

IEEE Standard for Design and
Verification of Low-Power, Energy-
Aware Electronic Systems

Sponsored by the
Design Automation Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

IEEE Computer Society

IEEE Std 1801™-2015
(Revision of

IEEE Std 1801-2013)

IEEE Std 1801™-2015
(Revision of

IEEE Std 1801-2013)

IEEE Standard for Design and
Verification of Low-Power, Energy-
Aware Electronic Systems

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society

Approved 5 December 2015

IEEE-SA Standards Board

Grateful acknowledgment is made to the following for permission to use source material:

Accellera Systems Initiative

 Unified Power Format (UPF) Standard, Version 1.0

Cadence Design Systems, Inc.

 Library Cell Modeling Guide Using CPF

 Hierarchical Power Intent Modeling Guide Using CPF

Silicon Integration Initiative, Inc.

 Si2 Common Power Format Specification, Version 2.1

Abstract: A method is provided for specifying power intent for an electronic design, for use in
verification of the structure and behavior of the design in the context of a given power-
management architecture, and for driving implementation of that power-management
architecture. The method supports incremental refinement of power-intent specifications required
for IP-based design flows.

Keywords: bottom-up implementation, buffers, energy-aware design, IEEE 1801™, interface
specification, IP reuse, isolation, level-shifting, power domains, power intent, power modeling,
power states, successive refinement, supply states, repeaters, retention, Unified Power Format
(UPF)

•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 25 March 2016. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-1-5044-0105-0 STDGT20513
Print: ISBN 978-1-5044-0106-7 STDPD20513

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These
notices and disclaimers, or a reference to this page, appear in all standards and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards
Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are
developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a
consensus development process, approved by the American National Standards Institute (“ANSI”), which
brings together volunteers representing varied viewpoints and interests to achieve the final product.
Volunteers are not necessarily members of the Institute and participate without compensation from IEEE.
While IEEE administers the process and establishes rules to promote fairness in the consensus development
process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the
soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness
of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his
or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given
IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the
formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not
respond to interpretation requests. Any person who would like to participate in revisions to an IEEE
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

 Secretary, IEEE-SA Standards Board
 445 Hoes Lane
 Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to
photocopy portions of any individual standard for company or organizational internal use or individual,
non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission
to photocopy portions of any individual standard for educational classroom use can also be obtained
through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten
years old and has not undergone a revision process, it is reasonable to conclude that its contents, although
still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at
http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more
information about the IEEE SA or IEEE’s standards development process, visit the IEEE-SA Website at
http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:
http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to
the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant
has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the
IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may
indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without
compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of
any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely
their own responsibility. Further information may be obtained from the IEEE Standards Association.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

Copyright © 2016 IEEE. All rights reserved.

vi

Participants

At the time this IEEE standard was completed, the P1801 Working Group had the following membership:

John Biggs, Chair
Erich Marschner, Vice Chair

Sushma Honnavara-Prasad, Secretary

Houssam Abbas
Paul Bailey
Guillaume Boillet
Conor Byrne
Louis Cardillo
Shir-Shen Chang
David Cheng
Cyril Chevalier
Ashley Crawford
John Decker
Stephan Diestelhorst
Shaun Durnan
Paul Floyd
Jerry Frenkil
Alan Gibbons
Josefina Hobbs

Anand Iyer
Fred Jen
Tim Jordan
Sylvian Kaiser
James Kehoe
Tim Kogel
Rick Koster
Shaji Kunjumohamed
Kaowen Liu
Debajani Majhi
Ilija Materic
Gene Matter
Jon McDonald
Don Mills
Kevin Nesmith
Lawrence Neukom

David Peterson
Shreedhar Ramachandra
Judith Richardson
Frederic Saint-Preux
Rich Scales
Guido Schlothane
Krishna Sekar
Desinghu Pundi Srinivasan
Amit Srivastava
James Su
Haruyuki Tago
Ajay Thiriveedhi
Venki Venkatesh
Vita Vishnyakov
Jon Worthington
Vojin Zivojnovic

The following members of the entity balloting committee voted on this standard. Balloters may have voted
for approval, disapproval, or abstention.

Accellera Organization, Inc.
Advanced Micro Devices

(AMD)
ALDEC, Inc.
ARM, Ltd.
Broadcom Corporation
Cadence Design Systems, Inc.
Google

Intel Corporation
Japan Electronics and

Information Technology
Industries Association (JEITA)

Marvell Semiconductor, Inc.
MediaTek, Inc.
Mentor Graphics
Micron Technology, Inc.
Microsoft Corporation

NVIDIA Corporation
PMC-Sierra, Inc.
Qualcomm, Inc.
Silicon Integration Initiative,

Inc.
STMicroelectronics
Synopsys, Inc.
Verific Design Automation, Inc.

When the IEEE-SA Standards Board approved this standard on 8 December 2015, it had the following
membership:

John D. Kulick, Chair
Jon Walter Rosdahl, Vice Chair
Richard H. Hulett, Past Chair

Konstantinos Karachalios, Secretary

Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Jean-Philippe Faure
J. Travis Griffith
Gary Hoffman
Michael Janezic

Joseph L. Koepfinger*
David J. Law
Hung Ling
Andrew Myles
T. W. Olsen
Glenn Parsons
Ronald C. Petersen
Annette D. Reilly

Stephen J. Shellhammer
Adrian P. Stephens
Yatin Trivedi
Philip Winston
Don Wright
Yu Yuan
Daidi Zhong

 *Member Emeritus

Copyright © 2016 IEEE. All rights reserved.

vii

Introduction

This introduction is not part of IEEE Std 1801™-2015, IEEE Standard for Design and Verification of Low-Power,
Energy-Aware Electronic Systems.

The purpose of this standard is to provide portable, low-power design specifications that can be used with a
variety of commercial products throughout an electronic system design, analysis, verification, and
implementation flow.

When the electronic design automation (EDA) industry began creating standards for use in specifying,
simulating, and implementing functional specifications of digital electronic circuits in the 1980s, the
primary design constraint was the transistor area necessary to implement the required functionality in the
prevailing process technology at that time. Power considerations were simple and easily assumed for the
design as power consumption was not a major consideration and most chips operated on a single voltage
for all functionality. Therefore, hardware description languages (HDLs) such as VHDL (IEC 61691-1-1/
IEEE Std 1076™a)and SystemVerilog (IEEE Std 1800™b) provided a rich set of capabilities necessary for
capturing the functional specification of electronic systems, but no capabilities for capturing the power
architecture (how each element of the system is to be powered).

As the process technology for manufacturing electronic circuits continued to advance, power (as a design
constraint) continually increased in importance. Even above the 90 nm process node size, dynamic power
consumption became an important design constraint as the functional size of designs increased power
consumption at the same time battery-operated mobile systems, such as cell phones and laptop computers,
became a significant driver of the electronics industry. Techniques for reducing dynamic power
consumption—the amount of power consumed to transition a node from a 0 to 1 state or vice versa—
became commonplace. Although these techniques affected the design methodology, the changes were
relatively easy to accommodate within the existing HDL-based design flow, as these techniques were
primarily focused on managing the clocking for the design (more clock domains operating at different
frequencies and gating of clocks when logic in a clock domain is not needed for the active operational
mode). Multi-voltage power-management methods were also developed. These methods did not directly
impact the functionality of the design, requiring only level-shifters between different voltage domains.
Multi-voltage power domains could be verified in existing design flows with additional, straightforward
extensions to the methodology.

With process technologies below 90 nm, static power consumption has become a prominent and, in many
cases, dominant design constraint. Due to the physics of the smaller process nodes, power is leaked from
transistors even when the circuitry is quiescent (no toggling of nodes from 0 to 1 or vice versa). New
design techniques have been developed to manage static power consumption. Power gating or power shut-
off turns off power for a set of logic elements. Back-bias techniques are used to raise the voltage threshold
at which a transistor can change its state. While back bias slows the performance of the transistor, it greatly
reduces leakage. These techniques are often combined with multi-voltages and require additional
functionality: power-management controllers, isolation cells that logically and/or electrically isolate a
shutdown power domain from “powered-up” domains, level-shifters that translate signal voltages from one
domain to another, and retention registers to facilitate fast transition from a power-off state to a power-on
state for a domain.

The Unified Power Format (UPF) was developed to enable modeling of these new power-management
techniques and to facilitate automation of design, verification, and implementation tools that must account
for power-management aspects of a design. The initial version of UPF, developed by the Accellera Systems
Initiative, focused primarily on modeling power distribution and its effects on the behavior of a system. In

a The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
b IEEE publications are available from The Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ
08854, USA (http://standards.ieee.org/).

http://standards.ieee.org/

Copyright © 2016 IEEE. All rights reserved.

viii

May 2007 that initial version was donated to the IEEE, and in March 2009 a new version, IEEE Std 1801,
was released. That update of UPF added many new features, including the concept of successive
refinement, more abstract modeling of system-power states, and more abstract modeling of supply
networks.

This document, the latest revision of IEEE Std 1801, makes available further enhancements to UPF,
including enhanced concepts for modeling power states and transitions at all levels of aggregation,
enhanced support for methodologies such as successive refinement and bottom-up implementation, and a
detailed information model that serves as the basis for enhanced package UPF functions and query
functions. This current version also provides support for component power modeling for system-level
power analysis in virtual prototyping applications.

Copyright © 2016 IEEE. All rights reserved.

ix

Contents

1. Overview .. 1
1.1 Scope ... 1
1.2 Purpose .. 1
1.3 Key characteristics of the Unified Power Format .. 1
1.4 Contents of this standard ... 3

2. Normative references .. 4

3. Definitions, acronyms, and abbreviations .. 4
3.1 Definitions ... 4
3.2 Acronyms and abbreviations ..10

4. Concepts ..11
4.1 Introduction ..11
4.2 Design structure ..11
4.3 Design representation ...12
4.4 Power architecture ..15
4.5 Power distribution ...18
4.6 Power management ...26
4.7 Supply states and power states ...31
4.8 Simstates ...38
4.9 Power intent specification ...39

5. Language basics...45
5.1 UPF is Tcl ...45
5.2 Conventions used ..45
5.3 Lexical elements ...47
5.4 Boolean expressions ...51
5.5 Object declaration ...53
5.6 Attributes of objects ..53
5.7 Precedence ..58
5.8 Generic UPF command semantics ..60
5.9 effective_element_list semantics ..60
5.10 Command refinement ...63
5.11 Error handling ...65
5.12 Units ...65
5.13 SystemC language basic ...65

6. Power intent commands ..65
6.1 Introduction ..65
6.2 Categories ...65
6.3 add_parameter ..66
6.4 add_port_state (legacy) ...67
6.5 add_power_state ...68
6.6 add_pst_state (legacy) ..74
6.7 add_state_transition ..76
6.8 add_supply_state ..78
6.9 apply_power_model ...78
6.10 associate_supply_set ...80
6.11 begin_power_model ...81
6.12 bind_checker ...83

Copyright © 2016 IEEE. All rights reserved.

x

6.13 connect_logic_net ...84
6.14 connect_supply_net ..86
6.15 connect_supply_set ...88
6.16 create_composite_domain ..89
6.17 create_hdl2upf_vct ...91
6.18 create_logic_net ..92
6.19 create_logic_port ..93
6.20 create_power_domain ...94
6.21 create_power_state_group ..97
6.22 create_power_switch ..99
6.23 create_pst (legacy) ..106
6.24 create_supply_net ...107
6.25 create_supply_port ..111
6.26 create_supply_set ..112
6.27 create_upf2hdl_vct ...113
6.28 describe_state_transition (deprecated) ..114
6.29 end_power_model ..114
6.30 find_objects ..115
6.31 load_simstate_behavior ..119
6.32 load_upf ..120
6.33 load_upf_protected (deprecated) ..121
6.34 map_power_switch ...121
6.35 map_repeater_cell ...122
6.36 map_retention_cell ...123
6.37 name_format ...127
6.38 save_upf ..128
6.39 set_correlated ..129
6.40 set_design_attributes...130
6.41 set_design_top ..131
6.42 set_domain_supply_net (legacy) ..132
6.43 set_equivalent ...133
6.44 set_isolation ..135
6.45 set_level_shifter ..142
6.46 set_partial_on_translation ...148
6.47 set_port_attributes ..149
6.48 set_repeater ...155
6.49 set_retention..158
6.50 set_retention_elements ...162
6.51 set_scope ...163
6.52 set_simstate_behavior ...164
6.53 set_variation..165
6.54 upf_version ...166
6.55 use_interface_cell ...167

7. Power-management cell definition commands ..169
7.1 Introduction ..169
7.2 define_always_on_cell ...170
7.3 define_diode_clamp ..171
7.4 define_isolation_cell ...172
7.5 define_level_shifter_cell ...175
7.6 define_power_switch_cell ..179
7.7 define_retention_cell ..181

8. UPF processing ..183
8.1 Overview ..183
8.2 Data requirements ...184

Copyright © 2016 IEEE. All rights reserved.

xi

8.3 Processing phases ...184
8.4 Error checking ..188

9. Simulation semantics ...188
9.1 Supply network creation ...188
9.2 Supply network simulation ...190
9.3 Power state simulation ..191
9.4 Power state transition detection ..194
9.5 Simstate simulation ...194
9.6 Transitioning from one simstate state to another ..197
9.7 Simulation of retention ...198
9.8 Simulation of isolation ..204
9.9 Simulation of level-shifting ..205
9.10 Simulation of repeaters ...205

10. UPF information model ...205
10.1 Overview ..205
10.2 Components of UPF information model ...206
10.3 Identifiers in information model (IDs) ..207
10.4 Classification of objects ..210
10.5 Example of design hierarchy ..217
10.6 Object definitions ...218

11. Information model application programmable interface (API) ...272
11.1 Tcl interface ..272
11.2 HDL interface ...282

Annex A (informative) Bibliography ..344

Annex B (normative) Value conversion tables ..345
B.1 VHDL_SL2UPF ..345
B.2 UPF2VHDL_SL ..345
B.3 VHDL_SL2UPF_GNDZERO ...345
B.4 UPF_GNDZERO2VHDL_SL ...346
B.5 SV_LOGIC2UPF ...346
B.6 UPF2SV_LOGIC ...346
B.7 SV_LOGIC2UPF_GNDZERO ..346
B.8 UPF_GNDZERO2SV_LOGIC ..346
B.9 VHDL_TIED_HI ...347
B.10 SV_TIED_HI ...347
B.11 VHDL_TIED_LO ..347
B.12 SV_TIED_LO ..347

Annex C (informative) UPF query examples ..348
C.1 Utility procs ...348
C.2 High-level procs ...349

Annex D (informative) Replacing deprecated and legacy commands and options352
D.1 Deprecated and legacy constructs ..352
D.2 Recommendations for replacing deprecated and legacy constructs ...353

Annex E (informative) Low-power design methodology ..355
E.1 Simple System on Chip (SoC) example design ..355
E.2 Design, verification, and implementation flow ..358
E.3 Power intent of the example design ...361

Copyright © 2016 IEEE. All rights reserved.

xii

Annex F (informative) Power-management cell definitions in UPF and Liberty ..382
F.1 Introduction ..382
F.2 define_always_on_cell ...382
F.3 define_diode_clamp ...384
F.4 define_isolation_cell ..385
F.5 define_level_shifter_cell ..388
F.6 define_power_switch_cell ..390
F.7 define_retention_cell ..392

Annex G (informative) Power-management cell modeling examples ...397
G.1 Modeling always-on cells ..397
G.2 Modeling cells with internal diodes ...403
G.3 Modeling isolation cells ...405
G.4 Modeling level-shifters ..422
G.5 Modeling power-switch cells ...439
G.6 Modeling state retention cells ..448

Annex H (informative) IP power modeling for system-level design ...461
H.1 Overview of system-level IP power models ..461
H.2 Content of system-level IP power models ...462
H.3 Power calculation using power functions ..463
H.4 Power model structure ...465
H.5 Power model instantiation—example approach...466

Annex I (normative) Switching Activity Interchange Format ...468
I.1 Syntactic conventions ..469
I.2 Lexical conventions ...470
I.3 Backward SAIF file ...473
I.4 Library forward SAIF file ...489
I.5 RTL forward SAIF file ..497

Copyright © 2016 IEEE. All rights reserved.

1

IEEE Standard for Design and
Verification of Low-Power, Energy-
Aware Electronic Systems

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health,
or environmental protection, or ensure against interference with or from other devices or networks.
Implementers of IEEE Standards documents are responsible for determining and complying with all
appropriate safety, security, environmental, health, and interference protection practices and all
applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at
http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

This standard defines the syntax and semantics of a format used to express power intent in energy-aware
electronic system design. Power intent includes the concepts and information required for specification and
validation, implementation and verification, and modeling and analysis of power-managed electronic
systems. This standard also defines the relationship between the power intent captured in this format and
design intent captured via other formats (e.g., standard hardware description languages and cell libraries).

1.2 Purpose

The standard enables portability of power intent across a variety of commercial products throughout an
electronic system design, analysis, verification, and implementation flow.

1.3 Key characteristics of the Unified Power Format

The Unified Power Format (UPF) provides the ability for electronic systems to be designed with power as a
key consideration early in the process. UPF accomplishes this by allowing the specification of what was
traditionally physical implementation-based power information early in the design process—at the register

http://standards.ieee.org/IPR/disclaimers.html

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

2

transfer level (RTL) or earlier. Figure 1 shows UPF supporting the entire design flow. UPF provides a
consistent format to specify power-design information that may not be easily specifiable in a hardware
description language (HDL) or when it is undesirable to directly specify the power semantics in an HDL, as
doing so would tie the logic specification directly to a constrained power implementation. UPF specifies a
set of HDL attributes and HDL packages to facilitate the expression of power intent in HDL when
appropriate (see Table 4 and 11.2). UPF also defines consistent semantics across verification and
implementation to check that what is implemented is the same as what has been verified.

Figure 1 —UPF tool flow

As indicated in Figure 1, UPF files are part of the design source and, when combined with the HDL,
represent a complete design description: the HDL describing the logical intent and the UPF describing the
power intent. Combined with the HDL, the UPF files are used to describe the intent of the designer. This
collection of source files is the input to several tools, e.g., simulation tools, synthesis tools, and formal
verification tools. UPF supports the successive refinement methodology (see 4.9) where power-intent
information grows along the design flow to provide needed information for each design stage.

 Simulation tools can read the HDL/UPF design input files and perform RTL power-aware
simulation. At this stage, the UPF might only contain abstract models such as power domains and
supply sets without the need to create the power and ground network and implementation details.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

3

 A user may further refine the UPF specification to add implementation-related information. This
further-refined specification may then be processed by synthesis tools to produce a netlist and
optionally update the UPF fileset accordingly.

 In those cases where design object names change, a UPF file with the new names is needed. A
UPF-aware logical equivalence checker can read the full design and UPF filesets and perform the
checks to ensure power-aware equivalence.

 Place and route tools read both the netlist and the UPF files and produce a physical netlist,
potentially including an output UPF file.

UPF is a concise, power-intent specification capability. Power intent can be easily specified over many
elements in the design. A UPF specification can be included with the other deliverables of intellectual
property (IP) blocks and reused along with the other delivered IP. UPF supports various methodologies
through carefully defined semantics, flexibility in specification, and, when needed, defined rational
limitations that facilitate automation in verification and implementation.

1.4 Contents of this standard

The organization of the remainder of this standard is as follows:

 Clause 2 provides references to other applicable standards that are presumed or required for this
standard.

 Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

 Clause 4 describes the basic concepts underlying UPF.

 Clause 5 describes the language basics for UPF and its commands.

 Clause 6 details the syntax and semantics for each UPF power intent command.

 Clause 7 details the syntax and semantics for each UPF power-management cell command.

 Clause 8 defines a reference model for UPF command processing.

 Clause 9 defines simulation semantics for various UPF commands.

 Clause 10 defines the UPF information model.

 Clause 11 defines the UPF information model application programmable interface (API).

 Annex A lists potentially useful additional reference material.

 Annex B lists the predefined value conversion tables (VCTs) for use in power intent specifications.

 Annex C provides sample Tcl procs for retrieving power intent information.

 Annex D summarizes deprecated and legacy commands.

 Annex E provides an overview of UPF tool flows and use model with an illustrative example.

 Annex F provdes a summary of UPF power-management cell command semantics and Liberty
mappings.

 Annex G provides examples of UPF power-management cell modeling.

 Annex H provides an overview of UPF use model for system-level IP power modeling.

 Annex I defines the Switching Activity Interchange Format (SAIF) for representing power-related
activity in a design.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

4

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEC 61691-1-1/IEEE Std 1076™, Behavioural languages—Part 1-1: VHDL Language Reference Manual.10, 11,

12

IEEE Std 1800™, IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and
Verification Language.

ISO/IEC 19501:2005, Information technology—Open Distributed Processing—Unified Modeling
Language (UML) Version 1.4.2.

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary Online [B1]13 should be consulted for terms not defined in this clause.14 Certain terms in this
standard reflect their corresponding definitions in IEEE Std 1800™ or IEC 61691-1-1/IEEE Std 1076™, or
they are listed in Annex A.

3.1 Definitions

active component: A component that contains one or more input receivers and one or more output drivers
whose values are functions of the inputs, but whose inputs and outputs are not directly connected; or any
hardware description language (HDL) construct(s) that synthesize(s) to an active component.

active control signal: A control signal that is currently presenting the value (level) or transition (edge) that
enables or triggers an active component to operate in a particular manner.

active power state: A power state whose logic expression—or, in certain cases, supply expression—
evaluate to True at a given time.

activity: Any change in the value of a net, regardless of whether that change is propagated to an output.

analog port: A port that is part of a connection that delivers analog signals.

ancestor: Any instance between the current scope in the logic hierarchy and its root scope. When the
current scope is a top-level module, it does not have any ancestors. See also: descendant.

anonymous object: An object that is not named in the context of Unified Power Format (UPF).
Implementations may assign a legal name, but such names are not visible in the UPF context.

10 ISO/IEC publications are available from the International Electrotechnical Commission (http://www.iec.ch/). IEC publications are
also available in the United States from the American National Standards Institute (http://www.ansi.org/).
11 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).
12 The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers,
Inc.
13 The numbers in brackets correspond to those of the bibliography in Annex A.
14IEEE Standards Dictionary Online subscription is available at:
http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html.

http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

5

balloon latch: A retention element style in which a register’s value is saved to a dedicated latch at power-
down and the latch value is restored to the register at power-up.

boundary instance: An instance that has no parent or whose parent is in a different power domain.

child domain (of a HighConn port on the lower boundary of a power domain): The power domain
whose upper boundary contains the corresponding LowConn of the HighConn port.

coarse grain switch: A power switch that is used to generate switched supply for a group of library cells.
This is identified using the attribute switch_cell_type: coarse_grain in Liberty and design attribute
UPF_switch_cell_type coarse_grain in Unified Power Format (UPF) (see Table 4).

component: A physical and logical construction that relates inputs to outputs.

composite domain: A power domain consisting of subordinate power domains called subdomains. All
subdomains in a composite domain share the same primary supply set.

configuration UPF: A Unified Power Format (UPF) specification of the power-management configuration
for a system.

connected: Attached together via a direct connection.

constraint UPF: A Unified Power Format (UPF) specification for an intellectual property (IP) block that
defines constraints for any instance of this IP block that must be met by the power-management
configuration of the system containing that instance.

correlated: A pair of supply nets or a pair of supply sets that are deemed to be at the same point in their
voltage range when being considered for level-shifting. As such, when voltage levels are considered
between them they should be mutually compared, e.g., minimum to minimum and maximum to maximum.

corruption semantics: The rules defining the behavior of logic in response to reduction or disconnection
of power to that logic.

current scope: The design hierarchy location that serves as the immediate context for interpretation and
execution of Unified Power Format (UPF) commands. Also, the instance specified by the set_scope
command.

declared: Specified in the hardware description language (HDL) explicitly or implicitly via a Unified
Power Format (UPF) command.

descendant: Any instance between the current scope in the logic hierarchy and its leaf-level instances.
See also: ancestor.

descendant subtree: A portion of a logic hierarchy, rooted at one instance in the hierarchy, and
containing that instance and all of its descendants.

design hierarchy: A hierarchical structure of nested definitions described in a hardware description
language (HDL).

direct connection: A physical wire; or any hardware description language (HDL) construct(s) that
synthesize(s) to a direct connection.

domain port: A port that is on the interface of a power domain.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

6

driver: The source or drain of a transistor, if the drain or source is connected to a power rail; a
complementary metal oxide semiconductor (CMOS) inverter that continually connects a node to power or
ground; any component that sets the value of its output via a transistor or inverter; a constant assignment;
any combinational logic including a buffer of any kind; any sequential logic; or any hardware description
language (HDL) construct(s) that synthesize(s) to such combinational or sequential logic.

driver supply: For a driver that is a transistor, the supply connected to its source or drain; for a driver that
is an inverter, the pair of supplies connected to the source/drain of the transistor pair comprising the
inverter; or for an output of an active component, the related supply set of that output.

electrically equivalent: For supply ports/nets, connected (whether the connections are evident or not in
the design) without any intervening switches, and therefore have the same value at all times from the
perspective of any load; for supply sets/set handles, consisting of a set of electrically equivalent supply
nets for each required function.

equivalent: A pair of supply nets, a pair of supply sets or a pair of logic nets that are considered to be
interchangeable for certain purposes. See also: electrically equivalent; functionally equivalent.

erroneous: A usage that is likely to lead to an error in the design, but that tools may not be able to detect
and report.

extent (of a domain): The set of instances that comprise a power domain.

fanout domain (of a given port to which a given strategy applies): The power domain containing any of
the following: receiving logic for that port, or a leaf-level cell instance HighConn input port that is
connected to the given port, or a design top module LowConn output port that is connected to the given
port.

feedthrough: A direct connection between two ports on the interface of a power domain, where the
connection involves two ports on the upper boundary, or two ports on the lower boundary, or one of each;
also, a direction connection between two ports of the same leaf-level instance.

feedthrough port: A port on the interface of a power domain that is part of a feedthrough through that
domain, or a port on the interface of a leaf-level instance that is part of a feedthrough through that
instance.

fine grain switch: A power switch that is used to generate switched supply for a single library cell. This is
typically used to describe embedded macro power switches. This is identified using the attribute
switch_cell_type: fine_grain in Liberty and design attribute UPF_switch_cell_type fine_grain in
Unified Power Format (UPF) (see Table 4).

functionally equivalent: Functioning identically from the perspective of any load, either as a result of
being electrically equivalent, or due to independent but parallel circuitry.

generate block: In the hardware description language (HDL) code, this represents a level of design
hierarchy, although a generate block is not itself an instance. After synthesis, generate blocks do not exist
as an independent level of hierarchy. It is illegal to create any Unified Power Format (UPF) objects in a
scope that corresponds to a generate block.

golden source: The design together with the constraint Unified Power Format (UPF) and the configuration
UPF.

hard macro: A block that has been completely implemented and can be used as it is in other blocks. This
can be modeled by an hardware description language (HDL) module for verification or as a library cell for
implementation.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

7

hierarchical name: A series of names separated by the hierarchical separator character, the final name
of which is a legal hardware description language (HDL) name or Unified Power Format (UPF) name, and
each preceding name is the name of an instance or generate block in which the following name is
declared. See also: hierarchical separator character.

hierarchical separator character: A special character used in composing hierarchical names. The
hierarchical separator character is a slash (/).

HighConn: The side of a port connection that is higher in the design hierarchy; the actual signal
associated with a formal port definition.

implementation UPF: The Unified Power Format (UPF) specification of how power distribution and
control is to be implemented for a system.

inactive: A normally active component in a state in which it does not respond to activity on its inputs.
Also, a control signal that is not currently presenting the value (level) or transition (edge) that enables or
triggers an active component to operate in a particular manner.

instance: A particular occurrence of a SystemVerilog module (see IEEE Std 1800), very high speed
integrated circuit (VHSIC) hardware description language (VHDL) entity (see IEC 61691-1-1/IEEE Std
1076), or library cell at a specific location within the design hierarchy.

interface of a power domain: The union of the upper boundary and the lower boundary of the power
domain.

isolation: A technique used to provide defined behavior of a logic signal when its driving logic is not
active.

isolation cell: An instance that passes logic values during normal mode operation and clamps its output to
some specified logic value when a control signal is asserted.

leaf-level cell: An instance that has no descendants, or an instance that is a soft or hard macro.

leaf-level instance: See: leaf-level cell.

level-shifter: An instance that translates signal values from an input voltage swing to a different output
voltage swing.

live slave: A retention element style in which the slave latch of a master-slave flip-flop (MSFF) is always
on and therefore maintains the value of the MSFF during power-down.

logically equivalent: Logic ports/nets that are directly connected without any intervening logic and
therefore have the same value at all times from the perspective of any sink.

logic hierarchy: An abstract view of a design hierarchy in which only those definitions representing
instances are included.

LowConn: The side of a port connection that is lower in the design hierarchy; the formal port definition.

lower boundary (of a power domain): The HighConn side of each port of each boundary instance in
the extent of another power domain whose parent is in the extent of this domain, together with the
HighConn side of each port of any macro cell instance in this power domain, for which the related supply
set is neither identical to nor equivalent to the primary supply set of this domain.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

8

map: Identify a specific model corresponding to an abstract behavior. An instance of the model can then
be used to implement the specific behavior.

model: A SystemVerilog module, very high speed integrated circuit (VHSIC) hardware description
language (VHDL) entity/architecture, or Liberty cell.

named power state: A power state defined using add_power_state for a supply set, power domain,
composite domain, group, model, or instance, including the power states ON and OFF that are
predefined for supply sets and the power states UNDEFINED and ERROR that are predefined for all
objects that have power states.

net: The individual net segments that make up a collection of interconnections between a collection of
ports. A net may be named or anonymous.

net segment: A direct connection within a single instance.

parent: The immediate ancestor of a given instance within the logic hierarchy.

parent domain (of a LowConn port on the upper boundary of a power domain): The power domain
whose lower boundary contains the corresponding HighConn of the LowConn port.

passive component: A direct connection; a component that has neither a receiver nor a driver, whose
output is connected to its input, and therefore its output is always the same as its input, e.g., a pass
transistor; or any hardware description language (HDL) construct(s) that synthesize(s) to a feedthrough
component.

pg_type: An attribute of a port that indicates its use in providing power to a cell.

port: A connection on the interface of a SystemVerilog module or very high speed integrated circuit
(VHSIC) hardware description language (VHDL) entity. Also, a port on the interface of a power domain.

power domain: A collection of instances that are treated as a group for power-management purposes. The
instances of a power domain typically, but do not always, share a primary supply set. A power domain
can also have additional supplies, including retention and isolation supplies.

power rail: The physical implementation of a power supply net.

power state: A subset of the functional states of an object that have the same characteristics with respect to
power supply (for a supply set) or power consumption (for a power domain, composite domain, group,
model, or instance).

power state table (PST): A table that specifies the legal combinations of supply states for a set of supply
objects (supply ports, supply nets, and/or supply set functions).

primary supply set: The supply net connections inferred for all instances in the power domain, unless
overridden.

receiver: The gate of a transistor; the input to an inverter; any component whose behavior is determined
by an input signal; any combinational logic including a buffer of any kind; any sequential logic; or any
hardware description language (HDL) construct(s) that synthesize(s) to such combinational or sequential
logic.

receiver supply: For a receiver that is the gate of a transistor, the supply connected to that transistor’s
source or drain; for a receiver that is the input to an inverter, the pair of supplies connected to the
source/drain of the transistor pair comprising the inverter; or for a receiver that is part of an active

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

9

component, the primary supply of the power domain to which that receiver belongs or, in some cases, the
secondary supply of the component if it has a secondary supply.

regulator: An instance that takes a set of input supply nets and provides the source for a set of output
supply nets. The output voltage is a function of the input voltages and the logical state of any control
signals.

retention: Enhanced functionality associated with selected sequential elements or a memory such that
memory values can be preserved during the power-down state of the primary supplies.

retention register: A register that extends the functionality of a sequential element with the ability to
retain its memory value during the power-down state.

rooted name: The hierarchical name, relative to the current scope, of an object in the logic hierarchy or
a Unified Power Format (UPF) object defined for a scope in the hierarchy.

root scope: The topmost scope in the logic hierarchy, which contains an implicit instance of each top-
level module.

root supply driver: The origin of a supply, e.g., an on-system voltage regulator, bias generator modeled in
hardware description language (HDL), or an off-chip supply source; also, any supply object that functions
as a root supply driver, including a primary supply input to the design, a leaf-level instance supply output
port, a power switch output port, and any supply object that is an input to a resolved supply net. See also:
supply source.

self domain (of a port to which a given strategy applies): The power domain for which the strategy has
been defined.

scope: A region in which names may be defined; such a region is either an hardware description language
(HDL) model or instance in the logic hierarchy or a Unified Power Format–defined global context, power
state table, supply set, power domain, composite domain, group, or strategy.

silicon UPF: See: implementation UPF (Unified Power Format).

simple name: An identifier that denotes an object declared in a given scope and is not a hierarchical
name.

simstate: The level of operational capability supported by a given power state of a supply set.

sink: A receiver; the HighConn of an input port or inout port of an instance; or the LowConn of an
output port or inout port of an instance.

soft macro: An instance that is represented by the original register transfer level (RTL) and Unified Power
Format (UPF) from which its implementation is (or will be) derived. Additionally, ancestor power intent
objects are not available for use within the scope of the instance.

source: A driver; the LowConn of an input port or inout port of an instance; or the HighConn of an
output port or inout port of an instance.

state element: A sequential element such as a flip-flop, latch, or memory element. Also, a conditionally
stored value in register transfer level (RTL) code from which a sequential element would be inferred.

strategy: A rule that specifies where and how to apply isolation, level-shifting, state retention, and
buffering in the implementation of power intent.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

10

subdomain: A member of the set of domains comprising a composite power domain.

supply function: An abstraction of a supply net in a supply set, the name of which identifies the purpose
of the corresponding net in the supply set.

supply net: An hardware description language (HDL) representation of a power rail.

supply port: A connection point for supply nets.

supply set: A collection of supply functions that in aggregate provide a complete power source.

supply source: A supply port that propagates but does not originate a supply value.

supply subnet: A set of electrically equivalent supply ports, supply nets, and/or supply set functions.

switch: An instance that conditionally connects one or more input supply nets to a single output supply
net according to the logical state of one or more control inputs.

top-level instance: An implicit instance corresponding to a top-level module.

upper boundary (of a power domain): The LowConn side of each port of each boundary instance in
the extent of this power domain.

3.2 Acronyms and abbreviations

CMOS complementary metal oxide semiconductor

DFT Design for Test

EDA electronic design automation

HDL hardware description language

IP intellectual property

MSFF master-slave flip-flop

NMOS N-channel metal oxide semiconductor

PG power/ground

PMOS P-channel metal oxide semiconductor

PST power state table

ROM Read-only memory

RTL register transfer level

SAIF Switching Activity Interchange Format

SoC System on Chip

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

11

Tcl Tool Command Language

UPF Unified Power Format

VCT value conversion table

VHDL very high speed integrated circuit (VHSIC) hardware description language

VHSIC Very High Speed Integrated Circuit

4. Concepts

4.1 Introduction

Clause 4 provides an overview of concepts involved in defining power intent using Unified Power Format
(UPF). These concepts include those related to the representation of the design structure and functionality
in one or more hardware description languages (HDLs), as well as those related to power-management
structures and functionality defined for and/or added to the design to model intended power-management
capabilities.

The structure and functionality of a design is specified using HDLs such as Verilog, SystemVerilog, or
very high speed integrated circuit (VHSIC) hardware description language (VHDL). Each HDL has
specific terminology and concepts that are unique to that language, but all HDLs share some common
concepts and capabilities. A typical design may be expressed in one or more HDLs.

UPF is defined in terms of a generalized abstraction of an HDL-based design hierarchy. This abstraction
enables the UPF definition to apply to a design expressed in any of the three HDLs previously mentioned,
or in any combination thereof, while at the same time minimizing the complexity of the UPF definition.
Clause 4 presents the abstract model and maps it to specific HDL concepts.

UPF is intended to apply to a design as its representation changes from an abstract functional model to a
concrete physical model, during which process the power intent expressed in UPF becomes realized as part
of the implementation. Because of this, the abstract logic hierarchy that is the basis of the UPF definition
shall be understood in terms of both functional specification and physical implementation.

4.2 Design structure

4.2.1 Transistors

At the lowest level, UPF focuses on controlling power (or more precisely, voltage and current) delivered to
transistors. These are usually assumed to be digital complementary metal oxide semiconductor (CMOS)
transistors, but they could be analog devices as well, or implemented in other technologies. The gate
connection of a transistor is a receiver; the source of the signal provided to a gate (in CMOS, typically the
output of a P/N transistor pair) is a driver.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

12

4.2.2 Standard cells

Transistors are seldom modeled individually in an HDL description; typically, collections of transistors are
represented by standard cells that have been developed as part of a particular technology library, which is
usually expressed in the Liberty library format (see [B4]). Such cells typically have a primary supply
(power and ground) and can also have a secondary supply for related behavior (e.g., state retention).

4.2.3 Hard macros

A library can also contain hard macros, which provide predefined physical implementations for much
larger and more complex functions. A hard macro can have multiple supplies.

4.3 Design representation

4.3.1 Models

Library elements have corresponding behavioral models for use in simulation. These models may or may
not include power and ground pins for their supplies. Standard cell models are usually written as Verilog
modules and use constructs such as Verilog built-in primitives or user-defined primitives (UDPs) to express
the relatively simple behavior of a standard cell. They can also be written as VHDL design entities
(entity/architecture pairs) using package VITAL, which provides Verilog-like primitive modeling
capabilities. Hard macro models can be written in either language, using more complex behavioral
constructs such as Verilog initial blocks and always blocks, or VHDL processes and concurrent statements.

4.3.2 Netlist

A netlist is a collection of unique instances of standard cells and hard macros, interconnected by nets
(Verilog) or signals (VHDL). Such instances are considered to be leaf-level instances, because their models
are not constructed from an interconnection of subordinate instances, but instead are built using behavioral
or functional HDL statements. A netlist can also include hierarchical instances, i.e., instances of a model
that is itself defined as a netlist.

A power/ground (PG) netlist is a netlist containing cell and/or hard macro instances that include power and
ground pins and a representation of the power and ground supply routing for those instances. A non-PG
netlist is one that does not include any representation of the power supply network.

4.3.3 Behavioral models

Behavioral models that are written using the register transfer level (RTL) synthesis subset of Verilog or
VHDL are synthesizable models which can be read by an RTL synthesis tool and mapped to a functionally
equivalent netlist. Synthesis involves identifying or inferring the state elements needed to implement the
specified behavior and implementing the combinational logic interconnecting those elements and the
model’s ports.

For many synthesizable HDL constructs, synthesis creates combinational or sequential logic elements that
are ultimately defined in terms of transistors, which in turn define drivers and receivers. In particular, any
synthesizable statement that involves conditional computation or conditional updating of an output will
most likely create logic. In contrast, unconditional assignment statements and port associations typically
result in interconnect, not logic; for such HDL constructs, no drivers or receivers are created. In particular,

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

13

ports do not create drivers; it is the logic driving a port that creates a driver for the port and for the net
associated with the port.

4.3.4 HDL scopes

An HDL model defines one or more scopes. A scope is a region of HDL text within which names can be
defined. Such names are typically visible (i.e., can be referenced) within the scope in which they are
defined and, in certain cases, in other scopes (e.g., nested scopes). A Verilog model usually defines a single
scope for the whole model. A VHDL model often defines multiple scopes; one for the whole model, plus
other nested scopes for process statements and block statements. generate statements in either HDL are
also considered to be nested scopes within the model’s top-level scope.

4.3.5 Design hierarchy

A design hierarchy is constructed by defining one model in terms of interconnected instances of other
models. Each instance represents a subtree of the hierarchy; the boundary between this subtree and its
parent instance is defined by the interface of the model that has been instantiated to create the subtree. The
interface consists of the model’s ports, together with the nets associated with those ports for the instance
that created this subtree. In Verilog, a port is defined as having two sides: a HighConn and a LowConn. The
LowConn represents the port declaration in the model; the HighConn represents an instance of that port
associated with an instance of the model, and therefore indirectly the net attached to that port instance. In
VHDL, a somewhat different distinction is made between a formal port of a model and the actual signal
associated with that port for a given instance of the model. In the context of UPF, regardless of what HDL
is involved, the term LowConn means the (formal) port declaration in the model definition, and the term
HighConn means the port of an instance of a model and by extension the net or signal connected to that
port.

An HDL model that is not instantiated in any other instance is a top model, or simply top. A given design
hierarchy usually contains a single top, but it may contain multiple tops in certain cases (e.g., if the design
and the testbench in a simulation are modeled separately—neither instantiates the other). Each top is
considered to be implicitly instantiated within the root scope. In Verilog, the root scope is $root; in
VHDL, the root scope is the root declarative region. The instance name of such an implicit instance is the
same as the model name.

4.3.6 Logic hierarchy

UPF assumes a somewhat more abstract model of the design hierarchy. This abstract model is called the
logic hierarchy. As usual, the topmost scope is still the root scope and modules that are not instantiated
elsewhere are the top modules (and instances) of the hierarchy. However, in the logic hierarchy, each scope
corresponds to a whole instance; internal scopes presented in the design hierarchy are not modeled. In
particular, HDL generate statements, which are considered to be internal scopes in the respective
language definitions, are assumed to be collapsed into the parent module scope in the logic hierarchy.

UPF generally allows references to the names of objects defined anywhere in the subtree descending from a
given instance when the current scope is set to that instance. Such references are called rooted names,
meaning they are hierarchical names relative to the current scope. If the design hierarchy contains
generate statements that have been collapsed in the logic hierarchy, then the hierarchical name of an
object in the logic hierarchy may include simple names that encode the collapsed scope names.

UPF also uses the logic hierarchy as a framework for locating the power-management objects used to
represent power-management concepts, e.g., power domains and power state tables (PSTs). Each such
object is effectively declared in a specific scope of the logic hierarchy, and the name of the scope can be

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

14

used as the prefix of the name of the object. Furthermore, certain UPF-defined objects act as scopes
themselves, in which other subordinate named objects can be defined. In such cases, the name of the UPF-
defined parent object can be used as the prefix of the name of any of its subordinate objects.

The logic hierarchy can be viewed as a purely conceptual structure that is independent of the eventual
physical implementation. Alternatively, the logic hierarchy can be viewed as an indication of the floor plan
to be used in the physical implementation. Either view can be used, but it is best to adopt one view or the
other for a given design, because the choice can affect how the power intent is expressed in UPF.

4.3.7 Hierarchy navigation

In UPF, commands are executed in the context of a scope within the logic hierarchy. The set_scope
command (see 6.51) is used to navigate within the hierarchy and to set the current scope within which
commands are executed.

Consistent with SystemVerilog $root, the root of the logic hierarchy is the scope in which the top modules
are implicitly instantiated. Other locations within the logic hierarchy are referred to as the design top
instance, which has a corresponding design top module, and the current scope.

The design top instance and design top module are typically paired: the design top instance (represented by
a hierarchical name relative to the root scope) is an instance in the hierarchy representing a design for
which power intent has been defined, and the design top module is the module for which the UPF file
expressing this power intent has been written. The association between the UPF file and the design top
module is specified in the UPF file using set_design_top (see 6.41); this UPF file is then typically applied
to each instance of that module in a larger system.

The current scope is an instance that is, or is a descendant of, the design top instance (represented by a
relative pathname from the design top instance).

The set_scope command (see 6.51) changes the current scope locally within the subtree depending on the
current design top instance/module. Since the design top instance is typically an instance of the design top
module, they both have the same hierarchical substructure; therefore, set_scope can be written relative to
the module, but still work correctly when applied to an instance. The set_scope command is only allowed
to change scope within this subtree. It cannot change the scope to a scope above the design top instance or
to a scope that is, or is below, a leaf-level instance.

The design top instance and design top module are initially set by the tool, possibly with direction from the
user. They are implicitly changed when load_upf is invoked with the -scope argument or when
apply_power_model is invoked to apply a power model to a given instance.

4.3.8 Ports and nets

Ports define connection points between adjacent levels of hierarchy. In HDL, ports are defined as part of
the interface of a module and therefore exist for each instance of the module. Nets define interconnections
between a collection of ports. In HDL, nets are defined within a module and therefore exist within each
instance of the module.

A port has two sides. The top side is the HighConn side, which is visible to the parent of the instance whose
interface contains the port. The bottom side is the LowConn side, which is visible internal to the instance
whose interface contains the port.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

15

When a net in the current scope is connected to a port on a child instance, the connection is made to the
HighConn side of the port. When a net in the current scope is connected to a port defined on the interface
of the instance that is the current scope, the connection is made to the LowConn side of the port.

A port can be referenced wherever a net is required. Such a reference refers to the LowConn side of the
port. A port can be thought of as being implicitly connected to an implicit net created with the same name
and in the same scope as the LowConn side of the port.

4.3.9 Connecting nets to ports

In an HDL description, ports are typically required to pass nets from one level of hierarchy to another. In
UPF, a net in the current scope can be connected to the LowConn of any port declared in the same scope or
to the HighConn of any port within its descendant subtree. If the port is not declared in the same scope as
the net, additional ports, nets, and port/net associations may be created to establish the connection from the
net to the port. Such implicitly created ports and nets shall have the same simple name as the net being
connected unless that name conflicts with the name of an existing port or net; in which case, to avoid a
name conflict, the tool shall create a name that is unique for that scope.

NOTE—Nets are propagated as necessary through the descendant subtree and may be renamed to avoid name collision;
therefore, the same simple name in different scopes may refer to nets that are independent and unconnected. 15

Implicitly created ports and nets should not be referenced directly by UPF commands, since the names of
such ports and nets may not be the same as the original net name. These implicitly created ports and nets
are merely a method of implementing a UPF connection in terms of valid HDL connections, when the
UPF-specified power intent is represented in HDL form.

4.3.10 Representing SystemC design for power analysis

IEEE Std 1801™-2015 supports power analysis in system-level design; see Annex H for more details. In
addition to the existing HDL support (Verilog, SystemVerilog, VHDL), IEEE Std 1801-2015 system-level
IP power models can also be applied to design descriptions that are written in SystemC.

Existing UPF commands like set_scope, create_power_domain, apply_power_mode, etc. can be applied
to a SystemC design in the same way as existing HDL support.

A design description in SystemC is treated in the same way as other HDLs (scopes, design hierarchy, etc.)
and SystemC generally follows the same rules of other HDLs.

4.4 Power architecture

4.4.1 Introduction

A UPF power intent specification defines the power architecture to be used in managing power distribution
within a given design. The power architecture defines how the design is to be partitioned into regions that
have independent power supplies, and how the interfaces between, and interaction among, those regions
will be managed and mediated.

15 Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement
this standard.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

16

4.4.2 Power domains

A power domain is a collection of instances that are typically powered in the same way. In the physical
implementation, the instances of a power domain are typically placed together and powered by the same
power rails. In the logic hierarchy, the instances of a power domain are typically part of the same subtree of
the hierarchy, or of sibling subtrees with a common ancestor, and powered by the same supply nets.

A power domain is defined within a scope (or instance) in the logic hierarchy. The definition of the power
domain identifies the uppermost instances of the domain: those that define the upper boundary of the
domain. For any given instance included in the power domain, a child instance of the given instance is
transitively included in the power domain, unless that child instance is explicitly excluded from this power
domain or is explicitly included in the definition of another power domain.

More formally, a boundary instance of a given power domain is any instance that has no parent (it is an
implicit instance of a top-level module) or whose parent is in the extent of a different power domain. It is
possible for one boundary instance of a power domain to be an ancestor of another boundary instance of the
same power domain. This occurs when one instance is in the extent of a given power domain and both an
ancestor and a descendant of that instance are in the extent of a second power domain. In this case, both the
ancestor and the descendant may be boundary instances of the second domain. A domain with such a
structure is referred to as a donut power domain.

The upper boundary of a power domain consists of the LowConn side of each port on each boundary
instance in the domain. The lower boundary of a domain consists of the HighConn side of each port on
each child instance that is in some other power domain or is a port of a macro cell instance that is powered
differently from the rest of the domain. Both boundaries include any logic ports added to the design for
power management. The interface of a power domain consists of the upper boundary and the lower
boundary.

The instance in the logic hierarchy in which a power domain is defined is called the scope of the power
domain. The set of instances that belong to a power domain are said to be the extent of that power domain.
This distinction is important: while a given instance can be the scope of multiple power domains, it can be
in the extent of one and only one power domain. As a consequence of these definitions, all instances within
the extent of a domain are necessarily within the scope of the domain or its descendants.

A power domain can be either contiguous or non-contiguous. In the physical implementation, a contiguous
power domain is one in which all instances are placed together; a non-contiguous power domain is one in
which instances in the domain are placed in two or more disjoint locations. A power domain is contiguous
within the logic hierarchy if it contains a single boundary instance; it is non-contiguous within the logic
hierarchy if it includes multiple boundary instances.

For a non-contiguous power domain, a connection from an instance in the extent of the power domain to
some other instance in the extent of the domain may need to be routed through another power domain.

Power domains that share a primary supply set can be composed together to form a larger power domain
such that operations performed on this larger power domain apply transitively to each subdomain. In this
way, unnecessary power domains may be aggregated together and handled as one for simplicity.

After UPF-specified power intent has been completely applied, it shall be an error if any instance is not
included in a power domain.

4.4.3 Drivers, receivers, sources, and sinks

A logic signal in the design originates at an active component (the driver) and terminates at another active
component (the receiver). Along the way it may pass through ports and nets. The driver and any port it

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

17

passes through on the way to a receiver is considered a source; the receiver and any port it passes through
on the way from the driver is considered a sink. For example, a buffer defines both a source and a sink: the
buffer’s output port is a source; the buffer’s input port is a sink.

A signal traversing a power domain may or may not be driven within the power domain. A port is neither a
driver nor a receiver; it merely propagates a signal across a hierarchy boundary. If a port on the interface of
a power domain is connected directly to another port on the interface of the same power domain, without
going through an active component, the connection between those two ports has neither a driver nor a
receiver in that domain. In this case, the connection is a feedthrough path through that domain.

HDL assignment statements may include delays, which either represent inertial delay (resulting from
transistor switching) or transport delay (resulting from propagation along a wire). However, synthesis tools
typically ignore such delays; therefore, the inclusion of such a delay, whether inertial or transport, does not
by itself imply that an active component will be inferred from the assignment. For this reason, delays are
not considered to create drivers or receivers.

A connection may be thought to exist in a given domain, if a user so chooses, but since a connection is by
definition a passive component, it has no driver in the domain in which it exists and therefore is not
affected or corrupted by the power state of the domain in which it exists.

4.4.4 Isolation and level-shifting

Two power domains interact if one contains logic that is the driver of a net and the other contains logic that
is a receiver of the same net. When both power domains are powered up, the receiving logic should always
see the driving logic’s output as an unambiguous 1 or 0 value, except for a very short time when the value
is in transition. The structure of CMOS logic typically means that minimal current flow will occur when the
input value to a gate is a 1 or 0. However, if the driving logic is powered down, the input to the receiving
logic can float between 1 or 0. This can cause significant current to flow through the receiving logic, which
can damage the circuit. An undriven input can also cause functional problems if it floats to an unintended
logic value.

To avoid this problem, isolation cells are inserted at the boundary of a power domain such that the
receiving logic always sees an unambiguous 1 or 0 value. Isolation may be inserted for an input or for an
output of the power domain. An isolation cell operates in two modes: normal mode, in which it acts like a
buffer, and isolation mode, in which it clamps its output to a defined value. An isolation enable signal
determines the operational mode of an isolation cell at any given time.

Two interacting power domains may also be operating with different voltage ranges. In this case, a logic 1
value might be represented in the driving domain using a voltage that would not be seen as an unambiguous
1 in the receiving domain. Level-shifters are inserted at a domain boundary to translate from a lower to a
higher voltage, and sometimes from a higher to a lower voltage as well. The translation means that the
logic value sent by the driving logic in one domain is correctly received by the receiving logic in the other
domain.

Isolation and level-shifting are often implemented in combination, so one standard cell implements both
functions. UPF includes support for such "combo" cells.

Isolation and level-shifter strategies specify that isolation and level-shifter cells are to be inserted in
specified locations. However, there are some cases where implementation tools may choose not to insert
such cells, or to optimize redundant insertion of such cells. For example, isolation/level-shifters on floating
ports that appear to have no drivers, or have constant drivers, may be removed or transformed, provided the
resulting behavior is unchanged. To prevent implementation tools from applying such optimizations,
isolation and level-shifting strategies can instead specify that the respective cells are to be inserted
regardless of optimization possibilities.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

18

4.4.5 State retention

State retention is the ability to retain the value of a state element in a power domain while switching off the
primary power to that element, and being able to use the retained value as the functional value of the state
element upon power-up. State retention can enable a power domain to return to operational mode more
quickly after a power-down/power-up sequence and it can be used to maintain state values that cannot be
easily recomputed on power-up. State retention can be implemented using retention memories or retention
registers. Retention registers are sequential elements (latches or flip-flops) that have state retention
capability.

For a retention register, the following terms apply:

 Register value is the data held in the storage element of the register. In functional mode, this value
gets updated on the rising/falling edge of clock or gets set or cleared by set/reset signals,
respectively.

 Retained value is the data in the retention element of retention register. The retention element is
powered by the retention supply.

 Output value is the value on the output of the register.

Depending on how the retained value is stored and retrieved, there are at least two flavors of retention
registers, as follows:

a) Balloon-style retention: In a balloon-style retention register, the retained value is held in an
additional latch, often called the balloon latch. In this case, the balloon element is not in the
functional data-path of the register.

b) Master/slave-alive retention: In a master/slave-alive retention register, the retained value is held in
the master or slave latch. In this case, the retention element is in the functional data-path of the
register.

A balloon-style retention register typically has additional controls to transfer data from a storage element to
the balloon latch, also called the save step, and transfer data from the balloon latch to the storage element,
also called the restore step. The ports to control the save/restore pins of the balloon-style retention register
need to be available in the design to describe and implement this style of registers.

A master/slave-alive retention register typically does not have additional save/restore controls as the
storage element is the same as the retention element. Additional control(s) on the register may park the
register into a quiescent state and protect some of the internal circuitry during power-down state, and thus
the retention state is maintained. The restore in such registers typically happens upon power-up, again
owing to the storage element being the same as the retention element. Thus, this style of registers may not
specify save/restore signals, but may specify a retention condition that could take the register in and out of
retention.

4.5 Power distribution

4.5.1 Overview

The electric current transported by a supply net originates at a root supply driver, which can be an on-chip
voltage regulator, an embedded power switch, a bias generator, or an off-chip supply source. A power
switch output and a resolved supply net are both also considered to be root supply drivers for semantic
consistency.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

19

Each supply subnet (see 3.1) has an associated root supply driver. If the supply subnet includes a primary
supply input, the root supply driver is an implicit driver representing an off-chip supply source. If the
supply subnet includes a macro cell output supply port, the root supply driver is an implicit driver
representing an embedded power switch or supply regulator. If the supply subnet includes a switch output
port, the root supply driver is the power switch output. If the supply subnet includes one or more resolved
supply nets, the root supply driver is the output of the common resolution function shared by those resolved
supply nets.

Initially, the root supply driver drives the supply subnet with the value {OFF, unspecified}. The
package UPF functions supply_on and supply_off may be called to change the driving value of the root
supply driver that drives a given supply subnet. These functions may be applied to any supply object in the
supply subnet, provided that distribution of the supply value (or the result of a resolution of this supply
value and other supply values) to loads of the supply network does not require violating the directionality
of any port in the supply subnet.

A supply net can have one or more supply sources, depending upon its resolution type. During UPF
processing, if the number of sources connected to a supply net do not conform to the requirements of its
resolution type, an error shall be reported. At any given time during simulation, if the sources of a supply
net do not conform to the requirements of its resolution type, the resolved value of the supply net at that
time is set to {UNDETERMINED, unspecified}.

A power switch can have one or more input supply ports and one output supply port. Each input supply
port can have one or more state definitions. At any given time during simulation, if the state definitions of a
given input supply port are contradictory, or if multiple incompatible inputs are enabled at the same time,
or if any input supply port is in an error state, the resolved value of the output supply port at that time is set
to {UNDETERMINED, unspecified}.

The semantics defined in this standard, such as the supply net resolution functions, presume an idealized
supply network with no voltage drop; the semantics for supply network resolution with modeled-voltage
drop are outside the scope of this standard.

4.5.2 Supply network elements

Supply network objects (supply ports, supply nets, and switches) are created within the logic hierarchy to
provide connection points for a root supply and to propagate the value of a root supply throughout a portion
of the design. Supply network objects are created independent of power-domain definitions. This allows
sharing of common components of the supply distribution network across multiple power domains.

4.5.3 Supply ports and nets

Supply ports provide a connection point for supply nets where they cross a hierarchy boundary. Supply nets
can be used to create a connection between two supply ports or from a supply port to an instance within a
power domain.

Supply ports and nets can be created in UPF or in the HDL design. If created in the HDL, the port or net
shall be of the supply net type defined in the appropriate package UPF (see 11.2). Supply ports shall also be
inferred from Liberty using the pg_pin attribute (see Annex F). In UPF, supply ports on
power-management cells may be specified using the appropriate power/ground options on the define
commands (see Clause 7) or specified through Liberty. Supply ports may be specified on hard-macros
(4.9.2.4) using create_supply_port.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

20

4.5.3.1 Supply switches

Supply switches conditionally propagate the value on an input supply port to an output supply port,
depending upon the value of a control signal. A supply net is either connected to one or more power
switches or supply ports, which function as root supply drivers.

4.5.3.2 Supply sets

A supply set represents a collection of supply nets that provide a complete power source for one or more
instances. Each supply set defines six standard functions: power, ground, pwell, nwell, deeppwell, and
deepnwell. Each function represents a potential supply net connection to a corresponding portion of a
transistor. Each function of a given supply set can be associated with a particular supply net that
implements the function.

A global supply set is one that is defined in a given scope and associates supply nets with its functions. One
or more local supply sets, called supply set handles, can be defined for a power domain, a power switch, an
isolation strategy (see 6.44), a level-shifting strategy (see 6.45), or a retention strategy (see 6.49). A supply
set can be associated with a supply set handle as a whole; the functions of a supply set handle can be
broken out and connected to ports of instances. This association creates a connection between the supply
nets represented by corresponding functions of the supply set and supply set handle.

A supply set function is equivalent to a supply net and may be used anywhere a supply net is allowed. The
supply set function represents the supply net that is or will be associated with that function of the supply
set. The supply set function reference is a symbolic name for the supply net it represents.

A reference to a supply net by its symbolic name is an indirect reference.

NOTE—A supply net may be associated with a function of more than one supply set. The function that a given supply
net performs in one supply set is unrelated to the function it may perform in any other supply set.

4.5.4 Supply network construction

4.5.4.1 Introduction

Supply ports and nets are interconnected to create a supply network. Certain definitions and restrictions
constrain how these interconnections are made.

4.5.4.2 Supply sources and loads

Supply ports define supply sources and supply loads, as follows:

 The LowConn of an input or inout port is a supply source. The HighConn of an output or inout port
is a supply source (including a switch output).

 The LowConn of an output or inout port is a load. The HighConn of an input or inout port is a load
(including a switch input).

A port that is neither a top-level port nor a leaf-level port is an internal (hierarchical) port.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

21

4.5.4.3 Supply port/net connections

Connections are made from nets to ports:

a) from a net to (the LowConn of) a port declared in the same scope; or

b) from a net to (the HighConn of) a port declared in a lower scope; or

c) from a net to a pin of a leaf cell.

The LowConn of a port may be used as an implicit net and connected to another port.

Only one net connection can be made to the LowConn of a port. Likewise, only one net connection can be
made to the HighConn of a port. A source can be connected to a net that is in turn connected to multiple
loads.

4.5.4.4 Supply net resolution

A supply net may be unresolved or resolved, as follows:

 An unresolved supply net shall have only one supply source connection.

 A resolved supply net can have multiple supply source connections. The resolution type may
restrict how many supply sources can be on at the same time.

A supply net can have any number of load connections.

4.5.4.5 Supply net/supply set connections

Related supply nets can be grouped into a supply set, with each supply net in the group providing one or
more functions of the supply set. The supply net corresponding to a given function of a supply set can be
specified when the supply set is created or updated (see 6.26). One supply set may be associated with
another supply set (see 6.10); this implicitly connects corresponding functions together and therefore it also
implicitly connects the supply nets associated with corresponding functions and any instance ports to which
those functions are connected.

4.5.4.6 Supply set function connections

4.5.4.6.1 Overview

Supply functions of a supply set, and the supply nets they represent, can be connected to instances in one of
the following ways: explicitly, automatically, or implicitly. Connections are made downward, from ports or
nets in the current scope to ports of descendant instances that are in the extent of the domain.

4.5.4.6.2 Explicit and automatic connections

An explicit connection connects a given particular supply set function directly to a specified supply port.
See also 6.14 and 6.15.

An automatic connection connects each supply set function to ports of selected instances, based on the
pg_type of each port, as indicated by the UPF_pg_type attribute (see 6.47) or the Liberty pg_type attribute.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

22

For automatic connections, the default connection semantics for each function of a supply set are as
follows:

a) power is connected by default to ports having the pg_type primary_power.

b) ground is connected by default to ports having the pg_type primary_ground.

c) pwell is connected by default to ports having the pg_type pwell.

d) nwell is connected by default to ports having the pg_type nwell.

e) deeppwell is connected by default to ports having the pg_type deeppwell.

f) deepnwell is connected by default to ports having the pg_type deepnwell.

4.5.4.6.3 Implicit connections

An implicit connection connects the required functions of a supply set to cell instances that do not have
explicit supply ports. Such connections may involve implicit creation of ports and nets, as described in
4.3.9.

Implicit supply set connections are made in each of the following cases:

a) Primary supply set

The functions of a domain’s primary supply set are implicitly connected to any instance in the
extent of the domain if the instance has no supply ports defined on its interface.

b) Retention supply set

The functions of a retention strategy’s supply set are implicitly connected to the state element that
implements retention functionality (e.g., a balloon latch, shadow register, or live slave latch) for
any register in the domain to which the strategy applies.

c) Isolation supply set

The functions of a supply set for an isolation strategy are implicitly connected to the corresponding
isolation cell implied by the application of the strategy.

d) Level-shifter supply sets

The functions of a supply set for a level-shifting strategy are implicitly connected as appropriate to
the input, output, or internal supply pins of any level-shifter implied by the application of the
strategy.

After UPF-specified power intent has been completely applied, it shall be an error if any instance in the
design does not have a supply set function or supply net connected to each of its supply ports, including
any implicit power and ground ports.

4.5.4.7 Supply set required functions

Although a supply set represents a collection of six standard supply functions, not all functions are required
in every context:

 power and ground are typically required in all cases.

 nwell, pwell, deepnwell, and deeppwell are only required occasionally.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

23

The required functions of a given supply set are determined from its usage and include the following:

a) Any function used to define a power state of the supply set,

b) Any function used for automatic connection of the supply set based on pg_type, and

c) Any required function of a supply set handle with which the supply set is associated.

For implementation, a supply net shall be associated with each required function of a supply set. For
verification, however, some aspects of the power intent can be verified before associating supply nets with
the required functions. A supply set that does not have supply nets associated with each of its required
functions is incompletely specified. For any required function of a supply set that is not associated with a
supply net, an implicit supply net is created and associated with the function.

4.5.5 Supply equivalence

4.5.5.1 Overview

Various aspects of power management are determined in part by the identity of, and relationships between,
supply nets and supply sets. For example, selection of ports to which isolation or level-shifting strategies
can be defined based on the identities of the driver and receiver supplies of the sources and sinks connected
to a port. Similarly, composition of power domains is possible provided the supplies of the subdomains
involved meet certain constraints. In some situations, identical supply nets or supply sets are required; other
situations will only require supply nets or supply sets that are equivalent.

There are two kinds of supply equivalence: electrical equivalence and functional equivalence.

Electrical equivalence can affect:

 The number of sources of a supply network, and therefore

 Whether resolution is required for that supply network

Electrical equivalence implies functional equivalence, but not vice versa.

Functional equivalence can affect any of the following:

 Insertion of isolation cells, level-shifter cells, and repeater cells

 Determination of power-domain lower boundaries

 Legality of power-domain composition

 Validity of driver and receiver supply attributes

Electrical equivalence is primarily related to supply ports and nets. Functional equivalence is primarily
related to supply sets.

4.5.5.2 Supply port/net equivalence

Electrical equivalence is determined by connection, as follows:

a) A port P is electrically equivalent to itself.

b) A net N is electrically equivalent to itself.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

24

c) If an unresolved net N and a port P are connected, then N and P are electrically equivalent.

d) If a resolved net N and a port P are connected, and P is an inout port or is a load of N, then N and P
are electrically equivalent.

e) If A and B are electrically equivalent, and B and C are electrically equivalent, then A and C are
electrically equivalent.

f) If A and B are connected via a supply set function (see 4.5.4.5), then A and B are electrically
equivalent.

NOTE—By definition, a port that is a source of a resolved supply net is never equivalent to that resolved
supply net, because the value provided by the port to the resolved supply net is not necessarily the same as the
resolved value of the supply net.

g) Electrical equivalence can also be declared, as follows:

 If A and B are declared electrically equivalent, then A and B are electrically equivalent.

Electrical equivalence implies the two equivalent objects are electrically connected somewhere. If
the connection is not evident in the design (e.g., if it is inside a hard macro whose internals are not
visible or if it is a connection that is required outside the design), then declaration of electrical
equivalence can be used instead of the explicit connection.

h) Functional equivalence is determined by connection or declaration, as follows:

 If A and B are electrically equivalent, then A and B are functionally equivalent.

 If A and B are declared functionally equivalent, then A and B are functionally equivalent.

An input and the output of a switch are never electrically equivalent; it shall be an error if they are directly
connected or declared electrically equivalent. Similarly, the outputs of two different switches are typically
not electrically equivalent, unless they are both driving the same resolved net. However, the outputs of two
different switches that each drive an unresolved net can still be functionally equivalent if the input supplies
of both switches are equivalent, the control inputs of both switches are logically equivalent, and the two
switches have the same set of state definitions.

4.5.5.3 Supply set equivalence

A supply set handle is also a supply set.

A supply set function and its associated supply net are electrically equivalent; thus, for purposes of supply
net equivalence, a supply set function acts like a supply net.

Corresponding functions of two supply sets are electrically equivalent if:

 their associated supply nets are electrically equivalent, or

 the two supply sets are directly associated with one another.

Corresponding functions of two supply sets are functionally equivalent if:

 they are electrically equivalent, or

 they have been declared as functionally equivalent.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

25

Two supply sets are (functionally) equivalent if:

 they both have the same required functions, and the nets associated with corresponding functions
are equivalent; or

 they are associated with each other directly or indirectly via one or more associate_supply_set
commands (see 6.10); or

 they are each associated directly or indirectly via associate_supply_set (see 6.10) with two other
supply sets, which are equivalent.

Two supply sets are also (functionally) equivalent if they have been declared equivalent; in this case, it
shall be an error if they do not have the same required functions.

As a consequence of this:

a) two anonymous supply sets built from equivalent PG functions are equivalent;

b) two supply sets that are functionally equivalent can be used interchangeably;

c) a supply set and any supply set handle it is associated with are always equivalent.

4.5.6 Supply subnets

Supply ports, supply nets, and supply set functions that are electrically equivalent (see 4.5.5) make up a
supply subnet. A supply subnet that contains no resolved supply nets has a single root supply driver (see
4.5) whose value determines the values of all supply objects in the supply subnet. A supply subnet that
contains one or more resolved supply nets can have multiple root supply drivers.

A supply network consists of one or more supply subnets. Two supply subnets are indirectly connected
when one contains a supply object that is an input to a resolved supply net and the resolved supply net is in
the other subnet, or when one contains a supply object that is an input to a power switch and the output of
the power switch is in the other subnet.

The definitions of root supply driver, electrical equivalence, and supply subnet mean that if more than one
resolved supply net is present, all equivalent resolved supply nets are part of the same subnet, and all have
the same resolution function. This allows all sources of all resolved supply nets to be resolved by one
instance of the resolution function. The resolved value is then distributed to any unresolved supply objects
in the supply subnet and to any loads of the supply subnet. See 9.2.3 for the simulation semantics of supply
networks.

4.5.7 Supply variation

Supply ports, supply nets, and supply set functions take on values that consist of a state and a voltage.
Named port states (see 6.4) and named power states (see 6.5) can be defined to represent the nominal
voltages that a supply object may carry. These nominal voltage values are used also for determining
whether level-shifting is required (see 6.45).

In an implementation, the actual voltage of an object may vary around the nominal values. There are
several sources of such variation. One source of variation is the accuracy of the supply. Supply variation
can be modeled in UPF using the set_variation command (see 6.53). Supply variation is applied to
nominal voltages to derive variation ranges for those voltages. Other sources of variation are beyond the
scope of this standard.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

26

Nominal voltages are not intended to represent library characterization points and should not be used as
such. Implementation tools need to take supply variation and other factors into account when determining
what library elements to use.

4.5.8 Supply correlation

Supply variation ranges (see 4.5.7) are used when determining whether level-shifting is needed. How such
variation ranges are used depends upon whether the supplies are correlated or not.

When the driving and receiving supplies are not correlated, they vary independently. In this case, level-
shifting analysis considers the possibility that the two supplies are simultaneously at opposite ends of their
respective variation ranges, and therefore compares minimum versus maximum voltage and maximum
versus minimum voltage.

When the driving and receiving supplies are correlated, they are assumed to vary consistently, such that if
one supply voltage is at its minimum (respectively maximum) value, then the other supply voltage is also at
its minimum (respectively maximum) value. In this case, level-shifting analysis only considers the voltage
difference when the two supplies are at the same end of their respective ranges, and therefore only
compares minimum versus minimum voltage and maximum versus maximum voltage.

Correlation of supplies is transitive: if supplies A and B are correlated, and supplies B and C are correlated,
then supplies A and C are also correlated.

4.6 Power management

4.6.1 Introduction

While a power supply network is a static structure, the power delivered via the power supply network can
vary over time. Supply sources can provide different voltages; power switches can turn their outputs off or
on and can selectively connect different inputs to the output. As a result, the power available to instances in
the extent of a power domain will vary, and at any given time, each power domain’s supplies will be in one
of many possible states. To manage these various states, and in particular to manage the interactions
between power domains that are in different states, power management is required.

Power management enables a system to operate correctly in a given functional mode with the minimum
power consumption. Adding power management to a design involves analyzing the design to determine
which power supplies provide power to each logic element, and if the driver and receiver are in different
power domains, inserting power-management cells as required to ensure that neither logical nor electrical
problems result if the two power domains are in different power states.

4.6.2 Related supplies

An active component consists of logic elements that receive inputs and drive outputs. The power supplies
connected to an active component provide power for this logic. The supply nets that provide power for the
logic that receives or drives a given input or output, respectively, are called the related supplies of that
input or output. Related supplies typically include power and ground supplies and may also include bias
supplies.

At the library cell level, related supplies may be identified for each input or output pin of a cell. Each
related supply is a supply pin on that cell; the pin typically has a pg_type attribute indicating what supply

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

27

function it provides (primary power, primary ground, etc.). For a cell that has one set of supply
connections, all inputs and outputs would have the same set of related supplies. For a cell that has multiple
supply connections, such as a cell with a backup power supply, different pins can have different sets of
related supplies. This is particularly true of certain power-management cells, such as a level-shifter, which
usually has different related supplies for the input and output.

Related supply nets are often considered in a group, as an implicit supply set. An implicit supply set made
up of the supply pins of a cell that are the related supplies of a given input or output is by definition
equivalent to any supply set that has been connected to those supply pins.

4.6.3 Driver and receiver supplies

Each output of an active component is typically connected to the input of some other active component in
the design. The net connecting the two has a driver on one end (the logic driving the output port) and a
receiver on the other end (the logic receiving the input). The driving logic is powered by a supply set called
the driver supply; the receiving logic is powered by a supply set called the receiver supply.

The driver supply and the receiver supply can be the same supply set, e.g., if both components are in the
same power domain; or the driver supply and the receiver supply can be different supply sets, e.g., if the
two components are in different power domains. The driver supply and the receiver supply can also be
different, but nonetheless equivalent, e.g., if they are connected externally or if they are generated by
supply networks that ensure they always have the same values.

In some cases, the logic driving or receiving a given port is not evident. In particular, the logic inside a
macro instance may not be represented in a way that can be used by a given tool. Similarly, the logic that
drives primary inputs of the design and receives primary outputs of the design is typically not represented
as part of the design. In such cases, it is convenient to be able to associate the driver supply or receiver
supply of the missing logic with the port that is connected to that logic. UPF defines attributes that can be
used to associate this information with ports of a model.

4.6.4 Logic sources and sinks

Logic ports can be a source, a sink, or both, as follows:

 The LowConn of an input or inout logic port whose HighConn is connected to an external driver is
a source.

 The HighConn of an output or inout logic port whose LowConn is connected to an internal driver is
a source.

 The LowConn of an output or inout logic port whose HighConn is connected to an external receiver
is a sink.

 The HighConn of an input or inout logic port whose LowConn is connected to an internal receiver
is a sink.

For a logic port that is connected to a driver, the supply of the connected driver is also the driver supply of
the port. A primary input port is assumed to have an external driver and therefore is a source; such a port
has a default driver supply if it does not have an explicitly defined UPF_driver_supply attribute. An
internal port that is not connected to a driver is not a source, and therefore, does not have a driver supply in
the design. To model this in verification, an anonymous default driver is created for such an undriven port.
This driver always drives the otherwise undriven port in a manner that results in a corrupted value on the
port.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

28

For a logic port that is connected to one or more receivers, the supplies of the connected receivers are all
receiver supplies of the port. A primary output port is assumed to have an external receiver and therefore is
a sink; such a port has a default receiver supply if it does not have an explicitly defined
UPF_receiver_supply attribute. An internal port that is not connected to a receiver is not a sink, and
therefore, does not have any receiver supplies.

The following paragraphs define the power management of HDL literals (e.g., 1′b1)

A literal value (e.g., SystemVerilog 1′b1 or VHDL '1') can be connected to an input port of a macro
instance either directly or indirectly. The following three cases can be distinguished:

 A literal is directly associated with an input port of a macro.

 A literal is assigned to a wire (in SystemVerilog) or signal (in VHDL) that is then possibly
propagated through various port associations and finally associated with an input port of a macro
instance, and the initial literal assignment is done within the extent of the power domain in which
the macro is instantiated.

 A literal is associated with a formal input port in an instantiation of a module, and that input port is
connected to a wire (SystemVerilog) or signal (VHDL) that is then possibly propagated through
various additional port associations and finally associated with an input port of a macro instance,
and the initial literal port association is done within the extent of the power domain in which the
macro is instantiated.

A literal value shall be implemented with a tie cell. A tie cell can be either:

 A primary rail cell, the output of which is supplied by the primary supply of the domain in which
the tie cell is located, or

 An Always-On cell, the output which is supplied by a backup supply (i.e., different from the
primary supply of the domain in which the tie cell is located).

A literal connected to a macro instance input port with the attribute UPF_literal_supply (see 5.6) is
modeled as a tie cell instantiated in the domain in which the literal is referenced (which domain also
contains the macro instance) and supplied by the specified literal supply.

If the technology involved supports appropriate tie cells and if the specified literal supply is available in
terms of supply availability rules (see 6.20), the implementation shall be a tie cell in the domain. It shall be
an error if the technology involved does not support appropriate tie cells (e.g., no support of Always-On tie
cells whereas the specified literal supply is different from the primary supply of the domain in which the tie
cell is located) or if the specified literal supply is not available. If the technology involved does not support
any tie cells, the implementation shall be a connection to the appropriate rail of the specified literal supply.

A literal connected to a macro instance input port that does not have the attribute UPF_literal_supply is
modeled as a tie cell instantiated in the domain in which the literal is referenced (which domain also
contains the macro instance) and supplied by the receiving supply of the macro port, defined by the
predefined attribute UPF_receiver_supply, or by predefined attributes UPF_related_power_port,
UPF_related_ground_port, and UPF_related_bias_ports (see 5.6).

If the technology involved supports appropriate tie cells and if the receiving supply is available in terms of
supply availability rules (see 6.20), the implementation shall be a tie cell in the domain. It shall be an error
if the technology involved does not support appropriate tie cells (e.g., no support of Always-On tie cells
whereas the receiving supply is different from the primary supply of the domain in which the tie cell is
located) or if the receiving supply is not available. If the technology involved does not support any tie cells,
the implementation shall be a connection to the appropriate rail of the receiving supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

29

For any other cases, a literal is modeled as a tie cell instantiated in the domain in which the literal is
referenced and supplied by the primary supply of this domain.

If the technology involved supports tie cells, the implementation shall be a primary rail tie cell in that
domain. If the technology involved does not support any tie cells, the implementation shall be a connection
to the appropriate rail of the primary supply.

4.6.5 Power-management requirements

Power management is required to mediate the changing power states of power domains in the system and
the interactions between power domains that are in different states at various times. There are four specific
areas addressed by power management, as follows:

 If a power domain is powered down in certain situations, its state registers may need to have their
values saved before power-down and restored after subsequent power-up, either to maintain
persistent data or to enable faster power-up.

 If the distance between driver and receiver is long (the capacitive load is high), buffers (repeaters)
may be required to strengthen the signal along the way, or to ensure that it stabilizes within the
required time.

 If a receiver is powered on, but its driver is not, an isolation cell is required between driver and
receiver to drive the receiver with a known value despite the fact that the ultimate driver is powered
off.

 If the driver and receiver supplies (or isolation and receiver supplies, or driver and isolation
supplies, etc.) are operating at different voltage levels, a level-shifter is required between them to
translate between voltage levels.

UPF provides commands for specifying where power-management structures should be added to a design
to address each of these areas.

4.6.6 Power-management strategies

Addition of power-management cells to a design is driven by rules or strategies. UPF provides commands
for specifying retention strategies (see 6.49), repeater strategies (see 6.48), isolation strategies (see 6.44),
and level-shifting strategies (see 6.45). Each of these strategies can be defined in various ways to apply to
specific design features or more generally to classes of features. Precedence rules (see 5.7) define how
multiple strategies for the same feature are to be interpreted. In general, more specific strategies take
precedence over more general strategies.

Retention strategies apply to specific state variables in a given power domain or to all state variables in a
domain. A retention strategy also defines the power supplies, the control signals and their interpretation,
and certain behavioral characteristics of the retention registers to be used for the state variables to which it
applies.

Repeater, isolation, and level-shifting strategies apply to ports of a power domain. The ports to which one
of these strategies applies can be defined by name or can be selected by filters. Source and sink filters
select ports based on the driver supply and receiver supply, respectively, of each port. The filters typically
match equivalent supplies unless an exact match is specified. Ports can also be selected by direction. Each
of these strategies also specifies the relevant power supplies and control signals and their interpretation to
be used for any power-management cells added by the strategy.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

30

4.6.7 Power-management implementation

Implementation of power-management strategies involves adding power-management cells—retention
registers, repeaters (buffers), isolation cells, and level-shifter cells—to the design. Each added cell may add
new driving and receiving logic and as a result may change the driver and receiver supplies of a given port,
which could potentially affect the application of other strategies based on source and sink filters. To ensure
the interaction of multiple strategies is well defined, strategies are applied according to the following rules:

a) Strategies are implemented in the following order: retention strategies, followed by repeater
strategies, followed by isolation strategies, followed by level-shifter strategies.

b) A retention strategy may affect the driving supply of the retention cell output. If so, the new driving
supply of the retention cell is visible to, and affects the result of, a source filter of any subsequently
applied strategy.

c) A repeater strategy causes insertion of a buffer, which has a receiver and a driver; this insertion
therefore affects both the receiving supply of ports driving the repeater input and the driving supply
of ports receiving the repeater output. The new driving supply and receiver supply are visible to,
and affect the result of, source and sink filters, respectively, of any subsequently applied strategy.

d) An isolation strategy may cause insertion of an isolation cell, which has a receiver and a driver;
therefore if such insertion occurs, it affects both the receiving supply of ports driving the isolation
cell input and the driving supply of ports receiving the isolation cell output. However, the new
driving supply and receiver supply are not visible to, and do not affect the result of, source and sink
filters, respectively, of any subsequently applied isolation or level-shifting strategies.

e) A level-shifting strategy may cause insertion of a level-shifting cell, which has a receiver and a
driver; therefore if such insertion occurs, it affects both the receiving supply of ports driving the
level-shifting cell input and the driving supply of ports receiving the level-shifting cell output.
However, the new driving supply and receiver supply are not visible to, and do not affect the result
of, source and sink filters, respectively, of any subsequently applied level-shifting strategy.

Repeater, isolation, and level-shifting strategies apply to all ports on the interface of a power domain, both
those on the upper boundary of the domain and those on the lower boundary of a domain. As a result, a port
on the boundary between two domains—the upper boundary of one, and the lower boundary of the other—
may have multiple strategies of a given type defined for it, one from each of the two domains. In such a
case, both strategies may cause addition of power-management cells.

4.6.8 Power-management cells

Power-management cells that have a single set of supply connections are also referred to as single-rail
power-management cells. Single-rail cells typically share the same supply as the domain primary, but can
also be physically placed in a different supply region. A typical example of a single-rail cell is an isolation
cell placed in the destination domain.

Power-management cells that have two sets of supply connections are also referred to as dual-rail power-
management cells. Dual-rail cells have a secondary or backup supply that enable them to be placed in the
primary domain but still have secondary supply connectivity to other supplies. Typical examples of dual-
rail power-management cells are dual-rail buffers and inverters, isolation cells placed in switched source
domain, retention flops, power switches, level-shifters, etc.

Power-management cells with more than two sets of supply connections are also referred to as multi-rail
power-management cells. Multiple supplies are more common in macros than standard cells. Typical
examples of this case are multi-rail level-shifters (input supply, domain supply, output supply), power
multiplexors, etc.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

31

4.6.9 Power control logic

Most power-management cells require control signals to coordinate their activity. In particular, isolation
cells require enable signals, retention cells may require save and restore signals or related control inputs,
and power switches (see 4.5.3.1) require switch control signals. Logic ports and nets that implement these
control signals may be present already in the HDL design or they may be added via UPF commands.

Control logic ports and nets defined in UPF are created within the logic hierarchy independent of power-
domain definitions. This allows the power control network to be created and distributed across power
domains.

A control signal is logically equivalent to itself. Two different control signals are logically equivalent to
each other if one is directly connected to the other, if they are both directly connected to a common logic
source (see 4.6.4), or if their respective logic sources are equivalent.

4.7 Supply states and power states

4.7.1 Overview

Power is required for the operation of a system. Supply ports, supply nets, and supply set functions
propagate power from root supply sources to the active components of a system. Supply switches affect the
propagation of power from supply sources to supply consumers. Active components consume power as
required by a given operating mode.

An object that propagates power can be in various supply states. A supply state of an object that propagates
power represents the power provided by the supply source(s) of that object and therefore the power it can
propagate to power-consuming objects to which it is connected, assuming an ideal power source that can
handle an infinite load.

An object that consumes power can be in various power states. A power state of an object that consumes
power represents an operating mode of that object and therefore the power required by the object in that
operating mode.

Power states can also be defined for collections of objects. Such power states name combinations of power
states and/or supply states of other objects and may impose constraints on such combinations.

4.7.2 Supply states

The supply states of supply ports, supply nets, and supply set functions are represented by type
supply_net_type, defined in package UPF (see 11.2). This type models electrical values as a combination
of two values: a state value and a voltage value, which together constitute the supply state of a supply port,
supply net, or supply set function.

 The state value is one of OFF, UNDETERMINED, PARTIAL_ON, or FULL_ON. The state value
represents the ability of the object’s root supply source(s) to provide power.

 The voltage value is internally represented as an integer number of microvolts, measured relative to
a single common reference ground that is assumed to apply to the entire design. The voltage value
is relevant only for the PARTIAL_ON and FULL_ON state values; it is undefined for the OFF and
UNDETERMINED state values.

 The state value is not affected by or determined by the voltage value.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

32

Supply states of a supply port that is a supply source propagate to any supply net or supply set function to
which that port is electrically equivalent.

Supply states of a supply port are defined as named port states. Port states may be referenced in a power
state table to specify legal combinations of port states that may exist.

Supply switches also have named states, which correspond to control expressions that determine which
input(s) of a switch affect the switch output supply state (see 4.5.3.1). The named states of a supply switch
therefore determine whether and how the switch propagates the supply state(s) of its input supply port(s) to
its output supply port.

4.7.3 Power states

Power states are defined for supply sets, power domains, composite domains, groups, modules, and
instances.

By default, any object for which power states can be defined has a predefined power state UNDEFINED.
This power state initially represents the undifferentiated set of all possible functional states of that object.
Specific states within that set of all possible power states of the object can be defined. Defining a power
state creates a named power state that represents a subset of the functional states of the object. Defining a
named power state removes that subset of functional states from the set of functional states represented by
the UNDEFINED power state.

A given power state is active when certain conditions occur. When a power state of an object is active, that
power state characterizes the operating mode of the object at that time. More than one power state of a
given object may be active at the same time, subject to certain restrictions.

A power state of an object is characterized by its defining expression. The defining expression for a named
power state is the logic expression specified in its definition (see 6.5). The defining expression of the
UNDEFINED power state is effectively the condition that no other power state of this object is active.

A named power state is a definite power state if its defining expression consists of a single term or
conjunction of terms, such that each term is one of the following:

a) a Boolean expression over signals in the design, or

b) a term of the form "<object>==<state>", where

1) <object> is the name of an object for which power states are defined and

2) <state> is the name of a definite power state of <object>.

In the latter case, the term evaluates to True when <state> of <object> is active. A definite power state is
active when its defining expression evaluates to True.

A named power state is a deferred power state if it has no defining expression. This can occur when the
exact definition will involve implementation details that are not yet known, such as which supply rail will
be switched, or what control signals will determine the state. A deferred power state is considered to be a
definite power state whose defining expression will be provided at a later time. A deferred power state is
active when the state has been assigned to an object by the set_power_state function, or when certain
conditions occur for predefined power states (see 4.7.4).

A named power state that is neither a definite power state nor a deferred power state is an indefinite power
state. An indefinite power state is active when its defining expression evaluates to True.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

33

A named power state R of an object O is a refinement of another named power state S of the same object O
if both R and S are definite states and the defining expression of R includes exactly one term of the form
O==S. A named power state S of an object O is an abstraction of another named power state T of the same
object O if T is a refinement of S. The refinement and abstraction relations are both transitive; if R is a
refinement of S, and S is a refinement of T, then R is a refinement of T, and T is an abstraction of R.

If one power state is an abstraction or refinement of another power state, then the two power states are
related by refinement. For a given set of power states that are related by refinement, the most refined power
state is the unique state that is not an abstraction of any other state in the set. A power state S of an object is
a fundamental power state if it is a power state that is not a refinement of any other power state of that
object.

By definition, if power state R is a refinement of power state S, and R is active, then S is also active. Also
by definition, no named power state is related by refinement to the UNDEFINED power state.

Fundamental power states of a given object shall be mutually exclusive. It shall be an error if two
fundamental power states of the same object are both active at the same time. Similarly, two different
refinements of the same power state shall be mutually exclusive. It shall be an error if two different
refinements of the same power state are both active at the same time. The predefined power state ERROR
represents the error condition in which two states that should be mutually exclusive are both active at the
same time.

A power state can be either legal or illegal. A legal power state represents a state of an object that is
intended or expected to occur in normal operation of the system. An illegal power state represents a state of
an object that is not intended or expected to occur in normal operation. By default, a named power state is
legal unless its definition specifies that it is illegal or it is a refinement of an illegal power state. Therefore a
legal state may be an abstraction of an illegal state, but an illegal state cannot be an abstraction of a legal
state. Equivalently, a legal state may have an illegal refinement, but an illegal state cannot have a legal
refinement.

A power state that is legal for a given model may be marked as illegal for a given instance of that model.
Any refinement of such a power state is also illegal for that instance of the model.

The current power state of an object is determined as follows:

 if exactly one named power state of the object is active,

 then that state is the current power state; else

 if all active states of the object are definite states that are related by refinement,

 then the most refined power state is the current power state; else

 the predefined ERROR state is the current power state.

The set of power states for a given object may be marked as complete, which indicates that all fundamental
states of the object have been defined as named power states. If the set of power states for an object is
complete, then it shall be an error for the UNDEFINED power state to be the current power state of that
object. It is also an error if a new fundamental power state is defined after the power states are marked
complete.

NOTE 1— By definition, a fundamental power state of an object is active whenever any refinement of that power state
is active.

NOTE 2— Three distinct error conditions can occur related to active or current power states:

1) An illegal power state of an object is active.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

34

2) Two different fundamental states of the same object or two different refinements of the same power state
are active at the same time, and therefore the current power state of the object is the ERROR state.

3) The current power state of an object is the UNDEFINED state, but the set of power states for that object
is specified as complete.

NOTE 3— Predefined power states ERROR and UNDEFINED represent situations in which the set of power state
definitions for an object is inconsistent or incomplete. Illegal power states represent user-defined error conditions or
states that should not occur in a given context.

4.7.4 Predefined power states

The predefined power states UNDEFINED and ERROR are defined for every supply set, power domain,
composite domain, group, model, and instance. For a supply set, predefined power state UNDEFINED is
defined with no simstate, and predefined power state ERROR is defined with simstate CORRUPT.

For a supply set, the power states ON and OFF are predefined as deferred power states. Power state ON is
defined with simstate NORMAL; power state OFF is defined with simstate CORRUPT. (See 4.8 for a
description of simstates.) The definitions of these states may be updated to specify a logic expression, a
supply expression, or legality of the state (see 6.5).

Power state ON of a supply set is active when its defining expression is present and evaluates to True, or
else when all of its required supply functions are FULL_ON, or when the supply set’s power state has been
successfully set to the ON state either directly or indirectly by the set_power_state function (see 9.3.1).

Power state OFF of a supply set is active when its defining expression is present and evaluates to True, or
else when no other named power state defined for the supply set is active, or when the supply set’s power
state has been successfully set to the OFF state either directly or indirectly by the set_power_state
function.

4.7.5 Objects with power states

Power states can be defined for various kinds of objects. These include supply sets, power domains,
composite domains, groups, models, and instances. The definition of a power state for a given object can
depend upon power states of other objects, with certain restrictions.

A supply set represents a collection of supply set functions that will eventually be provided by the supply
distribution network. Power states of a supply set are defined in terms of the supply states of the supply set
functions. Such power states identify various levels of power that can be made available via the supply set
for consumption by design elements, the legality of each of these levels, and if the supply set is the primary
supply of a domain, the simulation behavior for elements in that domain associated with each supply level.

A power domain represents a collection of instances that are powered with the same primary supply and
that may share other auxiliary supplies such as isolation and retention supplies. Power states of a power
domain can be defined in terms of power states of the domain’s available supply sets and related control
inputs. Such power states represent various operational modes of the power domain, each of which requires
a particular set of power states of its supplies as well as specific control conditions.

A composite domain is a collection of subdomains, each of which shares the same primary supply. The
shared primary supply implies that any combination of power states of those subdomains must involve
primary supply power states defined with the same set of supply set function values, therefore the creation
of a composite domain implicitly restricts the combinations of power states of its subdomains. In addition,
power states can be defined on the composite domain in terms of the power states of the subdomains and

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

35

related control inputs. Such power states identify specific combinations of subdomain power states and
potentially restrict the set of legal combinations of subdomain power states.

A group represents a collection of power states defined in terms of power states of other objects within a
given scope and its descendant subtree. Power states defined for a group identify and potentially restrict the
combinations of power states of the other objects mentioned in their definitions. Multiple independent
groups of power states can be defined within a scope.

An HDL module may be used to model an independent design component that can be instantiated in a
larger context. In particular, a module may represent a hard macro, an IP block, a subsystem, or the entire
system. Power states defined for an HDL module identify and potentially restrict the combinations of
power states of objects defined within the HDL module and its descendant subtree. Such power states often
represent abstract power states of the whole module that can be used as part of the power interface of the
module. Exactly one set of power states may be defined for a given HDL module. Any instance of the
module inherits these power states.

Examples

A power domain PD1 may have a power state RUNNING. This power state would require domain PD1’s
primary supply set to be in a power state in which all supply nets of the primary supply set are on and the
current delivered by the power circuit is sufficient to support normal operation. Similarly, a SLEEP power
state for domain PD1 would probably require the primary supply set to be in power state in which sufficient
voltage and current is provided to maintain the state of registers, although not necessarily enough to support
normal operation. A SHUTDOWN power state would typically require the primary supply set to be in the
OFF state, and might also require retention and isolation supplies of the domain to be in the ON state.

The state of logic elements may be a relevant aspect to the specification of a domain’s power state. For
example, for a power domain PD2, its power state might be as follows:

a) UP when:

1) The logic signal that turns on the domain primary supply switch is asserted.

2) The logic signal(s) enabling isolation are deasserted.

b) DOWN when:

1) The logic signal that turns on the domain primary supply switch is deasserted.

2) If the isolation or retention supplies are switched, the control signals for those supplies are
asserted (the power switch is on).

3) Clock gating enable signals for the domain are deasserted.

4) Isolation enables for the domain are asserted.

5) Retention control signals for the domain are asserted.

A domain’s power state may also be dependent on the clock period or similar signal interval constraint. For
example, a domain in an operational bias mode may need to scale its clock frequency to a slower level to
match the slower switching performance supported by the state of the primary supply set. This can be
reflected in a bias power state for the domain’s primary supply set power state, in which the logic
expression includes a constraint on the clock period or duty cycle interval. A domain power state can then
be defined that requires its primary supply set to be in that bias power state (see 6.5).

Power states of one domain can be defined in terms of power states of other domains. For example, assume
the domain CORE_PD is defined on the root scope of a processor design. In this case, the logic expressions
of power states of CORE_PD can reference lower-level power domains such as CACHE_PD, ALU_PD,
and FP_PD. Thus, an example power state of FULL_OP for CORE_PD might require that its primary

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

36

supply set is ON and that the CACHE_PD, ALU_PD, and FP_PD are all in the fully operational mode
defined for each one. In contrast, a NON_FP_OP mode for the CORE_PD may be defined similarly, except
that it might require domain FP_PD to be in a SLEEP mode.

Power states may also be defined for composite objects such as composite domains, groups, and modules.
This enables specification of power states for IP blocks, subsystems, and entire systems.

NOTE—Specification of a given power state for a component does not imply that the power state will necessarily be
used in a given system. A legal power state of a given component may be illegal for a given instance of that
component. Similarly, an OFF state for a supply set does not imply that the supply set shall actually be a switched
supply. The OFF state merely defines the simstate behavior (CORRUPT) in the event that, in a particular
implementation, the supply is indeed switched off.

4.7.6 Power states as constraints

For any given object, the legal fundamental power states of that object (together with predefined power
state UNDEFINED, if the power state definition for that object is not marked as complete) represent all
possible legal power states of that object. For any given pair of objects, the set of the legal possible
combinations of power states of the pair consists of the complete cross product of the respective sets of
legal possible power states of the individual objects.

Defining a named power state identifies a particular power state so that it can be referenced by name. A
named power state can be identified as an illegal state. A set of named power states for a given object can
be specified as complete. In both cases, such a specification reduces the set of legal power states of the
object to a subset of all possible power states of that object. In this manner, power state definitions that
identify illegal power states or identify a set of power states as complete constrain the set of all possible
power states of an object.

Power states can be defined in terms of other power states. In particular, power states of one object can be
defined in terms of power states of other objects. This creates a hierarchy of power state dependencies. For
example:

 power states of a supply set are defined in terms of the supply states of its supply set functions;

 power states of a domain are defined in terms of the power states of its available supply sets;

 power states of a composite domain are defined in terms of power states of its subdomains.

Power states can also be defined for groups (see 6.21) and for modules; such power states can be defined in
terms of the power states of any object defined in or below the same scope as the group or instance. Power
states of a module are inherited by each instance of the module.

In each of the above cases, named power states defined as illegal, or undefined power states made illegal by
specifying that the set of power states is complete, further constrain the combinations of power states of the
subordinate objects referenced in the defining expression of the power state.

A more specific power state definition can override a more generic legal power state definition to make that
power state illegal in a specific context. For example, a legal power state defined for all instances of a given
module can be updated to make that power state illegal for a particular instance of that module, or a legal
power state of a domain that is a subdomain of a composite domain can be updated to make that power
state illegal in the context of the composite domain. Similarly, the power states for an object in a given
module can be updated to identify the set as complete for a particular instance of that module.

The set of legal power states and power state combinations that result when all such constraints are applied
is the set of power states and combinations of power states that are expected to be reachable when the
system is implemented. The set of reachable power states and combinations of power states imposes a

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

37

constraint on the implementation of the supply distribution network for the specified power intent. Any
implementation of the system shall be able to provide the necessary supply values and combinations to
activate each of the reachable power states and combinations of power states.

4.7.7 Power states and power dissipation

Power domains represent a set of elements that consume power from the same primary supply and possibly
from related auxiliary supplies. HDL modules in turn consist of one or more power domains. For both
domains and modules, the power states of such objects represent various operational modes of the hardware
elements involved, and this in turn implies various levels of power dissipation.

Power states defined for power domains or for HDL modules can be augmented with a characterization of
the power dissipated by the domain or module instance in each state. This power dissipation specification
represents both static power dissipation (leakage) and dynamic power dissipation for each distinct supply
set that provides power to the object.

4.7.8 Power state control

For more abstract models, power state definitions should focus on determination of power state based on
the actual states of objects rather than on the control mechanisms involved in producing those states. Power
state control will ultimately involve detailed hardware protocols as well as software drivers, the full
complexity of which cannot be captured in simple combinational power state definitions.

As a consequence, power state definitions for more abstract models should be expressed in terms of the end
effect rather than in terms of control signals that cause the end effect. This approach avoids over-
constraining the eventual power-management implementation. For example, the state of a given component
can be determined by the state of its subcomponents and/or supplies, independent of any control signals
that cause those subcomponent states or supply states to occur.

For more concrete models, such as RTL models that are ready for implementation, power state definitions
may refer to control signals used in the implementation, such as isolation, retention, and power switch
control signals. Even in this case, care should be taken not to over constrain the implementation. For
example, configuration UPF need not specify any implementation details, and therefore it may be
inappropriate to refer to power switch control signals in the definition of power states in configuration UPF.

4.7.9 Power state changes

The definition of a power state of an object is evaluated whenever an event occurs on one of the objects
referenced in the defining expression of that power state. Evaluation of the power state definition
determines whether a given power state is active. If a change occurs in the set of active power states for an
object, the current power state is updated accordingly.

An event occurs on an object referenced in the defining expression of a power state as follows:

 For a control signal, when the value of the signal changes

 For a term of the form <object>==<state> or <object>!=<state>, when the referenced state of the
referenced object becomes active or becomes inactive

 For an interval function, whenever an event occurs on the signal in the interval function

Power state change events propagate up the hierarchy of power state dependencies. For a given object, a
change in the set of active power states of that object is an event that triggers re-evaluation of any power

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

38

state definitions (of the same object or any other object) whose defining expression depends upon the state
of the given object.

4.7.10 Power state transitions

A power state transition for a given object starts in one state and ends in another state. As the current state
of an object changes, a sequence of actual state transitions occur, from one current power state to the next
current power state.

Power state transitions can be defined as named state transitions with the add_state_transition command
(see 6.7). Named state transitions may be defined as either legal or illegal. Named state transitions occur
when the set of active power states changes. This ensures that power state refinement does not hide an
occurrence of an illegal transition. It also allows for transitions within a set of states related by refinement,
as well as between fundamental states.

A named state transition that is defined as legal is one in which a transition from a certain from state to a
certain to state is allowed. Such a transition may pass through certain intermediate states that occur
between the from state and the to state. A more general transition may be accompanied by more specific
transitions that result if the from state and/or to state are further refined.

A named state transition that is defined as illegal is one in which a direct transition from a from state to a to
state is not allowed. In effect, a transition between the from state and the to state requires the occurrence of
intermediate states. Such a direct transition remains illegal even if the from state and/or to states are refined
and therefore more specific transitions may occur along with this more general transition.

There is no precedence among transitions; if two transitions start and end at the same time, then both occur
in parallel. However, if two transitions start at the same time, and one ends before the other, only the
transition that ended is considered to occur; the transition that is still in flight—which, by definition, cannot
be an illegal transition—is ignored.

4.8 Simstates

Simstates specify the simulation behavior semantics for a power state. A simstate specifies the level of
operational capability supported by a supply set state. The simstate specification provides digital-simulation
tools with sufficient information for approximating the power-related behavior of logic connected to the
supply set with sufficient accuracy.

Simstates are associated with power states of supply sets and supply set handles. A simstate defines how
instances powered by the supply set or supply set handle react to a given power state. In particular,
simstates can be associated with power states of the primary supply of a power domain, to define how
instances in the power domain that are implicitly connected to that primary supply will behave under
various power states of the primary supply.

UPF defines several simstates that can be associated with supply set or supply set handle power states. The
simstates defined in UPF are an abstraction suitable for digital simulation. The following simstates are
defined (from highest to lowest precedence):

a) CORRUPT—The supply set is either off (one or more supply nets in the set are switched off,
terminating the flow of current) or at such a low-voltage level that it cannot support switching and
the retention of the state of logic nets. It cannot guarantee to maintain even in the absence of
activity in the instances powered by the supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

39

b) CORRUPT_ON_ACTIVITY—The power characteristics of the supply set are sufficient for logic
nets to retain their state as long as there is no activity within the elements connected to the supply,
but they are insufficient to support activity.

c) CORRUPT_ON_CHANGE—The power characteristics of the supply set are sufficient for logic nets
to retain their state as long as there is no change in the outputs of the elements connected to that
supply.

d) CORRUPT_STATE_ON_ACTIVITY—The power characteristics of the supply set are sufficient to
support normal operation of combinational logic, but they are insufficient to support activity inside
state elements, whether that activity would result in any state change or not.

e) CORRUPT_STATE_ON_CHANGE—The power characteristics of the supply set are sufficient to
support normal operation of combinational logic, and they are sufficient to support activity inside
state elements, but they are insufficient to support a change of state for state elements.

f) NORMAL—The power characteristics of the supply set are sufficient to support full and complete
operational (switching) capabilities with characterized timing.

The predefined power states for a supply set have corresponding simstates. The simstate for power state
ON is NORMAL. The simstate for power state OFF is CORRUPT. The simstate for power state ERROR
is CORRUPT. There is no simstate defined for power state UNDEFINED.

Simstate simulation semantics for a supply set are applied to instances implicitly connected to a supply set
unless simstate behavior has been disabled (see 6.52).

NOTE 1—When greater accuracy is desired or required, a mixed signal or full-analog simulation can be used. Since
analog simulations already incorporate power, this format provides no additional semantics for analog verification.

Simulation results reflect the implemented hardware results only to the extent that the UPF simstate
specification for a given power state of a supply set is correctly specified. For example, if verification is
performed with simulation of a supply set in a power state specified as having a
CORRUPT_ON_ACTIVITY simstate, but the implementation is more accurately classified as
CORRUPT_STATE_ON_CHANGE, the simulation results will differ.

NOTE 2—In this example, the inaccuracy in simstate specification is conservative relative to the implemented
hardware behavior. However, in other situations, inaccurate specifications can be optimistic, resulting in errors in the
implemented hardware that simulation failed to expose.

4.9 Power intent specification

4.9.1 Successive refinement

Design and implementation of a power-managed system using UPF proceeds in stages. During the design
phase, a UPF-based specification of the power intent may be developed incrementally, first at the IP block
level, and later at the system level. During implementation, UPF commands are added to drive
implementation details, and a series of implementation steps map the design and the UPF commands into
the final implementation (see Figure 2).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

40

Figure 2 —Successive refinement of power intent

The power intent specification for an IP block to be used in a larger design typically defines the power
interface to the block and the power domains within the block. This specification also typically includes
constraints on the use of the block in a power-managed environment. These constraints include (at least)
the following:

a) The atomic power domains in the design.
These can be composed but not split during implementation. [Use create_power_domain -atomic
(see 6.20).]

b) The state variables that need to have their values retained if a given power domain is powered
down.
This does not involve specifying how such retention would be controlled. [Use
set_retention_elements (see 6.50).]

c) The clamp values of signals that would need to be isolated if a given power domain is powered
down.
This does not involve specifying how isolation is to be controlled. [Use set_port_attributes
-clamp_value (see 6.47).]

d) The legal power states and power state transitions of the IP block’s power domains.
This need not involve specifying absolute voltages for the power supplies involved. [Use
add_power_state (see 6.5) and add_state_transition (see 6.7).]

A power intent specification containing such basic information about an IP block is often referred to as
constraint UPF, or sometimes as the platinum UPF.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

41

When an IP block is being prepared for use in a given system, information may be added to the
specification to reflect the specific requirements of the block in the context of the system. For example, an
instance of the block can be used in a manner that will definitely require isolation, level-shifting, retention,
or repeater cell insertion. These strategies can be added to the constraint UPF for the block in order to
configure the power intent of the block for use in this system. Such strategies impose a requirement to
insert specified power-management cells for an instance of the IP block and typically include information
about how such power-management cells are controlled.

A power intent specification containing this level of information is often referred to as configuration UPF,
or sometimes as the golden UPF.

To drive implementation of a power-managed design, information may be added to the specification to
define the power-distribution network for the system and the control logic for power-management cells. A
power intent specification containing this kind of information is often referred to as implementation UPF,
or sometimes as the silicon UPF.

4.9.2 Bottom-up specification

4.9.2.1 Introduction

While implementing a system it may be required to implement an instance separately from the top-level
scope with the intention to integrate this block back into the system later in the flow. This flow style is
often referred to as a bottom-up flow.

If using a bottom-up flow some considerations regarding UPF partitioning must be made. In particular the
implementation of a lower level instance will be done without the parent scope being present. Therefore the
block UPF power intent must be self-sufficient (see 4.9.2.2); in that it cannot rely on power intent defined
in an ancestor scope and it cannot define power intent that is to be implemented in an ancestor scope.

In addition to a block instance requiring self-contained power intent, the block needs to be defined as a soft
macro (see 4.9.2.4). This ensures that the block is not affected by ancestor level power intent which is not
available during block implementation. By defining an instance to be a soft macro, the evaluation of certain
UPF power intent commands are affected due to a macro being treated as a leaf cell boundary.

4.9.2.2 Self-contained UPF

In order for a block to be implemented standalone from its parent scope the UPF for this block must
completely define the power intent. The power intent for a block instance can be deemed to be self-
contained when:

a) It does not require power intent defined in an external scope to complete the power intent. However
ancestor level power intent may still change or add power intent, unless the block is identified as a
soft macro (see 4.9.2.4).

b) It defines its own top-level domain (e.g., create_power_domain -elements {.}).

c) It does not reference any objects defined in a parent context.

d) It does not rely on the visibility of the real drivers and receivers respectively for the block primary
inputs and outputs, i.e., all input and output ports have the required driver_supply and
receiver_supply attributes respectively annotated to represent the assumptions about the supplies
of external logic in the environment that drives the block inputs and receives the block outputs.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

42

e) It does not attempt to change external power intent implementation, such as with the insertion of
isolation cells.

4.9.2.3 Leaf cells

A leaf cell is a cell that is considered as having no descendants with regards to a top-level context.

For any leaf cell, the ports on the boundary are treated as drivers and receivers (see 4.4.3). In particular:

 Driver/receiver supply analysis in the parent context of a leaf cell instance (e.g., for evaluating
filters of strategies) stops at the ports of the leaf cell instance and uses the output driver supply and
input receiver supply attributes of those ports rather than the actual driving/receiving supplies
inside the leaf cell.

 Driver/receiver supply analysis inside a soft macro cell instance (see 4.9.2.4) stops at the ports of
the macro cell and uses the input driver supply and output receiver supply attributes of those ports
rather than the actual driving/receiving supplies in the parent context in which the macro cell is
instantiated.

The effect of some UPF commands are limited by a leaf cell boundary:

a) find_objects searches within a leaf cell instance.

b) Global supply net availability does not extend into a leaf cell instance.

c) During isolation or level-shifting insertion, location fanout evaluation terminates at the leaf cell
boundary.

If a leaf cell instance has a UPF power intent specification, then in addition a parent context’s power intent
shall not affect the cell instance power intent;

d) It shall be an error if the UPF power intent of an ancestor

1) uses set_scope to scope into the leaf cell.

e) It shall be an error if the UPF power intent of an ancestor context contains a command that

1) defines new objects in the cell instance.

2) refines the definitions of existing objects in the cell instance.

3) inserts isolation or level-shifting cell into the cell instance (e.g., -location other).

4) attempts to add/modify power domains in the cell instance.

5) attempts to add/refine strategies of domains in the cell instance.

6) attempts to add/refine power states of objects defined in the cell instance.

4.9.2.4 Macro cells

4.9.2.4.1 Introduction

A macro is a module or an instance of a module that has already been implemented. Each instance of a
macro is a leaf cell and therefore defines a leaf cell boundary (see 4.9.2.3).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

43

4.9.2.4.2 Hard macro cells

A macro cell typically has a Liberty model that defines its interface, including supply ports and the related
supplies for its logic ports. The Liberty model may also include information about embedded power
switches and the conditions under which those switches are on or off.

For verification purposes, a macro cell may be represented by a behavioral model that describes the
behavior of the cell without representing the internal details. Since the internal structure of the
implementation is not represented in detail in the behavioral model, the model is effectively a black box;
only the interface of the model is visible to the parent context.

UPF may be specified for the macro to represent power intent that is not described in the functional model,
however this intent is descriptive of the already implemented logic and therefore no further implementation
of this cell should be needed.

This style of macro cell is referred to as a hard macro. The attribute {UPF_is_hard_macro TRUE}
associated with a model indicates that the model is a hard macro. All instances of a hard macro model are
treated as hard macro cell instances.

A macro defined using the Liberty is_macro_cell attribute will implicitly set the {UPF_is_hard_macro
TRUE} attribute on the model (see 5.6).

4.9.2.4.3 Soft macro cells

A macro cell may also be represented by the original RTL and UPF from which its implementation was (or
will be) derived. This style of macro cell is referred to as a soft macro. The attribute {UPF_is_soft_macro
TRUE} associated with a model indicates that the model is a soft macro. All instances of a soft macro
model are treated as soft macro instances.

A soft macro instance is considered to have a terminal boundary that restricts the scope of the object. As
such, power intent objects expressed in an ancestor (such as domains and global supply sets) are not
available to the block and therefore the power intent must be supplied explicitly (see 4.9.2.2).

4.9.3 File structure

For maximum reuse, it may be appropriate to keep constraint, configuration, and implementation UPF
commands in separate files. The load_upf command (see 6.32) can be used to compose the files for a
particular context.

For example, an IP block with a corresponding constraint UPF description might be configured for use in a
given system by creating a configuration UPF file for it. The configuration UPF file would load the
constraint UPF for the IP block and then continue with additional commands defining or updating the
isolation, level-shifting, retention, and repeater strategies required for this configuration of the IP block.
Different configuration UPF files can be constructed based on the same constraint UPF to define different
configurations of the same IP block for use in different situations.

For implementation of the design, an implementation UPF file may be constructed by loading the
configuration UPF for the various IP blocks involved in the system and then adding implementation details,
such as supply ports, nets, sets, power switches, port attributes, and supply connections. Different
implementation UPF files can be constructed using the same configuration UPF files to evaluate or verify
alternative implementations.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

44

For each implementation step, tools may update the implementation UPF to document the additions made
to the design in that step to implement the power intent. To keep the implementation updates separate from
the input UPF specification, a tool may generate an output UPF file that loads the input UPF file and then
adds UPF command updates as required. Successive implementation steps may choose to append to this
update file or generate a new update file that loads the previous one.

4.9.4 Tool flow

A UPF-based tool flow typically begins with verification of the design together with its power intent.
Verification goals include the following:

 To confirm that IP blocks with UPF constraints are being used correctly in the design.

 To confirm that the logical, technology-independent aspects of the power intent are working as
expected and enable the design to function correctly.

 To confirm that the technology-dependent implementation details specified in UPF correctly
implement and enable the logical behavior of the power-management architecture.

Verification can begin as soon as the logical aspects of the design’s power intent are specified in UPF.
These include power domains, isolation and retention strategies, control inputs, power states of the
domains, and power states and simstates of each domain’s primary supply set. At this stage, isolation and
retention strategies that do not have explicitly specified supplies may be modeled as having always-on
supplies (see G.1.1), under the assumption that the implementation, when completed, will ensure that they
are provided with supplies that are on whenever necessary. This assumption avoids having to make
implementation decisions too early in the verification process.

When technology-specific implementation aspects of the design’s power intent have been specified,
verification can focus on the correctness and completeness of power-management implementation. These
implementation aspects include supply ports, nets, switches, and their connections to supply set functions,
level-shifting and repeater strategies, mapping of strategies to particular library cells, and port states and
power state tables. At this stage, the assumption of an always-on supply for isolation and retention
strategies no longer applies; verification will check that the actual supplies provided to those strategies as
well as level-shifter and repeater strategies are indeed on when required. Other implementation-related
checks are performed at this stage as well.

After verification of the design with its power intent has been completed, a series of implementation steps
occur in which the RTL design is reduced to a gate-level implementation and the power intent is integrated
into that implementation. After each implementation step, power-aware verification can be performed
again, using the design representation output by that stage along with the UPF description corresponding to
that design representation (see Figure 2).

The power intent expressed in UPF can be implemented incrementally in successive steps. Each step may
add implementation details, such as power-management cells, control logic, or supply distribution
networks. The design itself may also evolve during implementation, even after the RTL stage, as a result of
implementation steps such as test insertion.

Implementation can be incremental at various levels of granularity as follows:

 By aspect: isolation, level-shifting, retention, repeaters, control logic, power distribution

 By command: isolation strategy A, isolation strategy B, etc.

 By element to which a command applies: isolation for port p1, for port p2, etc.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

45

For any given tool run, the tool needs to know the following:

a) What part of the UPF power intent specification is supposed to be implemented already, and

b) What part of the UPF power intent specification is to be included in the processing done by this tool.

This standard does not define how the preceding information is made available to a tool; this is tool/flow
information that is outside the scope of the standard. Typically, such information would be provided to the
tool either explicitly via command-line arguments or other control inputs, or implicitly as part of the
specification of the tool itself.

A tool also shall be able to determine what part of the UPF specification has been implemented so far. This
standard defines a method for documenting what has been done so far to implement the power intent, by
identifying ports, nets, and instances in the design that represent implementations of UPF commands.

5. Language basics

5.1 UPF is Tcl

UPF is based on Tool Command Language (Tcl). UPF commands are defined using syntax that is
consistent with Tcl, such that a standard Tcl interpreter can be used to read and process UPF commands.

Compliant processors reading UPF files use full Tcl interpreters to process the UPF files. Compliant
processors shall use Tcl version 8.4 or above. The following also apply:

 UPF power intent commands are executed in the order of occurrence, just as Tcl commands are
executed and return values can be used by subsequent commands.

 The only UPF commands that support regular expressions are find_objects (see 6.30) and
query_upf (see 11.1.2).

 All of the commands and techniques of Tcl may be used, including procs and libraries of procs.
However, the procs and libraries of procs should ultimately only rely on UPF commands for design
information.

 find_objects (see 6.30) shall be the only source used to programmatically access the HDL when
defining the power intent. The processing of information returned by find_objects using standard
Tcl commands (Tcl language syntax summary [B5]), such as regexp, is allowed.

 UPF is intended to be used across many tools, so it is erroneous to use proprietary tool-specific
commands when constructing power intent.

 Once the Tcl processing has completed, the end result can be expressed as a series of UPF commands.

Libraries used for design or methodology standardization or ease of expression that define additional procs
are considered to be part of the design file and need to be visible to any processor interpreting the UPF file.

5.2 Conventions used

5.2.1 Introduction

Each UPF command in Clause 6 and Clause 7 consists of a command keyword followed by one or more
parameters. All parameters begin with a hyphen (-). The meta-syntax for the description of the syntax rules
uses the conventions shown in Table 1.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

46

Table 1 —Document conventions

Visual cue Represents

courier The courier font indicates UPF or HDL code. For example, the following line indicates
UPF code:

create_power_domain PD1

bold The bold font is used to indicate keywords that shall be typed exactly as they appear. For
example, in the following command, the keyword create_power_domain shall be typed as
it appears:

create_power_domain domain_name

italic The italic font represents user-defined UPF variables. For example, a supply net shall be
specified in the following line (after the connect_supply_net keyword):

connect_supply_net net_name

list list (or xyz_list) indicates a Tcl list, which is denoted with curly braces {….} or as a
double-quoted string of elements "….". When a list contains only one non-list element
(without special characters), the curly braces can be omitted, e.g., {a}, "a", and a are
acceptable values for a single element. See also 5.3.4.

xyz_ref xyz_ref can be used when a symbolic name (i.e., using a handle) is allowed as well as a
declared name, e.g., supply_set_ref.

time_literal time_literal indicates a SystemVerilog or VHDL time_literal.
* asterisk An asterisk (*) signifies that a parameter can be repeated. For example, the following line

means multiple acknowledge delays can be specified for this command:
[-ack_delay {port_name delay}]*

[] square brackets Square brackets indicate optional parameters. If an asterisk (*) follows the closing bracket,
the bracketed parameter may be repeated. For example, the following parameter is optional:

[-elements element_list]
The following is an example of optional parameter that can be repeated:

[-ack_port {port_name net_name [{logic_value}]}]*

[] bold square
brackets

Bold square brackets are required. For example, in the following parameter, the bold
square brackets (surrounding the 0) need to be typed as they appear:

domain_name.isolation_name.isolation_supply[0]

{ } curly braces Curly braces ({ }) indicate a parameter list that is required. In some (or even many) cases,
they have (or are followed by) an asterisk (*), which indicates that they can be repeated.
For example, the following shows one or more control ports can be specified for this command:

{-control_port {port_name}}*

{ } bold curly braces Bold curly braces are required, unless the argument is already a Tcl list. For example, in
the following parameter, the bold curly braces need to be typed as they appear:

[-off_state {state_name {boolean_expression}}]*
In cases where variable substitution is needed, Tcl’s list command can be used, e.g.,

-off_state [list $state_name [list $expression]]
< > angle brackets Angle brackets (< >) indicate a grouping, usually of alternative parameters. For example,

the following line shows the power or ground keywords are possible values for the
-type parameter:

-type <power | ground>

| separator bar The separator bar (|) character indicates alternative choices. For example, the following
line shows the in or out keywords are possible values for the -direction parameter:

-direction <in | out>

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

47

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. Color is used as follows:

 Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

 Command arguments that can be provided incrementally (layered) are shown in boldface-green text.
See also 5.10.

 Syntactic keywords and tokens that have been explicitly identified as legacy or deprecated
constructs (see 6.2) are shown in brown text.

5.2.2 Word usage

In this document, the word shall is used to indicate a mandatory requirement. The word should is used to
indicate a recommendation. The word may is used to indicate a permissible action. The word can is used
for statements of possibility and capability.

The words must and will do not indicate requirements that must be strictly followed in order to conform to
the standard. The word must is used to describe unavoidable situations; the word will is only used in
statements of fact.

5.3 Lexical elements

5.3.1 Introduction

Names created in UPF should not conflict with HDL reserved words.

Command names, parameter names, and their values are case-sensitive.

5.3.2 Identifiers

Identifiers adhere to the following rules:

a) The first character of an identifier shall be alphabetic.

b) All other characters of an identifier shall be alphanumeric or the underscore character (_).

c) Identifiers in UPF are case-sensitive.

5.3.3 Names

5.3.3.1 General

Names identify objects in the design and in the power intent specification.

5.3.3.2 Simple names

A simple name is a single identifier. An identifier is used when creating a new object in a given scope; the
identifier becomes the simple name of that object.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

48

In a given scope, a given simple name may only be defined once, with a unique meaning; it shall be an
error if two objects are declared in the same scope with the same simple name.

A simple name, optionally followed by an index or record field specification as appropriate for the type of
an object in a given HDL context, is an object name. An object name can be used to refer to an existing
object or part of an existing object that is declared in the current scope. Object names also refer to objects
defined in UPF that do not exist in a scope of the hierarchy.

The simple name of an instance in a given scope is an instance name.

The simple name of any of the following objects is defined within a unique global scope:

 an HDL model

 a UPF power model

 a UPF power-management cell

 a UPF VCT

 a UPF Retention Element List

An HDL model or instance is a scope in which simple names of the following may be defined:

 HDL ports, nets, instances, processes

 UPF ports, nets, switches, power state tables, supply sets, power domains

A UPF power switch is a scope in which simple names of switch control ports, input supply ports, input
states, and switch supply sets may be defined.

A UPF power state table is a scope in which simple names of PST states may be defined.

A UPF supply set is a scope in which simple names of supply set functions, power states, and state
transitions may be defined.

A UPF power domain is a scope in which simple names of supply sets, strategies, power states, and state
transitions may be defined.

A UPF strategy is a scope in which simple names of various supply sets and control signals are predefined.

The following names are predefined in certain contexts:

a) Predefined names in a power domain scope

1) primary

b) Predefined names in a power switch scope

1) switch_supply

c) Predefined names in a level-shifter strategy scope

1) input_supply

2) output_supply

3) internal_supply

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

49

d) Predefined names in an isolation strategy scope

1) isolation_supply

2) isolation_signal

e) Predefined names in a retention strategy scope

1) retention_supply

2) primary_supply

3) save_signal

4) restore_signal

5) UPF_GENERIC_CLOCK

6) UPF_GENERIC_DATA

7) UPF_GENERIC_ASYNC_LOAD

8) UPF_GENERIC_OUTPUT

f) Predefined names in a repeater strategy scope

1) repeater_supply

Each name is defined within a particular scope.16

5.3.3.3 Dotted names

A dotted name is a compound name designating a UPF object. A dotted name is made up of simple names
separated by . characters.

A dotted name is used to refer to a strategy associated with a power domain, a supply set associated with a
strategy or a power domain, or a function of a supply set. A dotted name for a supply set associated with a
strategy or domain is called a supply set handle. A dotted name for a supply set function is called a supply
net handle.

 Power-domain strategy names
<domain name> . <strategy name>

 Supply set handles
<domain name> . <supply set name>
<domain name> . <strategy name> . <supply set name>

 Supply net handles
<supply set name> . <function name>
<domain name> . <supply set name> . <function name>
<domain name> . <strategy name> . <supply set name> . <function name>

A dotted name is also an object name.

16 In this clause, the term scope refers to any region in which names can be defined, not just to instances in the logic hierarchy.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

50

5.3.3.4 Hierarchical names

A hierarchical name is a name that refers to an object declared in a non-local scope. A hierarchical name
consists of an optional leading / character, followed by a series of one or more instance names, each
followed by the hierarchy separator character /, followed by an object name.

A hierarchical name that starts with an instance name is a scope-relative hierarchical name. A scope-
relative hierarchical name is interpreted relative to the current scope. The first instance name is the name of
an instance in the current scope; each successive instance name is the name of an instance declared in the
scope of the previous instance. The trailing object name is the simple name or dotted name of an object
declared in the scope of the last instance. A scope-relative hierarchical name is also called a rooted name.

A hierarchical name that starts with a leading / character is a design-relative hierarchical name. A design-
relative hierarchical name is interpreted relative to the current design top instance by removing the leading
/ character and interpreting the remainder as a rooted name in the scope of the current design top instance.

5.3.3.5 Name references

Many command arguments require references to object names, such as the names of instances, ports,
registers, nets, etc., in the design, or the names of power domains, strategies, supply sets, supply nets, etc.,
in the power intent. Unless otherwise specified or contextually restricted, an object name reference can be a
simple name, a dotted name, or a hierarchical name. In particular, a supply set handle is a form of supply
set name and a supply net handle is a form of supply net name. In the absence of any statement to the
contrary, a supply set handle can be used wherever a supply set name may appear, and a supply net handle
can be used wherever a supply net name may appear.

5.3.4 Lists and strings

A Tcl list is an ordered sequence of zero or more elements, where each element can itself be a list. In Tcl, a
string can be thought of as a list of words.

Tcl strings can be specified in two different ways: by enclosing the words within double-quotes ("") or
between curly braces ({}). Upon finding a list of words within double-quotes, Tcl continues to parse the
string, looking for variable (strings started with $), command (strings between square brackets []), and
back-slash (strings contain \) substitutions. To use any of the special characters within design object
names, first wrap them in curly braces ({}). Upon finding a list of words between curly braces, Tcl treats
the list as a literal list of words, preventing further processing on the list before it is used.

Therefore, in the syntax for UPF, the construct -option xyz_list can be satisfied by any of the following,
when no special characters are used in the object names:

-option foo

-option "foo"

-option "foo bar bat"

-option {foo}

-option {foo bar bat etc.}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

51

5.3.5 Special characters

Special lexical elements (see Table 2) can be used to delimit tokens in the syntax.

Table 2 —Special characters

Type Character
Logic hierarchy delimiter /

Escape character \ (only escapes the next character)

Bus delimiter, index operator,
or within a regex []

Range separator (for bus
ranges) :

Record field delimiter .

When Tcl special characters need to be used literally for design object names, always escape the special
character or wrap the name with {}, even if a single value is used, to protect from Tcl interpretation, e.g.,
-elements [list foo {foo/bar} a\[0\]].

5.4 Boolean expressions

A Boolean expression may be used to define a control condition or a supply state. A Boolean expression
may include references to the following.

a) VHDL names, values, and literals of the following types or any subtype thereof:

std.Standard.Boolean

std.Standard.Bit

std.Standard.Real for voltage values

std.Standard.Time for use with the interval function

ieee.std_logic_1164.std_ulogic

ieee.UPF.state

b) SystemVerilog names, values, and literals of the following types:

reg

wire

Bit

Logic

time_literal for use with the interval function

real, shortreal for voltage values

A VHDL or SystemVerilog name may also be the name of an element of any composite type object
provided the element itself is of a supported type.

A Boolean expression may also contain special expression forms for referring to power states (see 6.5).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

52

In certain commands, logic values X, 0, 1, Z can be specified. These represent values of a predefined logic
type in the relevant hardware description language. For VHDL, the predefined logic type is type
ieee.std_logic_1164.std_ulogic, or any subtype thereof. For SystemVerilog, the predefined logic type is
type Logic.

A name of an object referred to in a Boolean expression may be prefixed by a pathname identifying the
instance in the scope of which the name is declared. Any such pathname is interpreted relative to the
current scope when the command defining the expression is executed. If no pathname prefix is present, the
name shall refer to an object declared in the current scope.

In a Boolean expression used as a supply expression in the definition of a power state of a supply set
(handle), the name of any function of that supply set (handle) may be referred to directly without a prefix,
unless such a reference would be ambiguous.

In a Boolean expression used as a logic expression in the definition of a power state of a power domain, the
name of any supply set handle associated with that power domain may be referred to directly without a
prefix, unless such a reference would be ambiguous.

A Boolean expression may include the operators shown in Table 3, which map to their corresponding
equivalents in SystemVerilog or VHDL, as appropriate for the objects involved in each subexpression.

Table 3 —Boolean operators

Operator SystemVerilog
equivalent VHDL equivalent Meaning

! ! not Logical negation

~ ~ not Bit-wise negation

< < < Less than

<= <= <= Less than or equal

> > > Greater than

>= >= >= Greater than or equal

== == = Equal

!= != /= Not equal

& & and Bit-wise conjunction

^ ^ xor Bit-wise exclusive disjunction

| | or Bit-wise disjunction

&& && and Logical conjunction

|| || or Logical disjunction

A Boolean expression shall be provided as a string, as indicated in the syntax for each command in which a
Boolean expression can appear. Subexpressions may be grouped with parentheses (()). Logical operators
have lowest precedence; bit-wise operators have next higher precedence; relational operators have next
higher precedence; negation operators have highest precedence.

A Boolean expression or subexpression is considered to evaluate to the logical value True if evaluation of
the expression (according to the semantics of the VHDL or SystemVerilog operators and types involved, as
appropriate) results in a bit or logic value of 1 or a Boolean value of True; otherwise it is considered to
evaluate to the logical value False.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

53

A Boolean expression may contain references to objects in different language contexts provided that any
given subexpression that evaluates to a logical (True/False) value contains only references to one language
context. Logical negation, conjunction, and disjunction of logical values shall be performed according to
standard Boolean logic semantics and need not be implemented with language-specific operators.

A simple expression is a Boolean expression containing an optional negation operator (! or ~), followed by
optional white space and a single object name.

Examples

{ top/sv_inst/ena == 1’b1 && top/vhdl_inst/ready == ‘0’ }
{ supply1.state == FULL_ON && supply1.voltage > 0.8 }
{(top/sv/wall.supply[0] != FULL_ON) || (top/vhdl/battery.supply(1) ==

UNDEFINED)}

5.5 Object declaration

All UPF commands are executed in the current scope, except as specifically noted.

As a result, most objects created by a UPF command are created in the current scope within the design;
therefore, the names of those objects shall not conflict with a name that is already declared within the same
scope.

Some UPF objects are implicitly created. Implicitly created objects result from implied or inferred
semantics and are not the direct result of creating a named UPF object. For example, supply nets are routed
throughout the extent of a power domain as needed to implement the implicit and automatic connection
semantics. This routing results in the creation of implicit supply ports and supply nets. UPF automatically
names implicitly created objects to avoid creating a name conflict. The name_format command (see 6.37)
can be used to provide a template for some implicitly created objects (such as isolation). Supply nets may
be implicitly created and connected to supply ports, and logic nets may be implicitly created and connected
to logic ports (see 4.5.3).

UPF objects may have record fields. These records comprise a name and a set of zero or more values.
Record field names are in a local name space of the UPF object, e.g., a power domain may have strategies
and supply set handles. Strategies themselves may also have supply set handles.

The . character is the delimiter for the hierarchy of UPF record fields, e.g., top/a/PDa.MY_SUPPLY_SET
refers to the supply set MY_SUPPLY_SET in power domain PDa in the logical scope top/a.

5.6 Attributes of objects

UPF supports the specification of attributes, or properties, of objects in a design. These attributes provide
information that supports or affects the meaning of related UPF commands. Such attributes can also be
defined with HDL attribute specifications in design code or with Liberty attribute specifications in a
Liberty model.

Table 4 enumerates the attributes that have a predefined meaning in UPF and for each attribute, the UPF
command that can be used to define that attribute.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

54

Table 4 —Attribute and command correspondence

UPF predefined attribute
name

Attribute value
specification Equivalent UPF command arguments See

UPF_clamp_value <0 | 1 | Z | latch | any |
value>

set_port_attributes -clamp_value 6.47

UPF_sink_off_clamp_value <0 | 1 | Z | latch | any |
value>

set_port_attributes -sink_off_clamp_value 6.47

UPF_source_off_clamp_value <0 | 1 | Z | latch | any |
value>

set_port_attributes -source_off_clamp_value 6.47

UPF_pg_type pg_type_value
(see 4.5.4.6)

set_port_attributes -pg_type 6.47

UPF_related_power_port supply_ port_name set_port_attributes -related_power_port 6.47

UPF_related_ground_port supply_ port_name set_port_attributes -related_ground_port 6.47

UPF_related_bias_ports supply_ port_name_list set_port_attributes -related_bias_ports 6.47

UPF_driver_supply supply_set_ref set_port_attributes -driver_supply 6.47

UPF_receiver_supply supply_set_ref set_port_attributes -receiver_supply 6.47

UPF_literal_supply supply_set_ref set_port_attributes -literal_supply 6.47

UPF_feedthrough <TRUE | FALSE> set_port_attributes -feedthrough 6.47

UPF_unconnected <TRUE | FALSE> set_port_attributes -unconnected 6.47

UPF_is_isolated <TRUE | FALSE> set_port_attributes -is_isolated 6.47

UPF_is_analog <TRUE | FALSE> set_port_attributes -is_analog 6.47

UPF_retention <required |
optional>

set_design_attributes -attribute
{UPF_retention required}
set_design_attributes -attribute
{UPF_retention optional}

6.40

UPF_simstate_behavior <ENABLE |
DISABLE>

set_design_attributes -attribute
{UPF_simstate_behavior ENABLE}
set_design_attributes -attribute
{UPF_simstate_behavior DISABLE}

6.40

UPF_is_soft_macro <TRUE | FALSE> set_design_attributes -is_soft_macro 6.40

UPF_is_hard_macro <TRUE | FALSE> set_design_attributes -is_hard_macro 6.40

UPF_switch_cell_type <fine_grain |
coarse_grain>

set_design_attributes -switch_type fine_grain
set_design_attributes -switch_type
coarse_grain

6.40

The attributes in Table 4 all take values that are string literals. Where a list of names is required, the names
in the list should be separated by spaces and without enclosing braces ({}). These attributes can also be
specified using the attribute mechanism in SystemVerilog code or using attribute specifications in VHDL
code. To attach a attribute to an object in a VHDL context, the attribute shall be declared first, with a data
type of STD.Standard.String (or the equivalent), before any attribute specification for that attribute.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

55

For determination of precedence (see 5.7), attributes specified in HDL code are treated as if they were
implicitly specified using the UPF command set_port_attributes -model -ports (for port attributes) or the
UPF command set_design_attributes -models (for design attributes).

Some of these attributes may also be implied by attributes in a Liberty model. Specifically, the following
Liberty attributes imply definition of the corresponding UPF predefined attribute:

 Liberty attribute name implies UPF predefined attribute name

pg_type UPF_pg_type

related_power_pin UPF_related_power_port

related_ground_pin UPF_related_ground_port

related_bias_pins UPF_related_bias_ports

short UPF_feedthrough

is_hard_macro UPF_is_hard_macro

is_isolated UPF_is_isolated

is_analog UPF_is_analog

switch_cell_type UPF_switch_cell_type

For determination of precedence (see 5.7), attributes specified in Liberty models are treated as if the
corresponding UPF attribute name were implicitly specified using the UPF command set_port_attributes
-model -ports (for port attributes) or the UPF command set_design_attributes -models (for design
attributes).

Certain attributes represent characteristics of a module or cell that apply universally to all instances of that
module or cell. Such attributes are called characteristic attributes. The following predefined attributes are
always characteristic attributes:

UPF_pg_type

UPF_related_power_port

UPF_related_ground_port

UPF_related_bias_ports

UPF_feedthrough

UPF_unconnected

UPF_is_isolated

UPF_is_analog

UPF_is_hard_macro

UPF_is_soft_macro

UPF_retention

UPF_switch_cell_type

In addition, any attribute specified either explicitly or implicitly with set_port_attributes -model or
set_design_attributes -models is a characteristic attribute.

Non-characteristic attributes are overridable as specified by the precedence rules for attribute specifications
(see 5.7). Characteristic attributes are non-overridable.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

56

NOTE—The above definitions imply that any attribute derived from a Liberty attribute or specified in an HDL model
cannot be overridden by a higher precedence attribute specification in UPF (see 5.7).

It shall be an error if any of the attributes in Table 4 is defined multiple times with different values for the
same object, regardless of whether the attribute is defined as an HDL attribute or using UPF commands or
both.

Examples

A port-supply relationship can be annotated in HDL using the following attributes:

Attribute name: UPF_related_power_port and UPF_related_ground_port.

Attribute value: "supply_ port_name", where supply_ port_name is a string whose value is the
simple name of a port on the same interface as the attributed port.

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_related_power_port = "my_VDD",

 UPF_related_ground_port = "my_VSS" *)

output my_Logic_Port;

VHDL attribute specification:

attribute UPF_related_power_port : STD.Standard.String;

attribute UPF_related_power_port of my_Logic_Port : signal is
"my_VDD";

attribute UPF_related_ground_port : STD.Standard.String;

attribute UPF_related_ground_port of my_Logic_Port : signal is
"my_VSS";

Attribute name: UPF_related_bias_pin.

Attribute value: "supply_ port_name_list", where supply_ port_name_list is a string whose value is
a space-separated list of one or more simple names of port(s) on the same interface as the attributed
port.

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_related_bias_ports = "my_VNWELL my_VPWELL" *)

output my_Logic_Port;

VHDL attribute specification:

attribute UPF_related_bias_ports : STD.Standard.String;

attribute UPF_related_bias_ports of my_Logic_Port : signal

is "my_VNWELL my_VPWELL";

The same attributes can be specified in UPF, using the set_port_attributes command and its
generic -attribute option, or they can also be specified in UPF using the set_port_attributes
command and its specific options -related_power_port, -related_ground_port, and
-related_bias_ports, respectively (see 6.47).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

57

Isolation clamp value port properties can be annotated in HDL using the following attributes:

Attribute name: UPF_clamp_value

Attribute value: <0 | 1 | Z | latch | any | value>

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_clamp_value = "1" *) output my_Logic_Port;

VHDL attribute specification:

attribute UPF_clamp_value : STD.Standard.String;

attribute UPF_clamp_value of my_Logic_Port : signal is "1";

The same attributes can be specified in UPF, using the set_port_attributes command and its
generic -attribute option, or it can also be specified in UPF, using the set_port_attributes
command and its specific option -clamp_value (see 6.47).

pg_type port properties can be annotated in HDL using the following attributes:

Attribute name: UPF_pg_type

Attribute value: <primary_power | primary_ground | backup_power | backup_ground >

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_pg_type = "primary_power" *) output myVddPort;

VHDL attribute specification:

attribute UPF_pg_type : STD.Standard.String;

attribute UPF_pg_type of myVddPort : signal is "primary_power";

The same attributes can be specified in UPF, using the set_port_attributes command and its
generic -attribute option, or it can also be specified in UPF using the set_port_attributes
command and its specific option -pg_type (see 6.47).

The UPF leaf cell treatment of a model or instance can be annotated in HDL using the following attributes:

Attribute name: UPF_is_hard_macro

Attribute value: <TRUE | FALSE>

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_is_hard_macro="TRUE" *) module FIFO (<port list>);

VHDL attribute specification:

attribute UPF_is_hard_macro : STD.Standard.String;

attribute UPF_is_hard_macro of FIFO : entity is "TRUE";

The same attribute can be specified in UPF, using the set_design_attributes command (see 6.40).

When any register (specified or implied) with the UPF_retention attribute value set to required is
included in a power domain that has at least one retention strategy, the register shall be included in a
retention strategy defined for the domain.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

58

Elements requiring retention can be attributed in HDL as follows:

Attribute name: UPF_retention

Attribute value: <required | optional>

SystemVerilog or Verilog-2005 attribute specification:

(* UPF_retention = "required" *) module my_flip;

VHDL attribute specification:

attribute UPF_retention : STD.Standard.String;

attribute UPF_retention of my_flip : variable is "required";

The same attribute can be specified in UPF, using the set_design_attributes command (see 6.40).

 set_design_attributes -elements {my_flip} \
 -attribute {UPF_retention required}

5.7 Precedence

To support concise, easily written low-power specifications, UPF commands can range from very specific
to very generic in their scope of application. This enables specification of generic defaults that apply widely
except where more specific commands provide more focused information. This subclause describes the
precedence relations that determine which of several commands that potentially apply in a given situation
shall actually apply.

A create_power_domain command (see 6.20) that explicitly includes a given instance in its extent shall
take precedence over one that applies to an instance transitively (i.e., applies to an ancestor of the instance,
and therefore to all of its descendants). A create_power_domain command that creates an atomic power
domain takes precedence over one that creates a non-atomic power domain.

A set_retention command (see 6.49) that explicitly includes a given instance in its element_list shall take
precedence over one that applies to an instance transitively (i.e., applies to an ancestor of the instance, and
therefore to all of its descendants), which takes precedence over one that applies to an entire domain.

If multiple set_isolation commands (see 6.44), or multiple set_level_shifter commands (see 6.45), or
multiple set_repeater commands (see 6.48) potentially apply to the same port, the following criteria (listed
in order from highest precedence to lowest precedence) determine the relative precedence of the
commands, and only the command(s) with the highest precedence shall actually apply:

a) Command that applies to part of a multi-bit port specified explicitly by name

b) Command that applies to a whole port specified explicitly by name

c) Command that applies to all ports of an instance specified explicitly by name

d) Command that applies to a port of a specified power domain with a given sink and source

e) Command that applies to a port of a specified power domain with a given sink or source

f) Command that applies to all ports of a specified power domain with a given direction

g) Command that applies to all ports of a specified power domain

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

59

If multiple strategies of the same type have the same highest precedence, then all of those commands
actually apply to the port or part thereof, to the extent allowed by the strategy.

A prefix or suffix to be used to create names for inserted isolation, level-shifter, and repeater cells that is
specified by the -name_prefix or -name_suffix options, respectively, of set_isolation, set_level_shifter,
and set_repeater, takes precedence over any user-defined prefix or suffix for these commands specified by
the name_format command (see 6.37). A prefix or suffix explicitly specified using the name_format
command in turn takes precedence over the default prefix or suffix specified in the definition of the
name_format command.

If multiple supply connections potentially apply to the same port, the actual application is determined by
the following precedence order, from highest to lowest precedence:

h) Command that explicitly connects to part of a port

i) Command that explicitly connects to a whole port
(e.g., connect_supply_net -ports)

j) Command that automatically connects to ports of an instance
(e.g., connect_supply_set -connect -elements)

k) Command that automatically connects to ports of any instance in a given region
(e.g., connect_supply_set -connect to connect a handle associated with a domain or
connect_supply_net -pg_type -cells -domain)

l) Command that automatically connects to ports of any instance
(e.g., connect_supply_net -pg_type -cells)

Any explicit connection command takes precedence over implicit connections made by default.

If multiple set_port_attributes commands potentially specify the same overridable attribute of a given port,
whether specified explicitly in UPF or implied by HDL or Liberty attribute specifications, only the
command(s) with the highest precedence will actually apply. The following criteria (listed in order from
highest precedence to lowest precedence) determine the relative precedence of the commands.

The command references:

m) A part of the given port, specified explicitly by name in the -ports list (without -model)

n) The whole given port, specified explicitly by name in the -ports list (without -model)

o) The given port, implied by specifying an instance name in the -elements list with a given direction

p) The given port, implied by specifying an instance name in the -elements list

q) A part of the given port of the named module or library cell, specified explicitly by name in the
-ports list (with -model)

r) The whole given port of the named module or library cell, specified explicitly by name in the
-ports list (with -model)

s) The given port of the instance corresponding to the current scope if none of the options -ports,
-elements, -model are present

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

60

If a given user-defined attribute is defined on both (a port of) a model and (a port of) an instance of that
model, the instance attribute definition takes precedence over the model attribute definition.

It shall be an error if the precedence rules fail to uniquely identify the value of the UPF attribute that
applies to a port. In other words, it shall be an error if two UPF attribute specifications with the same
highest precedence specify different values for the same attribute of the same port.

It shall be an error if a non-overridable attribute is specified with two different values for the same object,
regardless of the precedence rules for attribute specifications.

For simstates that apply to a given object at any given time, a more conservative (i.e., more corrupting)
simstate takes precedence over a less conservative (less corrupting) simstate.

The following also apply:

 The precedence of a command is independent of the current scope during the command processing.

 It shall be an error if the precedence rules fail to uniquely identify the power intent that applies to
an object.

 The find_objects command (see 6.30) returns a list of explicit names; these names can refer to
whole objects or to elements thereof. When list arguments to command options are created using
find_objects, the level of precedence is based on the expanded value used as the argument, not as
the pattern or regular expression used in find_objects.

 The symbol . in -elements {.} is an explicit reference to the instance corresponding to the current
scope.

5.8 Generic UPF command semantics

All map_* commands specify the elements to be used in implementation. These specifications override the
elements that may be inferred through a strategy. The behavior of this manual mapping may lead to an
implementation that is different from the RTL specification. Therefore, it may not be possible for logical
equivalence checking tools to verify the equivalence of the mapped element to its RTL specification.

5.9 effective_element_list semantics

The effective_element_list is the set of elements to which a command applies. The effective_element_list is
constructed from the arguments provided to the command. The terms used in the description of this
construction include: element_list, exclude_list, aggregate_element_list, aggregate_exclude_list,
prefilter_element_list, and effective_element_list. The element_list and exclude_list are lists that contain the
elements specified by an instance of the command. The effective_element_list, aggregate_element_list, and
aggregate_exclude_list are associated with the named object of the command.

The following arguments can determine the effective_element_list:

a) -elements element_list adds the rooted names in element_list to the aggregate_element_list. It is
not an error for an element to appear more than once in this list.

b) -model model_name adds the rooted name of each instance that is an instance of the model to the
aggregate_element_list.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

61

c) -models model_list or -model model_name adds the rooted name of each instance that is an
instance of the model name or any of the models in model_list to the aggregate_element_list. It is
not an error for a model to appear more than once in this list.

d) -lib lib_name selects all models from the specified lib_name. If only -lib lib_name is specified, the
rooted name of each instance that is an instance of every model present in lib_name is added to the
aggregate_element_list.

e) If -lib lib_name is specified along with -model model_name or -models model_list, the model is
selected only if it is present in lib_name. This results in rooted names for only those models that are
present in the lib_name library.

f) If -lib lib_name, -model, or -models is specified with an -elements option, the
aggregate_element_list is constructed by adding the rooted names from -elements and rooted
names resulting from any -lib/-model/-models options.

g) -exclude_elements exclude_list adds the rooted names in exclude_list to the
aggregate_exclude_list. It is not an error for an element to appear more than once in this list. It is
not an error for an element in the exclude list to not be in the aggregate_element_list.

h) When -elements element_list is specified with a period (.), the current scope is included as a
rooted instance in the aggregate_element_list.

i) It shall be an error if the element_list is not specified as one of {}, {.}, or {list}.

j) When -transitive is specified with the (default or explicit) value TRUE, elements (see 5.9.1) in
aggregate_element_list that are not leaf cells are processed to include the child elements (see
5.9.2).

k) The prefilter_element_list comprises the aggregate_element_list with any matching elements from
the aggregate_exclude_list removed (see 5.9.2).

l) The command arguments identified as filters are predicates that shall be satisfied by elements in the
effective_element_list. The prefilter_element_list is filtered by the predicates to produce the
effective_element_list (see 5.9.2).

m) The range of legal element types is command dependent for each command that uses -elements.
Each command specifies the effect of an empty aggregate_element_list. An explicitly empty list
may be specified with {}.

5.9.1 Transitive TRUE

The detailed semantics of -transitive TRUE are described using Figure 3, Figure 4, and Figure 5. The
figures are exemplary; the text provides a semantic for the validation of the result.

Given a design as shown in Figure 3 with a instance A in the current scope, where A has child elements B, C,
and D; B has child elements E and F; C has child elements G and H; and D has child elements I and J.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

62

Figure 3 —Element processing example design fragment

If the specification:

-elements {A A/C/H} -exclude_elements {A/C A/D} -transitive TRUE

is applied to the design fragment shown in Figure 3, then Figure 4 shows the four specified elements by
indicating them as boxed; those specified with exclude are shown with strike-through text.

Figure 4 —Element processing specification

Figure 5 shows the results of the effective_element_list. The list includes
{A A/B A/B/E A/B/F A/C/H}

The elements included or excluded by transitivity are shown as dashed boxes or with strike-through text,
respectively.

Figure 5 —Element processing result

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

63

5.9.2 Result

The required result is derived as follows:

Begin // at the current scope.
 Initialize by traversing the hierarchy and set element.mark := exclude
 For each element in the aggregate_element_list do
 set element.mark := includeP
 if (transitive = TRUE AND element NOT Leaf_Cell) then
 foreach child in element call mark_child(child, include)
 end if
 done
 For each element in the aggregate_exclude_list do
 set element.mark := excludeP
 if (transitive = TRUE AND element NOT Leaf_Cell) then
 foreach child in element call mark_child(child, exclude)
 end if
 done
 For each element in the aggregate_element_list call

check_and_add(element)
done

proc mark_child(element, value)
 if (element.mark != excludeP AND element.mark != includeP) then
 element.mark := value
 if (element NOT Leaf_Cell) then
 foreach child in element call mark_child(child, value)
 end if
 end if
end proc

proc check_and_add(element)
 if (element.mark = includeP OR element.mark = include) then
 if (for all filters filter(element) = TRUE) then
 add element to effective_element_list
 if (transitive = TRUE AND element NOT Leaf_Cell) then
 foreach child in element call check_and_add(child)
 end if
 end if
 end if
end proc

NOTE—Implementations may use any data structure or algorithm that produces the same results as the preceding
method.

5.10 Command refinement

Some UPF commands support incremental refinement. Commands that support incremental refinement are
called refinable commands. A refinable command may be invoked multiple times on the same object and
each invocation may add additional arguments to those specified in previous invocations. The arguments of
a refinable command that may be added after the first invocation are called refining arguments; these are
shown in boldface-green text and labeled with an R in their respective arguments listings. Certain
commands have refinable arguments; such arguments may have additional information about that argument
added after the first invocation of the command, in much the same way that refinable commands may have
additional arguments added later.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

64

The first instance of a refinable command identifies the object to which it applies; all mandatory arguments
shall be declared in this call and any other arguments may also be included. Subsequent occurrences of the
command that identify the same object shall be executed in the same scope and shall include the -update
option and refining arguments as required. The mandatory arguments that identify the object to which the
command applies (the object name following the command or option name, and for strategies, the domain
specification as well) shall also be included in each subsequent occurrence, but other mandatory arguments
are not required in subsequent occurrences of the command. The end result shall be as if all of the
arguments, other than the -update argument, had been included in the initial occurrence of the command,
either individually (e.g., -clamp_value or -isolation_supply) or merged together into a single argument
(e.g., -elements or -exclude_elements).

For example, the set_isolation command (see 6.44) can be invoked for the first time in a given scope to
define a strategy name for a particular domain. Subsequent set_isolation commands executed in the same
scope can specify the same strategy and domain names and also specify additional arguments to further
characterize the isolation strategy defined by the previous command. Similarly, the add_power_state
command (see 6.5) can be invoked initially in a given scope to define a set of power states for a supply set.
A subsequent invocation of add_power_state in the same scope and for the same supply set may use the
-update option to add a -simstate specification to each power state definition.

When -update is used for command refinement, the following apply:

 It shall be an error if -update is specified on the first command of a given kind that applies to a
given object.

 It shall be an error if -update is not specified on subsequent commands of the same kind that apply
to the same object.

 Except for those command arguments that aggregate (see 5.9 and 6.5), it shall be an error if
subsequent commands specify a value for a given argument that conflicts with or contradicts a
previously specified value for the same argument.

Example

This shows a multiple-part refinement for a usage of set_isolation (see 6.44).

a) Constraint specification using port attributes
 set_port_attributes
 -elements {a b c d}
 -clamp_value 0

b) Logical configuration
 set_isolation demo_strategy -domain pda
 -elements {a b c d}
 -clamp_value 0
 -isolation_signal {iso_en}
 -isolation_sense {LOW}

c) Adding elements to the strategy
set_isolation demo_strategy -domain pda -update

-elements {e f g}

d) Supply set implementation
 set_isolation demo_strategy -domain pda -update
 -isolation_supply pda_isolation_supply

The implementation-independent part of the power intent, shown in a) above, could also be declared in the
SystemVerilog HDL using the following attributes:

(* UPF_clamp_value = "0" *) out a;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

65

(* UPF_clamp_value = "0" *) out b;
(* UPF_clamp_value = "0" *) out c;
(* UPF_clamp_value = "0" *) out d;

In this case, the declaration shall have identical semantics to the equivalent UPF command.

5.11 Error handling

If an error condition occurs, e.g., an incorrect command-line option is specified, then a TCL_ERROR
exception shall be raised. This exception can be caught using the Tcl catch command, so these errors can
be prevented from aborting the active load_upf command (see 6.32). These errors shall have no impact on
further commands. Processing may continue after the error is caught. Sequencing of the error catch and
the choice of continuation is tool-dependent. The state of the design after an error is not defined.
Specifically, a command that raises an error may partially complete before aborting.

In general, all commands that fail shall raise a TCL_ERROR. As described in the Tcl documentation, the
global variables accessible after an error occurs include errorCode and errorInfo.

5.12 Units

Voltage values are expressed as real number literals that represent voltage measurements with the implicit
unit of 1 V. For example, the literal 1.3 represents 1.3 V, or equivalently 1300 mV, or 1 300 000 µV.

5.13 SystemC language basic

IEEE Std 1801-2015 support for SystemC is limited to power analysis in system-level design use models.

6. Power intent commands

6.1 Introduction

Clause 6 documents the syntax for each UPF command. For details concerning the simstate semantics, see Clause 9.

6.2 Categories

Each command in Clause 6 is categorized based on the following definitions. Unless otherwise mentioned,
all constructs (commands and/or options) in this standard are considered current. Constructs considered as
legacy or deprecated shall be explicitly denoted.

a) Current—A construct defined in the standard with the following characteristics:

1) It is recommended for use.

2) Its semantics fully support the latest concepts.

3) Its interaction with other related constructs is well defined.

4) It is expected to be part of the standard and be considered for extension in future versions.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

66

b) Legacy—A construct defined in the standard with the following characteristics:

1) It is not recommended for use for new code.

2) Its semantics are not interoperable with all of the latest UPF concepts.

3) It will not be considered for extensions in future versions.

4) It is included for backward compatibility only, e.g., set_isolation -isolation_power_net (see 6.44).

Legacy constructs (commands and/or options) have not had their syntax and/or semantics updated
to be consistent with other commands in this version of the standard, so their descriptions may
contain significant obsolete information and their semantics may not be interoperable with the
latest UPF concepts.

c) Deprecated—A construct defined in the standard with the following characteristics:

1) It is not recommended for use for any code.

2) It will not be considered for extensions in future versions.

3) It may be deleted from future versions, e.g., describe_state_transition (see 6.28).

Deprecated commands are noted in this standard without syntax definitions or semantic
explanations. Deprecated options of current commands are noted in the syntax definition of those
commands, but are not mentioned in the semantic explanations of those commands.

For recommendations on how to use current constructs to replace legacy and deprecated ones, see Annex D.

6.3 add_parameter

Purpose Define parameters for use within the system-level IP power model.

Syntax

add_parameter parameter_name
 -type < buildtime | runtime | rate >

-default value
-description string

Arguments

parameter_name The name of the parameter.

-type <buildtime |
runtime | rate> The type of parameter being defined. The default is buildtime.

-default value Specify the default value for the parameter in floating point form.

[-description] A description of the parameter represented as a string.

Return
value Return a 1 if successful or raise a TCL_ERROR if not.

The add_parameter command is used to define parameters for use within a system-level IP power model.
The parameter scope is within the power model only and power models and power functions cannot access
parameters that are defined outside of the power model in which they are used. Three types of parameters
can be defined as follows:

 Build time—used to define parameters that remain unchanged during run time

 Run time—used to define parameters that can change during run time

 Rate—used to define parameters that represent rate-based quantities that can change during run time

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

67

Both run time and rate-based parameters can form a part of the sensitivity list for a power function. Any
change in the value of such a parameter forces an invocation of the power function and a recalculation of
power (or current) consumption. The units in which the parameter is defined are included within the
parameter definition. Standard SI units shall be used where required, for parameters that are defined within
a system-level IP power model.

It shall be an error if:

a) parameter_name has already been defined within the power model

b) A default value of the parameter is not provided

c) A parameter defined using -type buildtime changes value during simulation

Syntax example

add_parameter process –type buildtime –default 1.0 –description "Process
Scaling Factor"

add_parameter CPUVoltage –type runtime -default 900mv -description "CPU
Supply Voltage"

add_parameter CacheMiss -type rate -default 0.02 -description "Cache Miss
Rate"

6.4 add_port_state (legacy)

Purpose Add states to a port.

Syntax add_port_state port_name
{-state {name <nom | off>}}*

Arguments

port_name The name of the supply port. Hierarchical names are allowed.

-state {name <nom | off>} The name and value for a state of the supply port. The value can be a
nominal voltage or off.

Return
value

Return the fully qualified name (from the current scope) of the created port or raise a TCL_ERROR if
any of the port states are not added.

This is a legacy command; see also 6.2 and Annex D.

The add_port_state command adds state information to a supply port. If the voltage values are specified,
the supply net state is FULL_ON and the voltage value is the single nominal value or within the range of
min to max; otherwise, if off is specified, the supply net state is OFF.

The add_port_state command defines a named supply state for a supply port. If a voltage is specified, the
supply net state is FULL_ON and the voltage value is the specified value; otherwise if off is specified, the
supply net state is OFF.

It shall be an error if port_name does not already exist.

NOTE—The add_supply_state command (see 6.8) is a generalization of add_port_state; add_supply_state can be
used to define named supply states for supply ports, supply nets, and supply set functions.

Syntax example

add_port_state VN1
-state {active_state 0.90}
-state {off_state off}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

68

6.5 add_power_state

6.5.1 Overview

Purpose Define power state(s) of an object.

Syntax

add_power_state
[-supply | -domain | -group | -model | -instance] object_name
[-update]
[-state {state_name
 [-logic_expr {boolean_expression}]
 [-supply_expr {boolean_expression}]
 [-power_expr {power_expression}]
 [-simstate simstate]
 [-legal | -illegal]
}]*
[-complete]

Arguments

object_name Simple name of an object.

-supply | -domain |
-group | -model |
-instance

These arguments specify the kind of object to which this command
applies.

-state {state_name ...} state_name is the simple name of the state being defined or refined.

-supply_expr
{boolean_expression}

-supply_expr specifies a Boolean expression defined in terms of
supply ports, supply nets, and/or supply set handle functions that
evaluates to True when the object is in the state being defined.

R

-logic_expr
{boolean_expression}

-logic_expr specifies a Boolean expression defined in terms of logic
nets and/or power states of supply sets and/or power domains that
evaluates to True when the object is in the state being defined.

R

-simstate simstate -simstate specifies a simstate for the power states associated with a
supply set. Valid values are NORMAL,
CORRUPT_ON_CHANGE, CORRUPT_STATE_ON_CHANGE,
CORRUPT_STATE_ON_ACTIVITY,
CORRUPT_ON_ACTIVITY, CORRUPT, and NOT_NORMAL.
See 4.5.4.7.

R

-power_expr
{power_expression}

Specifies the power consumption of this object in this power state,
or a function for computing the power consumption.

-legal | -illegal These options specify the legality of the state being defined as either
legal or illegal. The default is -legal.

R

-complete Specifies that all fundamental power states to be defined for this
object have been defined. This implies that all legal power states have
been defined and any state of the object that does not match a defined
state is an illegal state.

R

-update Indicates this command provides additional information for a previous
command with the same object_name and executed in the same scope.

R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

69

Semantics

add_power_state defines one or more power states of an object. Power states may be defined for a supply
set, a power domain, a composite domain, a group, a model, or an instance. Power states of a model are
inherited by any instance of that model.

If -supply is specified, the object_name shall be the name of a supply set or a supply set handle. If -domain
is specified, the object_name shall be the name of a power domain. If -group is specified, the object_name
shall be the name of a group. If -model is specified, the object_name shall be the name of a model. If
-instance is specified, the object_name shall be the name of an instance. If none of the above are specified,
the type of object_name determines the kind of object to which the command applies.

The state name and the logic expression of a power state definition determine whether the power state is a
deferred power state, a definite power state, or an indefinite power state (see 4.6.3).

The state_name in a power state definition shall be either a simple name or a hierarchical state name. A
hierarchical state name is a name of the form abstract_state_name.simple_name. In the latter case, the
hierarchical state name being defined is a refinement of the power state previously defined with the name
abstract_state_name.

The defining expression for a power state with the simple name S of an object O is the logic expression
given in the power state definition. The defining expression for a power state with the hierarchical state
name A.S of an object O is the conjunction of the term O==A and the logic expression in the definition of
state A.S.

A hierarchical state name shall be used only to define a definite state. The abstract_state_name shall be the
name of another definite power state of the same object. A hierarchical state name allows for definition of a
more refined power state without explicitly specifying the more abstract power state in the logic
expression.

Example

 add_power_state -supply PD.primary \
 -state {ON.TURBO} ;# a refinement of the predefined ON state

which is functionally equivalent to

 add_power_state -supply PD.primary \
 -state {TURBO -logic_expr {PD.primary==ON} }

NOTE 1—A hierarchical state name is the whole name of a power state; the entire state name must be used in any
reference to that power state.

NOTE 2—Two different hierarchical state names for the same object may have the same suffix as long as the whole
names are different. For example, ON.ECO.P1 and ON.TURBO.P1 can both be defined as refinements of power state
ON of a given object.

The power states defined for a given object include only predefined power states for that class of object
(see 4.7.4) and those defined explicitly for that object or an instance of that object. Power states defined for
one object are not inherited implicitly by any related object (e.g., by a supply set handle with which a
supply set has been associated or vice versa) except that power states of a model are inherited by each
instance of the model. However, power states of one object can be defined in terms of power states of
another object, to represent dependencies or correlation of power states.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

70

The set of power states for a given object may be specified incrementally by using -update. The first
add_power_state for that object may define one or more power states. Subsequent add_power_state
-update commands for the same object may define additional power states.

A power state definition itself may also be specified incrementally by using -update. The initial definition
of the power state defines at least the power state name and may specify additional information about this
power state. Subsequent add_power_state -update commands for the same power state of the same object
may specify additional details about that power state.

A power state definition may be specified as either a legal power state (-legal) or an illegal power state
(-illegal). By default, a power state definition defines a legal power state. A legal power state initially
defined either with or without -legal may be updated with -illegal to indicate that it is an illegal power state
in a given context. In particular, a legal power state of an instance that was inherited from the
corresponding model may be updated to indicate that this power state is not legal for the specific instance.

6.5.2 Logic expression

The -logic_expr boolean_expression shall be a Boolean expression (see 5.4) referencing control signals,
clock signal intervals, and/or power states of an object. For convenience, the following expression forms
may appear in this expression:

a) interval(signal_name edge1 edge2)

Equivalent to
the time between the most recent two specified edges of signal_name
(returns the largest supported time value until both edges have occurred)

where
edge1, edge2 shall be one of posedge or negedge.

b) interval(signal_name edge)

Equivalent to
interval(signal_name edge edge)

c) interval(signal_name)

Equivalent to
interval(signal_name posedge posedge)

d) object == power_state

Evaluates to True if power_state of object is active

where
object is the name of a supply set, power domain, composite domain, group, model, or instance.

e) object != power_state

Evaluates to True if power_state of object is not active

where
object is the name of a supply set, power domain, composite domain, group, model, or instance.

Examples

-logic_expr { enable == 1’b1 && interval(clk) < 5ps }
-logic_expr { core_pd.primary == ON_1d2v }
-logic_expr { core_pd == turbo && ram_pd != sleep }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

71

Within a logic expression specified as part of a power state definition for a given power domain, the supply
set handles of that power domain may be referenced directly without prefixing the name with the power
domain name. To refer to an object declared in the current scope with the same name as a supply set handle
of the power domain, the object name shall be prefixed with ./.

A logical contradiction exists when a logic net or supply set or power domain is specified to be more than
one value in the definition of a given power state, e.g., (enable == ‘1’) and (enable == ‘0’). A power state
definition is erroneous if it contains logical contradiction(s).

6.5.3 Simstate

A power state definition for a supply set may specify a simstate (see 4.8). The simstate of a power state of a
supply set that is the primary supply of a given power domain determines the simulation behavior of
elements in that domain when that power state is the current power state of the domain’s primary supply
set.

6.5.4 Supply expression

A power state definition for a supply set may also specify a supply expression. The supply expression
specifies the supply states of the supplies that cause this power state to be active. The supply expression can
also specify voltage values for each supply.

The -supply_expr boolean_expression shall be a Boolean expression (see 5.4) that may reference available
supply nets, supply ports, and/or functions of supply sets or supply set handles. For convenience, the
following expression forms may appear in this expression:

a) supply_net == net_state

Equivalent to
{ supply_net.state == net_state }

where
supply_net is the name of a supply port or net or a supply set (handle) function
net_state is the name of a state associated with supply_net.

b) supply_net == { net_state nom_voltage }

Equivalent to
{ supply_net.state == net_state && supply_net.voltage == nom_voltage }

where
supply_net is the name of a supply port or net or a supply set (handle) function
net_state is the name of a state associated with supply_net

The first expression form may be used to specify the supply set of a supply set function, supply port, or
supply net without indicating the voltage. The second expression form may be used to specify both supply
state and voltage. A supply set power state defined with a supply expression involving the first expression
form may be updated later with a supply expression involving the second expression form, provided that
the second expression form specifies the same supply state as in the original definition.

Within a supply expression specified as part of a power state definition for a given supply set or supply set
handle, the functions of that supply set or supply set handle may be referenced directly without prefixing
the name with the power domain name. To refer to an object declared in the current scope with the same
name as a function of the supply set or supply set handle, the object name shall be prefixed with ./.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

72

6.5.5 Power expression

A power state definition for a module or power domain may specify a power expression. The power
expression is used to define the power (or current) consumption of the object (power domain or
component) when this power state is the current power state.

The power expression can take one of two forms:

 A list of two literal values for power (or current) including the associated SI units. The first value in
the list represents static power (or current); the second represents dynamic power (or current).

 Identification of a power function together with a list of parameters to which that power function is
sensitive. Evaluation of the function returns a list of static and dynamic power (or current) values in
the above format.

The power function calculates power (or current) consumption for the power state for which it is defined.
The power function is evaluated on entry to the power state—i.e., when the power state for which it is
defined becomes the current power state. It is re-evaluated at any time while this power state is the current
power state and a parameter in the sensitivity list of the power function changes value. If the power
function is defined without a sensitivity list, then power (or current) consumption shall only be calculated
on entry to the power state.

Power expressions are used for component power modeling, which involves defining a power model using
the begin_power_model and end_power_model commands and applying the power model to an instance
using the apply_power_model command. The add_parameter command can be used in a power model to
define the parameters of a power expression.

A power expression shall be specified only for a deferred power state (see 4.7.3).

It shall be an error if

 a power expression appears in a power state definition that is not contained within a power model

 a parameter specified in the power expression has not been defined within the power model

Syntax example

add_power_state -model CPU
 -state {ACTIVE
 -power_expr {UPF::power_functions::cpu
 {voltage frequency temperature IPC L1DAccess }}
 }
 -state {DORMANT
 -power_expr {0.01mW 0.0mW}
 }

6.5.6 Power state definition restrictions

In addition to above-mentioned restrictions, the following apply:

a) If a supply expression is used to define a power state of a given supply set or supply set handle, it
shall only refer to supply ports, supply nets, and/or functions of the given supply set or supply set
handle. It shall be an error if such a supply expression refers to functions of another supply set or
supply set handle. It is also an error if the supply expression does not refer to at least one of the
power function or ground function of the supply set.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

73

b) If a logic expression is used to define a power state of a given supply set or supply set handle, it
shall only refer to logic ports, logic nets, interval functions, and/or power states of the given supply
set or supply set handle. It shall be an error if such a logic expression refers to functions of a supply
set or supply set handle, power states of another supply set or supply set handle, or power states of
a domain.

c) If a logic expression is used to define a power state of a given power domain, it shall only refer to
logic ports, logic nets, interval functions, power states of supply sets or supply set handles that are
available in the domain, and/or power states of power domains. It shall be an error if such a logic
expression refers to supply ports, supply nets, or functions of a supply set or supply set handle. It is
also an error if the logic expression does not refer to the power states of all supply sets of the
domain that have more than one legal power state.

d) If a logic expression is used to define a power state of a composite power domain, it shall only refer
to logic ports, logic nets, interval functions, power states of available supply sets or supply set
handles, and/or power states of its subdomains. It shall be an error if such a logic expression refers
to supply ports, supply nets, or functions of a supply set or supply set handle, or power states of
domains that are not subdomains. It is also an error if the logic expression does not refer to the
power states of all subdomains of the composite domain that have more than one legal power state.

e) It shall be an error if a supply expression is used to define a power state of a power domain,
composite domain, group, module, or instance.

f) It shall be an error if a simstate is associated with a power state of a power domain, composite
domain, group, module, or instance.

g) When -simstate

1) Is first specified for a named state, any of the arguments may appear.

2) Is specified as NOT_NORMAL, the effect shall be the same as if CORRUPT had been
specified (see 4.7.4), except that the definition may be subsequently refined to any simstate
other than NORMAL.

3) Has previously been specified as NORMAL, CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_ON_CHANGE, CORRUPT_STATE_ON_CHANGE, or CORRUPT_
STATE_ON_ACTIVITY, it shall be an error if an add_power_state -update command for
the same object specifies any simstate other than that originally specified (e.g., once
CORRUPT has been specified for a particular state, it shall remain as CORRUPT in any
subsequent updates for the definition of that state).

h) The simstate for predefined power state ON is NORMAL.

i) The simstate for predefined power states OFF and ERROR is CORRUPT.

j) The predefined power state UNDEFINED is defined with no simstate.

k) There is no default simstate for a user-defined power state.

l) The supply set is in the OFF power state when it is not in one of the defined power states of the
supply set that have simstates defined on them, including the ON predefined state.

m) If -illegal has been specified in the definition of a power state for a given object, it shall be an error
if that object is in a state that matches the definition of that power state. A verification tool shall
emit an error message when an object is in an illegal power state.

n) If -complete has been specified in an add_power_state command for a given object, it shall be an
error if that object is in a state that does not match any of the defined power states. A verification
tool shall emit an error message when an object is in such an undefined state.

o) If -complete has been specified on an add_power_state command for a given object, it shall be an
error if a subsequent update to that command defines a new fundamental power state. It is not an
error if a subsequent update to that command refines a previously defined power state, or defines a
new power state that is a refinement of a previously defined power state.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

74

p) It shall be an error if a logic expression used to define a given power state contains a direct or
indirect reference to that same state.

NOTE 1—The choice of state name has no simstate implications.

NOTE 2—Implementation tools may optimize a design based on the presumption illegal states never occur. Such
optimizations are allowed only if they do not change the behavior of the design.

NOTE 3—If the add_power_state command for the primary supplies of two interconnected domains are both defined
as complete, this implies that all intended legal fundamental power states have been defined for each domain, and,
therefore, all possible state combinations of the two domains have been defined.

Syntax examples

add_power_state PdA.primary -supply
 -state {GO_MODE
 -logic_expr {DM_ON}
 -simstate NORMAL
 -supply_expr {(power == {FULL_ON 0.8})
 && (ground == {FULL_ON 0})
 && (nwell == {FULL_ON 0.8})
 }
 -state {OFF_MODE
 -logic_expr {!DM_ON}
 -simstate CORRUPT
 -supply_expr {power == {OFF}}
 }
 -state {SLEEP_MODE
 -logic_expr {DM_ON && (interval(clk_dyn posedge negedge) >= 100ns)}
 -simstate CORRUPT_STATE_ON_CHANGE
 -supply_expr {(power == {FULL_ON 0.8})
 && (ground == {FULL_ON 0})
 && (nwell == {FULL_ON 1.0})}
 }
add_power_state PdA.primary -supply -update -complete
add_power_state PdTOP -domain
 -state {GOGO -logic_expr {u1/PdA.primary == GO_MODE}}
add_power_state PdTOP -domain -update
 -state {GOGO -illegal}

6.6 add_pst_state (legacy)

Purpose Define the states of each of the supply nets for one possible state of the design.

Syntax
add_pst_state state_name

-pst table_name
-state supply_states

Arguments

state_name The simple name of the state being defined.

-pst pst_name The power state table (PST) to which this state applies.

-state supply_states
The list of supply net state names (see 6.24), listed in the corresponding
order of the -supplies listing in the create_pst command (see 6.23).
A * in place of a state name indicates this is a "don’t care" for that supply.

Return
value Return a 1 if successful or raise a TCL_ERROR if not.

This is a legacy command; see also 6.2 and Annex D.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

75

The add_pst_state command defines the name for a specific state of the supply nets defined for the PST
table_name.

It shall be an error if:

 The number of supply_states is different from the number of supply nets within the PST.

 A state_name is defined more than once for the same PST.

 Any supply_state name is ambiguous (i.e., is defined for more than one of the supplies from which
the value of the corresponding object in the -supplies list of create_pst is derived).

Syntax example

create_pst pt -supplies { PN1 PN2 SOC/OTC/PN3 }
add_pst_state s1 -pst pt -state { s08 s08 s08 }
add_pst_state s2 -pst pt -state { s08 s08 off }
add_pst_state s3 -pst pt -state { s08 s09 off }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

76

6.7 add_state_transition

Purpose Define named transitions among power states of an object.

Syntax

add_state_transition
 [-supply | -domain | -group | -model | -instance] object_name
[-update]
[-transition {transition_name
 [-from from_list -to to_list]
 [-paired {{from_state to_state}*}]
 [-legal | -illegal]
 }]*
[-complete]

Arguments

object_name The rooted name of the object for which state transitions will be
defined.

-supply | -domain |
-group | -model |
-instance

These arguments specify the kind of object to which this command
applies.

-update
Indicates this command provides additional information for a
previous command with the same object_name and executed in
the same scope.

R

-transition
transition_name Simple name of a transition.

-from from_list
-to to_list

from_list is an unordered list of power state names active before
a state transition.
to_list is an unordered list of power state names active after a
state transition.

R

-paired {{from_state
to_state}*} A list of from_state name and to_state name pairs. R

-legal | -illegal These options specify the legality of the transition being defined
as either legal or illegal. The default is -legal. R

-complete Specifies that all state transitions to be defined for this object
have been defined. R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

add_state_transition defines named state transitions between power states of an object.

If -supply is specified, the object_name shall be the name of a supply set or a supply set handle. If -domain
is specified, the object_name shall be the name of a power domain. If -group is specified, the object_name
shall be the name of a group. If -model is specified, the object_name shall be the name of a model. If
-instance is specified, the object_name shall be the name of an instance. If none of the above are specified,
the type of object_name determines the kind of object to which the command applies.

The option -from and -to may be used to specify one-to-one, one-to-many, many-to-one, or many-to-many
transitions. The option -paired specifies one or more one-to-one transitions. At least one of these two
choices shall be specified for each named transition.

If an empty list is specified in either the -from or -to list, it shall be expanded to all legal named power
states for the specified object_name.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

77

Verification tools shall emit an error when an illegal state transition occurs.

It shall be an error if a from_state or a to_state or a name in a from_list or to_list does not refer to a power
state of the specified object (see 6.5).

If add_state_transition is specified for an instance of a macro (see 4.9.2.4) the command may only specify
that a transition defined for the corresponding model is illegal for the specified instance of that model.

Example

 add_state_transition -domain PDA
 -transition {turn_on -from OFF_MODE -to NORMAL_MODE}
 -transition {suspend -from NORMAL_MODE -to SLEEP_MODE}
 -transition {resume -from SLEEP_MODE -to NORMAL_MODE}
 -transition {turn_off -from NORMAL_MODE -to OFF_MODE}
 add_state_transition -domain PDA -update
 -transition {error1 -from OFF_MODE -to SLEEP_MODE -illegal}
 add_state_transition -domain PDA -update -complete

A self-transition (from one state to the same state) cannot be detected. It shall be an error if the same state
is specified as both the -from state and the -to state.

A transition from a given state to a refinement of that state can occur.

A legal transition defined from a given state A to a refinement R of state A occurs when A is the current
power state (and therefore R is not active), and then the additional conditions required to satisfy R become
true, at which point R becomes active (and therefore A is no longer the current power state, although it is
still active). Such a transition may include intermediate current power states that are refinements of A and
abstractions of R, as well as the UNDEFINED state.

An illegal transition defined from A to R occurs when A is active and R becomes active without any
intermediate step in which neither A nor R are active. Since R is a refinement of A, A remains active when
R becomes active, so any sequence in which R becomes active while A is already active will satisfy the
illegal transition definition.

A legal transition from a given state to an abstraction of that state can also occur.

A legal transition defined from a given state R to an abstraction A of state R occurs when R is the current
power state (and therefore A is active also), and then conditions required to satisfy refinements of A
become False, but the conditions required to satisfy A remain True. When this occurs, A becomes the
current power state, and R is no longer active. Such a transition may include intermediate current power
states that are abstractions of R and refinements of A, as well as the UNDEFINED state.

An illegal transition defined from a given state to an abstraction of that state cannot occur, because when
the given state is active, the abstract state is also active, and therefore the abstract state cannot become
active while the given state is active.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

78

6.8 add_supply_state

Purpose Add states to a supply port, a supply net, or a supply set function.

Syntax add_supply_state object_name
{-state {name <nom | off>}}*

Arguments

object_name The name of the supply port, supply net, or supply set function.
Hierarchical names are allowed.

-state {name <nom |
off>}

The name and value for a state of the supply object. The value can be a
nominal voltage or off.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The add_supply_state command defines a named supply state for a supply object. If a voltage value is
specified, the supply net state is FULL_ON and the voltage value is the specified value; otherwise, if off is
specified, the supply net state is OFF.

It shall be an error if object_name does not already exist.

Syntax example

add_supply_state PD.primary.power
 -state {active_state 0.90 }
 -state {off_state off}

6.9 apply_power_model

Purpose Binds system-level IP power models to instances in the design and connects the interface supply set
handles of a previously loaded power model.

Syntax

apply_power_model power_model_name
[-elements instance_name_list]
[-supply_map {{lower_scope_supply_set upper_scope_supply_set}*}]

 [-parameters {power_model_ parameter design_object}*}]

Arguments

power_model_name The simple name of a previously defined power model. See 6.11.

-elements
instance_name_list The list of instances to which the specified power model applies.

-supply_map
{{lower_scope_supply_set
upper_scope_supply_set}*}

How the interface supply sets of the lower scope connect with supply
sets in the upper scope.

-parameters
{{power_model_ parameter
design_object}*}

 The binding of design objects to power model parameters.

Return
value Return a 1 if successful or raise a TCL_ERROR if not.

The apply_power_model command describes the connections of the interface supply set handles of a
previously loaded power model with the supply sets in the scope where the corresponding macro cells are
instantiated.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

79

The apply_power_model command sets the scope to each of a specified set of instances and executes the
set of UPF commands in the power model power_model_name. Upon return, the current scope is restored
to what it was prior to invocation. If a scope specified in instance_name_list is not found, further
processing of remaining scopes in the instance_name_list is terminated and a TCL_ERROR is raised.

apply_power_model does not create a new name space for the loaded UPF file. The loaded UPF file is
responsible for ensuring the integrity of both its own and the caller’s name space as needed using existing
Tcl name space management capabilities.

If -elements is specified, each instance name in the instance name list shall be a simple name or a
hierarchical name rooted in the current scope. In this case, for the duration of the apply_power_model
command, the current scope and design top instance are both set to the instance specified by the instance
name and the design top module is set to the module type of that instance.

If -elements is not specified, then the system-level IP power model binding is not supported and the
specified supply association is applied to all instantiations of targeted macro cells by the specified power
model (see 6.11) under the current scope. The general precedence rules in 5.7 apply here as well.

When the apply_power_model command completes, the current scope, design top instance, and design top
module all revert to their previous values.

Each pair in the -supply_map option implies an associate_supply_set command (see 6.10) of the
following general form:

associate_supply_set {lower_scope_supply_set upper_scope_supply_set}

The arguments of the -supply_map option need to be such that the implied associate_supply_set
commands are legal.

The following also apply:

 The processing of this command shall follow the description in Clause 8.

 When apply_power_model is used with -elements, it shall be an error if the corresponding model
for each instance does not match the model name specified in the -for option of
begin_power_model (see 6.11) or the power_model_name when the -for option (of
begin_power_model) is not specified.

The following also apply:

a) It shall be an error if apply_power_model is used more than once to apply a power model to a
given instance.

b) It shall be an error if apply_power_model is used to apply a power model to an instance and
load_upf -scope is also used to load a UPF file for the same instance.

Syntax example

apply_power_model upf_model -elements I1
 -supply_map {{PD.ssh1 ss1} {PD.ssh2 ss2}}

For other examples of using these commands, see Annex E.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

80

6.10 associate_supply_set

Purpose Associate two or more supply sets.

Syntax associate_supply_set supply_set_name_list
 [-handle supply_set_handle]

Arguments
supply_set_name_list A list of rooted names of supply sets.

-handle
supply_set_handle

The rooted name of a supply set of a power domain, power switch, or
strategy.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The associate_supply_set command associates two or more supply sets. Supply set association implicitly
connects corresponding functions and as a result makes them electrically equivalent (see 4.5.5.3).

NOTE—Association of two supply sets is equivalent to explicitly connecting each pair of corresponding functions to a
single intermediate supply port for that pair of functions using connect_supply_net.

Each supply set name in the supply_set_name_list can be either a supply set name or a supply set handle. A
supply set handle may also be provided as the argument of the -handle option.

Supply set names are defined with the create_supply_set command (see 6.26). Supply set handles are
dotted names (see 5.3.3.3) that refer to supply sets defined as part of a power domain, a power switch, or a
strategy.

The following forms of supply set handle may be used:

a) The predefined supply set handle

 domain_name.primary
is predefined for a power domain domain_name (see 6.20). Supply set handles for user-defined
supply sets of a power domain are also permitted.

b) The predefined supply set handle for a power-switch switch_name (see 6.21) is

 switch_name.switch_supply.
c) The predefined supply set handles for an isolation cell strategy isolation_name (see 6.44) of a

power domain domain_name are

 domain_name.isolation_name.isolation_supply
if there is only one isolation supply set, or
 domain_name.isolation_name.isolation_supply[index]
where index starts at 0, if there are multiple isolation supply sets.

d) The predefined supply set handles for a level-shifter strategy level_shifter_name (see 6.45) of
power domain domain_name are

 domain_name.level_shifter_name.input_supply,
 domain_name.level_shifter_name.output_supply, and
 domain_name.level_shifter_name.internal_supply.

e) The predefined supply set handle for a retention strategy retention_name (see 6.49) of power
domain domain_name is

 domain_name.retention_name.retention_supply.
f) The predefined supply set handle for a repeater strategy repeater_name (see 6.48) of power domain

domain_name is

 domain_name.repeater_name.repeater_supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

81

When -handle is used, it shall be an error if the supply set handle is defined for a strategy or a power
switch and more than one supply set is associated with that supply set handle.

Syntax examples

associate_supply_set {AON_SS PD1.primary PD2.backup PD3.isolation}
associate_supply_set {ISO_SS U1/PD1.my_iso.isolation_supply}
associate_supply_set ISO_SS
 -handle U1/PD1.my_iso.isolation_supply\[1\]

6.11 begin_power_model

Purpose Define a power model.

Syntax begin_power_model power_model_name
[-for model_list]

Arguments
power_model_name The simple name of the power model.

-for model_list The names of the models to which the power model applies.

Return
value Return a 1 if successful or raise a TCL_ERROR if not.

The begin_power_model and end_power_model (see 6.11 and 6.29) commands define a power model
containing other UPF commands. A power model is used to define the power intent of a model and shall be
used in conjunction with one or more model representations. A power model defined with
begin_power_model is terminated by the first subsequent occurrence of end_power_model in the same
UPF file.

The -for option indicates that the power model represents the power intent for a family of model
definitions. When -for is not specified, the power_model_name shall also be a valid model name.

A power model can be referenced by its simple name from anywhere in a power intent description. It shall
be an error to have two power models with the same name.

To specify supplies coming into or out of the model, or a supply that has at least one data port related to it,
use the -supply option of the create_power_domain command (see 6.20) for the top-scope power domain
of the power model. Power states defined upon these supply set handles become the power state definition
at the interface of the power model, which shall be consistent with the upper-scope system power states
into which the corresponding upper-scope supply sets are mapped (see 6.9). The defined supply set handles
are also called interface supply handles of the power model. Finally, the simstate simulation semantics
described in 9.5 applies to all supply sets or supply set handles defined within a power model.

A power model can be used to represent one of following:

 A hard macro, indicated by the fact that the power model defines the attribute
UPF_is_hard_macro TRUE on the model to which it applies. In this case, the UPF commands
within a power model describe power intent that has already been implemented within the instances
to which this power model is applied. The hard macro interface is a hard boundary; the parent
context shall not modify the power intent specification inside the macro. In particular, no new logic
or design objects shall be inferred within the cell instances targeted by such a power model.

 A soft macro, indicated by the fact that the instance to which this power model is applied has the
attribute UPF_is_soft_macro TRUE. In this case, the UPF commands within the power model

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

82

describe power intent that remains to be implemented. However, this power intent is intended to be
used for separate implementation, and therefore the soft macro interface is still treated as a hard
boundary; the parent context shall not modify the power intent specification inside the macro, and
no new logic or design objects shall be inferred within the cell instances targeted by such a power
model.

An encapsulation of UPF to be used together and possibly further modified by the parent context that
applies this power model to an instance. This is indicated by the fact that the instance to which this power
model is applied has neither UPF_is_hard_macro TRUE nor UPF_is_soft_macro TRUE.

A component power model used for defining power states and power consumption functions in order to
model power consumption of a system in various states of its components. This is indicated by the presence
of add_parameter commands to define the parameters used for power expression in the model, and the
presence of power expressions as part of the power states of the model.

A power model can be applied to specific instances using apply_power_model (see 6.9). One power
model applied to a given instance may apply another power model to a descendant instance.

A power model that is not referenced by an apply_power_model command does not have any impact on
the power intent of the design.

Syntax example

begin_power_model upf_model -for cellA
create_power_domain PD1 -elements {.} -supply {ssh1} -supply {ssh2}
;# other commands …

end_power_model

For more examples of using these commands, see Annex E and Annex H.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

83

6.12 bind_checker

Purpose Insert checker modules and bind them to instances.

Syntax

bind_checker instance_name
-module checker_name
[-elements element_list]
[-bind_to module [-arch name]]
[-ports {{port_name net_name}*}]
[-parameters {{param_name param_value}*}]

Arguments

instance_name The name used to instance the checker module in each instance.

-module checker_name
The name of a SystemVerilog module containing the verification code.
The verification code itself shall be written in SystemVerilog, but it can be
bound to either a SystemVerilog or VHDL instance.

-elements element_list The list of instances.

-bind_to module [-arch
name]

The SystemVerilog module or VHDL entity/architecture for which all
instances are the target of this command.

-ports {{port_name
net_name}*} The association of signals to the checker’s ports.

-parameters
{{param_name
param_value}*}]

The specification of parameter values on the checker model where
param_name is name of the parameter and param_value is the value of
that parameter.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The bind_checker command inserts checker modules into a design without modifying the design code or
introducing functional changes. The mechanism for binding the checkers to instances relies on the
SystemVerilog bind directive. The bind directive causes one module to be instantiated within another
without having to explicitly alter the code of either. This facilitates the complete separation between the
design implementation and any associated verification code.

Signals in the target instance are bound by position to inputs in the bound checker module through the port
list. Thus, the bound module has access to any and all signals in the scope of the target instance by simply
adding them to the port list, which facilitates sampling of arbitrary design signals.

If -parameters option is specified, the parameter by the name of param_name shall be set with the value
param_value. For SystemVerilog it shall apply to parameter and for VHDL it shall apply to generics. The
param_value shall be a constant value.

If -bind_to is specified, an instance of checker is created in every instance of the module. Otherwise, an
instance of the checker is only created within the current scope.

port_name is a port defined on the interface of checker_name and net_name is a name of a net relative to
the scope where checker_name is being instantiated.

It shall be an error if:

 instance_name already exists in -bind_to module.

 param_name does not exist on the checker module.

 param_value does not match with the type of param_name.

 param_value is not a constant value.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

84

This command is for verification only; implementation tools shall ignore it.

Syntax example

bind_checker chk_p_clks
 -module assert_partial_clk
 -bind_to aars
 -ports {{prt1 clknet2} {port3 net4}}
 -parameters {
 {pd_name_string "pd_dut"}
 {int_param 12}
 {bit_param 1}
 {vec_param 2’b11}}

Modeling mutex assertions

To model mutex assertions (see 6.12 and 6.49), the assertions can be put in a SystemVerilog
checker_module with following interface:

module checker_module (save, restore, reset_a, clock_a);
input save, restore, reset_a, clock_a;
... different mutex assertions ...
endmodule

The bind_checker command would look like the following:

bind_checker mutex_checker_inst -module checker_module \
-ports { {save PDA.test_retention.save_signal } \
{ restore PDA.test_retention.restore_signal } \
{ reset_a reset_a } \
{ clock_a clock_a } }

6.13 connect_logic_net

Purpose Connect a logic net to logic ports.

Syntax
connect_logic_net net_name

-ports port_list
[-reconnect]

Arguments

net_name A simple name.

-ports port_list A list of ports on the interface of the current scope and/or on instances that
are located in the current scope and its descendants.

-reconnect Allows a port that is already driven by a constant representing a default
value to be driven instead by control signal net_name.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The connect_logic_net command connects a logic net to the specified ports. The net is propagated through
implicitly created ports and nets throughout the logic hierarchy in the descendant subtree of the active UPF
scope as required to support connections created by connect_logic_net. The connection from net_name in
the active UPF scope to any element in port_list shall not cross any power-domain boundaries.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

85

The net and ports shall be of a compatible type. The following HDL types are compatible with each other:

 SystemVerilog logic

 VHDL std_ulogic

It shall be an error if:

a) net_name is not the name of a logic net defined in the current HDL scope either explicitly or
implicitly as a result of a create_logic_net command.

b) A HighConn port in port_list is already connected to a different net than net_name.

c) A HighConn input port in port_list is already driven by a constant value, unless the -reconnect
option is specified.

d) A LowConn port in port_list is already connected to a different net than net_name.

e) The same port name occurs in the port_list of multiple connect_logic_net commands with different
net_name arguments.

NOTE 1—Use create_logic_port (see 6.19) to create new logic ports on power-domain boundaries.

NOTE 2—This command exists to allow for the propagation of signals from a power-management block. Using this
command to provide non-power control connections could cause the logic function to diverge from the HDL and is
strongly discouraged.

Syntax example

connect_logic_net ena
 -ports {a U1/b}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

86

6.14 connect_supply_net

Purpose Connect a supply net to supply ports.

Syntax

connect_supply_net net_name
[-elements element_list]
[-ports port_list]
[-pg_type pg_type_list]*
[-vct vct_name]
[-cells cell_list]
[-domain domain_name]

Arguments

-elements element_list A list of instance names to use for -pg_type.

net_name A simple name.

-ports port_list A list of rooted port names.

-pg_type pg_type_list An indirect connection specification via the pg_type on the instance’s
ports.

-vct vct_name A value conversion table (VCT) defining how values are mapped from
UPF to an HDL model or from the HDL model to UPF.

-cells cell_list A list of cells to use for -pg_type.

-domain domain_name The domain indicates the scope to use for -pg_type.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The connect_supply_net command connects a supply net to the specified ports. The net is propagated
through implicitly created ports and nets throughout the logic hierarchy in the descendant subtree of the
current scope if -domain is not specified or in the descendant subtree of the scope of the domain specified
with -domain, as required to support supply port/net connections made explicitly, automatically, or
implicitly (see 9.2) This explicit connection overrides (has higher precedence than) the implicit and
automatic connection semantics (see 9.2) that might otherwise apply. If connect_supply_net is used to
connect a supply net defined with create_supply_net -domain (see 6.24) to a pg pin of an instance, then
the instance shall be in the extent of power domain D.

Use the following:

 -ports to connect to supply ports.

 -cells to connect to all pins of the appropriate type (power or ground) on all the instances of the
specified cells.

 -domain to connect to all pins of the appropriate type (power or ground) existing on the instances
which are in the extent of the specified domain.

 -pg_type to connect to ports on the instances that have the specified pg_type.

 -vct to indicate that for every HDL port to which the net is connected, the supply net state shall be
converted if it is being propagated into the HDL port (see 6.27) or the HDL port value shall be
converted if it is being propagated onto the supply net (6.17). -vct is ignored for any connections of
the supply net to supply ports defined in UPF.

 -elements to connect all pins of the appropriate type (power or ground) on the specified instances.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

87

The following also apply:

 It shall be an error if any cell, domain, port, supply net, or instance specified in this command does
not exist.

 It shall be an error if the value conversions specified in the VCT do not match the type of the HDL
port.

 It shall be an error if neither -ports nor -pg_type is specified in a connect_supply_net command.

 The -ports option is mutually exclusive with the -cells, -domain, -elements, and -pg_type options.

 Automatic propagation of a supply net throughout the extent of a power domain is determined by
its usage within the domain, such as primary supply, retention supply, etc.

 It shall be an error if net_name has not been previously created.

 If -pg_type is specified, it shall be an error if an instance does not exist or the specified attribute
does not exist on any port of the instance.

 If -ports is not specified, -pg_type and one or more of -cells, -domains, and -elements shall be
specified.

Syntax examples

connect_supply_net fb
 -ports {jk jb}

connect_supply_net mc
 -ports {rl}
 -vct SV_TIED_HI

The following command connects the supply net VDDX to the VDD port of a hierarchical instance I1/I2:

connect_supply_net VDDX -ports I1/I2/VDD

The following command connects the supply net VDDX to the VDD ports of all instances within hierarchical
instance I1/I2:

connect_supply_net VDDX -ports [find_objects I1/I2 -pattern "*/VDD" -
object_type port]

NOTE—Since a supply net handle such as PD.primary.power can be referenced anywhere a supply net is required, it is
possible to use connect_supply_net to connect a supply set function to a port. This may be useful when hardening the
interface to a block within a design. In particular, if a supply set SS in the parent context of an instance of a block B has
been associated with a supply set handle inside of that instance, and it becomes necessary to harden block B for
separate implementation as a macro, explicit supply ports can be defined on the interface to B, and the functions of
supply set SS in the parent context can be connected to those ports using connect_supply_net. The functions of the
supply set handle within B can be connected to those ports in the same manner. This maintains the association of the
outer and inner supply sets, but at the same time explicitly shows the connections via ports on the interface of the
block.

Since both supply set association and supply net connection make two supply objects electrically equivalent and have
no other side effects, a supply set SS can be associated with a supply set handle and its functions can be connected via
ports to the corresponding functions of the supply set handle, and both the association and the connections can coexist.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

88

6.15 connect_supply_set

Purpose Connect a supply set to particular elements.

Syntax

connect_supply_set supply_set_ref
{-connect {supply_ function pg_type_list}}*
[-elements element_list]
[-exclude_elements exclude_list]
[-transitive [<TRUE | FALSE>]]

Arguments

 supply_set_ref The rooted name of the supply set.

-connect
{supply_ function
pg_type_list}

Define automatic connectivity for a supply_ function of the supply_set_ref
as ports having the specified pg_type_list attributes (see 6.14).

-elements element_list The list of instance names to add.

-exclude_elements
exclude_list The list of instances to exclude from the effective_element_list.

-transitive [<TRUE |
FALSE>]

If -transitive is not specified at all, the default is -transitive TRUE.
If -transitive is specified without a value, the default value is TRUE.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The connect_supply_set command connects a supply set to the specified elements. The nets of the set are
propagated through implicitly created ports and nets throughout the logic hierarchy in the descendant
subtree of the current scope as required to implement the supply net connection (see 9.2) This explicit
connection overrides (has higher precedence than) the implicit and automatic connection semantics (see
9.2) that might otherwise apply.

This command applies to elements in the effective_element_list (see 5.9) as follows:

a) When supply_set_ref refers to a handle associated with a domain, the prefilter_element_list is
filtered to only include elements within the extent of the domain.

b) When supply_set_ref refers to a handle associated with a strategy, the prefilter_element_list is
filtered to only include all elements connected to the strategy’s supply.

c) When supply_set_ref refers to a handle associated with a domain and -elements is not specified in
the base command or any update, then all elements in the extent of the domain are added to the
aggregate_element_list.

d) When supply_set_ref refers to a handle associated with a strategy and the aggregate_element_list is
empty, all elements connected to the respective strategy supply are added to the
aggregate_element_list.

-connect is additive, i.e., on a particular supply function, a subsequent invocation setting pg_type_list adds
the additional pg_type_list.

NOTE—The exclude_list in -exclude_elements can specify elements that have not already been explicitly or implicitly
specified via an explicit or implied element_list.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

89

It shall be an error if:

 A particular pg_type_list is associated with more than one supply net for any given instance in
-connect.

 More than one supply net is connected to the same port in an instance, even if the connection is the
result of more than one command that connects supply nets, e.g., connect_supply_set,
connect_supply_net, etc.

 Any element of element_list or exclude_list is not in a specified domain or strategy referenced in
the supply_set_handle.

Syntax example

connect_supply_set some_supply_set
-elements {U1/U_mem}
-connect {power {primary_power}}
-connect {ground {primary_ground}}

6.16 create_composite_domain

Purpose Define a composite domain composed of one or more subdomains.

Syntax

create_composite_domain composite_domain_name
[-subdomains subdomain_list]
[-supply {supply_set_handle [supply_set_ref]}]
[-update]

Arguments

composite_domain_
name The name of the composite domain; this shall be a simple name.

-subdomains
subdomain_list

The -subdomains option specifies a list of rooted domain names,
including any previously created composite domains. R

-supply
{supply_set_handle
[supply_set_ref]}

The -supply option specifies the supply_set_handle for
composite_domain_name. If supply_set_ref is also specified, the
domain supply_set_handle is associated with the specified
supply_set_ref. The supply_set_ref may be any supply set visible in
the current scope. See also 6.10.

R

-update Use -update if the composite_domain_name has already been defined. R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

A composite power domain is a simple container for a set of power domains. Unlike a power domain, a
composite domain has no corresponding physical region on the silicon. Attributes like power states and the
primary supply_set_handle can be specified on a composite domain, but these attributes shall not be
applied to subdomains. However, operations performed on the composite domain shall be applied to each
subdomain, e.g., defining a strategy.

The following commands, applied to a composite domain, are applied to each subdomain if and only if the
application of that command does not result in an error in any subdomain:

connect_supply_net

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

90

map_power_switch

map_retention_cell

set_isolation

set_level_shifter

set_repeater

set_retention

use_interface_cell

Only the primary supply handle can be specified in the -supply option. The following also apply:

a) Composite power domains can be used as a subdomain of other composite power domains.

b) Since a composite domain is simply a container, commands can still be applied to subdomains after
composition.

c) For each subdomain: If a supply set is associated with the primary supply_set_handle of a
subdomain, that supply set shall be equivalent to the primary supply set of the composite domain or
declared as equivalent to the primary supply set of the composite domain (see also 6.43).

d) Commands applied to a subdomain do not affect any other subdomain or the composite domain.

e) Subdomains of a composite domain can still be referenced after composition, in the sense that their
elements lists are valid after composition, and all aspects of the subdomain (e.g., strategies defined
on them) can be referenced.

When the primary supply_set_handle and a supply_set_ref are specified in -supply, it is equivalent to the
following:

associate_supply_set supply_set_ref
-handle composite_domain_name.primary

Syntax example

create_composite_domain my_combo_domain_name
-subdomains {a/pd1 b/pd2}
-supply {primary could_be_on_ss}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

91

6.17 create_hdl2upf_vct

Purpose Define a VCT that can be used in converting HDL logic values into state type values.

Syntax
create_hdl2upf_vct vct_name

-hdl_type {<vhdl | sv> [typename]}
-table {{from_value to_value}*}

Arguments

vct_name The VCT name.

-hdl_type {<vhdl | sv>
[typename]} The HDL type for which the value conversions are defined.

-table {{from_value
to_value}*} A list of the values of the HDL type to map to UPF state type values.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The create_hdl2upf_vct command defines a VCT from an HDL logic type to the state type of the
supply net value (see Annex B) when that value is propagated from HDL port to a UPF supply net. It shall
provide a conversion for each possible logic value that the HDL port can have. create_upf2hdl_vct does
not check that the set of HDL values are complete or compatible with any HDL port type.

vct_name provides a name for the value conversion table for later use with the connect_supply_net
command (see 6.14). A VCT can be referenced by its simple name from anywhere in a power intent
description. It shall be an error to have two VCTs with the same name. The predefined VCTs are shown in
Annex B.

-hdl_type specifies the HDL type for which the value conversions are defined. This information allows a
tool to provide completeness and compatibility checks. If the typename is not one of the language’s
predefined types or one of the types specified in the next paragraph, then it shall be of the form
library.pkg.type.

The following HDL types shall be the minimum set of types supported. An implementation tool may
support additional HDL types.

a) VHDL

1) Bit, std_[u]logic, Boolean

2) Subtypes of std_[u]logic

b) SystemVerilog

reg/wire, Bit, Logic

-table defines the 1:1 conversion from HDL logic value to the UPF partially on and on/off states. The
values are consistent with the HDL type values.

For example

 When converting from SystemVerilog logic type, the legal values are 0, 1, X, and Z.

 When converting from SystemVerilog or VHDL bit, the legal values are 0 or 1.

 When converting from VHDL std_[u]logic, the legal values are U, X, 0, 1, Z, W, L, H, and -.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

92

The conversion values have no semantic meaning in UPF. The meaning of the conversion value is relevant
to the HDL model to which the supply net is connected.

Syntax examples

create_hdl2upf_vct
 vlog2upf_vss
 -hdl_type {sv reg}
 -table {{X OFF} {0 FULL_ON} {1 OFF} {Z PARTIAL_ON}}
create_hdl2upf_vct
 stdlogic2upf_vss
 -hdl_type {vhdl std_logic}
 -table {{‘U’ OFF}
 {‘X’ OFF}
 {‘0’ OFF}
 {‘1’ FULL_ON}
 {‘Z’ PARTIAL_ON}
 {‘W’ OFF}
 {‘L’ OFF}
 {‘H’ FULL_ON}
 {‘-’ OFF}}

6.18 create_logic_net

Purpose Define a logic net.

Syntax create_logic_net net_name

Arguments net_name A simple name.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The create_logic_net command creates a logic net in the current scope or identifies a logic net in the
current scope.

The net’s type is determined by the language of the scope where it is created. If the scope is

 SystemVerilog, the type is logic

 VHDL, the type is std_ulogic

NOTE—This command exists to allow for the propagation of signals from a power-management block. Using this
command to provide non–power-control connections could cause the logic function to diverge from the HDL and is
strongly discouraged.

Syntax example

create_logic_net iso_ctrl

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

93

6.19 create_logic_port

Purpose Define a logic port.

Syntax create_logic_port port_name
[-direction <in | out | inout>]

Arguments
port_name A simple name.

-direction <in |
out | inout> The direction of the port. The default is in.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The create_logic_port command creates a logic port in the current scope. Logic ports are effectively
created before isolation and level-shifting strategies are applied (see 4.5.5); therefore, any isolation or level-
shifting strategy defined for a power domain may apply to logic ports created on the boundary of that
power domain, regardless of the order in which the create_logic_port command and the set_isolation (see
6.44) or set_level_shifter (see 6.45) commands occur, provided the logic port matches the criteria specified
in the strategy.

The port’s type is determined by the language of the scope where it is created. If the scope is

 SystemVerilog, the type is logic

 VHDL, the type is std_ulogic

The created port is equivalent to a module port created in SystemVerilog or VHDL with the same name and
direction. Logic ports are sources, sinks, or both.

a) The LowConn of an input port is a source.

b) The HighConn of an input port is a sink.

c) The LowConn of an output port is a sink.

d) The HighConn of an output port is a source.

e) The LowConn of an inout port is both a source and a sink.

f) The HighConn of an inout port is both a source and a sink.

NOTE—This command exists to allow for the propagation of signals from a power-management block. Using this
command to provide non–power-control connections could cause the logic function to diverge from the HDL and is
strongly discouraged.

Syntax example

create_logic_port test_lp
-direction out

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

94

6.20 create_power_domain

Purpose Define a power domain and its characteristics.

Syntax

create_power_domain domain_name
[-atomic]
[-elements element_list]
[-subdomains domain_list]
[-exclude_elements exclude_list]
[-supply {supply_set_handle [supply_set_ref]}]*
[-available_supplies supply_set_ref_list]
[-define_func_type {supply_ function pg_type_list}]*
[-update]

Arguments

domain_name The name of the power domain; this shall be a simple name rooted in the
current scope.

-atomic Define the minimum extent of the power domain.

-elements element_list The list of instances to add. R

-subdomains
domain_list

A list of rooted domain names. R

-exclude_elements
exclude_list

The list of instances to exclude from the effective_element_list. R

-supply
{supply_set_handle
[supply_set_ref]}

The -supply option specifies the supply_set_handle for
domain_name. If supply_set_ref is also specified, the domain
supply_set_handle is associated with the specified supply_set_ref. The
supply_set_ref may be any supply set visible in the current scope.

R

-available_supplies
supply_set_ref_list

A list of additional supply sets that are available for use by
implementation tools to power cells inserted in this domain.

R

-define_func_type
{supply_ function
pg_type_list}

Define automatic connectivity for a supply_ function of
domain_name.primary (see 6.10) having the specified attributes in
pg_type_list.

R

-update Use -update if the domain_name has already been defined. R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

create_power_domain defines a power domain and the set of instances that are in the extent of the power
domain. It may also specify whether the power domain can be partitioned further by subsequent commands.

-elements specifies a set of rooted instances included in the extent of the power domain. It shall be an error
if any of these instances is already in the extent of an atomic power domain. For each instance in the extent
of the power domain, any immediate descendant of that instance is also included in the extent of the power
domain unless the descendant is an instance of a soft macro or is an instance that is already included in a
power domain.

The following also apply:

 element_list shall contain instance names rooted in the current scope.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

95

 Each design top instance (see 4.3.7) and each of its descendant instances shall be in the extent of
exactly one power domain.

 When -atomic is specified, all elements originally included in the extent of the power domain shall
always remain in the extent of that power domain.

 The power domain shall be created in the current scope.

 The -elements option shall be used at least once in the specification of a power domain using
create_power_domain; this can be in the first invocation (i.e., without the -update option) or
during the subsequent updates (i.e., with the -update option).

 If the value of effective_element_list (see 5.9) is an empty list, a domain with the name
domain_name is created, but with an empty extent.

 If the value of the effective_element_list (see 5.9) is a period (.), the current scope is included in
the extent of the domain.

NOTE 1—A design top instance can be included in the extent of a power domain created in the scope of that instance
by specifying -elements {.} in the create_power_domain command.

NOTE 2—If the current scope is set to instance i0, then create_power_domain PD -elements {.} would
include the current scope (i0) and all of its descendants in the power domain PD. In contrast,
create_power_domain PD -elements {i1 i2 ... ik} would not include i0 in the power domain, but
would only include its descendants i1, i2, ..., ik. In either case, the scope of the power domain PD is the same,
because in both cases the current scope was i0 when the create_power_domain command was executed.

-subdomains creates a simple container for domains. This is semantically equivalent to
create_composite_domain (see 6.16). It shall be an error for both -elements and -subdomains to be
specified in the same create_power_domain command.

An instance that has no parent or whose parent is in the extent of a different power domain is called a
boundary instance.

The upper boundary of a power domain consists of

 the LowConn side of each port of each boundary instance in the extent of this domain.

The lower boundary of a power domain consists of

 the HighConn side of each port of each boundary instance in the extent of another power domain,
where the parent of the boundary instance is in the extent of this domain, together with

 the HighConn side of each port of any macro cell instance in this power domain, for which the
related supply set is neither identical to, nor equivalent to, the primary supply set of this domain.

The interface of a power domain consists of the union of the upper boundary and the lower boundary of the
power domain.

create_power_domain also defines the supply sets that are used to provide power to instances within the
extent of the power domain. The -supply option defines a supply set handle for a supply set used in the
power domain.

A domain supply_set_handle may be defined without an association to a supply_set_ref. The association
can be completed separately (see 6.10).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

96

When both a supply_set_handle and a supply_set_ref are specified with -supply, the following supply set
association is implied:

associate_supply_set supply_set_ref
 -handle domain_name.supply_set_handle

Each power domain has a predefined primary supply set. For verification, the primary supply set is
implicitly connected to instances and logic inferred from the instances in the power domain. However, the
primary supply set shall not be implicitly connected when any of the following apply:

a) An instance has at least one supply net explicitly or automatically connected and UPF simstate
behavior (see 6.52) has not been enabled.

b) An instance has UPF simstate behavior disabled.

c) An instance is created as a result of a UPF command, e.g., isolation cells, level-shifters, power
switches, and retention registers.

Implicit connections imply simulation semantics as specified in 4.7.2.

For implementation, the primary supply is realized as the supply connections that are common to all cells in
the domain that require or propagate the primary supply rails of the domain.

Within a power domain, the predefined primary supply set is available for use by implementation tools as
required to power instances in the extent of the domain, including isolation, level-shifter, retention, or
repeater cells placed in the domain. Supply sets identified by command options of set_repeater (see 6.48)
and set_retention (see 6.49) are also available to power repeater and retention cells, respectively, inserted
into the domain. Collectively, the predefined primary supply set of a power domain and the supply sets
identified by options of repeater and retention strategies associated with the domain are referred to as the
locally available supplies of that domain.

The -available_supplies option specifies whether any additional supplies are also available for use, and if
so, which supplies are available. If -available_supplies does not appear, all supply sets and supply set
handles defined in or above the scope of the power domain are available for use by tools to power cells
inserted into the power domain. If -available_supplies appears with an empty string argument, only the
locally available supplies are available for use by tools to power cells inserted into the power domain. If
-available_supplies appears with a non-empty string, the string shall be a list of the names of additional
supply sets or supply set handles defined at or above the scope of the power domain that are also available
for use by tools to power cells inserted into the power domain, in addition to the locally available supplies.

Any restrictions on the availability of supply sets or supply set handles for use by tools to power cells
inserted into a given domain have no effect on the legality of referencing such supply sets or supply set
handles in UPF commands to associate supply sets with supply set handles or to connect supply set
functions explicitly, implicitly, or automatically to supply pins of an instance.

-define_func_type specifies the mapping from functions of the domain’s primary supply set to pg_type
attribute values in the pg_type_list. This mapping determines the automatic connection semantics used to
connect the domain’s primary supply to instances within the extent of the domain.

-update may be used to add elements and supplies to a previously created domain. It shall be an error if
-update is used during the initial creation of domain_name.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

97

It shall be an error

 for any instance in the descendant subtree of an atomic power domain to be included in the extent
of another power domain, unless that instance name is, or is in the descendant subtree of, an
instance whose name appears in the exclude_list.

 to remove an element from an atomic power domain.

 to specify -atomic with -update.

 to specify -elements or -exclude_elements with -update for an atomic power domain.

Syntax example

create_power_domain PD1 -elements {top/U1}
 -supply {primary}
 -supply {mem_array ss.mem}
create_power_domain PD2 -elements {.}

The following two examples are syntactically equivalent:

create_power_domain PD_COMB
 -subdomains {a/PD1 b/PD2}
 -supply {primary var_ss}

create_composite_domain PD_COMB
 -subdomains {a/PD1 b/PD2}
 -supply {primary var_ss}

6.21 create_power_state_group

Purpose Create a name for a group of related power states.

Syntax create_power_state_group group_name

Arguments group_name The simple name of the group to be created in the current scope.

Return value Return the name of the created group or raise a TCL_ERROR if the group is not created.

The create_power_state_group command defines a group name that can be used in the add_power_state
command. The group group_name is defined in the current scope.

A power state group is used to collect related power states defined by add_power_state. The legal power
states of a power state group define the legal combinations of power states of other objects in this scope or
the descendant subtree, i.e., those combinations of states of those objects that can be active at the same time
during operation of the design.

A power state group may be used to represent a virtual component made up of more than one instance.
Power states defined for the power state group can represent the legal power states of the virtual component
without having to change the design hierarchy to create a single instance for that component.

Power states of a power state group may be defined in terms of power states of supply sets, power domains,
composite domains, instances, and other groups. Power states of two or more different power state groups
may refer to power states of the same object.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

98

It shall be an error if more than one fundamental state of the power state group is active at the same time
(see 4.7.3).

If the power states of a power state group are defined as complete (see 6.5), it shall be an error if a situation
occurs in which none of the legal power states of the group are active.

Example

create_power_state_group CPU_cluster
add_power_state -group CPU_cluster
 -state {RUN1
 -logic_expr {CPU0==RUN && CPU1==SHD && CPU2==SHD && CPU3==SHD}}
 -state {RUN2
 -logic_expr {CPU0==RUN && CPU1==RUN && CPU2==SHD && CPU3==SHD}}
 -state {RUN3
 -logic_expr {CPU0==RUN && CPU1==RUN && CPU2==RUN && CPU3==SHD}}
 -state {RUN4
 -logic_expr {CPU0==RUN && CPU1==RUN && CPU2==RUN && CPU3==RUN}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

99

6.22 create_power_switch

Purpose Define a power switch.

Syntax

create_power_switch switch_name
[-switch_type <fine_grain | coarse_grain | both>]
[-output_supply_port {port_name [supply_net_name]}]
{-input_supply_port {port_name [supply_net_name]}}*
{-control_port {port_name [net_name]}}*
{-on_state {state_name input_supply_ port {boolean_expression}}}*
[-off_state {state_name {boolean_expression}}]*
[-supply_set supply_set_ref]
[-on_partial_state {state_name input_supply_ port {boolean_expression}}]*
[-ack_port {port_name net_name [boolean_expression]}]*
[-ack_delay {port_name delay}]*
[-error_state {state_name {boolean_expression}}]*
[-domain domain_name]
[-instances instance_list]
[-update]

Arguments

switch_name The name of the switch instance to create; this shall be a simple name.

-switch_type
<fine_grain |
coarse_grain | both>

The type of switch being defined. The default is coarse_grain.

-output_supply_port
{port_name
[supply_net_name]}

The output supply port of the switch and, optionally, the supply net
where this port connects. supply_net_name is a rooted name of a
supply net or supply port. It shall be an error if the supply_net_name
is not defined in the current scope.

-input_supply_port
{port_name
[supply_net_name]}

An input supply port of the switch and, optionally, the net where this
port is connected. net_name is a rooted name of a supply net or
supply port. It shall be an error if the net_name is not defined in the
current scope.

-control_port
{port_name
[net_name]}

A control port on the switch and, optionally, the net where this
control port connects. net_name is a rooted name of a logic net or
logic port. It shall be an error if the net_name is not defined in the
current scope.

-on_state {state_name
input_supply_ port
{boolean_expression}}

A named on state, the input_supply_ port for which this is defined,
and its corresponding Boolean expression.

-off_state {state_name
{boolean_expression}} A named off state and its corresponding Boolean expression.

-supply_set
supply_set_ref

A supply set associated with the switch. supply_set_ref is a rooted
name of a supply set or a supply set handle. It shall be an error if the
supply_set_ref is not defined in the current scope.

-on_partial_state
{state_name
input_supply_ port
{boolean_expression}}

A named partial-on state, the input_supply_ port for which this is
defined, and its corresponding Boolean expression.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

100

-ack_port {port_name
net_name
[boolean_expression]}

The acknowledge port on the switch and the logic net to which this
port connects. A simple Boolean expression (see 5.4) can also be
specified. net_name is a rooted name of a logic net or logic port. It
shall be an error if the net_name is not defined in the current scope.
If a null string is used as the net_name for -ack_port, the port and its
Boolean expression are defined, but the port itself is unconnected.

-ack_delay {port_name
delay} The acknowledge delay for a given acknowledge port.

-error_state
{state_name
{boolean_expression}}

A named error state and its corresponding Boolean expression.

-domain domain_name If specified, the scope of the domain is the scope in which the switch
instance is created.

-instances instance_list A list of technology leaf cell instance names that implements all or
part of the specified switch. Instance names are the hierarchical
names of the switch instances.

R

-update Use -update to allow the addition of -instances. R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The create_power_switch command defines an abstract model of a power switch. An implementation may
use detailed power-switching structures that involve multiple, distributed power switches in place of a
single abstract power switch, and/or re-order the specified embedded power switch chain.

The -switch_type option specifies the type of power switches (see 3.1) described by the
create_power_switch command. The switch_type of an instance shall be determined by the Liberty
attribute switch_cell_type or by the UPF_switch_cell_type attribute in the power model. If -instances is
specified, -switch_type selects the instances defined in the instance_list based on the switch cell type
attribute.

The following rules apply:

 -switch_type coarse_grain: This is the default. Only coarse grain switches shall be described by
the create_power_switch command. It shall be an error if -output_supply_port is not specified.

 -switch_type fine_grain: Only fine grain switches shall be described by the create_power_switch
command. It shall be an error if -instances is not specified. The -output_supply_port is ignored in
this case.

 -switch_type both: Both coarse grain and fine grain switches shall be described by the
create_power_switch command. It shall be an error if output_supply_port is not specified.
create_power_switch does not specify the -output_supply_port for fine_grain switches.

Power-switch port names and port state names are defined in the scope of the switch instance and,
therefore, can be referenced with a hierarchical name in the same way that any other instance ports can be
referenced. For example, the command

create_power_switch PS1
-output_supply_port {outp}
-input_supply_port {inp}

...

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

101

creates an instance PS1 in the current scope and creates supply ports outp and inp within the PS1
instance. The switch supply ports can then be referred to as PS1/inp and PS1/outp.

The abstract power-switch model has one or more input supply ports and one output supply port. Output
supply port is specified only when the switch type is coarse_grain or both. Each input supply port is
effectively gated by one or more control expressions defined by on_state or on_ partial_state expressions.
An on_state expression specifies when a given input supply contributes to the output without limiting
current. An on_ partial_state expression specifies when a given input supply contributes to the output in a
current-limited manner. Each input supply may have multiple on_state and/or on_ partial_state
expressions.

The abstract power-switch model may also have one or more error_state expressions defined. Any
error_state expressions defined for a given power switch represent control input conditions that are illegal
for that switch.

The abstract power-switch model may also have a single off_state expression defined. The off_state
expression represents the condition under which no on_state or on_ partial_state expression is True. If not
specified explicitly, the off_state expression defaults to the complement of the disjunction of all the
on_state, on_ partial_state, and error_state expressions defined for the power switch.

It shall be an error if the off_state expression is explicitly defined and it evaluates to True when an on_state
or on_ partial_state expression also evaluates to True.

An on_state or on_ partial_state specification for a power switch contributes a value to the computation of
the power switch output port’s value at any given time. If an on_state or on_ partial_state Boolean
expression for a given input supply port refers to an object with an unknown (X or Z) value, and that input
supply port has a net state other than OFF, then the contributed value is {UNDETERMINED,
unspecified}. If an on_state Boolean expression for a given input supply port evaluates to True, then the
contributed value is the value of that input supply port. If an on_ partial_state Boolean expression for a
given input supply port evaluates to True, then the contributed value is the degraded value of that input
supply port. The degraded value of an input supply port is the value of that port, except that if the port
value’s net state is FULL_ON, the degraded value’s net state is PARTIAL_ON.

The value of the output supply port of a power switch is determined as follows. At any given time:

a) The output supply takes on the value {UNDETERMINED, unspecified} if:

1) any error_state condition is True, or

2) an explicit off_state condition and any on_state or on_ partial_state condition are both True, or

3) any contributed value has a net state of UNDETERMINED, or

4) any two contributed values have different voltage values.

b) Otherwise, the switch output takes on any contributed value
whose net state is FULL_ON, if there is one.

c) Otherwise, the switch output takes on any contributed value
whose net state is PARTIAL_ON, if there is one.

d) Otherwise, the switch takes on the value {OFF, unspecified}.

A power switch is in an off state when the (explicit or default) -off_state is True. An off power switch
begins to turn on when an -on_state or -on_partial_state condition becomes True. A power switch is in a
fully on state when some -on_state condition is True. A fully on power switch begins to turn off when the
last remaining -on_state condition that was True becomes False, or when an explicit -off_state condition
becomes True.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

102

If an -ack_port argument is specified, an acknowledge value is driven onto the specified port_name delay
time units after the switch begins to turn on and the inverse acknowledge value is driven onto the specified
port_name delay time units after the switch begins to turn off. For verification, the initial value of the
specified ack port is the inverse acknowledge value, which indicates that the power switch is in the OFF
state at time zero.

If the supply set of the power switch is in a power state with a NORMAL simstate, then the acknowledge
value is a logic 0 or logic 1. If a Boolean expression is specified for -ack_port, it shall be a simple Boolean
expression (see 5.4). That expression shall determine the acknowledge value for a transition to FULL_ON,
and its negation shall determine the acknowledge value for a transition to OFF; otherwise the acknowledge
value defaults to logic 1 for a transition to FULL_ON and logic 0 for a transition to OFF. If
-ack_delay is specified, the delay may be specified as a time unit, or it may be specified as a natural
integer, in which case the time unit shall be the same as the simulation precision; otherwise, the delay
defaults to 0.

If -supply_set is specified for a switch, it powers logic or timing-control circuitry within the switch. When
the supply set simstate is anything other than NORMAL, the acknowledge ports are corrupted. If a supply
set is not associated with a switch, then the following shall apply:

 It shall be an error if any acknowledge ports are specified.

 The receiving supply of the control ports is not defined.

-instances specifies that the power-switch functionality exists in the HDL design and instance_list denotes
the list of instances providing part or all of this functionality. If -instances is specified, and a list of
instances is given, then the switch may be implemented as multiple switches, in which case the multiple
instances may have characteristics different from those specified by the create_power_switch command,
particularly with regard to input and output supply connections. Each element in the instance_list shall be a
hierarchical name rooted in the current scope.

If an empty string appears in an instance_list, this indicates that an instance may have been created and
then optimized away. Such an instance shall not be re-inferred or reimplemented by subsequent tool runs.

Updating -instances adds the new instance names to the existing instance list. -update adds information to
the base command executed in the same scope in which the object exists or is to be created.

If -switch_type is fine_grain or both, the following shall apply to all power switch instances:

 Share the same supply net connected to input_supply_port.

 Share the same supply set specified in -supply_set used for ack port association.

 Share the same control_port and ack_port pin names.

 If only one control_port is specified, the control port shall be broadcasted to all instances.

 If one control_port/ack_port pair is specified, the instances shall be connected in a sequence such
that the ack_port of one instance is connected to the control_port of the next instance (order
unspecified).

 If more than one control_port is specified, the control ports shall be connected based on
port_name.

 If more than one control_port/ack_port pair is specified, the instances shall be connected in a
sequence such that each ack_port is connected to the corresponding control_port of the next
instance (order unspecified).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

103

The following also apply:

 Any name in a boolean_expression shall refer to a control port of the switch.

 All states not covered by the on, on_partial, off, and error states are anonymous error states.

 If the implementation of a switch can not be inferred, map_power_switch (see 6.34) can be used to
specify it.

 If net_name is not specified for any of the switch’s port definitions, connect_logic_net (see 6.13)
or connect_supply_net (see 6.14) can be used to create the port connections.

 Each state name shall be unique for a particular switch.

 Any port_names specified in this command are user defined (e.g., input_supply).

NOTE 1—create_power_switch can be used to define an abstract power switch that implementation tools may expand
into multiple switches. create_power_switch can also be used to specify the need for a specific switch that can then be
mapped to a specific switch implementation using map_power_switch. It is not meant to be used as a single definition
representing multiple physical switches to be mapped with map_power_switch.

NOTE 2—create_power_switch provides relatively simple, general abstract functionality. HDLs can be used to model
switch functionality that cannot be captured with create_power_switch.

Power-switch examples

Example 1: Simple switch

This switch model has a single supply input and a single control input. The switch is either on or off, based
on the control input value. Since net names are not specified for each port, connect_supply_net (see 6.14)
can be used to connect a net to each port.

create_power_switch simple_switch
-output_supply_port {vout}
-input_supply_port {vin}
-control_port {ss_ctrl}
-on_state {ss_on vin { ss_ctrl }}
-off_state {ss_off { ! ss_ctrl }}

The following is a variant of the simple switch in which the nets associated with the ports are defined as
part of the create_power_switch command (see 6.21).

create_power_switch simple_switch2
-output_supply_port {vout VDD_SW}
-input_supply_port {vin VDD}
-control_port {ss_ctrl sw_ena}
-on_state {ss_on vin { ss_ctrl }}
-off_state {ss_off { ! ss_ctrl }}

Example 2: Two-stage switch

This switch model represents a switch that turns on in two stages. The switch has one supply input and two
control inputs. One control input represents the enable for the first stage; the other represents the control for
the second stage. When only the first control is on, the switch output is in a partial on state; when the
second is on, the switch output is in a fully on state. The switch is off if neither control input is on.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

104

create_power_switch two_stage_switch
-output_supply_port {vout}
-input_supply_port {vin}
-control_port {trickle_ctrl}
-control_port {main_ctrl}
-on_partial_state {ts_ton vin { trickle_ctrl }}
-on _state {ts_mon vin { main_ctrl }}
-off_state {ts_off { ! trickle_ctrl && ! main_ctrl }}

The following is a variant of the two-stage switch model in which an -ack_port signals completion of the
switch turning on. The time required for the switch to turn on is modeled by the -ack_delay. Since an
-ack_port is involved, the command needs to include specification of the supply set that powers the logic
driving the ack signal. The ack signal is defined separately. In this model, as in the preceding simple switch
variant, the supply and control ports are associated with corresponding nets, so they do not need to be
connected in a separate step.

create_power_switch two_stage_switch2
-output_supply_port {vout VDD_SW}
-input_supply_port {vin VDD}
-control_port {trickle_ctrl t_ena}
-control_port {main_ctrl m_ena}
-on_partial_state {ts_ton vin { trickle_ctrl }}
-on_state {ts_mon vin { main_ctrl }}
-off_state {ts_off { ! trickle_ctrl && ! main_ctrl }}
-ack_port {ts_ack "" 1}
-ack_delay {ts_ack 100ns}
-supply_set ss_aon

Example 3: Muxed switch

This switch model represents a mux that determines which of two different input supplies is connected to
the output supply port at any given time. The two input supplies can be driven by different root supply
drivers and may have different state/voltage values. One control input determines which of the two input
supplies is selected; the other control input gates the selected supply to the output supply.

create_power_switch muxed_switch
-output_supply_port {vout}
-input_supply_port {vin0}
-input_supply_port {vin1}
-control_port {ms_sel}
-control_port {ms_ctrl}
-on_state {ms_on0 vin0 { ms_ctrl && ! ms_sel }}
-on_state {ms_on1 vin1 { ms_ctrl && ms_sel }}
-off_state {ms_off { ! ms_ctrl }}

The following is a variant of the muxed switch in which there are two independent selection control inputs,
and an error state is defined to check for mutual exclusion.

create_power_switch muxed_switch2
-output_supply_port {vout}
-input_supply_port {vin0}
-input_supply_port {vin1}
-control_port {ms_sel0}
-control_port {ms_sel1}
-control_port {ms_ctrl}
-on_state {ms_on0 vin0 { ms_ctrl && ms_sel0 }}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

105

-on_state {ms_on1 vin1 { ms_ctrl && ms_sel1 }}
-off_state {ms_off { ! ms_ctrl }}
-error_state {conflict { ms_sel0 && ms_sel1 }}

Example 4: Overlapping muxed switch

This switch model represents a supply mixer that allows a smooth transition between two different
supplies. Like the muxed switch, it has two supply inputs and both selecting and gating control inputs, but
in this case it can select both input supplies at the same time. The input supplies may have different states,
and may even be driven by different root supply drivers, provided that their voltages are the same when
both inputs are enabled (in an on state or on_partial state).

create_power_switch overlapping_muxed_switch
-output_supply_port {vout}
-input_supply_port {vin0}
-input_supply_port {vin1}
-control_port {oms_sel0}
-control_port {oms_sel1}
-control_port {oms_ctrl}
-on_state {oms_on0 vin0 { oms_ctrl && oms_sel0 }}
-on_state {oms_on1 vin1 { oms_ctrl && oms_sel1 }}
-off_state {oms_off { !oms_ctrl || { !oms_sel0 && !oms_sel1 } }}

Example 5: Chain of embedded macro switches

This example represents a switch model that is composed of only embedded macro switches, where the
embedded macro switches have a single control port and a single ack port. Please note that the order of
connection is not specified by UPF.

set mem_inst [find_objects . -object_type model -pattern "*MEM*SW*"
 -transitive TRUE]

create_power_switch ram_chain_0
 -instances $mem_inst
 -switch_type fine_grain
 -input_supply_port {vin VDD}
 -control_port {pwr_on ram_on}
 -ack_port {pwr_on_ack ram_on_ack}
 -on _state {ts_on vin { pwr_on }}
 -off_state {ts_off { !pwr_on }}
 -supply_set ss_aon

Example 6: Mixed chain of logic switches and embedded macro switches

This example represents a switch model where logic switches are connected along with embedded macro
switches in the same power switch chain. Please note that the order of connection is not specified by UPF.

set mem_inst [find_objects . -object_type model -pattern "*MEM*SW*"
 -transitive TRUE]

create_power_switch ram_chain_0
 -instances $mem_inst
 -switch_type both
 -input_supply_port {vin VDD}
 -output_supply_port {vout VDDSW}
 -control_port {pwr_on ram_on}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

106

 -ack_port {pwr_on_ack ram_on_ack}
 -on _state {ts_on vin { pwr_on }}
 -off_state {ts_off { !pwr_on }}
 -supply_set ss_aon

6.23 create_pst (legacy)

Purpose Create a power state table (PST).

Syntax create_pst table_name
-supplies supply_list

Arguments

table_name The PST name. table_name is a simple name in the current scope.

-supplies supply_list The list of supply nets or ports to include in each power state of the
design. The supplies are listed as rooted names in the current scope.

Return value Return the name of the created PST or raise a TCL_ERROR if the PST is not created.

This is a legacy command; see also 6.2 and Annex D.

The create_pst command defines a PST name and a set of supply nets for use in add_pst_state commands
(see 6.6). The PST table_name is defined in the current scope.

A PST is used for implementation—specifically for synthesis, analysis, and optimization. It defines the
legal combinations of states, i.e., those combinations of states that can exist at the same time during
operation of the design.

create_pst can only be used with add_pst_state (and vice versa). This combination and use of
add_power_state (see 6.5) are two methods for specifying power state information. Power state
specifications and default state definitions form an exhaustive specification of all of the legal power states
of the system.

It shall be an error if

 table_name conflicts with any name declared in the current scope.

 a specified supply net or supply port specified in supply_list does not exist.

Syntax example

create_pst MyPowerStateTable -supplies {PN1 PN2 SOC/OTC/PN3}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

107

6.24 create_supply_net

6.24.1 Overview

Purpose Create a supply net.

Syntax
create_supply_net net_name

[-domain domain_name][-reuse]
[-resolve <unresolved | one_hot | parallel | parallel_one_hot |resolution_ function_name >]

Arguments

net_name A simple name.

-domain domain_name The domain in whose scope the supply net is to be created.

-reuse Extend availability of a supply net previously defined for another domain
for use in the extent of this domain.

-resolve <unresolved |
one_hot | parallel |
parallel_one_hot |
resolution_ function_
name>

A resolution mechanism that determines the state and voltage of the supply
net when the net has multiple supply sources (see 6.24.3). If no option is
specified, the behavior for resolution is the same as for unresolved.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The create_supply_net command creates a supply net. If -domain is not specified, the supply net is
created in the current scope, and the supply net is available for use in the extent of any domain created at or
below this scope.

If -domain is specified, the supply net is created in the scope of that domain and the supply net is available
for use in the extent of the domain.

If -reuse is specified, the specified supply net shall have been created by a previously executed command,
and this existing supply net is made available for use in the extent of the domain specified by the -domain
option. In this case:

a) -domain shall also be specified on both this and the creating command;

b) -resolve shall not conflict with that of the creating command.

The net is propagated through implicitly created ports and nets throughout the logic hierarchy in the
descendant tree of the scope in which the net is created as required by implicit and automatic connections
of supply sets (see 6.20).

The use of a supply net by implementation tools to power cells that they insert in the extent of a domain is
subject to the supply set availability rules (see 6.20). A supply net is available for use in a domain only if it
is associated with a function of an available supply set in that domain.

The following also apply:

 It shall be an error if domain_name is not the name of a previously created power domain.

 When -reuse is specified, it shall be an error if net_name is not defined for another power domain
in the same scope by another create_supply_net command.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

108

 When the parameter for -resolve is unresolved, the supply net shall have only one source (see
6.24.2). For all other parameters to -resolve, the requirements on the drivers and sources of the net
are as defined in 6.24.3.

Syntax example

create_supply_net local_vdd_3
 -resolve one_hot

6.24.2 Supply net resolution

Supply nets are often connected to the output of a single switch. However, certain applications, such as on-
chip voltage scaling, may require the outputs of multiple switches or other supply drivers to be connected
to the same supply net (either directly or via supply port connections). In these cases, a resolution
mechanism is needed to determine the state and voltage of the supply net from the state and voltage values
supplied by each of the supply drivers to which the net is connected.

A supply net that specifies an unresolved resolution cannot be connected to more than one supply source.

6.24.3 Resolution methods

The semantics of each predefined resolution method are as follows:

a) unresolved

The supply net shall be connected to at most one supply source. This is the default.

b) one_hot

Multiple supply sources, each having a unique driver, may be connected to the supply net.

A supply net with one_hot resolution has a deterministic state only when no more than one source
drives the net at any particular point in time. If at any point in time more than one supply source
driving the net is anything other than OFF, the state of the supply net shall be UNDETERMINED,
the voltage value of the supply net shall be unspecified, and implementations may issue a warning
or an error.

1) If all supply sources are OFF, the state of the supply net shall be OFF, and the voltage value
of the supply net shall be unspecified.

2) If only one supply source is FULL_ON and all other sources are OFF, the state of the supply
net shall be FULL_ON, and the voltage value of the corresponding source shall be assigned to
the supply net.

3) If only one supply source is PARTIAL_ON and all other sources are OFF, the state of the
supply net shall be PARTIAL_ON and the voltage value of the corresponding source shall be
assigned to the supply net.

4) If any source is UNDETERMINED, the state of the supply net shall be UNDETERMINED,
and the voltage value of the supply net shall be unspecified.

c) parallel

Multiple supply sources, sharing a common root supply driver, may be connected to the supply net.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

109

The parallel resolution allows more than one potentially conducting path to the same root supply
driver, as if the switches had been connected in parallel. It shall be an error if any of these
potentially conducting paths can be traced to more than one root supply driver.

1) If all of the supply sources are FULL_ON, then the supply net state is FULL_ON and the
voltage value is the value of the root supply driver.

2) If all the supply sources driving the supply net are OFF, the state of the supply net shall be
OFF and the voltage is unspecified.

3) If any of the sources is UNDETERMINED, the resolution is UNDETERMINED; otherwise,

i) If there is at least one PARTIAL_ON source, the supply net shall be PARTIAL_ON
and the voltage value is the value of the root supply driver.

ii) If there is at least one source that is OFF and at least one that is FULL_ON or
PARTIAL_ON, the supply net shall be PARTIAL_ON and the voltage value is the
value of the root supply driver. The voltage value of the PARTIAL_ON supply net shall
be the voltage value of the root supply driver.

d) parallel_one_hot

Multiple supply sources may be connected to the supply net. A source may share a common root
supply driver with one or more other sources. At most one root supply driver shall be FULL_ON at
any particular time with all sources sharing that driver resolved using parallel resolution.

The parallel_one_hot resolution allows resolution of a supply net that has multiple root supply
drivers where each driver may have more than one path through supply sources to the supply net.
Each unique root supply driver is identified and one_hot resolution shall be applied to the drivers,
then parallel resolution shall be applied to each supply source connecting the one_hot root supply
driver to the supply net.

Resolution semantics may also be specified by a user-defined resolution function. When a user-defined
resolution function is specified, there are no restrictions on the number of input sources or the number of
root supply drivers involved, and the function is responsible for defining any restrictions on the values of
inputs as well as the algorithm for determining the output result.

Examples

The following supply net resolution functions support multi-source supply nets driven by different root
supplies. This requires handling multiple inputs with potentially different voltages as well as different
states. The resolution function treats inputs with the following precedence: UNDETERMINED,
FULL_ON, PARTIAL_ON, OFF. The resolution function returns the average voltage of all FULL_ON
or PARTIAL_ON inputs, as appropriate.

SystemVerilog resolution function

function automatic supply_net_type MultiSourceResolution (input
supply_net_type sources[]);

 supply_net_type ResolvedValue;
 int FullOnVolts = 0;
 int PartOnVolts = 0;
 int FullOnCount = 0;
 int PartOnCount = 0;
 int UndetCount = 0;
 foreach (sources[i]) begin
 if (sources[i].state==UNDETERMINED) begin
 UndetCount++;
 end

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

110

 else if (sources[i].state==FULL_ON) begin
 FullOnVolts += sources[i].voltage;
 FullOnCount++;
 end
 else if (sources[i].state==PARTIAL_ON) begin
 PartOnVolts += sources[i].voltage;
 PartOnCount++;
 end
 end
 if (UndetCount > 0) begin
 ResolvedValue.state = UNDETERMINED;
 ResolvedValue.voltage = 0; // representing ‘unknown’
 end
 else if (FullOnCount > 0) begin
 ResolvedValue.state = FULL_ON;
 ResolvedValue.voltage = FullOnVolts / FullOnCount; // average value
 end
 else if (PartOnCount > 0) begin
 ResolvedValue.state = PARTIAL_ON;
 ResolvedValue.voltage = PartOnVolts / PartOnCount; // average value
 end
 else begin
 ResolvedValue.state = OFF;
 ResolvedValue.voltage = 0; // representing ‘irrelevant’
 end
 return (ResolvedValue);
endfunction

VHDL resolution function

function MultiSourceResolution (sources: supply_net_type_vector) return
supply_net_type is

 variable ResolvedValue: supply_net_type;
 variable FullOnVolts: Natural := 0;
 variable PartOnVolts: Natural := 0;
 variable FullOnCount: Natural := 0;
 variable PartOnCount: Natural := 0;
 variable UndetCount: Natural := 0;
begin
 for i in sources’length loop
 if (sources(i).state = UNDETERMINED) then
 UndetCount := UndetCount + 1;
 elsif (sources(i).state==FULL_ON) then
 FullOnVolts := FullOnVolts + sources(i).voltage;
 FullOnCount := FullOnCount + 1;
 elsif (sources(i).state==PARTIAL_ON) then
 PartOnVolts := PartOnVolts + sources(i).voltage;
 PartOnCount := PartOnCount + 1;
 end loop;
 if (UndetCount > 0) then
 ResolvedValue.state := UNDETERMINED;
 ResolvedValue.voltage := 0; -- representing ‘unknown’
 elsif (FullOnCount > 0) then
 ResolvedValue.state := FULL_ON;
 ResolvedValue.voltage := FullOnVolts / FullOnCount; -- average value
 elsif (PartOnCount > 0) then
 ResolvedValue.state := PARTIAL_ON;
 ResolvedValue.voltage := PartOnVolts / PartOnCount; -- average value

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

111

 else
 ResolvedValue.state := OFF;
 ResolvedValue.voltage := 0; -- representing ‘irrelevant’
 end if;
 return ResolvedValue;
end;

6.24.4 Supply nets defined in HDL
The declaration of any VHDL signal or SystemVerilog wire or reg as a supply_net_type from the
package UPF (see 11.2) is equivalent to calling create_supply_net for every instance of that declaration,
where the net_name is the name of the VHDL signal or SystemVerilog wire or reg, and the scope is the
instance. If the VHDL or SystemVerilog declaration includes a resolution function, the equivalent
create_supply_net command also includes the -resolve option with the specified resolution function name.

6.25 create_supply_port

Purpose Create a supply port on a instance.

Syntax
create_supply_port port_name

[-domain domain_name]
[-direction <in | out | inout>]

Arguments

port_name A simple name.

-domain
domain_name The domain where this port defines a supply net connection point.

-direction <in |
out | inout> The direction of the port. The default is in.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The create_supply_port command defines a supply port at the scope of the power domain when -domain
is specified or at the current scope if -domain is not specified.

-direction defines how state information is propagated through the supply network as it is connected to the
port. If the port is an input port, the state information of the external supply net (see 6.24) connected to the
port shall be propagated into the instance. Likewise, for an output port, the state information of the internal
supply net connected to the port shall be propagated outside the instance.

Supply ports with direction inout shall be used to connect resolved supply nets (see 9.1). Supply ports are
loads, sources, or both, as follows:

a) The LowConn of an input port is a source.

b) The HighConn of an input port is a sink.

c) The LowConn of an output port is a sink.

d) The HighConn of an output port is a source.

e) The LowConn of an inout port is both a source and a sink.

f) The HighConn of an inout port is both a source and a sink.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

112

Supply ports may be defined in HDL. If a VHDL or SystemVerilog port is declared as a
supply_net_type from the package UPF (see 11.2), this is equivalent to calling create_supply_port for
every instance of that declaration, where the port_name is the name of the VHDL or SystemVerilog port,
and the scope is the instance.

Syntax example

create_supply_port VN1
 -direction inout

6.26 create_supply_set

6.26.1 General

Purpose Create or update a supply set, or update a supply set handle.

Syntax
create_supply_set set_name

[-function {func_name net_name}]*
[-update]

Arguments

set_name The simple name of the supply set or a supply set handle.

-function {func_name
net_name}

The -function option defines the function (func_name) a supply net
provides for this supply set. net_name is a rooted name of a supply net
or supply port or a supply net handle. It shall be an error if the
net_name is not defined in the current scope.

R

-update Use -update if the set_name has already been defined. R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

create_supply_set creates the supply set name within the current scope in the UPF name space. This
command defines a supply set as a collection of supply nets each of which serve a specific function for the
set.

-update is used to signify that this create_supply_set call refers to a supply set that was previously defined
using create_supply_set, or to a supply set handle that was previously defined implicitly or explicitly
using create_power_domain (see 6.20). Referencing a previously created supply set or supply set handle
without the -update argument shall be an error. Using the -update argument for a supply set that has not
been previously defined shall be an error. Specifying a supply set handle that has not been previously
defined shall be an error.

When -function is specified, func_name shall be one of the following: power, ground, nwell, pwell,
deepnwell, and deeppwell. The -function option associates the specified func_name of this supply set with
the specified supply_net_name. If the same func_name is associated with two different supply nets, it shall
be an error if those supply nets are not the same. The supply_net_name may be a reference to a supply net
in the descendant hierarchy of the current scope using a supply net handle (see 5.3.3.3).

Syntax example

create_supply_set relative_always_on_ss
 -function {power vdd}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

113

 -function {ground vss}
create_supply_set PD1.primary -update
 -function {nwell bias}

NOTE 1—A supply set function may also be referenced using a supply net handle (see 5.3.3.3), regardless of whether
or not a supply net has been associated with the function name, as follows:

 supply_set_name.function_name

NOTE 2—A group of supply sets with a common ground can be represented as follows:

 set_equivalent -nets {VSS SS1.ground SS2.ground}

However this intent must be explicitly specified for implementation:

 create_supply_set SS1 -update -supply {ground VSS}
 create_supply_set SS2 -update -supply {ground VSS}

6.26.2 Implicit supply net

If no supply net is associated with a supply set’s function and that function is used in the design, an implicit
supply net with an anonymous name shall be created for use in verification and analysis. When the UPF
specification is used for implementation, a supply net shall not be implicitly created for a supply set
function that has no associated supply net. A tool may issue a warning or an error if a supply set’s function
does not have an explicit supply net association.

6.27 create_upf2hdl_vct

Purpose Define VCT that can be used in converting UPF supply_net_type values into HDL logic
values.

Syntax
create_upf2hdl_vct vct_name

-hdl_type {<vhdl | sv> [typename]}
-table {{from_value to_value}*}

Arguments

vct_name The VCT name.

-hdl_type {<vhdl |
sv> [typename]} The HDL type for which the value conversions are defined.

-table {{from_value
to_value}*} A list of UPF state type values to map to the values of the HDL type.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The create_upf2hdl_vct command defines a VCT for the supply_net_type.state value (see Annex B
when that value is propagated from a UPF supply net into a logic port defined in an HDL. It provides a 1:1
conversion for each possible combination of the partially on and on/off states. create_upf2hdl_vct does
not check that the values are compatible with any HDL port type.

vct_name provides a name for the value conversion table for later use with the connect_supply_net
command (see 6.14). The predefined VCTs are shown in Annex B.

-hdl_type specifies the HDL type for which the value conversions are defined. This information allows a
tool to provide completeness and compatibility checks. If the typename is not one of the language’s

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

114

predefined types or one of the types specified in the next paragraph, then it shall be of the form
library.pkg.type.

The following HDL types shall be the minimum set of types supported. An implementation tool may
support additional HDL types.

a) VHDL

1) Bit, std_[u]logic, Boolean

2) Subtypes of std_[u]logic

b) SystemVerilog

reg/wire, Bit, Logic

-table defines the 1:1 conversions from UPF supply net states to an HDL logic value. The values shall be
consistent with the HDL type values. For example:

 When converting to SystemVerilog logic type, the set of legal values is 0, 1, X, and Z.

 When converting to SystemVerilog or VHDL bit, the legal values are 0 or 1.

 When converting to VHDL std_[u]logic, the legal values are U, X, 0, 1, Z, W, L, H, and -.

The conversion values have no semantic meaning in UPF. The meaning of the conversion value is relevant
to the HDL model to which the supply net is connected.

Syntax examples

create_upf2hdl_vct upf2vlog_vdd
 -hdl_type {sv}
 -table {{OFF X} {FULL_ON 1} {PARTIAL_ON 0}}
create_upf2hdl_vct upf2vhdl_vss
 -hdl_type {vhdl std_logic}
 -table {{OFF ‘X’} {FULL_ON ‘1’} {PARTIAL_ON ‘H’}}

6.28 describe_state_transition (deprecated)

This is a deprecated command; see also 6.2 and Annex D.

6.29 end_power_model

Purpose Terminate the definition of a power model.

Syntax end_power_model

Arguments N/A

Return value Return a 1 if successful or raise a TCL_ERROR if not.

The begin_power_model (see 6.11) and end_power_model commands define a power model containing
other UPF commands. A power model is used to define the power intent of a model and shall be used in

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

115

conjunction with one or more model representations. A power model defined with begin_power_model is
terminated by the first subsequent occurrence of end_power_model in the same UPF file.

6.30 find_objects

6.30.1 General

Purpose Find logic hierarchy objects within a scope.

Syntax

find_objects scope
-pattern search_ pattern
[-object_type <model | inst | port | supply_port | net | process>]
[-direction <in | out | inout>]
[-transitive [<TRUE | FALSE>]]
[-regexp | -exact]
[-ignore_case]
[-non_leaf | -leaf_only]

Arguments

scope The search is restricted to the specified scope.

-pattern search_pattern The string used for searching. By default, search_ pattern is treated as an
Tcl glob expression.

-object_type <model |
inst | port | supply_port
| net | process>

Limits the objects returned. By default, instances, named processes, ports,
and nets are returned; this can be restricted by specifying a specific
-object_type.

-direction <in | out |
inout>

If -object_type is port, then -direction can be used to restrict the
directions of the returned ports.

-transitive [<TRUE |
FALSE>]

If -transitive is not specified at all, the default is -transitive FALSE.
If -transitive is specified without a value, the default value is TRUE.

-regexp | -exact

-regexp enables support for regular expression in the specified
search_ pattern. -exact disallows wildcard expansion on the specified
search_ pattern. If neither -regexp or -exact are specified, then
search_ pattern is interpreted as a Tcl glob expression.

-ignore_case Performs case-insensitive searches. By default, all matches are case
sensitive.

-non_leaf | -leaf_only

If -non_leaf is specified, only non-leaf objects are returned.
If -leaf_only is specified, only leaf-level objects are returned.
By default, both leaf and non-leaf objects are returned.
This option is applicable to only -object_type [model | instance | port]
and does not apply to -object_type [net | process]

Return
value

Returns a list of names (relative to the current scope) of objects that match the search criteria; when
nothing is found that matches the search criteria, a null string is returned. The list contains just the
object names, without any indication of object type. The list may contain names of more than one
type of object.

The find_objects command searches for instances, nets, ports, supply ports, or processes that are defined in
the logic hierarchy. If -object_type port is specified, find_objects searches the logic hierarchy for the logic
ports whose port name matches the search_ pattern. If -object_type supply_ port is specified, find_objects
searches the logic hierarchy for the supply ports (see 4.5.3) whose port name matches the search_pattern.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

116

Only logic ports and supply ports visible at the time of find_objects execution shall be processed by the
command (see 8.3.2). If -object_type is specified with any other value, find_objects searches the logic
hierarchy for the specified objects whose name matches the search_ pattern.

By default, or if -transitive FALSE is specified explicitly, find_objects searches only the specified scope
of the logic hierarchy. If -transitive TRUE is specified, find_objects searches the specified scope and its
entire descendant subtree. If -transitive is specified without an argument, it is equivalent to specifying
-transitive TRUE. A transitive search will stop at a leaf cell boundary (see 4.9.2.3).

HighConn pins on a leaf cell instance are not deemed to be inside a leaf cell instance and can be returned
by a search.

NOTE—The scope in find_objects can be set to any scope that set_scope in a given UPF can reach. However,
find_objects is prohibited from initiating a search that starts in a lower scope that is a leaf cell or is below a leaf cell
with respect to the current scope.

A UPF_is_hard_macro attribute value of TRUE on a model or a UPF_is_soft_macro attribute value of
TRUE on an instance indicates that it shall be treated as a leaf cell (see 4.9.2.3) by find_objects.

The -non_leaf and -leaf_only options return the following depending on the specified -object_type:

 If -object_type is model: -non_leaf returns instances of models that correspond to non-leaf
instances. -leaf_only returns instances of models corresponding to leaf instances.

 If -object_type is instance: -non_leaf returns non-leaf instances. -leaf_only returns leaf instances.

 If -object_type is port: -non_leaf returns ports of non-leaf instances. -leaf_only returns ports of
leaf instances.

The following conditions also apply:

 The specified scope cannot start with .. or /, i.e., find_objects shall be referenced from the
current scope, and reside in the current scope or below it.

 If scope is specified as . (a dot), the current scope is used as the root of the search.

 All elements returned are referenced to the current scope.

 It shall be an error if scope is neither the current scope nor is defined in the current scope. The
specified scope may reference a generate block as the root of the search.

 While find_objects commands are executed and their results are used; the command itself is not
saved. However, this does not prohibit the use of find_objects in output UPF.

Syntax examples

find_objects A/B/D -pattern *BW1*
-object_type inst
-transitive TRUE

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

117

6.30.2 Pattern matching and wildcarding

To improve usability and allow multiple objects (instances, ports, etc.) to be easily specified without
onerous verbosity, pattern matching (wildcarding) is allowed (only) in find_objects and query_upf
(see 11.1). Pattern matching is supported using the Tcl glob style, matching against the symbols in the
scope rather than filenames. For glob-style wildcarding, the following special operators are supported:

? matches any single character.

* matches any sequence of zero or more characters.

[chars] matches any single character in chars. If chars contains a sequence of the form a-b, any
character between a and b (inclusive) shall match.

\x matches the character x.

{a,b,c} Matches any string that is matched by any of the patterns a, b, or c.

The "*" and "?" never match a hierarchy separator "/".

Tcl regular expression matching is described in the Tcl documentation for re_syntax (see Tcl language
syntax summary [B5]).

The use of the "/" to match the hierarchy separator is only allowed with "glob" type matching; it is not
allowed with -regexp.

NOTE 1— Some characters used as operators in either glob-style or regular expression style search_ patterns, such as
[], \, and { }, also have meaning for Tcl in general. To ensure that such characters are not interpreted by the Tcl
processor, the whole pattern can be enclosed in curly braces. This inhibits variable, command, and backslash
substitution within the pattern by the Tcl processor (see 5.3.4).

NOTE 2— Square brackets used within a search_ pattern are interpreted as indicating a set of characters, any of which
matches a single character in a name. To use square brackets to refer to one or more bits of a bus, the square brackets
must be escaped. For example, B\[3\] refers to B[3]. The two interpretations of square brackets can also be used in
combination. For example, B\[[1-3]\] refers to B[1], B[2], and B[3].

6.30.3 Wildcarding examples

Table 5 shows the pattern match for each of the following examples of find_objects.

find_objects top -pattern a
find_objects top -pattern {bc[0-3]}
find_objects top -pattern e*
find_objects top -pattern d?f
find_objects top -pattern {g\[0\]}
find_objects top -pattern a/b*/c* -transitive FALSE
find_objects top -pattern a*/b/c* -transitive TRUE

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

118

Table 5 —Pattern matches

a Only matches an instance called a in the current scope.

bc[0-3] Matches any instance called bc followed by a numerical value from 0 to 3,
i.e., bc0, bc1, bc2, and bc3.

e* Matches any instance starting with e, i.e., e12, eab, ef, etc.

d?f Matches any instance starting with d followed by another character and
ending in f, i.e., daf, d4f, etc.

g\[0\] Matches an instance called g[0].

a/b*/c*
-transitive
FALSE

Matches any instance whose hierarchical name relative to the specified
scope matches a/b*/c*. Equivalent to:
lsearch -all -inline -regexp \
 [find_objects top \
 -object_type inst \
 -pattern * \
 -transitive FALSE] \
 {^a/b[\w]*/c[\w]*$}

a*/b/c*
-transitive
TRUE

Matches any instance whose hierarchical name relative to the specified
scope or any descendant scope matches a*/b/c* Equivalent to:
lsearch -all -inline -regexp \
 [find_objects top \
 -object_type inst \
 -pattern * \
 -transitive TRUE] \
 {a[\w]*/b/c[\w]*$}

In particular, to return individual bus bits, instead of a bus name, the search_ pattern pattern shall explicitly
contain escaped brackets \[and \]. For example, for a design with the following objects:

xyz1 a single bit net
xyz2[3:0] a four-bit bus
xyz[1:0] a two-bit bus

Table 6 shows the return value for each of the following examples of find_objects.

find_objects top -pattern xyz*
find_objects top -pattern xyz
find_objects top -pattern {xyz*\[*\]}
find_objects top -pattern {xyz\[*\]}
find_objects top -pattern {xyz*\[0\]}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

119

Table 6 —Bus patterns and return values

xyz* Returns bus/single-bit net names only: xyz1 xyz2 xyz

xyz Returns the bus xyz only (no wild card)

xyz*\[*\] Returns individual bus bits: xyz2[3] xyz2[2] xyz2[1]
xyz2[0] xyz[1] xyz[0]

xyz\[*\] Returns individual bus bits: xyz[1] xyz[0]

xyz*\[0\] Returns individual bus bits: xyz2[0] xyz[0]

6.31 load_simstate_behavior

Purpose Load the simstate behavior defaults for a library.

Syntax load_simstate_behavior lib_name
-file file_list

Arguments
lib_name The tool-specific library name for which the simstate behavior file is to be

loaded.

-file file_list The list of files containing the set_simstate_behavior commands.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

Loads a UPF file that only contains set_simstate_behavior commands and applies these to the models in
the library lib_name.

It shall be an error if:

 lib_name cannot be resolved.

 file_list does not exist.

 a model specified in file_list cannot be found.

 the set_simstate_behavior commands in file_list use the -lib argument.

 file_list contains UPF commands other than set_simstate_behavior.

Syntax example

load_simstate_behavior library1 -file simstate_file.upf

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

120

6.32 load_upf

Purpose Execute commands from the specified UPF file in the current scope or in the scope of each
specified instance.

Syntax

load_upf upf_ file_name
[-scope instance_name_list]
[-hide_globals]
[-parameters {{parameter_name [parameter_value]}*}]

Arguments

upf_ file_name The UPF file to execute.

-scope
instance_name_list

The list of instances where the UPF commands contained in
upf_ file_name are executed.

-hide_globals Enable global tcl variables to be unmodified by load_upf, unless the
global variable is passed in parameters.

-parameters
{{parameter_name
[parameter_value]
}*}

A list of formal arguments to the load_upf command.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The load_upf command executes the commands in the specified UPF file. Commands are executed either
in the current scope or in the scope of each of the specified instances.

If -scope is not specified, load_upf executes the commands in the current scope. In this case, the current
scope, design top instance, and design top module are not affected.

If -scope is specified, each instance name in the instance name list shall be a simple name or a hierarchical
name rooted in the current scope. In this case, load_upf executes the commands in the scope of each
instance, as follows:

a) The current scope and design top instance are both set to the instance, and the design top module is
set to the module type of that instance;

b) The commands in the specified UPF file are then executed in the scope of the instance;

c) The current scope, design top instance, and design top module then revert to their previous values.

If an instance name specified in instance_name_list is not found, further processing of remaining instance
names in the instance_name_list is terminated and a TCL_ERROR is raised.

-hide_globals is useful to suppress modifications to global variables when load_upf is loaded in a global
namespace. If global variables are explicitly passed in -parameter, then the globals can be modified as a
result of the load_upf. Unless the global variables/procs are explicitly accessed in the load upf (using the
global :: scope operator), all variables and procs defined in the global namespace shall be invisible inside
the loaded upf.

-parameters is the arguments list to load_upf and follows the syntax of tcl args. If any list item itself
contains two items, the second item becomes the default value for that argument. When load_upf is
invoked, each actual argument shall be stored in the variable named by the formal argument. After the first
default value to a formal argument is encountered, all additional formal arguments must have default
values.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

121

load_upf does not create a new name space for the loaded UPF file. The loaded UPF file is responsible for
ensuring the integrity of both its own and the caller’s name space as needed using existing Tcl name space
management capabilities.

The following also apply:

 It shall be an error if load_upf -scope is used more than once to load a UPF file for a given
instance.

 It shall be an error if load_upf -scope is used to load a UPF file for an instance and
apply_power_model is also used to apply a power model to the same instance.

NOTE—The load_upf command only has the same effect as the Tcl source command when load_upf is used without
the -scope option. When -scope is used, an implicit context switch occurs (which changes current scope, design top
instance, and design top module); this would not occur with the Tcl source command.

Syntax example

load_upf my.upf -scope {I1/I2 I3/I2}
load_upf design.upf -scope inst_a/inst_b/inst_design
-parameters {{N 64} {num_of_cores 4}}

6.33 load_upf_protected (deprecated)

This is a deprecated command; see also 6.2 and Annex D.

6.34 map_power_switch

Purpose Specify which power-switch model is to be used for the implementation of the corresponding switch
instance.

Syntax
map_power_switch switch_name_list

-lib_cells lib_cell_list
[-port_map {{mapped_model_ port switch_ port_or_supply_net_ref}*}]

Arguments

switch_name_list A list of switches [as defined by create_power_switch (see 6.21)] to map.

-lib_cells lib_cell_list A list of library cells.

-port_map
{{mapped_model_port
switch_ port_or_supply_
net_ref } *}

mapped_model_ port is a port on the model being mapped.
switch_ port_or_supply_net_ref indicates a supply or logic port on a
switch: an input supply port, output supply port, control port, or
acknowledge port; or it references a supply net from a supply set
associated with the switch.
See also create_power_switch (6.21).

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The map_power_switch command can be used to explicitly specify which power-switch model is to be
used for the corresponding switch instance.

-lib_cells specifies the set of library cells to which an implementation can be mapped. Each cell specified
in -lib_cells shall be defined by a define_power_switch_cell command (see 7.6) or defined in the Liberty
file with required attributes.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

122

If -port_map is not specified, the ports of the switch instance are associated to library cell ports by
matching the respective port names, this is named association. It shall be an error if any ports on either the
switch instance or the library cell are not mapped when named association is used.

It shall be an error if switch_name_list is an empty list.

NOTE—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, logical
equivalence checking tools may not be able to verify the equivalence of the mapped element to its RTL specification.

Syntax example

map_power_switch switch_sw1
-domain test_suite
-lib_cells {sw1}
-port_map {{inp1 vin1} {inp2 vin2} {outp vout}

{c1 ctrl_small} {c2 ctrl_large}}

6.35 map_repeater_cell

Purpose Specify a list of implementation targets for repeaters.

Syntax

map_repeater_cell repeater_strategy_name
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-lib_cells lib_cell_list]

Arguments

repeater_strategy_name The repeater strategy as defined by set_repeater command (see 6.48).

-domain domain_name The domain for which the set_repeater strategy is defined.

-elements element_list A list of ports from the repeater_strategy_name to which the command
applies.

-exclude_elements
exclude_list

A list of ports from the repeater_strategy_name to which this command
does not apply.

-lib_cells lib_cell_list A list of library cell names.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The map_repeater_cell command provides user control for specifying implementation choices for the
set_repeater strategy through -lib_cells option.

Both single-rail and dual-rail repeaters as well as any custom repeater can be specified in the lib_cell_list.

-elements identifies elements from the effective_element_list (see 5.9) from the repeater strategy
repeater_strategy_name. If -elements is not specified, the aggregate_element_list for this command
contains all the elements from the effective_element_list of the repeater_strategy_name.

It shall be an error if:

 domain_name does not indicate a previously created power domain.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

123

 repeater_strategy_name does not exist.

 element_list is empty.

Syntax example

map_repeater_cell my_rep1_pd1 -domain PD1
-elements { clk1 rst1 clkout1 rstout1 }
-lib_cells { aon_clk_bufx2 }

6.36 map_retention_cell

Purpose Constrain implementation alternatives, or specify a functional model, for retention strategies.

Syntax

map_retention_cell retention_name_list
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-lib_cells lib_cell_list]
[-lib_cell_type lib_cell_type]
[-lib_model_name name -port_map {{port_name net_ref } *}]

Arguments

retention_name_list A list of target retention strategy names defined in domain_name using
set_retention commands (see 6.49).

-domain domain_name The domain in which the strategies are defined.

-elements element_list A list of instances, named processes, state elements, or signal names
whose respective sequential elements shall be mapped as specified.

-exclude_elements
exclude_list

A list of instances, named processes, or state elements or signal names
whose respective sequential elements shall be excluded from mapping.

-lib_cells lib_cell_list
A list of library cell names. Each cell in the list has retention behavior and
is otherwise identical to the inferred RTL behavior of the underlying
sequential element.

-lib_cell_type
lib_cell_type

The attribute of the library cells used to identify cells that have retention
behavior and are otherwise identical to the inferred RTL behavior of the
underlying sequential element.

-lib_model_name
model_name
-port_map {{port_name
net_ref } *}

The name of the library cell or behavioral model and associated port
connectivity.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The map_retention_cell command constrains retention strategy implementation choices and may also
specify functional retention behavior for verification.

-elements identifies state elements in the specified domain for which retention registers have been inferred
from the effective_element_list (see 5.9) from a retention strategy in retention_name_list. If -elements is
not specified, the aggregate_element_list for this command contains all state elements in the specified
domain for which retention registers have been inferred from some strategy in the retention_name_list.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

124

It shall be an error if at least one of -lib_cells, -lib_cell_type, or -lib_model_name is not specified.

 If -lib_cells is specified, each cell shall be either defined by the define_retention_cell command
(see 7.7) or defined in the Liberty file with required attributes; If -lib_cells is specified, a retention
cell from lib_cell_list shall be used; if -lib_cell_type is specified, a retention cell with the same
type string specified by define_retention_cell -cell_type shall be used to implement the
functionality specified by the corresponding retention strategy; if -lib_cells and -lib_cell_type are
both specified, a retention cell from lib_cell_list that is also defined with the same type string in
define_retention_cell -cell_type shall be used. Verification semantics are unchanged by the
presence or absence of -lib_cells or -lib_cell_type.

 If -lib_model_name is specified, model_name shall be used as the verification model, and supply
and logic ports shall be connected as specified by -port_map options; automatic corruption and
retention verification semantics do not apply to a -lib_model_name model.

 If -lib_model_name is not specified, the verification semantic is that of the inferred RTL behavior
of the underlying sequential element modified by the retention behavior prescribed by the
applicable set_retention strategy.

Table 7 summarizes the semantics for combinations of -lib_cells, -lib_cell_type, and -lib_model_name.

Table 7 —map_retention_cell option combinations

-lib_cells -lib_cell_type -lib_model_name Verification
semantic

Implementation cell
constrained to

N N N ERROR ERROR

N N Y model_name model_name

N Y N RTL with retention lib_cell_type

N Y Y model_name lib_cell_type

Y N N RTL with retention lib_cell_list

Y N Y model_name lib_cell_list

Y Y N RTL with retention A cell from lib_cell_list
that also has lib_cell_type

Y Y Y model_name A cell from lib_cell_list
that also has lib_cell_type

For verification, an inferred register is assumed to have the following generic canonical interface:

 CLOCK—The signal whose rising edge triggers the register to load data.

 DATA—The signal whose value represents the next state of the register.

 ASYNC_LOAD—The signal that causes the register to load data when its value is one (1).

 OUTPUT—The signal that propagates the register output to the receivers of the register.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

125

-port_map connects the specified net_ref to a port of the model. A net_ref may be one of the following:

a) A logic net name

b) A supply net name

c) One of the following symbolic references

1) retention_supply.function_name

This names a retention supply set function, where function_name refers to the supply net
corresponding to the function it provides to the retention supply set of the retention cell (see
6.49).

2) primary_supply.function_name

This names a primary supply set function, where function_name refers to the supply net
corresponding to the function it provides to the primary supply set of the domain.

3) save_signal

i) Refers to the save signal specified in the corresponding retention strategy.

ii) To invert the sense of the save signal, the SystemVerilog bit-wise negation operator ~ can
be specified before the net_ref. The logic inferred by the negation shall be implicitly
powered by the retention supply set of the retention cell (see 6.49).

4) restore_signal

i) Refers to the restore signal specified in the corresponding retention strategy.

ii) To invert the sense of the restore signal, the SystemVerilog bit-wise negation operator ~
can be specified before the net_ref. The logic inferred by the negation shall be implicitly
powered by the retention supply set of the retention cell (see 6.49).

5) UPF_GENERIC_CLOCK

i) Refers to the canonical CLOCK.

ii) To invert the sense of the clock signal, the SystemVerilog bit-wise negation operator ~
can be specified before the net_ref. The logic inferred by the negation shall be implicitly
powered by the primary supply set of the domain.

6) UPF_GENERIC_DATA

i) Refers to the canonical DATA.

ii) To invert the sense of the data signal, the SystemVerilog bit-wise negation operator ~ can
be specified before the net_ref. The logic inferred by the negation shall be implicitly
powered by the primary supply set of the domain.

7) UPF_GENERIC_ASYNC_LOAD

i) Refers to the canonical ASYNC_LOAD.

ii) To invert the sense of the asynchronous load signal, the SystemVerilog bit-wise negation
operator ~ can be specified before the net_ref. The logic inferred by the negation shall be
powered by the primary supply set of the domain.

8) UPF_GENERIC_OUTPUT

i) Refers to the canonical OUTPUT.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

126

ii) To invert the sense of the output signal, the SystemVerilog bit-wise negation operator ~
can be specified before the net_ref. The logic inferred by the negation shall be implicitly
powered by the primary supply set of the domain.

If UPF_GENERIC_OUTPUT is not explicitly mapped and the model has exactly one output port, that
output port shall automatically be connected to the net that propagates the register output to the receivers of
the register.

NOTE—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, it may not
be possible for logical equivalence checking tools to verify the equivalence of the mapped element to its RTL
specification.

It shall be an error if:

 retention_name_list is an empty list.

 domain_name does not indicate a previously created power domain.

 A retention strategy in retention_name_list does not indicate a previously defined retention
strategy.

 An element in element_list is not included in the element list of a targeted retention strategy.

 Any retention strategy in retention_name_list does not specify signals needed to provide
connection of the mapped functions.

 After completing the port and net_ref connections, any input port is unconnected, or no output port
is connected to the net that propagates the register output to the receivers of the register.

 In implementation, none of the specified models in lib_cell_list implements the functionality
specified by a targeted retention strategy.

 In implementation, none of the specified models having a lib_cell_type attribute implements the
functionality specified by a targeted retention strategy.

 In implementation, none of the specified models in lib_cell_list that have a lib_cell_type attribute,
when both are specified, implements the functionality specified by a targeted retention strategy.

Syntax example

map_retention_cell {my_PDA_ret_strat_1 my_PDA_ret_strat_2
my_PDA_ret_strat_3}

 -domain PowerDomainA
 -elements {foo/U1 foo/U2}
 -lib_cells {RETFFIMP1 RETFFIMP2}
 -lib_cell_type FF_CKLO
 -lib_model_name RETFFVER -port_map {
 {CP UPF_GENERIC_CLOCK}
 {D UPF_GENERIC_DATA}
 {SET UPF_GENERIC_ASYNC_LOAD}
 {SAVE save_signal}
 {RESTORE restore_signal}
 {VDDC primary_supply.power}
 {VDDRET retention_supply.power}
 {VSS primary_supply.ground} }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

127

6.37 name_format

Purpose Define the format for constructing names of implicitly created objects.

Syntax

name_format
[-isolation_prefix pattern] [-isolation_suffix pattern]
[-level_shift_prefix pattern] [-level_shift_suffix pattern]
[-implicit_supply_suffix string]
[-implicit_logic_prefix string] [-implicit_logic_suffix string]

Arguments

-isolation_prefix
pattern

The pattern used to construct a string that is prepended in front of an
existing signal or port name to create a new name used during the
introduction of a new isolation cell. The default value is the empty string
"" or NULL.

-isolation_suffix pattern

The pattern used to construct a string that is appended to the end of an
existing signal or port name to create a new name used during the
introduction of a new isolation cell. The default value is the string
_UPF_ISO.

-level_shift_prefix
pattern

The pattern used to construct a string that is prepended in front of an
existing signal or port name to create a new name used during the
introduction of a new level-shifter cell. The default value is the empty
string "" or NULL.

-level_shift_suffix
pattern

The pattern used to construct a string that is appended to the end of an
existing signal or port name to create a new name used during the
introduction of a new level-shifter cell. The default value is the string
_UPF_LS.

-implicit_supply_suffix
string

The string appended to an existing supply net or port name to create a
unique name for an implicitly created supply net or port. The default value
is the string _UPF_IS.

-implicit_logic_prefix
string

The string prepended in front of an existing logic net or port name to
create a unique name for an implicitly created logic net or port. The default
value is NULL.

-implicit_logic_suffix
string

The string appended to an existing logic net or port name to create a
unique name for an implicitly created logic net or port. The default value is
the string _UPF_IL.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

Inferred objects have names in the logic design. The name for these objects is constructed as follows:

a) The base name of implicitly created objects is the name of the port or net being isolated or level-
shifted, or the supply net, logic net, or port implicitly created to facilitate the connection of a net
across hierarchy boundaries.

b) Any specified prefix is then prepended to the base name.

c) Any specified suffix is also appended to the base name.

d) If multiple prefixes or suffixes apply to the same object, they shall be added in the alphabetical
order of the option name, e.g., isolation_prefix followed by level_shift_prefix.

When a pattern has been specified to be used for a prefix or suffix, then this pattern shall be used to
generate the string. The pattern consists of a string with optional use of reserved variables that are
evaluated at the time of cell insertion.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

128

Variable Value

%d domain of the strategy inserting the cell

%s name of the strategy inserting the cell

%i instance index

If the generated name conflicts with another previously defined name in the same name space, the
generated name is updated to include an instance index which consists of an underscore (_) followed by a
positive integer. The value of the integer is the smallest number that makes the name unique in its name
space. In a pattern the %i reserved variable shall be substituted for this instance index, otherwise it shall be
added to the end of the suffix. An empty string ("") is a valid value for any prefix or suffix option.

Different prefixes and suffixes may be specified in multiple calls to name_format (using different
arguments). When name_format is specified with no options, the name format is reset to the default
values.

It shall be an error to specify an affix more than once.

Syntax example

 name_format -isolation_prefix "MY_ISO_" -isolation_suffix ""

A signal, MY_ISO_FOO, is created and connected to a new cell’s output (to isolate the existing net FOO).

name_format -level_shift_prefix "shift_%d_%s_" -level_shift_suffix "%i_UPF_LS"

For a strategy_name LS_IN, defined for domain PD, a signal named shift_PD_LS_IN_FOO_UPF_LS is
created and connected to a new cell’s output (to shift the existing net FOO). Alternatively if there is a name
conflict then the signal may use an index, e.g., shift_PD_LS_IN_FOO_1_UPF_LS.

6.38 save_upf

Purpose Create a UPF file of the structures relative to the active or specified scope.

Syntax save_upf upf_ file_name
[-scope instance_name]

Arguments
upf_file_name The UPF file to write.

-scope instance_name The scope relative to which the UPF commands are written.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The save_upf command creates a UPF file that contains the power intent specified for a given scope. The
power intent for that scope is written to file upf_ file_name. The output file is generated after the power
intent model has been constructed (see 8.3.3).

If -scope instance_name is specified, the power intent is written for the specified scope. It shall be an error
if this scope does not exist. Otherwise, the power intent is written for the current scope.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

129

The following also apply:

a) Each invocation of save_upf generates a separate UPF output file.

b) If save_upf is invoked for two scopes and one is an ancestor of the other, then the file generated for
the ancestor shall contain a duplicate of the information in the file generated for the other.

c) The following are equivalent:

save_upf <filename> -scope <instance>

and

set temp [set_scope <instance>]
save_upf <filename>
set_scope $temp

Syntax example

save_upf test_suite1_Jan14
-scope top/proc_1

6.39 set_correlated

Purpose To declare that supply nets’ or sets’ voltage variation ranges are to be treated as correlated when
being compared; min to min and max to max.

Syntax
set_correlated

[-nets {{supply_net_name_list}*}]
[-sets {{supply_set_name_list}*}]

Arguments

-nets
{{supply_net_name_list}*}

A list of sublists with each sublist declaring which nets to declare as
correlated.

-sets
{{supply_set_name_list}*}

A list of sublists with each sublist declaring which sets to declare as
correlated.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_correlated command declares that two or more supply ports, supply nets, or supply set functions
are correlated (see 4.5.8).

If -nets is specified, the command defines correlation for the specified supply ports, supply nets, and/or
supply set functions. If -sets is specified, the command defines correlation for the corresponding power
functions and for the corresponding ground functions of the specified supply sets. One or the other of these
options, but not both, shall be specified.

Supplies declared as equivalent (see 6.43) are always deemed to be correlated. However correlating
supplies using set_correlated does not declare the supplies to also be equivalent.

Syntax example

set_correlated -nets {{VDD1 VDD2}}
set_correlated -nets {{VDD1 VDD2} {VDD3 VDD4}}
set_correlated -sets {{SS1 SS2}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

130

6.40 set_design_attributes

Purpose Apply attributes to models or instances.

Syntax

set_design_attributes
[-models model_list]
[-elements element_list]
[-exclude_elements exclude_list]
[-attribute {name value}]*
[-is_soft_macro [<TRUE | FALSE>]]
[-is_hard_macro [<TRUE | FALSE>]]
[-switch_cell_type <coarse_grain | fine_grain>]

Arguments

-models model_list A list of models to be attributed.

-elements element_list A list of rooted names: instances, named processes, state elements, or
signal names.

-exclude_elements
exclude_list

A list of rooted names: instances, named processes, state elements, or
signal names to exclude from the effective_element_list (see 5.9).

-attribute {name value} For the specified models or elements, associate the attribute name with the
value of value. See Table 4.

-is_soft_macro
[<TRUE | FALSE>]

If -is_soft_macro is not specified at all, the default is FALSE.
If -is_soft_macro is specified without a value, the default value is TRUE.
Equivalent to -attribute {UPF_is_soft_macro value} (see 5.6).

-is_hard_macro
[<TRUE | FALSE>]

If -is_hard_macro is not specified at all, the default is FALSE. If
-is_hard_macro is specified without a value, the default value is
TRUE.
Equivalent to -attribute {UPF_is_hard_macro value} (see 5.6).

-switch_cell_type
<coarse_grain |
fine_grain>

If specified, identifies the switch cell type of the model. Equivalent
to -attribute {UPF_switch_cell_type value} (see 5.6).

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_design_attributes command sets the specified attributes for models or elements. Models are
referenced using -models; instances are referenced using -elements. If -models is specified and the
model_list is . (a dot), the command applies to the model corresponding to the current scope.

Certain predefined attributes identify hard and soft macros. Other predefined attributes provide information
about power switches, simulation semantics, or retention requirements. Predefined attributes
UPF_is_hard_macro, UPF_is_soft_macro, UPF_switch_cell_type, and UPF_simstate_behavior can
only be specified for models; predefined attribute UPF_retention can only be defined for instances, named
processes, state elements, or signal names.

User-defined attributes may also be associated with a model or instance. The meaning of a user-defined
attribute is not specified by this standard. User-defined attributes can be specified for either a model or an
instance, or both.

If -models is specified, the command associates one or more attributes with each model in the model_list.

If -elements is specified, the command associates one or more attributes with each instance in the
element_list that is not also in the exclude_list.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

131

set_design_attributes -models can be specified in the topmost scope of a given model to define attributes
of ports of that model. In this case, the specification applies to all instances of the model in any design or
soft macro in which it is instantiated.

set_design_attributes -models can also be specified in a scope that is outside any of the models named in
the model list to define an attribute of a model if that attribute is not already defined for that model. In this
case, the specification applies to all instances of the model that are instantiated in the design or soft macro
in which the attribute is specified, from the design top scope down to, but not including, the leaf cell
instances of the design or soft macro. It shall be an error if an attribute of a given model is defined more
than once with different values within a design or a soft macro.

-is_hard_macro defines the UPF_is_hard_macro attribute for the specified model(s). If the attribute
UPF_is_hard_macro TRUE is associated with a model, then any instance of that model is considered to
be a hard macro instance (see 4.9.2.4.2). This can affect whether a port of the hard macro instance is on a
power domain boundary (see 6.20).

-is_soft_macro defines the UPF_is_soft_macro attribute for the specified model(s). If the attribute
UPF_is_soft_macro TRUE is associated with a model, then any instance of that model is considered to be
a soft macro instance (see 4.9.2.4.3). This creates a terminal boundary between the macro instance and its
parent context such that the power intent of soft macro is not affected by the power intent of the parent
context, and vice versa.

-switch_cell_type defines the UPF_switch_cell_type attribute for the specified model(s). This attribute
affects the selection of switch type in create_power_switch (see 6.21).

-attribute can be used to define user-defined attributes or predefined attributes UPF_retention (see 6.50)
and UPF_simstate_behavior (see 6.52).

It shall be an error if set_design_attributes is specified:

a) with neither -models nor -elements; or

b) with both -models and -elements; or

c) with -exclude_elements, but not -elements; or

d) without specifying at least one attribute.

Examples

set_design_attributes -models {lock_cache}
-attribute {UPF_is_soft_macro TRUE}

set_design_attributes -models FIFO
-attribute {UPF_is_hard_macro TRUE}

set_design_attributes -models -is_hard_macro

6.41 set_design_top

Purpose Specify the design top module.

Syntax set_design_top design_top_module

Arguments design_top_module The top module for which a UPF file was written.

Return value Return an empty string.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

132

The set_design_top command specifies the module for which this UPF file was written. See 4.3.7.

It is not an error if the instance to which this UPF file is applied is not an instance of the specified module.
In particular, as long as the actual module has the same structure as the specified module, it may be
possible to apply this UPF file to that module without errors. In this case, a tool may choose to issue a
warning message.

Syntax example

set_design_top ALU07

6.42 set_domain_supply_net (legacy)

Purpose Set the default power and ground supply nets for a power domain.

Syntax
set_domain_supply_net domain_name

-primary_power_net supply_net_name
-primary_ground_net supply_net_name

Arguments

domain_name The domain where the default supply nets are applied.

-primary_power_net
supply_net_name The primary power supply net.

-primary_ground_net
supply_net_name The primary ground net.

Return value Return a 1 if successful or raise a TCL_ERROR if not.

This is a legacy command; see also 6.2 and Annex D.

The set_domain_supply_net command associates the power and ground supply nets with the primary
supply set for the domain.

The primary supply set’s power and ground functions for the specified domain are associated with the
corresponding power and ground supply net.

It shall be an error if:

 domain_name does not indicate a previously created power domain.

 The primary supply set for domain_name already has a primary power or ground function
association.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

133

This command is semantically equivalent to

proc set_domain_supply_net {dn pp sn1 pg sn2} {
if { string equal $pp "-primary_power_net" \

&& string equal $pg "-primary_ground_net"}{
create_supply_set set_name -function {power $sn1}

-function {ground $sn2}
associate_supply_set set_name -handle $dn.primary

 return 1
} else {

 return -code TCL_ERROR \
-errorcode $ecode \
-errorinfo $einfo \
$resulttext

 } }

where any italicized arguments are implementation defined.

Syntax example

set_domain_supply_net PD1
-primary_power_net PG1
-primary_ground_net PG0

6.43 set_equivalent

Purpose Declare that supply nets or supply sets are electrically or functionally equivalent.

Syntax

set_equivalent
[-function_only]
[-nets supply_net_name_list]
[-sets supply_set_name_list]

Arguments

-function_only Specifies that the supplies are functionally equivalent rather than
electrically equivalent.

-nets
supply_net_name_list A list of supply port and/or supply net names that are equivalent.

-sets
supply_set_name_list A list of supply set names that are equivalent.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

The set_equivalent command declares that two or more supplies are equivalent (see 4.5.5).

If -function_only is specified, then the supplies are declared to be functionally equivalent only; otherwise
the supplies are declared to be electrically equivalent, which implies that they are also functionally
equivalent.

If -nets is specified, the command defines equivalence for a list of supply ports and/or supply nets. If -sets
is specified, the command defines equivalence for a list of supply sets and/or supply set handles. One or the
other of these options, but not both, shall be specified.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

134

Equivalence of supply ports and nets can affect the number of sources for a given supply network and
whether resolution is required (see 9.1). Equivalence of supply sets and supply set handles can affect
various commands whose semantics are based on supply set identity or equivalence, including
create_composite_domain (see 6.16), create_power_domain (see 6.20), set_isolation (see 6.44),
set_level_shifter (see 6.45), set_repeater (see 6.48), and set_port_attributes (see 6.47).

The declaration of a supply equivalence is a user constraint. It shall be an error if other information in the
HDL/UPF contradict the equivalence.

If the actual connections implementing electrical equivalence cannot be found in the HDL/UPF, then they
must be present outside the design.

Syntax example

set_equivalent -nets { vss1 vss2 ground }
set_equivalent -function_only -nets { vdd_wall vdd_battery }
set_equivalent -function_only -sets { /sys/aon_ss mem/PD1.core_ssh }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

135

6.44 set_isolation

Purpose Specify an isolation strategy.

Syntax

set_isolation strategy_name
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-source <source_domain_name | source_supply_ref >]
[-sink <sink_domain_name | sink_supply_ref >]
[-diff_supply_only [<TRUE | FALSE>]]
[-use_equivalence [<TRUE | FALSE>]]
[-applies_to <inputs | outputs | both>]
[-applies_to_boundary <lower | upper | both>]
[-applies_to_clamp <0 | 1 | any | Z | latch | value>]
[-applies_to_sink_off_clamp <0 | 1 | any | Z | latch | value>]
[-applies_to_source_off_clamp <0 | 1 | any | Z | latch | value>]
[-no_isolation]
[-force_isolation]
[-location <self | other | parent | fanout>]
[-clamp_value <0 | 1 | Z | latch | value | {<0 | 1 | Z | latch | value>*}>]
[-isolation_signal signal_list [-isolation_sense <high | low | {<high | low>*}>]]
[-isolation_supply supply_set_list]
[-name_prefix pattern] [-name_suffix pattern]
[-instance {{instance_name port_name}*}]
[-update]

Arguments

strategy_name The name of the isolation strategy.

-domain domain_name The domain for which this strategy is defined.

-elements element_list A list of instances or ports to which the strategy potentially applies. R

-exclude_elements
exclude_list A list of instances or ports to which the strategy does not apply. R

-source
<source_domain_name
| source_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of that domain. R

-sink
<sink_domain_name |
sink_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of that domain. R

-diff_supply_only
[<TRUE | FALSE>]

Indicates whether ports connected to other ports with the same supply
should be isolated. The default is -diff_supply_only TRUE if the
option is not specified at all; if -diff_supply_only is specified without
a value, the default value is TRUE.

R

-use_equivalence
[<TRUE | FALSE>]

Indicates whether to consider supply set equivalence.
If -use_equivalence is not specified at all, the default is
-use_equivalence TRUE; if -use_equivalence is specified
without a value, the default value is TRUE.

R

-applies_to <inputs |
outputs | both>

A filter that restricts the strategy to apply only to ports of a given
direction. R

-applies_to_boundary
<lower | upper | both>

Restricts the application of filters to specified boundary. Default is
both. R

-applies_to_clamp <0 |
1 | any | Z | latch |
value>

A filter that restricts the strategy to apply only to ports with a
particular clamp value requirement. R

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

136

-applies_to_sink_off_
clamp <0 | 1 | any | Z |
latch | value>

A filter that restricts the strategy to apply only to ports with a
particular sink off clamp value requirement. R

-applies_to_source_off
_clamp <0 | 1 | any | Z
| latch | value>

A filter that restricts the strategy to apply only to ports with a
particular source off clamp value requirement. R

-no_isolation Specifies that isolation cells shall not be inserted on the specified
ports. R

-force_isolation

Disables any implementation optimization involving isolation cells
for a given strategy; used to force redundant isolation or to keep
floating/constant ports that have an isolation strategy defined for
them.

R

-location <self | other |
parent | fanout>

The location in which inferred isolation cells are placed in the logic
hierarchy, which determines the power domain in which they shall be
inserted. The default is self.

R

-clamp_value <0 | 1 | Z
| latch | value | {<0 | 1 |
Z | latch | value>*}>

The value(s) that the isolation cell can drive. R

-isolation_signal
signal_list [-
isolation_sense <high |
low | {<high | low>*}>]

The isolation control signal for the isolation cell. R

-isolation_sense
{<high | low>*}

The active level of the isolation control signal for the isolation cell.
The default is high. R

-isolation_supply
supply_set_list The supply set that powers the isolation cell. R

-name_prefix pattern
-name_suffix pattern

The name format (prefix and suffix) for generated isolation instances
or nets related to implementation of the isolation strategy. R

-instance {{instance_
name port_name}*}

The name of a technology leaf cell instance and the name of the logic
port that it isolates. R

-update
Indicates that this command provides additional information for a
previous command with the same strategy_name and domain_name
and executed in the same scope.

R

Legacy
arguments

-isolation_power_net
net_name

This option specifies the supply net used as the power for the isolation
logic inferred by this strategy.
This is a legacy option; see also 6.2 and Annex D.

R

-isolation_ground_net
net_name

This option specifies the supply net used as the ground for the
isolation logic inferred by this strategy.
This is a legacy option; see also 6.2 and Annex D.

R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_isolation command defines an isolation strategy for ports on the interface of a power domain (see
6.20). An isolation strategy is applied at the domain boundary, as required, so that correct electrical and
logical functionality is maintained when domains are in different power states.

-domain specifies the domain for which this strategy is defined.

-elements explicitly identifies a set of candidate ports to which this strategy potentially applies. The
element_list may contain rooted names of instances or ports in the specified domain. If an instance name is

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

137

specified in the element_list, it is equivalent to specifying all the ports of the instance in the element_list,
but with lower precedence (see 5.7). Any element_lists specified on the base command and any
elements_lists specified in any updates (see -update) of the base command are all combined into a single
elements list. If -elements is not specified in the base command or any update, every port on the interface
of the domain is included in the aggregate_element_list (see 5.9).

-exclude_elements explicitly identifies a set of ports to which this strategy does not apply. The exclude_list
may contain rooted names of instances or ports in the specified domain. If an instance name is specified in
the exclude_list, it is equivalent to specifying all the ports of the instance in the exclude_list. Any
exclude_lists specified on the base command or any updates of the base command are combined into the
aggregate_exclude_list (see 5.9).

The arguments -source, -sink, -diff_supply_only, -applies_to, -applies_to_clamp, -applies_to_sink_off
_clamp, and -applies_to_source_off_clamp serve as filters that further restrict the set of ports to which a
given set_isolation command applies. The command only applies to those ports that satisfy all of the
specified filters.

The -source option specifies the simple name, rooted name, or design-relative hierarchical name (see
5.3.3.4) of a power domain or supply set. -source is satisfied by any port that is driven by logic powered by
a supply set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-
shifting cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

The -sink option specifies the simple name, rooted name, or design-relative hierarchical name (see 5.3.3.4)
of a power domain or supply set. -sink is satisfied by any port that is received by logic powered by a supply
set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-shifting
cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

NOTE—A port that does not have a driver will never satisfy the -source filter. A port that does not have a receiver will
never satisfy the -sink filter.

-diff_supply_only TRUE is satisfied by any port for which the driving logic and receiving logic are
powered by supply sets that do not match (see -use_equivalence), or for which either driving or receiving
or both supply sets cannot be determined. -diff_supply_only FALSE is satisfied by any port.

-use_equivalence specifies whether supply set equivalence is to be considered in determining when two
supply sets match. If -use_equivalence is specified with the value False, the -source and -sink filters shall
match only the named supply set; the -diff_supply_only TRUE filter shall be satisfied only if the driver
supply and receiver supply of the port are not identical. Otherwise, the -source and -sink filters shall match
the named supply set or any supply set that is equivalent to the named supply set; the -diff_supply_only
TRUE filter shall be satisfied only if the driver supply and receiver supply of the port are neither identical
nor equivalent.

-applies_to is satisfied by any port that has the specified mode. For upper boundary ports, this filter is
satisfied when the direction of the port matches. For lower boundary ports, this filter is satisfied when the
inverse of the direction of the port matches. For example, a lower boundary port with a direction OUT
would satisfy the -applies_to inputs filter, because an output from a lower boundary port is an input to this
domain. -applies_to is always relative to the specified domain.

-applies_to_clamp, -applies_to_sink_off_clamp, and -applies_to_source_off_clamp are satisfied by any
port that has the specified value for the UPF_clamp_value, UPF_sink_off_clamp_value, or
UPF_source_off_clamp_value port attribute, respectively.

-applies_to_boundary restricts the application of filters to specified boundary. The default value is both.
It shall be an error if -applies_to_boundary lower is specified and there is no lower boundary associated
with the power domain interface.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

138

The effective_element_list (see 5.9) for this command consists of all the port names in the
aggregate_element_list that are not also in the aggregate_exclude_list and that satisfy all of the filters
specified in the command. If a port in the effective_element_list is not on the interface of the specified
domain, it shall not be isolated.

If a given port name is referenced in the effective_element_list of more than one isolation strategy of a
given domain, the precedence rules (see 5.7) determine which of those strategies actually apply to that port
name. If the precedence rules identify multiple strategies that apply to the same port name, then those
strategies shall each have a -sink filter that matches the receiving supply of a different sink domain for the
specified port. It shall be an error if the precedence rules identify multiple strategies that apply to the same
port name such that more than one strategy applies to the same sink domain for that port.

If -no_isolation is specified, then isolation is not inferred for any port in the effective_element_list.

If -force_isolation is specified, then isolation is inferred for each port in the effective_element_list and the
inferred isolation cells are not to be optimized away, even if such optimization does not change the
behavior of the design.

If neither -no_isolation nor -force_isolation is specified, then isolation is inferred for each port in the
effective_element_list, and implementation tools are free to optimize away isolation cells that are
redundant, provided that such optimization does not change the behavior of the design.

-location determines the location domain into which an isolation cell is to be inserted.

self—the isolation cell shall be placed inside the self domain, i.e., the domain whose port is being
isolated (the default).

parent—the isolation cell shall be placed in the parent domain (see 3.1) of the port being isolated.
It shall be an error if the port is a port of a design top module, or if the port is a lower boundary
port.

other—the isolation cell shall be placed in the parent domain (see 3.1) for an upper boundary port,
and in the child domain (see 3.1) for a lower boundary port. It shall be an error if an upper
boundary port is a port of a design top module, or if a lower boundary port is a port of a leaf cell.

fanout—the isolation cell shall be placed in each fanout domain (see 3.1).

An isolation cell shall be inserted within the location domain at a port (or ports) on the location domain
boundary. The isolation cell shall be inserted into the instance that contains the port at which the isolation
cell is inserted.

If -location fanout is specified, the isolation cell shall be inserted at the port on the location domain
boundary that is closest to the receiving logic. If the receiving logic is in a macro cell instance, the isolation
cell shall be inserted at the input port of that macro cell instance, on the lower boundary of the location
domain; otherwise the isolation cell shall be inserted at the location domain port that is driven by the port to
which the strategy applies.

If -location fanout is not specified, and -sink domain_name is specified, then the sink domain determines
whether the isolation cell is inserted at an input port or an output port of the location domain. If
domain_name is the name of the location domain, then the isolation cell is inserted at the location domain
input port; otherwise an isolation cell is inserted at each location domain output port that drives domain
domain_name.

If neither -location fanout nor -sink domain_name are specified, then the isolation cell is inserted at the
port of the location domain that is (for the self domain), or corresponds to (for the parent or child domain),
the port to which the strategy applies.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

139

If any pair of isolation cells are inferred from two different isolation strategies for ports of two different
power domains along the same path from a driver to a receiver, and the -location specified results in both
cells being inserted into the same domain, then the two isolation cells shall be inserted such that the
isolation cell contributed by the source domain is placed closer to the driving logic and the isolation cell
contributed by the sink domain is placed closer to the receiving logic.

If isolation cell insertion is inferred for different paths from a port, the -location specified explicitly or
implicitly by the strategy shall be such that the isolation cell(s) can be inserted without splitting the port
into multiple ports. It shall be an error if an isolation strategy for a port cannot be implemented without
duplicating the port.

The -clamp_value, -isolation_signal and -isolation_sense, and -isolation_supply options are each
specified as a single value or a list. If any of these options specify a list, then all lists specified for these
options shall be of the same length and any single value specified is treated as a list of values of the same
length. The tuples formed by associating the positional entries from each list shall be used to define
separate isolation requirements for the strategy. These tuples are applied to the isolation cell from the
isolation cell’s data input port to its data output port in the order in which they appear in each list. The
output of the isolation cell shall be the right-most value in the -clamp_value list whose corresponding
isolation signal is active.

-clamp_value specifies the value of the inferred isolation cell’s output when isolation is enabled. The
specification may be a single value or a list of values. Any of the following may be specified:

0 (the logic value 0)

1 (the logic value 1)

Z (the logic value Z)

latch (the value of the non-isolated port when the isolation signal becomes active)

value specifies a value that is legal for the type of the port, e.g., 255 might be specified for an
integer-typed port (perhaps constrained to an unsigned 8-bit range).

It shall be an error if -clamp_value is not specified.

Verification shall issue an error when a UPF_sink_off_clamp_value, UPF_source_off_clamp_value, or
UPF_clamp_value requirement is violated.

-isolation_signal identifies the control signal for each clamp value specified by -clamp_value.

-isolation_sense specifies the value that enables isolation, for each signal specified by -isolation_signal.

-isolation_supply specifies the supply set(s) that shall be used to power the inferred isolation cell,
including the logic receiving the isolation signal(s). The isolation supply set(s) specified by
-isolation_supply are implicitly connected to the isolation logic inferred by this command.

In verification, while the isolation control signal is asserted,

 if -isolation_supply is not specified, then the output of the inferred isolation cell shall be corrupted
only if the isolation control input is corrupted.

 if -isolation_supply specifies a supply set, then the output of the inferred isolation cell shall be
corrupted if the isolation control signal is corrupted or if the current power state of the specified
isolation supply set has a non-NORMAL simstate.

 if -isolation_supply is specified as an empty list (e.g., {}), then the output of the inferred isolation
cell shall be corrupted if the isolation control signal is corrupted or if the rail of the primary supply

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

140

set of the location domain required for the isolation cell’s clamp value has a supply state other than
FULL_ON. In this case, it shall be an error if it is not possible to determine the state of the rail that
is required for the clamp value.

For implementation tools, -isolation_supply shall be specified explicitly with either a supply set or an
empty list argument. It shall be an error if -isolation_supply is not explicitly specified for an isolation
strategy present in a UPF power intent specification that is input to an implementation tool.

Implementation tools shall implement the power intent such that the behavior of the implementation is
consistent with the behavior defined above for verification. The specific implementation may vary based on
the available cells in the target technology library and optimization decisions made by the tool.

-name_prefix specifies the pattern to generate the substring to place at the beginning of any generated
name implementing this strategy (see 6.37).

-name_suffix specifies pattern to generate the substring to place at the end of any generated name
implementing this strategy (see 6.37).

-instance specifies that the isolation functionality exists in the HDL design and instance_name denotes the
instance-providing part or all of this functionality. An instance_name is a simple name, rooted name, or
design-relative hierarchical name (see 5.3.3.4). If an empty string appears as an instance_name, this
indicates that an instance was created and then optimized away. Such an instance shall not be re-inferred or
reimplemented by subsequent tool runs.

In this case, the following also apply:

 Isolation enable signal(s) are automatically connected to one or more ports of an instance of a cell
defined by the library command define_isolation_cell (see 7.4). If the strategy specifies multiple
isolation enable signals, then the cell shall also be defined with both the -enable option and the
-aux_enables option (see 7.4), the first isolation enable signal shall be connected to the port
specified by the -enable option, and the rest of the signals shall be connected to the ports specified
by the -aux_enables option in the same order.

 If the strategy specifies a single isolation supply set, the supply nets of the set shall be
automatically connected to the primary supply ports of the isolation cell. If the strategy specifies
multiple isolation supply sets, the isolation enable ports shall have related power, ground, and bias
port attributes (see 6.47), and the supply nets of the isolation supply set corresponding to each
isolation enable signal shall be automatically connected to the supply ports matching the related
power, ground, and bias ports of the isolation enable port (see 7.4).

 If there are no supply ports on the instance, then the isolation supply set(s) specified in the strategy
shall be implicitly connected to the instance.

 It shall be an error if there is a single isolation enable signal and there is more than one port on the
library cell of the instance defined as isolation enable pin or aux enable pin (see 7.4).

-update adds information to the base command executed in the same scope. When specified with -update,
-elements and -exclude_elements are additive: the set of instances or ports in the aggregate_element_list
is the union of all -elements specifications given in the base command and any update of this command,
and the aggregate_exclude_list is the union of all -exclude_elements specifications given in the base
command and any update of this command.

Tools shall not use information about system power states to avoid inserting isolation as directed by these
strategies. However, tools may optionally use information about system power states to issue a warning that
certain strategies appear to be unnecessary.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

141

The following also apply:

 This command never applies to inout ports.

 It is erroneous if an isolation strategy isolates its own control signal.

 It shall be an error if -no_isolation is specified along with any of the following: -force_isolation,
-isolation_signal, -isolation_sense, -instance, -location, -name_prefix, -name_suffix,
-isolation_supply, -isolation_power_net, or -isolation_ground_net.

 It shall be an error if the isolation supply set is explicity specified and that supply set is not
available in the domain in which the isolation cell is inserted.

NOTE 1—To specify an isolation strategy for a port P on the lower boundary of a power domain D (see 4.4.2), a
set_isolation command can specify -domain D and specify the port name I/P, where I is the hierarchical name of
an instance that is instantiated in domain D but is not in the extent of domain D, and P is the simple name of the port of
that instance. The combination of the -domain specification and the hierarchical port name makes it clear that this
reference is to the HighConn of the specified port, which is part of the lower boundary of the domain D.

NOTE 2—The exclude_list in -exclude_elements can specify instances or ports that have not already been explicitly or
implicitly specified via an explicit or implied element_list.

NOTE 3—If a -diff_supply_only, -source, or -sink argument is used and instances are included in designs with
different power distribution or connectivity, the evaluation of the need for isolation may vary and cause a change in the
logical function of a block.

NOTE 4—Isolation clamp value port properties can be annotated in HDL using the attributes shown in 5.6. The same
attributes may be specified using the set_port_attributes command in 6.47.

NOTE 5—It is not an error if multiple isolation strategies apply to a connection from one domain to another domain.

Syntax example

set_isolation parent_strategy
 -domain pda
 -elements {a b c d}
 -isolation_supply {pda_isolation_supply}
 -clamp_value {1}
-applies_to outputs -sink pdb

set_isolation parent_strategy -update
-domain pda
-isolation_signal cpu_iso
-isolation_sense low -location parent

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

142

6.45 set_level_shifter

Purpose Specify a level-shifter strategy.

Syntax

set_level_shifter strategy_name
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-source <source_domain_name | source_supply_ref>]
[-sink <sink_domain_name | sink_supply_ref>]
[-use_equivalence [<TRUE | FALSE>]]
[-applies_to <inputs | outputs | both>]
[-applies_to_boundary <lower | upper | both>]
[-rule <low_to_high | high_to_low | both>]
[-threshold <value>]
[-no_shift] [-force_shift]
[-location <self | other | parent | fanout>]
[-input_supply supply_set_ref] [-output_supply supply_set_ref]
[-internal_supply supply_set_ref]
[-name_prefix pattern] [-name_suffix pattern]
[-instance {{instance_name port_name}*}]
[-update]

Arguments

strategy_name The name of the level-shifter strategy.

-domain domain_name The domain for which this strategy is defined.

-elements element_list A list of instances or ports to which the strategy potentially applies. R

-exclude_elements
exclude_list A list of instances or ports to which the strategy does not apply. R

-source
<source_domain_name
| source_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of that domain. R

-sink
<sink_domain_name |
sink_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of that domain. R

-use_equivalence
[<TRUE | FALSE>]

Indicates whether to consider supply set equivalence.
If -use_equivalence is not specified at all, the default is
-use_equivalence TRUE; if -use_equivalence is specified without a
value, the default value is TRUE.

R

-applies_to <inputs |
outputs | both>

A filter that restricts the strategy to apply only to ports of a given
direction. R

-applies_to_boundary
<lower | upper | both>

Restricts the application of filters to specified boundary. Default is
both. R

-rule <low_to_high |
high_to_low | both>

A filter that restricts the strategy to apply only to ports that require a
given level-shifting direction. The default is both. R

-threshold <value> A filter that restricts the strategy to apply only to ports that involve a
voltage difference above a certain threshold. The default is 0. R

-no_shift Specifies that level-shifter cells shall not be inserted on the specified
ports. R

-force_shift Disables any implementation optimization involving level-shifter cells
for a given strategy. R

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

143

-location <self | other |
parent | fanout | >

The location in which inferred level-shifter cells are placed in the
logic hierarchy, which determines the power domain in which they
shall be inserted. The default is self.

R

-input_supply
supply_set_ref The supply set used to power the input portion of the level-shifter. R

-output_supply
supply_set_ref The supply set used to power the output portion of the level-shifter. R

-internal_supply
supply_set_ref The supply set used to power internal circuits within the level-shifter. R

-name_prefix pattern
-name_suffix pattern

The name format (prefix and suffix) for generated level-shifter
instances or nets related to implementation of the level-shifting
strategy.

R

-instance
{{instance_name
port_name}*}

The name of a technology library leaf cell instance and the name of
the logic port that it level-shifts. R

-update
Indicates that this command provides additional information for a
previous command with the same strategy_name and domain_name
and executed in the same scope.

R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_level_shifter command defines a level-shifting strategy for ports on the interface of a power
domain (see 6.20). A level-shifter strategy is applied at the domain boundary, as required to correct for
voltage differences between driving and receiving supplies of a port.

-domain specifies the domain for which this strategy is defined.

-elements explicitly identifies a set of candidate ports to which this strategy potentially applies. The
element_list may contain rooted names of instances or ports in the specified domain. If an instance name is
specified in the element_list, it is equivalent to specifying all the ports of the instance in the element_list but
with lower precedence (see 5.7). Any element_lists specified on the base command and any elements_lists
specified in any updates (see -update) of the base command are all combined into a single elements list. If
-elements is not specified in the base command or any update, every port on the interface of the domain is
included in the aggregate_element_list (see 5.9).

-exclude_elements explicitly identifies a set of ports to which this strategy does not apply. The exclude_list
may contain rooted names of instances or ports in the specified domain. If an instance name is specified in
the exclude_list, it is equivalent to specifying all the ports of the instance in the exclude_list. Any
exclude_lists specified on the base command or any updates of the base command are combined into the
aggregate_exclude_list (see 5.9).

The arguments -source, -sink, -applies_to, -rule, and -threshold serve as filters that further restrict the set
of ports to which a given set_level_shifter command applies. The command only applies to those ports that
satisfy all of the specified filters.

The -source option specifies the simple name, rooted name, or design-relative hierarchical name (see
5.3.3.4) of a power domain or supply set. -source is satisfied by any port that is driven by logic powered by
a supply set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-
shifting cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

The -sink option specifies the simple name, rooted name, or design-relative hierarchical name (see 5.3.3.4)
of a power domain or supply set. -sink is satisfied by any port that is received by logic powered by a supply

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

144

set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-shifting
cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

NOTE—A port that does not have a driver will never satisfy the -source filter. A port that does not have a receiver will
never satisfy the -sink filter.

-use_equivalence specifies whether supply set equivalence is to be considered in determining when two
supply sets match. If -use_equivalence is specified with the value False, the -source and -sink filters shall
match only the named supply set. Otherwise, the -source and -sink filters shall match the named supply set
or any supply set that is equivalent to the named supply set.

-applies_to is satisfied by any port that has the specified mode. For upper boundary ports, this filter is
satisfied when the direction of the port matches. For lower boundary ports, this filter is satisfied when the
inverse of the direction of the port matches. For example, a lower boundary port with a direction OUT
would satisfy the -applies_to IN filter, because an output from a lower boundary port is an input to this
domain. -applies_to is always relative to the specified domain.

-applies_to_boundary restricts the application of filters to specified boundary. The default value is both.
It shall be an error if -applies_to_boundary lower is specified and there is no lower boundary associated
with the power domain interface.

-rule is satisfied by any port for which the driving and receiving logic have the specified voltage
relationship. If low_to_high is specified, a given port satisfies this filter if the voltage of its driver supply is
less than the voltage of its receiver supply. If high_to_low is specified, a given port satisfies this filter if the
voltage of its driver supply is greater than the voltage of its receiver supply. If -rule both is specified, a
given port satisfies this filter if would satisfy either -rule low_to_high or -rule high_to_low.

-threshold is satisfied by any port for which the magnitude of the difference between the driver and
receiver supply voltages can exceed a specified threshold value. The nominal power and ground of the
port’s driver supply are compared with the nominal power and ground of the port’s receiver supply to
determine if level-shifting is required. The variation ranges of respective power and ground supplies are
also considered. This option requires tools to use information defined in power states of the supplies
involved in a given interconnection between objects with different supplies. If -threshold is not specified,
it defaults to 0, which means that a level-shifter will be inserted for a given port if there is any voltage
difference.

The following algorithm illustrates how level-shifter insertion is determined. The algorithm below
considers only power rails and only does the analysis required for insertion when the input voltage is lower
than the output voltage (-rule low_to_high). A complete implementation must consider the ground rails
also and must also do the analysis for insertion when the input voltage is higher than the output voltage
(-rule high_to_low).

This algorithm is presented in terms of the voltage requirements of the legal, most-refined power states of
the supply sets providing power to the source and sink(s) of the port involved. The same algorithm could be
used for analysis based on the actual combinations of power rail values possible in a given implementation,
which must be sufficient to cover all the legal power states of the system, but may provide additional
supply combinations as well.

In the following, the references to "low_factor" and "high_factor" for a given supply object refer to the
variation factors specified by set_variation for a supply object S or for any supply object equivalent to S.

for each domain port P with a strategy R,
 a source whose supply is A, and sink whose supply is B,
 for each legal power state PSA of source supply A,
 for each legal power state PSB of sink supply B,
 if there is a legal power state containing {PSA, PSB} then

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

145

 /* Get the nominal values for power and
ground for both supply sets */

 A_nom_pwr = nominal voltage specified for A.power
in the supply expression for PSA;

 B_nom_pwr = nominal voltage specified for B.power
in the supply expression for PSB;

 /* Check first that this strategy R is applicable */
 if (A_nom_pwr < B_nom_pwr) and (R.rule == high_to_low) then

 return (NOT_APPLICABLE);
 end if;

 /* Check whether level shifting is required based only
on the nominal voltage */

 if (B_nom_pwr - A_nom_pwr > R.threshold) then
return (REQUIRED);

 end if;

 /* Determine the min/max voltage values possible given
the specified variation */

 A_var_min_pwr = A_nom_pwr * (low_factor for A.power);
 A_var_max_pwr = A_nom_pwr * (high_factor for A.power);
 B_var_min_pwr = B_nom_pwr * (low_factor for B.power);
 B_var_max_pwr = B_nom_pwr * (high_factor for B.power);

 /* Check whether level shifting is required based
only on the voltage variation ranges */

 if correlated (A,B) then
A_B_min_pwr_diff = B_var_min_pwr - A_var_min_pwr;
A_B_max_pwr_diff = B_var_max_pwr - A_var_max_pwr;
if (A_B_min_pwr_diff > R.threshold ||

A_B_max_pwr_diff > R.threshold) then
return (REQUIRED);

end if;
 else /* uncorrelated */

A_max_B_min_pwr_diff = B_var_max_pwr - A_var_min_pwr;
A_min_B_max_pwr_diff = B_var_min_pwr - A_var_max_pwr;
if (A_max_B_min_pwr_diff > R.threshold ||

A_min_B_max_pwr_diff > R.threshold) then
return (REQUIRED);

end if;
 end if; /* correlated(A,B) */

 return (NOT REQUIRED);
 end if;
 end for; /* each PSB */
 end for; /* each PSA */
end for; /* each P */

The effective_element_list (see 5.9) for this command consists of all the port names in the
aggregate_element_list that are not also in the aggregate_exclude_list and that satisfy all of the filters
specified in the command. If a port in the effective_element_list is not on the interface of the specified
domain, it shall not be level-shifted.

If a given port name is referenced in the effective_element_list of more than one level-shifting strategy of a
given domain, the precedence rules (see 5.7) determine which of those strategies actually apply to that port
name. If the precedence rules identify multiple strategies that apply to the same port name, then those

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

146

strategies shall each have a -sink filter that matches the receiving supply of a different sink domain for the
specified port. It shall be an error if the precedence rules identify multiple strategies that apply to the same
port name such that more than one strategy applies to the same sink domain for that port.

If -no_shift is specified, then level-shifting is not inferred for any port in the effective_element_list.

If -force_shift is specified, then level-shifting is inferred for each port in the effective_element_list and the
inferred level-shifting cells are not to be optimized away, even if such optimization does not change the
behavior of the design.

If neither -no_shift nor -force_shift is specified, then level-shifting is inferred for each port in the
effective_element_list, and implementation tools are free to optimize away level-shifting cells that are
redundant, provided that such optimization does not change the behavior of the design.

-location determines the location domain into which a level-shifter cell is to be inserted.

self—the level-shifter cell shall be placed inside the self domain, i.e., the domain whose port is
being shifted (the default).

parent—the level-shifter cell shall be placed in the parent domain (see 3.1) of the port being
shifted. It shall be an error if the port is a port of a design top module, or if the port is a lower
boundary port.

other—the level-shifter cell shall be placed in the parent domain (see 3.1) for an upper boundary
port, and in the child domain (see 3.1) for a lower boundary port. It shall be an error if an upper
boundary port is a port of a design top module, or if a lower boundary port is a port of a leaf cell.

fanout—the level-shifter cell shall be placed in each fanout domain (see 3.1).

A level-shifter cell shall be inserted within the location domain at a port (or ports) on the location domain
boundary. The level-shifter cell shall be inserted into the instance that contains the port at which the level-
shifter cell is inserted.

If -location fanout is specified, the level-shifter cell shall be inserted at the port on the location domain
boundary that is closest to the receiving logic. If the receiving logic is in a macro cell instance, the level-
shifter cell shall be inserted at the input port of that macro cell instance, on the lower boundary of the
location domain; otherwise the level-shifter cell shall be inserted at the location domain port that is driven
by the port to which the strategy applies.

If -location fanout is not specified, and -sink domain_name is specified, then the sink domain determines
whether the level-shifter cell is inserted at an input port or an output port of the location domain. If
domain_name is the name of the location domain, then the level-shifter cell is inserted at the location
domain input port; otherwise a level-shifter cell is inserted at each location domain output port that drives
domain domain_name.

If neither -location fanout nor -sink domain_name are specified, then the level-shifter cell is inserted at the
port of the location domain that is (for the self domain), or corresponds to (for the parent or child domain),
the port to which the strategy applies.

If the port at which the level-shifter is inserted is connected to the input or output of an isolation cell, or is
connected to the output of one isolation cell and the input of another isolation cell, the level-shifter is
inserted either immediately before, or immediately after, or between the isolation cell(s), as appropriate, to
achieve the best match between any explicitly specified input/output supplies of the strategy and the actual
driver/receiver supplies at each location.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

147

If multiple level-shifter strategies are defined that would insert a level-shifter at the same domain boundary,
any of those level-shifter strategies can be applied in any of the preceding locations, in either domain, either
singly or in combination. If two potential solutions match the driving and receiving supplies equally well,
the solution that applies a level-shifting strategy contributed by a domain closer to the receiving domain
shall be used.

-input_supply specifies the supply set connected to input supply ports of the level-shifter. The default is
the supply of the logic driving the level-shifter input. The default is used if and only if that supply set is
available in the domain in which the level-shifter will be located. It shall be an error if the default supply
set is required but is not available.

-output_supply specifies the supply set connected to the output supply ports of the level-shifter. The
default is the supply of the logic receiving the level-shifter output. The default is used if and only if that
supply set is available in the domain in which the level-shifter will be located. It shall be an error if the
default supply set is required but is not available.

Default input and output supply set definitions apply only if exactly one level-shifter strategy applies to a
given port, all drivers of that port have equivalent supplies, and all receivers of that port have equivalent
supplies. For more complex cases, the required supply sets should be explicitly specified.

If the level-shifter strategy is mapped to a library cell that requires only a single supply, then explicit
specification of an input supply set is not required, any explicit input supply set specification is ignored,
and the default input supply set does not apply; only the output supply set is used.

-internal_supply specifies the supply set that shall be used to provide power to supply ports that are not
related to the inputs or outputs of the level-shifter. There is no default supply set defined for
-internal_supply.

-name_prefix specifies the pattern to generate the substring to place at the beginning of any generated
name implementing this strategy (see 6.37).

-name_suffix specifies the pattern to generate the substring to place at the end of any generated name
implementing this strategy (see 6.37).

-instance specifies that the level-shifter functionality exists in the HDL design, and instance_name denotes
the instance-providing part or all of this functionality. An instance_name is a simple name or hierarchical
name rooted in the current scope. If an empty string appears as an instance_name, this indicates that an
instance was created and then optimized away. Such an instance shall not be re-inferred or reimplemented
by subsequent tool runs.

-update adds information to the base command executed in the same scope. When specified with -update,
-elements and -exclude_elements are additive: the set of instances or ports in the aggregate_element_list
is the union of all -elements specifications given in the base command and any update of this command,
and the aggregate_exclude_list is the union of all -exclude_elements specifications given in the base
command and any update of this command.

The following also apply:

 This command never applies to inout ports.

 The simstate semantics of all implicitly connected supply sets apply to the output of a level-shifter.

 It shall be an error if -no_shift is specified along with any of the following: -force_shift, -instance,
-location, -name_prefix, -name_suffix, -input_supply, -output_supply, or -internal_supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

148

 It shall be an error if there is a connection between a driver and receiver and all of the following apply:

1) The supplies powering the driver and receiver are at different voltage levels.

2) A level-shifter is not specified for the connection using a level-shifter strategy.

3) A level-shifter cannot be inferred for the connection by analysis of the power states of the
supplies to the driver and receiver.

 It shall be an error if the input supply set or output supply set is explicitly specified and that supply
set is not available in the domain.

NOTE 1—To specify a level-shifting strategy for a port P on the lower boundary of a power domain D, a
set_level_shifter command can specify -domain D and specify the port name I/P, where I is the hierarchical name
of an instance that is instantiated in domain D but is not in the extent of domain D, and P is the simple name of the port
of that instance. The combination of the -domain specification and the hierarchical port name makes it clear that this
reference is to the HighConn of the specified port, which is part of the lower boundary of the domain D.

NOTE 2—The exclude_list in -exclude_elements can specify instances or ports that have not already been explicitly or
implicitly specified via an explicit or implied element_list.

NOTE 3—It is not an error if multiple level-shifting strategies apply to a connection from one domain to another domain.

Syntax example

set_level_shifter shift_up
 -domain PowerDomainZ
 -applies_to inputs -source PowerDomainX.ss1
 -threshold 0.02
 -rule both
set_level_shifter TurnOffDefaultLS -domain PD -no_shift
//this turns off inference of a default level-shifter for ports on the
//upper boundary of domain PD

6.46 set_partial_on_translation

Purpose Define the translation of PARTIAL_ON.

Syntax set_partial_on_translation
<OFF | FULL_ON>

Arguments OFF | FULL_ON The value to use in place of PARTIAL_ON.

Return value Return the setting of the translation if successful or raise a TCL_ERROR if not.

This command causes translation of PARTIAL_ON to FULL_ON or OFF, as specified by the command
argument, for purposes of evaluating the power state of supply sets and power domains. If this command is
executed in a given run, the state of a supply set is evaluated after PARTIAL_ON is translated to
FULL_ON or OFF for each supply net in the set. If this command is not executed in a given run, no
translation of PARTIAL_ON is performed.

It shall be an error if this command is invoked with different values in the same UPF description.

Syntax example

set_partial_on_translation FULL_ON

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

149

6.47 set_port_attributes

Purpose Define information on ports.

Syntax

set_port_attributes
[-model name]
[-elements element_list]
[-exclude_elements element_exclude_list]
[-ports port_list]
[-exclude_ports port_exclude_list]
[-applies_to <inputs | outputs | inouts | {<inputs | outputs | inouts >*}>]
[-attribute {name value}]*
[-clamp_value <0 | 1 | any | Z | latch | value>]
[-sink_off_clamp <0 | 1 | any | Z | latch | value>]
[-source_off_clamp <0 | 1 | any | Z | latch | value>]
[-driver_supply supply_set_ref]
[-receiver_supply supply_set_ref]
[-literal_supply supply_set_ref]
[-pg_type pg_type_value]
[-related_power_port supply_ port_name]
[-related_ground_port supply_ port_name]
[-related_bias_ports supply_ port_name_list]
[-feedthrough]
[-unconnected]
[-is_analog]
[-is_isolated]

Arguments

-model name A module or library cell whose ports are to be attributed.

-elements element_list A list of instances whose ports are to be attributed.

-exclude_elements
element_exclude_list A list of instances whose ports are to be excluded from the command.

-ports port_list A list of simple names (if used with -model) or rooted names (otherwise)
of ports to be attributed.

-exclude_ports
port_exclude_list A list of ports to be excluded from the command.

-applies_to <inputs |
outputs | inouts |
{<inputs | outputs |
inouts >*}>

Indicates whether the specified input ports, output ports, inout ports, or any
list of these three choices, are to be attributed.

-attribute {name value} The attribute name and value pair to be associated with the specified ports.

-clamp_value <0 | 1 |
any | Z | latch | value>

The clamp requirement.
Equivalent to -attribute {UPF_clamp_value value} (see 5.6).

-sink_off_clamp <0 | 1 |
any | Z | latch | value>

The clamp requirement when the sink domain’s primary supply is not
NORMAL.
Equivalent to -attribute {UPF_sink_off_clamp_value value} (see 5.6).

-source_off_clamp <0 |
1 | any | Z | latch |
value>

The clamp requirement when the source domain’s primary supply is not
NORMAL.
Equivalent to -attribute {UPF_source_off_clamp_value value} (see 5.6).

-driver_supply
supply_set_ref

The supply set used by drivers of the port.
Equivalent to -attribute {UPF_driver_supply supply_set_ref } (see 5.6).

-receiver_supply
supply_set_ref

The supply set used by receivers of the port.
Equivalent to -attribute {UPF_receiver_supply supply_set_ref } (see 5.6).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

150

-literal_supply
supply_set_ref

The supply set used to model a literal value associated with an instance port.
Equivalent to -attribute {UPF_literal_supply supply_set_ref } (see 5.6).

-pg_type pg_type_value The pg_type port.
Equivalent to -attribute {UPF_pg_type pg_type_value} (see 5.6).

-related_power_port
supply_ port_name

The power port for the attributed port. Equivalent to -attribute
{UPF_related_power_port supply_ port_name} (see 5.6).

-related_ground_port
supply_ port_name

The ground port for the attributed port. Equivalent to -attribute
{UPF_related_ground_port supply_ port_name} (see 5.6).

-related_bias_ports
supply_ port_name_list

The bias port(s) for the attributed port. Equivalent to -attribute
{UPF_related_bias_ports supply_ port_name_list} (see 5.6).

-feedthrough Indicates that the specified ports are connected together internally to form a
feedthrough. Equivalent to -attribute {UPF_feedthrough TRUE} (see 5.6).

-unconnected Indicates that the specified ports are not connected at all internally.
Equivalent to -attribute {UPF_unconnected TRUE} (see 5.6).

-is_isolated
Indicates that the specified ports are internally isolated and do not require
external isolation. Equivalent to -attribute {UPF_is_isolated TRUE}
(see 5.6).

-is_analog Indicates that the specified ports are analog ports. Equivalent to -attribute
{UPF_is_analog TRUE} (see 5.6).

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_port_attributes command specifies information associated with ports of models or instances.
Model ports are referenced using -model; instance ports are referenced using either -elements or -ports
without -model. If -model is specified and the model name is . (a dot), the command applies to the model
corresponding to the current scope.

Certain predefined attributes identify a port’s related supplies and in doing so may define the lower
boundary of a power domain; other predefined attributes provide information relevant to isolation and
level-shifting insertion. Predefined attribute UPF_literal_supply can only be specified for instance ports;
all other predefined attributes can only be specified for model ports.

User-defined attributes may also be associated with a port. The meaning of a user-defined attribute is not
specified by this standard. User-defined attributes can be specified for either model ports or instance ports,
or both.

The set of ports attributed is determined as follows:

a) A set of candidate ports is first identified. This set includes the following:

1) If -elements is specified, all ports of each instance named in the elements list are included in
the candidate set, including any logic ports inferred from create_logic_port (see 6.19), but
excluding any supply ports.

2) If -ports is specified, each port named in the ports list is included in the candidate set.

3) If -model and -ports are specified, each port of the named module or library cell named in the
ports list is included in the candidate set.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

151

b) The candidate set is then restricted to those ports that satisfy any filters specified. A port is removed
from the candidate set if:

1) The port name appears in the -exclude_ports list.

2) The port is a port on an instance named in the -exclude_elements list.

3) The port direction is not consistent with any of the directions identified by the -applies_to
option.

c) The resulting restricted set is the set of ports to be attributed.

If a given port is included in the final candidate set of ports of more than one set_port_attributes
command, the precedence rules (see 5.7) determine which of those set_port_attributes commands actually
apply to that port.

If -model is specified, the port attributes are applied to the selected ports of the model. In this case, only
simple names that are declared in the model may be referenced in arguments to this command and all
names are interpreted relative to the topmost scope of the model. If -model is not specified, the port
attributes are applied to the selected instance ports. In this case, only rooted names of instance ports may be
referenced in this command, and all such names are interpreted relative to the current scope.

-model and -ports can be used to specify attributes for ports of a hard macro or soft macro. For example, if
ports of the macro are connected to each other by the same metal wire, i.e., a feedthrough connection, they
should have the UPF_feedthrough attribute set to TRUE. If a port is not connected to any logic inside the
macro, it should have the UPF_unconnected attribute set to TRUE.

set_port_attributes -model name can be specified in the topmost scope of the named model to define
attributes of ports of that model. In this case, the specification applies to all instances of the model in any
design or soft macro in which it is instantiated.

set_port_attributes -model name can also be specified in a scope that is outside the named model to
define an attribute of a port of the model if that attribute is not already defined for that port within the
model. In this case, the specification applies to all instances of the model that are instantiated in the design
or soft macro in which the attribute is specified, from the design top scope down to but not including the
leaf cell instances of the design or soft macro. It shall be an error if an attribute of a given port of a given
model is defined more than once with different values within a design or a soft macro.

-clamp_value defines the UPF_clamp_value attribute, which specifies the clamp value to be used if this
port has an isolation strategy applied to it.

-sink_off_clamp defines the UPF_sink_off_clamp_value attribute, which specifies the clamp requirement
when the supply set connected to the sink is in a power state with a corresponding simstate other than
NORMAL.

-source_off_clamp defines the UPF_source_off_clamp_value attribute, which specifies the clamp
requirement when the supply set connected to the source is in a power state with a corresponding simstate
other than NORMAL.

When a user-defined clamp value is specified for UPF_clamp_value or UPF_sink_off_clamp_value or
UPF_source_off_clamp_value, it shall be a legal value for the type of the port. A clamp value of any
specifies any clamp value legal for the port type is allowed. If the port needs to be isolated in a given
context, the specific clamp value to use shall be specified in a set_isolation command (see 6.44).

-driver_supply and -receiver_supply define the attributes UPF_driver_supply or UPF_receiver_supply,
respectively. These attributes can be used to specify the driver supply of a macro cell output port or the
receiver supply of a macro cell input port. They can also be used to specify the assumed driver supply of

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

152

external logic driving a primary input or to specify the assumed receiver supply of external logic receiving
a primary output, when the macro is implemented separately from the context in which it will be
instantiated. These attributes are ignored if applied to a port that is not on a macro boundary.

When the UPF_driver_supply attribute is defined for an output port, it specifies the driver supply of the
logic driving the port. If the driving logic is not present within the model or instance whose port is being
attributed, it is presumed the specified driver supply is the supply for the driver logic; therefore, the port is
corrupted when the driver supply is in a simstate other than NORMAL. For an output port with the
attribute UPF_driver_supply, when that port has a single source and the driving logic is present within the
model or instance whose port is being attributed, it shall be an error if the actual supply of the driving logic
is not the same as, or equivalent to, the specified driver supply. The actual supply of the driving logic is the
supply of the logic element driving this port after applying all strategies in the power intent, and therefore
may be the supply of a retention cell, a repeater cell, an isolation cell, or a level-shifter cell inserted by such
a strategy.

When the UPF_receiver_supply attribute is defined for an input port, it specifies the receiver supply of the
logic receiving the port. If the receiving logic is not present within the model or instance whose port is
being attributed, it is presumed the specified receiver supply is the supply for the receiving logic. For an
input port with the attribute UPF_receiver_supply, when that port has a single receiver supply and the
receiving logic is present within the model or instance whose port is being attributed, it shall be an error if
the actual supply of the receiving logic is not the same as, or equivalent to, the specified receiver supply.
The actual supply of the receiving logic is the supply of the logic element driven by this port after applying
all strategies in the power intent, and therefore may be the supply of a retention cell, a repeater cell, an
isolation cell, or a level-shifter cell inserted by such a strategy.

If UPF_driver_supply is not defined for a primary input port or UPF_receiver_supply is not defined for a
primary output port, the default driver supply or receiver supply, respectively, assumed to be the external
supply of that port for verification and implementation of this design, is an anonymous supply set that is not
equivalent to any other supply set.

The ports of the top-level module are always considered to be on a macro boundary with regards to
evaluating UPF_driver_supply and UPF_receiver_supply attributes.

NOTE—The scope in find_objects can be set to any scope that set_scope in a given UPF can reach. However,
find_objects is prohibited from initiating a search that starts in a lower scope that is a leaf cell or below a leaf cell with
respect to the current scope.

-pg_type defines the UPF_pg_type attribute on a supply port for use with automatic connection semantics.
pg_type_value is a string denoting the supply port type.

NOTE—UPF_pg_type only applies to supply ports and is the only predefined attribute that applies to supply ports. All
other attributes apply to logic ports.

If any of -related_power_port, -related_ground_port, or -related_bias_ports is specified, an implicit
supply set is created consisting of the supply nets connected to the specified ports. If -related_power_port
supply_ port_name and -related_ground_port supply_ port_name are specified, the specified
supply_ port_names shall be used as the power and ground functions, respectively, of the implicit supply
set. If -related_bias_ports supply_ port_name_list is specified, each port in the supply_ port_list shall have
a pg_type of nwell, pwell, deepnwell, or deeppwell, and each port shall be used as the appropriate
bias function of the implicit supply set, as indicated by the value of the associated attribute.

If the port being attributed is in mode, the related ports specify the UPF_receiver_supply attribute of the
port being attributed, as if the implicitly created supply set were specified as the -receiver_supply
argument. If the port being attributed is out mode, the related ports specify the UPF_driver_supply
attribute of the port being attributed, as if the implicitly created supply set were specified as the

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

153

-driver_supply argument. If the port being attributed is inout mode, the related ports specify both the
UPF_receiver_supply and the UPF_driver_supply attributes of the port being attributed, as if the
implicitly created supply set were specified as both the -receiver_supply and the -driver_supply
arguments.

By the previous definition, related supplies always refer to the driver and receiver supplies of the logic
inside a module.

-literal_supply defines the UPF_literal_supply attribute, which identifies the supply set to be used to
implement a literal constant value associated with an input port of an instance. It shall be an error if this
attribute is specified for an instance port that is not driven by a literal constant.

-feedthrough defines the UPF_feedthrough attribute, which identifies a set of ports on the interface of a
module or cell that are directly connected to each other inside the module or cell and therefore create a
feedthrough through the module or cell.

-unconnected defines the UPF_unconnected attribute, which identifies a port on the interface of a module
or cell that is not connected to either a source or sink within the module or cell and is not connected to any
other port on the interface of the module or cell.

-is_isolated defines the UPF_is_isolated attribute, which identifies a port on the interface of a module or
cell that is internally isolated and does not require external isolation.

-is_analog defines the UPF_is_analog attribute, which identifies a signal port on the interface of a module
or cell that is an analog port.

The following also apply:

 It shall be an error if -model is specified and -elements is also specified.

 It shall be an error if any predefined attribute other than attribute UPF_literal_supply is specified
without -model.

 It shall be an error if one of the attributes UPF_related_power_port and
UPF_related_ground_port is specified for a port, but not both.

 It shall be an error if attribute UPF_related_bias_ports is specified for a port, but either attribute
UPF_related_port_power or attribute UPF_related_ground_port is not specified for that port.

 It shall be an error if a supply port is included in -ports and that port has no UPF_pg_type
attribute.

 It shall be an error if UPF_pg_type is specified for a port that is not a supply port.

 It shall be an error if no argument is used.

 It shall be an error if -ports is specified and -elements is also specified.

 It shall be an error if attribute UPF_driver_supply or UPF_receiver_supply is specifed for a
macro port that also has the attribute UPF_unconnected associated with it.

 It shall be an error if an analog port appears in the element_list of a strategy.

 It shall be an error if an analog port is connected to a port that is not an analog port.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

154

Examples

Specifying clamp value constraints:

set_port_attributes -model M -ports {outP} -clamp_value 1

or

set_port_attributes -model M -ports {outP} -attribute {UPF_clamp_value "1"}

Specifying the driver supply for a model’s output port:

set_port_attributes -model M -ports {outP}
 -attribute {UPF_related_power_port "my_VDD"}

set_port_attributes -model M -ports {outP}
 -attribute {UPF_related_ground_port "my_VSS"}

set_port_attributes -model M -ports {outP}
 -attribute {UPF_related_bias_ports "my_VNWELL my_VPWELL"}

or

set_port_attributes -model M -ports {outP}
 -driver_supply localSS

Specifying the assumed driver supply for an model’s input port:

set_port_attributes -model M -ports {inP}
 -driver_supply aonSS

Specifying the literal supply for an instance’s input port:

set_port_attributes -ports {i1/inP}
 -literal_supply /top/aonSS

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

155

6.48 set_repeater

Purpose Specify a repeater (buffer) strategy.

Syntax

set_repeater strategy_name
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-source <source_domain_name | source_supply_ref >]
[-sink <sink_domain_name | sink_supply_ref >]
[-use_equivalence [<TRUE | FALSE>]]
[-applies_to <inputs | outputs | both>]
[-applies_to_boundary <lower | upper | both>]
[-repeater_supply supply_set_ref]
[-name_prefix string] [-name_suffix string]
[-instance {{instance_name port_name}*}]
[-update]

Arguments

strategy_name The name of the repeater strategy.
-domain domain_name The domain for which this strategy is defined.
-elements element_list A list of instances or ports to which the strategy potentially applies. R
-exclude_elements
exclude_list A list of instances or ports to which the strategy does not apply. R

-source
<source_domain_name |
source_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of the specified domain. R

-sink
<sink_domain_name |
sink_supply_ref >

The name of a supply set or power domain. When a domain name is
used, it represents the primary supply of the specified domain. R

-use_equivalence
[<TRUE | FALSE>]

Indicates whether to consider supply set equivalence.
If -use_equivalence is not specified at all, the default is
-use_equivalence TRUE; if -use_equivalence is specified without a
value, the default value is TRUE.

R

-applies_to <inputs |
outputs | both>

A filter that restricts the strategy to apply only to ports of a given
direction. R

-applies_to_boundary
<lower | upper | both>

Restricts the application of filters to specified boundary. Default is
both. R

-repeater_supply
supply_set_ref] The supply set that powers the inserted buffer. R

-name_prefix string]
[-name_suffix string]

The name format (prefix and suffix) for inserted buffer cell instances
or nets related to implementation of the strategy. R

-instance
{{instance_name
port_name}*}

The name of a technology library leaf cell instance and the name of the
logic port that it buffers. R

-update
Indicates that this command provides additional information for a
previous command with the same strategy_name and domain_name
and executed in the same scope.

R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_repeater command defines a strategy for inserting repeater cells (buffers) for ports on the interface
of a power domain (see 6.20). Repeaters are placed within the domain, driven by input ports of the domain,
and driving output ports of the domain.

-domain specifies the domain for which this strategy is defined.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

156

-elements explicitly identifies a set of candidate ports to which this strategy potentially applies. The
element_list may contain rooted names of instances or ports in the specified domain. If an instance name is
specified in the element_list, it is equivalent to specifying all the ports of the instance in the element_list.
Any element_lists specified on the base command or any updates (see -update) of the base command are
combined. If -elements is not specified in the base command or any update, every port on the interface of
the domain is included in the aggregate_element_list (see 5.9).

-exclude_elements explicitly identifies a set of ports to which this strategy does not apply. The exclude_list
may contain rooted names of instances or ports in the specified domain. If an instance name is specified in
the exclude_list, it is equivalent to specifying all the ports of the instance in the exclude_list. Any
exclude_lists specified on the base command or any updates of the base command are combined into the
aggregate_exclude_list (see 5.9).

The arguments -source, -sink, and -applies_to serve as filters that further restrict the set of ports to which a
given set_repeater command applies. The command only applies to those ports that satisfy all of the
specified filters.

The -source option specifies the simple name, rooted name, or design-relative hierarchical name (see
5.3.3.4) of a power domain or supply set. -source is satisfied by any port that is driven by logic powered by
a supply set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-
shifting cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

The -sink option specifies the simple name, rooted name, or design-relative hierarchical name (see 5.3.3.4)
of a power domain or supply set. -sink is satisfied by any port that is received by logic powered by a supply
set that matches (see -use_equivalence) the specified supply set, ignoring any isolation or level-shifting
cells that have already been inferred or instantiated from an isolation or level-shifting strategy.

NOTE—A port that does not have a driver will never satisfy the -source filter. A port that does not have a receiver will
never satisfy the -sink filter.

-use_equivalence specifies whether supply set equivalence is to be considered in determining when two
supply sets match. If -use_equivalence is specified with the value False, the -source and -sink filters shall
match only the named supply set. Otherwise, the -source and -sink filters shall match the named supply set
or any supply set that is equivalent to the named supply set.

-applies_to is satisfied by any port that has the specified mode. For upper boundary ports, this filter is
satisfied when the direction of the port matches. For lower boundary ports, this filter is satisfied when the
inverse of the direction of the port matches. For example, a lower boundary port with a direction OUT
would satisfy the -applies_to IN filter, because an output from a lower boundary port is an input to this
domain. -applies_to is always relative to the specified domain.

-applies_to_boundary restricts the application of filters to specified boundary. The default value is both.
It shall be an error if -applies_to_boundary lower is specified and there is no lower boundary associated
with the power domain interface.

The effective_element_list (see 5.9) for this command consists of all the port names in the
aggregate_element_list that are not also in the aggregate_exclude_list and that satisfy all of the filters
specified in the command. If a port in the effective_element_list is not on the interface of the specified
domain, it shall not be buffered.

If a given port name is referenced in the effective_element_list of more than one repeater strategy of a given
domain, the precedence rules (see 5.7) determine which of those strategies actually apply to that port name.
If the precedence rules identify multiple strategies that apply to the same port name, then the port name
shall be the name of an input port to the domain, and each of those strategies shall each have a -sink filter
that matches the receiving supply of a different sink domain for the specified input port. It shall be an error

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

157

if the precedence rules identify multiple strategies that apply to the same port name and that port is an
output port of the domain, or more than one strategy applies to the same sink domain for that port.

-repeater_supply is implicitly connected to the primary or backup supply ports of the buffer cell. If
-repeater_supply is not specified, then if the primary supply set of the domain containing the driver of the
repeater is available in the power domain where the repeater will be located, that supply is used as the
default supply. It shall be an error if -repeater_supply is not specified and the default supply is not
available in the domain.

-name_prefix specifies the substring to place at the beginning of any generated name implementing this
strategy.

-name_suffix specifies the substring to place at the end of any generated name implementing this strategy.

-instance specifies that the repeater functionality exists in the HDL design and instance_name denotes the
instance-providing part or all of this functionality. An instance_name is a simple name or a hierarchical
name rooted in the current scope. If an empty string appears as an instance_name, this indicates that an
instance was created and then optimized away. Such an instance shall not be re-inferred or reimplemented
by subsequent tool runs.

-update adds information to the base command executed in the same scope. When specified with -update,
-elements and -exclude_elements are additive: the set of instances or ports in the aggregate_element_list
is the union of all -elements specifications given in the base command and any update of this command,
and the aggregate_exclude_list is the union of all -exclude_elements specifications given in the base
command and any update of this command.

The following also apply:

 This command never applies to inout ports.

 The simstate semantics of the repeater supply set apply to the output of a repeater.

NOTE 1—To specify a repeater strategy for a port P on the lower boundary of a power domain D (see 4.4.2), a
set_repeater command can specify -domain D and specify the port name I/P, where I is the hierarchical name of
an instance that is instantiated in domain D but is not in the extent of domain D, and P is the simple name of the port of
that instance. The combination of the -domain specification and the hierarchical port name makes it clear that this
reference is to the HighConn of the specified port, which is part of the lower boundary of the domain D.

NOTE 2—Insertion of a repeater can change the driver supply and receiver supply of ports that are sinks or sources,
respectively, of the inserted repeater. Such changes could affect the interpretation of -source or -sink filters of
set_isolation (see 6.44) or set_level_shifter (see 6.45) strategies that apply to those ports. These changes could also
affect the default for the input supply set or the output supply set of set_level_shifter strategies that apply to those
ports.

NOTE 3—The exclude_list in -exclude_elements can specify instances or ports that have not already been explicitly or
implicitly specified via an explicit or implied element_list.

Syntax example

set_repeater feedthrough_buffer1
-domain PD3 -applies_to outputs

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

158

6.49 set_retention

Purpose Specify a retention strategy.

Syntax

set_retention retention_name
-domain domain_name
[-elements element_list] [-exclude_elements exclude_list]
[-retention_supply ret_supply_set] [-no_retention]
[-save_signal {logic_net <high | low | posedge | negedge>}
 -restore_signal {logic_net <high | low | posedge | negedge>}]
[-save_condition {boolean_expression}]
[-restore_condition {boolean_expression}]
[-retention_condition {boolean_expression}]
[-use_retention_as_primary]
[-parameters {<RET_SUP_COR | NO_RET_SUP_COR |
 SAV_RES_COR | NO_SAV_RES_COR> *}]
[-instance {{instance_name [signal_name]}*}]
[-update]
[-retention_power_net net_name] [-retention_ground_net net_name]

Arguments

retention_name Retention strategy name.

-domain domain_name The domain for which this strategy is applied.

-elements element_list
The -elements option specifies a list of objects: instances,
retention_list_name of elements lists (see 6.50), named processes, or
state elements or signal names to which this strategy is applied.

R

-exclude_elements
exclude_list

The -exclude_elements option specifies a list of objects: instances,
named processes, or state elements or signal names that are not
included in this strategy.

R

-no_retention Prevents the inference of retention cells on the specified elements
regardless of any other specifications. R

-retention_supply
ret_supply_set

This option specifies the supply set used to power the logic inferred
by the retention_name strategy. R

-save_signal {logic_net
<high | low | posedge |
negedge>}
-restore_signal
{logic_net <high | low |
posedge | negedge>}

The -save_signal and -restore_signal options specify a rooted name
of a logic net or port and its active level or edge. R

-save_condition
{boolean_expression}

The -save_condition option specifies a Boolean expression (see 5.4).
The default is True if the -save_signal/-restore_signals are specified,
else the -save_condition is a don’t care.

R

-restore_condition
{boolean_expression}

The -restore_condition option specifies a Boolean expression. The
default is True if the -save_signal/-restore_signals are specified, else
the -restore_condition is a don’t care.

R

-retention_condition
{boolean_expression} The -retention_condition option specifies a Boolean expression. R

-use_retention_as_
primary

The -use_retention_as_primary option specifies that the storage
element and its output are powered by the retention supply. R

-parameters
{<RET_SUP_COR |
NO_RET_SUP_COR |
SAV_RES_COR |
NO_
SAV_RES_COR> *}

The -parameters option provides control over retention register
corruption semantics. R

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

159

-instance
{{instance_name
[signal_name]}*}

The name of a technology library leaf cell instance and the optional
name of the signal that it retains. If this instance has any unconnected
supply ports or save and restore control ports, then these ports need to
have identifying attributes in the cell model, and the ports shall be
connected in accordance with this set_retention command.

R

-update Use -update if the retention_name has already been defined. R

Legacy
arguments

-retention_power_net
net_name

This option defines the supply net used as the power for the retention
logic inferred by this strategy.
This is a legacy option; see also 6.2 and Annex D.

R

-retention_ground_net
net_name

This option defines the supply net used as the ground for the retention
logic inferred by this strategy.
This is a legacy option; see also 6.2 and Annex D.

R

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_retention command specifies a set of objects in the domain that need to be retention registers and
identifies the save and restore behavior. If an instance is specified, all registers within the instance acquire
the specified retention strategy. If a process is specified, all registers inferred by the process acquire the
specified retention strategy. If a reg, signal, or variable is specified and that object is a sequential element,
the implied register acquires the specified retention strategy. Any specified reg, signal, or variable that
does not infer a sequential element shall not be changed by this command.

If -elements is specified, only elements in the element list that are also a part of the domain_name are
included. Any element names outside the extent of domain_name are excluded. When -elements is not
specified, this is equivalent to using the elements list that defines the power domain. When used with
-update, -elements is additive such that the set of elements or signals is the union of all calls of this
command for a given strategy specifying any of these parameters.

-exclude_elements can also be used to define a list of storage elements that are not included in this
strategy. When used with -update, -exclude_elements is additive such that the set of elements or signals
excluded is the union of all calls of this command for a given strategy.

-retention_supply specifies the supply set that shall be used to power the state element holding the
retained value, as well as the control logic, if any, that evaluates the -save_condition, -restore_condition,
and -retention_condition. The supply set specified by -retention_supply is implicitly connected to the
retention logic inferred by this command.

In verification, if -retention_supply is not specified, an anonymous always-on supply set shall be assumed
to power the state element holding the retained value and any associated control logic. In implementation, it
shall be an error if the supply required for the correct operation of inferred retention cells is not specified
explicitly in the UPF power intent.

For a balloon-style retention register (see 4.4.5), the retained value is transferred to the register on the
restore event when -restore_condition evaluates to True. The restore event is the rising or falling edge of
an edge-triggered restore event or the trailing edge of a level-sensitive restore event. A level-sensitive
restore event has priority over any other register operation.

-restore_condition gates the restore event, defining the restore behavior of the register. If the
-save_signal/restore_signals are not specified, the -restore_condition becomes a don’t care. The register
is restored when the restore event occurs and the -restore_condition is True.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

160

For a balloon-style retention register, the retained value shall be the register’s value at the time of the save
event when -save_condition evaluates to True. The save event is the rising or falling edge of an edge-
triggered save event or the trailing edge of a level-sensitive save event.

-save_condition gates the save event, defining the save behavior of the register. If the -save_signal/
restore_signal options are not specified, the -save_condition becomes a don’t care. The register contents
are saved when the save event occurs and the -save_condition is True.

-retention_condition defines the retention behavior of the retention element. If the -retention_condition is
specified, it must evaluate to TRUE for the value of the state element to be retained. If the retention
condition evaluates to FALSE and the primary supply is not NORMAL, the retained value of the state
element is corrupted. The receiving supply of any pin listed in the -retention_condition shall be at least as
on as the retention supply of the retention strategy.

-save_condition, -restore_condition, and -retention_condition shall only reference logic nets or ports
rooted in the current scope. The -save_signal/-restore_signal/-save_condition/-restore_condition apply
only to balloon-style retention registers. For master-/slave-alive implementations (see 4.4.5), the
-save_signal/-restore_signal should not be specified. The retention behavior of this style is specified
through the -retention_condition. It shall be an error if -save_signal/-restore_signal is not specified and
the -retention_condition is also not specified.

The normal mode storage element of the retention register is powered by the primary supply of the domain,
therefore the receiver supply of the retention register’s data input is the primary supply. By default,
the output driver of the retention register is also powered by the primary supply of the domain, in
which case the driver supply of the retention register output is the primary supply. However, if
-use_retention_as_primary is specified, the retention supply powers the output driver of the register
instead, and the driver supply of the data output of the retention register is therefore the retention supply. In
the latter case, the simstate for the retention supply set is applied to the register’s output. Inferred state
elements shall be consistent with the -use_retention_as_primary constraint.

NOTE 1—UPF only supports the output pins’ driving supply being different from the primary supply (with
-use_retention_supply_as_primary); the input pins’ receiving supply can only be assumed to be the primary supply
of the domain.

NOTE 2—The -use_retention_as_primary changes the driver supply of ports that are sinks of the inserted retention
register. Such changes could affect the interpretation of the -source filters of the set_repeater (see 6.48), set_isolation
(see 6.44), or set_level_shifter (see 6.45) strategies that apply to those ports.

The -parameters option provides control over retention register corruption semantics. For a retention
strategy, it shall be an error to specify:

 both RET_SUP_COR and NO_RET_SUP_COR; or

 both SAV_RES_COR and NO_SAV_RES_COR.

RET_SUP_COR activates and NO_RET_SUP_COR deactivates corruption of the normal mode register
when retention supplies are CORRUPT. When neither value is specified for a retention strategy,
RET_SUP_COR is the default value.

SAV_RES_COR activates and NO_SAV_RES_COR deactivates corruption of the normal mode register
during concurrent assertion of level-sensitive save, save_condition, restore, and restore_condition. When
neither value is specified for a retention strategy, SAV_RES_COR is the default value.

-instance specifies that the retention functionality exists in the HDL design and instance_name denotes the
instance-providing part or all of this functionality. An instance_name is a hierarchical name rooted in the
current scope. If an empty string appears in an instance_name, this indicates that an instance was created

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

161

and then optimized away. Such an instance shall not be re-inferred or reimplemented by subsequent tool
runs.

-update adds information to the base command executed in the same scope of the power domain for which
the inferred cells are defined.

The elements requiring retention can be attributed in HDL as shown in 5.6.

For details on the simulation semantics of this command, please refer to 9.7.

Examples

Some examples of the set_retention command are shown as follows:

a) Save-restore balloon-type RFF:

Has an explicit save and restore pin, which perform save/restore functions.

set_retention my_ret \
-save_signal {save high} \
-restore_signal {restore high} \
 ...

b) Single retention pin balloon-type RFF:

1) Has a single pin that performs save/restore functions.

2) To remain in a retention state, the retention pin shall be kept at a certain value.

set_retention my_ret \
-save_signal {ret posedge} \
-restore_signal {ret negedge} \
-retention_condition {ret} \
...

c) Single retention pin slave-alive type RFF:

1) Has a single retention control pin, but no save/restore function is involved as the slave latch
(or storage element) is powered by the retention supply.

2) Requires the retention pin to remain at a certain value to be in retention mode.

set_retention my_ret \
-retention_condition {ret} \
...

NOTE—No save/restore signals/conditions are specified in this case. Here, the retention condition is explicitly
specified, meaning the retention condition has to be true during retention mode.

d) No retention pin slave alive type RFF with output powered by retention supply:

1) Has no retention control pin, and no save/restore function is involved as the slave latch (or
storage element) is powered by the retention supply.

2) Requires the clocks/async sets/resets to be related to retention supply and parked at a certain
value during retention mode.

3) The -use_retention_as_primary is specified as the output is expected to be powered by the
retention supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

162

set_retention my_ret \
-retention_condition {!clock && !reset} \
-use_retention_as_primary \
...

6.50 set_retention_elements

Purpose Create a named list of elements whose collective state shall be maintained if retention is applied to
any of the elements in the list.

Syntax

set_retention_elements retention_list_name
-elements element_list
[-applies_to <required | not_optional | not_required | optional>]
[-exclude_elements exclude_list]
[-retention_purpose <required | optional>]
[-transitive [<TRUE | FALSE>]]

Arguments

retention_list_name A simple name; this shall be unique within the current scope.

-elements element_list A list of rooted names: instances, named processes, state elements, or
signal names.

-applies_to <required |
not_optional |
not_required |
optional>

Filter elements based on the UPF_retention attribute value.

-exclude_elements
exclude_list

A list of rooted names: instances, named processes, state elements, or
signal names.

-retention_purpose
<required | optional>

The intended retention use of retention_list_name. The default is
required.

-transitive [<TRUE |
FALSE>]

If -transitive is not specified at all, the default is -transitive TRUE.
If -transitive is specified without a value, the default value is TRUE.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The set_retention_elements command defines a list of state elements whose collective state shall be
maintained coherently if retention is applied to any of these elements. (see 6.49 and 6.35).

It shall be an error if the collective state of the elements is not maintained while any one element is in a
retention state.

-applies_to filters the effective_element_list, removing any elements that are not consistent with the
selected filter choice: required, optional, not_required, or not_optional, as follows:

 Filter choice required removes all elements that do not have the UPF_retention attribute value
required.

 Filter choice optional removes all elements that do not have the UPF_retention attribute value
optional.

 Filter choice not_required removes all elements that do have the UPF_retention attribute value
required.

 Filter choice not_optional removes all elements that do have the UPF_retention attribute value
optional.

When -retention_purpose is required, retention shall only be necessary if elements in the
retention_element_list are in the extent of a power domain that has retained elements.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

163

It shall be an error if retention_purpose is required and an element belonging to retention_element_list is
not retained when any element in the same power domain extent is retained.

Syntax example

set_retention_elements ret_chk_list
-elements {proc_1 sig_a}

6.51 set_scope

Purpose Specify the current scope.

Syntax set_scope instance

Arguments instance The instance that becomes the current scope upon completion of the
command.

Return value Return the current scope prior to execution of the command as a design-relative hierarchical name
(see 5.3.3.4) if successful or raise a TCL_ERROR if it fails (e.g., if the instance does not exist).

The set_scope command changes the current scope to the specified scope and returns the name of the
previous scope as a design-relative hierarchical name.

The following also apply:

 The instance name may be a simple name, a scope-relative hierarchical name, a design-relative
hierarchical name, the symbol /, the symbol ., or the symbol ...

 If the instance name is /, the current scope is set equal to the current design top instance.

 If the instance name is ., the current scope is unchanged.

 If the instance name is .., and the current scope is not equal to the current design top instance, the
current scope is changed to the parent scope.

 It shall be an error if the instance name is .. and the current scope is equal to the current design top
instance.

 It shall be an error if any prefix of the instance name is the name of a leaf cell instance in the logic
hierarchy.

Examples

Given the hierarchy:

top/
mid/

bot/

if the current design top instance is /top, and the current scope is /top/mid, then:

set_scope bot ;# changes current scope to /top/mid/bot (child of current
scope)

set_scope . ;# leaves current scope unchanged as /top/mid (current scope)
set_scope .. ;# changes current scope to /top (parent of current scope)
set_scope / ;# changes current scope to /top (current design top instance)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

164

If the current design top instance is /top/mid and the current scope is /top/mid, then:

set_scope bot ;# changes current scope to /top/mid/bot
set_scope . ;# leaves current scope unchanged as /top/mid
set_scope .. ;# results in an error
set_scope / ;# changes current scope to /top/mid (current design top

instance)

If the current design top instance is /top and the current scope is /top, then:

set_scope mid/bot ;# changes current scope to /top/mid/bot
set_scope . ;# leaves current scope unchanged as /top
set_scope .. ;# results in an error
set_scope / ;# changes current scope to /top (current design top instance)

6.52 set_simstate_behavior

Purpose Specify the simulation simstate behavior for a model or library.

Syntax

set_simstate_behavior <ENABLE | DISABLE>
[-lib name]
[-models model_list]
[-elements element_list]
[-exclude_elements exclude_list]

Arguments

<ENABLE |
DISABLE>

Define if the UPF simstate behavior shall be enabled for the specified
model(s).

-lib name The library name.

-models model_list One or more model names.

-elements element_list A list of instances.

-exclude_elements
exclude_list A list of instances to exclude from the effective_element_list (see 5.9).

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

This command specifies the simstate behavior for models or instances.

If ENABLE is specified, the simstate simulation semantics are applied for every supply set automatically
connected to an instance of the model. See also 9.5.

a) If there is a single supply set connected, the simstates for that supply set are applied.

b) When no supply set is connected, and each port to which a supply net is connected is of a different
pg_type, an anonymous supply set is created containing the supply nets connected to each port,
with each supply net associated with the function appropriate for the pg_type of that port, and the
default simstates for that supply set are applied for the model.

c) When there are multiple supply sets connected, the simstates of all supply sets are applied.

d) For a hard macro instance in which there are multiple supply pins of the same pg_type, an
anonymous supply set is created for each unique combination of supply pins identified as related
supplies of a logic pin of the macro instance, with each supply pin associated with the function
appropriate for the pg_type of that pin. The default simstates of each supply set are applied during
simulation for any logic pin related to that supply set.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

165

e) For an instance of a hard macro behavioral model, each logic pin of the instance is corrupted
according to the applicable simstate of the supply set associated with the logic pin.

If -models is not defined and -lib is specified, the simstate behavior is defined for all models in name.

It shall be an error if:

 -models is specified and any of the model(s) cannot be found.

 -elements is specified and any of the element(s) cannot be found.

 -exclude_elements is specified and any of the exclude_elements(s) cannot be found.

 -exclude_elements is specified and -model, -elements, or -lib is not specified.

 A given model has its simstate behavior both enabled and disabled, by set_simstate_behavior
commands, UPF_simstate_behavior attributes, or a combination thereof.

 effective_element_list is empty.

Simstate behavior of a module can be enabled or disabled in HDL using the following attributes:

Attribute name: UPF_simstate_behavior

Attribute value: <ENABLE | DISABLE>

SystemVerilog or Verilog-2005 example

(* UPF_simstate_behavior = "ENABLE" *) module my_adder;

VHDL example

attribute UPF_simstate_behavior of my_adder : entity is "ENABLE";

Syntax example

set_simstate_behavior ENABLE -lib library1 -models ANDX7_non_power_aware

6.53 set_variation

Purpose Specify the variation range for a supply source.

Syntax
set_variation
 -supply supply_name_list
 -range { low_ factor high_ factor }

Arguments

-supply
supply_name_list

A list of the names of the supply port, supply net, or supply set functions
for which variation is being specified.

-range { low_ factor
high_ factor }

Variation factors with respect to the nominal voltage. Variation is
expressed as multipliers that, when applied to the nominal voltage, give
the low and high bounds of the variation range.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

166

The set_variation command specifies how much a supply source may vary below and above its nominal
voltage.

Nominal voltage values for supply set functions, supply ports, and supply nets may be specified in the
definition of named power states for a supply set (see 6.5). Nominal voltage values of a supply port may be
specified in the definition of named port states (see 6.4). The set_variation command defines variation
factors with respect to nominal voltage for any supply object. Taken together, the nominal voltage and
variation percentages define a voltage variation range for the specified supply. For example, {0.9 1.1}
applied to a nominal voltage of 0.9 gives a variation range of 0.81 to 0.99.

Variation specified for a given supply object also applies to any electrically equivalent supply object. It
shall be an error if different variation specifications are given for electrically equivalent supplies.

If variation is not specified for a given supply object or any electrically equivalent supply object, then the
supply is assumed to have no variation, as if it were specified as -range {1.0 1.0}.

Syntax example

 set_variation -supply { vss1 vss2 ground } -range { 0.95 1.05 }

6.54 upf_version

Purpose Retrieves the version of UPF being used to interpret UPF commands and documents the UPF
version for which subsequent commands are written.

Syntax upf_version [string]

Arguments string The UPF version for which subsequent commands are written.

Return value Returns the version of UPF currently being used to interpret UPF commands.

The upf_version command returns a string value representing the UPF version currently being used by the
tool reading the UPF file. When the UPF version defined by this standard is being used, the returned value
shall be the string "3.0". upf_version may also include an argument that documents the UPF version for
which the UPF commands that follow were written. For UPF commands intended to be interpreted
according to the UPF version defined by this standard, the argument shall be the string "3.0".

This standard does not define any other value for the returned value of the upf_version command or for the
string argument. This standard also does not define how a tool uses the specified UPF version argument; in
particular, this standard does not define the meaning of a description consisting of UPF commands intended
to be interpreted according to different UPF versions.

Syntax example

upf_version 3.0

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

167

6.55 use_interface_cell

Purpose Specify the functional model and a list of implementation targets for isolation and level-shifting.

Syntax

use_interface_cell interface_implementation_name
-strategy list_of_isolation_level_shifter_strategies
-domain domain_name
-lib_cells lib_cell_list
[-port_map {{port net_ref } *}]
[-elements element_list]
[-exclude_elements exclude_list]
[-applies_to_clamp <0 | 1 | any | Z | latch | value>]
[-update_any <0 | 1 | known | Z | latch | value>]
[-force_function]
[-inverter_supply_set list]

Arguments

interface_
implementation_name The interface cell implementation strategy.

-strategy
list_of_isolation_level_
shifter_strategies

The isolation or level-shifter strategy, or a pair of isolation and level-
shifter strategies, as defined by set_isolation and set_level_shifter.

-domain domain_name The domain in which the strategies are defined.

-lib_cells lib_cell_list A list of library cell names.

-port_map {{port
net_ref } *} The port and the net (net_ref) connections.

-elements element_list A list of ports from the list_of_isolation_level_shifter_strategies to which
the command applies.

-exclude_elements
exclude_list

A list of ports from the list_of_isolation_level_shifter_strategies to which
this command does not apply.

-applies_to_clamp <0 |
1 | any | Z | latch |
value>

Only ports that have the specified clamp value are mapped.

-update_any <0 | 1 |
known | Z | latch |
value>

What is now the clamp value when -applies_to_clamp is any.

-force_function The first model in lib_cell_list is used as the functional specification of
isolation behavior.

-inverter_supply_set
list

The supply set implicitly connected to any inversion logic required by an
isolation signal connection.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The use_interface_cell command provides user control for the integration of isolation and level-shifting.
The command specifies the implementation choices through -lib_cells and the functional isolation behavior
to be used if -force_function is specified.

Each cell specified in -lib_cells shall be defined by a define_isolation_cell (see 7.4) or
define_level_shifter_cell (see 7.5) command or defined in the Liberty file with required attributes.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

168

NOTE—Unlike map_isolation_cell and map_level_shifter_cell, use_interface_cell can be used to manually map any
isolation, level-shifting, or combined isolation level-shifting cells. It may apply to an isolation strategy, a level-shifting
strategy, or one of each.

When -force_function is specified the first model in lib_cell_list shall be used as the functional model. The
isolation sense specification for the isolation strategy is ignored when -force_function is specified. It is
erroneous if the functional model clamps to a value that is different to the previously specified port clamp value.

-elements selects the ports from the specified list of strategies to which the mapping command is applied.
If -elements is not specified, all ports inferred from the list of strategies shall have the mapping applied.
When -applies_to_clamp is specified, this command is applied only to the ports with that clamp value.

When -applies_to_clamp is any, -update_any shall be used to specify the clamp value after mapping. An
 -update_any value of known specifies that the isolation function is more complex than can be specified
by a single value.

-port_map connects the specified net_ref to a port of the model. A net_ref may be one of the following:

a) A logic net name

b) A supply net name

c) One of the following symbolic references

1) isolation_supply.function_name

function_name refers to the supply net corresponding to the function it provides to the
isolation_supply.

2) isolation_supply[index].function_name

i) index is a non-negative integer corresponding to the position in the isolation_supply list
specified for the isolation strategy.

ii) The isolation_supply index shall be specified if the isolation strategy specified more than
one isolation_supply.

3) isolation_signal

i) Refers to the isolation signal specified in the corresponding isolation strategy.

ii) To invert the sense of the isolation signal, the SystemVerilog bit-wise negation operator ~
can be specified before the isolation_signal. The logic inferred by the negation shall be
implicitly connected to the inverter_supply_set if specified, otherwise the
isolation_supply shall be used.

4) isolation_signal[index]

i) index is a non-negative integer corresponding to the position in the isolation_signal list
specified for the isolation strategy.

ii) The isolation_signal index shall be specified if the isolation strategy specified more than
one isolation_signal.

iii) To invert the sense of the isolation signal, the SystemVerilog bit-wise negation operator ~
can be specified before the isolation_signal. If the isolation_signal is being inverted then
the inverter_supply_set[index] if specified shall be implicitly connected to the inferred
inverter, otherwise the isolation_supply[index] shall be used.

5) input_supply.function_name

function_name refers to the supply net corresponding to the function it provides to the
level-shifter input_supply.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

169

6) output_supply.function_name

function_name refers to the supply net corresponding to the function it provides to the
level-shifter output_supply.

7) internal_supply.function_name

function_name refers to the supply net corresponding to the function it provides to the
level-shifter internal_supply.

The -port_map option shall not reference the data input port or the data output port. The input port shall be
connected to the data input for the interface cell and the output port connected to the data output for the
interface cell.

It shall be an error if:

 domain_name does not indicate a previously created power domain.

 list_of_isolation_level_shifter_strategies is an empty list.

 -force_function is not specified and none of the specified models in lib_cell_list implements the
functionality specified by the corresponding isolation_strategy and port attributes.

 -update_any is specified and -applies_to_clamp is not any.

 After completing the port and net_ref connections and the data input and output connections, any
port is unconnected.

 Ports specified by -elements are not included in all specified strategies.

 More than one isolation strategy is specified.

 More than one level-shifter strategy is specified.

Syntax example

use_interface_cell my_interface -strategy {ISO1 LS1} -domain PD1 \
 -lib_cells {combo1 combo2} \
 -elements {top/moduleA/port1 top/moduleA/port2 top/moduleA/port3}

7. Power-management cell definition commands

7.1 Introduction

Clause 7 documents the syntax for each UPF power-management cell command. A power-management cell
is one of the following:

 "Always-on" cell

 Diode clamp

 Isolation cell

 Level-shifter cell

 Power-switch cell

 Retention cell

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

170

Power-management cell commands define characteristics of the instances of power-management cells used
to implement and verify the power intent for a given design. These commands do not alter the existing
library cell definitions and only have semantics when they are used with design power intent commands
(see Clause 6).

Similar to how libraries are processed in a design flow, UPF power-management cell commands need to be
processed before any other power intent commands and after the relevant cell libraries have been loaded.

It shall be an error if conflicting information is specified in multiple commands (of any type).

To understand the relationship between each UPF power-management cell command and its library cell
definition in Liberty format, see Annex F.

7.2 define_always_on_cell

Purpose Identify always-on cells.

Syntax

define_always_on_cell
-cells cell_list
-power power_pin
-ground ground_pin
[-power_switchable pin] [-ground_switchable pin]
[-isolated_pins list_of_ pin_lists [-enable expression_list]]

Arguments

-cells cell_list Identifies the specified cells as always-on cells.

-power power_pin
Identifies the power pin of the cell.
If this option is specified with the -power_switchable option, it indicates
this is a non-switchable power pin.

-ground power_pin
Identifies the ground pin of the cell.
If this option is specified with the -ground_switchable option, it indicates
this is a non-switchable ground pin.

-power_switchable pin Specifies the power pin to be connected via a rail connection to the
switchable power supply.

-ground_switchable pin Specifies the ground pin to be connected via a rail connection to the
switchable ground supply.

-isolated_pins
list_of_ pin_lists

Specifies a list of pin lists. Each pin list groups pins that are isolated
internally with the same isolation control signal.
These pin lists can only contain input pins.

-enable expression_list

Specifies a list of simple expressions. Each simple expression describes
the isolation control condition for the corresponding isolated pin list in the
-isolated_pins option. If the internal isolation does not require a control
signal, use an empty string for that pin list.
The number of elements in this list shall correspond to the number of lists
specified for the -isolated_pins option.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The define_always_on_cell library command identifies the library cells having more than one set of power
and ground pins that can remain functional even when the supply to the switchable power or ground pin is
switched off.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

171

NOTE—A cell called always-on does not mean the cell can never be powered off. When the supply to non-switchable
power or ground of such cell is switched off, the cell becomes non-functional. In other words, the term always-on
actually means relatively always-on.

By default, all input and output pins of this cell are related to the non-switchable power and ground pins.

Examples

The following example defines cell aon_cell as an always-on cell. The cell had three isolated pins: pin1,
pin2, and pin3. Pins pin1 and pin2 have the same isolation control signal iso1, but pin3 has no
isolation control signal.

define_always_on_cell -cells aon_cell
-isolated_pins { {pin1 pin2} {pin3}} -enable {!iso1 ""}

The following example defines cell AND2_AON as an always-on cell. The cell has two power pins and
performs the AND function (as defined in the library) as long as the supply connected to power pin VDD is
not switched off.

define_always_on_cell -cells AND2_AON -power_switchable VDDSW
-power VDD -ground VSS

7.3 define_diode_clamp

Purpose Identify diode cells or cells pins with diode protection.

Syntax

define_diode_clamp
-cells cell_list
-data_pins pin_list
[-type <power | ground | both>]
[-power pin] [-ground pin]

Arguments

-cells cell_list Identifies cells as diode clamp cells or pins of the specified cells as diode
clamp pins.

-data_pins pin_list Specifies a list of cell input pins that have built-in clamp diodes.

-type <power | ground |
both>

Specifies the type of clamp diode associated with the data pins.
The type determines whether to use the power pin, ground pin, or both.
Possible values are as follows:

both indicates a power and ground clamp diode
ground indicates a ground clamp diode
power indicates a power clamp diode (the default)

-power pin Specifies the cell pin that connects to the power net.

-ground pin Specifies the cell pin that connects to the ground net.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The define_diode_clamp library command identifies a list of library cells that are power cells, ground
cells, or power and ground diode clamp cells, or complex cells that have input pins with built-in clamp
diodes.

When -type is ground, then -power is optional. When -type is power, then -ground is optional. When
-type is both, then both -power and -ground need to be specified as well.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

172

It shall be an error if neither -power nor -ground is specified.

NOTE—The define_diode_clamp command is typically used for pins that have antenna protection diodes. Hence, this
command may apply to regular non–power-managed cells.

Examples

The following command defines a cell cellA with diode protection at the pin in1 where the diode is
connected to the power pin VDD1 of the cell.

define_diode_clamp -cells cellA -data_pins in1 -type power -power VDD1

7.4 define_isolation_cell

Purpose Identify isolation cells.

Syntax

define_isolation_cell
-cells cell_list
[-power power_ pin]
[-ground ground_ pin]
{-enable pin [-clamp_cell <high | low>]
| -pin_groups {{input_pin output_ pin [enable_ pin]}*}
| -no_enable <high | low | hold>}
[-always_on_pins pin_list]
[-aux_enables ordered_ pin_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-valid_location <source | sink | on | off | any>]
[-non_dedicated]

Arguments

-cells cell_list Identifies the specified cells as isolation cells.

-power power_ pin
Identifies the power pin of the cell.
If this option is specified with the -power_switchable option for a multi-
rail isolation cell, it indicates this is a non-switchable power pin.

-ground ground_ pin
Identifies the ground pin of the cell.
If this option is specified with the -ground_switchable option for a multi-
rail isolation cell, it indicates this is a non-switchable ground pin.

-enable pin

Identifies the specified cell pin as the isolation enable pin.
For non–clamp-type isolation cells, the enable pin polarity is determined
by the cell function defined in the library files.
For the special clamp-type cell identified by the -clamp_cell option, the
enable polarity is active high if the clamp output is low and the enable
polarity is active low if the clamp output is high.
For a multi-rail isolation cell, the enable pin is related to the non-
switchable power and ground pins of the cells.

-clamp_cell <high |
low>

Indicates the specified cells are isolation clamp cells. Such a cell, which
consists of a single PMOS or NMOS transistor, does not perform any logic
function and is only used to clamp a net to high or low when the enable
pin is activated.

-pin_groups
{{input_pin output_pin
[enable_ pin]}*}

Specifies a list of input-output paths for multi-bit isolation cells. Each
group in the list specifies one cell input pin, one cell output pin, and one
optional enable pin that applies to the specified path.
An enable pin may appear in more than one group.
It shall be an error if the same input or output pin appears in more than one
group.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

173

-no_enable <high | low
| hold>

Specifies the following:
The isolation cell does not have an enable pin.
The output of the cell when the supply for the switchable power (or
ground) pin is powered down. Possible values are as follows:

high indicates the cell output is logic value 1
low indicates the cell output is logic value 0
hold indicates the cell output is the same as the logic value before the
supply for the switchable power or ground is powered down

-always_on_pins
pin_list

Specifies a list of cell pins related to the nonswitchable power and
nonswitchable ground pins of the cell.

-aux_enables
ordered_ pin_list Specifies additional or auxiliary enable pins for the isolation cell.

-power_switchable
power_ pin Identifies the switchable power pin of a multi-rail isolation cell.

-ground_switchable
ground_ pin Identifies the switchable ground pin of a multi-rail isolation cell.

-valid_location <source
| sink | on | off | any> Specifies the valid location of the isolation cell. The default value is sink.

-non_dedicated Allows the specified cells to be used as normal cells, not for power
management purposes.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The define_isolation_cell library command identifies the library cells that can be used for isolation in a
design with power gating.

By default, the output pin of a multi-rail isolation cell is related to the non-switchable power and ground
pins. The non-enable input pin is related to the switchable power and ground pins. A multi-rail isolation
cell is a cell with two power or ground pins.

If -clamp_cell is specified with value high, the only supply pin that can be specified is -power. If
-clamp_cell is specified with low, the only supply pin that can be specified is -ground. For all other
isolation cells, both -power and -ground shall be specified.

The -aux_enables option specifies additional or auxiliary enable pins for the isolation cell. By default, all
pins specified in this option are related to the switchable power or ground pin. The list is an ordered list and
each element can be accessed by using index starting at 1, where the isolation enable pin specified in the
-enable option is assumed to be index 0.

If an auxiliary enable pin is related to the non-switchable power or ground, that pin shall also be specified
using the -always_on_pins option. The logic that drives this pin shall be on when the isolation enable is
asserted at pin specified by the -enable option.

The -valid_location option specifies the valid location of the isolation cell, as follows:

a) source—indicates the cell shall be inserted in a location where the primary supply set is equivalent
to the driving supply set for a net requiring isolation. Such cells are typically multi-rail isolation
cells and used for off-to-on isolation. It typically relies on its switchable power and ground supply
for its normal function and on its non-switchable power or ground supply to provide the isolation
function. See item d) for off value for special cases.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

174

b) sink—indicates the cell shall be inserted in a location where the primary supply set is equivalent to
the receiving supply set for a net requiring isolation. Such cells are typically single-rail isolation
cells and used for off-to-on isolation.

c) on—indicates the cell can only be inserted in the location where the primary supply set is
equivalent to either the driving supply set or the receiving supply for a net requiring isolation and
the primary supply set is not switched off when the isolation function is needed. When used for off-
to-on isolation, it is equivalent to sink. Such cells are typically single-rail isolation cells.

d) off—indicates the cell can be inserted in a location where the primary supply set is equivalent to
either the driving supply set or the receiving supply for a net requiring isolation and the primary
supply set may be switched off when the isolation function is needed. When used for off-to-on
isolation, it is equivalent to source. Such cells are typically multi-rail isolation cells.

NOTE—Some single-rail isolation cells with special circuit structure can also be used in the switched-off
domain. For example, a single-rail NOR gate can be placed in a power-switched-off domain for off-to-on
isolation with an output value low; a single-rail NAND gate can be placed in the ground switched-off domain
for off-to-on isolation with an output value high.

e) any—indicates the cell can be placed in any location. Such cells are typically multi-rail isolation
cells. In addition, this cell is designed in a way that neither its normal function nor its isolation
function relies on the primary supply of the domain in which it is located. Therefore, this type of
cell can be used for off-to-on or on-to-off isolation.

Examples

The following isolation cell can be placed in any location for a design that uses ground switches for shutoff.
VDD is the rail pin for power connection and GVSS is the ground pin for non-switchable ground connection.
This cell does not have a rail pin for ground connection.

define_isolation_cell -cells iso_cell1 -power VDD -ground GVSS
 -enable iso_en -valid_location any

The following examples illustrate the use of the -pin_groups option to specify multi-bit isolation cells with
two paths:

define_isolation_cell -cells mbit_iso1 -pin_groups { { datain1 dataout1
iso1 } { datain2 dataout2 iso2 } }

 -power VDD -ground VSS -valid_location sink
define_isolation_cell -cells mbit_iso2 -pin_groups { { datain1 dataout1 }

{ datain2 dataout2} }
-power VDD -ground VSS -valid_location sink

For cell mbit_iso1, there are two isolation paths. The first is from data input datain1 to output
dataout1 with iso1 as the isolation enabler. The second is from data input datain2 to output dataout2
with iso2 as the isolation enabler.

For cell mbit_iso2, there are also two isolation paths. However, this special isolation cell has no isolation
enabler to control each path. As a result, there is no isolation enable signal defined in each group.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

175

7.5 define_level_shifter_cell

Purpose Identify level-shifter cells.

Syntax

define_level_shifter_cell
-cells cell_list
[-input_voltage_range {{lower_bound upper_bound}*}]
[-output_voltage_range {{lower_bound upper_bound}*}]
[-ground_input_voltage_range {{lower_bound upper_bound}*}]
[-ground_output_voltage_range {{lower_bound upper_bound}*}]
[-direction <low_to_high | high_to_low | both>]
[-input_power_pin power_ pin]
[-output_power_pin power_ pin]
[-input_ground_pin ground_ pin]
[-output_ground_pin ground_ pin]
[-ground ground_pin] [-power power_ pin]
[-enable pin | -pin_groups {{input_pin output_pin [enable_ pin]}*}]
[-valid_location <source | sink | either | any>]
[-bypass_enable expression] [-multi_stage integer]

Arguments

-cells cell_list Identifies the specified cells as level-shifter cells.

input_voltage_range
{{lower_bound
upper_bound}*}

Identifies a list of voltage ranges for the input (source) supply voltage that
can be handled by this level-shifter.
The voltage range shall be specified as follows:

{lower_bound upper_bound}
This option shall only be specified for power-shifting cells.

-output_voltage_range
{{lower_bound
upper_bound}*}

Identifies a list of voltage ranges for the output (destination) power supply
voltage that can be handled by this level-shifter.
The voltage range shall be specified as follows:

{lower_bound upper_bound}
This option shall only be specified for power-shifting cells.

-ground_input_voltage
_range {{lower_bound
upper_bound}*}

Identifies a list of voltage ranges for the input (source) ground supply
voltage that can be handled by this level-shifter.
The voltage range shall be specified as follows:

{lower_bound upper_bound}
This option should only be specified for ground-shifting cells.

-ground_output
_voltage_range
{{lower_bound
upper_bound}*}

Identifies a list of voltage ranges for the output (destination) ground supply
voltage that can be handled by this level-shifter.
The voltage range shall be specified as follows:

{lower_bound upper_bound}
This option shall only be specified for ground-shifting cells.

-direction
<low_to_high |
high_to_low | both>

Specifies whether the level-shifter can be used between a driver with lower
voltage swing and a receiver with higher voltage swing (low_to_high), or
vice versa (high_to_low), or both (both). The voltage swing is simply the
difference between the power voltage and ground voltage. The default is
low_to_high.

-input_ power_ pin
power_ pin

Identifies the input power pin.
This option is usually specified for power shifting and used with
-output_power_pin.

-output_ power_ pin
power_ pin

Identifies the output power pin.
This option is usually specified for ground shifting and used with
-input_power_pin.

-input_ground_ pin
ground_ pin

Identifies the input ground pin.
This option is usually specified for ground shifting and used with
-output_ground_pin.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

176

-output_ground_ pin
ground_ pin

Identifies the output ground pin.
This option is usually specified for ground shifting and used with
-input_ground_pin.

-ground ground_ pin

Identifies the ground pin of the cell.
This option can only be specified for level-shifters that only perform
power shifting. In other words, it shall be an error to use this option with
-input_ground_pin and -output_ground_pin.

-power power_pin

Identifies the power pin of the cell.
This option can only be specified for level-shifters that only perform
ground shifting. In other words, it shall be an error to use this option with
-input_power_pin and -output_power_pin.

-enable pin

Identifies the pin that prevents internal floating when the power supply of
the originating power domain is powered down, but the output voltage
level power pin remains on.
The related power and ground of this pin is the output power and ground
pins defined for this cell.

-pin_groups
{{input_pin output_pin
[enable_ pin]}*}

Specifies a list of input-output paths for multi-bit level-shifter cells. Each
group in the list specifies one cell input pin, one cell output pin, and one
optional enable pin that applies to the specified path.
An enable pin may appear in more than one group.
It shall be an error if the same input or output pin appears in more than one
group.

-valid_location <source
| sink | either | any>

Specifies the valid location of the level-shifter cell. The default value is
sink.

-bypass_enable
expression

Specifies when to bypass the voltage shifting functionality.
When the expression evaluates to True, the cell behaves like a buffer. The
expression shall be a simple expression of the bypass enable input pin.
By default, the related power and ground of this pin is the output power
and ground pin defined for this cell.

-multi_stage integer

Identifies the stage of a multi-stage level-shifter to which this definition
(command) applies.
For a level-shifter cell with N stages, N definitions shall be specified for
the same cell. Each definition needs to associate a number from 1 to N for
this option. For more information, see Annex G.

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The define_level_shifter_cell library command identifies the library cells to use as level-shifter cells, as
follows:

 If -input_voltage_range is specified, the -output_voltage_range shall also be specified.

 If -ground_input_range is specified, the -ground_output_range shall also be specified.

 It shall be an error if neither -input_voltage_range nor -ground_input_voltage_range is
specified.

If a list of voltage ranges is specified for the input supply voltage, a list of voltage ranges for the output
supply voltage with the same number of elements shall also be specified., i.e., each member in the list of
input voltage ranges needs to have a corresponding member in the list of output voltage ranges.

By default, the enable and output pins of this cell are related to the output power and output ground pins
(specified through the -output_power_pin and -output_ground_pin options). And the non-enable input
pin is related to the input power and input ground pins (specified through the -input_power_pin and
-input_ground_pin options).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

177

The -valid_location option specifies the valid location of the level-shifter cell, as follows:

a) source—indicates the cell shall be inserted in a location where the primary supply set is equivalent
to the driving supply set for a net requiring level-shifting.

b) sink—indicates the cell shall be inserted in a location where the primary supply set is equivalent to
the receiving supply set for a net requiring level-shifting.

c) either—indicates the cell shall be inserted in a location where the primary supply set is equivalent
to the driving supply set or the receiving supply set for a net requiring level-shifting.

d) any—indicates the cell can be placed in any location.

1) If the cell contains pins for rail connection, these pins shall not be specified through the
-input_power_pin, -output_power_pin, -input_ground_pin, or -output_ground_pin
options.

2) A power level-shifter with this setting can be placed in any location as long as its primary
ground net is equivalent to the driving and receiving primary ground net of the net requiring
level-shifting.

3) A ground level-shifter with this setting can be placed in any location as long as its primary
power net is equivalent to the driving and receiving primary power net of the net requiring
level-shifting.

4) For a power and ground level-shifter, which requires two definitions of the command—one for
the power part and one for the ground part of the cell—the -valid_location can be different in
the two definitions:

i) In the first case, the ground-shifting part of the level-shifter definition determines the
location.

ii) In the second case, the power-shifting part of the level-shifter definition determines the
location.

iii) In the third case, the cell can be placed in a domain whose power and ground supplies are
neither driving the logic power and ground supplies nor receiving the logic power and
ground supplies.

Examples

The following example identifies level-shifter cells with one power pin and one ground pin that perform
power shifting from 1.0 V to 0.8 V.

define_level_shifter_cell
-cells LSHL
-input_voltage_range {{1.0 1.0}} -output_voltage_range {{0.8 0.8}}
-direction high_to_low
-input_power_pin VH -ground G

Power part Ground part

any source|sink|either

source|sink|either any

any any

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

178

The following example identifies level-shifter cells that perform power shifting from 0.8 V to 1.0 V. In this
case, the level-shifter cells need to have two power pins and one ground pin.

define_level_shifter_cell
-cells LSLH
-input_voltage_range {{0.8 0.8}} -output_voltage_range {{1.0 1.0}}
-direction low_to_high
-input_power_pin VL -output_power_pin VH -ground G

The following example identifies level-shifter cells with valid location any to perform voltage shifting
from 0.8 V to 1.0 V. The cells have three power pins and one ground pin.

VDD—This is the standard cell rail; this pin is not used by the cell.

VDDL—This is the power pin to which the input signal is related.

VDDH—This is the power pin to which the output signal is related.

VSS—This is the ground pin of the cell.

define_level_shifter_cell
-cells LSLH
-direction low_to_high
-input_voltage_range {{0.8 0.8}} -output_voltage_range {{1.0 1.0}}
-input_power_pin VDDL -output_power_pin VDDH -ground VSS
-valid_location any

The following example identifies level-shifter cells that perform both power shifting from 0.8 V to 1.0 V and
ground shifting from 0.2 V to 0 V. In this case, the level-shifter cells need to have two power pins and two
ground pins. In addition, since the input voltage swing is 0.6 V (0.8 V to 0.2 V), which is smaller than the
output voltage swing of 1.0 V (1.0 V to 0 V), the direction of the cell is low_to_high.

define_level_shifter_cell
-cells LSLH
-input_voltage_range {{0.8 0.8}} -output_voltage_range {{1.0 1.0}}
-ground_input_voltage_range {{0.2 0.2}} -ground_output_voltage_range {{0.0
 0.0}}
-direction low_to_high
-input_power_pin VL -output_power_pin VH
-input_ground_pin GH -output_ground_pin GL

The following example indicates the level-shifter can shift from 0.8 V to 1.0 V or from 1.0 V to 1.2 V.
However, the cell cannot shift power voltage from 0.8 V to 1.2 V.

define_level_shifter_cell
-cells LSLH
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}}
-input_power_pin VL -output_power_pin VH -ground_pin VSS
-direction low_to_high

The following example indicates the level-shifter can shift from input range 0.8 V to 0.9 V to output range
1.0 V to 1.1 V, or from input range 0.9 V to 1.0 V to output range 1.1 V to 1.2 V. Note that the cell cannot shift
input voltages between 0.8 V to 0.9 V to output voltages 1.1 V to 1.2 V.

define_level_shifter_cell
-cells LSLH -input_power_pin VL -output_power_pin VH -ground_pin VSS
-input_voltage_range {{0.8 0.9} {0.9 1.0}}
-output_voltage_range {{1.0 1.1} {1.1 1.2}}
-direction low_to_high

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

179

The following examples illustrate the use of the -pin_groups option to specify multi-bit level-shifter cells
with and without enable:

define_level_shifter_cell -cells mbit_en_ls -pin_groups { { datain1
 els_dataout1 en1 } {datain2 els_dataout2 en2 } }
define_level_shifter_cell -cells mbit_ls -pin_groups { { datain1
 ls_dataout1 } { datain2 ls_dataout2 } }

7.6 define_power_switch_cell

Purpose Identify a power switch or ground-switch cell.

Syntax

define_power_switch_cell
-cells cell_list
-type <footer | header>
-stage_1_enable expression [-stage_1_output expression]
{-power_switchable power_ pin -power power_ pin
| -ground_switchable ground_pin -ground ground_ pin]}
[-stage_2_enable expression [-stage_2_output expression]]
[-always_on_pins ordered_ pin_list] [-gate_bias_pin power_ pin]

Arguments

-cells cell_list Identifies the specified cells as power-switch cells.

-type <footer |
header> Specifies whether the power-switch cell is a header or footer cell.

-stage_1_enable
(-stage_2_enable)
expression

Specifies when the switch cell driven by this input pin is turned on
(enabled) or off.
If only stage 1 is specified, the switch is turned on when the expression for
the -stage_1_enable option evaluates to True and the switch is turned off
when the expression for the -stage_1_enable option evaluates to False.
If both stages are specified, the switch is turned on when the expression for
both enable options evaluates to True and the switch is turned off when the
expression for both enable options evaluates to False.
The Boolean expression is a simple expression of the input pin.

-stage_1_output
(-stage_2_output)
expression

Specifies whether the output pin in the expression is the buffered or
inverted output of the input pin specified through the corresponding
-stage_x_enable option.
In a design, this pin is used to connect another switch cell in series to form
a power-switch chain.

-power_switchable
power_ pin

Identifies the output power pin in the corresponding cell.
This option can only be used if the power gating cell is used to cut off the
path from power to ground on the power side (i.e., for a header cell). This
pin shall be connected to a switchable power net.

-power power_ pin Identifies the input power pin of the cell.

-ground_switchable
ground_ pin

Identifies the output ground pin in the corresponding cell.
This option can only be used if the power gating cell is used to cut off the
path from power to ground on the ground side (i.e., for a footer cell). This
pin shall be connected to a switchable ground net.

-ground power_ pin Identifies the input ground pin of the cell.

-always_on_pins
ordered_ pin_list

Specifies a list of cell pins related to the input power and ground pins of
the cell.

-gate_bias_pin
power_ pin]

Identifies a power pin that provides the supply used to drive the gate input
of the switch cell.

Return value Return an empty string if successful or raise a TCL_ERROR if not.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

180

The define_power_switch_cell library command identifies the library cells to use as power-switch cells.
The input enable and output enable pins of these cells are related to the non-switchable power and ground
pins.

Examples

The following example defines a header power switch. The power switch has two stages. The power switch
is completely on if the transistors of both stages are on. The stage 1 transistor is turned on by applying a
low value to input I1. The output of the stage 1 transistor, O1, is a buffered output of input I1. The stage 2
transistor is turned on by applying a high value to input I2. The output of stage 2 transistor, O2, is the
inverted value of input I2.

define_power_switch_cell -cells 2stage_switch -stage_1_enable !I1
-stage_1_output O1 -stage_2_enable I2 -stage_2_output !O2 -type header

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

181

7.7 define_retention_cell

Purpose Identify state retention cells.

Syntax

define_retention_cell
-cells cell_list
-power power_ pin
-ground ground_ pin
[-cell_type string]
[-always_on_pins pin_list]
[-restore_function {{pin <high | low | posedge | negedge}}]
[-save_function {{pin <high | low | posedge | negedge}}]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]

Arguments

-cells cell_list Identifies the specified cells as state retention cells.

-power power_ pin Identifies the power pin of the cell.
If this option is specified with the -power_switchable option, it indicates
this is a non-switchable power pin.

-ground ground_ pin Identifies the ground pin of the cell.
If this option is specified with the -ground_switchable option, it indicates
this is a non-switchable ground pin.

-cell_type string Specifies a user-defined name grouping the specified cells into a class of
retention cells that all have the same retention behavior.
This specification limits the group of cells that can be used to those
requested through the -lib_cell_type option of the map_retention_cell
command (see 6.35).

-always_on_pins
pin_list

Specifies a list of cell pins that are related to the nonswitchable power and
ground pins of the cells.

-restore_function {{pin
<high | low | posedge |
negedge}}

Specifies the polarity or the edge sensitivity of the restore pin that enables
the retention cell to restore the saved value after exiting power shut-off
mode. By default, the restore pin relates to the non-switchable power and
ground pin of the cell.
If not specified, the restore event is triggered when the primary power is
restored, or the power-up event. When neither -save_function nor
-restore_function is specified, the current value is always saved before
entering retention mode and the saved value is restored when the primary
power is restored.

-save_function {{pin
<high | low | posedge |
negedge}}

Specifies the polarity or the edge sensitivity of the save pin that enables
the retention cell to save the current value before entering retention mode.
By default, the save pin relates to the non-switchable power and ground
pin of the cell.
If not specified, the save event is triggered by the negation of the restore
function when it is specified. When neither -save_function nor
-restore_function is specified, the current value is always saved before
entering retention mode and the saved value is restored when the primary
power is restored.

-restore_check
expression

Specifies the additional condition when the states of the sequential
elements can be restored. The expression shall be a function of the cell
input pins. The expression shall be True when the restore event occurs.

-save_check expression Specifies the additional condition when the states of the sequential
elements can be saved. The expression shall be a function of the cell input
pins. The expression shall be True when the save event occurs.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

182

-retention_check
expression

Specifies an additional condition to meet (after the primary supply of the
retention cell is switched off and before the supply is powered on again)
for the retention operation to be successful.
The expression can be a Boolean function of cell input pins.
The expression shall be True when the primary supply set of the power
domain in which the retention logic is located, is shut off and the retention
supply set is on.

-hold_check pin_list Specifies a list of pins that maintain the same logic value during the
retention period, from the time when the save event occurs to the time
when the restore event occurs. The pin may be the clock pin or any other
control pin.

-always_on_
components
component_list

Specifies a list of component names: instances, named processes, state
elements, or signal names, in the corresponding simulation model that are
powered by the nonswitchable power and ground pins. The logic values of
the specified components are corrupted if the state value of the non-
switchable power and group pin is OFF.
NOTE—The option has only an impact on tools that use the gate-level simulation
models of state retention cells.

-power_switchable
power_ pin

Identifies the switchable ground pin.
This cell can be used for retention purpose in a power domain that can be
shutoff using power switches (i.e., using a header cell).

-ground_switchable
ground_ pin

Identifies the switchable ground pin.
This cell can be used for retention purpose in a power domain that can be
shutoff using ground switches (i.e., using a footer cell).

Return
value Return an empty string if successful or raise a TCL_ERROR if not.

The define_retention_cell library command identifies the library cells to use as retention cells. The
following also apply:

 By default, all pins of this cell are related to the switchable power and ground pins, unless
otherwise specified.

 It shall be an error if the save and restore functions both identify the same pin, and the polarity or
edge sensitivity are the same for that pin. For example, the following two commands are incorrect:

define_retention_cell -cells My_Ret_Cell1
 -restore_function {pg high} -save_function {pg high}
define_retention_cell -cells My_Ret_Cell2
 -restore_function {pg posedge} -save_function {pg posedge}

 It shall be an error if the conditions specified in -save_check, -restore_check, or -retention_check
conflict with -hold_check. For example, the specification:

-hold_check clk -save_check !clk -restore_check clk

shall be an error since the -hold_check requires the clk signal to hold the same value from the
time when the save event occurs to the time when the restore event occurs, but the other two
options require the signal clk have different values.

NOTE—If the cell data output pin is listed in the -always_on_pins list, then this retention cell may be used for
retention strategies that specify -use_retention_as_primary.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

183

Example

In the following example, the cell design requires clock clk be held to 0 to save or restore the state of the
sequential element. If retention control pin save is set to 0, the state will be saved and saved data will be
restored when the primary power VDD is restored. The retention power VDDC shall be on to enable the
retention while VDD is switched off.

define_retention_cell -cells My_Ret_Cell -power VDDC
-ground VSS -power_switchable VDD
-save_check {!clk} -restore_check {!clk}
-save_function {save negedge}

8. UPF processing

8.1 Overview

All UPF commands have an immediate effect when they are executed by a Tcl interpreter. For the
following commands, the immediate effect is the only effect:

 add_parameter (see 6.3)

 apply_power_model (see 6.9)

 begin_power_model (see 6.11)

 create_hdl2upf_vct (see 6.17)

 create_upf2hdl_vct (see 6.27)

 end_power_model (see 6.29)

 find_objects (see 6.30)

 load_simstate_behavior (see 6.31)

 load_upf (see 6.32)

 set_correlated (see 6.39)

 set_design_attributes (see 6.40)

 set_design_top (see 6.41)

 set_equivalent (see 6.43)

 set_partial_on_translation (see 6.46)

 set_port_attributes (see 6.47)

 set_scope (see 6.51)

 set_simstate_behavior (see 6.52)

 set_variation (see 6.53)

 upf_version (see 6.54)

All other UPF commands have both an immediate and a deferred effect. For these commands, the
immediate effect is to add the command syntax to an internal structure for further processing. The deferred

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

184

effect varies with the command, but typically contributes to construction of a power intent model reflecting
the specification. This model is then applied to the design as appropriate for the tool involved.

One exception is the save_upf command (see 6.38), for which the deferred effect is generation of a UPF
file describing the power intent for a given scope. This generation occurs after the power intent model has
been fully constructed, so the generated UPF file is complete.

NOTE—This algorithm defines a reference model for UPF command processing, to illustrate how the
interdependencies between design data and the UPF specification, and among UPF commands themselves, can be
satisfied. A given tool may use a different algorithm as long as the overall effect is the same as this algorithm would
present.

8.2 Data requirements

In addition to the UPF file(s) involved, UPF processing requires access to the following data:

 Elaborated design hierarchy

 UPF attribute specifications in HDL (if any)

 Library cell definitions

These data need to be available when UPF processing begins.

8.3 Processing phases

8.3.1 Overview

Before UPF processing begins, information from Liberty models is imported into the UPF context as
follows:

For each instance in the design for which a corresponding Liberty model is available:

 For each pin of the Liberty model with attribute pgtype, if the instance does not have a port of the
same name, then such a port is implicitly created for that instance in the HDL design.

 For each attribute of the Liberty model with a corresponding UPF predefined attribute, an
equivalent UPF set_design_attributes or set_port_attributes command is prepended to the top-
level UPF file.

The following algorithm describes the detailed sequence of operations to process a UPF description, extract
the power intent it specifies, and apply the power intent to a design for use in a verification or
implementation tool.

The current context initially consists of the top-level (design top model, design top instance, current scope),
and the top-level UPF file (prepended with imported Liberty attributes).

Phase 1 (and conditionally phase 2) is executed by reading and executing UPF commands, as follows:

a) If the command is load_upf or apply_power_model then

1) the design top model, design top instance, and current scope variables are changed to the new
context, and

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

185

2) Phase 1 is applied recursively to process the new context, and then

3) the context reverts to the parent context.

Otherwise:

4) the command is interpreted in the current context.

b) If the current design top model has attribute {UPF_is_soft_macro TRUE} defined on it, then

1) Phase 2 is executed to build the power intent model for the current design top instance, down
to but not including any leaf instances below the current design top.

Phase 3 is executed for the whole design.

Phase 4 is executed for the whole design.

8.3.2 Phase 1—read power intent specification

In this phase, the UPF commands are parsed and further processed to create a normalized representation of
the UPF specification. This involves the following operations:

a) Read UPF commands and execute the immediate effect of each UPF command as it is read in:

1) For the create_supply_port and create_logic_port commands, which create named objects
in the design: if the port name is not already defined in the current scope in the HDL design
hierarchy, then define the port in the current scope in the HDL design hierarchy.

2) For set_port_attributes/set_design_attributes commands, which define attributes of objects
in the HDL design: associate such attribute definitions immediately with those objects in the
HDL design hierarchy.

3) For commands that refer to objects in the design by name: resolve references to the design
relative to the current scope in the HDL design hierarchy.

4) For the find_objects command, which searches for objects in the design hierarchy based on
search criteria: execute the find_objects command in the current scope of the HDL design
hierarchy, taking into account names defined in 1) above and attributes defined in 2) above.

5) For all other commands: execute their immediate effect as appropriate.

6) For any command that has a deferred effect: add the command to the syntactic model of the
UPF specification.

b) Collapse -update commands in the syntactic model of the UPF specification and check for
conflicts.

c) Apply defaults for defaultable options.

In general, names shall be defined before being referenced. In this phase, name-defining UPF commands
are associated with the scope in which the object is defined, or with the parent object for which a
subordinate object is defined, as appropriate, so that subsequent name references can be resolved at this
stage.

Names of design objects referenced in UPF commands shall be defined in the design hierarchy before they
are referenced in UPF. Names of the library cells referenced in UPF commands shall be defined for the
design before they are referenced in UPF. Names of UPF-defined objects shall be defined and associated
with the appropriate design hierarchy scope before they are referenced in UPF. Names of objects that are
associated with other objects (supply set handles of power domains; functions of supply sets or supply set

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

186

handles; port states of ports; power states of supply sets, power domains, or modules; simstates of power
states) shall be defined and associated with the relevant parent object before they are referenced in UPF.
Names of VCTs shall be defined in UPF and associated with the global VCT scope before they are
referenced in UPF.

Any command that updates a previous command that defined a simple name in a design hierarchy scope
shall be processed in the scope in which the original command was processed and be associated with that
same scope. Any command that updates a previous command that defined an object associated with a
parent object shall also be processed in the scope in which the original command was processed and be
associated with that same parent object.

8.3.3 Phase 2—build power intent model

In this phase, the normalized UPF specification is executed to construct a model of the power intent
expressed by the specification. This involves the following operations:

a) Construct power domains:

1) As specified by create_power_domain commands (see 6.20).

2) Using the effective element list algorithm in 5.9.

3) Including constructing required supply sets and functions.

4) Atomic power domains shall be constructed first, followed by non-atomic power domains.

b) Construct control logic for isolation, retention, and switch instances as specified by create_logic_*
(see 6.18 and 6.19) and connect_logic_net (see 6.13) commands.

c) Construct supply networks and connections to power domains/strategies:

1) As specified by create_supply_* (see 6.24, 6.25, and 6.26) and create_power_switch (see
6.21) commands.

2) connect_supply_* (see 6.14 and 6.15), create_*_vct (see 6.17 and 6.27), and
associate_supply_set (see 6.10) commands, including:

i) Equivalent supply declarations

ii) Error checks related to supply set/function association

iii) Implicit associations of supply nets and logic nets with power switch ports, as
defined in create_power_switch commands

d) Construct explicit, implicit, and automatic supply connections as specified by connect_supply_*
commands (see 6.14 and 6.15), associate_supply_set (see 6.7), etc.

e) Apply the power model of a hard IP cell as specified by apply_power_model command (see 6.9).

f) Construct composite domains:

1) As specified by create_composite_domain (see 6.16) commands

2) Including propagation of primary supply to/among subdomains

3) Including error checks related to domain composition

g) Identify power-domain boundary ports and their supplies by analyzing the elaborated design and
create_power_domain (see 6.20) commands.

h) Apply retention strategies for each domain as specified by set_retention (see 6.49 and 4.6.7).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

187

i) Apply repeater strategies for each domain as specified by set_repeater (see 6.48 and 4.6.7).

j) Apply isolation strategies for each domain boundary port as specified by set_isolation (see 6.44
and 4.6.7).

k) Apply level-shifting strategies for each domain boundary port as specified by set_level_shifter (see
6.45 and 4.6.7).

l) Identify cells to use for isolation, level-shifting, retention, and switch elements as specified by
map_* (see 6.34 and 6.35) and use_interface_cell (see 6.55) commands.

m) Construct power states as specified by add_power_state (see 6.5) commands.

n) Construct power state transitions as specified by add_state_transition (see 6.7) commands.

8.3.4 Phase 3—recognize implemented power intent

In this phase, the -instance options of all commands are processed to identify instances of cells that
implement the power intent. If a given command has a -instance option, this indicates that the command
has been implemented by some preceding step in the flow. The implementation may or may not be
complete. In particular, new logic added to the design by some tool step (e.g., for test insertion) may trigger
further implementation through another application of the same command.

If a given command has a -instance option that specifies an empty string as the instance name, this
indicates the instance resulting from applying the command in this particular context has been optimized
away. In this case, tools shall not infer a cell for this application of the command. In particular, verification
tools shall not infer a cell for purposes of verification, and implementation tools shall not re-implement the
command by inserting a cell again.

If a given command has a -instance option that specifies a hierarchical name as the instance name, the
specified instance shall exist in the design. It shall be an error if that hierarchical name does not identify a
cell instance of the appropriate type for the command. Attributes specified in library cells, in HDL models,
or in UPF may be used to determine whether a given cell instance is appropriate for the command whose
-instance option identifies it as resulting from the implementation of that command. In this case also, tools
shall not infer a cell for this application of the command. Instead, the existing cell shall be used.

In addition to the preceding, commands that create supply or logic ports or nets are processed to identify
any ports or nets that already exist in the HDL hierarchy. If a create_supply_port (see 6.25),
create_supply_net (see 6.24), create_logic_port (see 6.19), or create_logic_net (see 6.18) command
specifies a port or net name that already exists in the current scope of the HDL hierarchy, it shall be an
error if that port or net name does not identify a port or net, respectively, of the appropriate type for the
command. A supply port or net is appropriate for a create_supply_port or create_supply_net command,
respectively, if it is declared to be of type supply_net_type defined in the package UPF. A logic port or
net is appropriate if it is declared with the standard logic type in the relevant HDL. In this case also, tools
shall not create a new port or net for this application of the command. Instead, the existing port or net shall
be used.

8.3.5 Phase 4—apply power intent model to design

In this phase, some or all of the power intent model is applied to the HDL design. A given tool shall add the
power intent elements required for that tool’s operation to the design model. Power intent model elements
that are already present in the design shall not be added again. This includes implementation of any
checkers introduced by the bind_checker command (see 6.12).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

188

NOTE—It may be appropriate for a given tool to update existing elements in the design to more completely reflect the
power intent model. For example, a tool may choose to change the data type of a net in the design used as a supply net,
from a single-bit type to the appropriate (SystemVerilog or VHDL) supply_net_type.

8.3.6 Phase 5—query power intent model

In this phase, power intent model data can be queried via the information model API (see Clause 10). This
API consists of Tcl-based (see 11.1) and HDL-based (see 11.2) UPF query commands. Any checkers
resulting from new bind_checker commands (see 6.12) introduced in this phase shall be implemented in
this phase.

8.4 Error checking

Error checking is done in various UPF-processing stages. Error checks include the following classes of
checks, which would be performed in Phases 1, 2, and 3 of UPF processing:

a) Phase 1—Read and resolve UPF specification (see 8.3.2)

1) UPF syntax checks (including semantic restrictions)

2) Update conflict checks

3) Design scope/object reference checks (scope/object not found)

b) Phase 2—Build power intent model (see 8.3.3)

1) Conflicts between two commands applying to same object

2) Completeness checks (e.g., all instances are in a power domain)

c) Phase 3—Identify implemented power intent (see 8.3.4)

1) Name conflicts (an existing design object conflicts with a UPF name)

If a tool detects and reports an error in any of the preceding UPF-processing phases, the tool may continue
processing if possible, in order to identify any additional errors that might exist in the UPF specification or
its interpretation with the design hierarchy, but processing should terminate before phase 4, where the
power intent model is applied to the design hierarchy.

9. Simulation semantics

9.1 Supply network creation

UPF supply network creation commands define the power supply network that connects power supplies to
the instances in a design. After these commands are applied, every instance in a design is connected to the
power supply network. The supply network is a set of supply nets, supply ports, switches, and potentially,
regulators and generators. Supply sets are defined in terms of supply nets and conveniently define a
complete power circuit for instances. Supply sets simplify the management of related supply nets and
facilitate connections based on the role the supply set provides for a power domain and the functions the
supply nets provide within the set (see 9.2.2). The supply network defines how power sources are
distributed to the instances and how that distribution is controlled.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

189

A supply port that propagates but does not originate a supply state and voltage value defines a supply
source. At any given time, a supply source can be traced through the supply network connectivity to a
single root supply driver. The output port of a switch is a root supply driver; the value of this driver is
computed according to the algorithm given in 6.21. A power switch, voltage regulator, or bias generator
modeled in HDL should be modeled as a separate component with an output port that acts as a root supply
driver to provide power to other components.

Determination of the root supply driver is required for certain supply network resolution functions (see
6.24).

NOTE—Since the supply net type is defined in the package UPF, it is possible to create the supply network entirely in
HDL source.

A supply net can be connected to a port declared in the HDL description. In this case, the supply net state is
connected to the port; the voltage is not used. VCTs define the conversion from supply net state values to
values of an HDL type and vice versa to facilitate more complex modeling consistent with an
organization’s logic value interpretations of UPF supply port states.

If a supply net is connected to a HDL port of a single bit type, a default VCT that maps the FULL_ON
state to logic 1 and the OFF state to logic 0 shall be inserted automatically. The default VCT facilitates
building simple functional models. If this mapping is not the one desired for a particular connection, a user-
defined VCT implementing the desired mapping can be specified explicitly for the connection (see also
Annex B).

Supply port/net interconnections create a supply network that may span multiple instances at potentially
multiple levels in the logic hierarchy. Evaluation of supply networks during simulation requires
consideration of the whole collection of electrically equivalent supply ports/nets (see 4.5.5) making up each
supply network.

a) A group of electrically equivalent ports/nets (see 4.5.5) constitutes a supply network, including
ports/nets that are both equivalent by connection and declared electrically equivalent.

1) The source(s) of the group are the top-level and leaf-level sources.

2) The load(s) of the group are the top-level and leaf-level loads.

3) Internal ports act only as connections within the group.

b) If there are no resolved nets in the group, then the group is unresolved.

c) For an unresolved group, it shall be an error if there is more than one supply source in the group.

d) If there is at least one resolved net in the group, then the group is resolved.

e) For a resolved group, it shall be an error if:

1) The group contains two resolved nets with different resolution types.

2) Any two resolved nets in the group are separated by a unidirectional internal port.

f) In general, it shall be an error if a unidirectional supply port (an input port or an output port) in the
group:

1) has a supply source on the load side, and

2) has a load on the supply source side.

g) For an unresolved group of electrically equivalent supply ports/nets (see 4.5.5), the single source
drives all the loads directly.

h) For a resolved group of electrically equivalent supply ports/nets:

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

190

1) All electrically equivalent resolved nets in a group are collapsed into a single resolved net.

2) Supply sources provide inputs to the resolved net.

3) The resolution type of the resolved net determines how inputs are resolved.

4) The resolved value is distributed to all loads.

9.2 Supply network simulation

9.2.1 Supply network initialization

Simulation initialization semantics are defined by each HDL. Existing models rely on the HDL
initialization semantics for operations such as initializing read-only memories (ROMs), etc. To ensure that
initialization of the design occurs correctly during power-aware simulation, model initialization code and
design code should be cleanly separated. In Verilog-2005 or SystemVerilog, initial blocks can be used for
model initialization code, since these are not affected by power-aware simulation semantics. In VHDL,
model initialization code should be placed in processes that will not be synthesized and these processes
should be included in an "always-on" power domain during power-aware simulation.

The initial state of supply ports and supply nets is OFF with an unspecified voltage value. The initial state
of a supply set is determined by the initial state of each supply function of the supply set. The initial state of
a supply set function is determined by the initial state of the corresponding supply net with which it has
been associated or else the initial state of the root supply driver of that function.

NOTE—Implicitly created supply nets are initialized the same as explicitly created supply nets.

9.2.2 Power-switch evaluation

During simulation, a power switch created with create_power_switch corresponds to a process that is
sensitive to changes in its input port (net state and voltage value), as well as the signals referenced in
the Boolean expressions that define its control inputs. Whenever the input supply ports or control signals
change, the corresponding on-state, on-partial-state, off-state, and error-state Boolean functions are
evaluated and the value of the power switch output port is recomputed. See 6.21 create_power_switch for
the algorithm used to determine the output value of the switch.

9.2.3 Supply network evaluation

During simulation, each supply object maintains two pieces of information: a supply state and a voltage
value. The supply state itself consists of two pieces of information: an on/off state and a full/partial state.
The supply state values are FULL_ON, OFF, PARTIAL_ON, and UNDETERMINED. PARTIAL_ON
typically represents a resolved supply net state when some, but not all, switches are FULL_ON or any
switch is PARTIAL_ON (see also 6.24.3).

During simulation, the supply network is evaluated repeatedly whenever the value of a root supply driver or
a switch input or a resolved supply net input changes. Supply network evaluation consists of the following:

a) Evaluation and resolution of supply nets (see 6.24.3)

b) Evaluation of power switches (see 6.21)

c) Evaluation of supply set power states (see 9.3)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

191

d) Evaluation and application of simstates (see 9.5 and 9.6).

The supply network is evaluated in the same step of the simulation cycle as the logic network. New root
supply driver values are propagated along the connected supply nets in the same manner that logic values
are propagated along the logic network.

NOTE—As no material distinction between PARTIAL_ON and PARTIAL_OFF exists, only PARTIAL_ON is
defined.

9.3 Power state simulation

9.3.1 Supply state and power state control

The supply state of a supply port, supply net, or supply set function may be changed from an HDL
testbench in simulation using the set_supply_state function defined in package UPF (see Annex B).
The set_supply_state function assigns one of the enumeration values OFF, PARTIAL_ON,
FULL_ON, or UNDETERMINED to the state field of the supply object to which it is applied, as
indicated by its parameter. The voltage field of the supply object is left unchanged.

The supply state of a supply port, supply net, or supply set function may also be changed using the
supply_on and supply_off functions defined in package UPF. The supply_on function sets the supply
state to FULL_ON and the supply voltage as indicated by its parameter. The supply_off function sets
the supply state to OFF and leaves the voltage unchanged.

The power state of a supply set may be changed from an HDL testbench in simulation using the
set_power_state function defined in the package UPF (see 11.2). The set_power_state function
activates the specified power state of the specified supply set (or supply set handle). This function can be
used to control the power states of supply sets, before supply distribution networks have been implemented
or completed.

When set_power_state is used to activate a supply set’s power state, the functions of the supply set
(e.g., primary.power) shall have their supply state set as follows:

a) If the specified supply set power state has a supply expression, then:

1) For any term in the supply expression of the form <function>==<value>, the supply state of
that function shall be set to the specified supply state value (e.g., through an invocation of
set_supply_state).

2) For any term in the supply expression of the form <function>!=<value>, the supply state of
that function shall be set to the value UNDETERMINED.

b) If the specified supply set power state has no supply expression, then:

1) If the simstate of the specified supply set power state is CORRUPT: the state shall be set to
OFF and the voltage value is unspecified.

2) For any other simstate: the state shall be set to FULL_ON and the voltage value is
unspecified.

It shall be an error if an invocation of set_power_state results in the assignment of two different values
to the same supply port, net, or supply set function.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

192

The power state of a power domain, composite domain, group, or module may also be changed from an
HDL testbench in simulation using the set_power_state function. In each case, the set_power_state
function traverses the power state dependencies starting from a specified power state of the object and sets
the power states or supply states of leaf-level objects as required to reach the specified power state of the
top-level object.

For these object types, set_power_state recursively calls itself for each term of the form
<object>==<state> in the defining expression of the specified power state. This recursion terminates when
any of the following conditions hold:

 The power state is a deferred power state (has no defining expression). In this case, the specified
state of the object is made active, and the function returns.

 The object is a supply set. In this case, the supply expression is processed instead of the logic
expression, as described above, and the function returns.

The set_power_state function shall only be invoked to activate a definite or deferred power state. It
shall be an error if it is invoked to activate an indefinite power state.

The set_power_state function does not attempt to set control signals to the values indicated in the
defining expression. It only sets the leaf-level object power states and/or supply states as required by the
power state specified in the top-level invocation. A testbench may also need to drive control signals to the
values required to make a given state active.

It is possible for a call to set_power_state to cause activation of two different power states for the same
object. It shall be an error if the two power states are not related by refinement.

For example, suppose set_power_state is invoked to set domain PD1 to a state S. If state S of domain
PD1 requires domain PD2 to be in state S2 and domain PD3 to be in state S3, and these states S2 and S3
require domain PD4 to be in two different states S4a, S4b, and both of these latter states are deferred power
states, the recursive calls of set_power_state will first activate state S4a of domain PD4 and then later
activate state S4b of domain PD4. If these two states are related by refinement, the current power state of
PD4 will be the most refined power state of these two. Otherwise, the current power state of PD4 will be
the predefined ERROR power state.

NOTE—Tools may provide other mechanisms to change the power state of the supply set or power domain. Such
mechanisms are outside the scope of this standard.

9.3.2 Supply state and power state determination

The supply state of a supply port, supply net, or supply set function is determined by the supply state of the
supply subnet (see 4.5) containing it. The supply state of any given supply subnet is determined as follows:

 At the beginning of simulation:

 The initial supply state is the supply state OFF.

 During simulation:

 If the supply subnet contains a switch output port, then the current supply state is determined
by evaluating the power switch whenever there is a change in the value of any of its inputs.

 If the supply subnet contains a resolved supply net, then the current supply state is determined
by evaluating the resolution function of the resolved supply net whenever there is a change in
the value of any of its inputs.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

193

 Otherwise, the current supply state is the state most recently assigned to the root supply driver
of the supply subnet by the set_supply_state command or the supply_on() function or the
supply_off() function

The set of active power states of a supply set, power domain, composite domain, group, model, or instance
is determined as follows:

 At the beginning of simulation, the set of active power states is computed, as required by the
defining expressions of the power states of the object, based on:

 the initial values of control signals,

 the initial power states of subordinate objects, and

 the initial supply states of supply objects

 During simulation, the set of active power states is re-computed whenever there is a change in any
of the following characteristics of any subordinate object referenced in the defining expression of
any power state of this object:

 the current value of a control signal, or

 the set of active power states of an object, or

 the current supply state of a supply object.

A power state of a supply set is determined to be active as follows:

 If the power state is a deferred power state (see 4.7.3), then:

 if the power state has a supply expression, the power state is active if the supply expression
evaluates to True;

 otherwise the power state is active if it was made active by set_power_state.

 Otherwise:

 the power state is active if its defining expression evaluates to True,

 and it shall be an error if it has a supply expression that does not evaluate to True.

 The predefined power state OFF is active if no other power state of the supply set is active.

A power state of a power domain, composite domain, group, model, or instance is determined to be active
as follows:

 If the power state is a deferred power state, then the power state is active if it was made active by
set_power_state.

 Otherwise, the power state is active if its defining expression evaluates to True.

 The predefined power state UNDEFINED is active if no other power state of the object is active.

The current power state of a supply set, power domain, composite domain, group, model, or instance is
determined as follows:

 If exactly one power state of the object is active, then the current power state is that power state;
else,

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

194

 If more than one definite or deferred power state of the object is active, and all active states are
related by refinement, then the current power state is the most refined power state in that set; else,

 The current power state is the predefined power state ERROR.

It shall be an error if the current power state of a supply set or power domain is UNDEFINED and
add_power_state for states of that object was specified with -complete.

9.4 Power state transition detection

Each object for which power states can be defined may have an associated set of named power state
transitions. Each named power state transition is defined in terms of one or more pairs of states: a starting
state (or from state), and an ending state (or to state). Named power state transitions occur when the to state
becomes active after the from state is active, and certain other conditions are satisfied.

A transition from a from state to a to state may include one or more intermediate states. The set of
intermediate states allowed for a given transition include any abstraction of the from state and any
abstraction of the to state. If the power states of the object have been defined without being specified as
complete, then the set of allowed intermediate states also includes the predefined power state
UNDEFINED.

In the following,

 active(S) means that power state S is active

 current(S) means that power state S is the current power state

 intermediate means an intermediate state that is allowed in a given transition

 (…)* means a sequence of zero or more repetitions of the parenthesized item

A transition from state S1 to state S2, where S1 is an abstraction of S2 occurs when the following sequence
of conditions occurs:

{active(S1) && not active(S2); active(S2)}

A transition from state S2 to state S1, where S2 is a refinement of S1 occurs when the following sequence
of conditions occurs:

{active(S2); (not active(S2) && active(S1)}

A transition from state S1 to state S2, where S1 and S2 are not related by refinement, occurs when the
following sequence of conditions occurs:

{active(S1); (current(intermediate))*; active(S2)}

9.5 Simstate simulation

9.5.1 Overview

The current simstate of a supply set (or supply set handle) is reevaluated whenever there is a change in the
current power state of the supply set. If the current power state defines a simstate, then that simstate

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

195

becomes the current simstate; otherwise, the current simstate remains unchanged. Each simstate has well-
defined simulation semantics, as specified in the following subclauses. Multiple power states may be
defined with the same simstate specification. The simstate semantics are applied to all elements that have
the supply set connected to it (including no supply net connections except those implied by the supply set
connection to the element) and that have the simstate semantics implicitly or explicitly enabled.

Elements implicitly connected to a particular supply set have simstate semantics enabled by default.
Elements automatically or explicitly connected to a particular supply set have simstate semantics disabled
by default. Use set_simstate_behavior to override the default enablement of simstate semantics (see 6.52).

The supply set powering a state element or the driver for a net can be in a state in which the supply is not
adequate to support normal operational behavior. Under specified circumstances while in these states, the
logic value of the state element or net becomes unknown. A corrupt value for a state element or net
indicates the logic state of the state element or net is unknown due to the state of the supply powering the
state element or driver of the net. The corrupt value of a state element or net shall be the HDL’s default
initial value for that object’s type, except for VHDL std_ulogic and std_logic typed-objects, which
shall use X as the corruption value (not U).

NOTE—An object can be declared with an explicit initial value. This explicit initial value has no relationship to the
corrupt value for the object. For example, in VHDL, the objects of Integer type have the default initial value of
Integer’Left (-2147483648 for a system using 32 bits to represent Integer types). A process variable
inferring a state element may be declared to be of type Integer with an initial value of 0. The corrupt value for the
variable is Integer’Left, not 0.

The following subclauses define the simulation semantics for simstates. These semantics are applied to the
elements connected to the supply set with simstate behavior ENABLED.

9.5.2 NORMAL

This state is a normal, power-on functional state. The simulator executes the design behavior of the
elements consistent with the HDL or UPF specification that defines the element.

9.5.3 CORRUPT

This state is a non-functional state. For example, this state can be used to represent a power-gated/power-
off supply set state. In this power state, state elements powered by the supply set and the logic nets driven
by elements powered by the supply set are corrupted. The element is disabled from evaluation while this
state applies.

As long as the supply set remains in a CORRUPT simstate, no additional activity shall take place within
the elements, i.e., all processes modeling the behavior of the element become inactive, regardless of their
original sensitivity list. Events that were scheduled for elements supplied by the supply set before entering
this simstate shall have no effect.

9.5.4 CORRUPT_ON_ACTIVITY

This state is a power-on state that is not dynamically functional. For example, this state can be used to
represent a high-voltage threshold, (body-bias) state that does not have characterized (defined) switching
performance. In this simstate, the logic state of the elements is maintained unless there is activity on any of
the element’s inputs. Upon activity on any input, then all state elements and logic nets driven by the
element are corrupted.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

196

9.5.5 CORRUPT_ON_CHANGE

This state is a power-on state that is not dynamically functional. For example, this state can be used to
represent a high-voltage threshold, (body-bias) state that does not have characterized (defined) switching
performance. In this simstate, the logic state of the elements is maintained unless there is a change on any
of the element’s outputs. Upon change of any output, then all logic nets driven by that element output are
corrupted.

9.5.6 CORRUPT_STATE_ON_CHANGE

This state is a power-on state that represents a power level sufficient to power normal functionality for
combinational functionality, but insufficient for powering the normal operation of a state element if the
state element is written with a new value. The simulator executes the design behavior of the elements
consistent with the HDL or UPF specification that defines the element, except that any change to the stored
value in a state element results in the writing of a corrupt value to the state element.

9.5.7 CORRUPT_STATE_ON_ACTIVITY

This state is a power-on state that represents a power level sufficient to power normal functionality for
combinational functionality but insufficient for powering the normal operation of a state element if there is
any write activity on the state element. The simulator executes the design behavior of the elements
consistent with the HDL or UPF specification that defines the element, except that any activity inside state
elements, whether that activity would result in any state change or not, results in the writing of a corrupt
value to the state element.

9.5.8 NOT_NORMAL

This is a special, placeholder state. It allows early specification of a non-operational power state while
deferring the detail of whether the supply set is in the CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_ON_CHANGE, CORRUPT_STATE_ON_CHANGE, or CORRUPT_STATE_
ON_ACTIVITY simstate. If the supply set matches a power state specified with simstate
NOT_NORMAL, the semantics of CORRUPT shall be applied, unless overridden by a tool-specific
option. NOT_NORMAL semantics shall never be interpreted as NORMAL.

The functions defined in package UPF (see 11.2) that query the simstate for a state that was originally
NOT_NORMAL shall return the simstate to be applied in simulation for that state; e.g., CORRUPT for
the default interpretation of NOT_NORMAL.

The query functions (see 11.1.2) that query the simstate for a state having a NOT_NORMAL simstate
shall return NOT_NORMAL when it was not updated with any other simstate.

NOTE 1—Using the default interpretation of CORRUPT for NOT_NORMAL provides a conservative
interpretation—the broadest corruption semantics—for simulation of the design for functional verification. However, a
conservative interpretation of NOT_NORMAL for other tools, such as power estimation tools, might be to use a bias
or lowered voltage level interpretation such as CORRUPT_ON_ACTIVITY.

NOTE 2—As it is possible for two or more power states of a supply set to match the state of the supply set’s nets and
for multiple simstate specifications to apply simultaneously, the effective result is that the simstate with the broadest
corruption semantics shall apply. For example, a supply set that matches power states with simstates of
CORRUPT_STATE_ON_CHANGE and CORRUPT_STATE_ON_ACTIVITY shall result in the application of
CORRUPT_STATE_ON_ACTIVITY simstate semantics being applied.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

197

9.6 Transitioning from one simstate state to another

9.6.1 Introduction

The following subclauses define the simulation semantics for transitions from one simstate to another.
These semantics are applied to the elements connected to the supply set with simstate behavior
ENABLED.

9.6.2 Any state transition to CORRUPT

In this case, the nets and state elements driven by the elements connected the supply set in this simstate
shall be corrupted. The elements connected to this supply set are inactive as long as the supply set is in the
CORRUPT simstate.

9.6.3 Any state transition to CORRUPT_ON_ACTIVITY

In this case, the current state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall remain enabled for activation
(evaluation). Any net or state element that is actively driven after transitioning to this state shall be
corrupted.

Any attempt to restore a retention register’s retained value while in the CORRUPT_ON_ACTIVITY state
shall result in corruption of the register’s value.

9.6.4 Any state transition to CORRUPT_ON_CHANGE

In this case, the current state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall remain enabled for activation
(evaluation).

9.6.5 Any state transition to CORRUPT_STATE_ON_CHANGE

In this case, the current state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall be enabled for activation (evaluation).

9.6.6 Any state transition to CORRUPT_STATE_ON_ACTIVITY

In this case, the current state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall be enabled for activation (evaluation).

9.6.7 Any state transition to NORMAL

In this case, the processes modeling the behavior of the element shall be enabled for activation (evaluation),
and the combinational and level-sensitive sequential logic functionality in each process shall be
re-evaluated to restore and properly propagate constant values and current input values. Edge-sensitive
sequential logic functionality within the element shall not be evaluated at this transition.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

198

9.6.8 Any state transition to NOT_NORMAL

NOT_NORMAL is simulated according to the interpretation of this placeholder simstate (see 9.5.8).

9.7 Simulation of retention

9.7.1 Introduction

Subclause 9.7 covers some of the basics of retention register operation and modeling, which are useful in
describing the simulation semantics for the set_retention command (see 6.49). The following
abbreviations are used in various figures and tables herein:

VDD primary supply port of the register

VDDRET retention supply port of the register

SS save signal is asserted

SC save condition

RS restore signal is asserted

RC restore condition

RTC retention condition

NOTE—In verification, if no retention supply is specified in a retention strategy, then for any inferred retention
cell instance, retention supply port VDDRET will be connected to an anonymous always-on supply (see 6.49).

9.7.2 Retention corruption summary

A retention register has the same simulation behavior as a regular register when both supplies VDD and
VDDRET are ON, the save/restore signals are inactive, and the retention condition is False. The main
simulation difference between a non-retention register and a retention register comes when the corruption
behavior is modeled during various power state transitions. The retention register is composed of at least
three components (see 4.4.5), as follows:

 Register value is the data held in the storage element of the register. In functional mode, this value
gets updated on the rising/falling edge of clock or gets set or cleared by set/reset signals,
respectively.

 Retained value is the data in the retention element of retention register. The retention element is
powered by the retention supply.

 Output value is the value on the output of the register.

The retained value of the retention register can be corrupted in the following ways:

a) If VDDRET==OFF

Corrupt if RET_SUP_COR is set

b) Else If VDDRET==ON

1) If VDD==ON

(SS && SC) && (RS && RC) (both save/restore functions are true) and SAV_RES_COR is set

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

199

2) Else If VDD==OFF

i) (SS && SC)—trying to save when domain off

ii) (RS && RC)—trying to restore when domain off

iii) !RTC

The output value of the retention register can be corrupted in the following ways:

c) If -use_retention_as_primary is specified

Output is corrupted whenever retained value (described above) is corrupted

d) If -use_retention_as_primary is not specified

1) If VDD==OFF

Corrupt always

2) Else If VDDRET==OFF

Corrupt if RET_SUP_COR is set

In summary, the preceding algorithm covers all the conditions by which a retention register (i.e., retained
value/output value) can be corrupted. A corrupted retention register can then be restored to a valid state by
a combination of one or more of the following:

 Restore (power up) the corrupting supplies.

 Deassert save/restore signals if the corruption is due to the condition when both are true
simultaneously.

 Deassert retention condition.

 Apply reset/set and/or clock.

9.7.3 Retention modeling for different retention styles

Depending on the type of retention, the controlling inputs of the retention register like the save/restore
signals may or may not exist on the register boundary. Thus, it is important to understand the modeling of
the different flavors of retention, namely balloon-style retention and master/slave-alive style retention (see
4.4.5).

When the set_retention (see 6.49) is specified with -save_signal and (or) -restore_signal, balloon-style
retention semantics are applied to it. The process of saving/restoring is unique to balloon-style retention.
When the set_retention is not specified with both -save_signal and -restore_signal and it is specified only
with a -retention_condition, the master/slave-alive retention semantics are applied instead. In this type of
retention, the restore happens during power-up, as the master/slave latch is kept on the retention supply.
However, whether to be in a retention state or not may be controlled by the value of one or more ports on
the retention register. In the case of master/slave-alive retention, when the retention condition is true, the
retention_condition shall take precedence over other signals such as clocks and async sets/resets.

A retention register may be in one of the following states:

 NORMAL—Functional/active mode, all supplies expected to be ON.

 SAVE—The time snapshot where the save action occurs (for balloon-latch style registers).

 RESTORE—The time snapshot where the restore action occurs (for balloon-latch style registers).

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

200

 RETAIN_ON—The time snapshot where the primary supply is ON and the register is in retention
state (retention_condition == True).

 RETAIN_OFF—The time snapshot where the primary supply is OFF and the register is in
retention state (retention_condition == True).

 PARTIAL_CORRUPT—The retained value is corrupted, but the register value is not corrupted.

 CORRUPT—The register value and retained value are both corrupted.

Table 8 summarizes the power state of a balloon-style retention register with respect to the states of the
signals.

Table 9 summarizes the power state of a master/slave alive retention register with respect to the states of
the signals.

Table 10 shows the output values of the retention register depending on the state of retention register.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

201

Table 8 —Retention power state table for balloon-style retentiona

VDD VDD RET SS && SC RS && RC RTC Retained
value

Register
value Register state Valid next states Comments

ON ON FALSE FALSE FALSE Previous
saved data

Previous state
value

NORMAL SAVE,
RESTORE

 —

ON ON FALSE FALSE TRUE Previous
saved data

Previous state
value

RETAIN_ON NORMAL,
RETAIN_OFF,
RESTORE

 —

ON ON FALSE TRUE X Previous
saved data

Retention
value

RESTORE NORMAL,
RETAIN_ON

 —

ON ON TRUE FALSE X Register value Previous state
value

SAVE RETAIN_ON,
NORMAL

 —

ON ON TRUE TRUE X CORRUPT CORRUPT CORRUPT NA SAV_RES_COR
is set

ON OFF X X TRUE CORRUPT CORRUPT CORRUPT NA —
ON OFF X TRUE FALSE CORRUPT CORRUPT CORRUPT NA RET_SUP_COR

is set
ON OFF X FALSE FALSE CORRUPT Previous state

value
PARTIAL_
CORRUPT

NORMAL RET_SUP_COR
is set

OFF OFF X X X CORRUPT CORRUPT CORRUPT NA RET_SUP_COR
is set

OFF ON FALSE FALSE FALSE CORRUPT CORRUPT CORRUPT NA !RTC
OFF ON FALSE FALSE TRUE Previous

saved data
CORRUPT RETAIN_OFF RETAIN_ON —

OFF ON FALSE TRUE X CORRUPT CORRUPT CORRUPT NA Restore during
power-down

OFF ON TRUE X X CORRUPT CORRUPT CORRUPT NA Save during
power-down

aThe X in this table denotes a "don’t care" condition. Valid next states are non-corrupting next states.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

202

Table 9 —Retention state table for master/slave-alive retention

VDD VDD
RET

RTC Retained/
register value

Register state Valid next
states

Comments

ON ON FALSE Previous state value NORMAL RETAIN_ON —

ON ON TRUE Previous state value RETAIN_ON NORMAL,
RETAIN_OFF

 —

ON OFF TRUE CORRUPT CORRUPT NA RET_SUP_COR is set

ON OFF FALSE CORRUPT CORRUPT NA RET_SUP_COR is set

OFF OFF X CORRUPT CORRUPT NA —

OFF ON FALSE CORRUPT CORRUPT NA !RTC

OFF ON TRUE Retention value RETAIN_OFF RETAIN_ON —

Table 10 —Retention output value tablea

use_retention_
as_primary State Register value Output value

TRUE NORMAL DATA DATA

TRUE RETAIN-ON/RETAIN-OFF DATA DATA

TRUE SAVE DATA DATA

TRUE RESTORE DATA DATA

TRUE CORRUPT X X

FALSE NORMAL DATA DATA

FALSE RETAIN-ON/RETAIN-OFF DATA VDD==ON?DATA:X

FALSE SAVE DATA VDD==ON?DATA:X

FALSE RESTORE DATA VDD==ON?DATA:X

FALSE CORRUPT X X

aDATA in Table 10 stands for a valid data, and X stands for corrupt data.

Figure 6 describes the sequence of transitions in balloon-style retention register. In this case, the state
transitions are not synchronous, i.e., they are not caused due by clock transitions.

Figure 7 describes the sequence of transitions in a master/slave-alive register. In this case, the state
transitions are not synchronous, i.e., they are not caused due by clock transitions.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

203

Figure 6 —Retention station transition diagram for balloon-style retention

Figure 7 —Retention state transition diagram for master/slave-alive style retention

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

204

9.8 Simulation of isolation

The simulation semantics for isolation are defined by the following algorithm, unless a specific simulation
model is specified for a given instance by a use_interface_cell command (see 6.55). The algorithm is for a
single-stage isolation cell with an explicitly specified -isolation_supply, isolation_sense high, and a
clamp_value of 0, 1, Z from a predefined logic type (see 5.4), or any value of a user-defined datatype:

on any input change,
 if the current simstate of the isolation supply set is NORMAL, then
 if isolation_signal == 0 then

data_output = data_input;
 else if isolation_signal == 1 then

data_output = clamp_value;
 else /* isolation_signal has an unknown value */

data_output = corrupted value;
 end
 else /* the isolation supply set is in a non-NORMAL state */
 data_output = corrupted value;
 end;

Where the corrupted value is X from the predefined logic type for a 1-bit port of that type, an array of X
values for a port that is an array with elements of that type, and the leftmost value of the relevant data type
for any port that is of a user-defined datatype. For an isolation cell with -isolation_sense low, the isolation
signal values 0 and 1 would be interchanged.

For a single-stage isolation cell with an explicitly specified -isolation_supply, isolation_sense high, and a
-clamp_value of latch:

on any input change,
 if the current simstate of the isolation supply set is NORMAL, then
 if isolation_signal == 0 then

data_output = data_input;
latched_value = data_input;

 else if isolation_signal == 1 then
data_output = latched_value;

 else /* isolation_signal has an unknown value */
data_output = corrupted value;
latched_value = corrupted value;

 end
 else /* the isolation supply set is in a non-NORMAL state */
 data_output = corrupted value;
 latched_value = corrupted value;
 end;

NOTE—For an isolation cell inferred from a strategy specified with -isolation_supply {}, the above algorithms would
test whether the supply function of the primary supply of the location domain that corresponds to the clamp value is
FULL_ON, rather than testing whether the current simstate of the isolation supply set is NORMAL (see 6.44).

For a multi-stage isolation cell with N stages, each stage is simulated as given above, and the multiple
stages are composed as follows:

 isolation_stage[1].input = data_input;
 isolation_stage[1].isolation_supply = isolation_supply[1];
 isolation_stage[1].isolation_signal = isolation_signal[1];
 for each stage K in 2 to N,
 isolation_stage[K].input = isolation_stage[K-1].output;
 isolation_stage[K].isolation_supply = isolation_supply[K];
 isolation_stage[K].isolation_signal = isolation_signal[K];
 end;
 data_output = isolation_stage[N].output;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

205

9.9 Simulation of level-shifting

The simulation semantics for level-shifting are defined by the following algorithm, unless a specific
simulation model is specified for a given instance by a use_interface_cell command (see 6.55):

on any input change,
 if the current simstate of any level shifter supply set \

is not NORMAL, then
 data_output = corrupted value;
 else
 data_output = data_input;
 end;

Where the corrupted value is as defined in 9.8.

9.10 Simulation of repeaters

The simulation semantics for repeaters are defined by the following algorithm:

on any input change,
 if the current simstate of the repeater_supply \

is not NORMAL, then
 data_output = corrupted value;
 else
 data_output = data_input;
 end;

Where the corrupted value is as defined in 9.7.

10. UPF information model

10.1 Overview

The UPF information model captures the power-management information which is the result of application
of UPF commands on the user design. It consists of a set of objects containing information and various
relationships between them. The model contains information about UPF objects and user design in order to
comprehensively capture the power intent in a standard form which can be queried via UPF queries and
UPF HDL package functions.

The motivation for providing the information model is to provide a standard model which forms the
underlying structure which shall be used by query commands and HDL package functions to access
information related to power management. The objective is to provide a standard interface which can be
used to access power-management information resulting from UPF and also provide a back-annotation to
original UPF source.

The objects in the information model shall be constructed after all the UPF-processing steps have been
completed, more specifically after the phase 4 of UPF processing (see 8.3.5). This implies that the APIs
that query the information model (i.e., UPF queries and UPF HDL package functions) will only work after
phase 4 of UPF processing. The information model does not capture the intermediate steps involved in
reaching the phase 4.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

206

It shall be an error if a query function:

 Appears in a power model

 Is followed by a UPF command that would affect the power intent

NOTE—Since the information model will only be complete after phase 4, therefore the UPF query commands cannot
be used to construct the power intent which they are querying.

Figure 8 —UPF information model flow

10.2 Components of UPF information model

10.2.1 Overview

The UPF information model consists of a collection of objects and the properties present on those objects.
These objects belong to one of the various classes defined in the information model.

10.2.2 Objects

The objects in the information model are the primary holders of information. They are instances of the
classes which belong to the UPF information model. They represent information about UPF and HDL and
the relationship between UPF and HDL. The information is present on these objects in the form of
properties, which can be accessed via APIs. Each object shall be denoted by a unique identifier called a
UPF handle which shall be used by the APIs to access information present on it. They are broadly classified
into three groups:

a) UPF objects

b) HDL objects

c) Relationship objects

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

207

10.2.3 Properties

10.2.3.1 Overview

Properties are pieces of information present on an object. They can be of the following types:

Table 11 —Kinds of properties

Property type Property value Property type name

Basic

String upfStringT

Integer upfIntegerT
Boolean upfBooleanT

Float upfRealT

Enumerated Type names with suffix E

Complex
Handle to objects/properties upfHandleT
List of handles to other objects upfIteratorT

Similar to objects, the properties are also referred by unique IDs which is constructed from a property
name. Each property value of basic types is represented in a string when returned from query commands.
The complex property values will be represented as a UPF handle or a list of UPF handles.

10.2.3.2 Dynamic properties

Some objects in the information model also maintain certain additional properties that are applicable during
simulation environment. These are called "dynamic properties" and are only accessed by HDL package
interface (see 11.2). Some of the dynamic properties also support write access under specific circumstances
during the simulation (see 11.2.3.3). They enable the user to build abstract testbenches and
checker/coverage models based on objects defined in the information model.

10.3 Identifiers in information model (IDs)

10.3.1 Overview

The various components in the information model are assigned unique strings which act as identifiers or
IDs. These IDs are categorized into the following formats.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

208

10.3.2 Handle ID or UPF handle

10.3.2.1 Overview

All objects in the information model are represented by a unique ID termed a UPF handle. This ID is used
to query the properties in the information model. The definition of UPF handle varies from class to class
but is broadly categorized into the following two kinds:

a) Hierarchical path ID

b) Tool-generated ID

10.3.2.2 Hierarchical path ID

10.3.2.2.1 Overview

The hierarchical path ID is the absolute hierarchical pathname from UPF root scope. It always starts with
the hierarchical path separator "/" and can have names separated by "/", "." and "@" characters. These IDs
are used for UPF and HDL group of objects. Since UPF ensures that there is no name clash with the design
hierarchy, it is ensured that there is no conflict between the HDL objects and UPF objects, except in cases
of UPF objects that get implemented in HDL and UPF objects representing port and net with the same
name.

Examples

/top/dut_i/mid_i # Handle to a scope in HDL
/top/dut_i/PD.iso_strat # Handle to an isolation strategy
/top/dut_i/port@1 # Handle to an HDL bit of a multi-bit port

10.3.2.2.2 Implemented UPF objects

Implemented UPF objects are UPF objects that get implemented and become part of HDL description. In
such case, there will be two objects with the same name in a given scope. One will be a HDL object and
another will be a UPF object. In such case, there will be a property that links from the UPF object to the
HDL object. In case of implemented UPF objects, a search in the scope by name will always return the
matching UPF object. This is typically the case with supply or logic network, where in earlier stages it may
completely reside in UPF and later gets implemented and present in both UPF and HDL.

10.3.2.2.3 UPF ports and nets with same name

UPF also allows creation of supply port and supply nets with the same name in a given scope. In such
cases, both the supply port and the supply net will result in the same hierarchical path ID. In order to avoid
ID clash, the hierarchical path ID of supply net is suffixed with class ID separated by an "@" character. A
search by name in that scope will result in the handle to supply port. However, if a search of the supply net
is required, then the name of the supply net needs to be suffixed with an "@upfSupplyNetT" string.

Examples

UPF:
create_supply_port VDD

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

209

create_supply_net VDD
Handle:
/top/VDD #Handle to a supply port
/top/VDD@upfSupplyNetT #Handle to a supply net

NOTE—The suffixing of class name in the handle ID is only required in the special case when there is a name conflict.

10.3.2.2.4 Hierarchical path IDs and relative pathnames

The relative pathnames are hierarchical pathnames that do not start with a "/" character. They provide
reference to objects within the current scope. The UPF query commands that accept UPF handle can also
accept relative pathnames. In that case, the UPF handle will be constructed internally by the query
command by prefixing the UPF handle of the active scope.

The query commands will also accept "." where object handle is required. In that case, the "." will be
expanded to handle ID of the current scope.

Examples

set_scope /top/dut_i
upf_query_object_properties mid/PD #Handle: /top/dut_i/mid/PD
upf_query_object_properties . #Handle: /top/dut_i

NOTE—The automatic prefixing of the UPF handle of the active scope will not happen to tool-assigned IDs (starting
with "#").

10.3.2.3 Tool-generated ID

The tool-generated IDs are special IDs generated by the tool constructing the power intent. They have a
specific pattern with a mandatory # prefix and an integer counter in the end. They are created for
relationship objects. The specific pattern of the tool-generated IDs for different classes of relationship
objects is discussed in the respective subclauses.

Examples

#UPFEXTENT1#

10.3.3 Class ID

The class IDs are unique strings that represent class names in the information model. The classnames are
represented in capitalized words with a "upf" prefix and "T" suffix.

Examples

upfPowerDomainT, upfHdlScopeT

10.3.4 Property ID

The property IDs are unique strings that represent the properties present on the object. The property names
are denoted by all lowercase words separated by an "_" (underscore character) and a "upf" prefix.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

210

Examples

upf_name, upf_parent

10.3.5 Enumerated ID

The enumerated IDs are strings that represent the enumerated values of a particular enumeration type.
Some of these IDs are reused from the values already defined in the respective UPF commands except in
cases where they result in a name conflict. All enumerated IDs are represented as uppercase strings
separated by an "_" (underscore character). In case of name conflicts, the IDs are prefixed by "UPF_"
followed by appropriate keywords.

Examples

UPF_SENSE_HIGH, FULL_ON, UPF_CELL_ISOLATION

10.4 Classification of objects

10.4.1 Overview

The objects in the information model are classified into three major groups: UPF objects, HDL objects, and
relationship objects.

10.4.2 UPF objects

The UPF objects represent the group of objects that are created in UPF via UPF commands e.g., power
domains, power states, etc. They represent the abstract objects that are created by UPF and have a valid
name in the design hierarchy. They contain information coming from UPF commands and also the effect of
application of those commands on HDL.

10.4.3 HDL objects

10.4.3.1 Overview

The HDL objects is a group of objects that are created to represent HDL information in the UPF
information model. These objects capture the abstracted HDL information which is independent of the
language in which the design is written. The objects are required to capture certain relationships needed
for maintaining the power-management information. The relationships could be the following (but not
limited to):

a) Creation scope of UPF objects

b) Extent and effective elements list of UPF objects

c) Control signals

d) Cells and their power-management information

e) Power-management cells that are already present in design

f) Supply/logic network which is already present in design

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

211

10.4.3.2 UPF information model and other HDL information models (e.g., VPI, VHPI, etc.)

The HDL objects in the UPF information model only represent the subset of information present in HDL
information models. The idea is to have an abstraction of design information, coming from HDL, necessary
to capture the power management. These objects are not designed to substitute the HDL information model
which contains detailed knowledge of HDL, e.g., SystemVerilog, VHDL, etc.

If it is required to extract additional information about the HDL objects, then the user can either depend on
the find_objects UPF command or rely on HDL information models (VPI, VHPI, etc.) to extract any
information. The information model will provide the RTL style pathname through an API which can be
used to get respective handles of the HDL information model (see 11.1.2.4).

If a particular HDL object is not present in the UPF information model, it does not imply that it is not
present in the actual design. However, if the HDL object is present in the UPF information model, then it
must be present in the user design at some stage in the design flow.

NOTE—There are some HDL objects which are inferred from UPF at RTL stage but not present in the original HDL,
e.g., an isolation cell inserted for a strategy. The instance of such special cells will be represented as an HDL object at
the target location determined by strategies.

10.4.3.3 Complex HDL objects

10.4.3.3.1 Overview

The HDL object also represents signals of complex types, like record, structure, arrays, as a multi-bit
(upfHdlPortMultiBitT or upfHdlNetMultiBitT) kind of object. The signals of a complex type get
transformed into a normalized vector of bits determined by a normalization algorithm. The tools can choose
any normalization algorithm as long as it maintains some basic properties and provides an API to extract a
RTL style name. This helps in providing a consistent and simple representation across all HDLs.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

212

Figure 9 —Multi-bit type HDL objects

10.4.3.3.2 Multi-bit representation of complex HDL objects

Any HDL object of complex type that requires multiple bits to represent the value can be represented as a
multi-bit (upfHdlPortMultiBitT or upfHdlNetMultiBitT) object in the information model. This
representation provides a common, simple representation of any HDL object in information model without
duplicating the type information from HDLs. The tools can do the translation from HDL object to multi-bit
object on the fly using a specific normalization algorithm. The following are some of the properties of the
multi-bit type object:

a) Any multi-bit type object represents a vector of bits of size "width". The equivalent bit
representation in SystemVerilog for this object is "bit [width – 1: 0] <name of object>".

b) A bit of the multi-bit (upfHdlPortBitT or upfHdlNetBitT) object represents the normalized bit
presentation of the complex type.

1) The handleID of a bit object consists of either a valid RTL representation or a normalized
representation of the form <object name>@<normalized index>. For example, sig[4][2],
sig@0.

c) A slice of a multi-bit (upfHdlMultiBitSliceT) object is a subset of consecutive bits of the multi-bit
object that represents a part of the complex type.

1) The handleID of a slice object consists of either a valid RTL representation or a normalized
representation of the form <object name>@<normalized msb>:<normalized lsb>. For
example, sig[1], sig@7:6.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

213

NOTE 1—The normalized handle ID of bit or slice objects is only returned by the APIs and users are not required to
construct it on their own. The valid RTL name can be extracted from the normalized representation using
upf_query_object_pathname API. See 11.1.2.4 for more details.

NOTE 2—In certain cases, only the normalized handle ID of bit is available. This is especially applicable for VHDL
where there are scalar objects that require multiple bits to represent its value but cannot be split into bits at RTL (e.g.,
integer, enumerated types). The upf_query_object_pathname API will return null when queried on such bit objects, as
there is no valid RTL representation. In such cases, the bit object also contains a special property
"upf_smallest_atomic_slice" which can be used to get a handle of the smallest slice that represents the atomic object in
HDL that has a valid RTL name.

Table 12 —Multi-bit representation of various types in SystemVerilog

SystemVerilog Multi-bit
representation Bit handle

bit [0:7] sig; [7:0] sig sig[3], sig@3

wire [7:0] sig; [7:0] sig sig[3], sig@3

int sig[1:0]; [63:0] sig sig[34], sig@34
Smallest atomic slice is not populated as bit has valid RTL name

Table 13 —Multibit representation of various types in VHDL

VHDL Multi-bit
representation Bit handle

signal sig: bit_vector(0 to 7); [7:0] sig sig[3], sig@3

signal sig: std_logic_vector(7 downto 0); [7:0] sig sig[3], sig@3

type sig_arr is array(1 downto 0) of integer;
signal sig: sig_arr; [63:0] sig

sig@34
Smallest atomic slice of sig@34 is sig@63:32
or sig(1).

10.4.4 Relationship objects

The relationship objects belong to a group of objects that are present for a special purpose in the
information model. They capture certain relationships between other objects, e.g., relationship between
UPF object and HDL object. The relationship objects are present only in UPF information model and do
not exist in the user design. The handle of a relationship object consists of a tool-specific generated ID that
may vary from one tool run to another.

10.4.5 Base classes

A variety of abstract base classes exist that share some common properties for a set of UPF objects. The
various base classes in the UPF information model are shown in Table 14.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

214

Table 14 —Base classes

S. no. Class name Properties Description
1 upfBaseT — Root class

2 upfBaseNamedT upf_name, upf_parent Base class for named objects

3 upfBaseRelationshipT — Base class for relationship objects

4 upfBaseHdlT
upf_cell_info
upf_hdl_attributes
upf_extents

Base class for HDL objects

5 upfBaseUpfT upf_file, upf_line
upf_creation_scope Base class for UPF objects

6 upfExtentClassT upf_effective_extents
upf_supply_set_handles Base class for objects having extents

7 upfHdlDeclT — Base class for HDL declarations

8 upfNetworkClassT
upf_hdl_implementation
upf_root_driver
upf_network_attributes

Base class for network UPF objects

9 upfStateClassT upf_is_illegal Base class for state objects

10 upfHdlNetClassT — Base class for HDL net objects
11 upfHdlPortClassT upf_port_dir Base class for HDL port objects

12 upfNetClassT upf_fanin_conn
upf_fanout_conn Base class for UPF net objects

13 upfPortClassT upf_hiconn, upf_loconn
upf_port_dir Base class for UPF port objects

14 upfStrategyT upf_logic_refs Base class for UPF strategies

15 upfBoundaryStrategyT

upf_location
upf_applies_to
upf_source_filter
upf_sink_filter
upf_name_prefix
upf_name_suffix
upf_is_use_equivalence

Base class for UPF boundary strategies

The different base classes can be used for checking and restricting Tcl procs to the class of objects that
have the common properties. They provide a shorthand of selecting those objects. The class IDs can be
used by the query "upf_object_in_class".

NOTE—Some of the derived classes may not contain some of the common properties present in the base classes. In
such cases the property will not be populated for that object. For example, upf_is_illegal is not present in
upfSupplyPortStateT even though it is derived from upfStateClassT. In that case, the upf_is_illegal is not populated for
any object of upfSupplyPortStateT class. For list of all the properties present in different classes refer to 10.6.

10.4.6 Class hierarchy

In this standard, some of the diagrams (labeled as UML) are described using the UML notation. UML is
described in ISO/IEC 19501:2005.

Figure 10 shows the class hierarchy for UPF-related classes.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

215

Figure 10 —UML class diagram showing class hierarchy of UPF objects

Figure 11 shows the class hierarchy for HDL-related classes.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

216

Figure 11 —UML class diagram showing class hierarchy of HDL objects

Figure 12 shows the class hierarchy of relationship objects.

Figure 12 —UML class diagram showing class hierarchy of relationship objects

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

217

10.5 Example of design hierarchy

In order to emphasize the various concepts related to the UPF information model, an example design of the
structure shown in Figure 13 was used. The UPF design root for all the commands start at /top/dut_i level.
The root of the design starts at TB level. This root is also known as root instance. All hierarchical path IDs
start from below the root; excluding the name of the root (i.e., TB in this case). Hence the hierarchical path
ID for /TB/top/dut_i instance is represented as "/top/dut_i".

NOTE—It is the responsibility of the tool to define the root instance for a given design. The tools may provide
mechanism to reset the root instance to some other level in the design hierarchy. However, this will affect the return
value of query commands and representation of hierarchical path IDs. It shall be an error if root instance is defined as
the hierarchy below the UPF design root.

Figure 13 —Example of design hierarchy

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

218

10.6 Object definitions

10.6.1 UPF objects

10.6.1.1 Power domain

Class name upfPowerDomainT

Class membership upfPowerDomainT, upfExtentClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/PD

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfHdlScopeT The HDL scope in which the object was created

upf_effective_extents upfExtentT
The upfExtentT object that points to the first element in
the effective_element_list of corresponding UPF command
(see 10.6.3.1 for more details)

upf_supply_set_handles List of upfSupplySetT The list of supply set handles defined on the object

upf_upper_boundary List of upfHdlScopeT The list of HDL scopes forming the upper boundary of this
power domain

upf_lower_boundary List of upfBaseHdlT The list of HDL objects forming the lower boundary of
this power domain

upf_level_shifter_strategies List of
upfLevelShifterStrategyT

The list of level-shifter strategies defined for this power
domain

upf_retention_strategies List of
upfRetentionStrategyT

The list of retention strategies defined for this power
domain

upf_isolation_strategies List of
upfIsolationStrategyT

The list of isolation strategies defined for the power
domain

upf_repeater_strategies List of
upfRepeaterStrategyT

The list of repeater strategies defined for the power
domain

upf_pd_states List of upfPowerStateT List of states defined on power domain

upf_pd_state_transitions List of
upfPowerStateTransitionT

List of power state transitions defined by
describe_state_transition upf command

Dynamic property (only available during simulation)

upf_current_state upfPowerStateT The current state of the object during simulation

The object of upfPowerDomainT class is created when create_power_domain command is executed. As
defined by UPF, the object is created in the scope where create_power_domain command was executed.
The object contains various properties which capture the information coming from UPF and the application
of UPF command on HDL design.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

219

The following properties identify the objects that are defined within a power domain’s scope. All such
objects are defined within the same namespace, and therefore all such objects for a given domain must have
unique names.

a) upf_supply_set_handles

b) upf_level_shifter_strategies

c) upf_retention_strategies

d) upf_isolation_strategies

e) upf_repeater_strategies

f) upf_pd_states

g) upf_pd_state_transition

Examples

UPF source: test.upf

1 set_scope dut_i
2 create_power_domain PD \
3 -elements { mid } \
4 -supply { primary }
5
6 set_isolation iso_strategy \
7 -domain PD

Object definition

Handle ID /top/dut_i/PD

Properties Value
upf_name PD
upf_parent /top/dut_i

upf_file test.upf

upf_line 2
upf_creation_scope /top/dut_i

upf_effective_extents #UPFEXTENT1#

upf_supply_set_handles {/top/dut_i/PD.primary}

upf_upper_boundary {/top/dut_i/mid}
upf_isolation_strategies {/top/dut_i/PD.iso_strategy}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

220

10.6.1.2 Retention strategy

Class name upfRetentionStrategyT

Class membership upfRetentionStrategyT, upfStrategyT, upfExtentClassT, upfBaseUpfT,
upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PD.ret1

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_effective_extents upfExtentT
The upfExtentT object that points to the first element in the
effective_element_list of corresponding UPF command (see
10.6.3.1 for more details)

upf_supply_set_handles List of
upfSupplySetT The list of supply set handles defined on the object

upf_logic_refs List of
upfNamedRefT The list of predefined names defined for the strategy

upf_is_no_retention upfBooleanT Flag for -no_retention

upf_save_condition upfExpressionT To capture -save_condition information

upf_restore_condition upfExpressionT To capture -restore_condtion information

upf_retention_condition upfExpressionT To capture -retention_condition information

upf_is_use_retention_as_primary upfBooleanT Flag for -use_retention_as_primary

upf_save_signal upfSignalSenseT Contains -save_signal information

upf_restore_signal upfSignalSenseT Contains -restore_signal information

upf_retention_parameters upfRetentionParamE Contains -parameter information

The object of upfRetentionStrategyT class is created when set_retention command is executed.

The following properties comprise the child namespaces:

a) upf_supply_set_handles

b) upf_logic_refs

The upf_supply_set_handles property will contain the predefined supply set handles retention_supply and
primary_supply denoting the retention supply and primary supply respectively, of the retention registers.

The upf_logic_refs property will contain the predefined logic refs save_signal and restore_signal which
denote the save and restore control signals.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

221

The upf_parent property will point to the power domain in which this strategy was created.

The upf_creation_scope property will point to the HDL scope in which the power domain (parent) is
created.

The upf_retention_parameters contains and enumerated value of type upfRetentionParamE as described in
Table 15.

Table 15 —Enumerated type upfRententionParamE

upfRetentionParamE

Enumerated literals Description

RET_SUP_COR

The enumerated literals map directly to values specified in -parameters option of
set_retention command

NO_RET_SUP_COR

SAV_RES_COR

NO_SAV_RES_COR

Examples

Upf source: test.upf

10 set_retention ret1 -domain PD \
11 -retention_supply PD.SSH1 \
12 -save_signal {ret_en negedge} \
13 -restore_signal {ret_en posedge} \
14 -retention_condition { !clk }

Object definition

Handle ID /top/dut_i/PD.ret1

Properties Value
upf_name ret1
upf_parent /top/dut_i/PD

upf_file test.upf

upf_line 10

upf_creation_scope /top/dut_i
upf_effective_extents #UPFEXTENT1#

upf_supply_set_handles {/top/dut_i/PD.ret1.retention_supply /top/dut_i/PD.ret1.primary_supply}

upf_logic_refs {/top/dut_i/PD.ret1.save_signal /top/dut_i/PD.ret1.restore_signal}

upf_save_signal #UPFSIGSENSE1#
upf_restore_signal #UPFSIGSENSE2#

upf_retention_condition #UPFEXPR1#

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

222

10.6.1.3 Isolation strategy

Class name upfIsolationStrategyT

Class membership upfIsolationStrategyT, upfBoundaryStrategyT, upfStrategyT, upfExtentClassT,
upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PD.iso1

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created
upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_effective_extents upfExtentT
The upfExtentT object that points to the first element in the
effective_element_list of corresponding UPF command (see
10.6.3.1 for more details)

upf_supply_set_handles List of upfSupplySetT The list of supply set handles defined on the object

upf_logic_refs List of upfNamedRefT The list of predefined names defined for the strategy

upf_location upfLocationE Contains -location information

upf_applies_to upfAppliesToFilterE Contains -applies_to information
upf_source_filter upfAbstractObjT -source filter information

upf_sink_filter upfAbstractObjT -sink filter information

upf_name_prefix upfStringT -name_prefix information

upf_name_suffix upfStringT -name_suffix information
upf_is_use_equivalence upfBooleanT -use_equivalence information

upf_is_diff_supply_only upfBooleanT Flag for -diff_supply_only

upf_is_no_isolation upfBooleanT Flag for -no_isolation

upf_is_force_isolation upfBooleanT Flag for -force_isolation

upf_clamp_values List of
upfIsolationClampE Information about -clamp_value

upf_user_clamp_values List of upfStringT Information about actual values when -clamp_value value is
specified

upf_isolation_controls List of
upfSignalSenseT Information about -isolation_signal

The object of upfIsolationStrategyT class is created when set_isolation command is executed.

The following properties comprise the child name spaces:

a) upf_supply_set_handles

b) upf_logic_refs

The upf_supply_set_handles property will contain the predefined supply set handle "isolation_supply"
denoting the isolation supply set. If there are multiple supply sets defined on the strategy, then this list will
accordingly contain those supply sets.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

223

The upf_logic_refs property will contain the predefined logic refs isolation_signal which denotes the
control signal specified in the isolation strategy. If there are multiple isolation controls specified then this
list will be extended accordingly.

The property upf_user_clamp_values will be populated when -clamp value was specified in set_isolation or
set_port_attributes commands. In this case, there will be a direct correspondence with the position of
enumerated value specified in property upf_clamp_values and upf_user_clamp_values. In such case, if
there are mixture of predefined clamp values and user defined clamp values, the standard values of 0, 1,
any, Z, and latch will be used in upf_user_clamp_values for predefined clamp values.

NOTE—The upf_isolation_controls property will contain both the isolation control information and the sensitivity in
the form of upfSignalSenseT object, whereas upf_logic_ref will point to the control signal via upfNamedRefT object.

Table 16 —Enumerated type upfLocationE

Table 17 —Enumerated type upfAppliesToFilterE

upfAppliesToFilterE
Enumerated literals UPF mapping

UPF_FILTER_UNDEF Undefined, when no information is available

UPF_FILTER_INPUTS -applies_to inputs

UPF_FILTER_OUTPUTS -applies_to outputs
UPF_FILTER_BOTH -applies_to both

Table 18 —Enumerated type upfPortDirE

upfPortDirE
Enumerated literals UPF mapping
UPF_DIR_UNDEF Undefined, when no information is available
UPF_DIR_IN -direction in

UPF_DIR_OUT -direction out

UPF_DIR_INOUT -direction inout

upfLocationE
Enumerated literals UPF mapping
SELF -location self
OTHER -location other

PARENT -location parent

AUTOMATIC -location automatic

FANOUT -location fanout

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

224

Table 19 —Enumerated type upfIsolationClampE

upfIsolationClampE
Enumerated literals UPF mapping

UPF_CLAMP_UNDEF Undefined, when no information is available

UPF_CLAMP_ZERO -*_clamp 0

UPF_CLAMP_ONE -*_clamp 1
UPF_CLAMP_ZEE -*_clamp Z

UPF_CLAMP_LATCH -*_clamp latch

UPF_CLAMP_ANY -*_clamp any

UPF_CLAMP_USER_VALUE -*_clamp value

Examples

UPF Source: test.upf

20 set_isolation iso1 \
21 -domain PD \
22 -elements {a b c d} \
23 -isolation_supply {PD.SSH1} \
24 -clamp_value {1} \
25 -applies_to outputs \
26 -sink PD2 \
27 -isolation_signal cpu_iso \
28 -isolation_sense low -location parent

Object definition

Handle ID /top/dut_i/PD.iso1

Properties Value
upf_name iso1

upf_parent /top/dut_i/PD

upf_file test.upf
upf_line 20

upf_creation_scope /top/dut_i

upf_effective_extents #UPFEXTENT1#

upf_supply_set_handles {/top/dut_i/PD.isolation_supply}
upf_logic_refs {/top/dut_i/PD.iso1.isolation_signal}

upf_clamp_values {1}

upf_applies_to UPF_FILTER_OUTPUTS

upf_sink_filter /top/dut_i/PD2
upf_isolation_controls {#UPFSIGSENSE2#}

upf_location PARENT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

225

10.6.1.4 Level-shifter strategy

Class name upfLevelShifterStrategyT

Class membership upfLevelShifterStrategyT, upfBoundaryStrategyT, upfStrategyT, upfExtentClassT,
upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PD.ls1

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_effective_extents upfExtentT
The upfExtentT object that points to the first element in the
effective_element_list of corresponding UPF command (see
10.6.3.1 for more details)

upf_supply_set_handles List of upfSupplySetT The list of supply set handles defined on the object

upf_logic_refs List of
upfNamedRefT The list of predefined names defined for the strategy

upf_location upfLocationE Contains -location information

upf_applies_to upfAppliesToFilterE Contains -applies_to information

upf_source_filter upfAbstractObjT -source filter information

upf_sink_filter upfAbstractObjT -sink filter information
upf_name_prefix upfStringT -name_prefix information

upf_name_suffix upfStringT -name_suffix information

upf_is_use_equivalence upfBooleanT -use_equivalence information

upf_is_no_shift upfBooleanT -no_shift information
upf_is_force_shift upfBooleanT -force_shift information

upf_threshold_value upfRealT -threshold information

upf_level_shift_rule upfLevelShifterRuleE -rule

The object of upfLevelShifterStrategyT class is created when set_level_shifter command is executed.

The following property comprises the child name spaces:

 upf_supply_set_handles

The upf_supply_set_handles property will contain the predefined supply set handles, input_supply,
output_supply, and internal_supply.

The upf_logic_refs property will not be populated for objects of upfLevelShifterStrategyT type.

For possible values of upf_location property see Table 16.

For possible values of upf_applies_to property see Table 17.

For possible values of upf_level_shift_rule see Table 20.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

226

Table 20 —Enumerated type upfLevelShifterRuleE

upfLevelShifterRuleE
Enumerated literals UPF mapping

UPF_LS_LOW_TO_HIGH -rule low_to_high

UPF_LS_HIGH_TO_LOW -rule high_to_low

UPF_LS_BOTH -rule both

Examples

UPF source: test.upf

30 set_level_shifter ls1\
31 -domain PD \
32 -applies_to inputs \
33 -source PD.SSH1 \
34 -threshold 0.02 \
35 -rule both

Object definition

Handle ID /top/dut_i/PD.ls1

Properties Value
upf_name ls1

upf_parent /top/dut_i/PD
upf_file test.upf

upf_line 30

upf_creation_scope /top/dut_i

upf_effective_extents #UPFEXTENT1#

upf_supply_set_handles {/top/dut_i/PD.ls1.input_supply /top/dut_i/PD.ls1.output_supply
/top/dut_i/PD.ls1.internal_supply}

upf_source_filter /top/dut_i/PD.SSH1

upf_threshold_value 0.02

upf_applies_to UPF_FILTER_INPUTS
upf_level_shift_rule UPF_LS_BOTH

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

227

10.6.1.5 Repeater strategy

Class name upfRepeaterStrategyT

Class membership upfRepeaterStrategyT, upfBoundaryStrategyT, upfStrategyT, upfExtentClassT,
upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PD.rs

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_effective_extents upfExtentT
The upfExtentT object that points to the first element in the
effective_element_list of corresponding UPF command (see
10.6.3.1 for more details)

upf_supply_set_handles List of
upfSupplySetT The list of supply set handles defined on the object

upf_logic_refs List of
upfNamedRefT The list of predefined names defined for the strategy

upf_location upfLocationE Not required for repeater strategy
upf_applies_to upfAppliesToFilterE Contains -applies_to information

upf_source_filter upfAbstractObjT -source filter information

upf_sink_filter upfAbstractObjT -sink filter information

upf_name_prefix upfStringT -name_prefix information
upf_name_suffix upfStringT -name_suffix information

upf_is_use_equivalence upfBooleanT -use_equivalence information

The object of upfRepeaterStrategyT class is created when set_repeater command is executed.

For possible values of upf_applies_to property see Table 3.

Examples

UPF source: test.upf

36 set_repeater repeat1\
37 -domain PD \
38 -applies_to outputs \
39 -source PD.SSH1

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

228

Object definition

Handle ID /top/dut_i/PD.repeat1

Properties Value
upf_name repeat1

upf_parent /top/dut_i/PD

upf_file test.upf

upf_line 36
upf_creation_scope /top/dut_i

upf_effective_extents #UPFEXTENT5#

upf_source_filter /top/dut_i/PD.SSH1

upf_applies_to UPF_FILTER_OUTPUTS

10.6.1.6 Supply set

Class name upfSupplySetT

Class membership upfSupplySetT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID

if [<Class Membership Of upf_parent> == upfHdlScopeT]
 # Global Supply Set
 <handle ID of upf_parent>/<upf_name of Object>
else
 # Local Supply Set
 <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/SS1 #Global Supply Set
/top/dut_i/PD.primary #Local Supply Set

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created
upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_functions List of upfNamedRefT The functions of the supply net

upf_ss_states List of upfPowerStateT List of power states added by add_power_state command

upf_ss_transitions List of
upfPowerStateTransitionT

list of power state transitions defined by
describe_state_transition

upf_equivalent_sets List of upfSupplySetT

List of supply sets that are equivalent to the given supply set,
this list contains only those supply sets that are marked as
equivalent using set_equivalent, associate_supply_set command
or similar such commands (e.g., set_isolation -isolation_supply)

Dynamic property (only available during simulation)

upf_current_state upfPowerStateT The current state of the object during simulation

The object of upfSupplySetT class is created when create_supply_set command is executed or for supply
set handles present on other UPF objects, e.g., power domain, retention strategy, etc.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

229

If a create_supply_set command results in creation of this object, then that object is termed as global supply
set. The handle ID of global supply set will be created differently than local supply set. In case of global
supply set, the upf_parent property will be of HDL scope type (upfHdlScopeT).

A supply set created for supply set handles (either predefined or user defined) in UPF are termed as local
supply set. In case of local supply set, the upf_parent property is the UPF object on which the supply set
handle was created; e.g., PD.primary.

The upf_functions property will denote the functions of a supply set. This will contain objects of type
upfNamedRefT which will point to the associated supply nets.

The following property comprises the child name spaces:

 upf_functions

The upf_functions property will consist of six predefined functions, power, ground, nwell, pwell,
deeppwell, deepnwell. However, only the required functions will be populated in the object.

In case of UPF 2.0, the functions may contain user defined functions as well. In such case, the object will
contain corresponding upfNamedRefT objects with appropriate flag set. This will not be the case with UPF
2.1 onwards.

The upf_file and upf_line properties will be populated for global supply sets only.

Examples

UPF source: test.upf

40 create_supply_set SS1
41 -function {power vdd}
42 -function {ground vss}
43 associate_supply_set SS1 -handle PD.primary

Object definition

Handle ID /top/dut_i/SS1

Properties Value
upf_name SS1
upf_parent /top/dut_i

upf_file test.upf

upf_line 40

upf_creation_scope /top/dut_i
upf_functions {/top/dut_i/SS1.power /top/dut_i/SS1.ground}

upf_equivalent_sets {/top/dut_i/SS1 /top/dut_i/PD.primary}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

230

Object definition

Handle ID /top/dut_i/PD.primary

Properties Value
upf_name primary

upf_parent /top/dut_i/PD

upf_creation_scope /top/dut_i

upf_functions {/top/dut_i/PD.primary.power /top/dut_i/PD.primary.ground}
upf_equivalent_sets {/top/dut_i/SS1 /top/dut_i/PD.primary}

10.6.1.7 Named object reference

Class name upfNamedRefT

Class membership upfNamedRefT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PD.primary.power #Ref to Supply Set Function

/top/dut_i/PD.ret1.save_signal #Ref to Strategy Control Signal

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_ref_kind upfNamedRefKindE Enumerated value representing kind of reference, e.g., retention save
upf_ref_object upfBaseNamedT Reference to original UPF object, e.g., Logic Net

The object of upfNamedRefT class is created in the following scenarios:

a) Functions of supply set

b) Logic references (predefined names to refer to controls) of strategies

This object provides a named reference to some other object, supply nets in case of functions and logic nets
in case of logic refs. The original object can be accessed by upf_ref_object property.

For possible values of upf_ref_kind property see Table 21.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

231

Table 21 —Enumerated type upfNamedRefKindE

upfNamedRefKindE
Enumerated literals UPF mapping

UPF_REF_POWER power function of supply set

UPF_REF_GROUND ground function of supply set

UPF_REF_PWELL pwell function of supply set
UPF_REF_NWELL nwell function of supply set

UPF_REF_DEEPPWELL deeppwell function of supply set

UPF_REF_DEEPNWELL deepnwell function of supply set

UPF_REF_ISO_SIGNAL reference to isolation control signal in set_isolation
UPF_REF_SAVE_SIGNAL reference to save_signal in set_retention

UPF_REF_RESTORE_SIGNAL reference to restore_signal in set_retention

UPF_REF_GENERIC_CLOCK reference to UPF_GENERIC_CLOCK in set_retention

UPF_REF_GENERIC_DATA reference to UPF_GENERIC_DATA in set_retention
UPF_REF_GENERIC_ASYNC_LOAD reference to UPF_GENERIC_ASYNC_LOAD in set_retention

UPF_REF_GENERIC_OUTPUT reference to UPF_GENERIC_OUTPUT in set_retention

UPF_REF_USER_DEFINED some user defined ref handle

Examples

UPF source: test.upf

40 create_supply_set SS1 \
41 -function {power vdd} \
42 -function {ground vss}
43 set_retention ret1 -domain PD \
44 -save_signal {ret_ctrl high} …

Object definition

Handle ID /top/dut_i/SS1.power

Properties Value
upf_name power

upf_parent /top/dut_i/SS1
upf_creation_scope /top/dut_i

upf_ref_kind UPF_REF_POWER

upf_ref_object /top/dut_i/vdd

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

232

Object definition

Handle ID /top/dut_i/PD.ret1.save_signal

Properties Value
upf_name save_signal

upf_parent /top/dut_i/PD.ret1

upf_creation_scope /top/dut_i

upf_ref_kind UPF_REF_RET_SAVE_SIGNAL
upf_ref_object /top/dut_i/ret_ctrl

10.6.1.8 Supply net

Class name upfSupplyNetT

Class membership upfSupplyNetT, upfNetClassT, upfNetworkClassT, upfBaseUpfT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of
Object>[@upfSupplyNetT]

Handle ID examples /top/dut_i/vddnet #Supply Net with unique name "vddnet"

/top/dut_i/vdd@upfSupplyNetT #Same name as supply port "vdd"

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_hdl_implementation upfHdlDeclT The HDL object which is pre-implemented and already present

upf_root_driver upfNetworkClassT
The upfNetworkClassT object which is the root supply driver
(see 4.5). This will not be populated for root drivers
themselves.

upf_fanin_conn List of upfPortClassT Contains the list of ports driving the net
upf_fanout_conn List of upfPortClassT Contains the list of ports that are receiving the value of the net

upf_resolve_type upfResolveE Enumerated value representing supply net resolution

Dynamic property (only available during simulation)
upf_current_value upfSupplyTypeT The current value of the object during simulation

The object of upfSupplyNetT class is created when create_supply_net command is executed.

If a supply net is already present in HDL, then the property upf_hdl_implementation will point to the HDL
object representing supply net in HDL.

For values of upf_resolve_type property see Table 22:

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

233

Table 22 —Enumerated type upfResolveE

upfResolveE
Enumerated literals UPF mapping

UNRESOLVED -resolve unresolved

ONE_HOT -resolve one_hot

PARALLEL -resolve parallel
PARALLEL_ONE_HOT -resolve parallel_one_hot

Examples

UPF source: test.upf

50 create_supply_net vdd

Object definition

Handle ID /top/dut_i/vdd@upfSupplyNetT

Properties Value

upf_name vdd
upf_parent /top/dut_i

upf_file test.upf

upf_line 50

upf_creation_scope /top/dut_i
upf_root_driver /top/dut_i/vdd

upf_fanin_conn {/top/dut_i/vdd}

upf_resolve_type UNRESOLVED

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

234

10.6.1.9 Supply port

Class name upfSupplyPortT

Class membership upfSupplyPortT, upfPortClassT, upfNetworkClassT, upfBaseUpfT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/vdd #Created in HDL Scope "dut_i"

/top/dut_i/sw/ip #Created in power switch "sw"

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_hdl_implementation upfHdlDeclT The HDL object which is pre-implemented and already present

upf_root_driver upfNetworkClassT The upfNetworkClassT object which is the root supply driver (see
4.5). This will not be populated for root drivers themselves.

upf_network_attributes List of upfAttributeT The different attributes added on the object via set_port_attributes
or other equivalent means

upf_hiconn List of
upfNetworkClassT

Contains the list of objects connected to the hiconn side of the port
resulting from the application of connect_supply_net and
connect_supply_set commands

upf_loconn List of
upfNetworkClassT

Contains the list of objects connected to the loconn side of the port
resulting from the application of connect_supply_net and
connect_supply_set commands

upf_port_dir upfPortDirE The direction of the port

upf_sp_states List of upfPortStateT The port states added by add_port_state command

Dynamic property (only available during simulation)

upf_current_value upfSupplyTypeT The current value of the object during simulation

The object of upfSupplyPortT class is created in the following scenarios:

a) create_supply_port command is executed.

b) create_power_switch is creating the input/output supply ports

The following properties comprise the child namespaces:

a) upf_sp_states

For possible values of upf_port_dir property see Table 18.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

235

Examples

UPF source: test.upf

70 create_supply_port vdd \
71 -direction input

Object definition

Handle ID /top/dut_i/vdd

Properties Value
upf_name vdd

upf_parent /top/dut_i

upf_file test.upf
upf_line 70

upf_creation_scope /top/dut_i

upf_loconn {/top/dut_i/vdd@upfSupplyNetT}

upf_port_dir UPF_DIR_IN

10.6.1.10 Logic net

Class name upfLogicNetT

Class membership upfLogicNetT, upfNetClassT, upfNetworkClassT, upfBaseUpfT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>[@upfLogicNetT]

Handle ID examples /top/dut_i/ctrl_iso

Property Return value Description
upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created
upf_hdl_implementation upfHdlDeclT The HDL object which is pre-implemented and already present

upf_root_driver upfNetworkClassT The upfNetworkClassT object which is driving the current object.
This will not be populated for root drivers themselves.

upf_fanin_conn List of
upfPortClassT Contains the list of ports driving the net

upf_fanout_conn List of
upfPortClassT Contains the list of ports that are receiving the value of the net

Dynamic property (only available during simulation)
upf_current_value upfBooleanT The current value of the object during simulation

The object of upfLogicNetT class is created when create_logic_net command is executed.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

236

Examples

UPF source: test.upf

80 create_logic_net sig

Object definition

Handle ID /top/dut_i/sig

Properties Value

upf_name sig

upf_parent /top/dut_i

upf_file test.upf

upf_line 80

upf_creation_scope /top/dut_i

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

237

10.6.1.11 Logic port

Class name upfLogicPortT

Class membership upfLogicPortT, upfPortClassT, upfNetworkClassT, upfBaseUpfT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/ctrl_iso #Created in HDL Scope "dut_i"

/top/dut_i/sw/ctrl_sw #Created in power switch "sw"

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_hdl_implementation upfHdlDeclT The HDL object which is pre-implemented and already present

upf_root_driver upfNetworkClassT The upfNetworkClassT object which is driving the current object.
This will not be populated for root drivers themselves.

upf_network_attributes List of
upfAttributeT

The different attributes added on the object via set_port_attributes
or other equivalent means

upf_hiconn List of
upfNetworkClassT

Contains the list of objects connected to the hiconn side of the port
resulting from the application of connect_logic_net or equivalent
commands

upf_loconn List of
upfNetworkClassT

Contains the list of objects connected to the loconn side of the port
resulting from the application of connect_logic_net or equivalent
commands

upf_port_dir upfPortDirE The direction of the port

Dynamic property (only available during simulation)

upf_current_value upfBooleanT The current value of the object during simulation

The object of upfLogicPortT class is created in the following scenarios:

a) create_logic_port command is executed.

b) create_power_switch creates a control port.

For possible values of upf_port_dir property see Table 18.

Examples

UPF source: test.upf

85 create_logic_port iso_ctrl \
86 -direction input

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

238

Object definition

Handle ID /top/dut_i/iso_ctrl

Properties Value

upf_name iso_ctrl

upf_parent /top/dut_i

upf_file test.upf

upf_line 85

upf_creation_scope /top/dut_i

upf_port_dir UPF_DIR_IN

10.6.1.12 Power switch

Class name upfPowerSwitchT

Class membership upfPowerSwitchT, upfExtentClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf parent>/<upf name of Object>

Handle ID examples /top/dut_i/sw

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_effective_extents upfExtentT The upfExtentT object that points to the first element in the list
resulting from -instance option of create_power_switch command

upf_supply_set_handles List of upfSupplySetT The list containing the supply set which is specified by -supply_set
option of create_power_switch command

upf_output_supply_port upfSupplyPortT The supply port created by -output_supply_port option of
create_power_switch command

upf_input_supply_ports List of upfSupplyPortT The supply ports created by -input_supply_port option of
create_power_switch command

upf_control_ports List of upfLogicPortT The logic ports created by -control_port option of
create_power_switch command

upf_ack_ports List of upfAckPortT The ack port created by -ack_port option of create_power_switch
command

upf_sw_states List of
upfPowerSwitchStateT

The list of switch states created by create_power_switch -on_state,
-partial_on_state and -error_state

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

239

The object of upfPowerSwitchT class is created when create_power_switch command is executed.

The following properties comprise the child namespaces:

a) upf_supply_set_handles

b) upf_output_supply_port

c) upf_input_supply_ports

d) upf_control_ports

e) upf_ack_ports

f) upf_sw_states

Examples

UPF source: test.upf

80 create_power_switch sw1 \
81 -output_supply_port {vout vdd_sw} \
82 -input_supply_port {vin vdd} \
83 -control_port {ss_ctrl sw_en} \
84 -on_state {ss_on vin {ss_ctrl}} \
85 -off_state {ss_off {!ss_ctrl}}

Object definition

Handle ID /top/dut_i/sw1

Properties Value

upf_name sw1

upf_parent /top/dut_i

upf_file test.upf

upf_line 80

upf_creation_scope /top/dut_i

upf_output_supply_port /top/dut_i/sw1/vout

upf_input_supply_ports {/top/dut_i/sw1/vin}

upf_control_ports {/top/dut_i/sw1/ss_ctrl}

upf_sw_states {/top/dut_i/sw1.ss_on /top/dut_i/sw1.ss_off}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

240

10.6.1.13 Ack port

Class name upfAckPortT

Class membership upfAckPortT, upfPortClassT, upfNetworkClassT, upfBaseUpfT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/sw/ack

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_hdl_implementation upfHdlDeclT The HDL object which is pre-implemented and already present

upf_root_driver upfNetworkClassT The upfNetworkClassT object which is driving the current object.
This will not be populated for root drivers themselves.

upf_hiconn List of
upfNetworkClassT

Contains the list of objects connected to the hiconn side of the port
resulting from the application of connect_logic_net or equivalent
commands

upf_port_dir upfPortDirE The direction of the port

upf_ack_delay upfStringT The ack delay specified in UPF command

Dynamic property (only available during simulation)
upf_current_value upfBooleanT The current value of the object during simulation

The object of upfAckPortT class is created when create_power_switch command is executed with the
-ack_port option specified.

The upf_port_dir property will always be having upf_dir_out (see Table 18) as value for upfAckPortT.

Examples

UPF source: test.upf

90 create_power_switch sw2 \
91 -output_supply_port {vout vdd_sw} \
92 -input_supply_port {vin vdd} \
93 -control_port {ss_ctrl sw_en} \
94 -on_state {ss_on vin {ss_ctrl}} \
95 -off_state {ss_off {!ss_ctrl}} \
96 -ack_port {ts_ack ack} \
97 -ack_delay {ts_ack 100ns} \
98 -supply_set ss_aon

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

241

Object definition

Handle ID /top/dut_i/sw2/ts_ack

Properties Value
upf_name ts_ack

upf_parent /top/dut_i/sw2

upf_file test.upf

upf_line 90
upf_creation_scope /top/dut_i

upf_hiconn {/top/dut_i/ack}

upf_ack_delay 100ns

10.6.1.14 Power state

Class name upfPowerStateT

Class membership upfPowerStateT, upfStateClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID
examples /top/dut_i/PD.drowsy

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created
upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_is_illegal upfBooleanT Will have value true when -illegal is specified in corresponding
add_power_state command

upf_logic_expr upfExpressionT The expression specified by -logic_expr option of add_power_state
command

upf_supply_expr upfExpressionT The expression specified by -supply_expr option of add_power_state
command

upf_simstate upfSimstateE The value specified by -simstate option of add_power_state command

Dynamic property (only available during simulation)

upf_is_active upfBooleanT The is_active is true when the state is active at a specific time during
simulation.

The object of upfPowerStateT class is created when add_power_state command is executed. The handle of
the object on which the power state has been added is present in upf_parent property on the object. The
upf_simstate and upf_supply_expr properties will only be present on states added on objects of
upfSupplySetT class.

For possible values of upf_simstate property, from highest to lowest priority, see Table 23.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

242

Table 23 —Enumerated type upfSimstateE

upfSimstateE
Enumerated literals UPF mapping

CORRUPT -simstate CORRUPT or -simstate NOT_NORMAL

CORRUPT_ON_ACTIVITY -simstate CORRUPT_ON_ACTIVITY or -simstate NOT_NORMAL

CORRUPT_ON_CHANGE -simstate CORRUPT_ON_CHANGE or -simstate NOT_NORMAL
CORRUPT_STATE_ON_ACTIVITY -simstate CORRUPT_STATE_ON_ACTIVITY or -simstate NOT_NORMAL

CORRUPT_STATE_ON_CHANGE -simstate CORRUPT_STATE_ON_CHANGE or -simstate NOT_NORMAL

NORMAL -simstate NORMAL

Examples

UPF source: test.upf

110 add_power_state PD \
111 -state {S1 -logic_expr {PD.primary == ON}}

Object definition

Handle ID /top/dut_i/PD.S1

Properties Value
upf_name S1

upf_parent /top/dut_i/PD

upf_file test.upf
upf_line 110

upf_creation_scope /top/dut_i

upf_logic_expr #UPFEXPR1#

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

243

10.6.1.15 Power switch state

Class name upfPowerSwitchStateT

Class membership upfPowerSwitchStateT, upfStateClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/sw.sw_on

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_is_illegal upfBooleanT This will be true when state is created from -error_state option of
create_power_switch command

upf_switch_expr upfExpressionT The boolean expr specified in -on_state, -on_partial_state, -off_state
and -error_state options of create_power_switch command

upf_switch_output_state upfSupplyStateE
Captures the state of the output of the switch, i.e. -on_state has state as
FULL_ON, -off_state has state as OFF, -on_partial_state has state as
PARTIAL_ON, -error_state has state as UNDETERMINED

upf_input_supply_port upfSupplyPortT The handle of input supply port which will be connected when the state
is on or partial_on

The object of upfPowerSwitchStateT is created when a create_power_switch command is executed. The
object is created to capture information about the following options:

a) -on_state

b) -on_partial_state

c) -off_state

d) -error_state

This object has no child namespace.

The property upf_switch_output_state maintains information about the output of the switch when the state
is active. For possible values of upf_switch_output_state property see Table 24.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

244

Table 24 —Enumerated type upfSupplyStateE

upfSupplyStateE
Enumerated literals UPF mapping
OFF -off_state or reference to OFF for supply net/port state

FULL_ON -on_state or reference to FULL_ON for supply net/port state

PARTIAL_ON -on_partial_state or reference to PARTIAL_ON for supply net/port state
UNDETERMINED -error_state or reference to UNDETERMINED for supply net/port state

Examples

UPF source: test.upf

110 create_power_switch simple_switch2 \
111 -output_supply_port {vout VDD_SW} \
112 -input_supply_port {vin VDD} \
113 -control_port {ss_ctrl sw_ena} \
114 -on_state {ss_on vin {ss_ctrl}} \
115 -off_state {ss_off {!ss_ctrl}}

Object definition

Handle ID /top/dut_i/simple_switch2.ss_on

Properties Value
upf_name ss_on
upf_parent /top/dut_i/simple_switch2

upf_file test.upf

upf_line 110

upf_creation_scope /top/dut_i
upf_switch_expr #UPFEXPR1#

upf_switch_output_state FULL_ON

upf_input_supply_port /top/dut_i/simple_switch2/vin

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

245

10.6.1.16 Supply port state

Class name upfSupplyPortStateT

Class membership upfSupplyPortStateT, upfStateClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/vdd.on1V

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT The UPF object on which the state was created

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_supply_state upfSupplyStateE Not required for states which are "*" (don't cares) in PSTs

upf_volt_min upfRealT The min voltage value

upf_volt_nom upfRealT The nominal voltage value

upf_volt_max upfRealT The maximum voltage value

upf_volt_kind upfVoltKindE The enum specifying whether nom, doublet or triplet was specified in
UPF

The object of upfSupplyPortStateT class is created when add_port_state command is executed. This object
is also created to capture information about reference to "*" don’t care state in PSTs.

The upf_is_illegal property will not be populated for objects of this class.

The upf_volt_kind property captures information whether user had specified just the nominal voltage or
doublet or triplet. For possible values of upf_volt_kind property, see Table 25.

Table 25 —Enumerated type upfVoltKindE

upfVoltKindE
Enumerated literals UPF mapping

NOM When only nominal value is specified in add_port_state command

DOUBLET When a doublet is specified in add_port_state command

TRIPLET When a triplet is specified in add_port_state command

Examples

UPF source: test.upf

110 add_port_state vdd -state {on1V 1.0}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

246

Object definition

Handle ID /top/dut_i/vdd.on1V

Properties Value
upf_name on1V

upf_parent /top/dut_i/vdd

upf_file test.upf

upf_line 110
upf_creation_scope /top/dut_i

upf_supply_state FULL_ON

upf_volt_nom 1.0

upf_volt_kind NOM

10.6.1.17 PST state

Class name upfPstStateT

Class membership upfPstStateT, upfStateClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID
examples /top/dut_i/chip_pst.chip_on

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT The UPF object on which the state was created

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_is_illegal upfBooleanT Not required for PST states

upf_supply_states List of
upfSupplyPortStateT The list of port states specified by add_pst_state command

Dynamic property (only available during simulation)

upf_is_active upfBooleanT The is_active is true when the state is active at a specific time during
simulation

The object of upfPstStateT class is created when add_pst_state command is executed.

Examples

UPF source: test.upf

110 add_pst_state chip_on -state {on1V off}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

247

Object definition

Handle ID /top/dut_i/chip_pst.chip_on

Properties Value

upf_name chip_on

upf_parent /top/dut_i/chip_pst

upf_file test.upf

upf_line 110

upf_creation_scope /top/dut_i

upf_supply_states {/top/dut_i/vdd.on1V /top/dut_i/vdd1.off}

10.6.1.18 PST

Class name upfPowerStateTableT

Class membership upfPowerStateTableT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/chip_pst

Property Return value Description

upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_pst_states List of
upfPstStateT The states created by add_pst_state command

upf_pst_header List of
upfBaseNamedT The list of supplies forming column of PST

Dynamic property (only available during simulation)

upf_current_state upfPowerStateT The current state of the object during simulation

The object of upfPowerStateTableT class is created when create_pst command is executed.

The following property comprises child namespace:

 upf_pst_states

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

248

Examples

UPF source: test.upf

110 create_pst chip_pst -supplies {vdd vdd1}

Object definition

Handle ID /top/dut_i/chip_pst

Properties Value
upf_name chip_pst

upf_parent /top/dut_i

upf_file test.upf

upf_line 110

upf_creation_scope /top/dut_i

upf_pst_states {/top/dut_i/chip_pst.chip_on}
upf_pst_header {/top/dut_i/vdd /top/dut_i/vdd1}

10.6.1.19 Power state transition

Class name upfPowerStateTransitionT

Class membership upfPowerStateTransitionT, upfStateClassT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>.<upf_name of Object>

Handle ID examples /top/dut_i/PdA.turn_on

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created
upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_is_illegal upfBooleanT The legality of transition as specified in describe_state_transition

upf_to_states List of
upfPowerStateT

The list of states determined from processing of
describe_state_transition command

upf_from_states List of
upfPowerStateT

The list of states determined from processing of
describe_state_transition command

The object of this class is created when describe_state_transition command is executed.

This object does not have any child namespaces.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

249

Examples

UPF source: test.upf

110 describe_state_transition turn_on
111 -object PdA -from {SLEEP_MODE} \
112 -to {HIGH_SPEED_MODE} -illegal

Object definition

Handle ID /top/dut_i/PdA.turn_on

Properties Value
upf_name turn_on

upf_parent /top/dut_i/PdA

upf_file test.upf
upf_line 110

upf_creation_scope /top/dut_i

upf_is_illegal true

upf_to_states {/top/dut_i/PdA.HIGH_SPEED_MODE}
upf_from_states {/top/dut_i/PdA.SLEEP_MODE}

10.6.1.20 Composite domain

Class name upfCompositeDomainT

Class membership upfCompositeDomainT, upfBaseUpfT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/CD

Property Return value Description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object
upf_file upfStringT Filename where object was created

upf_line upfIntegerT Line number where object was created

upf_creation_scope upfBaseHdlT The HDL scope in which the object was created

upf_supply_set_handles List of upfSupplySetT The list of supply set handles defined on the object
upf_pd_states List of upfPowerStateT List of states defined on composite domain

upf_pd_state_transitions List of
upfPowerStateTransitionT

List of power state transitions defined by
describe_state_transition upf command

upf_subdomains List of upfBaseUpfT List of subdomains that belong to the composite domain, it
can only be upfPowerDomainT or upfCompositeDomainT

Dynamic property (only available during simulation)
upf_current_state upfPowerStateT The current state of the object during simulation

The object of this class is created when create_composite_domain command is executed.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

250

Examples

UPF source: test.upf

110 create_composite_domain CD \
111 -subdomains {dut_i/pd1 dut_i/pd2} \
112 -supply {primary SS_system}

Object definition

Handle ID /top/dut_i/CD

Properties Value
upf_name CD

upf_parent /top/dut_i

upf_file test.upf
upf_line 110

upf_creation_scope /top/dut_i

upf_supply_set_handles {/top/dut_i/CD.primary}

upf_subdomains {/top/dut_i/pd1 /top/dut_i/pd2}

10.6.2 HDL objects

10.6.2.1 HDL scope

Class name upfHdlScopeT

Class membership upfHdlScopeT, upfBaseHdlT, upfBaseNamedT, upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i

Property Return value description
upf_name upfStringT Name of object

upf_parent upfBaseNamedT Parent of object

upf_cell_info upfCellT The information about cell modeled at this HDL object

upf_hdl_attributes List of upfAttributeT The different attributes added on the object via
set_design_attributes or other equivalent means

upf_extents List of upfExtentT The various upfExtentT pointing to this HDL object

upf_hdl_ports List of upfHdlPortClassT List of ports on the HDL instance that have PA information

upf_hdl_items List of upfHdlNetClassT List of nets on the HDL instance that have PA information or
are used in power management

upf_items List of upfBaseUpfT List of UPF objects created in this scope

upf_child_instances List of upfHdlScopeT List of child instances

The object of upfHdlScopeT represents an instance in the logic hierarchy.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

251

NOTE—Only instances which are necessary for capturing the power intent are present as upfHdlScopeT in the
information model. There can be more instances in the actual design hierarchy but not present in the information model
as they do not participate in the power management. See UPF information model and other HDL information models
(e.g., VPI, VHPI, etc.) for more details.

The following properties comprise the child name spaces:

a) upf_hdl_ports

b) upf_hdl_items

c) upf_items

d) upf_child_instances

Examples

UPF source: test.upf
70 set_scope /top/dut_i
71 create_power_domain PD -elements {.}

Object definition

Handle ID /top/dut_i

Properties Value
upf_name dut_i

upf_parent /top

upf_extents {#UPFEXTENT1#}
upf_hdl_ports {/top/dut_i/port1 /top/dut_i/port2}

upf_hdl_items {/top/dut_i/ctrl}

upf_items {/top/dut_i/PD /top/dut_i/vdd}
upf_child_instances {/top/dut_i/mid}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

252

10.6.2.2 HDL scalar port

Class name upfHdlPortBitT

Class membership upfHdlPortBitT, upfHdlPortClassT, upfHdlDeclT, upfBaseHdlT, upfBaseNamedT,
upfBaseT

Handle ID

if [<Class Membership Of upf_parent> == upfHdlScopeT]

 <handle ID of upf_parent>/<upf_name of Object>

else

 # Bit of Multi-bit object

 <handle ID of upf_parent><upf_name of Object>

Handle ID examples
/top/dut_i/port1

/top/dut_i/port2[1]

/top/dut_i/complexport@3

Property Return value Description
upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_cell_info upfCellT The information about cell modeled at this HDL object

upf_hdl_attributes List of upfAttributeT The different attributes added on the object via
set_port_attributes or other equivalent means

upf_extents List of upfExtentT The various upfExtentT pointing to this HDL object
upf_port_dir upfPortDirE The direction of the port

upf_normalized_idx upfIntegerT The normalized index of the bit object when the object is acting
as a bit of a upfMultiBitPortT object

upf_smallest_atomic_slice upfHdlMultiBitSliceT The handle of the smallest slice that represents and atomic
object in HDL that can be represented as a valid RTL name

The object of upfHdlPortBitT represents a scalar port in the logic hierarchy. This object will represent any
scalar ports that have single bit representation or a bit of a multi-bit port.

For possible values of upf_port_dir property see Table 3.

The upf_normalized_idx property is populated when the object is representing a bit of a multi-bit type
object. The upf_smallest_atomic_slice property is only populated in special cases where an atomic type in
HDL is requires multiple bits to represent the value. Please refer to 10.4.3.3 for more details.

Examples: Scalar port

UPF source: test.upf

70 set_isolation iso -domain PD -elements {port1}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

253

Object definition

Handle ID /top/dut_i/port1

Properties Value

upf_name port1

upf_parent /top/dut_i

upf_extents {#UPFEXTENT1#}

upf_port_dir UPF_DIR_OUT

Examples: Bit of a multi-bit port

UPF source: test.upf

70 set_isolation iso -domain PD -elements {port2[2]}

Object definition

Handle ID /top/dut_i/port2[2]

Properties Value

upf_name [2]

upf_parent /top/dut_i/port2

upf_extents {#UPFEXTENT2#}

upf_port_dir UPF_DIR_IN

upf_normalized_idx 2

Examples: Bit of a multi-bit VHDL record

UPF source: test.upf

70 set_isolation iso -domain PD -elements {complexport.f1}

Object definition

Handle ID /top/dut_i/complexport@3

Properties Value

upf_name @3

upf_parent /top/dut_i/complexport

upf_extents {#UPFEXTENT3#}

upf_port_dir UPF_DIR_IN

upf_normalized_idx 3

upf_smallest_atomic_slice /top/dut_i/complexport@31:0

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

254

10.6.2.3 HDL multi-bit port

Class name upfHdlPortMultiBitT

Class membership upfHdlPortMultiBitT, upfHdlPortClassT, upfHdlDeclT, upfBaseHdlT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID examples /top/dut_i/port2

Property Return value Description
upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_cell_info upfCellT The information about cell modeled at this HDL object

upf_hdl_attributes List of
upfAttributeT

The different attributes added on the object via set_port_attributes or other
equivalent means

upf_extents List of
upfExtentT The various upfExtentT pointing to this HDL object

upf_port_dir upfPortDirE The direction of the port

upf_hdl_width upfIntegerT Size of the port in number of bits

upf_normalized_bits List of
upfHdlPortBitT List of paHdlPortBitT objects corresponding to each normalized width

The object of upfHdlPortMultiBitT represents a multi-bit object in the information model. This can be a
vector, multi-dimensional array, or any other complex type object which requires multiple bits to represent.
The multi-bit object contains bits which are normalized in the form width-1 downto 0 (see 10.4.3.3.2).

For possible values of upf_port_dir property see Table 3.

Examples

UPF source: test.upf

70 set_isolation iso -domain PD -elements {port2}

Object definition

Handle ID /top/dut_i/port2

Properties Value
upf_name port2
upf_parent /top/dut_i

upf_extents {#UPFEXTENT1#}

upf_port_dir UPF_DIR_OUT

upf_hdl_width 3

upf_normalized_bits {/top/dut_i/port2@0 /top/dut_i/port2@1 /top/dut_i/port2@2}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

255

10.6.2.4 HDL scalar net

Class name upfHdlNetBitT

Class membership upfHdlNetBitT, upfHdlNetClassT, upfHdlDeclT, upfBaseHdlT, upfBaseNamedT,
upfBaseT

Handle ID

if [<Class Membership Of upf_parent> == upfHdlScopeT]

 <handle ID of upf_parent>/<upf_name of Object>

else

 # Bit of Multi-bit object

 <handle ID of upf_parent><upf_name of Object>

Handle ID examples
/top/dut_i/net1

/top/dut_i/net2[1]

/top/dut_i/complexnet@3

Property Return value Description
upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_cell_info upfCellT The information about cell modeled at this HDL object

upf_hdl_attributes List of upfAttributeT The different attributes added on the object via
set_port_attributes or other equivalent means

upf_extents List of upfExtentT The various upfExtentT pointing to this HDL object

upf_normalized_idx upfIntegerT The normalized index of the bit object when the object is
acting as a bit of a upfMultiBitNetT object

upf_smallest_atomic_slice upfHdlMultiBitSliceT The handle of the smallest slice that represents and atomic
object in HDL that can be represented as a valid RTL name

The object of upfHdlNetBitT represents a scalar port in the logic hierarchy. This object will represent any
scalar nets that have single bit representation or a bit of a multi-bit net.

The upf_normalized_idx property is populated when the object is representing a bit of a multi-bit type
object. The upf_smallest_atomic_slice property is only populated in special cases where an atomic type in
HDL is requires multiple bits to represent the value. Please refer to 10.4.3.3 for more details.

Examples: Scalar port

UPF source: test.upf

70 set_isolation iso \
71 -domain PD \
72 -isolation_signal ctrl \
73 -isolation_sense high

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

256

Object definition

Handle ID /top/dut_i/ctrl

Properties Value

upf_name ctrl

upf_parent /top/dut_i

Examples: Bit of a multi-bit port

UPF source: test.upf

70 set_isolation iso -domain PD -isolation_signal ctrl[2] \
71 -isolation_sense high ...

Object definition

Handle ID /top/dut_i/ctrl[2] or /top/dut_i/ctrl@2

Properties Value

upf_name [2] or @2

upf_parent /top/dut_i/ctrl

upf_normalized_idx 2

10.6.2.5 HDL multibit net

Class name upfHdlNetMultiBitT

Class membership upfHdlNetMultiBitT, upfHdlNetClassT, upfHdlDeclT, upfBaseHdlT, upfBaseNamedT,
upfBaseT

Handle ID <handle ID of upf_parent>/<upf_name of Object>

Handle ID
examples /top/dut_i/reg_arr

Property Return value Description
upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_cell_info upfCellT The information about cell modeled at this HDL object

upf_hdl_attributes List of
upfAttributeT

The different attributes added on the object via set_port_attributes or
other equivalent means

upf_extents List of upfExtentT The various upfExtentT pointing to this HDL object
upf_hdl_width upfIntegerT Size of the net in number of bits

upf_normalized_bits List of
upfHdlNetBitT List of paHdlNetBitT objects corresponding to each normalized width

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

257

The object of upfHdlNetMultiBitT represents a multi-bit net object in the information model. This can be a
vector, multi-dimensional array or any other complex type object which requires multiple bits to represent.
The multi-bit object contains bits which are normalized in the form width-1 downto 0. Please refer to
10.4.3.3 for more details.

Examples

UPF source: test.upf

70 set_retention ret -domain PD -elements {reg_arr}

Object definition

Handle ID /top/dut_i/reg_arr

Properties Value
upf_name reg_arr

upf_parent /top/dut_i

upf_extents {#UPFEXTENT6# }
upf_hdl_width 3

upf_normalized_bits {/top/dut_i/reg_arr@0 /top/dut_i/reg_arr@1 /top/dut_i/reg_arr@2}

10.6.2.6 HDL multi-bit slice

Class name upfHdlMultiBitSliceT

Class membership upfHdlMultiBitSliceT, upfBaseNamedT, upfBaseT

Handle ID
<handle ID of upf_parent><upf_name of Object>

Where upf_name of this object is constructed as

 @<upf_msb>:<upf_lsb>

Handle ID
examples /top/dut_i/complex_rec@3:2

Property Return value Description

upf_name upfStringT Name of object
upf_parent upfBaseNamedT Parent of object

upf_msb upfIntegerT normalized msb info of slice

upf_lsb upfIntegerT normalized lsb info of slice

upf_slice_bits List of
upfHdlNetBitT

List of paHdlNetBitT or pdHdlPortBitT objects corresponding to each
normalized width

The object of upfHdlMultiBitSliceT is created to represent a group of consequtive bits of a multi-bit object,
e.g., field of a record, slice of array/multi-dimensional arrays.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

258

The upf_msb will always be greater than upf_lsb property of this object. These properties normalized
ranges.

Please refer to 10.4.3.3 for more details.

Examples

UPF source: test.upf

70 set_retention ret -domain PD -elements {complex_rec.f2}

Object definition

Handle ID /top/dut_i/complex_rec@3:2

Properties Value

upf_name @3:2

upf_parent /top/dut_i/complex_rec

upf_msb 3

upf_lsb 2

upf_slice_bits {/top/dut_i/complex_rec@3 /top/dut_i/complex_rec@2}

10.6.3 Relationship objects

10.6.3.1 UPF extent

Class name upfExtentT

Class membership upfExtentT, upfBaseRelationshipT, upfBaseT

Handle ID #UPFEXTENT<tool generated counter>#

Handle ID examples #UPFEXTENT91#

Property Return value Description
upf_hdl_element upfBaseHdlT Handle of element in the effective element list

upf_cells List of
upfBaseHdlT Cells inserted for element in effective element list

upf_object upfExtentClassT Handle of UPF object for which the extent was created

upf_next_extent upfExtentT Handle to the upfExtentT object that points to the next element in the
effective_element_list

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

259

The object of upfExtentT class captures the information about the extent of power domains and strategies.
More specifically, it contains the information about the following:

a) effective_element_list (see 5.9) for power domains and other strategies

b) -instance for strategies

The property upf_hdl_element points to the element that is part of the effective element list of the object.
The element also stores the back reference to this upfExtentT object in the upf_extents property (see
10.6.2). The UPF object for which the extent is created is referred to as upf_object property. The upf_cells
property captures the list of cells that are inserted for the specific extent by a given UPF object.

The upfExtentT object also captures information about the -instance relationship for a given object. For
such cases, the port for which the power-management cell is marked as -instance is captured as
upf_hdl_element and the actual cell instance is referred to as upf_cells.

The HDL objects present in upf_cells property can be of:

a) upfHdlScopeT type when the cells are explicit instantiations in HDL (-instance) or inserted by the
application of UPF

b) upfHdlDeclT when the cells are inferred at RTL stage, e.g., registers/latches modeled as always
blocks

The upfExtentT object captures the effective_element_list information through upf_next_extent property
which points to the next object in the effective_element_list in any particular order. The object that
represents the first element in the effective_element_list is called as extent_head and is stored as
upf_effective_extents property in upfExtentClassT objects. The extent_head acts as a root from which the
effective element list can be calculated by traversing the upf_next_extent property. The helper proc
query_effective_extent_list (see C.1.3) can be used to get the flattened list of upfExtentT objects.

Examples

Example 1: -instance information

UPF source: test.upf

70 set_isolation iso -domain PD \
71 -instance {{mid/iso_inst mid/port_iso}} …

Object definition

Handle ID #UPFEXTENT3#

Properties Value
upf_hdl_element /top/dut_i/mid/port_iso
upf_cells {/top/dut_i/mid/iso_inst}

upf_object /top/dut_i/PD.iso

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

260

UML object diagram (see Figure 14)

Figure 14 —UML object diagram denoting—instance versuss upfExtentT relationship

Example 2: Effective element list of isolation strategy

UPF source: test.upf

1 set_scope /top/dut_i
2 create_power_domain PD -elements { m1 }
3 set_isolation iso -domain PD \
 -applies_to both ...

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

261

Object definitions

Handle ID #UPFEXTENT1#

Properties Value
upf_hdl_element /top/dut_i/m1/p1

upf_cells {/top/dut_i/p1_UPF_ISO}

upf_object /top/dut_i/PD.iso

upf_next_extent #UPFEXTENT2#

Handle ID #UPFEXTENT2#

Properties Value
upf_hdl_element /top/dut_i/m1/p2[0]

upf_cells {/top/dut_i/\p2[0]_UPF_ISO}

upf_object /top/dut_i/PD.iso

upf_next_extent #UPFEXTENT3#

Handle ID #UPFEXTENT3#

Properties Value
upf_hdl_element /top/dut_i/m1/p2[1]

upf_cells {/top/dut_i/\p2[1]_UPF_ISO}
upf_object /top/dut_i/PD.iso

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

262

UML Object Diagram, see Figure 15

Figure 15 —UML object diagram denoting effective_element_list of isolation strategy

Example 3: Inferred corruption logic inserted by power domain (implicit connections)

UPF source: test.upf

30 create_power_domain PD -elements {.}

HDL source: mid.v

module mid1;
...
assign comb = a && b;
always_ff @(posedge clk) q_ff <= d;
...

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

263

Object definition

Handle ID #UPFEXTENT3#

Properties Value

upf_hdl_element /top/dut_i/m1

upf_cells {/top/dut_i/comb /top/dut_i/m1/q_ff}

upf_object /top/dut_i/PD

UML object diagram, see Figure 16

Figure 16 —UML object diagram denoting power domain and its extent

Example 4: Extent of donut power domains

UPF source: test.upf
1 create_power_domain PD1 \
2 -elements {top top/m2/b3}
3 create_power_domain PD2 \
4 -elements {top/m2}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

264

HDL source: dut.v

module top;
 mid1 m1();
 mid2 m2();
 mid3 m3();
endmodule
module mid1;
 bot b1();
 bot b2();
endmodule
module mid2;
 bot b3();
endmodule
module mid3;
endmodule
module bot;
endmodule

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

265

Object definitions

Handle ID #UPFEXTENT1#

Properties Value
upf_hdl_element /top
upf_object /top/ PD1

upf_next_extent #UPFEXTENT2#

Handle ID #UPFEXTENT3#

Properties Value
upf_hdl_element /top/m2/b3
upf_object /top/ PD1

upf_next_extent #UPFEXTENT4#

Handle ID #UPFEXTENT2#

Properties Value
upf_hdl_element /top/m1

upf_object /top/ PD1
upf_next_extent #UPFEXTENT5#

Handle ID #UPFEXTENT4#

Properties Value
upf_hdl_element /top/m3
upf_object /top/ PD1

Handle ID #UPFEXTENT5#

Properties Value
upf_hdl_element /top/m1/b1

upf_object /top/ PD1

upf_next_extent #UPFEXTENT6#

Handle ID #UPFEXTENT6#

Properties Value
upf_hdl_element /top/m1/b2
upf_object /top/ PD1

upf_next_extent #UPFEXTENT3#

Handle ID #UPFEXTENT7#

Properties Value
upf_hdl_element /top/m2

upf_object /top/ PD2

UML object diagram, see Figure 17

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

266

Figure 17 —UML object diagram showing extent information of donut style

power domain

10.6.3.2 Control sensitivity

Class name upfSignalSenseT

Class membership upfSignalSenseT, upfBaseRelationshipT, upfBaseT

Handle ID #UPFSIGSENSE<tool generated counter>#

Handle ID examples #UPFSIGSENSE1#

Property Return value Description
upf_signal_sensitivity upfSignalSenseKindE Sensitivity of control signal (-*_sense option)

upf_control_signal upfBaseNamedT Handle to control signal

The object of type upfSignalSenseT is used to represent the relationship between control signals and their
sensitivity.

Table 26 is the mapping of UPF commands and the properties of upfSignalSenseT object.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

267

Table 26 —Mapping of UPF commands and properties of upfSignalSenseT

UPF command Property name
set_isolation -isolation_signal upf_control_signal

set_isolation -isolation_sense upf_signal_sensitivity

set_retention -save_signal {logic_net <high | low | posedge | negedge>}
upf_control_signal for logic_net

upf_signal_sensitivity for sense

For possible values of upf_signal_sensitivity property see Table 27.

Table 27 —Enumerated type upfSignalSenseKindE

upfSignalSenseKindE
Enumerated literals UPF mapping

UPF_SENSE_HIGH high
UPF_SENSE_LOW low

UPF_SENSE_POSEDGE posedge

UPF_SENSE_NEGEDGE negedge

Examples

UPF source: test.upf

29 set_scope /top
30 set_retention ret \
31 -domain PD \
32 -save_signal {ret_ctrl high}

Object definition

Handle ID #UPFSIGSENSE1#

Properties Value
upf_control_signal /top/ret_ctrl

upf_signal_sensitivity UPF_SENSE_HIGH

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

268

10.6.3.3 Cell information

Class name upfCellT

Class membership upfCellT, upfBaseRelationshipT, upfBaseT

Handle ID #UPFCELL<tool generated counter>#

Handle ID
examples #UPFCELL1#

Property Return value Description

upf_model_name upfStringT The name of model corresponding to cell. This will be optional as it will
not be present for cells that are inferred at RTL.

upf_cell_kind upfCellKindE The enumerated value representing kind of a cell inferred from UPF, e.g.,
retention, isolation, corruption, etc.

upf_hdl_cell_kind upfHdlCellKindE The enumerated value representing kind of cell determined from HDL,
e.g., flop, latch, memory, etc.

upf_cell_origin upfCellOriginE The enumerated value indicating the source of insertion of this cell,
whether inserted by UPF or already present in design

upf_source_extents List of
upfExtentT The list of upfExtentT object which caused insertion of this cell

The object of type upfCellT represents the details of the cell information that is created or inferred by UPF.
This object is created when UPF is applied on the HDL design. For possible values of upf_cell_kind
property see Table 28.

Table 28 —Enumerated type upfCellKindE

upfCellKindE
Enumerated literals UPF mapping

UPF_CELL_NONE Not a cell

UPF_CELL_ISOLATION Represents isolation cell

UPF_CELL_LEVEL_SHIFTER Represents level-shifter cell
UPF_CELL_ISO_LS_COMBO Represents isolation and level-shifter combo cell

UPF_CELL_RETENTION Represents retention cell

UPF_CELL_SWITCH Represents a switch cell

UPF_CELL_REPEATER Represents a repeater or buffer cell
UPF_CELL_CORRUPT Represents any standard cell which can get corrupted

UPF_CELL_MACRO Represents a macro cell or power model

The cell information can be present on either scope or items (ports or nets). If cell information is present on
an item (port or net) it represents an inferred logic which is not yet present in the design. This scenario is
typically present at RTL state where a statement or expression represents some synthesizable logic. In all
other cases, where there is explicit instantiation of cell, the cell information is present on the scope type
object.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

269

The upf_hdl_cell_kind property contains information about the kind of cell inferred from HDL. For
possible values of upf_hdl_cell_kind property see Table 29.

Table 29 —Enumerated type upfHdlCellKindE

upfHdlCellKindE
Enumerated literals UPF mapping

UPF_HDLCELL_NONE not a cell

UPF_HDLCELL_COMB represents a combinatorial logic
UPF_HDLCELL_FLOP represents a flip-flop

UPF_HDLCELL_LATCH represents a latch

UPF_HDLCELL_MEM represents a memory like RAM, etc.

The upf_cell_origin property represents the source of a particular cell. For possible values of
upf_cell_origin property see Table 30.

Table 30 —Enumerated type upfHdlCellKindE

upfCellOriginE
Enumerated literals UPF mapping
UPF_ORIGIN_UNKNOWN When cell origin is not known
UPF_ORIGIN_DESIGN When cell is present in design itself

UPF_ORIGIN_INSERTED When cell is inserted by UPF after application of strategy (e.g., isolation) and
using default model

UPF_ORIGIN_INSERTED_MAP When cell is inserted by UPF after application of strategy and using user specified
model via map_* and use_interface_cell commands

UPF_ORIGIN_INFERRED When cell is inferred by UPF at RTL. This information will only be present on
cells which are set on HDL Port or Nets group of objects.

Examples

Example 1: Inferred isolation cell

UPF source: test.upf

29 set_scope /top
30 set_isolation iso -domain PD -elements {port1} -clamp_value 1 ...

Object definition

Handle ID #UPFCELL1#

Properties Value
upf_cell_kind isolation_cell
upf_hdl_cell_kind UPF_HDLCELL_COMB

upf_cell_origin UPF_ORIGIN_INSERTED

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

270

Example 2: -instance of isolation

UPF source: test.upf

29 set_scope /top
30 set_isolation iso \
31 -domain PD \
32 -instance {port1 iso_inst} \
33 -clamp_value 1

Object definition

Handle ID #UPFCELL2#

Properties Value
upf_model_name iso_model

upf_cell_kind UPF_CELL_ISOLATION

upf_hdl_cell_kind UPF_HDLCELL_COMB
upf_cell_origin UPF_ORIGIN_DESIGN

10.6.3.4 Expression

Class name upfExpressionT

Class membership upfExpressionT, upfBaseRelationshipT, upfBaseT

Handle ID #UPFEXPR<tool generated counter>#

Handle ID examples #UPFEXPR1#

Property Return value Description
upf_expr_string upfStringT String representation of expression

upf_expr_operands List of upfBaseNamedT List of operands used in the expression

Dynamic property (only available during simulation)
upf_current_value upfBooleanT The current value of the object during simulation

The object of upfExpressionT class is a relationship object that captures the boolean expression information
defined in UPF.

Examples

UPF source: test.upf

30 add_power_state PD \
31 -state {ON -logic_expr {primary == ON}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

271

Object definition

Handle ID #UPFEXPR1#

Properties Value
upf_expr_string primary == ON

upf_expr_operands /top/dut_i/PD.primary

10.6.3.5 UPF attributes

Class name upfAttributeT

Class membership upfAttributeT, upfBaseRelationshipT, upfBaseT

Handle ID #UPFATTR<tool generated counter>#

Handle ID examples #UPFATTR1#

Property Return value Description
upf_file upfStringT The file name of the source where the attribute was defined

upf_line upfIntegerT The line number of the source where the attribute is defined
upf_attr_name upfStringT The name of the attribute set on object

upf_attr_value upfStringT The value of the attribute set on object

The object of upfAttributeT class is a relationship object that captures the information about various
predefined and user defined attributes added on the objects in UPF. This is typically the information
specified by set_design_attributes or set_port_attributes command. It can also be the predefined UPF
attributes specified in HDL or Liberty specifications.

Examples

UPF source: test.upf

30 set_port_attributes -ports {my_Logic_Port} -clamp_value 1

Object definition

Handle ID #UPFATTR1#

Properties Value
upf_file test.upf

upf_line 30

upf_attr_name UPF_clamp_value

upf_attr_value 1

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

272

11. Information model application programmable interface (API)

11.1 Tcl interface

11.1.1 Overview

Subclause 11.1 defines the Tcl Interface for the information model. The commands defined in 11.1 are only
available during phase 5 (see 8.3.6) of the UPF-processing phases. In this phase, only the following UPF
commands will be available:

 set_scope

 bind_checker

 find_objects

 load_upf

All commands available in this phase have an immediate effect. The first occurance of any command
defined in 11.1 will indicate the start of phase 5.

It shall be an error if any other UPF command is called during phase 5.

11.1.2 Basic UPF query commands

11.1.2.1 upf_query_object_properties

Purpose Query properties on a given object

Syntax upf_query_object_properties object_handle

 [-property property_keyword]

Arguments

object_handle UPF handle of the given object

-property property_keyword
Return the value of specified property.
By default all properties are returned as key value
pairs.

Return value Returns a string containing value of the specified property or empty string if not found

The upf_query_object_properties command returns the result of querying the specified property on the
object.

 If the return type of the property is a list, then a Tcl list containing values is returned.

 If -property is not specified, then all the property values are returned in the form of list. If the
returned value is already a list then its represented as list of list

It shall be an error if:

 object_handle is not a valid UPF handle

 property_keyword is not a valid property ID

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

273

 object_handle is not present in the information model

 property_keyword is a valid property ID but not possible on the given object type

Syntax examples

Example 1: Get simple-name of object

 upf_query_object_properties /top/dut_i/pd.iso_strategy \
 -property upf_name

 Output

 iso_strategy

Example 2: Get all properties on power-domain "pd"

 upf_query_object_properties /top/dut_i/pd

 Output

 { \
 {upf_name pd} {upf_file test.upf} {upf_line 11} \
 {upf_parent /top/dut_i} \
 {upf_creation_scope /top/dut_i} \
 {upf_effective_extents #UPFEXTENT1#} \
 {upf_supply_set_handles {\
 /top/dut_i/pd.primary \
 } \
 {upf_isolation_strategies {/top/dut_i/pd.iso_strategy}}
 }

11.1.2.2 upf_query_object_type

Purpose Query type of given object

Syntax upf_query_object_type object_handle

Arguments object_handle UPF handle of the given object

Return value Returns the keyword representing object class type or empty string if object is not present in
information model

The upf_query_object_type command returns the type of specified object.

It shall be an error if:

 object_handle is not a valid UPF handle

 object_handle is not present in the information model

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

274

Syntax examples

Example 1: Get type of UPF object

 upf_query_object_type /top/dut_i/pd

 Output

 upfPowerDomainT

Example 2: Get type of HDL object

 upf_query_object_type /top/dut_i

 Output

 upfHdlScopeT

Example 3: Get type of relationship object

 upf_query_object_type #UPFEXTENT1#

 Output

 upfExtentT

11.1.2.3 upf_object_in_class

Purpose Check if object belongs to particular class

Syntax upf_object_in_class object_handle -class <CLASS_ID>

Arguments
object_handle UPF handle of the given object

-class <CLASS_ID> Valid ids from class membership of an object

Return value Returns 1 if object_handle belongs to CLASS_ID and 0 if it does not

The upf_object_in_class command is used to check if the given handle belongs to a specified class. This is
useful to create more robust scripts that have error checking built into them.

It shall be an error if:

 object_handle is not a valid UPF handle

 object_handle is not present in the information model

 CLASS_ID is not a valid class name

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

275

Syntax examples

Example 1: Check if object belongs to strategy

 upf_object_in_class /top/dut_i/pd.iso_strategy \
 -class upfStrategyT

 Output

 1

Example 2: Object doesn’t belong to class

 upf_object_in_class /top/dut_i/pd \
 -class upfStrategyT

 Output

 0

11.1.2.4 upf_query_object_pathname

Purpose Get hierarchical pathname for a given handle

Syntax upf_query_object_pathname object_handle

[-relative_to <object handle>]

Arguments

object_handle UPF handle of the given object

-relative_to <object_handle>
Handle to ancestor object of group UPF or HDL.
By default the value is null. In that case, the
absolute hierarchical pathname is returned.

Return value Returns the string representing the RTL pathname of given handle or an empty string if error

The upf_query_object_pathname is a helper query command that is used to return the hierarchical
pathname relative to given scope. The valid handle types for this command are handles that belong to the
following UPF objects and HDL objects group. If a relationship object is passed to this command then an
empty string will be returned.

 If -relative_to option is specified with a valid handle which is an ancestor of the given handle, then
a relative pathname is returned.

 If the handle specified in -relative_to option is not an ancestor to given object handle then an empty
string is returned.

 If no -relative_to option is specified then the full hierarchical pathname is returned.

It shall be an error if:

 object_handle is not a valid UPF handle

 object_handle is not present in the information model

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

276

NOTE—This query command can be useful in cases where the handle ID is some modification of hierarchical path.
This happens in case of multi-bit type HDL objects where the handle ID contains the normalization information, e.g.,
/top/dut_i/mid/net@63:32.

Syntax examples

Example 1: Get relative pathname

 upf_query_object_pathname /top/dut_i/pd.iso_strategy \
 -relative_to /top

 Output

 dut_i/pd.iso_strategy

Example 2: Get RTL name-mapped of multi-bit slice

 upf_query_object_pathname /top/dut_i/mid/net@63:32

 Output

 /top/dut_i/mid/net.f1(2)

Example 3: Get list of all nets in the scope of a given power domain

 set cs [upf_query_object_properties /top/dut_i/pd \
 -property upf_creation_scope]

 set scope [upf_query_object_pathname $cs]
 find_objects $scope -pattern * -object_type net

 Output

 /top/dut_i/net1
 /top/dut_i/net2

11.1.3 Complex UPF query command

11.1.3.1 Introduction

The complex UPF query command is a high-level query command that can be built using basic UPF query
commands. It performs some advanced queries like searching for names using patterns.

11.1.3.2 query_upf

Purpose Find objects (including UPF created or inferred objects) in the logic hierarchy

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

277

Syntax

query_upf <domain_name | scope>
-pattern search_ pattern
[-object_type <inst | port | supply_port | net | supply_net | supply_set>]
[-inst_type <level_shifter | isolation_cell | switch_cell | retention_cell | all>] |
[-direction <in | out | inout>]
[-transitive [<TRUE | FALSE>]]
[-regexp | -exact]
[-ignore_case]
[-non_leaf | -leaf_only]

Arguments

domain_name | scope
Either a power domain or a scope can be specified. If a power domain is
specified, the search is restricted to that power domain; otherwise the
search is restricted to the specified scope.

-pattern search_ pattern The string used for searching. By default, search_ pattern is treated as a
Tcl glob expression.

-object_type <inst | port
| supply_port | net |
supply_net |
supply_set>

Limits the objects returned. By default, all objects are returned.

-inst_type <level_shifter
| isolation_cell |
switch_cell |
retention_cell | all>

If -object is inst, this option limits the type of instances returned to be
level-shifter, isolation, switch, or retention cells. The default is all, which
returns all instances.

-direction <in | out |
inout>

If -object is port, then -direction can be used to restrict the directions of
the returned ports.

-transitive [<TRUE |
FALSE>]

If -transitive is not specified at all, the default is -transitive FALSE.
If -transitive is specified without a value, the default value is TRUE.

-regexp | -exact

-regexp enables support for regular expression in the specified
search_ pattern. -exact disallows wildcard expansion on the specified
search_ pattern. If neither -regexp or -exact are specified, then
search_ pattern is interpreted as a Tcl glob expression.

-ignore_case Performs case-insensitive searches. By default, all matches are case
sensitive.

-non_leaf | -leaf_only
If -non_leaf is specified, only non-leaf instances are returned; if
-leaf_only is specified, only leaf-level instances are returned. By default,
both leaf and non-leaf instances are returned.

Return
value

Returns a list of names (relative to the current scope) of objects that match the search criteria; when
nothing is found that matches the search criteria, a null string is returned. The list contains just the
object names, without any indication of object type. The list may contain names of more than one type
of object.

The query_upf command searches for instances, nets, supply nets, ports, and supply ports in and below the
scope or within the extent of a domain_name. This command works on the logic hierarchy and can be
executed post-UPF annotation.

The query_upf command works on the logic hierarchy from a domain-centric or hierarchy-centric
approach. A domain-centric approach restricts the search to instances, net, or ports that are logically within
the extent of the specified domain_name. A hierarchy-centric approach searches in the scope only, or in
and below the scope when -transitive is specified.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

278

A domain-centric search examines all logical levels that are members of the specified domain. Based on
Figure 18 and Figure 19, the command query_upf {PD1} -pattern * looks for any object (port, net,
or instance) matching the specified string in the logical hierarchies A, A/B, A/C, or A/B/D/F.

Figure 18 —Logic hierarchy

Figure 19 —Physical layout

If searching for inputs into PD3, the command

query_upf {PD3} -pattern * -object_type port -direction in

returns any inputs from {B->D, F->D, and E->D}.

-inst_type only returns instances of a particular type. For example, to find all level-shifters in the domain
PD3, the following query_upf command could be used:

query_upf {PD3} -pattern * -inst_type level_shifter -object inst

The following conditions also apply:

— -transitive is ignored in a domain-centric search.

— The specified domain_name or scope cannot start with .. or /, i.e., query_upf shall be referenced
from the current scope, and reside in the current scope or below it.

— All elements returned are referenced to the current scope.

— If domain_name or scope is specified as . (a dot), the current scope is used as the root of the search.

— query_upf takes a scope argument. The specified scope may reference a generate block as the root
of the search.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

279

— For details on pattern matching and wildcarding, see 6.30.2 and Table 5.

Syntax examples

query_upf A/B/D \
-pattern *BW1* \
-object inst \
-transitive

11.1.3.2.1 Tcl code using basic queries

This subclause describes the functionality of query_upf command using basic Tcl queries.

NOTE—The Tcl code shown here is only provided for illustration purposes in order to explain the semantics and
behavior of Tcl queries. The tools are free to provide native implementation of this command.

Tcl code

#--
Helper proc to check for kind of pattern matching
#--
proc is_matching_pattern {
 name
 pattern
 search_type
} {
 if { ($name != "")
 && (
 ($search_type == "glob" && [string match $pattern $name])
 || ($search_type == "regex" && [regexp $pattern $name])
 || ($search_type == "exact" && $pattern eq $name)
)
 } {
 return 1;
 }
 return 0;
}

#--
Helper proc to search pattern on the object by property and
filter the results based on class type
#--
proc query_objects_by_property {
 scope
 property
 pattern
 class
 search_type
} {
 set result {};
 set children [upf_query_object_properties $scope \
 -property $property];
 foreach child $children {
 if {[upf_object_in_class $child -class $class]} {
 set name [upf_query_object_properties $child \
 -property upf_name];
 if {[is_matching_pattern $name $pattern $search_type]} {
 lappend result [upf_query_object_pathname $child \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

280

 -relative_to .];
 }
 }
 }
 return $result;
}

#--
Helper proc to filter the scopes based on their cell type
#--
proc query_inst_by_type {
 inst
 type
} {
 set status 0
 set cell_info [upf_query_object_properties $inst \
 -property upf_cell_info]
 set cell_kind [upf_query_object_properties $cell_info \
 -property upf_cell_kind]
 if {$type == "all" || $type == "isolation_cell"} {
 if {$cell_kind eq "UPF_CELL_ISOLATION"} {
 set status 1
 }
 }
 if {$type == "all" || $type == "level_shifter"} {
 if {$cell_kind eq "UPF_CELL_LEVEL_SHIFTER"} {
 set status 1
 }
 }
 if {$type == "all" || $type == "switch_cell"} {
 if {$cell_kind eq "UPF_CELL_SWITCH"} {
 set status 1
 }
 }
 if {$type == "all" || $type == "retention_cell"} {
 if {$cell_kind eq "UPF_CELL_RETENTION"} {
 set status 1
 }
 }
 return $status;
}

#--
UPF query_upf command based on UPF Information Model
this proc searches with a given scope
#--
proc query_upf_scope {
 scope
 pattern
 object_type
 inst_type
 direction
 transitive
 search_type
 leaf_only
} {
 set result {}
Error check to ensure $scope is an HDL Scope
 if {[upf_query_object_type $scope] != "upfHdlScopeT"} {
 return $result;
 }

Search HDL Objects

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

281

 if {$object_type == ""
 || $object_type == "inst"
 || $object_type == "port"
 || $object_type == "net"
 } {
 set result [concat $result [find_objects $scope -pattern $pattern \
 -object_type $object_type $leaf_only
 -transitive $transitive $direction $search_type]
 }
Search UPF Objects
 if {$object_type == "" || $object_type == "supply_port"} {
 set result [concat $result [query_objects_by_property $scope \
 upf_items $pattern upfSupplyPortT \
 $search_type]]
 }
 if {$object_type == "" || $object_type == "supply_net"} {
 set result [concat $result [query_objects_by_property $scope \
 upf_items $pattern upfSupplyNetT \
 $search_type]]
 }
 if {$object_type == "" || $object_type == "supply_set"} {
 set result [concat $result [query_objects_by_property $scope \
 upf_items $pattern upfSupplySetT \
 $search_type]]
 }
Transitive behavior for UPF Objects only
 if {$object_type == ""
 || $inst_type == "level_shifter"
 || $inst_type == "isolation_cell"
 || $inst_type == "switch_cell"
 || $inst_type == "retention_cell"
 || $inst_type == "all"
 } {
 set child_scopes [query_objects_by_property $scope \
 upf_child_instances $pattern \
 upfHdlScopeT $search_type]
Check if scope belongs to some Power management cell
 foreach child $child_scopes {
Filter matched results based on type
 if {[query_inst_by_type $child $inst_type]} {
 set result [concat $result $child]
 }
 }
 }
 if {$transitive == "true"} {
Recursively call query_upf on child_scopes
 set child_scopes [upf_query_object_properties $scope \
 -property upf_child_instances];
 foreach child $child_scopes {
 set result [concat $result [query_upf $child $pattern \
 $object_type $inst_type \
 $direction $transitive \
 $search_type $leaf_only]]
 }
 }
 return $result;
}

#--
UPF query_upf command based on UPF Information Model
this proc searches with a given Power Domain
#--
proc query_upf_domain {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

282

 pd
 pattern
 object_type
 inst_type
 direction
 search_type
 leaf_only
} {
 set result {}
 if {[upf_query_object_type $pd] != "upfPowerDomainT" } {
 return $result;
 }
 set extent_head [upf_query_object_properties $pd \
 -property upf_effective_extents];
 # Utility proc to return a list of effective extents
 # See C.1.3 for more details.
 set extents [query_effective_extent_list $extent_head]
 foreach extent $extents {
 set scope [upf_query_object_properties $extent \
 -property upf_hdl_element];
 set result [concat $result [query_upf_scope $scope $pattern \
 $object_type $inst_type $direction \
 "false" $search_type $leaf_only]];
 }
 return $result;
}

#--
Top level query_upf
#--
proc query_upf {
 scope
 pattern
 object_type
 inst_type
 direction
 transitive
 search_type
 leaf_only
} {
 if {[upf_query_object_type $scope] == "upfPowerDomainT" } {
 return [query_upf_domain $scope $pattern $object_type \
 $inst_type $direction $search_type $leaf_only];
 } else {
 return [query_upf_scope $scope $pattern $object_type $inst_type \
 $direction $transitive $search_type $leaf_only];
 }
}

11.2 HDL interface

11.2.1 Introduction

The HDL interface to the information model allows user to create HDL descriptions which access the
information model objects directly in HDL. This interface can be used to create the following:

 Abstract testbenches to manipulate UPF objects directly in simulation

 Checker/coverage models

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

283

 Simulation models that directly manipulate UPF objects during simulation

11.2.2 Representation of property types in HDL

11.2.2.1 Introduction

The objects and properties in the information model can be accessed by a HDL object of upfHandleT type.

The detailed mapping of property types in information model and HDL is shown in Table 31.

Table 31 —Property HDL type mapping

Property type Type name SV VHDL

String upfStringT string string

Integer upfIntegerT int integer

Boolean upfBooleanT bit bit

Float upfRealT real real

Enumerated Type names with suffix E enum types enum types

Handle to objects/properties upfHandleT chandle integer

List of handle to other objects upfHandleT chandle integer

11.2.2.2 upfSupplyTypeT

Class name upfSupplyTypeT

Class membership upfSupplyTypeT, upfBaseT

Handle ID Any tool assigned ID. Only valid during simulation.

Property Return value Description

upf_state upfSupplyStateE The current state of the upfSupplyTypeT object

upf_voltage upfIntegerT The current voltage of the upfSupplyTypeT object expressed in integer
value in micro-volts

The upfSupplyTypeT class is a special class that represents the current value of a supply type object
(supply net/port). The class maintains two pieces of information:

a) Current state of supply object, in the form of enumerated type upfSupplyStateE

b) Current voltage of supply object represented as integer value in micro-volts

The upfSupplyTypeT class ensures the supply net state and voltage values can be easily propagated and
modeled in various HDLs. The HDL representation of this class is shown in Table 32.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

284

Table 32 —HDL representation of upfSupplyTypeT

Type name SV VHDL

upfSupplyTypeT

struct {
 upfSupplyStateE state;
 upfIntegerT voltage;
} upfSupplyTypeT

type upfSupplyTypeT is record
 state : upfSupplyStateE;
 voltage: upfIntegerT;
end record;

NOTE—In order to ensure backward compatibility with earlier versions of UPF, the UPF packages also define
supply_net_type datatype which is exactly similar to upfSupplyTypeT.

11.2.2.3 Native HDL representation

The objects that also have dynamic properties will also have a native HDL representation defined in the
HDL package. The native HDL representation is a structure/record type in HDL that contains two fields:

a) A value field corresponding to the dynamic property of the object to allow continuous monitoring
of dynamic properties

b) A handle field of type upfHandleT to allow access to other properties of the object

The native HDL representation is achieved by the following structure/record types in HDL, see Table 33.

Table 33 —HDL types for native HDL representation

Type name SV VHDL

upfPdSsObjT

struct {
 upfHandleT handle;
 upfPowerStateObjT current_state;
} upfPdSsObjT

type upfPdSsObjT is record
 handle : upfHandleT;
 current_state: upfPowerStateObjT;
end record;

upfPowerStateObjT

struct {
 upfHandleT handle;
 upfBooleanT is_active;
} upfPowerStateObjT

type upfPowerStateObjT is record
 handle: upfHandleT;
 is_active: upfBooleanT;
end record;

upfBooleanObjT

struct {
 upfHandleT handle;
 upfBooleanT current_value;
} upfBooleanObjT

type upfBooleanObjT is record
 handle: upfHandleT;
 current_value: upfBooleanT;
end record;

upfSupplyObjT

struct {
 upfHandleT handle;
 upfSupplyTypeT current_value;
} upfSupplyObjT

type upfSupplyObjT is record
 handle: upfHandleT;
 current_value: upfSupplyTypeT;
end record;

The mapping of native HDL representation types and information model objects is shown in Table 34.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

285

Table 34 —Information model objects with native HDL representation

Information model types Dynamic properties HDL type mapping

upfPowerDomainT current_state upfPdSsObjT

upfSupplySetT current_state upfPdSsObjT

upfCompositeDomainT current_state upfPdSsObjT

upfPstStateT is_active upfPowerStateObjT

upfPowerStateT is_active upfPowerStateObjT

upfAckPortT current_value upfBooleanObjT

upfExpressionT current_value upfBooleanObjT

upfLogicNetT current_value upfBooleanObjT

upfLogicPortT current_value upfBooleanObjT

upfSupplyNetT current_value upfSupplyObjT

upfSupplyPortT current_value upfSupplyObjT

NOTE—There are two types, upfSupplyObjT and upfSupplyTypeT defined in the UPF package that represent supply
nets/ports in UPF. An object of type upfSupplyObjT is a native HDL representation corresponding to a supply net/port
created in UPF. Whereas, if an object declared in the HDL scope is of type upfSupplyTypeT, then it represents the
supply net/port created directly in HDL. The object of upfSupplyTypeT only contains voltage and supply information.
Whereas, the object of upfSupplyObjT can contain additional properties as defined for upfSupplyNetT or
upfSupplyPortT type, when the mirroring relationship is established.

11.2.2.4 Enumerated types

The enumerated types in the information model are represented as corresponding enum types in HDL. The
typenames will be the same as the typename of enumerated types and also there will be direct mapping
between the enumerated literal in information model and HDL definition.

The access functions will return the position values of the enumerated literals and hence they need to be
converted to corresponding literal before they are used. See 11.2.3.2.3 upf_get_value_int for more details.

11.2.2.5 Class ID

The classes in the information model will be identified in HDL by the enumerated values defined in
upfClassIdE enumerated type.

Table 35 provides the mapping between information model classes and corresponding class id in HDL
type.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

286

Table 35 —Mapping between class name and class ID in HDL
upfClassIdE

S. no. Object/base class name Class name Class keyword
1 Root class upfBaseT UPF_BASE
2 Base class for named objects upfBaseNamedT UPF_BASE_NAMED
3 Base class for relationship objects upfBaseRelationshipT UPF_BASE_RELATIONSHIP
4 Base class for hdl objects upfBaseHdlT UPF_BASE_HDL
5 Base class for upf objects upfBaseUpfT UPF_BASE_UPF
6 Base class for objects having extents upfExtentClassT UPF_EXTENT_CLASS
7 Base class for hdl declarations upfHdlDeclT UPF_HDL_DECL
8 Base class for network upf objects upfNetworkClassT UPF_NETWORK_CLASS
9 Base class for state objects upfStateClassT UPF_STATE_CLASS
10 Base class for hdl net objects upfHdlNetClassT UPF_HDL_NET_CLASS
11 Base class for hdl port objects upfHdlPortClassT UPF_HDL_PORT_CLASS
12 Base class for upf net objects upfNetClassT UPF_NET_CLASS
13 Base class for upf port objects upfPortClassT UPF_PORT_CLASS
14 Base class for upf strategies upfStrategyT UPF_STRATEGY
15 Base class for upf boundary strategies upfBoundaryStrategyT UPF_BOUNDARY_STRATEGY
16 Ack port upfAckPortT UPF_ACK_PORT
17 Isolation strategy upfIsolationStrategyT UPF_ISOLATION_STRATEGY
18 Level-shifter strategy upfLevelShifterStrategyT UPF_LEVEL_SHIFTER_STRATEGY
19 Logic net upfLogicNetT UPF_LOGIC_NET
20 Logic port upfLogicPortT UPF_LOGIC_PORT
21 Object ref handles upfNamedRefT UPF_NAMED_REF
22 Power domain upfPowerDomainT UPF_POWER_DOMAIN
23 Power state upfPowerStateT UPF_POWER_STATE
24 PST upfPowerStateTableT UPF_POWER_STATE_TABLE
25 State transition upfPowerStateTransitionT UPF_POWER_STATE_TRANSITION
26 Switch state upfPowerSwitchStateT UPF_POWER_SWITCH_STATE
27 Power switch upfPowerSwitchT UPF_POWER_SWITCH
28 PST state upfPstStateT UPF_PST_STATE
29 Repeater strategy upfRepeaterStrategyT UPF_REPEATER_STRATEGY
30 Retention strategy upfRetentionStrategyT UPF_RETENTION_STRATEGY
31 Supply net upfSupplyNetT UPF_SUPPLY_NET
32 Supply net upfSupplyPortStateT UPF_SUPPLY_PORT_STATE
33 Supply port upfSupplyPortT UPF_SUPPLY_PORT
34 Supply sets upfSupplySetT UPF_SUPPLY_SET
35 HDL multi-bit slice upfHdlMultiBitSliceT UPF_HDL_MULTI_BIT_SLICE
36 HDL scalar net upfHdlNetBitT UPF_HDL_NET_BIT
37 HDL multi-bit net upfHdlNetMultiBitT UPF_HDL_NET_MULTI_BIT
38 HDL scalar port upfHdlPortBitT UPF_HDL_PORT_BIT
39 HDL multi-bit port upfHdlPortMultiBitT UPF_HDL_PORT_MULTI_BIT
40 HDL scope upfHdlScopeT UPF_HDL_SCOPE
41 UPF attributes upfAttributeT UPF_ATTRIBUTE
42 Cell information upfCellT UPF_CELL
43 Expressions upfExpressionT UPF_EXPRESSION
44 Extent object upfExtentT UPF_EXTENT
45 Sensitivity of controls upfSignalSenseT UPF_SIGNAL_SENSE
46 HDL object representing supply net value upfSupplyTypeT UPF_SUPPLY_TYPE
47 Composite domain upfCompositeDomainT UPF_COMPOSITE_DOMAIN
48 Basic Boolean property type upfBooleanT UPF_BOOLEAN
49 Basic string property type upfStringT UPF_STRING
50 Basic integer property type upfIntegerT UPF_INTEGER
51 Basic real property type upfRealT UPF_REAL

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

287

11.2.2.6 Property ID

Table 36 provides the mapping between the property names and property IDs in HDL type.

Table 36 —Mapping between property name and property ID in HDL

upfPropertyIdE
S.

no.
Property name Base class hierarchy Return type Property ID

1 upf_parent upfBaseNamedT upfBaseNamedT UPF_PARENT

2 upf_name upfBaseNamedT upfStringT UPF_NAME

3 upf_hdl_attributes upfBaseHdlT List of upfAttributeT UPF_HDL_
ATTRIBUTES

4 upf_extents upfBaseHdlT List of upfExtentT UPF_EXTENTS
5 upf_cell_info upfBaseHdlT upfCellT UPF_CELL_INFO

6 upf_creation_scope upfBaseUpfT upfBaseHdlT UPF_CREATION
_SCOPE

7 upf_line upfBaseUpfT upfIntegerT UPF_LINE

8 upf_file upfBaseUpfT upfStringT UPF_FILE
9 upf_effective

_extents
upfExtentClassT upfExtentT UPF_EFFECTIVE

_EXTENTS
10 upf_supply_

set_handles
upfExtentClassT List of upfSupplySetT UPF_SUPPLY_

SET_HANDLES
11 upf_lower_boundary upfPowerDomainT List of upfBaseHdlT UPF_LOWER_

BOUNDARY
12 upf_isolation_

strategies
upfPowerDomainT List of upfIsolationStrategyT UPF_ISOLATION

_STRATEGIES
13 upf_level_shifter_

strategies
upfPowerDomainT List of

upfLevelShifterStrategyT
UPF_LEVEL_SHIFTER
_STRATEGIES

14 upf_pd_states upfPowerDomainT List of upfPowerStateT UPF_PD_STATES

15 upf_pd_state_
transitions

upfPowerDomainT List of
upfPowerStateTransitionT

UPF_PD_STATE_
TRANSITIONS

16 upf_subdomains upfCompositeDomainT List of upfBaseUpfT UPF_SUBDOMAINS

17 upf_repeater_
strategies

upfPowerDomainT List of upfRepeaterStrategyT UPF_REPEATER_
STRATEGIES

18 upf_retention_
strategies

upfPowerDomainT List of upfRetentionStrategyT UPF_RETENTION_
STRATEGIES

19 upf_current_state upfPowerDomainT upfPowerStateT UPF_CURRENT_STATE

20 upf_functions upfSupplySetT List of upfNamedRefT UPF_FUNCTIONS
21 upf_ss_states upfSupplySetT List of upfPowerStateT UPF_SS_STATES

22 upf_ss_transitions upfSupplySetT List of
upfPowerStateTransitionT

UPF_SS_
TRANSITIONS

23 upf_equivalent_sets upfSupplySetT List of upfSupplySetT UPF_EQUIVALENT
_SETS

24 upf_logic_refs upfStrategyT List of upfNamedRefT UPF_LOGIC_REFS

25 upf_is_no_retention upfRetentionStrategyT upfBooleanT UPF_IS_NO_RETENTION

26 upf_is_use_retention_
as_primary

upfRetentionStrategyT upfBooleanT UPF_IS_USE_RETENTION
_AS_PRIMARY

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

288

Table 36—Mapping between property name and property ID in HDL (continued)

27 upf_restore_
condition

upfRetentionStrategyT upfExpressionT UPF_RESTORE_
CONDITION

28 upf_retention_
condition

upfRetentionStrategyT upfExpressionT UPF_RETENTION_
CONDITION

29 upf_save_condition upfRetentionStrategyT upfExpressionT UPF_SAVE_CONDITION

30 upf_retention_
parameters

upfRetentionStrategyT upfRetentionParamE UPF_RETENTION_
PARAMETERS

31 upf_restore_signal upfRetentionStrategyT upfSignalSenseT UPF_RESTORE_SIGNAL
32 upf_save_signal upfRetentionStrategyT upfSignalSenseT UPF_SAVE_SIGNAL

33 upf_sink_filter upfBoundaryStrategyT upfAbstractObjT UPF_SINK_FILTER

34 upf_source_filter upfBoundaryStrategyT upfAbstractObjT UPF_SOURCE_FILTER

35 upf_is_use_
equivalence

upfBoundaryStrategyT upfBooleanT UPF_IS_USE_
EQUIVALENCE

36 upf_location upfBoundaryStrategyT upfLocationE UPF_LOCATION
37 upf_applies_to upfBoundaryStrategyT upfPortDirE UPF_APPLIES_TO

38 upf_name_prefix upfBoundaryStrategyT upfStringT UPF_NAME_PREFIX

39 upf_name_suffix upfBoundaryStrategyT upfStringT UPF_NAME_SUFFIX

40 upf_clamp_values upfIsolationStrategyT List of upfIsolationClampE UPF_CLAMP_VALUES
41 upf_isolation_

controls
upfIsolationStrategyT List of upfSignalSenseT UPF_ISOLATION_

CONTROLS
42 upf_user_clamp_

values
upfIsolationStrategyT List of upfStringT UPF_USER_CLAMP

_VALUES
43 upf_is_diff_supply

_only
upfIsolationStrategyT upfBooleanT UPF_IS_DIFF_SUPPLY

_ONLY
44 upf_is_force_

isolation
upfIsolationStrategyT upfBooleanT UPF_IS_FORCE_

ISOLATION
45 upf_is_no_isolation upfIsolationStrategyT upfBooleanT UPF_IS_NO_ISOLATION

46 upf_is_force_shift upfLevelShifterStrategyT upfBooleanT UPF_IS_FORCE_SHIFT

47 upf_is_no_shift upfLevelShifterStrategyT upfBooleanT UPF_IS_NO_SHIFT

48 upf_level_shift_rule upfLevelShifterStrategyT upfLevelShifterRuleE UPF_LEVEL_SHIFT_RULE
49 upf_threshold_value upfLevelShifterStrategyT upfRealT UPF_THRESHOLD_

VALUE
50 upf_is_illegal upfStateClassT upfBooleanT UPF_IS_ILLEGAL

51 upf_is_active upfPowerStateT upfBooleanT UPF_IS_ACTIVE

52 upf_logic_expr upfPowerStateT upfExpressionT UPF_LOGIC_EXPR
53 upf_supply_expr upfPowerStateT upfExpressionT UPF_SUPPLY_EXPR

54 upf_simstate upfPowerStateT upfSimstateE UPF_SIMSTATE

55 upf_pst_header upfPowerStateTableT List of upfBaseNamedT UPF_PST_HEADER

56 upf_pst_states upfPowerStateTableT List of upfPstStateT UPF_PST_STATES
57 upf_from_states upfPowerStateTransitionT List of upfPowerStateT UPF_FROM_STATES

58 upf_to_states upfPowerStateTransitionT List of upfPowerStateT UPF_TO_STATES

59 upf_switch_expr upfPowerSwitchStateT upfExpressionT UPF_SWITCH_EXPR

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

289

Table 36—Mapping between property name and property ID in HDL (continued)

60 upf_input_
supply_port

upfPowerSwitchStateT upfSupplyPortT UPF_INPUT_
SUPPLY_PORT

61 upf_switch_
output_state

upfPowerSwitchStateT upfSupplyStateE UPF_SWITCH_
OUTPUT_STATE

62 upf_supply_states upfPstStateT List of upfSupplyPortStateT UPF_SUPPLY_STATES

63 upf_volt_max upfSupplyPortStateT upfRealT UPF_VOLT_MAX
64 upf_volt_min upfSupplyPortStateT upfRealT UPF_VOLT_MIN

65 upf_volt_nom upfSupplyPortStateT upfRealT UPF_VOLT_NOM

66 upf_supply_state upfSupplyPortStateT upfSupplyStateE UPF_SUPPLY_STATE

67 upf_volt_kind upfSupplyPortStateT upfVoltKindE UPF_VOLT_KIND
68 upf_network_

attributes
upfNetworkClassT List of upfAttributeT UPF_NETWORK_

ATTRIBUTES
69 upf_hdl_

implementation
upfNetworkClassT upfHdlDeclT UPF_HDL_

IMPLEMENTATION
70 upf_root_driver upfNetworkClassT upfNetworkClassT UPF_ROOT_DRIVER

71 upf_fanin_conn upfNetClassT List of upfPortClassT UPF_FANIN_CONN

72 upf_fanout_conn upfNetClassT List of upfPortClassT UPF_FANOUT_CONN

73 upf_hiconn upfPortClassT List of upfNetworkClassT UPF_HICONN
74 upf_loconn upfPortClassT List of upfNetworkClassT UPF_LOCONN

75 upf_port_dir upfPortClassT upfPortDirE UPF_PORT_DIR

76 upf_ack_delay upfAckPortT upfStringT UPF_ACK_DELAY

77 upf_ref_object upfNamedRefT upfBaseNamedT UPF_REF_OBJECT
78 upf_ref_kind upfNamedRefT upfNamedRefKindE UPF_REF_KIND

79 upf_ack_ports upfPowerSwitchT List of upfAckPortT UPF_ACK_PORTS

80 upf_control_ports upfPowerSwitchT List of upfLogicPortT UPF_CONTROL_PORTS

81 upf_sw_states upfPowerSwitchT List of upfPowerSwitchStateT UPF_SW_STATES
82 upf_input_supply

_ports
upfPowerSwitchT List of upfSupplyPortT UPF_INPUT_SUPPLY

_PORTS
83 upf_output_supply

_port
upfPowerSwitchT upfSupplyPortT UPF_OUTPUT_SUPPLY

_PORT
84 upf_resolve_type upfSupplyNetT upfResolveE UPF_RESOLVE_TYPE

85 upf_sp_states upfSupplyPortT List of upfPortStateT UPF_SP_STATES

86 upf_slice_bits upfHdlMultiBitSliceT List of upfHdlNetBitT UPF_SLICE_BITS

87 upf_lsb upfHdlMultiBitSliceT upfIntegerT UPF_LSB
88 upf_msb upfHdlMultiBitSliceT upfIntegerT UPF_MSB

89 upf_normalized_bits upfHdlPortMultiBitT List of upfHdlPortBitT UPF_NORMALIZED_BITS

90 upf_hdl_width upfHdlPortMultiBitT upfIntegerT UPF_HDL_WIDTH
91 upf_items upfHdlScopeT List of upfBaseUpfT UPF_ITEMS

92 upf_hdl_items upfHdlScopeT List of upfHdlDeclT UPF_HDL_ITEMS

93 upf_hdl_ports upfHdlScopeT List of upfHdlDeclT UPF_HDL_PORTS

94 upf_child_instances upfHdlScopeT List of upfHdlScopeT UPF_CHILD_INSTANCES
95 upf_attr_name upfAttributeT upfStringT UPF_ATTR_NAME

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

290

Table 36—Mapping between property name and property ID in HDL (continued)

96 upf_attr_value upfAttributeT upfStringT UPF_ATTR_VALUE

97 upf_source_extents upfCellT List of upfExtentT UPF_SOURCE_EXTENTS
98 upf_cell_kind upfCellT upfCellKindE UPF_CELL_KIND

99 upf_cell_origin upfCellT upfCellOriginE UPF_CELL_ORIGIN

100 upf_hdl_cell_kind upfCellT upfHdlCellKindE UPF_HDL_CELL_KIND

101 upf_model_name upfCellT upfStringT UPF_MODEL_NAME
102 upf_expr_operands upfExpressionT List of upfBaseNamedT UPF_EXPR_OPERANDS

103 upf_current_value upfExpressionT upfBooleanT UPF_CURRENT_VALUE

104 upf_expr_string upfExpressionT upfStringT UPF_EXPR_STRING

105 upf_cells upfExtentT List of upfBaseHdlT UPF_CELLS
106 upf_hdl_element upfExtentT upfBaseHdlT UPF_HDL_ELEMENT

107 upf_object upfExtentT upfExtentClassT UPF_OBJECT

108 upf_control_signal upfSignalSenseT upfBaseNamedT UPF_CONTROL_SIGNAL

109 upf_signal_sensitivity upfSignalSenseT upfSignalSenseKindE UPF_SIGNAL_SENSITIVITY
110 upf_voltage upfSupplyTypeT upfIntegerT UPF_VOLTAGE

111 upf_state upfSupplyTypeT upfSupplyStateE UPF_STATE

112 upf_normalized
_idx

upfHdlPortBitT,
upfHdlNetBitT

upfIntegerT UPF_NORMALIZED
_IDX

113 upf_smallest_
atomic_slice

upfHdlPortBitT,
upfHdlNetBitT

upfHdlMultiBitSliceT UPF_SMALLEST_
ATOMIC_SLICE

114 upf_upper_boundary upfPowerDomainT upfHdlScopeT UPF_UPPER_BOUNDARY

115 upf_next_extent upfExtentT upfExtentT UPF_NEXT_EXTENT

11.2.3 HDL access functions

11.2.3.1 Accessing objects and properties

11.2.3.1.1 upf_get_handle_by_name

Purpose Get a handle to a given object from the pathname

Syntax upfHandleT upf_get_handle_by_name(upfStringT pathname, upfHandleT
relative_to = null);

Arguments
pathname A string representing handle ID for an object

relative_to An optional handle to the object from which the relative pathname is given

Return value Returns the handle to the specified property or null if not found

The function upf_get_handle_by_name returns the handle to the object in the information model from the
given handle id. The handle id is defined as per 10.3.2.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

291

The pathname can also be a relative pathname when relative_to is passed with a valid handle. In that case,
the hierarchical path ID is constructed from the hierarchical path ID of "relative_to" suffixed with
pathname string along with appropriate separator character (‘/’, ‘.’) in between.

It shall be an error if:

 pathname is not a valid handle ID

 relative_to is not a valid UPF handle

Syntax examples

Example 1: Get handle to a power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 ...
end

Example 2: Get handle to a strategy

SV code

initial begin
 upfHandleT scope = upf_get_handle_by_name("/top/dut_i");
 upfHandleT iso = upf_get_handle_by_name("pd.iso", scope);
 ...
end

11.2.3.1.2 upf_query_object_properties

Purpose Query properties on a given object

Syntax upfHandleT upf_query_object_properties(upfHandleT object_handle,
upfPropertyIdE attr);

Arguments
object_handle UPF handle of the given object

attr The enumerated value corresponding to the given property on the object

Return value Returns the handle to the specified property or null if not found

The function upf_query_object_properties returns the handle to the property corresponding to the
enumerated value passed in attr.

The value returned from this function can be one of the following

 handle to a property of basic type

 handle to an object

 handle to the iterator for list of objects

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

292

For basic properties a handle to the property value is returned. The exact value is then accessed from the
handle using immediate access functions defined in 11.2.3.2 and 11.2.3.3.

For handle to an iterator, the appropriate iterator access functions need to be used to access the individual
elements of the list.

It shall be an error if:

 object_handle is not a valid object

 attr is not a valid property on the given object

 attr is not a valid value defined in Table 36.

NOTE—The function upf_query_object_properties can also return the handle to dynamic properties present on the
object.

Syntax examples

Example 1: Get simple-name of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT name = upf_query_object_properties(pd, upf_name);
 $display("PD Name: %s", upf_get_value_str(name));
end

 Output

 PD Name: pd

Example 2: Print full hier-path of creation scope of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT scope = upf_query_object_properties(pd,
 upf_creation_scope);
 $display("Creation Scope: %s", upf_query_object_pathname(name));
end

 Output

 Creation Scope: /top/dut_i

Example 3: Print isolation strategy name from power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT iso_list = upf_query_object_properties(pd,
 upf_isolation_strategies);

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

293

 upfHandleT first_iso = upf_iter_get_next(iso_list);
 if (first_iso) begin
 upfHandleT name = upf_query_object_properties(first_iso,
 upf_name);
 $display("Iso Name: %s", upf_get_value_str(name));
 end
end

 Output

 Iso Name: iso

Example 4: Get current value of logic net

SV code

initial begin
 upfHandleT lnet = upf_get_handle_by_name("/top/dut_i/logic_net");
 upfHandleT curr_value = upf_query_object_properties(lnet,
 UPF_CURRENT_VALUE);
 if (upf_handle_in_class(curr_value, UPF_BOOLEAN)) begin
 upfBooleanT val = upf_get_value_int(curr_value);
 ...
 end
end

 Output

 Iso Name: iso

11.2.3.1.3 upf_iter_get_next

Purpose Get the next handle from the iterator

Syntax upfHandleT upf_iter_get_next(upfHandleT iter_handle);

Arguments iter_handle Handle to the iterator

Return value Returns the handle to the next element in the iterator or 0 if no element is present

The upf_iter_get_next function returns the handle to the next element in the iterator.

It shall be an error if iter_handle is not a valid iterator handle.

Syntax examples

Example 1: Print function names of the supply set

SV code

initial begin
 upfHandleT ss = upf_get_handle_by_name("/top/dut_i/pd.primary");
 upfHandleT func_list = upf_query_object_properties(pd,
 upf_functions);

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

294

 upfHandleT func = upf_iter_get_next(func_list);
 while (func != 0) begin
 upfHandleT name = upf_query_object_properties(func,
 upf_name);
 $display("Function Name: %s", upf_get_value_str(name));
 func = upf_iter_get_next(func_list);
 end
end

 Output

 Function Name: power
 Function name: ground

11.2.3.2 Immediate read access

11.2.3.2.1 Overview

All objects in the information model allow read access to the properties including the dynamic properties.
The immediate read access returns the current value of the dynamic property at specific time when read
access functions are called.

Table 37 provides the mapping of basic properties and the read access routine to get the value.

Table 37 —Immediate read access for basic properties

Type name SV VHDL

upfStringT upf_get_value_str() upf_get_value_str()

upfIntegerT upf_get_value_int() upf_get_value_int()

upfBooleanT upf_get_value_int() upf_get_value_int()

All Enumerated Types upf_get_value_int() upf_get_value_int()

upfRealT upf_get_value_real() upf_get_value_real()

11.2.3.2.2 upf_get_value_str

Purpose Get the string value from property handle

Syntax upfStringT upf_get_value_str(upfHandleT attr);

Arguments attr Handle to the property

Return value Returns string value of the given property handle or empty string if error

The upf_get_value_str function returns the string value of the given property handle.

It shall be an error if attr is not a valid property handle of upfStringT type.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

295

Syntax examples

Example 1: Get simple-name of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT name = upf_query_object_properties(pd, upf_name);
 $display("PD Name: %s", upf_get_value_str(name));
end

 Output

 PD Name: pd

11.2.3.2.3 upf_get_value_int

Purpose Get the integer value from property handle

Syntax upfIntegerT upf_get_value_int(upfHandleT attr);

Arguments attr Handle to the property

Return value Returns integer value of the given property handle

The upf_get_value_int function returns the integer value of the given property handle.

It shall be an error if attr is not a valid property handle of upfIntegerT or equivalent enumerated types.

NOTE—The function upf_get_value_int() is used to access values of enumerated and Boolean types. In case of VHDL
language, the return value of the function needs to be converted the appropriate enumerated/Boolean type to avoid
syntax errors.

Syntax examples

Example 1: Get UPF line number of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT file_line = upf_query_object_properties(pd, upf_line);
 $display("UPF Line: %d", upf_get_value_int(file_line));
end

 Output

 UPF Line: 22

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

296

Example 2: Get level-shifter rule

VHDL code

process
 variable ls: upfHandleT;
 variable rule_attr: upfHandleT;
 variable rule: upfLevelShifterRuleE;
begin
 ls := upf_get_handle_by_name("/top/dut_i/pd.ls");
 rule_attr := upf_query_object_properties(pd, upf_level_shift_rule);
 rule := upfLevelShifterRuleE’val(upf_get_value_int(rule_attr));
 ...
end

11.2.3.2.4 upf_get_value_real

Purpose Get the real value from property handle

Syntax upfRealT upf_get_value_real(upfHandleT attr);

Arguments attr Handle to the property

Return value Returns real value of the given property handle

The upf_get_value_real function returns the real value of the given property handle.

It shall be an error if property is not a valid property handle of upfRealT.

Syntax examples

Example 1: Get threshold value from the level-shifter strategy

SV code
initial begin
 upfHandleT ls = upf_get_handle_by_name("/top/dut_i/pd.ls");
 upfHandleT threshold_value = upf_query_object_properties(ls,
 upf_threshold_value);
 $display("Threshold Value : %f",
 upf_get_value_real(threshold_value));
end

 Output

 Threshold Value: 1.000000

11.2.3.2.5 upf_get_label_upfSupplyTypeT

Purpose Get the value of supply net type from the property handle

Syntax upfSupplyTypeT upf_get_label_upfSupplyTypeT(upfHandleT attr);

Arguments attr Handle to the property

Return value Returns upfSupplyTypeT for given property handle

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

297

The upf_get_value_upfSupplyTypeT function returns the label of type upfSupplyTypeT value on the given
property handle.

It shall be an error if property is not a valid property handle of upfSupplyTypeT.

Syntax examples

Example 1: Get value of a supply

SV code
upfHandleT snetHandle;
upfHandleT snetValHandle;
upfSupplyTypeT snet;
initial begin
 snetHandle = upf_get_handle_by_name("/top/dut_i/VDD@upfSupplyNetT");
 snetValHandle = upf_query_object_properties(snetHandle,
 UPF_CURRENT_VALUE);
 if (upf_handle_in_class(snetValHandle, UPF_SUPPLY_TYPE)) begin
 snet = upf_get_label_upfSupplyTypeT(snetValHandle);
 $display("The state of supply: %s", snet.state.name);
 end
end

 Output

 The state of supply: FULL_ON

11.2.3.2.6 get_supply_value

Purpose Get the supply value of a net

Syntax upfSupplyTypeT get_supply_value(string name);

Arguments name A string representing pathname of supply net

Return value Returns upfSupplyTypeT for given property handle

The get_supply_value() returns the aggregate supply net value of the specified supply port or supply net.

It shall be an error if name is not a UPF created supply net/port or an HDL object of upfSupplyTypeT or
upfSupplyObjT.

The following is the description of get_supply_value function based on basic access functions.

SV code

function automatic upfSupplyTypeT get_supply_value
 (string name); // A string representing
 // pathname of supply net
 upfHandleT hSupplyNet;
 upfHandleT hSupplyNetValue;

 hSupplyNet = upf_get_handle_by_name(name);
 hSupplyNetValue = upf_query_object_properties(hSupplyNet,

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

298

 UPF_CURRENT_VALUE);

 // Returns upfSupplyTypeT for given property handle.
 return upf_get_label_upfSupplyTypeT(hSupplyNetValue);
 endfunction:get_supply_value

Syntax examples

Example 1: Reading the supply value

SV code
upfSupplyTypeT vdd_value;
...
initial begin
 vdd_value = get_supply_value("/top/dut_i/vdd");
 ...
 vdd_value = get_supply_value("vdd_local");
 ...
 vdd_value = get_supply_value("vdd_obj");
 ...
end

11.2.3.2.7 get_supply_voltage

Purpose Get the supply voltage of a net

Syntax upfRealT get_supply_voltage(upfSupplyTypeT arg);

Arguments arg An HDL object of upfSupplyTypeT

Return value Returns supply voltage of given upfSupplyTypeT

The get_supply_voltage returns the floating-point representation of the voltage value of the specified
supply net value in Volts.

The following is the description of get_supply_voltage function based on basic access functions

SV code

function upfRealT get_supply_voltage(upfSupplyTypeT arg);
 return upf_convert_int_uvolts_to_real_volts(arg.voltage);
endfunction

Syntax examples

Example 1: Reading the supply value

SV code

upfRealT vdd_voltage;
upfSupplyTypeT vdd_local;
upfSupplyObjT vdd_obj;
...

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

299

initial begin
 vdd_voltage = get_supply_voltage(get_supply_value("/top/dut_i/vdd"));
 ...
 vdd_voltage = get_supply_voltage(vdd_local);
 ...
 vdd_voltage = get_supply_voltage(vdd_obj.current_value);
 ...
end

11.2.3.2.8 get_supply_on_state

Purpose Get the supply FULL_ON state

Syntax upfBooleanT get_supply_on_state(upfSupplyTypeT arg);

Arguments arg An object of upfSupplyTypeT

Return value Returns 1 if the upfSupplyTypeT is FULL_ON

The get_supply_on_state returns the on/off state of the specified supply net. It returns 1 when supply net
state is FULL_ON or PARTIAL_ON and set_partial_on_translation FULL_ON is called. It returns 0 in
other cases.

The following is the description of get_supply_on_state function based on basic access functions.

SV code

 function automatic upfBooleanT get_supply_on_state
 (supply_net_type arg); //An object of upfSupplyTypeT
 upfBooleanT state = 0;

 //The get_supply_on_state returns the on/off state of the specified
 //supply net. It returns 1 when supply net state is FULL_ON or
 //PARTIAL_ON and set_partial_on_translation FULL_ON is called. It
 //returns 0 in other cases.

 // The following is the equation/Logic to return the supply_on_state
 // value for this function call. However, this function
 // relies on the value of "partial_on_translation" set from
 // upf commands. The variable partial_on_translation must be
 // extracted from the simulator in some form or another.
 // This call to "$partial_on_translation@ is just a model and may
 // not be the final implementation of the simulator

 if ((arg.state === FULL_ON) ||
 ((arg.state === PARTIAL_ON) &&
 ($partial_on_translation === FULL_ON)))
 state = 1'b1;
 else
 state = 1'b0;

 return (state);
 endfunction:get_supply_on_state

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

300

Syntax examples

Example 1: Reading the supply value

SV code

bit is_on;
upfSupplyTypeT vdd_local;
upfSupplyObjT vdd_obj;
...
initial begin
 is_on = get_supply_on_state(get_supply_value("/top/dut_i/vdd"));
 ...
 is_on = get_supply_on_state(vdd_local);
 ...
 is_on = get_supply_on_state(vdd_obj.current_value);
 ...
end

11.2.3.2.9 get_supply_state

Purpose Get the state from a supply net

Syntax upfSupplyStateE get_supply_ state(upfSupplyTypeT arg);

Arguments arg An object of upfSupplyTypeT

Return value Returns state of the supply net

The get_supply_state returns the full/partial on/off state of the specified supply net.

The following is the description of get_supply_state function based on basic access functions.

SV code

 function automatic upfSupplyStateE get_supply_state
 (upfSupplyTypeT arg); // An object of upfSupplyTypeT

 // Return Value: Returns state of the supply net
 return (arg.state);
 endfunction:get_supply_state

Syntax examples

Example 1: Reading the supply value

SV code

state net_state;
upfSupplyTypeT vdd_local;
upfSupplyObjT vdd_obj;
...
initial begin
 snet_state = get_supply_state(get_supply_value("/top/dut_i/vdd"));
 ...
 snet_state = get_supply_state(vdd_local);
 ...

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

301

 snet_state = get_supply_state(vdd_obj.current_value);
 ...
end

11.2.3.3 Immediate write access

The following objects in the information model allow write access to the dynamic properties defined on
them.

a) upfPowerStateT

b) upfLogicNetT

c) upfLogicPortT

d) upfSupplyNetT

e) upfSupplyPortT

The write access is allowed only in special circumstances when the object does not have any existing driver.

The write access to the upf_is_active property of an object of upfPowerStateT type is allowed when the
object is a Deferred power state (see 4.7.3).

The write access to upfLogicNetT and upfSupplyNetT is allowed when it has no driver associated with it.

The write access to upfLogicPortT/upfSupplyPortT is allowed when it is a root driver.

The immediate write access results in the value being transferred immediately when the function is called
and the value remains on the object until another call to write is made. Since the object does not have any
other driver associated with it, it maintains the value until it is changed by another call.

Table 38 provides the mapping between basic property types and corresponding hdl function to write the value.

Table 38 —Immediate write access for basic properties

Type name SV VHDL

upfStringT - -

upfIntegerT upf_set_value_int() upf_set_value_int()

upfBooleanT upf_set_value_int() upf_set_value_int()

All Enumerated Types upf_set_value_int() upf_set_value_int()

upfRealT - -

upfSupplyTypeT upf_set_value_upfSupplyTypeT() upf_set_value_upfSupplyTypeT()

NOTE—upfStringT and upfRealT types do not have write access as there aren’t any dynamic properties of these types. In order to set
voltage on a supply type object, the real value needs to be converted to integer in micro-volts and then set using upf_set_value_int().
See 11.2.3.3.1 for more details.

It shall be an error when:

 Write is performed on any other property than the dynamic properties.

 Write is performed on the object and there is an existing driver.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

302

11.2.3.3.1 upf_set_value_int

Purpose Sets the integer value on the dynamic property

Syntax upfBooleanT upf_set_value_int(upfHandleT attr, upfIntegerT value);

Arguments
attr Handle to the property

value Value

Return value Returns 1 on success, 0 on failure

The upf_set_value_int() provides an immediate write access to integer type dynamic properties.

It shall be an error when:

 attr is a null handle.

 attr is not a valid dynamic property of upfIntegerT type.

Syntax examples

Example 1: Change the state of root supply port and logic port acting as isolation control during
simulation

SV code

initial begin
 upfHandleT vdd = upf_get_handle_by_name("/top/dut_i/vdd");
 upfHandleT supplyValue = upf_query_object_properties(vdd,
 UPF_CURRENT_VALUE);
 upfHandleT state = upf_query_object_properties(supplyValue,
 upf_state);
 upf_set_value_int(state, (upfIntegerT)FULL_ON);
 upfHandleT iso_ctrl = upf_get_handle_by_name("/top/iso_logic");
 upfHandleT ctrl_value = upf_get_object_properties(iso_ctrl,
 UPF_CURRENT_VALUE);
 (void)upf_set_value_int(ctrl_value, 0);
 #10 (void)upf_set_value_int(ctrl_value, 1);
 #10 (void)upf_set_value_int(ctrl_value, 0);
end

11.2.3.3.2 upf_set_value_upfSupplyTypeT

Purpose Sets the integer value on the dynamic property

Syntax upfBooleanT upf_set_value_upfSupplyTypeT(upfHandleT attr,
upfSupplyTypeT value);

Arguments
attr Handle to the property

value Value of type upfSupplyTypeT

Return value Returns 1 on success, 0 on failure

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

303

The upf_set_value_upfSupplyTypeT() provides an immediate write access to the current value of a supply
type object.

It shall be an error when:

 attr is a null handle.

 attr is not a valid dynamic property of upfSupplyTypeT type.

Syntax examples

Example 1: Change the value of UPF root supply port from a supply net declared in testbench

SV code

initial begin
 upfHandleT vdd = upf_get_handle_by_name("/top/dut_i/vdd");
 upfHandleT supplyValue = upf_query_object_properties(vdd,
 UPF_CURRENT_VALUE);
 upf_set_value_upfSupplyTypeT(supplyValue,
 get_supply_value("vddlocal");
end

11.2.3.3.3 supply_on

Purpose Change state of supply to FULL_ON and specify voltage

Syntax upfBooleanT supply_on(string supply_name, real value = 1.0);

Arguments
supply_name A string representing pathname of the root supply

value Voltage value in real

Return value Returns 1 on success, 0 on failure

The supply_on function immediately changes the current value of supply type object to FULL_ON and
specified voltage by effecting the changes to root supply driver of the given supply type object.

It shall be an error if:

 supply_name is not a UPF created supply net/port or an HDL object of upfSupplyTypeT or
upfSupplyObjT.

 supply_name is a resolved supply net, output supply port of a Power switch or continuously driven
from HDL source.

The following is the description of supply_on function based on basic access functions.

SV code

function automatic upfBooleanT supply_on
 (upfStringT supply_name, // A string representing pathname

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

304

 // of the root supply
 upfRealT value = 1.0); // Voltage value in real

 upfBooleanT bStatus = 0;
 upfHandleT hState;
 upfHandleT hSupplyValue;
 upfHandleT hSupply;
 upfHandleT hVoltage;
 upfHandleT hRootSupply;

 hSupply = upf_get_handle_by_name(supply_name);
 if (hSupply === null) return 0;

 hRootSupply = upf_query_object_properties(hSupply,
 UPF_ROOT_DRIVER);
 if (hRootSupply != null)
 hSupply = hRootSupply;

 hSupplyValue = upf_query_object_properties(hSupply,
 UPF_CURRENT_VALUE);
 if (hSupplyValue === null) return 0;

 hVoltage = upf_query_object_properties(hSupplyValue,
 UPF_VOLTAGE);
 if (hVoltage === null) return 0;

 bStatus = upf_set_value_int(hVoltage,
 upf_convert_real_volts_to_int_uvolts(value));
 if (!bStatus) return 0;

 hState = upf_query_object_properties(hSupplyValue, UPF_STATE);

 bStatus = upf_set_value_int(hState, FULL_ON);
 return bStatus;
 endfunction:supply_on

Syntax examples

Example 1: Changing supply voltages

SV code

upfSupplyObjT vdd_local;
upfSupplyTypeT vdd_value;
initial begin
 status = supply_on("/top/dut_i/vdd", 1.2);
 ...
 status = supply_on("vdd_local", 0.9);
 ...
 status = supply_on("vdd_value", 0.9);
 ...
end

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

305

11.2.3.3.4 supply_off

Purpose Change state of supply to OFF

Syntax upfBooleanT supply_off(upfStringT supply_name);

Arguments supply_name A hierarchical path ID for a root supply

Return value Returns 1 on success, 0 on failure

The supply_off function immediately changes the state of current value of supply type object to OFF and
voltage to 0.

It shall be an error if:

 supply_name is not a UPF created supply net/port or an HDL object of upfSupplyTypeT or
upfSupplyObjT.

 supply_name is a resolved supply net, output supply port of a Power switch or continuously driven
from HDL source.

The following is the description of supply_off function based on basic access functions.

SV code

function automatic upfBooleanT supply_off
 (upfStringT supply_nzme); // A hierarchical path ID for a root supply.

 upfBooleanT bStatus = 0;
 upfHandleT hState;
 upfHandleT hSupplyValue;
 upfHandleT hSupply;
 upfHandleT hVoltage;
 upfHandleT hRootSupply;

 hSupply = upf_get_handle_by_name(supply_name);
 if (hSupply === null) return 0;

 hRootSupply = upf_query_object_properties(hSupply,
 UPF_ROOT_DRIVER);
 if (hRootSupply != null)
 hSupply = hRootSupply;

 hSupplyValue = upf_query_object_properties(hSupply,
 UPF_CURRENT_VALUE);
 if (hSupplyValue === null) return 0;

 hVoltage = upf_query_object_properties(hSupplyValue,
 UPF_VOLTAGE);
 if (hVoltage === null) return 0;

 bStatus = upf_set_value_int(hVoltage, 0);
 if (!bStatus) return 0;

 hState = upf_query_object_properties(hSupplyValue, UPF_STATE);
 bStatus = upf_set_value_int(hState, OFF);

 return bStatus;
endfunction:supply_off

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

306

Syntax examples

Example 1: Changing supply voltages

SV code
upfSupplyObjT vdd_local;
upfSupplyTypeT vdd_value;
initial begin
 status = supply_off("/top/dut_i/vdd");
 ...
 status = supply_off("vdd_local");
 ...
 status = supply_off("vdd_value");
 ...
end

11.2.3.3.5 supply_partial_on

Purpose Change state of supply to PARTIAL_ON and specify voltage

Syntax upfBooleanT supply_partial_on(upfStringT supply_name, upfRealT value
= 1.0);

Arguments
supply_name A string representing pathname of the root supply

Value Voltage value in real

Return value Returns 1 on success, 0 on failure

The supply_partial_on function immediately changes the current value of supply type object to
PARTIAL_ON and specified voltage.

It shall be an error if:

 supply_name is not a UPF created supply net/port or an HDL object of upfSupplyTypeT or
upfSupplyObjT.

 supply_name is a resolved supply net, output supply port of a Power switch or continuously driven
from HDL source.

The following is the description of supply_partial_on function based on basic access functions.

SV code

function automatic upfBooleanT supply_partial_on
 (upfStringT supply_name, // A string representing pathname of the root
supply
 upfRealT value = 1.0); // Voltage value in real

 upfBooleanT bStatus = 0;
 upfHandleT hState;
 upfHandleT hSupplyValue;
 upfHandleT hSupply;
 upfHandleT hVoltage;
 upfHandleT hRootSupply;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

307

 hSupply = upf_get_handle_by_name(supply_name);
 if (hSupply === null) return 0;

 hRootSupply = upf_query_object_properties(hSupply,
 UPF_ROOT_DRIVER);
 if (hRootSupply != null)
 hSupply = hRootSupply;

 hSupplyValue = upf_query_object_properties(hSupply,
 UPF_CURRENT_VALUE);
 if (hSupplyValue === null) return 0;

 hVoltage = upf_query_object_properties(hSupplyValue,
 UPF_VOLTAGE);
 if (hVoltage === null) return 0;

 bStatus = upf_set_value_int(hVoltage,
 upf_convert_real_volts_to_int_uvolts(value));
 if (!bStatus) return 0;

 hState = upf_query_object_properties(hSupplyValue, UPF_STATE);
 bStatus = upf_set_value_int(hState, PARTIAL_ON);

 return bStatus;
 endfunction:supply_partial_on

Syntax examples

Example 1: Changing supply voltages

SV code
upfSupplyObjT vdd_local;
upfSupplyTypeT vdd_value;
initial begin
 status = supply_partial_on("/top/dut_i/vdd", 1.2);
 ...
 status = supply_partial_on("vdd_local", 0.9);
 ...
 status = supply_partial_on("vdd_value", 0.9);
 ...
end

11.2.3.3.6 set_supply_state

Purpose Appy supply state to a given named object

Syntax upfBooleanT set_supply_state (upfStringT object_name,
upfSupplyStateE supply_state);

Arguments
object_name The hierarchical path ID of a supply port, net or supply set function

supply_state Enumerated value representing the state of the supply net

Return value Returns 1 on success, 0 on failure

The set_supply_state function applies a supply state to a given named supply net object.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

308

It shall be an error if:

 object_name is not a valid supply port, net, or supply set function name.

 Different values are assigned to the supply object in the same cycle.

The following is the description of set_supply_state function based on basic access functions.

SV code

 //////////////////////////////////////
 // Purpose: Assign the specified supply state to this object.
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT set_supply_state
 (upfStringT object_name, // the hierarchical path ID of a supply port,
 // net, or supply set function
 upfSupplyStateE supply_state);// one of OFF, PARTIAL_ON, FULL_ON,
 // UNDETERMINED

 // It shall be an error if :
 // 1) object_name is not a valid supply port, net, or
 // supply set function name
 // 2) different values are assigned to the supply object
 // in the same cycle
 upfBooleanT bStatus = 0;
 upfHandleT hState;
 upfHandleT hSupplyValue;
 upfHandleT hSupply;
 upfHandleT hRootSupply;

 hSupply = upf_get_handle_by_name(object_name);
 if (hSupply == null) return 0;

 hRootSupply = upf_query_object_properties(hSupply,
 UPF_ROOT_DRIVER);
 if (hRootSupply != null)
 hSupply = hRootSupply;

 hSupplyValue = upf_query_object_properties(hSupply,
 UPF_CURRENT_VALUE);
 if (hSupplyValue === null) return 0;

 hState = upf_query_object_properties(hSupplyValue, UPF_STATE);
 bStatus = upf_set_value_int(hState, supply_state);

 return bStatus;
 endfunction:set_supply_state

Syntax examples

Example 1: Change state of the primary power and ground of a domain

SV code
initial begin
 set_supply_state("PD.primary.power", FULL_ON);
 set_supply_state("PD.primary.ground",FULL_ON);
end

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

309

11.2.3.3.7 set_power_state_by_handle

Purpose Activates the specified power state of an object

Syntax bit set_power_state_by_handle(upfHandleT object, upfHandleT
power_state);

Arguments
object Handle to the UPF object

power_state Handle of the power state present on the object

Return value Returns 1 on success, 0 on failure

The set_power_state_by_handle function activates the specified power state (see 9.3.1) of the given object.

It shall be an error if:

 object is not a valid handle.

 power_state is not a valid handle of a power state present on object.

Syntax examples

Example 1: Change state of the primary supply set of domain

SV code

initial begin
 upfHandleT ss = upf_get_handle_by_name("/top/dut_i/PD.primary");
 upfHandleT on = upf_get_handle_by_name("ON", ss);
 upfHandleT off = upf_get_handle_by_name("OFF", ss);
 set_power_state_by_handle(ss, on);
 #10 set_power_state_by_handle(ss, off);
 #10 set_power_state_by_handle(ss, on);
end

11.2.3.3.8 set_power_state

Purpose Activates the specified power state of an object

Syntax upfBooleanT set_power_state(string object, string power_state);

Arguments
object Hierarchical path ID of object having power state

power_state Relative path ID of power state with respect to the object

Return value Returns 1 on success, 0 on failure

The set_power_state function (see 9.3.1) activates the specified power state of the named object by
invoking the set_power_state_by_handle function.

It shall be an error if:

 object is not a valid pathname for power domain or supply set.

 power_state is not a valid power state present on power domain or supply set.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

310

The following is the description of set_power_state function based on basic access functions.

SV code

 function automatic upfBooleanT set_power_state
 (upfStringT object_name, // Hierarchical path ID of object
 // having power state
 upfStringT power_state);// Relative path ID of power state
 // with respect to the object

 // It shall be an error if :
 // 1) object_name is not a valid name of a supply set, power
 // domain, composite domain, group, model, or instance
 // 2) power_state is not the name of a power state of the
 // specified object
 // 3) different power states that are not related by refinement
 // are made active for this object in the same cycle

 upfBooleanT bStatus = 0;
 upfHandleT hPd_ss;
 upfHandleT hPower_state_handle;

 hPd_ss = upf_get_handle_by_name(object_name);
 if (hPd_ss == null) return 0;

 hPower_state_handle = upf_get_handle_by_name(power_state,
 hPd_ss);
 if (hPower_state_handle == null) return 0;

 bStatus = set_power_state_by_handle(hPd_ss,
 hPower_state_handle);
 return bStatus;
 endfunction:set_power_state

Syntax examples

Example 1: Change state of the domain

SV code

initial begin
 set_power_state("/top/dut_i/PD", "domain_on");
 #10 set_power_state("/top/dut_i/PD", "domain_off");
 #10 set_power_state("/top/dut_i/PD", "domain_on");
end

11.2.3.4 Continuous access

There is also a continuous access provided for objects which have native HDL representation. This access
enables continuous monitoring of dynamic values of an object in the information model. It enables user to
sensitize an always block or process statement using dynamic values on the objects.

The continuous access is achieved by declaring an object of corresponding native HDL representation type
defined in the HDL package and then calling the upf_create_object_mirror function to create the mirroring
relationship. The continuous access is only allowed in one direction, i.e., from source to destination.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

311

11.2.3.4.1 upf_create_object_mirror

Purpose Create a continuous monitor that monitors the dynamic property on the given object

Syntax upfBooleanT upf_create_object_mirror(upfStringT src, upfStringT
dst);

Arguments
src

A string representing hierarchical path ID of the source object whose value will be
continuously monitored

dst
A string representing hierarchical path ID of the destination object on which the value
will be transferred from source object

Return value Returns 1 when mirroring is successful or 0 otherwise

The function upf_create_object_mirror creates the mirroring relationship from src object to dst object. This
function can be used to provide continuous read access to the dynamic values of object from the
information model in HDL environment. To achieve this, user declares a HDL object in local scope of the
corresponding native HDL representation type. The upf_create_object_mirror function is called with src as
the object in the information model and dst as the local object. This establishes the mirroring relationship
and the values from the src object is continuously transferred to the local object. In this case, the handle
field of the local HDL object also maintains the handle information of the src object. This can be used to
query other properties present on the src object.

The function can also be used to transfer values to objects in information model when the object (which is
the dst) does not have an existing driver and supports write access (see 11.2.3.3). In such case, the user has
to declare a local object of matching native HDL representation and assign values just like an HDL object
to the field that represents the dynamic property on the dst object. The upf_create_object_mirror function is
called where src becomes the local object and dst is the object in the information model. In this case, the
handle field of the local object is initialized to 0. See Example 3 for more details.

The upf_create_object_mirror function needs to be called only once for a set of src, dst pair. This can be
achieved by an initial block in SV or a process with wait statement in VHDL.

The string specified in src or dst can also be a relative pathname. In such case, the handle ID is constructed
from handle ID of the current instance scope in which the function is called.

It shall be an error if:

 src and dst represent objects that do not have native HDL representation (see 11.2.2.3).

 dst does not support write access.

 dst already has a driver associated with it.

 upf_create_object_mirror is called multiple times on same src/dst pair.

Syntax examples

Example 1: Create a monitor of UPF supply

SV code

module tb;
 upfSupplyObjT vdd_monitor;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

312

 upfBooleanT status;
 initial begin
 status = upf_create_object_mirror("/top/dut_i/vdd", "vdd_monitor");
 end
 always @vdd_monitor begin
 $display($time, " Supply %s changed\n",
 upf_query_object_pathname(vdd_monitor.handle));
 end
endmodule

 Output

 100 Supply /top/dut_i/vdd changed
 200 Supply /top/dut_i/vdd changed

Example 2: Check value of retention save signal

VHDL code

...
 signal save: upfBooleanObjT;
begin
 process
 variable status : upfBooleanT;
 begin
 status := upf_create_object_mirror("/top/dut_i/pd.ret.save_signal",
 "save");
 wait;
 end process;
 process (save.current_value)
 begin
 ...
 end process;
end architecture;

Example 3: Drive the value of logic port from HDL

SV code

module tb;
 upfBooleanObjT iso_ctrl;
 upfBooleanT status;
 initial begin
 status = upf_create_object_mirror("iso_ctrl",
 "/top/dut_i/logic_iso_ctrl");
 end
 initial begin
 iso_ctr.handle = 0;
 iso_ctrl.current_value = 1’b0;
 #10 iso_ctrl.current_value = 1’b1;
 #10 iso_ctrl.current_value = 1’b0;
 end
endmodule

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

313

11.2.3.5 Utility functions

11.2.3.5.1 upf_query_object_type

Purpose Get the class id of the given object handle

Syntax upfClassIdE upf_query_object_type(upfHandleT handle);

Arguments handle Handle to the object or property

Return value Returns enumerated value representing class of the given object or property

The upf_query_object_type function returns the enumerated value representing the class of the given object
or property handle.

It shall be an error if handle is not a valid object/property handle.

NOTE—The upf_query_object_type function defined in HDL returns the class IDs which are slightly different than
what is returned in its Tcl counterpart (see 11.1.2.2). In the Tcl version, the class ID is the class name, but in HDL it is
the enumerated literal defined in upfClassIdE type.

Syntax examples

Example 1: Get UPF line number of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT file_line = upf_query_object_properties(pd, upf_line);
 upfClassIdE pd_type = upf_query_object_type(pd);
 if (upf_query_object_type(file_line) == UPF_INTEGER) begin
 $display("UPF Line: %d", upf_get_value_int(file_line));
 end
end

 Output

 UPF Line: 22

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

314

11.2.3.5.2 upf_handle_in_class

Purpose Check if object belongs to particular class

Syntax upfBooleanT upf_handle_in_class(upfHandleT handle, upfClassIdE
class_id);

Arguments
handle Handle to the object or property

class_id The enumerated value representing the class of the object

Return value Returns 1 when handle belongs to class and 0 otherwise

The upf_handle_in_class function returns 1 when the object belongs to the specified class and 0 otherwise.
This function is used to check for the class membership of the given handle and is used to write more
robust HDL description and avoiding error scenarios.

It shall be an error if:

 handle is not a valid object/property handle.

 class_id is not a valid enumerated value defined in upfClassIdE.

Syntax examples

Example 1: Get UPF line number of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT file_line = upf_query_object_properties(pd, upf_line);
 if (upf_handle_in_class(file_line, UPF_INTEGER)) begin
 $display("UPF Line: %d", upf_get_value_int(file_line));
 end
end

 Output

 UPF Line: 22

11.2.3.5.3 upf_query_object_pathname

Purpose Get the pathname of the given handle

Syntax upfStringT upf_query_object_pathname(upfHandleT object, upfHandleT
relative_to = null);

Arguments
object Handle to a valid object

relative_to An optional handle to the object from which the relative pathname is required

Return value Returns the hierarchical pathname of the given object

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

315

The function upf_get_handle_by_name returns the valid hierarchical pathname of the given handle. The
returned pathname for an HDL object represents a valid RTL style name and can be used to query
information from other information models. See 10.4.3.2 for more details.

The behavior of the function is similar to the Tcl query upf_query_object_pathname (see 11.1.2.4)

It shall be an error if:

 object is not a valid UPF handle.

 relative_to is not a valid UPF handle.

 relative_to is not in the ancestor hierarchy of the object.

Syntax examples

Example 1: Get relative path of power domain

SV code

initial begin
 upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd");
 upfHandleT top = upf_get_handle_by_name("/top");
 $display("PD: %s", upf_query_object_pathname(pd, top));
 ...
end

 Output

 PD: dut_i/pd

Example 2: Get RTL name of multi-bit slice

SV code

initial begin
 upfHandleT net = upf_get_handle_by_name(
 "/top/dut_i/mid/net@63:32");
 upfHandleT parent = upf_query_object_properties(net, upf_parent);
 upfHandleT name = upf_query_object_properties(net, upf_name);
 $display("RTL Name of %s is %s",
 upf_get_value_str(name),
 upf_query_object_pathname(net, parent));
 ...
end

 Output

 RTL Name of net@63:32 is net.f1(2)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

316

11.2.3.5.4 upf_convert_real_volts_to_int_uvolts

Purpose Get the pathname of the given handle

Syntax upfIntegerT upf_convert_real_volts_to_int_uvolts(upfRealT volt);

Arguments volt Voltage value in volts represented as a real number

Return value Returns the converted value of voltage in real converted to integer value in micro volts

The function upf_convert_real_volts_to_int_uvolts() converts the voltage value in volts represented as real
value to micro volts represented as integer.

SV code

 function automatic upfIntegerT upf_convert_real_volts_to_int_uvolts
 (upfRealT volt); // Voltage value in volts represented
 // as a real number

 return (volt * 1.0E6); // returns int value in uV
 endfunction:upf_convert_real_volts_to_int_uvolts

Syntax examples

Example 1: Set voltage value on a supply net

SV code
initial begin
 upfHandleT vdd = upf_get_handle_by_name("/top/dut_i/vdd");
 upfHandleT supplyValueH = upf_query_object_properties(vdd,
 UPF_CURRENT_VALUE);
 upfHandleT voltageH = upf_query_object_properties(supplyValueH,
 upf_voltage);
 (void)upf_set_value_int(voltageH,
 upf_convert_real_volts_to_int_uvolts(1.0))
end

11.2.3.5.5 upf_convert_int_uvolts_to_real_volts

Purpose Get the pathname of the given handle

Syntax upfRealT upf_convert_int_uvolts_to_real_volts (upfIntegerT uvolt);

Arguments uvolt Voltage value in micro volts represented as a integer number

Return value Returns the converted value of voltage in micro volts represented as integer to volts represented as
real value

The function upf_convert_int_uvolts_to_real_volts () converts the voltage in micro volts represented as
integer to volts represented as real value.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

317

SV code

 function automatic upfRealT upf_convert_int_uvolts_to_real_volts
 (upfIntegerT uvolt); // Voltage value in micro volts
 // represented as a integer number

 return (uvolt / 1.0E6);
 endfunction:upf_convert_int_uvolts_to_real_volts

Syntax examples

Example 1: Get voltage of a supply net

SV code

initial begin
 upfHandleT vdd = upf_get_handle_by_name("/top/dut_i/vdd");
 upfHandleT supplyValueH = upf_query_object_properties(vdd,
 UPF_CURRENT_VALUE);
 upfHandleT voltageH = upf_query_object_properties(supplyValueH,
 upf_voltage);
 upfRealT volts = upf_convert_int_uvolts_to_real_volts(
 upf_get_value_int(voltageH));
 $display("Voltage of %s is %f V",
 upf_query_object_pathname(vdd),
 volts);
end

 Output

 Voltage of /top/dut_i/vdd is 1.000000 V

11.2.4 SystemVerilog UPF package

///
// 3.0 Package Declaration
///

package UPF;

 //////////////////////////////////////
 // basic types
 //////////////////////////////////////

 typedef string upfStringT;
 typedef int upfIntegerT;
 typedef bit upfBooleanT;
 typedef real upfRealT;
 typedef chandle upfHandleT;
 typedef int upfIteratorT;

 typedef enum
 {OFF, // off_state or reference to OFF for
 // supply net/port state
 FULL_ON, // on_state or reference to FULL_ON
 // for supply net/port state
 PARTIAL_ON, // on_partial_state or reference to
 // PARTIAL_ON for supply net/port state
 UNDETERMINED // error_state or reference to UNDETERMINED

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

318

 // for supply net/port state
 } upfSupplyStateE;

 typedef struct
 {upfSupplyStateE state;
 upfIntegerT voltage; // Voltage in microvolts
 } upfSupplyTypeT;

 // Legacy support: backward compatibility
 typedef upfSupplyStateE state;
 typedef upfSupplyTypeT supply_net_type;

 //////////////////////////////////////
 // native HDL Representation
 //////////////////////////////////////

 typedef struct
 {upfHandleT handle;
 upfBooleanT is_active;
 }upfPowerStateObjT;

 typedef struct
 {upfHandleT handle;
 upfPowerStateObjT current_state;
 }upfPdSsObjT;

 typedef struct
 {upfHandleT handle;
 upfBooleanT current_value;
 }upfBooleanObjT;

 typedef struct
 {upfHandleT handle;
 supply_net_type current_value;
 }upfSupplyObjT;

 //////////////////////////////////////
 // HDL Type Mapping
 //////////////////////////////////////

 typedef upfPdSsObjT upfCompositeDomainT;
 typedef upfPdSsObjT upfPowerDomainT;
 typedef upfPdSsObjT upfSupplySetT;

 typedef upfPowerStateObjT upfPStStateT;
 typedef upfPowerStateObjT upfPowerStateT;

 typedef upfBooleanObjT upfAckPortT;
 typedef upfBooleanObjT upfExpressionT;
 typedef upfBooleanObjT upfLogicNetT;
 typedef upfBooleanObjT upfLogicPortT;

 typedef upfSupplyObjT upfSupplyNetT;
 typedef upfSupplyObjT upfSupplyPortT;

 typedef upfHandleT upfAttributeT;
 typedef upfHandleT upfCellT;
 typedef upfHandleT upfExtentT;
 typedef upfHandleT upfHdlMultiBitSliceT;
 typedef upfHandleT upfHdlNetBitT;
 typedef upfHandleT upfHdlNetMultiBitT;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

319

 typedef upfHandleT upfHdlPortBitT;
 typedef upfHandleT upfHdlPortMultiBitT;
 typedef upfHandleT upfHdlScopeT;
 typedef upfHandleT upfIsolationStrategyT;
 typedef upfHandleT upfLevelShifterStrategyT;
 typedef upfHandleT upfNamedRefT;
 typedef upfHandleT upfPowerStateTableT;
 typedef upfHandleT upfPowerStateTransitionT;
 typedef upfHandleT upfPowerSwitchStateT;
 typedef upfHandleT upfPowerSwitchT;
 typedef upfHandleT upfRepeaterStrategyT;
 typedef upfHandleT upfRetentionStrategyT;
 typedef upfHandleT upfSignalSenseT;
 typedef upfHandleT upfSupplyPortStateT;

 //////////////////////////////////////
 // Enumeration types
 //////////////////////////////////////

 // The classes in the information model will be identified in
 // HDL by the enumerated values defined in upfClassIdE
 // enumerated type :
 typedef enum
 {
 //Abstract Class Id //Class Name
 UPF_BASE, //upfBaseT
 UPF_BASE_HDL, //upfBaseHdlT
 UPF_BASE_NAMED, //upfBaseNamedT
 UPF_BASE_RELATIONSHIP, //upfBaseRelationshipT
 UPF_BASE_UPF, //upfBaseUpfT
 UPF_BOUNDARY_STRATEGY, //upfBoundaryStrategyT
 UPF_EXTENT_CLASS, //upfExtentClassT
 UPF_HDL_DECL, //upfHdlDeclT
 UPF_HDL_NET_CLASS, //upfHdlNetClassT
 UPF_HDL_PORT_CLASS, //upfHdlPortClassT
 UPF_NET_CLASS, //upfNetClassT
 UPF_NETWORK_CLASS, //upfNetworkClassT
 UPF_PORT_CLASS, //upfPortClassT
 UPF_STATE_CLASS, //upfStateClassT
 UPF_STRATEGY, //upfStrategyT

 //Concrete Class Id
 UPF_ACK_PORT, //upfAckPortT
 UPF_ATTRIBUTE, //upfAttributeT
 UPF_CELL, //upfCellT
 UPF_COMPOSITE_DOMAIN, //upfCompositeDomainT
 UPF_EXPRESSION, //upfExpressionT
 UPF_EXTENT, //upfExtentT
 UPF_HDL_MULTI_BIT_SLICE, //upfHdlMultiBitSliceT
 UPF_HDL_NET_BIT, //upfHdlNetBitT
 UPF_HDL_NET_MULTI_BIT, //upfHdlNetMultiBitT
 UPF_HDL_PORT_BIT, //upfHdlPortBitT
 UPF_HDL_PORT_MULTI_BIT, //upfHdlPortMultiBitT
 UPF_HDL_SCOPE, //upfHdlScopeT
 UPF_ISOLATION_STRATEGY, //upfIsolationStrategyT
 UPF_LEVEL_SHIFTER_STRATEGY, //upfLevelShifterStrategyT
 UPF_LOGIC_NET, //upfLogicNetT
 UPF_LOGIC_PORT, //upfLogicPortT
 UPF_NAMED_REF, //upfNamedRefT
 UPF_POWER_DOMAIN, //upfPowerDomainT
 UPF_POWER_STATE, //upfPowerStateT
 UPF_POWER_STATE_TABLE, //upfPowerStateTableT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

320

 UPF_POWER_STATE_TRANSITION, //upfPowerStateTransitionT
 UPF_POWER_SWITCH_STATE, //upfPowerSwitchStateT
 UPF_POWER_SWITCH, //upfPowerSwitchT
 UPF_PST_STATE, //upfPstStateT
 UPF_REPEATER_STRATEGY, //upfRepeaterStrategyT
 UPF_RETENTION_STRATEGY, //upfRetentionStrategyT
 UPF_SIGNAL_SENSE, //upfSignalSenseT
 UPF_SUPPLY_NET, //upfSupplyNetT
 UPF_SUPPLY_PORT, //upfSupplyPortT
 UPF_SUPPLY_PORT_STATE, //upfSupplyPortStateT
 UPF_SUPPLY_SET, //upfSupplySetT
 UPF_SUPPLY_TYPE, //upfSupplyTypeT
 // Basic Property Types
 UPF_BOOLEAN, //upfBooleanT
 UPF_STRING, //upfStringT
 UPF_INTEGER, //upfIntegerT
 UPF_REAL //upfRealT
 } upfClassIdE;

 // The following table provides the mapping between the
 // property names and property IDs in HDL type.
 typedef enum
 {
 // proptery id Class Name
 UPF_ACK_DELAY, //upfAckPortT
 UPF_ACK_PORTS, //upfPowerSwitchT
 UPF_APPLIES_TO, //upfBoundaryStrategyT
 UPF_ATTR_NAME, //upfAttributeT
 UPF_ATTR_VALUE, //upfAttributeT
 UPF_CELL_INFO, //upfBaseHdlT
 UPF_CELL_KIND, //upfCellT
 UPF_CELL_ORIGIN, //upfCellT
 UPF_CELLS, //upfExtentT
 UPF_CHILD_INSTANCES, //upfHdlScopeT
 UPF_CLAMP_VALUES, //upfIsolationStrategyT
 UPF_CONTROL_PORTS, //upfPowerSwitchT
 UPF_CONTROL_SIGNAL, //upfSignalSenseT
 UPF_CREATION_SCOPE, //upfBaseUpfT
 UPF_CURRENT_STATE, //upfPowerDomainT,
 // upfCompositeDomainT,
 // upfSupplySetT,
 // upfPowerStateTableT
 UPF_CURRENT_VALUE, //upfExpressionT,
 // upfSupplyNetT,
 // upfSupplyPortT,
 // upfLogicNetT,
 // upfLogicPortT,
 // upfAckPortT
 UPF_EFFECTIVE_EXTENTS, //upfExtentClassT
 UPF_EQUIVALENT_SETS, //upfSupplySetT
 UPF_EXPR_OPERANDS, //upfExpressionT
 UPF_EXPR_STRING, //upfExpressionT
 UPF_EXTENTS, //upfBaseHdlT
 UPF_FANIN_CONN, //upfNetClassT
 UPF_FANOUT_CONN, //upfNetClassT
 UPF_FILE, //upfBaseT
 UPF_FROM_STATES, //upfPowerStateTransitionT
 UPF_FUNCTIONS, //upfSupplySetT
 UPF_HDL_ATTRIBUTES, //upfBaseHdlT
 UPF_HDL_CELL_KIND, //upfCellT
 UPF_HDL_ELEMENT, //upfExtentT
 UPF_HDL_IMPLEMENTATION, //upfNetworkClassT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

321

 UPF_HDL_ITEMS, //upfHdlScopeT
 UPF_HDL_PORTS, //upfHdlScopeT
 UPF_HDL_WIDTH, //upfHdlNetMultiBitT,
 // upfHdlPortMultiBitT
 UPF_HICONN, //upfPortClassT
 UPF_INPUT_SUPPLY_PORT, //upfPowerSwitchStateT
 UPF_INPUT_SUPPLY_PORTS, //upfPowerSwitchT
 UPF_IS_ACTIVE, //upfPowerStateT,
 // upfPstStateT
 UPF_IS_DIFF_SUPPLY_ONLY, //upfIsolationStrategyT
 UPF_IS_FORCE_ISOLATION, //upfIsolationStrategyT
 UPF_IS_FORCE_SHIFT, //upfLevelShifterStrategyT
 UPF_IS_ILLEGAL, //upfStateClassT
 UPF_IS_NO_ISOLATION, //upfIsolationStrategyT
 UPF_IS_NO_RETENTION, //upfRetentionStrategyT
 UPF_IS_NO_SHIFT, //upfLevelShifterStrategyT
 UPF_IS_USE_EQUIVALENCE, //upfBoundaryStrategyT
 UPF_IS_USE_RETENTION_AS_PRIMARY, //upfRetentionStrategyT
 UPF_ISOLATION_CONTROLS, //upfIsolationStrategyT
 UPF_ISOLATION_STRATEGIES, //upfPowerDomainT
 UPF_ITEMS, //upfHdlScopeT
 UPF_LEVEL_SHIFT_RULE, //upfLevelShifterStrategyT
 UPF_LEVEL_SHIFTER_STRATEGIES, //upfPowerDomainT
 UPF_LINE, //upfBaseT
 UPF_LOCATION, //upfBoundaryStrategyT
 UPF_LOCONN, //upfPortClassT
 UPF_LOGIC_EXPR, //upfPowerStateT
 UPF_LOGIC_REFS, //upfStrategyT
 UPF_LOWER_BOUNDARY, //upfPowerDomainT
 UPF_LSB, //upfHdlMultiBitSliceT
 UPF_MODEL_NAME, //upfCellT
 UPF_MSB, //upfHdlMultiBitSliceT
 UPF_NAME, //upfBaseT
 UPF_NAME_PREFIX, //upfBoundaryStrategyT
 UPF_NAME_SUFFIX, //upfBoundaryStrategyT
 UPF_NETWORK_ATTRIBUTES, //upfNetworkClassT
 UPF_NEXT_EXTENT, //upfExtentT
 UPF_NORMALIZED_BITS, //upfHdlNetMultiBitT,
 // upfHdlPortMultiBitT
 UPF_NORMALIZED_IDX, //upfHdlNetBitT,
 // upfHdlPortBitT
 UPF_OBJECT, //upfExtentT
 UPF_OUTPUT_SUPPLY_PORT, //upfPowerSwitchT
 UPF_PARENT, //upfBaseT
 UPF_PD_STATE_TRANSITIONS, //upfPowerDomainT,
 // upfCompositeDomainT
 UPF_PD_STATES, //upfPowerDomainT,
 // upfCompositeDomainT
 UPF_PORT_DIR, //upfHdlPortClassT,
 // upfPortClassT
 UPF_PST_HEADER, //upfPowerStateTableT
 UPF_PST_STATES, //upfPowerStateTableT
 UPF_REF_KIND, //upfNamedRefT
 UPF_REF_OBJECT, //upfNamedRefT
 UPF_REPEATER_STRATEGIES, //upfPowerDomainT
 UPF_RESOLVE_TYPE, //upfSupplyNetT
 UPF_RESTORE_CONDITION, //upfRetentionStrategyT
 UPF_RESTORE_SIGNAL, //upfRetentionStrategyT
 UPF_RETENTION_CONDITION, //upfRetentionStrategyT
 UPF_RETENTION_PARAMETERS, //upfRetentionStrategyT
 UPF_RETENTION_STRATEGIES, //upfPowerDomainT
 UPF_ROOT_DRIVER, //upfNetworkClassT
 UPF_SAVE_CONDITION, //upfRetentionStrategyT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

322

 UPF_SAVE_SIGNAL, //upfRetentionStrategyT
 UPF_SIGNAL_SENSITIVITY, //upfSignalSenseT
 UPF_SIMSTATE, //upfPowerStateT
 UPF_SINK_FILTER, //upfBoundaryStrategyT
 UPF_SLICE_BITS, //upfHdlMultiBitSliceT
 UPF_SMALLEST_ATOMIC_SLICE //upfHdlNetBitT,
 // upfHdlPortBitT
 UPF_SOURCE_EXTENTS, //upfCellT
 UPF_SOURCE_FILTER, //upfBoundaryStrategyT
 UPF_SP_STATES, //upfSupplyPortT
 UPF_SS_STATES, //upfSupplySetT
 UPF_SS_TRANSITIONS, //upfSupplySetT
 UPF_STATE, //upfSupplyTypeT
 UPF_SUBDOMAINS, //upfCompositeDomainT
 UPF_SUPPLY_EXPR, //upfPowerStateT
 UPF_SUPPLY_SET_HANDLES, //upfExtentClassT,
 // upfCompositeDomainT
 UPF_SUPPLY_STATE, //upfSupplyPortStateT
 UPF_SUPPLY_STATES, //upfPstStateT
 UPF_SW_STATES, //upfPowerSwitchT
 UPF_SWITCH_EXPR, //upfPowerSwitchStateT
 UPF_SWITCH_OUTPUT_STATE, //upfPowerSwitchStateT
 UPF_THRESHOLD_VALUE, //upfLevelShifterStrategyT
 UPF_TO_STATES, //upfPowerStateTransitionT
 UPF_UPPER_BOUNDARY, //upfPowerDomainT
 UPF_USER_CLAMP_VALUES, //upfIsolationStrategyT
 UPF_VOLTAGE, //upfSupplyTypeT
 UPF_VOLT_KIND, //upfSupplyPortStateT
 UPF_VOLT_MAX, //upfSupplyPortStateT
 UPF_VOLT_MIN, //upfSupplyPortStateT
 UPF_VOLT_NOM //upfSupplyPortStateT
 } upfPropertyIdE;

 typedef enum
 {UPF_FILTER_UNDEF, // Undefined
 UPF_FILTER_INPUTS, // -applies_to inputs
 UPF_FILTER_OUTPUTS, // -applies_to outputs
 UPF_FILTER_BOTH // -applies_to both
 }upfAppliesToFilterE;

 typedef enum
 {UPF_CELL_NONE, // not a cell
 UPF_CELL_ISOLATION, // represents isolation cell
 UPF_CELL_LEVEL_SHIFTER, // represents level shifter cell
 UPF_CELL_ISO_LS_COMBO, // represents isolation and
 // level shifter combo cell
 UPF_CELL_RETENTION, // represents retention cell
 UPF_CELL_SWITCH, // represents a switch cell
 UPF_CELL_REPEATER, // represents a repeater or buffer cell
 UPF_CELL_CORRUPT, // represents any standard cell
 // which can get corrupted
 UPF_CELL_MACRO // represents a macro cell
 // or power model
 }upfCellKindE;

 typedef enum
 {UPF_ORIGIN_UNKNOWN, // When cell origin is not known
 UPF_ORIGIN_DESIGN, // When cell is present in
 // design itself
 UPF_ORIGIN_INSERTED, // When cell is inserted by UPF after
 // application of strategy
 // (e.g. isolation) and using
 // default model.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

323

 UPF_ORIGIN_INSERTED_MAP, // When cell is inserted by UPF after
 // application of strategy and using
 // user specified model via map_*
 // and use_interface_cell commands
 UPF_ORIGIN_INFERRED // When cell is inferred by UPF at
 // RTL. This information will only
 // be present on cells which are set
 // on HDL Port or Nets group
 // of objects.
 }upfCellOriginE;

 typedef enum
 {UPF_HDLCELL_NONE, // not a cell
 UPF_HDLCELL_COMB, // represents a combinatorial logic
 UPF_HDLCELL_FLOP, // represents a flip flop
 UPF_HDLCELL_LATCH, // represents a latch
 UPF_HDLCELL_MEM // represents a memory like ram, etc.
 }upfHdlCellKindE;

 typedef enum
 {UPF_CLAMP_UNDEF, // Undefined
 UPF_CLAMP_ZERO, // -*_clamp 0
 UPF_CLAMP_ONE, // -*_clamp 1
 UPF_CLAMP_ZEE, // -*_clamp Z
 UPF_CLAMP_LATCH, // -*_clamp latch
 UPF_CLAMP_ANY, // -*_clamp any
 UPF_CLAMP_USER_VALUE // -*_clamp value
 }upfIsolationClampE;

 typedef enum
 {UPF_LS_LOW_TO_HIGH, // -rule low_to_high
 UPF_LS_HIGH_TO_LOW, // -rule high_to_low
 UPF_LS_BOTH // -rule both
 }upfLevelShifterRuleE;

 typedef enum
 {SELF, // -location self
 OTHER, // -location other
 PARENT, // -location parent
 AUTOMATIC, // -location automatic
 FANOUT // -location fanout
 }upfLocationE;

 typedef enum
 {
 UPF_REF_POWER, // power function of supply set
 UPF_REF_GROUND, // ground function of supply set
 UPF_REF_PWELL, // pwell function of supply set
 UPF_REF_NWELL, // nwell function of supply set
 UPF_REF_DEEPPWELL, // deeppwell function of supply set
 UPF_REF_DEEPNWELL, // deepnwell function of supply set
 UPF_REF_ISO_SIGNAL, // reference to isolation control
 // signal in set_isolation
 UPF_REF_SAVE_SIGNAL, // to save_signal in set_retention
 UPF_REF_RESTORE_SIGNAL, // reference to restore_signal
 // in set_retention
 UPF_REF_GENERIC_CLOCK, // reference to UPF_GENERIC_CLOCK
 // in set_retention
 UPF_REF_GENERIC_DATA, // reference to UPF_GENERIC_DATA
 // in set_retention
 UPF_REF_GENERIC_ASYNC_LOAD, // reference to
 // UPF_GENERIC_ASYNC_LOAD
 // in set_retention

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

324

 UPF_REF_GENERIC_OUTPUT, // reference to UPF_GENERIC_OUTPUT
 // in set_retention
 UPF_REF_USER_DEFINED // some user defined ref handle
 }upfNamedRefKindE;

 typedef enum
 {UPF_DIR_UNDEF, // Undefined
 UPF_DIR_IN, // -direction in
 UPF_DIR_OUT, // -direction out
 UPF_DIR_INOUT // -direction inout
 }upfPortDirE;

 typedef enum
 {UNRESOLVED, // -resolve unresolved
 ONE_HOT, // -resolve one_hot
 PARALLEL, // -resolve parallel
 PARALLEL_ONE_HOT // -resolve parallel_one_hot
 }upfResolveE;

 typedef enum
 //The enumerated literals here map directly to values specified
 // in -parameters option of set_retention command
 {RET_SUP_COR,
 NO_RET_SUP_COR,
 SAV_RES_COR,
 NO_SAV_RES_COR
 }upfRetentionParamE;

 typedef enum
 {UPF_SENSE_HIGH, // high
 UPF_SENSE_LOW, // low
 UPF_SENSE_POSEDGE, // posedge
 UPF_SENSE_NEGEDGE // negedge
 }upfSignalSenseKindE;

 typedef enum
 {CORRUPT // -simstate CORRUPT
 // or -simstate NOT_NORMAL
 CORRUPT_ON_ACTIVITY, // -simstate CORRUPT_ON_ACTIVITY
 // or -simstate NOT_NORMAL
 CORRUPT_ON_CHANGE, // -simstate CORRUPT_ON_CHANGE
 // or -simstate NOT_NORMAL
 CORRUPT_STATE_ON_ACTIVITY, // -simstate
 // CORRUPT_STATE_ON_ACTIVITY
 // or -simstate NOT_NORMAL
 CORRUPT_STATE_ON_CHANGE, // -simstate
 // CORRUPT_STATE_ON_CHANGE
 // or -simstate NOT_NORMAL
 NORMAL, // -simstate NORMAL
 }upfSimstateE;

 typedef enum
 {NOM, // when only nominal value is
 // specified in add_port_state
 // command
 DOUBLET, // when a doublet is specified in
 // add_port_state command
 TRIPLET // when a triplet is specified in
 // add_port_state command
 }upfVoltKindE;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

325

 //////////////////////////////////////
 // HDL Access Functions
 //////////////////////////////////////

 //////////////////////////////////////
 // Purpose: Get a handle to a given object from the pathname
 function automatic upfHandleT upf_get_handle_by_name
 (upfStringT pathname, // A string representing
 // handle ID for an object
 upfHandleT relative_to = null); // An optional handle to the
 // object from which the
 // relative pathname is given

 // It shall be an error if :
 // 1) pathname is not a valid handle ID
 // 2) relative_to is not a valid UPF Handle

 // Returns the handle to the specified property or null
 // if not found
 endfunction:upf_get_handle_by_name

 //////////////////////////////////////
 // Purpose: Query propertys on a given object
 function automatic upfHandleT upf_query_object_properties
 (upfHandleT object_handle, // UPF Handle of the given
 // object
 upfPropertyIdE attr); // The enumerated value
 // corresponding to the given
 // property on the object

 // It shall be an error if :
 // 1) object_handle is not a valid object
 // 2) attr is not a valid property on the given object
 // 3) attr is not a valid value defined in Table 21

 // Returns the handle to the specified property
 // or null if not found
 endfunction:upf_query_object_properties

 //////////////////////////////////////
 // Purpose: Get the next handle from the iterator
 function automatic upfHandleT upf_iter_get_next
 (upfHandleT iter_handle); // Handle to the iterator

 // It shall be an error if iter_handle is not
 // a valid iterator handle.

 // Returns the handle to the next element
 // in the iterator or 0 if no element is present.
 endfunction:upf_iter_get_next

 //////////////////////////////////////
 // Immediate Read Access Functions
 //////////////////////////////////////

 // The following table provides the mapping of basic
 // properties and the read access routine to get the value.
 ///
 // Return Type function names
 //---------- -------------
 // upfStringT upf_get_value_str()

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

326

 // upfIntegerT upf_get_value_int()
 // upfBooleanT upf_get_value_int()
 // All Enumerated Types upf_get_value_int()
 // upfRealT upf_get_value_real()
 ///

 //////////////////////////////////////
 // Purpose: Get the string value from property handle
 function automatic upfStringT upf_get_value_str
 (upfHandleT attr); // Handle to the property

 // Returns string value of the given
 // property handle or NULL if error.
 endfunction:upf_get_value_str

 //////////////////////////////////////
 // Purpose: Get the integer value from property handle
 function automatic upfIntegerT upf_get_value_int
 (upfHandleT attr); // Handle to the property

 // Returns integer value of the given property handle.
 endfunction:upf_get_value_int

 //////////////////////////////////////
 // Purpose: Get the real value from property handle
 function automatic upfRealT upf_get_value_real
 (upfHandleT attr); // Handle to the property

 // Returns real value of the given property handle.
 endfunction:upf_get_value_real

 //////////////////////////////////////
 // Purpose: Get the value of supply net
 // type from the property handle
 function automatic upfSupplyTypeT upf_get_label_upfSupplyTypeT
 (upfHandleT attr); // Handle to the property

 // It shall be an error if property is not a valid
 // property handle of upfSupplyTypeT

 // Returns upfSupplyTypeT value of the given property handle.
 endfunction:upf_get_label_upfSupplyTypeT

 //////////////////////////////////////
 // Purpose: Get the supply value of a Net
 function automatic upfSupplyTypeT get_supply_value
 (upfStringT name); // A string representing
 // pathname of supply net

 // It shall be an error if name is not a UPF created
 // supply net/port or an HDL object of upfSupplyTypeT
 // or upfSupplyObjT.

 endfunction:get_supply_value

 //////////////////////////////////////
 // Purpose: Get the supply voltage of a net
 function automatic upfRealT get_supply_voltage
 (upfSupplyTypeT arg); // An HDL object of upfSupplyTypeT

 // the voltage in the supply_net_type struct is in uV
 endfunction:get_supply_voltage

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

327

 //////////////////////////////////////
 // Purpose: Get the supply FULL_ON state
 function automatic upfBooleanT get_supply_on_state
 (supply_net_type arg); //- An object of upfSupplyTypeT
 upfBooleanT state = 0;

 // The get_supply_on_state returns the on/off state of the
 // specified supply net. It returns 1 when supply net state is
 // FULL_ON or PARTIAL_ON and set_partial_on_translation
 // FULL_ON is called. It returns 0 in other cases.

 endfunction:get_supply_on_state

 //////////////////////////////////////
 // Purpose: Get the state from a supply net
 function automatic upfSupplyStateE get_supply_state
 (upfSupplyTypeT arg); // An object of upfSupplyTypeT

 // Return Value: Returns state of the supply net
 endfunction:get_supply_state

 //
 // Immediate Write Access Functions
 //
 // The following table provides the mapping between basic
 // property types and corresponding hdl function to write
 // the value
 //
 // Type Name
 //---------- -------------
 // upfStringT /
 // upfIntegerT upf_set_value_int()
 // upfBooleanT upf_set_value_int()
 // All Enumerated Types upf_set_value_int()
 // upfRealT /
 // upfSupplyTypeT upf_set_value_upfSupplyTypeT()
 //

 //////////////////////////////////////
 // Purpose: Sets the integer value on the dynamic property
 function automatic upfBooleanT upf_set_value_int
 (upfHandleT attr, // Handle to the property
 upfIntegerT value); // value

 // It shall be an error when:
 // 1) attr is a null handle
 // if (attr = null) return '0';
 // 2) attr is not a valid dynamic property of upfIntegerT
 // type.

 // Return Value: Returns 1 on success, 0 on failure
 endfunction:upf_set_value_int

 //////////////////////////////////////
 // Purpose: Sets the upfSupplyTypeT value on the
 // dynamic property
 function automatic upfBooleanT upf_set_value_upfSupplyTypeT
 (upfHandleT attr, // Handle to the property
 supply_net_type value); // value of type upfSupplyTypeT

 // It shall be an error when:
 // 1) attr is a null handle
 // if (attr = null) return '0';

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

328

 // 2) attr is not a valid dynamic property of
 // upfSupplyTypeT type.

 // Return Value: Returns 1 on success, 0 on failure
 endfunction:upf_set_value_upfSupplyTypeT

 //////////////////////////////////////
 // Purpose: Change state of supply to FULL_ON and
 // specify voltage
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT supply_on
 (upfStringT supply_name, // A string representing pathname
 // of the root supply
 upfRealT value = 1.0); // Voltage value in real

 // It shall be an error if :
 // 1) supply_name is not a UPF created supply net/port or
 // an HDL object of upfSupplyTypeT or upfSupplyObjT
 // 2) supply_name already has a driver

 endfunction:supply_on

 //////////////////////////////////////
 // Purpose: Change state of supply to OFF
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT supply_off
 (upfStringT supply_name); // A hierarchical path ID for a
 // root supply.

 // It shall be an error if :
 // 1) supply_name is not a UPF created supply net/port or
 // an HDL object of upfSupplyTypeT or upfSupplyObjT
 // 2) supply_name already has a driver

 endfunction:supply_off

 //////////////////////////////////////
 // Purpose: Change state of supply to PARTIAL_ON and
 // specify voltage
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT supply_partial_on
 (upfStringT supply_name, // A string representing pathname
 // of the root supply
 upfRealT value = 1.0); // Voltage value in real

 // It shall be an error if :
 // 1) supply_name is not a UPF created supply net/port or
 // an HDL object of upfSupplyTypeT or upfSupplyObjT
 // 2) supply_name already has a driver

 endfunction:supply_partial_on

 //////////////////////////////////////
 // Purpose: Assign the specified supply state to this object.
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT set_supply_state
 (upfStringT object_name, // the hierarchical path ID of a supply port,
 // net, or supply set function
 upfSupplyStateE supply_state);// one of OFF, PARTIAL_ON, FULL_ON,
 // UNDETERMINED

 // It shall be an error if :
 // 1) object_name is not a valid supply port, net, or

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

329

 // supply set function name
 // 2) different values are assigned to the supply object
 // in the same cycle
 endfunction:set_supply_state

 //////////////////////////////////////
 // Purpose: Make the specified power state active for this object.
 function automatic upfBooleanT set_power_state_by_handle
 (upfHandleT object, // Handle to the UPF object
 upfHandleT power_state);// Handle of the power state present
 // on the object

 // It shall be an error if :
 // 1) object_name is not a valid name of a supply set, power
 // domain, composite domain, group, model, or instance
 // if (object = null) return '0';
 // 2) power_state is not the name of a power state of the
 // specified object
 // power state present on object
 // if (power_state = null) return '0'
 // 3) different power states that are not related by refinement
 // are made active for this object in the same cycle
 // ...
 // Return Value: Returns 1 on success, 0 on failure
 endfunction:set_power_state_by_handle

 //////////////////////////////////////
 // Purpose: Make the specified power state active for this object.
 // Return Value: Returns 1 on success, 0 on failure
 function automatic upfBooleanT set_power_state
 (upfStringT object_name, // Hierarchical path ID of object
 // having power state
 upfStringT power_state);// Relative path ID of power state
 // with respect to the object

 // It shall be an error if :
 // 1) object_name is not a valid name of a supply set, power
 // domain, composite domain, group, model, or instance
 // 2) power_state is not the name of a power state of the
 // specified object
 // 3) different power states that are not related by refinement
 // are made active for this object in the same cycle

 endfunction:set_power_state

 //////////////////////////////////////
 // Continuous Access Functions
 //////////////////////////////////////

 //////////////////////////////////////
 // Purpose: Query properties on a given object
 function automatic upfBooleanT upf_create_object_mirror
 (upfStringT src, // A string representing hierarchical
 // path ID of the source object whose
 // value will be continuously monitored
 upfStringT dst); // A string representing hierarchical
 // path ID of the destination object on
 // which the value will be transferred
 // from source object

 // It shall be an error if :
 // 1) src and dst represent objects that do not
 // have Native HDL Representation (see 11.2.2.3)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

330

 // 2) dst does not support write access
 // 3) dst already has a driver associated with it
 // 4) upf_create_object_mirror is called multiple
 // times on same src/dst pair

 // Return Value: Returns 1 on success, 0 on failure
 endfunction:upf_create_object_mirror

 //////////////////////////////////////
 // Utility Functions
 //////////////////////////////////////

 //////////////////////////////////////
 // Purpose: Get the class id of the given object handle
 function automatic upfClassIdE upf_query_object_type
 (upfHandleT handle); // Handle to the object or property

 // It shall be an error if handle is not a valid
 // object/property handle.

 // Return Value: Returns enumerated value representing class
 // of the given object or property
 endfunction:upf_query_object_type

 //////////////////////////////////////
 // Purpose: Check if object belongs to particular class
 function automatic upfBooleanT upf_object_in_class
 (upfHandleT handle, // Handle to the object or property
 upfClassIdE class_id); // The enumerated value representing
 // the class of the object.

 // It shall be an error if :
 // 1) handle is not a valid object/property handle
 // 2) class_id is not a valid enumerated value defined
 // in upfClassIdE.

 // Return Value: Returns 1 when handle belongs to class
 // and 0 otherwise.
 endfunction:upf_object_in_class

 //////////////////////////////////////
 // Purpose: Get the pathname of the given handle
 function automatic upfStringT upf_query_object_pathname
 (upfHandleT object, // Handle to a valid object
 upfHandleT relative_to = null); // An optional handle to the
 // object from which the
 // relative pathname is
 // required

 // It shall be an error if :
 // 1) object is not a valid UPF Handle
 // 2) relative_to is not a valid UPF Handle
 // 3) relative_to is not in the ancestor hierarchy of
 // the object

 // Return Value: Returns the hierarchical pathname
 // of the given object
 endfunction:upf_query_object_pathname

 //////////////////////////////////////
 // Purpose: Converts the voltage value in volts represented as
 // real value to micro volts represented as integer.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

331

 function automatic
 upfIntegerT upf_convert_real_volts_to_int_uvolts
 (upfRealT volt); // Voltage value in volts represented
 // as a real number

 endfunction:upf_convert_real_volts_to_int_uvolts

 //////////////////////////////////////
 // Purpose: Converts the voltage in micro volts represented
 // as integer to volts represented as real value
 function automatic upfRealT upf_convert_int_uvolts_to_real_volts
 (upfIntegerT uvolt); // Voltage value in micro volts
 // represented as a integer number

 endfunction:upf_convert_int_uvolts_to_real_volts

 //////////////////////////////////////
 // Pre-defined supply net resolution functions
 //////////////////////////////////////

 function automatic upfSupplyTypeT one_hot
 (upfSupplyTypeVectorT sources);

 endfunction:one_hot

 function automatic upfSupplyTypeT parallel
 (upfSupplyTypeVectorT sources);

 endfunction:parallel

 function automatic upfSupplyTypeT parallel_one_hot
 (upfSupplyTypeVectorT sources);

 endfunction:parallel_one_hot

endpackage:UPF

11.2.5 VHDL UPF package

Library IEEE;
Use IEEE.std_logic_1164.all;
Use IEEE.numeric_bit.all;

--
-- Package Declaration
--

package UPF is

 -- Basic Types

 subtype upfStringT is STRING;
 subtype upfIntegerT is INTEGER;
 subtype upfBooleanT is BIT;
 subtype upfRealT is REAL;
 subtype upfHandleT is INTEGER;
 subtype upfIteratorT is INTEGER;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

332

 type upfSupplyStateE is (
 OFF, -- -off_state or reference to OFF for supply net/port
 -- state
 FULL_ON, -- -on_state or reference to FULL_ON for supply
 -- net/port state
 PARTIAL_ON, -- -on_partial_state or reference to PARTIAL_ON for
 -- supply net/port state
 UNDETERMINED -- -error_state or reference to UNDETERMINED for
 -- supply net/port state
);

 type upfSupplyTypeT is record
 state : upfSupplyStateE;
 voltage : upfIntegerT; -- Voltage in microvolts
 end record;

 -- Legacy support: backward compatibility
 subtype state is upfSupplyStateE;
 subtype supply_net_type is upfSupplyTypeT;

 -- Native HDL Representation

 type upfPowerStateObjT is record
 handle : upfHandleT;
 is_active : upfBooleanT;
 end record;

 type upfPdSsObjT is record
 handle : upfHandleT;
 current_state : upfPowerStateObjT;
 end record;

 type upfBooleanObjT is record
 handle : upfHandleT;
 current_value : upfBooleanT;
 end record;

 type upfSupplyObjT is record
 handle : upfHandleT;
 current_value : upfSupplyTypeT;
 end record;

 -- HDL Type Mapping

 subtype upfCompositeDomainT is upfPdSsObjT;
 subtype upfPowerDomainT is upfPdSsObjT;
 subtype upfSupplySetT is upfPdSsObjT;

 subtype upfPstStateT is upfPowerStateObjT;
 subtype upfPowerStateT is upfPowerStateObjT;

 subtype upfAckPortT is upfBooleanObjT;
 subtype upfExpressionT is upfBooleanObjT;
 subtype upfLogicNetT is upfBooleanObjT;
 subtype upfLogicPortT is upfBooleanObjT;

 subtype upfSupplyNetT is upfSupplyObjT;
 subtype upfSupplyPortT is upfSupplyObjT;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

333

 subtype upfAttributeT is upfHandleT;
 subtype upfCellT is upfHandleT;
 subtype upfExtentT is upfHandleT;
 subtype upfHdlMultiBitSliceT is upfHandleT;
 subtype upfHdlNetBitT is upfHandleT;
 subtype upfHdlNetMultiBitT is upfHandleT;
 subtype upfHdlPortBitT is upfHandleT;
 subtype upfHdlPortMultiBitT is upfHandleT;
 subtype upfHdlScopeT is upfHandleT;
 subtype upfIsolationStrategyT is upfHandleT;
 subtype upfLevelShifterStrategyT is upfHandleT;
 subtype upfNamedRefT is upfHandleT;
 subtype upfPowerStateTableT is upfHandleT;
 subtype upfPowerStateTransitionT is upfHandleT;
 subtype upfPowerSwitchStateT is upfHandleT;
 subtype upfPowerSwitchT is upfHandleT;
 subtype upfRepeaterStrategyT is upfHandleT;
 subtype upfRetentionStrategyT is upfHandleT;
 subtype upfSignalSenseT is upfHandleT;
 subtype upfSupplyPortStateT is upfHandleT;

 -- Enumerations

 -- The classes in the information model will be identified in HDL by
 -- the enumerated values defined in upfClassIdE enumerated type :
 type upfClassIdE is (
 --Abstract Class Id Class Name
 UPF_BASE, --upfBaseT
 UPF_BASE_HDL, --upfBaseHdlT
 UPF_BASE_NAMED, --upfBaseNamedT
 UPF_BASE_RELATIONSHIP, --upfBaseRelationshipT
 UPF_BASE_UPF, --upfBaseUpfT
 UPF_BOUNDARY_STRATEGY, --upfBoundaryStrategyT
 UPF_EXTENT_CLASS, --upfExtentClassT
 UPF_HDL_DECL, --upfHdlDeclT
 UPF_HDL_NET_CLASS, --upfHdlNetClassT
 UPF_HDL_PORT_CLASS, --upfHdlPortClassT
 UPF_NET_CLASS, --upfNetClassT
 UPF_NETWORK_CLASS, --upfNetworkClassT
 UPF_PORT_CLASS, --upfPortClassT
 UPF_STATE_CLASS, --upfStateClassT
 UPF_STRATEGY, --upfStrategyT

 --Concrete Class Id Class Name
 UPF_ACK_PORT, --upfAckPortT
 UPF_ATTRIBUTE, --upfAttributeT
 UPF_CELL, --upfCellT
 UPF_COMPOSITE_DOMAIN, --upfCompositeDomainT
 UPF_EXPRESSION, --upfExpressionT
 UPF_EXTENT, --upfExtentT
 UPF_HDL_MULTI_BIT_SLICE, --upfHdlMultiBitSliceT
 UPF_HDL_NET_BIT, --upfHdlNetBitT
 UPF_HDL_NET_MULTI_BIT, --upfHdlNetMultiBitT
 UPF_HDL_PORT_BIT, --upfHdlPortBitT
 UPF_HDL_PORT_MULTI_BIT, --upfHdlPortMultiBitT
 UPF_HDL_SCOPE, --upfHdlScopeT
 UPF_ISOLATION_STRATEGY, --upfIsolationStrategyT
 UPF_LEVEL_SHIFTER_STRATEGY, --upfLevelShifterStrategyT
 UPF_LOGIC_NET, --upfLogicNetT
 UPF_LOGIC_PORT, --upfLogicPortT
 UPF_NAMED_REF, --upfNamedRefT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

334

 UPF_POWER_DOMAIN, --upfPowerDomainT
 UPF_POWER_STATE, --upfPowerStateT
 UPF_POWER_STATE_TABLE, --upfPowerStateTableT
 UPF_POWER_STATE_TRANSITION, --upfPowerStateTransitionT
 UPF_POWER_SWITCH_STATE, --upfPowerSwitchStateT
 UPF_POWER_SWITCH, --upfPowerSwitchT
 UPF_PST_STATE, --upfPstStateT
 UPF_REPEATER_STRATEGY, --upfRepeaterStrategyT
 UPF_RETENTION_STRATEGY, --upfRetentionStrategyT
 UPF_SIGNAL_SENSE, --upfSignalSenseT
 UPF_SUPPLY_NET, --upfSupplyNetT
 UPF_SUPPLY_PORT, --upfSupplyPortT
 UPF_SUPPLY_PORT_STATE, --upfSupplyPortStateT
 UPF_SUPPLY_SET, --upfSupplySetT
 UPF_SUPPLY_TYPE, --upfSupplyTypeT
 -- Basic Property types
 UPF_BOOLEAN, --upfBooleanT
 UPF_STRING, --upfStringT
 UPF_INTEGER, --upfIntegerT
 UPF_REAL --upfRealT
);

 -- The following table provides the mapping between the property
 -- names and property IDs in HDL type.
 type upfPropertyIdE is (
 --Property Id Class Name
 UPF_ACK_DELAY, --upfAckPortT
 UPF_ACK_PORTS, --upfPowerSwitchT
 UPF_APPLIES_TO, --upfBoundaryStrategyT
 UPF_ATTR_NAME, --upfAttributeT
 UPF_ATTR_VALUE, --upfAttributeT
 UPF_CELL_INFO, --upfBaseHdlT
 UPF_CELL_KIND, --upfCellT
 UPF_CELL_ORIGIN, --upfCellT
 UPF_CELLS, --upfExtentT
 UPF_CHILD_INSTANCES, --upfHdlScopeT
 UPF_CLAMP_VALUES, --upfIsolationStrategyT
 UPF_CONTROL_PORTS, --upfPowerSwitchT
 UPF_CONTROL_SIGNAL, --upfSignalSenseT
 UPF_CREATION_SCOPE, --upfBaseUpfT
 UPF_CURRENT_STATE, --upfPowerDomainT,
 -- upfCompositeDomainT,
 -- upfSupplySetT,
 -- upfPowerStateTableT
 UPF_CURRENT_VALUE, --upfExpressionT, upfSupplyNetT,
 -- upfSupplyPortT, upfLogicNetT,
 -- upfLogicPortT, upfAckPortT
 UPF_EFFECTIVE_EXTENTS, --upfExtentClassT
 UPF_EQUIVALENT_SETS, --upfSupplySetT
 UPF_EXPR_OPERANDS, --upfExpressionT
 UPF_EXPR_STRING, --upfExpressionT
 UPF_EXTENTS, --upfBaseHdlT
 UPF_FANIN_CONN, --upfNetClassT
 UPF_FANOUT_CONN, --upfNetClassT
 UPF_FILE, --upfBaseT
 UPF_FROM_STATES, --upfPowerStateTransitionT
 UPF_FUNCTIONS, --upfSupplySetT
 UPF_HDL_ATTRIBUTES, --upfBaseHdlT
 UPF_HDL_CELL_KIND, --upfCellT
 UPF_HDL_ELEMENT, --upfExtentT
 UPF_HDL_IMPLEMENTATION, --upfNetworkClassT
 UPF_HDL_ITEMS, --upfHdlScopeT
 UPF_HDL_PORTS, --upfHdlScopeT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

335

 UPF_HDL_WIDTH, --upfHdlNetMultiBitT,
 -- upfHdlPortMultiBitT
 UPF_HICONN, --upfPortClassT
 UPF_INPUT_SUPPLY_PORT, --upfPowerSwitchStateT
 UPF_INPUT_SUPPLY_PORTS, --upfPowerSwitchT
 UPF_IS_ACTIVE, --upfPowerStateT, upfPstStateT
 UPF_IS_DIFF_SUPPLY_ONLY, --upfIsolationStrategyT
 UPF_IS_FORCE_ISOLATION, --upfIsolationStrategyT
 UPF_IS_FORCE_SHIFT, --upfLevelShifterStrategyT
 UPF_IS_ILLEGAL, --upfStateClassT
 UPF_IS_NO_ISOLATION, --upfIsolationStrategyT
 UPF_IS_NO_RETENTION, --upfRetentionStrategyT
 UPF_IS_NO_SHIFT, --upfLevelShifterStrategyT
 UPF_IS_USE_EQUIVALENCE, --upfBoundaryStrategyT
 UPF_IS_USE_RETENTION_AS_PRIMARY,--upfRetentionStrategyT
 UPF_ISOLATION_CONTROLS, --upfIsolationStrategyT
 UPF_ISOLATION_STRATEGIES, --upfPowerDomainT
 UPF_ITEMS, --upfHdlScopeT
 UPF_LEVEL_SHIFT_RULE, --upfLevelShifterStrategyT
 UPF_LEVEL_SHIFTER_STRATEGIES, --upfPowerDomainT
 UPF_LINE, --upfBaseT
 UPF_LOCATION, --upfBoundaryStrategyT
 UPF_LOCONN, --upfPortClassT
 UPF_LOGIC_EXPR, --upfPowerStateT
 UPF_LOGIC_REFS, --upfStrategyT
 UPF_LOWER_BOUNDARY, --upfPowerDomainT
 UPF_LSB, --upfHdlMultiBitSliceT
 UPF_MODEL_NAME, --upfCellT
 UPF_MSB, --upfHdlMultiBitSliceT
 UPF_NAME, --upfBaseT
 UPF_NAME_PREFIX, --upfBoundaryStrategyT
 UPF_NAME_SUFFIX, --upfBoundaryStrategyT
 UPF_NETWORK_ATTRIBUTES, --upfNetworkClassT
 UPF_NEXT_EXTENT, --upfExtentT
 UPF_NORMALIZED_BITS, --upfHdlNetMultiBitT,
 -- upfHdlPortMultiBitT
 UPF_NORMALIZED_IDX, --upfHdlNetBitT, upfHdlPortBitT
 UPF_OBJECT, --upfExtentT
 UPF_OUTPUT_SUPPLY_PORT, --upfPowerSwitchT
 UPF_PARENT, --upfBaseT
 UPF_PD_STATE_TRANSITIONS, --upfPowerDomainT,
 -- upfCompositeDomainT
 UPF_PD_STATES, --upfPowerDomainT,
 -- upfCompositeDomainT
 UPF_PORT_DIR, --upfHdlPortClassT, upfPortClassT
 UPF_PST_HEADER, --upfPowerStateTableT
 UPF_PST_STATES, --upfPowerStateTableT
 UPF_REF_KIND, --upfNamedRefT
 UPF_REF_OBJECT, --upfNamedRefT
 UPF_REPEATER_STRATEGIES, --upfPowerDomainT
 UPF_RESOLVE_TYPE, --upfSupplyNetT
 UPF_RESTORE_CONDITION, --upfRetentionStrategyT
 UPF_RESTORE_SIGNAL, --upfRetentionStrategyT
 UPF_RETENTION_CONDITION, --upfRetentionStrategyT
 UPF_RETENTION_PARAMETERS, --upfRetentionStrategyT
 UPF_RETENTION_STRATEGIES, --upfPowerDomainT
 UPF_ROOT_DRIVER, --upfNetworkClassT
 UPF_SAVE_CONDITION, --upfRetentionStrategyT
 UPF_SAVE_SIGNAL, --upfRetentionStrategyT
 UPF_SIGNAL_SENSITIVITY, --upfSignalSenseT
 UPF_SIMSTATE, --upfPowerStateT
 UPF_SINK_FILTER, --upfBoundaryStrategyT
 UPF_SLICE_BITS, --upfHdlMultiBitSliceT

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

336

 UPF_SMALLEST_ATOMIC_SLICE, --upfHdlNetBitT, upfHdlPortBitT
 UPF_SOURCE_EXTENTS, --upfCellT
 UPF_SOURCE_FILTER, --upfBoundaryStrategyT
 UPF_SP_STATES, --upfSupplyPortT
 UPF_SS_STATES, --upfSupplySetT
 UPF_SS_TRANSITIONS, --upfSupplySetT
 UPF_STATE, --upfSupplyTypeT
 UPF_SUBDOMAINS, --upfCompositeDomainT
 UPF_SUPPLY_EXPR, --upfPowerStateT
 UPF_SUPPLY_SET_HANDLES, --upfExtentClassT,
 -- upfCompositeDomainT
 UPF_SUPPLY_STATE, --upfSupplyPortStateT
 UPF_SUPPLY_STATES, --upfPstStateT
 UPF_SW_STATES, --upfPowerSwitchT
 UPF_SWITCH_EXPR, --upfPowerSwitchStateT
 UPF_SWITCH_OUTPUT_STATE, --upfPowerSwitchStateT
 UPF_THRESHOLD_VALUE, --upfLevelShifterStrategyT
 UPF_TO_STATES, --upfPowerStateTransitionT
 UPF_UPPER_BOUNDARY, --upfPowerDomainT
 UPF_USER_CLAMP_VALUES, --upfIsolationStrategyT
 UPF_VOLTAGE, --upfSupplyTypeT
 UPF_VOLT_KIND, --upfSupplyPortStateT
 UPF_VOLT_MAX, --upfSupplyPortStateT
 UPF_VOLT_MIN, --upfSupplyPortStateT
 UPF_VOLT_NOM --upfSupplyPortStateT
);

 type upfAppliesToFilterE is (
 UPF_FILTER_UNDEF, -- Undefined
 UPF_FILTER_INPUTS, -- -applies_to inputs
 UPF_FILTER_OUTPUTS, -- -applies_to outputs
 UPF_FILTER_BOTH -- -applies_to both
);

 type upfCellKindE is (
 UPF_CELL_NONE, -- not a cell
 UPF_CELL_ISOLATION, -- represents isolation cell
 UPF_CELL_LEVEL_SHIFTER, -- represents level shifter cell
 UPF_CELL_ISO_LS_COMBO, -- represents isolation and level
 -- shifter combo cell
 UPF_CELL_RETENTION, -- represents retention cell
 UPF_CELL_SWITCH, -- represents a switch cell
 UPF_CELL_REPEATER, -- represents a repeater or buffer cell
 UPF_CELL_CORRUPT, -- represents any standard cell which
 -- can get corrupted
 UPF_CELL_MACRO -- represents a macro cell or power
 -- model
);

 type upfCellOriginE is (
 UPF_ORIGIN_UNKNOWN, -- When cell origin is not known
 UPF_ORIGIN_DESIGN, -- When cell is present in design
 -- itself
 UPF_ORIGIN_INSERTED, -- When cell is inserted by UPF after
 -- application of strategy (e.g.
 -- isolation) and using default
 -- model.
 UPF_ORIGIN_INSERTED_MAP, -- When cell is inserted by UPF after
 -- application of strategy and using
 -- user specified model via map_*
 -- and use_interface_cell commands
 UPF_ORIGIN_INFERRED -- When cell is inferred by UPF at RTL.
 -- This information will only be

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

337

 -- present on cells which are set on
 -- HDL Port or Nets group of objects.
);

 type upfHdlCellKindE is (
 UPF_HDLCELL_NONE, -- not a cell
 UPF_HDLCELL_COMB, -- represents a combinatorial logic
 UPF_HDLCELL_FLOP, -- represents a flip flop
 UPF_HDLCELL_LATCH, -- represents a latch
 UPF_HDLCELL_MEM -- represents a memory like ram, etc.
);

 type upfIsolationClampE is (
 UPF_CLAMP_UNDEF, -- Undefined
 UPF_CLAMP_ZERO, -- -*_clamp 0
 UPF_CLAMP_ONE, -- -*_clamp 1
 UPF_CLAMP_ZEE, -- -*_clamp Z
 UPF_CLAMP_LATCH, -- -*_clamp latch
 UPF_CLAMP_ANY, -- -*_clamp any
 UPF_CLAMP_USER_VALUE -- -*_clamp value
);

 type upfLevelShifterRuleE is (
 UPF_LS_LOW_TO_HIGH, -- -rule low_to_high
 UPF_LS_HIGH_TO_LOW, -- -rule high_to_low
 UPF_LS_BOTH -- -rule both
);

 type upfLocationE is (
 SELF, -- -location self
 OTHER, -- -location other
 PARENT, -- -location parent
 AUTOMATIC, -- -location automatic
 FANOUT -- -location fanout
);

 type upfNamedRefKindE is (
 UPF_REF_POWER, -- power function of supply set
 UPF_REF_GROUND, -- ground function of supply set
 UPF_REF_PWELL, -- pwell function of supply set
 UPF_REF_NWELL, -- nwell function of supply set
 UPF_REF_DEEPPWELL, -- deeppwell function of supply set
 UPF_REF_DEEPNWELL, -- deepnwell function of supply set
 UPF_REF_ISO_SIGNAL, -- reference to isolation control
 -- signal in set_isolation
 UPF_REF_SAVE_SIGNAL, -- to save_signal in set_retention
 UPF_REF_RESTORE_SIGNAL, -- reference to restore_signal in
 -- set_retention
 UPF_REF_GENERIC_CLOCK, -- reference to UPF_GENERIC_CLOCK in
 -- set_retention
 UPF_REF_GENERIC_DATA, -- reference to UPF_GENERIC_DATA in
 -- set_retention
 UPF_REF_GENERIC_ASYNC_LOAD, -- reference to UPF_GENERIC_ASYNC_LOAD
 -- in set_retention
 UPF_REF_GENERIC_OUTPUT, -- reference to UPF_GENERIC_OUTPUT in
 -- set_retention
 UPF_REF_USER_DEFINED -- some user defined ref handle
);

 type upfPortDirE is (
 UPF_DIR_UNDEF, -- Undefined
 UPF_DIR_IN, -- -direction in
 UPF_DIR_OUT, -- -direction out

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

338

 UPF_DIR_INOUT -- -direction inout
);

 type upfResolveE is (
 UNRESOLVED, -- -resolve unresolved
 ONE_HOT, -- -resolve one_hot
 PARALLEL, -- -resolve parallel
 PARALLEL_ONE_HOT -- -resolve parallel_one_hot
);

 type upfRetentionParamE is (
 RET_SUP_COR,
 NO_RET_SUP_COR,
 SAV_RES_COR,
 NO_SAV_RES_COR
);

 type upfSignalSenseKindE is (
 UPF_SENSE_HIGH, -- high
 UPF_SENSE_LOW, -- low
 UPF_SENSE_POSEDGE, -- posedge
 UPF_SENSE_NEGEDGE -- negedge
);

 type upfSimstateE is (
 CORRUPT -- -simstate CORRUPT or -simstate
 -- NOT_NORMAL
 CORRUPT_ON_ACTIVITY, -- -simstate CORRUPT_ON_ACTIVITY or
 -- -simstate NOT_NORMAL
 CORRUPT_ON_CHANGE, -- -simstate CORRUPT_ON_CHANGE or
 -- -simstate NOT_NORMAL
 CORRUPT_STATE_ON_ACTIVITY, -- -simstate CORRUPT_STATE_ON_ACTIVITY
 -- or -simstate NOT_NORMAL
 CORRUPT_STATE_ON_CHANGE, -- -simstate CORRUPT_STATE_ON_CHANGE
 -- or -simstate NOT_NORMAL
 NORMAL, -- -simstate NORMAL
);

 type upfVoltKindE is (
 NOM, -- when only nominal value is specified
 -- in add_port_state command
 DOUBLET, -- when a doublet is specified in
 -- add_port_state command
 TRIPLET -- when a triplet is specified in
 -- add_port_state command
);

 -- HDL Access Functions

 -- Purpose: Get a handle to a given object from the pathname
 impure function upf_get_handle_by_name (
 -- A string representing handle ID for an object
 pathname : upfStringT;
 -- An optional handle to the object from which the relative
 -- pathname is given
 relative_to : upfHandleT := 0)
 -- Return Value: Returns the handle to the specified property or
 -- null if not found
 return upfHandleT;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

339

 -- Purpose: Query property on a given object
 impure function upf_query_object_properties (
 -- UPF Handle of the given object
 object_handle : upfHandleT;
 -- The enumerated value corresponding to the given property on the
 -- object
 prop : upfPropertyIdE)
 -- Return Value: Returns the handle to the specified property or
 -- null if not found
 return upfHandleT;

 -- Purpose: Get the next handle from the iterator
 impure function upf_iter_get_next (
 -- Handle to the iterator
 iter_handle : upfIteratorT)
 -- Return Value: Returns the handle to the next element in the
 -- iterator or 0 if no element is present.
 return upfHandleT;

 -- Immediate Read Access Functions

 -- The following table provides the mapping of basic property and the
 -- read access routine to get the value.

 -- Type Name VHDL

 -- upfStringT upf_get_value_str()
 -- upfIntegerT upf_get_value_int()
 -- upfBooleanT upf_get_value_int()
 -- All Enumerated Types upf_get_value_int()
 -- upfRealT upf_get_value_real()

 -- Purpose: Get the string value from property handle
 impure function upf_get_value_str (
 -- Handle to the property
 prop : upfHandleT)
 -- Return Value: Returns string value of the given property handle
 -- or empty string if error.
 return upfStringT;

 -- Purpose: Get the integer value from property handle
 impure function upf_get_value_int (
 -- Handle to the property
 prop : upfHandleT)
 -- Return Value: Returns integer value of the given property
 -- handle.
 return upfIntegerT;

 -- Purpose: Get the real value from property handle
 impure function upf_get_value_real (
 -- Handle to the property
 prop : upfHandleT)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

340

 -- Return Value: Returns real value of the given property handle.
 return upfRealT;

 -- Purpose: Get the value of supply net type from the property handle
 impure function upf_get_label_upfSupplyTypeT (
 -- Handle to the property
 prop : upfHandleT)
 -- Return Value: Returns upfSupplyTypeT for given property handle.
 return upfSupplyTypeT;

 -- Purpose: Get the supply value of a Net
 impure function get_supply_value (
 -- A string representing pathname of supply net
 name : upfStringT)
 -- Return Value Returns upfSupplyTypeT for given supply net.
 return upfSupplyTypeT;

 -- Purpose: Get the supply voltage of a net
 impure function get_supply_voltage (
 -- An HDL object of upfSupplyTypeT
 arg : upfSupplyTypeT)
 -- Return Value: Returns supply voltage of given upfSupplyTypeT
 return upfRealT;

 -- Purpose: Get the supply FULL_ON state
 impure function get_supply_on_state (
 -- An object of upfSupplyTypeT
 arg : upfSupplyTypeT)
 -- Return Value: Returns 1 when supply net state is FULL_ON or
 -- PARTIAL_ON and set_partial_on_translation FULL_ON
 -- is called. It returns 0 in other cases.
 return upfBooleanT;

 -- Purpose: Get the state from a supply net
 impure function get_supply_state (
 -- An object of upfSupplyTypeT
 arg : upfSupplyTypeT)
 -- Return Value: Returns state of the supply net
 return upfSupplyStateE;

 -- Immediate Write Access Functions

 -- The following table provides the mapping between basic property
 -- types and corresponding hdl function to write the value
 --
 -- Type Name VHDL
 --
 -- upfStringT -
 -- upfIntegerT upf_set_value_int()
 -- upfBooleanT upf_set_value_int()
 -- All Enumerated Types upf_set_value_int()

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

341

 -- upfRealT -
 -- upfSupplyTypeT upf_set_value_upfSupplyTypeT()
 --

 -- Purpose: Sets the integer value on the dynamic property
 impure function upf_set_value_int (
 -- Handle to the property
 prop : upfHandleT;
 -- Value
 value : upfIntegerT)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Sets the upfSupplyTypeT value on the dynamic property
 impure function upf_set_value_upfSupplyTypeT (
 -- Handle to the property
 prop : upfHandleT;
 -- Value of type upfSupplyTypeT
 value : upfSupplyTypeT)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Change state of supply to FULL_ON and specify voltage
 impure function supply_on (
 -- A string representing pathname of the root supply
 supply_name : upfStringT;
 -- Voltage value in real
 value : upfRealT := 1.0)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Change state of supply to OFF
 impure function supply_off (
 -- A hierarchical path ID for a root supply.
 supply_name : upfStringT)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Change state of supply to PARTIAL_ON and specify voltage
 impure function supply_partial_on (
 -- A string representing pathname of the root supply
 supply_name : upfStringT;
 -- Voltage value in real
 value : upfRealT := 1.0)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Assign the specified supply state to this object.
 impure function set_supply_state (
 -- the hierarchical path ID of a supply port, net or supply set function
 object_name : upfStringT;
 -- one of OFF, PARTIAL_ON, FULL_ON, UNDETERMINED
 supply_state : upfSupplyStateE)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

342

 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Make the specified power state active for this object.
 impure function set_power_state_by_handle (
 -- Handle to the UPF object
 object : upfHandleT;
 -- Handle of the power state present on the object
 power_state : upfHandleT)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Purpose: Make the specified power state active for this object.
 impure function set_power_state (
 -- the hierarchical path ID of a supply set, power domain,
 -- composite domain, group, model, or instance
 object_name : upfStringT;
 -- the simple name of a power state of that object
 power_state : upfStringT)
 -- Return Value: Returns 1 on success, 0 on failure
 return upfBooleanT;

 -- Continuous Access Functions

 -- Purpose: Create a continuous monitor that monitors the dynamic
 -- property on the given object
 impure function upf_create_object_mirror (
 -- A string representing hierarchical path ID of the source object
 -- whose value will be continuously monitored
 src : UpfStringT;
 -- A string representing hierarchical path ID of the destination
 -- object on which the value will be transferred from source
 -- object
 dst : UpfStringT)
 -- Return Value: Returns 1 when mirroring is successful or 0
 -- otherwise
 return upfBooleanT;

 -- Utility Functions

 -- Purpose: Get the class id of the given object handle
 impure function upf_query_object_type (
 -- Handle to the object or property
 handle : upfHandleT)
 -- Return Value: Returns enumerated value representing class of the
 -- given object or property
 return upfClassIdE;

 -- Purpose Check if object belongs to particular class
 impure function upf_object_in_class (
 -- Handle to the object or property
 handle : upfHandleT;
 -- The enumerated value representing the class of the object.
 class_id : upfClassIdE)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

343

 -- Return Value: Returns 1 when handle belongs to class and 0
 -- otherwise.
 return upfBooleanT;

 -- Purpose: Get the pathname of the given handle
 impure function upf_query_object_pathname (
 -- Handle to a valid object
 object : upfHandleT;
 -- An optional handle to the object from which the relative
 -- pathname is required
 relative_to : upfHandleT := 0)
 -- Return Value: Returns the hierarchical pathname of the given
 -- object
 return upfStringT;

 -- Purpose: Converts the voltage value in volts represented as real
 -- value to micro volts represented as integer.
 impure function upf_convert_real_volts_to_int_uvolts (
 -- Voltage value in volts represented as a real number
 volt : upfRealT)
 -- Return Value: Returns the converted value of voltage in real
 -- converted to integer value in micro volts
 return upfIntegerT;

 -- Purpose: Converts the voltage in micro volts represented as
 -- integer to volts represented as real value
 impure function upf_convert_int_uvolts_to_real_volts (
 -- Voltage value in micro volts represented as a integer number
 uvolt : upfIntegerT)
 -- Return Value: Returns the converted value of voltage in micro
 -- volts represented as integer to volts represented
 -- as real value
 return upfRealT;

 -- Pre-defined supply net resolution functions

 type upfSupplyTypeVectorT is array (INTEGER range <>)
 of upfSupplyTypeT;

 impure function one_hot (
 sources: upfSupplyTypeVectorT)
 return upfSupplyTypeT;

 impure function parallel (
 sources: upfSupplyTypeVectorT)
 return upfSupplyTypeT;

 impure function parallel_one_hot (
 sources: upfSupplyTypeVectorT)
 return upfSupplyTypeT;

end package UPF;

--

-- EOF

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

344

Annex A

(informative)

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be
understood or used to implement this standard. Reference to these resources is made for informational use
only.

[B1] IEEE Standards Dictionary Online.17

[B2] IEEE Std 1666™, IEEE Standard for Standard SystemC Language Reference Manual.

[B3] ISO/IEC 8859-1, Information technology—8-bit single-byte coded graphic character sets—Part 1:
Latin Alphabet No. 1.18

[B4] Liberty library format usage.19

[B5] Tcl language syntax summary.20

[B6] Tcl language usage.21

17 Available at http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_dictionary.html.
18 ISO/IEC publications are available from the ISO Central Secretariat (http://www.iso.org/). ISO publications are also available in the
United States from the American National Standards Institute (http://www.ansi.org/).
19 Available at https://www.opensourceliberty.org.
20 Available at http://www.tcl.tk/man/tcl8.4/TclCmd.
21 Available at http://sourceforge.net/projects/tcl/.

http://www.ieee.org/publications_standards/publications/subscriptions/prod/standards_dictionary.html

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

345

Annex B

(normative)

Value conversion tables

The predefined value conversion tables (VCTs) are as follows.

B.1 VHDL_SL2UPF

create_hdl2upf_vct VHDL_SL2UPF
-hdl_type vhdl
-table { {'U' UNDETERMINED}
 {'X' UNDETERMINED}
 {'0' OFF}
 {'1' FULL_ON}
 {'Z' UNDETERMINED}
 {'L' OFF}
 {'H' FULL_ON}
 {'W' UNDETERMINED}
 {'-' UNDETERMINED}}

B.2 UPF2VHDL_SL

create_upf2hdl_vct UPF2VHDL_SL
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
 {PARTIAL_ON 'X'}
 {FULL_ON '1'}
 {OFF '0'}}

B.3 VHDL_SL2UPF_GNDZERO

create_hdl2upf_vct VHDL_SL2UPF_GNDZERO
-hdl_type vhdl
-table { {'U' UNDETERMINED}
 {'X' UNDETERMINED}
 {'0' FULL_ON}
 {'1' OFF}
 {'Z' UNDETERMINED}
 {'L' FULL_ON}
 {'H' OFF}
 {'W' UNDETERMINED}
 {'-' UNDETERMINED}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

346

B.4 UPF_GNDZERO2VHDL_SL

create_upf2hdl_vct UPF_GNDZERO2VHDL_SL
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
 {PARTIAL_ON 'X'}
 {OFF '1'}
 {FULL_ON '0'}}

B.5 SV_LOGIC2UPF

create_hdl2upf_vct SV_LOGIC2UPF
-hdl_type sv
-table {{X UNDETERMINED}
 {Z UNDETERMINED}
 {1 FULL_ON}
 {0 OFF }}

B.6 UPF2SV_LOGIC

create_upf2hdl_vct UPF2SV_LOGIC
-hdl_type sv
-table {{UNDETERMINED X}
 {PARTIAL_ON X}
 {FULL_ON 1}
 {OFF 0}}

B.7 SV_LOGIC2UPF_GNDZERO

create_hdl2upf_vct SV_LOGIC2UPF_GNDZERO
-hdl_type sv
-table {{X UNDETERMINED}
 {0 FULL_ON}
 {1 OFF}
 {Z UNDETERMINED}}

B.8 UPF_GNDZERO2SV_LOGIC

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC
-hdl_type sv
-table {{UNDETERMINED X}
 {PARTIAL_ON X}
 {OFF 1}
 {FULL_ON 0}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

347

B.9 VHDL_TIED_HI

create_upf2hdl_vct VHDL_TIED_HI
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
 {FULL_ON '1'}
 {PARTIAL_ON 'X'}
 {OFF 'X'}}

B.10 SV_TIED_HI

create_upf2hdl_vct SV_TIED_HI
-hdl_type sv
-table {{UNDETERMINED X}
 {FULL_ON 1}
 {PARTIAL_ON X}
 {OFF X}}

B.11 VHDL_TIED_LO

create_upf2hdl_vct VHDL_TIED_LO
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
 {FULL_ON '0'}
 {PARTIAL_ON '0'}
 {OFF 'X'}}

B.12 SV_TIED_LO

create_upf2hdl_vct SV_TIED_LO
-hdl_type sv
-table {{UNDETERMINED X}
 {FULL_ON 0}
 {PARTIAL_ON X}
 {OFF X}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

348

Annex C

(informative)

UPF query examples

This annex lists a few sample Tool Command Language (Tcl) procs that perform some high-level queries
and are built upon basic Unified Power Format (UPF) queries.

C.1 Utility procs

C.1.1 Introduction

The utility procs are some useful procs that are used by more complex procs to perform a specific
functionality.

C.1.2 Get strategy from port

proc get_port_strategy_extent {port strategy} {
 set extents [upf_query_object_properties $port \
 -property upf_extents];
 foreach extent $extents {
 set upf [upf_query_object_properties $extent \
 -property UPF_OBJECT];
 if {[upf_query_object_type $upf] == $strategy} {
 return $extent
 }
 }
 return ""
}

C.1.3 Get list of effective extents from UPF object

proc query_effective_extent_list {extent} {
 set result "";
 # Check for empty arg
 if {$extent == ""} {
 return $result;
 }
 # Check if incorrect object is passed
 if {[upf_query_object_type $extent] != "upfExtentT"} {
 return $result;
 }
 # Traverse to next extent
 set result [concat $result
 [query_effective_extent_list \
 [upf_query_object_properties $extent \
 -property upf_next_extent]]];
 # Add the current extent to the list
 lappend result $extent;
 return $result;
}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

349

C.2 High-level procs

C.2.1 Check whether port has isolation cell

proc is_port_isolated {port} {
 if {[get_port_strategy_extent $port \
 upfIsolationStrategyT] } {
 return "true"
 }
 return "false"
}

Usage

 is_port_isolated mid/port1
 is_port_isolated /top/dut_i/port1

Output

 false
 true

C.2.2 get strategy name corresponding to isolation cell

proc get_port_iso_strat_name {port} {
 set extent [get_port_strategy_extent $port \
 upfIsolationStrategyT];
 if {$extent != ""} {
 set upf [upf_query_object_properties $extent \
 -property upf_object];
 return [upf_query_object_properties $upf \
 -property upf_name];
 }
 return ""
}

Usage

 get_port_iso_strat_name mid/port1

Output

 iso

C.2.3 Check isolation clamp value matches with given value

proc check_isolation_clamp {port reset_val} {
 set extent [get_port_strategy_extent $port \
 upfIsolationStrategyT];
 if {$extent != ""} {
 set upf [upf_query_object_properties $extent \
 -property upf_object];
 set clampv [upf_query_object_properties $extent \
 -property upf_clamp_values];

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

350

 if {[lindex $clampv 0] == $reset_val} {
 return 1;
 }
 }
 return 0;
}

Usage

 check_isolation_clamp top/dut_i/port 1

Output

 1

C.2.4 Print effective element list

proc print_effective_element_list {upf} {
 if {[upf_object_in_class $upf \
 -class upfExtentClassT] != 1} {
 return;
 }
 set extent_head [upf_query_object_properties $upf \
 -property upf_effective_extents];
 set extents [query_effective_extent_list $extent_head]
 foreach extent $extents {
 set element [upf_query_object_properties $extent \
 -property upf_hdl_element];
 puts [upf_query_object_pathname $element];
 }
 return;
}

Usage

 print_effective_element_list /top/dut_i/pd

Output

 /top/dut_i
 /top/dut_i/mid

C.2.5 Print isolation info from PD

proc print_iso_info {upf} {
 if {[upf_object_in_class $upf \
 -class upfPowerDomainT] != 1} {
 return;
 }
 set pd_iso [upf_query_object_properties $upf \
 -property upf_isolation_strategies];
 foreach iso $pd_iso {
 # Print name of strategy
 puts [upf_query_object_properties $iso \
 -property upf_name];
 # Print clamp value

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

351

 puts [upf_query_object_properties $iso \
 -property upf_clamp_values];
 # Print Control info
 set ctrlsense lindex \
 [upf_query_object_properties $iso \
 -property upf_isolation_controls] 0;
 puts $ctrlsense;
 # Print Control signal ID
 puts [upf_query_object_properties $ctrlsense \
 -property upf_control_signal];
 # Print Control signal sensitivity
 puts [upf_query_object_properties $ctrlsense \
 -property upf_signal_sensitivity];
 }
 return;
}

Usage

 print_effective_element_list PD_Proc

Output

 ISOproc
 0
 #UPFSIGSENSE1#
 /Sub/pISO
 upf_sense_high

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

352

Annex D

(informative)

Replacing deprecated and legacy commands and options

This annex shows the commands and command options that have been categorized as deprecated or legacy
since the last version of this standard, and recommendations for replacing them (where applicable).

Legacy constructs (commands and/or options) have not had their syntax and/or semantics updated to be
consistent with other commands in this version of the standard, so their descriptions may contain
significant obsolete information and their semantics may not be interoperable with the latest Unified Power
Format (UPF) concepts. For recommendations on how to use current constructs to replace legacy and
deprecated ones, see D.2.

D.1 Deprecated and legacy constructs

D.1.1 Introduction

The following subclauses shows any constructs that have been categorized as deprecated or legacy
constructs (see also 6.2). For recommendations on replacing them, see Table D.1.

D.1.2 Deprecated constructs

This subclause lists the deprecated commands and options.

There are currently no deprecated constructs.

D.1.3 Legacy constructs

D.1.3.1 Overview

Subclause D.1.3 lists the legacy commands and options.

D.1.3.2 add_port_state (see also 6.4)

add_port_state port_name
{-state {name <nom | min max | min nom max | off>}}*

D.1.3.3 add_pst_state (see also 6.6)

add_pst_state state_name
-pst table_name
-state supply_states

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

353

D.1.3.4 create_pst (see also 6.23)

create_pst table_name
-supplies supply_list

D.1.3.5 describe_state_transition (see also 6.28)

describe_state_transition transition_name -object object_name
[-from from_list -to to_list]
[-paired {{from_state to_state}*}] [-legal | -illegal]

D.1.3.6 load_upf_protected (see also 6.33)

load_upf_protected upf_ file_name
[-hide_globals] [-scope instance_name_list]
[-params param_list]

D.1.3.7 set_domain_supply_net (see also 6.42)

set_domain_supply_net domain_name
-primary_power_net supply_net_name
-primary_ground_net supply_net_name

D.1.3.8 set_isolation (see also 6.44)

set_isolation strategy_name
...
[-isolation_power_net net_name] [-isolation_ground_net net_name] (These are legacy options.)

D.1.3.9 set_retention (see also 6.49)

set_retention isolation_name
...
[-retention_power_net net_name] [-retention_ground_net net_name] (These are legacy options.)

D.2 Recommendations for replacing deprecated and legacy constructs

Table D.1 shows how to use current constructs to replace deprecated and/or legacy constructs.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

354

Table D.1—Recommended commands and options for replacing deprecated and legacy constructs

Command Options Recommended command Recommended options Reasons for the
recommendation

add_port_state port_name
-state {name <options>}

add_power_state object_name
-supply_expr boolean_expression

add_power_state is intended to
replace the whole of the PST
commands

add_pst_state state_name
-pst table_name
-state supply_states

add_power_state -state state_name
N/A
-supply_expr
{boolean_expression}

add_power_state is intended to
replace the whole of the PST
commands

create_pst table_name
-supplies supply_list

add_power_state -state state_name
N/A
-supply_expr
{boolean_expression}

add_power_state is intended to
replace the whole of the PST
commands

describe_state_transition transition_name
-object object_name
[-from from_list -to to_list]
[-paired {{from_state
to_state}*}] [-legal | -illegal]

add_state_transition object_name
-transition transition_name
-from from_list -to to_list
-paired {{from_state to_state}*}
-legal | -illegal

add_state_transition is intended
to replace
describe_state_transition

load_upf_protected upf_ file_name
[-hide_globals]
[-scope instance_name_list]
[-params param_list]

load_upf upf_ file_name
[-hide_globals]
[-scope instance_name_list]
[-parameters {{parameter_name
[parameter_value]}*}]

Simplification of
load_upf_protected and
load_upf

set_domain_supply_net domain_name
-primary_power_net net
-primary_ground_net
 net

associate_supply_set supply_set
-handle supply_set_handle (for
both)

Superseded by a a more abstract
concept

set_isolation -isolation_power_net net
-isolation_ground_net net

set_isolation

-isolation_supply set
(for both)

Superseded by a more abstract
concept

set_retention -retention_power_net net
-retention_ground_net net

set_retention

-retention_supply set
(for both)

Superseded by a more abstract
concept

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

355

Annex E

(informative)

Low-power design methodology

The purpose of this annex is two-fold. First, various design flows with a recommended use model of
Unified Power Format (UPF) are illustrated. Second, a simple design example is used to demonstrate how
these various power intent aware design flows can be built.

E.1 Simple System on Chip (SoC) example design

E.1.1 Introduction

Consider a simple design shown in Figure E.1. This design has the module name soc, which contains glue
logic at the top, and other intellectual property (IP) blocks—MPCore (mpcore), display controller (display),
power control unit (pcu) and memory controller (mem_controller). The MPCore and display controller IPs
have been designed and verified as independent IPs and integrated in the SoC.

The MPCore IP is a dual central processing unit (CPU) multi-processor IP that consists of L2 cache random
access memory (RAM)—l2tagram and l2dataram that are hard IPs. The two instances of CPU, named
cpu0 and cpu1 are instances of the same module cpu. The CPU consists of L1 cache RAM—l1tagram and
l1dataram that are hard IPs and other logic blocks within.

The display controller IP has a PHY with internal regulator. The power control unit controls the power for
the SoC.

E.1.2 Functional power states of the design

The following is the detailed description of the power states of the example design.

The memories support power gating with internal switches. The memory contents can be retained in
retention state of the memory when the memory is power gated. The memory supports the following power
states—ON, OFF, and RET. In the ON state, the memory leakage power can be reduced by setting to a
light-sleep (LS) state through control pins of the memory.

The CPU supports power-gating and voltage-scaling. The CPU is in power domain PDCPU. In power
down state, the state of the CPU can be retained. The CPU can be in one of these states: ON, OFF, or RET.
When the CPU is in RET state, the L1 memories shall be in RET state. When the CPU is in OFF state, the
L1 memories shall be in OFF state. When the CPU is in ON state the L1 memories can be in any of its legal
states.

PDCPU state L1 memory state
ON ON, RET, OFF, LS
RET RET
OFF OFF

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

356

The MPCORE supports power-gating and voltage-scaling. The MPCORE is in power domain
PDMPCORE, can be either ON or OFF state. In ON state, cpu0, cpu1, and L2 memories can be in any of
its legal states. In OFF state, cpu0, cpu1, and L2 memories will be in OFF state.

PDMPCORE state L2 memory state L1 memory state
ON ON, RET, OFF ON, RET, OFF, LS
OFF OFF OFF

The CPU and MPCORE operate on same supply VCPU that has a nominal voltage of 0.7 V and scales
from 0.63 V to 0.77 V based on the SoC performance and power requirements decided during its operation
by higher-level firmware.

The display controller PHY is a hard IP that has an internal regulator. The input to the regulator is VDDI
that is 1.8 V. The output of the regulator can either be LOW (0.6 V) or OFF (0 V). The PHY and display
controller are powered by the output supply of the regulator. The display controller is in power domain
PDDISP. Functionally the display controller can be in either ON or OFF state.

PDDISP state PHY state
ON ON
OFF OFF

The power control unit is an always-on module that is powered by VSOC supply. The power control unit is
in power domain PDAON.

The SoC top supports power gating and is powered by VSOC supply. SoC top is set to power domain
PDSOC. The SoC can be either in ON or OFF power state. In the ON power state, the underlying IPs can
be in any of their legal states. In the OFF state, the MPCORE and display will be in OFF state.

The VSOC supply has a nominal voltage of 0.8 V. VSOC and VCPU supplies are correlated supplies (see
6.39).

PDSOC PDSOC
i

PDAON PDMPCORE state PDDISP
ON ON ON ON/OFF ON/OFF
SLEEP OFF ON OFF OFF

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

357

Figure E.1—Simple SoC design

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

358

E.1.3 Successive refinement UPF

The SOC power intent is specified using successive refinement UPF as described in 4.9. The CPU,
MPCORE, and display controller IPs have constraint UPF available along with the hardware description
language (HDL). In the context of the SoC, the configuration and implementation UPF are created.

To meet various engineering challenges in ASIC implementation, it could be decided to harden the CPU
and instantiate the same hard macro twice in the MPCORE as cpu0 and cpu1. This engineering decision
has no influence on how the verification of the SoC has been done. To be able to implement the CPU as a
hard macro, an implementation UPF for the CPU is required. The CPU will have constraint, configuration,
and implementation UPF to implement it as a hard macro.

The MPCore and display controller will have constraint and configuration UPF. The SoC top will have
constraint, configuration, and implementation UPF.

In summary, an IP will typically have constraint UPF, a soft macro will have configuration UPF, and any
block implemented separately must have an implementation UPF.

E.2 Design, verification, and implementation flow

E.2.1 Overview

Figure E.2 illustrates a typical UPF design flow for a SoC like the one shown in Figure E.1.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

359

Figure E.2—Typical UPF design flow

For each of the three design stages shown in Figure E.2, the design example in Figure E.1 illustrates how
the UPF can be created, used, and passed on to the later stages of the design flow. It starts with RTL design,
followed by logic implementation, and then physical implementation.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

360

E.2.2 RTL design stage

The configuration UPF is created at this stage, which includes the UPF power models and/or Liberty
models for the hard IPs instantiated within the soft IP. The configuration UPF must satisfy the constraint
UPF for the IP blocks.

The hard IPs can use one of these methods to specify the power intent of the hard IPs in the design:

a) UPF macro model that completely specifies the power intent of the hard IP which is descriptive
rather than directive.

b) Liberty model in conjunction with a UPF macro model that supplements the Liberty model.

The UPF example shows the use of these two methods to specify power intent.

E.2.3 Logic implementation

The logic implementation stage includes logic synthesis, Design for Test (DFT) synthesis, and gate-level
simulation. The following information is typically required in addition to the power intent specified in the
RTL stage:

a) The supply ports and supply net definitions, supply net associations with the supply set functions,
and supply state of the supply sets; the supply connections for the hard IPs are specified.

b) The isolation supply and location of isolation cells based on the supply availability in each domain.

c) If level-shifters are needed based on the supply voltages, it is specified in the implementation UPF.

d) If designers have some preferences for specific library cells to be used for state retention, isolation,
and level-shifting strategies, specify them in the implementation UPF.

DFT synthesis typically creates some new ports and connections in the design that can create new domain
crossings that are not covered by the original power intent. Designers need to make sure either of the
following occur:

— All newly created ports are covered by existing strategies, which is possible if the strategy was
written using path-based strategies (without using -elements to specify the exact port name).

— A new isolation strategy is added to cover the new crossing before the physical implementation
stage.

E.2.4 Physical implementation

Physical implementation includes all the steps from power planning, placement, routing, power-switch
insertion, physical optimization, and sign-off to generating the final physical netlist and layout. The
following information is typically required in addition to the power intent specified for the logic
implementation stage:

a) Power-switch definitions

b) Other physical implementation constraints, such as the requirements for repeaters (see 6.48)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

361

E.3 Power intent of the example design

E.3.1 Introduction

The UPF for the SoC is constructed bottom up. The constraint UPF for the IPs are assumed to be available
as part of the IP. The power model for the hard IP is represented based on the approach adopted for
simulation and implementation.

E.3.2 Power model for memory hard IP

The approach described here uses UPF power model in conjunction with the Liberty model of the memory
hard IP to represent the power intent of the memory. The Liberty model defines the memory as a macro.

Power intent details that are to be supplemented to the Liberty model to completely specify the power
intent of the memory macro are as follows:

a) In a macro that has internal switch, and hence internal power/ground pin, some input/output pins of
the macro have related power/ground pin as the internal power/supply pin. Since the internal
power/ground pin defined in the Liberty is not available in UPF, the related power/ground attribute
specified in Liberty is unusable though that reflects the actual implementation of the macro.
Accessing the internal power/ground pin of the macro in the UPF and specifying the power states
based on the internal power/ground pin will be done in the power model.

b) Liberty does not specify the power states of the macro to be able to perform power intent checks or
power-aware simulations with macro set to different functional states it can be in. So the power
states of the memory will be specified in the power model.

The L1 cache RAMs of the CPU use MEMSRAM_1024X32 memory modules. The SystemVerilog module
declaration of the memory is as follows:

module MEMSRAM_1024X32 (
 `ifdef PG_PINS
 // Core supply port of the memory
 (* UPF_pg_type = "primary_power" *) input VDDCE;
 // Periphery supply port of the memory
 (* UPF_pg_type = "primary_power" *) input VDDPE;
 // Common ground supply port of the memory
 (* UPF_pg_type = "primary_ground" *) input VSSE;
 `endif
 output [33:0] Q;
 output PRDYN;
 input CLK, CEN, WEN;
 input [9:0] A;
 input [33:0] D;
 input PGEN; // switch control input
 input RET; // retention control input
);

Extract from the Liberty model of the memory that shows the key information required to represent the
power intent of the memory is shown below:

library(MEMSRAM_1024X32_tt_0p72v_0c) {
 pg_pin(VDDCE) {
 voltage_name : VDDCE;
 pg_type : primary_power;
 direction : input;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

362

 }

 pg_pin(VDDPE) {
 voltage_name : VDDPE;
 pg_type : primary_power;
 direction : input;
 }

 pg_pin(VSSE) {
 voltage_name : VSSE;
 pg_type : primary_ground;
 direction : input;
 }

 # Internal PG Pin
 pg_pin(VDDPI) {
 voltage_name : VDDPE;
 pg_type : internal_power;
 direction : internal;
 switch_function : "PGEN";
 pg_function : VDDPE;
 }

 # Power/State Control Pin
 pin(PGEN) {
 direction : input;
 always_on : true;
 switch_pin : true;
 related_power_pin : "VDDPE";
 related_ground_pin : "VSSE";
 }

 pin(RET) {
 direction : input;
 always_on : true;
 related_power_pin : "VDDPE";
 related_ground_pin : "VSSE";
 }

 # Example Input
 bus(D) {
 direction : input;
 related_power_pin : "VDDPI";
 related_ground_pin : "VSSE";
 }

 # Example Output
 bus(Q) {
 direction : output;
 related_power_pin : "VDDPE";
 related_ground_pin : "VSSE";
 power_down_function : "!VDDCE + !VDDPE + VSSE";
 }
}

The power model that supplements the Liberty model is show below. The power intent described by the
UPF power model for the hard IP is descriptive rather than directive for implementation. For simulation,
the power intent is directive. For example, if the power model specifies a switch policy, the policy is
directive for simulation and ignored by the implementation tool as the switch within the hard IP has already
been implemented.

A memory power model named memPwrModel is created for the memory

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

363

model MEMSRAM_1024X32

begin_power_model memPwrModel -for MEMSRAM_1024X32

Since the hard IP is a macro as defined in the Liberty, the
design attribute UPF_is_hard_macro is set on the model.
set_design_attributes -models MEMSRAM_1024X32 -is_hard_macro TRUE

VDDPI is internal supply net specified in the Liberty that is
switched off when memory is in OFF or RET state
Access internal_power pin VDDPI and create a supply set with the
internal power pin and ground.
create_supply_net VDDPI

create_supply_set ss_vddpi \
 -function {power VDDPI} \
 -function {ground VSSE}

Create supply set that bundles the VDDPE and VSSE of memory
create_supply_set ss_vddpe \
 -function {power VDDPE} \
 -function {ground VSSE}

Create supply set that bundles the VDDCE and VSSE of memory
create_supply_set ss_vddce \
 -function {power VDDCE} \
 -function {ground VSSE}

Create power switch to model the internal switch of the memory
create_power_switch sw_vddp \
 -input_supply_port {sw_in VDDPE} \
 -output_supply_port {sw_out ss_vddpi.power} \
 -control_port {sw_ctrl PGEN} \
 -on_state {on_state sw_in {!sw_ctrl}} \
 -off_state {off_state {sw_ctrl}} \
}

Having defined a supply set ss_vddpi (with VDDPI as power and
VSSE as ground), predefined power states ON and OFF of the supply set
can be updated appropriately.
This is effectively setting power states on VDDPI
add_power_state -supply ss_vddpi -update \
 -state {ON -logic_expr {PGEN == 1}} \
 -supply_expr {power=={FULL_ON 0.6} && ground=={FULL_ON 0}}} \
 -state {OFF -logic_expr {PGEN == 0}} \
 -supply_expr {power==OFF && ground=={FULL_ON 0}}}

With the power states of the supply set and the state of control
pins of macro, the power states of the macro can be defined.
add_power_state -model MEMSRAM_1024X32 \
 -state {ON -logic_expr {ss_vddpi==ON }} \
 -state {RET -logic_expr {ss_vddpi==OFF && RET==1}} \
 -state {OFF -logic_expr {ss_vddpi==OFF && RET==0}} \
 -complete

Refine power state ON to create a power state LS such that
in LS state the instance is in ON state and an additional condition
is met
add_power_state -model MEMSRAM_1024X32 -update \
 -state {ON.LS -logic_expr {MEMSRAM_1024X32==ON && RET==1}}

end_power_model

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

364

The following key points are to be noted:

a) No power domain has been created in the power model. The hard IP will be in the parent power
domain in which it is instantiated.

b) All objects specified in the power model are scoped to the model.

c) No driver/receiver supply attributes are defined for the ports on the interface of the hard macro. The
related_power_pin and related _ground_pin attribures in the Liberty model defines the internal
environment of the hard macro. The macro will be instantiated in context of the parent domain, and
therefore the external environment of the macro is inferred from the actual driver/receiver in the
parent domain.

E.3.3 Power model for PHY

The approach described here uses a standalone UPF power model to completely specify the power intent of
the PHY. The power model must be self-contained and complete to specify the power intent of the PHY.

begin_power_model phyPwrModel for PHY3TX2RX0P8V

Since the hard IP is a hard macro, the design attribute UPF_is_hard_macro
is set on the model. This attribute is automatically imported from the
Liberty model when a Liberty model is read in for the macro.
set_design_attributes -models PHY3TX2RX0P8V_1024X32 -is_hard_macro TRUE

To ensure the model is self-contained, a power domain is created for the
PHY and the objects are set to the power domain
create_power_domain PDPHY -elements {.} \
 -supply {ss_regin} \
 -supply {ss_regout}

Supply set handle ss_regin has input supply VDDI and ground VSS
associated to power and ground functions
VDDI is the primary power and VSS is the primary ground of the PHY
create_supply_set PDPHY.ss_regin -update \
 -function {power VDDI} \
 -function {ground VSS}

Supply set handle ss_regout has output supply VREG and ground VSS
associated to power and ground functions
create_supply_set PDPHY.ss_regout -update \
 -function {power VREG} \
 -function {ground VSS}

Supply set ss_regin has only 1 state named HIGH as input voltage
is fixed at 1.8 V
add_power_state -supply PDPHY.ss_regin \
 -state {HIGH -supply_expr {power == {FULL_ON 1.8}}}

Supply set ss_regout has two state LOW and REG_OFF
The state of ss_regout supply is controlled by regCtrl input
In LOW state, the supply is 0.8 V
In REG_OFF state, the supply is OFF
add_power_state -supply PDPHY.ss_regout \
 -state {LOW -logic_expr {regCtrl==1} \
 -supply_expr {power=={FULL_ON 0.8}}} \
 -state {REG_OFF -logic_expr {regCtrl==0} \
 -supply_expr {power==OFF}}

Power domain PDPHY has two states, ON and OFF

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

365

The state of the power domain is a function of the states of the supplies
In ON state, the ss_regout is in LOW state
In OFF state, the ss_regout is in REG_OFF state
add_power_state -domain PDPHY \
 -state {ON -logic_expr \
 {PDPHY.ss_regin==HIGH && PDPHY.ss_regout==LOW}} \
 -state {OFF -logic_expr \
 {PDPHY.ss_regin==HIGH && PDPHY.ss_regout==REG_OFF}} \

Terminal Boundary Conditions
Since the power model must be self-contained, the boundary
conditions are specified for the model. The hard IP is one that has
already been implemented and so the conditions as seen from outside
the macro are specified.
set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction in] \
 -exclude_ports {regCtrl} -receiver_supply PDPHY.ss_regout

set_port_attributes -model {.} -ports \
 {regCtrl} -receiver_supply PDPHY.ss_regin

set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -driver_supply PDPHY.ss_regout

end_power_model

E.3.4 UPF for CPU

E.3.4.1 Introduction

The CPU UPF loads the constraint, configuration, and implementation UPF for CPU. Since CPU is
hardened in implementation, an implementation UPF is required for this hierarchy. The UPF must be self-
contained and complete.

set_design_top cpu
load_upf cpu_constraints.upf
load_upf cpu_configuration.upf
load_upf cpu_implementation.upf

E.3.4.2 Constraint UPF

The constraint UPF for CPU is provided with the HDL of the IP.

Variable Declarations
List of CPU output ports to be clamped 1 when CPU is OFF.
This list shall be used to define port attributes on the ports that
shall determine the clamp value for isolation policy.
set cpuClamp1 [list \
 commtx_o \
 afreadym_o \
 ncommirq_o \
]

Power Domains
CPU consists of only one power domain PDCPU. The current scope is the
domain top.
Two supply set handles primary and ret are defined in PDCPU

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

366

primary is the supply as defined in the standard
ret is the supply used as the back-up supply for the retention FFs
create_power_domain PDCPU -elements {.} \
 -supply {primary} \
 -supply {ret}

Port Attributes for Isolation
By defining port attributes on the output ports, the clamp values
are set.
All the output ports except the list specified by $cpuClamp1 are
set to clamp value 0
Ports specified by $cpuClamp1 are set to clamp value 1
set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -exclude_ports ${cpuClamp1} -clamp_value 0
set_port_attributes -model {.} -ports "$cpuClamp1" -clamp_value 1

Retention Elements
If the CPU is set to retention, then the list of instances specified
in the cpuRetList must be retained.
This retention list shall be used in the retention policy specified
in the configuration UPF
set_retention_elements cpuRetList \
 -elements {u_cpu_noram}

Power State
PDCPU: The PDCPU supports three power states ON, RET, OFF
In the ON state, supply sets primary and ret are ON
In the RET state, supply set ret is ON and primary is OFF
In the OFF state, both supply sets are OFF
Note:
The ON and OFF states of the supply sets are the deferred power
states defined by the standard.
add_power_state -domain PDCPU \
 -state {ON -logic_expr {PDCPU.ret==ON && PDCPU.primary==ON }} \
 -state {RET -logic_expr {PDCPU.ret==ON && PDCPU.primary==OFF}} \
 -state {OFF -logic_expr {PDCPU.ret==OFF && PDCPU.primary==OFF}}

E.3.4.3 Configuration UPF

The configuration UPF for CPU takes into consideration that the CPU is hardened in implementation and
the low-power control signals (such as isolation, retention control) cannot be connected from the top power
control unit. All the control ports required for CPU are created at the CPU logical boundary.

The control ports that are to be defined at the CPU logical boundary are:

a) lp_lSleep—switch control for the domain logic power switch

b) lp_rSleep—switch control for the memory power switch

c) lp_lReady—switch control acknowledge from the domain logic power switch

d) lp_rReady—switch control acknowledge from the memory power switch

e) lp_lRet—logic retention control for the domain

f) lp_rRet—memory retention control

When the CPU is switched OFF or set in RET state, the outputs of CPU are isolated. The CPU is
implemented as a hard macro, and in this example it is an implementation choice to have the isolation
outside of the CPU hard macro and so no isolation policy is specified in the configuration UPF of CPU.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

367

Low-Power Control Ports
The logic ports required for switch control, retention control and
switch control acknowledge are created.
It is allowed to use the logic_port in place of logic_net and so
logic_net is not explicitly created.
create_logic_port lp_lSleep
create_logic_port lp_rSleep
create_logic_port lp_lReady
create_logic_port lp_rReady
create_logic_port lp_lRet
create_logic_port lp_rRet

Retention Strategy
Retention policy is created with the retention list specified in
constraint UPF. PDCPU.ret supply handle is used as retention supply
as specified in the constraint UPF. Control port lp_lRet is used as
retention control signal.
set_retention retCpu \
 -domain PDCPU \
 -retention_supply PDCPU.ret \
 -save_signal {lp_lRet negedge} \
 -restore_signal {lp_lRet posedge} \
 -elements cpuRetList

Memory-Related Configuration
List of memory instances in CPU
set l1MemInstances [list \
 u_l1tag_ram \
 u_l1data_ram \
]

The memory hard IPs instantiated in the CPU support power gating
and retention. The memory has two primary power ports, VDDPE and VDDCE.
To make supply connection simple, two new supply set handles mem_vddc
and mem_vddp are updated to PDCPU. mem_vddc will be associated to
VDDCE of all the memories and mem_vddp will be associated to VDDPE
of all the memories in the CPU.
create_power_domain PDCPU -update \
 -supply {mem_vddc} \
 -supply {mem_vddp}

Apply power model to each macro instance.
UPF power model is overlaid over the Liberty model of the memory.
In applying power model, the supply sets defined in the memory
power model are associated to the supply set handles defined in the
power domain.
foreach instance $l1MemInstances {
 apply_power_model memPwrModel -elements $instance \
 -supply_map {{$instance/ss_vddpe PDCPU.mem_vddp} \
 {$instance/ss_vddce PDCPU.mem_vddc}}
}

When CPU is in OFF state, all memories shall be in OFF state.
When CPU is in RET state, all memories shall be in RET state.
When CPU is in ON state, memories can be in one of ON, RET, OFF
state but all memories shall be in the same state.
To enforce power state over a collection of lower level instances,
create a group and set power state of the group based on the
power state of the lower level instances.
create_power_state_group L1MEMS

Create power states for the group created.
Power state of the group is such that each of the instance

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

368

in the group are in the same power state as the group itself.
add_power_state –group L1MEMS \
 -state {ON -logic_expr {u_l1tag_ram==ON && u_l1data_ram==ON }} \
 -state {RET -logic_expr {u_l1tag_ram==RET && u_l1data_ram==RET}} \
 -state {OFF -logic_expr {u_l1tag_ram==OFF && u_l1data_ram==OFF}}

Update power state of the parent domain with the power state of
the group. When CPU is in ON state, the L1MEMS can be in one of ON,
RET or OFF.
Use of logic_expr {L1MEMS==ON || L1MEMS==RET || L1MEMS==OFF} would
result in an indefinite state that cannot be used to update higher
level states. To avoid indefinite state, the different ON states
are implemented as refinement of PDCPU ON state.
The hierarchical state names ON.L1ON, ON.L1RET, and ON.L1OFF implicitly
include the term PDCPU==ON.
add_power_state PDCPU -domain -update \
 -state {ON.L1ON -logic_expr {L1MEMS==ON }} \
 -state {ON.L1RET -logic_expr {L1MEMS==RET}} \
 -state {ON.L1OFF -logic_expr {L1MEMS==OFF}} \
 -state {RET -logic_expr {L1MEMS==RET}} \
 -state {OFF -logic_expr {L1MEMS==OFF}}

Power State logic_expr Update for Supply Sets
The logic expression that defines the ON and OFF state of the
supply set is updated.
ON and OFF state are deferred power states that are now being
updated. Since the pre-defined deferred power states are being
updated -update is required.
add_power_state -supply PDCPU.primary -update \
 -state {ON -logic_expr {lp_lSleep == 1}}\
 -state {OFF -logic_expr {lp_lSleep == 0}}

E.3.4.4 Implementation UPF

The CPU is hardened in the implementation and so an implementation UPF is required. The
implementation UPF defines the terminal boundary conditions for the CPU. The terminal boundary
conditions define the external environment conditions that are assumed when the CPU is hardened. The
external environment conditions defined for hardening may not reflect the exact context in which the CPU
hardened macro will be used in the MPCORE. In defining the external conditions for the CPU
implementations, the MPCORE context isn’t available and hence the boundary conditions are defined in
terms of CPU context.

Supply Ports, Supply Nets
VCPU is the supply voltage for CPU
create_supply_port -direction in VCPU
create_supply_port -direction in VRET
create_supply_port -direction in VSS

create_supply_net VCPU
create_supply_net VRET
create_supply_net VSS
create_supply_net VCPU_sw

connect_supply_net VCPU -ports VCPU
connect_supply_net VRET -ports VRET
connect_supply_net VSS -ports VSS

Create supply set handle aon in the PDCPU domain.
create_power_domain PDCPU -update \
 -supply {aon}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

369

Associate supply nets to supply set functions
create_supply_set PDCPU.aon \
 -function {power VCPU} \
 -function {ground VSS}

create_supply_set PDCPU.primary -update \
 -function {power VCPU_sw} \
 -function {ground VSS}

create_supply_set PDCPU.ret -update \
 -function {power VRET} \
 -function {ground VSS}

Power Switches
create_power_switch sw_CPU \
 -input_supply_port {sw_in PDCPU.aon.power} \
 -output_supply_port {sw_out PDCPU.primary.power} \
 -control_port {sw_ctrl lp_lSleep} \
 -on_state {on_state sw_in {sw_ctrl}} \
 -off_state {off_state {!sw_ctrl}} \
 -supply_set PDCPU.aon \
 -domain PDCPU

Associate supply nets to memory supply set functions.
This association connects all the memory VDDCE, VDDPE supply ports
to VCPU supply port, and memory VSSE supply port to VSS.
Explicit connection of supply ports using connect_supply_net can
also be done.
The standard allows both supply association and supply net
connection to specified together.
create_supply_set PDCPU.mem_vddp -update \
 -function {power VCPU} \
 -function {ground VSS}

create_supply_set PDCPU.mem_vddc -update \
 -function {power VCPU} \
 -function {ground VSS}

Power State supply_expr Update for Supply Sets
add_power_state -supply PDCPU.primary -update \
 -state {ON {-supply_expr \
 {power=={FULL_ON 0.7} && ground=={FULL_ON 0}}}} \
 -state {OFF {-supply_expr \
 {power==OFF && ground=={FULL_ON 0}}}}

add_power_state -supply PDCPU.ret -update \
 -state {ON {-supply_expr \
 {power=={FULL_ON 0.7} && ground=={FULL_ON 0}}}} \
 -state {OFF {-supply_expr \
 {power==OFF && ground=={FULL_ON 0}}}}

add_power_state -supply PDCPU.aon -update \
 -state {ON {-supply_expr \
 {power=={FULL_ON 0.7} && ground=={FULL_ON 0}}}}

The VRET voltage is derived from the VCPU voltage within the SOC.
But at the CPU implementation, this derived supply information
need to be specified as supplies VCPU and VRET are correlated.
set_correlated -sets PDCPU.primary PDCPU.ret

VCPU, VRET supplies support voltage scaling from 0.63 to 0.77
With 0.7 V being nominal, the scaling factor {0.63/0.7 0.77/0.7}
set_variation -supply {PDCPU.primary PDCPU.ret PDCPU.aon} -range {0.9 1.1}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

370

No level-shifters are required in implementation of PDCPU.
The supplies input to CPU are VCPU and VRET that have same voltage
conditions and are correlated.

Terminal boundary model for CPU hardened macro
Note that tools will ignore the driver/receiver attributes
when the actual driver and receiver for the ports are available
in the design.

The external environment conditions are required for the implementation
of CPU as a soft macro
The external environment conditions are defined based on the
supply sets available in PDCPU
set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction in] \
 -exclude_ports {lp_lSleep lp_rSleep lp_lRet lp_rRet} \
 -driver_supply PDCPU.primary

set_port_attributes -model {.} -ports \
 {lp_lSleep lp_rSleep lp_lRet lp_rRet} -driver_supply PDCPU.aon

set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -receiver_supply PDCPU.primary

When the UPF for CPU is loaded in MPCORE implementation context,
the internals of PDCPU are not available as the CPU has been
hardened and treated as a leaf cell. In the higher implementation
context, the CPU internal environment attributes are required.
set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -driver_supply PDCPU.primary

set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction in] \
 -exclude_ports {lp_lSleep lp_rSleep lp_lRet lp_rRet} \
 -receiver_supply PDCPU.primary

set_port_attributes -model {.} -ports \
 {lp_lSleep lp_rSleep lp_lRet lp_rRet} \
 -receiver_supply PDCPU.aon

E.3.5 UPF for MPCORE

E.3.5.1 Introduction

The MPCORE UPF loads the constraint, configuration UPF for mpcore. Since MPCORE is a soft IP, no
implementation UPF is required. The UPF should be complete from a simulation context.

set_design_top mpcore
source mpcore_constraints.upf
source mpcore_configuration.upf

E.3.5.2 Constraint UPF

The MPCORE is a soft IP and has a constraint UPF provided with the HDL of the IP.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

371

Variable Declarations
List of MPCORE output ports to be clamped 1 when MPCORE is OFF.
This list shall be used to define port attributes on the ports that
shall determine the clamp value for isolation policy.
set coreClamp1 [list \
 IRQn \
 FIQn \
 L2ACCEPTn \
]

Power Domains
MPCORE consists of only one power domain PDMPCORE. The current scope
is the domain top.
Two supply set handles, primary and ret, are defined in PDMPCORE:
primary is the supply as defined in the standard;
ret is the supply used as the back-up supply for the retention FFs.

create_power_domain PDMPCORE -elements {.} \
 -supply {primary} \
 -supply {ret}

Port Attributes for Isolation
All the output ports except the list specified by $coreClamp1 are
set to clamp value 0.
Ports specified by $coreClamp1 are set to clamp value 1.

set_port_attributes -model {.} -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -exclude_ports ${coreClamp1} -clamp_value 0
set_port_attributes -model {.} -ports "$coreClamp1" -clamp_value 1

Load UPF for Lower Level IPs
The UPF of CPU that is hardened is loaded.
Note:
If UPF_is_soft_macro attribute is set for the cpu, only the higher
power domain is loaded ignoring all internals of the UPF. The terminal
boundary conditions defined in the CPU UPF are used to model the
internals of the CPU.
If UPF_is_soft_macro attribute is not set for the cpu, the cpu UPF
is used to completely model the power intent of cpu.
The constraints for MPCORE does not have information whether the cpu
is a soft_macro or not.
load_upf cpu.upf -scope u_cpu0
load_upf cpu.upf -scope u_cpu1

Retention Elements
The list of instances that can be retained if the MPCORE
is put into retention mode is specified in the coreRetList.
This retention list shall be used in the retention policy specified
in the configuration UPF.
set_retention_elements coreRetList \
 -elements {u_core_noram}

Power State
PDMPCORE: The PDMPCORE supports three power states: ON, RET, OFF.
In the ON state, supply sets primary and ret are ON.
In the RET state, supply set ret is ON and primary is OFF.
In the OFF state, both supply sets are OFF.
Note:
The ON and OFF states of the supply sets are the deferred power
states defined by the standard.
add_power_state -domain PDMPCORE \
-state {ON -logic_expr{PDMPCORE.ret==ON && PDMPCORE.primary==ON }}\

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

372

-state {RET -logic_expr{PDMPCORE.ret==ON && PDMPCORE.primary==OFF}}\
-state {OFF -logic_expr{PDMPCORE.ret==OFF && PDMPCORE.primary==OFF}}

In the RET and OFF power state, the cpu0 and cpu1 shall be in OFF
state. Update PDMPCORE state with state of PDCPU.
add_power_state -domain PDMPCORE -update \
 -state {RET -logic_expr {cpu0/PDCPU==OFF}} \
 -state {OFF -logic_expr {cpu0/PDCPU==OFF}}

add_power_state -domain PDMPCORE -update \
 -state {RET -logic_expr {cpu1/PDCPU==OFF}} \
 -state {OFF -logic_expr {cpu1/PDCPU==OFF}}

E.3.5.3 Configuration UPF

The MPCORE is a soft IP and the UPF shall be complete in verification context to enable standalone
verification of MPCORE. To enable verification of MPCORE, the configuration UPF should have the low
power (LP) control ports.

LP Control Ports
create_logic_port lp_lSleep
create_logic_port lp_rSleep
create_logic_port lp_lReady
create_logic_port lp_rReady

create_logic_port lp_lSleepCpu0
create_logic_port lp_lSleepCpu1
create_logic_port lp_rSleepCpu0
create_logic_port lp_rSleepCpu1
create_logic_port lp_lRetCpu0
create_logic_port lp_lRetCpu1
create_logic_port lp_rRetCpu0
create_logic_port lp_rRetCpu1
create_logic_port lp_lReadyCpu0
create_logic_port lp_lReadyCpu1

create_logic_port lp_rReadyCpu0
create_logic_port lp_rReadyCpu1
create_logic_port lp_isoCpu0
create_logic_port lp_isoCpu1

Connect lower level controls
The control nets to the lower level CPU macro are connected
connect_logic_net lp_lSleepCpu0 -ports u_cpu0/lp_lSleep
connect_logic_net lp_lSleepCpu1 -ports u_cpu1/lp_lSleep
connect_logic_net lp_rSleepCpu0 -ports u_cpu0/lp_rSleep
connect_logic_net lp_rSleepCpu1 -ports u_cpu1/lp_rSleep
connect_logic_net lp_lReadyCpu0 -ports u_cpu0/lp_lReady
connect_logic_net lp_lReadyCpu1 -ports u_cpu1/lp_lReady
connect_logic_net lp_rReadyCpu0 -ports u_cpu0/lp_rReady
connect_logic_net lp_rReadyCpu1 -ports u_cpu1/lp_rReady
connect_logic_net lp_lRetCpu0 -ports u_cpu0/lp_lRet
connect_logic_net lp_lRetCpu1 -ports u_cpu1/lp_lRet
connect_logic_net lp_rRetCpu0 -ports u_cpu0/lp_rRet
connect_logic_net lp_rRetCpu1 -ports u_cpu1/lp_rRet

Design attribute UPF_is_soft_macro is set on cpu0 and cpu1 instance to
enable the correct terminal boundary condition as the CPU has been
hardened in the implementation.
In the verification context, if the actual drivers and receivers
across the port are available, the port attributes defined in the

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

373

terminal boundary shall be ignored.
set_design_attributes -model {cpu} –is_soft_macro TRUE

Retention Strategy
From the SoC functional power states, MPCORE is configured to NOT
use RET state defined in constraint UPF for the logic.
The memories can be in retention state when MPCORE is in ON state.
The RET state of PDMPCORE is defined as illegal in this
configuration of the MPCORE.
add_power_state -domain PDMPCORE -update \
 -state {RET -illegal}

The PDMPCORE.ret supply set is associated to PDMPCORE.primary since the
ON and OFF power states of PDMPCORE power domain have been defined as
a function of PDMPCORE.ret in addition to PDMPCORE.primary
associate_supply_set { PDMPCORE.primary PDMPCORE.ret }

Memory Related Configuration
List of memory instances in MPCORE
set l2MemInstances [list \
 u_l2tag_ram \
 u_l2data_ram \
]

Two new supply set handles mem_vddc and mem_vddp are updated to
PDMPCORE. mem_vddc will be associated to
VDDCE of all the memories and mem_vddp will be associated to VDDPE
of all the memories in the CPU.
create_power_domain PDCPU -update \
 -supply {mem_vddc} \
 -supply {mem_vddp}

Similar to the L1 memories in CPU configuration UPF, the power
model for L2 memory is applied.
Create a group of macros that should be in the same state
at any given time.

Apply power model to each macro instance
foreach instance $l2MemInstances {
 apply_power_model memPwrModel2 -elements $instance \
 -supply_map {{$instance/ss_vddpe PDMPCORE.mem_vddp} \
 {$instance/ss_vddce PDMPCORE.mem_vddc}}
}

When MPCORE is in OFF state, all memories shall be in OFF state.
When MPCORECPU is in RET state, all memories shall be in RET state.
When MPCORE is in ON state, memories can be in ON or OFF state but
all memories shall be in the same state.
To enforce power state over a collection of lower level instances,
create a group and set power state of the group based on the
power state of the lower level instances.
create_power_state_group L2MEMS

Create power states for the group created.
Power state of the group is such that each of the instance
in the group are in the same power state as the group itself.
add_power_state -group L2MEMS \
 -state {ON -logic_expr {u_l2tag_ram==ON && u_l2data_ram==ON }} \
 -state {OFF -logic_expr {u_l2tag_ram==OFF && u_l2data_ram==OFF}}

Update power state of PDMPCORE with the power state of the group
when MPCORE is in ON state, L2MEMS can be in ON/OFF state.
It is illegal for L2MEMS to be in NOT OFF state when MPCORE is OFF.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

374

add_power_state -domain PDMPCORE -update \
 -state {ERR1 -logic_expr {PDMPCORE==OFF && L2MEMS!=OFF} -illegal}

Power State logic_expr Update for Supply Sets
The logic expression that defines the ON and OFF state of the
supply set is updated.
ON and OFF state are deferred power states that are now being
updated. Since the deferred power states are being updated -update
is required.
add_power_state -supply PDMPCORE.primary -update \
 -state {ON -logic_expr {lp_lSleep==1}}\
 -state {OFF -logic_expr {lp_lSleep==0}}

Isolation Policy for Path That Have CPU as Source
The port attributes specified in the CPU constraint UPF determine
the clamp value for the ports.
set_isolation isoCpu0ToMpcore \
 -domain PDMPCORE \
 -applies_to inputs \
 -source u_cpu0/PDCPU.primary \
 -isolation_signal lp_isoCpu0 \
 -isolation_sense low

set_isolation isoCpu1ToMpcore \
 -domain PDMPCORE \
 -applies_to inputs \
 -source u_cpu1/PDCPU.primary \
 -isolation_signal lp_isoCpu1 \
 -isolation_sense low

E.3.6 UPF for display controller

E.3.6.1 Introduction

The display core is a soft IP and has its constraint and configuration UPF. The display UPF should be
complete from a simulation context.

set_design_top display

source display_constraints.upf
source display_configuration.upf

E.3.6.2 Constraint UPF

Variable Declarations
List of display output ports to be clamped high when display is OFF.
set dispClamp1 [list \
 ready \
]

Power Domains
Display IP consists of one power domain PDDISP.
Two supply set handles primary and aon are defined.
primary is the supply as defined in the standard.
aon is the unswitched supply in the display context.
create_power_domain PDDISP -elements {.} \
 -supply {primary} \
 -supply {aon}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

375

Port Attributes for Isolation
All the output ports except the list specified by $dispClamp1 are
set to clamp value 0.
Ports specified by $dispClamp1 are set to clamp value 1.
set_port_attributes -ports \
 [find_objects . -pattern * -object_type port -direction out] \
 -exclude_elements $dispClamp1 -clamp_value 0
set_port_attributes -model -ports $dispClamp1 -clamp_value 1

Note:
In the display constraints, the power intent details of PHY is unknown.
The power intent of PHY is handled in the configuration UPF.

Power State PDDISP
supply aon cannot be in OFF state.
The deferred power state OFF is set as illegal for aon supply set.
PDDISP supports ON and OFF states.
add_power_state -supply PDDISP.aon -update \
 -state {OFF -illegal}

add_power_state -domain PDDISP \
 -state {ON -logic_expr {PDDISP.aon==ON && PDDISP.primary==ON }} \
 -state {OFF -logic_expr {PDDISP.aon==ON && PDDISP.primary==OFF}}

E.3.6.3 Configuration UPF

LP Control Ports in RTL
create_logic_port lp_regCtrl

PHY Related Configuration
Load the power model of PHY.
The supplies defined in the parent power model are associated to
the supplies defined in the power model.
apply_power_model phyPwrModel -elements u_phy \
 -supply_map {{PDREG.ss_regin PDDISP.aon} \
 {PDREG.ss_regout PDDISP.primary}}

Connect control net to the PHY hard macro.
connect_logic_net lp_regCtrl -ports u_phy/regCtrl

Update power state of PDDISP with state of PDPHY.
PDPHY will be ON when PDDISP is ON.
PDPHY will be OFF when PDDISP is OFF.
add_power_state -domain PDDISP -update \
 -state {ON -logic_expr {u_phy/PDPHY==ON }} \
 -state {OFF -logic_expr {u_phy/PDPHY==OFF}}

E.3.7 UPF for SoC

E.3.7.1 Introduction

The SoC is the top-level module and has the constraint, configuration, and implementation UPF. In the
context of the SoC, the constraint and configuration UPF can be merged into configuration as the SoC does
not require the constraints and configuration to be separate.

set_design_top soc
source soc_constraints.upf

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

376

source soc_configuration.upf
source soc_implementation.upf

E.3.7.2 Constraint UPF

Variable Declarations
List of ports that have sink in the PDAON
set socAonInputs [list \
 SYSPLLCLK \
 PORESETn \
 TDI \
 nTRST \
]

Power Domains
SoC has two power domains: PDSOC and PDAON.
primary is the supply as defined in the standard.
ret is the supply used as the back-up supply for the retention FFs.
create_power_domain PDSOC \
 -elements {.} \
 -supply {primary} \
 -supply {aon}

create_power_domain PDAON \
 -elements u_pcu \
 -supply {primary}

Load Lower Level UPF of the Design
The lower level UPFs may include soft IPs, hard macro, and soft macro.
In this example, there are two soft IPs. Each of the soft IPs in this
example includes soft marco and/or hard macro that have their own UPF.
load_upf mpcore.upf -scope u_mpcore
load_upf display.upf -scope u_display

Power States - AON
The pre-defined deferred state OFF for supply set primary is defined
as illegal as this supply cannot be OFF.
add_power_state -supply PDAON.primary -update \
 -state {OFF -illegal}

add_power_state -domain PDAON \
 -state {ON -logic_expr {PDAON.primary==ON}} \

Power States - SOC
The pre-defined deferred state OFF for supply set aon is defined
as illegal as this supply cannot be OFF.
add_power_state -supply PDSOC.aon -update \
 -state {OFF -illegal}

add_power_state -domain PDSOC \
 -state {RUN -logic_expr {PDSOC.aon==ON && PDSOC.primary==ON } \
 -state {SLEEP -logic_expr {PDSOC.aon==ON && PDSOC.primary==OFF}

When PDSOC is in RUN or SLEEP state, PDAON must be ON.
add_power_state -domain PDSOC -update \
 -state {RUN -logic_expr {PDAON==ON}} \
 -state {SLEEP -logic_expr {PDAON==ON}}

When PDSOC is in SLEEP state, PDMPCORE and PDDISP must be OFF.
add_power_state -domain PDSOC -update \
 -state {SLEEP -logic_expr {u_mpcore/PDMPCORE==OFF && \
 u_display/PDDISP==OFF}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

377

E.3.7.3 Configuration UPF

The SoC configuration defines the complete configuration of the SoC and the connections to the power
controls signals for isolation, retention, and power switch.

LP Control nets to make connections from power control unit to
hard/soft macros
create_logic_net lp_lSleep
create_logic_net lp_lSleepCpu0
create_logic_net lp_lSleepCpu1
create_logic_net lp_lSleepDisp
create_logic_net lp_rSleepCpu0
create_logic_net lp_rSleepCpu1
create_logic_net lp_lRetCpu0
create_logic_net lp_lRetCpu1
create_logic_net lp_rRetCpu0
create_logic_net lp_rRetCpu1
create_logic_net lp_isoCpu0
create_logic_net lp_isoCpu1
create_logic_net lp_isoDisp
create_logic_net lp_isoAon
create_logic_net lp_lSleepL2
create_logic_net lp_rSleepL2
create_logic_net lp_rReadyL2
create_logic_net lp_rRetL2

Connection of the power control ports of macros to the power control
unit are explicitly done.
connect_logic_net lp_lSleepCpu0 \
 -ports u_pcu/LSLEEPCPU0 u_mpcore/lp_lSleepCpu0
connect_logic_net lp_lSleepCpu1 \
 -ports u_pcu/LSLEEPCPU1 u_mpcore/lp_lSleepCpu1
connect_logic_net lp_rSleepCpu0 \
 -ports u_pcu/RSLEEPCPU0 u_mpcore/lp_rSleepCpu0
connect_logic_net lp_rSleepCpu1 \
 -ports u_pcu/RSLEEPCPU1 u_mpcore/lp_rSleepCpu1
connect_logic_net lp_lRetCpu0 \
 -ports u_pcu/LRETCPU0 u_mpcore/lp_lRetCpu0
connect_logic_net lp_lRetCpu1 \
 -ports u_pcu/LRETCPU1 u_mpcore/lp_lRetCpu1
connect_logic_net lp_rRetCpu0 \
 -ports u_pcu/RRETCPU0 u_mpcore/lp_rRetCpu0
connect_logic_net lp_rRetCpu1 \
 -ports u_pcu/RRETCPU1 u_mpcore/lp_rRetCpu1
connect_logic_net lp_isoCpu0 \
 -ports u_pcu/ISOCPU0 u_mpcore/lp_isoCpu0
connect_logic_net lp_isoCpu1 \
 -ports u_pcu/ISOCPU1 u_mpcore/lp_isoCpu1
connect_logic_net lp_lSleepL2 \
 -ports u_pcu/LSLEEPL2 u_mpcore/lp_lSleep
connect_logic_net lp_rSleepL2 \
 -ports u_pcu/RSLEEPL2 u_mpcore/lp_rSleep
connect_logic_net lp_rReadyL2 \
 -ports u_pcu/RREADYL2 u_mpcore/lp_rReady
connect_logic_net lp_rRetL2 \
 -ports u_pcu/RRETL2 u_mpcore/lp_rRet
connect_logic_net lp_lSleep -ports u_pcu/LSLEEP
connect_logic_net lp_lSleepDisp -ports u_pcu/LSLEEPDISP
connect_logic_net lp_isoDisp -ports u_pcu/ISODISP
connect_logic_net lp_rSleepL2 -ports u_pcu/RSLEEPL2
connect_logic_net lp_rRetL2 -ports u_pcu/RRETL2
connect_logic_net lp_isoAon -ports u_pcu/ISOAON

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

378

Isolation Strategy
AON - Isolation for all inputs of PDAON that have sink in PDAON
set_isolation isoAonIn0 \
 -domain PDAON \
 -applies_to inputs \
 -sink PDAON.primary \
 -clamp_value 0 \
 -isolation_signal ln_isoAon \
 -isolation_sense high \

Display - Isolation for Display Outputs
set_isolation isoDispOut \
 -domain PDDISP \
 -source PDDISP.primary \
 -sink PDSOC.primary \
 -isolation_signal lp_lIsoDisp \
 -isolation_sense low

MPCORE - Isolation for mpcore Outputs
set_isolation isoMpcoreOut \
 -domain u_mpcore/PDMPCORE \
 -source u_mpcore/PDMPCORE.primary \
 -sink PDSOC.primary \
 -isolation_signal lp_lIsoMpcore \
 -isolation_sense low

Power State
add_power_state -supply PDSOC.primary -update \
 -state {ON -logic_expr {ln_lSleep==0}} \
 -state {OFF -logic_expr {ln_lSleep==1}}

E.3.7.4 Implementation UPF

Supply Ports, Supply Nets
create_supply_port -direction in VSOC
create_supply_port -direction in VCPU
create_supply_port -direction in VDDI
create_supply_port -direction in VSS

create_supply_net VSOC
create_supply_net VCPU
create_supply_net VDDI
create_supply_net VSS
create_supply_net VSOC_sw
create_supply_net VMP_sw

connect_supply_net VSOC -ports {VSOC}
connect_supply_net VCPU -ports {VCPU}
connect_supply_net VDDI -ports {VDDI}
connect_supply_net VSS -ports {VSS}

Power Switches
VSOC
create_power_switch sw_VSOC \
 -input_supply_port {sw_in VSOC} \
 -output_supply_port {sw_out VSOC_sw} \
 -control_port {sw_ctrl ln_lSleep} \
 -on_state {on_state sw_in {sw_ctrl}} \
 -off_state {off_state {!sw_ctrl}} \
 -supply_set PDVSOC.aon \
 -domain PDVSOC
MPCORE

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

379

create_power_switch sw_MPCORE \
 -input_supply_port {sw_in VCPU} \
 -output_supply_port {sw_out VMP_sw} \
 -control_port {sw_ctrl ln_lSleepMpcore} \
 -on_state {on_state sw_in {sw_ctrl}} \
 -off_state {off_state {!sw_ctrl}} \
 -supply_set u_mpcore/PDMPCORE.aon \
 -domain PDVSOC

aon Supply for MPCORE
create_power_domain u_mpcore/PDMPCORE -update \
 -supply {aon}

Associate Supply Nets to Supply Set Functions
create_supply_set u_mpcore/PDMPCORE.aon \
 -function {power VCPU} \
 -function {ground VSS}

create_supply_set u_mpcore/PDMPCORE.primary -update \
 -function {power VMP_sw} \
 -function {ground VSS}

create_supply_set PDVSOC.primary -update \
 -function {power VSOC_sw} \
 -function {ground VSS}

create_supply_set PDVSOC.aon -update \
 -function {power VSOC} \
 -function {ground VSS}

create_supply_set PDAON.primary -update \
 -function {power VSOC} \
 -function {ground VSS}

Connect Power Supplies of Lower Level Macros
connect_supply_net VCPU -ports u_mpcore/u_cpu0/VCPU
connect_supply_net VCPU -ports u_mpcore/u_cpu1/VCPU

connect_supply_net VSS -ports u_mpcore/u_cpu0/VSS
connect_supply_net VSS -ports u_mpcore/u_cpu1/VSS

connect_supply_net VMP_sw -ports u_mpcore/u_cpu0/VRET
connect_supply_net VMP_sw -ports u_mpcore/u_cpu1/VRET

create_supply_set u_mpcore/PDMPCORE.mem_vddp -update \
 -function {power VCPU} \
 -function {ground VSS}

create_supply_set u_mpcore/PDMPCORE.mem_vddc -update \
 -function {power VCPU} \
 -function {ground VSS}

connect_supply_net VDDI -ports u_display/u_phy/VDDI
connect_supply_net VSS -ports u_display/u_phy/VSS

Update Isolation Policy with -location and –isolation Supply Set
AON
set_isolation isoAonIn0 \
 -domain PDAON \
 -isolation_supply PDAON.primary \
 -location self

Display

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

380

set_isolation isoDispOut \
 -domain PDDISP \
 -isolation_supply PDSOC.primary \
 -location parent

MPCORE
set_isolation isoMpcoreOut \
 -domain u_mpcore/PDMPCORE \
 -isolation_supply PDSOC.primary \
 -location parent

Level Shifting Policy for Paths from SoC to CPU
set_level_shifter lsMpIn \
 -domain PDSOC \
 -source PDSOC.primary \
 -sink u_mpcore/PDMPCORE.primary \
 -location self

set_level_shifter lsCpu0In \
 -domain PDSOC \
 -source PDSOC.primary \
 -sink u_mpcore/u_cpu0/PDCPU.primary \
 -location self

set_level_shifter lsCpu1In \
 -domain PDSOC \
 -source PDSOC.primary \
 -sink u_mpcore/u_cpu1/PDCPU.primary \
 -location self

Level Shifting Policy for Paths to SoC from cpu/mpcore
set_level_shifter lsMpOut \
 -domain PDSOC \
 -source u_mpcore/PDMPCORE.primary \
 -sink PDSOC.primary \
 -location self

set_level_shifter lsCpu0In \
 -domain PDSOC \
 -source u_mpcore/u_cpu0/PDCPU.primary \
 -sink PDSOC.primary \
 -location self

set_level_shifter lsCpu1In \
 -domain PDSOC \
 -source u_mpcore/u_cpu1/PDCPU.primary \
 -sink PDSOC.primary \
 -location self

Power State Supply_expr Update for Supply Sets
AON
add_power_state -supply PDAON.primary -update \
 -state {ON -supply_expr \
 {power=={FULL_ON 0.8} && ground=={FULL_ON 0}}}

VSOC
add_power_state -supply PDVSOC.primary -update \
 -state {ON -supply_expr \
 {power=={FULL_ON 0.8} && ground=={FULL_ON 0}}} \
 -state {OFF -supply_expr \
 {power==OFF && ground=={FULL_ON 0}}}

add_power_state -supply PDVSOC.aon -update \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

381

 -state {ON -supply_expr \
 {power=={FULL_ON 0.8} && ground=={FULL_ON 0}}}

PDDISP
add_power_state -supply PDDISP.primary -update \
 -state {ON -supply_expr \
 {power=={FULL_ON 0.8} && ground=={FULL_ON 0}}} \
 -state {OFF -supply_expr \
 {power==OFF && ground=={FULL_ON 0}}}

PDMPCORE
add_power_state -supply u_mpcore/PDMPCORE.primary -update \
 -state {ON -supply_expr \
 {power=={FULL_ON 0.7} && ground=={FULL_ON 0}}} \
 -state {OFF -supply_expr \
 {power==OFF && ground=={FULL_ON 0}}}

set_variation -supply {u_mpcore/PDMPCORE.primary} -range {0.9 1.1}

set_port_attributes -ports $socAonInputs \
 -driver_supply PDSOC.aon

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

382

Annex F

(informative)

Power-management cell definitions in UPF and Liberty

F.1 Introduction

F.1.1 Overview

This annex describes how the information specified in each power-management cell command (see
Clause 7) can be used by the corresponding power intent commands in Clause 6. In addition, it also
describes the mapping between each command and option to the Liberty attributes. Unless otherwise stated,
the referenced Liberty attributes are based on the Liberty 2009.06 release (see Liberty library format usage
[B4]). For designers who prefer to use the Liberty approach to describe power-management cell attributes,
the mapping tables in this annex can be used to understand what the required information is in Liberty to
enable a UPF flow.

F.1.2 Liberty attribute mapping

If a UPF option has a corresponding Liberty attribute, the following type of mapping table (see Table F.1)
is used:

Table F.1—Sample Liberty attribute mapping

Name Group Type Value

pg_type pg_pin string primary_ground

Where the column Name lists the corresponding Liberty attribute name; the column Group indicates the
name of the group statement in which this attribute is specified; the column Type indicates the attribute type
such as a string, Boolean, integer, or floating point; and the column Value indicates the corresponding
attribute value.

If a UPF option has no corresponding Liberty attribute, this is indicated explicitly.

F.1.3 Potential conflicts with library command definitions

These mappings are based on the syntax from the actual library command definitions (see Clause 7), which
are replicated in this annex as a convenience. In the event of a conflict between this material and the syntax
shown in Clause 7, the syntax listing for Clause 7 shall prevail.

F.2 define_always_on_cell

define_always_on_cell [from 7.2]
-cells cell_list
-power pin

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

383

-ground pin
[-power_switchable pin] [-ground_switchable pin]
[-isolated_pins list_of_ pin_lists][-enable expression_list]

The Liberty mappings for this command are as follows:

a) Table F.2 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

Table F.2—Liberty attribute mapping for -cells

Name Group Type Value

always_on cell Boolean true

b) Table F.3 indicates the Liberty attribute mapping for the -power argument.

Table F.3—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string backup_power
primary_power

1) If this option is specified with -power_switchable, the corresponding pg_type is

backup_power. During implementation, this pin is connected to the ground net specified by
users.

2) If this option is not specified with -power_switchable, the corresponding pg_type is
primary_power. During implementation, this pin is connected to the ground net of the
primary supply set of the power domain in which the cell is located.

c) Table F.4 indicates the Liberty attribute mapping for the -ground argument.

Table F.4—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string backup_ground
primary_ground

1) If this option is specified with -ground_switchable, the corresponding pg_type is

backup_ground. During implementation, this pin is connected to the ground net specified by
users.

2) If this option is not specified with -ground_switchable, the corresponding pg_type is
primary_ground. During implementation, this pin is connected to the ground net of the
primary supply set of the power domain in which the cell is located.

 d) Table F.5 indicates the Liberty attribute mapping for the -power_switchable argument.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

384

Table F.5—Liberty attribute mapping for -power_switchable

Name Group Type Value

pg_type pg_pin string primary_power

1) During implementation, this pin is connected to the power net of the primary supply set of the

power domain in which the cell is located.

e) Table F.6 indicates the Liberty attribute mapping for the -ground_switchable argument.

Table F.6—Liberty attribute mapping for -ground_switchable

Name Group Type Value

pg_type pg_pin string primary_ground

1) During implementation, this pin is connected to the ground net of the primary supply set of

the power domain in which the cell is located.

f) -isolated_pins has no corresponding Liberty attribute.

g) -enable has no corresponding Liberty attribute.

F.3 define_diode_clamp

define_diode_clamp [from 7.3]
-cells cell_list
-data_pins pin_list
[-type <power | ground | both>]
[-power pin] [-ground pin]

The Liberty mappings for this command are as follows:

a) Table F.7 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

Table F.7—Liberty attribute mapping for -cells

Name Group Type Value

antenna_diode_type cell Boolean true

b) -data_pins has no corresponding Liberty attribute.

c) -type has no corresponding Liberty attribute.

d) Table F.8 indicates the Liberty attribute mapping for the -power argument.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

385

Table F.8—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string primary_power

e) Table F.9 indicates the Liberty attribute mapping for the -ground argument.

Table F.9—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string primary_ground

F.4 define_isolation_cell

define_isolation_cell [from 7.4]
-cells cell_list
[-power power_ pin]
[-ground power_ pin]
{-enable pin [-clamp_cell <high | low>]
| -pin_groups {{input_pin output_pin [enable_ pin]}*}
| -no_enable <high | low | hold>}
[-always_on_pins pin_list]
[-aux_enables ordered_pin_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-valid_location <source | sink | on | off | any>]
[-non_dedicated]

The Liberty mappings for this command are as follows:

a) Table F.10 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

Table F.10—Liberty attribute mapping for -cells

Name Group Type Value

is_isolation_cell cell Boolean true

b) Table F.11 and Table F.12 indicate the Liberty attribute mapping for the -power argument.

Table F.11—Liberty attribute mapping for -power and -power_switchable

Name Group Type Value

pg_type pg_pin string backup_power

1) This mapping takes place when the cell is also specified with the -power_switchable option.

In this case, tools shall connect the pin to the power net of the isolation supply set specified or
implied by the corresponding isolation strategy.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

386

Table F.12—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string primary_power

2) This mapping takes place when the cell is not specified with the -power_switchable option. In

this case, tools shall connect the pin to power net of the primary supply set of the power
domain in which the cell is located.

c) Table F.13 and Table F.14 indicate the Liberty attribute mapping for the -ground argument.

Table F.13—Liberty attribute mapping for -ground and -ground_switchable

Name Group Type Value

pg_type pg_pin string backup_ground

1) This mapping takes place when the cell is also specified with the -ground_switchable option.

In this case, tools shall connect the pin to the ground net of the isolation supply set specified
or implied by the corresponding isolation strategy.

Table F.14—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string primary_ground

2) This mapping takes place when the cell is not specified with the -ground_switchable option.

In this case, tools shall connect the pin to ground net of the primary supply set of the power
domain in which the cell is located.

d) Table F.15 indicates the Liberty attribute mapping for the -enable argument.

Table F.15—Liberty attribute mapping for -enable

Name Group Type Value

isolation_cell_enable_pin pin Boolean true

1) Tools need to connect the enable pin to the isolation signal specified in the corresponding

isolation strategy.

e) -clamp_cell has no corresponding Liberty attribute.

1) For a clamp high cell, tools can presume the following connections unless they are specified
explicitly:

i) Connect the data pin to the net or pin targeted for isolation;

ii) Connect the enable pin to the isolation signal specified in the corresponding isolation
strategy;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

387

iii) Connect the power pin of the cell to the power net of the isolation supply set specified or
implied by the corresponding isolation strategy.

2) For a clamp low cell, tools can presume the following connections unless they are specified
explicitly:

i) Connect the data pin to the net or pin targeted for isolation;

ii) Connect the enable pin to the isolation signal specified in the corresponding isolation
strategy;

iii) Connect the ground pin of the cell to the ground net of the isolation supply set specified
or implied by the corresponding isolation strategy.

f) For -pin_groups, the corresponding modeling of a multi-bit isolation cell is the bundle group in
Liberty. Within the bundle group, standard pin attributes can be used for the isolation data pin and
enable pin.

g) -no_enable has no corresponding Liberty attribute.

h) Table F.16 indicates the Liberty attribute mapping for the -always_on_pins argument.

Table F.16—Liberty attribute mapping for -always_on_pins

Name Group Type Value

always_on pin Boolean true

i) -aux_enables has no corresponding Liberty attribute.

This option models isolation cells with more than one enable pins. The index 0 is reserved for the
isolation enable pin specified by the -enable option. The pins listed in this option start with index
1. To use such cells for isolation, the corresponding strategy needs to be specified with a signal list
in the -isolation_signal option. The elements in the list are ordered with the index starting with 0.
The signals in the list shall be connected to the pins of the cells with the same index.

j) Table F.17 and Table F.18 indicates the Liberty attribute mapping for the -power_switchable and
-ground_swithcable arguments, respectively.

Table F.17—Liberty attribute mapping for -power_switchable

Name Group Type Value

pg_type pg_pin string primary_power

1) Tools need to connect the pin to the power net of the primary supply set of the power domain

in which the cell is located.

Table F.18—Liberty attribute mapping for -ground_switchable

Name Group Type Value

pg_type pg_pin string primary_ground

2) Tools need to connect the pin to the ground net of the primary supply set of the power domain

in which the cell is located.

k) -valid_location has no corresponding Liberty attribute.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

388

1) Verification tools need to ensure the implementation of the isolation strategy places the
isolation cells in the correct location based on this definition.

l) -non_dedicated has no corresponding Liberty attribute.define_level_shifter_cell

define_level_shifter_cell [from 7.5]
-cells cell_list
[-input_voltage_range {voltage_ranges}] [-output_voltage_range {voltage_ranges}]
[-ground_input_voltage_range {voltage_ranges}]
[-ground_output_voltage_range {voltage_ranges}]
[-direction <low_to_high | high_to_low | both>]
[-input_power_pin power_ pin]
[-output_power_pin power_ pin]
[-input_ground_pin ground_ pin]
[-output_ground_pin ground_ pin]
[-ground ground_pin] [-power power_ pin]
[-enable pin | -pin_groups {{input_ pin output_ pin [enable_ pin]}*}]
[-valid_location <source | sink | either | any>]
[-bypass_enable expression] [-multi_stage integer]

The Liberty mappings for this command are as follows:

a) Table F.19 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

Table F.19—Liberty attribute mapping for -cells

Name Group Type Value

is_level_shifter cell Boolean true

b) -input_voltage_range has no corresponding Liberty attribute.

The syntax of this attribute is different from the Liberty attribute input_voltage_range, which
specifies only two values to indicate the voltage lower bound and upper bound.

c) -output_voltage_range has no corresponding Liberty attribute.

The syntax of this attribute is different from the Liberty attribute output_voltage_range, which
specifies only two values to indicate the voltage lower bound and upper bound.

d) -ground_input_voltage_range has no corresponding Liberty attribute.

The syntax of this attribute is different from the Liberty attribute input_voltage_range, which
specifies only two values to indicate the voltage lower bound and upper bound.

e) -ground_output_voltage_range has no corresponding Liberty attribute.

The syntax of this attribute is different from the Liberty attribute output_voltage_range, which
specifies only two values to indicate the voltage lower bound and upper bound.

f) -direction has no corresponding Liberty attribute.

g) Table F.20 indicates the Liberty attribute mapping for the -input_power_pin argument.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

389

Table F.20—Liberty attribute mapping for -input_power_pin

Name Group Type Value

pg_type pg_pin string primary_power

1) Tools need to connect the pin to the power net of the input supply set in the corresponding

level-shifter strategy [identified by the -input_supply of set_level_shifter (see 6.45)] or the
power net of the driving cell of the level-shifter, unless the connection is specified explicitly.

h) Table F.21 indicates the Liberty attribute mapping for the -output_power_pin argument.

Table F.21—Liberty attribute mapping for -output_power_pin

Name Group Type Value

pg_type pg_pin string primary_power

Tools need to connect the pin to the power net of the output supply set in the corresponding level-
shifter strategy [identified by the -output_supply of set_level_shifter (see 6.45)] or the power net
of the load cell of the level-shifter, unless the connection is specified explicitly.

i) Table F.22 indicates the Liberty attribute mapping for the -input_ground_pin argument.

Table F.22—Liberty attribute mapping for -input_ground_pin

Name Group Type Value

pg_type pg_pin string primary_ground

Tools need to connect the pin to the ground net of the input supply set in the corresponding level-
shifter strategy [identified by the -input_supply of set_level_shifter (see 6.45)] or the ground net
of the driving cell of the level-shifter, unless the connection is specified explicitly.

j) Table F.23 indicates the Liberty attribute mapping for the -output_ground_pin argument.

Table F.23—Liberty attribute mapping for -output_ground_pin

Name Group Type Value

pg_type pg_pin string primary_ground

Tools need to connect the pin to the ground net of the output supply set in the corresponding level-
shifter strategy [identified by the -output_supply of set_level_shifter (see 6.45)] or the ground net
of the load cell of the level-shifter, unless the connection is specified explicitly.

k) Table F.24 indicates the Liberty attribute mapping for the -ground argument.

Table F.24—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string primary_ground

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

390

1) Tools need to connect the pin to ground net of the primary supply set of the power domain in
which the cell is located.

l) Table F.25 indicates the Liberty attribute mapping for the -power argument.

Table F.25—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string primary_power

1) Tools need to connect the pin to power net of the primary supply set of the power domain in

which the cell is located.

m) Table F.26 indicates the Liberty attribute mapping for the -enable argument.

Table F.26—Liberty attribute mapping for -enable

Name Group Type Value

level_shifter_enable_pin pin Boolean true

n) For -pin_groups, the corresponding modeling of a multi-bit isolation cell is the bundle group in

Liberty. Within the bundle group, standard pin attributes can be used for the isolation data pin and
enable pin.

o) -valid_location has no corresponding Liberty attribute.

Verification tools need to ensure the implementation of the level-shifter strategy places the level-
shifter in the correct location based on this definition.

p) -bypass_enable has no corresponding Liberty attribute.

The polarity of the bypass enable pin can be derived from the Liberty attribute
level_shifter_data_pin and the function of the output pin.

q) -multi_stage has no corresponding Liberty attribute.

F.6 define_power_switch_cell

define_power_switch_cell [from 7.6]
-cells cell_list
-type <footer | header>
-stage_1_enable expression [-stage_1_output expression]
{-power_switchable power_ pin -power power_ pin
| -ground_switchable ground_pin -ground ground_ pin]}
[-stage_2_enable expression [-stage_2_output expression]]
[-always_on_pins ordered_ pin_list]
[-gate_bias_pin power_ pin]

The Liberty mappings for this command are as follows:

a) Table F.27 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

391

Table F.27—Liberty attribute mapping for -cells

Name Group Type Value

switch_cell_type cell Boolean coarse_grain

b) For -type, if a cell has a pg_pin with pg_type internal_power in the Liberty definition, then

the cell is a header cell; if a cell has a pg_pin with pg_type internal_ground, then the cell
is a footer cell.

c) -stage_1_enable (-stage_2_enable) has no corresponding Liberty attribute(s).

1) The Liberty pin attribute does not differentiate the function between the two enables, so two
user attributes are created here. However, the Liberty pin attribute switch_function can be
used to describe the switch function on the switched pg_pin, which has pg_type of either
internal_power or internal_ground.

2) Tools need to connect the pins to the switch-enable signal specified in the -control_port
option of the corresponding create_power_switch command (see 6.21).

d) Table F.28 indicates the Liberty attribute mapping for the -power_switchable argument.

Table F.28—Liberty attribute mapping for -power_switchable

Name Group Type Value

pg_type pg_pin string internal_power

Tools need to connect the pin to the supply net specified by the -output_supply_port option of the
corresponding create_power_switch (see 6.21) command.

e) Table F.29 indicates the Liberty attribute mapping for the -power argument.

Table F.29—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string primary_power

Tools need to connect the pin to the supply net specified by the -input_supply_port option of the
corresponding create_power_switch (see 6.21) command.

f) Table F.30 indicates the Liberty attribute mapping for the -ground_switchable argument.

Table F.30—Liberty attribute mapping for -ground_switchable

Name Group Type Value

pg_type pg_pin string internal_ground

1) Tools need to connect the pin to the supply net specified by the -output_supply_port option

of the corresponding create_power_switch (see 6.21) command.
g) Table F.31 indicates the Liberty attribute mapping for the -ground argument.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

392

Table F.31—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string primary_ground

1) Tools need to connect the pin to the supply net specified by the -input_supply_port option of

the corresponding create_power_switch (see 6.21) command.
h) For -stage_1_output (-stage_2_output), the corresponding output pin can be automatically

identified, based on the pin function and the stage_1_enable and stage_2_enable attributes.

Tools need to connect the pins to the switch-enable signal specified in the -ack_port option of the
corresponding create_power_switch command (see 6.21).

i) Table F.32 indicates the Liberty attribute mapping for the -always_on_pins argument.

Table F.32—Liberty attribute mapping for -always_on_pins

Name Group Type Value

always_on pin Boolean true

j) Table F.33 indicates the Liberty attribute mapping for the -gate_bias_pin argument.

Table F.33—Liberty attribute mapping for -gate_bias_pin

Name Group Type Value

user_pg_type pg_pin string gate_bias

F.7 define_retention_cell

define_retention_cell [from 7.7]
-cells cell_list
-power power_ pin
-ground ground_ pin
[-cell_type string]
[-always_on_pins pin_list]
[-restore_function {{pin <high | low | posedge | negedge}}]
[-save_function {{pin <high | low | posedge | negedge}}]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]

The Liberty mappings for this command are as follows:

a) Table F.34 indicates the Liberty attribute mapping for all cells identified by the -cells option of this
command.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

393

Table F.34—Liberty attribute mapping for -cells

Name Group Type Value

retention_cell cell string cell_type

The cell_type is the same string specified in the option -cell_type (see Table F.39).

b) Table F.35 and Table F.36 indicate the Liberty attribute mapping for the -power argument.

Table F.35—Liberty attribute mapping for -power and -power_switchable

Name Group Type Value

pg_type pg_pin string backup_power

1) This mapping takes place when the cell is also specified with the -power_switchable option.

In this case, tools shall connect the pin to the power net of the retention supply set specified or
implied by the corresponding retention strategy.

Table F.36—Liberty attribute mapping for -power

Name Group Type Value

pg_type pg_pin string primary_power

 This mapping takes place when the cell is not specified with the -power_switchable option. In

this case, tools shall connect the pin to power net of the primary supply set of the power
domain in which the cell is located.

c) Table F.37 and Table F.38 indicate the Liberty attribute mapping for the -ground argument.

Table F.37—Liberty attribute mapping for -ground and -ground_switchable

Name Group Type Value

pg_type pg_pin string backup_ground

1) This mapping takes place when the cell is also specified with the -ground_switchable option.
In this case, tools shall connect the pin to the ground net of the retention supply set specified
or implied by the corresponding retention strategy.

Table F.38—Liberty attribute mapping for -ground

Name Group Type Value

pg_type pg_pin string primary_ground

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

394

2) This mapping takes place when the cell is not specified with the -ground_switchable option.
In this case, tools shall connect the pin to ground net of the primary supply set of the power
domain in which the cell is located.

d) Table F.39 indicates the Liberty attribute mapping for the -cell_type argument.

Table F.39—Liberty attribute mapping for -cell_type

Name Group Type Value

retention_cell cell string user_string

e) Table F.40 indicates the Liberty attribute mapping for the -always_on_pins argument.

Table F.40—Liberty attribute mapping for -always_on_pins

Name Group Type Value

always_on pin Boolean true

c) Table F.41 indicates the Liberty attribute mapping for the -restore_function argument.

Table F.41—Liberty attribute mapping for -restore_function

Name Group Type Value

retention_pin pin string restore | save_restore

1) The pin shall be specified by the retention_pin attribute in Liberty. If the cell has only one
retention pin, then the corresponding attribute value is save_restore; otherwise the
corresponding value is restore.

2) Table F.42 indicates the Liberty attribute mapping for the retention control pin functionality.

Table F.42—Liberty attribute mapping for -retention_action

Name Group Type Value

restore_action pin complex <L | H | R | F>

i) The pin shall also be specified by the retention_pin attribute in Liberty.

ii) The mapping of the Liberty value to the UPF value is:

L: low

H: high

R: posedge

F: negedge

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

395

iii) Tools need to connect the pin to the signal specified in the -restore_signal option of the
set_retention command (see 6.49). The polarity or edge-sensitivity specification of the
two options shall be identical.

d) Table F.43 indicates the Liberty attribute mapping for the -save_function argument.

Table F.43—Liberty attribute mapping for -save_function

Name Group Type Value

retention_pin pin string save | save_restore

1) The pin shall be specified by the retention_pin attribute in Liberty. If the cell has only one
retention pin, then the corresponding attribute value is save_restore; otherwise the
corresponding value is save.

2) Table F.44 indicates the Liberty attribute mapping for the retention control pin functionality.

Table F.44—Liberty attribute mapping for -retention_action

Name Group Type Value

save_action pin complex <L | H | R | F>

i) The pin shall also be specified by the retention_pin attribute in Liberty.

ii) The mapping of the Liberty value to the UPF value is:

L: low

H: high

R: posedge

F: negedge

iii) Tools need to connect the pin to the signal specified in the -save_signal option of the
set_retention command (see 6.49). The polarity or edge-sensitivity specification of the
two options shall be identical.

e) -restore_check has no corresponding Liberty attribute.

f) -save_check has no corresponding Liberty attribute.

g) -retention_check has no corresponding Liberty attribute.

h) -hold_check has no corresponding Liberty attribute.

i) -always_on_components has no corresponding Liberty attribute.

j) Table F.45 indicates the Liberty attribute mapping for the -power_switchable argument.

Table F.45—Liberty attribute mapping for -power_switchable

Name Group Type Value

pg_type pg_pin string primary_power

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

396

k) Tools need to connect the pin to power net of the primary supply set of the power domain in which
the cell is located.

l) Table F.46 indicates the Liberty attribute mapping for the -ground_switchable argument.

Table F.46—Liberty attribute mapping for -ground_switchable

Name Group Type Value

pg_type pg_pin string primary_ground

m) Tools need to connect the pin to the ground net of the primary supply set of the power domain in
which the cell is located.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

397

Annex G

(informative)

Power-management cell modeling examples

This annex shows examples for how to model various types of power-management cell in power intent
commands in Clause 6 and corresponding Liberty syntax. The information provides mapping between each
command to the Liberty syntax. Unless otherwise stated, the referenced Liberty attributes are based on the
Liberty 2014.09 release (see Liberty library format usage [B4]).

G.1 Modeling always-on cells

G.1.1 Types of always-on cells

An always-on cell is simply a library cell with more than one set of power and ground pins that can remain
functional even when the supply to the rail-connected power or ground pin is switched off, as long as the
non-switchable power or ground remains on. An always-on cell shall have at least a non-switchable power
or a non-switchable ground pin defined.

Although a cell is called always-on, it does not mean the cell can never be powered off. When the supply to
the non-switchable power or ground of such cell is switched off, the cell becomes non-functional. In other
words, the term always-on actually means relatively always-on.

Any logic function can be implemented in the form of an always-on cell, such as an always-on buffer,
always-on inverter, always-on AND gate, or even always-on flop. In the following subclauses, several
different types of always-on cells are used as examples to describe how to use the define_always_on_cell
command (see 7.2):

— Modeling a power-switched always-on buffer

— Modeling a ground-switched always-on buffer

— Modeling a power- and ground-switched always-on buffer

— Modeling a power-switched always-on flop with internal isolation

G.1.2 Modeling a power-switched always-on buffer

To model a power-switched always-on buffer, use the define_always_on_cell command (see 7.2) with the
following options:

define_always_on_cell
-cells cells
-power pin -power_switchable pin -ground pin

In Figure G.1, a type of power-switched always-on buffer is shown. The cell’s rail connection VSW is not
used by the cell. The actual power of the cell comes from VDD, which needs to be routed separately. The
following command models this type of cell:

define_always_on_cell
-cells LP_Buf_Pow
-power VDD -power_switchable VSW -ground VSS

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

398

The same command can also be used to describe any other type of power-switched always-on cells, such as
an inverter, AND gate, etc.

LP_Buf_Pow

Figure G.1—Power-switched always-on buffer

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* backup power */
 voltage_map(VSW, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(LP_Buf_Pow) {
 always_on : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin(VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

399

G.1.3 Modeling a ground-switched always-on buffer

To model a ground-switched always-on buffer, use the define_always_on_cell command (see 7.2) with the
following options:

define_always_on_cell
-cells cells
-power pin -ground_switchable pin -ground pin

In Figure G.2, a type of ground-switched always-on buffer is shown. The cell’s rail connection GSW is not
used by the cell. The actual ground of the cell comes from VSS, which needs to be routed separately. The
following command models this type of cell:

define_always_on_cell
-cells LP_Buf_Gnd
-ground VSS -power VDD -ground_switchable GSW

The same command can also be used to describe any other type of ground-switched always-on cells, such
as an inverter, AND gate, etc.

LP_Buf_Gnd

Figure G.2—Ground-switched always-on buffer

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(GSW, 0.0); /* primary ground */
 voltage_map(VSS, 0.0); /* backup ground */

 cell(LP_Buf_Gnd) {
 always_on : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(GSW) {
 voltage_name : GSW;
 pg_type : primary_ground;
 }
 pg_pin(VSS) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

400

 voltage_name : VSS;
 pg_type : backup_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.1.4 Modeling a power- and ground-switched always-on buffer

To model a power- and ground-switched always-on buffer, use the define_always_on_cell command (see
7.2) with the following options:

define_always_on_cell
-cells cells
-power_switchable pin -ground_switchable pin
-power pin -ground pin

In Figure G.3, a type of power- and ground-switched always-on buffer is shown. The cell has both power
and ground rail connections, VSW and GSW, respectively, but they are not used by the cell. The actual power
and ground pins the cell come from VDD and VSS, which need to be routed separately. The following
command models this type of cell:

define_always_on_cell
-cells LP_Buf_Pow_Gnd
-power VDD -ground VSS
-power_switchable VSW -ground_switchable GSW

The same command can also be used to describe any other type of power- and ground-switched always-on
cells such as an inverter, AND gate, etc.

LP_Buf_Pow_Gnd

Figure G.3—Power- and ground-switched always-on buffer

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

401

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* Backup power */
 voltage_map(VSW, 1.0); /* Primary power */
 voltage_map(GSW, 0.0); /* Primary ground */
 voltage_map(VSS, 0.0); /* Backup ground */

 cell(LP_Buf_Pow_Gnd) {
 always_on : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin(VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin(GSW) {
 voltage_name : GSW;
 pg_type : primary_ground;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : backup_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.1.5 Modeling a power-switched always-on flop with internal isolation

To model a power-switched always-on cell with internal isolation at some input pins, use the
define_always_on_cell command (see 7.2) with the following options:

define_always_on_cell
-cells cells
-power pin -power_switchable pin -ground pin
-isolated_pins list_of_ pin_lists [-enable expression_list]

The always-on flip-flop cell in Figure G.4 has internal isolation at input pins SE and SI with the other input
pin ISO as the control. The following command models this type of cell:

define_always_on_cell
-cells LP_ff
-power VDD -power_switchable VSW -ground VSS \
-isolated_pins { {SE SI} } -enable {!Iso}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

402

LP_ff

Figure G.4—Power-switched always-on flop with input isolation on pins SE and SI

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* Backup Power */
 voltage_map(VSW, 1.0); /* Primary Power */
 voltage_map(VSS, 0.0); /* Primary Ground */

 cell(LP_ff) {
 always_on : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin(VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 ff (IQ,IQN) {
 clocked_on : "Clk";
 next_state : "(D + (!SE * Iso) + (SI * Iso))"; /* assumed function in the
absence of full cell schematic */
 }
 pin(D) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(SE) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 is_isolated : true;
 isolation_enable_condition : "!Iso";
 }
 pin(SI) {
 direction : input;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

403

 related_power_pin : VDD;
 related_ground_pin : VSS;
 is_isolated : true;
 isolation_enable_condition : "!Iso";
 }
 pin(Iso) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(Clk) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin(Q) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "IQ";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.2 Modeling cells with internal diodes

Cells with input pins connected to diodes need to be properly modeled to avoid electrical failure in a design
with power-management. To model such cells, use the define_diode_clamp command (see 7.3) with the
following options:

define_diode_clamp
-cells cell_list
-data_pins pin_list
[-type <power | ground | both>]
[-power pin] [-ground pin]

To describe the different type of diode connected pins shown in Figure G.5, use the following commands:

define_diode_clamp -cells cellA -data_pins in1 -type power -power VDD1
define_diode_clamp -cells cellB -data_pins in1 -type ground -ground VSS2
define_diode_clamp -cells cellC -data_pins in1 -type both \

-power VDD1 -ground VSS2
define_diode_clamp -cells cellD -data_pins in1 -type power -power VDD

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

404

Figure G.5—Cells with different type of internal diodes

Liberty model

library (mylib) {

 voltage_map (VDD, 1.0);
 voltage_map (VDD1, 1.0);
 voltage_map (VSS2, 0.0);

/* An example of a power_diode cell */
 cell (cellA) {
 antenna_diode_type : power;
 pg_pin (VDD1) {
 voltage_name : VDD1;
 pg_type : primary_power;
 } /* end pg_pin group */
 pin (in1) {
 antenna_diode_related_power_pins : VDD1;
 direction : input;
 } /* end pin group */
 }/* end cell group */

/* An example of a ground_diode cell */
 cell (cellB) {
 antenna_diode_type : ground;
 pg_pin (VSS2) {
 voltage_name : VSS2;
 pg_type : primary_ground;
 }
 pin (in1) {
 antenna_diode_related_ground_pins : VSS2;
 direction : input;
 }
 }/* end cell group */

/* An example of a power_ground diode cell */
 cell (cellC) {
 antenna_diode_type : power_and_ground;
 pg_pin (VDD1) {
 voltage_name : VDD1;
 pg_type : primary_power;
 }
 pg_pin (VSS2) {
 voltage_name : VSS2;
 pg_type : primary_ground;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

405

 }
 pin (in1) {
 antenna_diode_related_power_pins : VDD1;
 antenna_diode_related_ground_pins : VSS2;
 direction : input;
 } /* end pin group */
 } /* end cell group */

/* An example of a power_diode cell */
 cell (cellD) {
 antenna_diode_type : power;
 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pin (in1) {
 antenna_diode_related_power_pins : VDD;
 direction : input;
 } /* end pin group */
 } /* end cell group */
} /* end library group */

G.3 Modeling isolation cells

G.3.1 Types of isolation cells

Isolation logic is required when the leaf-drivers and leaf-loads of a net are in power domains that are not on
and off at the same time, or because it is part of the design intent. The following is a list of the most typical
isolation cells:

— Isolation cell to be placed in the unswitched domain

— Isolation cell to be used in a ground-switchable domain

— Isolation cell to be used in a power-switchable domain

— Isolation cells to be used in a power- or ground-switchable domain

— Isolation cells without follow pins that can be placed in any domain

— Isolation cells without always-on power pins that can be placed in a switchable power domain

— Isolation cells without an enable pin

— Isolation clamp cell

— Isolation level-shifter combo cell

All types of isolation cells are defined using the define_isolation_cell command (see 7.4). The following
subclauses indicate which command options to use for each type.

G.3.2 Modeling an isolation cell to be placed in the unswitched domain

To model an isolation cell to be placed in an unswitched domain, use the define_isolation_cell command
(see 7.4) with the following options:

define_isolation_cell
-cells cell_list

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

406

-power power_ pin -ground ground_ pin
-valid_location on
{-enable pin | -no_enable <high | low | hold>}

Figure G.6 shows an AND cell that can be used for isolation purposes.

Figure G.6—Dedicated isolation cell in unswitched domain

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 } /* end pin group */
 pin(E) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 } /* end pin group */
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A * E";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

407

The following command models the isolation cell in Figure G.6:

define_isolation_cell \
-cells IsoLL \
-power VDD -ground VSS \
-enable E \
-valid_location on

NOTE—To use the cell in regular logic, add the -non_dedicated option. Non-dedicated cells are typically only placed
in the unswitched domain (i.e., -valid_location on).

G.3.3 Modeling an isolation cell for ground-switchable domain

To model an isolation cell to be used in a ground-switchable domain, use the define_isolation_cell
command (see 7.4) with the following options:

define_isolation_cell
-cells cell_list
{-enable pin | -no_enable <high | low | hold>}
-ground_switchable ground_ pin
-power power_pin -ground ground_ pin
[-valid_location <source | sink | on | off>]
[-always_on_pins pin_list]

Figure G.7 shows an AND cell that has the path from power to ground cut off on the ground side. This AND
cell can only be used for isolation.

The following command models the isolation cell in Figure G.7, which can be placed at the output of a
ground-switchable domain:

define_isolation_cell \
-cells IsoLL \
-ground_switchable GSW \
-power VDD -ground VSS \
-enable E \
-valid_location source

Figure G.7—Isolation cell with ground-switchable pin

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

408

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(GSW, 0.0); /* primary ground */
 voltage_map(VSS, 0.0); /* backup ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(GSW) {
 voltage_name : GSW;
 pg_type : primary_ground;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : backup_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : GSW;
 isolation_cell_data_pin : true;
 }
 pin(E) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A * E";
 clamp_0_function : "!E";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.3.4 Modeling an isolation cell for power-switchable domain

To model an isolation cell to be used in a power-switchable domain, use the define_isolation_cell
command (see 7.4) with the following options:

define_isolation_cell
-cells cell_list
{-enable pin | -no_enable <high | low | hold>}
-power_switchable power_ pin
-power power_ pin -ground ground_ pin
[-valid_location <source | sink | on | off>]

Figure G.8 shows an AND cell that has the path from power to ground cut off on the power side. This AND
cell can only be used for isolation.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

409

Figure G.8—Isolation cell with power-switchable pin

The following command models the isolation cell in Figure G.8:

define_isolation_cell \
-cells IsoLL \
-power_switchable VSW \
-power VDD -ground VSS \
-enable E \
-valid_location source

Such a cell would be a good candidate for an isolation strategy like the following, assuming PSW is a
switchable domain.

set_isolation myIso -domain PSW -applies_to outputs \
-isolation_signal iso -isolation_sense high \
-clamp_value low -location self

Liberty model:
library(mylib) {

 voltage_map(VDD, 1.0); /* backup power */
 voltage_map(VSW, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin(VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

410

 pin(E) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }
 pin(Z) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A * E";
 clamp_0_function : "!E";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.3.5 Modeling an isolation cell for power- and ground-switchable domains

To model an isolation cell to be used in a power- and ground-switchable domain, use the
define_isolation_cell command (see 7.4) with the following options:

define_isolation_cell
-cells cell_list
{-enable pin | -no_enable <high | low | hold>}
-power_switchable power_ pin -ground_switchable ground_ pin
-power power_ pin -ground ground_ pin
[-valid_location <source | sink | on | off>]
[-always_on_pins pin_list]

Figure G.9 shows an AND cell that has the path from power to ground cut off on the power and ground
sides. This AND cell can only be used for isolation.

Figure G.9—Dedicated power- and ground-switchable isolation cell

The following command models the isolation cell in Figure G.9:

define_isolation_cell \
-cells IsoLL \
-power_switchable VSW -ground_switchable GSW \
-power VDD -ground VSS \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

411

-enable E \
-valid_location source

Liberty Model:
library(mylib) {

 voltage_map(VDD, 1.0); /* backup power */
 voltage_map(VSW, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* backup ground */
 voltage_map(GSW, 0.0); /* primary ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin(VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : backup_ground;
 }
 pg_pin(GSW) {
 voltage_name : GSW;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : GSW;
 isolation_cell_data_pin : true;
 }
 pin(E) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }
 pin(Z) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A * E";
 clamp_0_function : "!E";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.3.6 Modeling an isolation cell that can be placed in any domain

To model an isolation cell to be used in any domain, which typically does not have the power or ground rail
connection, use the define_isolation_cell command (see 7.4) with the following options:

define_isolation_cell
-cells cell_list
{-enable pin | -no_enable <high | low | hold>}
-power power_ pin -ground ground_ pin

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

412

-valid_location any
[-always_on_pins pin_list]

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(isolation_cell_in_any_domain) {
 is_isolation_cell : true;

 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 }
 pin(E) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "A * E";
 clamp_0_function : "!E";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.3.7 Modeling an isolation cell without always-on power pins that can be placed in a
switchable power domain

In some cases, a regular single rail can also be placed at the output of a switchable domain and used for
isolation. For example, for a 2-input NOR type cell, the output will be pull-down to the ground or logic zero
as long as one of the inputs is logic one irrespective of the voltages at the power pins. As a result, such a
cell can be placed within a power-gated domain to isolate the domain outputs to logic zero. To model such
a cell, use the following command and options:

define_isolation_cell
-cells cell_list
-enable pin
-power_switchable power_ pin -ground ground_ pin
-valid_location off

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

413

Similarly, for a 2-input NAND type cell, the output will be driven to logic one as long as one of the inputs is
logic zero, irrespective of the connection at the ground pins. As a result, such a cell can be placed within a
ground-gated domain to isolate the domain outputs to logic one. To model such a cell, use the following
command and options:

define_isolation_cell
-cells cell_list
-enable pin
-power power_ pin -ground_switchable ground_ pin
-valid_location off

Example

define_isolation_cell \
-cells NOR_ISO \
-power_switchable VDD -ground VSS \
-enable iso \
-valid_location off

Liberty Model:
library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 permit_power_down : true;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 }
 pin(iso) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 alive_during_partial_power_down : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 alive_during_partial_power_down : true;
 function : "!(A + iso)";
 power_down_function : "VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

414

G.3.8 Modeling an isolation cell without enable pin

There are special isolation cells that do not have an enable pin, but still can clamp output to a logic value
when the primary power supply is switched off. Such a cell looks like a buffer, but its functionality is
different when the switchable power is on and off. These cells are useful to buffer a net that typically
requires always-on buffers, e.g., the retention control pin of all retention flops. The advantage of using such
a cell versus an always-on buffer is it consumes much less power. To model such a cell, use the
define_isolation_cell command (see 7.4) with the following options:

define_isolation_cell
-cells cell_list
-no_enable <high | low | hold>
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]
[-valid_location <source | sink | on | off>]
[-always_on_pins pin_list]

Example

define_isolation_cell \
-cells IsoLL \
-power VDD -ground VSS \
-no_enable low\
-valid_location sink

Liberty Model:
library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(IsoLL) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 permit_power_down : true;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 alive_during_partial_power_down : true;
 isolation_cell_data_pin : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 alive_during_partial_power_down : true;
 function : "A";
 power_down_function : "VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

415

G.3.9 Modeling an isolation clamp cell

An isolation clamp high cell is a simple PMOS transistor with the gate input being used as the enable pin.
When its driver is switched off by a ground switch and the enable pin has value 0, the connected net can be
clamped to a logic high value as shown in Figure G.10.

Figure G.10—Isolation clamp high cell

To model an isolation clamp high cell, use the define_isolation_cell command (see 7.4) with the following
options:

define_isolation_cell
-cells cell_list
-enable pin -clamp_cell high -power power_ pin
-valid_location on

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell(clamp_high_isolation_cell) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 } /* end pin group */
 pin(iso_en) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

416

 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "1";
 clamp_1_function : "!iso_en";
 power_down_function : "!VDD + VSS";
 }/* end pin group*/
 } /*end cell group*/
} /* end library group */

An isolation clamp low cell is a simple NMOS transistor with the gate input being used as the enable pin.
When its driver is switched off by a power switch and the enable pin has value 1, the connected net can be
clamped to a logic low value as shown in Figure G.11.

Figure G.11—Isolation clamp low cell

To model an isolation clamp low cell, use the define_isolation_cell command (see 7.4) with the following
options:

define_isolation_cell
-cells cell_list
-enable pin -clamp_cell low -ground ground_ pin
-valid_location on

Due to its special connectivity requirement, to apply such a power or ground clamp cell for a specific
isolation strategy, use the -port_map option of the use_interface_cell command (see 6.55). In terms of
power and ground net connection, if it is a clamp low cell, only the isolation ground net specified in
-isolation_supply is used; if it is a clamp high cell, only the isolation power net specified in
-isolation_supply is used.

Liberty model

library(mylib) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

417

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

cell(clamp_low_isolation_cell) {
 is_isolation_cell : true;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 }

 pin(iso_en) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 isolation_cell_enable_pin : true;
 }

 pin(Y) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "0";
 clamp_0_function : "iso_en";
 power_down_function : "!VDD + VSS";
 } /* end pin group*/
 } /*end cell group*/
} /* end library */

G.3.10 Modeling an isolation cell with multiple enable pins

Some isolation cells have an enable pin that is related to the non-switchable supply of the cell and
additional enable pins that are related to the switchable supply. The switchable enable pin can be used to
synchronize the isolation logic right before the non-switchable enable pin is activated or deactivated. To
model an isolation cell with multiple enable pins, use the define_isolation_cell command (see 7.4) with the
following options:

define_isolation_cell
-cells cell_list
-aux_enables pin_list -enable pin [-clamp <high | low>]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]
[-valid_location <source | sink | on | off | any>]

To specify an isolation strategy that targets these types of isolation cells, use the set_isolation command
with the -isolation_signal option (see 6.44) by assigning a list of signals to the option. In this list, the first
signal is the one to drive the enable pin and the rest of the signals drive the auxiliary enable pin specified in
the -aux_enables option in the same order.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

418

Figure G.12 shows two examples of cells with multiple enable pins. The iso enable pin is related to the
non-switchable supply vddc, while the en enable pin is related to the switchable supply vdd.

Figure G.12—Isolation cells with multiple enable pins

The following command models the isoandlow and isoorhigh cells in Figure G.12:

define_isolation_cell \
-cells {isoandlow isoorhigh} \
-aux_enables en \
-power_switchable vdd \
-power vddc -ground vss \
-enable iso

The following commands show the isolation strategies that target the isoandlow and isoorhigh cells in
Figure G.12:

set_isolation iso1 -domain PD1 -source PD1 \
-isolation_signal { iso_drvr en_drvr} \
-isolation_sense { high low } \
-clamp_value 0

set_isolation iso2 -domain PD2 -source PD2 \

-isolation_signal { iso_drvr en_drvr} \
-isolation_sense { high high } \
-clamp_value 1

Liberty model:
library(mylib) {

 voltage_map(vdd, 1.0); /* primary power */
 voltage_map(vddc, 1.0); /* backup power */
 voltage_map(vss, 0.0); /* primary ground */

 cell(isoandlo) {
 is_isolation_cell : true;
 pg_pin(vdd) {
 voltage_name : vdd;
 pg_type : primary_power;
 }
 pg_pin(vddc) {
 voltage_name : vddc;
 pg_type : backup_power;
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

419

 pg_pin(vss) {
 voltage_name : vss;
 pg_type : primary_ground;
 }
 pin(a) {
 direction : input;
 related_power_pin : vdd;
 related_ground_pin : vss;
 isolation_cell_data_pin : true;
 } /* end pin group */
 pin(iso) {
 direction : input;
 related_power_pin : vddc;
 related_ground_pin : vss;
 isolation_cell_enable_pin : true;
 } /* end pin group */
 pin(en) {
 direction : input;
 related_power_pin : vdd;
 related_ground_pin : vss;
 isolation_cell_enable_pin : true;
 } /* end pin group */
 pin(Y) {
 direction : output;
 related_power_pin : vddc;
 related_ground_pin : vss;
 function : " (!iso * en * a)";
 clamp_0_function : " (iso + !en) ";
 power_down_function : "!vdd + vss";
 } /* end pin group*/
 } /*end cell group*/

 cell(isoorhi) {
 is_isolation_cell : true;
 pg_pin(vdd) {
 voltage_name : vdd;
 pg_type : primary_power;
 }
 pg_pin(vddc) {
 voltage_name : vddc;
 pg_type : backup_power;
 }
 pg_pin(vss) {
 voltage_name : vss;
 pg_type : primary_ground;
 }
 pin(a) {
 direction : input;
 related_power_pin : vdd;
 related_ground_pin : vss;
 isolation_cell_data_pin : true;
 } /* end pin group */
 pin(iso) {
 direction : input;
 related_power_pin : vddc;
 related_ground_pin : vss;
 isolation_cell_enable_pin : true;
 } /* end pin group */
 pin(en) {
 direction : input;
 related_power_pin : vdd;
 related_ground_pin : vss;
 isolation_cell_enable_pin : true;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

420

 } /* end pin group */
 pin(Y) {
 direction : output;
 related_power_pin : vddc;
 related_ground_pin : vss;
 function : " (iso + !en + a)";
 clamp_1_function : "(!iso + en)";
 power_down_function : "!vdd + vss";
 } /* end pin group*/
 } /*end cell group*/
} /* end library */

G.3.11 Modeling a multi-bit isolation cell

A multi-bit isolation cell has multiple pairs of input and output pins with each pair serving as a single-bit
isolation cell. An example is shown in Figure G.13.

Figure G.13—Multi-bit isolation cell

If the cell uses the same enable pin for all pairs of input and output pins, there is no difference in modeling
such a multi-bit cell with respect to the single-bit isolation cell. If the cell has different enable pins for the
input and output pairs, model the cell using the define_isolation_cell command with the -pin_groups
option (see 7.4).

The following command can be used to describe the multi-bit isolation cell for the power-switchable
domain shown in Figure G.13 (see Figure G.8 for the corresponding single-bit cell):

define_isolation_cell -cells IsoLL \
-power_switchable VSW \
-power VDD -ground VSS \
-pin_groups {{in1 out1 en1} {in2 out2 en2} {in3 out3 en3}}

Liberty Model:
library (mylib) {

 voltage_map(VDD, 1.0); /* backup power */
 voltage_map(VSW, 1.0); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

421

 cell ("IsoLL") {
 is_isolation_cell : true;
 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 bundle (in) {
 members (in1, in2, in3);
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 isolation_cell_data_pin : true;
 pin (in1) {
 direction : input;
 }
 pin (in2) {
 direction : input;
 }
 pin (in3) {
 direction : input;
 } /* end pin group */
 } /* end bundle group */
 bundle (en) {
 members (en1, en2, en3);
 isolation_cell_enable_pin : true;
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 pin (en1) {
 direction : input;
 }
 pin (en2) {
 direction : input;
 capacitance : 1.0;
 }
 pin (en3) {
 direction : input;
 } /* end pin group */
 } /* end bundle group */
 bundle (out) {
 members (out1, out2, out3);
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "in * en";
 power_down_function : "!VDD + VSS";
 pin (out1) {
 …
 }
 pin (out2) {
 …
 }
 pin (out3) {
 …
 } /* end pin group */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

422

 } /* end bundle group */
 } /* end cell group */
} /* end library group */

G.4 Modeling level-shifters

G.4.1 Types of level-shifters

To pass signals between portions of the design that operate on different power or ground voltages, level-
shifters are needed. The following is a list of the most typical level-shifters:

— Power level-shifters

— Ground level-shifters

— Enabled level-shifters

— Bypass level-shifters

— Multi-stage level-shifters

— Multi-bit level-shifters

All types of level-shifters are defined using the define_level_shifter_cell command (see 7.5). The
following subclauses indicate which command options to use for each type.

G.4.2 Modeling a power level-shifter

A power level-shifter passes signals between portions of the design that operate on different power
voltages, but using the same ground voltages. To model a power level-shifter, use the following options
from the define_level_shifter_cell command (see 7.5):

define_level_shifter_cell
-cells cell_list
-input_voltage_range {{lower_bound upper_bound}*}
-output_voltage_range {{lower_bound upper_bound}*}
[-direction <low_to_high | high_to_low | both>]
[-input_power_pin power_ pin] [-output_power_pin power_ pin]
[-ground ground_ pin]
[-valid_location <source | sink | either | any>]

Figure G.14 shows a power domain at 0.8 V and one at 1.2 V. The ground voltage for both domains is
0.0 V. In this case, data signals going from the domain at 0.8 V to the domain at 1.2 V need a power
level-shifter with direction low_to_high, while data signals going from the domain at 1.2 V to the
domain at 0.8 V need a power level-shifter with direction high_to_low.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

423

Figure G.14—Power level-shifter

The following commands can be used to model these power level-shifters:

define_level_shifter_cell -cells low_to_high_power \
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}} \
-input_power_pin VDD_IN -output_power_pin VDD_OUT -ground VSS_IN \
-direction low_to_high -valid_location source

Liberty Model :
library(mylib) {

 voltage_map(VDD_IN, 0.8); /* primary power */
 voltage_map(VDD_OUT, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */

 cell(up_shifter) {
 is_level_shifter : true;
 level_shifter_type : LH ;
 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 input_voltage_range (0.8 , 1.0);
 }
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_IN;
 function : "IN";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS_IN";
 output_voltage_range (1.0 , 1.2);
 } /* end pin group */
 } /* end cell group */
} /* end library group */

define_level_shifter_cell -cells high_to_low_power \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

424

-input_voltage_range {{1.0 1.2}} -output_voltage_range {{0.8 1.0}} \
-input_power_pin VDD_IN -output_power_pin VDD_OUT -ground VSS_IN \
-direction high_to_low -valid_location source

Liberty Model :
library(mylib) {

 voltage_map(VDD_IN, 1.2); /* primary power */
 voltage_map(VDD_OUT, 0.8); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */

 cell(down_shifter) {
 is_level_shifter : true;
 level_shifter_type : HL ;

 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 input_voltage_range (1.0 , 1.2);
 }
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_IN;
 function : "IN";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS_IN";
 output_voltage_range (0.8 , 1.0);
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.4.3 Modeling a ground level-shifter

A ground level-shifter passes signals between portions of the design that operate on different ground
voltages, but using the same power voltages. To model a ground level-shifter, use the following options
from the define_level_shifter_cell command (see 7.5):

define_level_shifter_cell
-cells cell_list
-ground_input_voltage_range {{lower_bound upper_bound}*}
-ground_output_voltage_range {{lower_bound upper_bound}*}
[-direction <low_to_high | high_to_low | both>]
[-input_ground_pin power_ pin] [-output_ground_pin power_ pin]
[-power power_ pin] [-valid_location <source | sink | either | any>]

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

425

The two power domains in Figure G.15 have the same power supply 1.2 V. However, the ground voltage
for the first domain is at 0.0 V, while the ground voltage for the second domain is at 0.5 V. The direction
of a level-shifter indicates the difference between the voltage swing of the driver and the voltage swing of
the receiver. As a result, for data signals going from the domain with ground voltage 0.0 V to the domain
with ground voltage 0.5 V, a ground level-shifter with direction high_to_low is required. Similarly, for
data signals going from the domain with ground voltage 0.5 V to the domain with ground voltage 0.0 V,
a ground level-shifter with direction low_to_high is required.

Figure G.15—Ground level-shifter

The following commands can be used to model these ground level-shifters:

define_level_shifter_cell -cells high_to_low_ground \
-ground_input_voltage_range {{0.0 0.1}} \
-ground_output_voltage_range {{0.4 0.5}} \
-input_ground_pin VSS_IN -output_ground_pin VSS_OUT -power VDD_IN \
-direction high_to_low -valid_location source

Liberty Model:
library(mylib) {

 voltage_map(VDD_IN, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */
 voltage_map(VSS_OUT, 0.5); /* primary ground */

 cell(down_shift) {
 is_level_shifter : true;
 level_shifter_type : HL ;
 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 std_cell_main_rail : true;
 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 ground_input_voltage_range : "(0.0, 0.1)";
 }
 pin(OUT) {
 direction : output;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

426

 related_power_pin : VDD_IN;
 related_ground_pin : VSS_OUT;
 function : "IN";
 power_down_function : "!VDD_IN + VSS_IN + VSS_OUT";
 ground_output_voltage_range : "(0.4 , 0.5)";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

define_level_shifter_cell -cells low_to_high_ground \

-ground_input_voltage_range {{0.4 0.5}} \
-ground_output_voltage_range {{0.0 0.1}} \
-input_ground_pin VSS_IN -output_ground_pin VSS_OUT -power VDD_IN \
-direction low_to_high -valid_location source

Liberty Model:
library(mylib) {

 voltage_map(VDD_IN, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.5); /* primary ground */
 voltage_map(VSS_OUT, 0.0); /* primary ground */

 cell(up_shift) {
 is_level_shifter : true;
 level_shifter_type : LH ;

 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 std_cell_main_rail : true;
 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 ground_input_voltage_range : "(0.4 , 0.5)";
 }
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_OUT;
 function : "IN";
 power_down_function : "!VDD_IN + VSS_OUT + VSS_IN";
 ground_output_voltage_range : "(0.0 , 0.1)";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

427

G.4.4 Modeling a power and ground level-shifter

A power and ground level-shifter passes signals between portions of the design that operate on different
power and ground voltages. To model a ground level-shifter, use the following options from the
define_level_shifter_cell command (see 7.5):

define_level_shifter_cell
-cells cell_list
-input_voltage_range {{lower_bound upper_bound}*}
-output_voltage_range {{lower_bound upper_bound}*}
-ground_input_voltage_range {{lower_bound upper_bound}*}
-ground_output_voltage_range {{lower_bound upper_bound}*}
[-direction <low_to_high | high_to_low | both>]
[-input_power_pin power_ pin] [-output_power_pin power_ pin]
[-input_ground_pin power_ pin] [-output_ground_pin power_ pin]
[-valid_location <source | sink | either >]

The two power domains in Figure G.16 have different power and ground voltages. domain_1 is the region
where power is 0.8 V and ground is 0.5 V. domain_2 is the region where power is 1.2 V and ground
is 0 V. As shown, the voltage swing of the domain_1 is 0.3 V and the voltage swing of the domain_2 is
1.2 V. As a result, a low_to_high direction power and ground level-shifter is needed going from
domain_1 to domain_2. Similarly, going from domain_2 to domain_1 requires a power and ground
level-shifter in the high_to_low direction.

Figure G.16—Power and ground level-shifter

The following commands model the power and ground level-shifter to go from domain_1 to domain_2:

define_level_shifter_cell -cells low_to_high \
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}} \
-ground_input_voltage_range {{0.4 0.5}} \
-ground_output_voltage_range {{0.0 0.1}} \
-input_ground_pin VSS_IN -output_ground_pin VSS_OUT \
-input_power_pin VDD_IN -output_power_pin VDD_OUT \
-direction low_to_high -valid_location source

Liberty model

library(mylib) {

 voltage_map(VDD_IN, 0.8); /* primary power */
 voltage_map(VDD_OUT, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.5); /* primary ground */
 voltage_map(VSS_OUT, 0.0); /* primary ground */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

428

 cell(up_shift {
 is_level_shifter : true;
 level_shifter_type : LH ;
 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 std_cell_main_rail : true;
 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 input_voltage_range (0.8, 1.0);
 ground_input_voltage_range : "(0.4, 0.5)";
 } /* end pin group */
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_OUT;
 function : "IN";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS_IN + VSS_OUT";
 output_voltage_range (1.0, 1.2);
 ground_output_voltage_range : "(0.0 , 0.1)";
 } /* end pin group */
 } /* end cell group */
} /* end library group */

The following commands model the power and ground level shift to go from domain_2 to domain_1:

define_level_shifter_cell -cells high_to_low \
-input_voltage_range {{1.0 1.2}} -output_voltage_range {{0.8 1.0}} \
-ground_input_voltage_range {{0.0 0.1}} \
-ground_output_voltage_range {{0.4 0.5}} \
-input_ground_pin VSS_IN -output_ground_pin VSS_OUT \
-input_power_pin VDD_IN -output_power_pin VDD_OUT \
-direction high_to_low -valid_location sink

Liberty model

library(mylib) {

 voltage_map(VDD_IN, 1.2); /* primary power */
 voltage_map(VDD_OUT, 0.8); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */
 voltage_map(VSS_OUT, 0.5); /* primary ground */
 define(ground_input_voltage_range, pin, string);
 define(ground_output_voltage_range, pin, string);

 cell(down_shift) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

429

 is_level_shifter : true;
 level_shifter_type : HL ;
 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 std_cell_main_rail : true;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 input_voltage_range (1.0, 1.2);
 ground_input_voltage_range : "(0.0 , 0.1)";
 }
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_OUT;
 function : "IN";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS_OUT + VSS_IN";
 output_voltage_range (0.8, 1.0);
 ground_output_voltage_range : "(0.4 , 0.5)";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.4.5 Modeling an enabled level-shifter

An enabled level-shifter is the level-shifter with an enable pin, which allows the level-shifter to be used for
isolation purpose in some cases. To model such a cell, use the define_level_shifter_cell command with the
-enable option (see 7.5).

This type of cell uses an enable pin to control the voltage shifting. Typically, the enable pin is related to the
output supplies of the level-shifter. In other words, the enable control needs to have the same voltage as the
receiving domain. If both domains are powered on, then the enable can be tied to a constant, such that the
level-shifter is always active.

To model an isolation-level-shifter combo cell, see G.4.9.

G.4.5.1 Modeling an enabled power level-shifter

Assume the power level-shifter shown in Figure G.14 also has an enable pin to enable the level-shifting
functionality, as shown in Figure G.17.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

430

Figure G.17—Enabled power level-shifter

In this cell, when the enable signal En is inactive (at logic 0), it protects the level-shifter cell when the
input power supply is powered down and causes the output to be a specific logic value determined by its
functionality. VLO and VSS are the primary power (low voltage) and ground pin, respectively, and VHI is
the additional power pin (high voltage). As it is indicated by the primary power connection, the cell needs
to be placed in the low-voltage domain. For such a cell to be used for isolation purposes when the driving
domain is switched off using a header power switch, its input power pin needs to be connected to the
primary power net of the driving domain because the driver of the level-shifter data pin is not protected,
e.g., the inverter connected to A. In this case, the definition should be adjusted as follows:

define_level_shifter_cell -cells low_to_high_power_enable \
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}} \
-input_power_pin VDD_IN -output_power_pin VDD_OUT -ground VSS_IN \
-direction low_to_high -valid_location source \
-enable En

The enable pin is related to the output supplies of the level-shifter.

Liberty model

 library(mylib) {

 voltage_map(VDD_IN, 0.8); /* primary power */
 voltage_map(VDD_OUT, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */

 cell(up_shift) {
 is_level_shifter : true;
 level_shifter_type : LH ;

 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

431

 related_power_pin : VDD_IN;
 related_ground_pin : VSS_IN;
 input_voltage_range (0.8 , 1.0);
 level_shifter_data_pin : true;
 }
 pin(En) {
 direction : input;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_IN;
 input_voltage_range (1.0 , 1.2);
 level_shifter_enable_pin : true;
 }
 pin(Y) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS_IN;
 function : "A * En";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS_IN";
 output_voltage_range (1.0 , 1.2);
 } /* end pin group */
 } /* end cell group */
} /* end library group */

G.4.5.2 Modeling an enabled ground level-shifter

Assume the ground level-shifter shown in Figure G.15 also has an enable pin to enable the level-shifting
functionality. VDD and VSS_IN are the primary power and ground pin (for higher ground voltage),
respectively, and VSS_OUT is the additional ground pin (for normal ground voltage). The enable pin
connection is analogous to the connection of the enabled power level-shifter in Figure G.16. In this case,
the definition should be adjusted as follows:

define_level_shifter_cell -cells low_to_high_ground_enable \
-ground_input_voltage_range {{0.4 0.5}} \
-ground_output_voltage_range {{0.0 0.1}} \
-input_ground_pin VSS_IN -output_ground_pin VSS_OUT -power VDD \
-direction low_to_high -valid_location source \
-enable en

The enable pin is related to the output supplies of the level-shifter.

Liberty model—Low to high ground enable level-shifter

library(mylib) {

 voltage_map(VDD, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.5); /* primary ground */
 voltage_map(VSS_OUT, 0.0); /* primary ground */

 cell(up_shift) {
 is_level_shifter : true;
 level_shifter_type : LH ;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 std_cell_main_rail : true;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

432

 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;

 related_power_pin : VDD;
 related_ground_pin : VSS_IN;
 ground_input_voltage_range : "(0.4, 0.5)";
 } /* end pin group */
 pin(en) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS_OUT;
 ground_input_voltage_range : "(0.0, 0.1)";
 level_shifter_enable_pin : true;
 } /* end pin group */
 pin(Z) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS_OUT;
 function : "A * en";
 power_down_function : "!VDD_IN + VSS_IN + VSS_OUT";
 ground_output_voltage_range : "(0.0 , 0.1)";
 } /* end pin group */
 } /* end cell group */
} /* end library group */

Liberty model—High to low ground enable level-shifter

library(mylib) {

 voltage_map(VDD, 1.2); /* primary power */
 voltage_map(VSS_IN, 0.0); /* primary ground */
 voltage_map(VSS_OUT, 0.5); /* primary ground */

 cell(down_shift) {
 is_level_shifter : true;
 level_shifter_type : HL ;
 pg_pin(VDD) {
 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS_IN) {
 voltage_name : VSS_IN;
 pg_type : primary_ground;
 std_cell_main_rail : true;
 }
 pg_pin(VSS_OUT) {
 voltage_name : VSS_OUT;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS_IN;
 ground_input_voltage_range : "(0.0 , 0.1)";
 }
 pin(en) {
 direction : input;
 related_power_pin : VDD;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

433

 related_ground_pin : VSS_OUT;
 ground_input_voltage_range : "(0.4 , 0.5)";
 level_shifter_enable_pin : true;
 }
 pin(Z) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS_OUT;
 function : "A * en";
 power_down_function : "!VDD + VSS_OUT + VSS_IN";
 ground_output_voltage_range : "(0.4 , 0.5)";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.4.6 Modeling a bypass level-shifter

To model a level-shifter whose level-shifting functionality can be bypassed under certain conditions, use
the define_level_shifter_cell command with the -bypass_enable option (see 7.5).

An example of such a cell is shown in Figure G.18. When the bp_enable signal is True, the level-shifting
functionality is bypassed and the signal OUT comes from the top buffer.

Figure G.18—Bypass level-shifter cell

The following command can be used to describe a bypass level-shifter:

define_level_shifter_cell -cells low_to_high_mux \
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}} \
-input_power_pin VDD_IN -output_power_pin VDD_OUT -ground VSS \
-direction low_to_high -valid_location source -bypass_enable bp_enable

To apply such a cell for a specific level-shifter strategy, use the -port_map option of the
use_interface_cell command (see 6.55) to explicitly describe the pin connection for the bypass enable pin
of the cell.

Liberty model

library(mylib) {

 voltage_map(VDD_IN, 0.8); /* primary power */
 voltage_map(VDD_OUT, 1.2); /* primary power */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

434

 voltage_map(VSS, 0.0); /* primary power */

 cell(low_to_high_mux) {
 is_level_shifter : true;
 level_shifter_type : LH ;
 pg_pin(VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pin(IN) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS;
 input_voltage_range (0.8 , 1.0);
 }
 pin(INT) {
 direction : internal;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS;
 output_voltage_range (1.0 , 1.2);
 function : "IN";
 }
 pin(bp_enable) {
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS;
 level_shifter_enable_pin : true;
 input_voltage_range (0.8 , 1.0);
 }
/* When bp_enable is logic high then signals IN and OUT will have the same
voltage value of 1.0v hence is a buffer functionality */
 pin(OUT) {
 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS;
 function : " (!bp_enable * INT + bp_enable * IN) ";
 power_down_function : "!VDD_IN + !VDD_OUT + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.4.7 Modeling a multi-stage level-shifter

When the voltage difference between the driving (or originating) and receiving (or destination) power
domains is large, multiple level-shifters or a single multi-stage level-shifter might be required. To model a
single multi-stage level-shifter cell, define the level-shifter cell using the define_level_shifter_cell
command with the -multi_stage option (see 7.5) to identify the stage of the multi-stage level-shifter to
which this definition (command) applies.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

435

For a level-shifter cell with N stages, N definitions shall be specified for the same cell. Each definition
needs to associate a number from 1 to N for this option to indicate the corresponding stage of this
definition. A definition cannot have the same stage defined twice.

An example of a single multi-stage level-shifter cell is shown in Figure G.19.

Figure G.19—Multi-stage level-shifter

The following commands can be used to describe the single level-shifter cell shown in Figure G.19:

define_level_shifter_cell -cells m_stage_ls -multi_stage 1 -input_power_pin
V1\

-output_power_pin V2 -input_ground_pin VS1 -output_ground_pin VS2
define_level_shifter_cell -cells m_stage_ls -multi_stage 2 -input_power_pin

V2\
-input_ground_pin VS2 -output_voltage_pin V3 -output_ground_pin VS2

To apply such a cell for a specific level-shifter strategy, use the -port_map option of the
use_interface_cell command (see 6.55) to explicitly describe the pin connections.

Liberty model

library(mylib) {

 voltage_map(V1, 0.8); /* primary power */
 voltage_map(V2, 1.0); /* primary power */
 voltage_map(V3, 1.2); /* primary power */
 voltage_map(VS1, 0.0); /* primary ground */
 voltage_map(VS2, 0.0); /* primary ground */

 cell(m_stage_ls) {
 is_level_shifter : true;
 level_shifter_type : LH ;
 pg_pin(V1) {
 voltage_name : V1;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin(V2) {
 voltage_name : V2;
 pg_type : primary_power;
 }
 pg_pin(V3) {
 voltage_name : V3;
 pg_type : primary_power;
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

436

 pg_pin(VS1) {
 voltage_name : VS1;
 pg_type : primary_ground;
 }
 pg_pin(VS2) {
 voltage_name : VS2;
 pg_type : primary_ground;
 }
 pin(A) {
 direction : input;
 related_power_pin : V1;
 related_ground_pin : VS1;
 }
 pin(INT) {
 direction : internal;
 related_power_pin : V2;
 related_ground_pin : VS2;
 function : "A";
 }
 pin(Z) {
 direction : output;
 related_power_pin : V3;
 related_ground_pin : VS2;
 function : "INT";
 power_down_function : "!V1 + !V2 + !V3 + VS1 + VS2";
 } /* end pin group */
 } /* end cell group */
} /* end library group*/

G.4.8 Modeling a multi-bit level-shifter cell

A multi-bit level-shifter cell has multiple pairs of input and output pins with each pair serving as a single-
bit level-shifter. An example is shown in Figure G.20.

For the following multi-bit level-shifter cells, there is no difference in modeling such a multi-bit cell with
respect to a single-bit level-shifter cell:

— Multi-bit simple level-shifter without an enable pin

— Multi-bit enable level-shifter with the same enable pin for all bits

If the cell has different enable pins for the input and output pairs, model the cell using the
define_level_shifter_cell command with the -pin_groups option (see 7.5).

The following command can be used to describe the multi-bit level-shifter cell shown in Figure G.20:

define_level_shifter_cell -cells multi_bit_en \
-input_voltage_range {{0.8 1.0}} -output_voltage_range {{1.0 1.2}} \
-input_power_pin VDD_IN -output_power_pin VDD_OUT -ground VSS \
-direction low_to_high -valid_location source \
-pin_groups {{in1 out1 en1} {in2 out2 en1} {in3 out3 en2}}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

437

Figure G.20—Multi-bit level-shifter

Liberty model

library (mylib) {

 voltage_map(VDD_IN, 0.8); /* primary power */
 voltage_map(VDD_OUT, 1.2); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */

 cell ("multi_bit_en") {
 is_level_shifter : true;
 pg_pin (VDD_IN) {
 voltage_name : VDD_IN;
 pg_type : primary_power;
 std_cell_main_rail : true;
 }
 pg_pin (VDD_OUT) {
 voltage_name : VDD_OUT;
 pg_type : primary_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 bundle (in) {
 members (in1, in2, in3);
 direction : input;
 related_power_pin : VDD_IN;
 related_ground_pin : VSS;
 level_shifter_data_pin : true;
 } /* end bundle group */
 pin (en1) {
 level_shifter_enable_pin : true;
 direction : input;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS;
 }
 pin (en2) {
 level_shifter_enable_pin : true;
 direction : input;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS;
 }
 bundle (out) {
 members (out1, out2, out3);

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

438

 direction : output;
 related_power_pin : VDD_OUT;
 related_ground_pin : VSS;
 power_down_function : "VDD_IN + !VDD_OUT + VSS";
 pin (out1) {
 direction : output;
 function : "in1 * en1";
 }/* end pin group */
 pin (out2) {
 direction : output;
 function : "in2 * en1";
 } /* end pin group */
 pin (out3) {
 direction : output;
 function : "in3 * en2";
 } /* end pin group */
 } /* end bundle group */
 } /* end cell group */
} /* end library group */

G.4.9 Modeling an isolation level-shifter combo cell

A combo cell isolates or protects the input when the driving logic is powered down and generates an output
isolation value at the same voltage as the output supply of the cell. Typically, the enable pin is related to the
input supplies of the cell. The most common combo cells are the isolation cells with high-to-low shifting
capabilities.

Modeling a combo cell requires two commands. For example, to model an isolation cell for power-
switchable domain that is also a power level-shifter, use the following definitions:

define_isolation_cell
-cells cell_list
{-enable pin | -no_enable <high | low | hold>}
-power_switchable power_ pin
-power power_ pin -ground ground_ pin
[-valid_location <source | sink>]

define_level_shifter_cell

-cells cell_list
-input_voltage_range {{lower_bound upper_bound}*}
-output_voltage_range {{lower_bound upper_bound}*}
-direction high_to_low
[-input_power_pin power_ pin] [-output_power_pin power_ pin]
[-ground_pin power_ pin] [-valid_location <source | sink>]
[-always_on_pins pin_list]

NOTE—The -enable option cannot be used in the define_level_shifter_cell definition. In addition, the same value for
the -valid_location option needs to be specified in both the define_isolation_cell and define_level_shifter_cell
commands.

To model an enabled level-shifter, see G.4.5.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

439

G.5 Modeling power-switch cells

G.5.1 Types of power-switch cells

To connect and disconnect the power (or ground) supply from the gates in internal switchable power
domains, power-switch logic needs to be added. The following is a list of the most typical cells:

— Single-stage power-switch cell single transistor that controls the primary power supply to the logic
of an internal switchable domain

— Single-stage ground-switch cell single transistor that controls the primary ground supply to the logic
of an internal switchable domain

— Dual-stage power switch with a weak and strong transistor to control the primary power supply to
the logic of an internal switchable domain

— Dual-stage ground switch with a weak and strong transistor to control the primary ground supply to
the logic of an internal switchable domain

All types of power-switch cells are defined using the define_power_switch_cell command (see 7.6). The
following subclauses indicate which command options to use for each type.

G.5.2 Modeling a single-stage power-switch cell

To model a single-stage power-switch cell, use the following options from the define_power_switch_cell
command (see 7.6):

define_power_switch_cell
-cells cell_list -type header
-power_switchable power_ pin -power power_ pin
-stage_1_enable expression [-stage_1_output expression]
[-ground ground_ pin]
[-always_on_pins pin_list]

NOTE—The -stage_1_output and -stage_1_ground options do not need to be specified for an unbuffered power-
switch cell.

Figure G.21 shows a power-switch cell with an internal buffer. VIN is the pin connected to the unswitched
power. VSW is the pin connected to the switchable power that is connected to the logic. When the enable
signal Ei is activated, the unswitched power is supplied to the logic. As shown in Figure G.22, this type of
cell usually contains a buffer that allows multiple power-switch cells to be chained together to form a
power-switch column or ring. However, the power and ground of this buffer need to be unswitchable.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

440

Figure G.21—Single-stage power switch

The following command models the power-switch cell shown in Figure G.21:

define_power_switch_cell -cells sw1 \
-stage_1_enable Ei -stage_1_output Eo \
-type header -power_switchable VSW -power VIN -ground VSS

Liberty Model :
library(mylib) {

 voltage_map(VIN, 1.0); /* primary power */
 voltage_map(VSW, 1.0); /* internal power */
 voltage_map(VSS, 0.0); /* primary ground */

 /* templates */
 lu_table_template (c_grain) {
 variable_1 : input_voltage;
 variable_2 : output_voltage;
 index_1("0.0, 0.2, 0.5, 1.2");
 index_2("0.0, 0.5, 1.08, 1.2");
 }
 cell(sw1) {
 switch_cell_type : coarse_grain;
 pg_pin(VIN) {
 voltage_name : VIN;
 pg_type : primary_power;
 direction : input;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 direction : inout;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : internal_power;
 switch_function : "!Ei";
 pg_function : "VIN";
 direction : output;
 }
 dc_current (c_grain) {
 related_switch_pin : Ei;
 related_pg_pin : VIN;
 related_internal_pg_pin : VSW;
 values ("0.01, 0.002, 0.003, 0.0005", \
 "0.01, 0.003, 0.001, 0.0006", \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

441

 "0.03, 0.004, 0.002, 0.0006", \
 "0.05, 0.006, 0.003, 0.0008");
 } /* end dc_current group */
 pin (Ei) {
 switch_pin : true;
 related_power_pin : VIN;
 related_ground_pin : VSS;
 } /* end pin group */
 pin (Eo) {
 direction : output;
 function : "Ei";
 related_power_pin : VIN;
 related_ground_pin : VSS;
 power_down_function : "!VIN + VSS";
 } /* end pin group */
 } /* end cell group*/
} /* end library group*/

G.5.3 Modeling a power-switch cell with gate bias

To model a single-stage power-switch cell with gate bias, use the following options from the
define_power_switch_cell command (see 7.6):

define_power_switch_cell
-cells cell_list -type header
-gate_bias_pin power_ pin
-stage_1_enable expression [-stage_1_output expression]
-power_switchable power_ pin -power power_ pin
-ground ground_ pin [-always_on_pins pin_list]

Typically, the enable pin is related to the power and the ground pin. With gate bias, the enable pin is
typically related to the gate bias pin and the ground. The voltage on the gate bias pin is larger than the
voltage of the power pin. Such a cell creates less leakage power compared to the cell without gate bias.

In Figure G.22, the gate bias pin is VGB. Assume the input voltage VIN is at 1.2 V and the gate bias pin is
at 3.3 V.

Figure G.22—Single-stage power switch with gate bias

The following command models the power-switch cell shown in Figure G.22:

define_power_switch_cell \
-cells sw1 \
-stage_1_enable Ei -stage_1_output Eo -gate_bias_pin VGB\
-type header \
-power_switchable VSW -power VIN -ground VSS

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

442

Liberty Model:
library(mylib) {

 voltage_map(VIN, 1.0); /* primary power */
 voltage_map(VSW, 1.0); /* internal power */
 voltage_map(VGB, 1.5); /* primary power */
 voltage_map(VSS, 0.0); /* primary ground */
 /* templates */
 lu_table_template (c_grain) {
 variable_1 : input_voltage;
 variable_2 : output_voltage;
 index_1("0.0, 0.2, 0.5, 1.2");
 index_2("0.0, 0.5, 1.08, 1.2");
 }
 cell(sw1) {
 switch_cell_type : coarse_grain;
 pg_pin(VIN) {
 voltage_name : VIN;
 pg_type : primary_power;
 direction : input;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 direction : inout;
 related_bias_pin : VGB;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : internal_power;
 switch_function : "!Ei";
 pg_function : "VIN";
 direction : output;
 }
 pg_pin (VGB) {
 voltage_name : VGB;
 pg_type : primary_power;
 }
 dc_current (c_grain) {
 related_switch_pin : internal;
 related_pg_pin : VIN;
 related_internal_pg_pin : VSW;
 values ("0.01, 0.002, 0.003, 0.0005", \
 "0.01, 0.003, 0.001, 0.0006", \
 "0.03, 0.004, 0.002, 0.0006", \
 "0.05, 0.006, 0.003, 0.0008");
 } /* end dc_current group */
 pin (Ei) {
 direction : input;
 switch_pin : true;
 related_power_pin : VGB;
 related_ground_pin : VSS;
 } /* end pin group */
 pin (internal) {
 direction : internal;
 } /* end pin group */
 pin (Eo) {
 direction : output;
 function : "Ei";
 related_power_pin : VIN;
 related_ground_pin : VSS;
 power_down_function : "!VGB + !VIN + VSS";

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

443

 } /* end pin group */
 } /*end cell group*/
} /* end library group*/

G.5.4 Modeling a single-stage ground-switch cell

To model a single-stage ground-switchable power-switch cell, use the following options from the
define_power_switch_cell command (see 7.6):

define_power_switch_cell
-cells cell_list -type footer
-stage_1_enable expression [-stage_1_output expression]
-ground_switchable ground_ pin -ground ground_ pin
-power power_ pin [-always_on_pins pin_list]

Figure G.23 shows a ground-switch cell. VSS is the pin connected to the unswitched ground. VSW is the pin
connected to the switchable ground that is connected to the logic. When the enable signal Ei is activated,
the unswitched ground is supplied to the logic. As shown in Figure G.23, this type of cell usually contains a
buffer that allows multiple ground-switch cells to be chained together to form a ground-switch column or
ring. However, the power and ground of this buffer need to be unswitchable.

Figure G.23—Single-stage ground switch

The following command models the ground-switch cell shown in Figure G.23:

define_power_switch_cell -cells gw1 \
-stage_1_enable Ei -stage_1_output Eo \
-type footer -ground_switchable GSW -ground VSS -power VDD

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(GSW, 0.0); /* Internal ground */
 voltage_map(VSS, 0.0); /* primary ground */
 /* templates */
 lu_table_template (c_grain) {
 variable_1 : input_voltage;
 variable_2 : output_voltage;
 index_1("0.0, 0.2, 0.5, 1.2");
 index_2("0.0, 0.5, 1.08, 1.2");
 }
 cell(gw1) {
 switch_cell_type : coarse_grain;
 pg_pin(VDD) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

444

 voltage_name : VDD;
 pg_type : primary_power;
 }
 pg_pin(VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 direction : input;
 }
 pg_pin (GSW) {
 voltage_name : GSW;
 pg_type : internal_ground;
 switch_function : "!Ei";
 pg_function : "VSS";
 direction : output;
 }
 dc_current (c_grain) {
 related_switch_pin : Ei;
 related_pg_pin : VSS;
 related_internal_pg_pin : GSW;
 values ("0.01, 0.002, 0.003, 0.0005", \
 "0.01, 0.003, 0.001, 0.0006", \
 "0.03, 0.004, 0.002, 0.0006", \
 "0.05, 0.006, 0.003, 0.0008");
 }
 pin (Ei) {
 switch_pin : true;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 }
 pin (Eo) {
 direction : output;
 function : "Ei";
 related_power_pin : VDD;
 related_ground_pin : VSS;
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /*end cell group*/
} /* end library group*/

G.5.5 Modeling a dual-stage power-switch cell

To model a power-switch cell with two stages, use the following options from the
define_power_switch_cell command (see 7.6):

define_power_switch_cell
-cells cell_list -type header
-power_switchable power_ pin -power power_ pin
-stage_1_enable expression [-stage_1_output expression]
-stage_2_enable expression [-stage_2_output expression]
-ground ground_ pin [-always_on_pins pin_list]

Figure G.24 shows a dual-stage power-switch cell. VIN is the pin connected to the unswitched power. VSW
is the pin connected to the switchable power that is connected to the logic. Only when both enable signals
Ri and Ei are activated can the unswitched power be supplied to the logic. The Ri enable signal drives the
stage-1 (weak) transistor, which requires less current to restore the unswitched power. The Ei enable signal
drives the stage-2 (strong) transistor, which requires more current to fully supply the unswitched power to
the logic. This type of cell usually contains two buffers that allow multiple power-switch cells to be
chained together to form a power-switch column or ring. However, the power and ground of these buffers
need to be unswitchable.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

445

Figure G.24—Dual-stage power switch

The following command models the power-switch cell shown in Figure G.24:

define_power_switch_cell -cells sw1 \
-stage_1_enable Ri -stage_1_output Ro \
-stage_2_enable Ei -stage_2_output Eo \
-type header -power_switchable VSW -power VIN -ground VSS

Liberty model

library(mylib) {

 voltage_map(VIN, 1.0); /* primary power */
 voltage_map(VSW, 1.0); /* Internal power */
 voltage_map(VSS, 0.0); /* primary ground */
 /* templates */
 lu_table_template (c_grain) {
 variable_1 : input_voltage;
 variable_2 : output_voltage;
 index_1("0.0, 0.2, 0.5, 1.2");
 index_2("0.0, 0.5, 1.08, 1.2");
 }
 cell(sw1) {
 switch_cell_type : coarse_grain;
 pg_pin(VIN) {
 pg_type : primary_power;
 direction : input ;
 voltage_name : VIN;
 }
 pg_pin (VSW) {
 pg_type : internal_power;
 voltage_name : VSW;
 direction : output ;
 switch_function : "(Ei * Ri)";
 pg_function : "VIN" ;
 }
 pg_pin (VSS) {
 pg_type : primary_ground;
 voltage_name : VSS;
 }
 pin(Ei) {
 direction : input;
 related_power_pin : VIN;
 related_ground_pin : VSS;
 switch_pin : true;
 }
 pin(Ri) {
 direction : input;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

446

 related_power_pin : VIN;
 related_ground_pin : VSS;
 switch_pin : true;
 }
 /* DC current table when first header is ON */
 dc_current (c_grain) {
 related_switch_pin : Ei;
 related_pg_pin : VIN;
 related_internal_pg_pin : VSW;
 values ("0.01, 0.002, 0.003, 0.0005", \
 "0.01, 0.003, 0.001, 0.0006", \
 "0.03, 0.004, 0.002, 0.0006", \
 "0.05, 0.006, 0.003, 0.0008");
 }
 /* DC current when second header is ON */
 dc_current (c_grain) {
 related_switch_pin : Ri;
 related_pg_pin : VIN;
 related_internal_pg_pin : VSW;
 values ("0.02, 0.003, 0.004, 0.0006", \
 "0.02, 0.004, 0.005, 0.0007", \
 "0.04, 0.005, 0.0001, 0.0008", \
 "0.06, 0.007, 0.008, 0.0009");
 } /* end dc_current group */
 pin(Eo) {
 direction : output;
 related_power_pin : VIN;
 related_ground_pin : VSS;
 function : "Ei";
 power_down_function : "!VIN + VSS";
 } /* end pin group */
 pin(Ro) {
 direction : output;
 related_power_pin : VIN;
 related_ground_pin : VSS;
 function : "Ri";
 power_down_function : "!VIN + VSS";
 } /* end pin group */
 } /*end cell group*/
} /* end library group*/

G.5.6 Modeling a dual-stage ground-switch cell

To model a ground-switch cell with two stages, use the following options from the
define_power_switch_cell command (see 7.6):

define_power_switch_cell
-cells cell_list -type footer
-ground_switchable ground_ pin -ground ground_ pin
-stage_1_enable expression [-stage_1_output expression]
-stage_2_enable expression [-stage_2_output expression]
-power power_ pin [-always_on_pins pin_list]

Figure G.25 shows a dual-stage ground-switch cell. VSS is the pin connected to the unswitched ground.
GSW is the pin connected to the switchable ground that is connected to the logic. Only when both enable
signals Ri and Ei are activated can the unswitched ground be supplied to the logic. The Ri enable signal
drives the stage-1 (weak) transistor, which requires less current to restore the unswitched ground. The Ei
enable signal drives the stage-2 (strong) transistor, which requires more current to fully supply the
unswitched ground to the logic. This type of cell usually contains two buffers that allow multiple ground-

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

447

switch cells to be chained together to form a ground-switch column or ring. However, the power and
ground of these buffers need to be unswitchable.

Figure G.25—Dual-stage ground switch

The following command models the ground-switch cell shown in Figure G.25:

define_power_switch_cell -cells gsw \
-stage_1_enable Ri -stage_1_output Ro \
-stage_2_enable Ei -stage_2_output Eo \
-type footer -ground_switchable GSW -ground VSS -power VDD

Liberty model

library(mylib) {

 voltage_map(VDD, 1.0); /* primary power */
 voltage_map(GSW, 0.0); /* Internal power */
 voltage_map(VSS, 0.0); /* primary ground */
 /* templates */
 lu_table_template (c_grain) {
 variable_1 : input_voltage;
 variable_2 : output_voltage;
 index_1("0.0, 0.2, 0.5, 1.2");
 index_2("0.0, 0.5, 1.08, 1.2");
 }
 cell(gsw) {
 switch_cell_type : coarse_grain;
 pg_pin(VDD) {
 pg_type : primary_power;
 voltage_name : VDD;
 }
 pg_pin (GSW) {
 pg_type : internal_ground;
 voltage_name : GSW;
 direction : output ;
 switch_function : "(!Ei * !Ri)";
 pg_function : "VSS" ;
 }
 pg_pin (VSS) {
 pg_type : primary_ground;
 voltage_name : VSS;
 direction : input ;
 }
 pin(Ei) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 switch_pin : true;
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

448

 pin(Ri) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 switch_pin : true;
 }
 /* DC current atble when first header is ON */
 dc_current (c_grain) {
 related_switch_pin : Ei;
 related_pg_pin : VSS;
 related_internal_pg_pin : GSW;
 values ("0.01, 0.002, 0.003, 0.0005", \
 "0.01, 0.003, 0.001, 0.0006", \
 "0.03, 0.004, 0.002, 0.0006", \
 "0.05, 0.006, 0.003, 0.0008");
 }
 /* DC current table when second header is ON */
 dc_current (c_grain) {
 related_switch_pin : Ri;
 related_pg_pin : VSS;
 related_internal_pg_pin : GSW;
 values ("0.02, 0.003, 0.004, 0.0006", \
 "0.02, 0.004, 0.005, 0.0007", \
 "0.04, 0.005, 0.0001, 0.0008", \
 "0.06, 0.007, 0.008, 0.0009");
 } /* end dc_current group */
 pin(Eo) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "Ei";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 pin(Ro) {
 direction : output;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 function : "Ri";
 power_down_function : "!VDD + VSS";
 } /* end pin group */
 } /*end cell group*/
 } /* end library group*/

G.6 Modeling state retention cells

G.6.1 Types of state retention cells

State retention cells are used for sequential cells to keep their previous state prior to power-down. The
following is a list of the most typical state retention cells:

— State retention cell with explicit save control

— State retention cell with explicit restore control

— State retention cells with explicit save and restore controls

— State retention cells without explicit save or restore control

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

449

All types of state retention cells are defined using the define_retention_cell command (see 7.7). The
following subclauses indicate which command options to use for each type.

G.6.2 State retention cell that restores when power is turned on

To model a state retention cell that saves the current value when the retention control pin becomes active
while the power is on, retains the saved value when power is off, and restores the saved value when the
power is turned on, use the following options from the define_retention_cell command (see 7.7):

define_retention_cell
-cells cell_list [-cell_type string]
-save_function {{pin <high | low | posedge | negedge}}
[-always_on_pins pin_list]
[-clock_pin pin]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]

Figure G.26 shows an example of such a cell.

Figure G.26—State retention with save control

To model the cell shown in Figure G.26, use the following command:

define_retention_cell -cells SR1 \
-clock_pin Clk \
-save_function {save posedge} \
-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

If the UPF retention strategy is specified as follows:

set_retention ret -domain PD \
-save_signal {save save_net posedge} \
-restore_signal {save_net negedge} \
…

then the retention cells specified above are used to implement the strategy.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

450

Liberty model

library(mylib) {

 voltage_map (VDD, 1.0); /* backup power */
 voltage_map (VSW, 1.0); /* primary power */
 voltage_map (VSS, 0.0); /* primary ground */

 cell(SR1) {
 retention_cell : RET;
 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 ff(Q1, QN1) {
 clocked_on : " Clk ";
 next_state : " D ";
 clear : "(!save * !Q2) + !RESETN";
 preset : "!save * Q2";
 clear_preset_var1 : "H";
 clear_preset_var2 : "H";
 power_down_function : "!VSW+VSS";
 }
 latch("Q2", "QN2") {
 enable : " save ";
 data_in : " Q1 ";
 power_down_function : "!VDD+VSS";
 }
 clock_condition() {
 clocked_on : "Clk";
 required_condition : "!save"; /* cell in legal state when save =
logic_low */
 hold_state : "N"; /* retention data is restored to either master or slave
latch */
 }
 pin(save) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 retention_pin(save_restore, "0"); /* cell is in normal mode and works as
a D-flop when save is logic high */
 save_action : "H"; /* The save happens at the AO latch at the signal
leading edge */
 restore_action : "H"; /* The restore happens at the output is at the
signal leading edge */
 save_condition : "!Clk"; /* side condition for successful save */
 restore_condition : "!Clk"; /* side condition for successful restore */
 restore_edge_type : "leading"; /* Edge when the cell is starting to
restore */
 }
 retention_condition() {
 required_condition : "save";
 power_down_function : "!VSW + VSS";
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

451

 clear_condition() { /* When clear asserts, save must be high to allow Low
value to be transferred to Flop output */
 input : "!RESETN";
 required_condition : "!save";
 }
 pin(D) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Clk) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(RESETN) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Q) {
 direction : output;
 function : "Q1";
 power_down_function : "!VSW + VSS";
 related_power_pin : VSW;
 related_ground_pin : VSS;
 } /* end pin Group */
 } /* end cell group */
} /* end library group */

For a retention cell with output Q driven by a buffer powered by the retention supply (VDD), Q shall be
specified in the -always_on option of the command, as follows:

define_retention_cell -cells SR1 \
-clock_pin Clk \
-always_on_pins {Q}
-save_function {save posedge} \
-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

Such a cell shall then be used to implement a retention strategy specified with -use_retention_as_primary,
such as:

set_retention ret -domain PD \
-save_signal {save save_net posedge} \
-restore_signal {save_net negedge} \
-use_retention_as_primary \
…

Liberty model

library(mylib) {

 voltage_map (VDD, 1.0); /* backup power */
 voltage_map (VSW, 1.0); /* primary power */
 voltage_map (VSS, 0.0); /* primary ground */

 cell(SR1) {
 retention_cell : RET;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

452

 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 ff(Q1, QN1) {
 clocked_on : " Clk ";
 next_state : " D ";
 clear : "(!save * !Q2) + !RESETN";
 preset : "!save * Q2";
 clear_preset_var1 : "H";
 clear_preset_var2 : "H";
 power_down_function : "!VSW+VSS";
 }
 latch("Q2", "QN2") {
 enable : " save ";
 data_in : " Q1 ";
 power_down_function : "!VDD+VSS";
 }
 clock_condition() {
 clocked_on : "Clk";
 required_condition : "!save"; /* cell in legal state when save =
logic_low */
 hold_state : "N"; /* retention data is restored to either master or slave
latch */
 }
 pin(save) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 retention_pin(save_restore, "0"); /* cell is in normal mode and works as a
D-flop when save is logic high */
 save_action : "H"; /* The save happens at the AO latch at the signal
leading edge */
 restore_action : "H"; /* The restore happens at the output is at the
signal leading edge */
 save_condition : "!Clk"; /* side condition for successful save */
 restore_condition : "!Clk"; /* side condition for successful restore */
 restore_edge_type : "leading"; /* Edge when the cell is starting to
restore */
 }
 retention_condition() {
 required_condition : "save";
 power_down_function : "!VSW + VSS";
 }
 clear_condition() { /* When clear asserts, save must be high to allow Low
value to be transferred to Flop output */

 input : "!RESETN";
 required_condition : "!save";
 }
 pin(D) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

453

 pin(Clk) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(RESETN) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Q) {
 direction : output;
 function : "Q1";
 power_down_function : "!VDD + !VSW + +VSS";
 related_power_pin : VDD;
 related_ground_pin : VSS;
 } /* end pin Group */
 } /* end cell group */
} /* end library group */

G.6.3 State retention cell that restores when control signal is deactivated

To model a state retention cell that saves the current value when the retention control pin becomes
deactivated and restores the saved value when the control signal becomes activated, use the following
options from the define_retention_cell command (see 7.7):

define_retention_cell
-cells cell_list [-cell_type string]
-restore_function {{pin <high | low | posedge | negedge}}
[-always_on_pins pin_list]
[-clock_pin pin]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]

Figure G.27 shows an example of such a cell.

Figure G.27—State retention with restore control

To model the cell shown in Figure G.27, use the following command:

define_retention_cell -cells SR1 \

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

454

-clock_pin Clk \
-restore_function {Ret negedge} \
-power_switchable VDD_SW \
-power VDD -ground VSS

If the UPF retention strategy is specified as follows:

set_retention ret -domain PD \
-save_signal {save posedge} \
-restore_signal {save negedge}
...

then the retention cells previously specified shall be used to implement the strategy.

Use -restore_check, -save_check, -retention_check, and -hold_check if the cell has additional
requirements in retention mode.

In the previous example, if the clock signal needs to maintain low at the save and restore time, use the
following command:

define_retention_cell -cells SR1 \
-clock_pin Clk \
-restore_function {Ret negedge} \
-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

If the clock signal needs to also be low when the primary power is switched off, i.e., in retention mode, use
the following command:

define_retention_cell -cells SR1 \
-clock_pin Clk \
-restore_function {Ret negedge} \
-restore_check !Clk -save_check !Clk -retention check !Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

If the clock signal does not have to be low or high in at the save or restore, but it needs to maintain the
same value before the cell entering retention mode and after the cell exiting retention mode, use the
following command:

define_retention_cell -cells SR1 \
-clock_pin Clk \
-restore_function {Ret negedge} \
-hold_check Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

Liberty Model :

 library(mylib) {

 voltage_map (VDD, 1.0); /* backup power */
 voltage_map (VSW, 1.0); /* primary power */
 voltage_map (VSS, 0.0); /* primary power */

 cell(SR1) {
 retention_cell : RET;

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

455

 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 ff(Q1, QN1) {
 clocked_on : " Clk ";
 next_state : " D ";
 clear : "(!Ret * !Q2) + !RESETN";
 preset : "!Ret * Q2";
 clear_preset_var1 : "H";
 clear_preset_var2 : "H";
 power_down_function : "!VSW+VSS";
 }
 latch("Q2", "QN2") {
 enable : " Ret ";
 data_in : " Q1 ";
 power_down_function : "!VDD+VSS";
 }
 clock_condition() {
 clocked_on : "Clk";
 required_condition : "!Ret"; /* cell in legal state when Ret =
logic_low */
 hold_state : "N"; /* retention data is restored to either master or
slave latch */
 }
 pin(Ret) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 retention_pin(save_restore, "0"); /* cell is in normal mode and works
as a D-flop when Rer is logic low */
 save_action : "H"; /* When the save happens at the AO latch at the
signal leading edge */
 restore_action : "L"; /* When the restore happens at the output is at
the signal trailing edge */
 save_condition : "!Clk"; /* side condition for successful save */
 restore_condition : "!Clk"; /* side condition for successful restore */
 restore_edge_type : "trailing"; /* Edge when the cell is starting to
restore */
 }
 retention_condition() {
 required_condition : "Ret * !Clk";
 power_down_function : "!VSW + VSS";
 }
 clear_condition() {
 input : "!RESETN";
 required_condition : "!Ret"; /* When clear asserts, Ret must be low to
clear flop output */
 }
 pin(D) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Clk) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

456

 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(RESETN) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Q) {
 direction : output;
 function : "Q1";
 power_down_function : "!VSW+VSS";
 related_power_pin : VSW;
 related_ground_pin : VSS;
 } /* end pin Group */
 } /* end cell group */
} /* end library group */

G.6.4 State retention cells with save and restore controls

For a state retention cell with both save and restore controls, the cell saves the current value when the save
control pin is activated and the power is on, while the cell restores the saved value when the restore control
pin is activated. To model such a cell, use the following options from the define_retention_cell command
(see 7.7):

define_retention_cell
-cells cell_list [-cell_type string] -save_function {{pin <high | low | posedge | negedge}}
-restore_function {{pin <high | low | posedge | negedge}}
[-always_on_pins pin_list] [-clock_pin pin]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]

In this case, the cell saves the current value when the save expression is True and the power is on. The cell
restores the saved value when the restore expression is True and the power is on. Figure G.28 shows an
example of such a cell.

Figure G.28—State retention with save and restore controls

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

457

To model the cell shown in Figure G.28, use the following command:

define_retention_cell -cells SR2 \
-clock_pin Clk \
-restore_function {Wake high} -save_function {Sleep high} \
-restore_check !Clk -save_check !Clk \
-power_switchable VDD_SW \
-power VDD -ground VSS

The state is saved when Sleep is active and the clock is down, and the state is restored when Wake is
active and the clock is down.

If the UPF retention strategy is specified as follows:

set_retention ret -domain PD \
-save_signal {save_net high} \
-restore_signal {restore_net high}
...

then the retention cells previously specified shall be used to implement the strategy.

Liberty model

library(mylib) {

 voltage_map (VSW, 1.0); /* primary power */
 voltage_map (VDD, 1.0); /* backup power */
 voltage_map (VSS, 0.0); /* primary ground */

 cell(SR2) {
 retention_cell : RET;
 pg_pin (VDD) {
 voltage_name : VDD;
 pg_type : backup_power;
 }
 pg_pin (VSS) {
 voltage_name : VSS;
 pg_type : primary_ground;
 }
 pg_pin (VSW) {
 voltage_name : VSW;
 pg_type : primary_power;
 }
 ff(Q1, QN1) {
 clocked_on : " Clk ";
 next_state : " D ";
 clear : "(Wake * !Q2) + !RESETN";
 preset : "Wake * Q2";
 clear_preset_var1 : "L";
 clear_preset_var2 : "H";
 power_down_function : "!VSW+VSS";
 }
 latch("Q2", "QN2") {
 enable : " Sleep ";
 data_in : " Q1 ";
 power_down_function : "!VDD+VSS";
 }
 clock_condition() {
 clocked_on : "Clk";

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

458

 required_condition : "!Sleep"; /* cell in legal state when Sleep =
logic_low */
 hold_state : "N"; /* retention data is restored to either master or slave
latch */
 }
 pin(Wake) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 retention_pin(restore, "0"); /* cell is in normal mode and works as a D-
flop when Wake is logic low */
 restore_action : "H"; /* The restore happens at the signal Leading edge */
 restore_condition : "!Clk"; /* Side condition for successful restore */
 restore_edge_type : "leading"; /* Edge when the cell is starting to restore
*/
 }
 pin(Sleep) {
 direction : input;
 related_power_pin : VDD;
 related_ground_pin : VSS;
 retention_pin(save, "0"); /* cell is in normal mode and works as a D-flop
when Sleep = logic_high */
 save_action : "H"; /* The save happens at the signal leading edge */
 save_condition : "!Clk"; /* Side condition for successful restore */
 }
 retention_condition() {
 required_condition : "Sleep";
 power_down_function : "!VSW + VSS";
 }
 clear_condition() {
 input : "!RESETN";
 required_condition : "!Wake"; /* When clear signal asserts, Wake signal
must be low to allow the flop output to clear */
 }
 pin(D) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(Clk) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 pin(RESETN) {
 direction : input;
 related_power_pin : VSW;
 related_ground_pin : VSS;
 }
 Pin(Q) {
 direction : output;
 function : "Q1";
 related_power_pin : VSW;
 related_ground_pin : VSS;
 power_down_function : "!VSW + VSS";
 } /* end pin group */
 } /* end cell group */
} /* end library group */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

459

G.6.5 State retention cells without save or restore control

A master-slave type state retention cell does not have a dedicated save or restore control pin; it has a
secondary power or ground pin to provide continuous power supply to the slave latch. Such a cell always
saves a copy of the current value before entering the retention mode and the saved value is restored when
the primary power is restore.

To model such a cell use the following define_retention_cell command options, without -save_function
or -restore_function:

define_retention_cell
-cells cell_list [-cell_type string]
[-always_on_pins pin_list] [-clock_pin pin]
[-restore_check expression] [-save_check expression]
[-retention_check expression] [-hold_check pin_list]
[-always_on_components component_list]
[-power_switchable power_ pin] [-ground_switchable ground_ pin]
[-power power_ pin] [-ground ground_ pin]

To specify a state retention strategy that targets these types of state retention cells, use the set_retention
command (see 6.49) and do not use the -save_signal or -restore_signal options.

The following example models the master-slave retention cell ms_ret:

define_retention_cell -cells ms_ret \
-clock_pin CLK \
-restore_check {!CLK} -save_check {!CLK}

The following command shows the state retention strategy that targets cell ms_ret for all registers with the
power domain PD1:

set_retention sr1 -domain PD1 \
 -retention_condition {!clock && nreset} \
 -use_retention_as_primary \
 ...

Liberty model

library(mylib) {

 voltage_map (VSW, 1.0); /* primary power */
 voltage_map (VDD, 1.0); /* backup power */
 voltage_map (VSS, 0.0); /* primary ground */

 cell (ms_ret) {
 retention_cell : 0_pin_clk_low_retention;
 pg_pin (VSW) {
 pg_type : primary_power;
 voltage_name : VSW;
 }
 pg_pin (VDD) {
 pg_type : backup_power;
 voltage_name : VDD;
 }
 pg_pin (VSS) {
 pg_type : primary_ground;
 voltage_name : VSS;
 }
 pin (Q) {

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

460

 direction : output;
 function : "IQ2";
 related_ground_pin : VSS;
 related_power_pin : VSW;
 power_down_function : "(CLK * !VSW) + !VDD + VSS";
 } /* end pin group */
 pin (D) {
 direction : input;
 related_ground_pin : VSS;
 related_power_pin : VSW;
 } /* end pin group */
 pin (CLK) {
 direction : input;
 related_ground_pin : VSS;
 related_power_pin : VDD;
 } /* end pin group */
 latch (IQ1,IQN1) {
 enable : "CLK";
 data_in : "D";
 power_down_function : "!VSW + VSS";
 }
 latch (IQ2,IQN2) {
 enable : "CLK";
 data_in : "IQ1";
 power_down_function : "!VDD + VSS";
 }
 clock_condition() {
 clocked_on : "CLK";
 hold_state : "L";
 }
 } /* end cell group */
} /* end pin group */

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

461

Annex H

(informative)

IP power modeling for system-level design

The purpose of this annex is to provide both an informative background into the scope, structure, and
expected use of system-level intellectual property (IP) power models.

H.1 Overview of system-level IP power models

Within a system-level design environment we are operating at fairly high levels of design abstraction which
enables fast simulation and analysis generally. This analysis performance is attained by abstracting away
details of our platform that are not relevant for the types of analysis we wish to perform. In order to extend
this analysis to accommodate power, we need to annotate power information onto the simulation. The
annotation of power information is performed through the use of system-level IP power models, which are
power models of IP components specifically for use in system-level design.

These power models are intended to be used in system-level design although there is nothing to prevent
their use in other types of analysis at different levels of abstraction. However, these are highly abstract
models of the power behavior of an IP component and so their value outside of system-level design may be
somewhat limited. The standard provides support for modeling all types of IP components and provides no
limitations on use.

An IP power model exists together with a host model which controls the power model during simulation
and activates specific power states within the power model. The host model would typically be a functional
model of some kind, but could be anything that ultimately activates and controls the power model.

Figure H.1—Power model overview

The power model acts entirely as a slave to the host model and cannot directly make any changes to the
state of the system.

The power model simply responds to direction from the host and returns data to that same host. Power
models can only communicate through the host to which it is attached. Power models cannot communicate
directly with each other and so one power model cannot directly affect the power state in another power
model.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

462

It is expected that system-level IP power models are developed and distributed by IP teams (whether they
be IP vendors or IP implementation teams within larger platform development groups). As such, system-
level IP power models are considered to be context independent in nature.

Typically, the abstraction of power information contained within an IP power model is aligned to the
functionality of the IP component itself and to the various low power modes supported by the component.
The IP power model should make no assumption about the context in which it is to be used. This aligns
well with the fundamental principles of IP reuse, portability, and interoperability. The IP power model
would typically be instantiated into a context-dependent environment where the binding between objects in
the power model to objects in the design can be completed.

H.2 Content of system-level IP power models

H.2.1 Overview

There are three key parts to a system-level IP power model:

 Power state enumeration

 Power state power (or current) consumption data

 Definition of all legal power state transitions

H.2.2 Power state enumeration

Any IP power state which is required during system-level design should be enumerated within the IP power
model. The power states defined in the IP power model can represent both:

 Operating modes of the IP

 Supply states within the IP

The various operating modes of an IP component can have a wide range of power consumption figures, and
operating modes can be selected without any corresponding manipulation of the supply networks in the
design. It is necessary therefore to model this type of behavior within the power model to ensure that power
data generated for the platform during simulation accurately reflects the state in which the component is
operating. For example, enabling single instruction, multiple data (SIMD) operation within a
microprocessor would typically not require a corresponding change in the supply network for the processor
but it would result in a significant change to the power consumption of the processor while it is processing
SIMD instructions. We may wish therefore to model this SIMD mode as a dedicated power state within the
power model of the processor.

Other operation modes of an IP component may be triggered by changes to the supply network itself;
power gated shutdown is one example. In this case, we would model the shutdown mode as a power state.

It is recognized that the granularity of power state information may vary depending on the type of system-
level analysis being performed and power state hierarchy can be used to help manage this granularity. With
the specification of hierarchical power states we can provide the ability to deal with fundamental power
states or refinements of those fundamental power states if more accuracy is required.

Power states for an IP power model cannot be defined during run time, but must be explicitly defined
within the power model prior to the power model being read.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

463

All legal power state transitions shall be defined within the power model and an attempt to transition
between two power states using a transition which is not defined to be a legal transition shall be an error.

H.2.3 Power state power consumption

A power model can be used to calculate either power or current consumption for a power state. IEEE Std
1801 supports both modes of operation and this annex refers to the return of power consumption.

Each power state enumerated within the power model can include specification of the power consumption
of that power state. Specification of both static and dynamic power consumption information is required.
IEEE Std 1801 requires that these two types of power consumption are calculated and managed separately
since power-management schemes address static and dynamic power mitigation separately using different
techniques.

Power consumption data can be specified in one of two ways within a power model using the -power_expr
option:

 Via the use of floating point data values

 Via the use of power functions

The use of floating point data values (one each for static and dynamic power) is a straightforward approach
to annotating power consumption onto a given power state. It is however limited in its ability to support
more advanced types of power management like Dynamic Voltage and Frequency Scaling (DVFS), etc. as
there is no way to scale these floating point values accurately with voltage or temperature since reference
data points are not specified.

Power functions offer considerably greater benefit in terms of accommodating dynamic changes in voltage,
frequency, and other run time parameters on which the power consumption of the IP depends and these
power functions would typically be provided as a part of the "system-level IP power model" deliverable.

H.2.4 Legal power state transitions

In addition to enumeration of all power states of interest, the power model must also define the legal
transitions between these power states. Power state activation will only be successful if it causes a state
transition within the component that is legal. All legal power state transitions are defined within the power
model using the add_state_transition command.

H.3 Power calculation using power functions

Power functions can be used to calculate the power consumption of a design when in a particular power
state using a selection of parameters from the environment (e.g., system simulation). The power functions
access raw power characterization data for the IP component in order to compute the power consumption
for the component in any given power state using the values of the specific parameters in the design.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

464

Figure H.2—Power model interface to characterisation data layer

This raw characterization data is referred to as the data layer for the IP component and is managed
externally to the power model. The IP power model would typically be provided together with an IP data
layer. It is important to note that IEEE Std 1801 makes no attempt to standardize the way in which IP is
characterized for power or how that power characterization data is stored and represented (the data layer).
Both are outside the scope of this standard and would be tightly coupled to the power function definition.

The power consumption of a design is sensitive to many parameters including voltage, frequency,
temperature, silicon process, utilization, bandwidth, etc. During system simulation many of these
parameters will be modified due to requirements from the scenario (activity), activation of various power-
management techniques, platform exploration effects, etc., and so the system architect must ensure that the
power consumption values that are provided for each state during simulation accurately reflect the state of
the design and the environment in which it is placed.

System-level IP power model parameters can take one of three forms:

 Build time parameters that do not change during run time

 Run time parameters that can change during run time

 Rate-based parameters that can change during run time

Parameters that do not change during simulation are defined using the -type buildtime option of the
add_parameter command. The silicon process that is being targeted for a platform would be an example of
a build time parameter. The power function will need to know which process is being targeted in order to
calculate accurate power consumption data. The targeted silicon process will not change during simulation.

Parameters that change value during simulation are defined using the -type runtime options of the
add_parameter command. These parameters pass values into the power functions that could change during
execution of the simulation and would need to trigger re-calculation of the power consumption when they
change. Run time parameters would be included in the set of calling options to a power function and this
set of options effectively becomes a sensitivity list for the power function: anytime one of the options
changes value during simulation, the power function would be called, new power consumption data
calculated and returned by the power function to the environment. The supply voltage of a component
could be a run time parameter in a DVFS environment.

A special set of run time parameters that model rates within the system are also supported. Rate-based
parameters are used to model time-related effects where we wish to capture event counts over time (rates)
and use these rates to adjust the power consumption of the object in the current power state. Rate-based
parameters would be updated by the EDA tool at specific time intervals (time interval specification is set in
the EDA tool and is outside the scope of IEEE Std 1801) and when rate-based parameters form part of the
sensitivity list of a power function, a change in their value would trigger an invocation of the power
function. Cache miss rate would be an example of a rate-based parameter.

With the power function approach, power consumption of an object (component or power domain) in a
given power state is calculated on entry into that power state and then again every time there is a change in
a parameter to which the power function for the current power state is sensitive.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

465

It is anticipated that, in many cases, IP vendors and silicon teams may wish to protect the intellectual
property rights (IPR) within these power functions. The way in which the power functions are associated
with a power state is specified by IEEE Std 1801, but the content and complexity of the power function is
not. This way, the standard ensures that interoperability exists between power models in terms of the way
power functions are called, but places no restrictions on the complexity of the power functions themselves.

H.4 Power model structure

H.4.1 Power model encapsulation

System-level IP power models are expressed entirely using IEEE Std 1801 language and are encapsulated
within the begin_power_model and end_power_model commands. All UPF commands inside this
encapsulation are considered to be a part of the power model.

begin_power_model <power_model_name>
 [power model contents]
end_power_model

H.4.2 Power model partitioning

Power functions return static and dynamic power consumption for the primary supply of the component
and only data for this one supply is returned for each power state in the component. For more complex
components, which are considered to have multiple supplies in a functional mode (not backup or retention),
the power model for the component should be partitioned using power domains in such a way that each
power domain has a single primary supply for power calculation purposes. Power states within the power
model are then defined per power domain.

Figure H.3—Power domains within a power model

For example, Figure H.3 shows a CPU component that comprises two top-level components—a core
(uCore) and a cache (uCache)—each of which has a separate primary supply, VDD_CORE and
VDD_CACHE, respectively. A power model is to be created for the CPU. In order to be able to report
power consumption separately for the core and the cache it is necessary to partition the CPU into power
domains (using the create_power_domain command). For this example, we create a power domain for the
core and a power domain for the cache.

create_power_domain PD_CORE –elements uCORE
create_power_domain PD_CACHE –elements uCACHE

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

466

Power states are now defined relative to these power domains and take advantage of the fact that a power
domain has only one primary supply. Power functions that are then defined for power states in the cache,
for example, will return power consumption data relative to the VDD_CACHE supply only.

It is recommended that power domains be used even for blocks that do not exhibit this form of complexity
as it provides a clean and consistent approach to system-level IP power modeling across IP types.

H.4.3 Parameter definitions

All parameters that are passed to a power function must be defined and initialized within the power model
before they are used. It is not possible for a power function in one power model to use parameters that have
been defined in a different power model. The scope of a power model parameter is solely within the power
model in which it is defined.

add_parameter process \
-type buildtime -default 1.0 \
-description "Process Scaling Factor"

add_parameter vddCore \
-type runtime -default 900mV \
-description "Voltage supply for CORE"

add_parameter CacheMiss \
-type rate -default 0.01 \
-description "Cache Miss Rate"

H.4.4 Legal state transitions

To close out the power model, the set of legal state transitions must be defined using the
add_state_transition command.

add_state_transition -object PD_CORE -from ACTIVE -to WFI –legal
add_state_transition -object PD_CORE -from WFI -to ACTIVE –legal
add_state_transition -object PD_CORE -from WFI -to OFF –legal
add_state_transition -object PD_CORE -from OFF -to WFI –legal

Power state activation can only take place when a legal power state transition results.

H.5 Power model instantiation—example approach

It is expected that the system-level IP power model would be a context-independent abstraction of the
power behavior of a component and would contain all relevant power-related information for the
component required to perform system-level power analysis. As such, the power model itself would not
reference any objects (pins, ports, registers, etc.) outside of its own scope.

The process of instantiating a power model into a design environment would ensure binding between the
context-independent handles within the power model to context-dependent objects within the environment.
This process of placing the power model in context could happen through the use of a power model
integration layer.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

467

Figure H.4—Power model integration layer

The integration layer can be implemented in UPF with the individual system-level IP power models being
instantiated using the apply_power_model command. The apply_power_model command will complete the
binding of a power model to one (or many) instances within the design. For example, a single CPU power
model couple be applied to many CPU instances within the design via the apply_power_model command,
however, since this command is also used to bind parameters within the model to objects within the design,
an individual binding is more likely.

To bind parameters within the power model to objects in the environment, the –parameters option of the
apply_power_model command is used. This –parameters option is the mechanism by which names of
objects within the environment can be passed to handles within the power model. The integration layer
approach is an example of how the system-level IP power model could be instantiated within a design.

apply_power_model CPU_PM –elements uCPU –parameters {\
 {temperature uCPU/p_temperature} \
 {vdd_CORE SR1/p_v_out} \
 {vdd_CACHE SR2/p_v_out} \
 {freq_CORE PLL1/p_clk_out} \
 {freq_CACHE PLL2/p_clk_out} \
 {L1DACCESS uCPU/L1_data_access} \
 {IPC uCPU/instruction_per_cycle_uCPU} \
}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

468

Annex I

(normative)

Switching Activity Interchange Format

The Switching Activity Interchange Format (SAIF) is designed to assist in the extraction and storing of the
switching activity information generated by electronic design automation (EDA) tools.

A SAIF file containing switching activity information can be generated using an HDL simulator and then
the switching activity can be back-annotated into the power analysis/optimization tool as shown in
Figure I.1. This type of SAIF file is called a backward SAIF file.

Figure I.1—Backward SAIF file

The power analysis/optimization tool, or some other EDA tool, may issue directives (instructions) to the
backward SAIF file generation application on the format of the required SAIF file. These directives can be
stored into a SAIF file, called a forward SAIF file, as shown in Figure I.2.

This annex provides the syntax and semantics of the backward SAIF file and the following two kinds of
forward SAIF files:

a) The library or gate-level forward SAIF file, which contains the directives for generating state-
dependent and path-dependent switching activity.

b) The RTL forward SAIF file, which contains the directives for generating switching activity from
the simulation of RTL hardware descriptions.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

469

Figure I.2—Forward SAIF file

I.1 Syntactic conventions

The syntax of the SAIF file is described using the Backus-Naur Form (BNF), as follows:

Lowercase words (some containing underscores) are used to denote syntactic categories, e.g.,

backward_instance_info

Boldface words are used to denote the reserved keywords, operators, and punctuation marks that are a
required part of the syntax, e.g.,

INSTANCE * ()

A non-boldface vertical bar (|) separates alternative items, e.g.,

binary_operator ::=
* | ^ | |

Note that the last vertical bar is in boldface and therefore represents an actual operator rather than a
separator between the alternative operators.

Non-boldface square brackets ([]) enclose optional items, e.g.,

date ::=
(DATE [string])

Non-boldface braces ({}) enclose items that can be repeated 0 or more times, e.g.,

backward_saif_info ::=
{backward_instance_info}

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

470

I.2 Lexical conventions

I.2.1 Overview

SAIF files are a stream of lexical tokens that consist of one or more characters. Except for one-line
comments (see the following), the layout of SAIF files is free-format, i.e., spaces and newlines are only
syntactically significant as token separators.

The following are types of lexical tokens in SAIF files:

 white spaces

 comments

 numbers

 strings

 parenthesis

 operators

 hierarchical separator character

 identifiers

 keywords

The rest of this subclause describes the lexical tokens used in SAIF files and their conventions.

I.2.2 White spaces

White spaces are sequences of spaces, tabs, newlines, and form-feeds. White spaces separate the other
lexical tokens.

I.2.3 Comments

The SAIF format allows for both one-line comments and block comments. One-line comments start with
the character sequence // and end with a newline. Block comments start with the character sequence /* and
end with the first occurrence of the sequence */. Block comments are not nested.

I.2.4 Numbers

Numbers in SAIF files are either of the following:

 Non-negative decimal integers, which are represented by a sequence of decimal characters, e.g., 12,
012, or 1200.

 Non-negative real numbers, which are non-negative IEEE standard double-precision floating-point
number representations, e.g., 1, 3.4, .7, 0.3, 2.4e2, or 5.3e-1.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

471

I.2.5 Strings

A string in SAIF files is a possibly empty sequence of characters enclosed by double-quotes characters ("")
and contained on a single line, e.g.,"SAIF version 2.0" or "".

I.2.6 Parenthesis

Most of the constructs in SAIF files are enclosed between the left-parenthesis character (() and the right-
parenthesis character ()).

I.2.7 Operators

An operator in SAIF files is one of the following characters: !, *, ^, and |. Operators are used in conditional
expressions.

I.2.8 Hierarchical separator character

The hierarchical separator is a special character used in composing hierarchical port/pin/net/instance
names from simple identifiers. The hierarchical separator character is defined in the header of SAIF files
and can be either the / character or the . character.

I.2.9 Identifiers

A SAIF identifier is a non-empty sequence of alphanumeric characters, the underscore character (_) and
escaped characters, followed by an optional decimal number enclosed in brackets ([]). Escaped identifiers
consist of the \ character followed by a non-white space character. A SAIF identifier cannot start with a
decimal digit (.) character and cannot contain the hierarchical separator character, unless it is escaped. The
\ character used in an escaped character is not part of the identifier, so abc and a\b\c represent the same
identifier. SAIF identifiers are case-sensitive, abc and ABC represent two different identifiers.

Examples

clk, clk_net, clk[4], clk\#4, clk\(4\), \1clk, or mod\/net

Where the hierarchical separator character is presumed to be /.

I.2.10 Keywords

A SAIF keyword is a special sequence of alphanumeric characters. SAIF keywords can be used as
identifiers; to avoid possible ambiguity, escape the first character of identifiers that can be mistaken for
keywords. SAIF keywords are case-sensitive. Table I.1 shows the set of SAIF keywords.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

472

Table I.1—SAIF keywords

COND LEAKAGE TB

COND_DEFAULT LIBRARY TC

DATE MODULE TG

DESIGN NET TIMESCALE

DIRECTION PORT TX

DIVIDER PROGRAM_NAME TZ

DURATION PROGRAM_VERSION VENDOR

FALL RISE VIRTUAL_INSTANCE

IG RISE_FALL fs

IK SAIFILE ms

INSTANCE SAIFVERSION ns

IOPATH T0 ps

IOPATH_DEFAULT T1 s

 us

I.2.11 Syntactic categories for token types

The syntax of the SAIF files described in this document use the syntactic categories shown in Table I.2 for
token types.

Table I.2—Token type categories

Syntactic category Token type

dnumber Non-negative integer numbers

rnumber Non-negative real numbers

string Strings

hchar Possible hierarchical separator characters

identifier Simple (non-hierarchical) identifiers

hierarchical_identifier Hierarchical identifiers

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

473

I.3 Backward SAIF file

I.3.1 Overview

This subclause describes the format of the backward SAIF file, which contains hierarchical instance-
specific switching activity information.

I.3.2 SAIF file

The backward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the backward SAIF
header, the backward SAIF info, and a right-parenthesis ()), as shown in Syntax 1.

backward_saif_file ::=
(SAIFILE backward_saif_header backward_saif_info)

Syntax 1—backward_saif_file

I.3.3 Header

I.3.3.1 Overview

Syntax 2 defines the backward SAIF file header.

backward_saif_header ::=
backward_saif_version
direction
design_name
date
vendor
program_name
program_version
hierarchy_divider
time_scale
duration

Syntax 2—backward_saif_header

Each backward SAIF header construct is described in the following subclauses.

I.3.3.2 backward_saif_version

Syntax 3 defines the backward_saif_version.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

474

backward_saif_version ::=
(SAIFVERSION string)

Syntax 3—backward_saif_version

The string in this construct represents the version number of the SAIF file, i.e., 2.0.

I.3.3.3 direction

Syntax 4 defines the direction.

direction ::=
(DIRECTION string)

Syntax 4—direction

The string in this construct represents the type of the SAIF file, i.e., backward.

I.3.3.4 design_name

Syntax 5 defines the design_name.

design_name ::=
(DESIGN [string])

Syntax 5—design_name

The optional string in this construct represents the design for which the switching activity in the SAIF file
has been generated.

I.3.3.5 date

Syntax 6 defines the date.

date ::=
(DATE [string])

Syntax 6—date

The optional string in this construct represents the date the SAIF file was generated.

I.3.3.6 vendor

Syntax 7 defines the vendor.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

475

vendor ::=
(VENDOR [string])

Syntax 7—vendor

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

I.3.3.7 program_name

Syntax 8 defines the program_name.

program_name ::=
(PROGRAM_NAME [string])

Syntax 8—program_name

The optional string in this construct represents the name of the application used to generate the SAIF file.

I.3.3.8 program_version

Syntax 9 defines the program_version.

program_version ::=
(PROGRAM_VERSION [string])

Syntax 9—program_version

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

I.3.3.9 hierarchy_divider

Syntax 10 defines the hierarchy_divider.

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 10—hierarchy_divider

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default
is the . character.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

476

I.3.3.10 time_scale

Syntax 11 defines the time_scale.

time_scale ::=
(TIMESCALE [dnumber timeunit])

timeunit ::=
s | ms | us | ns | ps | fs

Syntax 11—time_scale

This construct specifies the units used for all time values in the SAIF file. The dnumber shall be 1, 10, or
100; it represents the scaling factor of the time values. For example, if the time_scale of a SAIF file is

(TIMESCALE 100 us)

then all the time values in the SAIF file are specified in hundreds of microseconds. If the decimal number
and time unit are not specified, the default time scale is 1 ns.

I.3.3.11 duration

Syntax 12 defines the duration.

duration ::=
(DURATION rnumber)

Syntax 12—duration

This construct specifies the total time duration applied to the switching activity in the SAIF file.

I.3.3.12 Example

This is an example of a valid backward SAIF file header.

(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN "alu")
(DATE "Fri Jan 18 10:30:00 PDT 2002")
(VENDOR "SAIF’R’US Corp.")
(PROGRAM_NAME "saifgenerator")
(PROGRAM_VERSION "1.0")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 5000)

I.3.4 Simple timing attributes

This construct specifies the total duration (in time values) that some particular design net/port/pin
(specified elsewhere) has some particular value. Syntax 13 defines this construct.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

477

simple_timing_attribute ::=
 (T0 rnumber)
| (T1 rnumber)
| (TX rnumber)
| (TZ rnumber)
| (TB rnumber)

Syntax 13—simple_timing_attribute

The different types of simple timing attributes are as follows:

 T0 is the total time the design object has the value 0.

 T1 is the total time the design object has the value 1.

 TX is the total time the design object has an unknown value.

 TZ is the total time the design object is in a floating bus state. A floating bus state is the state when
all drivers on a particular bus are disabled and the bus has a floating logic value.

 TB is the total time the design object is in a bus contention state. A bus contention state is the state
when two or more drivers simultaneously drive a bus to different logic levels.

Example

If the time scale is 100 µs, then the following three simple timing attribute constructs:

(T0 100)
(T1 92.5)
(TX 7.5)

specify a particular design object has the value 0 for a total 10 000 µs, the value 1 for a total of 9250 µs,
an unknown value for a total of 750 µs, and it never reaches the floating bus and bus contention states.

I.3.5 Simple toggle attributes

I.3.5.1 Overview

This attribute construct specifies the number on a particular type of toggle registered on a particular design
net/port/ pin (specified elsewhere). Syntax 14 defines this construct.

simple_toggle_attribute ::=
 (TC rnumber)
| (TG rnumber)
| (IG rnumber)
| (IK rnumber)

Syntax 14—simple_toggle_attribute

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

478

The different types of c are as follows:

 TC is the number of 0 to 1 plus the number of 1 to 0 transitions. This is usually referred to as the
toggle count.

 TG is the number of transport glitch edges (see I.3.5.2).

 IG is the number of inertial glitch edges (see I.3.5.3).

 IK is the inertial glitch de-rating factor. To estimate this factor, see I.3.5.4.

Example

The following simple toggle attributes:

(TC 200)
(IG 6)

specify a total of 200 transitions between the 0 and 1 logic states, and a total of six inertial glitch edges are
registered on some particular design object(s).

I.3.5.2 Transport glitch

Transport glitches are extra transitions at the output of the gate before the output signal reaches its steady
state and, unlike inertial glitches (see I.3.5.3), cannot be canceled by an inertial delay algorithm. A
transport glitch consumes the same amount of power as a normal toggle transition and is an ideal candidate
for power minimization during the optimization process. Transport glitches at the output of the gate have a
pulse width longer than the gate delay and do not contribute to the functional behavior of the circuit.

In general, the number of transport glitch transitions occurring in the circuit is the difference between the
total number of toggle transitions obtained from a full-timing simulation and that from a cycle-based
simulation, assuming all inertial glitches (see I.3.5.3) have been filtered out by the timing simulator, i.e.,
the total number of toggles obtained from the timing simulator does not include inertial glitches. Figure I.3.
shows a possible way to have transport glitches in the circuit. Although steady-state analysis of the circuit
indicates that node N, the output of the XOR gate, should always remain at logic 1 regardless of the
primary input, the additional timing delay due to the inverter causes a glitch at N whenever the input
changes its state.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

479

Figure I.3—Transport glitch

I.3.5.3 Inertial glitch

Inertial glitches are signal transitions occurring at the output of the gate, which can be filtered out if an
inertial delay algorithm is applied. A simple example (see Figure I.4) best explains inertial glitches.

Figure I.4—Inertial glitch

A VHDL description for this inverter looks something like:

 OUT <= not IN after 5 ns (inertial delay is implicitly presumed)

If the input pulse has a width less than 5 ns, the inertial delay algorithm shall cancel the signal transitions
at the output of the inverter. However, some power is still consumed due to the two partial transitions at the
output. Therefore, it is necessary to report these two inertial glitch transitions in a SAIF file.

NOTE—SAIF counts the number of glitches by signal edges, not signal pulses.

I.3.5.4 De-rating factor for inertial glitch

In I.3.5, glitching activities are categorized into two types, transport glitches and inertial glitches, and the
number of glitch transitions are reported in the SAIF file. Transport glitches consume the same amount of
power as normal toggles, so power consumption can be accurately calculated based on the number of
transitions. For inertial glitches, however, the number of transitions is not enough to accurately estimate the
inertial glitching power dissipation.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

480

To improve the accuracy for inertial glitching power estimation, it is recommended that a simulator provide
a de-rating factor for each node in the circuit that has inertial glitches. Described as follows, this de-rating
factor can be used to scale the inertial glitch count to an effective count of normal toggle transition. Power
analysis tools can use the adjusted inertial glitch count to improve estimation accuracy.

Assume a gate has a total number of k delays, with a delay value of Ti (i = 1...k) for each delay.

Define Ni (i = 1...k) as the total number of inertial glitch pulses due to the delay Ti, and δij as the timing
difference of the input events that cause glitch j (j = 1...Ni) due to the delay Ti.

Define Ne as the total number of inertial glitch edges of the gate. It is easy to see that Ni and Ne satisfy
Equation (I.1).

Ni
i 1=

k

∑
Ne

2
------=

 (I.1)

NOTE—The total number of the glitch pulses is half of the total number of the glitch edges.

With the parameters previously defined, a de-rating factor can be defined as shown in Equation (I.2).

K 2

δij
Ti

j

Ni

∑
i

k

∑
Ne

-------------------×=
 (I.2)

Here is an example of how to use the de-rating factor. Consider again the example of the inverter shown in
Figure I.5.

Figure I.5—Inverter

The power consumption at the output can be approximated as shown in Equation (I.3).

P δ
T
--- 2 P×× 0= 0 δ T≤ ≤

 (I.3)

where

P0 is the power consumption of the gate during one normal full-level transition

δ is the timing difference of the two input events that cause the glitch

T is the delay of the inverter

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

481

Equation (E.3) indicates that the inertial glitching power dissipation can be roughly modeled by the timing
difference of the input events that causes the glitch and the delay of the gate beyond which there is no
inertial glitch.

Accordingly, for a node with a total of Ni number of inertial glitch pulses due to the delay Ti (i = 1...k), the
total power consumption can be estimated as shown in Equation (I.4).

P
δij
Ti

j 1=

Ni

∑
i 1=

k

∑ 2 P×× 0=

 (I.4)

Rearranging Equation (I.2) and substituting Equation (I.4), the power consumption can be simplified as
shown in Equation (I.5).

P K Ne P0××= (I.5)

This suggests that the inertial glitching power can be calculated by converting the number of glitching
transitions into the number of normal transitions by applying a de-rating factor.

I.3.6 State-dependent timing attributes

State-dependent timing attributes specify the time duration when a cell is in particular states. The state of a
cell is defined as the logic value of its pins. Syntax 15 defines this construct.

state_dep_timing_attributes ::=
(state_dep_timing_item {state_dep_timing_item}
[COND_DEFAULT sd_simple_timing_attributes])

state_dep_timing_item ::=
COND cond_expr sd_simple_timing_attributes

cond_expr ::=
 port_name
| unary_operator cond_expr
| cond_expr binary_operator cond_expr
| (cond_expr)

port_name ::=
identifier

unary_operator ::=
!

binary_operator ::=
* | ^ | |

sd_simple_timing_attributes ::=
{sd_simple_timing_attribute}

sd_simple_timing_attribute ::=
 (T1 rnumber)
| (T0 rnumber)

Syntax 15—state_dep_timing_attributes

Here cond_expr represents conditional expressions on pin names; sd_simple_timing_attribute can
only contain one of the following:

 T1 is the total time duration in which the cell is in any of its associated states.

 T0 is the total time duration in which the cell is not in any of its associated states.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

482

A conditional expression specifies the set of states for which the condition holds. For example, given a cell
with three inputs, A, B, and C, and one output Y, the conditional expression

A | B

represents all the cell states when the input pin A is 1 or the input B is 1, while C and Y can have any value.

The precedence of the operators in conditional expressions is shown in the following sequence: ! (logical
not), * (logical and), ^ (logical exclusive or), and | (logical or), where ! has the highest precedence.

A state-dependent timing attribute construct determines a priority-encoded specification of the timing
attributes attrs1, ..., attrs_default:

(COND expr1 attrs1
COND expr2 attrs2
...
COND exprn attrsn
COND_DEFAULT attrs_default)

In other words, the attributes attrs1 apply for the set of states for which the condition expr1 holds, while
the attributes attrs2 apply for the set of states where the condition expr2 holds and expr1 does not hold,
etc. The attributes attrs_default apply for all the states where none of the conditional expressions hold.

Example

The state-dependent timing attributes of the cell given in Figure I.6 during the time duration given in the
wave diagram in Figure I.7 can be specified as follows:

(COND (A * B * Y) (T1 1) (T0 8)
COND (!A * B * Y) (T1 1) (T0 8)
COND (A * !(B * C)) (T1 2) (T0 7)
COND B (T1 1) (T0 8)
COND C (T1 1) (T0 8)
COND_DEFAULT (T1 3) (T0 6))

Figure I.6—A cell and its internal behavior

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

483

Figure I.7—A wave diagram

I.3.7 State-dependent toggle attributes

The toggle attributes on cell pins can be state dependent, i.e., the attributes are relevant only to particular
cell states. Syntax 16 defines this construct.

state_dep_toggle_attributes ::=
(state_dep_toggle_item {state_dep_toggle_item}
[state_dep_default_toggle_item])

state_dep_toggle_item ::=
COND cond_expr [(edge_type)] simple_toggle_attribute

state_dep_default_toggle_item ::=
 COND_DEFAULT simple_toggle_attribute
| COND_DEFAULT (edge_type) simple_toggle_attribute
 [COND_DEFAULT (edge_type) simple_toggle_attribute]

edge_type ::=
RISE | FALL

Syntax 16—state_dep_toggle_attributes

Similar to state-dependent timing attributes, the state-dependent toggle attributes construct represents a
priority-encoded attribute specification. The optional edge_type is used to further differentiate the toggle
count between 0 to 1 (RISE) and 1 to 0 (FALL) transitions.

The state-dependent toggle attributes construct can end with an optional COND_DEFAULT specification
that has no edge restrictions. Otherwise, it can end with up to two COND_DEFAULT specifications
having different edge restrictions.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

484

Example

The following state-dependent toggle attributes construct specifies a total toggle count of 50.

(COND A (RISE) (TC 20)
COND A (FALL) (TC 15)
COND B (RISE) (TC 5)
COND B (FALL) (TC 10))

Of the 25 rise transitions, 20 occur when pin A has a value of 1, and 5 occur when pin A has a value of 0
and B is 1. Of the 25 fall transitions, 15 occur when the pin A is 1, and 10 occur when the pin A is 0 and B is
1.

The state associated with an input pin transition is the cell state just before the time of the transition. For
example, in the wave diagram given in Figure I.8, the state associated with the rise transition on input pin A
at time 10 is represented by the expression A * !B * !Y.

The state associated with an output pin transition is the cell state just before the time of the input pin
transition, causing the output pin transition. For example, in the wave diagram given in Figure I.8, the rise
transition on the output pin Y at time 13 is caused by the rise transition on the input pin B at time 10. The
state associated with the rise transition on Y is the cell state just before time 10 (not time 13). This state is
represented by the expression !A * B * !Y.

Figure I.8—A cell and its wave diagram

I.3.8 Path-dependent toggle attributes

The toggle attributes on output cell pins can be path dependent, i.e., the attributes are relevant only to
particular input pins causing the output toggles. Syntax 17 defines this construct.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

485

path_dep_toggle_attributes ::=
(path_dep_toggle_item {path_dep_toggle_item}
[IOPATH_DEFAULT simple_toggle_attribute])

path_dep_toggle_item ::=
IOPATH port_name {port_name} simple_toggle_attribute

Syntax 17—path_dep_toggle_attributes

Given the path-dependent toggle attributes construct below, the attribute attrs1 represents toggles caused
by the input pins in pins1, the attribute attrs2 represents toggles caused by the input pins in pins2, etc.

(IOPATH pins1 attrs1
IOPATH pins2 attrs2
...
IOPATH pinsn attrsn
IOPATH_DEFAULT attrs_default)

The pin lists pins1, ..., pinsn are mutually exclusive. The attribute attrs_default represents toggles
caused by the cell input pins not present in pins1, ..., pinsn. The pin lists pins1, ..., pinsn are also
called the path conditions or related pins.

Example

The following path-dependent toggle attributes construct specifies a total of 35 toggle edges on a cell
output port, of which 10 are caused by transitions on the input port A, 20 are caused by transitions on the
input port B, and 5 are caused either by a transition on the input port C or D.

(IOPATH A (TC 10)
IOPATH B (TC 20)
IOPATH C D (TC 5))

I.3.9 State- and path-dependent toggle attributes

The toggle attributes on output cell pins can be both state dependent and path dependent. The syntax of
such toggle attributes is that of simple toggle attributes and path-dependent toggle attributes nested inside a
state-dependent toggle attributes construct, as shown in Syntax 18.

sdpd_toggle_attributes ::=
(sdpd_toggle_item {sdpd_toggle_item}
[sdpd_default_toggle_item])

sdpd_toggle_item ::=
COND cond_expr [(edge_type)] potential_pd_toggle_attributes

potential_pd_toggle_attributes ::=
 path_dep_toggle_attributes
| simple_toggle_attribute

sdpd_default_toggle_item ::=
 COND_DEFAULT potential_pd_toggle_attributes
| COND_DEFAULT (edge_type) potential_pd_toggle_attributes
 [COND_DEFAULT (edge_type) potential_pd_toggle_attributes]

Syntax 18—sdpd_toggle_attributes

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

486

Similar to state-dependent toggle attributes and path-dependent toggle attributes, the SDPD toggle
attributes construct represents a priority-encoded attribute specification.

Example

This is an example of an SDPD toggle attributes construct:

(COND A (RISE) (IOPATH B (TC 1))
COND A (FALL) (IOPATH B (TC 2))
COND B (RISE) (IOPATH A (TC 1))
COND B (FALL) (IOPATH A (TC 0))
COND_DEFAULT (RISE) (IOPATH A (TC 1)
IOPATH B (TC 0))
COND_DEFAULT (FALL) (IOPATH A (TC 0)
IOPATH B (TC 1)))

I.3.10 Net, port, and leakage-switching specifications

I.3.10.1 Overview

The constructs for net, port, and leakage-switching specification associate switching activity (given in
terms of timing and toggle attributes) to individual design nets, ports, and cells.

I.3.10.2 Net-switching specifications

The net-switching specification construct associates switching activity to individual nets. Syntax 19 defines
the backward_net_spec.

backward_net_spec ::=
(NET backward_net_info {backward_net_info})

backward_net_info ::=
(net_name net_switching_attributes)

net_name ::=
identifier

net_switching_attributes ::=
{net_switching_attribute}

net_switching_attribute ::=
 simple_timing_attribute
| simple_toggle_attribute

Syntax 19—backward_net_spec

The switching attributes that can be associated to nets are simple timing attributes and simple toggle
attributes.

Example

This is an example of a net-switching specification assigning switching activity to the nets clk, rst, in1,
in2, and out:

(NET
(clk (T0 100) (T1 100) (TC 50))

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

487

(rst (T0 180) (T1 20) (TC 2))
(in1 (T0 60) (T1 140) (TC 22))
(in2 (T0 80) (T1 120) (TC 12))
(out (T0 120) (T1 60) (TX 20) (TC 10))
)

I.3.10.3 Port-switching specifications

The port-switching specification construct associates switching activity to individual design ports and cell
pins. Syntax 20 defines the backward_port_spec.

backward_port_spec ::=
(PORT backward_port_info {backward_port_info})

backward_port_info ::=
(port_name port_switching_attributes)

port_name ::=
identifier

port_switching_attributes ::=
{port_switching_attribute}

port_switching_attribute ::=
 simple_timing_attribute
| simple_toggle_attribute
| state_dep_toggle_attributes
| path_dep_toggle_attributes
| sdpd_toggle_attributes

Syntax 20—backward_port_spec

The toggle attributes that can be associated to input cell pins can be simple or state dependent. The toggle
attributes that can be associated to output cell pins can be simple, state dependent, path dependent, or both
state and path dependent. The toggle attributes that can be associated to design ports have to be simple. The
timing attributes that can be associated to design ports and cell pins have to be simple.

Example

This is an example of the port-switching specification construct applied to an AND gate:

(PORT
(A (T0 8) (T1 7)
(COND B (RISE) (TC 1)
COND B (FALL) (TC 2)
COND_DEFAULT (TC 1)))
(B (T0 9) (T1 6)
(COND A (RISE) (TC 2)
COND A (FALL) (TC 1)
COND_DEFAULT (TC 3)))
(Y (T0 10) (T1 5)
(COND A (RISE) (IOPATH B) (TC 2)
COND A (FALL) (IOPATH B) (TC 1)
COND B (RISE) (IOPATH A) (TC 1)
COND B (FALL) (IOPATH A) (TC 2)
COND_DEFAULT (TC 0)))
)

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

488

I.3.10.4 Leakage-switching specifications

The leakage-switching specification construct specifies the duration that a particular cell spends in
particular states. This construct is a list of state-dependent timing attributes, as shown in Syntax 21.

backward_leakage_spec ::=
(LEAKAGE state_dep_timing_attributes {state_dep_timing_attributes})

Syntax 21—backward_leakage_spec

Example

This is an example of a leakage-switching specification:

(LEAKAGE
(COND (A * B) (T1 5) (T0 10))
COND (A | B) (T1 6) (T0 9))
(COND_DEFAULT (T1 4) (T0 11)))
)

I.3.11 Backward SAIF info and instance data

Design-switching activity is organized hierarchically in the backward SAIF info construct (that follows the
SAIF header in a backward SAIF file). The backward SAIF info is a list of backward instance info
constructs, as shown in Syntax 22.

backward_saif_info ::=
{backward_instance_info}

backward_instance_info ::=
 (INSTANCE [string] path {backward_instance_spec} {backward_instance_info})
| (VIRTUAL_INSTANCE string path backward_port_spec)

backward_instance_spec ::=
 backward_net_spec
| backward_port_spec
| backward_leakage_spec

Syntax 22—backward_saif_info

backward_instance_info contains the switching activity of a particular cell or design instance. The
optional string following the INSTANCE keyword is the cell/design name that is instantiated, and path is
the hierarchical name of the actual instance. This is followed by a possibly empty list of instance switching
specifications, which are the net, port, and leakage-switching specifications described in I.3.10. For design
instances, the instance info can recursively contain the switching activity of its sub-design and library cell
instances.

backward_instance_info can also be used to specify the switching activity of cell instances where the
port names of the instance are not known, e.g., in design flows where switching activity generated by RTL
simulation is annotated to the synthesized gate-level netlist of the RTL design.

In this case, the string following the VIRTUAL_INSTANCE keyword represents the type of cell instance;
it needs to be recognized by the application reading the backward SAIF file. The path represents the name

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

489

of the instance, and backward_port_spec assigns switching activity to logical port names. The
application reading the SAIF file needs to map the logical port names to the actual cell instance port names.

Example

For example, the following virtual instance construct gives the switching activity of the positive output pin
of a sequential element:

(VIRTUAL_INSTANCE "sequential" A_reg
(PORT
(Q (T0 220) (T1 370) (TC 122))
)
)

The actual name of the output pin depends on the library cell that is used to implement the sequential cell,
i.e., it can have a different name than Q.

I.4 Library forward SAIF file

I.4.1 Overview

The library forward SAIF file contains the SDPD directives needed by simulators and other applications
generating backward SAIF files that contain state-dependent and path-dependent switching activity. The
SDPD directives can be generated from cell libraries with SDPD power characterization by using the
appropriate tools.

For a description of state and path dependency, see I.3.

I.4.2 The SAIF file

The library forward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the library forward
SAIF header, the library forward SAIF info, and a finishing right-parenthesis ()), as shown in Syntax 23.

lforward_saif_file ::=
(SAIFILE lforward_saif_header lforward_saif_info)

Syntax 23—lforward_saif_file

I.4.3 Header

Syntax 24 defines the library forward SAIF file header.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

490

lforward_saif_header ::=
lforward_saif_version
direction
design_name
date
vendor
program_name
program_version
hierarchy_divider

Syntax 24—Syntax 24—forward_saif_header

Each library forward SAIF header construct is described in the following subclauses.

I.4.3.1 lforward_saif_version

Syntax 25 defines the lforward_saif_version.

lforward_saif_version ::=
(SAIFVERSION string [string])

Syntax 25—lforward_saif_version

The first string in this construct represents the version number of the SAIF file, i.e., 2.0.

The second string is optional and is either the string "lib" or "LIB"; this is used to specify that the SAIF
file is a library forward SAIF file.

I.4.3.2 direction

Syntax 26 defines the direction.

direction ::=
(DIRECTION string)

Syntax 26—direction

The string in this construct represents the type of the SAIF file, i.e., forward.

I.4.3.3 design_name

Syntax 27 defines the design_name.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

491

design_name ::=
(DESIGN [string])

Syntax 27—design_name

The optional string in this construct represents the design for which the forward SAIF file has been
generated.

I.4.3.4 date

Syntax 28 defines the date.

date ::=
(DATE [string])

Syntax 28—date

The optional string in this construct represents the date the SAIF file was generated.

I.4.3.5 vendor

Syntax 29 defines the vendor.

vendor ::=
(VENDOR [string])

Syntax 29—vendor

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

I.4.3.6 program_name

Syntax 30 defines the program_name.

program_name ::=
(PROGRAM_NAME [string])

Syntax 30—program_name

The optional string in this construct represents the name of the application used to generate the SAIF file.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

492

I.4.3.7 program_version

Syntax 31 defines the program_version.

program_version ::=
(PROGRAM_VERSION [string])

Syntax 31—program_version

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

I.4.3.8 hierarchy_divider

Syntax 32 defines the hierarchy_divider.

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 32—hierarchy_divider

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default
is the . character.

Example

This is an example of a valid library forward SAIF file header.

(SAIFVERSION "2.0" "lib")
(DIRECTION "forward")
(DESIGN)
(DATE "Fri Jan 18 10:00:00 PDT 2002")
(VENDOR "SAIF'R'US Corp.")
(PROGRAM_NAME "libsaifgenerator")
(PROGRAM_VERSION "1.0")
(DIVIDER /)

I.4.4 State-dependent timing directive

State-dependent timing directives instruct the backward SAIF generator on the state conditions required in
state-dependent timing attributes. Syntax 33 defines the state_dep_timing_directive.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

493

state_dep_timing_directive ::=
(state_dep_timing_directive_item
{state_dep_timing_directive_item}
[COND_DEFAULT])

state_dep_timing_directive_item ::=
COND cond_expr

Syntax 33—state_dep_timing_directive

A state-dependent timing directive is a list of directive items. The state-dependent timing attributes
generated using such a timing directive contain switching activity assigned to a number of the states given
in the directive. The order of any states in the timing attribute shall be the same as that in the timing
directive.

Example

This is an example of a state-dependent timing directive.

(COND (A * B * C)
COND (!A * B * C)
COND (A * !(B * C))
COND B
COND C
COND_DEFAULT)

I.4.5 State-dependent toggle directive

State-dependent toggle directives instruct the backward SAIF generator on the state and rise/fall conditions
required in state-dependent toggle attributes. Syntax 34 defines the state_dep_toggle_directive.

state_dep_toggle_directive ::=
(state_dep_toggle_directive_item
{state_dep_toggle_directive_item}
[COND_DEFAULT [RISE_FALL]])

state_dep_toggle_directive_item ::=
COND cond_expr [RISE_FALL]

Syntax 34—state_dep_toggle_directive

A state-dependent toggle directive is a list of directive items, each followed by an optional RISE_FALL
keyword. The item list is followed by an optional COND_DEFAULT keyword, which can also be
followed by an optional RISE_FALL keyword.

The state-dependent toggle attributes generated using such a toggle directive contain switching activity for
a number of the states given in the directive. The order of any states in the toggle attribute shall be the same
as that in the toggle directive. The RISE_FALL keyword instructs the backward SAIF generator that rise
and fall edges can be differentiated and state-dependent toggle attribute items with RISE and/or FALL
keywords can be generated.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

494

Example

This is an example of a state-dependent toggle directive construct:

(COND (A*B) RISE_FALL
COND A RISE_FALL
COND B RISE_FALL
COND_DEFAULT)

I.4.6 Path-dependent toggle directive

Path-dependent toggle directives instruct the backward SAIF generator on the path conditions required in
path-dependent toggle attributes for cell output pins. A path condition is a list of input port pins. Syntax 35
defines the path_dep_toggle_directive.

path_dep_toggle_directive ::=
(path_dep_toggle_directive_item
{path_dep_toggle_directive_item}
[IOPATH_DEFAULT])

path_dep_toggle_directive_item ::=
IOPATH port_name {port_name}

Syntax 35—path_dep_toggle_directive

A path-dependent toggle directive is a list of directive items. The path-dependent toggle attributes
generated using such a toggle directive contain switching activity for a number of the path conditions (input
pin lists) given in the directive. The order of the path conditions in the toggle attribute shall be the same as
that in the toggle directive.

Example

This is an example of a path-dependent toggle directive construct:

(IOPATH A
IOPATH B
IOPATH C D)

I.4.7 SDPD toggle directives

SDPD toggle directives instruct the backward SAIF generator on the state and path conditions required in
SDPD toggle attributes for cell output pins. The syntax of this construct is that of the path-dependent toggle
directive embedded in the state-dependent toggle directive, as shown in Syntax 36.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

495

sdpd_toggle_directive ::=
(sdpd_toggle_directive_item {sdpd_toggle_directive_item}
[COND_DEFAULT [RISE_FALL] [path_dep_toggle_directive]])

sdpd_toggle_directive_item ::=
COND cond_expr [RISE_FALL] [path_dep_toggle_directive]

Syntax 36—sdpd_toggle_directive

The SDPD toggle attributes generated using such a toggle directive contain switching activity for a number
of the state and path conditions given in the directive. The order of the conditions in the toggle attribute
shall be the same as that in the toggle directive.

Example

This is an example of an SDPD toggle directive construct.

(COND A RISE_FALL (IOPATH B)
COND B RISE_FALL (IOPATH A)
COND_DEFAULT RISE_FALL
(IOPATH A
IOPATH B
IOPATH_DEFAULT))

I.4.8 Module SDPD declarations

Module SDPD declarations instruct the backward SAIF generator on the type and structure of the required
switching activity for particular cells. Syntax 37 defines this construct.

module_sdpd_declaration ::=
(MODULE module_name {module_sdpd_directive})

module_name ::=
identifier

module_sdpd_directive ::=
 port_declaration
| leakage_declaration

port_declaration ::=
(PORT port_name {port_directive})

port_directive ::=
 state_dep_toggle_directive
| path_dep_toggle_directive
| sdpd_toggle_directive

leakage_declaration ::=
(LEAKAGE {state_dep_timing_directive})

Syntax 37—module_sdpd_declaration

The module name identifier represents the library cell name.

A port declaration assigns port directives to the individual cell pins. Port directives are either state-
dependent toggle directives, path-dependent toggle directives, or SDPD toggle directives.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

496

A leakage declaration consists of the LEAKAGE keyword followed by a state-dependent timing directive,
which instructs the backward SAIF generator on the state conditions for the state-dependent timing
attributes in backward leakage specifications.

Examples

This is an example of a port declaration.

(PORT
(A
(COND B RISE_FALL
COND_DEFAULT))

(B
(COND A RISE_FALL
COND_DEFAULT))
(Y
(COND A RISE_FALL (IOPATH B)
COND B RISE_FALL (IOPATH A)
COND_DEFAULT))
)

This is an example of a leakage declaration.

(LEAKAGE
(COND (A * B)
COND (A | B)
COND_DEFAULT)
)

I.4.9 Library SDPD information

The SDPD declarations for each library cell are listed in the library SDPD info constructs (that follow the
SAIF header in the library forward SAIF file). Syntax 38 defines the library_sdpd_info.

library_sdpd_info ::=
(LIBRARY string [string]
{module_sdpd_declaration})

Syntax 38—library_sdpd_info

The first string following the LIBRARY keyword represents the name of the library. The second (optional)
string sets the path of the directory containing the library and can be used for locating it.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

497

I.5 RTL forward SAIF file

I.5.1 Overview

The RTF forward SAIF file lists the synthesis invariant points of an RTL design and provides a mapping
from the RTL identifiers of these design objects to their synthesized gate-level identifiers. Synthesis
invariant points are design objects (nets, ports, etc.) in the RTL description that are mapped directly to
equivalent design objects in the synthesized gate-level descriptions. Examples of such points are the design
ports and RTL identifiers (variables, signals, wires, etc.) that are mapped to the outputs of sequential cells.

I.5.2 SAIF file

I.5.2.1 Overview

The RTF forward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the RTL forward
SAIF header, the RTL forward SAIF info, and a finishing right-parenthesis ()), as shown in Syntax 39.

rforward_saif_file ::=
(SAIFILE rforward_saif_header rforward_saif_info)

Syntax 39—rforward_saif_file

I.5.2.2 Header

Syntax 40 defines the RTL forward SAIF file header.

rforward_saif_header ::=
rforward_saif_version
direction
design_name
date
vendor
program_name
program_version
hierarchy_divider

Syntax 40—rforward_saif_header

Each RTL forward SAIF header construct is described in the following subclauses.

I.5.2.3 rforward_saif_version

Syntax 41 defines the rforward_saif_version.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

498

rforward_saif_version ::=
(SAIFVERSION string)

Syntax 41—rforward_saif_version

The string in this construct represents the version number of the SAIF file, i.e., 2.0.

I.5.2.4 direction

Syntax 42 defines the direction.

direction ::=
(DIRECTION string)

Syntax 42—direction

The string in this construct represents the type of the SAIF file, i.e., forward.

I.5.2.5 design_name

Syntax 43 defines the design_name.

design_name ::=
(DESIGN [string])

Syntax 43—design_name

The optional string in this construct represents the design for which the forward SAIF file has been
generated.

I.5.2.6 date

Syntax 44 defines the date.

date ::=
(DATE [string])

Syntax 44—date

The optional string in this construct represents the date the SAIF file was generated.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

499

I.5.2.7 vendor

Syntax 45 defines the vendor.

vendor ::=
(VENDOR [string])

Syntax 45—vendor

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

I.5.2.8 program_name

Syntax 46 defines the program_name.

program_name ::=
(PROGRAM_NAME [string])

Syntax 46—program_name

The optional string in this construct represents the name of the application used to generate the SAIF file.

I.5.2.9 program_version

Syntax 47 defines the program_version.

program_version ::=
(PROGRAM_VERSION [string])

Syntax 47—program_version

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

I.5.2.10 hierarchy_divider

Syntax 48 defines the hierarchy_divider.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

500

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 48—hierarchy_divider

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default
is the . character.

Example

The following is an example of a valid library forward SAIF file header:

(SAIFVERSION "2.0")
(DIRECTION "forward")
(DESIGN "alu")
(DATE "Fri Jan 18 11:00:00 PDT 2002")
(VENDOR "SAIFíRíUS Corp.")
(PROGRAM_NAME "rtlsaifgenerator")
(PROGRAM_VERSION "1.0")
(DIVIDER /)

I.5.3 Port and net mapping directives

The port and net mapping directives in the RTL forward SAIF file contain a list of synthesis invariant port
and net identifiers and their corresponding synthesized gate-level identifiers. Syntax 49 defines these
constructs.

port_mapping_directives ::=
(PORT {(rtl_name mapped_name [string])})

rtl_name ::=
hierarchical_identifier

mapped_name ::=
hierarchical_identifier

net_mapping_directives ::=
(NET {(rtl_name mapped_name)})

Syntax 49—Port and net mapping directives

Here, the rtl_name is mapped into the gate-level identifier mapped_name. Both the RTL name and
mapped name in these constructs are represented by hierarchical identifiers.

In port_mapping_directives, the optional string is used for generating virtual instance data in the
backward SAIF file and represents the type of the virtual instance.

IEEE Std 1801-2015
IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems

Copyright © 2016 IEEE. All rights reserved.

501

I.5.4 Instance declarations

The port and net mapping directives in the RTL forward SAIF file are organized hierarchically in RTL
forward instance declarations, which comprise the RTL forward SAIF instance info that follows the header
in the forward SAIF file. Syntax 50 defines the RTL forward SAIF info constructs.

rforward_saif_info ::=
{rforward_instance_declaration}

rforward_instance_declaration ::=
(INSTANCE [string] instance_name {rforward_instance_directive}
{rforward_instance_declaration})

instance_name ::=
hierarchical_identifier

rforward_instance_directive ::=
 port_mapping_directives
| net_mapping_directives

Syntax 50—RTL forward SAIF info constructs

The RTL forward SAIF info is a list of instance declarations. The optional string following the INSTANCE
keyword represents the design name and the hierarchical_identifier following it is the actual instance
name. The port and net mapping directives follow the instance name. The instance declarations of any sub-
design instances can be included recursively in this construct.

IEEE
standards.ieee.org
Phone: +1 732 981 0060 Fax: +1 732 562 1571
© IEEE

	IEEE Std 1801-2015 Front Cover
	Title page
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	IMPORTANT NOTICE
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Key characteristics of the Unified Power Format
	1.4 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Concepts
	4.1 Introduction
	4.2 Design structure
	4.3 Design representation
	4.4 Power architecture
	4.5 Power distribution
	4.6 Power management
	4.7 Supply states and power states
	4.8 Simstates
	4.9 Power intent specification

	5. Language basics
	5.1 UPF is Tcl
	5.2 Conventions used
	5.3 Lexical elements
	5.4 Boolean expressions
	5.5 Object declaration
	5.6 Attributes of objects
	5.7 Precedence
	5.8 Generic UPF command semantics
	5.9 effective_element_list semantics
	5.10 Command refinement
	5.11 Error handling
	5.12 Units
	5.13 SystemC language basic

	6. Power intent commands
	6.1 Introduction
	6.2 Categories
	6.3 add_parameter
	6.4 add_port_state (legacy)
	6.5 add_power_state
	6.6 add_pst_state (legacy)
	6.7 add_state_transition
	6.8 add_supply_state
	6.9 apply_power_model
	6.10 associate_supply_set
	6.11 begin_power_model
	6.12 bind_checker
	6.13 connect_logic_net
	6.14 connect_supply_net
	6.15 connect_supply_set
	6.16 create_composite_domain
	6.17 create_hdl2upf_vct
	6.18 create_logic_net
	6.19 create_logic_port
	6.20 create_power_domain
	6.21 create_power_state_group
	6.22 create_power_switch
	6.23 create_pst (legacy)
	6.24 create_supply_net
	6.25 create_supply_port
	6.26 create_supply_set
	6.27 create_upf2hdl_vct
	6.28 describe_state_transition (deprecated)
	6.29 end_power_model
	6.30 find_objects
	6.31 load_simstate_behavior
	6.32 load_upf
	6.33 load_upf_protected (deprecated)
	6.34 map_power_switch
	6.35 map_repeater_cell
	6.36 map_retention_cell
	6.37 name_format
	6.38 save_upf
	6.39 set_correlated
	6.40 set_design_attributes
	6.41 set_design_top
	6.42 set_domain_supply_net (legacy)
	6.43 set_equivalent
	6.44 set_isolation
	6.45 set_level_shifter
	6.46 set_partial_on_translation
	6.47 set_port_attributes
	6.48 set_repeater
	6.49 set_retention
	6.50 set_retention_elements
	6.51 set_scope
	6.52 set_simstate_behavior
	6.53 set_variation
	6.54 upf_version
	6.55 use_interface_cell

	7. Power-management cell definition commands
	7.1 Introduction
	7.2 define_always_on_cell
	7.3 define_diode_clamp
	7.4 define_isolation_cell
	7.5 define_level_shifter_cell
	7.6 define_power_switch_cell
	7.7 define_retention_cell

	8. UPF processing
	8.1 Overview
	8.2 Data requirements
	8.3 Processing phases
	8.4 Error checking

	9. Simulation semantics
	9.1 Supply network creation
	9.2 Supply network simulation
	9.3 Power state simulation
	9.4 Power state transition detection
	9.5 Simstate simulation
	9.6 Transitioning from one simstate state to another
	9.7 Simulation of retention
	9.8 Simulation of isolation
	9.9 Simulation of level-shifting
	9.10 Simulation of repeaters

	10. UPF information model
	10.1 Overview
	10.2 Components of UPF information model
	10.3 Identifiers in information model (IDs)
	10.4 Classification of objects
	10.5 Example of design hierarchy
	10.6 Object definitions

	11. Information model application programmable interface (API)
	11.1 Tcl interface
	11.2 HDL interface

	Annex A (informative) Bibliography
	Annex B (normative) Value conversion tables
	Annex C (informative) UPF query examples
	Annex D (informative) Replacing deprecated and legacy commands and options
	Annex E (informative) Low-power design methodology
	Annex F (informative) Power-management cell definitions in UPF and Liberty
	Annex G (informative) Power-management cell modeling examples
	Annex H (informative) IP power modeling for system-level design
	Annex I (normative) Switching Activity Interchange Format
	Back Cover

