issues a warning message.

Note:
The -scope option of the create_power_domain command specifies where
to create a new power domain but does not change the current scope for
subsequent UPF commands.

Table 18 illustrates the effect of the set_scope and load_upf commands.

Table 18 Effect of UPF Commands on the Scope

Design top
instance before
command

Current scope
before command

Command Design top
instance after
command

Current scope after
command

/top /top/mid set_scope bot /top /top/mid/bot

/top /top/mid/bot set_scope . /top /top/mid/bot

Power Compiler™ User Guide
U-2022.12-SP3

236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

Table 18 Effect of UPF Commands on the Scope (Continued)

Design top
instance before
command

Current scope
before command

Command Design top
instance after
command

Current scope after
command

/top /top/mid/bot set_scope .. /top /top/mid

//top /top/mid set_scope / /top /top

/top /top load_upf -scope
mid

/top/mid /top/mid

/top/mid /top/mid set_scope . /top/mid /top/mid

/top/mid /top/mid set_scope bot /top/mid /top/mid/bot

/top/mid /top/mid/bot set_scope / /top/mid /top/mid

/top/mid /top/mid set_scope .. n/a (error) n/a (error)

/top/mid /top/mid # load_upf
finished

/top /top

/top /top load_upf abc.upf /top /top

/top /top set_scope mid/bot /top /top/mid/bot

/top /top/mid/bot set_scope / /top /top

/top /top load_upf
macro.upf -scope
macro_inst

/top/macro_inst /top/macro_inst

/top/macro_inst /top/macro_inst set_scope /bot /top/macro_inst /top/macro_isnt/bot

/top/macro_inst /top/macro_inst/bot set_scope / /top/macro_inst /top/macro_inst

/top/macro_inst /top/macro_inst set_scope .. n/a (warning) n/a (warning)

/top/macro_inst /top_macro_inst # load_upf
finished

/top /top

Creating Power Domains
To create a power domain, use the create_power_domain command.

The -elements option specifies the hierarchical, macro, leaf-level macro, pad, buffer, and
inverter cells that are added to the extent of the power domain. If the required scope is

Power Compiler™ User Guide
U-2022.12-SP3

237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

at a lower level than the current scope, use the -scope option to specify the name of the
instance where the power domain is to be defined.

The UPF standard requires a simple name for the domain_name argument. By default,
the tool checks this requirement. To allow the use of hierarchical names, set the
mv_input_enforce_simple_names variable to false.

Figure 59 illustrates the usage of the create_power_domain command.

Figure 59 Defining a Power Domain and Scope

To create the PD1 and PD2 power domains, use the following commands:

create_power_domain -elements {U1 U2 U3} -scope Block1 PD1
create_power_domain -elements {U4 U5 U6} -scope Block1 PD2

Alternatively, you can use the set_scope command to first set to the required scope and
then to create the power domain, as in the following example:

set_scope Block1
create_power_domain -elements {U1 U2 U3} PD1
create_power_domain -elements {U4 U5 U6} PD2

You can also use the -elements {.} option to include the current scope to share the
supply of the power domain.

Power Compiler™ User Guide
U-2022.12-SP3

238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

For example, if the current scope is set to the instance Block2, the following commands
create a power domain PD3:

set_scope Block2
create_power_domain PD3 -elements {.}

In this case, the element U9 shares the supply of power domain PD3, though U9 is not
explicitly specified as part of the power domain PD3.

To add new elements to any hierarchy, except those that are already specified as an
element of another power domain, use the -update option. You can only add new
elements.

You can define a power domain with an empty elements list and defer the definition of the
element list. For example,

dc_shell> create_power_domain D1 -elements {}
Later, you can add to the elements list using the -update option as follows:

dc_shell> create_power_domain D1 -elements e1 -update

Power Domain Boundaries
By default, the Power Compiler tool considers the logical boundary of the root cells of
the power domain as the boundary of the power domain. However, to comply with the
IEEE 1801 (UPF) standard, the tool can consider a power domain boundary to include
the boundary of another domain contained in it. You can specify the elements on the
lower-domain boundary for level-shifter and isolation strategy definition, which gives you
additional flexibility in selecting the location of the power management cells.

In UPF terminology, a port has two sides: the HighConn side and the LowConn side, as
shown in Figure 60. The HighConn side is visible to the parent of the instance whose
interface contains the port. The LowConn side is visible inside the instance. In this
example, TOP is the parent and MID is the instance.

Power Compiler™ User Guide
U-2022.12-SP3

239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

Figure 60 Sides of a Port

In general, the upper boundary of a power domain is its interface with power domains that
are higher in the design hierarchy. You can control how the lower boundary of a power
domain is defined.

For more information about lower domain boundaries, see Lower-Domain Boundary
Support.

Excluding Elements From Power Domains
To exclude elements from a power domain, use the -exclude_elements option with the
create_power_domain command.

An excluded cell must be explicitly specified as a root element of another power domain
(in other words, an object in the argument list of an -elements option) before the UPF is
committed. For example, the following commands result in an error because cell B does
not belong to any power domain:

dc_shell> create_power_domain PDtop -elements {C}
dc_shell> create_power_domain PD1 -elements {A B} -exclude_elements {B}
By contrast, the following commands are successful because cell B is part of the PDtop
power domain even though it is excluded from the PD1 power domain:

dc_shell> create_power_domain PDtop -elements {B C}
dc_shell> create_power_domain PD1 -elements {A B} -exclude_elements {B}
Wildcards are supported. In the following example, the command creates a power
domain that contains cells A and B and all elements in the first level of B's hierarchy. The
-exclude_elements option excludes only element B/b1. The result is a power domain
whose element list is {A B/b2 B/b3 …} and so on, containing all elements in the first level
of hierarchy under B except for b1.

dc_shell> create_power_domain PD2 -elements {A B/*} -exclude_elements
 {B/b1}

Power Compiler™ User Guide
U-2022.12-SP3

240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

In the following example, the tool does not exclude element B/b1 because it is not included
in the scope of the argument list of the -elements option. The power domain contains only
the top levels of cells A and B.

dc_shell> create_power_domain PD3 -elements {A B} -exclude_elements
 {B/b1}
The following conditions apply to the -exclude_elements option:

• The argument list can be empty.

• The tool does ignores duplicate elements in the argument list.

• The argument list cannot contain elements that are not part of the current design.

• A child element does not inherit power domain membership from its parent. For
example, consider the following commands:

dc_shell> create_power_domain PD_TOP -elements {.}
dc_shell> create_power_domain PD_A -elements {A A/a*} \
 -exclude_elements {A/a1}
The tool reports an error because element A/a1 does not belong to any power domain.
The -exclude_elements option excludes A/a1 from the PD_A power domain.
In addition, element A/a1 does not belong to the PD_TOP power domain. The {.}
argument of the -elements option of the create_power_domain command means that
the PD_TOP power domain includes only the logic hierarchy level where the domain is
created (the scope).

• The tool ignores duplicate -exclude_elements options.

When you use the -exclude_elements option with the -update option, the power
domain is updated to exclude instances in the -exclude_elements argument list. The
tool computes the effective element list after reading all UPF commands. The following
example first creates an empty power domain, then makes changes to it, resulting in an
effective element list of {A}:

dc_shell> create_power_domain PD -elements {}
dc_shell> create_power_domain PD -exclude_elements {B} -update
dc_shell> create_power_domain PD -exclude_elements {C} -update
dc_shell> create_power_domain PD -elements {A B C} -update

Representation of Power Domain in the UPF Diagram View
The UPF diagram view displays all power domains that are defined in the current design
and its subdesigns. The power domains are organized hierarchically, such that each
power domain is located inside its parent power domain.

Power Compiler™ User Guide
U-2022.12-SP3

241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

A power domain is represented by a green colored rectangular bounding box. The name
of the power domain is displayed inside the bounding box. Figure 61 shows the INST
power domain and all the UPF objects contained in the power domain.

The size of the power domain symbol varies according to the number and size of the
objects that reside within the power domain. The symbol is big enough to display all the
UPF objects that are contained in it.

Figure 61 An Example of a Power Domain Representation in the UPF Diagram

Scope
In the UPF diagram view, scope is represented by a blue colored rectangular bounding
box. The scope appears within the hierarchy of the power domains. The bounding box of
the scope surrounds the top-most child domain in the scope. Figure 62 shows an example
of how power domains and scopes appear within the UPF diagram.

Figure 62 Representation of Power Domains and Scopes in the UPF Diagram

Power Compiler™ User Guide
U-2022.12-SP3

242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

Expanding and Collapsing Power Domains in the GUI
In the UPF diagram view, you can collapse or expand a selected power domain or scope.
This is useful when you have large designs with several power domains. When you
open the UPF diagram view, by default the power domains are expanded, as shown in
Figure 57. When you collapse a power domain, all its internal details disappear from the
view, and only its name is displayed, as shown in Figure 63. When you expand a power
domain, all its internal details are displayed in the view.

Figure 63 UPF Diagram With Collapsed Power Domains

You can use either of the following methods to expand or collapse a power domain.

After selecting one or more power domains that you want to expand,

• Choose Power > UPF Diagram > Expand Selected Domains.

• Right-click the diagram and choose Expand Selected Domains.

After selecting one or more power domains that you want to collapse,

• Choose Power > UPF Diagram > Collapse Selected Domains.

• Right-click the diagram and choose Collapse Selected Domains.

Power Compiler™ User Guide
U-2022.12-SP3

243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Domains

Feedback

Viewing Hierarchical Cell and Power Domain Boundaries
By default, the schematic view displays timing paths and design logic in a flat, single-sheet
schematic that can span multiple hierarchy levels. Hierarchy crossings are represented by
diamond shapes and indicate where the nets traverse a level of hierarchy.

You can improve your view of the hierarchical structures in the design by arranging the
schematic to display objects hierarchically. Rectangular boundaries appear around objects
that share the same hierarchical parent block. Hierarchical cell boundaries appear orange
and power domain boundaries appear yellow as shown in Figure 64.

Figure 64 Hierarchical and Power Domain Boundaries

To display or hide hierarchical boundaries in the active schematic view,

► Choose Schematic > Show Logic/Power Hierarchy.

A check mark beside the command on the Schematic menu indicates that the
boundaries are visible.

You can color the objects in a schematic based on the hierarchical power relationships of
the design.

Power Compiler™ User Guide
U-2022.12-SP3

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

To display or hide boundary coloring based on their power domains,

► Choose Schematic > Color by Power Hierarchy.

A check mark beside the command on the Schematic menu indicates that the
boundary coloring is visible. The tool displays the objects for each power domain with a
unique color.

In Figure 65, PD_TOP power domain and its elements appear green. PDA power
domain and its elements appear orange and PDB power domain and its elements
appear blue.

Figure 65 Hierarchical and Power Domain Boundaries Colored by Power Hierarchy

For more information, see the “Viewing Cell and Power Domain Hierarchies” topic in
Design Vision Help.

Creating Atomic Power Domains
To create an atomic power domain, use the -atomic option with the
create_power_domain command. See the following syntax:

create_power_domain name -atomic
 [-elements element_list]
 [-exclude_elements exclude_list]
 […]

You must specify the -atomic option when you first define the power domain. The tool
does not allow updating a non-atomic power domain as atomic, that is, option -atomic
cannot be specified with -update.

Power Compiler™ User Guide
U-2022.12-SP3

245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

However, you can update the extent of an atomic power domain, that is, updating the lists
for -elements and -exclude_elements are allowed.

You can define an empty power domain as atomic. However, you must update the empty
power domain with elements before running any action command.

The tool always creates atomic power domains first, independent of the order in which
the power domains are defined. Because atomic power domains are processed first, their
extents are determined and the tool can identify all the power domains that share extent.

The tool does not allow any instance in the descendant subtree of an atomic power
domain to be included in the extent of another power domain, unless:

• the instance name is excluded from the atomic domain or

• the instance name is in the descendant subtree of an instance which is excluded from
the atomic domain

The tool has checks in place to verify and report any violations for the preceding cases.

Note:
It is not mandatory to add an instance excluded from a power domain as
the root cell of another power domain. There can be cases where the power
domain cannot be determined for a few elements in the design. The tool
provides an error message for such elements.

Examples

Example 33
create_power_domain PD_TOP
 -elements {m2 m1/b1} -include_scope
create_power_domain PD_MID -atomic
 -elements {m1}
 -exclude_elements {m1/b1}

In this example, PD_MID is an atomic power domain which is created first. Excluding
m1/b1 from the atomic domain allows it to be used in PD_TOP.

Example 34
create_power_domain PD_EMPTY -elements {} -atomic

You can define an empty power domain as atomic, as in this example. Before you run
any action command, you must ensure to update the empty domain so that the domain
contains elements.

Power Compiler™ User Guide
U-2022.12-SP3

246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

Example 35
create_power_domain PD_TOP -elements {.} -include_scope
 -exclude_elements {i_core} -atomic

create_power_domain PD_CORE -elements {i_core}
commit_upf

As shown in this example, excluding the element on which PD_CORE will be created from
atomic PD_TOP is allowed.

Reporting Atomic Power Domains
You can use report_power_domain in your design to check which power domains are
defined as atomic.

The following is an example of the report_power_domain output for an atomic power
domain:

**
Report : Power Domain
Design : top
**
--
Power Domain : PD_CORE (atomic)
Current Scope : / (top scope)
Elements : core1
Voltage Area : DEFAULT_VA
Available Supply Nets : VDD_CORE, VDD_ISO, VDD_REG, VDDtop, VSStop
Available Supply Sets : SS_CORE, SS_ISO, SS_REG_BANK, SS_TOP

Default Supplies - Power - - Ground -
 Primary : VDD_CORE [0.95, switchable]
 VSStop [0.00]
 Isolation : -- --
 Retention : -- --
…

Hierarchical Flow Support for Atomic Power Domains
This topic discusses the hierarchical flow support for atomic power domains with
examples.

Top-Down Hierarchical Flow
There is no special handling of atomic power domains in the top-down hierarchical flow.
The tool uses the existing methodology of characterizing power domains for characterizing
atomic power domains.

Power Compiler™ User Guide
U-2022.12-SP3

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

The following rules apply:

• If the atomic power domain is defined at or below the scope that gets characterized,
then the atomic power domain is characterized to the BLOCK as is.

• If the cell being characterized is the root cell of an atomic power domain:

◦ Domain split happens and an atomic power domain with same name is
characterized to BLOCK.

◦ As is the case currently for non-atomic power domains, no explicit merge_domain
attribute is needed.

• If the cell being characterized is not a root cell of an atomic power domain:

◦ Domain split happens and an atomic power domain with same name is
characterized to BLOCK.

◦ The merge_domain attribute is set for this cell in TOP UPF.

Bottom-Up Hierarchical Flow
In the bottom-up hierarchical flow, the tool propagates constraints from BLOCK to TOP
design. There are two scenarios with respect to the handling of power domains.

1. Non-Domain Merging

In this scenario, atomic power domains defined in BLOCK are propagated to BLOCK
scope. If this propagation violates the rule that elements in the extent of an atomic power
domain cannot be defined as the root cell of another power domain, the tool reports a
warning message to indicate this violation.

Success Case Example

Consider the following example:

In this case, during constraint propagation, the atomic power domain from BLOCK
PD_MID gets propagated to the TOP design. The following syntax shows the full UPF post
constraint propagation:

create_power_domain PD_TOP -include_scope
create_power_domain PD_MID -elements mid_inst -scope mid_inst -atomic

Power Compiler™ User Guide
U-2022.12-SP3

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

This full UPF does not violate any rule of atomic power domains. So, during the execution
of the synthesis command, the tool does not generate any warning or error messages
related to atomic power domains.

Error Case Example

Consider another example:

In this case, during constraint propagation, the non-atomic power domain from BLOCK
PD_MID gets propagated to the TOP design. The following syntax shows the full UPF post
constraint propagation:

create_power_domain PD_TOP -include_scope -atomic
create_power_domain PD_MID -elements mid_inst -scope mid_inst
This full UPF violates the rule (of atomic power domains) that elements in the extent of
an atomic power domain cannot be defined as the root cell of another power domain. The
element mid_inst, part of atomic power domain PD_TOP (it is not excluded in PD_TOP),
is the root cell of a non-atomic power domain mid_inst/PD_MID. During constraint
propagation, the tool reports the following warning message and continues the flow:

Warning: Element mid_inst in the extent of atomic power domain PD_TOP has
been defined as root cell of another power domain mid_inst/PD_MID
You must fix the UPF by excluding mid_inst from the atomic power domain PD_TOP. The
tool then allows mid_inst to be the root cell of mid_inst/PD_MID.

2. Domain Merging

The following table describes the four possible combinations of TOP and BLOCK power
domains, for domain merging during constraint propagation, and the tool behavior in all
these combinations:

Non-atomic power domain in
BLOCK

Atomic power domain in BLOCK

Non-atomic power domain
in TOP

Existing behavior Domain merging fails; both TOP
and BLOCK power domains are
retained in the final UPF. See
Scenario 1: TOP is Non-Atomic
and BLOCK is Atomic.

Power Compiler™ User Guide
U-2022.12-SP3

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

Atomic power domain in
TOP

Domain merging fails; both TOP
and BLOCK power domains are
retained in the final UPF. See
Scenario 2: TOP is Atomic and
BLOCK is Non-Atomic.

• Matching domains:
Only TOP atomic power domain
is retained in the final UPF. See
Scenario 3: TOP and BLOCK
are Atomic and Domain Merging
Succeeds.

• Non-matching domains:
Domain merging fails; both TOP
and BLOCK power domains are
retained in the final UPF. See
Scenario 4: TOP and BLOCK
are Atomic and Domain Merging
Fails.

Scenario 1: TOP is Non-Atomic and BLOCK is Atomic

Consider the following example:

In this scenario, during constraint propagation, the tool compares the atomic power
domain from BLOCK with the non-atomic power domain in the TOP design and the power
domains do not match. So, domain merging fails with the following message and the tool
retains both the domains:

Error: Unable to merge domain PD_TOP and mid_inst/PD_TOP because
mid_inst/PD_TOP is atomic but PD_TOP is not atomic. (UPF-168)
The following is the full UPF post constraint propagation:

create_power_domain PD_TOP -include_scope
create_power_domain PD_TOP -elements {mid_inst} -scope mid_inst -atomic
…
set_design_attributes -elements {mid_inst} -attribute merge_domain TRUE

Since the tool generated an error message during constraint propagation, you must
update the UPF before proceeding with the flow.

Power Compiler™ User Guide
U-2022.12-SP3

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Atomic Power Domains

Feedback

Scenario 2: TOP is Atomic and BLOCK is Non-Atomic

Consider the following example:

In this scenario, during constraint propagation, the tool compares the non-atomic power
domain from BLOCK with the atomic power domain in the TOP design and the power
domains do not match. So, domain merging fails with the following message and the tool
retains both the domains:

Error: Unable to merge domain PD_TOP and mid_inst/PD_TOP because PD_TOP
is atomic but mid_inst/PD_TOP is not atomic. (UPF-168)
The following is the full UPF post constraint propagation:

create_power_domain PD_TOP -include_scope -atomic
create_power_domain PD_TOP -elements {mid_inst} -scope mid_inst
…
set_design_attributes -elements {mid_inst} -attribute merge_domain TRUE

In this scenario too, since the tool generated an error message during constraint
propagation, you must update the UPF before proceeding with the flow.

Scenario 3: TOP and BLOCK are Atomic and Domain Merging Succeeds

Consider the following example:

In this scenario, during constraint propagation, the tool compares the atomic power
domain from BLOCK with the atomic power domain in the TOP design and the power
domains and say all their properties match. So, domain merging succeeds and the tool
drops the domain from BLOCK.

The following is the full UPF post constraint propagation:

create_power_domain PD_TOP -include_scope -atomic
…
set_design_attributes -elements {mid_inst} -attribute merge_domain TRUE

Power Compiler™ User Guide
U-2022.12-SP3

251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Ports

Feedback

This full UPF does not violate any rule of atomic power domains. So, during the execution
of the checker/synthesis commands, the tool does not generate any warning/error
messages related to atomic power domains.

Scenario 4: TOP and BLOCK are Atomic and Domain Merging Fails

Consider the following example:

In this scenario, during constraint propagation, the tool compares the atomic power
domain from BLOCK with the atomic power domain in the TOP design and say some
of their properties do not match. So, domain merging fails and the tool retains both the
domains.

The following is the full UPF post constraint propagation:

create_power_domain PD_TOP -include_scope -atomic
create_power_domain PD_TOP -elements {mid_inst} -scope mid_inst -atomic
…
set_design_attributes -elements {mid_inst} -attribute merge_domain TRUE

In this scenario too, since there is an error during constraint propagation, you must update
the UPF before proceeding with the flow.

Creating Supply Ports
To create the power supply and ground ports, use the create_supply_port command.

The name of the supply port should be a simple (non-hierarchical) name and unique at the
level of hierarchy it is defined. Unless the -domain option is specified, the port is created in
the current scope or level of hierarchy and all power domains in the current scope can use
the created port.

You can optionally use the -direction option of the create_supply_port command to
specify the port direction and to define how the state information is propagated through the
supply network when connected to the port. The option arguments are as follows:

• The in argument specifies an input port (the default). The state information of the
external supply net connected to the port is propagated into the domain.

• The out argument specifies an output port. The state information of the internal supply
net connected to the port is propagated outside the domain.

Power Compiler™ User Guide
U-2022.12-SP3

252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Ports

Feedback

• The inout argument specifies an input/output port. Top-level inout supply ports and
leaf-level inout supply ports are considered to be drivers.

• The internal argument specifies an internal port. Use this value for ports that connect
virtual nets in the design. If a UPF supply net only connects to leaf ports with the
internal direction, the tool recognizes that this net should not exist in the physical
implementation. An example usage is to connect block supplies that are known to
switch together. Using the internal designation allows you to provide a name that
can then be referenced by other commands such as the connect_supply_net or
find_objects commands.

The UPF standard requires a simple name for the port_name argument of the command.
By default, the tool checks this requirement. To allow the use of hierarchical names, set
the mv_input_enforce_simple_names variable to false.

The following example shows how to create supply ports VDD1, VDD2 and VDD3 and
GND at the top level of the design hierarchy:

create_supply_port VDD1
create_supply_port VDD2
create_supply_port VDD3
create_supply_port GND

To create the supply ports VDD1, VDD1g and GND in the power domain PD1, use the
create_supply_port command as follows:

create_supply_port VDD1 -domain PD1
create_supply_port VDD1g -domain PD1
create_supply_port GND -domain PD1

To create the supply ports VDD2 and GND in the power domain PD2 and VDD3 and GND
in power domain PD3, use the create_supply_port command as follows:

create_supply_port VDD2 -domain PD2
create_supply_port GND -domain PD2
create_supply_port VDD3 -domain PD3
create_supply_port GND -domain PD3

Note:
Connectivity is not defined when the supply port is created. To define
connectivity use the connect_supply_net command.

You can use the -direction option of the create_supply_port command to define how
the state information is propagated through the supply network when connected to the
port. If the port is an input port (the default), the state information of the external supply net
connected to the port is propagated into the domain. Similarly, for an output port, use the
out property with the -direction option. In this case, the state information of the internal
supply net connected to the port is propagated outside the domain.

Power Compiler™ User Guide
U-2022.12-SP3

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Ports

Feedback

You can also specify the inout property of the -direction option so that top-level inout
supply ports and leaf-level inout supply ports are considered as the driver.

Adding Port State Information to Supply Ports
The add_port_state command adds state information to a supply port. This command
specifies the name of the supply port and the possible states of the port. The first state
specified is the default state of the supply port. The port name can be a hierarchical name.
Each state is specified as a state name and the voltage level for that state. The voltage
level can be specified as a single nominal value, set of three values (minimum, nominal,
and maximum), or 0.0, or the keyword off to indicate the off state. The state names are
also used to define all possible operating states in the Power State Table.

Note that supply states specified at different supply ports are shared within a group of
supply nets and supply ports directly connected together. However, this sharing does not
happen across a power switch.

Example 36 shows the definition of states for the power nets:

Example 36 Defining the States of the Power Nets
dc_shell> add_port_state header_sw/VDD -state {HV 0.99} -state {LV 0.792}
 -state {OFF off}
Example 37 shows the definition of states for the ground nets:

Example 37 Defining the States of the Ground Nets
dc_shell> add_port_state footer_sw/VSS -state {LV 0.0} -state {OFF off}
Example 38 has the HV1_1 and HV2_1 states with the same voltage value, 1.2, on the
VDD1 supply port. The duplicate port states are useful in hierarchical flow, where the top
level and block-level ports have different state names but the same voltage value.

Example 38 Defining Duplicate Port States
dc_shell> add_port_state VDD1 -state {HV1_1 1.2} -state {HV2_1 1.2}

Representation of Supply Ports in the UPF Diagram View
In the UPF diagram view, a supply port is represented by a bounding box. A letter in the
bounding box indicates the direction of the port, as shown in Figure 66.

Power Compiler™ User Guide
U-2022.12-SP3

254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets

Feedback

Figure 66 Representation of Power Supply Port in the UPF Diagram

The UPF diagram displays all the supply ports in the current design and its subdesigns.
It also shows the connectivity of the supply ports with the supply nets, their locations, and
the power domains where they belong.

Supply ports are located on the border of the power domain where they belong. They
are located at the top or at the bottom boundary of the power domain, depending on the
supply net connected to the supply ports. In addition, input ports are located on the left
side, and the output ports are located on the right side.

Creating Supply Nets
A supply net connects supply ports or supply pins. To create a supply net, use the
create_supply_net command.

The supply net is created in the same scope or logic hierarchy as the specified power
domain. When you use the -reuse option, the specified supply net is not created. Instead,
an existing supply net with the specified name is reused.

create_supply_net GND_NET -domain PD1
create_supply_net GND_NET -domain PD2 -reuse

When a supply net is created, it is not considered a primary power supply or ground net.
To make a specific power supply or ground net of a power domain, the primary supply or
ground net, use the set_domain_supply_net command.

The UPF standard requires a simple name for the net_name argument. By default, the
Power Compiler tool checks this requirement. To allow the use of hierarchical names, set
the mv_input_enforce_simple_names variable to false.

All supply nets, including the ground, must be assigned an operating voltage value. If
any supply net does not have an assigned operating voltage, the tool issues a UPF-057
error message during the execution of the compile_ultra command. Before compiling
the design, use the check_mv_design -power_nets command to ensure that operating

Power Compiler™ User Guide
U-2022.12-SP3

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets

Feedback

voltages are defined for all the supply nets. For more details, see Examining and
Debugging UPF Specifications.

The operating voltage that you have already set cannot be removed. However, you can
override the existing settings by using the set_voltage command again.

Creating Custom Resolution Functions
You can use the create_supply_net command to create custom resolution functions.
If the string following the -resolve option is not unresolved, parallel, one_hot, or
parallel_one_hot, the tool assumes the string to be a custom resolution function name.
This string is parsed and saved to the output UPF.

The following example specifies a custom resolution function:

create_supply_net VDD -resolve my_package::my_resolution

If a custom resolution function is specified on a net, the tool allows multiple drivers on
that net and checks that all connected nets have the same resolution function. If there are
different resolution functions specified on the connected nets, the tool issues a UPF-099
error message indicating an inconsistent resolution type.

Specifying Primary Supply Nets for a Power Domain
To define the primary power supply net and primary ground net for a power domain, use
the set_domain_supply_net command.

Every power domain must have one primary power and one ground connection.
When a supply net is created it is not a primary supply net. You must use the
set_domain_supply_net command to designate the specific supply net as the primary
supply net for the power domain. All cells in a power domain are assumed to be connected
to the primary power and ground net of the power domain. If the power or ground pins of a
cell in a power domain, is not explicitly connected to any supply net, the power or ground
pin of the cell is assumed to be connected to the primary power or ground net of the power
domain to which the cell belongs.

The following example shows the commands to specify VDD and GND nets as the primary
power and ground net, respectively, of the PD_TOP power domain.

dc_shell> set_domain_supply_net -primary_power_net VDD \
 -primary_ground_net GND PD_TOP
Note:

If you use supply sets to define the primary supply and ground, the supply nets
that you specify must belong to the same supply set. Otherwise the tool issues
an error message. For more details see, Specifying Supply Sets.

Power Compiler™ User Guide
U-2022.12-SP3

256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Supply Nets

Feedback

Representing Supply Nets in the UPF Diagram View
In the UPF diagram view, a supply net is represented by a line or a line segment. Different
colors are used to differentiate the type of the net, as shown in Table 19.

Table 19 Colors Used to Represent Types of Net Segments

Color Net segment

Red Primary power net

Blue Primary ground net

Yellow All other net segments

As shown in Figure 67, the UPF diagram view displays all the supply nets in the current
design and the current design’s subdesigns, and their supply net connections.

Figure 67 Representation of Types of Power Supply Nets in the UPF Diagram

The location of the supply nets in the diagram is based on the location of the power
domains where they belong and also on the type of the supply net. Each power domain
that a supply net belongs to contains a line segment indicating the supply net.

Horizontal segments represent supply nets inside the power domain. Vertical segments
represent nets that are reused in multiple power domains and that are connected to
another object, such as a supply port or a power switch.

Power supplies extend down from the top of the power domain, and ground nets extend
up from the bottom of the power domain.

Power Compiler™ User Guide
U-2022.12-SP3

257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets

Feedback

In Figure 67, the VDD_1 net is the primary supply net of PD1 power domain. However, it is
not the primary supply net of the power domain TOP. Similarly, VSS is the primary ground
net of power domain PD1.

Connecting Supply Nets
The connect_supply_net command connects the supply net to the specified supply ports
or pins. The connection can be within the same level of hierarchy or to ports or pins down
the hierarchy.

You can also use the connect_supply_net command to connect to the internal PG pins
of macro cells containing fine-grained switches. For more information about macro cells
with fine-grained switches, see Macro Cells With Fine-Grained Switches.

The UPF standard requires a simple name for the supply_net_name argument. By default,
the Power Compiler tool checks this requirement. To allow the use of hierarchical names,
set the mv_input_enforce_simple_names variable to false.

The following example shows the use of the connect_supply_net command to connect
supply nets to supply ports at different levels of hierarchy or power domains.

connect_supply_net GND_NET -ports GND
connect_supply_net GND_NET -ports {B1/GND B2/GND B3/GND} GND

You can also use the function of a supply set with the connect_supply_net command, as
shown in the following example:

create_supply_set ss
connect_supply_net ss.ground -ports {B1/GND}

Use the create_supply_net -resolve parallel command when

• A supply net connects to the internal PG pins of more than one macro cell with a fine-
grained switch.

• A supply net is associated with a supply set group that has multiple drivers at the scope
of the supply net. For more information about associating supply sets, see Associating
Supply Sets.

Note:
The connect_supply_net command ignores connections to the pins of
physical-only cells.

Power Compiler™ User Guide
U-2022.12-SP3

258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets

Feedback

Interpreting PG Connections From the RTL
You can control the use of PG connections present in the RTL by using the following
variables:

• The dc_allow_rtl_pg variable enables the tool to obtain PG information from the
RTL. The default is false.

• The dc_allow_rtl_pg_to_signal_pins variable allows PG nets to connect to all
signal pins. The default is true.

• The dc_allow_rtl_pg_to_analog_pins variable allows PG nets to connect to analog
pins. The default is true. The behavior is as follows:

◦ When the dc_allow_rtl_pg_to_signal_pins variable is true (the default), the
tool ignores the dc_allow_rtl_pg_to_analog_pins variable.

◦ When the dc_allow_rtl_pg_to_signal_pins variable is false and the
dc_allow_rtl_pg_to_analog_pins variable is true, PG connections are allowed
only to signal pins that have the is_analog attribute set to true in the cell. The tool
drops connections to other signal pins, connects those signal pins to constants, and
issues an error message.

◦ When the dc_allow_rtl_pg_to_signal_pins variable is false and the
dc_allow_rtl_pg_to_analog_pins variable is false, PG connections are not
allowed to any signal pins. The tool drops connections to the signal pins, connects
those pins to constants, and issues an error message.

Converting PG Information in the RTL to UPF
The Power Compiler tool can convert information about PG nets and PG pin connections
in the RTL into UPF constraints. The PG nets or pins in the RTL must be declared as
ordinary wires or ports. PG connections can only be made to macros, I/O pad cells, and
power management cells.

In a flow that uses a UPF, the tool writes out a full PG Verilog netlist by default
when you use the write_file -format verilog -pg command. This netlist
includes PG connections to all cells, including standard cells. If you set the
upf_write_only_rtlpg_to_pg_netlist variable to true, the tool writes only the PG
connections that are present in the RTL to the Verilog netlist.

If your flow does not use a UPF, the upf_write_only_rtlpg_to_pg_netlist variable
has no effect.

Power Compiler™ User Guide
U-2022.12-SP3

259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets

Feedback

Follow these steps to convert the PG information in RTL into UPF constraints for use
during synthesis:

1. Set the dc_allow_rtl_pg variable to true to enable PG information from the RTL. By
default, PG connections are allowed to all signal pins.

2. (Optional) Set the dc_allow_rtl_pg_to_signal_pins variable to false to allow PG
connections to analog signal pins but not to any other signal pins.

3. (Optional) Set the dc_allow_rtl_pg_to_signal_pins and
dc_allow_rtl_pg_to_analog_pins variables to false to disallow PG connections to
all signal pins.

4. (Optional) Set the upf_write_only_rtlpg_to_pg_netlist variable to true to specify
that the output netlist should contain only the PG connections present in the RTL.

5. Read the RTL design.

6. Link the design.

7. Load the UPF file.

8. Run the convert_pg command to resolve conflicts between the PG connections in the
RTL and the power intent specifications in the UPF. This command translates all PG
connections into UPF commands.

9. Run the write_file -format verilog -pg -output filename command to write
the PG Verilog netlist.

10. Run the save_upf filename command to save the modified UPF.

Note:
When the RTL design has PG connection details and the power constraints are
specified in UPF, you must specify the convert_pg command before you run
the following commands:

• compile_ultra

• insert_mv_cells

• insert_dft

• dft_drc

• analyze_mv_design

• check_mv_design

• save_upf

Power Compiler™ User Guide
U-2022.12-SP3

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets

Feedback

For example, consider the netlist in Example 39, which contains instantiations of both
macros and standard cells (inverters). The PG pins of the macros are connected to PG
nets. However, the PG pins of the standard cells are not connected.

Example 39 Input Netlist Example
module TOP (VDD1, VSS, IN1, IN2, ...);
input VDD1, VSS;

MACRO macro_inst_1 (.VDD(VDD1), .VSS(VSS), .SIGNAL_PIN(IN1), ..);
MACRO macro_inst_2 (.VDD(VDD1), .VSS(VSS), .SIGNAL_PIN(IN2), ..);

INV inv_inst_1 (.IN(IN3), .OUT(OUT1));
INV inv_inst_2 (.in(IN4), .OUT(OUT2));

endmodule

Suppose that you load the following UPF file, which specifies one power domain (PDTOP)
with power net VDD2 and ground net VSS:

create_supply_set SS
create_supply_net VDD2
create_supply_net VSS
create_supply_set SS -function {power VDD2} -update
create_supply_set SS -function {ground VSS} -update
create_power_domain PDTOP -supply {primary SS}

If you run the convert_pg command followed by the write_file -format verilog
-pg -output filename command, the tool writes the PG netlist shown in Example 40
by default. This is a full PG netlist with connections to the PG pins of all cells, including
the standard cells (the inverters). These PG pins are connected to the primary power and
ground nets of the domain (VDD2 and VSS).

Example 40 Default PG Netlist
module TOP (VDD1, VDD2, VSS, IN1, IN2, ...);
input VDD1, VDD2, VSS;

MACRO macro_inst_1 (.VDD(VDD1), .VSS(VSS), .SIGNAL_PIN(IN1), ..);
MACRO macro_inst_2 (.VDD(VDD1), .VSS(VSS), .SIGNAL_PIN(IN2), ..);

INV inv_inst_1 (.VDD(VDD2), .VSS(VSS), .IN(IN3), .OUT(OUT1));
INV inv_inst_2 (.VDD(VDD2), .VSS(VSS), .IN(IN4), .OUT(OUT2));

endmodule

However, if you set the upf_write_only_rtlpg_to_pg_netlist variable to true, the
tool writes only the PG connections that are present in the RTL to the Verilog netlist. The
output netlist is the same as the original input netlist shown in Example 39.

Power Compiler™ User Guide
U-2022.12-SP3

261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Connecting Supply Nets

Feedback

Preserving Assign Statements on PG Nets
By default, the Power Compiler tool preserves assign statements on PG nets (for example,
a supply net connected to an input supply port and an output supply port) in the PG Verilog
netlist and/or UPF, based on your tool flow without or with UPF.

In the flow without UPF, the tool preserves the assign statements by writing them out in the
PG Verilog netlist.

In the flow with UPF, when convert_pg is run, after loading the UPF, the assign
statements present in the RTL are converted to equivalent create_supply_net,
create_supply_port, and connect_supply_net commands. These commands
are written out in the UPF. Additionally, if you write the PG Verilog netlist, the assign
statements are written out in the PG Verilog netlist too.

Example 1: Assign Statement in the Top-Level Module

Consider the following RTL example that has an assign statement in the top-level module:

module top (in, out1, out2, vddt);
 input in, vddt;
 output out1, out2;

 macro M1 (.in(in), .out(out1), .VDD(vddt));
 assign out2 = vddt;

endmodule

The Power Compiler tool considers the PG net “vddt” to be connected to the PG pin VDD
of macro M1 and the PG port “out2”.

In the flow without UPF, the assign statement present in the top-level module is preserved
and written out in the PG Verilog netlist. In other words, the PG Verilog netlist looks the
same as the preceding RTL. In the non-PG Verilog netlist, supply ports/nets “vddt” and
“out2” are not written out.

In the flow with UPF, after convert_pg, the UPF has the following commands:

create_supply_net vddt
create_supply_port vddt
connect_supply_net vddt -ports {vddt}
connect_supply_net vddt -ports {M1/VDD}
create_supply_port out -dir out
connect_supply_net vddt -ports {out}

Power Compiler™ User Guide
U-2022.12-SP3

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets

Feedback

Example 2: Assign Statement in the Lower-Level Module

Consider the following RTL example that has an assign statement in the lower-level
module:

module top (in, out1, out2, vddt);
 input in, vddt;
 output out1, out2;

 mid mid_inst (.in(in), .out1(out1), .out2(out2), .vddm(vddt));

endmodule

module mid (in, out1, out2, vddm);
 input in, vddm;
 output out1, out2;

 macro M1 (.A(in), .Z(out1), .VDD(vddm));
 assign out2 = vddm;

endmodule

In the flow without UPF, the assign statement present in the lower-level module is
preserved and written out in the PG Verilog netlist. In other words, the PG Verilog netlist
looks the same as the RTL. In the non-PG Verilog netlist, supply ports/nets “vddt”, “vddm”
and “out2” are not written out.

In the flow with UPF, after convert_pg, the UPF has the following commands:

create_supply_net vddt
create_supply_port vddt
connect_supply_net vddt -ports {vddt}
set_scope mid_inst
create_supply_net vddm
create_supply_port vddm
connect_supply_net vddm -ports {vddm}
connect_supply_net vddm -ports {M1/VDD}
create_supply_port out2 -dir out
connect_supply_net vddm -ports {out2}
set_scope /
connect_supply_net vddt -ports {mid_inst/vddm}
create_supply_net out2
create_supply_port out2 -dir out
connect_supply_net out2 -ports {out2}
connect_supply_net out2 -ports {mid_inst/out2}

Specifying Supply Sets
A supply set is an abstract collection of supply nets consisting of two supply functions:
power and ground. A supply set is domain-independent, which means that the power and

Power Compiler™ User Guide
U-2022.12-SP3

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets

Feedback

ground in the supply set are available to be used by any power domain defined within the
scope where the supply set was created. However, each power domain can be restricted
to limit its usage of supply sets within that power domain.

You can use supply sets to define power intent at the RTL level, so you can synthesize
a design even before you know the names of the actual supply nets. A supply set is an
abstraction of the supply nets and supply ports needed to power a design. Before such a
design can be physically implemented (placed and routed), its supply sets must be refined
(associated with actual supply nets).

You can access the functions of the supply set by using the name of the supply set and
the name of the function. To access the power function of the supply set SS, specify
SS.power. To access the ground function of the supply set SS, specify SS.ground.

Creating Supply Sets
A supply set is an abstract collection of supply nets consisting of two supply functions:
power and ground. A supply set is domain-independent, which means that the power and
ground in the supply set are available to be used by any power domain defined within the
scope where the supply set was created. However, each power domain can be restricted
to limit its usage of supply sets within that power domain.

You can use supply sets to define power intent at the RTL level, so you can synthesize
a design even before you know the names of the actual supply nets. A supply set is an
abstraction of the supply nets and supply ports needed to power a design. Before such a
design can physically implemented (placed and routed), its supply sets must be refined, or
associated with actual supply nets.

A supply set consists of the following functions:

• Power

• Ground

You can access the functions of the supply set by using the name of the supply set and
the name of the function. To access the power function of the supply set SS, specify
SS.power. To access the ground function of the supply set SS, specify SS.ground.

Creating Supply Sets

To create a supply set, use the create_supply_set command. The supply set is created
in the current logic hierarchy or the scope.

The UPF standard requires a simple name for the supply_set_name argument. By
default, the tool checks this requirement. To allow the use of hierarchical names, set the
mv_input_enforce_simple_names variable to false.

Power Compiler™ User Guide
U-2022.12-SP3

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets

Feedback

The following example shows how to create a supply set and associate it with the primary
power supply of a power domain:

create_supply_set primary_supply_set
create_power_domain PD_TOP
set_domain_supply_net PD_TOP \
 -primary_power_net primary_supply_set.power \
 -primary_ground_net primary_supply_set.ground

Note:
When you specify a supply set as the primary power and ground supply of the
power domain, both the primary and the ground supply must belong to the
same supply set.

In the UPF Diagram view, a supply set does not appear visually in the diagram. Only
the supply nets of a supply set appear in the diagram. Supply nets of a supply set and
domain-independent supply nets are implicitly available anywhere from their scope
downward in the design.

Reference-Only Supply Sets

When using the hierarchical flow and separating blocks, you might have supply sets
that reside outside the current block. In order to refer to these supply sets outside the
block after you run the characterize command, the tool creates a reference-only supply
set. This supply is meant only to resolve supply references in strategies when using the
hierarchical flow. You cannot use the supply to power actual cells.

For the example in Figure 68, the U1 power domain has an isolation strategy that refers
to a local supply in U2 as a sink supply. If you split U1 into a separate block, the UPF for
U1 would need to replace the U2/SS2 in the U1 UPF because U2/SS2 is not valid when
the UPF for each block is separated. Meanwhile, the real supply that powers U2/SS2 is
only available to power cells in U2 and is not visible outside of U2. After you integrate the
design with U1, there needs to be a way to associate U2/SS2 with its replacement in U1.
To do this, the tool creates a reference-only supply for U1.

Power Compiler™ User Guide
U-2022.12-SP3

265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets

Feedback

Figure 68 Reference-Only Supply Set Example

U1(PD1) U2

U2/SS2
out1

create_power_domain Top
set_scope U2
create_supply_set SS2
set_scope
create_power_domain PD1 -scope U1 -elements U1
set_isolation iso -domain U1/PD1 -sink U2/SS2

Top

To create a reference-only supply, the tool creates the supply set and then marks it as
reference-only using the design attribute reference_only. For example,

create_supply_set SS2'
set_design_attributes -elements . -attribute reference_only {SS2'}

The power states of U2/SS2 are also copied to SS2' in the UPF for U1. The receiver
supply of the out1 port is also set to SS2' as follows:

set_port_attributes -elements out1 -receiver_supply SS2'

These additions to the U1 UPF ensure that when U1 is optimized separately, it has all the
information for correct multivoltage cell insertion in U1. In the Top UPF, a set_equivalent
command is added to establish the relationship between SS2’ and U2/SS2:

set_equivalent -sets {U1/SS2' U2/SS2}

Note:
The add_supply_state command can be used with the add_pst_state
command but not with the add_power_state command.

Power Compiler™ User Guide
U-2022.12-SP3

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Supply Sets

Feedback

Creating Supply Set Handles
When you create a power domain, the following supply set handles are created by default:

• primary

• default_isolation

• default_retention
In addition to these predefined supply set handles, you can define supply set handles by
using the -supply option of the create_power_domain command. To associate multiple
supply sets with a power domain, use the -supply option multiple times.

Supply set handles are created at the scope of the power domain and are available for use
in the power domains that are at the same or lower scope than the power domains where
they are created. Use the following naming convention to refer to a supply set handle:
power_domain_name.supply_set_handle. When a power domain is deleted, its supply set
handles are also deleted.

To disable the creation of supply set handles while creating the power domain, set the
upf_create_implicit_supply_sets variable to false before you load the UPF file.

Note:
After loading the UPF file, the upf_create_implicit_supply_sets variable
becomes a read-only variable and you can no longer change its value.

You can also specify the extra_supplies_# keyword with the -supply option of
the create_power_domain command to restrict the availability of the supplies in the
power domain. For more information about using the extra_supplies_# keyword, see
Restricting Supply Sets Available to a Power Domain.

The following example shows how to create a power domain and associate a supply set
with the power domain:

Create the supply sets
create_supply_set primary_supply_set

Create power domain and associate it with the supply set
create_power_domain PD1 -supply {primary primary_supply_set}

When the well-bias mode is enabled, all four supply functions (power, ground, n-well, and
p-well) are created if any of the following conditions are true:

• The supply set is used as a domain’s primary supply in the design

• The n-well or p-well function of the supply set is explicitly resolved to a supply net

Power Compiler™ User Guide
U-2022.12-SP3

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

• The n-well or p-well function of the supply set is referred to in a UPF command or PG
netlist

• The supply set is associated with another supply set for which the tool has created all
four functions

Restricting Supply Sets Available to a Power Domain
Supply sets are domain-independent and can only be updated with domain-independent
nets. To restrict the supply sets available to a power domain, use the extra_supplies_#
keyword with the -supply option of the create_power_domain command, as shown in
the following example:

dc_shell> create_power_domain SUB_DOMAIN \
 -supply {extra_supplies_1 supply_set1} \
 -supply {extra_supplies_2 supply_set2} -elements mid1/PD_MID
Alternatively, if you do not want the power domain to use extra supply nets other than
those that are already defined in other strategies, specify the extra_supplies ""
keyword (without the index) with the -supply option of the create_power_domain
command, as shown in the following example:

dc_shell> create_power_domain PD_MID -scope mid1 \
 -supply {extra_supplies ""}
It is an error to use both the extra_supplies_# and extra_supplies "" keywords
simultaneously.

By default, a power domain can use domain-independent supply nets and supply
nets defined in the power domain. However, when you define supply sets with the
extra_supplies_# keyword, the power domain is restricted to use

• The primary supply of the power domain

• The supplies listed as extra_supplies_#

• The supplies specified by the isolation strategy of the power domain

• The supplies specified by the retention strategy of the power domain

• The supplies defined or reused as domain-dependent supplies in the power domain

Refining Supply Sets
To redefine the functions of a supply set, use the -update option of the
create_supply_set command. You must use the -update and the -function options
together, to associate the function names with the supply nets or ports.

Power Compiler™ User Guide
U-2022.12-SP3

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

The following example shows how you use the -update option to associate supply nets to
the functions of the supply set:

create_power_domain PD_TOP
create_supply_net TOP_VDD
create_supply_net TOP_VSS
create_supply_set supply_set \
 -function {power TOP_VDD} \
 -function {ground TOP_VSS} \
 -update

The following rules apply, when you update a supply set with a supply net:

• Voltage rule

The voltage of the supply set handle must match with the voltage of the supply net with
which the supply set is updated.

If voltage is not specified for the supply net, then after the update, the voltage on the
supply set handle is inferred as the voltage of the supply net.

• Function rule

The supply set function must match with the function of the supply net with which the
supply set is updated.

The tool issues an error message when,

◦ The ground handle of a supply set is used to update power handle of another
supply set and vice versa.

◦ The supply net updated with the ground handle of a supply set is connected to
a power supply port or pin of a power object, such as a power domain, and vice
versa.

• Scope rule

The scope of supply set must match with the scope of the explicit supply net with which
the supply set is updated.

• Availability rule

The explicit supply net with which the supply set is updated, must be domain-
independent.

• Connection rule

The explicit supply net with which the supply set is updated, should not be connected
to a driver port when the supply set handle is connected to a driver port unless a
resolution function is defined for the explicit supply net.

Power Compiler™ User Guide
U-2022.12-SP3

269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

• Conflicting supply state names rule

A supply set handle cannot be updated with a supply net or supply set if their power
states are not identical.

• Valid power-state-table rule

When a number of supply sets are updated to the same supply net, only one supply set
can be present in the power state table.

Associating Supply Sets
To associate a supply set with another predefined supply set or supply set handle or
to associate a list of explicit and implicit supply sets, use the associate_supply_set
command. When two supply sets are associated, the tool considers the two supply sets to
be connected, and their functions resolve to the same supply nets.

Using the -handle option is optional. The following commands are equivalent:

associate_supply_set SS1 -handle PD1.primary
associate_supply_set {SS1 PD1.primary}

The associate_supply_set command accepts either simple or hierarchical names and
accepts a list of supplies to associate.

You can associate two or more supply sets as follows:

dc_shell> associate_supply_set {SS1 SS2 mid/SS3}
Each of the supply set functions (power, ground, nwell, and pwell) of the associated supply
sets are treated as the same supply net or connected supply net.

Associating supply sets with an unequal number of functions causes the supply set with
the lesser functions to inherit the remaining functions from the associated supply set. For
example,

set_design_attributes -elements {.} -attribute enable_bias true
Creates a two-function supply set
create_supply_set SS1
Creates a four-function supply set
create_power_domain PD1
Promotes SS1 to four functions
associate_supply_set {SS1 PD1.primary}

You can associate supply sets across different scopes. Figure 69 illustrates the three
scopes.

Power Compiler™ User Guide
U-2022.12-SP3

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Figure 69 Associated Supplies Across Three Scopes

PD_TOP

PD_MID

PD_BOT

The following script associates the supplies across the three scopes in Figure 69:

create_power_domain PD_TOP -supply {primary SSTop}
create_power_domain PD_MID -supply {primary SSMid}
create_power_domain PD_BOT -supply {primary SSBot}
associate_supply_set {SSTop mid/SSMid mid/bot/SSBot}

Rules for Associating Supply Sets
The following rules apply, when you associate a supply set with a supply set handle.

• Associating a supply set handle to a supply set can be done only one time.

• Associating a supply set handle to a supply set should not cause circular associations.

• User-defined supply sets cannot be specified with the -handle option of the
associate_supply_set command.

• The supply set handle specified with the -handle option of the
associate_supply_set command must be at the same or below the scope of the
specified supply set.

• While associating a supply set handle to supply set, the supply set must be available in
the power domain where the supply set handle is available.

Refining Bias Supply Functions Automatically
When you set the enable_bias design attribute to the derived value, the tool
automatically inherits bias functions for every supply set in the scope where enable_bias
is set to derived, based on the power and ground functions, if the bias functions are not

Power Compiler™ User Guide
U-2022.12-SP3

271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

already defined. This means that, you need not specify the bias functions explicitly and
if the n-well and p-well functions are the same as the power and ground respectively,
this setting saves your effort to specify supply sets with all the four functions in the scope
where bias is enabled.

dc_shell> set_design_attributes -elements {.}
 -attribute enable_bias derived

Or

dc_shell> set_design_attributes -elements {a b}
 -attribute enable_bias derived

Note:
• Setting enable_bias to derived is analogous to setting it to true

because, in both cases, the enable_bias attribute is set and bias functions
are required for all supply sets. Thus, all rules that currently apply for
mixing bias and non-bias blocks with enable_bias set to true hold for
enable_bias derived as well.

• The interaction of blocks with enable_bias derived and enable_bias
false is identical to the interaction of blocks with enable_bias true and
enable_bias false.

For n-well only support, the tool automatically inherits only the n-well function from the
power function because, in this case, the p-well function does not exist.

To save the UPF file with the derived bias functions, set the
upf_track_bias_supply_net_resolution variable to true:

dc_shell> set upf_track_bias_supply_net_resolution true

The value of this application option is false by default.

Example 1: No Bias Functions Defined
Consider the following UPF where there is no bias function defined in the supply sets, and
the supply set is not resolved to supply nets:

#UPF
set_design_attributes -elements . -attribute enable_bias derived

create_supply_set SS1
create_power_domain TOP
associate_supply_set SS1 -handle TOP.primary

Since the enable_bias attribute is set to derived, in the derived UPF, the n-well and p-
well functions of SS1 are the same as the power and ground functions. The same is also
reflected in the report_power_domain command results.

Power Compiler™ User Guide
U-2022.12-SP3

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

#Derived UPF
set derived_upf true
create_supply_set SS1 -function {nwell SS1.power}
 -function {pwell SS1.ground} -update
set derived_upf false

report_power_domain:
Power Domain : TOP
 Current Scope : top
 Elements : <top_level>
 Available Supply Nets :
 Available Supply Sets : SS1, TOP.primary

 Connections -- Power -- -- Ground -- -- Nwell -- -- Pwell --
 Primary: SS1.power SS1.ground SS1.power SS1.ground

Example 2: Implicit Supply Sets With Resolved Power and Ground
This example shows the implicit supply set TOP.primary is updated for both power and
ground, when enable_bias is set to derived. In the derived UPF, the n-well and p-well
functions of it are updated to VDD and VSS, respectively.

#UPF
set_design_attributes -elements . -attribute enable_bias derived

create_supply_net VDD
create_supply_net VSS
create_power_domain TOP
create_supply_net TOP.primary -function {power VDD} -function {ground
 VSS} -update
#Derived UPF
set derived_upf true
create_supply_set TOP.primary -function {nwell VDD}
 -function {pwell VSS} -update
set derived_upf false

report_power_domain:
Power Domain : TOP
 Current Scope : top
 Elements : <top_level>
 Available Supply Nets : VDD, VSS
 Available Supply Sets : SS1, TOP.primary

 Connections -- Power -- -- Ground -- -- Nwell -- -- Pwell --
 Primary: VDD VSS VDD VSS

Power Compiler™ User Guide
U-2022.12-SP3

273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Example 3: Implicit Supply Sets With Unresolved Power and
Ground
See the following example for an implicit supply set with unresolved power and ground:

#UPF
set_design_attributes -elements . -attribute enable_bias derived

create_power_domain TOP
#Derived UPF
set derived_upf true
create_supply_set SNPS_RESOLVE_TOP_primary
create_supply_set SNPS_RESOLVE_TOP_primary
 -function {nwell SNPS_RESOLVE_TOP_primary.power}
 -function {pwell SNPS_RESOLVE_TOP_primary.ground} -update
associate_supply_set {SNPS_RESOLVE_TOP_primary TOP.primary}
set derived_upf false

report_power_domain
Power Domain : TOP
 Current Scope : top
 Elements : <top_level>
 Available Supply Nets :
 Available Supply Sets : SNPS_RESOLVE_TOP_primary,TOP.primary

 Connections -- Power -- -- Ground -- -- Nwell -- -- Pwell --
 Primary: SNPS_RESOLVE_TOP_primary.power
 SNPS_RESOLVE_TOP_primary.ground
 SNPS_RESOLVE_TOP_primary.power
 SNPS_RESOLVE_TOP_primary.ground

Example 4: N-Well Only Support
In this example, the design is detected by the tool as n-well-only design, when you set
enable_bias is set to derived. The tool, therefore, only derives the n-well function from
the power function; no p-well function is derived.

#UPF
set_design_attributes -elements . -attribute enable_bias derived

create_supply_set SS1 -function {power VDD} -function {ground VSS}
#Derived UPF
set derived_upf true
create_supply_set SS1 -function {nwell VDD} -update
set derived_upf false

Power Compiler™ User Guide
U-2022.12-SP3

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Defining the Power States for a Supply Set
Power states are attributes of a supply set. The supply nets of a supply set can be at
different power states at different times. Using the add_power_state command, you
can define one power state for all those supply nets of the supply set that always occur
together. For each power state of the supply set, you must use one add_power_state
command. By default, the undefined power states are considered illegal states.

The Power Compiler tool automatically accepts the UPF 2.0 or 2.1 version of the
add_power_state command. You do not have to specify any variables.

For example, both of the following are accepted:

add_power_state SS1 -state S1 {-supply_expr {power=={OFF}}}
add_power_state SS1 -state {S1 -supply_expr {power=={OFF}}}
Note:

The S1 state can be specified either inside or outside the curly braces.

You can mix the different versions of the add_power_state command. However, you have
to use the same style for the same objects. For example, if you specify one state for the
SS1 supply set using 2.1 style, you can only use the 2.1 style for specifying additional
states for SS1.

For example, the following command combination is not allowed:

add_power_state SS1 -state S1 {-supply_expr {power=={OFF}}}
add_power_state SS1 -state {S2 -supply_expr {ground=={OFF}}}

Use the -domain option to specify an existing simple power domain
name. The scope at which the domain is defined must have the
enable_state_propagation_in_add_power_state design attribute set to false.
This is required because the -domain option refers to supply set states. By default, the
enable_state_propagation_in_add_power_state attribute is false.

Use the -state option to specify the name of the power state of the supply set. This name
must be written within curly braces.

Use the -supply_expr option to specify the power state and the voltage value for the
various supply net components of the supply set.

Power Compiler™ User Guide
U-2022.12-SP3

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

The following restrictions apply to the -supply_expr and -logic_expr options:

• Supply expressions containing more than one voltage must be listed in ascending
order. Also, parentheses are supported and you cannot use the “./” characters in the
domain supply set handle.

• The tool supports only alphanumeric characters and the underscore “_” character. Any
other character is not allowed. For example, the following state name is an error:

add_power_state SS_AO -state \
 {ON@A -supply_expr {power == {FULL_ON 1.05}}}

The add_power_state command supports all seven simulation states. These states are
as follows:

• NORMAL

• NOT_NORMAL

• CORRUPT

• CORRUPT_ON_ACTIVITY

• CORRUPT_STATE_ON_CHANGE

• CORRUPT_STATE_ON_ACTIVITY

• CORRUPT_STATE_ON_CHANGE

The UPF standard requires a simple name for the object_name argument. By default,
the tool checks this requirement. To allow the use of hierarchical names, set the
mv_input_enforce_simple_names variable to false.

For more information about power state tables, see Power State Tables.

Specifying Supply Expressions
The supply expression specified with the -supply_expr option is used to determine the
legal states of the supply nets of the supply set during synthesis. The supply expression
uses the following syntax:

(net == netstate || net == netstate) && net == netstate

The net can be power or ground, and the netstate syntax must be one of the following:

• {status}

• {status nom}

• {status min nom max}

The status can be OFF or FULL_ON.

Power Compiler™ User Guide
U-2022.12-SP3

276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

The min, nom, and max values are floating point numbers representing the minimum,
nominal, and maximum voltages of the specified state.

If the status is FULL_ON, you can specify zero to three voltages. You can defer specifying a
voltage and specify it later using the -update option. For example,

add_power_state -supply SS2 -state ON1 \
 {-supply_expr {power =={FULL_ON} && ground == {FULL_ON}}}
...
add_power_state -supply SS2 -state ON1 \
 {-supply_expr {power == {FULL_ON 1.0} && ground =={FULL_ON 0.0}}} \
 -update

The voltages that you specify with a power state are interpreted by the tool as follows:

• When you specify no voltage, the tool assumes that the voltage will be specified at a
later time with the add_power_state -update command.

• When you specify a single voltage, the voltage value is considered to be the nominal
voltage of the associated state.

• When you specify two voltages, the first value is the minimum voltage and the second
value is the maximum voltage. The average of the two values is used as the nominal
voltage of the power state.

• When you specify three voltages, the first value is the minimum voltage, the second
value is the nominal voltage, and the third value is the maximum voltage of the power
state. The values must be specified in increasing order, as shown in the following
example:

add_power_state SS_AO -state \
 {ON_A -supply_expr {(power == {FULL_ON 0.85 0.9 0.95})} \
 && (ground == {FULL_ON 0})}}

Using OR Operator in add_power_state -supply_expr
You must set the upf_allow_or_operator_in_add_power_state_supply_expr variable
to true, before loading the UPF, for the tool to process an add_power_state command
with a combination of || , &&, and == operators, in its -supply_expr expression.

Example 1

In the following example, the -supply_expr contains one || operator of two == operations:

add_power_state sst -state SST_OFF
 {-supply_expr { power == {OFF} || ground == {OFF} } }

Power Compiler™ User Guide
U-2022.12-SP3

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Example 2

In this example, the -supply_expr contains two || operators and one && operator:

add_power_state sst -state SST_HI
 {-supply_expr { (power == {FULL_ON 1.2} || power == {FULL_ON 0.7}) &&
 (ground == {FULL_ON 0.0} || nwell == {FULL_ON 0.5}) } }

OR Operator Support in add_power_state for Hierarchical Flows
As in the case of a flat flow, for a hierarchical flow too, you can enable
the OR operator usage in the add_power_state command by setting the
upf_allow_or_operator_in_add_power_state_supply_expr variable to true.

• Bottom-Up Flow:

You must set the variable consistently for block and top synthesis. However, it is
allowed to have the variable disabled (set to false) for block synthesis and enabled
for top synthesis. While running the propagate_constraints command, the tool
removes any duplicate supply from the block, which already exists in top. Supplies are
considered duplicate if the comparison of their overall state expression with the OR
operator matches between block and top.

• Top-Down Flow:

In this flow, a portion of the system PST that is specific to the block gets characterized
into the block:

◦ If the system PST does not have any supply set states, the block gets a derived
PST.

◦ If the system PST has only supply set states, the block gets derived group states.

◦ If the system PST cannot be fully represented in terms of supply set states, the
block gets a combination of a derived PST and a derived group.

Top-Down Flow Example

This example shows the top-down flow behavior when an OR operator is used in
-supply_expr of add_power_state in the full chip UPF.

add_power_state SST -state SST_1
 {-supply_expr {power == `{FULL_ON, 0.9} && ground == `{FULL_ON, 0.0}}

set_scope mid

add_power_state SSM -state SSM_1
 {-supply_expr {(power == `{FULL_ON, 0.9} || power == `{FULL_ON, 1.0})
 && ground == `{FULL_ON, 0.0}}}

set_scope /

Power Compiler™ User Guide
U-2022.12-SP3

278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

In this example UPF, the SSM supply set state SSM_1 is using an OR operator in the
supply expression.

During characterize, the tool creates new supply set states to capture the partial state.
They are named using a SNPS_DERIVED prefix and are referenced in the derived group.

add_power_state SST -state SST_1
 {-supply_expr {((power==`{FULL_ON,0.9})&&(ground==`{FULL_ON,0.0}))}}

add_power_state SSM -state SSM_1
 {-supply_expr {(((power==`{FULL_ON,0.9})||(power==`{FULL_ON,1.0}))
 &&(ground==`{FULL_ON,0.0}))}}

add_power_state SSM -state SNPS_DERIVED_1
 {-supply_expr {((power==`{FULL_ON,0.9})&&(ground==`{FULL_ON,0.0}))}}

add_power_state SSM -state SNPS_DERIVED_2
 {-supply_expr {((power==`{FULL_ON,1.0})&&(ground==`{FULL_ON,0.0}))}}

create_power_state_group group

add_power_state -group group -state group_ps_1
 {-logic_expr {SST == SST_1 && SSM == SNPS_DERIVED_1}}
 -state group_ps_2 {-logic_expr {SST == SST_1 && SSM ==
 SNPS_DERIVED_2}}

Operator Precedence
The supply expression follows the operator precedence as described in the IEEE 1801-3.1
standard. See the following tables. The precedence between the same class of operators
follows operator precedence mentioned in the SystemVerilog LRM.

Table 20 Boolean Operators

Operator SystemVerilog equivalent VHDL equivalent Meaning

! ! not Logical negation

~ ~ not Bit-wise negation

== == = Equal

!= != /= Not equal

&& && and Logical conjunction

|| || or Logical disjunction

Power Compiler™ User Guide
U-2022.12-SP3

279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Table 21 Operator Precedence

Operator Precedence

! ~ Highest

== != Next highest

&& Next

|| Lowest

Reporting Support
The report_pst command reports only the original power state names and voltage
values corresponding to those states, by default. You can use the -voltage_type option if
you want the tool to report the voltage triplets, that is, minimum, nominal, and maximum, in
the report_pst command output.

Specifying Logic Expressions
The -logic_expr option of the add_power_state command specifies a Boolean
logic expression in terms of logic nets and supply sets. The option has different effects
depending on other options used with the command, as follows:

• The -logic_expr option used with the -supply option specifies an expression in
terms of logic nets and supply nets. This usage is primarily for use by downstream
simulation tools and does not affect implementation.

• The -logic_expr option used with the -group or -domain options specifies an
expression in terms of group power states, domain power states, supply set states, or
logic signal states. This usage affects power state definitions.

Logic Expressions With the -supply Option

If you use the -logic_expr option with the -supply option, you can use logic signals
and supply nets in the logic expression. In this usage, the add_power_state command
is parsed by the Power Compiler tool and written to the UPF for use by downstream
simulation tools, but the command has no effect in the Power Compiler tool.

In this usage, you can use all the Boolean operators specified in the IEEE 1801 language
reference manual, which are listed in Table 22.

The tool supports parentheses in the Boolean logic expression. For example,

add_power_state PDTOP -state {STATE2 \
 -logic_expr {(SSTOP == OFF) && (SSMID == ON)}}

Power Compiler™ User Guide
U-2022.12-SP3

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

Table 22 Boolean Operators

Operator Meaning

! Logical negation

~ Bitwise negation

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

& Bitwise conjunction

^ Bitwise exclusive disjunction

| Bitwise disjunction

&& Logical conjunction

|| Logical disjunction

You can also use the || (OR) operator for operands of type logic control signals in the
-logic_expr of add_power_state for supply set objects. See the following example:

add_power_state ss_peri_sw
 -state ON {-logic_expr {RET_A == 1'b1 || PDW_A == 1'b1} }
 -state OFF {-logic_expr {RET_B == 1'b0 || PDW_B == 1'b0} }

Note:
The || operator involving supply set states is not supported in -logic_expr of
add_power_state. Only || operators involving logical pins/ports are supported
in -logic_expr.

Power Compiler™ User Guide
U-2022.12-SP3

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

The following example shows how power states can be added to a group. In this example,
the RUN12 and RUN1 are the names of the group states that are created:

create_supply_set SS1
create_supply_set SS2
create_supply_set SS3
add_power_state -supply SS1 -state ON \
 {-supply_expr {power =={FULL_ON 0.8} && {ground == {FULL_ON 0}}}
add_power_state -supply SS2 \
 -state ON {-supply_expr {power == {FULL_ON 0.8}}} \
 -state OFF {-supply_expr {power == {OFF}}}
add_power_state -supply SS3 \
 -state ON {-supply_expr {power == {FULL_ON 0.8}}} \
 -state OFF {-supply_expr {power == {OFF}}}
create_power_state_group MY_PST
add_power_state -group MY_PST \
 -state RUN12 {-logic_expr {SS1==ON && SS2==ON && SS3==ON}} \
 -state RUN1 {-logic_expr {SS1==ON && SS2==ON && SS3==OFF}}
 ...

Logic Expressions With the -group or -domain Options

If you use the -logic_expr option with either the -group or -domain option, you can use
supply sets, supply groups, power state tables, and logic signals in the logic expression.
The expression must use the following syntax:

object1 == state && object2 == state

Only binary values (0 or 1) are allowed when specifying logic signals. For example,

add_power_state -domain PD1 \
 -state {ON -logic_expr {SS1 == ON && nPWRUP == 1}}
Note:

• The || operator involving logic control signals and power states
(as operands) in -logic_expr of add_power_state -group or
add_power_state -domain is not supported.

• The unary negation and != operators are not allowed with -logic_expr with
-group or -domain.

The tool uses the relationship between supplies and logic signals to determine the
possible power state table states of the supplies. If a state has only logic signals defined in
the logic expression, the state is parsed and written to the output UPF, but has no effect in
the Power Compiler tool. During power state table merging, if contradictions are found in
the logic values of connected nets in states to be merged, the states are dropped.

Power Compiler™ User Guide
U-2022.12-SP3

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

If you specify a net name for a logic signal, the tool writes the driving pin or port for that
net in the output UPF. For example, consider a net N1 driven by pin U1/Z. The input UPF
command might be as follows:

add_power_state -group PSG1 -state ON {-logic_expr { ... && N1==1}}

The tool writes the following command in the output UPF:

add_power_state -group PSG1 -state ON {-logic_expr { ... && U1/Z==1}}

The tool issues an error message if logic inconsistencies are found, including the
following:

• Different logic states specified in the same logic expression for nets connected through
a buffer or hierarchical port

• The same logic state specified for nets connected through an inverter

Successive Refinement
Using the -update option, you can incrementally add more information to an already
defined state. The tool supports successive refinement for all types of objects that are
supported by the add_power_state command.

The general rules for refinement using the -update option are as follows:

• The initial definition of the state can contain just the name of the state. It might or might
not specify any additional information.

• If a state defined with the -supply_expr option is updated with another -supply_expr
option, then the new definition is the conjunction of the two definitions.

You can update the supply expression in the following two ways:

◦ If the initial definition contains just the netstate (FULL_ON or FULL_OFF) for a
functional net without voltage, you can update the definition with the voltage.

add_power_state -supply SS1 -state ON \
 {-supply_expr {power == FULL_ON}}}
add_power_state -supply SS1 -state ON \
 {-supply_expr {power == FULL_ON 1.0}}} -update

◦ The initial definition might be one or more functional nets. You can update the
definition by specifying more functional nets.

add_power_state -supply SS1 -state ON \
 {-supply_expr {power == FULL_ON 1.0}
add_power_state -supply SS1 -state ON \
 {-supply_expr {ground == FULL_ON 0.0}}} -update

Power Compiler™ User Guide
U-2022.12-SP3

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Refining Supply Sets

Feedback

• If a state defined with the -logic_expr option is updated with another -logic_expr
option, then the new definition is interpreted as the conjunction of the two expressions.
For example, the following statements

add_power_state SS1 -state ON {-logic_expr {net1}}
add_power_state SS1 -state ON (-logic_expr {net2}} -update

are interpreted as

add_power_state SS1 -state ON {-logic_expr {net1 && net2}}

• If the simstate is specified as NOT_NORMAL, then you can update it to any simstate other
than NORMAL.

• If the simstate is specified as NORMAL, CORRUPT, or CORRUPT_ON_ACTIVITY, you cannot
update it to any other simstate.

• A partially defined state can be used in the logic expression of a group or domain.

• You cannot change a legal state to an illegal state.

Correlated Grouping of Supply Voltage Triplets
If the voltage variation for each supply is correlated with, not independent of, the other
supplies, you can define the supplies as correlated, so that the tool considers only the
minimum with minimum voltages, only nominal with nominal voltages, and only maximum
with maximum voltages, without mixing between minimum, nominal, and maximum. This
method of analysis is called correlated grouping of voltage triplets.

The Power Compiler tool supports correlated grouping of the minimum, nominal, and
maximum voltages specified as triplets in the add_port_state and add_power_state
commands. To define one or more groups of correlated supply nets, use the
correlated_supply_group attribute with the set_design_attributes command. For
example, the following command groups VDD1 and VDD2 supply nets into a correlated
supply group and sets the supply voltages as correlated triplets:

set_design_attributes -elements {.} \
 -attribute correlated_supply_group "{VDD1 VDD2}"

You can define the port state and power state table as follows:

add_port_state VDD1 -state {HV 0.9 1.0 1.1}
add_port_state VDD2 -state {HV 1.0 1.1 1.1}
add_port_state VSS -state {ON 0.0}

create_pst PST -supplies {VDD1 VDD2 VSS}
add_pst_state HV_STATE -pst PST -state {HV HV ON}

The tool analyzes the design behavior with correlated VDD1 and VDD2 supplies, without
mixing between minimum, nominal, and maximum voltages.

Power Compiler™ User Guide
U-2022.12-SP3

284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Querying for Supply Sets

Feedback

For more information about using the set_design_attributes command, see Setting
Attributes on Hierarchical Cells.

Querying for Supply Sets
Use the get_supply_sets command with no arguments to return a collection of supply
sets available at the current scope. To return the supply sets available in a given power
domain or supply net, use the get_supply_sets command with the -of_objects option,
for example:

dc_shell> get_supply_sets -of_objects PD_BOT {SS_CORE}

Use the -hierarchical option to obtain the supply sets available at all hierarchical
scopes. For example:

dc_shell> get_supply_sets -hierarchical
 {i_core/SS_CORE SS_ISO SS_CORE SS_TOP
 PD_BOT.primary TOP.primary}

Limitations
• If you use -of_objects with objects other than power domains or supply nets, the tool

looks only for power domains or supply nets with the same object name and generates
a warning message if it does not find them.

• You cannot use the -hierarchical option with a hierarchical name as an expression
for patterns. This produces an UPF-984 error message.

• You cannot use get_supply_sets -filter pointing to an attribute not defined for a
supply set object. If you use an invalid supply set attribute in the -filter expression,
the tool errors out silently.

Querying for Related Supply Sets
To obtain a collection of related supply sets for a given collection of design pins and ports,
use the get_related_supply_set command. The command takes a collection of existing
design pins and ports, or a list of pattern strings to use to generate such a collection,
as input. The command returns a collection of strings corresponding to the names of
the related supply sets in the design. You can use the -quiet option to suppress any
warnings generated during pin or port lookup.

For an object which is a top-level port or a leaf-level pin and if the related supply set
can be derived from it, you can use the get_upf_port_attribute command with the
UPF_related_supply_set attribute. The value of this attribute for this object is the
resolved supply set.

Power Compiler™ User Guide
U-2022.12-SP3

285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

Always-On Logic
Generally, multivoltage designs have power domains that are shut down and powered
up during the operation of the chip while other power domains remain powered up. The
control nets that connect cells in an always-on power domain to cells within the shut-down
power domain must remain on during shutdown. These paths are referred to as always-on
paths.

• Attributes for Always-On Cells

• Always-On Optimization

• Always-On Optimization on Feedthrough Nets

• Always-On Optimization on Disjoint Voltage Area

• Always-On Tie Cells

• UPF Support for Custom Always-On Wrapper Cells

• Fixing Multivoltage Violations

Attributes for Always-On Cells
You can control how the tool handles always-on cells by setting attributes on the cells, as
follows:

• The always_on Liberty cell attribute

The Power Compiler tool performs always-on optimization only when the target library
contains always-on inverters and always-on buffers. To use a specific library cell in the
optimization of always-on paths within the shutdown power domains, mark the cell with
the always_on Liberty attribute. The tool uses only the always-on cells to optimize the
always-on paths within the shutdown power domains. The cells that are not marked as
always-on are used outside the shutdown power domains.

When you set the always_on attribute on a library cell, the tool does not use the library
cell for optimization of other types of paths. To use a library cell in both always-on paths
and shutdown paths, set the always_on attribute only on the cell instances that are
present in the shutdown power domains.

• The pass_gate cell attribute

The Power Compiler tool can prevent the connection of always-on cells to cells with
pass-gate inputs. An always-on cell should not drive a gate that has pass transistors
at the inputs (also known as a pass-gate). Pass-gate input cells should be driven by

Power Compiler™ User Guide
U-2022.12-SP3

286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

a standard cell in a shutdown power domain. Therefore, if your library contains any of
these cells, you must mark them as pass-gates in each session.

The following example shows how to mark pin A of cell MUX1 with the pass_gate
attribute.

dc_shell> set_attribute [get_lib_pins lib_name/MUX1/A] pass_gate true
• The dc_upf_user_always_on_buffer cell attribute

You can specify this attribute only for buffer or inverter cells.

Set the attribute to true on a user-instantiated always-on buffer to specify that it is an
always-on cell. In this case, the tool does not modify the cell's supply voltage and does
not issue a warning if the cell drives a net that is not always-on. The UPF must contain
a connect_supply_net command that connects the cell's PG pin to a supply net.

Set the attribute to false on a buffer or inverter to specify that it should not be always-
on. In this case, the tool does not derive a backup supply for the cell and does not
issue a warning if the cell drives an always-on net.

Always-On Optimization
The Power Compiler tool constrains, marks, and optimizes always-
on nets, including feedthrough nets. The tool considers the
mv_make_primary_supply_available_for_always_on variable when selecting which
power supply to use for inserted buffers.

By default, the variable is true and the tool uses the domain’s primary supply, the related
supply net of the load, or the driver pin as the supply net for the inserted buffers. When
the variable is set to true, the tool inserts regular buffers instead of always-on buffers on
feedthrough nets when the primary power supply can be used to power the buffers without
introducing electrical violations. To give preference to load and driver supplies, set the
mv_make_primary_supply_available_for_always_on variable to false.

The tool also ensures that no additional isolation or level-shifting violations are introduced
by the automatic always-on synthesis. If the isolation strategy is specified with the
-source and -sink options, the tool preserves the original source and sink relationship on
these paths.

To determine the supply nets used for the buffers and inverters inserted during always-
on synthesis when the variable is set to true, the tool applies the following rules, in the
specified order:

1. Highest precedence is given to the domain’s primary supply.

2. For a load net, when the related supply net of the load is in the same power domain as
the net, the related supply net of the load is used.

Power Compiler™ User Guide
U-2022.12-SP3

287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

3. For a driver net, when the related supply net of the driver is in the same power domain
as the net, the related supply net of the driver is used.

4. For a feedthrough net with multiple choices of nets, highest precedence is given to the
domain’s primary supply. The related supply net of the load takes precedence over the
related supply net of the driver.

When the mv_make_primary_supply_available_for_always_on variable is set
to false, the tool does not use the domain’s primary supply, and instead uses the
related supply net of the load or the driver pin as the supply net for the inserted buffers.
Otherwise, the determination of the supplies for the inserted buffers is the same. With the
variable set to false, the tool gives preference to the load and driver supplies and as a
result, more always-on buffers might appear in the netlist.

Regardless of how the mv_make_primary_supply_available_for_always_on variable is
set, the tool marks the selected nets based on the following rules:

• When the related supply net is in the same power domain as the net and it is not the
primary power net of the power domain, the tool marks the net as always_on.

• When the related supply net is not in the same power domain as the net, the tool marks
the net as dont_touch.

• When the related supply net is in the same power domain as the net, and it is the
primary power net of the power domain, the tool inserts a regular buffer or inverter, and
the net is not marked.

Always-On Optimization on Feedthrough Nets
To perform always-on optimization on top-level feedthrough nets, you must specify the
related supply net information on the output port that is driven by the feedthrough net.
The Power Compiler tool derives the power and ground net information for the always-
on buffers based on the domain’s primary supply and related supply net that you specify
for the output port driven by the feedthrough net. If the tool detects a level-shifter violation
or an isolation violation on a feedthrough net, it sets a dont_touch attribute on the
feedthrough net. This is done to prevent the shifting of the violation from one power
domain to another.

When running the Design Compiler tool in topographical mode, you can enable voltage-
aware always-on synthesis on certain physical feedthrough paths. This enables buffer
insertion in a physical feedthrough path when there is a disjoint voltage area even though,
logically, the voltage areas belong to the same hierarchy. To enable this feature, set the
dct_enable_va_aware_ao_synthesis variable to true.

Power Compiler™ User Guide
U-2022.12-SP3

288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

Always-On Optimization on Disjoint Voltage Area
The Power Compiler tool can insert always-on buffers on long nets that span physically
distant voltage areas. Consider a long net as shown in Figure 70. Logically, the net and the
buffer are in the same hierarchy Mid, which is an always-on domain. However, physically,
the net and the buffer are in two disjoint voltage areas.

If the library supports dual rail always-on cells, and the primary supply defined in the
power domain for subdesign Mid is available in the power domain for Top, the tool inserts
dual rail always-on cells in the subdesign Mid that physically belongs to the Top design.

Figure 70 Always-On Buffer Insertion in Disjoint Voltage Areas

Top

Mid

VA1VA2

VA3

Logical View Physical View

The tool follows these steps to support always-on synthesis across disjoint voltage areas:

1. Create a placeholder logic hierarchy inside the existing hierarchy Mid as shown in
Figure 71.

2. Create two hierarchical ports P1 and P2 on the placeholder hierarchy and connect the
buffer inside the placeholder hierarchy to these ports.

3. Associate the placeholder hierarchy to the already existing voltage area, to which the
buffer belongs.

Power Compiler™ User Guide
U-2022.12-SP3

289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

Figure 71 Creating Placeholder Hierarchy to Support Always-On Buffer Insertion in Disjoint
Voltage Areas

Top

Mid
VA1VA2

VA3

Logical View Physical View

Dummy

P2

P1

The creation of the placeholder logic hierarchy and port punching on the placeholder
hierarchy allows the tool to perform always-on synthesis and legalization of always-on
synthesis. The tool also supports associating the placeholder hierarchy to the default
voltage area, if the buffer belongs to the default voltage area.

Always-On Tie Cells
The Power Compiler tool appropriately chooses a normal tie cell, an always-on tie cell,
or a combination of a single-power tie cell and a power management cell (isolation, level-
shifter, or enable level shifter) to implement each tie-high and tie-low logic value specified
in the design. This results in a more efficient implementation of tie-high and tie-low logic
values at power domain boundaries.

Basic Always-On Tie Cell Mapping
In general, all constants are assumed to be powered by the primary power supply of
the domain where they reside. Therefore, each constant is mapped to a normal tie cell
powered by its domain’s primary power. However, if a constant is not driven by its primary
supply during RTL simulation, it is mapped to an always-on (AO) tie cell. This enables the
tool to insert tie cells on a constant path with logic using non-primary supplies.

However, in the case of constants driving macro cells that are powered by a supply
different from its primary supply, these cells are assumed to be powered by the sink’s
related supply. If the sink’s related supply is not available, for example, a macro cell’s
internal supply, an available supply that can drive the sink is selected. An AO or normal tie
cell is used to map the constant powered by the selected supply.

In Figure 72, the primary supply is VDD1, and VDD2 is an available supply. Pins A and
B are related to an internal supply that is not available, so the tool finds another supply

Power Compiler™ User Guide
U-2022.12-SP3

290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

to drive those pins. Pins A and B are mapped to AO tie cells powered by a non-primary
supply, VDD2, and pin C is left as a literal constant because VDD3 is not available in the
power domain PD_TOP and VDD1 cannot drive it.

Figure 72 Macro Cells Using Non-Primary Supply

A

B

C

1’b1

1’b1

1’b1

PD_TOP

Primary: VDD1; VDD2

Macro

VDD1

VDD3

VDD2

A

B

C

AOTie

1’b1

PD_TOP

Primary: VDD1; VDD2

Macro

VDD1

VDD3

VDD2

AOTie

Enhanced Constant Propagation
Using an always-on (AO) tie cell for cell mapping increases the amount of instances that
the constant can be propagated since these cells can be powered by a non-primary power
supply. The example shown in Figure 73 illustrates this point. The constant can be moved
from PD_TOP to PD1 because VDD2 is an available supply. The constant cannot be
moved to PD2 because boundary optimization and constant propagation are disabled on
this domain. In the example, the VDD2 supply is more often on than VDD1, which is more
often on than VDD_TOP.

Power Compiler™ User Guide
U-2022.12-SP3

291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

Figure 73 Enhanced Constant Propagation

PD_TOP

Primary: VDD_TOP

PD1

Primary: VDD1; VDD2

PD2

Primary: VDD2
1’b1

PD_TOP

Primary: VDD_TOP

PD1

Primary: VDD1; VDD2

PD2

Primary: VDD2
AO
Tie

Enhanced Always-On Tie Cell Mapping
The enhanced always-on tie cell mapping maps a literal constant according to the
following rules:

1. If there is no load, a normal tie cell is mapped

2. If the primary supply can drive the load, a normal tie cell is mapped

3. If a non-primary supply is available that can drive the load, an always-on tie cell is
mapped

4. Otherwise, the constant is left as a literal constant

UPF Support for Custom Always-On Wrapper Cells
The Power Compiler Design-For-Test (DFT) feature namely, custom wrapper cells on input
signals, is used for the insertion of a test logic that wraps the existing input signal. Such a

Power Compiler™ User Guide
U-2022.12-SP3

292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

wrapper cell has a backup supply, to preserve the supply of the wrapped signal and thus
its power characteristics. See the following figures:

Figure 74 Example RET_ctrl Always-on Control Signal

Figure 75 Example Wrapper Cell Wrapping RET_ctrl Control Signal, With Possible
Isolation/LS Violations Marked

The Power Compiler UPF flow supports the insertion of custom always-on (AO) wrapper
cells on input signals. The steps in the Power Compiler UPF flow for creating these
custom AO multiplexer (MUX) cells are the following:

1. DFT calls the UPF before the wrapper cell insertion. The UPF tests the insertion and
returns true or false depending on whether it allows the wrapper cell to be inserted in
the given net segment

2. After the wrapper cell insertion, DFT calls the UPF again, to create the new UPF’
statements for the newly-created wrapper cell. The Power Compiler UPF performs the
following changes to the UPF for this new cell:

◦ Add a connect_supply_net statement to the UPF to connect the backup power pin
of the dual-rail MUX cell to the driver supply (or the local electrical equivalent) of the
target net.

◦ Add a set_design_attribute statement to the UPF to set the
leaf_cell_as_domain_boundary attribute to true on the dual-rail MUX cell. This

Power Compiler™ User Guide
U-2022.12-SP3

293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

statement adds a leaf cell to the extent of the lower domain boundary of the parent
domain of the cell. (See leaf_cell_as_domain_boundary Design Attribute.)

◦ Add a set_port_attribute statement in the UPF to set the
upf_control_signal_trace attribute to true on the appropriate input and output
pins of the dual-rail MUX cell. This statement tells the UPF tools how to trace
a control signal through the wrapper cell. (See upf_control_signal_trace Port
Attribute.)

These statements appear as tool-derived UPF statements.

3. The tool prepares to add the isolation and level-shifter cells (as necessary) on the dual-
rail MUX’s inputs, when the insert_mv_cells command is invoked.

leaf_cell_as_domain_boundary Design Attribute
The leaf_cell_as_domain_boundary design attribute can be set to true on leaf cell
instances.

dc_shell> set_design_attributes -elements {cell_list}
 -attribute leaf_cell_as_domain_boundary TRUE

When a wrapper cell is inserted, this attribute is automatically inferred by the tool. When
the value of this attribute is set to true for a cell instance, the tool considers this cell as a
part of the lower boundary of its parent power domain. This means that the isolation and
level shifter strategies apply to the cell.

This behavior is the same as the behavior specified in the LRM for macro cells, which is
currently enabled in Synopsys implementation tools with the macro_as_domain_boundary
attribute.

Note:
If the leaf_cell_as_domain_boundary attribute is set to true on a cell that is
not both always-on and a MUX leaf cell, the tool generates an error message.
Do not set or use this attribute on any cell other than an always-on MUX leaf
cell.

upf_control_signal_trace Port Attribute
The upf_control_signal_trace port attribute on signal ports, when set to true, ensures
that the retention or isolation cells, driven by the signal which is wrapped by the always-on
wrapper cell, continue to match their strategy after the cell is inserted.

dc_shell> set_port_attribute -ports {pin_list}
 -attribute upf_control_signal_trace TRUE

When tracing a UPF isolation or retention control signal for matching a strategy, the tool
checks for this attribute on the driver pin of the control signal. If present, the tool treats the

Power Compiler™ User Guide
U-2022.12-SP3

294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

cell as a feedthrough path and continues tracing the control signal starting at the input pin
with the corresponding attribute.

The value of the attribute is set to true on exactly one input pin and one output pin of an
instance.

Note:
Do not set or use this attribute on any cell other than an always-on MUX leaf
cell. The attribute can only be specified with the -ports option.

Example
The following figure shows a design with an always-on wrapper cell added:

Before the insertion of this wrapper cell, the UPF tests whether to insert a wrapper signal
on the RET_ctrl net, bringing in the wrp_en DFT control signal. The UPF determines
that the VDD_AO supply is available in the vddcx_int domain and that the cell is bias-
compatible with the domain bias supplies. The UPF then allows the DFT to proceed with
the cell insertion.

After insertion of the cell, the tool infers the following statements and adds them to the
UPF:

dc_shell> connect_supply_net VDD_AO -ports {U1/mux_inst/TVDD}
dc_shell> set_design_attributes -elements {U1/mux_inst}
 -attribute leaf_cell_as_domain_boundary TRUE
dc_shell> set_port_attributes -ports {U1/mux_inst/in1 U1/mux_inst/z}
 -attribute upf_control_signal_trace TRUE

Power Compiler™ User Guide
U-2022.12-SP3

295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Always-On Logic

Feedback

During isolation insertion, the U1/mux_inst cell is recognized as part of the lower boundary
of the vddcx_int domain, due to the leaf_cell_as_domain_boundary design attribute.
Therefore, isolation cells are inserted according to the domain strategy.

When re-reading the design, if the tool needs to associate the retention register with
a defined strategy, then the UPF traces the signal. When the signal trace reaches the
U1/mux_inst/z pin, the upf_control_signal_trace port attribute is identified. Signal
trace continues at the corresponding U1/mux_inst/in1 pin, finally arriving at RET_ctrl.

Fixing Multivoltage Violations
Design changes sometimes result in isolation or voltage violations. The fix_mv_design
-buffer command can identify and fix violations for buffer trees. The -buffer option is
required.

The fixes made by this command are performed automatically as part of the
compile_ultra command. Therefore, the command has no effect on a compiled design.
However, if you make manual netlist changes or load a third-party netlist, executing the
fix_mv_design -buffer command might fix some issues.

The fix_mv_design -buffer command can perform the following changes:

• Fix buffers and inverters that have illegal settings, as follows:

◦ Process, voltage, and temperature settings

◦ Library cell purpose or subset settings

◦ Target library subset settings

◦ Bias voltages

• Swap buffer library cells to fix illegal settings

• Swap single-rail buffers for dual-rail buffers

• Swap dual-rail buffers for single-rail buffers

The fix_mv_design command keeps the placement of the original buffers or inverters and
honors the repeater strategies associated with existing buffers and inverters. In addition,
the command only uses supplies that are available in the voltage area or voltage area
region.

The fix_mv_design command does not insert isolation cells or level-shifter cells to fix
existing isolation or voltage violations. Netlist changes caused by the command do not
introduce new isolation or voltage violations.

Power Compiler™ User Guide
U-2022.12-SP3

296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Comparing Voltage Levels and Voltage Status

Feedback

To specify a buffer tree, use the -from option with the name of a net or driver pin. If you
specify a net name, its driver pin is used. In both cases, the driver pin defines a full or
partial buffer tree. Wildcards are supported.

To provide a list of single-rail and dual-rail buffer or inverter library cells that the
fix_mv_design command can use as replacement cells, user the -lib_cells option.

Comparing Voltage Levels and Voltage Status
Before you define your isolation and level-shifter strategies, you might want to compare
the voltage status and voltage levels of two supplies. To compare two supplies, use the
compare_supplies command. This command compares the first supply (designated as
the reference supply to a second supply (designated as the specified supply).

The compare_supplies command provides the following options:

• -on_status
Compares the specified supply to the reference supply and returns one of the following:
equal, more_on, less_on, or independent.

• -voltage_level
Compares the specified supply to the reference supply and returns one of the following:
equal, higher, lower, or independent.

When comparing the voltage levels of two supplies that belong to the same correlated
supply group, the following rules apply:

1. If the two supplies’ minimum, nominal, and maximum voltage values are equal, the
command returns equal.

2. If the specified supply’s minimum, nominal, and maximum voltage values are less than
the reference supply’s min, nom, and max voltage values, the command returns lower.

3. If the specified supply’s minimum nominal, and maximum voltage values are greater
than the reference supply’s minimum, nominal, and maximum voltage values, the
command returns higher.

4. If none of the preceding rules is true, then the command returns independent.

If you compare the voltage levels of two supplies that are not part of the same correlated
supply group, the following rules apply:

1. If the two supplies’ minimum, nominal, and maximum values are equal, the command
returns equal.

2. If the reference supply’s minimum value is greater than the specified supply’s
maximum value and rule 1 does not apply, the command returns lower.

Power Compiler™ User Guide
U-2022.12-SP3

297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

3. If the reference supply’s maximum value is less than the specified supply’s minimum
value and rule 1 does not apply, the command returns higher.

4. If none of the preceding rules is true, then the command returns independent.

Specifying Level-Shifter Strategies
Use the set_level_shifter command to specify the strategy for inserting level-shifter
cells between power domains that operate at different voltages. Level shifters are inserted
by the tool during execution of the compile_ultra command.

If a voltage violation exists at the domain boundary, the tool inserts level shifters at the
domain boundary by default, even when a level-shifter strategy is not defined. This
flexibility allows the tool to use the strategy that gets the best possible results. You
can optionally restrict the insertion of level shifters to domain boundaries where the
set_level_shifter command is used by setting the upf_levshi_on_constraint_only
variable to true.

Specifying a strategy does not force a level-shifter cell to be inserted unconditionally. The
Power Compiler tool uses the power state table and the specified rules, such as threshold,
to determine where level shifters are needed. When the tool identifies a potential voltage
violation, it tries to resolve the violation by inserting multiple level-shifters or a combination
of level-shifter and isolation cells. As shown in Figure 76, when the tool finds a global net
that has an isolation constraint, it inserts a level-shifter and an enable level-shifter cell,
based on the voltage difference implied by the isolation power and isolation ground. The
tool issues a warning message if it determines that a level shifter is not required.

Figure 76 Level-Shifter Insertion on Power Domain Boundaries

Power Compiler™ User Guide
U-2022.12-SP3

298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

The -input_supply and -output_supply options specify the power and ground supply
connections for inserted level-shifter cells based on the driver and load supplies in the
path and the available supplies in the domain. The default supply is used when the input
or output supply is not specified. If the specified driver and load supplies and an equivalent
supply are not available, the tool does not insert any level-shifter cells.

A voltage violation might occur when the specified input and output supplies do not match
the driver and load supplies. To fix this violation, the tool automatically inserts level-shifter
cells in other places along the path. However, you can use the -force_shift option to
insert level-shifter cells regardless of any voltage violations.

Use the -elements option to specify a list of ports and pins in the domain to which the
strategy applies, overriding any -threshold or -rule settings. The -no_shift option
prevents the insertion of level-shifter cells on the ports, pins, and nets specified by the
-elements option. Use the -exclude_elements option to exclude elements from the
strategy.

Use the -name_prefix or -name_suffix option of the set_level_shifter command to
specify the naming of the level-shifter cell instances added during the implementation of a
specific level-shifter strategy.

The -source and -sink options of the set_level_shifter command allow you to restrict
which paths a level-shifter strategy applies. Figure 77 is an example of source and sink
analysis when applying level-shifter strategies.

Figure 77 Example of Source and Sink Analysis With an Isolation Cell on Path

ISO1U1 U3

PDA

PDB

SSA.power (1V) SSB.power (1V)
SSC.power (2V)

Consider the following strategies:

set_isolation iso1 -domain PDA -isolation_supply SSB -location parent
set_level_shifter LS1 -domain PDA -source SSA -sink SSC -location parent

For the path from U1 to U3, the source supply is SS1.power and the sink supply is
SSC.power. The level-shifter strategy applied is LS1 and the level shifter is inserted on
the path from ISO1 to U3 because there is no level shifter violation on the path from U1 to
ISO1.

Power Compiler™ User Guide
U-2022.12-SP3

299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

When you use the -force_shift with the -source and -sink options, the level-shifter
strategies are applied to the path segment from the source to the sink. For the example
shown in Figure 77, the following level-shifter strategies are defined:

set_level_shifter LS1 -domain PDA -source SSA -sink SSC -no_shift
set_level_shifter LS2 -domain PDA -threshold 0.0 -location parent

For the path from U1 to U3, the source supply is SSA.power and the sink supply is
SSC.power. No level shifter is inserted because the -no_shift option is specified.

Use the -update option to add information to a level-shifter strategy. You must use either
the -elements or -exclude_elements option with the -update option.

Controlling Level-Shifter Locations
To apply a level-shifter strategy to a specific power domain boundary, use the
-applies_to_boundary option.

To control the location of level-shifter cells, use the -location option of the
set_level_shifter command, as follows:

• The -location automatic setting (the default) allows the tool to choose the location.

• The -location self setting specifies that the level-shifter cell is placed inside the
model or cell being shifted.

• The -location parent setting specifies that the level-shifter cell is placed in the
parent of the model or cell being shifted.

• The -location other setting specifies that the level-shifter cell is placed in the parent
domain for an upper boundary port or in the child domain for a lower boundary port.
The upper boundary port cannot be a port of the design top module and the lower
boundary port cannot be a pin of a leaf cell or a hard macro.

If you use the -location option, you must ensure that the necessary supplies are
available in the specified location. You cannot use the -location option with the -update
option.

For example, consider the power domains in Figure 78.

Power Compiler™ User Guide
U-2022.12-SP3

300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

Figure 78 Nested Power Domains

The following UPF commands cause the tool to insert the level-shifter cells shown in
Figure 79. Strategy LS1 applies to both the upper and lower boundaries of power domain
PDM, for both input and output ports. The tool inserts all level-shifter cells outside the
PDM domain because the specified location is other. The tool places the level-shifter
cells for the upper boundary ports of domain PDM in the top-level domain and the level-
shifter cells for the lower boundary ports of domain PDM in the bottom-level domain.

create_power_domain PDT
create_power_domain PDM -elements {MID}
create_power_domain PDB -elements {MID/BOT}
set_level_shifter LS1 -domain PDM -applies_to_boundary both \
 -applies_to both -location other

Figure 79 Nested Power Domains With Level Shifters

Now consider the simple power domains in Figure 80.

Power Compiler™ User Guide
U-2022.12-SP3

301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

Figure 80 Nested Power Domains

The following UPF commands cause the tool to insert the level-shifter cells shown in
Figure 81. Strategy LS1 applies to domain PDT and causes the tool to insert level-shifter
cells at the lower boundary of domain PDT, but the location of those cells is inside the
PDM domain because the specified location is other. Strategy LS2 applies to domain
PDM and specifies no level-shifter cell insertion for ports of domain PDM. Therefore,
the tool does not insert any level-shifter cells for strategy LS2, but this strategy does not
prevent implementation of the level-shifter strategy for domain PDT.

create_power_domain PDT
create_power_domain PDM -elements {MID}
set_level_shifter LS1 -domain PDT -applies_to_boundary lower \
 -applies_to both -location other
set_level_shifter LS2 -domain PDM -applies_to both -no_shift

Figure 81 Nested Power Domains With Overlapping Strategies

Power Compiler™ User Guide
U-2022.12-SP3

302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

Resolving Level Shifter Strategy Precedence
The following level shifter strategies have decreasing order of precedence, regardless of
the order in which they are executed:

1. Strategies applicable to ports, instances, and domains that specify the -elements
option. Ports have a higher precedence than instances, which have a higher
precedence than domains.

2. Strategies using the -no_shift option

3. Strategies using the -sink or -source options

The -applies_to option has no effect on precedence resolution.

In the following example, the LS2 strategy has higher precedence because it uses the
-elements option and applies to a port. The LS1 strategy uses the -sink option, which
has a lower priority.

set_level_shifter LS1 -domain PD1 -sink PD2.primary
set_level_shifter LS2 -domain PD1 -elements block1/p1[0]

In the following example, the LS2 strategy has higher precedence because it uses the
-sink option.

set_level_shifter LS1 -domain PD -applies_to outputs
set_level_shifter LS2 -domain PD -sink PD2.primary

In the following example, both strategies have the same precedence. The tool issues an
error message because it cannot resolve the precedence.

set_level_shifter LS1 -domain PD -elements inst1 -applies_to inputs
set_level_shifter LS2 -domain PD -elements inst1

Automatically Deriving Level Shifter Strategies for DFT Paths
While specifying the UPF level shifter strategies for DFT paths, the -source and -sink
level shifter strategies are specified in the UPF to target the DFT paths generated during
the insert_dft command. The issue with this approach is that the -source and -sink
level shifter strategies targeting DFT paths can also be applied to functional paths. This
can result in redundant level shifter cells on functional paths.

Also, with the mixed use of both -element and -source and -sink-based level shifter
strategies in the UPF, for the same path, it is possible to introduce redundant level shifter
cells.

To resolve this issue, that is, to avoid applying the level shifter strategy targeting DFT
paths on functional paths, you can enable the tool to apply the -source and -sink level
shifter strategies only on DFT paths.

Power Compiler™ User Guide
U-2022.12-SP3

303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

To automatically derive level shifter strategies for DFT paths, perform the following steps:

1. Specify a placeholder -source and -sink level shifter strategy in the RTL UPF to
target DFT paths, that is, strategy with an empty element:

set_level_shifter ls_dft -domain PD_BOT -source SS_TOP
 -sink SS_BOT -elements {} …

2. Post the insert_dft command, use the generate_mv_constraints
-dft_level_shifter command to auto update the placeholder level shifter strategies
in a power domain with DFT paths.

3. Apply the updated level shifter strategies and run the insert_mv_cells command to
insert relevant level shifter cells.

The complete syntax for generate_mv_constraints -dft_level_shifter is the
following:

generate_mv_constraints -dft_level_shifter -apply -output filename

Where:

• -dft_level_shifter: Updates source and sink level shifter strategies with DFT
crossings

• -apply: Automatically applies the updated level shifter strategies

• -output filename: Saves the updated level shifter strategies in the specified file

During generate_mv_constraints -dft_level_shifter, the tool considers the
following pins and ports on a domain crossing to update the source and sink level shifter
strategies:

• Newly punched hierarchical pins during insert_dft (You can also query these newly
punched DFT pins using the get_dft_hierarchical_pins command.)

• Any ports or pins on a domain crossing tagged with the created_during_dft_eco
predefined attribute

• All ports specified in the set_dft_signal command

If an existing level shifter strategy is already applicable for a DFT port or pin, the tool skips
adding this port or pin while updating the source and sink level shifter strategies.

Using Specific Library Cells With the Level-Shifter Strategy
When you specify a level-shifter strategy, by default the tool maps the level-shifter cells
to a suitable level-shifter cell in the library. Use the use_interface_cell command to
specify the set of library cells to be used for a level-shifter strategy. This command does
not force the insertion of the level-shifter cells. Instead, when the tool inserts the level-

Power Compiler™ User Guide
U-2022.12-SP3

304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

shifter cell, it chooses the library cells that are specified with the -lib_cells argument of
the use_interface_cell command. This command has no effect on instantiated level-
shifter cells that have a dont_touch attribute set on them.

Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets
The Power Compiler tool does not insert level-shifter cells on clock nets, by default. Set
the auto_insert_level_shifters_on_clocks variable to specific clock nets, for the tool
to insert the level-shifter cells. Set this variable to all, for the tool to insert level-shifter
cells on all clock nets that need level shifters.

Similarly, the tool does not insert level-shifter cells on ideal nets, by default. Set the
mv_insert_level_shifters_on_ideal_nets variable to all for the tool to insert level-
shifters on ideal nets. The default is an empty string (“”).

Representing Level-Shifter Strategies in the UPF Diagram View
In the UPF diagram view, the level-shifter symbol is similar to a buffer symbol and includes
a line segment representing the inputs that are shifted, as shown in Figure 82. The
location-fanout symbol looks similar to several buffers bundled together and indicates that
the level-shifter cells occur on all fanout locations (sink) of the port that they are shifting.
The no-shift symbol is represented by a line that shows the continuation of the inputs.

Figure 82 Representation of Level-Shifter Cells in the UPF Diagram

The symbol for each level-shifter strategy is located adjacent to the boundary of its parent
power domain. The location depends on whether it shifts inputs or outputs.

Figure 83 shows the possible combinations of level-shifter symbols and locations,
based on the values specified with the -applies_to and -location options of the
set_level_shifter command.

The symbol appears at the left edge of the boundary if the strategy applies to input ports.
The symbol appears to the right edge of the boundary if the strategy applies to the output
ports. If the strategy applies to both inputs and outputs, symbols appear at both left and
right edges of the boundary.

Power Compiler™ User Guide
U-2022.12-SP3

305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

If you specify the location in the level-shifter strategy as self, the symbol appears inside
the power domain boundary. If you specify the location as parent, the symbol appears
outside the power domain boundary.

When you specify a list of elements to the level-shifter strategy using the
set_level_shifter -elements -applies_to command, the UPF diagram positions the
symbol relative to the left or right edge of the power domain boundary, based on whether
the list contains input elements, output elements, or both.

Power Compiler™ User Guide
U-2022.12-SP3

306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Level-Shifter Strategies

Feedback

Figure 83 Representation of Various Level-Shifter Strategies in the UPF Diagram

Power Compiler™ User Guide
U-2022.12-SP3

307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Specifying Isolation Strategies
Use the set_isolation command to define the isolation strategy for a power domain
and the elements in the power domain where the strategy is applied. The definition of an
isolation strategy contains specification of the enable signal net, the clamp value, and the
design elements where the strategy is applied.

The isolation power and ground nets must operate at the same voltage as the primary
power and ground nets of the power domain where the isolation cells is located.

When you specify only the -isolation_power_net argument, the primary ground
net is used as the isolation ground supply. Similarly, when you specify only the
-isolation_ground_net argument, the primary supply net is used as the isolation power
supply.

The -isolation_supply option specifies the power and ground functions of the same
supply set to be used as the isolation power and isolation ground nets respectively. The
Power Compiler tool can infer a regular isolation cell when the -isolation_supply {}
option is specified. Normally, this option infers a NOR-type isolation cell, but if that is not
possible, a regular isolation cell is inferred. When using a regular isolation cell, the tool
uses the primary supply of the domain as the isolation cell’s power supply if the primary
supply is more on or equally on than the isolation control signal supply. If the supply is
not on at least as much as the isolation control signal supply, then the isolation cell is not
mapped.

The -isolation_supply option is mutually exclusive with the -isolation_power_net
and the -isolation_ground_net options.

The -source option filters the ports connected to a net that is driven by the specified
supply set. When you use this option, the supply sets that are associated with each other
are considered as connected.

The -sink option filters the ports driving a net that fans out to the logic driven by the
specified supply set. Supply sets that are associated with each other are considered as
connected.

When you specify both the -source and -sink options, isolation is applied to only those
ports that have the specified source and sink.

The -diff_supply_only option determines the isolation behavior between the driver and
the receiver supply sets or supply nets.

When the -diff_supply_only option is set to true, and the same supply set connects
the driver and the receiver of a port on the interface of the reference power domain, the
isolation cell is not added in the path from the driver to the receiver. Also in this case, the
default for the -applies_to option is both.

Power Compiler™ User Guide
U-2022.12-SP3

308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Note:
With the -diff_supply_only option, you can use only one of the -source and
-sink options.

The -clamp_value specifies the constant value in the isolation output. Valid values are
0,1, and latch. The -clamp_value option does not support the value z. The latch setting
causes the value of the non-isolated port to be latched when the isolation signal becomes
active.

The -elements option specifies the elements for isolation in cases where there are
multiple isolation strategies within a given power domain. The specified elements can be
input or output ports on the domain boundary and design instances. The design instances
must be the root cells of the power domain. The tool applies the isolation strategy only on
domain boundaries and ignores the leaf cell instances.

You can specify an empty argument list for the -elements option. If you specify
subsequent set_isolation commands with the -update option, the end result is a
combination of the element sets of all set_isolation commands. For example, the
following is a valid command:

dc_shell> set_isolation -domain pd1 -elements {}
Later, you can add to the elements list using the -update option as follows:

dc_shell> set_isolation -domain pd1 -elements e1 -update
When you specify the wildcard characters (* or ?) with the -elements option, the tool
searches for matching ports, pins, or design instances in the current level of hierarchy and
applies the isolation strategy to the elements identified as the boundaries of the specified
power domain. To restrict the application of the isolation strategy on design instances, set
the upf_isols_allow_instances_in_elements variable to false.

The tool filters the design elements, such as ports, pins, and design instances, when
you specify the -applies_to option with the -elements option. To control the filtering
behavior, set the upf_iso_filter_elements_with_applies_to variable. The valid
values are ERROR, ENABLE, and DISABLE.

• ERROR
Generates an error message when you specify the -applies_to option with the
-elements option.

• ENABLE (the default)

Filters the elements (pins, ports, and design instances) based on the value that you
specify with the -applies_to option.

Power Compiler™ User Guide
U-2022.12-SP3

309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

• DISABLE
Ignores the -applies_to option and applies the isolation strategy to all the elements
specified with the -elements option. For the design instance specified with the
-elements option, the isolation strategy is applied to all the pins of the specified
instance.

When you do not specify any of the -elements, -source, and -sink options, the isolation
strategy is applied to all the output ports of the power domain.

The -no_isolation option specifies that the elements in the -elements list should not
be isolated. At least one of the -isolation_power_net or -isolation_ground_net or
-isolation_supply arguments must be specified unless -no_isolation option is used.

Although the power state table can potentially reduce the number of isolation cells
required, isolation synthesis is entirely based on directives set using the set_isolation
and set_isolation_control commands.

The tool performs certain optimizations on isolation circuits, that do not affect the
functionality. For example, if you have signals going from block A to block B, you specify
output isolation on block A (in the parent) and input isolation on block B (in the parent).
If the strategy results in two back-to-back isolation cells with no fan out in between, the
tool merges the isolation cells. It can merge the isolation cells based on the enable signal,
power, or ground signals.

Use the -name_prefix or -name_suffix options of the set_isolation command to
specify the naming of the isolation cell instances added during the implementation of a
specific isolation strategy.

Use the -update option to add information to an existing isolation strategy. You can
always use this option with either the -elements or -exclude_elements option. In
addition, you can use the -update option with the -location option in specific situations.
For example, you might initially define a strategy without a location, then update the
strategy to add a location.

The following requirements apply to the set_isolation -location -update command:

• The set_isolation -location -update command must occur before the
insert_mv_cells or compile commands.

• You must use the set_isolation -location -update command before the
set_isolation_control command.

• The isolation strategy must have an isolation control signal. However, you
cannot use the set_isolation -location -update command after the
set_isolation_control command. Therefore, you must specify the isolation control
signal with the set_isolation command.

Power Compiler™ User Guide
U-2022.12-SP3

310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

• You cannot use the set_isolation -location -update command if the strategy
already has a location specified by an earlier set_isolation -location command.

• You can use the set_isolation -location -update command only one time.

Isolation Control Signals

The set_isolation and set_isolation_control commands both have an
-isolation_sense option, which specifies the logic state of the isolation control signal
that places isolation cells in the isolation mode. The possible values for this option are
high or low. The default is high.

The isolation signal specified by the -isolation_signal option, which is available in both
commands, refers to a port, pin, or net with the port or pin having higher precedence. The
isolation signal can exist outside the logic hierarchy where the isolation cells are inserted;
the synthesis or implementation tools can perform port-punching to make the connection.
These punched ports are not considered for isolation or level shifting, even though after
port creation, they reside within the coverage of an isolation or level-shifter strategy.

You might have an isolation cell that does not have an enable pin and works as
a latch when the input side supply shuts off. To specify this type of cell in the
UPF, use the -isolation_signal {} option with either the set_isolation or
set_isolation_control command. The UPF should also explicitly indicate whether
the cell is a single-rail or dual-rail cell for simulation modeling. You cannot specify the
-isolation_signal {} option with the -isolation_sense option.

Isolation Cells With Multiple Control Signals
The Power Compiler tool supports isolation cells with multiple control signals. However,
their usage is limited to within a hard macro.

Use the set_isolation command, which follows the IEEE 1801-2018 standard, to
specify the multi-control isolation strategy. The command allows a list of values for the
-isolation_signal, -isolation_sense, -clamp_value, and -isolation_supply
options, to enable you to write a strategy for the multi-control isolation cell.

See the following example for the Liberty file modeling the multi-control isolation and the
associated UPF strategy:

#Liberty model

pin (clock) {
 direction : input;
 is_isolated : true;
 isolation_enable_condition : "!ctrl1|!ctrl2|ctrl3";
}

pin (ctrl1) {
 direction : input;

Power Compiler™ User Guide
U-2022.12-SP3

311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

 is_isolated : true;
 isolation_enable_condition : "ctrl3";
}

pin (ctrl2) {
 direction : input;
 is_isolated : true;
 isolation_enable_condition : "ctrl3";
}

pin (ctrl3) {
 direction : input;
 related_power_pin : vddy;
 related_ground_pin : vssy;
}
#UPF multi-control isolation strategy

set_isolation mem_iso -domain PD_MEM
 -isolation_signal {ctrl1 ctrl2 ctrl3}
 -isolation_sense {low low high}
 -clamp_value 1
 -location self

As per the IEEE 1801-2018 standard on specifying multi-control isolation strategy:

The -isolation_signal, -isolation_sense, -clamp_value, and -isolation_supply
options are each specified as a single value or a list. If any of these options specify a
list, then all the lists specified for these options should be of the same length, and any
single value specified is treated as a list of values of the same length. The tuples formed
by associating the positional entries from each list are used to define separate isolation
requirements for the strategy. These tuples are applied to the isolation cell from the
isolation cell’s data input port to its data output port in the order in which they appear in
each list. The output of the isolation cell is the right-most value in the -clamp_value list
whose corresponding isolation signal is active.

Note:
• The multi-control isolation strategy is allowed only on hard macro UPF.

◦ For RTL verification, the macro instance should be modeled with the
is_hard_macro or UPF_is_hard_macro UPF attribute.

◦ For design implementation and gate-level verification, you can use the
is_macro_cell:true Liberty attribute to identify the cell as a hard
macro in the absence of the previously mentioned UPF attribute.

• The -location of the corresponding isolation strategy should not be of
a value parent, or any other value that can cause this isolation cell to be
outside the macro.

Power Compiler™ User Guide
U-2022.12-SP3

312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

• The length of the -isolation_signal, -isolation_sense, -clamp_value,
and -isolation_supply option values should follow the IEEE 1801-2018
recommendation. That is, if any of these options specify a list, then the
value specified by the other options should be of the same length or a
single value. If a single value is specified, it is treated as a list of values of
the same length as the list specified for another option. See the following
example:

set_isolation iso1_macro -domain PD_SRAM
 -isolation_signal {ctrl1 ctrl2 ctr3}
 -isolation_sense {high low high}
 -clamp 0
 -isolation_supply {SS1 SS2 SS3}

• For any mismatch between the Liberty specified
isolation_enable_condition expression and the UPF isolation strategy
values, the tool overrides the Liberty specification with the UPF isolation
strategy definition.

Using the set_isolation_control Command
The set_isolation_control command specifies the isolation control signal and isolation
sense separately. The command identifies an existing isolation strategy and specifies the
isolation control signal for that strategy.

Using the location value you specify with the -location option of the
set_isolation_control command, the Power Compiler tool identifies isolation cells in
the power domain across the design hierarchy and associates them with UPF strategies.
When the value is self, the tool starts the search from the port on the boundary of the
power domain and traverses inside the power domain until it encounters either a cell, a
multiple fanout net, or the boundary of another power domain.

When the location is parent, the tool starts the search from the port on the boundary of
the power domain, and traverses outside the power domain until it encounters a cell, a
multiple fanout net, or the boundary of another power domain. The -location parent
option also supports heterogeneous fanouts by using strategies defined by the -sink and
-diff_supply_only options.

When the tool encounters an isolation cell that is not already associated with an isolation
strategy, it associates the cell with an appropriate isolation strategy. This association is
based on the values you specified with the -clamp_value option of the set_isolation
command, and the -isolation_sense option of the set_isolation_control command.
If the cell encountered is not an isolation cell, the tool does not treat the port as an
isolation port, and during the next optimization step, the tool inserts an isolation cell.

The -isolation_sense option specifies the logic state of the isolation control signal that
places isolation cells in the isolation mode. The possible values for this option are 0 or

Power Compiler™ User Guide
U-2022.12-SP3

313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

1. The default is 1. The isolation signal specified by the -isolation_signal option can
be for a port or pin or a net, with the port/pin having higher precedence. The isolation
signal need not exist in the logic hierarchy where the isolation cells are to be inserted;
the synthesis or implementation tool can perform port-punching as needed to make the
connection. Port-punching means automatically creating a port to make a connection from
one hierarchical level to the next. These punched ports are not considered for isolation or
level-shifting, even though after the port creation, these ports reside within the coverage of
an isolation or level-shifter strategy.

Existing ports are isolated and level-shifted according to the applicable isolation and level-
shifter strategy, even if they reside on an always-on path.

Rules for the Location Fanout Option
The -location fanout option of the set_isolation and set_isolation_control
commands will be deprecated in a future release. Use the -location parent option
to support heterogeneous fanout isolation in combination with strategies defined by the
-sink and -diff_supply_only options.

The following rules apply to the -location fanout option:

• Do not use the -isolation_power_net option of the set_isolation command when
you use the -location fanout option. However, when you use the -location option
with the value parent or self, you can use the -isolation_power_net option of the
set_isolation command.

• The -location fanout option can be used only when you use one of the
-source, -sink, or -diff_supply_only options of the set_isolation command.
Similarly, when you use the -elements option and one of -source, -sink, or
-diff_supply_only options, you can only specify fanout with the -location option.

• The -no_isolation option cannot be used when you use the -elements option
and one of -source, -sink, or -diff_supply_only options of the set_isolation
command.

• Set the derived_iso_strategy attribute using the set_design_attributes
command before specifying the -elements option and one of the -source, -sink,
or -diff_supply_only options of the set_isolation command. After setting the
derived_iso_strategy option, if you do not specify the -elements option and one of
the -source, -sink, or -diff_supply_only options, the tool issues an error message.

• If you set the derived_iso_strategy attribute, the only value that you can specify
with the -location option is fanout.

For more details about setting the UPF attributes on ports and hierarchical cells, see
Setting UPF Attributes on Ports and Hierarchical Cells

Power Compiler™ User Guide
U-2022.12-SP3

314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Order of Precedence of Isolation Strategies
The isolation strategies have the following decreasing order of precedence, irrespective of
the order of execution:

1. Strategies that apply to ports, explicitly specified using the -elements option.

2. Strategies that apply to ports, implied by specifying an instance using the -elements
option.

3. Strategies that apply to ports, implied by specifying only the power domain name.

4. Strategies using the -no_isolation option.

5. Strategies using the -source or -sink option. If both options are used, the strategy
takes precedence over any strategy where only one option is used.

6. Strategies where the -diff_supply_only option is set to true.

7. Strategies where the -diff_supply_only option is set to false.

Resolving Isolation Strategy Conflicts
The Power Compiler tool uses the isolation precedence rules to resolve conflicts when
more than one isolation strategy can apply to a port. The tool detects conflicts only after
completely reading the UPF files. In general, if a conflict is detected for a port, only the
first strategy applies to the port, and the port is removed from the effective element list of
subsequent strategies.

Automatically Deriving Isolation Strategies for DFT Paths
While specifying UPF isolation strategies for DFT paths, -source and -sink ISO
strategies are specified in the UPF to target the DFT paths generated during insert_dft.
The issue with this approach is that the -source and -sink ISO strategies targeting DFT
paths can also be applied to functional paths. This can result in redundant isolation cells
on functional paths.

Also, with the mixed use of both -element and -source and sink based isolation
strategies in the UPF, for the same path, it is possible to introduce redundant isolation
cells.

To resolve this issue, that is, to avoid applying the ISO strategy targeting DFT paths on
functional paths, you can enable the tool to apply the -source and -sink ISO strategies
only on DFT paths.

Power Compiler™ User Guide
U-2022.12-SP3

315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

To automatically derive ISO strategies for DFT paths, performing the following steps:

1. Specify a placeholder -source and -sink ISO strategy in the RTL UPF to target DFT
paths, that is, strategy with an empty element:

set_isolation iso_dft -domain PD_BOT -source SS_TOP -sink SS_BOT
 -elements {} ..

2. Post insert_dft, use the generate_mv_constraints -dft_isolation command to
auto update the placeholder ISO strategies in a power domain with DFT paths.

3. Apply the updated isolation strategies and run insert_mv_cells to insert relevant
isolation cells.

The complete syntax for generate_mv_constraints -dft_isolation is the following:

generate_mv_constraints -dft_isolation -apply -output filename

Where:

• -dft_isolation: updates source/sink ISO strategies with DFT crossings

• -apply: automatically applies the updated isolation strategies

• -output filename: saves the updated isolation strategies in the specified file

During generate_mv_constraints -dft_isolation, the tool considers following pins/
ports on a domain crossing to update the source/sink ISO strategies:

• Newly punched hierarchical pins during insert_dft; you can also query these newly
punched DFT pins using the get_dft_hierarchical_pins command.

• Any ports or pins on a domain crossing tagged with the predefined attribute
created_during_dft_eco.

• All ports specified in the set_dft_signal command

If an existing ISO strategy is already applicable for a DFT port/pin, the tool skips adding
this port/pin while updating the source/sink ISO strategies.

Using Specific Library Cells With Isolation Strategies
When you define an isolation strategy, by default the tool associates the isolation strategy
with any suitable isolation cell in the library. When the library does not contain a complete
set of isolation cells, you can use some of the basic gates as isolation cells. For more
information, see Multivoltage Design Concepts.

To associate a specific set of library cells with the isolation strategy, use the
use_interface_cell command. The use_interface_cell command can also be used
to associate standard cells used as isolation cells with the isolation strategy.

Power Compiler™ User Guide
U-2022.12-SP3

316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

When designs contain instantiated isolation cells that are associated with an isolation
strategy, the use_interface_cell command remaps these library cells to the cells
specified with the -lib_cells argument of the command. If the instantiated isolation
cells have dont_touch attribute set on them, the command does not remap these cells.
The command has no impact on the instantiated isolation cells that are not, or cannot be
associated with an isolation strategy.

Aligning Isolation Strategies to Constant Drivers
Consider a situation where a driver forces a port to a constant value, either a logic 0 or 1,
at a power domain boundary, but the isolation clamp value defined for that port in the UPF
file is the opposite value, as shown in the example in Figure 84.

Figure 84 Constant Driver and Conflicting Isolation Strategy

logic 0

domain TOP

domain CRRY

set_isolation iso1 -domain CRRY -isolation_power_net VDD \

-isolation_ground_net GND -clamp_value 1 -applies_to inputs

This situation can arise during logic optimization when Power Compiler moves or splits a
constant value that crosses domain boundaries. The tool might need to insert an isolation
cell to prevent a formal verification error. In such a situation, you might want to modify the
isolation strategy to match the constant value so that the isolation cell can be removed
during optimization.

To automatically generate new UPF isolation commands that are consistent with the
constant driver values, you can use the generate_mv_constraints command, as shown
in the following example. Suppose that the original UPF commands define an isolation

Power Compiler™ User Guide
U-2022.12-SP3

317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

strategy named iso1, which applies to the inputs of the CRRY power domain and sets a
clamp value of 1 as follows:

dc_shell> set_isolation iso1 -domain CRRY -isolation_power_net VDD \
 -isolation_ground_net GND -clamp_value 1 -applies_to inputs
dc_shell> set_isolation_control iso1 -domain CRRY \
 -isolation_signal ctrl -isolation_sense low -location self
However, the design has a constant driver element driving the u1/cin pin with a value of 0
at the boundary of CRRY power domain, which is a conflict with the isolation strategy. To
generate a new isolation strategy to match the constant driver, use this command:

dc_shell> generate_mv_constraints -align_isolation_clamp_value \
 -output align.upf
The command detects the conflict between the isolation strategy and the constant driver
and generates the following new isolation strategy commands to resolve the conflict:

Created by DC Utility for non-matching isolation clamp and driving
constant value.
List of new strategies created with clamp value matching the constant
isolating it, for strategies with no user specified element list
set_isolation iso1_clamp0 -domain CRRY \
 -isolation_power_net VDD -isolation_ground_net GND \
 -elements u1/cin -clamp_value 0 -applies_to inputs
set_isolation_control iso1_clamp0 -domain CRRY \
 -isolation_signal ctrl -isolation_sense low -location self

The generate_mv_constraints command writes comments and the two new isolation
strategy commands to the align.upf file. It creates the name of the new isolation strategy
by appending the _clamp0 suffix to the original strategy name. The new set_isolation
command always uses the -elements option to identify the pins to which the strategy
applies. The new strategy is more specific than the original strategy, so it has higher
priority.

When using the generate_mv_constraints command, specify the -output option to
write the commands into a file, the -apply option to execute the new commands, or both
options to perform both actions. If you use the -apply option, the newly created and
modified strategies are applied to the design in memory, and any subsequent usage of
the save_upf command writes the new isolation commands along with the original UPF
commands.

By default, the generate_mv_constraints -align_isolation_clamp_value command
checks only for conflicts involving general set_isolation strategies specified without
the -elements option, for example, using -applies_to inputs. To also fix conflicts with
isolation strategies specified with the -elements option of the set_isolation command,
use the -include_elements option of the generate_mv_constraints command.

Power Compiler™ User Guide
U-2022.12-SP3

318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

For example, suppose that the original UPF commands define an isolation strategy named
iso2, which applies to the u1/cin input and u1/carry input pins of CRRZ power domain and
sets a clamp value of 1 for these pins, as follows:

dc_shell> set_isolation iso2 -domain CRRZ -isolation_power_net VDD \
 -isolation_ground_net GND -elements {u1/cin u1/carry} \
 -clamp_value 1 -applies_to inputs
dc_shell> set_isolation_control iso2 -domain CRRZ \
 -isolation_signal ctrl -isolation_sense low -location self
However, the design has a constant driver element driving the u1/cin pin with a value
of 0 at the boundary of the CRRZ power domain, which is a conflict with the isolation
strategy. To fix the element-level strategy for conflicts with constant drivers, use the
generate_mv_constraints command with the -include_elements option as follows:

dc_shell> generate_mv_constraints -align_isolation_clamp_value \
 -include_elements -output align.upf -apply
The command detects the element-level conflict and generates the following new
strategies to resolve the conflict:

Created by DC Utility for non-matching isolation clamp and driving
constant value.
List of user strategies modified
set_isolation iso2_modified -domain CRRZ -isolation_power_net VDD \
 -isolation_ground_net GND -elements u1/carry -clamp_value 1 \
 -applies_to inputs
set_isolation_control iso2_modified -domain CRRZ -isolation_signal ctrl \
 -isolation_sense low -location self
List of new strategies created with clamp value matching the constant
isolating it, for strategies with user specified element list
set_isolation iso2_clamp0 -domain CRRZ -isolation_power_net VDD \
 -isolation_ground_net GND -elements u1/cin -clamp_value 0 \
 -applies_to inputs
set_isolation_control iso2_clamp0 -domain CRRZ -isolation_signal ctrl \
 -isolation_sense low -location self

The generate_mv_constraints command generates two new strategies: one named
iso2_modified for the input without a conflict and another one named iso2_clamp0
for the input that has a conflict. When you use the -apply option, the new strategies
are applied to the design in memory and the original isolation strategies are updated to
remove the elements that are listed in the new isolation strategy; any subsequent usage of
the save_upf command writes out the new isolation commands.

If you use the generate_mv_constraints command, you must do so before
you compile the design. If the netlist already contains isolation cells, using the
generate_mv_constraints command might result in back-to-back isolation cells or loss
of association between existing isolation cells and the isolation strategy.

Power Compiler™ User Guide
U-2022.12-SP3

319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Optimizing Isolation Cell Insertion on Constants
You can prevent the Power Compiler tool from inserting isolation cells on constants
(literals, such as 1’b0 and 1’b1) that drive macro cell input and primary output ports when
the clamp value of the isolation strategy matches the logic value of the constant. For these
cases, the tool propagates the constant across the domain boundary and an isolation cell
is not needed.

To prevent isolation cell insertion, set the
relax_constant_corruption_for_macro_inputs_and_primary_outputs design
attribute to true, as follows:

dc_shell> set_design_attributes -elements {.} \
 relax_constant_corruption_for_macro_inputs_and_primary_outputs true
If the clamp value does not match the value of the constant, the tool inserts an isolation
cell if a strategy is defined.

Preventing Unnecessary Isolation Cell Insertion
You can prevent unnecessary isolation cell insertion by using the
generate_mv_constraints command. Use this command after loading the design and
the UPF files.

When you use the generate_mv_constraints command, the tool generates an isolation
strategy with the -no_isolation option specified. These strategies are generated for
power domain boundary pins where an isolation strategy has been specified, but is not
needed based on the power states defined in the UPF files. This command has no effect
on domain boundary pins where isolation cells have already been inserted. When you use
the -no_isolation option, you must specify the -elements option.

You must specify at least either the -output or -apply option along with the
-no_isolation option. If you do not specify the -apply option, you must load the output
UPF file manually. For example,

prompt> generate_mv_constraints -no_isolation -output no_iso.upf
The output file no_iso.upf contains the following:

Tool-derived commands
set_isolation snps_no_iso_0 -domain PD1 -no_isolation -elements ...

Isolation Cells and Heterogeneous Loads
The -sink and -diff_supply_only options for isolation cell insertion allow you to specify
an isolation strategy based on the supplies used for the driver and the load of a path. You
can also use these options for paths with loads that have heterogeneous supplies.

Power Compiler™ User Guide
U-2022.12-SP3

320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

The -location option specifies where the isolation cell is placed. To use a heterogeneous
fanout isolation strategy with the -sink or -diff_supply_only option, the -location
option must be set to parent or self.

For example, in Figure 85, the isolation cell is inserted on a load with VDD_AO supply and
on a load with VDD_SD supply.

Figure 85 Isolation Cell With Heterogeneous Loads

ISO

PD_SD/

VDD_SD

PD_SD/

VDD_SD

PD_AO/

VDD_AO

For this example, the isolation strategy might be defined as follows:

set_isolation S1 -domain PD_AO -sink VDD_AO \
 -diff_supply_only -location self

The tool supports isolation cell insertion with name-based associations and can optimize
the source or sink logic.

To report paths that have heterogeneous fanout and their related supplies, use
the report_heterogeneous_fanout command. The report indicates whether a
heterogeneous fanout topology is acceptable for UPF implementation.

For this analysis, the tool does not consider the following to be heterogeneous:

• Equivalent nets, which have both functional and electrical equivalence

• Equivalent supplies, defined as follows:

◦ Supply nets connected in the UPF through supply ports or with the
associate_supply_set command

◦ Supply nets defined with the set_equivalent or set_equivalent
-function_only command

Power Compiler™ User Guide
U-2022.12-SP3

321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

By default, the tool analyzes the entire design. You can restrict the scope of the report by
using the -nets option, in which case the tool analyzes the driver pin of each net in the
argument list. Alternatively, you can use the -pins option to provide a list of primary ports,
leaf cell pins, or hierarchical crossings. The tool treats an output pin as a driver pin. The
tool treats an input pin as a load, in which case the tool analyzes its driver pin.

The Power Compiler tool ignores inout pins, elements with multiple drivers, and elements
with no load or no driver. The tool issues a warning message only if it encounters one of
these objects when the -nets or -pins option is specified.

If the supply of one fanout load is heterogeneous, the tool reports all of the loads of the
same driver. An example of the default report is as follows:

dc_shell> report_heterogeneous_fanout

RSN - Related Supply Net
* Indicates heterogeneous fanout found in core of a power domain

Number of drivers with heterogeneous fanout: 2
--
Driver Pin Driver Pin RSN Load Pin Load Pin RSN
---------- -------------- -------- ------------
img4/C23/Z VDD_MID img_aux/C1/A VDD_AO
 img_aux/C2/A VDD_AUX

*img4/U10/z VDD_MID img4/C4/A VDD_AUX
 img4/U12/A VDD_MID
 img_aux/C3/A VDD_AUX

An example of a pin report is as follows:

dc_shell> report_heterogeneous_fanout -pins img_core/test_si

RSN - Related Supply Net
* Indicates heterogeneous fanout found in core of a power domain

Number of drivers with heterogeneous fanout: 1
--
Driver Pin Driver Pin RSN Load Pin Load Pin RSN
---------- -------------- -------- ------------
test_si VDD_TOP img_core/p_fifo/sin VDD_AUX
 img_core/o_reg/sin VDD_MID

You can use the -verbose option of the report_heterogeneous_fanout command to
generate a complete report with the following additional information about heterogeneous
fanouts in your design:

• Driver and load cell power domain names

• Always-on violation and voltage mismatch (LS violation) on the path between the driver
and its load, for the reported topology

Power Compiler™ User Guide
U-2022.12-SP3

322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

• Names of hierarchical pins that are domain crossings between the driver and its load

• Supplies related to the loads in the fanout that are power-state-table (PST) equivalent
to the driver’s related supply net

Note:
This additional information is shown only for the driver and loads that belong to
a heterogeneous fanout topology.

The following two examples show a comparison of the tool reports for the same design,
without and with the -verbose option:

dc_shell> report_heterogeneous_fanout

dc_shell> report_heterogeneous_fanout -verbose

Power Compiler™ User Guide
U-2022.12-SP3

323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Insertion of Isolation Cells on Heterogeneous Fanout Paths
Heterogeneous fanout is a cross domain net which drives multiple fanouts, where the sink
supplies are different. See the following illustration:

Figure 86 Isolation Cell With Heterogeneous Loads

The Power Compiler tool supports isolation cell insertion on heterogeneous fanout paths,
by default. So, for path-based isolation cell insertion on heterogeneous fanout paths, you
need not explicitly set the hetero_fanout_isolation design attribute to true.

However, during the insert_mv_cells or the compile_ultra command execution, if
the UPF contains path-based (-sink or -diff_supply_only) isolation strategies and
the hetero_fanout_isolation design attribute is not set to true, the tool generates
an UPF-498 warning message. To avoid this warning message and to ensure that the
isolation cell insertion is consistent across all Synopsys verification and implementation
tools, it is recommended that you set the hetero_fanout_isolation attribute value to
true.

Note:
The tool can honor a value true for
conservative_diff_supply_only_isolation only if the
hetero_fanout_isolation attribute is explicitly set to false. If not, the tool
generates an UPF-846 warning message.

Power Compiler™ User Guide
U-2022.12-SP3

324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Isolation Handling on Control Signals
Sometimes a port is referenced in a UPF command as the control signal of a UPF strategy
or as part of a logic strategy. If the port itself has an isolation strategy, the tool handles
isolation cell insertion using certain rules.

Elements that are not specified as the isolation signal of any isolation strategy are
processed first. Then, the tool processes elements specified as the isolation signal of an
isolation strategy that is already implemented.

For example, suppose you have the following isolation strategies:

set_isolation ISO1 -elements {D1} -isolation_signal Ctrl1
set_isolation ISO2 -elements {Ctrl1} -isolation_signal Ctrl2
set_isolation ISO3 -elements {Ctrl2} -isolation_signal ...

The strategy ISO1 has higher priority since its isolation element is not a control signal for
any isolation strategy as shown in Figure 87.

Figure 87 First Step in Isolation Cell Insertion

D1
ISO1

Ctrl1

Ctrl2

Isolation strategy ISO2 has the next higher priority since its isolation element, Ctrl1, is
already implemented as the control signal of ISO1. This is shown in Figure 88.

Figure 88 Second Step in Isolation Cell Insertion

D1
ISO1

Ctrl1

Ctrl2

ISO2

Power Compiler™ User Guide
U-2022.12-SP3

325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Isolation strategy, ISO3, can be implemented since the isolation element, Ctrl2, is already
implemented as the control signal of ISO. This is shown in Figure 89.

Figure 89 Third Step in Isolation Cell Insertion

D1
ISO1

Ctrl1

Ctrl2

ISO2

ISO3

Smart Derivation of -no_isolation Strategy
Currently, the tool always automatically derives -no_isolation strategy on newly-
punched hierarchical pins for:

• Retention control (save and restore)

• Power switch control

• Isolation control

This is done to ensure that no existing isolation strategy is applied to newly-punched ports.

However, this approach has the disadvantage that, if the driver of the control pin is less
always-on than the control pin, the isolation violation cannot be fixed with the current
isolation strategies, because -no_isolation has the highest precedence. There is no
way to isolate the newly punched ports on the control path, to add new isolation strategy
for them, to fix the isolation violation on the control path.

To resolve this issue, you can set the public variable
upf_smart_derive_iso_strategy_on_new_control_ports to true, for the tool to
intelligently derive the -no_isolation strategy for new punched control pins, based on
the PST status. See the following syntax:

set upf_smart_derive_iso_strategy_on_new_control_ports true
In the smart approach, tool will first check whether the control path has an isolation
violation. Only if it finds that there is no isolation violation, the -no_isolation strategy will
be derived for the new ports.

Power Compiler™ User Guide
U-2022.12-SP3

326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Note:
This feature is currently supported only for new punched pins on the retention
control path.

Example

Consider the following example:

PST:
 VDDT | VDDC
Pst1: vdd_on | vddc_on
Pst2: vdd_off | vddc_on
Pst3: vdd_on | vddc_off

set_retention RET_PDC -domain PDC -elements {C/ret1 C/ret2 …}
 -retention_supply PDC.primary \
 -save_signal {save high} -restore_signal {restore high} …

set_isolation ISO1 -domain PDC -isolation_supply PDC.primary
 -isolation_signal iso1 \
 -isolation_sense low -location self -clamp_value 0 -applies_to inputs
 -diff_supply_only TRUE

After compile, the tool punches new port for save signal C/save. There
is ISO violation on the new port C/save because of Pst2 status. So, with
upf_smart_derive_iso_strategy_on_new_control_ports to true, the tool will not
derive -no_isolation strategy on pin C/save, will apply ISO1 strategy, and insert
isolation cell on the path of C/save.

Power Compiler™ User Guide
U-2022.12-SP3

327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Macro Cells With Internal NOR Isolation Cells
When you model an internally isolated macro cell, a NOR-style isolation cell might appear
at the inputs or outputs of the macro cell. If a macro cell contains NOR isolation cells at
its output, the Power Compiler tool behaves as if the macro has an is_isolated : true
Liberty attribute specified at its output pin. The tool does not report isolation violations
between the NOR-isolated macro output and the logic at the macro’s load (assuming the
load logic is powered on more than the macro). For details on macro cell modeling, see
The Library Compiler User Guide.

The tool supports the following macro models when a NOR isolation cell is at the output of
a macro:

• The enable pin of the NOR cell is a single pin and has the same related_power_pin
attribute as the output pin.

For example, a macro with a standard NOR isolation cell at the output is shown in
Figure 90 with the specified Liberty attributes.

Figure 90 Standard NOR Cell and Related Macro Cell Attributes

E

related_power_pin: VDD

alive_during_paritial_power_down: true

related_power_pin: VDD

alive_during_paritial_power_down: true

Macro Cell

When you use this model, the tool treats the macro cell as if the output pin had an
is_isolated : true Liberty attribute set. The tool also assumes the following:

◦ The enable pin and output pin have the same related_power_pin attribute value

◦ The enable pin and output pin have the alive_during_partial_power_down
attribute set to true

◦ The output pin must have the isolated_enable_condition attribute set to a
single primary input

• The isolation_enable_condition attribute of the macro cell is an equation
of all primary inputs to the macro. The tool assumes the output pin has the
alive_during_partial_power_down attribute set to true.

Power Compiler™ User Guide
U-2022.12-SP3

328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

• The isolation enable condition is missing, but the
alive_during_partial_power_down attribute is set to true. The tool assumes
the output is connected to an ideal always-on supply and there are no checks are
performed on the output pin.

• If the alive_during_power_up attribute is set to true at the macro input pin, the tool
performs electrical checks at the macro input pin. If this attribute is set to false, the
checks are not performed.

Voltage Checking
To control the voltage checks that the tool performs, use the following variables:

• upf_nor_iso_macro_allow_enable_supply_check
By default, this variable is true. If set to false, the tool issues a warning message if all
the enable pins’ supplies are on less than the sink supply.

• upf_allow_is_isolated_output_check
By default, this variable is true. If set to false, the tool does not perform voltage
checking for isolated output pins with respect to the load supply.

Representing Isolation Strategies in the UPF Diagram View
Figure 91 shows the symbols used to represent an isolation strategy in the UPF diagram
view. The symbol used is similar to an AND gate and the clamp value is shown inside the
symbol. The symbol also includes pins for power and ground, a segment representing the
isolation signal, and a line segment representing the inputs or outputs that the strategy
isolates. When the -no_isolation option is specified, a straight line is used to show the
continuation of the inputs.

Figure 91 Symbols for Isolation Cells in the UPF Diagram

The symbol is located adjacent to the boundary of its parent power domain. The location
also depends on whether the strategy isolates inputs or outputs.

Power Compiler™ User Guide
U-2022.12-SP3

329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Isolation Strategies

Feedback

Figure 92 shows all possible combinations of isolation strategy symbols and locations,
based on the value of the -applies_to option of the set_isolation command and the
value of the -location option of the set_isolation_control command used in defining
isolation strategy.

Figure 92 Representation of Isolation Strategies in the UPF Diagram

The symbol appears to the left edge of the power domain boundary if the strategy applies
to the input ports. The symbol appears to the right edge of the boundary if the strategy
applies to the output ports.

If the strategy applies to both input and output ports, the symbol appears at both left and
right edges of the boundary.

While defining the isolation strategy, if you specify the location as self, the symbol
appears inside the power domain boundary. If you specify the location as parent, the
symbol appears outside the power domain boundary.

Note:
If you specify a list of elements using the set_isolation -elements
command, the UPF diagram ignores the -applies_to option and positions the

Power Compiler™ User Guide
U-2022.12-SP3

330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Merging and Cloning Multivoltage Cells

Feedback

isolation symbol relative to the left or right edge of the power domain boundary,
based on whether the list contains input elements or output elements or both.

Merging and Cloning Multivoltage Cells
Based on the power strategies specified in the input UPF, the Power Compiler tool inserts
multivoltage cells, namely, isolation cells, level shifters, and enable level shifters. After
multivoltage cell insertion, the tool can perform logic restructuring, that is, merging and
cloning of all the isolation, level shifter, and enable level shifter cells, to improve timing and
area.

This logic restructuring step is disabled by default. To enable this step, set the
upf_enable_mv_merge_clone variable to true, before running the compile_ultra
command:

dc_shell> set upf_enable_mv_merge_clone true

The default value of this variable is false.

The tool merges the multivoltage cells if they satisfy all the following conditions:

• The cells have a common local driver.

• The cells logically belong to the same hierarchy.

• The cells are all of the same type, that is, the cells to be merged are all isolation cells,
or all level shifter cells, or all enable level shifter cells.

• The cells belong to same strategy and power domain (for example, isolation or enable
level shifter).

The Power Compiler tool performs merge and clone during the compile_ultra stage.
Cloning is also supported when running compile_ultra in the incremental mode using
the -incremental option.

Naming rules apply to the newly merged or cloned multivoltage cells. A keyword is added
to the original names of these multivoltage cells that undergo merge or clone, to indicate
the actions that are performed. The keyword is either merge, or clone, or merge_clone
depending on what actions are performed.

When merge or clone happens, the tool prints informatory messages at the end of the
corresponding compilation stage, similar to the following messages:

Information: 11 enable level shifter cells are merged. (UPF-973)
Information: 1 isolation, 2 enable level shifter, cells are cloned.
 (UPF-969)

To report the merged or cloned ISO and LS cells, use the report_isolation_cell and
report_level_shifter commands respectively.

Power Compiler™ User Guide
U-2022.12-SP3

331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

Limitations
• The Power Compiler tool supports the merging and cloning of only isolation, level

shifter, and enable level shifter cells. For isolation cells, merging and cloning is not
supported for none strategy based NOR-style and NAND-style isolation cells. For
example, isolation clamp cell of zero-pin retention cannot be merged or cloned by the
tool, since there is no explicit isolation strategy for the clamp cell.

• Merging is not supported for non-SPG flow in the Power Compiler tool.

Setting UPF Attributes on Ports and Hierarchical Cells
To specify additional requirements for the ports and hierarchical cells of a power domain,
use the set_port_attributes and set_design_attributes commands.

• Setting Attributes on Ports

• Setting Attributes on Macros

• Setting Design Attributes on Supply Nets and Logic Nets

• Modeling Unconnected Pins on Macros

• Specifying Analog Nets

• Setting Attributes on Hierarchical Cells

Setting Attributes on Ports
To set attributes and their values on the specified ports, use the set_port_attributes
command. Table 23 lists the attributes and their values for the set_port_attributes
command.

If you specify the set_port_attributes command multiple times on the same object,
the last setting overrides the previous settings. If the tool encounters an unrecognized port
attribute when reading the UPF, it preserves the attribute in the output UPF.

For the UPF 2.0 syntax, the set_port_attributes option accepts arguments as follows:

attribute_name attribute_value

The UPF 2.1 syntax for the -attribute option is as follows:

attribute_name {attribute_value}

Power Compiler™ User Guide
U-2022.12-SP3

332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

You can mix both styles in a single command. For example,

set_port_attributes -elements . \
 -attribute {user_data1 1} -attribute user_data2 false

Table 23 UPF Port Attributes

Attribute name Attribute value Ports where
the attribute
can be
specified

Use of the attribute

iso_sink Name of the supply set,
DERIVED_DIFF_ONLY,
DERIVED_DIVERSE

Output Identifies the off-chip load of a
primary output port

iso_source Name of the supply set
DERIVED_DIFF_ONLY,
DERIVED_DIVERSE

Input Identifies the off-chip driver of a
primary input port

related_supply_defa
ult_primary

true or not set Top level input
and output
ports

Indicates that when the related
supply net is not specified, the
primary supply of the top-level
domain is assumed as the
related supply.
Used by verification tools so
that no assumption is made
about the default power supply.

snps_derived true or false Input and
output supply
ports

Indicates that the specified
ports have been created by
Synopsys tools

repeater_power_net,
repeater_ground_net

Name of the supply net Input and
output ports
and pins.
Cannot be
specified on
bidirectional
ports

Tool inserts a repeater (buffer)
to drive the specified port. The
inserted buffer is powered by
the specified supply net.

UPF_async_clamp_va
lue

0 or 1 Ports or
elements

Indicates the clamp value of an
asynchronous set or reset pin
of an isolation cell

The following example sets the iso_source and iso_sink attributes on the input and
output ports, respectively.

prompt> set_port_attributes -ports {in1 in2} -attribute iso_source SS1
prompt> set_port_attributes -ports {out1 out2} -attribute iso_sink SS2

Power Compiler™ User Guide
U-2022.12-SP3

333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

You can use the -driver_supply and -receiver_supply options of the
set_port_attributes command on bidirectional (inout) ports. The tool checks the port
status at the check_mv_design, compile_ultra, and insert_mv_cells commands and
behaves as follows:

• If you specify only the -driver_supply option for an inout port, the tool assumes that
the receiver supply is the same as the specified driver supply and issues a UPF-494
information message.

• If you specify only the -receiver_supply option for an inout port, the tool assumes
that the driver supply is the same as the specified receiver supply and issues a
UPF-494 information message.

• If you specify both options for the same port, the tool checks whether the supplies are
electrically equivalent. If the supplies are not equivalent, the tool stops and issues a
UPF-485 error message.

Setting Attributes on Macros
Liberty definitions for hard macros might not contain sufficient information to model the
interface between the macro and the top-level design.

In UPF terminology, a port has two sides: the HighConn side and the LowConn side, as
shown in Figure 93. The HighConn side is visible to the parent of the instance whose
interface contains the port. The LowConn side is visible inside the instance. In this
example, TOP is the parent and MID is the instance.

Figure 93 Sides of a Port

Power Compiler™ User Guide
U-2022.12-SP3

334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

To specify port properties, use the set_related_supply_net command and the
-driver_supply and -receiver_supply options of the set_port_attributes
command, as follows:

• If you apply the command to a port in the hierarchy at the scope of the command, the
attribute applies to the LowConn side of the port. This attribute is used to implement
the net connected to the LowConn side.

• If you apply the command to a port in the hierarchy below the scope of the command,
the attribute applies to the HighConn side of the port. This attribute is used to
implement the net connected to the HighConn side. If there is no attribute set on the
HighConn side, the tool uses the attribute set on the LowConn side.

When the tool considers power intent logic insertion outside a hard macro, the receiver
supply of an input port on the hard macro is determined in the following order of
decreasing priority:

1. A set_port_attributes -receiver_supply command specified at the HighConn
side of the port

2. A set_related_supply_net command specified at the HighConn side of the port

3. Any related_power_port information for the pin provided in the Liberty file

When the tool considers power intent logic insertion outside a black box cell, the receiver
supply of an input port on the black box cell is determined in the following order of
decreasing priority:

1. A set_port_attributes -receiver_supply command specified at the HighConn
side of the port

2. A set_related_supply_net command specified at the HighConn side of the port

3. A set_port_attributes -receiver_supply command specified at the LowConn
side of the port

4. A set_related_supply_net command specified at the LowConn side of the port

5. The primary supply of the power domain

The tool also checks any set_port_attributes -driver_supply commands specified
at the HighConn side of the port for electrical violations.

If a discrepancy exists between the actual supply and the supply specified in
set_port_attributes or set_related_supply_net commands, the tool issues one or
more warning messages.

Power Compiler™ User Guide
U-2022.12-SP3

335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

Setting Design Attributes on Supply Nets and Logic Nets
The Power Compiler tool allows you to use the set_design_attributes command to
apply user-defined attributes to supply nets and logic nets, which are the only UPF objects
allowed in the argument of the -elements option.

This usage is primarily for the use of downstream tools. UPF files are used by multiple
tools in a design flow, but each tool uses the UPF contents differently.

For example, the following command applies a user-defined attribute to a list of supply
nets:

dc_shell> set_design_attributes -elements {VDD mid/VDD} \
 -attribute supply_net_attribute true
The following command applies a user-defined attribute to a list of logic nets:

dc_shell> set_design_attributes -elements {inst1/netA*} \
 -attribute logic_net_attribute true

Modeling Unconnected Pins on Macros
If a macro block’s pins do not have any related power or ground pins and is not part of
a feedthrough path, the tool implicitly assumes that the pins are unconnected. You can
explicitly specify that a macro pin is unconnected in the following ways:

• Use the set_port_attributes -unconnected -ports {..} -model {..}
command

• Set the Liberty is_unconnected attribute of the pin

Specifying Analog Nets
A net is an analog net if a pin on the net is an analog pin. You can specify analog pins in
two ways:

1. Model the pin as an analog pin using the Liberty is_analog pin attribute

2. Use the set_port_attributes -is_analog command to specify an analog pin

Isolation, level-shifter, and repeater cells are not inserted on analog nets. No voltage
checks for automatically inserted level-shifter cells are performed on analog nets. The tool
automatically sets the dont_touch attribute on these nets to prevent buffering.

Power Compiler™ User Guide
U-2022.12-SP3

336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

The check_mv_design command issues warning messages in the following cases:

• There is a voltage difference between the connected analog pins

• A level-shifter strategy is specified on an analog net

• There is a voltage difference between pins connected to an analog net

Setting Attributes on Hierarchical Cells
To set attributes on a collection of cells, use the set_design_attributes command.
Table 24 shows the list of attributes and their values that can be specified on hierarchical
cells using the set_design_attributes command.

Table 24 UPF Design Attributes

Attribute name Attribute
value

Location of the
attribute

Use of the attribute

derived_external and
external_supply_map

Name of the
supply set

Hierarchical cell Indicates that the supply sets are
reference-only supply sets. These are
used with ports with the iso_source
and iso_sink attributes. These
attributes establish a one-to-one order
dependent mapping of the supply sets.

derived_iso_strategy Name of
the isolation
strategy

Hierarchical cell To ensure unique strategy name for
the derived strategies in the power
domain. Used in hierarchical flow to
support location fanout.

contains_switches Power
domain

Hierarchical cell Overrides the location of the power
switch.

enable_bias Boolean Top-level
design

When set to true, turns on the well
bias feature.

lower_domain_boundary Boolean Top scope of
the design and
any hierarchical
cell

When set to true, the boundary of
the power domain extends to the
boundary of the power domain below it
in the hierarchy.

merge_domain Boolean Hierarchical cell
that is not the
root cell of the
power domain

Indicates that the two blocks belonging
to the same power domain can be
merged.

suppress_iss Power
domain

Current design Indicates that supply set handles
cannot be created in the power
domain.

Power Compiler™ User Guide
U-2022.12-SP3

337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

Table 24 UPF Design Attributes (Continued)

Attribute name Attribute
value

Location of the
attribute

Use of the attribute

upf_chip_design Boolean Top-level
design

Indicates that the design is the TOP
block. When the isolation strategy
definition contains -location
fanout, this attribute causes the
primary output ports to be considered
as the loads.

correlated_supply_group Supply net
names or
wildcard (*)
character

Top scope of
the design

Indicates that the supply nets of the
port state or power state triplets should
be considered as correlated voltage
range.

legacy_block Boolean Hierarchical cell When set to true, indicates that
the block is a legacy block. This is
useful while combining two blocks;
one defined using domain-dependent
supply nets and the other defined
using domain-independent supply nets
and supply sets. The block defined
using domain-dependent supply nets
is marked as a legacy block.

For the UPF 2.0 syntax, the set_design_attributes -attribute option accepts
arguments as follows:

{attribute_name attribute_value}*

The UPF 2.1 syntax for the -attribute option is as follows:

attribute_name attribute_value

You can mix both styles in a single command. For example,

set_design_attributes -elements . \
 -attribute {user_data1 1} -attribute user_data2 false

Note:
If the tool encounters an unrecognized design attribute when reading the UPF, it
preserves the unrecognized attribute in the output UPF.

Power Compiler™ User Guide
U-2022.12-SP3

338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Setting UPF Attributes on Ports and Hierarchical Cells

Feedback

Setting Terminal Boundaries
When you set the design attribute terminal_boundary to true on an instance, the
boundary ports of this instance become a terminal boundary. For example, to set a
terminal boundary on an instance named U1, do the following:

set_design_attributes -elements U1 -attribute terminal_boundary true
When you use the terminal_boundary attribute, only the root cells of a power domain are
allowed in the element list. These cells can be macro cells, block abstracts, black boxes,
and other hierarchies.

If you specify a cell that is not a root cell, the tool issues a UPF-210 error message.

When you set the terminal_boundary attribute to true on a particular block, the tool
considers its boundary constraints for performing supply consistency checks. There is
no other functional implication of this attribute. The terminal_boundary option is used
in a bottom-up hierarchical implementation flow. In a flat design, the tool ignores any
terminal_boundary attribute specified on a nested domain’s root cells.

For example, assume you use the following command on the block named U1 shown in
Figure 94:

set_design_attributes -elements U1 -attribute terminal_boundary true
The tool behaves as follows:

• If the block U1 is a .ddc file or a block abstract, during top synthesis, the tool ignores
the terminal_boundary specified on U1.

• If the block U1 is an ETM or macro, the tool retains the terminal_boundary attribute
setting on block U1 in the top-level integrated UPF.

• If the block U1, is a black box, the tool retains the terminal_boundary attribute setting
in the top-level integrated UPF, and it performs a consistency check between the
boundary constraint at U1’s port and the external driver or load cell supply.

Power Compiler™ User Guide
U-2022.12-SP3

339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Querying for UPF Design and Port Attributes

Feedback

Figure 94 Example of Hierarchical Terminal Boundary

PD_TOP (supply: VA)

PD_BLK
U1

Querying for UPF Design and Port Attributes
To query for UPF predefined attributes of the design objects, that is, attributes
that are previously set on the design objects using set_design_attributes
and set_port_attributes, use the get_upf_design_attribute and the
get_upf_port_attribute commands.

The following table provides details on the attributes that can be queried using
get_upf_design_attribute:

Attribute Attribute Name Object Type Defined If Value

-attribute
{terminal_boun
dary}

UPF_terminal_bound
ary

instance Always TRUE, if the
associated instance
is marked as terminal
boundary

-is_hard
_macro

UPF_is_hard_macro instance Always TRUE, if cell derived
as a hard macro
from Liberty or the
set_design_attributes
command. FALSE,
otherwise

-is_soft_macro UPF_is_soft_macro instance Always TRUE, if cell is defined
soft macro using
set_design_attributes.
FALSE, otherwise

Power Compiler™ User Guide
U-2022.12-SP3

340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Querying for UPF Design and Port Attributes

Feedback

Attribute Attribute Name Object Type Defined If Value

enable_bias UPF_enable_bias instance set_design_attribu
tes -attribute
enable_bias true is
defined at top level

TRUE, if the given
instance has
enable_bias set to
TRUE or if it sits
within a block with
enable_bias set
to TRUE. FALSE,
otherwise

The following table provides details on the attributes that can be queried on pin and port
objects of the design using get_upf_port_attributes:

Attribute Attribute Name Defined If Return Value

-driver_supply UPF_driver_supply Object is attributed driver
supply
Note:

In the case of driver supply
where multiple settings
can be applied at the same
time on an object based
on scope, the returned
value is the one with higher
precedence.

Supply set

-receiver_supply UPF_receiver_supply Object is attributed with
receiver supply
Note:

In the case of receiver
supply where multiple
settings can be applied
at the same time on an
object based on scope, the
returned value is the one
with higher precedence.

Supply set

-feedthrough UPF_feedthrough Object has a valid
setting derived from
set_port_attributes or Liberty

The collection of
shorted pins

-unconnected UPF_unconnected Object is valid for
set_port_attributes
-unconnected setting

TRUE, if object
is derived
unconnected from
set_port_attributes
or Liberty. FALSE,
otherwise

Power Compiler™ User Guide
U-2022.12-SP3

341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Assigning Supplies to Pad Ports

Feedback

Attribute Attribute Name Defined If Return Value

-clamp_value UPF_clamp_value Object has a valid clamp value
setting

The clamp value
attributed:
0 | 1 | latch

-is_analog UPF_is_analog Always TRUE, if object is
derived is_analog from
set_port_attributes
or Liberty. FALSE,
otherwise

-literal_supply UPF_literal_supply Object has a valid
set_port_attributes
-literal_supply_setting

A supply set, if the
setting was supply
set based. Otherwise,
a pair of supply nets
in the form {power
ground}

Assigning Supplies to Pad Ports
A pad cell is identified by the Liberty is_pad attribute. Because these cells communicate
with the outside world, UPF strategies for multivoltage cell insertion do not apply to pad
cells.

When a top-level port connects to a pad cell, the Power Compiler tool does not use the
top-level power domain's primary supply for the pad cell pins. Instead, the tool uses the
connected pad pin's supply as the related supply of the top-level port.

By default, the Power Compiler tool treats pad cells as follows:

• The tool does not insert power management cells on paths that connect pad cells
and top-level ports. If a UPF strategy appears to recommend insertion of a power
management cell, the tool issues an information message stating that the insertion is
not allowed.

• Multivoltage checking utilities in the tool do not report violations regarding the absence
of power management cells on paths that connect pad cells and top-level ports.

• The tool ignores the following commands specified for the top-level port:
set_related_supply_net, set_port_attributes -driver_supply, and
set_port_attributes -receiver_supply. If these commands specify a supply that
is different from the connected pad pin supply, the tool issues an information message.

• If a top-level port connects to both a pin from a cell with the is_pad attribute and a pin
from a cell without this attribute, the tool applies the pad supply to the top-level port and
issues a warning.

Power Compiler™ User Guide
U-2022.12-SP3

342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

• If a top-level port connects to multiple pad cell pins of different voltages, the tool
applies a UPF supply to the port instead of any of the pad supplies and issues a
warning.

• In some designs, power management cells already exist between a pad cell and the
outside world. In this case, the tool does not treat the cell as a pad cell and issues a
warning message. In this case, the tool might insert power management cells based on
UPF strategies.

You can disable the automatic assignment of the pad supply to the top-level port by setting
the upf_use_driver_receiver_for_io_voltages variable to false (the default is
true).

Specifying Retention Strategies
The set_retention and set_retention_control commands specify a strategy for
inserting retention cells inside a power-down domain.

The set_retention command specifies which registers in the power-down domain are to
be implemented as retention registers and identifies the save and restore signals for the
retention functionality.

The power and ground nets of the retention registers can operate at voltage levels
different from the primary and ground supply voltage levels of the power domain where the
retention cell is located. Use the -retention_power_net and -retention_ground_net
options to specify the supply nets to be used as the retention power and ground nets.
The retention power and ground nets are automatically connected to the implicit save and
restore processes and shadow register. If you specify only the -retention_power_net
option, the primary ground net is used as the retention ground supply. If you specify only
the -retention_ground_net option, the primary supply net is used as the retention
power supply.

The -retention_supply option specifies the supply set whose power and ground
functions to use as the retention power and retention ground nets.

If specific objects in the power domain do not require retention capabilities, you can
specify them with the -no_retention option. The tool maps these objects to library cells
that do not have retention capability.

The -save_condition, -restore_condition, and -retention_condition options are
intended to capture the clock-dependent retention behavior during simulation. The Power
Compiler tool parses these options, but does not use them. However, the tool preserves
the options and writes them out at the save_upf command if the netlist is not synthesized.

Every retention strategy defined without the -no_retention option must have a
corresponding set_retention_control command. The set_retention_control
command specifies the retention control signal and retention sense. The command

Power Compiler™ User Guide
U-2022.12-SP3

343

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

identifies an existing retention strategy and specifies the save and restore signals and
senses for that strategy.

Each control signal can be a port, pin or a net, with a port or pin having higher
precedence. The retention signal does not need to exist in the logic hierarchy where the
retention cells are to be inserted. The synthesis or implementation tools perform port-
punching, as needed, to make the connection. Port-punching automatically creates a port
to make a connection from one hierarchical level to the next. These punched ports are not
considered for isolation, even though after the port creation, these ports reside within the
coverage of an isolation strategy.

The -assert_r_mutex, -assert_s_mutex , and -assert_rs_mutex options of the
set_retention_control command are intended to capture the clock-dependent
retention behavior during simulation. These options are parsed and ignored by the Power
Compiler tool.

Specifying Elements to Include in the Retention Strategy
The -elements option specifies cells for which the retention strategy applies. In the
absence of the -elements option, the retention strategy is applied to all sequential cells in
the power domain, unless you specify the -no_retention option. Note that DesignWare
instances are supported when using the -elements option with the set_retention
command. The tool applies the size_only attribute on all the elements on which it applies
the retention strategy.

The -update option allows you to refine the element list of a previously defined retention
strategy. When used with the -elements option, the set of elements is the union of all
elements specified for a strategy. You cannot refine a domain-based retention strategy to
an element-based retention strategy with the -update option. In the following example, the
second set_retention command results in an error.

create_power_domain MID -elements {mid1 mid2}
set_retention RET1 -domain MID
set_retention_control RET1 …
map_retention_cell RET1 …
set_retention RET1 -domain MID -elements {mid1} -update
The set_retention_elements command defines a list of critical elements that can later
be used in a set_retention command. The list of elements applies to the scope where
the set_retention_elements is defined. You must retain all of the elements in the list or
none of them. It is an error to have a partially retained list of elements.

The -exclude_elements option takes the same types of arguments as the -elements
option. The specified elements must be part of the domain extent.

Use this option to exclude elements from the retention strategy before implementation,
such as when you first create a retention strategy with the set_retention command. For

Power Compiler™ User Guide
U-2022.12-SP3

344

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

example, the following command applies the RET1 retention strategy to all registers in the
PD1 power domain except for the reg1 register:

dc_shell> set_retention RET1 -domain PD1 -exclude_elements {reg1}
You can also use the -exclude_elements option during successive strategy refinement
when you use the set_retention -update command before implementation. In the
following example, strategy RET1 is applied to register u1/reg1 and strategy RET2 is
applied to register u1/reg2 and all other registers in hierarchical cell u1:

dc_shell> set_retention RET1 -domain PD1 -elements {u1/reg1 u1/reg2}
dc_shell> set_retention RET2 -domain PD1 -elements {u1}
dc_shell> set_retention RET1 -domain PD1 -exclude_elements {u1/reg2}
 -update

The Power Compiler tool does not support the following update actions:

• Changing a retention strategy to another type of strategy

• Removing a retention strategy

• Changing another type of strategy to a retention strategy

• Changing one retention strategy to another retention strategy

For these reasons, you cannot use the -exclude_elements option after implementation.
For example, the following sequence of commands attempts to remove some registers
from a retention strategy after implementation. This action is not supported and the tool
issues errors and warnings as shown:

dc_shell> set_retention RET1 -domain PTOP
dc_shell> compile_ultra
dc_shell> set_retention RET1 -domain PTOP -exclude_elements {reg1 reg2}
Warning: excluded elements will be unassociated from the strategy (Design
 Compiler)
dc_shell> compile_ultra -incremental
Error: Retention cells are not associated with any strategy (Design
 Compiler)

Power Compiler™ User Guide
U-2022.12-SP3

345

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

In the following example, the commands attempt to change some retention registers from
one strategy to another strategy after implementation. This action is not supported and the
tool issues errors and warnings as shown:

dc_shell> set_retention RET1 -domain TOP -elements {u1}
dc_shell> compile_ultra
dc_shell> set_retention RET1 -domain TOP -exclude_elements {u1/reg1}
 -update
Warning: excluded elements will be unassociated from the strategy (Design
 Compiler)
dc_shell> set_retention RET2 -domain TOP -elements {u1/reg1}
dc_shell> compile_ultra -incremental
Error: Retention cells are not associated with any strategy (Design
 Compiler)

Similarly, the tool issues errors if you apply the -no_retention option to cells before
implementation and subsequently attempt to set a retention strategy on those cells after
implementation.

To prevent elements from being disassociated from strategies after implementation,
set the upf_drop_conflict_retention_constraint variable to true (the default is
false). In this case, the tool issues an error message and stops if it encounters invalid
set_retention commands after implementation. For example:

dc_shell> set_retention RET1 -domain PTOP
dc_shell> compile_ultra
dc_shell> set_retention RET1 -domain PTOP -exclude_elements {reg1}
Error out and drop command because exclude_elements will cause
 disassociation of reg1 from RET1

If you write a UPF file before executing an action command, the UPF contains the
excluded elements even if they are not in the domain extent. After an action command, the
UPF contains only those excluded elements that are in the domain extent.

Resolving Retention Strategy Precedence
The following strategies have decreasing order of precedence, irrespective of the order in
which they are executed:

1. Strategies that apply to registers, explicitly specified using the -elements option.

2. Strategies that apply to registers, implied by specifying a Verilog process or always
block.

3. Strategies that apply to registers, implied by specifying an instance using the
-elements option.

4. Strategies that apply to registers, implied by specifying only the power domain name.

Power Compiler™ User Guide
U-2022.12-SP3

346

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

Strategies with the -no_retention option have higher precedence than strategies without
this option.

Examples of Retention Strategy Precedence Resolution

The following examples illustrate retention strategy precedence resolution.

Example 41 General Retention Strategy Resolution
set_retention RET1 -domain PD1 -elements {inst1} -no_retention
set_retention RET2 -domain PD1 -elements {inst1/reg1} ...

In Example 41, RET1 has the granularity of an instance and RET2 has the granularity of a
register. For inst1/reg1, even though RET1 has the -no_retention option specified, it has
less precedence than RET2.

Example 42 Verilog Sample
module mid(input clk,d, output reg q1, q2, en);
 always @(posedge clk)
 begin: blk1
 if en ==1'b0
 q1 <= d;
 q3 <= d;
 end
 end
 always @(negedge clk)
 begin: blk2
 q2 <= d;
 end
endmodule

For the example in Example 42, the following strategies are defined:

set_retention RET1 -domain MID -elements {mid/blk1}
set_retention RET2 -domain MID -elements {mid/q1}
set_retention RET3 -domain MID -elements {mid/blk1}
set_retention RET4 -domain MID -elements {mid/q1}

RET1 and RET3 are in conflict for q3. RET2 and RET4 are in conflict for q1. So, RET3 and
RET4 are removed and only the first two strategies are written out. If strategies conflict,
the tool retains the strategy created first.

Using the Retention Supply as the Primary Supply
Normally, the primary supply of the domain powers both the retention register and the
receiver supply of the retention register’s data input. By default, the output driver of the
register is also powered by the primary supply of the domain. Therefore, the driver supply
of the data output is the primary supply.

Power Compiler™ User Guide
U-2022.12-SP3

347

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

However, you can specify that the register and its output is powered by the retention
supply by using the -use_retention_as_primary option of the set_retention
command. You cannot update this option. If you use this option, it can affect source and
sink analysis during level-shifter, isolation, and repeater cell insertion since the driver or
receiver supply uses the retention supply.

When a strategy has the -use_retention_as_primary option specified, the tool only
uses the library cells specified in the map_retention_cell command that have output
pins related to the backup PG pin.

Choosing Specific Library Cells With Retention Strategies
Use the map_retention_cell and map_retention_clamp_cell commands to constrain
the library cell choices for retention registers.

The following guidelines apply to the map_retention_cell command:

• The argument of the command must be a retention strategy that is defined for the
power domain specified by the -domain option. The retention strategy and the -domain
option are mandatory.

• The optional -lib_cell_type option directs the tool to select a retention cell that has
the specified cell type. However, the value specified with this option does not change
the simulation semantics specified by the set_retention command.

• The retention_cell attribute on the library cells in the target library defines the
retention styles of the library cells.

• The optional -lib_cells option specifies a list of library cells that can be used for
retention cells.

• The optional -lib_model_name option specifies the retention register verification
model in the input UPF files, which is parsed for syntax. The model information is
primarily used by the Formality tool. The model information is not captured in the
design database or in the UPF file written after synthesis. When you specify the port
mapping information, the tool accepts either the UPF 2.0 or 2.1 syntax, as follows:

map_retention_cell -lib_model_name name1 \
 {-port_map port_name net_ref}*
map_retention_cell -lib_model_name name \
 -port_map {{port_name net_ref}*}

The following guidelines apply to the map_retention_clamp_cell command:

• The map_retention_clamp_cell command is not a UPF command. Therefore it
must not be included in UPF files. The tool issues an error message at the load_upf
command if a UPF file contains the map_retention_clamp_cell command. In
addition, the tool does not write this command into saved UPF files.

Power Compiler™ User Guide
U-2022.12-SP3

348

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

• You can use this command only after loading a UPF file.

• The argument of the command must be a list of retention strategies that are defined
for the power domain specified by the -domain option. The retention strategies and the
-domain option are mandatory.

• Use the -clock_clamp_lib_cells option to specify the list of library cells that must be
used for mapping zero pin retention clamp cells on clock paths.

• Use the -async_clamp_lib_cells option to specify the list of library cells that must be
used for mapping zero pin retention clamp cells on asynchronous set or reset paths.

• The specified library cells must be isolation or enable level-shifter library cells.

The following guidelines apply to both the map_retention_cell and
map_retention_clamp_cell commands:

• Library cells with dont_touch attributes are not used for mapping.

• The operating conditions of the target library cells must match the design environment.

• If none of the specified library cells are suitable, the tool leaves the cells as GTECH
isolation cells in the final netlist.

• If a mapping constraint is not specified, the tool selects library cells from the target
library in the following order:

◦ NOR isolation cells

◦ Dual-rail isolation cells

◦ GTECH isolation

• If you specify a mapping command more than one time, the tool honors the last
successfully accepted command.

• Cell mapping is discarded only if the applicable power domain is removed.

To limit the usage of library cells specified in map_retention_clamp_cell for
mapping only zero pin retention clamps and no other isolation strategies, set the
upf_iso_map_exclude_zpr_clamp_lib_cells variable to true before running the
map_retention_clamp_cell command. The default is false. However, if you specify
the same library cells in both the map_retention_clamp_cell and map_isolation_cell
commands, the map_isolation_cell command has higher precedence than the global
control provided by the variable.

If the design contains pre-instantiated isolation cells mapped to library cells specified in the
map_retention_clamp_cell command, the tool remaps them to other library cells during
the next mapping step.

Power Compiler™ User Guide
U-2022.12-SP3

349

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

To obtain information about retention cell clamp cell constraints, use the
report_retention_clamp_cell -verbose command and specify the power domain with
the -domain option.

Zero-Pin Retention Support
The Power Compiler tool supports the inference of zero-pin retention (ZPR) cells and the
automatic insertion of retention clamp cells, during synthesis.

During the compile flow, the tool iterates through all the ZPR retention cells in the design,
detects their ZPR-related attributes and any associated clamp cells, and inserts and maps
clamp cells to satisfy the ZPR requirements.

Additionally, when running the insert_mv_cells command, run the command with the
-retention_clamp option, to insert retention clamp cells for pre-existing ZPR cells (if the
clamp cells are not already present).

Note:
The insert_mv_cells -all command does not insert retention clamp cells.
You must explicitly specify the -retention_clamp option to insert retention
clamp cells.

To disable the retention clamp cell insertion, set the
upf_skip_retention_clamp_insertion variable to true. The default value of this
variable is false.

Inferring Complex Retention Cells
A complex sequential cell is a cell whose functionality is unknown. You can specify that the
tool infer complex retention cells in place of complex nonretention cells during synthesis.
Enable this feature by setting the following variable:

set_app_var upf_infer_complex_retention_cells true

Usually, the Liberty modeling of complex sequential cells have pin names that match the
pin names of complex retention sequential cells (except for the save and restore pins).

If you have the following in your UPF:

set_retention -elements {complex_nonretention_cell}
map_retention_cell -lib_cells {complex_retention_library_cell}

Power Compiler™ User Guide
U-2022.12-SP3

350

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

The tool tries to infer a complex retention cell during synthesis based on pin name
matching. The tool performs the following steps:

1. Matches the pin names of the nonretention cell to the pin names of the retention library
cells specified in the map_retention_cell command.

2. Chooses the first retention library cell with names that match exactly. Uses this cell in
place of the nonretention cells.

3. If no matching retention library cell is found, then the tool issues a warning message.

With the pin name matching approach, the tool selects the first matching retention library
cell from the map_retention_cell command. If there are multiple matches and if you
want to select a particular retention library cell, set the retention_equivalent attribute
on the library cells. For example,

set_attribute {nonretention_library_cell} \
 retention_equivalent {retention_library_cell}

If this attribute is set, then a retention library cell can be used in place of a nonretention
library cell if the retention library cell is valid. A valid retention library cell has the
retention_cell attribute on it, is present in the list of target libraries, and is listed as a
library cell in the map_retention_cell command. If the library cell is not a valid retention
library cell, the tool falls back on pin name matching.

If you have library cells that do not have matching pin names, you can use the same
retention_equivalent attribute to specify the pin mappings. For example,

set_attribute {nonretention_library_cell} \
 retention_equivalent {retention_library_cell {pin1 pin2} \
 {pin3 pin4}}

Pin1 of the nonretention library cell corresponds to pin2 of the retention library cell. Pin3
of the nonretention library cell corresponds to pin4 of the retention library cell. If the pin
mapping is not valid, then the tool falls back on pin name matching.

Figure 95 shows how the tool infers complex retention cells.

Power Compiler™ User Guide
U-2022.12-SP3

351

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Retention Strategies

Feedback

Figure 95 Inferring Complex Retention Cells

For each complex nonretention

cell with a retention strategy

Issue a warning

message
Confirm that the retention

library cell is listed in the

map_retention_cell command

and then infer the retention

library cell

Find a matching library cell specified

by the map_retention_cell

command and based on pin name

matching

Matching library cell found?

Infer the matching retention

cell

Yes

No

Yes

No

Does the

nonretention library

cell have the

retention_equivalent

attribute set?

Retention Strategy and Clock-Gating Cells
When you define retention strategy for a power domain, by default, the Power Compiler
tool does not apply the retention strategy to the clock-gating cells in the power domain.
The tool does not issue warning or information message. However, if you set the
upf_use_additional_db_attributes variable to false, the tool issues a UPF-117
warning message for every power domain defined with a retention strategy and contains
clock-gating cells. Formal verification also flags a failure in this situation.

Representing Retention Strategies in the UPF Diagram View
In the UPF diagram view, the retention cell is represented by a green bounding box as
shown in Figure 96. The symbol includes pins for power and ground and segments for
save and restore signals. The no-retention symbol contains a “X” inside the bounding box.

Power Compiler™ User Guide
U-2022.12-SP3

352

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Repeater Strategies

Feedback

Figure 96 Representation of Retention Cells in the UPF Diagram

All retention symbols are located at the center of their parent power domains. The diagram
displays the supply nets connected to the retention strategy, the domains to which the
strategy belongs and their save and restore signals.

Specifying Repeater Strategies
Repeaters are buffers inserted at regular intervals along the length of a long net to
maintain sufficient drive strength along the full length of the net. In the Power Compiler
tool, the set_repeater command defines a strategy for inserting repeater cells (buffers)
on the interface of a power domain. The tool inserts a buffer using a specified power
supply.

Figure 97 shows an example of the set_repeater command. The corresponding script is
as follows:

set_design_attributes -elements {.} \
 -attribute lower_domain_boundary true
set_repeater R1 -domain PD_Orange \
 -repeater_supply ss_orange
set_repeater R2 -domain PD_Blue \
 -elements {.} \
 -repeater_supply ss_blue

Power Compiler™ User Guide
U-2022.12-SP3

353

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Repeater Strategies

Feedback

Figure 97 Example Using the set_repeater Command

R2

R2

R1

R1

R1

R1

PD_Orange

PD_Blue

p1

p2

Repeater cells are inserted before isolation and level-shifter cells are inserted. The
presence of repeaters can affect the implementation of isolation and level-shifter strategies
that use the -source or -sink options. Repeaters are considered endpoints for source
and sink analysis.

Isolation and level-shifter cells are placed close to the domain boundary, that is, between
the domain crossing and the repeater as shown in Figure 98.

Figure 98 Repeaters and Power Management Cells

ISO1 ISO2

PD_Orange

PD_Blue

R1R1

For the example in Figure 98, the following isolation strategies would apply:

set_repeater R1 -domain PD_Blue -repeater_supply SS_Blue
set_isolation ISO1 -domain PD_Blue -isolation_supply SS_Orange \
 -applies_to inputs -sink SS_Blue
set_isolation ISO2 -domain PD_Blue -isolation_supply SS_Blue \
 -applies_to outputs -source SS_Blue

Power Compiler™ User Guide
U-2022.12-SP3

354

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Repeater Strategies

Feedback

Specifying Supplies for Repeaters
Repeaters are buffers inserted at regular intervals along the length of a long net to
maintain sufficient drive strength along the full length of the net. In Design Compiler, the
insert_buffer command lets you specify the number of such buffers to insert into a net
by using the -no_of_cells option.

If a long net crosses a power domain boundary, such as in the case of a feedthrough net
crossing through a power domain, repeater buffers inserted inside the power domain must,
by default, maintain the always-on characteristics of the sink domain. For example, in
Figure 99, PDTop power domain is more always-on than PD2 power domain, and PD2
power domain is more always-on than PD1 power domain. The feedthrough path through
PD1 power domain must be always-on with respect to PD2 power domain.

Figure 99 Feedthrough Path in PD1 Power Domain Before Buffer Insertion

U1 U2

PD1 PD2

SS2SSTop

PDTop

SS1

However, the always-on requirement might not be needed in certain cases. For example,
if the feedthrough net is a DFT scan signal that is used only when all power domains are
active, the inserted buffers can use the PD1 power supply, thereby using less resources.
In other cases, depending on the floorplan, the power supplies of the sink domain might
not be easily available where the buffer needs to be inserted.

To enforce the insertion of a buffer with a specific power supply on the feedthrough path,
use the -repeater_supply argument of the set_port_attributes command. For
example,

dc_shell> set_port_attributes -elements {U1} \
 -applies_to outputs -repeater_supply SS1
The tool inserts repeater buffers that drive the output port of elements U1 and uses the
supply set SS1 to power these buffers. This results in the buffering shown in Figure 100.

Power Compiler™ User Guide
U-2022.12-SP3

355

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Specifying Repeater Strategies

Feedback

Figure 100 Feedthrough Path in PD1 Power Domain With a Buffer Inserted

U1 U2

PD1 PD2

BUF1

SS2SSTop

PDTop

SS1

Insertion of the repeater buffers might cause the need for additional level shifter and
isolation cells on the feedthrough path. When you specify the insertion of a repeater
buffer to drive a specified port, you must also specify the power supply for the buffer. The
supply specified with the repeater_supply attribute must be available in the scope of
the power domain where the buffer is inserted. You can specify either a supply set using
the -repeater_supply option as shown in the previous example, or a pair of supply nets
(power and ground) using the -attribute option, as shown in the following example:

dc_shell> set_port_attributes -elements {U1} -applies_to outputs \
 -attribute repeater_power_net VDD \
 -attribute repeater_ground_net VSS
You must specify the -attribute option two times in the same command, to specify
the power and ground nets for the inserted repeater buffers. Multiple occurrences
of the -attribute option are allowed only for the repeater_power_net and
repeater_ground_net attributes.

The repeater insertion is performed by the compile_ultra, insert_mv_cells or the
insert_dft command, before inserting other power management cells. The tool inserts
either a single non-inverting repeater (buffer) or a pair of inverters. You cannot specify the
type of the repeater to be inserted.

After inserting the repeater, during level-shifter and isolation cell insertion, the tool ensures
that the repeater insertions do not cause electrical violations and inserts a level-shifter or
an isolation cell to fix the violation. However, you must have defined an isolation strategy
for the tool to insert the isolation cell. The check_mv_design checks and reports any
violation introduced and not fixed by the repeater insertion.

If the repeater does not use the primary supply of the domain as the supply, the save_upf
command writes the connect_supply_net command for the PG pins of the repeater.

Power Compiler™ User Guide
U-2022.12-SP3

356

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Deferring Element Definitions in Power Management Strategies

Feedback

Deferring Element Definitions in Power Management Strategies
The Power Compiler tool allows you to specify a power management strategy and defer its
applicable element list definition to a later step. You can do this by using an empty element
list in the set_isolation, set_level_shifter, set_repeater, and set_retention
command specifications. See the following examples:

dc_shell> set_isolation ISO1 -domain PD1
 -isolation_supply SS -elements {}

dc_shell> set_level_shifter LS1 -domain PD1
 -elements {}

dc_shell> set_retention RET1 -domain PD1
 -retention_supply SS -elements {}

dc_shell> set_repeater REP1 -domain PD1
 -repeater_supply SS -elements {}

Note:
The tool treats any power management strategy with only invalid objects in its
element list, or only non-power-domain objects in its element list, as an empty
element strategy.

Matching Tool and IEEE LRM Defaults
For a few UPF commands of Synopsys implementation tools, for some options that take
an enumerated value, the default value of the option differs from its equivalent in the
current IEEE LRM 3.1 version. For such options, to change the Power Compiler tool option
defaults to match the equivalent LRM defaults, you can use the lrm_option_defaults
UPF attribute. See the following example:

dc_shell> set_design_attributes –elements {.}
 -attribute lrm_option_defaults 3.1

The following table lists the UPF commands and their options affected by this design
attribute:

UPF Command Command Option Synopsys
Default

LRM 3.1 Default

set_isolation
set_level_shifter
set_repeater

-applies_to_boundary upper both

Power Compiler™ User Guide
U-2022.12-SP3

357

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Switches

Feedback

UPF Command Command Option Synopsys
Default

LRM 3.1 Default

set_isolation -applies_to outputs, for
domain-level
strategies

No default
Note:

When matching
with the LRM
default, the tool
uses both as
the default for
this option.

set_isolation -diff_supply_only FALSE TRUE

Here are all the usage rules for this attribute:

• The attribute takes a string value which currently can only be '3.1'. If you specify
any value other than '3.1' for this attribute value, the tool reports an UPF-210 error
message.

• If you are specifying this design attribute, you must use the -elements {.} option.
Using the -model option is not supported.

• The design should not have any power objects, such as a power domain, supply
net, supply port, or supply set, which are already created before you set this design
attribute. Otherwise, the tool reports an UPF-210 error message.

• The precedence rule is the following: the user-specified strategy-specific
-applies_to_boundary option value has the highest precedence .Additionally, the
scope-specific lower_domain_boundary design attribute has precedence over the
lrm_option_defaults design attribute.

• In a bottom-up hierarchical flow, if a block has this attribute set to a specific value, then
the top-most design must also have the attribute set to the same value.

Creating Power Switches
The create_power_switch command creates a virtual instance of a power switch in the
scope of the specified power domain. power switch has at least one input supply port and
one output supply port. When the switch is off, the output supply port is shut down and has
no power.

The create_power_switch command lets the tool know that a generic power switch
resides in the design at a specific scope or level of hierarchy. The off state of the power
switch output is used in the power state table. The Power Compiler tool does not perform

Power Compiler™ User Guide
U-2022.12-SP3

358

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Switches

Feedback

power switch insertion, but the information is passed to the IC Compiler II tool for
implementation.

The map_power_switch command defines which library cells to use for a specific UPF
power switch.

The -domain option is available, but not required, for both the create_power_switch
and map_power_switch commands. Without the -domain option, the command scope is
the current scope. If the -domain option is used, the command scope is the scope of the
specified power domain.

The following example is a definition of a power switch named SW1.

create_power_switch SW1 \
 -domain PD_TOP \
 -output_supply_port {SWOUT VDD1g} \
 -input_supply_port {SWIN1 VDD1} \
 -control_port {CTRL swctl} \
 -on_state {ON VDD1 {!swctl}}

The UPF standard requires a simple name for the power switch. By default, the
tool checks this requirement. To allow the use of hierarchical names, set the
mv_input_enforce_simple_names variable to false.

You can override the location of the power switch by using the contains_switches
attribute of the set_design_attributes command. For the following example, even
though you are in scope U0, the power switch is placed in scope U2.

set scope U0
create_power_switch SW1 ...
set_design_attributes -elements {U2} -attribute contains_switches {S1}

You can use the contains_switches attribute more than one time on a hierarchical cell.
If you do, the power switches are added to the list of switches related to a hierarchical cell.
For example,

set_design_attributes -elements {U2} -attribute contains_switches {S1}
set_design_attributes -elements {U2} -attribute contains_switches {S2}

is the same as specifying

set_design_attributes -elements {U2} -attribute contains_switches {S1 S2}

Representation of Power Switches in the UPF Diagram View
In the UPF diagram view, a power switch is represented by a green circle with an X inside
it, as shown in Figure 101.

Power Compiler™ User Guide
U-2022.12-SP3

359

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Creating Power Switches

Feedback

Figure 101 Representation of a Power Switch

The symbol indicates the input and output supply ports, the control ports, and the control
signals. The arrows represent the direction of the ports.

As shown in Figure 101, a power switch can have single or multiple control signals. The
power switches are located within the boundaries of their parent power domain. Because
power switches have supply nets as input and output, they are located between the power
supply nets as shown in Figure 102.

Figure 102 Location of the Power Switches in the Power Domain

Power Compiler™ User Guide
U-2022.12-SP3

360

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Models

Feedback

Power Models
The Power Compiler tool supports the IEEE 1801 construct called a power model. A
power model allows you to define the UPF for a macro in a self-contained environment.
Each time this macro is instantiated, the power model is loaded from memory instead of
calling the load_upf and connect_supply_net commands for each instantiation.

To define a power model, use the define_power_model command. The
apply_power_model and add_parameter commands are also used when defining or
specifying the use of power models.

To check your power models, use the report_power_model command. This command
displays information including where the power models are defined and where they are
applied.

Topics covered in this section:

• Configuring Power Compiler for Power Models

• Defining and Applying a Power Model

• Excluding Designs From Using Power Models

• Hard and Soft Macros

Configuring Power Compiler for Power Models
To simplify loading power model definitions, configure the following variables:

• upf_power_model_library
Specifies a list of power model UPF files

• upf_power_model_search_path
Specifies a list of search paths that the tool uses to find the power model UPF files

Power Compiler™ User Guide
U-2022.12-SP3

361

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power Models

Feedback

Defining and Applying a Power Model
Power models are IEEE 1801 commands encapsulated within the define_power_model
command. The following is an example of power model definition for a power model
named my_model:

define_power_model my_model -for {lib_cell_A lib_cell_B} {
 add_parameter DOMAIN -default "PD_TOP" -description "top power domain"
 create_supply_net VDD
 create_supply_net VSS
 create_supply_set SS -function {power VDD} -function {ground VSS}
 create_power_domain PD_$DOMAIN -supply {primary SS} -include_scope
}

The add_parameter command specifies the names of parameters to be defined inside
a power model. These parameters can be overridden from the apply_power_model
command.

When you have defined a power model, you can map the model to a list of cell instances.
For example,

apply_power_model my_model -elements (u1/macro u2/macro)...

Excluding Designs From Using Power Models
If you want to exclude designs from using power models, do the following:

set_design_attributes -models model_list -is_hard_macro false

or

set_design_attributes -models model_list \
 -attribute UPF_is_hard_macro false

Hard and Soft Macros
You can mark specific models as hard or soft macros for hierarchical implementation by
using the set_design_attributes command. Use the -models option to specify the
model names along with either the -is_soft_macro true or -is_hard_macro true
option. When these options are specified, the tool defines either the UPF_is_soft_macro
or UPF_is_hard_macro attribute for the specified models. If you specify the model list as
{.}, the command applies to the model corresponding to the current scope.

You must specify the type of macro before loading the UPF for the macro. Alternatively,
you can include the set_design_attributes command as the first command in the UPF
file provided with the load_upf -scope command for the macro. For a hard macro, you
can also specify the UPF with the define_power_model command.

Power Compiler™ User Guide
U-2022.12-SP3

362

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

A hard macro cell typically has a Liberty model that defines its interface, including
supply ports and related supplies for its logic ports. A macro defined with the Liberty
is_macro_cell attribute is treated as a hard macro. A hard macro has one of the
following:

• No UPF specification

• A self-contained UPF specification

• A UPF specification that does not define its own top-level domain

A soft macro always has a self-contained UPF. A hard macro might or might not have a
UPF because it is not separately implemented by the tool.

For UPF processing, the tool performs checks for terminal boundaries on both hard and
soft macros. The tool checks for a self-contained UPF for soft macros.

By default, the find_objects command considers all instances of hard and soft macros
as leaf cells. The -traverse_macros option allows the command to traverse the macro
terminal boundaries.

Power State Tables
A power state table defines the legal combination of states that can exist simultaneously
during the operation of the design. A power state table is a set of power states of a design
in which each power state is represented as an assignment of power states to individual
power nets. A power state table of a design captures all the possible operational modes
of the design in terms of power supply levels. Given a power state table, a power state
relationship (including voltage and relative always-on relations) can be inferred between
any two power nets. The power state table is used by the synthesis tool for analysis,
synthesis, and optimization of the multivoltage design.

Default Power States
The Power Compiler tool supports the use of the default or predefined power states ON
and OFF. You can refer to these states during the early definition stage of the UPF, before
the actual supply voltages are defined.

You can use the default power states to define other power states in the
add_power_state command. Using the -update option the first time you refer to the
default power states is optional, even though the states already exist. However, the
-update option is required for all subsequent commands that refer to the default states.

You can choose to use the ON and OFF names for other power state definitions.

Power Compiler™ User Guide
U-2022.12-SP3

363

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

The following example uses the default state ON in the definition of the new state NOR:

create_power_domain TOP -elements {.} -supply {primary}
add_power_state -domain TOP \
 -state {NOR -logic_expr {TOP.primary==ON && ... }

You must fully define the default ON and OFF states before performing any action
commands or checking commands. For example:

add_power_state TOP.primary \
 -state {ON -supply_expr {power=={FULL_ON 1.08} \
 && ground=={FULL_ON 0.0}} -update

Power State Propagation
You can control the propagation of power states by setting the
enable_state_propagation_in_add_power_state design attribute on a top-level or
block-level design. The default of this attribute is false.

When the attribute is true, the following conditions apply:

• The tool propagates the name of the supply set state specified in the
add_power_state command to the functional nets.

• You can subsequently use the net and the supply set state in the create_pst and
add_pst_state commands.

• You cannot use the && operator in the -supply_expr option of the add_power_state
command.

When the attribute is false, the following conditions apply:

• The tool does not propagate the name of the supply set state specified in the
add_power_state command to the functional nets.

• You cannot use the net and the supply set state in the create_pst and
add_pst_state commands. To create power state tables, you must use the
create_power_state_group command and refer to the supply set state names in the
group definition.

• You can use the && operator in the -supply_expr option of the add_power_state
command.

The Power Compiler tool supports setting the
enable_state_propagation_in_add_power_state design attribute to any combination
of true and false for top-level or block-level designs. However, to use the characterize
command for a design, you must set the attribute to the same value for the top-level
design and all of its block-level designs.

Power Compiler™ User Guide
U-2022.12-SP3

364

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Creating Power State Tables
To create a power state table, use the add_power_state and
create_power_state_group commands. Assuming that the supply sets are already
defined, the following example defines the power states for three supply sets:

add_power_state \
 -supply SS1 -state ON {-supply_expr {power == {FULL_ON 0.8} && \
 {ground == {FULL_ON 0}}}
add_power_state \
 -supply SS2 -state ON {-supply_expr {power == {FULL_ON 0.8}}} \
 -state OFF {-supply_expr {{power == {OFF}}}

add_power_state \
 -supply SS3 -state ON {-supply_expr {power == {FULL_ON 0.8}}}} \
 -state OFF {-supply_expr {{power == {OFF}}}

Next, create a power state group as follows:

create_power_state_group MY_PST

Finally, build the power state table using the specified states and the power state group:

add_power_state -group MY_PST \
-state RUN12 {-logic_expr {SS1 == ON && SS2 == ON && SS3 == ON}}
-state RUN1 {-logic_expr {SS1 == ON && SS2 == ON && SS3 == OFF}}
-state RUN2 {-logic_expr {SS1 == ON && SS2 == OFF && SS3 == ON}}
-state SLEEP {-logic_expr {SS1 == ON && SS2 == OFF && SS3 == OFF}}

The resulting power state table is shown in Table 25.

Table 25 Power State Table for MY_PST

State SS1 SS2 SS3

RUN12 ON ON ON

RUN1 ON ON OFF

RUN2 ON OFF ON

SLEEP ON OFF OFF

Using internal state names, the tool builds the actual power state table as shown in
Table 26.

Power Compiler™ User Guide
U-2022.12-SP3

365

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Table 26 Power State Table Using Internal State Names

State SS1.ground SS1.power SS2.ground SS2.power

RUN12 SNPS_INT_ON_2 SNPS_INT_ON_1 SNPS_INT_ON_3 SNPS_INT_ON_5

RUN1 SNPS_INT_ON_2 SNPS_INT_ON_1 SNPS_INT_ON_3 SNPS_INT_ON_6

RUN2 SNPS_INT_ON_2 SNPS_INT_ON_1 SNPS_INT_ON_4 SNPS_INT_ON_5

SLEEP SNPS_INT_ON_2 SNPS_INT_ON_1 SNPS_INT_ON_4 SNPS_INT_ON_6

Hierarchical Power State Tables
When creating power state tables, you can build them hierarchically using existing power
state tables and combining them to form a larger table. Suppose you want to increase the
number of supply sets in Table 25 to add supplies SS4 and SS5 as shown in Table 27.

Table 27 Adding Supplies to the Power State Table

State SS1.
ground

SS1.
power

SS2.
power

SS3.
power

SS4.
power

SS5. power

RUN12_NORM GND ON ON ON ON ON

RUN_OVD GND ON ON ON OVD ON

RUN1_NORM GND ON ON OFF ON ON

RUN1_UND GND ON ON OFF ON OFF

RUN2_NORM GND ON OFF ON ON ON

RUN2_UND GND ON OFF ON ON OFF

SLEEP_OFF GND ON OFF OFF OFF OFF

Power Compiler™ User Guide
U-2022.12-SP3

366

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

The new power state table can be built hierarchically using the existing MY_PST table as
follows:

• Create a new power group:

create_power_state_group MY_PST2

• Create the power states for the supplies in the new power group:

add_power_state -group MY_PST2 \
 -state NORM {-logic_expr {SS4==ON && SS5==ON}} \
 -state OVD {-logic_expr {SS4==OVD && SS5==ON}} \
 -state UND {-logic_expr {SS4==ON && SS5==OFF}} \
 -state OFF {-logic_expr {SS4==OFF && SS5==OFF)

These power states combine to form a new power state table as shown in Table 28.

Table 28 Power State Table MY_PST2

State SS4 SS5

NORM ON ON

OVD OVD ON

UND ON OFF

OFF OFF OFF

• Create the new combined power state table:

create_power_state_group SYSTEM_PST
add_power_state -group SYSTEM_PST
 -state RUN12_NORM {-logic_expr {MY_PST==RUN12 && MY_PST2==NORM} \
 -state RUN12_OVD {-logic_expr {MY_PST==RUN12 && MY_PST2==OVD}} \
 -state RUN1_NORM {-logic_expr {MY_PST==RUN1 && MY_PST2==NORM}} \
 -state RUN1_UND {-logic_expr {MY_PST==RUN1 && MY_PST2==UND}} \
 -state RUN2_NORM {-logic_expr {MY_PST==RUN2 && MY_PST2==NORM}} \
 -state RUN2_UND {-logic_expr {MY_PST==RUN2 && MY_PST2==UND}} \
 -state SLEEP_OFF {-logic_expr {MY_PST==SLEEP && MY_PST2==OFF}}

The power state table, SYSTEM_PST, is shown in Table 29. This table is equivalent to
the power state table in Table 27.

Table 29 Power State Table SYSTEM_PST

State MY_PST MY_PST2

RUN12_NORM RUN12 NORM

RUN12_OVD RUN12 OVD

Power Compiler™ User Guide
U-2022.12-SP3

367

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

State MY_PST MY_PST2

RUN1_NORM RUN1 NORM

RUN1_UND RUN1 UND

RUN2_NORM RUN2 NORM

RUN2_UND RUN2 UND

SLEEP_OFF SLEEP OFF

Creating Power State Groups in Hierarchies Having State
Propagation Enabled
You can create power state groups in hierarchies having state propagation enabled. That
is, when you have a BLOCK with state propagation disabled and a TOP design with state
propagation enabled, you can create power state groups in TOP and use these groups to
refer to the states in BLOCK, to define the complete power state table (PST).

From the groups created in TOP, you can refer to all the following four types of states
defined in BLOCK:

• PST states

• Supply set states

• Domain states

• Other group states

Groups, however, cannot refer to port states added using the add_port_state command
and net states added using the add_supply_state command. You must use create_pst
to refer to port states or net states

Defining domain states in TOP is identical to defining group states. You can create domain
states too in TOP UPF similar to group states.

Example
The following example shows how to create a power state group in TOP and define the
relationship between group state of BLOCK and TOP PST states.

Block has group state GS in group GROUP_B.

Top has PST TOP_PST having power state PS1.

The group GROUP_T in top is referring to block’s group state GS and top’s PST state PS1
in group state ST1

Power Compiler™ User Guide
U-2022.12-SP3

368

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

BLOCK.upf
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE
...
add_power_state SS -state ON {-supply_expr
 {power=={FULL_ON 1} && ground=={FULL_ON 0}}}
...
create_power_state_group GROUP_B
add_power_state GROUP_B -state GS {-logic_expr {SS==ON && SS1==ON}}
TOP.upf
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE
...
create_pst TOP_PST -supplies {VDD VDD1}
add_pst_state PS1 -pst TOP_PST -state {ON ON}

create_power_state_group GROUP_T
add_power_state GROUP_T -state ST1
 {-logic_expr {TOP_PST==PS1 && BLOCK/GROUP_B==GS}}

Bottom-Up Hierarchical Flow
In this tool, use the propagate_constraints command to propagate UPF constraints
from a synthesized BLOCK to TOP, as part of bottom-up hierarchical flow. In this flow, with
state propagation enabled for BLOCK, group states in BLOCK are propagated to TOP with
and without domain merging differently.

Without Domain Merging
In this flow, the tool propagates groups created in BLOCK (with state propagation enabled)
to TOP. The state propagation value of TOP is irrelevant.

With Domain Merging
Consider a scenario where BLOCK has state propagation enabled. (It is irrelevant whether
TOP has state propagation enabled or disabled.) Consider you have created domain
states in BLOCK. During domain merging, domain states in BLOCK and the supply sets
are deleted when they are merged with TOP domain. In this scenario, to preserve the
domain states defined in BLOCK, to ensure that the system PST is not impacted, the tool:

• Creates a new group by name “<domain_name>_group” in BLOCK

• Transfers the domain states in BLOCK to the newly created group

Bottom-Up Hierarchical Flow Example
Consider this hierarchical design example with TOP > BLOCK [MID > BOT].

In this example, the hierarchical design TOP has a lower hierarchical BLOCK. TOP has
the PDTOP power domain with the merge_domain design attribute set to true. The BLOCK

Power Compiler™ User Guide
U-2022.12-SP3

369

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

has the PDTOP power domain for BLOCK scope with domain states and another lower
scope PST called MID_PST.

MID.upf
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE
...
create_pst MID_PST
add_pst_state s0 -pst MID_PST
set_scope BOT
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE
...
add_power_state SS -state ON
 {-supply_expr {power=={FULL_ON 1} && ground=={FULL_ON 0}}}
...
set_scope ../
create_power_domain PDTOP
add_power_state PDTOP -state PS1
 {-logic_expr {MID_PST==s0 && BOT/SS==ON}}
TOP.upf
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE
create_power_domain PDTOP
set_design_attributes -elements {MID} -attribute merge_domain TRUE

During propagate_constraints, the PDTOP domain of BLOCK is merged with the TOP
level PDTOP domain and the group states of BLOCK are propagated to TOP.

The domain states of BLOCK's domain are retained in BLOCK by creating another power
state group called PDTOP_group.

TOP.upf [full chip UPF]
create_power_domain PDTOP
set_scope MID
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE
...
create_pst MID_PST
add_pst_state s0 -pst MID_PST
set_scope BOT
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE
...
add_power_state SS -state ON
 {-supply_expr {power=={FULL_ON 1} && ground=={FULL_ON 0}}}
...

Back to MID scope, new group created in block scope
set_scope ../
create_power_state_group PDTOP_group

Power Compiler™ User Guide
U-2022.12-SP3

370

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

add_power_state PDTOP_group -state PS1
 {-logic_expr {MID_PST==s0 && BOT/SS==ON}}

Top-Down Hierarchical Flow
Use the characterize command to partition the block from a full design. During
partitioning, the derivation of the PST in the block UPF depends on the state propagation
setting in the design:

State Propagation is Enabled for the Entire Design
In this case, the tool characterizes a derived PST into the block. The derived PST consists
of supply port states and supply net states.

State Propagation is Disabled for the Entire Design
In this case, the tool characterizes a derived PST plus a derived group into the block.
The derived PST consists of supply port states and supply net states. The derived group
consists of supply set states and derived PST states.

Design has a Mixture of State Propagation Values
In this case, the design has state propagation enabled for some blocks and disabled for
some other blocks. As in the preceding case, the tool characterizes a derived PST and a
derived group into the block. The derived PST consists of supply port states and supply
net states. The derived group consists of supply set states and derived PST states.

Top-Down Hierarchical Flow Examples
Here are a few examples of the characterized UPF for three different scenarios. In
all these examples, the RTL has three hierarchies or modules: top, mid, and bot. The
instance of the mid module is mid_inst and the instance of the bot module is bot_inst.

Note:
In the following examples, to keep the UPF simple, supply ports and their
connections to the supply sets are not shown.

Example: State propagation is disabled for the entire design
Consider the following full-chip UPF. In this UPF, state propagation is disabled for the
entire design. There are three power domains (one for each hierarchy) and the primary
supply sets of the three domains have one state each.

Full-chip UPF
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST
create_power_domain PDTOP -supply {primary SST}
add_power_state SST -state SST1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

Power Compiler™ User Guide
U-2022.12-SP3

371

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

set_scope mid_inst
create_supply_set SSM
create_power_domain PDMID -supply {primary SSM}
add_power_state SSM -state SSM1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

set_scope bot_inst
create_supply_set SSB
create_power_domain PDBOT -supply {primary SSB}
add_power_state SSB -state SSB1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
set_scope /

Consider that the mid block is characterized. The SST supply set that is defined in the
top-most scope is brought into mid (as it is available in mid). The power states of SST are
brought into mid as they are. The following is the characterized UPF for the mid block:

Characterized UPF for block mid
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST
add_power_state SST -state SST1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

create_supply_set SSM
create_power_domain PDMID -supply {primary SSM}
add_power_state SSM -state SSM1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

set_scope bot_inst
create_supply_set SSB
create_power_domain PDBOT -supply {primary SSB}
add_power_state SSB -state SSB1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
set_scope $CURRENT_TOP_SCOPE

create_power_state_group group
add_power_state -group group -state group_ps_1
 {-logic_expr {SST == SST1 && SSM == SSM1 && bot_inst/SSB == SSB1}}

The original full-chip UPF does not have any port or net states. Therefore, the
characterized UPF does not have any derived PST. It only has a derived group.

Power Compiler™ User Guide
U-2022.12-SP3

372

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Example: Design has a mixture of state propagation values
Consider the following full-chip UPF. In this UPF, state propagation is enabled for some
blocks and disabled for some other blocks. The following are the state propagation values
for the different blocks:

• top: state propagation = FALSE

• mid_inst: state propagation = TRUE

• bot_inst: state propagation = FALSE

Full-chip UPF
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST
create_power_domain PDTOP -supply {primary SST}
add_power_state SST -state SST1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
add_power_state SST -state SST2 {-supply_expr {power == {FULL_ON 1.0} &&
 ground == {FULL_ON 0.0}}}

set_scope mid_inst
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE

set_scope bot_inst
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE
add_power_state SSB -state SSB1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
set_scope /

Consider that the mid block is characterized. The SST supply set that is defined in the
top-most scope is brought into mid (as it is available in mid). But the power states of SST
cannot be brought into mid, as they are (as mid has state propagation enabled). So, the
states of SST are brought into mid as internal port states (with prefix SNPS_INT_).

The following is the characterized UPF for the mid block:

Characterized UPF for block mid
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state TRUE
set_design_attributes -elements {bot_inst}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST

set_scope bot_inst
add_power_state SSB -state SSB1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
set_scope $CURRENT_TOP_SCOPE

Power Compiler™ User Guide
U-2022.12-SP3

373

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

create_supply_port SST_power_port -direction in
create_supply_port SST_ground_port -direction in
connect_supply_net SST.power -ports SST_power_port
connect_supply_net SST.ground -ports SST_ground_port
add_port_state SST_power_port -state {SNPS_INT_SST1_3 0.900000}
add_port_state SST_power_port -state {SNPS_INT_SST2_7 1.000000}
add_port_state SST_ground_port -state {SNPS_INT_SST1_4 0.000000}

create_pst pst -supplies [list SST_power_port SST_ground_port]
add_pst_state pst_ps_1 -pst pst -state {SNPS_INT_SST1_3 SNPS_INT_SST1_4}
add_pst_state pst_ps_2 -pst pst -state {SNPS_INT_SST2_7 SNPS_INT_SST1_4}

create_power_state_group group
add_power_state -group group
 -state group_ps_1 {-logic_expr {bot_inst/SSB == SSB1
 && pst == pst_ps_1}}
 -state group_ps_2 {-logic_expr {bot_inst/SSB == SSB1
 && pst == pst_ps_2}}

A derived PST is created for the internal port states and a derived group is created
combining the supply set states and the derived PST states.

Example: Design has state propagation disabled and the tool creates derived states
Consider the following full-chip UPF. In this UPF, state propagation is disabled for the
entire design.

Full-chip UPF
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST
create_power_domain PDTOP -supply {primary SST}
add_power_state SST -state SST1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

set_scope mid_inst
create_supply_set SSM
create_power_domain PDMID -supply {primary SSM}
add_power_state SSM -state SSM1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
add_power_state SSM -state SSM2 {-supply_expr {power == {FULL_ON 1.0}}}
set_scope /

The SSM2 power state has only one function (power). So, this state is interpreted as:

add_power_state SSM -state SSM2 {-supply_expr {power == {FULL_ON 1.0}
 && ground == *}}

Power Compiler™ User Guide
U-2022.12-SP3

374

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Here, “*” expands to all states and voltage values that SSM.ground can take. In the
preceding UPF, SSM.ground has only one voltage value defined, which is 0.0. So, in this
case, the SSM2 power state expands to:

add_power_state SSM -state SSM2 {-supply_expr {power == {FULL_ON 1.0}
 && ground == {FULL_ON 0.0}}}
During characterize, the tool detects that there is no state in the original UPF that
matches this state and the tool creates a derived state for only the ground function, as
shown in the following statement:

add_power_state SSM -state SNPS_DERIVED_1
 {-supply_expr {ground == {FULL_ON 0.0}}}

This derived supply set state is then used in the derived group.

The following is the characterized UPF for the mid block:

Characterized UPF for block mid
set_design_attributes -elements {.}
 -attribute enable_state_propagation_in_add_power_state FALSE

create_supply_set SST
add_power_state SST -state SST1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}

create_supply_set SSM
create_power_domain PDMID -supply {primary SSM}
add_power_state SSM -state SSM1 {-supply_expr {power == {FULL_ON 0.9} &&
 ground == {FULL_ON 0.0}}}
add_power_state SSM -state SSM2 {-supply_expr {power == {FULL_ON 1.0}}}
add_power_state SSM -state SNPS_DERIVED_1
 {-supply_expr {ground == {FULL_ON 0.0}}}

create_power_state_group group
add_power_state -group group
 -state group_ps_1 {-logic_expr {SST == SST1 && SSM == SSM1}}
 -state group_ps_2 {-logic_expr {SST == SST1 && SSM == SSM2 &&
 SSM == SNPS_DERIVED_1}}

Reconciling Voltages in Power State Tables
In a hierarchical design, the tool creates a final system power state table after checking
the consistency between power states and power state tables in the top-level and block-
level power state tables. Normally, any inconsistency in voltages and supply states for
power state tables results in the tool dropping that state.

However, you can continue with the flow without dropping states by allowing the tool to
perform voltage reconciliation, either globally or for specific block boundaries.

Power Compiler™ User Guide
U-2022.12-SP3

375

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

To enable voltage reconciliation across all hierarchical boundaries with an infinite voltage
matching tolerance, use the following command:

dc_shell> set_design_attributes -elements {.} \
 -attribute upf_reconciliation_automatic true
This specification takes precedence over any block-specific attributes and thresholds. The
tool considers every hierarchical boundary to be a reconciliation boundary. In a top-down
flow, the power states of the higher scope power state table are pushed to the lower scope
power state tables. In a bottom-up flow, the tool checks consistency between attributes
pushed from the block level to the top level.

However, you can continue with the tool flow without dropping states by setting the
upf_reconcile_boundary design attribute to mark a block boundary. To specify that
the tool should skip all power state table checking below the boundary hierarchy, set the
attribute to skip, as follows:

dc_shell> set_design_attributes -models IP1 \
 -attribute upf_reconcile_boundary "skip"
To specify that the tool should reconcile voltages for all power state tables below the
boundary hierarchy, set the attribute to \, as follows:

dc_shell> set_design_attributes -models IP1 \
 -attribute upf_reconcile_boundary "reconcile_voltages"
If you reconcile the voltages, you can set a voltage tolerance that defines a range of
acceptable voltages for block-level states. For example, the following command specifies
a single tolerance on a specific supply:

dc_shell> set_variation -supply {BLK/VDD} -tolerance {0.2}
The following command specifies a negative tolerance (the first value) and a positive
tolerance (the second value) on a specific supply:

dc_shell> set_variation -supply {BLK/VDD} -tolerance {0.2 0.4}
The following command specifies a global tolerance on the entire design:

dc_shell> set_variation -tolerance {0.2}
Example of Voltage Reconciliation

Consider the top-level power state table shown in Table 30 and the block-level power state
table shown in Table 31, which have similar supply sets.

Power Compiler™ User Guide
U-2022.12-SP3

376

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Table 30 Top-Level Power State Table

State VDD1 VDD2 VDD3 VDD4

S0 1.0 1.4 0.75 0.9

S1 1.25 1.4 0.85 1.15

S2 0.85 1.3 0.85 1.15

S3 OFF 1.3 0.85 1.15

Table 31 Block-Level Power State Table

State VDD1 VDD2 VDD3 VDD4

S0 1.0 1.4 0.75 0.9

S1 1.25 OFF 0.85 1.15

S2 0.9 1.2 0.75 1.25

The following command sets a voltage tolerance of 0.1 for the block-level states:

dc_shell> set_variation -tolerance {0.1}
The block-level power state table with the resulting voltage ranges is shown in Table 32.

Table 32 Block-Level Power State Table After Range Expansion

State VDD1 VDD2 VDD3 VDD4

S0 0.9-1.1 1.3-1.5 0.65-0.85 0.8-10

S1 1.15-1.35 OFF 0.75-0.95 1.05-1.25

S2 0.8-1.0 1.1-1.3 0.65-0.85 1.15-1.35

The top-level S0 state is aligned with the block-level S0 state. The top-level S1 state is
dropped due to a conflict in the VDD2 value of the block-level S1 state. The top-level S2
state is aligned with the block-level S2 state. The top-level S3 state is dropped due to a
conflict in VDD1. The final system power state table is shown in Table 33.

Power Compiler™ User Guide
U-2022.12-SP3

377

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Table 33 Final System Power State Table After Voltage Reconciliation

State VDD1 VDD2 Vdd3 VDD4

S0 1.0 1.4 0.75 0.9

S2 0.85 1.3 0.85 1.15

Reporting Voltage Reconciliation Constraints

To display the voltage tolerances set on the supplies, use the report_pst -reconcile
command. The report is similar to the following:

dc_shell> report_pst -verbose -reconcile
--
Reconciliation skipped blocks
 : N/A
--
Reconciliation on blocks
 : mid
--
Reconciliation thresholds
Global : (-, -)
Threshold applied on supplies :
SS1.power : (-0.10, +0.10)
SS1.ground : (-,-)
SS2.power : (-0.10, +0.10)
SS2.ground : (-,-)
--

Scope : top
--
Supply names : SS1, SS1, SS2, SS2
Resulting power states in this scope:

 SS1| SS1| SS2| SS2|
 [p]| [g]| [p]| [g]|
 drv : ON1| ON4| ON1| ON5|
 drv : ON2| ON4| ON2| ON5|
--

Reporting Power State Tables
The report_pst command generates a report of the power states in the current design.

Power Compiler™ User Guide
U-2022.12-SP3

378

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

For example, consider a flow that includes the following commands to define power states
and associate supply nets with supply set power states:

add_power_state SST -state S1 {-supply_expr \
 {power == '{FULL_ON, 0.8, 0.9, 1.0} && ground == '{FULL_ON, 0.0}}}
add_power_state SSM -state S2 {-supply_expr \
 {power == '{FULL_ON, 0.8, 0.9, 1.0} && ground == '{FULL_ON, 0.0}}}
add_power_state SSM -state S3 {-supply_expr \
 {power == '{FULL_ON, 0.8, 1.0, 1.2} && ground == '{FULL_ON, 0.0}}}

The report generated by the report_pst -verbose command is similar to the following:

 SST| SSM|
drv: S1| S2|
drv: S1| S3|

The -verbose option writes the full list of state names in the report. Without this option,
the report shows an asterisk (*) to indicate that all states can be used.

To indicate voltage values in a power state table, use the -voltage_type option. The valid
arguments are all and nominal. The report header includes the labels [p], [g], [nw] and
[pw] to indicate functional nets defined on the supply sets for power, ground, n-well, and p-
well supplies respectively.

For the power state table in the example, the report generated by the report_pst
-verbose -voltage_type nominal command is similar to the following:

 SST| SSM|
 [p][g]| [p][g]|
drv: S1 [0.9][0.0]| S2 [0.9][0.0]|
drv: S1 [0.9][0.0]| S3 [1.0][0.0]|

The report generated by the report_pst -verbose -voltage_type all command is
similar to the following:

 SST| SSM|
 [p][g]| [p][g]|
drv: S1 [0.8, 0.9, 1.0][0.0]| S2 [0.8, 0.9, 1.0][0.0]|
drv: S1 [0.8, 0.9, 1.0][0.0]| S3 [0.8, 1.0, 1.2][0.0]|

Visually Analyzing Power State Tables in the UPF Diagram View
To analyze and debug the isolation and the level-shifter strategies in a UPF design, use
the UPF diagram view with the Power State Table panel. You can view the power states
for each supply in a power state table and examine their relationships in the UPF diagram.

Figure 103 shows an example of the UPF diagram view and Power State Table panel
during always-on analysis.

Power Compiler™ User Guide
U-2022.12-SP3

379

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Power State Tables

Feedback

Figure 103 Always-On Analysis Using the Power State Table Panel

The Power State Table panel appears automatically when you open the UPF diagram
view. You can hide or display this panel by choosing View > Toolbars > Power State Table.

The Power State Table panel provides the following types of analysis:

• Always-on analysis compares the on-off states between any two supplies, including
both power and ground supplies

• Multivoltage level-shifter analysis compares the voltage relationships between supplies

During always-on analysis, you can compare the power and ground supplies in the power
state table because the combination of the power and ground supplies defines the always-
on relationships between the power domains.

For more details, see, Analyzing Multivoltage Design Connections in the GUI.

During multivoltage level-shifter analysis, to decide if a level shifter is needed between
a driver and a load supply, only the power supplies of the power domains need to be
compared; the tool supports 0 volts or the off state for the ground supply.

Power Compiler™ User Guide
U-2022.12-SP3

380

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Support for Well Bias

Feedback

Figure 104 shows an example of the UPF diagram view and Power State Table panel
during multivoltage level-shifter analysis.

Figure 104 Multivoltage Level-Shifter Analysis Using the Power State Table Panel

For more information, see the “Visualizing Power State Tables” topic in Design Vision
Help.

Support for Well Bias
Some process technologies allow dedicated voltage supplies, instead of normal rail
voltages, to be applied to n-well and p-well regions of the chip. Applying a bias voltage to
a well changes the threshold voltage for transistors in the well, affecting the performance
and leakage current.

The Power Compiler tool offers an optional mode to specify the n-well and p-well bias
supply infrastructure using UPF commands. In this mode, the tool automatically makes
supply connections to the well bias pins.

Power Compiler™ User Guide
U-2022.12-SP3

381

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Using a Non-Bias Block in a Bias-Enabled Design

Feedback

To enable the UPF-based well bias mode, set the enable_bias design attribute to true in
the UPF command file as follows:

set_design_attributes -elements {.} -attribute enable_bias true

With the enable_bias design attribute set to true, supply sets and supply set handles
can be used to specify the bias supply connections. The well bias pins, along with the
power supply and ground pins, are connected automatically for standard cells, macros,
and other types of cells.

For more information about well bias modeling, see the Library Compiler User Guide.

Using a Non-Bias Block in a Bias-Enabled Design
The Power Compiler tool supports the use of non-bias blocks inside a bias-enabled
design, without defining the non-bias blocks inside separated scopes. To enable this
feature, set the upf_allow_non_bias_domain_in_bias_scope variable to true:

dc_shell> set upf_allow_non_bias_domain_in_bias_scope true

This feature allows you to use libraries that have library cells both with and without
bias PG-pins, without adding any restriction to them. You can mix supply sets with
two functions and four functions inside the same scope, without implementing scoped
connections through supply ports for having them in different sections of your design.

Note:
• This feature is disabled by default.

• When using this feature, the top-most domain must be bias enabled.
You can define power domains that have bias-disabled blocks as root
cells, inside bias-enabled scopes; however, all the root cells must have a
matching bias definition either bias on or bias off.

• When using this feature, the tool still creates p-well and n-well supply set
functions for the non-bias block scoped in a bias-enabled design. However,
you need not define the voltages for these implicit supply sets.

• With the flexibility of inserting library cells with bias PG-pins in non-bias
regions, if you have matching operating conditions and matching power and
ground voltages between bias and non-bias sections of your design, you
could have bias library cells mapped into your non-bias region. To avoid this
behavior, use the set_target_library_subset command to ensure that
the non-bias block is mapped to a proper non-bias PG-pin exposed library
cell.

Power Compiler™ User Guide
U-2022.12-SP3

382

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Skipping Bias Checks

Feedback

Skipping Bias Checks
In the Power Compiler tool, instantiating cells without bias PG pins, in a bias design, is not
allowed. During the execution of the check_mv_design command, the tool performs this
bias check and, for each cell violating this rule, depending on the type of the cell, prints an
appropriate warning message.

However, you might want to use a few non-bias library cells in both bias and non-
bias designs. To cater to this requirement, you can specify a set of library cells
and cell instances for the Power Compiler tool to skip the bias checks. Use the
set_non_bias_approved_list command with the -lib_cells option to specify the list of
library cell reference names for the tool to skip the bias check. Similarly, use the command
with the -cells option to specify the list of cell instance names for the tool to skip the bias
check.

dc_shell> set_non_bias_approved_list
 -lib_cells list_of_library_cells

dc_shell> set_non_bias_approved_list
 -cells list_of_cell_instances

Note:
• This feature does not skip the bias checks on power management cells

namely, isolation, level-shifter, and enable-level-shifter cells, repeaters,
retention registers, and always-on buffers and inverters, with the only
exception being power switch cells. You can use this feature to skip the bias
checks on all other types of cells such as power switch cells.

• If power management cells are specified in the option lists of any of the
preceding two options of the set_non_bias_approved_list command,
the tool does not skip the bias checks on these cells. The tool prints the
UPF-975 summary message informing you on the number of library cells
and cell instances on which the bias check is not skipped.

Inserting Power Management Cells
Power management cells such as level shifters and isolation cells are not usually part of
the original design description. They are inserted during the logic synthesis flow. Buffer-
type level shifters can be inserted by the tool as part of compilation. You can also insert
them manually by instantiating the cells in RTL or by using specific commands that insert
level shifters. Similarly, isolation cells and enable-type level shifters can be instantiated at
the RTL level of the design description or inserted by using commands that insert isolation
cells.

Power Compiler™ User Guide
U-2022.12-SP3

383

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Inserting Power Management Cells

Feedback

You can also insert these cells by using the insert_mv_cells command. This command
use the strategies defined in the UPF file when inserting these cells. Using options of the
insert_mv_cells command, you can choose to insert only the isolation cells or only the
level shifter cells, or both. By default, the command inserts both isolation and level-shifter
cells. You can use this command on both RTL and gate-level designs.

The naming convention of the inserted cells is as follows:

<name_prefix>_snps_<power_domain_name>_<isolation_strategy_name>_snps_
<pin_name>_<instance_index>_<name_suffix>
For enable level-shifter cells with both a related isolation strategy and a level-shifter
strategy, the isolation and level-shifter prefix and suffix are added to the new name. The
new naming convention for these enable level-shifter cells is as follows:

<levelshift_prefix><isolation_prefix>_snps_<power_domain_name>_
<isolation_strategy_name>_snps_<pin_name>_<instance_index>_
<isolation_suffix><levelshift_suffix>

There is no change in the naming of level-shifter and retention cell instances.

The insert_mv_cells command inserts the power management cells in the following
order:

1. Repeaters or buffers

2. Isolation cells

3. Level-shifter cells

4. Enable level-shifter cells. Based on the requirement, replace the isolation cells by
enable level-shifter cells.

Table 34 summarizes the command option and command sequences that can result in the
insertion of enable level-shifter cells.

Table 34 Command Sequences and Enable Level-Shifter Cell Insertion

Command option and sequence Enable level-shifter cell inserted

insert_mv_cells -all yes

insert_mv_cells -isolation -level_shifter yes

insert_mv_cells -isolation insert_mv_cells
-level_shifter

yes

insert_mv_cells -level_shifter
insert_mv_cells -isolation insert_mv_cells
-level_shifter

yes

Power Compiler™ User Guide
U-2022.12-SP3

384

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

Table 34 Command Sequences and Enable Level-Shifter Cell Insertion (Continued)

Command option and sequence Enable level-shifter cell inserted

insert_mv_cells -level_shifter no

insert_mv_cells -isolation no

insert_mv_cells -level_shifter
insert_mv_cells -isolation

no

Note:
You must uniquify your design by using the uniquify command before
inserting the power management cells. Otherwise, the Power Compiler tool
issues an error message.

Relaxing PVT Library Constraints for Power Management Cells
During linking and compilation, if you do not have PVT library cells that match the
operating conditions of your power management cells, the tool issues library setup error
messages (LIBSETUP-001). To run the synthesis flow without addressing unavailable PVT
library cells, use the set_upf_cell_mismatch command.

When you use the set_upf_cell_mismatch command, you can specify which constraints
can be violated for power management cells. This command applies to retention, isolation,
and level-shifter cells. If the tool cannot map a cell to one in the target library with
matching constraints, it maps the cell to a target library cell that violates the constraint.

After you compile the design, the tool issues information messages to indicate the
number of cells that are mapped with relaxed PVT constraints. You can also use the
report_upf_cell_mismatch command to report which cells are mapped by relaxing
constraints.

Reviewing the UPF Specifications
After specifying the power constraints using UPF, you can review the design using the
commands or using the GUI.

Power Compiler™ User Guide
U-2022.12-SP3

385

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

Commands to Query and Edit Design Objects
To query and edit design objects, use the following commands:

• find_objects
The command finds logical hierarchy objects within the specified scope and returns the
hierarchical names that match the specified criteria. The command returns a null string
when nothing matches the specified search pattern.

• Query commands

To query the UPF objects, use the following commands. The query is resolved when
the command is executed, and the result of the query is used by the Power Compiler
tool.

◦ query_cell_instances
Returns a list of instance names for all instances of a given reference cell in the
current scope of the design.

◦ query_cell_mapped
Returns the reference cell name of a given cell instance.

◦ query_net_ports
Returns a list of ports logically connected to a specified net. By default, the
command returns only the ports present at the level of the current scope.

◦ query_port_net
Returns the name of the net logically connected to a specified port, if any such net
exists.

◦ query_port_state
Returns information about the port states that have been previously defined using
the add_port_state command

◦ query_pst
Returns information about the power state tables previously defined with the
create_pst command

◦ query_pst_state
Returns information about the states that have been previously defined with the
add_pst_state command

◦ query_power_switch

Power Compiler™ User Guide
U-2022.12-SP3

386

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

Returns information about the power switches previously defined with the
create_power_switch command

◦ query_map_power_switch
Returns information about the power switch library cells previously mapped to the
UPF power switches with the map_power_switch command

• Editing commands

The editing commands are not written in the UPF file written by the save_upf
command. However, the changes to the netlist are available in the Verilog and VHDL
netlist written by the tool.

◦ connect_logic_net

◦ create_logic_net

◦ create_logic_port

Reviewing the Power Intent Using the Design Vision GUI
The Power menu in the GUI allows you to specify, modify, and review your power
architecture. It also lets you view the UPF diagram and examine the UPF specification
defined in your design.

If you have not defined the power intent for your design, see Defining Power Intent With
UPF Commands.

If you have already defined the power intent for your design, the Visual UPF dialog box
displays the details of your power specification. Using the Power Domains and Power
Domain Properties sections, you can edit the power definitions: add new components,
redefine the association of the hierarchical cells with the power domains, delete a power
domain, and so on.

To open the Visual UPF dialog box:

• Choose Power > Visual UPF

When you open the Visual UPF dialog box, the Visual UPF appears, as shown in the
example in Figure 58.

The Visual UPF views that show your power intent are

• Design or Logic Hierarchy View

Select the Design Hierarchy tab to view the logic hierarchy of your design, as shown in
Figure 58.

Power Compiler™ User Guide
U-2022.12-SP3

387

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

• UPF Diagram view

Select the UPF Diagram tab to view the pictorial representation of your power
definitions as shown in Figure 105.

Figure 105 UPF Diagram View in the Visual UPF Dialog Box

Power Compiler™ User Guide
U-2022.12-SP3

388

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

• Power Hierarchy view

Select the Power Hierarchy tab to see the power hierarchy of your design. Figure 106
shows the Power Hierarchy view of a design.

The Power Hierarchy view has two sections. The section on the top shows the
hierarchy tree with the connections between different power objects. The section at
the bottom shows more details and properties of the object that you select in the top
section.

Figure 106 Power Hierarchy View in the Visual UPF Dialog Box

Power Compiler™ User Guide
U-2022.12-SP3

389

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

• UPF Script view

Use the UPF script tab to view the UPF script for your power definitions. Figure 107
shows the UPF Script view. The colors used in the script help to differentiate the UPF
commands and the power objects.

Figure 107 UPF Script View of the Visual UPF

Power Compiler™ User Guide
U-2022.12-SP3

390

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reviewing the UPF Specifications

Feedback

• Error and Warning view

The Error/Warning tab in the Visual UPF view becomes active when your modifications
cause errors or warnings, as shown in Figure 108. When there are no errors or
warnings, this tab is disabled. You can see the details of the error and warning
messages in this view.

Figure 108 Error and Warning View in the Visual UPF Dialog Box

Power Compiler™ User Guide
U-2022.12-SP3

391

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Applying Power Intent Changes
After defining or modifying the power intent, you can do one of the following:

• Save the power intent as a UPF script

Click the Save Script As button to save the power intent script in a file. The file is
saved in ASCII format, as a UPF file, but the power intent is not applied to the design
database of the tool. You can run this script either in the batch mode or interactively, to
apply the power intent.

This feature can be useful when your changes are not yet complete, and you have
to save it for a later use. It can also be useful when you have to edit the file before
running it. For example, when you create a power state table, all the possible power
states are populated in the table. Before running the script, you must edit the script to
remove or comment the states that are not required.

• Apply the power intent to the design database

Click OK to apply the power intent in the design database. Until you click OK, power
intent specifications are only contained in the Visual UPF dialog box and do not affect
the design database.

Examining and Debugging UPF Specifications
The Power Compiler tool provides several commands and display features that analyze
and report multivoltage aspects of the design. See the following topics for more
information:

• The analyze_mv_feasibility Command

Use this command to report resolved isolation strategies and determine whether
strategies can map successfully to library cells.

• The check_mv_design Command

Use this command to check for design errors that result in multivoltage constraint or
rules violations.

• The analyze_mv_design Command

Use this command to report path-based details of a multivoltage design.

In addition, the check_library command in Library Compiler supports specific checks
that are useful in the UPF Flow. For more details, see the Library Checking chapter in the
Library Quality Assurance System User Guide.

Power Compiler™ User Guide
U-2022.12-SP3

392

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

The analyze_mv_feasibility Command
The analyze_mv_feasibility command can generate reports of resolved power
management strategies and cell mapping feasibility. By default, the command generates
both types of reports. However, you can specify which analysis to perform by using the
following options:

• The -resolved_strategy option reports the resolved power management strategies
of a design. A resolved strategy is the strategy that the tool selects for implementation
based on precedence rules.

• The -lib_cells option reports whether the tool can map power management cells
with the available libraries.

If you do not specify one of these options, or if you specify both options, the tool generates
both types of reports.

For more information, see the following topics:

• Reporting Resolved Strategies

• Reporting Cell Mapping Feasibility

Reporting Resolved Strategies
Use the analyze_mv_feasibility command with the -resolved_strategy option to
analyze and report the resolved power management strategies of a design. A resolved
strategy is the strategy that the tool selects for implementation based on precedence rules.

The -resolved_strategy option generates a text report that includes the following:

• All domain boundaries on which isolation, level-shifter, and repeater strategies are
resolved

• All sequential elements on which retention strategies are resolved

For example, consider the design in Figure 109. PDB, the bottom-level power domain,
resides within PDM, the middle-level power domain, which is contained within PDT, the
top-level power domain.

Power Compiler™ User Guide
U-2022.12-SP3

393

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Figure 109 Example Power Domain

The UPF for this design is as follows:

create_power_domain PDT
create_power_domain PDM -elements {mid}
create_power_domain PDB -elements {mid/bot}
set_isolation iso1 -domain PDT -applies_to outputs \
 -applies_to_boundary both
set_isolation iso2 -domain PDM -applies_to inputs \
 -applies_to_boundary upper
set_isolation iso3 -domain PDM -applies_to both \
 -applies_to_boundary lower
set_isolation iso4 -domain PDB -applies_to outputs \
 -applies_to_boundary upper
set_level_shifter ls1 -domain PDT -elements {mid/in1} \
 -applies_to_boundary lower
set_level_shifter ls2 -domain PDM -elements {mid/in1}
set_repeater rptr1 -domain PDM -elements {mid/in2}
set_retention ret1 -domain PDB -elements {mid/bot/q_reg}

Power Compiler™ User Guide
U-2022.12-SP3

394

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

The default resolved strategy report is similar to the following:

dc_shell> analyze_mv_feasibility -resolved_strategy

Attributes that prevent power management cell insertion
 dt - dont_touch
 an - analog net
 pad - pad-port path
 pg - power/ground pin

Resolved isolation strategies:

Domain-boundary HighConn (domain) LowConn (domain) Attributes

 out1 -- iso1 (PDT) pad
 out2 -- iso1 (PDT) --
 mid/in1 iso1 (PDT) iso2 (PDM) --
 mid/in2 iso1 (PDT) iso2 (PDM) --
 mid/bot/in1 iso3 (PDM) -- --
 mid/bot/in2 iso3 (PDM) -- --
 mid/bot/out1 iso3 (PDM) iso4 (PDB) --
 mid/bot/out2 iso3 (PDM) iso4 (PDB) --

Resolved Level Shifter Strategies:

Domain-boundary HighConn (domain) LowConn (domain) Attributes

 mid/in1 ls1 (PDT) ls2 (PDM) --

Resolved Repeater Strategies:

Domain-boundary HighConn (domain) LowConn (domain) Attributes

 mid/in2 -- rptr1 (PDM) --

Resolved Retention Strategies:

 Cell Strategy (domain) Attributes

 mid/bot/q_reg ret1 (PDB) --

Power Compiler™ User Guide
U-2022.12-SP3

395

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

You can use additional options to restrict the scope of the report, as follows:

• The -domain option restricts the report to include only the cells and the boundary pins
of the specified domain. You cannot use the -domain option with the -lib_cells
option.

• The -strategy option restricts the report to include only the cells and boundary pins
that have a given resolved strategy. The -strategy option must be used with the
-domain option, and as a result, it cannot be used with the -lib_cells option.

• The -elements option restricts the report to include only the specified elements. You
must provide the full hierarchical element names.

• The -isolation, -enable_level_shifter, -repeater, and -retention options
restrict the report to include only the specified type of strategy.

• The -disable_clubbing option changes the report format to list elements in separate
rows instead of the default format, which groups hierarchical cells or buses together.

In a design with heterogeneous fanout, a pin might be associated with more than one
isolation strategy. In this case, the report contains an additional column that specifies the
load on the pin, as shown in the following example:

>

Resolved isolation strategies:

Domain-boundary Load HighConn (domain) LowConn (domain) Attributes

 A/out M1/B -- iso1 (PDT) pad
 A/out M1/B2/C -- iso1 (PDT) --

Reporting Cell Mapping Feasibility
You can use the analyze_mv_feasibility command to analyze whether the Power
Compiler tool can map power management cells with the available libraries. If any cells
cannot be mapped, the tool generates a report that provides details about every element
that cannot be mapped.

To generate a cell mapping report without also generating a resolved strategy report, use
the -lib_cells option. The following options apply only to the resolved strategy report
capability and therefore cannot be used with the -lib_cells option: -domain, -strategy,
-retention,-repeater, and -disable_clubbing.

Cell mapping feasibility analysis is available for isolation cells by using the -isolation
option and for enable level-shifter cells by using the -enable_level_shifter option. In
the absence of these options, the tool analyzes both types of cells. The tool also reports
level-shifter failure reasons when using analyze_mv_feasibility without any option.

Power Compiler™ User Guide
U-2022.12-SP3

396

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

The recommended procedure is to use the analyze_mv_feasibility command after you
read the RTL and load the UPF, but before you perform synthesis with the compile_ultra
command. If you use the analyze_mv_feasibility command after power management
cell insertion, the tool performs the analysis based on the current status of the netlist.
The analysis results might be different in these two use cases because optimizations
performed during the synthesis operation might prevent specific library cells from being
used.

If any power management cells cannot be mapped, the tool issues a UPF-909 error
message and returns a Tcl status of 0. In addition, the tool provides a text report about
cells that cannot be mapped. An example of the text report is as follows:

Isolation mapping failures:

Elements(s) Strategy Domain Clamp Sense Reasons
--
mid_inst_1 PD1_ISO1 PD1 0 TLS mismatch(2)
--

TLS mismatch: Isolation library cell(s) cannot be used as they are not
 part of target_library_subset constraint.

Error: Not all the isolation and enable level shifter cells can be
 mapped (UPF-909)
0

Reporting Mapping Feasibility for Level-Shifters
Use the analyze_mv_feasibility command with the -level_shifter and the
-lib_cells options to perform a mapping feasibility check for level-shifters and generate
a global report of failure reasons on all the paths where level-shifter violation cannot be
addressed. The global report, however, does not contain detailed information on the level-
shifter insertion paths.

For a detailed path-based report, use the additional option -elements with a list of specific
pin/net/cell names. This path-based report provides detailed information, including the
fanout tree details and the level-shifter failure reasons, on the paths containing the pins/
nets specified in the element list. Power state table (PST) information of the driver and
load supplies is also reported.

Note:
When using -elements, use full hierarchical names of the specific pins, nets, or
cells.

Examples

Global Report: Target Library has Level-Shifters

dc_shell> analyze_mv_feasibility -lib_cells -level_shifter

Power Compiler™ User Guide
U-2022.12-SP3

397

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

In this scenario, the preceding command generates a global report which provides
information on all the paths where a level-shifter cannot be inserted. The failure reasons
are shown in the Failure reasons column along with the corresponding driver pin name of
the violating path in the Path drivers column.

Path-Based Report: Target Library has Level-Shifters

dc_shell> analyze_mv_feasibility -lib_cells -level_shifter \
 -elements Bot/reg/Q
In this scenario, the target library has level-shifter cells. On running the preceding
command, the tool is unable to insert level-shifters due to several reasons. The following
path-based report provides a comprehensive picture on why the level-shifter insertion
failed on each path, along with the fanout tree details.

Power Compiler™ User Guide
U-2022.12-SP3

398

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Power Compiler™ User Guide
U-2022.12-SP3

399

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

For a description of the table columns in the report, see the following table:

Column Description

ID ID of the pin name as per the fanout tree structure

PIN Pin name

Net Net name connected to the pin

Constraints Constraints set on the pin or net. This includes dont_touch on
net or cell, size only cell, and level-shifter strategy name.

Domain Domain name of the net segment

No. of available
supplies

Count of available supplies

Failure reasons Local failure reasons

No. of usable library
cell

Number of library cell that could have been used

Generating HTML Cell Mapping Reports
The Power Compiler tool optionally provides detailed information about unmapped power
management cells in HTML reports. HTML reporting is off by default. You can enable this
feature as follows:

• To generate HTML reports at the insert_mv_cells, insert_dft, and compile_ultra
commands, set the upf_generate_pm_cell_html variable to true (the default is
false).

• To generate HTML reports at the analyze_mv_feasibility command, use the
-format html option. The tool honors this option regardless of the setting of the
upf_generate_pm_cell_html variable.

When HTML reporting is enabled and the design has unmapped power management
cells, the tool creates a directory named pm_cells_map_failure.x in the run directory. The
directory name x is an integer index that starts with 0 for the first report and increments by
1 for each additional report. Each execution of any of the listed commands generates a
new report, which results in a new directory for that report.

In each pm_cells_map_failure.x directory, the tool writes HTML files named index.html,
iso.html, and els.html. The index.html file is a top-level summary page with links to the
detail HTML files. All commands generate detail files for isolation cell mapping failures
(iso.html) and enable level-shifter cell mapping failures (els.html). The compile_ultra
and insert_dft commands also generate a detail file for retention cell mapping failures
(retention.html).

Power Compiler™ User Guide
U-2022.12-SP3

400

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Figure 110 is an example of the top-level summary page and Figure 111 is an example of
the isolation cell summary page.

Figure 110 Top-Level HTML Summary Page

Figure 111 Isolation Cell Summary Page

Many entries in the table are links to additional information. For example, Figure 112
shows expanded information about failure reasons.

Figure 112 Isolation Cell Detail Page

The check_mv_design Command
To check for design errors, including multivoltage constraint violations, electrical isolation
violations, connection rules violations, and operating condition mismatches, use the
check_mv_design command.

Power Compiler™ User Guide
U-2022.12-SP3

401

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Multivoltage Design Violations in the GUI
The MV Advisor violation browser provides a visual analysis and debugging environment
for multivoltage design violations. You can check the design for issues such as
multivoltage constraint violations, electrical isolation violations, connection rule violations,
and operating condition mismatches. After checking a design, you can use the violation
browser to examine the violation report.

To open the MV Advisor violation browser, choose Power > MV Advisor.

The violation browser automatically loads the current violation report if a valid report is
available for the current state of the design. If a valid report does not exist, the violation
browser provides links that you can use to load a saved report or generate a new report,
as shown in Figure 113.

Figure 113 Violation Report When a Valid Report is Not Available

The violation browser groups the violations based on specific properties, displays detailed
information about the violations, and guidance for investigating and fixing them. When
you select a violation, the violation browser displays details such as an explanation of the
warning or error message and suggestions for fixing the violation.

The violation browser also provides access to context-aware reports and other analysis
tools. You can perform the following actions:

• Select pin names and view information about the pins

• Display man pages (in the man page viewer) for warning and error messages

• Visually inspect a violation by displaying it in a schematic view

You can display the report for an individual violation in a new instance of the Design Vision
window that serves as a debugging work environment.

Power Compiler™ User Guide
U-2022.12-SP3

402

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

You can check the design for violations before or after you open the violation browser.
To check the design before opening the violation browser, use the check_mv_design
command. When the violation browser is open, you can use the Check MV Design dialog
box to check the design.

Generating Design Violation Reports
You can analyze multivoltage design problems by checking the design for errors and
generating a violation report that you can view in the console log view and save in a file.
You can check the design at any time by using the check_mv_design command. For more
information, see the man page. When the MV Advisor violation browser is open, you can
check the design by using the Check MV Design dialog box.

When you check the design, the tool creates or updates the current violation report by
default. If you do not specify a file name, the tool stores the current report information in a
temporary file until the end of the current session. If you specify a file name, the tool saves
the report in an XML file and also creates an XSLT file with the same name with a .xslt
extension. The XSLT file contains auxiliary information that is required when you view the
violation report in a Web browser.

The MV Advisor violation browser supports the violations listed in Table 35. The
check_mv_design -output command identifies and reports several other issues and
these are not supported by the GUI for reporting and fixing details.

Table 35 Violations Supported by MV Advisor

LIBSETUP-001 LIBSETUP-001a LIBSETUP-001b MV-038 MV-044 MV-076 MV-078

MV-166 MV-168 MV-168b MV-231 MV-231a MV-231b MV-232c

MV-232l MV-237 MV-252 MV-513 MV-514 MV-514a MV-514b

MV-516 MV-529 MV-534 MV-545 UPF-067 UPF-103

Violation Groups
The violation browser groups the messages based on the source domain-sink domain pair
in the first level and the driver pin in the next level, as shown in Table 36.

Table 36 Messages Grouped by Source Domain and Sink Domain Pair

Message ID Description

MV-231 MV-231a
MV-231b

Level-shifter violations

MV-237 Paths with voltage violations

Power Compiler™ User Guide
U-2022.12-SP3

403

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Table 36 Messages Grouped by Source Domain and Sink Domain Pair (Continued)

Message ID Description

MV-252 Missing level-shifting violations specified with the -no_shift option

MV-513 Redundant isolation

MV-514 MV-514a
MV-514b

Missing isolation violations

MV-545 Missing isolation violations with the -no_isolation option

The violation browser groups the messages shown in Table 37 based on the power
domains where the cells or nets are located.

Table 37 Messages Grouped by Power Domain of the Violating Cells or Nets

Message ID Description

LIBSETUP-001
LIBSETUP-001a
LIBSETUP-001b

Cells with mismatched operating conditions

MV-044 Isolation cells used as a core cell

MV-076 Always-on nets driven by a normal cell

MV-078 Always-on cells driving a normal net

MV-166 Retention cells without a strategy

MV-168, MV-168b Isolation cells without a strategy

MV-232c MV-232l Level-shifter with violations

MV-516 Back-to-back isolation cells violation

MV-529 Unused power management cells

UPF-067 Undetermined PG pin connection

In addition, the violation browser groups messages as follows:

• MV-038 warning messages appear under one title and without multiple levels of
groups.

• MV-534 messages are based on the driver pins.

Power Compiler™ User Guide
U-2022.12-SP3

404

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

• MV-232c messages are based on the power domains in the first level and the power
supplies in the next level.

• MV-516 messages appear under one title and without multiple levels of groups.

• UPF-103 messages are based on the ignored strategy.

Use the following steps to generate or update the current violation report:

1. Click the button to run the check_mv_design command and load the report in the
MV Advisor violation browser. The Check MV Design dialog box appears as shown in
Figure 114.

2. Select or deselect the check type options as needed, to perform the required checks.
The tool performs all the checks by default.

3. Select the “To file” option.

4. (Optional) Specify a file name, to save the report in a file.

5. Click OK or Apply.

Figure 114 Check MV Design Dialog Box

The Web browser report groups the violations in the same way that the MV Advisor
violation browser groups them. However, the Web browser displays only the violation list,
the information in the violation category tree in the violation browser. It does not display
the detailed report information for each violation that the violation browser displays.

To open a violation report in your Web browser, open the XML file in a browser window.
The XSLT file must be present in the same directory.

Examining Design Violations in the MV Advisor Violation Browser
The MV Advisor violation browser provides a visual analysis and debugging environment
for design violations in a multivoltage design. You can search for and view information
about several types of multivoltage design violations. When you select a violation, the

Power Compiler™ User Guide
U-2022.12-SP3

405

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

violation browser displays details about the violation and guidance about how to proceed
in investigating the violation.

The violation browser view window consists of a button bar at the top and two panes: a
violation category tree on the left and a report view on the right.

• The violation category tree groups the violations into types, categories. and
subcategories.

You can use the expansion buttons in the category tree to expand or collapse individual
types, categories, and subcategories.

• The report view displays information about the type, category, or violation that you
select in the category tree.

Figure 115 shows an example of the MV Advisor Violation Browser with a violation
selected in the category tree and the violation report in the report view.

Figure 115 The MV Advisor Violation Browser

The buttons on the button bar at the top of the view window allow you to

• Open another violation report

• Save the violation report you are viewing

• Generate or update the current violation report

• Display the report for the selected violation in a new Design Vision window, where you
can use other analysis tools to debug the violation

To help you to evaluate the status of violations through the design flow or to compare the
reports from different design checks, you can open more than one report at the same time.
When you open a report file, the violation browser compares the design name and the

Power Compiler™ User Guide
U-2022.12-SP3

406

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

number of cells with the netlist in the current design, and displays a message if it finds any
inconsistencies.

Note:
The Design Vision GUI supports detailed reporting of how to debug and
fix violations for a subset of the issues identified and reported by the
check_mv_design -output command. For information about the checks
supported in the MV Advisor violation browser, see Generating Design Violation
Reports.

Exploring the Violations
To analyze and debug a violation, you can open the report on the Browser panel in a
new Design Vision window. By default, the Browser panel is attached to the left side of
the window. You can use the workspace area in this window to debug the violation by
clicking links at the top of the violation report to generate and display other reports and
open analysis views such as a schematic or UPF diagram view.

To explore the violation categories and view the violations within each category, do the
following:

1. Expand violation categories, showing the subcategories or violations at the next level in
the category tree.

To expand or collapse a violation category, double-click its line in the category tree or
click its expansion button in the Type column.

As shown in Figure 116, a plus sign on the expansion button means the category is
collapsed. A minus sign on the expansion button means the category is expanded.

Power Compiler™ User Guide
U-2022.12-SP3

407

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Figure 116 Detailed Report in the Report View

2. Select a violation type, category, or subcategory tree to display information about it in
the report view.

When you select a violation type, the report view displays the generic violation
message and the number of violations of that type found in the design as shown in
Figure 116.

When you select a violation category or subcategory, the report view displays the
generic violation message, the number of violations in the category, and the location of
the violations.

3. Select a violation in the category tree to display a detailed report about it in report view,
a shown in Figure 116.

When you select a violation, the report view displays the warning or error message,
a brief explanation of the message, and a detailed description of the violation that
includes debugging information and suggestions for fixing the violation.

The links at the top of the report view allow you to run report commands and other
features of the tool.

◦ To run the analyze_mv_design command and display the level shifter report in a
report view, click the analyze_mv_design link.

◦ To run the report_mv_library_cells command and display the library cells report
in a report view, click the report_mv_library_cells link.

Power Compiler™ User Guide
U-2022.12-SP3

408

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

◦ To run the report_pst command and display the power state table report in a
report view, click the report_pst link.

◦ To run the report_supply_net command and display the supply net report in a
report view, click the report_supply_net link.

◦ To view the violation in a schematic, click the schematic link.

◦ To open a UPF diagram view, click the UPF Diagram link.

◦ To open the Visual UPF dialog box, click the Visual UPF link.

In the warning or error message, click the pin name to select the pin. In the detailed
report, you can click the links to run commands and access useful features of the tool.

You can use the arrow keys on the keyboard to scroll through the report view. To scroll
up or down, press the Up Arrow key or the Down Arrow key. To move to the top or
bottom of the view, press the Page Up key or the Page Down key.

Figure 117 shows an example of the debugging environment provided by the Browser
panel in a new Design Vision window. For example, after displaying the violation report on
the Browser panel, you can click links at the top of the report to display the violation in a
schematic, open the UPF diagram view, and see the reports in report views.

Figure 117 Violation Report on Browser Panel in a New Window

Power Compiler™ User Guide
U-2022.12-SP3

409

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

The tool maintains a single, current repository for the multivoltage design violations that
you can view in the MV Advisor violation browser. If you update the violation report that
you are viewing, the tool automatically refreshes the report information in the violation
browser.

If you view an out-of-date report in the violation browser, or if a change that you make
in the design invalidates the report that you have open in a violation browser window,
the term “Out-of-date” appears in the window title bar. In addition, the violation browser
restricts hyperlinks in an out-of-date report when a link action might update the design or
manipulate design objects. If you click a restricted hyperlink, the tool displays a warning
and prompts you to continue or cancel the link action, as shown in Figure 118.

Reports, schematics, the UPF diagram, and the Visual UPF dialog box all work with the
up-to-date design. Commands that operate directly on an element reported in a violation,
such as the report_net command, can cause an error if the element no longer exists
in the design due to a previous action. Hyperlinks that are not restricted include internal
HTML jumps, man page links, and links to preview commands.

Figure 118 Out-Of-Date Violation Report Warning

The analyze_mv_design Command
The analyze_mv_design command reports path-based design details of a multivoltage
design that can be useful in debugging multivoltage design issues. The report contains
details of the variable settings for level-shifter insertion and always-on buffering, relevant
power state tables, the driver-to-load pin connections, the pin-to-pin information on
specified paths, the target libraries used for insertion of power management cells, and
other useful debugging information. You can also run this command in the GUI and see
the issues in the schematic. For details, see Analyzing Multivoltage Design Connections in
the GUI.

Power Compiler™ User Guide
U-2022.12-SP3

410

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Analyzing Multivoltage Design Connections in the GUI
You can use the Analyze MV Design dialog box to analyze your design for multivoltage-
specific connectivity issues. The analyze_mv_design command runs internally and
displays the result in a new view.

To open the Analyze MV Design view, choose Power > Debugging > Analyze MV Design.
The Analyze MV Design dialog box appears as shown in Figure 119.

Figure 119 Analyze MV Design Window

Use the dialog box to choose the type of analysis to perform, either level shifter or always
on. You can also specify the From Pin and the To Pin, where the checks have to be
performed. When you click OK, the tool runs the analyze_mv_design command.

The report of the analyze_mv_design command is displayed in a new view, as shown in
Figure 120. The report contains details of level-shifter violations.

Power Compiler™ User Guide
U-2022.12-SP3

411

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Examining and Debugging UPF Specifications

Feedback

Figure 120 Report View of the Analyze MV Design Window

The report also contains a hyperlink to the schematic; when you follow the link, the
schematic shows design objects that are specific to the reported issue, as shown in
Figure 121. In the schematic, you can

• Create a collection of the power supply nets connected to one or more pins

• View a list of the ground supply net connections for one or more pins

• View a report of power pin information for one or more cells

• View a report of PG pin library information for one or more cells

Power Compiler™ User Guide
U-2022.12-SP3

412

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information

Feedback

Figure 121 Schematic View of Analyze MV Design Window

Writing the Power Information
The power information updated during synthesis can be written out with the save_upf
command. This UPF file written by Design Compiler is referred to as the UPF’ file to
distinguish it from the UPF file that you use to synthesize the design. The UPF’ file is used
as input to downstream tools such as the IC Compiler II, PrimeTime, PrimePower, and
Formality tools.

Power Compiler™ User Guide
U-2022.12-SP3

413

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information

Feedback

The additional information in the UPF’ file are as follows:

• A comment on the first line, as shown in the following example:

#Generated by Design Compiler(E-2010.12) on Thu Oct 28 14:26:58 2010

• Explicit power connections to special cells such as level shifters and dual supply cells

• Additional UPF commands specified at the command prompt in the Design Compiler
session

If you specify UPF commands at the command prompt, along with the RTL file, update
the UPF file with these commands. This update is required for Formality to verify the
design successfully.

The UPF standard requires a simple name for the argument of certain UPF commands.
By default, the tool checks this requirement. To remove this requirement in the UPF file
written by the save_upf command, set the mv_output_enforce_simple_names variable
to false.

Preserving the Command Order in the UPF’ File
To improve the clarity of the UPF’ file, the tool

• Writes the user-specified UPF commands and tool inserted UPF commands in
separate sections

• Lists the commands in the user-specified section in the order they were specified

To distinguish the user-specified UPF command section from the tool-generated UPF
command section, the sections are separated by the derived_upf variable setting.

The beginning of the tool-generated section is marked by the following setting:

set derived_upf true
#Design Compiler added commands

The end of the tool-generated section is marked by the following variable setting:

set derived_upf false

Do not explicitly set the derived_upf variable to either true or false. Use of this variable
is restricted to the tool.

If the RTL design contains PG information, the UPF commands generated by the
convert_pg command are listed in a separate section, marked by the following
comments:

Commands created by "convert_pg"
...
End of commands created by "convert_pg"

Power Compiler™ User Guide
U-2022.12-SP3

414

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing the Power Information

Feedback

When a UPF’ file is read into the Power Compiler tool and another UPF’ file is written, the
command order is preserved in the newer UPF’ file. The file contains the user-specified
UPF command and the tool generated UPF commands in separate sections.

Note:
This feature is not supported in a hierarchical flow. If you use this feature in the
hierarchical flow, the tool issues the UPF-401 information message.

Example 43 shows the UPF’ file written out by the Power Compiler tool.

Example 43 UPF’ File
#Generated by Design Compiler

create_power_domain PDT
create_supply_net SN1 -domain PDT
create_supply_net SN2 -domain PDT

create_power_domain PDC -elements {ABC}
create_supply_net SN3 -domain PDC

set derived_upf true
#Design Compiler added commands
connect_supply_net SN1 -ports {PORT1}
connect_supply_net SN3 -ports {PORT2}
set derived_upf false

Controlling the Line Width in the UPF’ File
When the save_upf command writes the commands into an output file, by default,
commands with several arguments are not split into multiple lines. To simplify the format
of the output file for ease of use, you can control the line width of the file by using the
following variables:

• mv_output_upf_line_width
Use this variable to control the line width in the UPF file written by the save_upf
command. The default of this variable is 0, indicating that the save_upf command
does not split long lines over multiple lines.

Set this variable to a positive integer to specify the width of each line. Lines that are
longer than the specified value are split and written on multiple lines. When a line is
split over multiple lines, the end of each incomplete line that continues on the next line
is marked with a backslash character (\), as shown in Example 44.

Power Compiler™ User Guide
U-2022.12-SP3

415

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information

Feedback

When the line to be split does not have a space up to the specified limit, the tool allows
the line to exceed the limit; the line is split at the first space after the specified limit.

• mv_output_upf_line_indent
Use this variable to specify the number of spaces to indent at the beginning of
each line continuation. The default of this variable is 2 which means, the save_upf
command indents 2 spaces at the beginning of each continuing line.

Example 44 shows the UPF file written by the save_upf command, when the
mv_output_upf_line_width variable is set to 30 and the mv_output_upf_line_indent
variable is set to 3.

Example 44 UPF’ File Written With Line-Splitting Enabled
set mv_output_upf_line_width 30
set mv_output_upf_line_indent 3
set_port_attributes -ports \
 {instA/power_port} \
 -attribute snps_derived

Note:
The tool issues error messages if you set any of these variables to a value less
than 0.

Writing and Reading Verilog Netlists With Power and Ground
Information

The Power Compiler tool supports the writing and reading of Verilog netlists containing
the complete power and ground (PG) supply connection information, including supply
connections to the leaf-level library cells.

To write out a Verilog netlist with the complete PG supply connection information, use the
-pg option of the write_file command. For example,

dc_shell> write_file -format verilog -pg output top_with_pg.v
When you read in a Verilog netlist with the complete PG supply connection information
using the read_verilog -netlist command, the tool automatically recognizes and
restores the PG supply connection information stored in the netlist. If there are any
conflicts between the Verilog netlist and the connect_supply_net commands in the UPF
file, the tool reports the differences as errors.

Power Compiler™ User Guide
U-2022.12-SP3

416

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information

Feedback

Power and Ground Supply Connection Syntax
When you specify the power and ground connections in a Verilog module, the Verilog
netlist, PG supply connections use the same syntax as the logic signal connections. For
example,

module test (A, Z, VDD, VSS);
 input A, Z;
 input VDD;
 input VSS;
 ...

When power and ground nets need to cross over levels of the Verilog hierarchy that do not
have corresponding crossovers in the UPF hierarchy, the tool punches ports to carry the
PG nets into the lower levels of the hierarchy, as in the following example.

// VDDINT is not used in any leaf cells in 'top'
module top (A, Z, VDD, VSS, VDDINT);
 input A;
 input VDD;
 input VSS;
 input VDDINT;
 output Z;
 ...
 mid M1 (.A(A), .Z(Z), .VDDINT(VDDINT), .VSS(VSS));

module mid (A, Z, VDDINT, VSS);
 ...

The tool does not punch ports at the top level. If a supply net drives a cell at the top level,
but the net is not explicitly connected to a supply port or a supply set function defined in
the UPF file, the supply inputs to those cells are undriven wires.

Each module net has the same name as the UPF supply net corresponding to the PG
supply net. Because the names of the supply net does not need to match the name of the
supply port, the tool uses the following syntax for the supply net:

// corresponds to UPF statement:
// connect_supply_net VDDINT -ports VDD
module test (A, Z, .VDD(VDDINT), VSS);

Power Compiler™ User Guide
U-2022.12-SP3

417

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information

Feedback

Each instance of a cell with PG pins shows the PG connections for the instance, including
the pin name and the name of the supply net connected to the pin. The supply pins appear
last, after the signal pins, as shown in the following example:

...
SIMPLE_PG_CELL U1 (.a(A), .z(Z), .VDD(VDD0), .VSS(VSS));

COMPLEX_PG_CELL U1 (.a(A), .z(Z), .VDD(VDD0),
 .VDDBACKUP(SNPS_ss_SS_P1$primary$power),
 .VSS(VSS));
...

Supply Sets
If the UPF file uses supply sets or supply set handles, and these supplies are not resolved
to supply nets, the tool writes out the supply set definitions in the Verilog netlist. The
supply set definitions contain the SNPS_ss_ prefix and use the dollar character $ in place
of each period character that delimits the fields within a supply set identifier. For example,

module test (A, Z, .VDD1(SNPS_ss_ss1$power),
 .VDD2(SNPS_ss_pd1$primary$power),
 .VSS(SNPS_ss_pd1$primary$ground));
 input A, SNPS_ss_ss1$power,
 SNPS_ss_pd1$primary$power,
 SNPS_ss_pd1$primary$ground;
 output Z;
 wire VDDS; // switched supply
 ...

Power Switches
The Power Compiler tool does not instantiate power switch cells. However, power
switches have output supply nets that can power other cells. The tool writes out these
supply nets without drivers. For example,

 module top(a, z, VDDA, VDDB, VSS);
 input a;
 input VDDA;
 input VDDB;
 input VSS;
 output z;

 mid M1(.a(a), .z(z), .VDDA(VDDA), .VDDB(VDDB), .VSS(VSS));
 ...

Module mid(a, z, VDDA, VDDB, VSS);
 input a;
 input VDDA;
 input VDDB;

Power Compiler™ User Guide
U-2022.12-SP3

418

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Writing and Reading Verilog Netlists With Power and Ground Information

Feedback

 input VSS;
 wire VDD_SW;
 wire a1;

 SIMPLE_PG_CELL U1 (.a(a), .z(a1), .VDD(VDD_SW), .VSS(VSS));
 // The ports in the bot design are punched as follows:
 bot B1 (.a(a1), .z(z), .VDDA(VDDA), .VDDB(VDDB), .VSS(VSS),\
 .VDD_SW(VDD_SW));
 ...

The tool does not write out the PG nets and ports that do not drive any PG pins of leaf-
level cells. The power switch behavior is derived from the UPF description provided with
the PG netlist.

Reading Verilog Netlists With Power and Ground Supply
Connections
The Power Compiler tool requires PG connections to be represented in UPF format
before processing the design. When the tool reads in a Verilog netlist containing power
and ground information, it matches the PG supply connections in the netlist to the UPF
supplies and converts these connections into UPF commands. The tool issues error
messages if it finds any conflicts.

The Verilog netlist must satisfy the following requirements:

• The netlist must contain a complete set of PG connections for all cells in the design,
including standard cells.

• The netlist must be created by a tool with a valid UPF infrastructure.

• The PG connections must be intact as written by the tool, and not modified by the user.

Meeting these requirements ensures that every PG connection in the input netlist
corresponds to a UPF supply net as specified in the UPF files, and no new supply nets,
supply ports, or supply connections are needed.

The Formality and Verdi NLP tools use the PG Verilog netlist alone to represent the
PG connections of the design. These tools do not need to match the PG netlist to UPF
supplies, although they might extract other power infrastructure information from the UPF
files.

Specifying Design Instances Using SystemVerilog Elements
When using the -elements option with certain UPF commands, you can reference
SystemVerilog vector and structure elements using their RTL vector or structure name. To
enable this feature, run the following command:

set_upf_query_options -bus_struct_mode true

Power Compiler™ User Guide
U-2022.12-SP3

419

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
The Golden UPF Flow

Feedback

Setting the -bus_struct_mode option affects the set_retention, set_isolation,
set_level_shifter, and map_retention_cell commands. To use this feature, you must
have the following variables set before reading the UPF:

• bus_naming_style = "%s[%d]" (default)

• bus_dimension_separator_style = "][" (default)

• hdlin_enable_upf_compatible_naming true
This option should only be enabled when loading the initial RTL UPF and then should be
disabled after reading the RTL, as shown:

set_upf_query_options -bus_struct_mode true
load_upf block1.upf
set_upf_query_options -bus_struct_mode false

Note that the -bus_struct_mode option should be false (the default) except when
reading in the RTL UPF before any netlist editing happens. Otherwise, any vector or
structure references might return incorrect results.

The Golden UPF Flow
The golden UPF flow is an optional method of maintaining the UPF multivoltage power
intent of the design. It uses the original “golden” UPF file throughout the synthesis,
physical implementation, and verification steps, along with supplemental UPF files
generated by the Design Compiler and IC Compiler II tools. Figure 122 compares the
traditional UPF flow with the golden UPF flow.

Power Compiler™ User Guide
U-2022.12-SP3

420

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
The Golden UPF Flow

Feedback

Figure 122 UPF-Prime (Traditional) and Golden UPF Flows

The golden UPF flow maintains and uses the original “golden” UPF file unchanged
throughout the flow. The Design Compiler and IC Compiler II tools write power intent
changes into a separate “supplemental” UPF file. Downstream tools and verification tools
use a combination of the golden UPF file and the supplemental UPF file, instead of a
single UPF’ or UPF’’ file.

The golden UPF flow offers the following advantages:

• The golden UPF file remains unchanged throughout the flow, which keeps the form,
structure, comment lines, and wildcard naming used in the UPF file as originally
written.

• You can use tool-specific conditional statements to perform different tasks in different
tools. Such statements are lost in the traditional UPF-prime flow.

• Changes to the power intent are easily tracked in the supplemental UPF file.

• You can optionally use the Verilog netlist to store all the PG connectivity information,
making connect_supply_net commands unnecessary in the UPF files. This can
significantly simplify and reduce the overall size of the UPF files.

To use the golden UPF flow, you must enable it by setting the following variable:

dc_shell> set_app_var enable_golden_upf true

Power Compiler™ User Guide
U-2022.12-SP3

421

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
Reporting Commands for the UPF Flow

Feedback

After you enable this mode, to execute any UPF commands other than query commands,
you must put the commands into a script and execute them using the load_upf command.
You cannot run the commands individually on the command line or by using the source
command.

For more information about using the golden UPF mode, see SolvNetPlus article 1412864,
“Golden UPF Flow Application Note.”

Reporting Commands for the UPF Flow
The following reporting commands are supported in the Power Compiler tool. These are
not UPF standard commands.

• report_dont_touch

• report_power_domain

• report_level_shifter

• report_power_switch

• report_pst

• report_isolation_cell

• report_retention_cell

• report_supply_net

• report_supply_port

• report_target_library_subset

• report_mv_library_cells
For more details, see the command man pages.

UPF-Based Hierarchical Multivoltage Flow Methodology
Design Compiler topographical mode supports flat, top-down, and bottom-up hierarchical
UPF design flows. These flows are also supported by Synopsys tools such as the
IC Compiler II, PrimeTime, and Formality tools. This section describes the UPF portion of
the hierarchical design methodology. For basic information about the hierarchical design
methodology, see the Design Compiler User Guide.

When you synthesize your design using the UPF-based hierarchical flow, specify the
voltage for each supply net. Also specify the timing constraints as recommended in the

Power Compiler™ User Guide
U-2022.12-SP3

422

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/1412864.html
https://solvnet.synopsys.com/retrieve/1412864.html

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

SolvNetPlus article 026172, “IEEE (1801) UPF Based Design Compiler Topographical
Technology and IC Compiler Hierarchical Design Methodology.“

In the hierarchical implementation of a design, you first determine the physical partition.
Follow these guidelines while partitioning your design:

• The scopes of all power domains within a partition must be contained inside the
partition.

• For all supply connections inside a partition, supply nets must be specified within the
partition.

• The partitions should not be nested.

Hierarchical UPF Design Methodology
The following topics describe procedures for hierarchical designs.

• Block-Level Implementation

• Top-Level Implementation

• Assembling the Design

Block-Level Implementation
Creating the Blocks
Create the block-level and top-level UPF files for the design. To create the blocks, you can
use either the top-down approach or the bottom-up approach. The bottom-up approach is
preferable because this determines the smallest block that can be compiled independently.

When the individual blocks and the top are synthesized, you can assemble the design
in either the Design Compiler or IC Compiler II tools. To assemble the design using the
IC Compiler II tool, the Power Compiler tool requires the complete design database for the
design planning stage. For more details, see Assembling the Design.

Generating the Block-Level UPF Constraints
To use the hierarchical UPF methodology, your constraint specification in the UPF file must
also be hierarchical. You can choose one of the following two ways to create the block-
level and top-level UPF files:

• Write the power intent manually in the UPF file for all the blocks, including the top. If
required, write the boundary constraints for the blocks.

• Use the characterize command to create the block-level UPF constraints as well as
the boundary constraints from the full chip UPF description. It is important to remember

Power Compiler™ User Guide
U-2022.12-SP3

423

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/026172.html
https://solvnet.synopsys.com/retrieve/026172.html

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

the following points when you use the characterize command to generate the block-
level UPF constraints:

◦ If your design does not have the control signals at the block-level interfaces and
you cannot modify your block level interfaces, you must use the characterize
command to generate the block-level UPF constraints.

◦ By default, the characterize command propagates the UPF constraints in the top
design to the subblock.

However, if you use this approach, you can perform equivalence checking only on
the entire design and not on each hierarchical block.

Note:
All necessary power management control signals should be created manually.
They also have to be manually brought into the appropriate block-level
interfaces. This is the recommended approach.

Using Manually Created Block-Level UPF Files
When you create the blocks manually, each block and its power intent in the UPF file
must be written such that each block can be simulated and synthesized independently.
You might have to write the boundary constraints for the blocks to capture any port that
does not operate at the same voltage as the rest of the block. If a block contains a power
domain, the UPF constraints refer to objects and power supplies only within the block.

Using ETMs and Macros for Block-Level UPF Files
An ETM (Extracted Timing Model) is the Liberty model representation of a design. An ETM
captures the UPF information using relevant Liberty attributes. A macro design might be
represented using the Liberty model or it might be an IP provided by a vendor. The tool
treats macros and ETMs in the same way and does not distinguish between the two types
of implementation.

The tool supports ETMs and macros in the UPF hierarchical flow as follows:

• Only the UPF of the interface logic is required for the hierarchical UPF implementation

• You can also provide the full block UPF of the macro or ETM for the tool to
automatically extract the interface power intent

• The UPF intent of the macro or ETM design’s top power domain is used for design
integration

The UPF constructs can be created and referenced at the top-most scope of a macro or
ETM. Set the upf_suppress_etm_model_checking variable to true (default is false)

Power Compiler™ User Guide
U-2022.12-SP3

424

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

if you want to bypass ETM and macro checking when loading a UPF file. For example, if
ublock is modeled as an ETM, you would do the following:

set_app_var upf_suppress_etm_model_checking true
load_upf block.upf -scope ublock

Note that UPF constructs defined at the scope of nested logic within a macro or ETM are
read and ignored.

Using Design Compiler Generated Block-Level UPF Files
If you use the top-down approach to write your design or if your UPF file is nonmodular,
Design Compiler can generate the block-level UPF using the characterize command.
For the tool to correctly generate the block-level UPF file, your power domain definition
and partitioning should comply with the guidelines mentioned in UPF-Based Hierarchical
Multivoltage Flow Methodology. The UPF objects in the block should not refer to any
object that is above the block in the hierarchy. You should follow these steps to synthesize
your design using the hierarchical UPF design methodology:

1. Read the design and the UPF constraints for the entire design.

2. Specify the operating voltages for the supply nets and specify the timing constraints.

3. For each subblock in the design, perform the following tasks:

a. Run the characterize command.

This command pushes the appropriate timing and power constraints from the top-
level to the specified block. The block-level power constraints and the boundary
constraints that are specified by the set_related_supply_net command are set
on the specified block. For more details, see Characterization of Supply Sets and
Supply Nets.

The characterize command can also automatically set the related supply net on
the ports of the block-partition. To avoid voltage violations at the boundary, that can
be caused by the automatic setting of related supply net, you must define level-
shifter strategies at the block-partition boundary. If you do not want certain ports
to be level shifted, use the set_level_shifter -no_shift command. For more
details see Automatic Inference of Related Supply Nets.

While setting the related supply net, additional checks are performed for voltage
violations, availability of the supply net, and so on, and appropriate error and
warning messages are issued.

b. Save the characterized block and the design data.

Power Compiler™ User Guide
U-2022.12-SP3

425

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

Set the characterized block as the current instance and use the write command
to save the characterized block. The command sequence is shown in the following
example:

characterize BlockA
set current_instance BlockA
write -format ddc -hierarchy -output BlockA.characterized.ddc

c. Remove the block from the top level using the remove_design -hierarchy
command. When you remove the block, the UPF constraints associated with the
block are also removed.

4. When all the subblocks have been characterized, saved in .ddc format, and removed,
save the top-level design in .ddc format.

Synthesizing the Blocks
To synthesize each subblock of the hierarchical design, read the design in one of the
following two methods:

• The RTL file and the manually written UPF file for each block.

• GTECH netlist in the .ddc file for each block, written after the characterization step.

The difference between the two is the clarity of the block-level UPF and the automatic
inclusion of boundary constraints when you use the .ddc file generated after the
characterization step and the ability to perform hierarchical verification using Formality.
The power intent created by the characterize command is the same as the manually
created UPF file. If you use the RTL design and the manually written UPF file, you should
create appropriate boundary constraints.

You then use either the top-down or bottom-up synthesis flow options supported in Design
Compiler topographical mode to perform block-level synthesis. For more information, see
SolvNetPlus article 021034, “Hierarchical Flow Support in Design Compiler Topographical
Mode.”

Power Compiler™ User Guide
U-2022.12-SP3

426

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/021034.html
https://solvnet.synopsys.com/retrieve/021034.html

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

Top-Level Implementation
Follow these steps to perform the top-level synthesis:

1. Read the block-level designs.

The block-level design can be any one of the following types:

◦ A synthesized block-level design

◦ A block abstraction created in either the Design Compiler or IC Compiler II tool

Specify the blocks using the set_top_implementation_options command.

2. Read the top-level design in either of the following formats:

◦ RTL design and UPF files; use the load_upf command to read the UPF file

◦ GTECH netlist in .ddc file format, obtained after removing all the characterized
subblocks

Note: When reading the top-level UPF file before the block-level UPF file, you must
set the upf_allow_refer_before_define variable to true to allow loading a top-
only UPF file with references to unlinked subblocks within the design. By default, this
variable is set to false.

3. Run the propagate_constraints -power_supply_data command.

This command propagates all the block-level constraints to the top-level, including
the block abstractions created in either the Design Compiler or IC Compiler II tool that
contain UPF data.

4. Synthesize the top-level design.

For the block abstractions created in Design Compiler topographical mode, the tool
performs size-only optimization on the block interface logic, including the power
management cells.

5. Save the synthesized design and the UPF constraints.

When you save the design in .ddc file format, the UPF constraints are also saved
in the file. To save the UPF constraints separately, use the save_upf command.
To save the complete UPF information, use the save_upf -full_upf command.
To save only the top-only UPF, use the save_upf command. You can also set the
upf_block_partition variable to specify the name of a block or a list of blocks whose

Power Compiler™ User Guide
U-2022.12-SP3

427

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

UPF information you do not want to save. For instance, if you have a subblock named
block1 and you want to save the top UPF without block1, do the following:

set_app_var upf_block_partition block1
save_upf

Note that if block1 is an ETM, macro, or any other black box, you do not need to
specify it in the upf_block_partition list since the save_upf command automatically
skips these blocks.

Completing these steps completes the synthesis of your design using the Design Compiler
hierarchical UPF flow. Using the synthesized design, you can continue the flow in the
IC Compiler II tool. For more details on assembling your design for the subsequent steps
in the IC Compiler II tool, see Assembling the Design.

Assembling the Design
To continue with the hierarchical flow in the IC Compiler II tool, you can assemble your
design in either the Design Compiler or IC Compiler II tool. Note that you must explicitly
ensure that the block-level UPF constraints are available in the top-level design during
the optimization step of the top-level. You do this using the propagate_constraints
-power_supply_data command. Use the following steps to assemble your design in the
Design Compiler tool for use in the IC Compiler II tool:

1. Read all the synthesized subblocks.

2. Set the top-level design as the current design.

3. Link the design using the link command.

4. Use the propagate constraints -power_supply_data command for all the block-
level UPF constraints to be available at the top-level.

5. Save the design. This saved design is the full-chip design database that you can use to
start the design planning step in the IC Compiler II tool.

For more information, see SolvNetPlus article 026172, “IEEE 1801 (UPF) Based Design
Compiler Topographical Technology and IC Compiler Hierarchical Design Methodology.”

Characterization of Supply Sets and Supply Nets
A supply set or a domain-independent supply net of a block is characterized when it is any
of the following:

• The primary, default retention, default isolation supply of the power domain of the block

• The supplies specified in the retention or isolation strategies of the power domain of the
block

Power Compiler™ User Guide
U-2022.12-SP3

428

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/026172.html
https://solvnet.synopsys.com/retrieve/026172.html

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

• A supply that is specified for the power switch of the power domain of the block

• An exception supply that is connected to the cells in the power domain of the block

• An extra supply of the power domain, defined by using the extra_supplies_#
keyword

• A supply set that is connected to the supply ports that are defined inside the block

• A supply set that is the related supply for the ports of the block

Note:
In this case, the supplies are characterized even if they are the restricted
supplies in the top-level power domain of the block being characterized. This
is because, the block can contain an unrestricted feedthrough supply that
passes through power domains.

While partitioning a block, the tool moves supply sets defined in the block and in lower
levels of hierarchy to the block. The supply sets and domain-independent supply nets are
handled similarly because supply sets are also inherently domain-independent.

When a repeater_supply attribute is specified in the path of an isolation strategy
defined using the -source, -sink, or -diff_supply_only option, the value of the
repeater_supply attribute is used to derive the value of the iso_source and iso_sink
attributes at the boundary of the block.

During characterization, at the block level,

• Two supply ports and a supply set are created. The supply ports are connected to the
power and ground functions of the supply set.

• To distinguish the supply ports created by the characterize command, the
newly-created supply ports are marked with the snps_derived UPF attribute.
So, each supply port created by the characterize command has an associated
set_port_attributes command in the block-level UPF file.

• If you have defined power states for the supply sets for the block-level, using
the add_power_state command, during characterization, the tool writes the
add_port_state command for the created port.

At the top level, and in the UPF file for the top level, two ports are created, which are
connected to the power and ground functions of the supply set.

Automatic Inference of Related Supply Nets
In the top-down hierarchical flow, when you characterize a block, the block-level
power constraints as well as the boundary constraints that are specified by the
set_related_supply_net command are set on the specified block.

Power Compiler™ User Guide
U-2022.12-SP3

429

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

The characterize command can also automatically set the related supply net on the
ports of the block-partition, using the following criteria:

• The direction of the port.

• The location constraint of the isolation and level-shifter strategies.

• Related supply net of the driver or the load cells.

• The -driver_supply and -receiver_supply options specified with the
set_port_attributes command.

The characterize command can also infer the driver or load to be inserted at the
boundaries.

Note:
For the characterize command to appropriately infer and set the related
supply net, you must explicitly define the level-shifter and isolation strategies
before running the characterize command, if you have voltage violations.

Table 38 shows the related supply net inferred by the Power Compiler tool when you
define only the level-shifter strategy, and not the isolation strategy, to overcome the
voltage violations at the boundary pins.

Table 38 Related Supply Net With Level-Shifter Only Strategy

Port
direction

Level-shifter
strategy

Related supply net inferred by the tool

Input self Outside or driver supply net. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Input parent Inside or load supply net.

Output self Outside or load supply net. If supply is not available, related supply net
is not set and UPF-208 error message is issued.

Output parent Inside or driver supply net.

Input or
Output

none or auto Not supported. UPF-206 error message is issued.

Table 39 shows the related supply net inferred by the Power Compiler tool when you
define both level-shifter and isolation strategies.

Power Compiler™ User Guide
U-2022.12-SP3

430

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

Table 39 Related Supply Net With Level-Shifter and Isolation Strategies

Port
direction

Level-shifter
strategy

Isolation
strategy

Related supply net inferred by the tool

Input self self Outside or driver supply. If supply net is not available,
related supply net is not set and UPF-208 error message is
issued.

Input self parent Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Input parent self Related supply net is not set and UPF-207 error message is
issued.

Input parent parent Inside or load supply net.

Input none or auto self or
parent

Not supported. UPF-206 error message is issued.

Output self self Outside or load supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Output self parent Related supply net is not set and UPF-207 error message is
issued

Output parent self Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Output parent parent Inside or driver supply.

Output none/auto self or
parent

Not supported. UPF-206 error message is issued.

Table 40 shows the related supply net inferred by the Power Compiler tool when there are
no voltage violations at the boundary pins.

Table 40 Related Supply Net With No Voltage Violations at the Boundary Pins

Port
direction

Isolation
strategy

Related supply net inferred by the tool

Input self Outside or driver supply. If supply net is not available, related supply net is
not set and UPF-208 error message is issued.

Input parent Isolation power supply. If supply net is not available, use the inside or load
supply.

Input none Outside or driver supply. If supply net is not available, use the inside or
load supply.

Power Compiler™ User Guide
U-2022.12-SP3

431

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

Table 40 Related Supply Net With No Voltage Violations at the Boundary Pins (Continued)

Port
direction

Isolation
strategy

Related supply net inferred by the tool

Output self Isolation power supply. If supply net is not available, related supply net is
not set and UPF-208 error message is issued.

Output parent Inside or driver supply.

Output none Outside or load supply. If supply net is not available, use the inside or load
supply.

Note:
If voltage violations are across two blocks that have to be characterized,
define the level-shifter strategies for both the blocks. To avoid level-shifter
redundancy, use the -no_shift option of the set_level_shifter command.
If the violations are across multiple blocks, specify the list of pins while defining
the level shifter strategy with the -no_shift option.

Top-Level Design Integration
After the blocks are characterized, these blocks can be integrated into the top-level
designs, multiple times. Use the propagate_constraints command to integrate the
characterized blocks to the top level.

Power Domain Merging
While merging the power domain to the top level, the propagate_constraints command
ensures that equivalent supply sets, nets, and ports are present at the top level. In
addition, their connectivity should be equivalent at the top level. The tool issues the
UPF-168 error message when equivalence is not found.

During integration, the block-level ports that have the snps_derived UPF attributes are
substituted by their equivalent top-level ports and supply nets or supply sets.

Switch Cell Matching
When a power switch cell exists in the blocks, a matching switch cell must exist at the top
level for the domains to be merged. It is an error to match a switch cell from the block to a
switch cell in the top level, that is already matched.

Power Compiler™ User Guide
U-2022.12-SP3

432

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

When the tool merges domains that contain switch cells, the following rules apply:

• A switch cell in the top level should have a unique switch cell in the domain being
merged. The switch cells being merged should also have equivalent

◦ Input supply nets

◦ Control and acknowledge signals separated by buffer or inverter pairs

◦ Voltage setting on the output supply nets

◦ Port states, including the state names, state value, primary domain, and so on

Also, the output supply nets must have similar connectivity with the other supply
nets in the design.

• When the domain has multiple equivalent switch cells, the first matching switch cell is
used.

Legacy Blocks
A legacy block is a block designed before the introduction of supply sets, using only
domain-dependent supply nets. A legacy block does not use or define any domain-
independent supply nets or supply sets.

A conflict can arise when a legacy block is used in a design with domain-independent
supply nets. To prevent such a conflict, set the block’s legacy_block design attribute
to true. This converts all power domains of the legacy block to be fully restricted, so
the legacy block can no longer use any domain-independent supply nets declared in the
scopes above the block.

A domain-independent supply net is a supply net that is available to any power domain
defined at or below the scope of the supply net, as long such domains are not restricted. In
other words, the supply net was created by a create_supply_net command without the
-domain option. For example,

dc_shell> create_supply_net SN1
Conversely, a domain-dependent supply net is a supply net that is available only to
the domain for which it is defined. In other words, the supply net was created by a
create_supply_net command with the -domain option. For example,

dc_shell> create_supply_net SN2 -domain PD2
The supply net is created in the PD2 power domain and cannot be used in other domains.

Power Compiler™ User Guide
U-2022.12-SP3

433

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

A restricted power domain is a power domain that is restricted to use only certain supply
sets. This restriction results from usage of the extra_supplies keyword with the -supply
option of the create_power_domain command. For example,

dc_shell> create_power_domain PD3 -elements U3 \
 -supply {extra_supplies_0 SS1}
The PD3 power domain is restricted to using only the SS1 supply set.

When a legacy block is used in a newer design containing supply sets, a conflict can arise
with a situation like the one shown in Figure 123.

Figure 123 Legacy Block Used in a Top-Level Design

U1

U2

TOP

SN1

SN2

In this diagram, U1 is a legacy block with a domain-dependent supply net, SN2.
An instance of this block is used in the top-level design, TOP, which has a domain-
independent supply net, SN1. U1 contains a lower-level block, U2. Because the SN1
supply net is domain-independent, it is available for use in all of the domains. On the other
hand, because the SN2 supply net is domain-dependent, it is available for use only in the
domain of block U1.

If the two supply nets are connected through a supply port on U1, the availability of the
combined net in U2 is undefined. This might lead to the usage of the supply net in U2,
which would be incorrect.

To clearly specify that this type of connection is not allowed, declare U2 to be a legacy
block by using the following command:

dc_shell> set_design_attributes -elements U1 \
 -attribute legacy_block true
This command converts all power domains of the U1 block to fully restricted domains so
that those domains can no longer use the domain-independent supply nets declared in

Power Compiler™ User Guide
U-2022.12-SP3

434

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: UPF Multivoltage Design Implementation
UPF-Based Hierarchical Multivoltage Flow Methodology

Feedback

scopes above the block. The tool achieves this effect by using the -supply option of the
create_power_domain command when the block is read.

For example, the tool changes the following command:

create_power_domain PD -elements U2

to the following command:

create_power_domain PD -elements U2 -supply {extra_supplies ""}

Because there are no supply sets listed between the quotation marks in the -supply
option, the domain becomes fully restricted and does not allow the usage of any supply
sets defined at higher levels of the design, thereby preventing any supply set availability
conflict from arising.

No domain-independent supply nets or supply sets can be defined or used inside a legacy
block or any of its lower-level blocks, and no supply set handles can be used. Any lower-
level blocks below a legacy block must also be legacy blocks.

The propagate_constraints command supports the usage of legacy blocks. The
following script shows an example of the flow.

read_verilog top_only.verilog
load_upf top_only.upf
read_verilog my_legacy_block.verilog
load_upf my_legacy_block.upf
current_design top
#Mark the block as legacy block
set_design_attributes -elements {U2} -attribute legacy_block TRUE
#propagate_constraints makes all the domains in the block restricted
propagate_constraints -design my_legacy_block

Note:
The characterize command is not supported for legacy blocks.

Power Compiler™ User Guide
U-2022.12-SP3

435

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

12
Library Setup for Power Optimization

To perform power optimization on a multivoltage design using the Power Compiler tool, the
target libraries you use must conform to the Liberty open library rules.

For more information about library setup for power optimization, see the following topics:

• Basic Library Requirements for Multivoltage Designs

• Library Usage in Multicorner-Multimode Designs

• Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

Basic Library Requirements for Multivoltage Designs
To synthesize a multivoltage design using the Power Compiler tool, the target libraries you
use must conform to the Liberty open library rules. The target libraries should also support
special cells such as clock-gating cells, level-shifters, isolation cells, retention registers,
and always-on buffers and inverters. To support synthesis of multivoltage designs, the tool
also supports multiple libraries characterized at different voltages.

Power and Ground Pin Syntax
If the target library that you specify complies with the power and ground (PG) pin Liberty
library syntax, the Power Compiler tool uses this information during the synthesis process.
However, if your target library does not contain PG pin information, you can convert it into
PG pin library format. For more information, see Converting Libraries to PG Pin Library
Format.

Converting Libraries to PG Pin Library Format
If the libraries that you specify do not contain PG pin information, you can define them in
the library to conform to PG pin Liberty syntax.

• Using the FRAM View

• Using Tcl Commands

• Tcl Commands for Low-Power Library Specification

Power Compiler™ User Guide
U-2022.12-SP3

436

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs

Feedback

For more information, see SolvNetPlus article 029641, “On-the-Fly Low-Power Library
Specification.”

Using the FRAM View
In the Design Compiler topographical mode, you can use the FRAM view as the
reference for converting your library to the PG pin library format. You must set the
mw_reference_library variable to the location of the Milkyway reference libraries. Use
the update_lib_model command to convert your library to the PG pin library format. The
tool uses the PG pin definitions available in the FRAM view of the Milkyway library for the
conversion. This is the default behavior. Figure 124 shows the steps involved in converting
non-PG pin library to a PG pin library.

Figure 124 Conversion of a Non-PG Pin Library to a PG Pin Library Using FRAM View

Non-PG pin library

update_lib_model
-reference_mode FRAM

check_library

Use Tcl
commands to

update the
specification

Write out Tcl script

Fail Pass

To ensure that the PG pin library that is created is complete, use the check_library and
report_mv_library_cells commands. If the PG pin library is not complete, run the
library specification Tcl commands to complete the library creation. For more information,
see Tcl Commands for Low-Power Library Specification.

Using Tcl Commands
When your library files are not in the PG pin library syntax and you do not have the FRAM
view of Milkyway library, you can use the following Tcl commands to specify the necessary
information required for deriving the PG pin details, as shown in Figure 125.

Power Compiler™ User Guide
U-2022.12-SP3

437

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnet.synopsys.com/retrieve/029641.html
https://solvnet.synopsys.com/retrieve/029641.html

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs

Feedback

• update_lib_voltage_model
This command sets the voltage map for the specified library.

• update_lib_pg_pin_model
This command sets the PG pin map for the specified library cell.

• update_lib_pin_model
This command sets the pin map for the specified library cell.

Figure 125 Conversion of Non-PG Pin Library to PG Pin Library Using Tcl Commands

Non-PG pin library

update_lib_pg_pin_model

update_lib_pin_model

update_lib_model
 -reference_mode TCL

check_library

Use Tcl
commands to

update the
specification

Write out Tcl script

Fail Pass

These Tcl commands specify the library requirements that are used while converting the
libraries to PG pin format.

Run the update_lib_model -reference_mode TCL command to convert your libraries
to PG pin library format. To check if your newly created PG pin library is complete, run
the check_library command. If your newly created PG pin library contains conflicts or

Power Compiler™ User Guide
U-2022.12-SP3

438

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Basic Library Requirements for Multivoltage Designs

Feedback

is incomplete, you can run the library specification Tcl commands to complete the library
specification. For more details, see Tcl Commands for Low-Power Library Specification.

Tcl Commands for Low-Power Library Specification
When you convert your library to PG pin format, if the newly created library file is
complete, you can start using the library for the low-power implementation of your design.
However, if your library contains power management cells and the modeling is not
complete, you can use the following Tcl commands to complete your library specifications.
These commands specify the library voltage and PG pin characteristics.

• set_voltage_model
This command sets the voltage model on the specified library by updating the voltage
map in the library.

• set_pg_pin_model
This command defines the PG pins for the specified cell.

• set_pin_model
This command defines the related power, ground, or bias pins of the specified pin of
the library.

For more details, see the command man page and the Library Checking Chapter in the
Library Quality Assurance System User Guide.

Macro Cells With Fine-Grained Switches
The Power Compiler tool supports macro cells with fine-grained switches, which have the
following attribute settings in the PG pin definition in the library:

• The direction attribute is internal.

• The pg_type attribute is either internal_power or internal_ground.

• The pg_function attribute is defined.

• The switch_function attribute is defined.

• The switch_cell_type attribute of the macro is fine_grain.

• The switch_pin attribute is set to true for the control port.

Use the connect_supply_net command to connect to the internal PG pins of these
macro cells. However, supply nets connected only to the internal PG pins of these macro

Power Compiler™ User Guide
U-2022.12-SP3

439

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

cells cannot be used for level-shifter insertion and always-on synthesis, unless the
following conditions are true:

• The supply net is the primary supply of the power domain.

• The supply net is specified by the isolation strategy of the power domain.

• The supply net is specified by the retention strategy of the power domain.

• The supply net is defined or reused as a domain-dependent supply net of the power
domain.

• The supply net is defined with the extra_supplies_# keyword.

You can use the set_voltage command to set the operating voltage on the internal PG
pins of the macro cells with fine-grained switches. If you do not set the voltage on the
internal PG pin of the macro cell, the value of the voltage_name attribute of the PG pin is
used as the operating voltage.

Library Usage in Multicorner-Multimode Designs
The following topics discuss how to handle libraries properly in multicorner-multimode
designs:

• Link Libraries With Equal Nominal PVT Values

• Distinct PVT Requirements

• Automatic Detection of Driving Cell Library

• Relating the Minimum Library to the Maximum Library

• Unique Identification of Libraries Based on File Names

Link Libraries With Equal Nominal PVT Values
The link library lists all of the libraries that are to be used for linking the design for all
scenarios. Furthermore, because several libraries are often intended for use with a
particular scenario, such as a standard cell library and a macro library, Design Compiler
automatically groups the libraries in the link library list into sets and identifies which set
must be linked with each scenario.

Library grouping is based on their PVT values. Libraries with the same PVT values
are grouped into the same set. The tool uses the PVT value of a scenario’s maximum
operating condition to select the appropriate set for the scenario.

Power Compiler™ User Guide
U-2022.12-SP3

440

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

If the tool finds no suitable cell in any of the specified libraries, an error is reported, as
shown in the following example:

Error: cell TEST_BUF2En_BUF1/Z (inx4) is not characterized
for 0.950000V, process 1.000000, temperature -40.000000. (LIBSETUP-001)

You should verify the operating conditions and library setup. If you do not correct this error,
optimization is not performed.

Link Library Example
Table 41 shows the libraries in the link library list, their nominal PVT values, and the
operating condition (if any) specified in each library. The design has instances of
combinational, sequential, and macro cells.

Table 41 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions in
library (PVT)

Combo_cells_slow.db 1/0.85/130 WORST (1/0.85/130)

Sequentials_fast.db 1/1.30/100 None

Macros_fast.db 1/1.30/100 None

Macros_slow.db 1/0.85/130 None

Combo_cells_fast.db 1/1.30/100 BEST (1/1.3/100)

Sequentials_slow.db 1/0.85/130 None

To create a scenario s1 with the cell instances linked to the Combo_cells_slow,
Macros_slow, and Sequential_slow libraries, you run:

dc_shell-topo> create_scenario s1
dc_shell-topo> set_operating_conditions -max WORST -library slow.db:slow
Note:

Specifying the -library option with the set_operating_conditions
command helps the tool identify the correct PVT for the operating conditions.
The PVT of the maximum operating condition is used to find the correct
matches in the link library list during linking.

Using this linking scheme, you can link libraries that do not have operating condition
definitions. The scheme also provides the flexibility of having multiple library files (for
example, one for standard cells, another for macros).

Power Compiler™ User Guide
U-2022.12-SP3

441

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

Inconsistent Libraries Warning
When you use multiple libraries, if the library cells with the same name are not functionally
identical or do not have identical sets of library pins (same name and order), a warning is
issued, stating that the libraries are inconsistent.

You should run the check_library command before running a multicorner-multimode
flow, as shown in the following example:

set_check_library_options -mcmm
check_library -logic_library_name {a.db b.db}

When you use the -mcmm option with the set_check_library_options command, the
check_library command performs multicorner-multimode specific checks such as the
operating condition or power-down consistencies. When inconsistencies are detected, the
tool generates a report. In addition, the tool also issues the following information message:

Information: Logic library consistency check FAILED for MCMM.
(LIBCHK-360)

To overcome the LIBCHK-360 messages, you must check the libraries and the report to
identify the cause for the inconsistency. The man page of the LIBCHK-360 information
message describes possible causes for the library inconsistencies.

Setting the dont_use Attribute on Library Cells
When you set the dont_use attribute on a library cell, the multicorner-multimode feature
requires that all characterizations of this cell have the dont_use attribute. Otherwise, the
tool might consider the libraries to be inconsistent. You can use the wildcard character to
set the dont_use attribute as follows:

set_dont_use */AN2

When library cells with a dont_use attribute have a pin order that does not match exactly
in the libraries of different corners, the tool continues with the flow without issuing any error
or warning messages. If you remove the dont_use attribute of these cells, the tool issues
the MV-087 error messages.

Note:
You do not have to issue the command multiple times to set the dont_use
attribute on all characterizations of a library cell.

Distinct PVT Requirements
If the maximum libraries associated with each corner (scenario) do not have distinct PVT
values, the cell instances are linked incorrectly, which results in incorrect timing values.
This happens because the nominal PVT values that are used to group the link libraries
into sets, group the maximum libraries of different corners into one set. Consequently,

Power Compiler™ User Guide
U-2022.12-SP3

442

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

the cell instances are linked to the first cell with a matching type in that set (for example,
the first AND2_4), even though the -library option is specified for each of the scenario-
specific set_operating_conditions commands. That is, the -library option locates
the operating condition and its PVT values, but not the library to link.

For example, consider Table 42, which shows libraries in a link library, listed in order, their
nominal PVT values, and the operating condition specified in each library.

Table 42 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions in
library (PVT)

Ftyp.db 1/1.30/100 WORST (1/1.30/100)

Typ.db 1/0.85/100 WORST (1/0.85/100)

TypHV.db 1/1.30/100 WORST (1/1.30/100)

Holdtyp.db 1/0.85/100 BEST (1/0.85/100)

Table 43 shows the operating condition for each of the scenarios.

Table 43 Scenarios and Their Operating Conditions

Scenarios

s1 s2 s3 s4

Maximum
Operating
Condition
(Library)

WORST (Typ.db) WORST
(TypHV.db)

WORST (Ftyp.db) WORST (Typ.db)

Minimum
Operating
Condition
(Library)

None None None BEST
(HoldTyp.db)

The following commands are applied:

create_scenario s1
set_operating_conditions WORST -library Typ.db:Typ
create_scenario s2
set_operating_conditions WORST -library TypHV.db:TypHV
create_scenario s3
set_operating_conditions WORST -library Ftyp.db:Ftyp
create_scenario s4
set_operating_conditions \

Power Compiler™ User Guide
U-2022.12-SP3

443

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

 -max WORST -max_library Typ.db:Typ \
 -min BEST -min_library HoldTyp.db:HoldTyp

The tool groups the Ftyp.db, and TypHV.db libraries into a set with Ftyp.db as the first
library in the set. Therefore, the cell instances in scenario s2 are not linked to the library
cells in TypHV.db, as intended. Instead, they are linked to the library cells in the Ftyp.db
library, assuming that all the libraries include the library cells required to link the design.

When you use multiple libraries, if any of the libraries with same-name cells have the
same nominal PVT, a warning is issued, stating that the libraries are ambiguous. The
warning also states which libraries are being used and which are being ignored.

Automatic Detection of Driving Cell Library
In multicorner-multimode flow, the operating condition setting is different for different
scenarios. To build the timing arc for the driving cell, different libraries are used for
different scenarios. You can specify the library using the -library option of the
set_driving_cell command. However, specifying the library is optional because the tool
can automatically detect the driving cell library.

When you specify the library using the -library option of the set_driving_cell
command, the tool searches for the specified library in the link library set. If the specified
library exists, it is used. If the specified library does not exist in the link library, the tool
issues the UID-993 error message as follows:

Error: Cannot find the specified driving cell in memory.(UID-993)

When you do not use the -library option of the set_driving_cell command, the tool
searches all the libraries for the matching operating conditions. The first library in the link
library set, that matches the operating condition is used. If no library in the link library set
matches the operating condition, the first library in the link library set, that contains the
matching library cell is used. If no library in the link library set contains the matching library
cell, the tool issues the UID-993 error message.

Relating the Minimum Library to the Maximum Library
The set_min_library command is not scenario-specific. This implies that if you use this
command to relate a minimum library to a particular maximum library, that relationship
applies to all scenarios.

Power Compiler™ User Guide
U-2022.12-SP3

444

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Library Usage in Multicorner-Multimode Designs

Feedback

Table 44 Unsupported Multiple Minimum Library Configuration

Scenarios

s1 s2

Maximum library Slow.db Slow.db

Minimum library Fast_0yr.db Fast_10yr.db

For example, you could not relate two different minimum libraries–for example,
Fast_0yr.db and Fast_10yr.db – with the maximum library, Slow.db, in two separate
scenarios. The first minimum library that you specify would apply to both scenarios.
Table 44 shows the unsupported configuration.

Note, however, that a minimum library can be associated with multiple maximum libraries.
As shown in the example in Table 45, the minimum library Fast_0yr.db is paired with
both the maximum library Slow.db of scenario 1 and the maximum library SlowHV.db of
scenario 2.

Table 45 Supported Minimum-Maximum Library Configuration

Scenarios

s1 s2

Maximum Library Slow.db SlowHV.db

Minimum Library Fast_0yr.db Fast_0yr.db

Unique Identification of Libraries Based on File Names
Two libraries with the same name can be uniquely identified if their file names, which
precede the library names, which are colon-separated, are unique. For example, the
library ABC.db:stdcell (where ABC.db is the library file name and stdcell is the library
name) is identifiable with respect to the library DEF.db:stdcell.

However, two libraries that have the same file name and library name but reside in
different directories are not uniquely distinguishable. The following two libraries are not
uniquely distinguishable:

/remote/snps/testcase/LIB/fast/ABC.db

/remote/snps/testcase/LIB/slow/ABC.db

Power Compiler™ User Guide
U-2022.12-SP3

445

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

Feedback

Automatic Inference of Operating Conditions for Macro, Pad, and
Switch Cells

In multivoltage and multicorner-multimode designs, as designs increase in size and
complexity, manually specifying the operating conditions and linking them with the
appropriate library cells with matching operating conditions becomes difficult. For these
types of designs, it is useful to automatically infer the operating conditions, especially for
special cells such as multirail pad cells, macro cells and switch cells. When the operating
condition set on the design does not match the operating condition of the cell rails or when
the design operating condition does not have rails, the tool issues a LIBSETUP-001 error
message.

You can disable the automatic operating conditions inference by explicitly setting the
operating conditions.

Note:
The Power Compiler tool does not perform automatic operating condition
inference for standard cells. The operating conditions of the standard cells
should match exactly with the operating conditions of the design.

Using the set_opcond_inference Command
Use the set_opcond_inference command to specify the operating condition.

Use the -level option specifies the degree to which the inferred operating condition
can deviate from the operating condition of the design. The value that you can
specify with this option are EXACT, UNIQUE_RESOLVED, CLOSEST_RESOLVED,
or CLOSEST_UNRESOLVED. When you do not specify this option, the default is
CLOSEST_RESOLVED. For more information, see Deviating From the Inferred Operating
Condition and Its Impact.

You must use one of -level and -match_process_temperature options. The tool issues
a LIBSETUP-751 information message when the operating conditions are successfully
inferred on a cell instance.

For multicorner-multimode designs, the set_opcond_inference command applies to
all corners and scenarios of the design. To report the settings specified for the operating
condition inference, use the report_opcond_inference command.

Deviating From the Inferred Operating Condition and Its Impact
The level value you specify with the -level option of the set_opcond_inference
command determines how much the inferred operating condition can deviate from
the operating condition of the design. When you set a higher deviation, the probability
of automatic operating condition inference is higher, resulting in a smaller number of

Power Compiler™ User Guide
U-2022.12-SP3

446

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

Feedback

LIBSETUP-001 error messages. This also implies less accurate timing and power results.
The following table summarizes the level values that you can specify with the -level
option and its impact on the automatic operating condition inference:

Level value specified with the
-level option

Degree of deviation in the inferred operating
condition and its impact

EXACT Operating condition inferred is exact. This results in no
inference at all. Timing is exact.

UNIQUE_RESOLVED Operating condition is inferred for the library cell whose
name matches exactly with the cell reference name in the
design. You cannot choose a different library cell. Timing
can be incorrect. You do not encounter LIBSETUP-001
error messages.

CLOSEST_RESOLVED This is the default. If multiple library cells are available,
library cell with a matching reference name whose
operating condition is closest to the design is chosen.
Choosing this operating condition can cause inaccurate
timing.

CLOSEST_UNRESOLVED The library cell whose operating condition is closest to the
design is chosen. The library cell name need not match
exactly with the cell reference name in the design.

The details of the behavior of the tool when you set a specific level value with the -level
option of the set_opcond_inference command are described in this section:

• EXACT

When you set the level value to EXACT, the automatic operating condition inference is
not performed.

• UNIQUE_RESOLVED

The tool performs a name based search in the target libraries. If multiple library cells
match with the cell name, the tool does not perform the inference. However, if the cell
is present in a unique library file and no other library contains the cell, the operating
condition is inferred. Otherwise, operating condition is not inferred on the cell and a
LIBSETUP-001 error message is issued.

• CLOSEST_RESOLVED

This is the default, when you do not specify the -level option of the
set_opcond_inference command.

For each macro cell, pad cell, or switch cell instance, the tool finds the set of library
cells with the same name. If multiple library cells with the same name are found, the
tool chooses a single library cell based on the matching PVT values. The cells with

Power Compiler™ User Guide
U-2022.12-SP3

447

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

Feedback

exception connections, whose supply net voltage does not match the rail voltages in
the library, are also also considered for operating conditions inference.

For cells with exception connections, the tool chooses the library cell with maximum
number of rail voltages that match the supply net voltage of the instance. If there are
multiple library cells with maximum number of rail voltages that match the supply net
voltage of the instance, the inference fails and the tool issues a LIBSETUP-001 error
message.

The pad cells in the library whose rail voltages do not match the supply voltage
on the port because of the settings of the set_port_attributes or the
set_related_supply_net command are eliminated from operating conditions
inference. However, when the tool finds that such eliminations can cause potential
LIBSETUP-001 errors, it reconsiders the eliminated cells for operating conditions
inference.

Within this set of library cells that are considered for inference, the tool groups the
library cells in the following order of priority:

1. The PVT values of the library cell match the PVT values of the design.

2. The process, temperature, and voltage values from one of the rail voltages match
the PVT values of the design.

3. The temperature and voltage values of the library cell match the temperature and
voltage values of the design.

4. The temperature and voltage from one of the rail voltages match the PVT values of
the design.

5. The process and voltage values of the library cell match the process and voltage
values of the design.

6. The process and voltage from one of the rail voltages match the PVT values of the
design.

7. The voltage value of the library cell matches the voltage value of the design.

8. The voltage value from one of the rail voltages match the voltage value of the
design.

9. The process and temperature values of the library cell matches the process and
temperature values of the design.

10. None of the process, voltage, and temperature values of the library cell match the
process, voltage, and temperature values of the design.

Power Compiler™ User Guide
U-2022.12-SP3

448

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Library Setup for Power Optimization
Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells

Feedback

After the library cells are grouped, the tool inspects each group in the order mentioned
previously. The inference is terminated for the following situations:

◦ None of the groups contain exactly one cell.

◦ None of the groups contain any library cell.

When the tool finds a group that contains exactly one cell, the tool chooses the library
cell and uses the PVT values of that cell as the operating condition of the associated
macro, pad, or switch cell.

• CLOSEST_UNRESOLVED

The tool groups the library cells based on the matching names, as in
CLOSEST_RESOLVED. The tool then picks the first library cell from the first non-
empty group of library cells. It then sets the operating condition of the library cell on the
specific cell instance and links the cell instance to the library cell.

Power Compiler™ User Guide
U-2022.12-SP3

449

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

13
Power Optimization in Multicorner-Multimode
Designs

Designs that can be synthesized using multiple operating conditions and in multiple modes
are called multicorner-multimode designs. The Design Compiler Graphical tool extends the
topographical technology to analyze and optimize these designs.

For more information about synthesis tool support for multicorner-multimode technology,
see the following topics:

• Optimizing Multicorner-Multimode Designs

• Reporting Commands

• Script Example for Multicorner-Multimode Flow

Optimizing Multicorner-Multimode Designs
Designs that can be synthesized using multiple operating conditions and in multiple
modes are called multicorner-multimode designs. Design Compiler Graphical extends
the topographical technology to analyze and optimize these designs. The multicorner-
multimode feature also provides ease-of-use and compatibility between flows in the
Design Compiler and IC Compiler II tools.

For general information about multicorner-multimode concepts and features, see the
Design Compiler User Guide and IC Compiler II Implementation User Guide.

Optimizing for Leakage Power
Figure 126 shows how to set constraints on different scenarios of a multicorner-multimode
design.

Power Compiler™ User Guide
U-2022.12-SP3

450

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Optimizing Multicorner-Multimode Designs

Feedback

Figure 126 Setting Different Constraints on Different Scenarios

Operating Condition
2
: Timing SDC

2

Operating Condition
1
: Leakage SDC

1
: Leakage-Only Scenario

Scenario
1

WC Leakage: Operating Condition
1

WC Timing: Operating Condition
2

Design Compiler Graphical

Single Report
Timing, Power

Typically, in a multicorner-multimode design, leakage power optimization and timing
optimization are done on different corners. Therefore, the worst case leakage corner can
be different from the worst case timing corner. To perform leakage power optimization on
specific corners, set the leakage power option on specific scenarios of the multicorner-
multimode design by using the set_scenario_options command as follows:

set_scenario_options -scenarios S1 \
 -setup false \
 -hold false \
 -leakage_power true

When you optimize for leakage power in multicorner-multimode designs,

• Define the leakage power option on specific scenarios targeted for leakage power
optimization.

• Leakage and timing optimizations can be performed concurrently across multiple
scenarios.

• The worst case leakage corner is different from the worst case timing corner.

• Do not use the set_leakage_optimization command inside a scenario. This
command is supported only for non multicorner-multimode designs.

If no leakage scenario is defined, the average leakage value of all the scenarios is used
for leakage optimization.

When you use the set_multi_vth_constraint command, you must specify a leakage
corner using the set_scenario_options -scenarios command.

Power Compiler™ User Guide
U-2022.12-SP3

451

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Optimizing Multicorner-Multimode Designs

Feedback

The following example shows how leakage power is specified on a multicorner-multimode
design. In this example, leakage power optimization is performed only for scenario_1 and
scenario_3 because the -leakage_power option is true:

set_scenario_options -scenarios {scenarios_1, scenarios_3} \
 -leakage_power true
set_scenario_options -scenarios {scenarios_2, scenarios_4} \
 -leakage_power false

Example 45 shows how to create a scenario and set the leakage power option on the
scenario:

Example 45 Leakage Power Optimization in a Multicorner-Multimode Design
read_verilog top.v
current_design top
link
create_scenario s1
set_operating_conditions WCCOM -library slow.db:slow
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s1.sdc
set_switching_activity -toggle_rate 0.25 \
 -base_clock p_Clk -static_probability 0.015 -type inputs
set_scenario_options -scenarios s1 -setup false -hold false \
-leakage_power true

create_scenario s2
set_operating_conditions BCCOM -library fast.db:fast
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s2.sdc

create_scenario s3
set_operating_conditions TCCOM -library typ.db:typ
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s3.sdc

create_scenario s4
set_operating_conditions NCCOM -library typ2.db:typ2
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s4.sdc
set_scenario_options -scenarios s4 -setup false -hold false \
-leakage_power true

report_scenarios
compile_ultra -scan -gate_clock
report_power -scenarios [all_scenarios]
report_timing -scenarios [all_scenarios]
report_scenarios
report_qor
report_saif

Power Compiler™ User Guide
U-2022.12-SP3

452

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands

Feedback

Optimizing for Dynamic Power Using Low-Power Placement
To perform dynamic power optimization in a multicorner-multimode design, use the
set_scenario_options -dynamic_power true -setup true command. This
command performs scenario-specific dynamic power optimization in a multicorner-
multimode design. For multiple dynamic power scenarios, the tool uses the average
switching activity calculated from data in the SAIF files when performing optimization.

In the Synopsys physical guidance flow, when you enable the low-power placement
feature, the tool performs dynamic power optimization for multicorner-multimode designs.
To enable this feature, set the power_low_power_placement variable to true and specify
the dynamic power and setup constraints for the scenario. Example 46 shows a script to
perform dynamic power optimization in multicorner-multimode designs in the Synopsys
physical guidance flow.

Example 46 Dynamic Power Optimization in a Multicorner-multimode Design
set power_low_power_placement true
current_scenario S1
read_saif -input S1.saif
set_scenario_options -dynamic_power true -setup true
compile_ultra -spg

For more information about dynamic power optimization see Dynamic Power Optimization.

Reporting Commands
This section describes the commands that you can use for reporting multicorner-
multimode designs.

report_scenarios Command
The report_scenarios command reports the scenario setup information for multicorner-
multimode designs. The scenario specific information includes the logic library used, the
operating condition, and TLUPlus files.

The following example shows a report generated by the report_scenarios command:

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: ...
Date : ...

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4

Power Compiler™ User Guide
U-2022.12-SP3

453

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands

Feedback

All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:
Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

Reporting Examples for Multicorner-Multimode Designs
This section contains report examples for some of the report commands used in
multicorner-multimode designs.

report_scenarios

The report_scenarios command reports the scenario setup information for multicorner-
multimode designs. This command reports all the defined scenarios. The scenario-specific
information includes the logic library used, the operating condition, and the TLUPlus files.

The following example shows a report generated by the report_scenarios command:

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: ...
Date : ...

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:

Power Compiler™ User Guide
U-2022.12-SP3

454

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Reporting Commands

Feedback

Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

report_power

The report_power command supports the -scenarios option. Without the -scenarios
option, only the current scenario is reported. To report power information for all scenarios,
use the report_power -scenarios [all_scenarios] command.

Note:
In the multicorner-multimode flow, the report_power command does not
perform clock tree estimation. The command reports only the netlist power in
this flow.

The following example shows the report generated by the report_power -scenarios
command.

**
Report : power
Design : Design_1
Scenario(s): s1
Version: ...
Date : ...
**

Library(s) Used: slow (File: slow.db)

Global Operating Voltage = 1.08
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = Unitless

Power Compiler™ User Guide
U-2022.12-SP3

455

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow

Feedback

Warning: Could not find correlated power. (PWR-725)

Power Breakdown

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Power (mW) Power (mW) (% Cell/Tot) Power(nW)
--
Netlist Power 4.8709 1.2889 6.160e+00 (79%) 1.351e+05
Estimated Clock Tree Power N/A N/A (N/A) N/A
--

Script Example for Multicorner-Multimode Flow
Example 47 shows a basic script example for the multicorner-multimode flow.

Example 47 Basic Script to Run a Multicorner-Multimode Flow
#......path settings......
set search_path ". $DESIGN_ROOT $lib_path/dbs \
 $lib_path/mwlibs/macros/LM"
set target_library "stdcell.setup.ftyp.db \
 stdcell.setup.typ.db stdcell.setup.typhv.db"
set link_library [concat * $target_library \
 setup.ftyp.130v.100c.db setup.typhv.130v.100c.db \
 setup.typ.130v.100c.db]
set_min_library stdcell.setup.typ.db -min_version stdcell.hold.typ.db

#......MW setup......
#......load design......

create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc
set_scenario_options -scenarios s1-setup false -hold false \
-leakage_power true

create_scenario s2
set_operating_conditions BEST -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s2.sdc

create_scenario s3
set_operating_conditions NOM -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s3.sdc

set_active_scenarios {s1 s2}
report_scenarios

Power Compiler™ User Guide
U-2022.12-SP3

456

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow

Feedback

compile_ultra -scan -gate_clock
report_qor
report_constraint
report_timing -scenarios [all_scenarios]
.
.
insert_dft
.
.
compile_ultra -incremental

The multicorner-multimode design in Figure 127 and the subsequent example scripts in
Example 48 and Example 49 show how you define your power intent in the UPF file and
define the scenarios for a multicorner-multimode multivoltage design.

Multicorner-multimode multivoltage designs are useful in applications such as dynamic
voltage and frequency scaling (DVFS). In hierarchical designs, the top-level design is
generally optimized at a different voltage and in a different corner than the subdesigns of
the hierarchy. The power intent specification can be for the entire design in a single UPF
(Unified Power Format) file.

Standard cell and special cell libraries should be available to satisfy all voltages defined
across multiple corners.

The design in Figure 127 has two scenarios of operation, S1 and S2. In the scenario S1,
the power domain PDT operates at 1.0V, while the power domain PDA operates at 0.8V or
OFF and power domain PDB operates at 0.6V or OFF. In scenario S2, the power domain
PDT operates at 1.1V, while the power domain PDA operates at 0.6V or OFF and power
domain PDB operates at 0.7V or OFF.

Although the subdesigns operate at different voltages, you need only a single UPF file to
specify your power intent for the entire design and all its subdesigns. The specific voltages
set on the supply nets are scenario-specific and are set by using the set_voltage
command in each scenario.

Power Compiler™ User Guide
U-2022.12-SP3

457

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow

Feedback

Figure 127 Multicorner-Multimode Design With Multivoltage

PDA
0.8v, off

PDB
0.6v, off

PDA
0.6v, off

PDB
0.7v, off

VDDB

PDT
1.0v

VDDA VDDB

PDT
1.1v

VDDVDD

VDDA

Scenario S1 Scenario S2

Example 48 and Example 49 show example scripts using the UPF flow for the
multivoltage, multicorner-multimode design in Figure 127.

Example 48 UPF File Describing Design Intent
Example UPF File
Create Power Domains
create_power_domain PDT -include_scope
create_power_domain PDA -elements PD_PDA
create_power_domain PDB -elements PD_PDB

Create Supply Nets
create_supply_net VDD -domain PDT
create_supply_net VDDA -domain PDA
create_supply_net VDDB -domain PDB
create_supply_net VSS -domain PDT
create_supply_net VSS -domain PDA -reuse
create_supply_net VSS -domain PDB -reuse

Create Supply Ports
create_supply_port VDD
create_supply_port VDDA
create_supply_port VDDB
create_supply_port VSS

Connect supply nets
connect_supply_net VDD -ports VDD
connect_supply_net VDDA -ports VDDA
connect_supply_net VDDB -ports VDDB
connect_supply_net VSS -ports VSS

Power Compiler™ User Guide
U-2022.12-SP3

458

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Power Optimization in Multicorner-Multimode Designs
Script Example for Multicorner-Multimode Flow

Feedback

Adding port states
add_port_state VDD -state {HV1 1} -state {HV2 1.1}
add_port_state VDDA -state {LV1 0.8} -state {LV3 0.6} -state {OFF off}
add_port_state VDDB -state {LV2 0.9} -state {LV4 0.7} -state {OFF off}
create_pst top_pst -supplies "VDD VDDA VDDB"
add_pst_state PM1 -pst top_pst -state { HV1 LV1 LV3 }
add_pst_state PM2 -pst top_pst -state { HV1 LV1 OFF }
add_pst_state PM3 -pst top_pst -state { HV1 OFF LV3 }
add_pst_state PM4 -pst top_pst -state { HV1 OFF OFF }
add_pst_state PM5 -pst top_pst -state { HV2 LV2 LV4 }
add_pst_state PM6 -pst top_pst -state { HV2 LV2 OFF }
add_pst_state PM7 -pst top_pst -state { HV2 OFF LV4 }
add_pst_state PM8 -pst top_pst -state { HV2 OFF OFF }

Example 49 Tcl Script Example
load_upf example.upf ## UPF file defined above

create_scenario s1
read_sdc s1.sdc
set_operating_conditions WCCOM lib1.0V
set_voltage -object_list VDD 1.0
set_voltage -object_list VDDA 0.8
set_voltage -object_list VDDB 0.9
set_scenario_options -scenarios s1 -setup false -hold false \
-leakage_power true

create_scenario s2
read_sdc s2.sdc
set_operating_conditions BCCOM lib1.1V
set_voltage -object_list VDD 1.1
set_voltage -object_list VDDA 0.6
set_voltage -object_list VDDB 0.7
set_scenario_options -scenarios s2 -setup false -hold false \
-leakage_power true

compile_ultra -scan -gate_clock

Note:
The UPF file is not scenario-specific. As a result, the UPF file must contain port
state definitions and power state tables for all the scenarios.

You use the load_upf command to read the UPF script shown in Example 48.

Power Compiler™ User Guide
U-2022.12-SP3

459

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

Appendixes

The following topics provide more information and examples about specific features:

• Lower-Domain Boundary Support

• Integrated Clock-Gating Cell Example

• Attributes for Querying and Filtering

Power Compiler™ User Guide
U-2022.12-SP3

460

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

A
Lower-Domain Boundary Support

By default, the Power Compiler tool considers the logical boundary of the root cells of the
power domain as the boundary of the power domain. However, the tool can consider a
power domain boundary to include the boundary of another domain contained in it.

For more information, see the following topics:

• Overview of Power Domain Boundaries

• Applying Isolation and Level-Shifter Strategies

Overview of Power Domain Boundaries
By default, the Power Compiler tool considers the logical boundary of the root cells of
the power domain as the boundary of the power domain. However, to comply with the
IEEE 1801 (UPF) standard, the tool can consider a power domain boundary to include
the boundary of another domain contained in it. You can specify the elements on the
lower-domain boundary for level-shifter and isolation strategy definition, which gives you
additional flexibility in selecting the location of the power management cells.

To extend the definition of the power domain boundary to the boundary of another power
domain contained in it, use the -applies_to_boundary option in the set_isolation and
set_level_shifter commands as shown in the following example:

set_isolation ISO1 -domain PD_TOP -applies_to_boundary lower

Power Compiler™ User Guide
U-2022.12-SP3

461

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Lower-Domain Boundary Support
Overview of Power Domain Boundaries

Feedback

Figure 128 Definition of Power Domain Boundaries for PD_TOP

PD_TOP

PD_MID

PD_BOT

in3

in2

in1

in2

in1

out1in1

Power domain boundary when

-applies_to_boundary upper

(default)

Power domain boundary when

-applies_to_boundary lower

Power domain boundary when

-applies_to_boundary both

In Figure 128, by default, the tool considers only in1, in2, and in3 ports of the PD_TOP
domain to be at the domain boundary. This is also the case if the -applies_to_boundary
option is set to upper.

When the -applies_to_boundary option is set to both, the tool considers the in1,
in2, in3, MID/in1, and MID/in2 ports to be at the power domain boundary. However, the
boundary does not extend to the interface of the BOT design or the PD_BOT power
domain.

When the -applies_to_boundary option is set to lower, the tool considers the MID/in1
and MID/in2 ports to be at the power domain boundary.

Note that the boundary does not extend to the interface of the BOT design or the PD_BOT
domain.

You can set the lower boundary of a power domain at the HighConn side of all hard
macros included within the power domain, as follows:

• Set the macro_as_domain_boundary design attribute to true. This is a scope-level
attribute that indicates whether macros at or below that scope need to be considered
as design boundaries. Use the -elements option to apply the attribute to specific
elements.

• Set the design attribute lower_domain_boundary to true for the top-level scope or a
block-level scope.

• Specify the -applies_to_boundary lower or -applies_to_boundary both option of
the set_isolation, set_level_shifter, or set_repeater commands.

In the following example, the lower domain boundary of power domain PD-TOP includes
the ports of all macros, with the exception of macros contained in cell U2. As a result, the

Power Compiler™ User Guide
U-2022.12-SP3

462

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Lower-Domain Boundary Support
Applying Isolation and Level-Shifter Strategies

Feedback

tool inserts isolation cells at the input ports of all macros except macros contained in cell
U2.

set_design_attributes -elements {.} \
 -attribute macro_as_domain_boundary true
set_design_attributes -elements {U2} \
 -attribute macro_as_domain_boundary false
create_power_domain PD_TOP -elements {.}
set_isolation ISO -domain PD_TOP -applies_to outputs \
 -applies_to_boundary both

When the macro_as_domain_boundary attribute is set to true for specific hard macros,
the terminal_boundary attribute is allowed on the pins of the specified macros. In
addition, you can specify pins or instances of the macros with the -clamp_value and
-repeater_supply options of the set_port_attributes command.

Applying Isolation and Level-Shifter Strategies
When you define the level-shifter and isolation strategies with the -applies_to_boundary
option, you specify the domain and domain boundary to which the strategy applies.

When you specify the domain boundary in a strategy definition,

• The isolation and level-shifter strategy you specify applies to the pins of the domain
boundary specified by the -applies_to_boundary option.

• The tool does not support the -location fanout option in the set_isolation and
set_isolation_control commands.

Figure 129 Example of Nested Power Domains

PD_TOP

PD_BOT
O1I1

I2

I3
O2

out1

out2

in1

in2

For example, in the nested power domains shown in Figure 129, the O1 and O2 output
pins of the PD_BOT power domain are input pins for the strategies defined in the PD_TOP
power domain. Similarly, I1, I2, and I3 input pins of the PD_BOT power domain are the
output pins for the strategies defined in the PD_TOP power domain.

So, the isolation and level-shifter strategies that apply to the input pins of the top power
domain also apply to the output pins of the root cell of the lower, nested power domain.

Power Compiler™ User Guide
U-2022.12-SP3

463

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Lower-Domain Boundary Support
Applying Isolation and Level-Shifter Strategies

Feedback

Similarly, the isolation and level-shifter strategies that apply to the output pins of the top
power domain also apply to the input pins of the root cells of the lower, nested power
domains.

For Figure 129, the following table shows which pins apply to the specified boundary
crossing for a strategy defined at PD_TOP.

Table 46 Pins Considered for Boundary Crossings

-applies_to_boundary Pins

upper in1, in2, out1, out2

lower I1, I2, I3, O1, O2

both in1, in2, out1, out2, I1, I2, I3, O1, O2

Specifying Domain Boundaries With the -applies_to Option
You can use the -applies_to option of the set_isolation and set_level_shifter
commands to filter strategies to specific pins. For the nested domains in Figure 129, the
example in Example 50 illustrates the lower-domain boundary with the -applies_to
option.

Example 50 Lower-Domain Boundary Specification
create_power_domain PD_TOP -include_scope
set_isolation out_iso -domain PD_TOP -applies_to output \
 -applies_to_boundary lower
In Example 50, the out_iso strategy defined for the PD_TOP power domain applies to the
BOT/I1, BOT/I2, and BOT/I3 pins, which are the lower-domain boundary output pins of the
PD_TOP power domain.

Example 51 Upper-Domain Boundary Specification
create_power_domain PD_TOP -include_scope
set_isolation both_iso -domain PD_TOP -applies_to output \
 -applies_to_boundary upper
In Example 51, the boundary specification is both and both_iso strategy for PD_TOP
applies to out1 and out2, which are the upper-domain boundary output pins.

Defining Cell Placement With the -location Option
When you define a strategy using the set_isolation or set_level_shifter commands,
the tool supports both the -location parent or -location self options. You can use

Power Compiler™ User Guide
U-2022.12-SP3

464

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Lower-Domain Boundary Support
Applying Isolation and Level-Shifter Strategies

Feedback

the location placement along with the -applies_to option for added flexibility in placing
your isolation or level-shifter cells.

Figure 130 Isolation Cell Insertion With Domain Boundary Specified

PD_TOP

out1

out2

iso1
in1

in2

iso1

PD_BOT

iso2

iso2

iso2

iso2

IN1

IN2

OUT1

OUT2

Figure 130 illustrates how the tool applies the isolation strategies in Example 52.

Example 52 Example of Strategies With Different Port Directions
create_power_domain PD_TOP
create_power_domain PD_BOT
set_isolation ISO1 -domain PD_TOP -applies_to output \
 -applies_to_boundary lower -location self
set_isolation ISO2 -domain PD_TOP -applies_to input \
 -applies_to_boundary both -location self

Since the -location option in Example 52 is set to self, the isolation cells are placed in
domain PD_TOP.

Power Compiler™ User Guide
U-2022.12-SP3

465

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Lower-Domain Boundary Support
Applying Isolation and Level-Shifter Strategies

Feedback

Figure 131 Isolation Cell Insertion Example With the Parent Location

PD_T

PD_M
ID

PD_BO
T

in1

in2

out1

For the example in Figure 131, if you have the following

create_power_domain PD_TOP
create_power_domain PD_MID -elements {A}
create_power_domain PD_BOT -elements {A/B}
set_isolation ISO1 -domain PD_MID -applies_to inputs \
 -applies_to_boundary both -location self
The tool applies ISO1 strategy to ports A/in1, A/in2, and A/B/out1.

Suppose for the example in Figure 131, you have the following

create_power_domain PD_TOP
create_power_domain PD_MID -elements {A}
create_power_domain PD_BOT -elements {A/B}
set_isolation ISO1 -domain PD_MID -applies_to inputs \
 -applies_to_boundary both -location parent
The tool implements ISO1 only on A/in1 and A/in2 at the parent location PD_TOP.
However, the tool does not apply the strategy to port B/out1 because the parent domain
for PD_MID is PD_TOP and the tool cannot place the isolation cell there. In this case, the
tool issues a warning message.

Power Compiler™ User Guide
U-2022.12-SP3

466

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B
Integrated Clock-Gating Cell Example

This appendix contains an example .lib description of an integrated clock-gating cell and
some schematic examples of rising (positive) and falling (negative) edge integrated clock-
gating cells.

• Library Description

• Example Schematics

Library Description
Example 53 is a description of an integrated clock-gating cell that demonstrates the
following features:

• The clock_gating_integrated_cell attribute

• Appropriate clock-gating attributes on three pins

• Setup and hold arc on enable pin (EN) with respect to the clock pin (CP)

• Combinational arcs from enable pin (EN) and clock pin (CP) to the output pin (Z)

• State table and state function on the output pin (Z)

• Internal power table

Example 53 HDL Description, Integrated Clock-Gating Cell
cell(CGLP) {
 area : 1;
 clock_gating_integrated_cell : "latch_posedge";
 dont_use : true;
 statetable(" CP EN ", "IQ ") {
 table : " L L : - : L ,\
 L H : - : H ,\
 H - : - : N ";
 }
 pin(IQ) {
 direction : internal;
 internal_node : "IQ";
 }
 pin(EN) {

Power Compiler™ User Guide
U-2022.12-SP3

467

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Library Description

Feedback

 direction : input;
 capacitance : 0.017997;
 clock_gate_enable_pin : true;
 timing() {
 timing_type : setup_rising;
 intrinsic_rise : 0.4;
 intrinsic_fall : 0.4;
 related_pin : "CP";
 }
 timing() {
 timing_type : hold_rising;
 intrinsic_rise : 0.4;
 intrinsic_fall : 0.4;
 related_pin : "CP";
 }
 }
 pin(CP) {
 direction : input;
 capacitance : 0.031419;
 clock_gate_clock_pin : true;
 min_pulse_width_low : 0.319;
 }
 pin(Z) {
 direction : output;
 state_function : "CP * IQ";
 max_capacitance : 0.500;
 max_fanout : 8
 clock_gate_out_pin : true;
 timing() {
 timing_sense : positive_unate;
 intrinsic_rise : 0.48;
 intrinsic_fall : 0.77;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 slope_rise : 0.0;
 slope_fall : 0.0;
 related_pin : "CP";
 }
 timing() {
 timing_sense : positive_unate;
 intrinsic_rise : 0.22;
 intrinsic_fall : 0.42;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 slope_rise : 0.0;
 slope_fall : 0.0;
 related_pin : "EN";
 }
 internal_power (){
 rise_power(li4X3){
 index_1("0.0150, 0.0400, 0.1050, 0.3550");

Power Compiler™ User Guide
U-2022.12-SP3

468

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Library Description

Feedback

 index_2("0.050, 0.451, 1.501");
 values("0.141, 0.148, 0.256",\
 "0.162, 0.145, 0.234",\
 "0.192, 0.200, 0.284",\
 "0.199, 0.219, 0.297");
 }
 fall_power(li4X3){
 index_1("0.0150, 0.0400, 0.1050, 0.3550");
 index_2("0.050, 0.451, 1.500");
 values("0.117, 0.144, 0.246",\
 "0.133, 0.151, 0.238",\
 "0.151, 0.186, 0.279",\
 "0.160, 0.190, 0.217");
 }
 related_pin : "CP EN" ;
 }
 }
}

When creating your model, examine whether it includes all the clock_gate attributes
on both the cell and on the pins. Some of the Power Compiler commands require these
attributes to recognize the functionality of the cell. The TestMAX DFT tool does not
recognize this cell. If these attributes are not included, an error message displays. Include
the following attributes in your model:

• clock_gating_integrated_cell

• clock_gate_test_pin

• clock_gate_enable_pin

• clock_gate_out_pin

• clock_gate_clock_pin
Library Compiler can interpret the functionality of the integrated clock-gating cell
directly from the state table and state function. The following example shows the
clock_gating_integrated_cell attribute with a generic value:

cell(CGLP) {
area : 1;
clock_gating_integrated_cell : "generic";
dont_use : true;
statetable(" CP EN ", "IQ ") {
table : " L L : - : L ,\
L H : - : H ,\
H - : - : N ";
}
pin(IQ) {
 direction : internal;
 internal_node : "IQ";
}

Power Compiler™ User Guide
U-2022.12-SP3

469

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

… …
pin(Z) {
direction : output;
 state_function : "CP * IQ";
 max_capacitance : 0.500;
 max_fanout : 8
 clock_gate_out_pin : true;
 timing() {
… …

Example Schematics
This section contains example schematics of latch-based and latch-free clock-gating styles
for rising- and falling-edge-triggered logic. These are a subset of integrated clock-gating
cells supported by the Power Compiler tool.

Rising-Edge Latch-Based Integrated Cells
Figure 132 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure 132 Rising-Edge Latch-Based Integrated Cell (latch_posedge)

clk

en

enl
gclk

la
tc

h

Figure 133 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Power Compiler™ User Guide
U-2022.12-SP3

470

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 133 Rising-Edge Latch-Based Integrated Cell With Pre-Control
(latch_posedge_precontrol)

clk

en

se

gclkenl

la
tc

h

Figure 134 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure 134 Rising-Edge Latch-Based Integrated Cell With Post-Control
(latch_posedge_postcontrol)

clk

en

se

gclk
enl

la
tc

h iq

Figure 135 Rising Edge Latch Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol)

gclkla
tc

h

clk

en

IQN

sen

enl

Figure 136 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Power Compiler™ User Guide
U-2022.12-SP3

471

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 136 Rising-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_posedge_precontrol_obs)

la
tc

h

gclk

la
tc

h

se

en

clk

obs_pin

Figure 137 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure 137 Rising-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol_obs)

gclk

la
tc

h

clk

obs_pin

en

se

iq

enl

Rising-Edge Latch-Free Integrated Cells
Figure 138 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure 138 Rising-Edge Latch-Free Integrated Cell (none_posedge)

clk

en

enl
gclk

Power Compiler™ User Guide
U-2022.12-SP3

472

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 139 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure 139 Rising-Edge Latch-Free Integrated Cell With Control (none_posedge_control)

clk

en

se

gclkenl

Figure 140 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure 140 Rising-Edge Latch-Free Integrated Cell With Control Observable Point
(none_posedge_control_obs)

clk

en

se

gclk
enl

cgobs

Falling Edge Latch-Based Integrated Cells
Figure 141 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure 141 Falling-Edge Latch-Based Integrated Cell (latch_negedge)

clk

en

enl gclk

la
tc

h

Power Compiler™ User Guide
U-2022.12-SP3

473

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 142 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure 142 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol)

clk

en

se

gclkenl

la
tc

h
Figure 143 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure 143 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol)

clk

en

se

gclkenl

la
tc

h iq

Figure 144 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Power Compiler™ User Guide
U-2022.12-SP3

474

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 144 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol_obs)

clk

en

se

gclkenl

cgobs

la
tc

h
Figure 145 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure 145 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol_obs)

clk

en

se

gclkenl

cgobs

la
tc

h

Falling-Edge Latch-Free Integrated Cells
Figure 146 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure 146 Falling-Edge Latch-Free Integrated Cell (none_negedge)

clk

en

enl gclk

Power Compiler™ User Guide
U-2022.12-SP3

475

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Integrated Clock-Gating Cell Example
Example Schematics

Feedback

Figure 147 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure 147 Falling-Edge Latch-Free Integrated Cell With Control (none_negedge_control)

clk

en

se

gclkenl

Figure 148 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure 148 Falling-Edge Latch-Free Integrated Cell With Control Observable Point
(none_negedge_control_obs)

clk

en

se

gclkenl

cgobs

Power Compiler™ User Guide
U-2022.12-SP3

476

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

C
Attributes for Querying and Filtering

This appendix describes derived attributes that you can use in scripts to view and filter
design objects related to clock gating for power optimization.

The derived attributes described in this appendix are read-only properties that the Power
Compiler tool automatically assigns to designs, cell, and pins based on other attributes or
the netlist configuration.

At times, you might want to view and use design objects according to their attributes.
For example, you might want to filter for cells that are integrated clock gates (the is_icg
attribute). Alternatively, your queries might be required for back end processes such as
clock tree synthesis in which fanout considerations have priority.

• Derived Attribute Lists

• Usage Examples

Derived Attribute Lists
You can query for the following derived attributes assigned by the tool. Specify man
power_attributes in dc_shell to view a list of these attributes. Table 47 and Table 48
show the derived attributes for designs and cells, respectively.

Table 47 Derived Attributes for Designs

Name Type Description

is_clock_gating_design Boolean true if the design is a clock-gating design

is_clock_gating_observability_de
sign

Boolean true if the design is a clock-gating observable
design

Table 48 Derived Attributes for Cells

Name Type Description

is_clock_gate Boolean true if the cell is a clock gate

is_icg Boolean true if the cell is an integrated clock gate

Power Compiler™ User Guide
U-2022.12-SP3

477

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Attributes for Querying and Filtering
Derived Attribute Lists

Feedback

Table 48 Derived Attributes for Cells (Continued)

Name Type Description

is_gicg Boolean true if the cell is a generic integrated clock
gate

is_latch_based_clock_gate Boolean true if the cell is a latch-based clock-gating cell

is_latch_free_clock_gate Boolean true if the cell is a latch-free clock-gating cell

is_positive_edge_clock_gate Boolean true if the cell is a positive edge clock gate

is_negative_edge_clock_gate Boolean true if the cell is a negative edge clock gate

clock_gate_has_precontrol Boolean true if the cell is a clock gate with a pre-latch
control point

clock_gate_has_postcontrol Boolean true if the cell is a clock gate with a post-latch
control point

clock_gate_has_observation Boolean true if the cell is a clock gate with observation
point

is_clock_gated Boolean true if the cell is a clock-gated register or clock
gate

clock_gating_depth integer number of clock gates on the clock path to this
cell; -1 if not a clock gate or register

clock_gate_level integer position in a multistage clock tree: number of
clock gates on the longest branch in the fanout
of this cell; -1 if not a clock gate

clock_gate_fanout integer number of registers and clock gates in the
direct fanout of the clock gate; -1 if not a clock
gate

clock_gate_register_fanout integer number of registers in the direct fanout of the
clock gate; -1 if not a clock gate

clock_gate_multi_stage_fanout integer number of clock gates in the direct fanout of the
clock gate; -1 if not a clock gate

clock_gate_transitive_register_f
anout

integer number of registers in the transitive fanout of
the clock gate; -1 if not a clock gate

clock_gate_module_fanout integer number of modules in the local fanout of the
clock gate; -1 if not a clock gate

For hierarchical clock-gating cells, the derived clock-gating attributes only work when
applied to the hierarchical clock-gate wrapper. If you apply an attribute to the leaf cell

Power Compiler™ User Guide
U-2022.12-SP3

478

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Attributes for Querying and Filtering
Usage Examples

Feedback

of a discrete clock gate or a leaf integrated clock gate, the attribute returns false for
Boolean attributes, -1 for integer attributes, or an empty string for string attributes. The
only exception to this rule is the is_icg attribute; this attribute is true when applied to
a leaf integrated clock gate contained within a hierarchical clock gate wrapper but false
when applied to that wrapper. This behavior allows you to recognize the actual integrated
clock-gating cell, not the hierarchical wrapper.

Table 49 Derived Attributes for Pins

Name Type Description

is_clock_gate_enable_pin Boolean true if the pin is a clock-gate enable input

is_clock_gate_clock_pin Boolean true if the pin is a clock-gate clock input

is_clock_gate_output_pin Boolean true if the pin is a clock-gate gated-clock
output

is_clock_gate_test_pin Boolean true if the pin is a clock-gate scan-enable or
test-mode input

is_clock_gate_observation_pin Boolean true if the pin is a clock-gate observation point

Usage Examples
You can query the attributes described in the previous section using the get_attribute,
get_designs, get_cells, get_pins, and all_clock_gates commands. You can also
use these commands with the -filter option.

The following examples show how the attributes might appear in scripts.

To gather all the clock gates specific to a clock “clk”:

all_clock_gates -clock [get_clocks clk]

The all_clock_gates command creates a collection of clock-gating cells or pins that
satisfy the parameters you set. Additional options allow you to filter for enable, clock,
and gated-clock pins; scan_enable or test_mode pins; and observation pins. For more
information, see the man page.

To filter out the multistage clock-gating cell associated with the clock “clk”:

set multi_stage_cg [filter [all_clock_gates -clock [get_clocks clk]] \
 "@clock_gate_level >0"]

To retrieve the number of fan outs of a clock-gating cell:

get_attribute [get_cells top/clk_gate_1] \
 clock_gate_fanout

Power Compiler™ User Guide
U-2022.12-SP3

479

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Attributes for Querying and Filtering
Usage Examples

Feedback

To gather a collection of clock-gating cells with a precontrol point and a fanout greater than
four:

set CG_collection [filter [all_clock_gates] \
 "@clock_gate_has_precontrol== \
 true && @clock_gate_fanout > 4"]

To gather a collection of clock-gating designs (the wrapper design where the clock-gating
cells reside):

set CG_designs [get_designs -filter \
 "@is_clock_gating_design==true"]

Power Compiler™ User Guide
U-2022.12-SP3

480

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Power%20Compiler%E2%84%A2%20User%20Guide&body=Version%20information:%20U-2022.12-SP3,%20April%202023%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This User Guide
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	Part 1: Power Compiler Concepts
	1 Introduction to the Power Compiler Tool
	Power Compiler Methodology
	Power Library Models
	Power Analysis
	Power Optimization
	Getting Started With the Power Compiler Tool
	Library Requirements
	Command-Line Interface
	Graphical User Interface
	License Requirements
	Reading and Writing Designs

	2 Power Compiler Design Flow
	Power in the Design Cycle
	Power Optimization and Analysis Flow
	Simulation
	Enable Power Optimization
	Synthesis and Power Optimization
	Power Analysis and Reporting

	3 Power Modeling and Calculations
	Power Types
	Static Power
	Dynamic Power
	Switching Power
	Internal Power

	Calculating Power
	Leakage Power Calculation
	Multithreshold Voltage Libraries

	Internal Power Calculation
	NLDM Models
	State and Path Dependency
	Rise and Fall Power
	Switching Power Calculation

	Dynamic Power Calculation
	Dynamic Power Unit Derivation

	Power Calculation for Multirail Cells

	Using CCS Power Libraries
	Voltage Scaling
	Script Examples for Voltage Scaling

	Part 2: Power Analysis
	4 Generating SAIF Files
	About Switching Activity
	Introduction to SAIF Files
	Generating SAIF Files
	Generating SAIF Files From Simulation
	Generating SAIF Files From SystemVerilog or Verilog Simulations
	Generating SAIF Files From RTL Simulation

	Generating SAIF Files From Gate-Level Simulation
	VCS MX Toggle Commands
	Resetting the Toggle Counter
	Capturing State- and Path-Dependent Switching Activity
	Overriding Default Registration of Internal Nets

	Generating SAIF Files From VHDL Simulation
	System Task List for SAIF File Generation From VHDL Simulation

	Generating SAIF Files From VCD Files
	Converting a VCD File to a SAIF File
	Limited SystemVerilog Support in the vcd2saif Utility

	Generating SAIF Files From FSDB Output Files

	Verilog Switching Activity Examples
	RTL Example
	Verilog Design Description
	RTL Testbench
	RTL SAIF File
	Understanding the SAIF File

	Gate-Level Example
	Gate-Level Verilog Module
	Verilog Testbench
	Gate-Level SAIF File

	VHDL Switching Activity Example
	VHDL Design Description
	RTL Testbench
	RTL SAIF File

	5 Annotating Switching Activity
	Types of Switching Activity to Annotate
	Annotating Switching Activity Using RTL SAIF Files
	Using the Name-Mapping Database
	Integrating the RTL Annotation With the PrimePower tool

	Annotating Switching Activity Using Gate-Level SAIF Files
	Reading SAIF Files Using the read_saif Command
	Reading SAIF Files Using the merge_saif Command

	Annotating Inferred Switching Activity
	Annotating Switching Activity Using the set_switching_activity Command
	Fully Versus Partially Annotating the Design
	Analyzing Switching Activity Annotation
	Using the report_saif Command to Report Switching Activity
	Using the report_activity Command to Report Switching Activity
	Retrieving Switching Activity on a Pin or Net

	Removing the Switching Activity Annotation
	Design Objects Without Annotated Switching Activity
	Default Switching Activity Values
	Propagating the Switching Activity
	Deriving the State- and Path-Dependent Switching Activity

	6 Performing Power Analysis
	Overview
	Identifying Power and Accuracy
	Factors That Affect the Accuracy of Power Analysis
	Switching Activity Annotation
	Clock Frequency Scaling

	Delay Model
	Switching Activity Correlation
	Overriding Library Cell Power Characterization

	Performing Gate-Level Power Analysis
	Using the report_power Command
	Using the report_power_calculation Command

	Analyzing Power With Partially Annotated Designs
	Power Correlation
	Performing Power Correlation
	Power Correlation Script

	Analyzing the Design For Power Analysis
	Characterizing a Design for Power
	Reporting the Power Attributes of Library Cells
	Using Power Derate Factors
	Generating Power Reports
	Power Report Summary
	Net Power Report
	Cell Power Report
	Group Report
	Wire and Pin Switching Power Report
	Hierarchical Power Report
	Power Report for Block Abstractions
	Register Clock-Pin Internal Power Report

	Part 3: Power Reduction
	7 Clock Gating
	Introduction to Clock Gating
	Using Clock-Gating Conditions
	Clock-Gating Conditions
	Enable Condition
	Excluding Specific Signals From the Enable Condition

	Setup Condition

	Enabling or Disabling Clock Gating on Design Objects

	Inserting Clock Gates
	Using the compile_ultra -gate_clock Command
	Clock-Gate Insertion in Multivoltage Designs

	Clock Gating Flows
	Inserting Clock Gates in the RTL Design
	Inserting Clock Gates in Gate-Level Design

	Specifying Clock-Gate Latency
	The set_clock_latency Command
	The set_clock_gate_latency Command
	Applying Clock-Gate Latency
	Resetting Clock-Gate Latency
	Comparison of the Clock-Gate Latency Specification Commands

	Calculating the Clock Tree Delay From Clock-Gating Cell to Registers
	Specifying Setup and Hold
	Predicting the Impact of Clock Tree Synthesis
	Choosing a Value for Setup
	Choosing a Value for Hold

	Clock-Gating Styles
	Default Clock-Gating Style
	Selecting Clock-Gating Styles
	Choosing Gating Logic
	Choosing an Integrated Clock-Gating Cell
	Choosing a Configuration for Discrete Gating Logic
	Choosing a Simple Gating Cell by Name
	Choosing a Simple Gating Cell and Library by Name
	Designating Simple Cells Exclusively for Clock Gating
	Choosing a Specific Latch and Library
	Choosing a Latch-Free Style
	Improving Testability
	Inserting a Control Point for Testability
	Scan Enable Versus Test Mode
	Improving Observability With Test Mode
	Choosing a Depth for Observability Logic

	Connecting the Test Ports Throughout the Hierarchy
	Using the insert_dft Command

	Using Instance-Specific Clock-Gating Styles
	Specifying Clock-Gating Style on Design Objects
	Instance-Specific Clock-Gating Style Example
	Removing the Instance-Specific Clock-Gating Style on Design Objects

	Modifying the Clock-Gating Structure
	Changing a Clock-Gated Register to Another Clock-Gating Cell
	Removing Clock-Gating Cells From the Design
	Rewiring Clock Gating After Retiming

	Integrated Clock-Gating Cells
	Integrated Clock-Gating Cell Attributes
	Pin Attributes
	Timing Considerations

	Clock-Gating Naming Conventions
	Example Script for Naming Style
	Example Script of Output Netlist

	Keeping Clock-Gating Information in a Structural Netlist
	Identifying and Preserving Clock-Gating Cells
	Identification of Clock-Gating Cells
	Explicit Identification of Clock-Gating Cells
	Preserving the Identified Clock-Gating Cells
	Identified Clock-Gating Cells and dont_touch
	Handling Clock-Gating Edge Conflicts

	Comparison of Clock-Gate Identification Methods
	Usage Flow With the write_script Command
	Usage Flow With the identify_clock_gating Command

	Replacing Clock-Gating Cells
	Inserting Clock Gates With Safety Registers
	Clock-Gate Optimization Performed During Compilation
	Hierarchical Clock Gating
	Enhanced Register-Based Clock Gating
	Multistage Clock Gating
	Multistage Clock-Gating Flow

	Clock Gate Merging
	Placement-Aware Clock Gating in Design Compiler Graphical
	Clock Gating Multibit Registers

	Performing Clock-Gating on DesignWare Components
	Reporting Clock Gates
	The report_clock_gating Command

	8 Self-Gating
	Self-Gating Concepts
	Self-Gating Flows
	Library Requirements for Self-Gating
	Inserting Self-Gates
	Specifying Objects for Self-Gating
	Specifying Options for Self-Gating

	Querying and Reporting Self-Gates

	9 Power Optimization
	Overview
	Gate-Level Power Optimization
	Leakage Power Optimization
	Dynamic Power Optimization
	High-Effort Power Optimization

	Enabling Power Optimization
	Leakage Optimization for Multicorner-Multimode Designs
	Leakage Power Optimization Based on Threshold Voltage
	Multiple Threshold Voltage Library Attributes
	The set_multi_vth_constraint Command

	Performing Power Optimization
	Settings for Power Optimization
	Power Optimization in the Physical Guidance Flow
	Settings for Low-Power Placement

	10 Multivoltage Design Concepts
	Multivoltage and Multisupply Designs
	Library Requirements for Multivoltage Designs
	Liberty PG Pin Syntax
	Level-Shifter Cells
	PG Pin Configuration Support
	Support for NOR-Type Enable Level-Shifter Cells

	Isolation Cells
	Using Standard Cells as Isolation Cells
	Single-Rail and Dual-Rail Isolation Cells
	NOR-Style Isolation Cells
	Isolation Cells With Asynchronous Set or Reset Pins

	Requirements of Level-Shifter and Isolation Cells
	Retention Register Cells
	Multithreshold-CMOS Retention Registers

	Power-Switch Cells
	Always-On Logic Cells

	Power Domains
	Shut-Down Blocks
	Marking Pass-Gate Library Pins

	Voltage Areas

	11 UPF Multivoltage Design Implementation
	Multivoltage Design Flow Using UPF
	Power Intent Concepts
	UPF Script Example

	Defining Power Intent With UPF Commands
	Name Spacing Rules for UPF Objects and Attributes
	Defining the Power Intent in the GUI
	UPF Diagram View

	Setting the UPF Command Scope
	Creating Power Domains
	Power Domain Boundaries
	Excluding Elements From Power Domains
	Representation of Power Domain in the UPF Diagram View
	Scope
	Expanding and Collapsing Power Domains in the GUI

	Viewing Hierarchical Cell and Power Domain Boundaries

	Creating Atomic Power Domains
	Examples
	Reporting Atomic Power Domains
	Hierarchical Flow Support for Atomic Power Domains
	Top-Down Hierarchical Flow
	Bottom-Up Hierarchical Flow

	Creating Supply Ports
	Adding Port State Information to Supply Ports
	Representation of Supply Ports in the UPF Diagram View

	Creating Supply Nets
	Creating Custom Resolution Functions
	Specifying Primary Supply Nets for a Power Domain
	Representing Supply Nets in the UPF Diagram View

	Connecting Supply Nets
	Interpreting PG Connections From the RTL
	Converting PG Information in the RTL to UPF
	Preserving Assign Statements on PG Nets

	Specifying Supply Sets
	Creating Supply Sets
	Creating Supply Set Handles
	Restricting Supply Sets Available to a Power Domain

	Refining Supply Sets
	Associating Supply Sets
	Rules for Associating Supply Sets
	Refining Bias Supply Functions Automatically
	Example 1: No Bias Functions Defined
	Example 2: Implicit Supply Sets With Resolved Power and Ground
	Example 3: Implicit Supply Sets With Unresolved Power and Ground
	Example 4: N-Well Only Support

	Defining the Power States for a Supply Set
	Specifying Supply Expressions
	Using OR Operator in add_power_state -supply_expr
	OR Operator Support in add_power_state for Hierarchical Flows
	Operator Precedence
	Reporting Support

	Specifying Logic Expressions
	Successive Refinement
	Correlated Grouping of Supply Voltage Triplets

	Querying for Supply Sets
	Limitations

	Querying for Related Supply Sets
	Always-On Logic
	Attributes for Always-On Cells
	Always-On Optimization
	Always-On Optimization on Feedthrough Nets
	Always-On Optimization on Disjoint Voltage Area
	Always-On Tie Cells
	Basic Always-On Tie Cell Mapping
	Enhanced Constant Propagation
	Enhanced Always-On Tie Cell Mapping

	UPF Support for Custom Always-On Wrapper Cells
	leaf_cell_as_domain_boundary Design Attribute
	upf_control_signal_trace Port Attribute
	Example

	Fixing Multivoltage Violations

	Comparing Voltage Levels and Voltage Status
	Specifying Level-Shifter Strategies
	Controlling Level-Shifter Locations
	Resolving Level Shifter Strategy Precedence
	Automatically Deriving Level Shifter Strategies for DFT Paths
	Using Specific Library Cells With the Level-Shifter Strategy
	Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets
	Representing Level-Shifter Strategies in the UPF Diagram View

	Specifying Isolation Strategies
	Isolation Cells With Multiple Control Signals
	Using the set_isolation_control Command
	Rules for the Location Fanout Option
	Order of Precedence of Isolation Strategies
	Resolving Isolation Strategy Conflicts

	Automatically Deriving Isolation Strategies for DFT Paths
	Using Specific Library Cells With Isolation Strategies
	Aligning Isolation Strategies to Constant Drivers
	Optimizing Isolation Cell Insertion on Constants
	Preventing Unnecessary Isolation Cell Insertion
	Isolation Cells and Heterogeneous Loads
	Insertion of Isolation Cells on Heterogeneous Fanout Paths

	Isolation Handling on Control Signals
	Smart Derivation of -no_isolation Strategy
	Macro Cells With Internal NOR Isolation Cells
	Voltage Checking

	Representing Isolation Strategies in the UPF Diagram View

	Merging and Cloning Multivoltage Cells
	Limitations

	Setting UPF Attributes on Ports and Hierarchical Cells
	Setting Attributes on Ports
	Setting Attributes on Macros
	Setting Design Attributes on Supply Nets and Logic Nets
	Modeling Unconnected Pins on Macros
	Specifying Analog Nets
	Setting Attributes on Hierarchical Cells
	Setting Terminal Boundaries

	Querying for UPF Design and Port Attributes
	Assigning Supplies to Pad Ports
	Specifying Retention Strategies
	Specifying Elements to Include in the Retention Strategy
	Resolving Retention Strategy Precedence
	Using the Retention Supply as the Primary Supply
	Choosing Specific Library Cells With Retention Strategies
	Zero-Pin Retention Support
	Inferring Complex Retention Cells
	Retention Strategy and Clock-Gating Cells
	Representing Retention Strategies in the UPF Diagram View

	Specifying Repeater Strategies
	Specifying Supplies for Repeaters

	Deferring Element Definitions in Power Management Strategies
	Matching Tool and IEEE LRM Defaults
	Creating Power Switches
	Representation of Power Switches in the UPF Diagram View

	Power Models
	Configuring Power Compiler for Power Models
	Defining and Applying a Power Model
	Excluding Designs From Using Power Models
	Hard and Soft Macros

	Power State Tables
	Default Power States
	Power State Propagation
	Creating Power State Tables
	Hierarchical Power State Tables

	Creating Power State Groups in Hierarchies Having State Propagation Enabled
	Example
	Bottom-Up Hierarchical Flow
	Bottom-Up Hierarchical Flow Example

	Top-Down Hierarchical Flow
	State Propagation is Enabled for the Entire Design
	State Propagation is Disabled for the Entire Design
	Design has a Mixture of State Propagation Values
	Top-Down Hierarchical Flow Examples
	Example: State propagation is disabled for the entire design
	Example: Design has a mixture of state propagation values
	Example: Design has state propagation disabled and the tool creates derived states

	Reconciling Voltages in Power State Tables
	Reporting Power State Tables
	Visually Analyzing Power State Tables in the UPF Diagram View

	Support for Well Bias
	Using a Non-Bias Block in a Bias-Enabled Design
	Skipping Bias Checks
	Inserting Power Management Cells
	Relaxing PVT Library Constraints for Power Management Cells

	Reviewing the UPF Specifications
	Commands to Query and Edit Design Objects
	Reviewing the Power Intent Using the Design Vision GUI
	Applying Power Intent Changes

	Examining and Debugging UPF Specifications
	The analyze_mv_feasibility Command
	Reporting Resolved Strategies
	Reporting Cell Mapping Feasibility
	Reporting Mapping Feasibility for Level-Shifters

	Generating HTML Cell Mapping Reports

	The check_mv_design Command
	Multivoltage Design Violations in the GUI
	Generating Design Violation Reports
	Violation Groups

	Examining Design Violations in the MV Advisor Violation Browser
	Exploring the Violations

	The analyze_mv_design Command
	Analyzing Multivoltage Design Connections in the GUI

	Writing the Power Information
	Preserving the Command Order in the UPF’ File
	Controlling the Line Width in the UPF’ File

	Writing and Reading Verilog Netlists With Power and Ground Information
	Power and Ground Supply Connection Syntax
	Supply Sets
	Power Switches
	Reading Verilog Netlists With Power and Ground Supply Connections
	Specifying Design Instances Using SystemVerilog Elements

	The Golden UPF Flow
	Reporting Commands for the UPF Flow
	UPF-Based Hierarchical Multivoltage Flow Methodology
	Hierarchical UPF Design Methodology
	Block-Level Implementation
	Creating the Blocks
	Generating the Block-Level UPF Constraints
	Using Manually Created Block-Level UPF Files
	Using ETMs and Macros for Block-Level UPF Files
	Using Design Compiler Generated Block-Level UPF Files
	Synthesizing the Blocks

	Top-Level Implementation
	Assembling the Design

	Characterization of Supply Sets and Supply Nets
	Automatic Inference of Related Supply Nets
	Top-Level Design Integration
	Power Domain Merging
	Switch Cell Matching

	Legacy Blocks

	12 Library Setup for Power Optimization
	Basic Library Requirements for Multivoltage Designs
	Power and Ground Pin Syntax
	Converting Libraries to PG Pin Library Format
	Using the FRAM View
	Using Tcl Commands
	Tcl Commands for Low-Power Library Specification

	Macro Cells With Fine-Grained Switches

	Library Usage in Multicorner-Multimode Designs
	Link Libraries With Equal Nominal PVT Values
	Setting the dont_use Attribute on Library Cells

	Distinct PVT Requirements
	Automatic Detection of Driving Cell Library
	Relating the Minimum Library to the Maximum Library
	Unique Identification of Libraries Based on File Names

	Automatic Inference of Operating Conditions for Macro, Pad, and Switch Cells
	Using the set_opcond_inference Command
	Deviating From the Inferred Operating Condition and Its Impact

	13 Power Optimization in Multicorner-Multimode Designs
	Optimizing Multicorner-Multimode Designs
	Optimizing for Leakage Power
	Optimizing for Dynamic Power Using Low-Power Placement

	Reporting Commands
	report_scenarios Command
	Reporting Examples for Multicorner-Multimode Designs

	Script Example for Multicorner-Multimode Flow

	Appendixes
	A Lower-Domain Boundary Support
	Overview of Power Domain Boundaries
	Applying Isolation and Level-Shifter Strategies
	Specifying Domain Boundaries With the -applies_to Option
	Defining Cell Placement With the -location Option

	B Integrated Clock-Gating Cell Example
	Library Description
	Example Schematics
	Rising-Edge Latch-Based Integrated Cells
	Rising-Edge Latch-Free Integrated Cells
	Falling Edge Latch-Based Integrated Cells
	Falling-Edge Latch-Free Integrated Cells

	C Attributes for Querying and Filtering
	Derived Attribute Lists
	Usage Examples

