
SpyGlass® Tcl Shell Interface
User Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Boost Process

Project homepage: http://www.highscore.de/boost/process0.5/index.html

Project license:

Boris Schaeling

Copyright © 2006-2012 Julio M. Merino Vidal, Ilya Sokolov, Felipe Tanus, Jeff Flinn,
Boris Schaeling

Distributed under the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a
copy of the software and accompanying documentation covered by this license (the
"Software") to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works of the Software, unless
such copies or derivative works are solely in the form of machine-executable object
code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY,
WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

http://www.highscore.de/boost/process0.5/index.html

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..31
About This Book .. 31
Contents of This Book ... 32
Typographical Conventions ... 33

Using the Tcl Shell Interface ...35
Project File.. 37
Invoking the Tcl Shell Interface .. 39

Invoking Tcl Shell From Command-Line ..39
Invoking Tcl Shell From SpyGlass...42

Specifying Inputs to the sg_shell .. 44
Using sg_shell Commands... 45

Using Named and Positional Arguments ..45
Properties of Tcl Command Arguments ...46
Errors and Messages Flagged in sg_shell...50
Error Handling in Tcl Commands ..51
Startup Files in sg_shell..52

Error Scenarios and Messages ...53
Specifying a Tcl File as the Startup File ...54
Specifying a Project File as the Startup File ...56

Exit Codes Reported by sg_shell ..58
Features of sg_shell .. 62

Using the Help Feature ...62
Using the Tab Completion Feature..63
Capturing stdout and stderr ..64
History Support in sg_shell ...65
Command Logging in sg_shell ...66
Screen Output Logging in sg_shell ...67
Signal Handling in sg_shell ...69
Using Escape Names in sg_shell ..71
Common SDC Flow ..73
Dual Design Read Flow ...75
Using Key Combinations for Performing Actions77
Setting SpyGlass Preferences Using Tcl Shell Interface..............................77
v
Synopsys, Inc.

List of Preferences ...77
Overriding GUI Preferences ...81

SpyGlass Tcl Commands..83
Session Commands.. 84

gui_set_obw_dialog_labels : Sets OBW dialog labels........................85
gui_configure_obw_dialog : Configures OBW dialog86
gui_save_session : Saves the current SpyGlass session in a Tcl file88
gui_restore_session : Restores the session given in a Tcl file..............89
new_project : Creates a new project ..90
open_project : Opens an existing project ..92
save_project : Saves the specified project...95
close_project : Closes the currently active project..............................99
current_project : Displays data of the currently loaded project101
import_project : Used to import existing project settings into current

project ...103
exit : Quits sg_shell and returns to the UNIX shell prompt106
set_pref : Sets the specified preference variable to its specified value..110
get_pref : Displays the value of the specified preference variable (s)...112

Design Setup Commands... 114
read_file : Reads in the specified file for analysis115
get_file : Displays the names of various types of files added119
remove_file : Removes files of the specified type122
set_option : Sets the specified option to the specified value...............126
get_option : Get values set in the project for the specified option141
report_option : Report options in tabular format..............................143
remove_option : Removes or unsets the specified option in the project

scope ...145
link_design : Reads the design to check design read errors147
compile_design : Synthesizes the design to check synthesis errors150
read_power_data : Provides the UPF files.......................................154
read_sdc_data : Provides the SDC files...156
read_activity_data : Provides the activity data files, such as FSDB, VCD or

SAIF files ..158
Goal Setup or Run Commands ... 161

current_methodology : Selects a methodology162
addpolicy : Adds policies to an existing goal.....................................164
vi
Synopsys, Inc.

current_goal : Selects a goal... 166
define_goal : Used to define custom goal in current selected methodology

172
define_regression : Used to define to define regression either by

specifying a list of goals or by assigning a name to the goal list.
175

set_goal_option : Sets the specified goal option to the specified value178
get_goal_option : Get values in the goal scope for the specified option ...

186
get_messages : Returns a collection of message objects that have been

reported for the goal run .. 188
get_message_arg : Creates a list of message arguments for a message

object(s) collection... 190
get_message_labels : Returns a string list of logical labels for message

arguments of a message object(s) collection 195
get_rules : Returns a collection of rule objects that were loaded for the goal

run .. 197
remove_goal_option : Removes or unsets the specified option in the goal

scope ... 199
get_run_option : Gets values for the current run............................. 201
set_run_option : Sets option/parameter to specified value................ 203
set_parameter : Sets the value of the specified parameter................ 206
get_parameter : Gets the value of the specified parameter set in the

current goal .. 210
report_parameter : Report parameters in tabular format.................. 213
run_goal : Runs the selected goal... 215
save_goal : Used to save design query data for the currently selected goal

229
restore_goal : Used to restore design query data for the currently selected

goal ... 231
ADC Setup Commands..233

ADC Commands .. 233
SDC-Equivalent Commands... 240
create_clock : Creates the clock for the design 243
create_clock_attribute : Specifies the clock attributes..................... 246
create_generated_clock : Creates generated clocks........................ 249
define_sgdc_severity_class : Defines an SGDC severity class.......... 251
end_sgdc_severity_class : Marks the end of an SGDC severity class. 252
set_annotated_transition : Sets the transition time at a given pin.... 253
vii
Synopsys, Inc.

set_case_analysis : Sets a constant logic value on a pin, port, or net.255
set_dft_signal : Specifies the DFT signal types for DRC and DFT insertion

258
set_dont_touch_network : Sets the dont_touch_network attribute on

clocks, pins, or ports in the current design to prevent cells and
nets in the transitive fan-out of the set_dont_touch_network
objects from being modified or replaced during optimization 261

syn_set_dont_use : Sets the dont_use attribute on library cells to exclude
them from the target library during optimization263

set_driving_cell : Sets attributes on input or inout ports of the current
design, specifying that a library cell or output pin of a library cell
drives the specified ports ..265

set_false_path : Removes timing constraints from particular paths269
set_ideal_network : Marks a set of ports or pins in the current design as

sources of an ideal network. This disables the timing update and
optimization of cells and nets in the transitive fan-out of the
specified objects ..272

set_input_delay : Sets an input delay on the ports relative to a clock.274
set_load : Sets the load attribute to a specified value on the specified ports

and nets ...276
set_multicycle_path : Modifies the single-cycle timing relationship of a

constrained path..278
set_output_delay : Sets an output delay on the ports relative to a clock..

282
set_scan_group : Specifies an unordered group of cells that are not yet

connected, but should be kept together within a scan chain. It
also identifies the existing logic in the current design that is to be
designated as a scan segment ...284

set_wire_load_mode : Sets the wire_load_model_mode attribute on the
current design, specifying how wire load models are to be used
to calculate the wire capacitance in nets286

set_wire_load_model : Sets the wire_load_attach_name attribute on
designs, ports, hierarchical cells of current design, or the
specified cluster of the current design, for selecting a wire load
model to use in calculating the wire capacitance.................288

Specifying Collection Objects in ADC Commands290
Utility Commands .. 291

get_adc : Used to get a list of ADC commands on the basis of filtering
criteria, if specified...292

report_adc : Reports user-specified ADC commands295
viii
Synopsys, Inc.

remove_adc : Used for removing constraint command 300
save_adc : Saves the active constraints .. 302
convert_sgdc2adc : Converts SGDC commands specified in an input file to

corresponding ADC commands in the specified output file ... 303
Reporting Commands...305

define_filter : Defines a criterion to filter a set of messages from the set of
all generated non-waived messages 306

define_view : Defines how the selected output should be displayed 311
define_report : Defines a new report of the specified name............... 316
write_report : Generates the specified report 318
write_aggregate_report : Used to generate the specified aggregate

report .. 320
Waiver Commands ...322

waive : Used for defining the criteria to waive a set of messages from the
set of all generated messages ... 325

get_waiver : Used to get a list of waiver commands on the basis of filtering
criteria, if specified .. 333

report_waiver : Reports user-specified waiver commands................. 335
remove_waiver : Used for removing waive commands 340
save_waiver : Saves the active waivers .. 342
convert_swl2awl : Converts waiver commands specified in an input file to

corresponding AWL commands in the specified output file ... 343
Debug Commands ..345

General Debug Commands.. 345
gui_start : Invokes Atrenta Console.. 346
help : Displays help for a particular command or item........................ 347
report_design_status : Reports design status as whether design has been

compiled or flattened, and whether these views are up to date .
350

Design Query Commands ... 351
Library Commands... 352
get_libs : Used to get a list of libraries currently loaded in sg_shell 354
get_lib_cells : Used to get a list of library cells currently loaded in sg_shell

357
get_lib_pins : Used to get a list of library pins currently loaded in sg_shell

361
get_lib_timing_arcs : Used to get a list of library timing arcs from the

libraries currently loaded in sg_shell................................. 364
Netlist Commands ... 369
ix
Synopsys, Inc.

current_instance : Used to select a scope (instance) for design query on
hierarchically flattened netlist ..374

current_design : Used to select a current design for interactive constraint
and design query commands ...377

get_cells : Creates a list of cells in the current design that match certain
criteria ...379

get_nets : Creates a list of nets in the current design that match certain
criteria ...383

get_pins : Creates a list of pins in the current design that match certain
criteria ...387

get_ports : Creates a list of ports in the current design that match certain
criteria ...391

report_cell : Used to display information and statistics about cells in the
current instance or current design....................................395

get_fanin_pins : Creates a list of fan-in pins in the design that match
certain criteria ...397

get_fanin_ports : Creates a list of fan-in ports in the design that match
certain criteria ...401

get_fanout_pins : Creates a list of fan-out pins in the design that match
certain criteria ...403

get_fanout_ports : Creates a list of fan-out ports in the design that match
certain criteria ...407

get_master : Returns the master module of the specified instance......410
get_parent : Returns the parent node of the specified object412
get_clocks : Creates a list of user-defined clocks in the current design 414
get_clock_relation : Returns a collection of clock objects for given names

416
report_clock_relation : Returns synchronous and asynchronous

relationship between clocks of the design in matrix format ..417
report_clocks : Reports properties of user-specified clocks in current

design ..419
get_registers : Used to get a list of cells driven by specified clocks/resets

422
get_resets : Creates a list of user defined resets in current design......425
get_value : Used to get simulation value of specified design object (port,

pin, or net) in last cycle ..427
propagate_clocks : Propagates the user-defined clocks429
propagate_resets : Propagates the user-defined resets430
get_domains : Creates a list of domains of the user-defined clocks in the
x
Synopsys, Inc.

current design... 431
report_domains : Reports the list of clocks of the specified domains .. 433
report_resets : Reports properties of user specified resets in current

design.. 435
Collection Commands... 437
add_to_collection : Add objects to a base collection and form a new

collection. The base collection remains unchanged 438
append_to_collection : Add objects to a collection, modifying the variable

containing it.. 441
compare_collections : Used to compare two collections, returning 0 if they

match .. 444
filter_collection : Used to filter a given base collection with some specific

criteria ... 446
foreach_in_collection : Used to iterate over the objects of a collection ...

449
index_collection : Used to extract a single object from a collection based

on its index... 451
query_objects : Used to display objects in the argument collection 453
remove_from_collection : Remove objects from a base collection and

form a new collection ... 455
sizeof_collection : Used to determine the number of objects in a collection

458
Attribute Commands .. 459
define_user_attribute : Used to define a new user-defined attribute . 461
set_user_attribute : Used to set a user attribute to a specified value on an

object .. 463
get_attribute : Used to retrieve the value of an attribute on an object 465
list_attributes : Used to display a list of currently defined attributes... 467
remove_user_attribute : Used to remove attributes set with

set_user_attribute command... 471
destroy_user_attribute : Used to destroy an attribute..................... 473

Product Commands.. 474
SpyGlass Base Commands .. 475

get_combloop : Creates a list of combinational loop in the current design
that match certain criteria... 476

SpyGlass Lint Turbo Commands... 478
get_lint_formal_results : Gets a list of violations of lint turbo rules in the

current design... 479
report_lint_formal_results : Reports properties of violations of lint turbo
xi
Synopsys, Inc.

rules in the current design ..482
SpyGlass Constraints Commands ...484

autofix_sdc : Generates SDC file having list of missing/incorrect
constraints specified through the constraint rules485

get_constrained_muxes : Used to get a list of MUXes where select pins
are unconstrained and data pins are constrained487

get_sdc : Used to get a list of SDC commands on the basis of filtering
criteria, if specified...488

write_sdc_node : Used to print the SDC constraints for the given SDC
nodes...490

export_sdc : Generates the SDC file from the user updated CSV491
update_crossing_file : Translates the crossing file into user csv........493

SpyGlass CDC Commands...494
get_cdc : Creates a collection of clock domain crossings in the current

design that match certain criteria495
get_cdc_coherency : Returns the collection of Ac_conv issue based in field

values ..502
get_cdc_glitch : Creates collection of clock domain crossings in current

design that may have glitches and match certain criteria.....507
get_cdc_sources : Returns source of a crossing given by a destination

name or an object returned from get_cdc collection............511
get_conv_sync_signals : Returns a collection of crossings for a given

convergence object that is an element of collection returned from
get_cdc_coherency ..513

get_glitch_sources : Returns a collection of sources for a given glitch
prone crossing or a destination ..516

get_multi_flop_sync_info : Returns a collection of synchronizer flip-flops
for a given crossing..518

get_reset_sync : Returns status of flip-flops with the reset synchronization
issues in the current design that match certain criteria........520

get_reset_sync_names : Return the reset synchronizer information in the
current design that match certain criteria523

get_paths : Reports the complete paths between the specified start and
end points...526

report_cdc : Reports clock domain crossing details529
report_cdc_coherency : Displays the collection of coherency/convergence

issues reported by get_cdc_coherency532
report_cdc_glitch : Reports clock domain crossing with glitches536
report_paths : Reports elements in a defined path in current design...538
xii
Synopsys, Inc.

report_reset_sync : Reports reset synchronization issues related
information ... 540

report_reset_sync_names : Reports reset synchronization related
information ... 543

SpyGlass DFT Commands ... 545
dft_generate_coverage : Generates coverage information for selected

modules and instances ... 546
dft_generate_fault_report : Generates pin wise fault information for

selected modules and instances 549
dft_generate_scan_report : Generates instance-wise scannability

information of flip-flops or latches in the selected modules and
scannability information for selected flip-flops or latch instances
in the current design .. 552

dft_generate_latch_status_report : Generates instance-wise
transparency information of latches in selected modules and
transparency information for selected latch instances in
current design... 554

cv_is_cmt_present : Check if the given constraint_message_tag is
present on the specified flat-object. 556

dsm_assert_illegal_path : Defines the illegal connectivity check for a
path... 558

dsm_assert_illegal_value : Defines a check that a logic value should not
be present on a design node ... 560

cv_define_user_macro : Define a new user marco.......................... 562
cv_delete_user_macro : Delete a user macro. 563
cv_reset_user_macros : Delete all user macros.............................. 564
cv_get_list_of_user_macros : Get list of user macros. 565
cv_add_element_to_user_macro : Add flat-object to user macro's

collection. ... 566
cv_get_cell_list_of_user_macro : Get cell list of user macro........... 568
cv_get_pin_list_of_user_macro : Get pin list of user macro. 569
cv_get_port_list_of_user_macro : Get port list of user macro. 570
cv_is_element_present_in_user_macro : Check if flat-object is present

in the user macro’s collection. ... 571
cv_remove_element_from_user_macro : Remove flat-object from user

macro's collection. ... 573
SpyGlass Power Verify Commands ... 575

get_pwr_intent : Gives a power intent node for a design element on which
user can query information ... 576
xiii
Synopsys, Inc.

report_pwr_intent : Displays the information of the power intent node ...
577

check_pwr_intent_crossing : Displays the crossing type between the two
power intent nodes ..579

get_retention_info : Gives a power retention node containing information
related to retention strategy applied on an instance............581

get_isolation_info : Gives a power isolation node containing information
related to isolation strategy applied on an instance.............583

get_power_switch_info : Gives a power PSW node containing information
related to create_power_switch strategy applied on an instance
585

get_level_shifter_info : Gives a power level shifter node containing
information related to level shifter strategy applied on an
instance..587

get_supply_info : Gives a power supply node containing information
related to power supply corresponding to a design net589

report_retention_info : Displays the information of the power retention
node ..590

report_isolation_info : Displays the information of the power isolation
node ..592

report_power_switch_info : Displays the information of the power PSW
node ..594

report_level_shifter_info : Displays the information of the power level
shifter node ..596

report_supply_info : Displays the information of the power supply node .
598

SpyGlass Power Estimate and Reduce Commands600
report_power_stats_for_cell : Generates power attributes report for the

given flat cells ...601
report_power_stats_for_reg : Generates a report for given flat cells of

register type with required attributes................................604
Built-in Attributes ..608

lib..610
lib_cell ...612
lib_pin..614
lib_timing_arcs..617
cdc_conv_signal_node..618
cdc_conv_node..618
cdc_glitch_node...619
cdc_glitch_source_node..620
xiv
Synopsys, Inc.

cdc_node.. 621
cdc_source_node... 622
design.. 623
du_cell ... 625
du_pin ... 628
du_port.. 630
du_net ... 631
flat_inst ... 632
flat_cell .. 633
flat_pin .. 636
flat_port... 640
flat_net .. 642
adc_node ... 644
sdc_node.. 645
clock.. 645
clock_domain.. 645
message .. 646
rule ... 646
reset.. 647
reset_flop_node .. 647
reset_sync_node ... 648

Product Attributes.. 649
Base Attributes ... 650
is_async_sync_reset : Returns the reset net used as both synchronously

and asynchronously ... 652
is_clock_used_as_nonclock : Returns the flip-flop clock signal net which

is used as non clock signal in a design 653
is_clock_used_with_both_edges : Returns the clock signal driving on

both edges ... 654
is_constant_pin : Returns the pin of an instance at which a constant value

reaches .. 655
is_disabled_cell : Returns the disabled gate 657
is_internally_generated_reset : Returns the internally generated reset .

658
is_latch_clock_driven_on_both_edges : Returns the clock net trigger

latches ... 659
is_multiple_driver : Returns the flattened net that has multiple drivers...

660
is_reset_used_as_nonreset : Returns the asynchronous reset or preset

net which is used as non asynchronous reset or preset signal ...
xv
Synopsys, Inc.

662
is_reset_used_with_both_polarity : Returns the reset or set net which

is used as both positive and negative polarity in same design unit
663

is_unregistered_port : Returns the ports, which are not registered, of the
module...664

CDC Attributes ..666
dest_type : Checks the type of destination instance present in a crossing .

668
failure_reason : Reports the reason of unsynchronization of a CDC

crossing..669
is_comb_conv : Checks whether the converging signals are reported by

the Ac_conv02 rule ..670
is_data : Checks whether a CDC crossing is a data crossing671
is_graycoded : Checks whether the converging signals are gray encoded .

672
is_nonconv_bus : Checks whether the converging signals are reported by

the Ac_conv04 rule ..674
is_seq_conv : Checks whether the converging signals are reported by the

Ac_conv01 rule..675
is_synchronized : Checks whether a CDC crossing is synchronized.....676
is_user_defined : Checks whether the converging signals are reported by

the Ac_conv05 rule ..677
num_sources : Checks number of sources present in a crossing678
num_source_domains : Checks number of source domains present in a

crossing..679
src_type : Checks the type of source instance present in a crossing680
sync_method : Reports the reason of synchronization of a CDC crossing ..

681
Constraints Attributes...682
sdc_type : Returns the SDC constraint type of the SDC node..............683
timing_state : Returns the constrained status of the queried design object

684
DFT Attributes ...686
atspeed_sim_value : Gets atspeed_capture mode simulation value (1 | 0

| X | Z) for user-specified design node (flat_net | flat_pin |
flat_port) in current design..689

capture_sim_value : Gets capture mode simulation value (1 | 0 | X | Z)
for user-specified design node (flat_net | flat_pin | flat_port) in
xvi
Synopsys, Inc.

current design... 691
get_atspeed_clock_n_phase : Gets the atspeed mode source clock,

source clock phase and phase at a user specified design node in
current design... 693

get_capture_clock_n_phase : Gets the capture mode source clock,
source clock phase and phase at a user specified design node in
the current design ... 695

get_dft_functional_clock_n_phase : Gets the functional source clock,
source clock phase and phase at a user specified design node in
current design... 697

get_latch_atspeed_status : Gets the atspeed transparency status for
user specified latch in current design................................ 699

get_latch_capture_status : Gets the capture transparency status for user
specified latch in current design....................................... 701

get_latch_shift_status : Gets the shift transparency status for user
specified latch in current design....................................... 703

get_scan_status : Gets the scannability status for user specified flip-flop
or latch in current design .. 705

get_shift_clock_n_phase : gets the shift mode source clock, source clock
phase and phase at a user specified design node in current design
707

is_scannable : Checks whether a flip-flop or a latch is scannable........ 708
obs_probability : Gets the probability that the flat port, pin or net is

observable when random test pattern is applied................. 709
one_cnt_probability : Gets the probability that the flat port, pin or net is

at 1 when random test pattern is applied 711
pg_sim_value : Gets power_ground simulation value (1 | 0 | X | Z) for

user-specified design node (flat_net | flat_pin | flat_port) in
current design... 713

rand_fault_cov_estimate : Gets the fault coverage estimate of top
module for the dft_pattern_count random test patterns 715

rand_test_cov_estimate : Gets the test coverage estimate of top module
for dft_pattern_count random test patterns....................... 716

sa0_det_probability : Gets the probability that stuck at 0 fault on flat port,
pin or net is detected after dft_pattern_count random test
patterns are applied ... 717

sa1_det_probability : Gets the probability that stuck at 1 fault on flat port,
pin or net is detected after dft_pattern_count random test
patterns are applied ... 718

sa0_fault_detectability : Gets the stuck_at zero fault detectability ... 719
xvii
Synopsys, Inc.

sa1_fault_detectability : Gets the stuck_at one fault detectability.....720
shift_sim_value : Gets shift mode simulation value (1 | 0 | X | Z) for user-

specified design node (flat_net | flat_pin | flat_port) in current
design ..721

static_controllability : Gets static controllability (3-bit-string (y/n): zero-
control_one-control_zee-control: nnn | nny | nyn | nyy | ynn |
yny | yyn | yyy) for user-specified design node (flat_net | flat_pin
| flat_port) in current design ...723

static_observability : Gets static observability (y (yes_observable) | n
(not_observable)) for user-specified design node (flat_pin |
flat_port) in current design..725

t01_fault_detectability_los : Gets zero to one transition fault
detectability with launch on shift727

t10_fault_detectability_los : Gets one to zero transition fault
detectability with launch on shift728

t01_fault_detectability_loc : Gets zero to one transition fault
detectability with launch on capture..................................729

t10_fault_detectability_loc : Gets one to zero transition fault
detectability with launch on capture..................................731

zero_cnt_probability : Gets the probability that the flat port, pin, or net is
at 0 when random test pattern is applied733

Power Attributes ..735
activity : Returns the activity of a flat net ..739
blackbox_internal_power : Returns the total internal power consumed by

all the black box cells of a hierarchy741
blackbox_leakage_power : Returns the total leakage power consumed by

all the black box cells of a hierarchy743
blackbox_switching_power : Returns the total switching power

consumed by all the black box cells of a hierarchy745
capacitance_source : Returns the source of the capacitance of a flat net .

747
cell_size_for_power : Returns the relative size of a flat cell as used for

set_cell_allocation..749
clock_internal_power : Returns the total internal power consumed by all

the clock cells of a hierarchy..750
clock_leakage_power : Returns the total leakage power consumed by all

the clock cells of a hierarchy..752
clock_switching_power : Returns the total switching power consumed by

all the clock cells of a hierarchy754
xviii
Synopsys, Inc.

combinational_internal_power : Returns the total internal power
consumed by all the combinational cells of a hierarchy........ 756

combinational_leakage_power : Returns the total leakage power
consumed by all the combinational cells of a hierarchy........ 758

combinational_switching_power : Returns the total switching power
consumed by all the combinational cells of a hierarchy........ 760

fanout_capacitance : Returns the total pin capacitance of a given net 762
internal_power : Returns total internal power consumed by the given flat

cell or hierarchical cell .. 764
io_internal_power : Returns the total internal power consumed by all the

io cells of a hierarchy ... 766
io_leakage_power : Returns the total leakage power consumed by all the

io cells of a hierarchy ... 768
io_switching_power : Returns the total switching power consumed by all

the io cells of a hierarchy.. 770
is_activity_annotated : Returns a boolean value, as an annotation status

of a given net.. 772
is_clock_gated : Returns the gating status for the given flat cell 774
is_internal_power_defined : Returns a boolean value, based on whether

internal power tables are specified for a library cell or not ... 775
is_instantiated : Returns a boolean value as instantiation status for the

given flat cell .. 776
leakage_power : Returns total leakage power consumed by the given flat

cell or hierarchical cell .. 778
leakage_power_model : Returns leakage power model of a library cell ...

780
megacell_internal_power : Returns the total internal power consumed by

all the megacell cells of a hierarchy 782
megacell_leakage_power : Returns the total leakage power consumed by

all the megacell cells of a hierarchy 784
megacell_switching_power : Returns the total switching power

consumed by all the megacell cells of a hierarchy............... 786
memory_internal_power : Returns the total internal power consumed by

all the memory cells of a hierarchy................................... 788
memory_leakage_power : Returns the total leakage power consumed by

all the memory cells of a hierarchy................................... 790
memory_switching_power : Returns the total switching power consumed

by all the memory cells of a hierarchy 792
net_frequency : Returns the frequency of the flat net....................... 794
xix
Synopsys, Inc.

other_internal_power : Returns the total internal power consumed by all
those cells of a hierarchy that do not fall into any standard cell
category ...796

other_leakage_power : Returns the total leakage power consumed by all
those cells of a hierarchy that do not fall into any standard cell
category ...798

other_switching_power : Returns the total switching power consumed by
all those cells of a hierarchy that do not fall into any standard cell
category ...800

power_type : Returns the category of power to which this flat cell is
contributing ..802

net_capacitance : Returns the wire capacitance of a flat net804
probability : Returns the probability of a flat net806
root_clock_for_power : Returns the root clock name for the given register

flat cell ...808
sequential_internal_power : Returns the total internal power consumed

by all the sequential cells of a hierarchy809
sequential_leakage_power : Returns the total leakage power consumed

by all the sequential cells of a hierarchy811
sequential_switching_power : Returns the total switching power

consumed by all the sequential cells of a hierarchy813
switching_power : Returns total switching power consumed by the given

flat cell or hierarchical cell ..815
virtual_buffer_info : Returns virtual buffer information for the given flat

net...817
virtual_internal_power : Returns total internal power consumed by all

virtual buffers on a given flat net819
virtual_leakage_power : Returns total leakage power consumed by all

virtual buffers on the given flat net...................................821
virtual_switching_power : Returns total switching power consumed by all

virtual buffers on the given flat net...................................823
vt_classification : Returns threshold voltage group of a library cell825
Power Verify Attributes ...827
clamp_value : Displays the clamp value of the isolation strategy829
control_port : Displays the control signal of power switch..................830
input_supply_port : Displays the input supply of power switch..........831
input_supply_set : Displays the input supply set of level shifter832
isolation_ground_net : Displays the isolation ground net of the isolation

strategy..833
xx
Synopsys, Inc.

isolation_power_net : Displays the isolation power supply of the isolation
strategy ... 834

isolation_sense : Displays the isolation sense of the isolation strategy 835
isolation_signal : Displays the isolation signal of the isolation strategy836
location : Displays the location of the applied strategy 837
name : Displays the name of the strategy .. 839
output_supply_port : Displays the input supply of power switch 841
output_supply_set : Displays the input supply set of level shifter 842
power_domain : Displays the power domain name 843
power_supply : Displays the power supply name 844
ground_supply : Displays the ground supply name 845
restore_signal : Displays the restore signal of the retention strategy.. 846
retention_ground_supply : Displays the retention ground supply of the

retention strategy .. 847
retention_power_supply : Displays the retention power supply of the

retention strategy .. 848
save_signal : Displays the save signal of the retention strategy 849
sink : Displays the sink supply of an applied strategy......................... 850
source : Displays the source supply of an applied strategy 851
supply_name : Displays the supply name corresponding to a design net ..

853
rule : Displays the rule of level shifter strategy 854
type : Displays the type of supply net .. 855
voltage_range_min : Returns the minimum value to voltage range ... 856
voltage_range_max : Returns the maximum value to voltage range.. 857

Miscellaneous Commands ..858
alias : Creates an alias for a group of word(s)................................... 859
benchmark : Monitors run-time and memory usage between two

designated check points in sg_shell 861
capture : Captures output (stdout or stderr) of script to a file............. 864
gui_set_preference : Specifies SpyGlass preferences using Tcl Shell.. 867
gui_add_menu : Creates a new toolbar menu item and returns the Id 869
show_error : Displays the last error that occurred during a particular

command invocation along with its trace........................... 871
source : unalias : Removes an alias set for a group of word(s) 874
xxi
Synopsys, Inc.

Appendix A: Deprecated Command Names and Their
Corresponding New Commands ..875

Appendix B: Application Attributes ...877
List of Built-in Attributes... 878
List of Product Attributes .. 891

Appendix C: SpyGlass Report Names...899
General Reports .. 901
Custom Reports... 902
Default Reports ... 903
SpyGlass area Reports... 904
SpyGlass audits Reports .. 905
SpyGlass lint Reports .. 906
SpyGlass morelint Reports .. 907
SpyGlass OpenMore Reports.. 908
SpyGlass STARC Reports ... 909
SpyGlass STARC02 Reports ... 910
SpyGlass STARC05 Reports ... 911
SpyGlass CDC Reports ... 912
SpyGlass Constraints Reports.. 914
SpyGlass DFT Reports ... 916
SpyGlass DFT DSM Reports.. 918
SpyGlass Power Family Reports .. 920
SpyGlass Power Verify Reports ... 922
SpyGlass TXV Reports ... 924

Appendix D: Preference Variables Supported by the set_pref
Command..925

Overview... 925
sh_command_log_file : Specifies the path name for sg_shell's command

log file..926
goal_show_hidden : Enables visibility of hidden goals of methodology930
goal_enforce_prerequisite : Enforces prerequisite goal run before goal

run ..932
xxii
Synopsys, Inc.

dq_design_view_type : Specifies the view on which design query
commands are executed... 934

collection_display_limit : Specifies the maximum number of objects that
can be displayed by any command that returns a displayable
collection.. 937

Appendix E: CDC Application Commands939
List of CDC Commands ...940

Appendix:
SpyGlass Design Constraints ...953

Writing Constraints in an SGDC File ...954
Specifying SGDC File to SpyGlass ...955
Working with SGDC Files..956
Handling of Duplicate Constraint Specifications959
Renamed Constraints ...960
SpyGlass Design Constraints ..963

abstract_block_violation ... 967
abstract_file.. 969
abstract_interface_param ... 972
abstract_interface_port .. 974
abstract_port .. 976
activity... 1000
activity_data... 1006
add_fault.. 1010
allow_combo_logic... 1017
allow_test_point.. 1020
always_on_buffer .. 1020
always_on_cell.. 1022
always_on_pin .. 1023
always_on_path .. 1024
antenna_cell ... 1025
aon_buffered_signals ... 1026
assertion_signal .. 1027
associate_lib ... 1029
assume_waveform... 1030
assume_path .. 1031
atspeed_clock_frequency.. 1034
xxiii
Synopsys, Inc.

balanced_clock.. 1036
blackbox_power .. 1038
block.. 1041
blocksize .. 1044
breakpoint .. 1046
bypass ... 1047
cdc_attribute... 1048
cdc_check_glitch ... 1053
cdc_define_transition ... 1053
reset_sense .. 1054
cdc_false_path .. 1055
cdc_filter_coherency .. 1068
cdc_filter_path .. 1072
cdc_matrix_attributes .. 1073
cell_hookup .. 1076
cell_pin_info ... 1077
cell_tie_class... 1078
clock.. 1080

For SpyGlass CDC solution, SpyGlass Constraints solution, and SpyGlass
Auto Verify solution.. 1081
For SpyGlass DFT solution, SpyGlass DFT DSM solution..................... 1087
For SpyGlass Power Verify solution, SpyGlass ERC Product, and SpyGlass
Power Estimation and SpyGlass Power Reduction solutions 1093

clock_buffer .. 1095
clock_group .. 1096
clock_path_wrapper_module ... 1100
clock_pin .. 1102
clock_root... 1103
clock_sense .. 1104
clock_shaper... 1105
clockgating ... 1124
complex_cell ... 1125
compressor... 1127
dbist .. 1128
decompressor ... 1129
define_clock_tree .. 1131
define_illegal_input_values ... 1137
define_legal_input_values... 1138
define_library_group .. 1140
define_macro .. 1141
define_reset_order... 1146
xxiv
Synopsys, Inc.

define_tag .. 1150
For SpyGlass Auto Verify solution and SpyGlass CDC solution 1152
For SpyGlass DFT solution and SpyGlass DFT DSM solution 1154

delay_buffer ... 1162
deltacheck_ignore_instance .. 1164
deltacheck_ignore_module.. 1165
deltacheck_start.. 1166
deltacheck_stop_instance ... 1168
deltacheck_stop_module .. 1169
deltacheck_stop_signal .. 1171
design_map_info ... 1172
dftmax_partition.. 1175
dft_report_fault_list ... 1178
dft_stitching_exception .. 1179
dft_report_coverage .. 1181
disable_timing .. 1182
disallow_modification_type ... 1183
disallow_upf_command .. 1185
domain .. 1186
domain_inputs .. 1188
domain_outputs .. 1189
domain_signal... 1191
dont_touch ... 1193
expect_frequency .. 1195
false_path .. 1198
fifo .. 1199
force_no_scan... 1201
force_ta ... 1206
force_probability ... 1209
formal_analysis_filter... 1211
fsm ... 1213
gating_cell.. 1216
gating_cell_enable... 1222
generated_clock .. 1223
glitch_free_module .. 1228
gray_signals ... 1229
ignore_clock_gating... 1230
ignore_crossing... 1232
ignore_supply_pin ... 1234
illegal_constraint_message_tag ... 1235
illegal_path... 1238
xxv
Synopsys, Inc.

illegal_value.. 1248
initialize_for_bist ... 1259
initstate.. 1259
input.. 1262
input_drive_strength.. 1265
input_isocell.. 1267
instance_trace... 1269
ip_block ... 1271

For SpyGlass CDC solution and SpyGlass Auto Verify Solution 1272
For SpyGlass DFT solution and SpyGlass DFT DSM solution................ 1273

isolation_cell ... 1275
isolation_wrapper .. 1278
keeper ... 1279
latched_port ... 1281
levelshifter.. 1282
lp_ignore_cells_for_erc... 1284
make_mandatory_upf_commands_options.. 1285
mapped_pin_map .. 1286
mcp_info .. 1288
memory ... 1298
memory_force... 1299
memory_port .. 1300
memory_inst_port ... 1306
memory_read_pin ... 1307
memory_tristate.. 1309
memory_type.. 1310
memory_write_disable ... 1312
memory_write_pin... 1313
meta_design_hier .. 1315
meta_inst ... 1316
meta_module.. 1317
meta_monitor_options ... 1319
mode_condition... 1321
module_bypass ... 1323
module_pin... 1325
monitor_time .. 1327
multivt_lib .. 1329
network_allowed_cells.. 1331
no_atspeed... 1333
no_convergence_check... 1337
no_fault ... 1338
xxvi
Synopsys, Inc.

no_test_point ... 1344
noclockcell_start.. 1345
noclockcell_stop_instance... 1346
noclockcell_stop_module .. 1347
noclockcell_stop_signal .. 1349
non_pd_inputcells ... 1350
num_flops .. 1351
operating_mode_set .. 1356

Example... 1357
output.. 1358
output_not_used ... 1360
pg_cell ... 1362
pg_pins_naming.. 1364
pin_voltage... 1365
pll ... 1369
port_time_delay .. 1370
power_data .. 1373
power_down ... 1374
power_down_sequence .. 1376
power_management_test_control_cell.. 1378
power_management_unit ... 1379
power_rail_mapping .. 1380
power_state ... 1382
power_switch.. 1384
pr_safe_clocks .. 1386
pulldown .. 1388
pullup .. 1390
qualifier ... 1391
quasi_static .. 1404

For SpyGlass TXV solution .. 1404
For SpyGlass CDC solution .. 1406
For SpyGlass Power Family.. 1410

quasi_static_style .. 1411
ram_instance .. 1414
ram_switch... 1415
rdc_false_path .. 1418
ref_power_data... 1421
reference_toplevel_isolation_signal .. 1423
repeater ... 1424

Purpose.. 1424
repeater_buffer ... 1425
xxvii
Synopsys, Inc.

require_constraint_message_tag ... 1430
Syntax ... 1430

require_path ... 1433
require_pulse .. 1445
require_stable_value.. 1448
require_strict_path .. 1451
require_structure... 1458
require_value.. 1461
reset.. 1472
reset -async.. 1474
reset_filter_path.. 1476
reset_pin.. 1481
reset_synchronizer... 1482
retention_cell .. 1484
retention_instance ... 1488
rme_config ... 1489
set_slew... 1495
force_scan.. 1498
force_stable_value... 1501
force_unstable_value ... 1503
scan_cell .. 1506
scan_chain ... 1507
scan_enable_source... 1511
scan_ratio .. 1512
scan_type... 1513
scan_wrap .. 1516
sdc_data .. 1520

For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
1520
For SpyGlass Constraints solution... 1521
For SpyGlass DFT DSM solution ... 1525

validation_filter_path ... 1525
For SpyGlass CDC Solution.. 1527

select_wireload_model ... 1527
seq_atpg .. 1531
set... 1532
set_case_analysis .. 1533
enable_seq_propagation... 1546
set_cell_allocation ... 1547
set_cell_name_pattern ... 1553
set_clock_gating_type.. 1559
xxviii
Synopsys, Inc.

set_fully_decoded_bus ... 1562
set_mega_cell... 1563
set_power_info ... 1564
stil_data... 1565
sg_multicycle_path .. 1566
syn_set_dont_use ... 1568
ignore_nets .. 1570
ser_data .. 1572
safety_related... 1573
non_safety_related .. 1574
set_lib_timing_mode.. 1576
set_lib_name .. 1577
set_monitor_cell.. 1578
set_pin .. 1581
set_power_scaling ... 1582
set_supply_node ... 1586
sg_clock_group ... 1587
sgdc .. 1588

For SpyGlass CDC Solution.. 1589
For All Products ... 1591

shadow_ratio .. 1592
show_power_calc_details.. 1593
signal_in_domain .. 1594
signal_type... 1597

Control Signal ... 1597
Data Signal... 1599

simulation_data .. 1600
special_cell ... 1604
special_module ... 1605
spef_data ... 1606
supply.. 1609

For SpyGlass Power Verify solution... 1609
For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
1612

switchoff_wrapper_instance .. 1613
sync_cell .. 1615
sync_reset_style ... 1620
test_mode .. 1623

For SpyGlass DFT solution and SpyGlass DFT DSM solution 1623
For SpyGlass STARC Product, SpyGlass STARC02 product, SpyGlass
STARC05 product, and SpyGlass STARCad-21 product 1640
xxix
Synopsys, Inc.

test_point... 1641
tie_x .. 1643
tristate_cell... 1645
ungroup_cells.. 1646
use_library_group.. 1649
voltage_domain... 1651

For SpyGlass DFT DSM Solution ... 1651
For SpyGlass Power Verify solution ... 1653
For SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
1666

vt_mix_percentage .. 1670
watchpoint.. 1674
wireload_selection ... 1676
xxx
Synopsys, Inc.

Preface
About This Book

The SpyGlass® Tcl Shell Interface User Guide describes the Tcl Shell
Interface and various Tcl commands.
31
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass Tcl Shell Interface User Guide consists of the following
chapters:

Chapter Describes...

Using the Tcl Shell Interface Information on the usage of Tcl Shell
Interface

SpyGlass Tcl Commands Details of various Tcl commands

Appendix A: Deprecated
Command Names and Their
Corresponding New Commands

Deprecated command names and their
corresponding new commands

Appendix B: Application Attributes Detailed description of application
attributes

Appendix C: SpyGlass Report
Names

Valid report names of each product that
can be used with the <report-names>
argument

Appendix D: Preference Variables
Supported by the set_pref
Command

Preference variables supported by the
set_pref command

Appendix E: CDC Application
Commands

List of CDC application commands
32
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
33
Synopsys, Inc.

Typographical Conventions

Preface
34
Synopsys, Inc.

Using the Tcl Shell
Interface
The Tool Command Language (Tcl) interface of SpyGlass® enables you to
interactively control the flow of various stages during a design analysis
session. Use this interface to perform a variety of operations, such as
compiling a design, applying constraints, configuring tool settings,
controlling flow, and/or customizing the reports. The Tcl interface provides
the ability to create scripts for your CAD environment, perform "what-if"
analysis, perform interactive debugging, and facilitate the organization of
complex flow into smaller, logical steps for easy execution.

A typical design analysis session can be divided into the following stages:
1. Design Setup stage

During this stage, you set up the design by adding the design files,
precompiled files, and technology files. In addition, you specify various
design read options that are used during the SpyGlass run. You can read
the design at this stage, fix any issues reported during design read, and
identify and fix black boxes. This ensures that the basic design read is
clean, before proceeding with the detailed analysis.

2. Goal Setup stage
During this stage, you select various goals. Next, you configure their
parameter values, specify constraints, and ensure that the goal setup is
complete. You can then run the selected goals and move to the
subsequent stage of detailed design debug based on the information
35
Synopsys, Inc.

Using the Tcl Shell Interface
generated at this stage.
3. Analyze Results stage

During this stage, you can perform various operations, such as debug
violations, view results in a schematic, and cross-probe issues to HDL.

The Tcl interface of SpyGlass, or sg_shell, provides an interactive shell
environment in which you can control various steps of each of the above
stages by using various Tcl commands. This interface enables you to
perform easy design read, goal setup, goal execution, and customized
reporting to focus on intended violations.

NOTE: The Tcl interface of SpyGlass, or sg_shell, supports Tcl 8.5. Therefore, sg_shell can
invoke all the commands that are a part of Tcl 8.5. To view the help of Tcl 8.5
commands, use the man <tcl-command-name> command.
For example, man llength.
36
Synopsys, Inc.

Project File

Using the Tcl Shell Interface
Project File
As part of various stages during a design debug session within SpyGlass Tcl
Shell Interface, or sg_shell, you work on a project. sg_shell requires you to
define a project that captures all the design and goal setup information. As
you update the design data or goal setup information, such as constraints
and parameters, the project holds the latest setup information. For
example, if you start a project with two design files (say, top.v and mid.v),
and then add another design file (say, lower.v), but later remove mid.v, the
project would finally store top.v and lower.v.

Project is a storehouse of the final setup details and allows you to quickly
start your next sg_shell session from the point where you left it in the
earlier debug session. The project file is a Tcl file with appropriate Tcl
commands capturing information about design setup and goal setup till the
point last saved by you.

There is already a notion of project in Atrenta Console, and you are
expected to debug a session within an active project, and the same applies
to sg_shell. There may be some commands that have changed from an
earlier release, so it is recommended that you open the existing project file
in sg_shell, and immediately save it to get the updated project file with
new command names. Refer to the Appendix A: Deprecated Command Names
and Their Corresponding New Commands to see the old versus new command
mapping.

If there are any errors in your project file that have old command names,
sg_shell reports the new command names in the error messages instead of
the old ones.

It is recommended that you open a project in sg_shell, and then update
the setup information, instead of directly updating it in the project file. This
will help you to catch any errors in the setup in an interactive manner.

Other general information about the project file is listed below:

 It is always better to save a project file with the .prj extension, if
manually created, to easily identify it. If the project is created inside
sg_shell, it is automatically assigned this extension.

 There is some basic information that already exists in the project file,
such as projectcwd, which is used internally by the software. Please
ensure that you do not tweak this data while manually editing this file.
37
Synopsys, Inc.

Project File

Using the Tcl Shell Interface
 There are Tcl commands to start a new project, open an existing
project, save or close a project, or query the current project.

 If there are any environment variables used while manually editing a
project file, those environment variables are lost when the project is
next saved. The project file stores the final setup information. Any
Tcl-specific substitution or constructs are interpreted and lost while
loading the project itself. Therefore, sg_shell does not preserve any
Tcl-specific substitutions or constructs while saving the project.
38
Synopsys, Inc.

Invoking the Tcl Shell Interface

Using the Tcl Shell Interface
Invoking the Tcl Shell Interface
You can invoke the Tcl Shell interface using any of the following methods:
 Invoking Tcl Shell From Command-Line

 Invoking Tcl Shell From SpyGlass

Invoking Tcl Shell From Command-Line

You can invoke the interactive Tcl shell interface by specifying the following
command at the command-line:

% sg_shell

NOTE: sg_shell is picked from the same location as SpyGlass, that is
$SPYGLASS_HOME/bin.

When you specify the above command, SpyGlass displays the sg_shell
shell prompt, as shown below:

+---
----------+
|
|
| SpyGlass Predictive Analyzer(R)- Version 5.6.1
|
| Last compiled on Mar 15 2016
|
|
|
| All Rights Reserved. Use, disclosure or duplication
|
| without prior written permission of Synopsys Inc.is
prohibited. |
| Technical support: email spyglass_support@synopsys.com. |
+---
----------+
39
Synopsys, Inc.

Invoking the Tcl Shell Interface

Using the Tcl Shell Interface
sg_shell>

Once the above shell prompt appears, you can start the required
operations by using various Tcl commands. As you start typing the Tcl
commands, sg_shell records those commands in a separate Tcl file,
sg_shell_command.log, in the current working directory, which you can use
later for regression purpose. If a Tcl file of the same name,
sg_shell_command.log, already exists, sg_shell overwrites it.

You can perform the following tasks while invoking Tcl Shell Interface:
 Specifying a Tcl File

 Specifying a Project File

 Specifying the Tcl Startup File

 Specifying Customized Paths

Specifying a Tcl File

You can specify a Tcl file (.tcl) while invoking the Tcl Shell interface in the
following manner:

sg_shell < my.tcl

This Tcl file may contain the Tcl commands that are prerecorded in a
previous sg_shell run or are written manually. When you specify a Tcl
file, SpyGlass runs all the Tcl commands specified in the file, and then
returns to the UNIX prompt. The Tcl file can have any name or extension,
but the commands inside it should be Tcl-compatible and supported inside
sg_shell.

The output of the invocation mentioned above is the same as when you
type each of the commands mentioned in my.tcl directly on the sg_shell
prompt. If there is an error in any of the commands, Tcl shell ignores that
command, and the execution continues with subsequent commands.

This mode is best suited for regression purposes, where you have manually
verified results with a given sequence of Tcl commands, and can then
capture these commands in a playback file for regression purposes.

Specifying a Project File

You can specify a project file (.prj) while invoking the Tcl shell interface in
40
Synopsys, Inc.

Invoking the Tcl Shell Interface

Using the Tcl Shell Interface
the following manner:

sg_shell -project myProject.prj

The above command reads the specified project file and loads all the
settings specified in this file before returning to the sg_shell prompt.

Specifying the Tcl Startup File

You can specify a Tcl startup file while invoking the Tcl Shell interface in
the following manner:

sg_shell -tcl mystartup.tcl

When you specify the above command, sg_shell evaluates the contents of
the mystartup.tcl file as a Tcl script, and then the sg_shell prompt appears.
This startup file can have some alias definitions, procedures, and
predefined variables that you want to use in a given sg_shell session.

If there is any error in this startup file, sg_shell does not evaluate any
further commands from the point of error. However, sg_shell returns to the
sg_shell prompt so that you can query detailed error information. In such
cases, apart from querying the error information, the shell is rendered
useless (unless you do not worry about the contents of your startup files).

Continue-on-error mechanism for the Tcl startup file
In this mechanism, a support for continuing on errors has been provided
for the Tcl startup file. Consider a Tcl startup file, mystartuperrors.tcl, which
contains errors. You specify the startup file while invoking the Tcl Shell
interface in the following way:

sg_shell -tcl mystartuperrors.tcl

Because the Tcl startup file contains errors, you cannot ignore errors and
continue sourcing of the rest of the script. To continue with the execution
of the rest of the script, even after encountering errors, use the
-tcl_file_continue_on_error command-line option.

sg_shell -tcl_file_continue_on_error -tcl myprocs.tcl

Using this option leads to ignoring errors in the Tcl startup file (here,
mystartuperrors.tcl) on sg_shell's command line.

Note the following points about this mechanism:
 The -tcl_file_continue_on_error option only ignores errors present in the

Tcl startup file (here, mystartuperrors.tcl). This option does not apply to
41
Synopsys, Inc.

Invoking the Tcl Shell Interface

Using the Tcl Shell Interface
the source command. Use the -continue_on_error option for the source
command.

 This mechanism does not have any impact on the behavior of errors
present in project files.

 In this mechanism, only command errors can be skipped. Parse errors in
the Tcl file, such as missing close-bracket, would not get skipped.

 It is recommended that you use the -tcl_file_continue_on_error option
only when you wish to ignore errors. This support should mainly be used
when you require all the errors, such as ADC syntax errors, to be
reported in one go.

 The playback mode of usage (as in -tcl batch_run.tcl) is not
recommended. The recommended use model for using sg_shell in a
batch run is as follows:

sg_shell < batch_run.tcl

Specifying Customized Paths

You can configure the path for picking the product Perl files and Spyso
while invoking sg_shell by using the -I option. For example, the following
command picks the product data from the <local_path> path, if
present; otherwise, it picks it from the installation path:

sg_shell -project myProject.prj -64bit -I <local_path>

This option is useful primarily if you want to run sg_shell with a product
patch having some fixes.

Invoking Tcl Shell From SpyGlass

You can invoke sg_shell from SpyGlass by using the -shell switch, as
specified below:

% spyglass -shell

You can perform the following additional tasks while invoking Tcl Shell from
SpyGlass:
 Loading the Project File
42
Synopsys, Inc.

Invoking the Tcl Shell Interface

Using the Tcl Shell Interface
 Running Multiple Tcl Commands

Loading the Project File

You can load a project file in the sg_shell from SpyGlass, as specified
below:

spyglass –shell –project <project_file_name>.prj

Running Multiple Tcl Commands

You can execute a sequence of Tcl commands specified in a Tcl file in the
sg_shell using SpyGlass, as specified below:

% spyglass -shell -tcl <tcl-file.tcl>

NOTE: Interactive session of SpyGlass Tcl Shell (through sg_shell or “spyglass –
shell”) should be invoked in LSF (bsub) environment using bsub –Is or
bsub –Ip options. Using simply bsub –I to invoke SpyGlass interactive
Tcl Shell does not work properly and is not recommended by bsub. Refer
to the bsub manual for more details on -Is and -Ip options for invoking
interactive programs that are shell based.
43
Synopsys, Inc.

Specifying Inputs to the sg_shell

Using the Tcl Shell Interface
Specifying Inputs to the sg_shell
You can specify inputs to the sg_shell in any of the following ways:

By Using the echo Command

You can specify a set of commands by using the echo command to the
sg_shell in the following manner:

echo <some-commands> | sg_shell

By Using the cat Command

You can specify a set of commands by using the cat command to the
sg_shell in the following manner:

cat <some-commands> | sg_shell

By Specifying a Tcl File

You can specify a Tcl file containing a set of input commands to sg_shell in
the following manner:

sg_shell < <file-name>.tcl
44
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
Using sg_shell Commands
sg_shell provides a set of Tcl commands to perform various operations.
While specifying a Tcl command, ensure that you have specified all the
mandatory arguments. If you do not specify the mandatory argument(s),
sg_shell flags an error message. For example, if you do not specify the
project name with the new_project command, sg_shell flags the following
error message:

new_project: error: invalid usage (mandatory options missing,
or wrong combination of options)

Try `new_project -help' for more details.

Similarly, if you specify the name of a Tcl command that does not exist,
sg_shell flags the following message:

invalid command name "<command-name>"

NOTE: You can specify unambiguous abbreviations for the sg_shell commands to be
used on the sg_shell prompt. Therefore, if you type "new," then it will be
unambiguously expanded to the new_project command.

Using Named and Positional Arguments

A named argument is one that is specified in the <argument> <value>
format, whereas a positional argument is one that is specified only in the
<value> format, that is, it is not bound with any predefined argument
name.

Consider the following read_file command:

read_file -type hdl input.v

In the above command, -type is a named argument. Here, the value,
hdl, is bound to the -type argument. However, input.v is a positional
argument, because it is specified independent of any predefined argument
name.

Therefore, the following specifications are equivalent:

read_file -type hdl input.v
45
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
read_file input.v -type hdl

Properties of Tcl Command Arguments

The following are the properties of the Tcl command arguments:

Property 1

An argument can accept zero, one, or more values.

Consider the following example:

define_filter -regexp

In the above example, the -regexp argument does not accept any value.

The arguments that are usually used to turn on or turn off specific settings
are considered as Boolean switches.

The following example displays different ways of specification in the
define_filter command:

define_filter -name f1 -file f4.v
define_filter -name f1 -file {f1.v f2.v f3.v}
define_filter -name f1 -file "f5.v f6.v f7.v"
define_filter -name f1 -file [list f8.v f9.v]

In the above command, the -file argument can accept only one value.
This value can be either a file name or a list.

If the value of the -file argument is a list, specify it in a particular
format, as shown in the above example. To reiterate, the format is as
follows:
 Enclose multiple values, which are space separated, inside curly

brackets.
 Enclose multiple space-separated values inside double quotes.

 Use the list command with individual values as an argument to it. Since
we want to execute this Tcl command, and assign its output to the -file
argument, it should be put in square brackets [] as [list <v1> <v2> …
<vN>].

If you do not specify a list value in the above format, sg_shell considers
each element of the list as a separate value and, therefore, reports an
46
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
error. For example, consider the following command:

define_filter -file f4.v f5.v

For the above command, sg_shell reports an error because the file names
are not specified in a list format, by using " ", {}, or [list]. In
addition, it takes f4.v as an argument to -file and f5.v becomes a
positional argument, and is not considered a part of the -file argument.

Now consider another example, as shown below:

define_filter -file_line f1.v 25

In the above example, the -file_line argument accepts two values,
file name and line number. However, if you specify the value of this
argument as a list containing the file name and line number, sg_shell
reports an error because this argument should be provided with two
separate values. Therefore, sg_shell reports an error in the following case:

define_filter -file {f1.v 25}

Consider another example, as shown below:

define_filter -file_lineblock f2.v 25 99

In the above example, the -file_lineblock argument requires three
values, that is, file name, start line number, and end line number. However,
if you specify these three values as a list, sg_shell would report an error
since a list is considered as one value. Therefore, sg_shell reports an error
in the following case:

define_filter -file_lineblock "f2.v 25 99"

Type the following command to see the number of arguments accepted by
each argument of a given Tcl command:

<tcl-command-name> -help

The above command displays a brief description for each argument with
details of possible values.

Ensure that an argument taking list value versus an argument taking
multiple values is appropriately specified by enclosing list values in "" {} or
[list …], while multiple values are not enclosed in any of these, but rather
kept space separated.

Property 2

Multiple specifications of an argument are either OVERWRITTEN or
47
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
APPENDED depending on the type of argument.

If an argument takes a single value (scalar type), and you specify multiple
specifications of that argument, sg_shell retains only the last specification.
For example, consider the following command in which the -name
argument takes only a single value:

define_filter -name "n1" -file {f1.v f2.v} -name "n2"

In the above command, multiple -name specifications have been specified.
In this case, sg_shell considers only the last -name specification, that is, -
name n2.

If an argument takes multiple values (list type) and you have specified
multiple specifications of that argument, sg_shell considers all the values
of each argument. For example, consider the following command in which
the -file argument takes multiple values:

define_filter -file {f1.v f2.v} -name n1 -file [list f3.v
f4.v] -name n2 -file f5.v

In the above command, there are multiple specifications of the -file
argument. In this case, sg_shell would consolidate all the values of the -
file argument in a list and finally consider the list, {f1.v f2.v f3.v
f4.v f5.v}, as the value of the -file argument.

Property 3

Both Property 1 and Property 2 together make it possible to have
arguments, which can accept a list of tuples.

For example, consider the -file_lineblock argument of the
define_filter command for which the first and second properties as follows:

-file_lineblock (Property 1 : Accepts three values)

-file_lineblock (Property 2: Tagged as list type)

Now, consider the following command:

define_filter -file_lineblock f1.v 24 30 -name n1 -
file_lineblock f2.v 9 20

In the above case, the -file_lineblock argument will have the
following final value:

{ {f1.v 24 30} {f2.v 9 20} }
48
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
NOTE: In the above example, if the -file_lineblock argument was tagged as
scalar type, the final value of this argument would have been {f2.v 9 20}.

Property 4

Argument values can have string property.

An argument value can have the string property. It means you can provide
a string value in an argument. Further, a string argument can be of scalar
or list type accepting single string value or multiple string values,
respectively.

You should enclose the string value of an argument in brackets ({}). This
prevents the string value from Tcl's built-in backslash, command, or
variable substitution. For example, if the value of an argument is a bit
vector, U0.data[3], you should specify this value as {U0.data[3]}. If
you do not specify this value in brackets, Tcl interface will attempt a
command substitution and will start looking for a command named "3".

Consider the -msg argument of the define_filter command:

define_filter -msg {Net 'U0.data[3]}' is not driven}

In this case, the -msg argument value is of the string type. Therefore, this
argument should be specified in curly brackets. Further, if you specify the -
msg argument multiple times, the last value is used since it is a scalar type
of argument.

Property 5

Use the -- operator (double dash) to specify negative values for numeric
positional arguments.

By default, an argument prefixed with the - operator is treated as an
option to a command. As a result, sg_shell treats a negative numerical
value as an option to a command and reports an error message.

To specify a negative numerical value in scalar arguments, prefix the
numerical value with the -- operator, as shown in the following examples:

sg_shell> set_option sgsyn_clock_gating_threshold -- -20

sg_shell> set_parameter pe_power_saving_threshold -- -10

The -- operator is a POSIX standard under command line options category
for UNIX. All the arguments following a -- specification are interpreted as
non-option arguments.
49
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
Errors and Messages Flagged in sg_shell

sg_shell flags errors in the following cases:
 If you specify the name of a Tcl command that does not exist, sg_shell

flags the following message:

invalid command name "<command-name>"

 If mandatory argument(s) or mandatory combination is missing, an
error is flagged, as shown in the following example:

sg_shell> define_filter
define_filter: invalid usage (mandatory options missing,
or wrong combination of options)|
Try `define_filter -help' for more details.

 If the required number of values is not provided to an argument, an
error is flagged as shown in the following example:

sg_shell> define_filter -file_lineblock f1.v 25 -name n1
define_filter: option '-file_lineblock' requires 3
argument
define_filter: -file_lineblock <file> <start_line>
<end_line>
Try `define_filter -help' for more details.

As a corollary, you can use the following to see all the supported options
for a particular command:

sg_shell> define_filter -
define_filter: ambiguous option '-', matches '-name' '-
filter'
'-goal' '-du' '-ip' '-file' '-file_line' '-file_lineblock'
'-severity' '-rules' '-msg' '-except' '-weight' '-
weight_range'
'-regexp' '-invert'

 If the option is incorrect, an error is flagged, as shown in the following
example:

sg_shell> new_project -dir ./output
new_project: unknown option '-dir'
Try `new_project -help' for more details.
50
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
 Any extra positional argument is ignored with a message, as shown in
the following example:

sg_shell> current_methodology . p
current_methodology: extra positional argument 'p' -
ignored
Info: Current methodology: .

 Few options accept only a predefined set of values:

sg_shell> read_file -type hdle f1.v f2.v f3.v
read_file: invalid value 'hdle' for option '-type'
read_file: allowed values are 'verilog vhdl hdl gateslib
sglib
lef plib def sgdc waiver sourcelist'

Error Handling in Tcl Commands

When an error occurs while using a Tcl command, you may want to capture
the message, be prompted, and take appropriate action. To facilitate this
feature, the following options are available for every Tcl command.

Return Value

The return value can be NONE for few commands. The return value is
decompiled on the command prompt, unless it is assigned to a Tcl variable.
This is illustrated in the following example:

sg_shell> set goal_name [current_goal]
sg_shell> puts "Current Goal: $goal_name"
sg_shell> Current Goal: initial_rtl/lint/connectivity

Return Status

The return status can be either pass (0 - TCL_OK) or fail (1 -
TCL_ERROR) for each command, which you can query by using the catch
command. This is illustrated in the following example:

sg_shell> catch { current_goal }
sg_shell> 0

Error String

When the return status of a command is TCL_ERROR, an error string is
51
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
reported by Tcl commands, which you can capture and report accordingly.
The error string is decompiled on the command prompt, unless it is
assigned to a Tcl variable by the catch command. You can also view the
error string by using the $::errorInfo Tcl variable or the show_error
command. This is illustrated in the following example:

sg_shell> new_project new
new_project: error: please save and close the current project
before opening any new project
sg_shell> show_error
Detailed Error Trace

please save and close the current project before opening any
new project while executing

"new_project new "
sg_shell>
sg_shell> if { [catch { new_project new } error_string] } {
? puts "ERROR: New_Project : $error_string"
? puts "Closing current project forcefully"
? close_project -force
? puts "Creating new project..."
? new_project newProj -force
? }
ERROR: New_Project : please save and close the current
project before opening any new project
Closing current project forcefully
Creating new project...
current_methodology: info: methodology is now `./
SPYGLASS_HOME/GuideWare/New_RTL'
sg_shell>

Startup Files in sg_shell

sg_shell provides a sample .sg_shell.startup file with sg_shell installation.
This file is located at $SPYGLASS_HOME/.sg_shell.startup. This file usually
contains some alias definitions, some helpful procedures, and so on. Apart
from this, you can keep your startup files to store your collection of
procedures, aliases, or some predefined variables. The following are some
52
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
more locations where the startup file can be present:

 $HOME/.sg_shell.startup

 $CWD/.sg_shell.startup

sg_shell searches and evaluates the startup files in the following order:

1. $SPYGLASS_HOME/.sg_shell.startup

2. $HOME/.sg_shell.startup

3. $CWD/.sg_shell.startup

As the CWD file is evaluated in the end, any definition in this file overrides
any previous definition for the same variable, alias, or procedure. These
.sg_shell.startup files should be Tcl files, and are evaluated as any other Tcl
script. Therefore, if there is an exit command in any of these startup files
and if the control reaches to that exit command, sg_shell exits.

You can also implicitly specify a startup file by using the -tcl command-
line option of sg_shell. Therefore, when you specify sg_shell -tcl
mystartup.tcl, sg_shell evaluates the contents of mystartup.tcl as a Tcl
script, and then the sg_shell prompt appears. If there is any error in the
startup file, no further commands from that file are evaluated. In addition,
no other startup files are considered (including -tcl <startupfile>
specification). However, sg_shell returns to the sg_shell prompt so that you
can query for detailed error information. In such situations, apart from
querying the error information, the shell is rendered useless (unless you do
not worry about the contents of your startup files).

Error Scenarios and Messages

Whenever there is any error in the startup file, sg_shell tries to publish the
error trace. The trace is usually complete if there are any Tcl-specific errors
related to Tcl built-in commands. However, if an error is returned from
sg_shell-specific commands, such as new_project, the trace is usually an
empty string. This is because the error messages coming from sg_shell
commands are not bound to the interpreter result, and so are not available
in the trace. You should not have sg_shell commands in startup files.
Startup files are generally used to store your custom procedures to achieve
some level of automation with your way of using sg_shell commands.
53
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
The following is an example of an error scenario:

[sam@chakra framework_regr]$ sg_shell -32bit
+---
----+
| |
| SpyGlass Predictive Analyzer(R) - Version 5.5.0
|
| Last compiled on Apr 14 2015
|
| |
| All Rights Reserved. Use, disclosure or duplication
|
| without prior written permission of Atrenta Inc.is prohibited.
|
| Technical support:emailsupport@atrenta.com or dial 1-866
ATRENTA. |
+---
----+
|FATAL: errors found in startup file `/u/sam/
.sg_shell.startup'

(missing close-brace)
(Use `show_error' for more details)

sg_shell> show_error
Detailed Error Trace

missing close-brace
 while executing
"proc minus {a} {
 return [expr {$a - 5}]
proc verbose {} {
 if {$::verbose} { set ::verbose 0 } else { set
 ::verbose 1 }..."
 (file "/u/sam/.sg_shell.startup" line 1)

Specifying a Tcl File as the Startup File

You can specify a Tcl file as the startup file in the following manner:
54
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
sg_shell -tcl startup.tcl

A Tcl file can contain procedures, sg_shell commands, and so on. The
sg_shell commands enables you to reach to a certain level or stage of
design analysis, running goal, and so on, and then brings you to the
sg_shell prompt where you can proceed from where you left off in this
startup file.

For example, a startup Tcl file can have your commands till the run_goal
command, and when you use this file with the -tcl option, the whole file
is evaluated, and the sg_shell prompt appears. On the prompt, once the
execution of the run_goal command is complete, you can start browsing
the message database and create your custom reports, and so on.

Error Scenarios and Messages

If there is any error in the startup file, the execution is stopped at that
point in the file, and the sg_shell prompt appears with error trace. Error
trace may be empty if an error has occurred in sg_shell command, such as
new_project, current_project, and so on. This is because, as of now, the error
messages coming from sg_shell commands are not bound to interpreter
result. A sample error message flagged by sg_shell is shown below:

+---
----+
| |
| SpyGlass Predictive Analyzer(R) - Version 5.5.0
|
| Last compiled on Apr 14 2015
|
| |
| All Rights Reserved. Use, disclosure or duplication
|
| without prior written permission of Atrenta Inc.is prohibited.
|
| Technical support:emailsupport@atrenta.com or dial 1-866
ATRENTA. |
+---
----+
INFO: executing tcl startup file 'test2.tcl' ...
FATAL: errors found in tcl startup file `test2.tcl'

(invalid command name "detect_filter")
(Use `show_error' for more details)
55
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
sg_shell> show_error
Detailed Error Trace

invalid command name "detect_filter"
while executing
"detect_filter -goal [list g1 g2 g3] -goal "g4 g5" -goal

{g6
g7 g8} -regexp -file pqr.v -file test.v"
(file "test2.tcl" line 1)
sg_shell>

Specifying a Project File as the Startup File

You can specify a project file as the startup file in the following manner:

sg_shell -project ram.prj -projectwdir /u/prj/sam

Specifying a combination of -project and -projectwdir on the
command-line of sg_shell is the same as if you are on the sg_shell prompt
and you have specified the open_project -project ram.prj -
projectwdir /u/prj/sam command.

The error trace is shown if there is any error during open_project. The error
trace might be empty if there is an error in the sg_shell commands.

Error Scenario and Error Message

 If project file does not exist, sg_shell displays an error, as shown in the
following example:

+--
------+
|
|
| SpyGlass Predictive Analyzer(R) - Version 5.5.0
|
| Last compiled on Apr 14 2015
|
|
|
| All Rights Reserved. Use, disclosure or duplication
|

56
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
| without prior written permission of Atrenta Inc.is prohibited.
|
| Technical support:emailsupport@atrenta.com or dial 1-866
ATRENTA. |
+--
------+
INFO: reading project file 'something' ...
Error: project file 'something.prj' does not exist
FATAL: errors found in project file `something'

(oops, _empty_error_string_!)
(Use `show_error' for more details)
sg_shell> show_error
Detailed Error Trace

while executing
"open_project something -projectwdir ."
sg_shell>

 If there is some error in the project file, sg_shell displays an error, as
shown in the following example:

+--
------+
|
|
| SpyGlass Predictive Analyzer(R) - Version 5.5.0
|
| Last compiled on Apr 14 2015
|
|
|
| All Rights Reserved. Use, disclosure or duplication
|
| without prior written permission of Atrenta Inc.is prohibited.
|
| Technical support:emailsupport@atrenta.com or dial 1-866
ATRENTA. |
+--
------+
INFO: reading project file 'something' ...
open_project: error: found errors in project file
57
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
'something.prj'
FATAL: errors found in project file `something'
(oops, _empty_error_string_!)
(Use `show_error' for more details)
sg_shell> show_error
Detailed Error Trace

while executing
"open_project something"
sg_shell>

Exit Codes Reported by sg_shell

SpyGlass Tcl Shell Interface generates exit status codes that provide the
exact status of the sg_shell run. You can use these status codes in a Tcl
script to further debug your design.

sg_shell reports a return status after every execution of the run_goal,
link_design, or compile_design command. Depending on the execution, the
exit status codes can be classified broadly into the following categories:
 Exit Status Codes When Goal Run is Successful

 Exit Status Codes When Goal Run is Not Successful

 Exit Status Codes When sg_shell Exits or Terminates Abnormally

Exit Status Codes When Goal Run is Successful

sg_shell reports a status code of 0, by default, for a successful goal run
and reports one of the following exit status messages:

0 (Rule-checking completed without errors or warnings)

0 (Rule-checking completed with warnings)

0 (Rule-checking completed with errors)

Use the enable_pass_exit_codes option to report different status
codes (other than 0), depending on the severity of messages generated in
the current run, as follows:
 When a goal run has been completed without any error or warning

messages, sg_shell reports the following exit status message:
58
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
0 (Rule-checking completed without errors or warnings)

This message indicates that your design is clean with respect to the
rules run.

 When a goal run has been completed without any error messages but
with warning messages, sg_shell reports the following exit status
message:

11 (Rule-checking completed with warnings)

This message indicates that some rules of the Warning severity have
been violated.

 When a goal run has been completed with error messages (and possibly
warning messages), sg_shell reports the following exit status message:

12 (Rule-checking completed with errors)

This message indicates that some rules of the Error severity have
been violated.

NOTE: Waived messages are not considered while deciding the exit status. Only reported
messages are considered.

Exit Status Codes When Goal Run is Not Successful

 When a goal run is terminated due to a fatal design error (syntax
errors), sg_shell reports the following exit status message:

6 (Rule-checking terminated due to FATAL errors - design
syntax error)

To rectify this issue, check the design inputs for completeness and
correctness.

 When a goal run is terminated due to incorrect usage and incorrect or
incomplete inputs, sg_shell reports the following exit status message:

7 (Rule-checking terminated due to FATAL errors - usage or
run error)

This message indicates that you have either missed providing some
inputs that are essential for rule-checking or provided some inputs
incorrectly.
To rectify this issue, check the design inputs for completeness and
correctness.
59
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
 When a design is not saved because of incorrect save database
directory, sg_shell reports the following exit status message:

8 (Design database save failure, rule checking aborted)

To rectify this issue, check the save or restore related options in the
project file.

 When a goal run is terminated due to a license failure, sg_shell reports
the following exit status message:

4 (License failure, rule-checking aborted)

To rectify this issue, check the license settings and make corrections as
required. You can also use the LICENSEDEBUG option to retrieve more
details around license setup.

Exit Status Codes When sg_shell Exits or Terminates Abnormally

 When sg_shell run is terminated due to an abnormal error that could not
be trapped, sg_shell reports the following exit status message:

1 (Abnormal termination - termination not trapped by
software)

This message indicates issues related to the operating system, such as
stack overflow, have occurred. In such cases, if termination happens
while running a goal, the corresponding SpyGlass log file may be
incomplete because the software was not able to trap the error signal
and report suitably in the log file.
To rectify this issue, check the available machine resources and make
corrections as required.

 When sg_shell run is terminated due to an error that is trapped by the
software, sg_shell reports the following exit status message:

3 (Abnormal termination - termination trapped by software)

This message indicates memory-related issues, such as segmentation
fault or memory corruption, have occurred but the software was able to
trap the error signal and report suitably in the log file.
To rectify this issue, check the gdb trace and stack trace printed in the
SpyGlass log file and make corrections as required. If sg_shell traps the
terminating signal while running a goal, it tries to generate the
moresimple report, which contains error messages and/or rule
violations reported before the end of goal run. Check the generated
moresimple report because it may contain useful information, which
60
Synopsys, Inc.

Using sg_shell Commands

Using the Tcl Shell Interface
may help to debug the issue.
 When a KILL signal is sent to sg_shell process to terminate the session

immediately, sg_shell reports the following exit status message:

137 (run killed by user, or by system due to lack of
resources like memory etc.)

In this case, the signal is sent either by the user or by the operating
system because of lack of resources, such as memory.
To rectify this issue, run sg_shell on a machine that has higher memory.

 When a signal is sent to sg_shell process to terminate the session if size
of files generated by sg_shell exceeds the maximum limit allowed by the
operating system, sg_shell reports the following exit status message:

153 (File size limit exceeded)

To rectify this issue, increase the maximum allowed size of a file to
enable sg_shell process to complete successfully.

NOTE: For other scenarios when sg_shell exits or terminates abnormally, sg_shell reports
exit status messages with codes greater than 128.
61
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Features of sg_shell
This section contains the following topics:
 Using the Help Feature

 Using the Tab Completion Feature

 Capturing stdout and stderr

 History Support in sg_shell

 Command Logging in sg_shell

 Screen Output Logging in sg_shell

 Signal Handling in sg_shell

 Using Escape Names in sg_shell

 Common SDC Flow

 Dual Design Read Flow

 Using Key Combinations for Performing Actions

Using the Help Feature

The sg_shell utility provides the help feature in which you can view the
help of any Tcl command and its options. You can use the help feature by
specifying the -help command-line option. For example, if you want to
see the details of all the start-up options of sg_shell, specify the following
command:

sg_shell -help

The above command lists all the start-up options, such as -project,
-tcl, -64bit, -32bit, and so on, available with sg_shell and their
respective help description.

Similarly, if you want to view the short help and syntax of a particular Tcl
command, enter the following command on the sg_shell prompt:

<Tcl-command-name> -help

This command also displays the short help of all the arguments of that Tcl
command. In addition, there is a help command in sg_shell, which
provides support information for the following:
62
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
 Tcl commands

 Options

 Methodology

 Goals

 Rules

 SGDC commands

 Parameters

 Reports

The details of the help command are provided as part of the SpyGlass Tcl
Commands section.

Using the Tab Completion Feature

Currently, Tcl shell interface of SpyGlass supports the following two types
of tab completions:
 If the first word is being completed, sg_shell first searches for the

available commands (both built-in and sg_shell commands). If matches
are available, they are listed. Otherwise, sg_shell displays the matching
file or directory names of the CWD.

 If the second or later word is being completed, file or directory names
completion comes into effect.

NOTE: The tab completion feature does not work if you leave spaces and then type
something and try to do tab completion. Remove any leading spaces, and then tab
completion will work as expected.

sg_shell uses the ? character whenever you specify an incomplete
command as per the Tcl syntax. For example, in the following case, after
sg_shell has encountered the closing bracket, the command is considered
as complete and that command is executed:

sg_shell> set files { f1.v

? f2.v f3.v

? f4.v

? }
63
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
In addition, sg_shell supports tab completion when you have ?. For
example, if you want to see all the files and folders starting with the
character f, you can specify the following:

? f<TAB>

f1.v f2.v f3.v f4.v files_all/

Capturing stdout and stderr

The following are the two ways to capture stdout and stderr:

 By using the redirection operator, >, present in UNIX shells.
The redirection operator is used to redirect messages in the specified
file. For example, if you specify the command, run_goal >
output.log, sg_shell redirects both stdout and stderr messages in
the output.log file. Consider another example, as shown below:

new_project prj1 -projectwdir ./ > outputfile

The command is actually new_project prj1 -projectwdir ./.
However, the output of this command is captured in the file,
outputfile.
Consider another command, as shown below:

new_project > prj1

In the above case, the actual command is new_project, and its output is
captured in the file, prj1. The output in this case is an error message
related to the invalid usage of the new_project command.
If the specified output file already exists, sg_shell truncates the existing
file without any Warning or Info message. However, if the specified file
does not exist, sg_shell creates that file.

sg_shell supports the > operator only for published sg_shell
commands, such as new_project, define_project, and so on. It does not
support this operator for Tcl's built-in commands, such as list, puts, and
so on. Therefore, you cannot specify the command, puts "help" >
outputfile.

In addition, the > command is not supported for user-defined
procedures. Therefore, if you define a procedure, proc hello {}
64
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
{puts "Hello there"}, you cannot specify sg_shell> hello
> outputfile because this will not work and will give you a wrong
args error.

The following are some error scenarios related to the > command:

 If output file name is missing, an error is flagged, as shown in the
following example:

sg_shell> new_project prj1 -projectwdir ./ >
new_project: error: missing redirect name

 If the > operator is specified multiple times, the first one will be
considered, and the remaining occurrences of the > operator will be
treated as arguments to the sg_shell command. However, no error
message comes for this type of specification.

 Refer to the capture command for details on an alternative method to
capture stdout and stderr.

NOTE: UNIX shell re-direction operator, >>, is not supported for append operation in Tcl
shell. Use the capture -append Tcl command to implement the append operation.

History Support in sg_shell

You can use the history command in sg_shell, and it will give you a
list of commands that you have already used. This command is applicable
only for the interactive mode. If you write ten commands in an src.tcl file
followed by history command in the src.tcl file, and then specify the
command, sg_shell < src.tcl, the output from history is going to be
empty.

The history command is supported by the Tcl installation package itself.
Other features that are usually available on the "tcsh" shell are also
available in this history package. Therefore, you can have the following
history substitutions also working in sg_shell:
 Use "!n", to execute "n th" command from history listing.

 Use "!!", to execute just the previous command.

 You can use modifiers ^oldddd^newwww^ to replace "oldddd" with
"newwww".

A sample error message is shown below:
65
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
sg_shell> open_project urprj
Error: project file 'urprj.prj' does not exist
sg_shell> ^ur^my^
open_project myprj
Info: Current methodology:
/u/release/spyglass/SPYGLASS_HOME/GuideWare/New_RTL
Info: Starting to load goal
'initial_rtl/lint/connectivity'
Info: Finished loading goal
'initial_rtl/lint/connectivity'
sg_shell>

If you specify the history command, the string literal, such as "!n", will be
found, as opposed to finding the actually substituted command.

If there are any leading or trailing white spaces in any command on the
sg_shell prompt, they will be retained when you use the history command
to list them.

NOTE: The leading and trailing white spaces are removed only for up-history or
down-history using arrow keys or other bind keys, so that when you do up-arrow or
down-arrow you get a command-line that is free of leading or trailing white spaces.

Command Logging in sg_shell

If there is write permission in the current working directory, a file called
sg_shell_command.log is created, which contains the commands typed by
you in the sg_shell.

If the sg_shell_command.log file already exists, its contents are truncated.
However, if it does not exist, sg_shell creates it if the CWD has write
permission. Otherwise, sg_shell silently skips creation of this file.

Only the commands used in the interactive mode are logged, and
commands are logged irrespective of whether they return an error or not.

A sample log file is given below:

[sam@chakra framework_regr]$ cat sg_shell_command.log
This log has been generated by sg_shell:
On: Fri Jul 10 14:39:20 2009
By: sam
66
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Using: Version 4.x.y (Jul 10 2009)
##---

open_project urprj
^ur^my^
quit

Screen Output Logging in sg_shell

A new command-line scalar or string option, -shell_log_file, has been
provided in sg_shell to specify the log file path and also to control the
behavior of screen output logging in sg_shell.

sg_shell tries to open the log file, specified by using the -shell_log_file
command-line option, for writing. If the file already exits and has write
permissions, sg_shell truncates this file and starts logging the screen
output of the current session. If the file does not exist, and sg_shell is
unable to create this file for writing, sg_shell reports an error message and
exits.

Screen logging is enabled for both interactive and non-interactive sessions
of sg_shell. Interactive session is the session in which you are provided
with the sg_shell> prompt to work. Non-interactive session is usually
either through a pipe or through redirection, where you do not get a
prompt.

Screen Output Logging for Interactive Sessions

Note the following points while using the -shell_log_file option for
interactive sessions in sg_shell:
 Tcl shell interface logs any activity that is visible on your current

session. For example, if you open a man page of a command or you run
any UNIX command, the output gets logged into the log file.

 Tcl shell interface, in a way, also logs stdin. Therefore, sg_shell logs
anything that you type on the sg_shell prompt. If you press the
Backspace key, the log file displays the character associated with it
(usually, Ctrl+H or ^H). Therefore, some special characters might
appear in your log file.

 If you open Vim or any other editor from sg_shell, sg_shell logs their
output or input, mostly in terms of unprintable characters, in the log file.
67
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
 If you enter man <command>, sg_shell might not provide you the
scrolling behavior for the requested man page.

Screen Output Logging for Non-interactive Sessions

Note the following points while using the -shell_log_file option for
non-interactive sessions in sg_shell:
 If you enter the following in your UNIX shell:

unix_prompt> sg_shell -shell_log_file myout.log
< my_commands.tcl

Where my_commands.tcl contains commands, such as new_project,
compile_design, run_goal, and so on.
Then, sg_shell logs the output from the commands in the
my_commands.tcl file into the log file, myout.log. However, the commands
themselves do not get logged, because the commands are not echoed
back on the screen output in non-interactive sessions.

Default Logging

If you do not specify the -shell_log_file option, a default log file,
./sg_shell.log, is created in the current directory. If sg_shell is unable to open
this default log file for writing, no error is reported, and the run proceeds
as if there is no logging.

The default logging is disabled for interactive sessions in sg_shell due to
the following reasons:
 Enabling the default logging in interactive sessions may lead to a

number of unprintable characters in the log file, because of various
combinations of key presses.

 If the default logging is enabled in interactive sessions, the log file may
grow to any extent if the sg_shell> interactive session is opened for a
long duration and the same shell is used repeatedly.

The default logging is enabled for non-interactive sessions in sg_shell.
Therefore, if you enter the following in your UNIX shell:

unix_prompt> sg_shell < my_commands.tcl
68
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Then, the output from the commands in the my_commands.tcl file appears
on the screen and is logged in the default log file,
./sg_shell.log.

Signal Handling in sg_shell

The following points illustrate signal handling in sg_shell:

 CTRL + C signal (SIGINT) is dealt differently in sg_shell. If you
are using sg_shell interactively, that is, working on the sg_shell prompt,
CTRL + C signal is ignored, and nothing will happen.

However, if the sg_shell is running in a non-interactive mode (say,
through the command, sg_shell < my_commands.tcl), then using CTRL
+ C will abort the run. The generated output or data from sg_shell
may be incomplete in such cases, and gives unpredictable results if later
tried to be reused in Atrenta Console or in later sessions of sg_shell
itself.

 Other signals have been left untouched and they will work as they are
today in the normal SpyGlass flow.

CTRL + Z, however, needs a special mention. If you are in sg_shell
prompt, and you open a file using vim as shown below:

sg_shell> vim output.log

In the above case, you are working in vim and if you press CTRL + Z,
this will suspend the vim session as well as the sg_shell session, and
you will return to your native shell, such as tcsh.
However, when you do an "fg" or "%" to resume the suspended job,
then it should take you to the vim session (or at least to the sg_shell
session). In this case, there is some known issue and it does not allow
you to type anything in the shell, or if you are able to type in something
then that command will not be honored.

It is recommended to start UNIX shell from within sg_shell by typing
tcsh or sh etc. (depending on the shell you want to start), and then
exit this UNIX shell whenever you want to return to sg_shell.

When you are in sg_shell prompt and you press CTRL + Z, then
also the sg_shell session is suspended and you return to your native
69
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
shell, such as tcsh. However, on doing "fg", it should resume your
sg_shell session. The sg_shell prompt may not appear until you
enter some command after doing "fg".

As such, interactive session of sg_shell does not support the
complete and usual behavior of CTRL + Z, as is available on most of
the UNIX based operating systems. However, you can still use the CTRL
+ Z to suspend a running sg_shell's interactive session, and use the kill
command thereafter to terminate that interactive session of
sg_shell. Using CTRL + Z in any other manner may not always give
expected behavior of CTRL + Z on sg_shell’s interactive session.
70
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Using Escape Names in sg_shell

An escape name is a combination of special characters. Standard SpyGlass
flow has a particular way of specifying the escape names for Verilog and
VHDL design units and other design objects.

The notion of escape names in sg_shell is the same as that in standard
SpyGlass flow. However, the mechanism of specifying escape names as
arguments to various options and commands in sg_shell needs to be
understood from a different perspective. This is primarily because sg_shell
is a Tcl interface and Tcl has its own interpretation of special characters.
Therefore, the mechanism of taking inputs from the Tcl shell needs to
protect the escape names from the default interpretation by Tcl.

NOTE: All the Tcl commands that accept design object names as arguments (both
positional and named arguments) can take escape names as well.

The procedure to specify escape names is Tcl-specific. You need to
distinguish between an argument that takes a single string value and an
argument that takes a Tcl list of multiple string values. The behavior is the
same for both named and positional arguments.

Specifying Escape Names in Arguments That Accept a Single String
Value

The escape name should be surrounded by brackets without any extra
leading or trailing characters or white spaces. The Verilog escape names
have a white space at the end. Therefore, that space must be retained
before the closing bracket. For example, if the Verilog design object is
"\special$name " (note the white space appearing at the end), use
this object in the get_attribute command as shown below:

sg_shell> get_attribute -class flat_cell
{top.mid.low.\$special$name } my_attr

Again, note the white space appearing before the closing bracket in the
above example. However, the following specification is incorrect:

{ top.mid.low.\$special$name }

This specification is not correct because it contains extra characters at the
beginning and at the end. In other words, whatever is specified inside
brackets {} will be taken as is.
71
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Specifying Escape Names in Arguments That Accept a Tcl List of
Multiple String Values

Generally, a Tcl list is specified by enclosing the values within brackets {}.
Therefore, {a b c d} denotes a list that contains four values, which are
"a", "b", "c", and "d".

If, however, these values are escape names, these individual values should
again be enclosed within brackets {}, as shown in the following example:

{{top.\special_mid$inst?name .U0.U11.wire0}
{top.\another_special$$name .U12} {top.\new_??$$name }
top.inst_without_special_chars.U0 {top.mid0.leaf0}}

The above scheme needs to be followed even if the list contains a single
value. Consider the following example:

{{top.\special_mid$inst?name .U0.U11.wire0}}

Therefore, a typical get_cells command for a single name should be
specified as follows:

sg_shell> set mycell [get_cells {{top.\special_mid$$$_name
.U01}}]

Specifying Arguments That Accept Tcl’s Special Characters
The above schemes of value specification for string and Tcl list options
apply not only to escape names, but also to any input that contains Tcl's
special characters. For example, to specify a hierarchy separator while
using the -regexp argument in a design query command, say, get_cells,
you need to use the above scheme. This is because, in case of the -regexp
argument, the hierarchy separator needs to be escaped. It means, "."
needs to be specified as "\." to distinguish it from the regular expression
meaning of a single "." as matching any single character.

For example, consider a top module, top. This top module has few leaf
level instances: u_1 , u_2, u_3, and u_4. Use the following command to
fetch u_1, u_2, and u_3 by using the -regexp argument:

sg_shell> set cell_list [get_cells -regexp {{top\.u_[1-3]}}

Use the following command to fetch all of u_ instances by using the
-regexp argument:

sg_shell> set cell_list [get_cells -regexp {{top\.u_*}}
72
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Common SDC Flow

The SDC commands are now uniformly available to all products, and are
used by all rules during their analysis. You can specify a subset of SDC
commands, which are the most commonly used commands by different
products, interactively on sg_shell. For further details on these commands,
refer to the SDC-Equivalent Commands section.

When using sg_shell, all information from the SDC is automatically read.
Previously, the information was only read if the sdc2sgdc option is set.
The default value of sdc2sgdc option is no. However, for sg_shell
runs, SpyGlass automatically sets this option to yes, when at least one
SDC file is specified using the sdc_data constraint. Therefore, any
information contained inside the SDC files, such as clocks,
set_case_analysis, and so on, is automatically used by rules during their
checking.

This flow allows you to specify these commands either in SGDC or SDC,
and the software automatically picks them from both these sources. If
there is any conflict between SGDC and SDC specifications, the SDC
specification is given a priority. In such cases, an appropriate warning
message is reported on the screen.

If you want to disable the translation from SDC to SGDC in the project
scope, use the following command:

set_option sdc2sgdc off

If you want to disable the translation from SDC to SGDC in the goal scope,
use the following command:

set_goal_option sdc2sgdc off

NOTE: By default, the sdc2sgdc generated constraint files are retained in the subsequent
SpyGlass run. Set the retain_old_sgdc parameter to no to remove the sgdc
file generated in the previous SpyGlass runs.

If you set the sdc2sgdc option as off after the run_goal command, the
SDC commands, such as create_clock, create_generated_clock,
set_case_analysis, set_input_delay, and set_output_delay, are not available to
the products that use SGDC commands. In addition, the SDC clocks are not
propagated by using the propagate_clocks command and are not reported
by the report_clocks [get_clocks] or report_adc -sdc
command.
73
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
To use this flow in Atrenta Console, you need to either set the sdc2sgdc
option in your project file before opening it in Atrenta Console, or enable
this option from the Atrenta Console GUI. If you observe any difference in
results between Atrenta Console run and sg_shell run, please check and
ensure that the sdc2sgdc option is enabled in the Atrenta Console run,
because it is on by default in the sg_shell run.

Examples

Example 1

If you specify a clock clk1 in SDC with a period of 10, and another clock
clk2 in SGDC with a period of 20:

sg_shell> cat test.sdc
create_clock -name clk1 -period 10 [get_ports clk1]

sg_shell> cat test.sgdc
current_design top
sdc_data -file test.sdc
clock -name clk2 -period 20

Earlier, sg_shell used to take only the SGDC clock with a period of 20. With
the Common SDC Flow feature, sg_shell takes a union of SGDC and SDC
clocks. Therefore, in this example, both clocks, clk1 in SDC and clk2 in
SGDC, are used by rules during their analysis.

Example 2

If you specify a clock clk1 in SDC with a period of 10, and the same clock
in SGDC with a period of 20:

sg_shell> cat test.sdc
create_clock -name clk1 -period 10 [get_ports clk1]

sg_shell> cat test.sgdc
current_design top
sdc_data -file test.sdc
clock -name clk1 -period 20

Previously, sg_shell used to take only the SGDC clock with a period of 20.
With the Common SDC Flow feature, in case of conflict, preference is given
to the SDC information. Therefore, in this example, the SDC clock with a
period of 10 is used by rules during their analysis.
74
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Example 3
If you specify multiple modes of sdc_data in the SGDC constraint file, only
the last active sdc_data mode is retrieved. Consider the following example:

sg_shell> cat test.sgdc
current_design "test"
sdc_data -file mode1.sdc -mode func
sdc_data -file mode2.sdc -mode func1

In this example, only the func1 mode will be active and only the
mode2.sdc SDC file will be read.

Dual Design Read Flow

sg_shell provides the capability to read two designs simultaneously. By
using this capability, you can further compare SDCs or perform sequential
equivalence (SEC) of these two designs.

The capability of reading two designs simultaneously in a single run to
perform a variety of comparative analysis on these designs is known as
dual design read (DDR).

The DDR feature provides the following functionalities:
 SDC Equivalence: SDC equivalence is used to compare two different

SDCs for pre-layout and post-layout design snapshots.
 Sequential Equivalence (SEC): The DDR capability establishes

sequential equivalence between original and power-optimized design
when the original design has been auto-fixed to reduce power
consumption.

In a DDR setup, the first design is known as a reference design because it
is the reference input, and the second design is known as the
implementation design because this design is under analysis. The
implementation design is specified in the project file or on sg_shell
command-line as any other design via commands, such as read_file,
set_option, and so on.

Use the following options in the DDR goal scope to specify the reference
design:
 reference_design_projectfile: This option specifies a project file

containing details, such as design files, design options, and SGDC, for
75
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
the reference design while running a DDR goal. This option is
complementary to the reference_design_sources and
reference_design_sgdc options, and instead of these two options, you
can specify a project file that contains such settings.

 reference_design_sources: This option specifies design files and
options for a reference design through the .f file.

 reference_design_sgdc: This option specifies an SGDC file that
contains constraints for a reference design.

 ignore_reference_project_sgdc: When a reference project file is
specified, specify this option to ignore SGDC files from a reference
design project file.

Various Design Setup Commands, Goal Setup or Run Commands, ADC Setup
Commands, or Debug Commands are applicable to the implement design only.
For example, if a file is specified by using the read_file -type hdl
test.v command, this file is a part of the implementation design.
Similarly, query or edit commands, such as get_file, get_parameter,
set_parameter, get_adc, and remove_adc, also work on the implementation
design scope. In addition, the design query commands, such as get_cells
and get_nets, are applicable to the implementation design only. The
interaction with the reference design is limited to the above-mentioned
options only and is not accessible to any other sg_shell command.

Examples

The following example illustrates SDC equivalence flow:

##implement design setup##
sg_shell> read_file -type hdl ./src/test_rtl.v
sg_shell> read_file -type sgdc imp.sgdc
sg_shell> read_file -type sglib nldm.sglib

##DDR goal setup##
sg_shell> current_methodology $env(SPYGLASS_HOME)/
Methodology
sg_shell> current_goal Constraints/pre_layout/
sdc_equiv_dual_design -top top

##reference design setup##
sg_shell> set_goal_option reference_design_projectfile
ref.prj
sg_shell> set_parameter equiv_sdc_design_equivalence_file
76
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
mapping.txt

##sdc equivalence analysis run##
sg_shell> run_goal

##sdc equivalence run results##
sg_shell> write_report more simple

Using Key Combinations for Performing Actions

Editing commands in the sg_shell prompt are based on the Emacs style of
editing.

Setting SpyGlass Preferences Using Tcl Shell Interface

You can set the SpyGlass preferences by using the gui_set_preference Tcl
command.

gui_set_preference <preference-key> <preference-value>

Refer to the gui_set_preference command section for more details.

This section explains the following topics:
 List of SpyGlass GUI Preferences

 Overriding SpyGlass GUI Preferences

List of Preferences

This section explains the various preference key values that you can use to
set the SpyGlass GUI preferences.
77
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
TABLE 1 Preference Key Values

Preference Key Syntax Description

menu_dialog_font gui_set_preference
menu_dialog_font
{font_name,font_size}

Enable you to set the menus/dialogs font.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

text_viewer_font gui_set_preference
text_viewer_font
{font_name,font_size}

Enables you to set the font of the hdl/text
viewers font.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

tree_font gui_set_preference
tree_font
{font_name,font_size}

Enables you to set the tree viewers font.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

table_font gui_set_preference
table_font
{font_name,font_size}

Enables you to set the tables font.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

help_viewer_font gui_set_preference
help_viewer_font
{font_name,font_size}

Enables you to set the help_viewer font.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

report_font gui_set_preference
report_font
{font_name,font_size}

Enables you to set the reports fonts.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.

shell_font gui_set_preference
shell_font
{font_name,font_size}

Enables you to set the shell fonts.
Ensure that the font name and font size
values are comma-separated and are
enclosed in braces. Additionally, do not
use special characters in the font names.
78
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
wrap_message_text gui_set_preference
wrap_message_text
true/false

Allows the message windows text to be
wrappable or not.

auto_launch_spreadsh
eet_viewer

gui_set_preference
auto_launch_spreadshee
t_viewer true/false

Enables the spreadsheet viewer to launch
automatically when selecting a violation
in the message_tree.

show_message_tree_t
ooltip

gui_set_preference
show_message_tree_tool
tip true/false

Allows whether message tree tooltip
should be shown or not.

show_message_id gui_set_preference
show_message_id 0/1/2

Changes the message ID visibility.
Specify one of the following values:
• 0: shows the messages with unique id

compatible with spyglass-reports.
• 1: shows the messages with indexes

(that are compatible with Spyglass-
5.6.1 or earlier versions)

• 2: Hides any message id if visible.

auto_launch_schemati
c

gui_set_preference
auto_launch_schematic
true/false

Sets whether schematics are shown as
soon as violation is selected or not.

waveform_viewer gui_set_preference
waveform_viewer 0/1/2

Specify one of the following values:
• 0: This is default value.
• 1: Sets the GTKwave as the waveform

viewer.
• 2: Sets Debussy as the waveform

viewer.

schematic_single_click
_probing

gui_set_preference
schematic_single_click_p
robing true/false

Sets whether single-click probing allowed
in schematic or not.

apply_waiver_on_crea
tion

gui_set_preference
apply_waiver_on_creatio
n true/false

Specifies whether waiver must be applied
as soon as they created or not.

scenario_support gui_set_preference
scenario_support true/
false

Enables or disables the scenario support.

TABLE 1 Preference Key Values

Preference Key Syntax Description
79
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Examples

The following are some of the sample gui_set_preference commands:

gui_set_preference auto_launch_schematic true

gui_set_preference menu_dialog_font {Liberation Serif,20}

gui_set_preference text_editor_line_arg ##$

gui_set_preference waveform_viewer 2

auto_reload_project gui_set_preference
auto_reload_project
true/false

Enables or disables the auto reload
project functionality.

auto_restore_session gui_set_preference
auto_restore_session
true/false

Enables or disables the auto restore
session functionality.

html_viewer gui_set_preference
html_viewer <path>

Specifies whether you want to use any
other html viewer. To do so, set its
executable path as <path>.

pdf_viewer gui_set_preference
pdf_viewer <path>

Specifies whether you want to use any
other PDF viewer. To do so, set its
executable path as <path>.

text_viewer gui_set_preference
text_viewer <path>

Specifies whether you want to use any
other text viewer. To do so, set its
executable path as <path>.

text_editor_line_arg gui_set_preference
text_editor_line_arg
<argument>

Sets any line flag for your text viewer.
Specify the value as a <argument>.

external_editor gui_set_preference
external_editor true/false

Enables/disables the external editor.

TABLE 1 Preference Key Values

Preference Key Syntax Description
80
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
Overriding GUI Preferences

The GUI preferences can be overridden at the start of a SpyGlass session
by using a file named '.sg_init_gui.tcl' that may include one or more
gui_set_preference Tcl commands. This file is looked-up in the
following directories sequentially at the start of a SpyGlass session and if
found, it is sourced.
 Directory pointed by the SPYGLASS_HOME environmental variable

 User home directory

 Current working directory

For example, if the project auto reload feature should be disabled for all
the users, add the following command to the .sg_init_gui.tcl file in the
SPYGLASS_HOME directory.

gui_set_preference AutoReloadProject false
81
Synopsys, Inc.

Features of sg_shell

Using the Tcl Shell Interface
82
Synopsys, Inc.

SpyGlass Tcl Commands
This chapter describes the Tcl commands currently available in SpyGlass Tcl
Shell Interface (or sg_shell). These commands are categorized in the
following groups:
 Session Commands

 Design Setup Commands

 Goal Setup or Run Commands

 ADC Setup Commands

 Reporting Commands

 Waiver Commands

 Debug Commands

 Miscellaneous Commands

NOTE: The usage of regular expressions through the -regexp argument has been described
in the relevant commands. For more details on using the regular expressions, refer
to the Using Regular Expressions and Wildcard Characters topic of the Atrenta
Console User Guide.
83
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
Session Commands
Session commands are useful for session management. Use these
commands to encapsulate design or goal setup information inside a
user-defined project.

The following table describes the various session commands:

Command Description
gui_set_obw_dialog
_labels

Sets OBW dialog labels

gui_restore_session Restores the session given in a Tcl file
gui_save_session Saves the current SpyGlass session in a Tcl file
gui_restore_session Restores the session given in a Tcl file
new_project Creates a new project
open_project Opens an existing project
save_project Saves the specified project
close_project Closes the currently active project
current_project Displays data of the currently loaded project
import_project Used to import existing project settings into current

project
exit Quits sg_shell and returns to the UNIX shell prompt
set_pref Sets the specified preference variable to its specified

value
get_pref Displays the value of the specified preference variable

(s)
84
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
gui_set_obw_dialog_labels
Sets OBW dialog labels

Syntax

gui_set_obw_dialog_labels <label_set|-all>

Scope

None

Return Value

None

Description

Use this command to specify a set of labels to the drop-down menu of the
Message Label column in the Object Filter table. The existing set of
labels are hidden there after and can be retrieved using the -all argument.

Arguments

This command has the following arguments:

-all

Sets all the available labels.
 #

<label_set>

 Label Set for OBW dialog

Examples

sg_shell> gui_set_obw_dialog_labels -all

See Also

None
85
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
gui_configure_obw_dialog
Configures OBW dialog

Syntax

gui_configure_obw_dialog
<-filter|-waive>
[-rule]
[-msg_collection]
[-condition]
[-tcl_var]
[-regex]
[-secondary_messages]
[-force]

Scope

None

Return Value

None

Description

Use this command to select the Fields and Checkbox to show/hide in the
OBW dialog box using this Tcl command. Use of options shows the fields in
dialog. To retrieve all the fields, specify the -all argument.

Arguments

-condition

Show 'Condition' text field

 -filter

Shows 'filter messages' checkbox
86
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
-force

Forces existing OBW dialog to close

-msg_collection

Shows 'Message collection' text field

-regex

Shows 'regex' checkbox

-rule

Shows 'Rule name' text field

-secondary_messages

Shows 'secondary messages' checkbox

-tcl_var

Shows 'Tcl variable' text field

-waive

Shows 'waive messages' checkbox

Examples

sg_shell> gui_configure_obw_dialog -waive

See Also

None
87
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
gui_save_session
Saves the current SpyGlass session in a Tcl file

Syntax

gui_save_session <file-name>
[-force]

Scope

None

Return Value

None

Description

The gui_save_session saves the current SpyGlass session you are running
in a Tcl file.

Arguments

This command has the following arguments:

<file-name>

The Tcl file name to be saved.

-force

Overwrites the given file.
NOTE: Using the -force argument may result in data loss from the previous run.

Examples

sg_shell> gui_save_session abc.tcl

See Also

gui_restore_session
88
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
gui_restore_session
Restores the session given in a Tcl file

Syntax

gui_restore_session <file-name>

Scope

None

Return Value

None

Description

The gui_restore_session restores the SpyGlass session mentioned in the
specified Tcl file.

Arguments

This command has the following arguments:

<file-name>

The Tcl file name of a previously saved session.

Examples

sg_shell> gui_restore_session abc.tcl

See Also

gui_save_session
89
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
new_project
Creates a new project

Syntax

new_project <project-name>
[-projectwdir <project-path>]
[-force]

Scope

None

Return Value

None

Description

The new_project command creates a new project with the specified name.

For design analysis, your first step inside sg_shell should be to create a
project. The project stores design setup information and the goal setup
information, which is defined during an interactive sg_shell session. After
the project is saved, it can be loaded in subsequent sg_shell sessions to
start from where it was left in the earlier session.

As you run various goals inside the given project, sg_shell saves the output
on the disk inside the project working directory. By default, the project
working directory is the same area from where the project file is picked.
However, you can specify a different working directory by using the
-projectwdir argument of this command. Inside the project working
directory, sg_shell creates a directory by the name of the project to store
the output of various runs.

The new_project command fails to execute if some other project is already
open. You should close any existing project by using the close_project
command before executing the new_project command.

Arguments

This command has the following arguments:
90
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
<project-name>

Specifies the name of the project to be created

-projectwdir <project-path>

Specifies the name of the project working directory where the project
output would be created. You can use the same project work directory
for multiple projects. sg_shell creates all its output directories inside the
project directory.
All intermediate directories specified by using the -projectwdir argument
should be already present, otherwise the new_project command would
fail. In addition, the output area specified with the -projectwdir
argument should have write permission.

-force

Removes an already existing project (both the project file and the
project directory) and starts a new project with the same name.

NOTE: Be careful while using the -force argument because you may lose any previous
run data.

Examples

sg_shell> new_project new -projectwdir new_dir
will create a project file new.prj in cwd
project output is stored inside new_dir/new

sg_shell> new_project new
new_project: error: please save and close the current project
before opening any new project

sg_shell> new_project new -projectwdir new_dir -force

See Also

current_project, open_project, save_project, close_project
91
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
open_project
Opens an existing project

Syntax

open_project <project-name>
[-projectwdir <project-path>]

Scope

None

Return Value

None

Description

The open_project command opens an existing project. You can use this
command to open any Tcl-compliant project file, which is saved in an
earlier sg_shell or Atrenta Console session.

NOTE: Tcl interface does not support a project file that is created prior to the SpyGlass
4.2.0 release, because it is not Tcl-compliant. To make this file Tcl-compliant, open
that project file in Atrenta Console UI 4.2.0 or 4.2.1 and save it.

When you open an existing project in sg_shell, it brings you back to the
same stage in which you last saved it. For example, in your last session, if
you left at the initial_rtl/lint/simulation goal inside the
GuideWare/New_RTL methodology, the open_project command would
restore the same stage and any data relevant for this goal would be
loaded.

In case you have specified link_design as the last command before saving
the project, sg_shell loads the Design_Read goal on opening that project
because Design_Read is the goal associated with the link_design
command.

You can configure the top setting at the time of using the open_project
command by setting an appropriate top using the set_option top
<top-name> command inside the project file. By default, this command
has the last active top at the time of saving the project. You can work on a
92
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
different top by changing this command as required.

It is recommended that you open the project from the same directory
where it was last saved. This is required to take care of relative path
references because these references would become invalid if you open the
project from a different path. If there are relative paths in your project and
a message is flagged about directory mismatch while opening it, you
should perform the following steps:
1. Close the project.
2. Change your working directory as suggested in the message.
3. Open it again inside the sg_shell.

At the time of opening a project, sg_shell can flag some messages for dirty
goals. Dirty goals are the goals in which run data is inconsistent with the
setup information. This would happen if you have not saved the project in
the last session after changes being made to the goal setup. It is
recommended to rerun dirty goals, because their message database is
otherwise out-of-sync with the saved setup information.

If there are any errors in the project file, the open_project command fails
to execute. But, if there is any error in these older project files, the error
messages would show the name of the new command name only. Refer to
the Appendix A: Deprecated Command Names and Their Corresponding New
Commands section for details of these command name changes. If you have
an old project file, it is recommended that you open it in sg_shell and
immediately save it to get the updated project file with new command
names.

Arguments

This command has the following arguments:

<project-name>

Specifies the name of the project file (.prj).

-projectwdir <project-path>

Specifies the project work directory where project run data would be
created. If you do not specify this argument, sg_shell considers the
project work directory as specified in the project file. If no project work
directory is found in the project file, sg_shell considers that directory
where the project file is present.
93
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
All intermediate directories in the -projectwdir specification should be
already present, otherwise the open_project command would fail. In
addition, the output area specified by using the -projectwdir argument
should have write permission.

Examples

sg_shell> open_project myProject
opens existing project file - myProject.prj

sg_shell> open_project myProject -projectwdir new_dir
output is stored inside new_dir/myProject directory

See Also

new_project, current_project, save_project, close_project
94
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
save_project
Saves the specified project

Syntax

save_project [<destination-project-file-name>][-force]

Scope

Project

Return Value

None

Description

The save_project command saves the active project file. If the active
project file does not have Write permissions, the save_project command
fails to execute. Optionally, you can also specify a destination project file
name to save the current project. Otherwise, the current project is saved
with the same name as the current project name. The save_project
<destination_project_file_name> command will fail when the
leaf level directory of the destination project file provided does not exist or
does not have write permission.

If the project is a default project, the save_project command does not save
the project and informs you that there is no project to save. In case you
want to save the default project, specify save_project -force
<project_name.prj> to save the project as <project_name>.prj.
Here the <project_name> is an optional argument.

If the project is a read only project, the save_project command does not
save the project and informs you that there is no project to save. In case
you want to save the read only project, specify save_project -force
<project_name.prj> to save the project as <project_name>.prj
(irrespective of whether <project_name>.prj is the same as the
original project. There is no backup of the original project.

If the project is not a read only project, the save_project command saves
the project and backup of the original project is created. In case you want
to save the project with different file name, use the option
95
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
save_project -force <project_name.prj>. In this case, the
backup of the original project would not be created. If you do not specify
<project_name.prj> and use save_project -force option, the
original project is saved without any backup.

In case a project is saved to a different project file, the current project is
considered as saved only when the project file with which the project was
opened does not have Write permissions. Otherwise, the project is
considered as unsaved. When you attempt to close the project or exit the
shell without saving the project, sg_shell prompts you to save the project.

Arguments

This command has the following arguments:

<destination-project-file-name>

Specifies the project file name to be saved

<-force>

Saves the project forcefully.

Examples

Example 1

sg_shell> read_file -type hdl test.v
sg_shell> save_project
save_project: error: no project to save
sg_shell> save_project -force abc.prj

Example 2

sg_shell> new_project new
sg_shell> current_methodology $::env(SPYGLASS_HOME)
 GuideWare/New_RTL
sg_shell> read_file test.v
sg_shell> current_goal initial_rtl/lint/structure -top test
sg_shell> run_goal
sg_shell> close_project
close_project: warning: project still unsaved
96
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
 Following goals were run but have not been saved
 -initial_rtl/lint/structure (Top: test,
 Methodology: .)
 Run results and settings for these goals might
 not match on opening the project next time if you
 still want to close project,specify close_project
 -force, or save the project first

sg_shell> save_project project_copy # save this
 project with name as project_copy.prj
sg_shell> close_project
close_project: warning: project still unsaved
 Following goals were run but have not been saved
 - initial_rtl/lint/structure (Top: test,
 Methodology: .)
 Run results and settings for these goals
 might not match on opening the project next time
 if you still want to close project,
 specify close_project -force, or save the
 project first

sg_shell> save_project
sg_shell> close_project

Example 3

sg_shell> open_project new.prj
sg_shell> set_option abc 1
sg_shell> save_project
save_project: info: sg_shell is going to save current project
 `abc.prj'. Some of the original content
 might be lost or reformatted. The original
 project file is saved as -
 abc_27Nov13_12.05.prj

Example 4

sg_shell> open_project new.prj
97
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
sg_shell> set_option abc 1
sg_shell> save_project -force

Example 5

sg_shell> open_project new.prj
sg_shell> set_option abc 1
sg_shell> save_project -force b1.prj

See Also

open_project, current_project, new_project, close_project
98
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
close_project
Closes the currently active project

Syntax

close_project
[-force]

Scope

Project

Return Value

None

Description

The close_project command closes the currently active project. If there are
any unsaved changes in the currently active project, this command
prompts you to save those changes before closing the project. In addition,
if there are any goals that were run but not saved, sg_shell informs the
same at the time of closing the project.

You can either save the project by using the save_project command or you
can forcefully close the project without saving the changes by using the
-force argument of this command.

Arguments

This command has the following arguments:

-force

(Optional) Closes the project forcefully even if it is not saved. If a
project is closed forcefully, any settings done after the last save are lost.
If some goals have been run but not saved, run results, and settings for
such goals might not match on opening the project next time.

Examples

sg_shell> new_project new
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
99
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
GuideWare/New_RTL
sg_shell> read_file test.v
sg_shell> current_goal initial_rtl/lint/connectivity -top
test
sg_shell> run_goal
sg_shell> close_project
close_project: warning: project still unsaved

Following goals were run but have not been saved
 - initial_rtl/lint/connectivity (Top: test,
Methodology:.)

 Run results and settings for
these goals might not match on opening the
project next time
if you still want to close project,
 specify close_project -force, or save the
project first

sg_shell> close_project -force

See Also

new_project, open_project, save_project, current_project
100
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
current_project
Displays data of the currently loaded project

Syntax

current_project

Scope

Project

Return Value

Returns <project name> and <project directory> strings in an
array

Description

The current_project command displays the name of the currently loaded
project and working directory of that project.

Examples

sg_shell> open_project myProject.prj -projectwdir new_dir
sg_shell> set prj [current_project]
myProject.prj new_dir
sg_shell> set prj_name [lindex $prj 0]
myProject.prj
sg_shell> set prj_dir [lindex $prj 1]
new_dir
sg_shell> puts “Project Name: $prj_name\nProject Directory :
$prj_dir
Currently selected project's info

Project Name : myProject.prj
Project Directory : new_dir
101
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
See Also

new_project, open_project, save_project, close_project
102
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
import_project
Used to import existing project settings into current project

Syntax

import_project <src_project>
-design|-goal <goal_name>
[-goal_constraint]

NOTE: It is mandatory to specify either a goal or a design.

Scope

Project, Goal

Return Value

None

Description

The import_project command is used to import existing project settings
from a source project given through the <src_project> argument into the
current project.

All option values during import are retained as per the original
specification, which includes the relative or absolute path. If projectcwd
of original and current projects are different, it is recommended that you
manually change all relative paths in imported goal-specific options to
absolute, otherwise they may not get resolved properly. You would be
alerted in such a scenario.

NOTE: Importing design options and global settings from a source project to the current
project is only allowed in global scope.

Arguments

The import_project command has the following arguments:

<src_project>

The <src_project> argument is the first positional argument to the
import_project command and is a mandatory option. Use this argument
to specify a source project name.
103
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
-design

Use this argument to import all design data, such as design files and all
global options given with the set_option command, from a source project
to the current project.

-goal <goal_name>

Use this argument to import settings from a given goal of a source
project to a project or a currently selected goal. Because the
import_project command can be specified both outside a goal and after
selecting a goal, specifying <goal_name> would have the following
impacts:
If the import_project command is specified after selecting a
goal:
 Parameter settings from the methodology, which contains the
<goal_name> goal, are imported from the source project in the
currently selected methodology.

 Goal options and parameters for the <goal_name> goal are
imported in the currently selected goal.

If the import_project command is specified outside a goal:
 Parameter settings from the methodology, which contains the
<goal_name> goal, are imported from the source project in the
currently selected methodology.

 Goal options and parameters for the <goal_name> goal are
imported in the current project.

-goal_constraint

Use this argument to import SGDC or ADC files from a goal given with
the -goal <goal_name> argument in a source project to a currently
selected goal.

NOTE: While importing settings for an option, the option value(s) is overwritten if the
option is of scalar type. Otherwise, it is appended with the options of list type.

Examples

Example 1

sg_shell> import_project src.prj -goal "connectivity"
104
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
sg_shell> import_project src.prj -goal connectivity -
goal_constraint

Example 2

source project file (src.prj) :
....
read_file -type hdl test.v
set_option lib L1 ./P1
set_option libhdlfiles L1 { 1.v 2.v 3.v }
...
set_option projectcwd /my/mycwd/srcCwd
.....

projectcwd: /my/mycwd
sg_shell> import_project srcCwd/project.prj -design
import_project: error: `hdl' file `test.v' does not exist
`libhdlfiles' file `3.v' does not exist
import_project: info: projectcwd of current & source project
are different
design files & libmaps may be present relative to source
projectcwd:
`/my/mycwd/srcCwd'
import_project: info: settings get partially imported to
current project

See Also

set_goal_option, new_project, open_project, save_project
105
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
exit
Quits sg_shell and returns to the UNIX shell prompt

Syntax

exit [-save][-force][exit_code][-dest_prj <prj_file_name>]

Scope

Any

Return Value

None

Description

The exit command is used to quit the sg_shell session and returns to the
UNIX shell prompt.

If there are any unsaved changes in the currently active project, sg_shell
prompts you to save those changes before closing the session. In case the
project is a default project, it is saved without any message on the screen.
Further, if there are any goals that were run but not saved, sg_shell
informs the same at this point.

You can either save the project by using the save_project command or
forcefully close the session without saving the changes by using the -force
argument of this command. Optionally, you can specify the -save argument
to save the project while exiting. You will be prompted if the project can
not be saved. At this point, you cannot exit unless you have specified the -
force argument.

Additionally, you can also give a destination for the project where you can
save your project before exiting by using options –dest_prj
<prjname> along with –save option

Optionally, you can specify an integer code value to be returned to the
calling UNIX shell.

Arguments

This command has the following arguments:
106
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
-save

Saves the current project if it is not saved.

-force

Exits sg_shell even if the current project is not saved.

-dest_prj

Specifies the destination project file name to be saved.

exit_code

Specifies the return code to the calling UNIX shell. The default value is
0.

Examples

Example 1

sg_shell> read_file -type hdl DEST.prj
read_file: info: using default project `spyglass-7.prj'
DEST.prj
sg_shell> exit

Example 2

sg_shell> new_project new
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/IP_netlist
sg_shell> set_parameter abc 1
sg_shell> exit
exit: warning: project 'new.prj' is not saved
(Use 'save_project' to save it), or
(Use 'exit -save' to save the project before exiting), or
(Use `exit -save -dest_prj <project_name.prj>' to save the
project as project_name.prj before exiting), or
(Use 'close_project -force' to close it forcibly), or
(Use 'exit -force' to exit anyway, that is, without
saving the project)
sg_shell> exit -save
107
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
% echo $status
0

Example 3

sg_shell> new_project new1
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/IP_netlist
sg_shell> set_parameter abc 1
sg_shell> exit
exit: warning: project 'new1.prj' is not saved
(Use 'save_project' to save it), or
(Use 'exit -save' to save the project before exiting), or
(Use `exit -save -dest_prj <project_name.prj>' to save the
project as project_name.prj before exiting), or
(Use 'close_project -force' to close it forcibly), or
(Use 'exit -force' to exit anyway, that is, without
saving the project)
sg_shell> exit –force

Example 4

sg_shell> new_project new1
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/IP_netlist
sg_shell> set_parameter abc 1
sg_shell> exit
exit: warning: project 'new1.prj' is not saved
(Use 'save_project' to save it), or
(Use 'exit -save' to save the project before exiting), or
(Use `exit -save -dest_prj <project_name.prj>' to save the
project as project_name.prj before exiting), or
(Use 'close_project -force' to close it forcibly), or
(Use 'exit -force' to exit anyway, that is, without
saving the project)
sg_shell> exit -save -dest_prj abc.prj
108
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
Example 5

sg_shell> exit 5
% echo $status
5

See Also

save_project, close_project
109
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
set_pref
Sets the specified preference variable to its specified value

Syntax

set_pref <variable-name> <value>

Scope

Any

Return Value

Returns the preference value being set

Description

The set_pref command is used to set the specified preference variable to
the specified value. The effect of the setting done is usually visible
immediately after setting the variable. Though this command can be
specified anywhere, the usual location is in sg_shell's startup file (i.e.,
$HOME/.sg_shell.startup or $CWD/.sg_shell.startup). Usually, the settings done
through set_pref commands are expected to remain for the entire session
of sg_shell, and that is why they make more sense in the startup files.

The list of recognized preference variables can be viewed by using the help
-preferences command. In addition, help for any particular preference
variable can be seen by using help -preferences
<variable_name>. Alternatively, you can enter man
<variable_name> to see the details of a particular preference variable.

Arguments

The set_pref command has the following arguments:

<variable-name>

Use this argument to specify the variable name.

<variable-value>

Use this argument to specify the variable value.
110
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
NOTE: Both the above arguments are mandatory.

Examples

The following example shows how to set the name of the command log file
to a unique file name.

sg_shell> set_pref sh_command_log_file
"sg_shell_command_[clock seconds].log"

set_pref: info: command log file is now at
'sg_shell_command_1255369133.log'

(Previously, it was at './sg_shell_command.log')

NOTE: The above informational message is going to be specific to each preference variable.

See Also

get_pref, help, sh_command_log_file, goal_enforce_prerequisite,
goal_show_hidden, dq_design_view_type
111
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
get_pref
Displays the value of the specified preference variable (s)

Syntax

get_pref <variable-name>

Scope

Any

Return Value

Returns a list of variable or value pairs

Description

The get_pref command is used to display the variable or value pairs for
known preference variables. If the variable_name is not specified, then
variable or value pairs for all those preference variables that have been set
either through the startup file, the sg_shell prompt, or any Tcl source file is
returned in a list. Otherwise, if the variable_name is specified, the
variable or value pair for the specified preference variable is returned in a
list. If a preference variable has not been set by the user, then its default
value (as in the software) is returned as variable or value pair in a list.
Currently, the use of wildcard characters is not supported in
variable_name.

Arguments

This command has the following argument:

<variable-name>

Specifies the name of the variable

Examples

The following example shows how to display the variable or value pairs.

sg_shell> get_pref
sh_command_log_file ./sg_shell_command.log
sg_shell> get_pref sh_command_log_file
112
Synopsys, Inc.

Session Commands

SpyGlass Tcl Commands
sh_command_log_file ./sg_shell_command.log
sg_shell> set_pref sh_command_log_file ./new_file.log
set_pref: info: command log file is now at `./new_file.log'
 (Previously, it was at `./sg_shell_command.log')
sg_shell> set_pref sh_command_log_file ./new_file.log
sg_shell> get_pref
sh_command_log_file ./new_file.log
sg_shell> get_pref sh*
get_pref: warning: 'sh*' is not a recognized preference
variable
sg_shell>

See Also

set_pref, help, sh_command_log_file
113
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Design Setup Commands
Design setup commands allow you to set up the design by providing design
files, libraries, and design options. You can clean-up basic design read
errors by updating the design data using these commands.

The following table describes the various design setup commands:

Command Description
read_file Reads in the specified file for analysis
get_file Displays the names of various types of files added
remove_file Removes files of the specified type
set_option Sets the specified option to the specified value
get_option Displays value(s) set in the project for the specified option
remove_option Removes or unsets the specified option in the project scope
link_design Reads the design to check for design read errors
compile_design Synthesizes the design to check synthesis errors
read_power_da
ta

Provides the UPF files

read_sdc_data Provides the SDC files
read_activity_d
ata

Provides the activity data files, such as FSDB, VCD or SAIF
files
114
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
read_file
Reads in the specified file for analysis

Syntax

read_file
[-type <file-type>]
<file-list>

To know more about specifying the design files to be read during SpyGlass
analysis in the Atrenta Console, refer to the read_file section in the Atrenta
Console Reference Guide.

Scope

Project, Goal

Return Value

Returns a list of files that are read

Description

The read_file command provides the various types of files to be read by
sg_shell. Currently, all files, except sourcelist type files, are not read
immediately but rather stored in some object model. These files are read
when you run a goal. Files of the sourcelist type are read at the time
of command execution itself.

All files are applicable to the currently selected methodology and goal as
well as to any methodology or goal that would be selected in the future.
However, for SGDC and waiver files, if you have specified the read_file
command after the current_goal command, sg_shell adds the specified
SGDC file to the currently selected goal only, and not to the other goals. If
you specify the read_file -type sgdc command outside the
current_goal command, sg_shell adds SGDC files to the complete project
and these SGDC files would be applicable to any goal in the current project.

NOTE: Earlier the SGDC files were read immediately on execution of the command. Now,
they are read during the run_goal execution.
115
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Arguments

The read_file command has the following arguments:

-type <file-type>

Use this argument to specify the type of file to be read. This argument
accepts any of the following values:

NOTE: The above options are not mandatory. If you do not specify any of these options,
the file type is assumed to be HDL.

<file-list>

Use this argument to specify a space-separated list of file names.
The file paths specified in this argument can be relative or absolute. If
the file paths are relative, the current sg_shell working directory should
match with the project current working directory at the time of opening
the project. All relative paths should be relative to a single base working

Type Description
verilog Specifies Verilog files
vhdl Specifies VHDL files
def Specifies DEF files
hdl Specifies HDL files (Verilog, VHDL, or DEF)
gateslib Specifies gateslib files
gateslibdb Specifies gateslib db files
sglib Specifies sglib files
lef Specifies LEF files
plib Specifies plib files
sgdc Specifies SGDC files
waiver Specifies waiver files
sourcelist Specifies command files.

Only options allowed in the set_option command and file types
allowed in the read_file command are read from the files passed.
If there is any syntax error in some file due to an error in a
command file or some undefined variable in the file, contents of
this file are dropped, and no further files passed in the command
are read.
116
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
directory, that is, the project’s current working directory.
The file paths can be specified as wildcard patterns containing wildcard
characters (*, ?). If you want to refer to two files, for example "abc1d.v"
and "abc2d.v", you can specify them using SpyGlass pattern matching
support, that is, you can specify read_file -type hdl abc*d.v
in this case.

NOTE: If your filename includes wildcard characters (*, or ?), the name should be enclosed
in curly brackets, and the wildcard characters should be preceded by a backslash
(\) to treat them as literal. For example, if your filename is "abc*d.v", you need to
specify it as "read_file -type hdl {{abc*d.v}}".

The following sanity checks are performed on the files that are specified
in the read_file command:
 File should exist

 File path should not be a directory

 File should have read permissions for the current user
 If wildcard patterns are specified, then they should match at least

one file
If any of the sanity checks fail, an error is flagged and the current
read_file command is ignored. Any file that has been already added or
any duplicate entries in the current read_file command is ignored and a
message will be displayed.

Examples

sg_shell> read_file test.v mid.v bot.v
sg_shell> read_file test.vhd
sg_shell> get_file -type hdl
test.v mid.v bot.v test.vhd

sg_shell> read_file -type gateslib cells.lib
sg_shell> get_file -type gateslib
cells.lib

sg_shell> read_file -type sgdc global.sgdc
sg_shell> get_file -type sgdc
global.sgdc
sg_shell> current_goal initial_rtl/lint/structure
117
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
sg_shell> read_file -type sgdc local.sgdc
sg_shell> get_file -type sgdc
global.sgdc local.sgdc
sg_shell> current_goal none
sg_shell> get_file -type sgdc
global.sgdc

See Also

remove_file, get_file
118
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
get_file
Displays the names of various types of files added

Syntax

get_file
-type <file_type>

Scope

Project, Goal

Return Value

An array of strings specifying a list of files of the specified type

Description

The get_file command displays the names of various types of files added
by using the read_file command. For any file other than the SGDC type of
file, the get_file command displays the names all the files of a given type
as present in the project, and is not context sensitive.

After selecting a goal, if you specify the value of the -type argument as
sgdc, sg_shell displays the names of SGDC files that are valid for the
selected goal only. However, if you specify outside a goal, sg_shell displays
the names of all the global SGDC files present in the project.

Arguments

The get_file command has the following arguments:

-type <file_type>

Use this argument to specify the type of files to be displayed. You can
specify any of the following values to this argument:

Type Description
hdl Displays all the HDL files (Verilog, VHDL, or DEF)
gateslib Displays gateslib files
sglib Displays sglib files
119
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
NOTE: This option is mandatory.

Examples

sg_shell> read_file test.v
sg_shell> read_file test1.v
sg_shell> set x [get_file -type hdl]
test.v test1.v
sg_shell> puts $x
test.v test1.v
sg_shell> set y [lindex $x 0]
test.v
sg_shell> puts $y
test.v

sg_shell> read_file -type sgdc g1.sgdc
global sgdc file
sg_shell> read_file -type sgdc g2.sgdc
global sgdc file

sg_shell> current_goal initial_rtl/lint/simulation
sg_shell> read_file -type sgdc a.sgdc
local sgdc file
sg_shell> read_file -type sgdc b.sgdc
local sgdc file
sg_shell> get_file -type sgdc
g1.sgdc g2.sgdc a.sgdc b.sgdc

sg_shell> remove_file -type sgdc g1.sgdc b.sgdc
remove global and local sgdc files
sg_shell> get_file -type sgdc
g2.sgdc a.sgdc

lef Displays LEF files
plib Displays plib files
sgdc Displays SGDC files in given scope (project or goal)
waiver Displays waiver files
120
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
See Also

read_file, remove_file
121
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
remove_file
Removes files of the specified type

Syntax

Usage 1

remove_file -type <file-type>

Usage 2

remove_file -type sgdc [<file-list>]

To know more about removing design files during SpyGlass analysis in the
Atrenta Console, refer to the remove_file section in the Atrenta Console
Reference Guide.

Scope

Project, Goal

Return Value

Usages 1 and 2: Returns a list of files that are removed

Description

The remove_file command removes files that have been added by using
the read_file command. Except for the SGDC type of file, the remove_file
command removes all the files of a given type from the project, and it is
not context-sensitive.

Optionally, in the case of SGDC types of files, you can provide a list of files
(<file-list>) to be specifically removed. The remove_file -type
sgdc command is context-sensitive. If this command is specified after
selecting a goal, sg_shell removes all or given SGDC files from the selected
goal only. These removed files can be both inherited from the project and
added locally to a goal. However, if this command is specified outside a
goal and without a list of files, sg_shell removes all the SGDC files that
have been added globally. SGDC files locally added to a goal are not
removed. If this command is specified outside a goal with a list of files, it
removes the specified SGDC files from the whole project and from all its
goals even if these SGDC files were added locally to a goal.

NOTE: The impact of removing the AWL file is seen immediately while the impact of
122
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
removing the SGDC/waiver files is seen during/after the run_goal execution.

Arguments

The remove_file command has the following arguments:

-type <file-type>

Use this argument to specify the type of file to be removed. The
following is the list of file types that can be specified with this argument:

NOTE: This option is mandatory.

<file-list>

Use this argument to specify a list of SGDC files to be removed. The list
of files is not allowed with any other file type other than SGDC. You will
be informed in case any of the file specified as part of the file-list has
not been already added by a corresponding read_file command.
The file paths can be specified as wildcard patterns containing wildcard
characters (*, ?). If you want to refer to two files, for example,
"abc1d.sgdc" and "abc2d.sgdc", you can specify them using SpyGlass
pattern matching support, that is, you can specify as remove_file -
type sgdc abc*d.sgdc in this case.

NOTE: If your filename includes wildcard characters (*, or ?), the name should be enclosed
in curly brackets, and the wildcard characters should be preceded by a backslash
(\) to treat them as literal. For example, if your filename is "abc*d.sgdc", you need
to specify it as "remove_file -type sgdc {{abc*d.sgdc}}."

Type Description
hdl Removes all HDL files (Verilog, VHDL, or DEF).

NOTE: You cannot remove individual HDL file types, such as
Verilog or VHDL files. The complete HDL file set is removed.

gateslib Removes gateslib files
sglib Removes sglib files
lef Removes LEF files
plib Removes plib files
sgdc Removes all or given SGDC files
waiver Removes waiver files
123
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Examples

sg_shell> read_file test.v
sg_shell> read_file test.vhd
sg_shell> remove_file -type hdl
sg_shell> read_file test.v
sg_shell> get_file -type hdl
test.v
sg_shell> read_file -type sgdc global1.sgdc
global sgdc file
sg_shell> read_file -type sgdc global2.sgdc
global sgdc file
sg_shell> get_file -type sgdc
global1.sgdc global2.sgdc
sg_shell> current_goal initial_rtl/lint/structure
sg_shell> read_file -type sgdc local1.sgdc
local sgdc file
sg_shell> read_file -type sgdc local2.sgdc
local sgdc file
sg_shell> get_file -type sgdc
global1.sgdc global2.sgdc local1.sgdc local2.sgdc #
both global and local sgdc files
sg_shell> remove_file -type sgdc global2.sgdc local2.sgdc
global2.sgdc removed from current goal
sg_shell> get_file -type sgdc
global1.sgdc local1.sgdc
sg_shell> current_goal none
sg_shell> get_file -type sgdc
global1.sgdc global2.sgdc
sg_shell> remove_file -type sgdc
removes global sgdc files
sg_shell> read_file -type sgdc global3.sgdc
sg_shell> get_file -type sgdc
global3.sgdc
sg_shell> current_goal initial_rtl/lint/structure
sg_shell> get_file -type sgdc
global3.sgdc local1.sgdc
sg_shell> current_goal none
124
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
sg_shell> remove_file -type sgdc local1.sgdc
removed local1.sgdc from goal 'initial_rtl/lint/structure'
as well
sg_shell> current_goal initial_rtl/lint/structure
sg_shell> get_file -type sgdc
global3.sgdc

See Also

read_file, get_file
125
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
set_option
Sets the specified option to the specified value

Syntax

set_option <option-name> <value>

Scope

Project

Return Value

Returns the value being set

Description

The set_option command sets the specified option to the specified value.

The settings specified by this command are applicable for all goals. To set
an option for a particular goal scope, use the set_goal_option command.

The option value can be of the following types:

If the option specified by using the set_option command is already set and
the option is of list type, sg_shell appends the value specified in the

Type Description
Boolean If the option is of the Boolean type, the value for that option can

be <true|on|yes|1>, which is evaluated to true. Similarly, the
value <false|off|no|0> is evaluated to false.
If more than one value is specified for the Boolean option, the last
value is considered as the final value. You will get a warning
about the multiple values specified in the Boolean option.

List If the option is of type list, the values will be appended in the
form of a string list. The option value should be specified in curly
brackets { }.

String If the option is of type, string, and you specify more than one
value for the given string option, then the last value will be
considered as the final value. You will get a warning about the
multiple values specified in the scalar option.
126
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
option's value-list. Otherwise, it overwrites the existing option value.

The following sanity checks are performed on value(s) passed before an
option is set:
 Invalid value specified in a Boolean option

 More than one value specified in a Boolean or scalar option

 Invalid enum value specified in an enum type of option

 String type of value specified for integer or float type of option

 Out of range value specified for options that accept a range of values

 More than two values specified for options that accept a pair of values,
such as lib and define_incr_dirmap.

The following file or directory checks are performed for file or directory
type of options:
 File or directory does not exist

 Read or write permissions are not there on the file directory

 File given for directory or vice versa

 Directory specified for directory type of option is empty

 File or directory that has been already added or duplicate entries in
value list are ignored for list type of options

 Wildcard pattern used to specify file/directory does not match any file/
directory

Above checks can be either of the Error or Warning severity. If check is
flagged with Error severity, the current set_goal_option is ignored.
Otherwise, the option will be set as per the values passed in the command.

The remaining sanity checks as done by SpyGlass are performed at the
time of the run_goal command.

To get a list of options that can be set by using the set_option and
set_goal_option commands, use the following command:

help -option

There are a few options, such as check_celldefine, that can be set by
both the set_option and set_goal_option commands, because these options
can be set both for the entire project and for a particular goal. These
options are listed twice by the help -option command, once with the list
of options that can be set by the set_option command and again with the
127
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
list of options that can be set by the set_goal_option command. In addition,
you can also view man pages for each option in sg_shell by using the man
<option-name> command.

NOTE: An alias name, if available for a particular option, is not displayed in the
corresponding man page or in the list of options displayed by using the help
-option command.

If there is a Boolean option set in global scope for all goals using
set_option, it cannot be unset in goal scope using set_goal_option.

For example, consider the following:

sg_shell> set_option ignorelibs yes
sg_shell> current_goal initial_rtl/lint/synthesis
sg_shell> set_goal_option ignorelibs no
sg_shell> run_goal

In the above case, even if ignorelibs is being set to no inside goal
scope, it would still be treated as yes during run_goal.

It is currently recommended that if a specific Boolean option is intended to
be turned on/off on per goal basis, then set it inside goal scope only, and
not have it set globally using set_option.

The following table lists various options that you can set by using this Tcl
command. The alias name, if available for a particular option, is written in
parentheses.

Option Description
87 Checks the design for IEEE standard 1076-

1987 compliance
DEBUG Decompiles debug information about various

stages during a SpyGlass run
I Specifies the directories search path
LICENSEDEBUG Prints license debug information on the

screen
addrules
(addrule)

Selectively adds a rule in current goal
128
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
aggregate_report Specifies the aggregate report format
type(s) to be generated in batch console
mode

aggregate_reportdir Specifies the directory path where the data
for the aggregate report gets generated

aggregate_report_config_file Specifies the aggregate report config file to
be used

allow_celldefine_as_top Specifies to perform rule checking on
'celldefine module top's hierarchy

allow_module_override Allows duplicate module or UDP definitions
auto_save Enables save of design query data as part of

run_goal command
auto_restore Enables restore of design query data as part

of current_goal/open_project commands
block_abstract_directory Specifies a directory in which the abstract

view of a block should be saved
cachedir Specifies the directory where library

compilation will be performed
cell_library
(cell_libraries)

Skips rule checking on design units loaded
from precompiled libraries

check_celldefine Turns on the rule checking on all the
celldefine modules

check_if_else_reset Detects the "sync preset" even if "sync
clear" is present in an always block or vice-
versa

checkdu Specifies the design hierarchy (level) for rule
checking

checkip Specifies the design units for rule checking
convert_udp_to_latch Enables SpyGlass to infer UDP as a latch

while translating the UDP with both edge
and level sensitiveness

default_adc_file Specifies a default file to save the ADC
constraint applied on sg_shell.
If you do not specify a file by using this
command, SpyGlass considers the <project-
wdir>/ <project_name>_adc_file.adc file as
the default ADC file.

Option Description
129
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
default_waiver_file Specifies a default waiver file for saving
interactive waiver commands.
If you do not specify a default waiver file by
using this command, SpyGlass considers the
<project-wdir>/
<project_name>_waiver_file.awl file as the
default waiver file.

define Adds the specified macro definitions
define_cell_sim_depth Specifies the threshold limit for the size of

the macro in order to completely simulate
the macro. The value can range from 1 to
30, inclusive of the range.

define_incr_dirmap Provides mapping for different locations of
RTL files

designread_disable_flatten Disables flattening during the
compile_design command in sg_shell. Also
disables flattening while opening a project if
the project was closed with a flattened view

designread_synthesis_mode Specifies mode in which synthesis should be
performed

disable_encrypted_hdl_chec
ks

Disables RTL rule checking on the encrypted
design units

disable_hdllibdu_lexical_che
cks

Disallows lexical rule checking on
precompiled libraries

disable_hdlin_synthesis_off_
skip_text

Disables the interpretation of VHDL design
code between Synopsys synthesis_off/
synthesis_on pragma pair as comments

disable_hdlin_translate_off_
skip_text

Disables the interpretation of VHDL design
code between Synopsys translate_off/
translate_on pragma pair as comments

disable_infer_async_rst_latc
h

By default, SpyGlass synthesis infers latches
with asynchronous set/reset.
When this command is set for specified
modules, SpyGlass synthesis infers
latches without asynchronous set/reset, for
such modules.

disable_sgdc_dump Disables the conversion of certain SDC
commands to their respective SGDC
commands in the sdc2sgdc flow

Option Description
130
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
disallow_view_delete Disables the Large Design Processing Mode
dump_precompile_builtin Saves design parsing builtin messages in

precompile dump
dw Enables DesignWare® module support.

SpyGlass can expand DesignWare® modules
and generate logic for these modules during
SpyGlass analysis. For further details, refer
to the Working with DesignWare® Modules
section in the Atrenta Console User Guide

elab_precompile Enables elaboration in single step
precompilation

enableSV Enables parsing of SystemVerilog constructs
enableSVA Enables parsing of SystemVerilog constructs

and also handles SV Assert logic. By default,
the value of this option is set to 0 and
SpyGlass reports SystemVerilog constructs
as syntax errors.

enable_abstract_block_sche
matic

Enables schematic debugging of abstracted
modules. This option accepts abstracted
module names, for which you want to view
schematic to debug issues in the abstracted
IPs of SoC.
You can specify wildcard characters in the
module names as an argument value of this
option.

enable_const_prop_thru_se
q

Allows constant propagation beyond
sequential elements during logic simulation

enable_gateslib_autocompile Enables automatic compilation of Synopsys
Liberty™ files (.lib files) to a
SpyGlass-compatible library file form (.sglib
files)

enable_hdl_encryption Enables encryption of VHDL or Verilog
libraries during compilation

Option Description
131
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
enable_hier_flattening Enables hierarchical flattening during the
compile_design or run_goal command in
sg_shell. By default, hierarchical flattening is
off. Compile your design by using this option
if you want to use design query commands
on the hierarchical netlist. Using this option
may consume more time and memory
during the flattening stage of the design.

enable_inactive_rtl_checks
(enable_inactive_rtl_check)

Enables semantic checking capability in
SpyGlass

enable_pass_exit_codes Causes SpyGlass to print more detailed exit
status codes and messages

enable_pgnetlist Enables power and ground pin information
to be taken into consideration from specified
physical libraries

enable_precompile_vlog Enables the Precompiled Verilog library
feature

enable_save_restore Enables the Design Save or Restore feature
enable_save_restore_builtin Restores design parsing, elaboration, and

synthesis messages in restore run. By
default, this option is on in sg_shell

enable_sglib_debug Provides SpyGlass Library Compiler debug
Information

force_compile Forces compilation of libhdlfiles
force_gateslib_autocompile Forces automatic compilation of Synopsys

Synopsys Liberty™ files (.lib files) to a
SpyGlass-compatible library file form (.sglib
files)

gen_block_options Generates the block dependency report
gen_block_expand_lib_sourc
es

Lists specification information about source
files, as comments, for precompiled libs,
incdir, and -y/v directories. It also
filters out irrelevant .lib specifications for
the specified design unit or a block.

gen_blk_sgdc Enables generation of an abstract view of a
block

Option Description
132
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
handlememory Specifies to process memories in an
optimized manner

hdlin_synthesis_off_skip_tex
t

Interprets VHDL design code between
Synopsys synthesis_off or synthesis_on
pragma pairs as comments

hdlin_translate_off_skip_tex
t

Interprets VHDL design code between
Synopsys translate_off or translate_on
pragma pair as comments

hdllibdu Enables RTL and lexical rule checking on
precompiled Verilog or VHDL design units

higher_capacity Disables rules designed for SpyGlass version
3.2.0

ignore_builtin_rules Disables SpyGlass built-in rules
ignore_builtin_spqdir Specifies directory in which the

ignore_builtin-<language>.spq file (containing
ignorerule specifications of SpyGlass built-in
rules) exists

ignoredu Ignores the specified VHDL design unit or
the Verilog module at the design read
(parsing) stage

ignorefile Ignores the specified design file at the
design read stage

ignoredir Ignores design files in the specified directory
and its subdirectories at the design read
stage.

ignorelibs
(ignorelib)

Skips the rule checking for modules in the
library files specified through v/y option

ignorerules
(ignorerule)

Specifies the rule names or rule group
names to be ignored in rule checking

ignore_undefined_rules
(ignore_undefined_rule)

Continues after issuing a warning message if
an undefined rule is specified

ignorewaivers
(ignorewaiver)

Causes SpyGlass to ignore waivers supplied
as embedded SpyGlass Waiver pragmas

incdir Searches the specified path for include files
inferblackbox Infers black box module interface based on

the black box instances in the synthesized
netlist

Option Description
133
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
inferblackbox_iterations Specifies the effort in terms of the total
number of iterations that SpyGlass should
make before finalizing port directions for
black boxes

inferblackbox_rtl Infers black box module interface based on
the black box instances in the RTL
description in addition to the synthesized
netlist

infer_enabled_flop By default synthesis creates flip-flops with
enable wherever possible. When this switch
is turned off, synthesis creates flops without
enable together with a MUX to get enable
functionality

lang Specifies the display language for messages
and waivers

language_mode Specifies language specification to use
lib Defines the logical to physical mapping for

referenced libraries
libext Specifies library file extensions
libhdlf Specifies mapping between specified logical

library and source-files for precompiled
library use

libhdlfiles
(libhdlfile)

Specifies mapping between specified logical
library and HDL files for precompiled library
use

libmap Defines the logical to intermediate library
mapping for referenced libraries

lvpr Specifies the maximum number of messages
to report

macro_synthesis_off Turns off the macro SYNTHESIS during
design read. By default, the macro is set on.

mthresh Specifies the bit-count threshold for the
compilation of net or variables in a design
unit

net_osc_count_limit Overrides the oscillation limits for nets. By
default, the oscillation count is set to 100.

nobb Forces SpyGlass to exit without processing if
any black box is found in the design

Option Description
134
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
nodefparam Ignores explicit parameter re-definition
given by defparam Verilog construct

noelab Exits after design analysis and without
elaborating the design

noispy Suppresses the generation of module
schematic data

nopreserve Forces SpyGlass to remove hanging or
unconnected instances and nets

noreport Suppresses report generation
norules
(norule)

Suppresses rule checking

nosavepolicy
(nosavepolicies)

Specifies the product or products that should
not be saved during design save

nosch Suppresses the generation of schematic data
by rules

oem_mode Runs Atrenta Console GUI in the OEM
(Original Equipment Manufacturer) mode

operating_mode Enables setting value of special variable
SG_OPERATING_MODE for SGDC conditional
compilation

overloadrules
(overloadrule)

Overloads the severity or weight of a rule

param Sets the new user-specified values of the
VHDL generics and Verilog parameters

perflog Specifies to generate the SpyGlass
performance log

pragma Specifies a prefix-string for synthesis
directives

prefer_tech_lib Sets higher preference for technology library
definitions over HDL definitions while
resolving master of instances

preserve_mux Enables SpyGlass to pick MUX cells from the
technology library

Option Description
135
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
prohibit_waiver Prohibits waiver from waiving the violation
of specified rules without any need to edit
the waive commands in the pre-existing
waiver files. This option accepts a list of
rules.

print_sortorder_only Prints the list of sorted VHDL files and exits
relax_hdl_parsing Performs relaxed VHDL semantic checking
remove_work Deletes the contents of the WORK directory
report Specifies the report format type to be

generated
report_command_mismatch Enables strict checking on a command given

in constraints (ADC) and waiver file on
sg_shell. On enabling this option, if
constraint is specified in a waiver file or
waiver is specified in a constraint file
through the read_file
-adc|sgdc|waiver|awl and
convert_sgdc2adc|convert_swl2awl
commands, TCL_ERROR is returned as the
return status of the command.

report_incr_messages Enables reporting of incremental messages
report_inst_backref Prints back-reference information, such as

file name and line number, containing
definition for a design and its instances in
the elab_summary.rpt report

report_max_size Specifies the maximum number of messages
for sorted reports

report_style Enables customization of report format
report_unreachable_default_
case

Use this option to suppress the SYNTH_5039
messages reported by SpyGlass Synthesis
for scenarios in which case-conditions are
complete and case-default statement is
unreachable

resetall Resets the Verilog compiler directive
default_nettype to language default, which
is wire

Option Description
136
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
rules
(rule)

Specifies the list of rules or rule group
names for which rule checking should be
done

sca_on_net Use this option to apply set_case_analysis
constraints on a net when the
port/pin name matches the net name. This
impacts the logic cone inside
the hierarchy, which is driven by the net
connected to pin/port.

savepolicy
(savepolicies)

Specifies the products that run during design
restore

sdc2sgdc Enables the SDC-to-SGDC feature. The
default value of sdc2sgdc option is
no. However, for sg_shell runs,
SpyGlass automatically sets this option
to yes, when at least one SDC file is
specified using the sdc_data
constraint.

sdc2sgdc_mode Specifies the mode of the SDC file to be
translated to SGDC

sdc2sgdcfile Specifies the file to save the output of SDC-
to-SGDC translation

sfcu Enables each file to be compiled as a
separate compilation unit

sgsyn_clock_gating Causes SpyGlass to create a simple clock
gating logic instead of creating a MUX-based
enable logic

sgsyn_clock_gating_threshol
d

Specifies threshold number (default 16) of
flip-flops beyond which SpyGlass creates a
simple clock gating logic

sgsyn_loop_limit Specifies the loop rolling limit during design
synthesis

show_lib Enables generation of messages for each
library module

skip_rules_for_fast_restore Enables skip of design's re-parsing and/or
resynthesis during design restore

Option Description
137
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
sort Sorts and prints the design files before
analyzing

sortrule
(sortrules)

Specifies the sort order for messages in
SpyGlass reports

stop Skips rule checking on the specified VHDL
design unit or Verilog Module

stopdir Skips rule checking on all design units
located in a specified directory

stopfile Skips rule checking on all design units
described in a specified file

support_sdc_style_escaped_
name

Enables Synopsys-style escaped names in
SpyGlass Design Constraints files

target Specifies libraries to be used for technology
mapping out of the specified SGLIB libraries

top Specifies top of the design for sg_shell
treat_priority_pin_as_obs Use this command to consider the highest

priority asynchronous pin of
sequential block as observable/unblocked

unify_sdc2sgdc Enables unification of mutually exclusive
information from different sources, SDC and
SGDC.

use_du_sch_hier Enables SpyGlass to use schematic highlight
information of a violation to waive violations
on a design unit.

use_goal_rule_sort Sorts violation messages in SpyGlass reports
based on the order of rules specified in a
goal file

use_scan_flops
(use_scan_flop)

Enables SpyGlass to pick scan flip-flops from
the technology library

v Specifies the library file used in the source
design

vlog2001_generate_name Specifies if all Verilog generate statements in
the Verilog 2001 syntax should be unrolled

vlog2005_lrm_naming Specifies whether to unroll all Verilog
generate statements in the Verilog 2005
syntax.

Option Description
138
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Arguments

The set_option command has the following arguments:

<option-name>

Use this argument to specify the name of the option that needs to be
set.

<value>

Use this argument to specify the value of the option being set.

Examples

To generate the summary and inline reports, the report option can be set
by using the following command:

sg_shell> set_option report { "summary" "inline" }

To enable SystemVerilog constructs in Verilog files, use the following
command:

sg_shell> set_option enableSV 1

Consider an SoC having mtscore, mts_block1, mts_block2 and mts_blk
abstracted IPs. To view the schematic of abstracted blocks, mtscore and
mts_blk, use the following command

sg_shell> set_option { mtscore mts_blk }

To view the schematic of abstracted blocks having prefix, mts_.., use the
following command:

w Turns on generation of warnings for PERL-
level compilation

waivers_translate_generate_
names

Enables the use of a non escaped "generate
block" name or an "instance array" name in
the -msg field of the waive command

work Specifies the logical library directory for
compilation of Verilog or VHDL libraries

y Specifies the library directory containing
libraries

Option Description
139
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
sg_shell> set_option
enable_abstract_block_schematic{ mts_* }

To view the schematic of all the abstracted blocks, use the following
command:

sg_shell> set_option enable_abstract_block_schematic *

See Also

set_goal_option, get_option, get_goal_option, get_run_option, remove_option,
remove_goal_option
140
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
get_option
Get values set in the project for the specified option

Syntax

Usage 1

get_option

Usage 2

get_option <option-name>

Scope

Project

Return Value

Usage 1: Returns a list of option or value pairs

Usage 2: Returns the value set for the specified option, <option-name>

Description

The get_option command displays the values set for the specified option. If
the option name is not given, sg_shell returns a list of option-value pairs
set in the project scope. Otherwise, it returns the value of the specified
option.

If the option value is not set by using the set_option command, sg_shell
displays the default value, if present, for the specified option. If there is no
default value for that option, sg_shell displays an information message on
the screen informing you that the option has not been set. The control is
then returned to the sg_shell prompt. If you specify the wrong option
name, sg_shell displays an error message.

Arguments

The get_option command has the following arguments:

<option-name>

Use this argument to retrieve the value of the specified option.
141
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Examples

sg_shell> set_option report { "simple" "drag" }
sg_shell> puts [get_option report]
simple drag
sg_shell> set_option report { inline }
sg_shell> puts [get_option report]
simple drag inline

See Also

set_option, set_goal_option, get_goal_option, get_run_option, remove_option,
remove_goal_option
142
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
report_option
Report options in tabular format

Syntax

Usage 1

report_option [get_option]

Usage 2

report_option [get_goal_option]

Usage 3

report_option [get_run_option]

Scope

Project, Goal

Return Value

None

Description

The report_option command displays options in a tabular format. You can
specify the following commands without arguments as input for this
command:
 get_option: Use this command as an argument to display options set in

the project in a tabular format.
 get_goal_option: Use this command as an argument to display options

set in the goal scope in a tabular format.
 get_run_option: Use this command as an argument to display options to

be used during the current run in a tabular format.
NOTE: One of the above commands is mandatory to provide as an input to this command.

Arguments

None
143
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Examples

sg_shell> report_option
report_option: error: invalid usage (mandatory options
missing, or wrong combination of options)
Try 'report_option -help' for more details.
sg_shell> get_option
language_mode mixed enable_save_restore 1
enable_save_restore_builtin true
sg_shell> report_option [get_option]
Options set in current context:
+++
Option Name Current Value
===
language_mode mixed
enable_save_restore 1
enable_save_restore_builtin true
+++
sg_shell>

See Also

get_option, get_goal_option, get_run_option, report_parameter, get_parameter
144
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
remove_option
Removes or unsets the specified option in the project scope

Syntax

remove_option <option-name>

Scope

Project

Return Value

Returns the option value set before it is unset.

Description

The remove_option command removes or unsets the specified option from
the project scope. sg_shell does not perform any sanity check on the
specified option name. Therefore, if you provide an incorrect option name,
sg_shell does not print anything on the screen and returns the control back
to the sg_shell prompt.

To remove an option from the scope of a particular goal, specify the
remove_goal_option command.

Arguments

The remove_option command has the following argument:

<option>

Use this argument to specify the name of an option that needs to be
removed or unset.

Examples

The following example unsets the wrongly set mthresh:

sg_shell> set_option mthresh "abcd"
sg_shell> remove_option mthresh
sg_shell> get_option mthresh
4096
145
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
See Also

set_option, set_goal_option, get_option, get_goal_option, get_run_option,
remove_goal_option
146
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
link_design
Reads the design to check design read errors

Syntax

Usage 1

link_design -top <top-name>

Usage 2

link_design -alltop

Usage 3

link_design

Scope

Methodology

Return Value

Usages 1–3: Returns ‘exit_code {error string}’ pair
NOTE: Refer to the Exit Codes Reported by sg_shell section for more information on exit

codes generated by sg_shell.

Description

The link_design command reads the complete user design as per design
files and options settings. This includes analyzing RTL files and performing
elaboration of the design.

You cannot execute this command in scope of a goal. You first need to
select the current_goal command with none before executing this
command. The link_design command internally invokes the Design_Read
goal and runs it.

You can configure the design hierarchy to be analyzed by using the
link_design command in the following manner:
 If you want to analyze a specific top-level module hierarchy, specify that

top-level module by using the -top argument of this command.
 If your design has multiple top-level modules and you want to analyze

all of them, specify the -alltop argument of this command.
147
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
 If you want to focus on a specific top-level module during the current Tcl
session, it is best to set that top-level module by using the set_option
top <top-name> command. After the top-level module is set, the
link_design or current_goal/run_goal commands automatically work on this
top-level module only. Therefore, you need not explicitly specify this
top-level module in each of these commands.

 If you want to determine a top-level module in your design in case the
top-level module is not specified by using the set_option top <top-
name> command, use the link_design command.
This command enables you to determine multiple top-level modules in
your design so that you can set one top-level module for subsequent
current_goal commands.
In case there is a single top-level module in the design, it would be
automatically set as a session top-level module once the link_design
command completes. Subsequent link_design or current_goal/run_goal
commands automatically work on this top-level module only, and you
need not explicitly specify this top-level module in each of these
commands.

When you have defined an implicit top-level module by using the set_option
top <top-name> command and you want to alter top-level module
settings during a specific link_design operation, you can specify the -top or
-alltop argument, as desired, to work on a top-level module different from
the implicit top-level module or all top-level modules in the design,
respectively.

NOTE: You can either analyze a specific top-level module or all the top-level modules in the
design, but not anything in between, such as two top-level modules if there are ten
top-level modules in the design.

You can generate a report after specifying the link_design command to
view the design read messages and fix them before proceeding with the
detailed analysis of your design. It is recommended that you analyze all
the black boxes and provide appropriate models or constraints for them to
have more meaningful goal runs.

Arguments

The link_design command has the following arguments:
148
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
-top <top-name>

Use this argument to specify the top-level design modules with which
the design needs to be run

-alltop

Use this argument to specify that the link_design command should be
done with all the top-level design modules in the design

NOTE: You cannot specify the -top and -alltop arguments together.

Examples

sg_shell> read_file test1.v test2.v
test1.v has top test1 and test2.v has top test2
sg_shell> link_design -top test1
run with top test1
sg_shell> set_option -top test2
set test2 as top for link_design done without
-top/-alltop
sg_shell> link_design -alltop
run with both top test1 and test2
sg_shell> link_design
run with top test2

See Also

write_report
149
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
compile_design
Synthesizes the design to check synthesis errors

Syntax

Usage 1

compile_design [-top <top-name>]

Usage 2

compile_design [-alltop]

Usage 3

compile_design

Usage 4

compile_design [-force]

Scope

Project

Return Value

Usages 1–3: Returns ‘exit_code {error string}’ pair
NOTE: Refer to the Exit Codes Reported by sg_shell section for more information on exit

codes generated by sg_shell.

Description

The compile_design command synthesizes the complete user design as per
the design files and options settings. You cannot execute this command in
the scope of a goal. In addition, select current_goal none before executing
this command. The compile_design command internally invokes the
Design_Read goal and runs it.

You can configure the design hierarchy to be synthesized by using the
compile_design command in the following manner:
 If you want to synthesize a specific top-level module hierarchy, specify

that top-level module with the -top argument of this command.
 If the design has multiple top-level modules and you want to synthesize

all of them, specify the -alltop argument of this command.
150
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
 If you want to focus on a specific top-level module during the current Tcl
session, it is best to set that top-level module by using the set_option
top <top_name> command. After the top-level module is set,
compile_design or current_goal/run_goal automatically works on this
top-level module only, and you need not explicitly specify this top-level
module in each of these commands.

 If you want to determine a top-level module in your design in case the
top-level module is not specified by using the set_option top <top-
name> command, use the compile_design command.
This command enables you to determine multiple top-level modules in
your design so that you can set one top-level module for subsequent
current_goal commands.
If there is a single top-level module in the design, it would be
automatically set as a session top-level module once the compile_design
command is completed. Subsequent compile_design or current_goal/
run_goal commands automatically work on this top-level module only,
and you need not explicitly specify this top-level module in each of these
commands.

When you have defined an implicit top-level module using the set_option
top <top_name> command and you want to alter top-level module
settings during a specific compile_design operation, you can specify the -
top or -alltop arguments, as desired, to work on a top-level module
different from the implicit top-level module or all top-level modules in the
design, respectively.

NOTE: You can synthesize either a specific top-level module or all top-level modules in the
design, but not anything in between, such as two top-level modules if there are ten
top-level modules in the design.

You can choose the type of synthesis to be performed in the
compile_design command by using the following command:

set_option designread_synthesis_mode <synthesis_mode>

Depending on the type of synthesis to be performed,
<synthesis_mode> can take one of the following values:

 base: Performs classical synthesis

 opt: Performs optimized synthesis

 techmap: Enables technology mapping during synthesis
151
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
You can generate a report after specifying the compile_design command to
view the design read messages, and fix them before proceeding with the
detailed analysis of your design. It is recommended that you analyze all
black boxes and provide appropriate models or constraints for them to
have more meaningful goal runs.

NOTE: Some setup rules do not run when you specify the compile_design command after
the link_design command. SpyGlass may report the SDC_55 violation in this case.

Arguments

The compile_design command has the following arguments:

-top <top-name>

Use this argument to specify the top-level design modules with which
the design needs to be run.

-alltop

Use this argument to specify that the compile_design command should
be run with all top-level design modules in the design.

NOTE: You cannot specify the -top and -alltop arguments together.

-force

The compile_design command does not perform any action in case the
design has not changed across successive commands. In case, you still
want to compile your design forcefully, specify the -force argument.

Examples

sg_shell> read_file test1.v test2.v
test1.v has top test1 and test2.v has top test2
sg_shell> compile_design -top test1
run with top test1
sg_shell> set_option top test2
set test2 as top for compile_design done without
-top/-alltop
sg_shell> compile_design -alltop
run with both top test1 and test2
sg_shell> compile_design
run with top test2
152
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
See Also

write_report
153
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
read_power_data
Provides the UPF files

Syntax

read_power_data <-type <upf> > [-top <top_name>] [-version
<version>] <file>

Scope

Project

Return Value

Boolean

Description

The read_power_data command is used to provide the UPF files to be read
by sg_shell. These files are read when you run a goal. All the files are
applicable to the whole project scope. This command cannot be specified
after the current_goal command.

The file path specified in <file> can be relative or absolute. In case it is
relative, the current sg_shell working directory should match with the
project current working directory at the time of opening the project. All the
relative paths should be relative to a single base working directory that is
the project current working directory.

 The following sanity checks are performed on files specified in the
read_power_data command:
 File should exist

 Multiple specification of read_power_data

In case any of the above checks fails, an error is reported. Any file that has
been already added (or any duplicate entries in the current
read_power_data command) would be ignored and you would be
appropriately informed. Also, if there are multiple occurrences of the
read_power_data command, then only the last command would be
considered and you would be appropriately informed.
154
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Arguments

The read_power_data command has the following arguments:

-top <top-name>

Use this argument to specify the name of the top module.

-version <version>

Use this argument to specify the UPF version.

<file>

Use this argument to specify the path of the file to be read.

Examples

sg_shell> read_power_data -type upf example_upf_file.upf -
top TOP -version X
sg_shell> read_power_data -type upf example_upf_file.upf
sg_shell> read_power_data -type upf example_upf_file.upf -
top TO
sg_shell> read_power_data -type upf example_upf_file.upf -
version X

See Also

read_sdc_data, read_activity_data
155
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
read_sdc_data
Provides the SDC files

Syntax

read_sdc_data <-top <top_name> > [-mode <mode_name>] [-corner
corner_name] [-level level_value] <file_list>

Scope

Project

Return Value

Boolean

Description

The read_sdc_data command is used to provide the SDC files to be read by
sg_shell. These files are read when you run a goal. If the read_sdc_data is
specified after the current_goal command, the given SDC file is added to
the currently selected goal only, and not for other goals. On the other
hand, the read_sdc_data command specified outside the current_goal
command adds the SDC files to the complete project, and these SDC files
are applicable to any goal in the current project.

The file path specified in <file> can be relative or absolute. In case it is
relative, the current sg_shell working directory should match with the
project current working directory at the time of opening the project. The
idea is all relative paths should be relative to a single base working
directory which is the project current working directory.

The following sanity checks are performed on files specified in the
read_sdc_data command:
 File should exist

 -top is a mandatory field

 Validation of top specified in the command

In case if any of the above checks fails, an error is reported.
156
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Arguments

The read_sdc_data command has the following arguments:

-top <top_name>

Use this argument to specify the association of SDC file with design top
and analogues to current_design in SGDC.

-mode <mode_name>

Use this argument to specify the association of SDC file with a mode.

-corner <corner_name>

Use this argument to specify the association of SDC file with a corner.

-level <level_value>

Use this argument to specify the association of SDC file with a level
value.

<file_list>

Use this argument to specify the files to be read.

Examples

 sg_shell> read_sdc -files a.sdc -top TOP -mode A -corner
worst
sg_shell> read_sdc -files a.sdc -top top
sg_shell> read_sdc -files a.sdc -top top -mode A
sg_shell> read_sdc -files a.sdc -top top -corner worst
sg_shell> read_sdc -files a.sdc b.sdc -top top -corner worst

See Also

read_power_data, read_activity_data
157
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
read_activity_data
Provides the activity data files, such as FSDB, VCD or SAIF files

Syntax

read_activity_data <-type <fsdb | saif | vcd >> <-top
<top_name> > [-starttime <starttime_value>] [-endtime <end-

time_value>] [-instname <instance_name>] <file_list>

Scope

Project

Return Value

Boolean

Description

The read_activity_data command is used to provide the activity data files
to be read by sg_shell. These files are read when you run a goal. This
command supports three types of formats, FSDB, SAIF, and VCD. If the
read_activity_data is specified after current_goal command, then the given
activity file is added to the currently selected goal only, and not to other
goals. On the other hand, the read_activity_data command specified
outside the current_goal command adds SDC files to the complete project,
and these SDC files would be applicable to any goal in the current project.

The file path specified in <file> can be relative or absolute. In case it is
relative, the current sg_shell working directory should match with the
project current working directory at the time of opening the project. All
relative paths should be relative to a single base working directory, which is
the project current working directory.

The following sanity checks are performed on files specified in
read_activity_data command:
 File should exist

 -top is a mandatory field

 Validation of top specified in the command

In case if any of the above checks fails, an error is reported.
158
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
Arguments

The read_activity_data command has the following arguments:

<type>

Use this argument to specify the type of activity file to be read.

-top <top_name>

Use this argument to specify the name of the top module in the
simulation file.

-starttime <starttime_valuee>

Use this argument to specify the start time for simulation file with a time
unit.

-endtime <endtime_value>

Use this argument to specify the end time for simulation file with a time
unit.

-instname <instance_name>

Use this argument to specify the name of the hierarchical instance for
which the simulation file is applicable.

<file_list>

Use this argument to specify the files to be read.

Examples

sg_shell> read_activity_data -type fsd example.fsdb -
starttime 1s -endtime 2s -sim_topname TOP -instname TOP.MID.I
sg_shell> read_activity_data -type vcd example.vcd -
starttime 1s -endtime 2s -sim_topname TOP -instname TOP.MID.I
sg_shell> read_activity_data -type saif example.saif -
sim_topname TOP -instname TOP.MID.I

See Also

read_power_data, read_sdc_data
159
Synopsys, Inc.

Design Setup Commands

SpyGlass Tcl Commands
160
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Goal Setup or Run Commands
Goal setup or run commands configure goal settings, such as parameters
and SGDC. You can run the selected goal and view its messages.

The following table describes the various goal setup or run commands:

Command Description
current_methodology Loads the specified methodology
addpolicy Adds policies to an existing goal
current_goal Loads the specified goals
define_goal Used to define custom goal in current selected

methodology
set_goal_option Sets the specified goal option to the specified value
get_goal_option Gets value(s) in the goal scope for the specified option
remove_goal_option Removes or unsets the specified option in the goal

scope
get_run_option Gets values for the current run
set_run_option Sets option/parameter to specified value
set_parameter Sets the value of the specified parameter
get_parameter Gets the value of the specified parameter set in the

current goal
get_messages Returns a collection of message objects that have been

reported for the goal run
get_message_arg Creates a list of message arguments for a message

object(s) collection
get_message_labels Returns a string list of logical labels for message

arguments of a message object(s) collection
get_rules Returns a collection of rule objects that were loaded for

the goal run
run_goal Runs the selected goals
save_goal Used to save design query data for the currently

selected goal
restore_goal Used to restore design query data for the currently

selected goal
161
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
current_methodology
Selects a methodology

Syntax

Usage 1

current_methodology

Usage 2

current_methodology [<methodology-name>]

To know more about specifying the current methodology to be used during
SpyGlass analysis in the Atrenta Console, refer to the Specifying Current
Methodology section in the Atrenta Console User Guide.

Scope

Project

Return Value

Usage 1: Returns current selected methodology name

Usage 2: Returns nothing

Description

The current_methodology command loads the specified methodology. If
you do not specify the name of the methodology, the currently selected
methodology name is returned.

The methodology name specified in this Tcl command should be the
complete path till the top-level directory where various goals are present.
sg_shell automatically selects a default methodology whenever you start a
project. This command can be used to change it.

Use the following help commands to view information regarding
methodologies:

 help -methodology: View the list of available methodologies.

 help -methodology <methodology-name>: View the help of a
particular methodology.
162
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
 help -goals: View the list of available goals inside the currently
selected methodology.

 help -goals <goal-name>: View the help of a specific goal.

 write_report goal_summary: View the summary information about the
goals in the currently selected methodology.

Arguments

This command has the following arguments:

<methodology-name>

Specifies the name of the methodology to be loaded

Examples

sg_shell> new_project new
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/IP_netlist
current_methodology: info: methodology is now
'SPYGLASS_HOME/GuideWare/IP_netlist'

sg_shell> set curr_meth [current_methodology]
sg_shell> puts $curr_meth [current_methodology]

SPYGLASS_HOME/GuideWare/IP_netlist

See Also

current_goal
163
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
addpolicy
Adds policies to an existing goal

Syntax

addpolicy <goal_name> <policy_list>

Scope

Methodology

Return Value

Returns nothing

Description

The addpolicy command is used to add policies to an existing goal.

All the new policies are added to the list of existing policies during the
execution of the current_goal command and then executed during execution
of the run_goal command.

Arguments

This command has the following arguments:

<goal-name>

Specifies the name of goal to which new polices are to be added.

<policy-list>

Specifies the policies to be added to the goal.

Examples

#adding single policy
sg_shell> current_methodology $SPYGLASS_HOME/Methodology/
rtl_handoff
sg_shell> addpolicy lint/lint_rtl clock-reset

#adding policy list
164
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sg_shell> current_methodology $SPYGLASS_HOME/Methodology/
rtl_handoff
sg_shell> addpolicy cdc/cdc_verfify_struct { openmore starc
starc2005 }

See Also

current_goal, current_methodology
165
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
current_goal
Selects a goal

Syntax

Usage 1

current_goal <goal_name>
[-top <top-name> | -alltop]

Usage 2

current_goal <goal_name>
[-top <top-name> | -alltop]
[-scenario <scenario_name>]

Usage 3

current_goal Group_Run -goal <goal_list> -group_name
<group_name>

Usage 4

current_goal Group_Run –goal <goal list>

Usage 5

current_goal none

Usage 6

current_goal

NOTE: The Group_Run option is not a recommended feature.

To know more about specifying the current goal during SpyGlass analysis in
Atrenta Console, refer to the Goal Setup section under the Structure of a
Project File section in the Atrenta Console User Guide.

Scope

Methodology

Return Value

Usages 1–5: Returns nothing

Usage 6: Returns an array of selected goals
166
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Description

The current_goal command selects a goal to be run by the consequent
run_goal command. The selected goal should be a part of the currently
active methodology, which is the methodology currently selected by the
current_methodology command or default methodology in setup file in case
not set explicitly. You can view the help for goals in the currently selected
methodology by using the help -goals <goal-name> command.

If you specify a substring for the complete goal name, sg_shell displays a
list of matching goals from which you can choose the required goal. Any
previously selected goal is deselected when this command is issued.

If you select a goal that has already been run, its message database is
loaded, and you can create or view its report containing messages as
reported while running this goal.

Goals can have multiple scenarios, and each scenario can have a different
setting for that particular goal. For running different scenarios of goals
defined in a project file, specify -scenario <scenario_name> with the
current_goal command. For more details on scenarios, refer to the Atrenta
Console User Guide.

sg_shell provides you the following flavors of the current_goal specification
for different purposes:
 current_goal with specific goal name: This specification enables you

to run a specified goal.
 current_goal with specific goal name and scenario name: This

specification enables you to run specified scenarios of the goal.

 current_goal with Group_Run: Group_Run is a special keyword,
which when specified as part of the current_goal command, defines
a regression goal that can be a named or un-named regression goal. If a
Group_Run goal is already defined in a project file, you can load the
goal in sg_shell using the same current_goal command as used to
define the goal. In this case, there is no need to specify the goal list
again if it is a named group goal. You may now use the run_goal
command to run the goal. Alternatively, to run named group goals, you
can directly specify name of the group goal in group option in the
run_goal command.

NOTE: The Group_Run option is not a recommended feature.
167
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
 current_goal with none: This specification enables you to switch to no
goal selected mode. It is useful if you want to set parameter or SGDC
applicable for all goals, or run the link_design command.

 current_goal without any argument: This specification enables you
to return currently selected goals in an array.

The current_goal command fails if none of the -top or -alltop options is
specified and no session top-level module is set by the set_option top
<top-name> command. If you have specified the -alltop argument,
sg_shell ignores the top-level module set by using the set_option top
<top-name> command, and the goal is run with all top-level modules in
the design. If the top-level module is specified with the -top option, that
top-level module is used for running the goal. Top-level module
specification given with this command (-alltop or -top) overrides the
current session top-level module.

You can get information about rules and their dependent parameters inside
the currently selected goal by using the write_report goal_setup
command. This command dumps a table comprising rules, their dependent
parameters, and current or default value for each parameter.

If the selected goal has already been run in a previous session and there is
a mismatch between its saved results and the setup information saved in
the project, a message is flagged while loading this goal. It is
recommended that you rerun it by using the run_goal command to ensure
that results are consistent with its saved setup information.

Arguments

This command has the following arguments:

<goal_name>

Use this argument to specify a goal to be selected.

The <goal-name> argument is not treated like a path. This argument
should be provided as a list in the following command:

help -goals

The following modifications to the <goal-name> argument are not
allowed:
 Starting with a dot
168
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
./initial_rtl/lint/simulation

 Using ..

initial_rtl/lint/../lint/simulation

 Using double slashes

initial_rtl/lint//simulation

The <goal-name> argument should be specified exactly as follows:

initial_rtl/lint/simulation

The path modifiers are not supported in the <goal-name> argument.
If you use a path modifier, the current_goal command fails to run.

<scenario_name>

Use this argument to specify the scenario of the goal to be selected.

-goal <goal-list>

Use this argument to specify a list of goals to be run as part of
Group_Run.

<group_name>

Use this argument to specify the name of group run.

-top <top-name>

Use this argument to specify the top design unit with which a goal needs
to be run.

-alltop

Use this argument to specify that a goal should be run with all top-level
modules in the design. This option is specifically helpful if there is
already a top-level module set for the current session by using the
set_option top <top-name> command and if you want to run the
given goal with all top-level modules in the design.

NOTE: The -top and -alltop arguments cannot be specified together.
169
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Examples

Example 1

test1.v has top test1 and test2.v has top test2
sg_shell> read_file test1.v test2.v

run with top test1
sg_shell> current_goal initial_rtl/lint/connectivity -top
test1
sg_shell> run_goal

run with both top test1 and test2
sg_shell> current_goal initial_rtl/lint/connectivity -alltop
sg_shell> run_goal

session top overridden by -alltop, no session top selected
so current_goal would fail
sg_shell> current_goal initial_rtl/lint/connectivity

set test2 as top for current_goal specified without -top/-
alltop
sg_shell> set_option top test2

run with top test2 and scenario scenario1 of goal
'connectivity'
sg_shell> current_goal initial_rtl/lint/connectivity
-scenario scenario1
sg_shell> run_goal

inform currently active goal
sg_shell> set goal_sel [current_goal]
sg_shell> puts $goal_sel
initial_rtl/lint/connectivity

inform currently active goal
sg_shell> current_goal
initial_rtl/lint/synthesis initial_rtl/lint/simulation

deselect currently selected goal and switch to methodology
scope
sg_shell> current_goal none
current_goal: info: removed current goals (sg_shell is now
back to methodology scope)
170
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
(selected methodology is '/u/release/spyglass/SPYGLASS_HOME/
GuideWare/New_RTL')

inform currently active goal i.e. none
sg_shell> current_goal
current_goal: info: no goal is currently selected

Example 2

You can create scenarios by using the -scenario argument of the
current_goal command, as shown in the following example:

sg_shell> new_project demo
sg_shell> read_file -type hdl test.v
sg_shell> current_goal "initial_rtl/lint/connectivity"
-scenario demo_scenario_1
sg_shell> set_option show_no_msg_rule_help yes
sg_shell> current_goal none
sg_shell> current_goal "initial_rtl/lint/connectivity"
-scenario demo_scenario_2
sg_shell> set_option show_no_msg_rule_help no
sg_shell> save_project
sg_shell> close_project

In demo project, two scenarios demo_scenario_1 and
demo_scenario_2 are created for goal initial_rtl/lint/
connectivity.

Example 3

You can run scenarios by using the -scenario argument of the current_goal
command, as shown in the following example:

sg_shell> open_project demo.prj
sg_shell> current_goal "initial_rtl/lint/connectivity"
-scenario demo_scenario_2
sg_shell> run_goal

See Also

run_goal
171
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
define_goal
Used to define custom goal in current selected methodology

Syntax

define_goal <goal_name> [-policy <policy_list>] [-base_goal
<base-goal-name>] [-strict] {...
set_goal_option <option> <value>
set_parameter <param> <value> ...
}

To know more about defining a custom goal during SpyGlass analysis in the
Atrenta Console, refer to the Defining Custom Goals section under the
Structure of a Project File section in the Atrenta Console User Guide.

Scope

Methodology

Return Value

None

Description

The define_goal command defines a new custom goal with a given name.
Once a goal is defined, it is a part of the currently selected methodology.
The normal mechanism to select and execute this goal can then be used:
current_goal <goal_name> followed by run_goal. This command
is saved as part of the project file.

The usage of custom goals is similar to that of normal goals. The batch
console mode also supports these user-defined goals. If custom goal
definition is present in a project file, sg_shell displays these custom goals
in the goal_summary report by using the write_report goal_summary
command. You can see these goals in batch console by using the -
showgoals switch.

Only syntax checks are performed when you define a goal. All semantic
checks on goal options, parameters, and rules added to the goal while
defining it are performed when you select the goal by the current_goal
command. The define_goal command fails if some syntax errors are found
in the goal definition. Similarly, the current_goal command fails if some
172
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
semantic errors are found while loading the goal.

To add additional settings of any existing goal to a new custom goal, use
the -base_goal option to specify an existing goal. For example, consider
the following define_goal command:

define_goal test_goal -policy { lint } -base_goal lint/
lint_rtl {
…
…
}

The -base_goal option in the above command applies all the settings of
the existing lint/lint_rtl goal, such as rules, policies, options, and
parameters, to the newly defined test_goal custom goal.

If the -strict option is used with the define_goal command, the
command generates an error and stops executing the project file if any
command specified in the body of define_goal specification fails.

All the options allowed in a goal (.spq) file for goal setup can be a part of
the define_goal body, which is enclosed within curly brackets. The
set_goal_option and set_parameter commands can be used to set custom
goal-specific options.

NOTE: The set_option and read_file commands are not allowed to be a part of custom goal
definitions.

Arguments

<goal_name>

The <goal_name> argument is the first positional argument to the
define_goal command and is a mandatory option. Use this argument to
specify a custom goal name.

-policy <policy_list>

Use this argument to specify a list of products that you want to be a part
of the custom goal. If no product is given, -policy = none is taken
as a part of custom goal definition.

<define_goal_body>

Use this argument to specify the goal-specific settings or options, such
173
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
as rules, parameters, overload-rule, reports, and so on. The settings
must be specified within brackets.

Examples

sg_shell> define_goal my_goal -policy {lint clock-reset} {
? set_goal_option rules MultipleDriver
? set_parameter fast yes
? }
sg_shell> current_goal my_goal -alltop

See Also

import_project, set_parameter, set_goal_option
174
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
define_regression
Used to define to define regression either by specifying a list of
goals or by assigning a name to the goal list.

Syntax

define_regression <regression-name> -goals {<goals-list>}

To know more about defining regression during SpyGlass analysis in the
Atrenta Console, refer to the define_regression section in the Atrenta
Console Reference Guide.

Scope

Methodology

Return Value

None

Description

Use this command to define regression by:
 Specifying a list of goals to be run in the sequential mode, and

 Assigning a name <regression-name> to the goals list.

Once saved by save_project command, you can specify the goal name
defined by the define_regression command during batch run with -goals
<goals> command-line option. This enables you to run the goals specified
using the define_regression command in the sequential mode.

NOTE: You can only define a goal in sg_shell. You can run a goal only in batch or
Console.

This command is useful when the list of goals to be run in the sequential
mode is huge. Specifying such huge list of goals every time you run the -
goals <goals> command-line option can be time-consuming. Therefore,
specify this list in one go by using the define_regression command and
later specify the list name (<regression-name>) to the -goals <goals>
command-line option.

If a regression name specified by the -goals <goals> batch command is
not declared in the project file, SpyGlass searches the specified goal in the
current methodology.
175
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Arguments

<regression-name>

Regression name that you want to assign to the specified goals.

<goal-list>

List of goals to be run in the sequential mode.

Examples

The following example shows the usage of this command:

// Project1.prj

define_regression Reg1 -goals {G1 G2 G3}

Now, consider that you specify the above project file in batch by using the
following command:

spyglass -projectfile Project1.prj -goals Reg1

When you run the above command, SpyGlass searches Reg1 in the project
file. As the project file contains the declaration of Reg1 through the
define_regression command, SpyGlass runs the G1, G2, and G3 goals in
the sequential mode.

If you want to exempt any goal from the list of goals belonging to a
regression, create a new regression by using the define_regression
command such that the new regression does not have that goal.

Creating a Regression File

A regression file is a Tcl file in which you can define regressions by using
the define_regression commands. You must keep this file parallel to the
order file in the current methodology.

After creating the regression file, when you specify a regression name to
the -goals <goals> command-line option, SpyGlass looks for that
regression name in the regression file and runs the goals of that regression
in the sequential mode.

Consider an example in which Methodology/New_RTL is the current
methodology and you have created the following regression_run.tcl file in
this methodology directory:

define_regression Reg1 -goals {G1 G2 G3}
176
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
define_regression Reg2 -goals {G4 G5 G6}

Now, when you specify Reg1 to the -goals <goals> command-line option,
SpyGlass searches Reg1 in the regression_run.tcl file and runs the G1, G2,
and G3 goals in the sequential mode.

However, if a regression name defined in a regression file matches with the
regression name defined in a project file, SpyGlass gives preference to the
regression defined in the project file. For example, if a regression file
defines the A, B, and C regressions and a project file defines the C and D
regressions, SpyGlass considers all the A, B, C, and D regressions where
the C regression is picked from the project file.
177
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
set_goal_option
Sets the specified goal option to the specified value

Syntax

set_goal_option <option_name> <value(s)>

Scope

Goal

Return Value

Returns the value being set

Description

The set_goal_option command sets the specified goal option to the
specified value to be used for the current goal. Before using this command,
you must select a goal first. Use the set_option command to set an option
that is not bounded to a goal.

The option value can be any of the following types:

If the option specified by the set_goal_option command already exists and

Type Description
BOOLEAN If the option is of the Boolean type, the value for the option can

be <true|on|yes|1>, which is evaluated to true. Similarly, the
value <false|off|no|0> is evaluated to false.
If more than one value is specified for the Boolean option, the
last value is considered as the final value. You will get a warning
about the multiple values specified in the Boolean option.

LIST If the option is of type, list, the values are appended in the form
of a string list. The option value should be specified in curly
brackets { }.

STRING If the option is of type, string, and you specify more than one
value for the given string option, the last value is considered as
the final value. You will get a warning about the multiple values
specified in the scalar option.
178
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
the option is of list type, sg_shell appends the value specified in the
option's value-list. Otherwise, it overwrites the existing option value.

The following sanity checks are performed on values passed before an
option is set:
 Invalid value specified in a Boolean option

 More than one value specified in a Boolean or scalar option

 Invalid enum value specified in an enum type of option

 String type of value specified for integer or float type of option

 Out of range value specified for options that accept a range of values

 More than two values specified for options that accept a pair of values,
such as lib and define_incr_dirmap.

The following file or directory checks are performed for file or directory
types of options:
 File or directory does not exist

 Read or write permissions are not there on the file directory

 File given for directory or vice versa

 Directory specified for directory type of option is empty

 File or directory that has been already added or duplicate entries in
value list are ignored for the list type of options

 Wildcard pattern used to specify file/directory does not match any file/
directory

The above checks can be either of the Error or Warning severity. If check is
flagged with the Error severity, the current set_goal_option is ignored.
Otherwise, the option is set as per the values passed in the command.

The remaining sanity checks as done by SpyGlass are performed at the
time of the run_goal command.

You can view the list of options, which can be set using this command, by
using the help -option command. This command provides a list of
options that can be set by using the set_option and set_goal_option
commands, respectively. There are a few options, such as
check_celldefine, that can be set by both the set_option and
set_goal_option commands, because these options can be set both for the
entire project and for a particular goal. These options are listed twice by
179
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
the help -option command, once with the list of options that can be set
by the set_option command and again with the list of options that can be
set by the set_goal_option command. In addition, you can also view man
pages for each option in sg_shell by using the man <option-name>
command.

If there is a Boolean option set in global scope for all goals using
set_option, it cannot be unset in goal scope using set_goal_option.

For example, consider the following:

sg_shell> set_option ignorelibs yes
sg_shell> current_goal initial_rtl/lint/synthesis
sg_shell> set_goal_option ignorelibs no
sg_shell> run_goal

In the above case, even if ignorelibs is being set to no inside goal
scope, it would still be treated as yes during run_goal.

It is currently recommended that if a specific Boolean option is intended to
be turned on/off on per goal basis, then set it inside goal scope only, and
not have it set globally using set_option.

The following table lists various options that you can set by using this Tcl
command:

Option Description
DEBUG Decompiles debug information about various

stages during a SpyGlass run
addrules Selectively adds a rule in Current Goal
cell_library Skips rule checking on design units loaded

from precompiled libraries
check_celldefine Turns on the rule checking on all the 'celldefine'

modules
convert_udp_to_latch Enables SpyGlass to infer UDP as a latch while

translating the UDP with both edge and level
sensitiveness

define_incr_dirmap Provides mapping for different locations of RTL
files

define_severity Defines a user-specified severity label
180
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
disable_encrypted_hdl_checks Disables RTL rule checking on the encrypted
design units

disable_hdllibdu_lexical_check
s

Disallows lexical rule checking on precompiled
libraries

dump_precompile_builtin Saves design parsing builtin messages in
precompile dump

enable_abstract_block_schem
atic

Enables schematic debugging of abstracted
modules.

enable_const_prop_thru_seq Allows constant propagation beyond sequential
elements during logic simulation

enable_inactive_rtl_checks Enables semantic checking capability in
SpyGlass

enable_pass_exit_codes Causes SpyGlass to print more detailed exit
status codes and messages

enable_save_restore_builtin Restores design parsing, elaboration, and
synthesis messages in restore run. By default,
this option is on in sg_shell

enable_sglib_debug Provides SpyGlass Library Compiler debug
information

gen_blk_sgdc Enables generation of an abstract view of a
block

hdllibdu Enables RTL and lexical rule checking on
precompiled Verilog or VHDL design units

ignore_reference_project_sgdc When a reference project file is specified,
specify this option to ignore SGDC files from a
reference design project file

ignore_undefined_rules Continues after issuing a warning message if
an undefined rule is specified

ignorelibs Skips the rule checking for modules in the
library files specified through v/y option

ignorerules Specifies the rule names or rule group names
to be ignored in rule checking

ignorewaivers Causes SpyGlass to ignore waivers supplied as
embedded SpyGlass Waiver pragmas

lvpr Specifies the maximum number of messages
to report

Option Description
181
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
net_osc_count_limit Overrides the oscillation count limit for nets.
By default, oscillation count is set to 100

nodefparam Ignores explicit parameter re-definition given
by defparam Verilog construct

noispy Suppresses the generation of module
schematic data

noreport Suppresses report generation
norules Suppresses rule checking
nosch Suppresses the generation of schematic data

by rules
old_vdbfile Specifies path of previous Violation Database

file for consideration in Incremental Mode
operating_mode Enables setting value of special variable

SG_OPERATING_MODE for SGDC
conditional compilation

overload Runs the specified named overloads for all
specified products

overloadpolicies Runs the specified products with the
overloaded components

overloadpolicy Runs the specified products with the
overloaded components

overloadrules Overloads the severity or weight of a rule
perflog Specifies to generate the SpyGlass

performance log
preserve_mux Enables SpyGlass to pick MUX cells from the

technology library
reference_design_projectfile Specifies a project file containing details, such

as design files, design options, and SGDC, for
the reference design while running a DDR goal.
This option is complementary to the
reference_design_sources and
reference_design_sgdc options, and instead of
these two options, you can specify a project
file that contains such settings.

reference_design_sgdc Specifies an SGDC file that contains constraints
for a reference design

Option Description
182
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
reference_design_sources Specifies design files and options for a
reference design through the .f file

report Specifies the report format type to be
generated

report_incr_messages Enables reporting of incremental messages
report_inst_backref Prints back-reference information, such as file

name and line number, containing definition for
a design and its instances in the
elab_summary.rpt report

report_max_size Specifies the maximum number of messages
for sorted reports

report_style Enables customization of report format
rules List of rules or rule group names for which rule

checking should be done
sdc2sgdc Enables the SDC-to-SGDC feature. The

default value of sdc2sgdc option is no.
However, for sg_shell runs, SpyGlass
automatically sets this option to yes,
when at least one SDC file is specified
using the sdc_data constraint.

sdc2sgdc_mode Specifies the mode of the SDC file to be
translated to SGDC

sdc2sgdcfile Specifies the file to save the output of SDC-to-
SGDC translation

sortrule Specifies the sort order for messages in
SpyGlass reports

sgsyn_clock_gating Causes SpyGlass to create a simple clock
gating logic instead of creating a MUX-based
enable logic

sgsyn_clock_gating_threshold Specifies threshold number (default 16) of flip-
flops beyond which SpyGlass creates a simple
clock gating logic

support_sdc_style_escaped_n
ame

Enables Synopsys-style escaped names in
SpyGlass Design Constraints files

target Specifies libraries to be used for technology
mapping out of the specified SGLIB libraries

Option Description
183
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Arguments

The set_goal_option command has the following arguments:

<option-name>

Use this argument to specify the name of the goal option.

<value(s)>

Use this argument to specify a space-separated list of values for the
goal option.

Examples

To generate a summary report for the currently selected goal, the report
option can be set by using the following command on the sg_shell prompt:

sg_shell> set_goal_option report { "summary" }

To ignore rules W19 and W467 in the currently selected goal, the
ignorerules option can be set as follows:

sg_shell> set_goal_option ignorerules { "W19" "W467" }

To view the schematic of abstracted blocks having prefix, mts_.., use the
following command:

sg_shell> set_goal_option enable_abstract_block_schematic {
mts_* }

To view the schematic of all the abstracted blocks, use the following
command:

unify_sdc2sgdc Enables unification of mutually exclusive
information from different sources, SDC and
SGDC

use_goal_rule_sort Sorts violation messages in SpyGlass reports
based on the order of rules specified in a goal
file

w Turns on generation of warnings for PERL-level
compilation

Option Description
184
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sg_shell> set_goal_option enable_abstract_block_schematic *

See Also

set_option, get_option, get_goal_option, get_run_option, remove_option,
remove_goal_option
185
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_goal_option
Get values in the goal scope for the specified option

Syntax

Usage 1

get_goal_option

Usage 2

get_goal_option <option-name>

Scope

Goal

Return Value

Usage 1: Returns a list of option or value pairs

Usage 2: Returns the value set for the specified option, <option-name>

Description

The get_goal_option command gets the option values set for the specified
option in the current goal. To use this command, some goals must be
selected first. To get option value set at project scope, use the get_option
command. When the <option_name> is not specified, sg_shell returns a
list of option-value pairs set in the current goal scope. Otherwise, it returns
the value set for the specified option in the current goal.

In case the option value is not set by using the set_goal_option command,
sg_shell returns the default value, if present, for the specified option. If the
option does not have a default value, sg_shell does not print anything on
the screen, and returns the control back to the sg_shell prompt. If you
specify the wrong option name, sg_shell displays an error message.

Arguments

The get_goal_option command has the following arguments:

<option-name>

Use this argument to retrieve the value of the specified option.
186
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Examples

To get values of report option set in current goal:

sg_shell> set_goal_option report { simple drag }
sg_shell> puts [get_goal_option report]
simple drag
sg_shell> set_goal_option report { inline }
sg_shell> puts [get_goal_option report]
simple drag inline

See Also

set_goal_option, get_option, set_option, get_run_option, remove_option,
remove_goal_option
187
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_messages
Returns a collection of message objects that have been reported
for the goal run

Syntax

get_messages
[<message_collection>]
[-of_rule <rule_collection>]
[-of_du <du_name>]
[-msg <message_pattern>]
[-invert]
[-include_waived]
[-regexp | -exact]
[-filter <filter expression>]

[-include_data]

Scope

Project

Return Value

Return a collection of messages in case of successful execution. An empty
string is returned, if no matches are found for the filtered criteria.

Description

The get_messages command returns a set of messages, if any message
matches one of the following criteria specified using the
<message_collection>, <rule_collection>, and <du_name>
arguments. You can specify the message pattern using the -msg option.

Arguments

<message_collection>

Returns all messages which are part of the input collection. This option is
useful while filtering already reduced set of messages.
188
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
-of_rule <rule_collection>

Return all messages of the specified rules that are flagged for the current
run.

[-of_du <du_name>] [-msg <message_pattern>] [-invert]
[-regexp | -exact]

Returns all messages flagged based on conditions and combinations of
above arguments.

NOTE: The -invert and the -regexp/-exact options are only valid if the -of_du or -msg
options are provided.

-filter <filter expression>

Returns all messages that match the filtering criteria, which is a boolean
expression based on attributes defined in the message. This argument can
be given along with the <rule_collection> argument.

-include_data

 Includes secondary messages.

Examples

sg_shell> get_messages

sg_shell> get_messages -of_rule [get_rules]

sg_shell> get_messages -msg <pattern> -regexp

sg_shell> get_messages -msg <pattern> -exact

sg_shell> get_messages [get_messages -filter {is_waived ==
true}]

sg_shell> get_messages -of_rule [get_rules $rules] -
include_data
189
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_message_arg
Creates a list of message arguments for a message object(s)
collection

Syntax

get_message_arg [-label <arg_label>] [-as_object] <objects>

Scope

Project

Return Value

This command can be used in the following three ways:
 get_message_arg < objects >

 Shows a list of message arguments in input message collection
object.

 Returns string list of message arguments in input message collection
object.

 get_message_arg < objects > -label <arg_label>

 Shows a message argument string corresponding to message
argument label of the message collection object.

 Returns string of the message argument corresponding to message
argument label of the message collection object.

 get_message_arg < objects > -label <arg_label> -as_object

 Shows nothing.

 Returns a collection of design object referred by message argument
label of the message collection object.

Description

The get_message_arg command returns the list of message arguments for
a message object(s) collection.
190
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Arguments

<objects>

Input collection of message object(s) retuned by get_messages command.

-label <arg_label>

Message argument's label(logical name) for which a message argument is
being queried.

<-as_object>

Specify to get collection of design object corresponding to a message
argument label, which refers to some design object of the current design.

NOTE: The -label <arg_label> command argument is mandatory to be specified with this
argument.

Examples

set rule_col [get_rules <RULE NAMES>]
sg_shell> set rule_col [get_rules Ar_syncrst_setupcheck01]
sg_shell> set msg_col [get_messages -of_rule $rule_col]

sg_shell> foreach_in_collection m $msg_col {

 #Print static string of the flagged message
 #NOTICE: the message argument position should
not refer logical labels
 puts "================ message static parts
=================="
 puts [get_attribute $m static_message]

 #Now Print the exact violation message of this
msg collection object
 puts "================ rule messages
=================="
 puts [get_attribute $m msg]

 #Check if a rule message has logical labels
associated?
191
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
 puts "================ has message labels
=================="
 puts [get_attribute $m has_arglabels]
 if { [get_attribute $m has_arglabels] } {

 puts "================ get message All
labels =================="
puts [get_message_labels $m]
 set myLabels [get_message_labels $m]

 puts "================ get_message_arg All
arguments =================="
 puts [get_message_arg $m]

 #Iterate over various labels
 foreach mylabel "$myLabels" {
 puts "================ get_message_arg
=================="
 #Get string values of the message
argument corresponding to a label
 puts "with mylabel: $mylabel : [
get_message_arg $m -label $mylabel]"

 #Get design object corresponding to a
label
 set obj [get_message_arg $m -label
$mylabel -as_object]
 if {[sizeof_collection $obj] != 0} {
 #Yeah! we have design object.. so
we can run any design query command
 #on this object now!!
 puts "Full Name of Obj with label
<$mylabel>: [get_attribute $obj full_name] "
 #lets try to print object_type of
the object ..
 puts "Type of object found with
label <$mylabel>: [get_attribute $obj object_class] "
 } else {
192
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
 puts "Info: Design object not found
or argument is of string type."
 }
 }
 } else {
 puts "No labels associated with the
message"
 }
 }

========= message static parts==================
{At deassertion of synchronous reset
'<RESET>','<TYPE>' pin of '<FLOP>' is held constant at
'<BIT_VAL>'}
 ================ rule messages ==================
 {At deassertion of synchronous reset
'top.inst1.rst1','data' pin of 'top.q2' is held constant at
'0'}
============ has message labels==================
 true
=========== get message All labels ==================
 RESET TYPE FLOP BIT_VAL
puts "No labels associated with the message"
 }
 }

======== message static parts ==================
{At deassertion of synchronous reset '<RESET>','<TYPE>' pin
of '<FLOP>' is held constant at '<BIT_VAL>'}
================ rule messages ==================
{At deassertion of synchronous reset 'top.inst1.rst1','data'
pin of 'top.q2' is held constant at '0'}
============ has message labels ==================
 true
======== get message All labels ==================
 RESET TYPE FLOP BIT_VAL
========= get_message_arg All arguments ==================
 top.inst1.rst1 data top.q2 0
193
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
============== get_message_arg==================
 with mylabel: RESET : top.inst1.rst1
 Full Name of Obj with label <RESET>: top.r1
 Type of object found with label <RESET>: flat_net
============ get_message_arg ==================
 with mylabel: TYPE : data
 get_message_arg: error: object not found for label
'TYPE'!
 Info: Design object not found or argument is of
string type.
======= get_message_arg ==================
 with mylabel: FLOP : top.q2
 Full Name of Obj with label <FLOP>: top.q2
 Type of object found with label <FLOP>: flat_net
========== get_message_arg==================
 with mylabel: BIT_VAL : 0
 get_message_arg: error: object not found for label
'BIT_VAL'!
 Info: Design object not found or argument is of
string type.

See Also

get_messages, get_message_labels
194
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_message_labels
Returns a string list of logical labels for message arguments of a
message object(s) collection

Syntax

get_message_labels [message_collection]

Scope

Project

Return Value

Returns a string list of logical labels for message arguments of a message
object(s) collection in case of successful execution. The empty string list is
returned if no message labels are present for the specified message
collection object.

Description

The get_message_labels command returns a string list of logical labels for
message arguments of a message object(s) collection. If no messages are
found, an empty Tcl string list is returned.

Arguments

<message_collection>

Input collection of message object(s) retuned by the get_messages
command.

Examples

sg_shell> get_message_labels [get_messages -of_rule
[get_rules]]
sg_shell> set rule_col [get_rules <RULE_NAME>]
sg_shell> get_message_labels [get_messages -of_rule
$rule_col -filter {is_waived == true}]
195
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
See Also

get_messages, get_message_arg
196
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_rules
Returns a collection of rule objects that were loaded for the goal
run

Syntax

get_rules
[pattern | -of_messages <message_collection>]
[-filter <filter expression>]

Scope

Project

Return Value

Returns an empty string or a collection of rules in case of successful
execution. The empty string is returned if nothing matches the filtering
criterion.

Description

The get_rules command returns a collection of rule objects that are loaded
for the goal run. The command returns a collection of rules if any rule
matches the pattern or the -of_messages specification and also passes the
filtering criteria, if specified. If no rules match the criteria, an empty string
is returned.

Arguments

<pattern>

Matches rule names with the specified pattern. You can use wildcard
characters, * and ?, for pattern matching.

<-of_messages message_collection>

Returns a collection of rules connected to the messages specified using this
argument. You can only specify the messages returned by the
get_messages command as an input to this argument.
197
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
[-filter expression]

Returns all messages that match the filtering criteria, which is a boolean
expression based on rule attributes. If the expression evaluates to true,
rule is included in the result.

Examples

sg_shell> get_rules

sg_shell> get_rules STARC*

sg_shell> get_rules -of_messages [get_messages]

sg_shell> get_rules -filter {rule_language == "Verilog"}

sg_shell> get_rules -filter {is_enabled == true}

See Also

get_messages, filter_collection
198
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
remove_goal_option
Removes or unsets the specified option in the goal scope

Syntax

remove_goal_option <option-name>

Scope

Goal

Return Value

Returns the option value set before it is unset

Description

The remove_goal_option command removes or unsets the specified option
from the goal scope. sg_shell does not perform any sanity check on the
specified option name. Therefore, if you specify a wrong option name,
sg_shell does not print anything on the screen and returns the control back
to the sg_shell prompt.

To remove an option from the project scope, use the remove_option
command.

Arguments

The remove_goal_option command has the following argument:

<option-name>

Use this argument to specify the option name.

Examples

sg_shell> set_goal_option report { drag inline }
sg_shell> get_goal_option report
drag inline
sg_shell> remove_goal_option report
sg_shell> get_goal_option report
sg_shell>
199
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
See Also

set_goal_option, get_option, set_option, get_goal_option, remove_option,
get_run_option
200
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_run_option
Gets values for the current run

Syntax

Usage 1

get_run_option

Usage 2

get_run_option <option-name>

Scope

Project

Return Value

Usage 1:
 Returns a list of option or value pairs

 Returns parameters in tabular format

Usage 2: Returns the value of the specified option

Description

The get_run_option command gets the option value(s) that would be used
in the current run for the specified option name. When the
<option_name> is not specified, sg_shell displays all the options with
their values and parameters in tabular format that sg_shell would use for
the current run, otherwise it returns the value (s) for the specified option
only.

In case you need to get the value of a particular parameter, use the
get_parameter command.

In case the option value is not set by either using the set_option command
or set_goal_option command, sg_shell returns the default value, if present,
for the specified option. However, if the specified option does not have a
default value, sg_shell does not print anything on the screen and returns
the control back to the sg_shell prompt. If you specify the wrong option
name, sg_shell displays an error message.

The get_run_option command combines the results of the get_option,
201
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_goal_option, and report_parameter commands. If an option can be set by
using the set_option or set_goal_option command only, the result of this
command is identical to that of the get_option or get_goal_option commands
respectively.

Arguments

This command has the following arguments:

<option-name>

Use this argument to specify the name of the run option whose value(s)
needs to be retrieved.

Examples

sg_shell> get_option mthresh
returns value set by the "set_option" command, since
nothing is set so far, so empty string is returned
{}

sg_shell> get_run_option mthresh
returns value as going to be used during run, since
default for 'mthresh' is 4096, so it is printed
4096

sg_shell> set_option report { inline }
sg_shell> set_goal_option report { drag }
sg_shell> puts [get_option report]
inline
sg_shell> puts [get_goal_option report]
drag
sg_shell> set x [get_run_option report]
inline drag
sg_shell> puts $x
inline drag

See Also

set_goal_option, get_option, set_option, get_goal_option, remove_option,
remove_goal_option, report_parameter, set_run_option
202
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
set_run_option
Sets option/parameter to specified value

Syntax

set_run_option <option_name> <value(s)> | <option_name> -
default

Scope

Project

Return Value

Returns a value being set

Description

The set_run_option command gets translated into the set_option
command if used in global scope. It gets translated into the
set_goal_option if used in goal scope, and into the set_parameter
command if the argument is a parameter.

This command is used to internally call the set_option, set_goal_option, or
set_parameter command depending upon the option specified by the user.
 If the argument is a parameter, it gets converted into the

get_parameter command
 If the argument is an option used in global scope, it gets converted into

the get_option command
 If the argument is an option used in goal, it gets converted into the

get_goal_option command

 If -default parameter is specified, it gets converted into
set_parameter command if used in goal scope

The following sanity checks are performed on the value(s) passed before
an option is set:
 Option name is not specified

 Option value is not specified if -default is not given

 If -default is specified, then option should be a parameter used in
goal_scope
203
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Above checks can be either of Error or Warning severity. If check is flagged
with Error severity, current set_run_option command is ignored. Otherwise
option would be set as per values passed in the command.

Remaining sanity checks that are performed by SpyGlass would be
performed at the time of executing the run_goal command. If set_option is
successful then it will return the value being set.

Arguments

This command has the following arguments:

<option-name>

Use this argument to specify the option/parameter to be set

<option-value>

Use this argument to specify value of the option/parameter

Examples

sg_shell> set_run_option verbosity 1
set_run_option: info: using default project `spyglass-
15.prj'
set_run_option: info: using `set_option\u2019 to set option
`verbosity\u2019 in project scope

1

sg_shell> set_run_option strict 1
set_run_option: info: using `set_parameter\u2019 to set
parameter `strict\u2019 in methodology scope

1

sg_shell> set_run_option stict 1
set_run_option: info: using `set_parameter\u2019 to set
parameter `stict\u2019 in methodology scope
set_parameter: error: parameter ̀stict' is not registered

sg_shell> current_goal lint/lint_rtl -alltop
current_goal: info: loading goal `lint/lint_rtl' (in
progress) current_goal: info: finished loading goal `lint/
lint_rtl' (ok)
204
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sg_shell> set_run_option verbosity 1

set_run_option: info: using `set_goal_option\u2019 to set
option `verbosity\u2019 in goal scope
option `verbosity' is not a goal specific option, please set
it by set_option

sg_shell> set_run_option strict 1
set_run_option: info: using `set_parameter\u2019 to set
parameter `strict\u2019 in goal scope
1

sg_shell> set_run_option strict -default
set_run_option: info: using `set_parameter\u2019 to set
parameter `strict\u2019 in goal scope
W342,W343

sg_shell> set_run_option strit -default
set_run_option: info: using `set_parameter\u2019 to set
parameter `strit\u2019 in goal scope
set_parameter: error: parameter ̀ strit' is not registered

sg_shell> set_run_option set_parameter rme_active 1
set_run_option: info: using `set_parameter\u2019 to set
parameter `set_parameter\u2019 in goal scope
set_parameter: error: parameter `set_parameter' is not
registered

sg_shell> set_run_option rme_active 1
set_run_option: info: using `set_parameter\u2019 to set
parameter `rme_active\u2019 in goal scope
1

See Also

set_goal_option, get_option, set_option, get_goal_option, remove_option,
remove_goal_option, get_run_option
205
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
set_parameter
Sets the value of the specified parameter

Syntax

Usage 1

set_parameter <param-name> <param-value>

Usage 2

set_parameter <param-name> -default

Scope

Methodology, Goal

Return Value

Usages 1 and 2: Returns the parameter value being set

Description

The set_parameter command sets the value of the specified parameter. A
parameter that is set after selecting a methodology is applicable to all
goals of the selected methodology. A parameter set in methodology scope
can be overridden with a new value after selecting a goal. If the value of
the parameter is changed in goal scope, it does not affect the value of that
parameter in the methodology scope. If a parameter is not set in the
current goal, its value is inherited from the methodology scope of the goal.

A parameter may have a default value. You can review the current value
versus the default value for each parameter as part of the report generated
by using the write_report goal_setup command. Alternatively, you can
use the get_parameter ALL command to view this information. Please note
that these commands are valid for goal scope only.

It is recommended that you enclose the parameter value in curly brackets
({}) so that any Tcl-specific interpretation is not applied on it. The
following example specifies the value of the
synchronize_data_cells parameter:

sg_shell> set_parameter synchronize_data_cells
{sync2sdffcq_f4_d?}
206
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
If the parameter is Boolean, that is, specified with no =<param-value>
like strict, then it should be specified with value, 1, as shown below:

sg_shell> set_parameter strict 1

The Boolean values (true, on, 1, or yes; and false, off, 0, or no), which are
supported for Boolean option set in set_option or set_goal_option command,
are also supported by the set_parameter command in sg_shell. When the
parameter value specified is different from the allowed values specified in
the parameter registration (in case the parameter registration restricts
allowable values), the given value is converted to the corresponding true or
false value as specified in the parameter registration. In such a case,
save_project saves the converted parameter value in the project file.

When the project is opened in Atrenta Console, the parameter value
specified in the project file should be one of the allowed values in the
parameter registration.

If a parameter has been set multiple times, sg_shell considers the last set
value and uses that value during the run_goal command.

sg_shell performs the following sanity checks when a parameter is set in
methodology and goal scopes:
 Whether parameter specified is registered in the set of products loaded

 Whether parameter has been made obsolete

 Invalid enum value specified in an enum type of parameter

 String type of value specified for integer or float type of parameter

 Out of range value specified for parameters that accept a range of
values

The following file or directory checks are performed for file or directory
type of parameters:
 File or directory does not exist

 Read or write permissions are not there on the file directory

 File given for directory or vice versa

 Directory specified for directory type of parameter is empty

The remaining sanity checks as done by SpyGlass are performed at the
time of the run_goal command.

You can view the list of parameters available in the current scope by using
207
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
the help -params command. To view the help of a particular parameter,
use the help -params <parameter-name> command.

Arguments

The set_parameter command has the following arguments:

<param-name>

Use this argument to specify the parameter name that needs to be set.

<param-value>

Use this argument to specify the parameter value.

-default

Use this argument to set the default value for the specified parameter in
the goal scope. This option is not allowed in the methodology scope.

Examples

sg_shell> new_project new

sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/New_RTL
sg_shell> set_parameter clock_reduce_pessimism mux_sel
sets parameter in methodology scope
sg_shell> get_parameter clock_reduce_pessimism
mux_sel

sg_shell> current_goal initial_rtl/cdc_exhaustive/
cdc_verif_base_strict
sg_shell> get_parameter clock_reduce_pessimism
inherits settings from the methodology scope
mux_sel
sg_shell> set_parameter clock_reduce_pessimism latch_en
overrides parameter value with local goal setting
sg_shell> get_parameter clock_reduce_pessimism
latch_en
208
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sg_shell> current_goal none
sg_shell> get_parameter clock_reduce_pessimism
value in methodology scope
mux_sel

sg_shell> current_goal initial_rtl/cdc_exhaustive/
cdc_verif_base_strict
sg_shell> get_parameter clock_reduce_pessimism
latch_en
sg_shell> set_parameter clock_reduce_pessimism -default
default setting as part of goal, which
is "all" for clock_reduce_pessimism
sg_shell> get_parameter clock_reduce_pessimism
all

sg_shell> current_goal none
sg_shell> get_parameter clock_reduce_pessimism
value in methodology scope
mux_sel

See Also

get_parameter
209
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
get_parameter
Gets the value of the specified parameter set in the current goal

Syntax

Usage 1

get_parameter

Usage 2

get_parameter <param-name>

Scope

Methodology, Goal

Return Value

Usage 1: Returns a list of option/(value/default-value) pairs

Usage 2: Returns the value set for the specified option, <param-name>

Description

The get_parameter command gets the value of the specified parameter in
the current scope (methodology or goal).

In the methodology scope, this command returns parameter value as
applicable to all goals of the methodology. In the goal scope, this command
returns parameter value as applicable to the current goal. If a parameter is
not set in the current goal, its value is inherited from the methodology
scope. If the parameter name is not specified, the get_parameter
command returns the value for all the parameters applicable in current
scope.

In case the parameter value is not set by using the set_parameter
command, sg_shell returns the default value, if present, for the specified
parameter. However, if the parameter does not have a default value,
sg_shell does not print anything on the screen and returns the control back
to the sg_shell prompt. The same thing happens if you specify a wrong
parameter name because there is no sanity check done on the parameter
name. However, a message is printed on the screen when you specify an
unregistered or obsolete parameter after selecting a goal.
210
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Arguments

The get_parameter command has the following arguments:

<param-name>

Use this argument to retrieve the value of the specified parameter.

Examples

sg_shell> new_project new
sg_shell> current_methodology $::env(SPYGLASS_HOME)/
GuideWare/New_RTL
sg_shell> set_parameter clock_reduce_pessimism mux_sel
sg_shell> get_parameter clock_reduce_pessimism
mux_sel

sg_shell> current_goal initial_rtl/cdc_exhaustive
/cdc_verif_base_strict
sg_shell> get_parameter clock_reduce_pessimism
inherits settings from the methodology scope
mux_sel
sg_shell> set_parameter clock_reduce_pessimism latch_en
sg_shell> get_parameter clock_reduce_pessimism
latch_en

sg_shell> current_goal none
sg_shell> get_parameter clock_reduce_pessimism
value in methodology scope
mux_sel

sg_shell> current_goal initial_rtl/cdc_exhaustive
/cdc_verif_base_strict
sg_shell> get_parameter clock_reduce_pessimism
latch_en
sg_shell> set_parameter clock_reduce_pessimism -default
default setting as part of goal, which
is "all" for clock_reduce_pessimism
211
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sg_shell> get_parameter clock_reduce_pessimism
all

sg_shell> current_goal none
sg_shell> get_parameter clock_reduce_pessimism
value in methodology scope
mux_sel

See Also

set_parameter
212
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
report_parameter
Report parameters in tabular format

Syntax

report_parameter [get_parameter]

Scope

Project, Goal

Return Value

None

Description

The report_parameter command displays parameters in a tabular format.
Provide the get_parameter command without argument as an input to this
command.

Arguments

None

Examples

sg_shell> report_parameter
report_parameter: error: invalid usage (mandatory options
missing, or wrong combination of options)
Try 'report_parameter -help' for more details.
sg_shell> get_parameter
checkInHierarchy {yes yes} checkRTLCInst {yes yes}
check_default_value {yes yes}
sg_shell> report_parameter [get_parameter]
Parameters in the current scope:
+++
Parameter Name Current Value Default Value
===
checkInHierarchy yes yes
checkRTLCInst yes yes
213
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
check_default_value yes yes
+++

See Also

get_option, get_goal_option, get_run_option, report_parameter, get_parameter
214
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
run_goal
Runs the selected goal

Syntax

Usage 1

run_goal

Usage 2

run_goal -goal <goal_list>

Usage 3

run_goal -goal <goal_list> -group_name <group_name>

Usage 4

run_goal -goal <goal_list> -group_name <group_name>
-host_config_file <parallel_run_config_file>

Usage 5

run_goal -goal <goal_list> -host_config_file
<parallel_run_config_file>

Usage 6

run_goal -group_name <group_name> -host_config_file
<parallel_run_config_file>

Usage 7

run_goal <goal_list>

Scope

Goal

Return Value

Usages 1–7: Returns ‘exit_code {error string}’ pair
NOTE: Refer to the Exit Codes Reported by sg_shell section for more information on exit

codes generated by sg_shell.
215
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Description

The run_goal command runs the currently selected goal with the currently
selected top-level module. This command runs all the rules as specified in
the goal.

NOTE: By default, the SpyGlass save-restore feature is enabled during run_goal. To turn
off this feature, specify the set_option enable_save_restore false
command. This command turns off the save-restore feature for the complete
project. Therefore, goals will be run with this feature turned off.

The run_goal command normally prints a number of messages on the
screen. A user can redirect its output to a file by using shell redirection
operator, >, or capture it in some file by using the capture command.

Parallel Goal Execution in SpyGlass

SpyGlass is enhanced with the parallel goal execution feature. A user can
run multiple goals that perform various checks, such as clock domain
analysis, timing analysis, testability analysis, power analysis and reduction,
and equivalence checking, to ensure that RTL meets all design
requirements. It also ensures that there are no clock, test, power, or timing
violations. This feature is available in console, batch console, and sg_shell,
but not in traditional SpyGlass.

Multiple goals can be run in parallel by using the run_goal command in
sg_shell:

sg_shell> run_goal G1 G2 -host_config_file <file_path>

Where:
 run_goal command can be used inside methodology scope or after the

current_goal command. All goals that are run in parallel should belong
to the same methodology.

 G1 and G2 are goals that need to be run sequentially or in parallel.

 -host_config_file <file_path>: Specify the path of
configuration file containing settings for running multiple goals on
several machines in parallel. These settings include protocol to follow for
remote login and other configuration, such as maximum parallel goals,
to run.

For remote login, the following protocols are supported:
 LSF: Run goals using LSF as login protocol. It takes LSF command as an

input.
216
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
NOTE: Currently, only the bsub command is supported for LSF protocol. To use qsub, see
Using the qsub Command During Parallel Goal Run through LSF.

 RSH: Run goals using RSH as login protocol. It takes a list of machines
with a maximum process limit for each machine as an input separated
by a colon from the machine name. The default number of processes
that can be run on a machine is 1.

 SSH: Run goals using SSH as login protocol. It takes a list of machines
with a maximum process limit for each machine as an input separated
by a colon from the machine name. The default number of processes
that can be run on a machine is 1.

The configuration keys that are provided in .spyglass.setup to turn ON the
parallel run feature are as follows:
 ENABLE_PARALLEL_RUN: This configuration key enables the parallel

run feature. Currently, only the following keywords are supported for
parallel goal run:
 none

 goal

By default, this configuration key is set to none in the installation
.spyglass.setup file. This indicates the parallel goal feature is disabled.
From the user interface perspective, the parallel run toggle button in
Goal Setup window is hidden if the key is set to none. Similarly, the
toggle button is displayed if the key is set to goal.

 HOST_CONFIG_FILE: This configuration key provides the machine
details for parallel execution. This key is kept as commented in the
installation .spyglass.setup file, which can be changed if desired. This key
is ignored if the ENABLE_PARALLEL_RUN key is set to none.

Format of Parallel Goal Run Settings Configuration File
The format of the parallel goal run settings configuration file is the same as
that of the configuration file used to perform distributed runs of Advanced
SpyGlass CDC rules on several machines. The configuration file is an ASCII
text file that contains specific lines for different methods, as discussed
below:
 The LSF method contains the following lines:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
217
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
LSF_CMD: <bsub-command>

Details of various arguments and keywords are as follows:

 Specify the value of the LOGIN_TYPE keyword as lsf.

 The <num> argument of the MAX_PROCESSES keyword specifies the
maximum number of processes to be spawned. This argument is
mandatory.

 The <bsub-command> argument of the LSF_CMD keyword specifies
the LSF invocation command. (default is bsub).

 A space is required after “LOGIN_TYPE:” and “MAX_PROCESSES:”.

 The # and // symbols are supported as comments in the config file
Following is an example of the LSF method:

LOGIN_TYPE: lsf
//LOGIN_TYPE: rsh
MAX_PROCESSES: 5
LSF_CMD: bsub -q "normal | priority"
//LSF_CMD: bsub -q bsub

In the above example, the -q option is used to specify the queue as
normal or priority.

 The RSH and SSH methods contain the following lines:

LOGIN_TYPE: rsh | ssh
MAX_PROCESSES: <num>
MACHINES:
<machine1-name>[:<num-processes>]
<machine2-name>[:<num-processes>]
...

Details of various arguments and keywords are as follows:

 Specify the value of the LOGIN_TYPE keyword as rsh or ssh.

 The <num> argument for the MAX_PROCESSES keyword specifies
the maximum number of processes to be spawned. This argument is
mandatory.

 The arguments, such as <machine1-name>, <machine2-name>,
refer to the machine names. If the machine keyword is not specified,
218
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
it indicates you want to run goals on the current machine itself. In
that case, the LOGIN_TYPE keyword is ignored.

 The <num-process> argument refers to the number of processes to
be spawned on the specified machine. Default value is 1.

 A space is required after “LOGIN_TYPE:” and “MAX_PROCESSES:”.

 The # and // symbols are supported as comments in the config file.

NOTE: If the login type is SSH, the SSH_ID_FILE file specifies the login details for SSH
login so that login does not require user name and password. Please check the man
page for 'ssh' login on how to generate this file.

Following is an example of the SSH method:

LOGIN_TYPE: ssh
#LOGIN_TYPE: rsh
MAX_PROCESSES: 5
MACHINES:
engr1: 1
#engr2: 1
ae3: 1
condor1: 4

Files Generated After Parallel Goal Execution
 <project_name>_modified.prj: This is the modified project file,

using which you can run the goals in parallel. This file contains all the
user settings and data required for all the goals.

 <project_name>_temp.prj: This file contains the default settings.
Initially, the default settings are saved and goals are run with the new
(modified) project <project_name>_modified.prj. Once the parallel run is
complete, the settings specified in the <project_name>_temp.prj file are
used for the subsequent runs.

Using the run_goal Command for Parallel Goal Execution
The run_goal command is used for parallel goal execution in SpyGlass. This
command can be used both outside and inside the scope of the
current_goal command as follows:
 run_goal outside of current_goal: In the following command, goals

G1 and G2 run sequentially one after another on the current machine if
the ENABLE_PARALLEL_RUN configuration key is set to none.
219
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
run_goal -goal {G1 G2}

If ENABLE_PARALLEL_RUN is set to goal, the run_goal command
generates an error message asking you to supply the parallel run
configuration file if not supplied in the configuration files. Use the
following command to supply the parallel run configuration file:

run_goal -goal {G1 G2} -host_config_file <m/c info file>

As a result, goals G1 and G2 run in parallel depending on the machine
details specified in the configuration file. Once the run is complete,
results of the first goal specified in goal list is loaded with the goals
specified by -goal option or those specified as positional arguments
given higher preference over groups specified over -group_name option.
Once control is returned, you can switch to the intended goal as in
Console.
However, if a regression goal needs to be run, only named regression
goals can be run in parallel with other goals.

run_goal -goal {G1 G2} -group_name {X Y} -host_config_file
<m/c info file>

This means four goals, including independent goals G1 and G2, and
regression goals with group names X and Y, run in parallel on the
machines specified in the -host_config_file option. If
ENABLE_PARALLEL_RUN is set to none, the above command would run
these four goals sequentially on the current machine after prompting
you that the -host_config_file option is ignored.

 run_goal inside current_goal: The run_goal command inside a
selected goal is functionally the same as running this command outside
a selected goal, except for the following differences:
 The goal selected for parallel execution would override currently

selected goal such that currently selected goal is unloaded.
 If run_goal command fails, last selected goal is loaded back. Else,

results of first goal is loaded (as in run_goal outside current_goal,
goals specified by -goal option or those specified as positional
arguments given higher preference over groups specified over -
group_name option).

 If the run_goal command is performed without any -goal or
-group_name, currently selected goal is run on current machine and
-host_config_file option, if specified, is ignored.
220
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Running Goals Sequentially Using Remote Login
A user can use this mechanism to run multiple goals, but on a separate
machine without exiting the current session on the current machine. Set
the MAX_PROCESSES variable in the configuration file to 1 to run goals
sequentially using remote login. In such case, goals are first ordered into
the goal dependency tree. The goal dependency tree checks whether a goal
depends on some prerequisite goals that must be run before. The goals are
run sequentially as per settings specified in configuration file.

Examples

sg_shell> run_goal G1 G2 G3 G4 -host_config_file
<settings.txt>

The content of settings.txt changes in the following examples:
1. Running multiple goals sequentially on the same machine

LOGIN_TYPE : rsh
MAX_PROCESSES: 1

2. Running multiple goals sequentially on a different machine, identified by
login protocol given you

LOGIN_TYPE : lsf
MAX_PROCESSES: 1
LSF_CMD: bsub

OR

LOGIN_TYPE : rsh | ssh
MAX_PROCESSES: 1
MACHINE :
<machine1>

Here, only one task is submitted on LSF at a time and the next task is
submitted once the first task is complete. For RSH and SSH, all goals
run sequentially on the first machine in the machine list given above. If
no machine is specified, all goals run sequentially on the local user
machine. In this case, MAX_PROCESS should be set to 1.

3. Running multiple goals in parallel across various machines
In the following example, a maximum of two goals can be run in
221
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
parallel on LSF queues normal and priority

LOGIN_TYPE : lsf
MAX_PROCESSES: 2
LSF_CMD: bsub -q "normal | priority"

In the following example, a maximum of two goals can be run in
parallel, a maximum of one goal can be run on <machine1> at a time
and four goals can be run in parallel on <machine2>

LOGIN_TYPE : rsh | ssh
MAX_PROCESSES: 2
MACHINE :
<machine1>
<machine2>:4

In the examples given above, because MAX_PROCESS limit is set to 2,
only two goals can be run in parallel at a time. Goals G1 and G2 run in
parallel, with the first followed by running goals G3 and G4 in parallel in
the following order (in each of examples a and b).

Example a: Goals G1 and G2 run on LSF. LSF manages queue normal
and priority.

Example b: Goal G1 runs on <machine1> on which a maximum of
one process can be performed, and goal G2 runs on <machine2>. As
MAX_PROCESS limit is 2, despite the fact that four processes can be run
on <machine2>, the next goal (G3 here) is run only when one of goals
G1 and G2 returns. It runs on whichever machine is available first.
Similarly, goal G4 runs on whichever machine is available first,
maintaining the total process count always as 2.
Ordering of machines in the list has an impact on machine selection for
execution. If <machine2>:4 comes first, and the maximum process
limit is 2, both goals always run on <machine2>, and <machine1> is
used if <machine2> is down.

Notes

Consider the following points while running and analyzing results of goals
run in parallel:
 During parallel goal run, all the specified design files are first

precompiled. At the same time, gateslib files are compiled to aggregate
222
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
sglib if the enable_gateslib_autocompile option is specified. This is
required so that all the precompiled design data (RTL) become read only
during parallel goal runs and gateslib files are not recompiled during
goal runs because otherwise it may cause disk write race condition.

 Once precompilation and automatic compilation of gateslib are over, the
input command line is changed. Top-level design unit, if not present in
the project, is set for running parallel goals if the design is a single-top
design.

 Multiple top-level design modules in parallel goal run are not supported.
In such cases, flow stops and the user needs to set the top-level design
module explicitly before proceeding to run goals in parallel.

 By default, the enable_precompile_vlog and dump_precompile_builtins
project file commands are enabled while precompiling design files.

 The hdllibdu option is added while running a parallel goal so that all
messages reported at the RTL stage during the precompilation run are
also reported during the goal run. These messages are reported in
absolute file paths.

 DDR goals, which require dual design read capability to run, are
currently unsupported in sg_shell.

 Only goals belonging to the same synthesis mode (classic, optimized, or
technology mapped) are allowed to be run in parallel.

 Each run separately checks out all the licenses that are required to run
corresponding goal along with license for checker.

 If the login type in the specified host configuration file is lsf, do not
specify the -I option of the bsub command in the LSF_CMD keyword.

 Parallel goal run is not supported in the DEF mode.

Sanity Checks During Parallel Goal Run

The following checks are performed during parallel goal run on the parallel
run configuration file and on the goals need to be run in parallel:

Check 1
The following message appears if parse errors are found in the parallel run
configuration file.

run_goal: error: Could not open parallel run file '<file-name>'

Check 2
223
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
The following message appears for an invalid login type specified in the
LOGIN_TYPE keyword.

run_goal: error: <type> is not a supported login type

Check 3
The following message appears for unsuccessful LSF run with the specified
command.

run_goal: error: Lsf run with specified command is not
successful

Check 4
The following message appears if process count is not a positive integer
value.

run_goal: error: Process count must be a positive integer

Check 5
The following message appears if none of the machines specified in RSH or
SSH protocol is accessible.

run_goal: error: None of the machines specified is accessible

Check 6
The following message appears to indicate the machines that are not
accessible.

run_goal: warning: Machines '<machines>' are not accessible

Check 7
The following message appears if the LOGIN_TYPE keyword is not specified
in the parallel file.

run_goal: error: LOGIN_TYPE: is not specified

Check 8

The following message appears if an error occurs while executing the lsf
bsub command.

run_goal: error: Error executing lsf bsub command

Check 9
The following message appears if no goal list is specified in the run_goal
command, but the HOST_CONFIG_FILE key is set.
224
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
run_goal: info: ignoring `-host_config_file' option as
goalList/groupList not specified, currently selected goal would
run on current machine

Check 10
The following message appears if the ENABLE_PARALLEL_RUN key is set to
none and goal list is specified in the run_goal command, but the
HOST_CONFIG_FILE key is set.

run_goal: warning: ignoring `-host_config_file' option as
parallel run is not enabled, goals would be run sequentially on
current machine

Check 11
The following message appears if the ENABLE_PARALLEL_RUN key is set to
none, but goal list is specified in the run_goal command.

run_goal: warning: parallel run is not enabled, goals would be
run sequentially on current machine

Check 12
The following message appears if no goal list is specified in the run_goal
command, but the HOST_CONFIG_FILE key is set.

run_goal: info: ignoring `-host_config_file' option as
goalList/groupList not specified, currently selected goal would
run on current machine

Check 13
Goals pertaining to different synthesis modes cannot be run together. In
such cases, the run_goal command fails and generates the following error
message.

run_goal: error: goals specified belong to different synthesis
mode, please specify goals of one mode only-

Following goals belong to classic synthesis mode

goal1, goal2 ..

Following goals belong to optimized synthesis mode

goal3, goal4 ..

Following goals belong to techmapped synthesis mode

goal5, goal6 ..
225
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
given goals can not be run in parallel, aborting parallel run
...

Check 14
If all goals pertain to the same synthesis mode, they may contain design
options or goal options that can cause or netlist object model database
(NOMDB) to be saved again. Such mixing of goals is not allowed and
generates the following error message.

run_goal: error: following goals can not be run in partial/full
restore mode, please specify all goals that can be run on
restored netlist-

goal1, goal2…

given goals can not be run in parallel, aborting parallel run
...

Using the qsub Command During Parallel Goal Run through LSF

The qsub command is not inherently supported while running goals in
parallel through LSF protocol. However, you can still use qsub by writing a
wrapper script (say qsub_wrapper) over qsub and specifying it as an
LSF command in the parallel run configuration file. This wrapper script
would dissect the inputs sent to it by SpyGlass and create a command line
suited to qsub.

Parallel run configuration file appears as the following:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
LSF_CMD: qsub_wrapper

Ensure that the directory containing qsub_wrapper script is present in
your path variable.

The qsub_wrapper script appears as follows:

#!/bin/sh
script=/tmp/my_script$$
outputfile=
spyglass_cmd=
while [$# -gt 0];
226
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
do
 case $1 in
 -o)
 shift;
 outputfile=$1
 ;;
 -K) ;;
 *)
 if ["X${spyglass_cmd}" != "X"]; then
 spyglass_cmd="${spyglass_cmd} $1"
 else
 spyglass_cmd=$1
 fi
 esac
 shift;
done
\rm -f ${script}
echo "#!/bin/sh" > ${script}
echo "#PBS -o ${outputfile}" >> ${script}
echo "${spyglass_cmd}" >> ${script}
qsub -V ${script}
\rm -f ${script}

The above qsub_wrapper script generates the /tmp/my_script<process_id>
file, which is used as an input to the qsub LSF command. This file appears
like the following:

#!/bin/sh
#PBS -o output.txt
$SPYGLASS_HOME/bin/sg_shell -32bit -tcl test.tcl

Run-Time Advantage from a Parallel Goal Run

Parallel goal run should give significant time improvement over running the
goals sequentially. In an ideal scenario, if all goals are run in parallel, you
should see the overall parallel run-time equal to the run-time of the goal
that takes maximum time when run individually.

However, in actual parallel run environment, the run-time is more than the
ideal situation because of the following factors:
227
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
 Parallel goal run is limited by the number of available machines, and
also by the number of processes allowed to be run on a given machine.
If you want to reduce the parallel run-time further, increase the machine
pool available for parallel goal run, and update your parallel run
configuration file accordingly.

 There may be some interdependencies among the goals specified for
parallel run, which could delay the running of a goal till its dependent
goals have been run.

 Parallel goal run requires some initial setup stage where goals are
checked for their synthesis view requirement, and any disk write
operations, such as design precompilation and design save are
performed. Such setup activities are critical to ensure there are no disk
read/write operations at the same time from different goals when these
are running in parallel.

In parallel goal run, each goal loads policies/design independently. The
time spent in parallel run setup plus the time taken by policies/design load
for each parallel goal should get offset in parallel goal run if rule-checking
time is significant, because rules are running in parallel.

Peak Memory Reduction During Parallel Goal Run

Normally, during parallel goal run, design read happens during first goal
run. You can use the parallel_run_options option to specify the
mode in which parallel run design read is performed. Currently, the
separate_design_read value is supported for this option.

For example:

sg_shell> set_option parallel_run_options
separate_design_read

When you set the value of this option to separate_design_read, a
separate design read is performed and NOM DB is saved, during design
read. This can help in reducing the PEAK memory requirement.
Goals are then run in parallel in NOM restore mode.

NOTE: Currently, separate design read is done for goals that use the classic view of
synthesis and is not available for the goals that need techmapped or optimized
synthesis.

See Also

current_goal
228
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
save_goal
Used to save design query data for the currently selected goal

Syntax

save_goal

Scope

Goal

Return Value

Returns an empty string when the saving of design query data is
successful. In case of an unsuccessful execution, an error is returned that
you can trap using the catch command.

Description

This command is used to save design query data for the currently selected
goal, so that it can be queried when user comes back to the same goal in
the same/different session. As part of the save for the design query data,
the product attributes defined on object classes, such as design,
du_cell, du_port, du_net, du_pin, flat_pin, flat_port,
flat_cell, and flat_net are saved.

If auto_save option is enabled prior to running the goal, then the design
query data for the currently selected goal is saved as part of run_goal
command. In this case, user does not need to explicitly save design query
data of individual goal using this command, as the save happens
automatically in the run_goal command.

The auto_save option is also honored by the current_goal,
close_project, and exit commands. These commands also save the design
query data of the last active goal if it has not been saved earlier. This
option basically ensures that the goal design query data is always saved
before coming out of the currently selected goal. If this option is set, the
save_goal command need not have to be explicitly specified to save the
design query data for individual goals.
229
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
Arguments

The save_goal command has the following argument:

[-quiet]

Use this argument to turn the silent mode on. When this argument is
specified, no progress information is displayed while the attributes are
being saved.

Examples

Consider the following commands:

sg_shell> current_methodology $SPYGLASS_HOME/Methodology/DFT
sg_shell> current_goal dft_scan_ready -top top
sg_shell> run_goal
sg_shell> save_goal
save_goal: info: flat root information for module 'top' is
already saved
save_goal: info: saving attribute 'static_controllability'
of product 'dft' ...
save_goal: info: attribute 'static_controllability' saved
successfully (Time = 2.10s, Memory = 0.8K)
save_goal: info: saving attribute 'static_observability' of
product 'dft' ...
save_goal: info: attribute 'static_observability' saved
successfully (Time = 0.01s, Memory = 0.4K)

See Also

restore_goal, run_goal
230
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
restore_goal
Used to restore design query data for the currently selected goal

Syntax

restore_goal

Scope

Goal

Return Value

Returns an empty string when the restoration of design query data is
successful. In case of an unsuccessful execution, an error is returned that
you can trap using the catch command.

Description

This command is used to restore design query data for the currently
selected goal. In general, product attributes are restored when user
queries for a specific attribute. However, if this command is given with -
attribute_also option, then all the product attributes are also
restored.

It is required that user should have saved the product attributes earlier
while working on the currently selected goal. This command allows to
restore the previously saved design query data including all the product
attributes on object classes, such as design, du_cell, du_port,
du_net, du_pin, flat_pin, flat_port, flat_cell, and
flat_net.

If auto_restore option is enabled, then the design query data for the
active goal is restored as part of current_goal and open_project
commands. In this case, only design data is restored, and the product
attributes are restored when user queries for a specific attribute.

Arguments

The restore_goal command has the following arguments:
231
Synopsys, Inc.

Goal Setup or Run Commands

SpyGlass Tcl Commands
[-attributes_also]

Enables the restore of product attributes also.

[-quiet]

Use this argument to turn the silent mode on. When this argument is
specified, no progress information is displayed while the attributes are
being restored.

Examples

Consider the following commands:

sg_shell> current_methodology $SPYGLASS_HOME/Methodology/DFT
sg_shell> current_goal dft_scan_ready -top top
sg_shell> restore_goal -attributes_also
restore_goal: info: restoring synthesized design view from
saved design database ...
restore_goal: info: synthesized design view restored
successfully (Time = 5.52s, Memory = 234.5K)
restore_goal: info: creating flat root from saved information
for module 'top' ...
 Flattening top
 Flattening completed
restore_goal: info: flat root created successfully for module
'top' (Time = 13.25s, Memory = 402.6K)
restore_goal: info: restoring attribute
'static_controllability' of product 'dft' ...
restore_goal: info: attribute 'static_controllability'
restored successfully (Time = 0.90s, Memory = 9.8K)
restore_goal: info: restoring attribute
'static_observability' of product 'dft' ...
restore_goal: info: attribute 'static_observability'
restored successfully (Time = 0.10s, Memory = 0.8K)

See Also

save_goal, current_goal, open_project
232
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
ADC Setup Commands
Commands under this group allow you to set up the design by introducing
Atrenta Design Constraints, or ADC.

These commands can be categorized in the following groups:
 ADC Commands

 Utility Commands

ADC Commands

Atrenta Design Constraints, or ADC, commands are Tcl shell based
constraints that can be used directly in sg_shell. Most of the SGDC
commands have corresponding ADC commands with the same constraint
and field names.

NOTE: ADC commands and their option usages may change across releases, with proper
notification, because the use model evolves to improve productivity and
effectiveness. For scripting purpose, use your own Tcl wrappers for such commands
to enable easy adoption to command changes.

List of ADC Commands

The following table lists the ADC commands supported in Tcl shell. This list
includes new commands and the SGDC commands supported as a part of
the ADC command set.

.

create_clock create_clock_attrib
ute

create_generated_
clock

set_annotated
_transition

set_case_analysis set_dft_signal set_dont_touch_n
etwork

syn_set_dont_
use

set_driving_cell set_false_path set_ideal_network set_input_dela
y

set_load set_multicycle_pat
h

set_output_delay set_scan_grou
p

set_wire_load_mo
de

set_wire_load_mo
del

abstract_port activity

activity_data allow_combo_logic antenna_cell aon_buffered_
signals
233
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
assume_path atspeed_clock_fre
quency

balanced_clock blackbox_pow
er

block breakpoint bypass cdc_false_path
cell_hookup clock_buffer clockgating clock_group
clock_pin clock_root clock_shaper complex_cell
compressor dbist decompressor define_library_

group
define_reset_order define_tag delay_buffer deltacheck_sto

p_instance
deltacheck_ignore
_module

deltacheck_start deltacheck_stop_in
stance

deltacheck_sto
p_module

deltacheck_stop_si
gnal

design_map_info domain dont_touch

expect_frequency false_path fifo force_ta
gating_cell gating_cell_enable initstate input_drive_st

rength
instance_trace ip_block isolation_wrapper keeper
mapped_pin_map memory memory_port memory_read

_pin
memory_tristate memory_type memory_write_dis

able
memory_write
_pin

meta_design_hier mode_condition module_bypass module_pin
multivt_lib network_allowed_c

ells
no_atspeed no_fault

force_no_scan noclockcell_start noclockcell_stop_i
nstance

noclockcell_sto
p_module

noclockcell_stop_si
gnal

non_pd_inputcells num_flops operating_mod
e_set

output_not_used pg_cell pg_pins_naming pll
port_time_delay power_data power_down power_manag

ement_test_co
ntrol_cell

power_manageme
nt_unit

power_rail_mappin
g

pr_safe_clocks pulldown

pullup qualifier quasi_static ram_instance
ram_switch repeater_buffer require_path require_pulse
234
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
NOTE: The clock SGDC command is not supported in Tcl shell. Instead, you can use the
create_clock, create_clock_attribute, and create_generated_clock commands to
specify clock and its attributes. Similarly, the input and output commands are not
supported in Tcl shell. Instead, you can use the set_input_delay and
set_output_delay commands to specify input and output delay.

require_structure require_value reset reset_pin
require_strict_path rme_config force_scan
scan_cell scan_chain scan_ratio scan_type
scan_wrap sdc_data select_wireload_m

odel
seq_atpg

set_clock_gating_t
ype

syn_set_dont_use set_pin sgdc

shadow_ratio abstract_port special_cell special_modul
e

spef_data switchoff_wrapper
_instance

test_mode test_point

tie_x tristate_cell ungroup_cells use_library_gr
oup

vt_mix_percentag
e

watchpoint wireload_selection require_strict_
path

illegal_path always_on_buffer always_on_cell always_on_pin
assertion_signal cell_pin_info cell_tie_class domain_inputs
domain_outputs domain_signal ignore_crossing input_isocell
isolation_cell levelshifter pin_voltage power_down_s

equence
power_switch retention_cell retention_instance power_state
supply voltage_domain define_sgdc_severi

ty_class
end_sgdc_sev
erity_class

illegal_value illegal_constraint_
message_tag

require_constraint
_message_tag

sg_clock_grou
p

abstract_block_vio
lation

simulation_data abstract_file abstract_interf
ace_param

abstract_interface
_port

voltage_domain memory_inst_port power_state
235
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
How to Specify ADC Commands

ADC commands can be specified in the following ways:
 Mode 1: ADC commands can be specified directly in sg_shell as follows:

sg_shell> test_mode -name {in1} -value {1}

 Mode 2: The following command adds an ADC file, which has ADC
commands, to the project:

sg_shell> read_file -type adc <file_name> for adc
constraints

Tcl Format of ADC Commands

ADC commands follow Tcl syntax. Please refer to the Using Escape Names in
sg_shell section for more details on how to specify escape names in
sg_shell.
 For ADC-constraint fields supporting scalar value, specify ADC

commands in the following format:

sg_shell> sgdc_cmd {value}

For instance, consider the test_mode constraint given below:

sg_shell> test_mode -name {pin1} -value 1

You can also specify the above test_mode constraint without curly
brackets, as there is no escape name:

sg_shell> test_mode -name pin1 -value 1

To specify an escape name or a wildcard pattern, curly brackets are
mandatory, as shown below:

sg_shell> test_mode -name
{test1.sub1_inst.\label2.sub3_inst .clk} -value 1

For scalar fields, anything specified inside curly brackets is considered a
part of the value. Therefore, no space, other than the part of an escape
name, can be specified inside curly brackets. Therefore, the following is
the incorrect test_mode specification:

sg_shell> test_mode -name { pin1 } -value 1

Note the white space in the above test_mode constraint.
 For fields supporting multiple values, specify ADC commands in the

following format:
236
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
sg_shell> sgdc_cmd {{value1} {value2}}

For instance, consider the following cdc_false_path constraint, which
accepts multiple values in the port–pin list:

sg_shell> cdc_false_path -from {{clk1} {clk2}} -to {{out1}
{out2}}

Brackets within brackets are needed to specify escape names and
wildcard patterns. The inner set of brackets can be ignored if there are
no escape names or wildcard patterns. For instance, the above
cdc_false_path specification can also be written as given below:

sg_shell> cdc_false_path -from {clk1 clk2} -to {out1 out2}

To specify escape names, an inner set of curly brackets is mandatory:

sg_shell> cdc_false_path -from
{{test1.sub1_inst.\label2.sub3_inst .q1}} -to
{{test1.sub1_inst.\label2.sub3_inst .q}}

The following cdc_false_path constraint uses wildcard pattern to specify
a constraint:

sg_shell> cdc_false_path -from {{ram*.DO}}

The above wildcard specification can be expanded to the following
constraint:

sg_shell> cdc_false_path -from {{foo.ram_i.DO[31:0]}}

 For fields of the Boolean types, there is no value associated and the field
is directly referred to enable it, as shown below:

sg_shell> sgdc_cmd -field

For instance, consider the reset constraint that accepts sync and
async as Boolean fields. Both fields cannot be specified together.

sg_shell> reset -name {CP} -sync

or

sg_shell> reset -name {CP} -async

 For more information regarding specifying escape names in ADC
commands, refer to Using Escape Names in sg_shell.

 For further information about ADC commands or their fields, refer to
their corresponding man pages or the -help option.
237
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Notes

 To use an ADC command, it is necessary to set the current_design Tcl
command. Otherwise, it displays an error message on the screen, as
shown in the following example:

sg_shell> test_mode -name {u2} -value {0}
test_mode: error: Rule `SGDCSTX_010': Missing
current_design specification for SGDC command 'test_mode'

sg_shell> current_design top
top
sg_shell> test_mode -name {u2} -value {0}
sg_shell>

 Any sanity check that fails is reported on the screen, as shown in the
following examples:

sg_shell> test_mode -name {u3} -value {1}
test_mode: error: Rule `SGDC_testmode01': 'u3'[TopPort +
Net + HierTerminal] not found on/within module 'top'

sg_shell> test_mode -name {u2}
test_mode: error: Rule `SGDCSTX_004': Missing mandatory
field '-value' in SGDC command 'test_mode'

 Some sanity checks, such as design object existence check, are done
only if the synthesis has happened at the time of adding a command. As
shown in the following example, though pin does not exist, no error is
reported when the command is added. However, these sanity errors will
be reported once synthesis is done.

sg_shell> new_project small -force
current_methodology: info: methodology is now `/delsoft/
spyint/integration/4.5.0-FCS-C4/RELEASE/SpyGlass-4.5.0/
SPYGLASS_HOME/GuideWare/New_RTL'
sg_shell> current_design top
top
sg_shell> test_mode -name {u3} -value {1}

sg_shell> report_adc test_mode

238
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Report : ADC command(s)

++
ID Command
==
0 test_mode -name {u3} -value {1}
++

In the above example, the test_mode constraint, on non-existent object
u3, is specified before synthesis. Therefore, no error will be reported.
An error will be reported for non-existent object when Design_Read
or run_goal is performed.

 Removal of ADC Commands
 Global-level ADC commands can be removed by using the remove_adc

and remove_file commands in the global scope. For scopes other than
global, global-level ADC commands can be removed only by using the
remove_file command.

 Goal-specific commands, having scope in some goal, cannot be
removed in other scopes.

 SDC-equivalent constraints cannot be removed by using the
remove_adc command. To remove all of these constraints, remove the
corresponding sdc_data constraint shown by the report_adc command.
However, the create_clock command can be removed by using the
remove_adc command after being applied on the design, by using the
compile_design or run_goal command.

NOTE: Line number in violation messages for all ADC and AWL commands is reported as 0.
239
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
SDC-Equivalent Commands

You can specify the SDC-equivalent commands directly in sg_shell in
addition to specifying them by using the sdc_data constraint. These
commands can be specified only after the design database has been
created. Therefore, if these commands are specified directly in sg_shell or
by using the read_file -type adc command before the design read
step, these commands are ignored and a message is generated in sg_shell.
For example, if you specify the create_clock command through
read_file -type adc before design read, sg_shell generates the
following message:

create_clock: warning: Command can be specified only after
Design_read

These commands behave in a similar way because the commands are
specified by using the sdc_data constraint.

Utility commands, namely get_adc, report_adc, and remove_adc, behave
differently for these SDC-equivalent commands and other ADC commands.
Please refer to each utility command for further details.

Currently, the following SDC-equivalent commands are a part of ADC
command set:

Command Description
create_clock Creates the clock for the design
create_clock_attribute Specifies the clock attributes
create_generated_clock Creates generated clocks
define_sgdc_severity_cla
ss

Defines an SGDC severity class

end_sgdc_severity_class Marks the end of an SGDC severity class
set_annotated_transition Sets the transition time at a given pin
set_case_analysis Sets a constant logic value 1 or 0 on a port or a pin

for the SDC mode or multi-bit constant logic value
for the SGDC mode

set_dft_signal Specifies the DFT signal types for DRC and DFT
insertion
240
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
The above commands are supported in sg_shell. Some of these commands

set_dont_touch_network Sets the dont_touch_network attribute on clocks,
pins, or ports in the current design to prevent cells
and nets in the transitive fan-out of the
set_dont_touch_network objects from being
modified or replaced during optimization

syn_set_dont_use Sets the dont_use attribute on library cells to
exclude them from the target library during
optimization

set_driving_cell Sets attributes on input or inout ports of the current
design, specifying that a library cell or output pin of a
library cell drives the specified ports

set_false_path Removes timing constraints from particular paths
set_ideal_network Marks a set of ports or pins in the current design as

sources of an ideal network. This disables the timing
update and optimization of cells and nets in the
transitive fan-out of the specified objects

set_input_delay Sets an input delay on the ports relative to a clock
set_load Sets the load attribute to a specified value on the

specified ports and nets
set_multicycle_path Modifies the single-cycle timing relationship of a

constrained path
set_output_delay Sets an output delay on the ports relative to a clock
set_scan_group Specifies an unordered group of cells that are not yet

connected, but should be kept together within a scan
chain. It also identifies the existing logic in the
current design that is to be designated as a scan
segment.

set_wire_load_mode Sets the wire_load_model_mode attribute on the
current design, specifying how wire load models are
to be used to calculate the wire capacitance in nets

set_wire_load_model Sets the wire_load_attach_name attribute on
designs, ports, hierarchical cells of current design, or
the specified cluster of the current design, for
selecting a wire load model to use in calculating the
wire capacitance

Command Description
241
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
have corresponding SGDC commands, but the constraint, field names, and
semantic information differ in the two formats.

NOTE: SDC equivalent commands specified directly on sg_shell are not considered if
you have deleted the default sdc_data command, which is created by sg_shell,
by using the remove_adc command.
242
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
create_clock
Creates the clock for the design

Syntax

create_clock
-period period_value
[-name clock_name]
[-waveform egde_list]
[-add] [port_pin_list]

Scope

Project, Goal

Return Value

None

Description

The create_clock command creates the clock for the design. It is created in
the current design and is applied to the specified value of source objects. If
you do not specify a source object, but give a clock name, a virtual clock is
created. This ADC command corresponds to the clock SGDC command.

This command can be specified only after the design database has been
created.

SpyGlass reports the SDC_219 violation if the user specifies the
create_clock command without the -period argument. SpyGlass adds
0.0 as the default period value in such cases.

Product

SpyGlass Auto Verify, SpyGlass Constraints, SpyGlass DFT, SpyGlass DFT
DSM, SpyGlass Power Estimate, SpyGlass ERC, SpyGlass Power Verify, and
SpyGlass CDC

Arguments

The create_clock command has the following arguments:
243
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
-period

Use this argument to specify the clock field. This argument is
mandatory.

-name

Use this argument to specify the clock name. This argument
corresponds to the -tag field in the clock SGDC command.

-waveform

Use this argument to specify the rise and fall edge times of a clock
waveform. This argument corresponds to the -edge field in the clock
SGDC command.

-add

Use this argument to specify whether to add a clock to the existing clock
or to overwrite the existing clock. Currently, sg_shell ignores this
argument.

port_pin_list

Use this argument to specify a list of ports and pins on which the clock
needs to be set.

NOTE: The create_clock command cannot be applied on nets. It can only be applied on
ports or pins.

Examples

Example 1

The create_clock command can be used as follows:

sg_shell> create_clock -name clk_tag -period 20 clk

Example 2

The create_clock command fails in the following case:

sg_shell> create_clock -name clk_tag -period 20 clk_typo

create_clock: error: Rule `SGDC_clock01': 'clk_typo'[TopPort
+ Net + HierTerminal] not found on/withinmodule 'clkdiv_15'
244
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Example 3

The create_clock command also fails in the following case:

sg_shell> create_clock -period 5 clk1

create_clock: error: design database not yet created (that
is, design is neither flattened nor synthesized)
please perform compile_design or run a goal to create the
design

See Also

report_adc, get_adc, remove_adc, create_clock_attribute
245
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
create_clock_attribute
Specifies the clock attributes

Syntax

create_clock_attribute
-name clock_name
[-domain domain_name]
[-sysclock]
[-testclock]
[-value value]
[-freq freq]
[-fflimit fflimit]
[-polarity polarity]
[-switchingpin switching_pin_list]
[-switching_value_list switching_value_list]
[-atspeed]
[-pll_reference]

Scope

Project, Goal

Return Value

None

Description

The create_clock_attribute command specifies the clock attributes that
cannot be specified through the create_clock command, but can only be
specified through the clock SGDC command.

Product

SpyGlass Auto Verify, SpyGlass Constraints, SpyGlass DFT, SpyGlass DFT
DSM, SpyGlass Power Estimate, SpyGlass ERC, SpyGlass Power Verify, and
SpyGlass CDC
246
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The create_clock_attribute command has the following arguments:

-name

Use this argument to specify the clock name. This argument
corresponds to the -tag field in the clock SGDC command. This argument
is mandatory.

NOTE: Refer to the clock SGDC command to view the description of other arguments of the
create_clock_attribute command.

Examples

Example 1

The create_clock_attribute command can be used as follows:

sg_shell> create_clock -name clk_tag -period 20 clk

sg_shell> create_clock_attribute -name clk_tag -testclock

Example 2

The create_clock_attribute command fails in the following cases:

sg_shell> create_clock_attribute -name clk_tag -testclock

sg_shell> create_clock_attribute -name clk_tag_typo
-testclock

Example 3

The create_clock_attribute command can be used as follows:

sg_shell> create_clock {top.clk}
sg_shell> create_clock_attribute -name {top.clk} -atspeed
sg_shell> create_clock {top.clk2}
sg_shell> create_clock_attribute -name {top.clk2} -atspeed

Example 4

The create_clock_attribute command fails in the following cases:

sg_shell> create_clock { {top.clk} {top.clk2} }
sg_shell> create_clock_attribute -name {top.clk} -atspeed
sg_shell> create_clock_attribute -name {top.clk2} -atspeed
247
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
See Also

report_adc, get_adc, remove_adc, create_clock
248
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
create_generated_clock
Creates generated clocks

Syntax

create_generated_clock
[-name clock_name]
-source master_pin
[-divide_by divide_factor | -multiply_by multiply_factor
| -edges edge_list]
[-combinational]
[-duty_cycle percent]
[-invert]
[-edge_shift edge_shift_list]
[-add]
[-master_clock clock]
[-pll_output output_pin]
[-pll_feedback feedback_pin]
port_pin_list

Scope

Project, Goal

Return Value

None

Description

The create_generated_clock command creates a generated clock object in
the current design. This command defines a list of objects as generated
clock sources in the current design. You can specify a pin or a port as a
generated clock object. This command also specifies the clock source from
which it is generated. This ADC command corresponds to the clock SGDC
command.

Product

SpyGlass Auto Verify, SpyGlass Constraints, SpyGlass DFT, SpyGlass DFT
DSM, SpyGlass Power Estimate, SpyGlass ERC, SpyGlass Power Verify, and
249
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
SpyGlass CDC

Arguments

The create_generated_clock command has the following arguments:

-name

Use this argument to specify the clock name. This argument
corresponds to the -tag field in the clock SGDC command.

-source

Use this argument to specify the master clock source from which the
clock waveform needs to be derived.

-edges

Use this argument to specify a list of integers. These integers represent
the edges from the source clock that form the edges of the generated
clock.

port_pin_list

Use this argument to specify a list of ports and pins on which the clock
needs to be set.

NOTE: Currently, sg_shell ignores other arguments of this command.

Examples

sg_shell> create_generated_clock -name u1 -source {\u2} u1

See Also

report_adc, get_adc, remove_adc
250
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
define_sgdc_severity_class
Defines an SGDC severity class

Syntax

define_sgdc_severity_class –value <option-value>

Description

The define_sgdc_severity_class command marks the start of an SGDC
severity class.

For more details, refer to the sgdc_check_severity section in the Atrenta
Console Reference Guide.
251
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
end_sgdc_severity_class
Marks the end of an SGDC severity class

Syntax

end_sgdc_severity_class

Description

The end_sgdc_severity_class command marks the end of an SGDC severity
class.

For more details, refer to the sgdc_check_severity section in the Atrenta
Console Reference Guide.
252
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_annotated_transition
Sets the transition time at a given pin

Syntax

int set_annotated_transition
[-rise | -fall]
[-min]
[-max]
transition
port_pin_list

Scope

Project, Goal

Return Value

None

Description

The set_annotated_transition command sets the transition time at a given
pin.

Product

SpyGlass Constraints

Arguments

The set_annotated_transition command has the following arguments:

-rise | -fall

Use one of these arguments to specify whether the transition time is for
data rise or data fall transition. If you do not specify -rise or -fall,
both values are set.

-min

Use this argument to specify that the transition is used for minimum
delay analysis. By default, the transition value is used for both
253
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
maximum and minimum delay analysis.

-max

Use this argument to specify that the transition is used for maximum
delay analysis. By default, the transition value is used for both
maximum and minimum delay analysis.

transition

Use this argument to specify the transition value at the pins supplied
with the port_pin_list argument.

port_pin_list

Use this argument to specify a list of leaf-cell pins or top-level ports that
are the end points of the timing arcs for which delays are to be
annotated.

Examples

Example 1

The following example annotates a transition time of 20 units at the input
pin A of the cell instance U1/U2/U3:

sg_shell> set_annotated_transition 20 U1/U2/U3/A

Example 2

The following example annotates a rise transition of 1.4 units at the input
pin U5/A:

sg_shell> set_annotated_transition -rise 1.4 U5/A

See Also

report_adc, get_adc, remove_adc
254
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_case_analysis
Sets a constant logic value on a pin, port, or net

Syntax

set_case_analysis
<const-logic-value>
<port-pin-net-list>
[-bc]

Scope

Project, Goal

Return Value

None

Description

The set_case_analysis command sets a constant logic value on a pin, port,
or net. This ADC command supports two flavors of values to be applied on
a pin, port, or net:
 SDC-equivalent mode: Applies the single bit value 1 or 0 on a pin,

port, or net.
 SGDC-equivalent mode: Applies the following:

 Multi-bit logic value for multi-cycle case analysis conditions.

 Single bit 1 or 0 on a net.

 Bit select on a pin, port, or net.

 Part select on a pin, port, or net.

This ADC command corresponds to the set_case_analysis SGDC command.

Product

SpyGlass Auto Verify, SpyGlass Power Verify, SpyGlass Power Estimate,
SpyGlass ERC, SpyGlass CDC, SpyGlass latch, SpyGlass OpenMore, and
SpyGlass STARC
255
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_case_analysis command has the following arguments:

<const-logic-value>

Use this argument to specify a constant logic value that needs to be set
on a pin, port, or net.

<port-pin-net-list>

Use this argument to specify a list of pins, ports, or nets on which the
constant logic value should be set.

-bc

(Optional) Use this argument if the command is being set on nets or if
bit or part select is being used for a pin, port, or net.

Examples

Example 1

sg_shell> set_case_analysis {0} {Z}
sg_shell> set_case_analysis {1} {D}
sg_shell> report_adc [get_adc set_case_analysis]

Report : ADC command(s)

+++
ID Command
===
0 set_case_analysis {0} {Z}
1 set_case_analysis {1} {D}
+++

Example 2

sg_shell> set_case_analysis 0 {temp3[1]} -bc
sg_shell> report_adc [get_adc set_case_analysis]

256
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Report : ADC command(s)

+++
ID Command
===
0 set_case_analysis {0} { {foo.temp3[1]} }
+++

Example 3

sg_shell> set_case_analysis {00} {temp3[1:0]} -bc
sg_shell> report_adc [get_adc set_case_analysis]

Report : ADC command(s)

+++
ID Command
===
0 set_case_analysis {00} { {foo.temp3[1:0]} }
+++

See Also

report_adc, get_adc, remove_adc
257
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_dft_signal
Specifies the DFT signal types for DRC and DFT insertion

Syntax

integer set_dft_signal
-view existing_dft | spec
-test_mode mode_name
-type signal_type
-port port_list
-active_state active_state
-timing timing
-period period
-hookup_pin hookup_pin
-hookup_sense inverted | non_inverted
-internal_clocks none | single | multi
-ctrl_bits ctrl_bits_list
-pll_clock pll_clock
-ate_clock ate_clock

Scope

Project, Goal

Return Value

None

Description

The set_dft_signal command specifies one or more primary input or output
ports as DFT signals.

Product

SpyGlass Constraints
258
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_dft_signal command has the following arguments:

-view existing_dft | spec

Use this argument to indicate the view to which the specification
applies.

-test_mode mode_name

Use this argument to specify the mode to which the specification
applies. The default mode is all_dft.

-type signal_type

Use this argument to specify the signal type.

-port port_list

Use this argument to indicate the list of ports on which you want to
apply the specifications.

-active_state active_state

Use this argument to specify the active states for the following signal
types:

 ScanEnable

 Reset

 Constant

 TestMode

The active state can be 0 or 1. This argument specifies the active sense of
the port (high or low), or an internal hookup. Only pin, no port, is
associated with the hookup pin.

-timing timing

Use this argument to specify the rise time and fall time for clocks.

-period period

Use this argument to specify the period of the on-chip clocking
259
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
reference clock. The period value is a floating point number. The time
unit is nanosecond.

-hookup_pin hookup_pin

Use this argument to identify a specific pin to which wires need to be
connected.

-hookup_sense inverted | non_inverted

Use this argument to specify the hookup sense for the hookup pin.

internal_clocks none | single | multi

Use this argument to specify the setting for an internal clock.

-ctrl_bits ctrl_bits_list

Use this argument to list the triplets that specify the sequence of control
bits needed to enable the propagation of the clock generator outputs.

-pll_clock pll_clock

Use this argument to specify the port name of the pll clock.

-ate_clock ate_clock

Use this argument to specify the port name of the ATE clock.

Examples

set_dft_signal -hookup_pin {top.M1.in1} -ate_clock
my_user_clock -port in3 -type Reset -ctrl_bits 01
set_dft_signal -view existing_dft -type ScanClock -port in2
-timing [list 45 55]

See Also

report_adc, get_adc, remove_adc
260
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_dont_touch_network
Sets the dont_touch_network attribute on clocks, pins, or ports in
the current design to prevent cells and nets in the transitive
fan-out of the set_dont_touch_network objects from being
modified or replaced during optimization

Syntax

status set_dont_touch_network
object_list
[-no_propagate]

Scope

Project, Goal

Return Value

None

Description

The set_dont_touch_network command sets the dont_touch_network
attribute on clocks, pins, or ports in the current design.

Product

SpyGlass Constraints

Arguments

The set_annotated_transition command has the following arguments:

object_list

Use this argument to specify a list of clocks, pins, or ports in the current
design on which you want to set the dont_touch_network attribute.

-no_propagate

Use this argument to indicate that the dont_touch_network attribute is
not propagated through logic gates.
261
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Examples

The following command adds a dont_touch_network attribute to the
clock_in port:

sg_shell> set_dont_touch_network clock_in

See Also

report_adc, get_adc, remove_adc
262
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
syn_set_dont_use
Sets the dont_use attribute on library cells to exclude them from
the target library during optimization

Syntax

int syn_set_dont_use
[-power] object_list

Scope

Project, Goal

Return Value

None

Description

The syn_set_dont_use command sets the dont_use attribute on the
specified library objects, so that they are not used.

Product

SpyGlass Constraints

Arguments

The syn_set_dont_use command has the following arguments:

-power

Use this argument to specify that the list of objects passed should not be
considered for power compiler clock gate mapping in addition to excluding
them from the target library.

object_list

Use this argument to specify a list of objects (lib_cells, modules, or
implementations), on which the dont_use attribute needs to be set.
263
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Examples

The following command disables the lib_cells G1 and G2 from the tech_lib
library:

sg_shell> syn_set_dont_use {tech_lib/G1 tech_lib/G2}

See Also

report_adc, get_adc, remove_adc
264
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_driving_cell
Sets attributes on input or inout ports of the current design,
specifying that a library cell or output pin of a library cell drives the
specified ports

Syntax

int set_driving_cell
[-lib_cell lib_cell_name]
[-library lib]
[-rise]
[-fall]
[-min]
[-max]
[-pin pin_name]
[-from_pin from_pin_name]
[-dont_scale]
[-no_design_rule]
[-none]
[-input_transition_rise rtran]
[-input_transition_fall ftran]
[-multiply_by factor]
port_list
[-cell obsolete_-_please_use_-lib_cell_instead]

Scope

Project, Goal

Return Value

None

Description

The set_driving_cell command sets attributes on the specified input or
inout ports in the current design to associate an external driving cell with
the ports.
265
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Product

SpyGlass Constraints

Arguments

The set_driving_cell command has the following arguments:

-lib_cell lib_cell_name

Use this argument to specify the name of the library cell to drive ports.
When you use this option, you must also use the -dont_scale and
-multiply_by options.

-library lib

Use this argument to specify the library name or a collection of libraries in
which you need to find the name of the library cell to drive ports.

-rise

Use this argument to specify that the lib_cell_name, lib, pin_name, and
from_pin_name arguments correspond to the rising case. You can use this
option with the -fall option to specify both the rising and falling cases.

-fall

Use this argument to specify that the lib_cell_name, lib, pin_name, and
from_pin_name arguments correspond to the falling case. You can use this
option with the -rise option to specify both the rising and falling cases.

-min

Use this argument to set the driving cell information for analysis at the
minimum operating condition only.

-max

Use this argument to set the driving cell information for analysis at the
maximum operating condition only.

-pin pin_name

Use this argument to specify the output pin on the driving cell to drive the
ports.
266
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
-from_pin from_pin_name

Use this argument to specify the input pin on the driving cell while
searching for a timing arc.

-dont_scale

Use this argument to specify that the timing analyzer is not used to scale
the drive capability of the ports according to the current operating
conditions. You can use this option only with the -lib_cell option.

-no_design_rule

Use this argument to indicate that the design rules associated with the
driving cell are not to be applied to the driven port.

-none

Use this argument to remove the previous driving cell information.

-input_transition_rise rtran

Use this argument to specify the input rise transition time associated with
the -from_pin option.

-input_transition_fall ftran

Use this argument to specify the input fall transition time associated with
the -from_pin option. The default value is 0.

-multiply_by factor

Use this argument to specify a factor to multiply the delay characteristics
of the ports. You can use this option only with the -lib_cell option.

-port_list

Use this argument to specify a list of names of input or inout ports in the
current design on which the driving cell attributes need to be placed.

Examples

The following example associates the drive capability of the AND2 library
cell with the IN1 port:

sg_shell> set_driving_cell -lib_cell AND2 {IN1}
267
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
See Also

report_adc, get_adc, remove_adc
268
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_false_path
Removes timing constraints from particular paths

Syntax

int set_false_path
[-rise | -fall] [-setup | -hold]
[-from from_list
| -rise_from rise_from_list
| -fall_from fall_from_list]
[-through through_list]
[-rise_through rise_through_list]
[-fall_through fall_through_list]
[-to to_list
| -rise_to rise_to_list
| -fall_to fall_to_list]
[-reset_path]

Scope

Project, Goal

Return Value

None

Description

The set_false_path command removes the timing constraints from the
specified paths that do not affect the circuit operation.

Product

SpyGlass Constraints
269
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_false_path command has the following arguments:

-rise

Use this argument to mark the rising delays as false, as measured on
the path end point. If you do not specify either the -rise or -fall option,
both rise and fall timing are marked as false.

-fall

Use this argument to mark the falling delays as false, as measured on
the path end point. If you do not specify either the -rise or -fall option,
both rise and fall timing are marked as false.

-setup

Use this argument to mark the setup (maximum) paths as false.

-hold

Use this argument to mark the hold (minimum) paths as false.

-from from_list

Use this argument to specify the start points (clocks, ports, pins, or
cells) of the disabled paths.

-rise_from rise_from_list

This argument is the same as the -from option, except that the path
must rise from the specified objects.

-fall_from fall_from_list

This argument is the same as the -from option, except that the path
must fall from the specified objects.

-through through_list

Use this argument to specify a list of path through-points (port, pin, or
leaf cell names) of the current design.
270
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
-rise_through rise_through_list

This argument is the same as the -through option, but applies only to
the paths with a rising transition at the specified objects.

-fall_through fall_through_list

This argument is the same as the -through option, but applies only to
the paths with a falling transition at the specified objects.

-to to_list

Use this argument to specify the end points (clocks, ports, pins, or
cells) of the disabled paths.

-rise_to rise_to_list

This argument is the same as the -to option, but applies only to the
paths rising at the end point.

-fall_to fall_to_list

This argument is the same as the -to option, but applies only to the
paths falling at the end point.

-reset_path

This argument removes the existing point-to-point exception
information on the specified paths.

Examples

The following example removes timing constraints on the paths from ff12
to ff34:

sg_shell> set_false_path -from {ff12} -to {ff34

See Also

report_adc, get_adc, remove_adc
271
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_ideal_network
Marks a set of ports or pins in the current design as sources of an
ideal network. This disables the timing update and optimization of
cells and nets in the transitive fan-out of the specified objects

Syntax

integer set_ideal_network
object_list
[-dont_care_placement]
[-no_propagate]

Scope

Project, Goal

Return Value

None

Description

The set_ideal_network command marks a set of ports or pins in the current
design as sources of an ideal network.

Product

SpyGlass Constraints

Arguments

The set_ideal_network command has the following arguments:

object_list

Use this argument to mark a list of objects (ports, pins, or nets) as the
sources of an ideal network.

-dont_care_placement

Use this argument to indicate that the ideal network is not considered in
placement.
272
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
-no_propagate

Use this argument to indicate that the ideal network is not propagated
through logic gates, but it still propagates through hierarchies.

Examples

The following example creates an ideal network on the objects in the
CLOCK_GEN design:

sg_shell> current_design CLOCK_GEN
sg_shell> set_ideal_network {port1 port2}

See Also

report_adc, get_adc, remove_adc
273
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_input_delay
Sets an input delay on the ports relative to a clock

Syntax

set_input_delay
[-clock clock_name]
[-reference_pin pin_port_name]
[-clock_fall]
[-level_sensitive]
[-rise]
[-fall]
[-max]
[-min]
[-add_delay]
[-network_latency_included]
[-source_latency_included]
delay_value
port_pin_list

Scope

Project, Goal

Return Value

None

Description

The set_input_delay command sets an input delay on the ports relative to
a clock. This ADC command corresponds to the input SGDC command.

Product

SpyGlass CDC
274
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_input_delay command has the following arguments:

-clock

Use this argument to specify the clock to which the delay is related.

port_pin_list

Use this argument to specify a list of ports and pins on which the input
delay needs to be set.

NOTE: Currently, sg_shell ignores other arguments of this command.

Examples

Example 1

The set_input_delay command can be used as follows:

sg_shell> set_input_delay -clock {clk1} {test.d1}

Example 2

The set_input_delay command fails in the following case:

sg_shell> set_input_delay -clock {clk1} {test.d1_typo}

set_input_delay: error: Rule `checkSGDC_existence':
'test.d1_typo'[TopPort + Net + HierTerminal] not found on/
within module 'test'

See Also

report_adc, get_adc, remove_adc
275
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_load
Sets the load attribute to a specified value on the specified ports
and nets

Syntax

status set_load
value
objects
[-subtract_pin_load]
[-min]
[-max]
[[-pin_load] [-wire_load]]

Scope

Project, Goal

Return Value

None

Description

The set_load command sets the load attribute on ports and nets in the
current design.

Product

SpyGlass Constraints

Arguments

The set_load command has the following arguments:

value

Use this argument to set the value of the load attribute on the ports and
nets contained in objects.

objects

Use this argument to specify a list of ports and nets in the current
276
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
design whose loads are to be set.

-subtract_pin_load

Use this argument to indicate that the current pin capacitances of the
net are to be subtracted from the value before the net load value is set.

-min

Use this argument to indicate that the load value is used for minimum
delay analysis.

-max

Use this argument to indicate that the load value is used for maximum
delay analysis.

[-pin_load] [-wire_load]

Use this argument to indicate whether the specified value on the port is
treated as a pin load, as a wire load, or as both.

Examples

The following example sets a load of 2 units to the the_answer port:

sg_shell> set_load 2 the_answer

See Also

report_adc, get_adc, remove_adc
277
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_multicycle_path
Modifies the single-cycle timing relationship of a constrained path

Syntax

integer set_multicycle_path
path_multiplier
[-rise | -fall]
[-setup | -hold]
[-start | -end]
[-from from_list
| -rise_from rise_from_list
| -fall_from fall_from_list]

[-through through_list]
[-rise_through rise_through_list]
[-fall_through fall_through_list]
[-to to_list
| -rise_to rise_to_list
| -fall_to fall_to_list]

[-reset_path]

Scope

Project, Goal

Return Value

None

Description

The set_multicycle_path command specifies that the designated timing
paths in the current design have non-default setup or hold relations.

Product

SpyGlass Constraints
278
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_multicycle_path command has the following arguments:

path_multiplier

Use this argument to specify the number of cycles that the data path
must have for setup or hold relative to the start point or end point clock
before the data is required at the end point.

-rise

Use this argument to specify that the rising path delays are affected by
the path_multiplier argument. The default is that both rising and falling
delays are affected.

-fall

Use this argument to specify that the falling path delays are affected by
the path_multiplier argument. The default is that both rising and falling
delays are affected.

-setup

Use this argument to specify that the path_multiplier argument is used
for setup calculations.

-hold

Use this argument to specify that the path_multiplier argument is used
for hold calculations.

-start | -end

Use this argument to specify whether the multi-cycle information is
relative to the period of the start clock or the end clock.

-from from_list

Use this argument to list the names of clocks, ports, pins, or cells to find
the path start points.

-rise_from rise_from_list

This argument is same as the -from option, except that the path must
279
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
rise from the specified objects.

-fall_from fall_from_list

This argument is the same as the -from option, except that the path
must fall from the specified objects.

-through through_list

Use this argument to list the path through-points (port, pin, or leaf cell
names) of the current design.

-rise_through rise_through_list

This argument is the same as the -through option, but applies only to
the paths with a rising transition at the specified objects.

-fall_through fall_through_list

This argument is the same as the -through option, but applies only to
the paths with a falling transition at the specified objects.

-to to_list

Use this argument to list the names of clocks, ports, pins, or cells to find
path end points.

-rise_to rise_to_list

This argument is the same as the -to option, but applies only to the
paths rising at the end point.

-fall_to fall_to_list

This argument is the same as the -to option, but applies only to the
paths falling at the end point.

-reset_path

Use this argument to remove the existing point-to-point exception
information on the specified paths.
280
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Examples

The following example sets all the paths between latch1b and latch2d
to two cycle paths for setup. Hold is measured at the previous edge of the
clock at latch2d.

sg_shell> set_multicycle_path 2 -from {latch1b} -to
{latch2d}

See Also

report_adc, get_adc, remove_adc
281
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_output_delay
Sets an output delay on the ports relative to a clock

Syntax

set_output_delay
[-clock clock_name]
[-reference_pin pin_port_name]
[-clock_fall]
[-level_sensitive]
[-rise]
[-fall]
[-max]
[-min]
[-add_delay]
[-network_latency_included]
[-source_latency_included]
[-group_path group_name]
delay_value
port_pin_list

Scope

Project, Goal

Return Value

None

Description

The set_output_delay command sets an output delay on the ports relative
to a clock. This ADC command corresponds to the output SGDC command.

Product

SpyGlass CDC
282
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Arguments

The set_output_delay command has the following arguments:

-clock

Use this argument to specify the clock to which the delay is related.

port_pin_list

Use this argument to specify a list of ports and pins on which the output
delay needs to be set.

NOTE: Currently, sg_shell ignores other arguments of this command.

Examples

Example 1

The set_output_delay command can be used as follows:

sg_shell> set_output_delay -clock {clk1} {test.d1}

Example 2

The set_output_delay command fails in the following case:

sg_shell> set_output_delay -clock {clk1} {test.d1_typo}

set_output_delay: error: Rule `checkSGDC_existence':
'test.d1_typo'[TopPort + Net] not found on/withinmodule
'test'

See Also

report_adc, get_adc, remove_adc
283
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_scan_group
Specifies an unordered group of cells that are not yet connected,
but should be kept together within a scan chain. It also identifies
the existing logic in the current design that is to be designated as a
scan segment

Syntax

int set_scan_group
scan_group_name
[-access signal_type_pin_pairs]
[-include_elements member_list]
[-serial_routed true | false]

Scope

Project, Goal

Return Value

None

Description

The set_scan_group command identifies the existing logic in the current
design that needs to be designated as a scan group.

Product

SpyGlass Constraints

Arguments

The set_scan_group command has the following arguments:

scan_group_name

Use this argument to specify the name of the scan group.

-access signal_type_pin_pairs

Use this argument to list the ordered pairs, each consisting of a scan signal
type and a design pin.
284
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
-include_elements member_list

Use this argument to display an unordered list of scan group components.
This list can include sequential cells, segment names, and design
instances.

-serial_routed true | false

Use this argument to identify whether the scan group is composed of the
serially routed sequential cells or that you are specifying an unordered
group of sequential cells. The default value is false.

Examples

The following example identifies an embedded shift register in the
multiplexed flip-flop scan style. This specification can be completed in a
single set_scan_group execution by including the identification of the
ScanEnable access pin in the first -access option specification.

sg_shell> set_scan_group my_shift_reg \
-access [list ScanDataIn P/B/U7/si ScanDataOut P/B/U9/QN] \
-include_elements [list P/B/U7 P/B/U8 P/B/U9] \
-serial_routed true

sg_shell> set_scan_group my_unconnected_group \
-include_elements [list U1 U2]

sg_shell> set_scan_group virtual_scan_segment \
-access [list ScanDataIn P/B/U7/si ScanDataOut P/B/U9/QN] \
-segment_length 20 \
-clock tck \
-serial_routed true

See Also

report_adc, get_adc, remove_adc
285
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_wire_load_mode
Sets the wire_load_model_mode attribute on the current design,
specifying how wire load models are to be used to calculate the
wire capacitance in nets

Syntax

status set_wire_load_mode
mode_name

Scope

Project, Goal

Return Value

None

Description

The set_wire_load_mode command sets the wire_load_model_mode
attribute on the current design, specifying how hierarchical wire load
models are to be used to calculate the wire capacitance of nets in the
current design.

Product

SpyGlass Constraints

Arguments

The set_wire_load_mode command has the following arguments:

mode_name

Use this argument to specify the value of the wire_load_model_mode
attribute. This argument, therefore, specifies the mode to be used to
handle hierarchical wire load models. The allowed values are as follows:

 The value of top (the default) specifies that the wire capacitance of all
nets is calculated by using the wire load model set on the top-level
design.
286
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
 The value of enclosed specifies that the wire capacitance of each net
is calculated by using the wire load model set on the smallest subdesign
that completely encloses that net. You must specify this mode to use the
set_wire_load_selection_group and set_wire_load_min_block_size
commands.

 The value of segmented specifies that for each net that crosses
hierarchical subdesigns, the wire capacitance is calculated for each
segment of the net based on the wire load model set on the subdesign
that contains that segment. The total wire capacitance of the net is the
sum of the wire capacitances of its segments.

Examples

The following example sets the wire_load_mode attribute to be enclosed
for the top-level design named TOP:

sg_shell> current_design TOP

sg_shell> set_wire_load_mode enclosed

See Also

report_adc, get_adc, remove_adc
287
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
set_wire_load_model
Sets the wire_load_attach_name attribute on designs, ports,
hierarchical cells of current design, or the specified cluster of the
current design, for selecting a wire load model to use in calculating
the wire capacitance

Syntax

int set_wire_load_model
-name model_name
[-library lib]
[-cluster cluster_name]
[-min]
[-max]
[object_list]

Scope

Project, Goal

Return Value

None

Description

The set_wire_load_model command sets the wire_load_attach_name
attribute on the specified cluster in the current design, or on the ports,
designs, and/or cells specified in the object list, or on the current design,
for selecting a wire load model to be used in calculating the wire
capacitance.

Product

SpyGlass Constraints

Arguments

The set_wire_load_model command has the following arguments:

-name model_name

Use this argument to specify the name of the wire load model to be
288
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
used.

-library lib

Use this argument to specify the library that contains the desired wire
load model.

-cluster cluster_name

Use this argument to specify the cluster name to be used for the wire
load model.

-min

Use this argument to indicate that the wire load model or selection
group is used for minimum delay analysis only.

-max

Use this argument to indicate that the wire load model or selection
group is used for maximum delay analysis only.

object_list

Use this argument to specify a list of ports, designs, and/or cells to be
assigned to this wire load model. If you use this option, the -cluster
option is ignored. If neither -cluster nor object_list is specified, the
current design is assigned to the wire load model.

Examples

set_wire_load_model -name 20x20 -max -library lsi_10k

See Also

report_adc, get_adc, remove_adc
289
Synopsys, Inc.

ADC Setup Commands

SpyGlass Tcl Commands
Specifying Collection Objects in ADC Commands

You can specify Tcl collection objects, in place of design object names, in
ADC commands.

For instance, the following specification uses the get_ports command to
apply the test_mode command on a collection of design ports:

sg_shell> test_mode -name [get_ports -filter { full_name =~
test.dioin[0] }] -value 0

The get_ports command is a design query command whose output is a Tcl
collection of ports. The above command, when expanded, applies the
test_mode constraint on the test.dioin[0] design port, as shown
below:

Report : ADC command(s)

++
ID Command
==
0 test_mode -name {test.dioin[0]} -value { {0} }
++

If an empty collection is passed to ADC commands, an appropriate
message is generated on screen, which states that the empty collection is
found and, therefore, the ADC constraint is ignored:

sg_shell> test_mode -name [get_ports -filter { full_name =~
test.dioin_typo[0] }] -value 0
test_mode: error: empty collection found in value for option
-name
290
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
Utility Commands
Under this group, the following utility commands are available:

NOTE: Refer to $SPYGLASS_HOME/examples/sg_shell/
interactive_constraints in your SpyGlass installation area for sample
examples on how to effectively use these commands on sg_shell.

Command Description
get_adc Used to get a list of ADC commands on the basis of

filtering criteria, if specified
report_adc Reports user-specified ADC commands
remove_adc Used for removing constraint command
save_adc Saves the active constraints
convert_sgdc2adc Converts SGDC commands specified in an input file to

corresponding ADC commands in the specified output file
291
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
get_adc
Used to get a list of ADC commands on the basis of filtering criteria,
if specified

Syntax

get_adc
[<constr_name>]
[-filter expression]
[-exact]

Scope

Project

Return Value

Returns an empty string or a collection of ADC commands in case of
successful execution. An empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution, an error is returned
that can be trapped by using the catch command.

Description

The get_adc command is used to get a list of user-specified ADC
commands on the basis of a filtering criterion, if specified.

This command will not return the SDC-Equivalent Commands, such as
create_clock, and so on, in the list.

Arguments

The get_adc command has the following arguments:

[constr_name]

Use this argument to specify the constraint name to get ADC
commands. Otherwise, ADC commands of all constraints are reported
on the basis of a filtering criterion, if any.

[-filter expression]

Use this argument to filter a group with an expression. The supported
292
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
criteria in filter for this command are file_name and
current_design. The following example illustrates the usage of this
argument:

-filter file_name==s.adc
-filter current_design==c1

[-exact]

Use this argument to consider wildcard characters as plain characters
for constraint names.

Examples

Example 1: Without -filter

sg_shell> get_adc
_sggrp6

Example 2: With -filter

sg_shell> get_adc -filter current_design==upper
_sggrp7

Example 3: get_adc usage in report_adc in a single step

sg_shell> report_adc [get_adc -filter current_design==upper]

Report : ADC command(s) for goal Design_Read

+++
ID Command

===
3 test_mode -name {upper.clk} -value {011}
7 test_mode -name {upper.tm} -value {1}
+++
293
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
See Also

report_adc, remove_adc
294
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
report_adc
Reports user-specified ADC commands

Syntax

report_adc
[<pattern>]
[-sdc]
[-verbose]
[-hide_id]
[-exact]

Scope

Project

Return Value

Returns an empty string if the command is successfully executed and
nothing in case of any error

Description

The report_adc command displays the user-specified ADC commands.

NOTE: The create_clock command specified in sg_shell is visible only after using the
compile_design or run_goal command.

Arguments

The report_adc command has the following arguments:

[<pattern>]

Use this argument to specify the output of the get_adc command, which
means this argument reports user-specified ADC commands that are
filtered through the get_adc command criteria. You can also specify a
constraint name that can be an exact name or a wildcard pattern. If
both are not specified, this argument reports all user-specified ADC
commands.

NOTE: The report_adc command displays those commands only that are specified in the
ADC file or the ones that are specified directly on the shell. It does not report the
commands specified in the SGDC file.
295
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
[-sdc]

Use this argument to report the SDC-Equivalent Commands, such as
create_clock, and so on. These commands will not be reported without
using this switch.

[-verbose]

Use this argument to display verbose connection information in
columns. These columns are ID, File, Line, CurrentDesign, Editable, and
Command. The description of these columns is as follows:

[-hide_id]

Use this argument to disable the listing of the ID field.

[-exact]

Use this argument to consider wildcard characters as plain characters
for constraint name.

Examples

Example 1: -hide_id and -verbose not specified

sg_shell> report_adc

Report : ADC command(s) for goal Design_Read

Column Description
ID Unique ID for an ADC command
File File name of a waiver command
Line Line number of a waiver command
CurrentDesign Current design name
Editable A yes value means command can be edited. A no value

means command cannot be edited
Command Command string in Tcl format
296
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands

+++
ID Command
===
0 test_mode -name {upper.clk} -value {011}
4 test_mode -name {upper.tm} -value {1}
+++

Example 2: -hide_id specified and -verbose not specified

This case is useful when you want to redirect reported commands directly
to a file.

sg_shell> test_mode -name {upper.clk} -value {011}
sg_shell> test_mode -name {upper.tm} -value {1}

Example 3: -hide_id not specified and -verbose specified

sg_shell> report_adc -verbose

Report : ADC command(s) for goal Design_Read

+++
ID File Line CurrentDesign Editable Command
===
0 s1.sgdc 2 upper yes test_mode
 -name{upper.clk}
 -value {011}
+++

Example 4: -hide_id and -verbose specified

sg_shell> report_adc -verbose -hide_id

Report : ADC command(s) for goal Design_Read

+++
File Line CurrentDesign Editable Command
297
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
===
s1.sgdc 2 upper yes test_mode -name
 {upper.clk}
 -value {011}
+++

Example 5: Using the get_adc command in a single step

sg_shell> report_adc [get_adc -filter
current_design==upper]

Report : ADC command(s) for goal Design_Read

+++
ID Command
===
0 test_mode -name {upper.clk} -value {011}
4 test_mode -name {upper.tm} -value {1}
+++

Example 6: Using the get_adc command output in two passes

sg_shell> get_adc -filter current_design==upper
_sggrp2
sg_shell> report_adc _sggrp2

Report : ADC command(s) for goal Design_Read

+++
ID Command
===
0 test_mode -name {upper.clk} -value {011}
4 test_mode -name {upper.tm} -value {1}
+++
298
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
Example 7: Using the report_adc -sdc command to report SDC
equivalent command

Report : ADC command(s)

++
ID Command
==
0 sdc_data -type { {./new/top_default_sdc_file.sdc} }
1 test_mode -name {clka} -value { {1} }
3 create_clock -name {my_user_clock} -period {6}
 -waveform { {0.000000} {3.000000} } {clka}
3 create_clock_attribute -name {my_user_clock} -domain
 {my_user_clock}
++

If the sdc2sgdc option is turned off after the SDC commands being applied,
the SDC commands, other than the create_clock command, will be visible
but will not be used until the sdc2sgdc option is turned on again.

See Also

get_adc, remove_adc
299
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
remove_adc
Used for removing constraint command

Syntax

remove_adc
[-id <idNum>]
[<collection>]

Scope

Project

Return Value

None

Description

The remove_adc command removes ADC commands for the given
command ID or commands in the specified collection.

This command cannot be used to remove SDC-Equivalent Commands.

Arguments

The remove_adc command has the following arguments:

<idNum>

Use this argument to specify the ID of a constraint command in
integers.

<collection>

Use this argument to report user-specified waiver commands that are
filtered through the get_waiver command criteria.

Examples

Example 1

The following command removes the constraint command having ID as 1:

sg_shell> remove_adc -id 1
300
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
Use the report_adc command to view a list of applicable constraint
commands and their IDs.

Example 2

The following command removes ADC commands get from the get_adc
command:

sg_shell> remove_adc [get_adc]

See Also

report_adc, get_adc
301
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
save_adc
Saves the active constraints

Syntax

save_adc

Scope

Project

Return Value

None

Description

The save_adc command saves an active constraint used in the project in
the ADC format. This command can be used to save the changes made to
design constraints in sg_shell through various commands, such as
remove_adc. This will save the set active constraints to a project.

All SDC constraints are saved in the <top>.sdc file. All ADC constraints are
saved in the default.adc file.

NOTE: If an ADC file has both SDC-equivalent commands, such as create_clock, and
non-SDC commands, such as cdc_false_path, the file is rewritten during the
save_project command. All SDC-equivalent commands are moved to the SDC file
and the sdc_data entry is added to the default ADC file. After rewriting, the original
ADC file will have only non-SDC equivalent constraints.

Arguments

None

Examples

sg_shell> save_adc

See Also

save_waiver, save_project
302
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
convert_sgdc2adc
Converts SGDC commands specified in an input file to
corresponding ADC commands in the specified output file

Syntax

convert_sgdc2adc
[<input_sgdc_file>]
[<output_adc_file>]

Scope

Project

Return Value

None

Description

The convert_sgdc2adc command converts SGDC commands from an input
file to corresponding Atrenta Design Constraints, or ADC, commands in the
specified output file.

Arguments

The convert_sgdc2adc command has the following arguments:

[<input_sgdc_file>]

Use this argument to specify the input SGDC file that is passed in batch
run to SpyGlass.

[<output_adc_file>]

Use this argument to specify the name of the output file for capturing
the created ADC commands.

Examples

In the following example, the test.adc file is output that contains the
corresponding ADC commands:

sg_shell> convert_sgdc2adc test.sgdc test.adc
303
Synopsys, Inc.

Utility Commands

SpyGlass Tcl Commands
See Also

convert_swl2awl
304
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
Reporting Commands
Reporting commands customize the message set, and generate custom,
standard, or product-specific reports.

The following table describes the various reporting commands:

NOTE: When the save_project command is run in sg_shell, the define_view, define_filter,
and define_report commands are not saved in a project file. If you are using a
project file generated in SpyGlass 4.4.1 release that contains the define_view,
define_filter, and define_report commands decompiled in it, move these commands
to a Tcl file and source it in sg_shell.

Command Description
define_filter Defines a criterion to filter a set of messages from

the set of all generated non-waived messages
define_view Defines how the selected output should be displayed
define_report Defines a new report of the specified name
write_report Generates the specified report
write_aggregate_report Generates the specified aggregate report
305
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
define_filter
Defines a criterion to filter a set of messages from the set of all
generated non-waived messages

Syntax

define_filter
-name <filter-name>
[-filter <filter-list>]
[-du <design-unit-list>]
[-ip <ip-list>]
[-instance <hierarchical-path-of-instance>]
[-file <file-list>]
[-file_line <file> <line>]
[-file_lineblock <file> <start-line> <end-line>]
[-severity <severity>]
[-rules <rules>]
[-msg <message>]
[-except <list of rules/groups or keywords>]
[-weight <weight>]
[-weight_range <weight-start> <weight-end>]
[-regexp]
[-invert]

[-include_data]

Description

The define_filter command filters a set of messages from the pool of all
non-waived messages. The filter can be used to define the schema of a
report or used as an input to consequent filter definitions. It enables you to
define a set of messages that you want to view in a specific report.

If there is no filtering criterion specified and just define_filter -
name <filter-name> is specified, the specified <filter-name>
holds all non-waived messages. Please note that the filtering works on
non-waived messages only. If there are any messages already waived at
the time of run_goal, those are ignored by this command.

This command has many options that are identical to the waive command.
For example, -du, -ip, -file, -file_line, and others behave in the
306
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
same manner as in the waive command. The only difference is that in the
define_filter command, these options allow you to get the message list to
be viewed, whereas it is the opposite in context of the waive command.

sg_shell does not perform any sanity check on various options of the
define_filter command. Therefore, you should recheck your specification if
there is any mismatch in the filtered set.

NOTE: Most of the arguments of this command are present in the SpyGlass waive
command. Please refer to the Waiving Messages section in the Atrenta Console
User Guide for more details.

NOTE: The “-instance" argument is supported only in the define_filter command and not in
the waive command. Also, this argument should only be specified when no other
argument is specified in the define_filter command, as it is mutually exclusive to
the rest of the options supported in define_filter command.

Arguments

This command has the following arguments:

-name <filter-name>

Specifies the name of the filter. If the filter with same name is already
defined, it is overwritten by the current definition.

-filter <filter-list>

(Optional) Specifies the name of filters defined earlier by using the
define_filter commands. If you want to start from a filtered set, this
argument accepts those previously defined filter names. If you specify
multiple filter names, union of messages filtered by them is considered
as the starting point for further filtering. All generated messages are
considered if this argument is not specified.

-du <design-unit-list>

(Optional) Specifies space-separated lists of design unit names (module
names for Verilog or architecture names in the format
<entity-name>, for the entity and all its architectures, or in the
<entity-name>.<arch-name> format for the entity and the
specified architecture, package names, or configuration names for
VHDL) or the logical library name of a precompiled Verilog or VHDL
library. Use the -du argument to filter the rule messages for the
specified design units or all design units in the specified library. Please
307
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
note that messages reported on the specified design units are filtered by
this argument.

-ip <ip-list>

(Optional) Specifies space-separated lists of design unit names (module
names for Verilog or architecture names in the <entity-name>
format, for the entity and all its architectures, and in the
<entity-name>.<arch-name> format for the entity and the
specified architecture, package names, or configuration names for
VHDL) or the logical library name of a precompiled Verilog or VHDL
library. Use the -ip argument to filter the rule messages for the specified
design units (IP blocks) or all design units in the specified IP library.

-instance <hirearchical-path-of-instance>

(Optional) Specifies space-separated list of hierarchical path of
instances in the design. Use this argument to filter the rule messages
for the specified hierarchical instances in the design. This argument
cannot be specified with other arguments in the define_filter
command.

-file <file-list>

(Optional) Specifies a space-separated list of source file names. Use this
argument to filter all messages for the specified files.

-file_line <file> <line>

(Optional) Specifies a space-separated pair of source file name and line
number. Use this argument to filter the rule messages for a particular
line of a source file.

-file_lineblock <file> <start-line> <end-line>

(Optional) Specifies a space-separated tuple of source file name, start
line number, and end line number. Use this argument to filter the rule
messages for a block of lines in a source file.

-severity <severity>

(Optional) Specifies the actual severity label or severity class.
308
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
-rules <rules>

(Optional) Specifies a space-separated list of rule names, rule group
names, or product mnemonics. Use this argument to filter messages of
the specified rules, rule groups, products, or by rule type keywords. The
following are allowed keywords:
 ALL

 ALL_INFO

 ALL_ELAB

 ALL_SYNTHERR

 ALL_SYNTHWRN

 ALL_WRN

-msg <message>

(Optional) Specifies the actual rule message. Use this argument to filter
a message. You should specify the message in this argument in curly
brackets {} to prevent any Tcl interpretation being applied on it. For
example, a bit-select, top.i1.n1[0], would be taken as command
"0", therefore, always enclose your message in {} for it to read
verbatim.

-except <rule-list>

(Optional) Specifies a space-separated list of rule names, rule group
names, or product mnemonics. Use this argument to exclude messages
of the specified rules, rule groups, or products or by rule type keywords
from the filtered set. The allowed keywords are same as in the -rules
argument.

-weight <weight>

(Optional) Specifies the actual rule weight value. Use this argument to
filter the messages of the rules with the specified weight.

-weight_range <weight-start> <weight-end>

(Optional) Specifies a weight range for message filtering. Use this
argument to filter messages of the rules with the weight within the
specified range (both range values inclusive).
309
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
-regexp

(Optional) Turns on regular expression matching for various fields. This
argument allows the use of regular expressions in many other
arguments, such as -du, -ip, -file, -file_line, -
file_lineblock, and -msg.

-invert

(Optional) Inverts the filtered selection. If the complete message set is
100 messages and set without -invert has 20 messages there would be
80 messages remaining in the filtered set if the -invert argument is
specified.

-include_data

 Includes secondary messages.

Examples

sg_shell> define_filter -name f1 -msg {q/Module clcell is a
top level design unit/} -regexp
sg_shell> define_filter -name f2 -msg {m/Module clcell is a
top level.*/} -regexp
sg_shell> define_filter -name f3 -du {cl.* sr.*} -regexp
sg_shell> define_filter -name f4 -severity {warning info} -
except {DetectTopDesignUnits checkSGDC_01}
sg_shell> define_filter -name f5 -file_lineblock test.v 3 5 -
file_lineblock test4.v 1 22 -file_lineblock a bc.v 4 5
sg_shell> define_filter -name f6 -file_line test4.v 22
-file_line test4.v 4
sg_shell> define_filter -name f7 -weight 2
sg_shell> define_filter -name f8 -weight_range 2 10
sg_shell> define_filter -name f9 -filter {f6 f8}
union of messages filtered by filters f6 & f8

sg_shell> define_filter -name filter1 -rule {$rule} -
include_data

See Also

define_view, define_report, write_report
310
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
define_view
Defines how the selected output should be displayed

Syntax

define_view
-name <view-name>
[-header <header-string>]
[-filter <filter-name>]
[-display <field-list>]
[-sort <field-list>]
[-group <field-list>]

Scope

Any

Return Value

None

Description

The define_view command defines the sorting and grouping criteria for a
set of messages selected by the specified filter. This command also defines
the fields to be displayed.

Arguments

This command has the following arguments:

-name <view-name>

Specifies the name of the view. This name is then later used by the
define_report command. If the view with the same name is already
defined, it is overwritten by the current definition.

-header <header-string>

Specifies the header string of the view being created.
311
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
-filter <filter-name>

Specifies the name of the filter as created by using the define_filter
command. Messages filtered by the specified filter are part of the
current view. If you do not specify this argument, all messages are
considered as part of the current view.

-display <fields-list>

Specifies the list of fields to be displayed. The following are the allowed
values:
 policy

 rule

 alias

 severityclass

 severitylabel

 weight

 file

 line

 message

 du
The fields are displayed in the order specified in this argument. If you do
not specify this argument, sg_shell consider the default value as the
following:
 rule

 alias

 severitylabel

 file

 line

 weight

 message
If there is a grouping criterion specified, you can skip displaying those
fields, because all the messages of a group would have the same values
for these grouped fields. In addition, these grouped field values are also
312
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
displayed as part of the group header.

-sort <fields-list>

(Optional) Specifies the list of fields to sort the output. The following are
the allowed values:
 viol_id

 builtin

 policy

 rulegroup

 rule

 alias

 severityclass

 severitylabel

 weight

 file

 line

 message

 du
By default, sg_shell does no sorting on the messages. For string values,
sorting is done alphabetically ascending (in case-sensitive manner),
whereas it is numerically ascending for numeric fields. However, for
numeric field - weight, sorting is done in descending order of weight. In
case of sorting based on severity class, the order is FATAL, ERROR,
WARNING, and INFO. This difference is there for weight and severity
class, so that more severe messages appear on the top after sorting.
If there is grouping done on any of the above fields, you can skip that
field in the sorting criterion, since all messages of any group would have
same value for that field.

-group <fields-list>

(Optional) Specifies the list of fields to perform grouping. Following are
the allowed values:
 builtin
313
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
 policy

 rulegroup

 rule

 alias

 severityclass

 severitylabel

 weight

 file

 line

 message

 du

 goal

 sdcmode
The filtered messages are first grouped as per the grouping criterion
and then each group is sorted as per the sorting criterion. If grouping is
done based on multiple fields then each group has messages where
those multiple fields have the same value for all messages. Further,
each group has a header containing the grouped fields values for the
current group.

Examples

sg_shell> define_view -name v1 -filter f1 -display "rule
policy severitylabel message" -header "DISPLAY: rule policy
severitylabel message"
display specified fields for messages in 'f1' filter

sg_shell> define_view -name v2 -filter f1 -display "rule
policy severityclass message" -sort "severityclass" -header
"SORT: severityclass"
sort messages in 'f1' filter as per severityclass

sg_shell> define_view -name v3 -filter f2 -display "rule
policy severityclass message" -group "severityclass" -header
314
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
"GROUP: severityclass"
group messages in 'f2' filter as per severityclass

sg_shell> define_view -name v4 -display "rule policy
severityclass message" -group "severityclass"

-header "GROUP: severityclass"
group all messages as per severityclass

See Also

define_filter, define_report, write_report
315
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
define_report
Defines a new report of the specified name

Syntax

define_report
-name <report-name>
-view <view-list>
[-helpfile <help-file>]

Scope

Any

Return Value

None

Description

The define_report command defines a new report of the specified name.

This report is basically an aggregation of the specified views. You can
define your custom report by performing the following steps:
1. Define filter commands to isolate the message set that you want to

capture in the final report. You can specify multiple define_filter
commands to achieve the final objective.

2. Once the filtered set is defined, you can create a layout for it by using
the define_view command.

3. Finally, you can hook-up various views in a single report by using the
define_report command.

Optionally, you can pass the path of the help file by using the -helpfile
option, which is displayed by using the help -report
<report-name> command.

It is recommended that you have complete report specification including
define_filter, define_view, and define_report in a separate Tcl file, which can
be sourced as desired to define the report schema, and then generate this
report for different projects.

NOTE: To view a list of all the vaild reports in SpyGlass, refer to Appendix C: SpyGlass
Report Names.
316
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
Arguments

This command has the following arguments:

-name <report-name>

Specifies the name of the report. If the report with same name is
already defined, it is overwritten with the current definition.

-view <view-list>

Specifies a list of view names as defined by the define_view command.
You should have previously defined the view names listed here by using
the define_view command.

-helpfile <help-file>

Specifies the name of the help file containing the help of the report.

Examples

sg_shell> define_report -name my_report -view v1
defines report 'my_report' using 'v1' view

sg_shell> define_report -name onlyFiltered -view v2 -helpfile
./helpOnlyFiltered

See Also

define_filter, define_view, write_report
317
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
write_report
Generates the specified report

Syntax

write_report <report-name>

Scope

Goal

Return Value

None

Description

The write_report command generates the specified report. By default, the
report is displayed on the screen. Optionally, you can redirect the output of
the report to any file by using shell redirection operator, >, or capture that
report in some file by using the capture command.

The report name specified by using this command can be any of the
following:
 SpyGlass standard report, such as moresimple, simple, waiver, and so

on. For further details on standard reports, refer to the Reports
Generated in Atrenta Console section in the Atrenta Console Reference
Guide.

 Product report, such as Audit-Structure, CDC-report, CKSync01, and so
on.

 Any custom report defined by using the define_report command

 The goal_summary report that has information about all goals in the
currently selected methodology

 The goal_setup report that has information about rules and their
parameters in the currently selected goal

NOTE: The waived messages are not shown in any report except for the waiver report.

You can view the list of all the reports available in the current scope by
using the help -report command. For example, goal_setup is available
in goal scope only.
318
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
NOTE: To view a list of all the vaild reports in SpyGlass, refer to Appendix C: SpyGlass
Report Names.

Examples

sg_shell> write_report goal_summary
methodology goal summary report

sg_shell> current_goal initial_rtl/clock_reset_integrity/
clock_reset_integrity
sg_shell> write_report goal_setup
goal setup report

sg_shell> write_report summary > summary.rpt
standard report
sg_shell> capture moresimple.rpt {write_report moresimple}

sg_shell> write_report onlyFiltered
custom report defined using define_report

sg_shell> write_report Clock-Reset-Detail
product specific report

See Also

define_filter, define_view, define_report, write_aggregate_report
319
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
write_aggregate_report
Used to generate the specified aggregate report

Syntax

write_aggregate_report <report_name>

[-config_file <file_path>]

[-reportdir <output_directory>]

Scope

Any

Return Value

None

Description

The write_aggregate_report command generates the specified
aggregate report.

The report name specified in the write_aggregate_report command can be
one of the following:
 project_summary

 DataSheet

 DashBoard
NOTE: If SpyGlass Dashboard report generated using a project is executed through

sg_shell (TCL flow), the report shows the goal run status as Running even after the
goal run is completed.

Arguments

This command has the following arguments:

-config_file <config_file>

Specifies a configuration file having project files path for which the
aggregate report needs to be generated. If this argument is not specified,
then by default, the aggregate report is generated for the current project.
320
Synopsys, Inc.

Reporting Commands

SpyGlass Tcl Commands
An error is displayed if you specify this argument when there is no current
active project.

-reportdir <output directory>

The user can optionally redirect generated reports to a directory specified
with this argument. By default, the report is generated in the
<projectwdir>/<prj_name>/<top_name>/aggregated_report directory. If the output
directory is already present, it is overwritten. In addition, if this output
directory is not present then only the leaf level directory is created.

Examples

generate the 'datasheet' report for the current project -
'project1.prj'

sg_shell> open_project project1.prj

sg_shell> write_aggregate_report datasheet

generate the 'project_summary' report in the 'myreport'
directory for the current project - 'project1.prj'

sg_shell> write_aggregate_report project_summary -reportdir
myreport
321
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
Waiver Commands
Interactive waiver commands provide the waiver intent directly on Tcl shell,
referred as sg_shell. Before the introduction of interactive waiver
commands, waivers were applied after running the goal. Now, the impact
of waivers is visible just after using the write_report command. There is no
need to run the run_goal command again to see the impact of waiver
application. If there were messages present in standard or custom reports
that you need to waive, you must specify additional waiver files and then
generate these reports again by using the write_report command. Please
refer to Tcl Format Waiver Specification and Waiver Application for more details.

Waiver commands can be supplied in Tcl shell in the following ways:
 Directly specifying waiver commands in sg_shell: The waiver

content can be specified directly in sg_shell, as shown in the following
examples:

sg_shell> waive -rule {Rule1}
sg_shell> waive -severity {warning}
sg_shell> waive -file_line {filename} {1}

Refer to the waive command for more details.
 Specifying a new format waiver file (TCL compliant file): The

following command adds an AWL file that has waivers intent in Tcl
format:

sg_shell> read_file -type awl <file_name>

In this way, AWL file behaves as if it has been sourced on the Tcl shell.
 Sourcing a new format file: The following command specifies a new

format waiver file (TCL compliant) as if all commands in the file
<file_name> have been directly specified in sg_shell:

sg_shell> source <file_name>

 Specifying an old format waiver file (non-Tcl compliant file): The
old format waiver files can be read in sg_shell, as shown in the following
example:

sg_shell> read_file -type waiver <file_name>

NOTE: Refer to $SPYGLASS_HOME/examples/sg_shell/
interactive_waivers in your SpyGlass installation area for sample
examples on how to effectively use waiver commands in sg_shell.
322
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
The following table describes the various waiver commands:

Tcl Format Waiver Specification and Waiver Application

Specification of Tcl Format Waiver Commands
Waiver commands can be specified directly in sg_shell or in the new format
waiver file, that is the AWL file (TCL compliant waiver file), as follows:
 For Boolean fields of waiver commands, such as -invert and -regexp,

specify waiver commands directly in sg_shell without using curly
brackets or double quotes, as shown in the following example:

sg_shell> waive -rule {R} -invert

 For waiver fields supporting single value, such as the -msg field, specify
waiver commands as shown in the following example:

sg_shell> waive -msg {Design unit is top}

or

sg_shell> waive -msg "Design unit is top"

 For waiver fields supporting multiple values or fields that accept a list of
values, such as -rule, -severity, -file, and -du, specify waiver commands
as shown in the following example:

sg_shell> waive -rule { {R1} {R2} {R3} }

or

sg_shell> waive -rule { R1 R2 R3 }

or

Command Description
waive Used for defining the criteria to waive a set of messages

from the set of all generated messages
get_waiver Used to get a list of waiver commands on the basis of

filtering criteria, if specified
report_waiver Reports user-specified waiver commands
remove_waiver Used for removing waive commands
save_waiver Saves the active waivers
convert_swl2awl Converts waiver commands specified in an input file to

corresponding AWL commands in the specified output file
323
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
sg_shell> waive -rule { "R1" "R2" "R3" }

It is mandatory to use double quotes, that is "", or curly brackets, that is
{}, if list-based option values contain spaces, as shown in the following
examples:

sg_shell> waive -du { "du name1" "du2" "du3" }

or

sg_shell> waive -du { {du name1} du2 du3}

or

sg_shell> waive -du { {du name1} {du2} {du3} }

but not like

sg_shell> waive -du { du name1 {du2} {du3} }

The last example would act as if du and name1 are specified as separate
names.

Waiver Application
The impact of waivers is visible just after using the write_report command.
There is no need to run the run_goal command again to see the impact of
waiver application.

The following examples demonstrate the simple command usage:

Adding waiver command

sg_shell> waive -rule {R}

Reporting waiver commands

sg_shell> report_waiver -verbose

Checking impact of waiver application
Generating the moresimple file

sg_shell> write_report moresimple

Generating the waiver file

sg_shell> write_report waiver
324
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
waive
Used for defining the criteria to waive a set of messages from the
set of all generated messages

Syntax

waive
[-du <list of du> | <logical-lib-name>]
[-ip <list of ip> | <logical-lib-name>]
[-file <list of file>]
[-file_line <file> <line>]
[-file_lineblock <file> <start_line> <end_line>]
[-severity <list of severity label/class>]
[-rules <list of rules/groups or keywords>]
[-msg <message>]
[-except <list of rules/groups or keywords>]
[-weight <weight>]
[-weight_range <weight_start> <weight_end>]
[-regexp | -exact]
[-invert]
[-comment]
[-disable]
[-import]
[-ignore]

To know more about waiving messages during SpyGlass analysis in the
Atrenta Console, refer to the Waiving Messages by Using the waive
Constraint section in the Atrenta Console User Guide.

Scope

Project

Return Value

Returns a unique ID for every waiver command

Description

The waive command is used to waive a set of messages from the
generated messages. Sanity checking is done for the values that are
325
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
specified for the waive command options.

Arguments

The waive command has the following arguments:

-du <list of du>

This argument specifies a space-separated list of design unit names or
the logical library name <logical-lib-name> of a precompiled
Verilog or VHDL library. The design units can be any of the following
types:

 <module-name>: Module names for Verilog

 <entity-name>: Entity names for the entity and all its
architectures

 <entity-name>.<arch-name>: Entity and the specified
architecture

 <pkg-name>: Package names

 <config-name>: Configuration names for VHDL

Use this argument to waive the messages in the span of duName for the
specified design units or for all design units in the specified library. The
following examples illustrate the usage of this argument:

sg_shell> waive -du "duName"
sg_shell> waive -du "du1 du2"
sg_shell> waive -du {du1 du2}

NOTE: If you want SpyGlass to consider schematic information to waive violations on
design units, use the following command:

set_option use_du_sch_hier yes

-ip <list of ip>

This argument specifies a space-separated list of design unit names or
the logical library name <logical-lib-name> of a precompiled
Verilog or VHDL library. The design units can be of the following types:

 <module-name>: Module names for Verilog

 <entity-name>: Entity names for the entity and all its
architectures
326
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
 <entity-name>.<arch-name>: Entity and the specified
architecture

 <pkg-name>: Package names

 <config-name>: Configuration names for VHDL

Use this argument to waive the messages in the hierarchy of ipName
for the specified design units (IP blocks) or all design units in the
specified IP library. The following examples illustrate the usage of this
argument:

sg_shell> waive -ip "ipName"
sg_shell> waive -ip ipName
sg_shell> waive -ip "ip1 ip2"
sg_shell> waive -ip {ip1 ip2}

NOTE: If a module is instantiated in multiple IPs but you do not provide the waive -ip
specification for each of these IPs, SpyGlass does not waive violations on such
module instances when you specify the following command:

set_option use_du_sch_hier yes

However, if you set the above command to no, SpyGlass waives violations on
only those module instances that are present in the IPs specified by the waive
-ip specification.

-file <list of file>

This argument specifies a space-separated list of source file names. Use
this argument to waive all messages for the specified files. The following
examples illustrate the usage of this argument:

sg_shell> waive -file fName
sg_shell> waive -file "fName"
sg_shell> waive -file "fName1 fName2"
sg_shell> waive -file {"fName1" "fName2"}

-file_line <file> <line>

This argument specifies a space-separated pair of source file name and
line number. Use this argument to waive the rule messages for a
particular line of a source file. The following example illustrates the
usage of this argument:

sg_shell> waive -file_line fName lineNum

NOTE: The -file_line argument of the waive command does not support multiple files.
327
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
-file_lineblock <file> <start_line> <end_line>

This argument specifies a space-separated tuple of source file name,
start line number, and end line number. Use this argument to waive the
rule messages for a block of lines in a source file. The following example
illustrates the usage of this argument:

sg_shell> waive -file_lineblock fName lineNum1 lineNum2

NOTE: The -file_lineblock argument of the waive command does not support multiple files.

-severity <list of severity label/class>

This argument specifies the severity label or a severity class. Use this
argument to waive the rule messages of the specified severity. The
following example illustrates the usage of this argument:

sg_shell> waive -severity Info

-rules <list of rules/groups or keywords>

This argument specifies a space-separated list of rule names, rule group
names, or product mnemonics. Use this argument to waive messages of
the specified rules, rule groups, products, or by rule type keywords. The
keywords that are allowed are as follows:
 ALL

 ALL_INFO

 ALL_WRN

 ALL_ELAB

 ALL_SYNTHERR

 ALL_SYNTHWRN
The following examples illustrate the usage of this argument:

sg_shell> waive -rule R
sg_shell> waive -rule "R"
sg_shell> waive -rule "R1 R2"
sg_shell> waive -rule {"R1" "R2"}

NOTE: From the SpyGlass 5.3.1 release onwards, the -rule argument of the waive
command has been made case sensitive to make it consistent with other
arguments.
328
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
-msg <message>

This argument specifies the rule message. Use this argument to waive a
message. The <message> field should be specified within curly
brackets {} to prevent any Tcl interpretation being applied on it. For
example, a bit-select top.i1.n1[0] would be taken as command 0.
Therefore, always enclose your message in {} for it to be read verbatim.
The following examples illustrate the usage of this argument:

sg_shell> waive -msg message
sg_shell> waive -msg {message}

The waivers_translate_generate_names option should be enabled while
using a non escaped "generate block" name or an "instance array" name
in the -msg field.

set_option waivers_translate_generate_names yes

-except <list of rules/groups or keywords>

This argument specifies a space-separated list of rule names, rule group
names, or product mnemonics. Use this argument to exclude messages
of the specified rules, rule groups, or products or by rule type keywords
from the waived set. The keywords that are allowed are the same as
those mentioned in the -rules argument. The following examples
illustrate the usage of this argument:

sg_shell> waive -except R
sg_shell> waive -except "R"
sg_shell> waive -except "R1 R2"
sg_shell> waive -except {"R1" "R2"}

-weight <weight>

This argument specifies the rule weight value. Use this argument to
waive the messages of the rules with the specified weight. The following
example illustrates the usage of this argument:

sg_shell> waive -weight wt

-weight_range <weight_start> <weight_end>

This argument specifies a weight range for message waiving. Use this
argument to waive the messages of the rules with the weight within the
specified range (both range values inclusive). The following example
329
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
illustrates the usage of this argument:

sg_shell> waive -weight_range wt1 wt2

-regexp

This is an optional argument that turns on regular expression matching
for various fields. Use this argument to allow the use of regular
expressions, such as -du, -ip, -file, -file_line,
-file_lineblock, -msg, in other options. The following example
illustrates the usage of this argument:

sg_shell> waive -msg msg1 -regexp

-comment

This argument is used to add comment as a single line text string
enclosed in double quotes. The comment is printed in the waiver report
and the sign_off report. Comments can be specified to add some
information about the waive command for readability. The following
examples illustrate the usage of this argument:

sg_shell> waive -du du_name -comment "command to clean
du_name based messages"

-disable

This argument disables the waive command in which this option is
specified. The following example illustrates the usage of this argument:

sg_shell> waive -rule R -disable

This means the command is disabled and will not be used.
When you specify the -disable argument, it acts on the current
command only. Consider the following example:

sg_shell> ##command 1 waive -rule R ##command 2 waive
-rule R -disable

This means command 2 is disabled, not command 1, because both these
commands are separate commands.

-ignore

This argument causes SpyGlass to list only waived message count in the
Adjustments Waiver Report section of the waiver report and not the
330
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
actual waived messages.

-import

This argument enables import of the waiver file, which is specified at the
block level, to be used at the chip level. The following example
illustrates the usage of this argument:

sg_shell> waive -import {{<block_name>}
<block_level_waiver_file>}

For more details, refer to the Support for Hierarchical Waivers section in
the Atrenta Console User Guide.
The following are some exception:

 Waiver commands having -import argument are applied when the
you are actually running a goal. If such waiver commands are
specified after the run_goal command, these waiver commands are
applied only during the consequent run_goal command. Therefore, if
your standard/custom reports contain messages that you want to
waive by using the -import command, re-run the goal and then
generate these reports.

 You cannot edit or remove import-related commands in a block-level
or a top-level file.

 Consider the following command.
waive -import {{<block-name>} <block-file>}
In the above command, you can specify the block file <block file> only in the
Tcl format.

NOTE: The impact of waiver commands that use the -import argument will be seen after
the run_goal command.

-exact

If the -exact argument is specified in the waive command, wildcard
characters are considered as plain characters. The following example
illustrates the usage of this argument:

sg_shell> waive -msg {message is this*} -exact

Here, * in the message field is treated as a literal character. If the -
exact argument is not specified, * would act as a wildcard character.

NOTE: The -exact argument can only be specified with TCL format waive command and
not with non-TCl format waiver commands.
331
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
-invert

This argument inverts the waiving selection. If a complete message set
has 100 messages, and a set without -invert has 20 messages, the 80
remaining messages would be there in the waived set if -invert is
specified. The following example illustrates the usage of this argument:

sg_shell> waive -msg msg1 -invert

Examples

sg_shell> waive -msg {Module clcell is a top level design
unit} -regexp
sg_shell> waive -du {cl.* sr.*} -regexp
sg_shell> waive -severity {warning info} -except
{DetectTopDesignUnits checkSGDC_01}
sg_shell> waive -file_lineblock test.v 3 5 -file_lineblock
test4.v 1 22 -file_lineblock abc.v 4 5
sg_shell> waive -file_line test4.v 22 -file_line test4.v 4
sg_shell> waive -weight 2
sg_shell> waive -weight_range 2 10

See Also

report_waiver, remove_waiver, get_waiver
332
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
get_waiver
Used to get a list of waiver commands on the basis of filtering
criteria, if specified

Syntax

get_waiver
[-filter expression]

Scope

Project

Return Value

Returns an empty string or a collection of waiver commands in case of
successful execution. An empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution, an error is returned
that can be trapped by using the catch command.

Description

The get_waiver command is used to get a list of user-specified waiver
commands on the basis of a filtering criterion, if specified.

Arguments

The get_waiver command has the following argument:

[-filter expression]

Use this argument to filter a group with an expression. The criterion
supported in filter for this command is file_name.

Examples

Example 1: Without -filter

sg_shell> get_waiver
_sggrp1

Example 2: With -filter

sg_shell> get_waiver -filter file_name==waiver1.awl
333
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
_sggrp2

Example 3: get_waiver usage in report_waiver in a single step
(command nesting)

sg_shell> report_waiver [get_waiver -filter
file_name==waiver1.awl] -verbose

Report : waive command(s) - user defined only

+++
ID File Line Editable Command

===
0 waiver1.awl 1 yes waive -rule {Reset_check07}
1 waiver1.awl 2 yes waive -msg {msg}
+++

Example 4: get_waiver usage in report_waiver in two steps

sg_shell> set x [get_waiver -filter
file_name==waiver1.awl]

_sggrp5

sg_shell> report_waiver $x -verbose

Report : waive command(s) - user defined only

+++
ID File Line Editable Command

===
0 waiver1.awl 1 yes waive -rule {Reset_check07}
1 waiver1.awl 2 yes waive -msg {msg}
+++

See Also

waive, report_waiver, remove_waiver, report_adc, get_adc
334
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
report_waiver
Reports user-specified waiver commands

Syntax

report_waiver
[<collection>]
[-verbose]
[-hide_id]

Scope

Project

Return Value

Returns an empty string if the command is successfully executed and
nothing in case of any error

Description

The report_waiver command displays the user-specified waiver commands.
It displays the waiver commands that are provided in the AWL type files or
specified on the sg_shell. It does not report the waiver commands
specified in the SWL files.

Arguments

The report_waiver command has the following arguments:

[<collection>]

Collection used in the report_waiver command is a set of waive
commands that are filtered through the get_waiver command. The
get_waiver command returns the name of a collection that internally
contains a set of waive commands on the basis of the filtering criterion,
if specified. If no filtering criterion is specified, collection contains a set
of all user-defined waive commands. Collection can be supplied through
either command nesting or storing value in a variable from the
get_waiver command and then using it in the next step for the
report_waiver command.
335
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
[-verbose]

Use this argument to display verbose connection information in
columns. These columns are ID, File, Line, Editable, and Command. The
description of these columns is as follows:

[-hide_id]

Use this argument to disable the listing of the ID field.

Examples

Example 1: -hide_id and -verbose not specified

sg_shell> report_waiver

Report : waive command(s) - user defined only

+++
ID Command

===
0 waive -rule {Reset_check07}

1 waive -msg {msg}

2 waive -rule {R}

+++

Column Description
ID Unique ID for a waiver command
File File name of a waiver command
Line Line number of a waiver command
Editable A yes value means command can be edited. A no

value means command cannot be edited. A no value is
reported if pragma2Constraint.sgdc, which is formed due
to waiver commands, is specified in RTL files through
comments

Command Waiver command in Tcl format
336
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
Example 2: -hide_id specified and -verbose not specified

This case is useful when you want to redirect reported commands directly
to a file.

sg_shell> report_waiver -hide_id
waive -rule {Reset_check07}
waive -msg {msg}
waive -rule {R}

Example 3: -hide_id not specified and -verbose specified

sg_shell> report_waiver -verbose

Report : waive command(s) - user defined only

+++
ID File Line Editable Command
===
0 waiver1.awl 1 yes waive -rule {Reset_check07}
1 waiver1.awl 2 yes waive -msg {msg}
2 waiver2.awl 1 yes waive -rule {R}
+++

Example 4: -hide_id and -verbose specified

sg_shell> report_waiver -verbose -hide_id

Report : waive command(s) - user defined only

+++
File Line Editable Command

===
waiver1.awl 1 yes waive -rule {Reset_check07}
waiver1.awl 2 yes waive -msg {msg}
337
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
waiver2.awl 1 yes waive -rule {R}
+++

Example 5: Using the get_waiver command

sg_shell> report_waiver [get_waiver -filter
file_name==waiver1.awl]

Report : waive command(s) - user defined only

+++
ID Command
===
0 waive -rule {Reset_check07}
1 waive -msg {msg}
+++

Example 6: Using the get_waiver command output in two passes

sg_shell> set x [get_waiver -filter
file_name==waiver1.awl]

_sggrp4
sg_shell> report_waiver $x

Report : waive command(s) - user defined only

+++
ID Command
===
0 waive -rule {Reset_check07}
1 waive -msg {msg}
+++
338
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
See Also

get_waiver, waive, remove_waiver
339
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
remove_waiver
Used for removing waive commands

Syntax

remove_waiver
[-id <idNum>]
[<collection>]

Scope

Project

Return Value

None

Description

The remove_waiver command removes waiver commands on the basis of
the specified criterion, which can be either the waiver command ID or
collection. It removes the waivers provided in the AWL type files or the
waiver commands directly given on the sg_shell. There is no impact on
the waivers present in the SWL files.

Arguments

The remove_waiver command has the following arguments:

<idNum>

Use this argument to specify the IDs of waiver commands in integers.

<collection>

Use this argument to report user-specified waiver commands that are
filtered through the get_waiver command.

Examples

Example 1

In the following example, the remove_waiver command removes the
waiver command having ID as 3:
340
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
sg_shell> remove_waiver -id 3

Example 2

In the following example, the remove_waiver command removes the
waiver commands having IDs as 1 and 2:

sg_shell> remove_waiver -id {1 2}

Example 3

In the following example, the remove_waiver command removes the
waiver commands get from the get_waiver command:

sg_shell> remove_waiver [get_waiver]

See Also

report_waiver, waive, get_waiver
341
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
save_waiver
Saves the active waivers

Syntax

save_waiver

Scope

Project

Return Value

None

Description

The save_waiver command saves an active waiver used in the project in Tcl
format. This command can be used to save changes made to waivers in
sg_shell through various commands, such as remove_waiver. This will save
the set active waivers to project.

Arguments

None

Examples

sg_shell> save_waiver

See Also

save_project, save_adc
342
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
convert_swl2awl
Converts waiver commands specified in an input file to
corresponding AWL commands in the specified output file

Syntax

convert_swl2awl
[<input_swl_file>]
[<output_awl_file>]

Scope

Project

Return Value

None

Description

The convert_swl2awl command converts waiver commands in an input file
to corresponding Atrenta Waiver Library, or AWL, commands in the
specified output file.

NOTE: If input file has “waive -import” command specified in it, you will need to separately
convert the specified swl file to awl and then accordingly change the name of the
converted file, in the input file.

Arguments

The convert_swl2awl command has the following arguments:

[<input_swl_file>

Use this argument to specify the name of the input SWL file (non-Tcl
format waiver file) that is passed in batch run to SpyGlass.

<output_awl_file>

Use this argument to specify the name of the output file for capturing
the created AWL commands.
343
Synopsys, Inc.

Waiver Commands

SpyGlass Tcl Commands
Examples

Example 1

In the following example, the test.awl file is output that contains the
corresponding AWL commands:

sg_shell> convert_swl2awl test.swl test.awl

Example 2

In the following example, the waiver.swl file contains the “waive -
import” command. Hence, a message is reported suggesting to convert the
specified swl file to awl file format and update the file name accordingly.

sg_shell> convert_swl2awl waiver.swl waiver.awl

Reading waiver file "waiver.swl" ...

convert_swl2awl: warning: block level waiver file(s) found.
Please convert them to awl format and update the file name(s)
in `waiver.awl'

See Also

convert_sgdc2adc
344
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Debug Commands
Debug commands allow you to debug messages. Currently, you can open
the Console UI to debug messages through schematic, waveform, and so
on.

Debug commands can be categorized in the following groups:
 General Debug Commands

 Design Query Commands

 Product Commands

 Built-in Attributes

 Product Attributes

General Debug Commands

The following table describes the various general debug commands:

Command Description
gui_start Invokes SpyGlass Console
help Displays help for a particular command or item
report_design_status Reports design status as whether design has been

linked, compiled, or flattened, and whether these views
are up to date
345
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
gui_start
Invokes Atrenta Console

Syntax

gui_start
[-force]

Scope

Any

Return Value

None

Description

The gui_start command invokes Atrenta Console with the currently active
project. This command allows you to go back and forth between the shell
environment and the GUI interface to interactively debug design issues.

Before launching the GUI, the current project is saved and closed. If the
project could not be saved, this command fails to execute unless you
specify the -force argument. After you exit Console GUI, sg_shell reloads
the last active project at the time of launching the GUI. If there are any
changes done in the GUI environment and saved at the time of GUI exit,
those changes are visible when control goes back to the sg_shell prompt.

You can debug messages inside the GUI environment via schematic,
waveform, and so on. You can also update project settings or fix RTL to
resolve these messages, and come back to the sg_shell prompt once the
debugging is over.

Arguments

This command has the following arguments:

-force

(Optional) Closes the current project and starts the GUI even if the
project was not saved successfully.
346
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
help
Displays help for a particular command or item

Syntax

help
[-verbose]
[-list]
[-methodology | -goals | -rules | -params | -sgdc
| -reports | -options | -preferences]

[<pattern>]

Scope

Any

Return Value

All the invocations, when done without a pattern but by using the -list
argument, sg_shell returns an array of strings specifying the available
values for the requested category, such as goals and methodology.

Description

The help command displays the help for a particular command or item.
This command is like the usual shell's help command. It is used to see the
usage of any sg_shell command or item. The help command can be used
for any of the following purposes:
 To show the list of commands under help

 To show the usage of a particular command

 To show the list of methodologies available

 To show the help of a particular methodology

 To show the list of goals available

 To show the help of a particular goal

 To show the list of rules available

 To show the help of a particular rule

 To show the list of parameters in current scope
347
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 To show the help of a particular parameter

 To show the list of constraints in current scope

 To show the help of a particular constraint

 To show the list of reports available in current scope

 To show the help of a particular report

 To show the list of options in current scope

 To show the help of a particular option

 To show the list of recognized preference variables and help for any
particular preference variable(s)

Different Ways of Using the help Command

The following are the different ways to use the help command:
 If you specify the help command without specifying any arguments, all

the sg_shell-specific commands are displayed.

 If you specify the help <command-pattern> command, sg_shell
displays the help of all the commands matching the specified pattern.

 If you specify the command, <command-name> -help, sg_shell
displays the help of the specified command.

Other than the above ways, you can also invoke the help command in the
following ways:

 help [-list] -methodology [meth_pattern]

 help [-list] -goals [goal_pattern]

 help [-list] -rules [rule_pattern]

 help [-list] -params [param_pattern]

 help [-list] -sgdc [sgdc_pattern]

 help [-list] -reports [report_pattern]

 help [-list] -options [option_pattern]

 help [-list] -preferences [variable_pattern]

NOTE: You can use the ‘help –help’ command option on the sg_shell prompt to view
all the options accepted by the help command.
348
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> help new_project

new_project # starts a new project

Usage:
new_project <prj_name> [-projectwdir <path>] [-force]

sg_shell> help -verbose new_project
new_project # starts a new project

Usage:
new_project <prj_name> [-projectwdir <path>] [-force]
Options:
-force # do not ask user for confirmation
-projectwdir <path> # directory to store all the project
related data
<project> # project file name for the new project

sg_shell> current_goal rtl_handoff/dft_readiness/dft_latches
sg_shell> help -rules TA_*

-- shows help for rules TA_01,TA_02,TA_06,TA_07,TA_08
349
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_design_status
Reports design status as whether design has been compiled or
flattened, and whether these views are up to date

Syntax

report_design_status

Scope

Project

Return Value

A two-element list for each of compile and flat status of design

Description

The report_design_status command reports the following:
 Whether your design has been successfully compiled and flattened

 Whether these views are present in memory and if yes, are they up to
date

This command returns a two-element list, with each individual element a
two element list in itself. First list reports whether synthesized design view
is present in memory and whether it is up to date. Second list reports
whether a flattened design view is present in memory and whether it is up
to date.

Arguments

None

Examples

report_design_status

See Also

link_design, compile_design, run_goal
350
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Design Query Commands

Design query commands allow you to run queries on your design. These
commands can be used directly in sg_shell or can be included in Tcl scripts.

Tcl shell provides an access to Library Object Model through library
commands. Library commands provide the flexibility to access different
elements of SpyGlass Gates Object Model, or SGOM.

Tcl shell provides an access to synthesized netlist through netlist
commands. The synthesized netlist can be accessed in three different
forms: namely design unit view, flattened netlist view, or hierarchically
flattened netlist view.

The design query commands related to various object models have
collection as a way of communication between different commands. The
collection encapsulates the objects of these object models, which are then
exchanged among commands.

A variety of attributes is available that provides information about different
object models. This information is captured in various data types, such as
int, float, string, boolean, and so on.

Consider the following points pertaining to design query commands:
 Various meta-characters present in a regular expression have special

meaning in Tcl shell. For example, if you want to use square brackets []
in a regular expression, Tcl interprets it as a command execution
directive (in Tcl shell, anything specified inside [] is executed as a
command). Therefore, it is recommended that you give regular
expression patterns inside brackets {}. Tcl shell takes anything
specified inside brackets {} as a pattern only and does not interpret any
special meaning of the characters.

 It is recommended that you set the enable_save_restore option to yes
for saving design database. This setting allows faster goal runs due to
the reuse of design database across goal runs. It also ensures that
design exploration inside sg_shell works seamlessly across different
sg_shell sessions. If this option is set to no, the design created in the
last sg_shell session is not available during subsequent sg_shell
invocation, and needs to be recreated through the compile_design or
run_goal commands.
351
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 For multidimensional signals, only part select in the least significant
position is allowed. For example, if you want to search a[1:2][1:3]
in a vector net, a[0:2][0:4], you must specify a[1][1:3] and
a[2][1:3] separately.

NOTE: Refer to $SPYGLASS_HOME/examples/sg_shell/design_query in
your SpyGlass installation area for sample examples on how to effectively use
design query commands in sg_shell.

The design query commands can be categorized in the following groups:
 Library Commands

 Netlist Commands

 Collection Commands

 Attribute Commands

Library Commands

Tcl shell provides an access to Library Object Model through library
commands. The Library Object Model is basically populated from .sglib that
is specified as part of design inputs. Also known as SpyGlass Gates Object
Model, or SGOM, this model has information about different attributes
defined in .lib, and other derived information in terms of cell type, pin
functionality, and so on.

Library commands provide the flexibility to access different elements of
SGOM. These elements include the following:
 lib: SGOM library node

 lib_cell: SGOM library cell that is a part of the lib node

 lib_pin: SGOM cell pin that is a part of the lib_cell node

 lib_timing_arcs: SGOM timing arcs from one lib_pin node to another
lib_pin node

You can access these nodes through name, parent or child relationship, or
by passing corresponding objects of netlist object models. There are
various application attributes defined on each of these SGOM objects that
can be fetched using the attribute-related commands.

To specify wildcard or regular expression in library commands, the pattern
should start from the library and mention every subsequent hierarchy till
352
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
the end. You can specify patterns where library or other hierarchies are
implied. Consider the following examples:

 All pins of a cell AND2 of a library NEW can be referred as NEW.AND2.*

 All pins of all cells of a library NEW can be referred as NEW.*.*

 All pins of all cells of all libraries can be referred as *.*.*

 All pins named A of all cells of all libraries can be referred as *.*.A

 All pins of all cells named AND2 of all libraries can be referred as
.AND2.

The following table describes the various library commands:

Command Description
get_libs Used to get a list of libraries currently loaded in sg_shell
get_lib_cells Used to get a list of library cells currently loaded in

sg_shell
get_lib_pins Used to get a list of library pins currently loaded in

sg_shell
get_lib_timing_arcs Used to get a list of library timing arcs from libraries

currently loaded in sg_shell
353
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_libs
Used to get a list of libraries currently loaded in sg_shell

Syntax

get_libs
[-filter expression]
[-regexp | -exact]
[patterns | -of_objects objects]

Scope

Project

Return Value

Returns an empty string or a collection of libraries in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_libs command is used to get a list of libraries that are currently
loaded in sg_shell and that match certain criteria. This command returns a
collection if any library matches the patterns and passes the filtering
criterion, if specified.

Arguments

The get_libs command has the following arguments:

<patterns>

Use this argument to match library names against patterns. Patterns
can include wildcard characters * and ? or regular expressions, based on
the -regexp argument. Patterns can also include collections of type
lib. The patterns and -of_objects arguments are mutually exclusive.
You can specify only one at a time.

<-of_objects objects>

Use this argument to create a collection of libraries that contain the
354
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
specified objects. In this case, each object is either a named library cell
or a library cell collection. The -of_objects and patterns arguments are
mutually exclusive. You can specify only one at a time.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can specify only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any library
that matches patterns (or objects), the expression is evaluated on the
basis of the library’s attributes. If the expression evaluates to true, the
library is included in the result.

Examples

sg_shell> get_libs
{"mylib_20c", "t*ypical", "fast", "tlib"}

sg_shell> get_libs t*
{"t*ypical", "tlib"}

sg_shell> get_libs -regexp t.*
{"t*ypical", "fast", "tlib"}

sg_shell> get_libs -exact t*ypical
{"t*ypical"}

sg_shell> get_libs -of_objects {mylib_20c.AN2
fast.ACCSHCINX2}
{"mylib_20c", "fast"}

sg_shell> get_libs -regexp -of_objects {{mylib_20c\.AN.*}}
{"mylib_20c"}

sg_shell> define_user_attribute -class lib -type int intAttr
define_user_attribute: info: defining new attribute
'intAttr' of type 'int'
355
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> set_user_attribute -class lib {fast tlib} intAttr
10

sg_shell> set_user_attribute -class lib {mylib_20c t*ypical}
intAttr 55

sg_shell> get_libs * -filter "intAttr == 10"
{"fast", "tlib"}

sg_shell> foreach_in_collection i [get_libs] {
 puts "lib_name = [get_attribute $i base_name]
 (sglib_name = [get_attribute $i sglib_name],
 technology = [get_attribute $i technology])"
}
lib_name = mylib_20c (sglib_name = new/autogenerated_sglib/
aggregate.sglib, technology = cmos)
lib_name = t*ypical (sglib_name = new/autogenerated_sglib/
aggregate.sglib, technology = cmos)
lib_name = fast (sglib_name = new/autogenerated_sglib/
aggregate.sglib, technology = cmos)
lib_name = tsmc (sglib_name = new/autogenerated_sglib/
aggregate.sglib, technology = cmos)

See Also

get_lib_cells, get_lib_pins, get_lib_timing_arcs, filter_collection
356
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_lib_cells
Used to get a list of library cells currently loaded in sg_shell

Syntax

get_lib_cells
[-filter expression]
[-regexp | -exact]
<patterns | -of_objects objects>

Scope

Project

Return Value

Returns an empty string or a collection of library cells in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_lib_cells command is used to get a list of library cells that are
currently loaded in sg_shell and that match certain criteria. This command
returns a collection if any library cell matches the patterns or objects and
passes the filtering criterion, if specified.

Arguments

The get_lib_cells command has the following arguments:

<patterns>

Use this argument to match library cell names against patterns. Patterns
can include wildcard characters * and ? or regular expressions, based
on the -regexp argument. Patterns can also include collections of type
lib_cell. The patterns and -of_objects are mutually exclusive. You
can specify only one at a time.
357
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of library cells that contain the
specified objects. In this case, each object can be a named library, a
library pin, a netlist cell, a library pin collection, or a netlist cell
collection. The -of_objects and patterns are mutually exclusive. You can
specify only one at a time.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can specify only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any library
cell that matches patterns (or objects), the expression is evaluated on
the basis of the library cell’s attributes. If the expression evaluates to
true, the library cell is included in the result.

Examples

sg_shell> get_lib_cells mylib_20c.AN*
{"mylib_20c.AN2", "mylib_20c.AN3", "mylib_20c.AN2P",
"mylib_20c.AN3P", "mylib_20c.AN4", "mylib_20c.AN4P"}

sg_shell> get_lib_cells -regexp {mylib.*\.AN[0-9]}
{"mylib_20c.AN2", "mylib_20c.AN3", "mylib_20c.AN2P",
"mylib_20c.AN3P", "mylib_20c.AN4", "mylib_20c.AN4P"}

sg_shell> get_lib_cells -exact t*ypical.ACHCI~NX2
{"t*ypical.ACHCI~NX2"}

sg_shell> get_lib_cells -of_objects mylib_20c.AN2.A
{"mylib_20c.AN2"}

sg_shell> get_lib_cells -of_objects U*
{"mylib_20c.AN2", "mylib_20c.OR2", "mylib_20c.AN3",
"mylib_20c.OR3"}
358
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> define_user_attribute -class lib_cell -type string
cellAttr
define_user_attribute: info: defining new attribute
'cellAttr' of type 'string'

sg_shell> set_user_attribute -class lib_cell [get_lib_cells
mylib_20c.AN*] cellAttr attr1

sg_shell> set_user_attribute -class lib_cell [get_lib_cells
mylib_20c.AO*] cellAttr attr6

sg_shell> get_lib_cells mylib_20c.A* -filter
"cellAttr == attr1"
{"mylib_20c.AN2", "mylib_20c.AN3", "mylib_20c.AN2P",
"mylib_20c.AN3P", "mylib_20c.AN4", "mylib_20c.AN4P"}

sg_shell> foreach_in_collection i [get_lib_cells -of_objects
[get_libs fast] -filter {is_sequential==true}] {
 puts "cell_name = [get_attribute $i base_name]
 (area = [get_attribute $i area],
 no. of pins = [get_attribute $i number_of_pins])"
 }
cell_name = DFFHQX1 (area = 35.64540100097656,
no. of pins = 3)
cell_name = DFFHQX2 (area = 35.64540100097656,
no. of pins = 3)
cell_name = DFFHQX4 (area = 45.82979965209961,
no. of pins = 3)
cell_name = DFFHQX8 (area = 49.22460174560547,
no. of pins = 3)
cell_name = DFFNSRX1 (area = 37.34280014038086,
no. of pins = 6)
cell_name = DFFNSRX2 (area = 40.73759841918945,
no. of pins = 6)
cell_name = DFFNSRX4 (area = 56.014198303222656,
no. of pins = 6)
cell_name = DFFNSRXL (area = 37.34280014038086,
no. of pins = 6)
359
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_libs, get_lib_pins, get_lib_timing_arcs, filter_collection
360
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_lib_pins
Used to get a list of library pins currently loaded in sg_shell

Syntax

get_lib_pins
[-filter expression]
[-regexp | -exact]
< patterns | -of_objects objects >

Scope

Project

Return Value

Returns an empty string or a collection of library pins in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_lib_pins command is used to get a list of library pins that are
currently loaded in sg_shell and that match certain criteria. This command
returns a collection if any library cell pin matches the patterns or objects
and passes the filtering criterion, if specified.

Arguments

The get_lib_pins command has the following arguments:

<patterns>

Use this argument to match library pin names against patterns. Patterns
can include wildcard characters * and ? or regular expressions, based
on the -regexp argument. Patterns can also include collections of type
lib_pin. The patterns and -of_objects arguments are mutually
exclusive. You can specify only one at a time.
361
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of library pins that contain the
specified objects. In this case, each object can be either a named library
cell, netlist pin, a library cell collection, or a netlist pin collection. The
-of_objects and patterns arguments are mutually exclusive. You can
specify only one at a time.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any library
pin that matches patterns (or objects), the expression is evaluated on
the basis of the library pin’s attributes. If the expression evaluates to
true, the library pin is included in the result.

Examples

sg_shell> get_lib_pins mylib_20c.AN2.*
{"mylib_20c.AN2.A", "mylib_20c.AN2.B", "mylib_20c.AN2.Z"}

sg_shell> get_lib_pins -regexp {mylib.*\.AN[0-9]\.Z}
{"mylib_20c.AN2.Z", "mylib_20c.AN3.Z", "mylib_20c.AN2P.Z",
"mylib_20c.AN3P.Z", "mylib_20c.AN4.Z", "mylib_20c.AN4P.Z"}

sg_shell> get_lib_pins -exact t*ypical.ACHCI~NX2.B%B
{"t*ypical.ACHCI~NX2.B%B"}

sg_shell> get_lib_pins -of_objects mylib_20c.AN2
{"mylib_20c.AN2.A", "mylib_20c.AN2.B", "mylib_20c.AN2.Z"}

sg_shell> get_lib_pins -of_objects U1.A
{"mylib_20c.OR2.A"}

sg_shell> define_user_attribute -class lib_pin -type float
pinAttr
362
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
define_user_attribute: info: defining new attribute
'pinAttr' of type 'float'

sg_shell> set_user_attribute -class lib_pin [get_lib_pins
mylib_20c.AN*.A] pinAttr 5.24

sg_shell> set_user_attribute -class lib_pin [get_lib_pins
mylib_20c.OR*.A] pinAttr 2.22

sg_shell> get_lib_pins mylib_20c.*.* -filter
"pinAttr == 5.24"
{"mylib_20c.AN2", "mylib_20c.AN3", "mylib_20c.AN2P",
"mylib_20c.AN3P", "mylib_20c.AN4", "mylib_20c.AN4P"}

sg_shell> foreach_in_collection i [get_lib_pins -of_objects
[get_lib_cells mylib_20c.AN2*]] {
 puts "pin_name = [get_attribute $i full_name]
 (direction = [get_attribute $i direction])"
 }
pin_name = mylib_20c.AN2.A (direction = input)
pin_name = mylib_20c.AN2.B (direction = input)
pin_name = mylib_20c.AN2.Z (direction = output)
pin_name = mylib_20c.AN2P.A (direction = input)
pin_name = mylib_20c.AN2P.B (direction = input)
pin_name = mylib_20c.AN2P.Z (direction = output)

See Also

get_libs, get_lib_cells, get_lib_timing_arcs, filter_collection
363
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_lib_timing_arcs
Used to get a list of library timing arcs from the libraries currently
loaded in sg_shell

Syntax

get_lib_timing_arcs
[-filter expression]
[-regexp | -exact]

< -of_objects objects | -from from_pin | -to to_pin>

Scope

Project

Return Value

Returns an empty string or a collection of library timing arcs in case of
successful execution. An empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution, an error is returned
that can be trapped by using the catch command.

Description

The get_lib_timing_arcs command is used to get a list of library timing arcs
from libraries that are currently loaded in sg_shell and that match certain
criteria. This command returns a collection of timing arcs related to given
pins or cells and passes the filtering criterion, if specified.

Arguments

The get_lib_timing_arcs command has the following arguments:

<-of_objects objects>

Use this argument to specify library cells. All library cell arcs of that cell
are considered.

<-from from_pin>

Use this argument to specify the from library pins or netlist terminals.
All forward library arcs from the specified library pins or corresponding
netlist terminals are considered.
364
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-to to_pin>

Use this argument to specify the to library pins or netlist terminals. All
backward library arcs from the specified library pins or corresponding
netlist terminals are considered.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
provided, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any library
timing arc that matches patterns or objects, the expression is evaluated
on the basis of library timing arc’s attributes. If the expression evaluates
to true, the library timing arc is included in the result.

Examples

The get_lib_timing_arcs command returns only a collection. You have to
write a proc in Tcl to see the results data included in the collection. You
may use the following proc to see the results in sg_shell:

proc report_lib_timing_arcs {args} {
set lib_arcs [eval [concat get_lib_timing_arcs $args]]
puts [format "%15s %-15s %18s %18s" "from_lib_pin"
"to_lib_pin" \
"timing_type" "timing_sense"]
puts [format "%15s %-15s %15s %18s" "------------"
"----------" \"-----------" "------------"]
foreach_in_collection lib_arc $lib_arcs {
set fpin [get_attribute $lib_arc from_lib_pin]
set fname [get_attribute $fpin base_name]
set tpin [get_attribute $lib_arc to_lib_pin]
set tname [get_attribute $tpin base_name]
set type [get_attribute $lib_arc timing_type]
set sense [get_attribute $lib_arc timing_sense]
365
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
puts [format "%15s -> %-15s %15s %18s" $fname $tname
$type $sense]

}
}

sg_shell> report_lib_timing_arcs -from mylib_20c.AN2.A
from_lib_pin to_lib_pin timing_type timing_sense
------------ ---------- ----------- ------------
 A -> Z timing_type_undef timing_sense_undef

sg_shell> report_lib_timing_arcs -regexp -to
{mylib.*\.AN[0-9]\.Z}
from_lib_pin to_lib_pin timing_type timing_sense
 ------------ ---------- ----------- ------------
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 D -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 D -> Z timing_type_undef timing_sense_undef

sg_shell> report_lib_timing_arcs -exact -from
t*ypical.ACHCI~NX2.B%B
from_lib_pin to_lib_pin timing_type timing_sense
 ------------ ---------- ----------- ------------
366
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 B%B -> CO timing_type_undef positive_unate
 B%B -> CO timing_type_undef positive_unate
 B%B -> CO timing_type_undef positive_unate

sg_shell> report_lib_timing_arcs -from [get_pins U*.A]
from_lib_pin to_lib_pin timing_type timing_sense
 ------------ ---------- ----------- ------------
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef

sg_shell> report_lib_timing_arcs -of_objects mylib_20c.AN2
from_lib_pin to_lib_pin timing_type timing_sense
 ------------ ---------- ----------- ------------
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef

sg_shell> define_user_attribute -class lib_timing_arcs -type
int timingAttr
Defining new attribute 'timingAttr' of type 'int'
sg_shell> set_user_attribute -class lib_timing_arcs
[get_lib_timing_arcs -from mylib_20c.AN*.A] timingAttr 67
sg_shell> set_user_attribute -class lib_timing_arcs
[get_lib_timing_arcs -to mylib_20c.OR*.Z] timingAttr 11

sg_shell> report_lib_timing_arcs mylib_20c.A* -filter
"timingAttr == 11"
 from_lib_pin to_lib_pin timing_type timing_sense
 ------------ ---------- ----------- ------------
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
367
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 D -> Z timing_type_undef timing_sense_undef
 A -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef
 C -> Z timing_type_undef timing_sense_undef
 D -> Z timing_type_undef timing_sense_undef
 B -> Z timing_type_undef timing_sense_undef

See Also

get_libs, get_lib_cells, get_lib_pins, filter_collection
368
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Netlist Commands

Tcl shell provides an access to synthesized netlist through netlist
commands. The synthesized netlist can be accessed in three different
forms: namely design unit, flattened netlist, or hierarchically flattened
netlist view. Decide and set the appropriate view by using the set_pref
dq_design_view_type <du/flat/hier_flat> command. To
hierarchically flatten your design, compile your design or run a goal by
using the enable_hier_flattening option.

In the du view, all the design query commands work relative to the current
design. Therefore, you cannot cross the boundaries of the current design
while working in the du view. If you want to traverse across boundaries,
current design should be changed explicitly. If current design is top, it
essentially means that du_cell/du_net/du_port can be specified as
top.X or X whereas du_pin can be specified as top.I.P or I.P, where
X is a cell, net, or port pattern, and P is a pin pattern.

In the flat view, design query works relative to the currently set top
design unit, which is essentially the current design itself.

In the hier_flat view, all the design query commands work relative to
the current_instance. By default, the current_instance is set to top.
Therefore, all queries work relative to top. When the current_instance is:

 Not set or reset: A cell, net, or port can be specified as top.X, X,
top.U.X, or U.X, whereas a pin can be specified as top.I.P, I.P,
top.U.I.P, or U.I.P, where X is a cell, net, or port pattern, P is a pin
pattern, and U is a top-level hierarchical instance pattern.

NOTE: Using * at the beginning of the pattern matches it with top and the rest
accordingly. It means *.P cannot match any pin of a top-level instance, but
can match a top-level instance, port, or net named P.

 Set to a hierarchical instance: A cell and net can be specified as X or
U.X, whereas a pin can be specified as I.P or U.I.P, where X is a cell,
net, or port pattern, P is a pin pattern, and U is a hierarchical instance
pattern inside the current instance.

NOTE: The provided pattern should not include the current instance.
369
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The basic elements of a netlist view are as follows:

 du_cell/flat_cell: Design unit (du) or flattened instance

 du_pin/flat_pin: Terminal corresponding to du_cell or flat_cell

 du_net/flat_net: Net in design unit (du) or flattened view

 du_port/flat_port: Ports as given for a design

 design: Current design, that is, module in design unit (du) view, and
top-level module in flattened (flat) view

NOTE: Netlist commands in the hier_flat view also returns flat_cell,
flat_net, flat_pin, and flat_port objects. But, unlike the flat view,
the objects returned may be a hierarchical cell, net, or pin.

Similar to library commands, netlist commands support different ways to
get handle for the above objects through name, parent or child
relationship, or by connectivity pattern among different object types. Use
application attributes, which are additionally provided for guided traversal
and decision making, as you are building queries on object models.

To specify exact, wildcard, or regular expression in netlist commands, the
pattern may or may not start from the top-level module of the design, but
it should mention every subsequent hierarchy till the end. You can specify
patterns where the top-level module is implied. In netlist commands,
exact, wildcard, or regular expression is not allowed in the name field of
the top-level module. You can specify exact, wildcard, or regular
expression in any hierarchy other than the top-level module of the design.

Examples

Let us assume that top is the top-level design unit set as both top and
current design. There are a number of cells present in hierarchy, such as
I1, I2, and so on. Here, I1 is a cell present at the first level of hierarchy
after top, I2 is present at the second level of hierarchy, and so on.

In the du view
All the examples given below are related to du cell, net, or port. As already
described, one more level of hierarchy is accepted for the du pin.

 top.I1 or I1 returns the top.I1 cell, where top was implied in the
latter pattern.

 * matches top.I1, top.J1, top.K1, and so on. It indicates all cells
that are present at the first level of hierarchy after top.
370
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 top.I1.I2 does not match anything because you are specifying more
than two hierarchies.

 p* matches top.p1, top.pp1, and so on. It indicates that the
pattern matches with the cells present at the first level of hierarchy after
top.

 t*.p* does not match anything because t* does not match top. Here,
you can explicitly specify top; otherwise, it is implied.

 .I1 or t.I1 does not match anything because patterns are not
allowed in top and specifying more than two hierarchies is not possible
in the du view.

In the flat view

All the examples given below are related to the flat cell.

 top.I1 or I1 returns the top.I1 cell, where top was implied in the
latter pattern.

 * matches all cells in the design.

 p* matches top.p1, top.p2, and so on. It indicates the pattern
matches with the cells present at the first level of hierarchy after top.

 t*.* matches top.t1, top.t2, and so on.

 t*.*.* matches top.t1.tt1, top.t1.tt2, top.t2.tt3,
top.t1.tt4, and so on.

 t*.I1.I2 matches top.I1.I2.

In summary, if a pattern does not start with the currently selected
<current_design>, the <current_design> is implicitly assumed,
and the pattern is matched in the selected <current_design>. This
holds true for exact, wildcard, or regular expression pattern specifications.

In the hier_flat view

Consider a design top containing hierarchical instances H11, H12, and
H13, and top-level leaf instances L11, L12, and L13. The top-level
hierarchical instance H12 contains H21, H22, L21, and L22. H21 further
contains L31 and L32.

 The get_cells command from top returns H11, H12, H13, L11, L12,
L13.
371
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 The get_cells command from H12 (i.e., the current_instance is set to
top.H12) returns H21, H22, L21, L22.

 The get_cells command from H21 (i.e., the current_instance is set to
top.H12.H21) returns L31, L32.

 get_cells top.H*.H* or get_cells H*.H* from top returns
H21, H22 (i.e., top may or may not be mentioned if the current_instance
is reset to top). But, top is always matched first. It means if the starting
pattern is *, that is, *.H*, it always matches the first * with top and
return H11, H12, H13.

 If the current_instance is set, the input pattern should not contain the
current instance. In other words, if the current_instance is set to H12, the
get_cells H12.* command does not match anything.

 The above properties are also applicable while searching pins and nets
in the hier_flat view.

List of Netlist Commands

The following table describes various netlist commands:

Command Description
current_instance Used to select a scope (instance) for design query on

hierarchically flattened netlist
current_design Used to select a current design for interactive constraint

and design query commands
get_cells Creates a list of cells in the current design that match

certain criteria
get_nets Creates a list of nets in the current design that match

certain criteria
get_pins Creates a list of pins in the current design that match

certain criteria
get_ports Creates a list of ports in the current design that match

certain criteria
report_cell Used to display information and statistics about cells in

the current instance or current design
get_fanin_pins Creates a list of fan-in pins in the design that match

certain criteria
372
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
NOTE: The following Netlist commands and their option usages may change across
releases, with proper notification, because the use model evolves to improve
productivity and effectiveness.

 get_clocks

 report_clocks

 get_registers

 get_value

For scripting purpose, use your own Tcl wrappers for these commands to
enable easy adoption to command changes.

get_fanin_ports Creates a list of fan-in ports in the design that match
certain criteria

get_fanout_pins Creates a list of fan-out pins in the design that match
certain criteria

get_fanout_ports Creates a list of fan-out ports in the design that match
certain criteria

get_master Returns the master module of the specified instance
get_parent Returns the parent node of the specified object
get_clocks Creates a list of user-defined clocks in the current design
report_clocks Reports properties of user-specified clocks in current

design
get_registers Used to get a list of cells driven by specified clocks/resets
get_resets Creates a list of user defined resets in current design
get_value Used to get simulation value of specified design object

(port, pin, or net) in last cycle
propagate_clocks Propagates the user-defined clocks
propagate_resets Propagates the user-defined resets
get_domains Creates a list of domains of the user-defined clocks in the

current design
report_domains Reports the list of clocks of the specified domains
report_resets Reports properties of user specified resets in current

design

Command Description
373
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
current_instance
Used to select a scope (instance) for design query on hierarchically
flattened netlist

Syntax

Usage 1

current_instance <pattern>

Usage 2

current_instance <collection>

Usage 3

current_instance .

Usage 4

current_instance

Scope

Project

Return Value

Usage 1, 2, and 3: Returns a new single object collection, which contains
the current_instance object, in case of successful execution. In case of
unsuccessful execution, an error is returned that can be trapped by using
the catch command.

Usage 4: Returns nothing.

Description

The current_instance command sets the scope of the design query in the
hier_flat (dq_design_view_type) mode. The command enables
all design query commands to be used relative to the current instance in
the design hierarchy.

This command can be specified in the following four modes:

 current_instance <pattern>: Use this mode to set the current
instance that matches the provided pattern. The number of matches
should be 1. The matched instance should be a hierarchical instance.
374
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Otherwise, it results in an error. If the pattern is an empty string (""),
the current instance is reset and the scope is set to top.

 current_instance <collection>: Use this mode to set the
current instance with the hierarchical cell object contained in the
argument collection. The collection should be a single object collection.
The object contained should be a hierarchical cell. Otherwise, it results
in an error. If the collection is empty (""), the current instance is reset
and the scope is set to top.

 current_instance .: It is known as the query mode of operation,
which returns the current instance that is set in the form of a single
object collection. This command returns nothing if the scope is set to
top.

 current_instance: Use this mode to reset the current instance.
The scope of query is set to top and returns nothing.

NOTE: Setting the current_design or changing the dq_design_view_type preference
variable resets the current instance.

Arguments

The current_instance command has the following arguments:

<pattern>

Use this argument to set the current instance that matches the provided
pattern.

<collection>

Use this argument to set the current instance with the hierarchical cell
object contained in the argument collection.

Examples

sg_shell> current_instance
current_instance: info: current instance is the top-level of
design 'SISO'.
sg_shell> current_instance sf_inst_1
{"SISO.sf_inst_1"}
sg_shell> current_instance .
375
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
{"SISO.sf_inst_1"}
sg_shell> get_cells
{"SISO.sf_inst_1.bbox_inst", "SISO.sf_inst_1.flop_inst_sf",
"SISO.sf_inst_1.mux_inst_sf"}
sg_shell> current_instance mux_inst_sf
{"SISO.sf_inst_1.mux_inst_sf"}
sg_shell> get_cells
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst"}
sg_shell> current_instance
current_instance: info: current instance is the top-level of
design 'SISO'.
sg_shell> current_instance comb_cloud_inst_1
current_instance: error: cannot set current instance to leaf
cell 'SISO.comb_cloud_inst_1'
sg_shell> set cell [get_cells ic*]
{"SISO.icgc_inst"}
sg_shell> current_instance $cell
{"SISO.icgc_inst"}
sg_shell> current_instance .
{"SISO.icgc_inst"}
sg_shell> get_cells
{"SISO.icgc_inst.and_inst_icgc",
"SISO.icgc_inst.latch_inst_icgc"}

See Also

current_design, get_cells
376
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
current_design
Used to select a current design for interactive constraint and
design query commands

Syntax

Usage 1

current_design <current_design_name>

Usage 2

current_design

To know more about defining scope of constraints during SpyGlass analysis
in the Atrenta Console, refer to the Defining a Scope for Constraints section
in the Atrenta Console User Guide.

Scope

Project

Return Value

Usage 1: Returns nothing

Usage 2: Returns design unit name

Description

The current_design command selects a design unit to be used for
subsequent interactive constraint and design query commands. This
command can be specified in the following two modes:
 current_design with specific design unit name: Use this mode to

set the current_design command.
 current_design without any argument: Use this mode to return

currently selected design unit in the current_design command.
NOTE: The current_design command is set in sg_shell only when it is specified directly in

sg_shell or when an ADC file is read through the read_file -type adc
command. The current_design SGDC command, which is a part of the SGDC file,
cannot set the current_design sg_shell command. The scope of the current_design
SGDC command is limited to the SGDC file in which it is specified.
377
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Arguments

The current_design command has the following arguments:

<current_design_name>

Use this argument to specify either a design unit name or a collection
having a single design unit.

Examples

specify current_design for verilog design unit
sg_shell> current_design test
{"test"}

specify current_design for vhdl design unit test_state.rtl
sg_shell> current_design test_state.rtl
{"test_state"}

run without current_design specification
sg_shell> current_design
{"test_state"}

error scenario when wrong current_design set
sg_shell> current_design test_stat.rtl
current_design: error: can't find design `test_stat.rtl'

sg_shell> get_master mod1_inst
{"mod1"}
sg_shell> current_design [get_master mod1_inst]
{"mod1"}

See Also

get_adc
378
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_cells
Creates a list of cells in the current design that match certain
criteria

Syntax

get_cells
[-filter expression]
[-regexp | -exact]
< patterns | -of_objects objects >

Scope

Project

Return Value

Returns an empty string or a collection of cells in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_cells command creates a collection of cells in the current design or
current instance that match certain criteria. This command returns a
collection if any cell matches the patterns or -of_objects specification and
also passes the filtering criterion, if specified. If no object matches the
criterion, an empty string is returned.

Arguments

The get_cells command has the following arguments:

<patterns>

Use this argument to match cell names against patterns. Patterns can
include wildcard characters * and ? or regular expressions, based on
the -regexp argument. Patterns can also include a collection of cell
types. The patterns and -of_objects arguments are mutually exclusive.
379
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of cells connected to the
specified objects. Objects that can be specified include pin names,
collection of pins, net names, or a collection of nets.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search the
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter a collection with an expression. For any cell
that matches patterns or objects, the expression is evaluated on the
basis of the cell’s attributes. If the expression evaluates to true, the
cell is included in the result.

Examples

sg_shell> set_pref dq_design_view_type du
du
sg_shell> get_cells
{"inst_X", "inst_Y", "inst_Z"}
sg_shell> get_cells inst_*
{"inst_X", "inst_Y" , "inst_Z"}
sg_shell> get_cells -regexp {inst.*}
{"inst_X", "inst_Y" , "inst_Z"}
sg_shell> get_cells -of_objects "inst_X.A"
{"inst_X"}
sg_shell> get_cells -regexp -of_objects "inst_.*\.A"
{"inst_X", "inst_Y", "inst_Z"}
sg_shell> get_cells -regexp -of_objects [get_nets]
{"inst_X", "inst_Y", "inst_Z"}
sg_shell> get_cells -regexp -of_objects [get_pins inst_X.A]
{"inst_X"}
sg_shell> define_user_attribute -class du_cell -type int
380
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
intAttr
sg_shell> set_user_attribute [get_cells "inst_Y"] intAttr 10
set_user_attribute: info: setting attribute 'intAttr' on
object 'inst_Y' with value '10'
sg_shell> get_cells -filter {intAttr == 10}
{"inst_Y"}
sg_shell> get_cells -filter {is_sequential==true}
{"inst_Z"}
sg_shell> get_cells {{\cstate_r_reg[0] } {\cstate_r_reg[1] }
U6} -filter {is_blackbox==false}
{"\cstate_r_reg[0] ", "\cstate_r_reg[1] ", "U6"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_cells {{top.u_ctrl.U_CT.\cstate_r_reg[0] }}
{"top.u_ctrl.U_CT.\cstate_r_reg[0] "}
sg_shell> foreach_in_collection i [get_cells -filter
{is_sequential == true}] {
puts "cell_name = [get_attribute $i full_name] (file:
[get_attribute $i file_name], line: [get_attribute $i
line_num])"
}
cell_name = {top.u_ctrl.U_CT.\cstate_r_reg[0] } (file:
netlist.v, line: 47)
cell_name = {top.u_ctrl.U_CT.\cstate_r_reg[1] } (file:
netlist.v, line: 48)
cell_name = top.u_ctrl.out_dvl1_reg (file: netlist.v, line:
29)
cell_name = top.u_ctrl.out_dvld_reg (file: netlist.v, line:
31)
cell_name = top.u_ctrl.U_CT.U9 (file: netlist.v, line: 55)
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> current_instance .
current_instance: info: current instance is the top-level of
design 'SISO'.
sg_shell> get_cells
{"SISO.comb_cloud_inst_2", "SISO.comb_cloud_inst_1",
"SISO.icgc_inst", "SISO.sf_inst_2", "SISO.sf_inst_1"}
381
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_cells SISO.*.*
{"SISO.sf_inst_1.bbox_inst", "SISO.sf_inst_1.flop_inst_sf",
"SISO.sf_inst_1.mux_inst_sf", "SISO.sf_inst_2.bbox_inst",
"SISO.sf_inst_2.flop_inst_sf", "SISO.sf_inst_2.mux_inst_sf",
"SISO.icgc_inst.and_inst_icgc",
"SISO.icgc_inst.latch_inst_icgc"}
sg_shell> get_cells SISO.*.*.*
{"SISO.sf_inst_2.mux_inst_sf.leaf_mux_inst",
"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst"}
sg_shell> current_instance sf_inst_1
{"SISO.sf_inst_1"}
sg_shell> get_cells *
{"SISO.sf_inst_1.bbox_inst", "SISO.sf_inst_1.flop_inst_sf",
"SISO.sf_inst_1.mux_inst_sf"}
sg_shell> get_cells *.*
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst"}

See Also

get_nets, get_ports, filter_collection
382
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_nets
Creates a list of nets in the current design that match certain
criteria

Syntax

get_nets
[-filter expression]
[-regexp | -exact]
< patterns | -of_objects objects>
[-boundary_type btype]

Scope

Project

Return Value

Returns an empty string or a collection of nets in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_nets command creates a collection of nets in the current design or
current instance that match certain criteria. This command returns a
collection if any net matches the patterns or -of_objects specification and
also passes the filtering criterion, if specified. If no object matches the
criterion, an empty string is returned.

Arguments

The get_nets command has the following arguments:

<patterns>

Use this argument to match net names against patterns. Patterns can
include the wildcard characters * and ? or regular expressions, based on
the -regexp argument. Patterns can also include a collection of net type.
The patterns and -of_objects arguments are mutually exclusive.
383
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of nets connected to the
specified objects. Objects that can be specified include pin names,
collection of pins, port names, or collection of ports.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter a collection with an expression. For any net
that matches patterns or objects, the expression is evaluated on the
basis of net’s attributes. If the expression evaluates to true, the net is
included in the result.

[-boundary_type btype]

Use this argument to select the hierarchy of the connected net
corresponding to hierarchical pins. This option requires the -of_objects
option. The allowed values are lower, upper, and both, which means
the net inside the hierarchical block, the net outside the hierarchical
block, or both nets, respectively. The option has no meaning for non-
hierarchical pins. The default value is upper.

Examples

sg_shell> set_pref dq_design_view_type du
du
sg_shell> get_nets
{"N1", "N2", "N3", "N4"}
sg_shell> get_nets *
{"N1", "N2", "N3", "N4"}
sg_shell> get_nets -regexp {N[0-2].*}
{"N1", "N2"}
sg_shell> get_nets -of_objects [get_ports]
384
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
{"N1", "N2", "N3", "N4"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_nets -of_objects [get_pins -of_objects
{{top.u_ctrl.U_CT.\cstate_r_reg[0] }}]
{"top.u_ctrl.U_CT.\cstate_r[0] ", "top.u_ctrl.U_CT.n9",
"top.u_ctrl.U_CT.N3", "top.clk_1"}
sg_shell> foreach_in_collection i [get_nets -of_objects
[get_pins -of_objects {{top.u_ctrl.U_CT.\cstate_r_reg[0]
}}]] {
puts "net_name = [get_attribute $i full_name] (file:
[get_attribute $i file_name], line: [get_attribute $i
line_num])"
}
net_name = {top.u_ctrl.U_CT.\cstate_r[0] } (file: netlist.v,
line: 47)
net_name = top.u_ctrl.U_CT.n9 (file: netlist.v, line: 47)
net_name = top.u_ctrl.U_CT.N3 (file: netlist.v, line: 52)
net_name = top.clk_1 (file: netlist.v, line: 1)
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> set n [get_nets -filter {direction == output}]
{"SISO.DATA_OUT"}
sg_shell> set p [get_pins -of_objects $n]
{"SISO.sf_inst_2.Q"}
sg_shell> get_nets -of_objects $p
{"SISO.DATA_OUT"}
sg_shell> get_nets -of_objects $p -boundary_type upper
{"SISO.DATA_OUT"}
sg_shell> get_nets -of_objects $p -boundary_type lower
{"SISO.sf_inst_2.Q"}
sg_shell> get_nets -of_objects $p -boundary_type both
{"SISO.DATA_OUT", "SISO.sf_inst_2.Q"}
sg_shell> current_instance sf_inst_1
{"SISO.sf_inst_1"}
sg_shell> get_nets
{"SISO.sf_inst_1.D", "SISO.sf_inst_1.SI",
"SISO.sf_inst_1.SE", "SISO.sf_inst_1.CLK",
385
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
"SISO.sf_inst_1.Q", "SISO.sf_inst_1.mux_out"}
sg_shell> current_instance mux_inst_sf
{"SISO.sf_inst_1.mux_inst_sf"}
sg_shell> get_nets
{"SISO.sf_inst_1.mux_inst_sf.A",
"SISO.sf_inst_1.mux_inst_sf.B",
"SISO.sf_inst_1.mux_inst_sf.S",
"SISO.sf_inst_1.mux_inst_sf.Z"}

See Also

get_pins, get_ports, current_instance, filter_collection
386
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_pins
Creates a list of pins in the current design that match certain
criteria

Syntax

get_pins
[-filter expression]
[-regexp | -exact]
< patterns | -of_objects objects>

Scope

Project

Return Value

Returns an empty string or a collection of pins in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_pins command creates a collection of pins in the current design or
current instance that match certain criteria. This command returns a
collection if any pin matches the patterns or -of_objects specification and
also passes the filtering criterion, if specified. If no object matches the
criterion, an empty string is returned.

Arguments

The get_pins command has the following arguments:

<patterns>

Use this argument to match pin names against patterns. Patterns can
include the wildcard characters * and ? or regular expressions, based on
the -regexp argument. Patterns can also include a collection of pin type.
The patterns and -of_objects arguments are mutually exclusive.
387
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of pins connected to the
specified objects. Objects that can be specified include net names,
collection of nets, cell names, or collection of cells.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any pin
that matches patterns or objects, the expression is evaluated on the
basis of the pin’s attributes. If the expression evaluates to true, the
pin is included in the result.

Examples

sg_shell> set_pref dq_design_view_type du
du
sg_shell> get_pins
{"inst_A.A", "inst_A.B", "inst_A.Z", "inst_B.A", "inst_B.B",
"inst_B.Z"}
sg_shell> get_pins *
{"inst_A.A", "inst_A.B", "inst_A.Z", "inst_B.A", "inst_B.B",
"inst_B.Z"}
sg_shell> get_pins -regexp "inst_A.*\.A.*"
{"inst_A.A"}
sg_shell> get_pins -of_objects [get_cells inst_A]
{"inst_A.A", "inst_A.B", "inst_A.Z"}
sg_shell> define_user_attribute -class du_pin -type int
intAttr
sg_shell> set_user_attribute [get_pin "inst_A.B inst_B.A"]
intAttr 10
set_user_attribute: info: setting attribute 'intAttr' on
388
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
object 'inst_A.B' with value '10'
set_user_attribute: info: setting attribute 'intAttr' on
object 'inst_B.A' with value '10'
sg_shell> get_pins * -filter "intAttr == 10"
{"inst_A.B", "inst_B.A"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_pins -of_objects
{{top.u_ctrl.U_CT.\cstate_r_reg[0] }}
{"top.u_ctrl.U_CT.\cstate_r_reg[0] .Q",
"top.u_ctrl.U_CT.\cstate_r_reg[0] .QN",
"top.u_ctrl.U_CT.\cstate_r_reg[0] .D",
"top.u_ctrl.U_CT.\cstate_r_reg[0] .CP"}
sg_shell> foreach_in_collection i [get_pins -of_objects
{{top.u_ctrl.U_CT.\cstate_r_reg[0] }} -filter
{direction==input}] {
puts "pin_name = [get_attribute $i full_name] (file:
[get_attribute $i file_name], line: [get_attribute $i
line_num])"
}
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[0] .D} (file:
netlist.v, line: 47)
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[0] .CP} (file:
netlist.v, line: 47)
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> current_instance icgc_inst
{"SISO.icgc_inst"}
sg_shell> get_pins *.Z
{"SISO.icgc_inst.and_inst_icgc.Z"}
sg_shell> get_pins *.Q*
{"SISO.icgc_inst.latch_inst_icgc.Q",
"SISO.icgc_inst.latch_inst_icgc.QN"}
sg_shell> get_pins -filter {is_enable_pin == true}
{"SISO.icgc_inst.latch_inst_icgc.G"}
sg_shell> current_instance
current_instance: info: current instance is the top-level of
design 'SISO'.
389
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> current_instance sf_inst_1.mux_inst_sf
{"SISO.sf_inst_1.mux_inst_sf"}
sg_shell> get_pins -filter {is_mux_select_pin == true}
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst.S"}

See Also

get_nets, get_cells, current_instance, filter_collection
390
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_ports
Creates a list of ports in the current design that match certain
criteria

Syntax

get_ports
[-filter expression]
[-regexp | -exact]
< patterns | -of_objects objects>

Scope

Project

Return Value

Returns an empty string or a collection of ports in case of successful
execution. An empty string is returned if nothing matched the filtering
criterion. In case of unsuccessful execution, an error is returned that can
be trapped by using the catch command.

Description

The get_ports command creates a collection of ports in the current design
that match certain criteria. This command returns a collection if any port
matches the patterns or -of_objects specification and also passes the
filtering criterion, if specified. If no object matches the criterion, an empty
string is returned.

Arguments

The get_ports command has the following arguments:

<patterns>

Use this argument to match port names against patterns. Patterns can
include the wildcard characters * and ? or regular expressions, based on
the -regexp argument. Patterns can also include a collection of port
type. The patterns and -of_objects arguments are mutually exclusive.
391
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<-of_objects objects>

Use this argument to create a collection of ports connected to the
specified objects. Objects that can be specified include net names or a
collection of nets.

[-regexp | -exact]

If the -regexp switch is specified, patterns are seen as real regular
expressions rather than simple wildcard patterns. If the -exact switch is
specified, simple pattern matching is disabled. This is used to search
objects that contain the * and ? wildcard characters. The -exact and
-regexp arguments are mutually exclusive. You can use only one at a
time.

[-filter expression]

Use this argument to filter collection with an expression. For any port
that matches patterns or objects, the expression is evaluated on the
basis of port’s attributes. If the expression evaluates to true, the port
is included in the result.

Examples

sg_shell> set_pref dq_design_view_type du
du

sg_shell> get_ports
{"P1", "P2", "P3", "P4"}

sg_shell> get_ports P*
{"P1", "P2", "P3", "P4"}

sg_shell> get_ports -regexp {P[0-1].*}
{"P1"}

sg_shell> get_ports -of_objects [get_nets]
{"P1", "P2", "P3", "P4"}

sg_shell> define_user_attribute -class du_port -type int
intAttr

sg_shell> set_user_attribute [get_ports "P2 P4"] intAttr 10
set_user_attribute: info: setting attribute 'intAttr' on
object 'B' with value '10'
392
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
set_user_attribute: info: setting attribute 'intAttr' on
object 'C' with value '10'

sg_shell> get_ports * -filter "intAttr == 10"
{"P2", "P4"}

sg_shell> foreach_in_collection i [get_ports -filter
{direction==output}] {
 puts "port_name = [get_attribute $i full_name]
 (object_class = [get_attribute $i object_class])"
 }
port_name = dload (object_class = du_port)
port_name = dclear (object_class = du_port)
port_name = cload (object_class = du_port)
port_name = cclear (object_class = du_port)
port_name = iload (object_class = du_port)
port_name = iclear (object_class = du_port)
port_name = readf (object_class = du_port)
port_name = chk_crc (object_class = du_port)

sg_shell> set_pref dq_design_view_type flat
flat

sg_shell> get_ports clk*
{"top.clk_1", "top.clk_2"}

sg_shell> get_ports -regexp {{top\..*data}}
{"top.data_in[0]", "top.data_in[1]", "top.data_in[2]",
"top.data_in[3]", "top.data_in[4]", "top.data_in[5]",
"top.data_in[6]", "top.data_in[7]", "top.sync_data[0]",
"top.sync_data[1]", "top.sync_data[2]", "top.sync_data[3]",
"top.sync_data[4]", "top.sync_data[5]", "top.sync_data[6]",
"top.sync_data[7], "top.data_out[0]", "top.data_out[1]",
"top.data_out[2]", "top.data_out[3]", "top.data_out[4]",
"top.data_out[5]", "top.data_out[6]", "top.data_out[7]"}

sg_shell> get_ports -regexp {{top\.data_in\[[0-5]\]}}
{"top.data_in[0]", "top.data_in[1]", "top.data_in[2]",
"top.data_in[3]", "top.data_in[4]", "top.data_in[5]"}

sg_shell> get_ports -regexp -of_objects {{top\.data_in\[[0-
5]\]}}
393
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
{"top.data_in[0]", "top.data_in[1]", "top.data_in[2]",
"top.data_in[3]", "top.data_in[4]", "top.data_in[5]"}

See Also

get_nets, get_ports, filter_collection
394
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_cell
Used to display information and statistics about cells in the current
instance or current design

Syntax

report_cell
[-connections [-verbose]]
[cell_names]

Scope

Project

Return Value

Returns an empty string if the command is successfully executed and
nothing in case of any error

Description

The report_cell command displays information and statistics about cells in
the current instance or current design. If the current instance is set, the
report is generated for the design of that instance. Otherwise, the report is
generated for the current design.

Arguments

The report_cell command has the following arguments:

[cell_names]

Use this argument to specify the collection or names of cells to be
reported. If this argument is not specified, all the cells in the current
instance are reported.

[-connections]

Use this argument to display the pins and the nets to which connections
are made.

[-verbose]

Use this argument to display verbose connection information. For each
395
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
input pin, it displays the net and the driver pins on that net. For each
output pin, it displays the net and the load pins on that net. This
argument is used in conjunction with the -connections option.

Examples

sg_shell> report_cell

Report : cell
Design : design1

 h - hierarchical
 l - leaf level instance
 b - blackbox

Cell Master Library Attributes
----- ------- ------------ -------------
U0 AN2 mylib_20c l
U1 OR2 mylib_20c l
U2 AN2 mylib_20c l
U3 OR3 mylib_20c l
U4 AN3 mylib_20c l
A1 AOI h
AU0 AN2 mylib_20c l
OU AN2P mylib_20c l

See Also

get_cells, get_lib_cells
396
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_fanin_pins
Creates a list of fan-in pins in the design that match certain criteria

Syntax

get_fanin_pins
[-timing_type <timing_type>]
[-boundary_type btype]
< objects >

Scope

Project

Return Value

Returns a collection of fan-in pins of the specified net, pin, or port object. If
nothing matches the specified object, an error is returned that can be
trapped by using the catch command.

Description

The get_fanin_pins command creates a collection of pins in the flattened
design that match certain criteria. This command returns a collection of
pins found in the fan-in cone of the specified net, pin, or port. If no object
matches the criterion, an empty collection is returned.

Arguments

The get_fanin_pins command has the following arguments:

[-timing_type]

Pins in the fan-in cone of a flat pin, port, or net, which have timing_type
as the timing arc type, are included in the final result. Timing type can
be combinational, combinational_rise, combinational_fall,
three_state_disable, three_state_disable_rise, three_state_disable_fall,
three_state_enable, three_state_enable_rise, three_state_enable_fall,
rising_edge, falling_edge, preset, clear, hold_rising, hold_falling,
setup_rising, setup_falling, recovery_rising, recovery_falling,
skew_rising, skew_falling, removal_rising, removal_falling,
min_pulse_width, minimum_period, max_clock_tree_path,
397
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
min_clock_tree_path, non_seq_setup_rising, non_seq_setup_falling,
non_seq_hold_rising, non_seq_hold_falling, nochange_high_high,
nochange_high_low, nochange_low_high, or nochange_low_low.

[-boundary_type btype]

When <objects> is an inout hierarchical pin, it is mandatory to use
this argument. Depending on its value (upper or lower), the command
returns fan-in inside or outside the hierarchy of <objects>.

<object>

Use this argument to specify an object, which can be a flattened pin,
port, or net.

Examples

sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_fanin_pins top.inst_mid.AN2.Z
{"top.inst_mid.AN2.A", "top.inst_mid.AN2.B"}
sg_shell> foreach_in_collection i [get_pins -filter
{direction==output}] {
if [catch {set var [get_fanin_pins $i]} msg] {
puts "pin_name = [get_attribute $i full_name] fanin_pins =
(no fanin pin)"
} else {
puts "pin_name = [get_attribute $i full_name] fanin_pins =
([get_attribute $var full_name])" }
}
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[0] .Q} fanin_pins
= ({top.u_ctrl.U_CT.\cstate_r_reg[0] .CP})
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[0] .QN}
fanin_pins = ({top.u_ctrl.U_CT.\cstate_r_reg[0] .CP})
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[1] .Q} fanin_pins
= ({top.u_ctrl.U_CT.\cstate_r_reg[1] .CP})
pin_name = {top.u_ctrl.U_CT.\cstate_r_reg[1] .QN}
fanin_pins = ({top.u_ctrl.U_CT.\cstate_r_reg[1] .CP})
pin_name = top.u_ctrl.out_dvl1_reg.Q fanin_pins =
(top.u_ctrl.out_dvl1_reg.CP)
398
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
pin_name = top.u_ctrl.out_dvl1_reg.QN fanin_pins =
(top.u_ctrl.out_dvl1_reg.CP)
pin_name = top.u_ctrl.out_dvld_reg.Q fanin_pins =
(top.u_ctrl.out_dvld_reg.CP)
pin_name = top.u_ctrl.out_dvld_reg.QN fanin_pins =
(top.u_ctrl.out_dvld_reg.CP)
pin_name = top.u_ctrl.U_CT.U9.Q fanin_pins =
(top.u_ctrl.U_CT.U9.C2 top.u_ctrl.U_CT.U9.C1)
pin_name = top.u_ctrl.U_CT.U9.QN fanin_pins =
(top.u_ctrl.U_CT.U9.C2 top.u_ctrl.U_CT.U9.C1)
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> set point [get_ports -filter {direction ==
output}]
{"SISO.DATA_OUT"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.sf_inst_2.Q"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.sf_inst_2.flop_inst_sf.Q"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.sf_inst_2.flop_inst_sf.CP"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.sf_inst_2.CLK"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.icgc_inst.CLKOUT"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.icgc_inst.and_inst_icgc.Z"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.icgc_inst.and_inst_icgc.B",
"SISO.icgc_inst.and_inst_icgc.A"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> set point [get_ports -filter {direction ==
output}]
{"SISO.DATA_OUT"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.sf_inst_2.flop_inst_sf.Q"}
sg_shell> set point [get_fanin_pins $point]
399
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
{"SISO.sf_inst_2.flop_inst_sf.CP"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.icgc_inst.and_inst_icgc.Z"}
sg_shell> set point [get_fanin_pins $point]
{"SISO.icgc_inst.and_inst_icgc.B",
"SISO.icgc_inst.and_inst_icgc.A"}

See Also

get_fanin_ports, get_fanout_pins, get_fanout_ports, get_cells, get_nets,
get_pins, get_ports
400
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_fanin_ports
Creates a list of fan-in ports in the design that match certain
criteria

Syntax

get_fanin_ports < objects >

Scope

Project

Return Value

Returns a collection of fan-in ports of specified net, pin, or port object. In
case nothing matches the specified object, an error is returned that can be
trapped by using the catch command.

Description

The get_fanin_ports command creates a collection of ports found in fan-in
cone of the net, pin, or port specified. If no object matches the criterion, an
empty collection is returned.

Arguments

The get_fanin_ports command has the following argument:

<objects>

Use this argument to specify an object, which can be a flattened pin,
port, or net.

Examples

sg_shell> set_pref dq_design_view_type flat
flat

sg_shell> get_nets
{"top.A", "top.B", "top.C", "top.Z"}

sg_shell> get_fanin_ports top.C
{"top.C"}
401
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> foreach_in_collection i [get_nets -filter
{direction==input}] {
 if [catch {set var [get_fanin_ports $i]} msg] {
 puts "net_name = [get_attribute $i full_name]
 fanin_ports = (no fanin port)"
 } else {
 puts "net_name = [get_attribute $i full_name]
 fanin_ports = ([get_attribute $var full_name])" }
 }
net_name = top.clk_1 fanin_ports = (top.clk_1)
net_name = top.clk_2 fanin_ports = (top.clk_2)
net_name = top.rst_n fanin_ports = (top.rst_n)
net_name = {top.data_in[0]} fanin_ports = ({top.data_in[0]})
net_name = {top.data_in[1]} fanin_ports = ({top.data_in[1]})
net_name = {top.data_in[2]} fanin_ports = ({top.data_in[2]})
net_name = {top.data_in[3]} fanin_ports = ({top.data_in[3]})
net_name = {top.data_in[4]} fanin_ports = ({top.data_in[4]})
net_name = {top.data_in[5]} fanin_ports = ({top.data_in[5]})
net_name = {top.data_in[6]} fanin_ports = ({top.data_in[6]})
net_name = {top.data_in[7]} fanin_ports = ({top.data_in[7]})
net_name = top.write_n fanin_ports = (top.write_n)

See Also

get_fanin_pins, get_fanout_pins, get_fanout_ports, get_cells, get_nets, get_pins,
get_ports
402
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_fanout_pins
Creates a list of fan-out pins in the design that match certain
criteria

Syntax

get_fanout_pins
[-timing_type <timing_type>]
[-boundary_type btype]
< objects >

Scope

Project

Return Value

Returns a collection of fan-out pins of the specified net, pin, or port object.
If nothing matches the specified object, an error is returned that can be
trapped by using the catch command.

Description

The get_fanout_pins command creates a collection of pins in the flattened
design that match certain criteria. This command returns a collection of
pins found in the fan-out cone of the specified net, pin, or port. If no object
matches the criterion, an empty collection is returned.

Arguments

The get_fanout_pins command has the following arguments:

[-timing_type]

Pins in the fan-out cone of a flat pin, port, or net that have timing_type
as the timing arc type are included in the final result. Timing type can be
combinational, combinational_rise, combinational_fall,
three_state_disable, three_state_disable_rise, three_state_disable_fall,
three_state_enable, three_state_enable_rise, three_state_enable_fall,
rising_edge, falling_edge, preset, clear, hold_rising, hold_falling,
setup_rising, setup_falling, recovery_rising, recovery_falling,
skew_rising, skew_falling, removal_rising, removal_falling,
403
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
min_pulse_width, minimum_period, max_clock_tree_path,
min_clock_tree_path, non_seq_setup_rising, non_seq_setup_falling,
non_seq_hold_rising, non_seq_hold_falling, nochange_high_high,
nochange_high_low, nochange_low_high, or nochange_low_low.

[-boundary_type btype]

When <objects> is an inout hierarchical pin, it is mandatory to use
this argument. Depending on its value (upper or lower), the command
returns fan-out inside or outside the hierarchy of <objects>.

<object>

Use this argument to specify an object, which can be a flattened pin,
port, or net.

Examples

sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_fanout_pins top.inst_mid.AN2.A
{"top.inst_mid.AN2.Z"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> foreach_in_collection i [get_pins -of_objects
[get_cells top.u_ctrl.U_CT.U*] -filter {direction==output}]
{
if [catch {set var [get_fanout_pins $i]} msg] {
puts "pin_name = [get_attribute $i full_name] fanout_pins =
(no fanout pin)"
} else {
puts "pin_name = [get_attribute $i full_name] fanout_pins =
([get_attribute $var full_name])" }
}
pin_name = top.u_ctrl.U_CT.U12.Z fanout_pins =
(top.u_ctrl.out_dvl1_reg.D)
pin_name = top.u_ctrl.U_CT.U11.Z fanout_pins =
(top.u_ctrl.U_CT.U6.C)
pin_name = top.u_ctrl.U_CT.U10.Z fanout_pins =
(top.u_ctrl.U_CT.U4.B top.u_ctrl.U_CT.U12.A)
404
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
pin_name = top.u_ctrl.U_CT.U9.Q fanout_pins =
(top.u_ctrl.U_CT.U5.B)
pin_name = top.u_ctrl.U_CT.U9.QN fanout_pins = (no fanout
pin)
pin_name = top.u_ctrl.U_CT.U8.Z fanout_pins =
(top.u_ctrl.U_CT.U5.A top.u_ctrl.U_CT.U6.B)
pin_name = top.u_ctrl.U_CT.U7.Z fanout_pins =
(top.u_ctrl.U_CT.U8.C)
pin_name = top.u_ctrl.U_CT.U6.Z fanout_pins =
({top.u_ctrl.U_CT.\cstate_r_reg[0] .D})
pin_name = top.u_ctrl.U_CT.U5.Z fanout_pins =
({top.u_ctrl.U_CT.\cstate_r_reg[1] .D})
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> set point [get_ports SISO.DATA_IN]
{"SISO.DATA_IN"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.comb_cloud_inst_1.A"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.comb_cloud_inst_1.Z"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.D"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.A"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst.A"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst.Z"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.Z"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.flop_inst_sf.D"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> set point [get_ports SISO.DATA_IN]
{"SISO.DATA_IN"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.comb_cloud_inst_1.A"}
405
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> set point [get_fanout_pins $point]
{"SISO.comb_cloud_inst_1.Z"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst.A"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst.Z"}
sg_shell> set point [get_fanout_pins $point]
{"SISO.sf_inst_1.flop_inst_sf.D"}

See Also

get_fanin_pins, get_fanin_ports, get_fanout_ports, get_cells, get_nets, get_pins,
get_ports
406
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_fanout_ports
Creates a list of fan-out ports in the design that match certain
criteria

Syntax

get_fanout_ports
<objects>

Scope

Project

Return Value

Returns a collection of fan-out ports of a specified net, pin, or port object.
In case nothing matches the specified object, an error is returned that can
be trapped by using the catch command.

Description

The get_fanout_ports command creates a collection of ports found in
fan-out cone of the net, pin, or port specified. If no object matches the
criterion, an empty collection is returned.

Arguments

The get_fanout_ports command has the following argument:

<objects>

Use this argument to specify an object, which can be a flattened pin,
port, or net.

Examples

sg_shell> set_pref dq_design_view_type flat
flat

sg_shell> get_nets
{"top.A", "top.B", "top.C", "top.Z"}

sg_shell> get_fanout_ports top.Z
{"top.Z"}
407
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> foreach_in_collection i [get_nets {top.crc*
top.u_ctrl.U_CT.*}] {
 if [catch {set var [get_fanout_ports $i]} msg] {
 puts "net_name = [get_attribute $i full_name]
 fanout_ports = (no fanout port)"
 } else {
 puts "net_name = [get_attribute $i full_name]
 fanout_ports = ([get_attribute $var full_name])"
 }
}
net_name = {top.crc_out[7]}
fanout_ports = ({top.crc_out[7]})
net_name = {top.crc_out[6]}
fanout_ports = ({top.crc_out[6]})
net_name = {top.crc_out[5]}
fanout_ports = ({top.crc_out[5]})
net_name = {top.crc_out[4]}
fanout_ports = ({top.crc_out[4]})
net_name = {top.crc_out[3]}
fanout_ports = ({top.crc_out[3]})
net_name = {top.crc_out[2]}
fanout_ports = ({top.crc_out[2]})
net_name = {top.crc_out[1]}
fanout_ports = ({top.crc_out[1]})
net_name = {top.crc_out[0]}
fanout_ports = ({top.crc_out[0]})
net_name = top.clk_1 fanout_ports = (no fanout port)
net_name = top.rst_n fanout_ports = (no fanout port)
net_name = top.pkt_avl fanout_ports = (no fanout port)
net_name = top.loop_cmp fanout_ports = (no fanout port)
net_name = top.empty fanout_ports = (no fanout port)
net_name = top.dload fanout_ports = (no fanout port)
net_name = top.u_ctrl.U_CT.dclear fanout_ports = (no fanout
port)
net_name = top.cload fanout_ports = (no fanout port)
net_name = top.cclear fanout_ports = (no fanout port)
net_name = top.iload fanout_ports = (no fanout port)
net_name = top.iclear fanout_ports = (no fanout port)
408
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
net_name = top.read_n fanout_ports = (no fanout port)
net_name = top.u_ctrl.out_dvl2 fanout_ports = (no fanout
port)
net_name = {top.u_ctrl.U_CT.\cstate_r[1] } fanout_ports = (no
fanout port)
net_name = {top.u_ctrl.U_CT.\cstate_r[0] } fanout_ports = (no
fanout port)
net_name = top.u_ctrl.U_CT.N3 fanout_ports = (no fanout port)
net_name = top.u_ctrl.U_CT.N4 fanout_ports = (no fanout port)
net_name = top.u_ctrl.U_CT.n9 fanout_ports = (no fanout port)
net_name = top.u_ctrl.U_CT.n10 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.n11 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.n12 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.n13 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.n14 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.n15 fanout_ports = (no fanout
port)
net_name = top.u_ctrl.U_CT.VCC fanout_ports = (no fanout
port)

See Also

get_fanin_pins, get_fanin_ports, get_fanout_pins, get_cells, get_nets, get_pins,
get_ports
409
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_master
Returns the master module of the specified instance

Syntax

get_master <objects>

Scope

Project

Return Value

Returns a collection of master nodes of the specified object. In case
nothing matches the specified object, an error is returned that can be
trapped by using the catch command.

Description

The get_master command creates a collection of master modules of the
specified instance object. Objects can be a named instance or an instance
collection.

Arguments

The get_master command has the following arguments:

<objects>

Use this argument to create a collection of master modules of the
specified instance objects.

Examples

sg_shell> set_pref dq_design_view_type du
du

sg_shell> get_master inst_X
{"master_inst_X"}

sg_shell> get_cells
{"inst_X", "inst_Y", "inst_Z", "inst_W"}

sg_shell> get_master [get_cells]
410
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
{"master_inst_X", "master_inst_Y", "master_inst_Z",
"master_inst_W"}

sg_shell> get_master inst_*
{"master_inst_X", "master_inst_Y", "master_inst_Z",
"master_inst_W"}

sg_shell> current_design [get_master inst_X]
{"master_inst_X"}

sg_shell> set_pref dq_design_view_type flat
flat

sg_shell> foreach_in_collection i [get_cells
top.u_ctrl.U_CT.U*] {
 puts "cell_name = [get_attribute $i base_name]
 (master_name = [get_attribute [get_master $i] base_name])"
 }
cell_name = U001 (master_name = TC4GTDSDLANDYECLXP)
cell_name = U14 (master_name = PCI33DGZ)
cell_name = U13 (master_name = BBOX)
cell_name = U7 (master_name = IV)
cell_name = U6 (master_name = BTS4P)
cell_name = U4 (master_name = ISOAND)

See Also

get_parent
411
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_parent
Returns the parent node of the specified object

Syntax

get_parent <objects>

Scope

Project

Return Value

Returns a collection of parent nodes of the specified object. In case nothing
matches the specified object, an error is returned that can be trapped by
using the catch command.

Description

The get_parent command creates a collection of parent nodes of the
specified object. Objects can be an instance, pin, port, net names, or
collection comprising either of these.

Arguments

The get_parent command has the following arguments:

<objects>

Use this argument to create a collection of parent modules of the
specified instance, port, or net.

Examples

sg_shell> current_design
{"top"}
sg_shell> get_cells
{"inst_X", "inst_Y", "inst_Z", "inst_W"}
sg_shell> get_parent inst_X
{"top"}
sg_shell> get_pins inst_X
{"inst_X.A", "inst_X.B", "inst_X.Z"}
412
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_parent inst_X.B
{"inst_X"}
sg_shell> current_design [get_master inst_X]
{"master_inst_X"}
sg_shell> foreach_in_collection i [get_pins -of_objects
[get_cells U*]] {
puts "pin_name = [get_attribute $i base_name]
(cell_name = [get_attribute [get_parent $i] full_name],
direction = [get_attribute $i direction])"
}

pin_name = A (cell_name = U0, direction = input)
pin_name = B (cell_name = U0, direction = input)
pin_name = Z (cell_name = U0, direction = output)
pin_name = A (cell_name = U1, direction = input)
pin_name = B (cell_name = U1, direction = input)
pin_name = Z (cell_name = U1, direction = output)
pin_name = A (cell_name = U2, direction = input)
pin_name = B (cell_name = U2, direction = input)
pin_name = Z (cell_name = U2, direction = output)

See Also

get_master, get_cells, get_nets, get_pins, get_ports
413
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_clocks
Creates a list of user-defined clocks in the current design

Syntax

get_clocks
[<clkName>]
[-filter <filter_expression>]
[-of_objects <obj>]

Scope

Project

Return Value

Returns a collection of user-defined clocks in the current design. This
collection can be used as an input to other commands, such as
report_clocks, get_registers, and get_domains. If no user-defined clocks are
found, an empty collection is returned.

Description

The get_clocks command creates a collection of user-defined clocks in the
current design matching specified criteria.

Limitations

The get_clocks command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

Arguments

The get_clocks command has the following arguments:

[<clkName>]

Use this argument to specify the tag names of clocks in the design.
Collection of all clocks having tag name as specified along with this
option are returned.
414
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-of_objects <obj>]

Use this argument to specify a collection of flat cells, flat nets, flat pins,
or domains. Collection of clocks driving specified flat objects are
returned.

[-filter <filter_expression>]

Use this argument to specify a filter expression over the named
attributes of clocks, such as clk_name (tag name of a clock),
file_name (source file where a clock is defined), period (period of
clocks), edgelist (edgelist of a clock), and clock_type (type of
the clock).

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> get_clocks
returns a collection of all user-defined clocks in the
current design

sg_shell> get_clocks tag1
returns a collection of user-defined clocks that have the
tag name as 'tag1'

sg_shell> get_clocks -of_objects [get_pins expr]
returns a collection of user-defined clocks that are
driving flat pins matching 'expr'

sg_shell> get_clocks -of_objects [get_cells expr]
returns a collection of user-defined clocks that are
driving flat cells matching 'expr'

sg_shell> get_clocks -of_objects [get_domains expr]
returns a collection of user-defined clocks of domain
returned by the get_domains command

See Also

report_clocks, get_registers, propagate_clocks, get_domains, report_domains
415
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_clock_relation
Returns a collection of clock objects for given names

Syntax

get_clock_relation [<clock-names>]

Scope

Project

Return Value

Returns a collection of clock objects.

Description

The get_clock_relation command returns a collection of clock objects for
the given list of clock names. For virtual clocks, specify tag names instead
of clock names. If clock name or tag name is not provided, the command
returns all clock objects in the design.

Arguments

The get_clock_relation command has the following arguments:

[<clock-names>]

Use this argument to specify a list of clock names (tag names for virtual
clocks) defined in the sgdc file.

Examples

sg_shell> get_clock_relation
//returns all objects corresponding to clocks in design

sg_shell> get_clock_relation clk1 clk2
//returns object correspond to clk1 and clk2

See Also

report_clocks, get_registers, propagate_clocks, get_domains, report_domains,
report_clock_relation
416
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_clock_relation
Returns synchronous and asynchronous relationship between
clocks of the design in matrix format

Syntax

report_clock_relation [<clock-objects>]

Scope

Project

Return Value

None

Description

The report_clock_relation command reports synchronous and
asynchronous relationship between clocks in a matrix. In the matrix, "S"
indicates synchronous clocks and "A" indicates asynchronous clocks.

Arguments

The report_clock_relation command has the following arguments:

[<clock-objects>]

Use this argument to specify a collection of clock objects retuned by the
get_clock_relation command. If this argument is not specified, the
report_clock_relation command returns the relationships between all
clocks in the design.

Examples

sg_shell> report_clock_relation
//relationships between all clocks in the design

The clock matrix reported is shown in the following figure.
417
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
FIGURE 1. Sample clock matrix

sg_shell> report_clock_relation [get_clock_relation clk1
clk2]
//relationship between clk1 and clk2

The clock matrix reported is shown in the following figure.

FIGURE 2. Sample clock matrix

See Also

report_clocks, get_registers, propagate_clocks, get_domains, report_domains,
get_clock_relation
418
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_clocks
Reports properties of user-specified clocks in current design

Syntax

report_clocks
[<clocks>]
[-verbose]

Scope

Project

Return Value

None

Description

The report_clocks command reports the properties of the user-specified
clocks in the current design. The properties of clocks are reported in a
tabular format.

Limitations

The report_clocks command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

 An improper collection of objects, which does not contain clocks
returned by the get_clocks command, has been provided as an input to
the report_clocks command.

Arguments

The report_clocks command has the following arguments, none of which is
mandatory.

[<clocks>]

Collection used in the report_clocks command is a set of clocks returned
by the get_clocks command.
419
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-verbose]

Use this argument to display the verbose information about clocks. If
specified, this argument reports the following properties of clocks:
 Clock name

 Clock type

 Domain name

 Period (if defined)

 Edgelist of a clock (if defined)

 Backref of a clock

 Tag associated with a clock (if defined)

 List of flip-flops being driven by the positive edge of a clock (if at
least one exists)

 List of flip-flops being driven by the negative edge of a clock (if at
least one exists)

 List of latches being driven by a clock (if at least one exists)
If the -verbose argument is not specified, the following properties are
reported:
 Clock name

 Clock type

 Domain name

 Period (if defined)

 Edgelist of a clock (if defined)

 Backref of a clock

 Tag associated with a clock (if defined)

Examples

sg_shell> report_clocks
reports properties of all user defined clocks in current
design

sg_shell> report_clocks [get_clocks tagName] -verbose
reports verbose properties of clocks in current design for
420
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
which clock tag is defined as 'tagName'

sg_shell> report_clocks [get_clocks -of_objects [get_cells
top.I1.I2.bot]] -verbose
reports verbose properties of clocks in current design
which are driving the flat cell 'top.I1.I2.bot’

See Also

get_clocks, get_registers, propagate_clocks, get_domains, report_domains
421
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_registers
Used to get a list of cells driven by specified clocks/resets

Syntax

get_registers
<patterns>
[-all]
[-edge_triggered |-level_sensitive | -posedge_triggered |
-negedge_triggered]

Scope

Project

Return Value

Returns a collection of cells driven by the specified clocks/resets in case of
successful execution. An empty collection is returned if no cells are driven
by the specified clocks/resets. In case of unsuccessful execution, an error
is returned that can be trapped by using the catch command.

Description

The get_registers command is used to get a list of cells driven by the
specified clocks/resets.

Limitations

The get_registers command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

Arguments

The get_registers command has the following arguments:

<patterns>

Use this argument to specify a collection of clocks/resets returned by
the get_clocks/get_resets command respectively. Use this argument to
specify a collection of domains returned by the get_domains command.
422
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-all]

Use this argument to report all registers, in and below the current
design hierarchy, driven by the specified clocks/resets. In the absence of
this switch, all registers, only in current design hierarchy, driven by the
specified clocks/resets are reported.

[-edge_triggered | -level_sensitive | -posedge_triggered |
-negedge_triggered]

 If you specify the -edge_triggered switch, only flip-flops that are
driven by the specified clocks/resets are reported.

 If you specify the -posedge_triggered switch, only flip-flops that are
driven by the positive edge of the specified clocks are reported.

 If you specify the -negedge_triggered switch, only flip-flops that are
driven by the negative edge of the specified clocks are reported.

 If you specify the -level_sensitive switch, only latches that are driven
by the specified clocks/resets are reported.

NOTE: The -posedge_triggered and -negedge_triggered arguments are applicable only for
clocks.

Examples

sg_shell> get_registers [get_clocks expr]
Lists cells (both flip-flops and latches) in current design
hierarchy driven by specified clocks

sg_shell> get_registers [get_domains expr] -all
Lists all cells (both flip-flops and latches) driven by
clocks of specified domains

sg_shell> get_registers [get_clocks expr] -all
-edge_triggered
Lists all flip-flops driven by specified clocks

sg_shell> get_registers [get_domains expr] -edge_triggered
Lists flip-flops in current design hierarchy driven by
clocks of specified domains

sg_shell> get_registers [get_domains expr]
-posedge_triggered
Lists flip-flops in current design hierarchy driven by
423
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
positive edge of clocks of specified domains

sg_shell> get_registers [get_domains expr]
-negedge_triggered
Lists flip-flops in current design hierarchy driven by
negative edge of clocks of specified domains

sg_shell> get_registers [get_clocks expr] -all
-level_sensitive
Lists all latches driven by clock

sg_shell> get_registers <resetName>
Returns all the flops/latches where the reset <resetName>
is reaching
sg_shell> get_registers [get_resets –of_object <get_cells/
get_pins/get_nets> <obj Name>
Returns all the registers where the resets, that are
returned by get_resets command, are reaching.
sg_shell> get_registers <resetName> -edge_triggered
Returns all the flops that are receving the reset
<resetName>
sg_shell> get_registers <resteName> -level_sensitive
#Returns all the latches that are receiving the reset
<resetName>

See Also

get_clocks, report_clocks, propagate_clocks, get_domains, report_domains,
get_resets, report_resets
424
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_resets
Creates a list of user defined resets in current design

Syntax

get_resets [<resetName>] [-filter <filter_expression>] [-
of_objects <obj>]

Scope

Project

Return Value

Returns a collection of user defined resets in current design. This collection
may be used as input to other commands, for example, report_resets
and get_registers. In case if no user defined resets are found then an
empty collection is returned.

Description

This command creates a collection of user defined resets in current design
matching specified criteria.

The get_resets command fails when:
 Design query view type selected is not flat.

 Flattened view of design is not present.

Arguments

The get_resets command has the following arguments:

<-resetName>

Use this argument as name of resets. Collection of all resets having name
as specified along with this option are returned.

[-filter]

Filter expression can be specified over named attributes of resets. For
example, use reset_name (for name of reset), reset_type (for type
of the reset, which can be sync or async), file_name (for the source file
425
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
where a reset is defined), active_value [high or low], is_soft
(soft resets are returned).

[-of_objects]

It can be specified as collection of flat instances, flat nets, or flat pins. A
collection of resets driving the specified flat objects are returned.

Examples

Consider the following commands:

sg_shell> set_pref dq_design_view_type flat

sg_shell> get_resets # returns collection of all user
defined resets in current design

sg_shell> get_resets -of_objects [get_pins expr] # returns
collection of user defined resets which are driving flat pins
which match expr

See Also

report_resets, get_registers
426
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_value
Used to get simulation value of specified design object (port, pin,
or net) in last cycle

Syntax

get_value <design_objects>

Scope

Project

Return Value

Returns a list of simulation values of the specified design objects

Description

The get_value command is used to get a simulation value of the specified
design object (port, pin, or net) in the last simulation cycle.

In interactive environment, whenever the set_case_analysis design
constraints are applied on terminal, ports, or nets, its impact on the
get_value command is observed only after the flattened view of a design is
recreated. The flattened design view is created by the compile_design
command. In addition, you can use the run_goal command if there are rules
that require a flattened view.

Limitations

The get_value command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

 A collection of objects has been provided as an input to this command,
and those objects are not of the flat_net, flat_port, or flat_term type.

 Specified design object is not found in the current design.
427
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Arguments

The get_value command has the following argument:

<design_objects>

Use this argument to specify the design object for which a simulation
value needs to be found. It can be specified as a collection of nets,
ports, or pins matching the user-defined criteria, as returned from the
get_nets, get_ports, or get_pins command executed on the flat design
view. It can also be specified as space-separated hierarchical path
names of nets, ports, or terminals for which a simulation value needs to
be known.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> get_value top.clk
#Prints simulation value on top.clk
sg_shell> get_value [get_nets top.CDC04b.*.*]
#Prints simulation value of all flat nets matching this
criteria
sg_shell> get_value [get_ports top.*]
#Prints simulation value of all flat ports matching this
criteria
sg_shell> get_value [get_pins top.CDC0b.inst.*.*]
#Prints simulation value of all flat terms matching this
criteria

See Also

get_ports, get_pins, get_nets
428
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
propagate_clocks
Propagates the user-defined clocks

Syntax

propagate_clocks

Scope

Project

Return Value

None

Description

The propagate_clocks command propagates the user-defined clocks. The
clocks specified in the SGDC constraints file are propagated across the
design.

Arguments

None

Examples

propagate_clocks

See Also

get_clocks, report_clocks, get_domains, report_domains, get_registers
429
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
propagate_resets
Propagates the user-defined resets

Syntax

propagate_resets

Scope

Project

Return Value

None

Description

The propagate_resets command propagates the user-defined resets. The
resets specified in the SGDC constraints file are propagated across the
design.

Arguments

None

Examples

propagate_resets

See Also

get_resets, report_resets, get_registers
430
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_domains
Creates a list of domains of the user-defined clocks in the current
design

Syntax

get_domains
[<dName>]
[-of_objects <obj>]

Scope

Project

Return Value

Returns a collection of domains of the user-defined clocks in the current
design. This collection can be used as an input to other commands, such as
report_domains, get_registers, and get_clocks. If no user-defined domains are
found, an empty collection is returned.

Description

The get_domains command creates a collection of domains of the
user-defined clocks in the current design.

Limitations

The get_domains command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

Arguments

The get_domains command has the following arguments:

[<dName>]

Use this argument to specify the clock domain name. If this input is
provided, domains that have a domain name as <dName> are returned.
431
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-of_objects <obj>]

Use this argument to specify a collection of clocks, flat cells, flat pins, or
flat nets. If this input is specified as a collection of clocks, the domains
of given clocks are returned. If this input is specified as a collection of
flat cells, flat pins, or flat nets, the domains of clocks that are driving the
specified flat cells, flat pins, or flat nets are returned.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> get_domains
returns collection of domains of all user defined clocks in
current design

sg_shell> get_domains dName
returns collection of domains named as 'dName'

sg_shell> get_domains -of_objects [get_pins expr]
returns collection of domains of clocks that are driving
flat pins matching 'expr'

sg_shell> get_domains -of_objects [get_cells expr]
returns collection of domains of clocks that are driving
flat cells matching 'expr'

sg_shell> get_domains -of_objects [get_clocks expr]
returns collection of domains of clocks matching 'expr'

See Also

get_clocks, report_clocks, propagate_clocks, report_domains, get_registers
432
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_domains
Reports the list of clocks of the specified domains

Syntax

report_domains
[<domains>]

Scope

Project

Return Value

None

Description

The report_domains command reports a list of clocks of the specified
domains in a tabular format.

Limitations

The report_domains command fails in the following cases:
 Selected design query view type is not flat.

 Flattened design view is not present.

 An improper collection of objects, which does not contain the domains
returned by the get_domains command, is provided as an input to this
command.

Arguments

The report_domains command has the following argument:

[<domains>]

Use this argument to specify a collection of domains returned by the
get_domains command.
433
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> report_domains
reports list of clocks of all user defined domains

sg_shell> report_domains [get_domains expr]
reports list of clocks of domains which match 'expr'

See Also

get_clocks, report_clocks, get_domains, propagate_clocks, get_registers
434
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_resets
Reports properties of user specified resets in current design

Syntax

report_resets [<resets>] [-verbose]

Scope

Project

Return Value

None.

Description

This command is used to report properties of user specified resets in
current design.

It is mandatory to run the propagate_resets command before
reports_resets, so that flops/latches driven by resets are reported.

The get_resets command fails when:
 Design query view type selected is not flat.

 Flattened design view is not present.

 An improper collection (a collection that is not of resets as returned by
the get_resets commans) of objects has been provided as an input
to the report_resets command.

Arguments

The report_resets command has the following arguments:

<resets>

Collection of resets returned from the get_resets command. It reports
properties of resets in tabular format.

[-verbose]

Displays verbose information about resets. If specified, it reports the
435
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
following properties of resets:
 Reset name

 Backref of reset

 List of latches/flops being driven by reset, if at least one exists.

Examples

Consider the following commands:

sg_shell> report_resets # reports properties of all user
defined resets in current design

sg_shell> report_resets [get_resets resetName] -verbose #
reports verbose properties of resets in current design for
which reset name is defined as resetName

See Also

get_resets, get_registers
436
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Collection Commands

The design query commands related to various object models have
collection as a way of communication between different commands. The
collection encapsulates the objects of these object models, which are then
exchanged among commands. A collection can have single or multiple
objects depending on the result of a given command.

The table below describes the various collection commands. You use these
commands to traverse or filter objects and to get a count of objects in a
given collection.

Command Description
add_to_collection Add objects to a base collection and form a new

collection. The base collection remains unchanged.
append_to_collection Add objects to a collection, modifying the variable

containing it
compare_collections Used to compare two collections, returning 0 if they

match
filter_collection Used to filter a given base collection with some

specific criteria
foreach_in_collection Used to iterate over the objects of a collection
index_collection Used to extract a single object from a collection

based on its index
query_objects Used to display objects in the argument collection
remove_from_collection Remove objects from a base collection and form a

new collection
sizeof_collection Used to determine the number of objects in a

collection
437
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
add_to_collection
Add objects to a base collection and form a new collection. The
base collection remains unchanged

Syntax

add_to_collection
[-unique]
<base_collection>
<objects>

Scope

Project

Return Value

Returns a new collection containing objects in the <objects> argument
added to the objects in the <base_collection> argument. In case of
unsuccessful execution, an error is returned that can be trapped by using
the catch command.

Description

The add_to_collection command is used to add elements to a collection.

All objects from the <base_collection> argument are added to the
resulting collection. Depending on the nature of the
<base_collection> argument, the following actions are taken on the
<objects> argument:

 Case 1: The <base_collection> argument is homogeneous, that
is, all objects in the collection are of the same object class

 If the <objects> argument is a collection, the add_to_collection
command adds the objects from the <objects> argument to the
result collection. This operation may result in a heterogeneous
collection if the <base_collection> and <objects> arguments
are of different object class.

 If the <objects> argument is a pattern, the add_to_collection
command searches for the design object’s name patterns by using
438
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
the object class of the base collection and then adds all the matched
objects in the resulting collection.

 Case 2: The <base_collection> argument is heterogeneous, that
is, not all objects in the collection are of the same object class

 If the <objects> argument is a collection, the add_to_collection
command adds the objects from the <objects> argument to the
result collection.

 If the <objects> argument is a pattern, the add_to_collection
command ignores all implicit object patterns.

 Case 3: The <base_collection> argument is empty, that is, ""

 There must be at least one homogeneous collection in the
<objects> argument list. The position of the collection in the list
does not matter. The first homogeneous collection in the
<objects> argument list becomes the base collection. The implicit
object name patterns in the <objects> argument list are searched
by using this object class. The order of elements in the result
collection remains same to the order of elements in the <objects>
argument.

 Case 4: The <objects> argument is empty, that is, ""

 The result is a copy of the base collection.

 Case 5: The -unique argument is provided

 Duplicate objects are removed from the result collection.

Arguments

The add_to_collection command has the following arguments:

[-unique]

Use this argument to remove duplicate objects from the resulting
collection. By default, the add_to_collection command does not remove
duplicate objects.

<base_collection>

Use this argument to specify the base collection in which objects are to
be added. This option can be an empty collection (empty string).
439
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<objects>

Use this argument to specify a list of named objects or collections to be
added to the base collection.

Examples

sg_shell> set cells [get_cells U*]
{"U0", "U1", "U2"}

sg_shell> set nets [get_nets N*]
{"N0", "N1", "N2"}

sg_shell> add_to_collection $cells *1
{"U0", "U1", "U2", "I1", "U1"}

sg_shell> set mix [add_to_collection $cells $nets]
{"U0", "U1", "U2", "N0", "N1", "N2"}

sg_shell> add_to_collection $mix N*
add_to_collection: warning: nothing implicitly matched 'N*'
{"U0", "U1", "U2", "N0", "N1", "N2"}

sg_shell> add_to_collection $mix [get_ports P*]
{"U0", "U1", "U2", "N0", "N1", "N2", "P0", "P1", "P2"}

sg_shell> add_to_collection "" "*2 $cells"
{"I2", "U2", "U0", "U1", "U2"}

sg_shell> add_to_collection "" "U* N*"
add_to_collection: error: nothing implicitly matched
object(s)

sg_shell> add_to_collection $cells $cells
{"U0", "U1", "U2","U0", "U1", "U2"}

sg_shell> add_to_collection $nets $nets -unique
{"N0", "N1", "N2"}

See Also

append_to_collection, remove_from_collection, sizeof_collection, filter_collection
440
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
append_to_collection
Add objects to a collection, modifying the variable containing it

Syntax

append_to_collection
[-unique]
<var_name>
<objects>

Scope

Project

Return Value

Returns a collection containing the objects in the <objects> argument
added to the objects in the collection referenced by a variable specified in
the <var_name> argument. If the variable <var_name> does not exist,
it is created. In case of unsuccessful execution, an error is returned that
can be trapped by using the catch command.

Description

The append_to_collection command is used to add elements to a collection
and simultaneously modify the variable containing the collection. This
command treats the variable name, specified by using the <var_name>
argument, as a collection, and it appends all the objects in the
<objects> argument to that collection. If the variable name does not
exist, it is created as a collection of objects, which are specified by using
the <objects> argument, as its value. If a variable exists and it does not
hold a collection, an error is reported.

Consider the following examples to compare the usage of the
add_to_collection command with the append_to_collection command.

The following example illustrates the usage of the add_to_collection
command:

sg_shell> set base_col [add_to_collection $base_col
$new_objs]
441
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The following example illustrates the usage of the append_to_collection
command:

sg_shell> append_to_collection base_col $new_objs

Please note that base_col, not $base_col, is used in the
append_to_collection command.

NOTE: The semantics of the append_to_collection command is similar to that of the
add_to_collection command. However, it is recommended that you use the
append_to_collection command for building up a collection in iterations.

Arguments

The append_to_collection command has the following arguments:

[-unique]

Use this argument to remove duplicate objects from the resulting
collection. By default, the append_to_collection command does not
remove duplicate objects.

<var_name>

Use this argument to specify a variable name. The design objects
matching the <objects> argument are added into the collection
referenced by this variable. This variable can point to an empty
collection (empty string) or a new variable. If the variable is nonexistent
or contains an empty string, it is subject to the same restrictions as in
the add_to_collection command.

<objects>

Use this argument to specify a list of named objects or collections to be
added to the specified variable <var_name>.

NOTE: The arguments of the append_to_collection command have the same restrictions
and semantics as the add_to_collection command.

Examples

sg_shell> append_to_collection objs [get_cells U*]
{"U0", "U1", "U2"}

sg_shell> append_to_collection objs [get_nets N*]
{"U0", "U1", "U2", "N0", "N1", "N2"}
442
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> foreach_in_collection cell [get_lib_cells *.*] {
 if { [get_attribute $cell is_sequential] } {
 append_to_collection seq_cell_list $cell
 } else {
 append_to_collection comb_cell_list $cell
 }
 }

sg_shell> set var 10
sg_shell> append_to_collection var [get_ports P*]
append_to_collection: error: variable 'var' does not hold a
collection.

sg_shell> append_to_collection nets [get_nets N*]
{"N0", "N1", "N2"}
sg_shell> append_to_collection nets [get_nets N*]
{"N0", "N1", "N2", "N0", "N1", "N2"}
sg_shell> append_to_collection nets "" -unique
{"N0", "N1", "N2"}

See Also

add_to_collection, remove_from_collection, sizeof_collection, filter_collection
443
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
compare_collections
Used to compare two collections, returning 0 if they match

Syntax

compare_collections
[-order_dependent]
<collection1>
<collection2>

Scope

Project

Return Value

Returns an integer value with 0 indicating a match and any other integer
indicating a mismatch. In case of unsuccessful execution, an error is
returned that can be trapped by using the catch command.

Description

The compare_collections command is used to compare the contents of two
collections. The behavior of this command is similar to the string compare
function, strcmp, in a way that it returns 0 if <collection1> and
<collection2> match and any other integer in case of mismatch.

By default, the order of objects in <collection1> and
<collection2> does not matter. But, if you use the [-order_dependent]
option, the order of objects in both collections is also matched.

An empty string ("") is equivalent to an empty collection, that is,
collection of size 0 with no objects. Therefore, if two empty collections or
strings are compared, the comparison is successful, that is, the result is 0.

Arguments

The compare_collections command has the following arguments:

[-order_dependent]

Use this argument to specify the order of objects in the collections that
need to be considered during comparison.
444
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<collection1>

Use this argument to specify the first collection to be compared.

<collection2>

Use this argument to specify the second collection to be compared.

Examples

sg_shell> append_to_collection obj1 [get_cells U*]
{"U0", "U1", "U2", "U3"}

sg_shell> append_to_collection obj1 [get_nets N*]
{"U0", "U1", "U2", "U3", "N0", "N1", "N2", "N3"}

sg_shell> append_to_collection obj2 [get_nets N*]
{"N0", "N1", "N2", "N3"}

sg_shell> append_to_collection obj2 [get_cells U*]
{"N0", "N1", "N2", "N3", "U0", "U1", "U2", "U3"}

sg_shell> compare_collections $obj1 $obj2
0

sg_shell> compare_collections $obj1 $obj2 -order_dependent
-4

sg_shell> compare_collections "" $obj2
-1

sg_shell> compare_collections "" ""
0

See Also

foreach_in_collection, sizeof_collection, append_to_collection
445
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
filter_collection
Used to filter a given base collection with some specific criteria

Syntax

filter_collection base_collection expression [-regexp]

Scope

Project

Return Value

Returns a collection with matched objects as per the expression. An empty
collection is returned when no match is found as per the expression. In
case of unsuccessful execution, an error is returned that can be trapped by
using the catch command.

Description

The filter_collection command filters a given base collection with specific
criteria. After filtering, a new collection is returned and the base collection
remains unchanged. This command is most useful if you plan to filter the
same large collection many times using different criteria. You can give
more than one condition joined together with AND or OR operator.
Parentheses () are also supported.

Arguments

The filter_collection command has the following arguments:

base_collection

Use this argument to specify the base collection to be filtered. Objects
from this collection are copied to the result collection as per the given
condition. The given conditional expression is evaluated on the attribute
of the objects. Objects that satisfy the condition, that is returning true,
are copied to the resulting collection.

expression

Use this argument to specify an expression with which base collection
needs to be filtered.
446
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-regexp]

Use this argument to specify that the =~ and !~ filter operators use a
real regular expressions. By default, the =~ and !~ filter operators use
simple wildcard pattern matching with the * and ? wildcard characters.
The relational operators that can be used are as follows:
 == Equal

 != Not equal

 > Greater than

 < Less than

 >= Greater than or equal to

 <= Less than or equal to

 =~ Matches pattern

 !~ Does not match pattern
The existence operators that can be used are as follows:
 defined

 undefined

Examples

sg_shell> define_user_attribute -class lib_cell -type string
srtattr
define_user_attribute: info: defining new attribute
'srtattr' of type 'string'
sg_shell> set_user_attribute [get_lib_cells mylib_20c.AN*]
srtattr a
sg_shell> set_user_attribute [get_lib_cells mylib_20c.FD*]
srtattr h
sg_shell> set_user_attribute [get_lib_cells mylib_20c.FJK*]
srtattr x
sg_shell> set A [get_lib_cells -of_objects [get_libs
mylib_20c]]
sg_shell> filter_collection -regexp $A {srtattr=~[a-m]}

{"mylib_20c.AN2", "mylib_20c.OR2", "mylib_20c.AN3",
447
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
"mylib_20c.OR3", "mylib_20c.AN2P", "mylib_20c.AN3P",
"mylib_20c.AN4", "mylib_20c.AN4P", "mylib_20c.OR2P",
"mylib_20c.OR3P", "mylib_20c.OR4", "mylib_20c.OR4P",
"mylib_20c.FD1", "mylib_20c.FD1P", "mylib_20c.FD1S",
"mylib_20c.FD1SP", "mylib_20c.FD2", "mylib_20c.FD2P",
"mylib_20c.FD2S", "mylib_20c.FD2SP", "mylib_20c.FD3",
"mylib_20c.FD3P", "mylib_20c.FD3S", "mylib_20c.FD3SP",
"mylib_20c.FD4", "mylib_20c.FD4P", "mylib_20c.FD4S",
"mylib_20c.FD4SP", "mylib_20c.FDS2", "mylib_20c.FDS2L",
"mylib_20c.FDS2LP", "mylib_20c.FDS2P", "mylib_20c.FD2TS",
"mylib_20c.FD2TSP"}

sg_shell> filter_collection -regexp $A {srtattr==x}

{"mylib_20c.FJK1", "mylib_20c.FJK1P", "mylib_20c.FJK1S",
"mylib_20c.FJK1SP", "mylib_20c.FJK2", "mylib_20c.FJK2P"
"mylib_20c.FJK2S", "mylib_20c.FJK2SP", "mylib_20c.FJK3",
"mylib_20c.FJK3P", "mylib_20c.FJK3S", "mylib_20c.FJK3SP"}

sg_shell> filter_collection $A {is_combinational==true &&
area > 2}

{"mylib_20c.AN2", "mylib_20c.OR2", "mylib_20c.AN3",
"mylib_20c.OR3", "mylib_20c.AN4", "mylib_20c.AN4P",
"mylib_20c.OR3P", "mylib_20c.OR4", "mylib_20c.OR4P"}

See Also

get_attribute, set_user_attribute, define_user_attribute, remove_user_attribute,
list_attributes
448
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
foreach_in_collection
Used to iterate over the objects of a collection

Syntax

foreach_in_collection <varname> <collection> <body>

Scope

Project

Return Value

None

Description

The foreach_in_collection command iterates over the objects of a
collection. The provided sg_shell script is applied on each object. The
iterator variable holds the object and it is of the collection type. Therefore,
commands that accept collection as an argument can accept the iterator
variable.

NOTE: The Tcl shell foreach command cannot be used for collections because it needs a list
and collection is an internal structure only understood by sg_shell.

Arguments

The foreach_in_collection command has the following arguments:

<varname>

Use this argument to specify the name of an iterator variable.

<collection>

Use this argument to specify a collection or a list of collections.

<body>

Use this argument to specify sg_shell script that needs to be executed
for each element.
449
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> foreach_in_collection i [get_lib_cells
mylib_20c.OR*] {
puts "[get_attribute $i base_name]"

}

OR2
OR3
OR2P
OR3P
OR4
OR4P

See Also

sizeof_collection, filter_collection
450
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
index_collection
Used to extract a single object from a collection based on its index

Syntax

index_collection
<collection>
<index>

Scope

Project

Return Value

Returns a single object collection containing the extracted object from the
<collection> argument based on the <index> argument. The base
collection <collection> remains unchanged. In case of unsuccessful
execution, an error is returned that can be trapped by using the catch
command.

Description

The index_collection command is used to extract a single object from a
collection based on its index. The index should be within the range of 0 to
[sizeof_collection $collection] - 1. Any index outside the
range results in an error. A successful execution of this command results in
a new collection that contains only a single object.

You can use the empty string in the <collection> argument. However,
an empty string means an empty collection. Therefore, any index into the
empty collection is invalid. In other words, if you use the index_collection
command with an empty string, it will always result in an error.

NOTE: The index_collection command presently does not support a constant time
algorithm. Therefore, this command should be used judiciously when working with
large indices.
451
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Arguments

The index_collection command has the following arguments:

<collection>

Use this argument to specify the collection from which an object needs
to be extracted.

<index>

Use this argument to specify the index of the collection. This argument
accepts integer values from 0 to [sizeof_collection
$collection] - 1.

Examples

sg_shell> set or_cells [get_lib_cells mylib_20c.OR*]
{"mylib_20c.OR2", "mylib_20c.OR3", "mylib_20c.OR2P",
"mylib_20c.OR3P", "mylib_20c.OR4", "mylib_20c.OR4P"}

sg_shell> index_collection $or_cells 2
{"mylib_20c.OR2P"}

sg_shell> index_collection "" 4
index_collection: error: Invalid index 4 for collection ''

See Also

foreach_in_collection, sizeof_collection
452
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
query_objects
Used to display objects in the argument collection

Syntax

query_objects
[-verbose]
[-truncate elem_count]
<collection>

Scope

Project

Return Value

Returns an empty string in case of success. In case of unsuccessful
execution, an error is returned that can be trapped by using the catch
command.

Description

The query_objects command is used to display objects in the argument
collection. The command does not have a return value. It only prints the
object names contained in the collection. An error is returned if the
argument collection contains non-displayable objects, such as
lib_timing_arcs.

NOTE: The output from the query_objects command is similar to the output from any
command that returns a collection. However, the result of the query_objects
command is always an empty string.

Arguments

The query_objects command has the following arguments:

[-verbose]

Use this argument to display the object class of each object. By default,
the query_objects command only prints the object names. When you
use this argument, the command also prints the object class along with
the object names.
453
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-truncate elem_count]

Use this argument to truncate display to the elem_count objects. By
default, all objects of a collection are printed. If the display is truncated,
you will see the ellipsis (...) as the last element.

<collection>

Use this argument to specify the collection whose object names need to
be displayed.

Examples

sg_shell> query_objects [get_cells U*]
{"U0", "U1", "U2", "U3"}

sg_shell> query_objects [get_cells U*] -truncate 2
{"U0", "U1",...}

sg_shell> append_to_collection objs [get_cells U*]
{"U0", "U1", "U2", "U3"}

sg_shell> append_to_collection objs [get_nets N*]
{"U0", "U1", "U2", "U3", "N0", "N1", "N2", "N3"}

sg_shell> query_objects $objs
{"flat_cell:U0", "flat_cell:U1", "flat_cell:U2",
"flat_cell:U3", "flat_net:N0", "flat_net:N1", "flat_net:N2",
"flat_net:N3"}
sg_shell> query_objects [get_lib_timing_arcs -of_objects
.]
query_objects: error: Collection '_sggrp12' contains
object(s) of type 'lib_timing_arcs', which cannot be
displayed

See Also

collection_display_limit, get_cells, get_lib_cells, get_lib_pins, get_libs, get_nets,
get_pins, get_ports
454
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
remove_from_collection
Remove objects from a base collection and form a new collection

Syntax

remove_from_collection
[-intersect]
<base_collection>
<objects>

Scope

Project

Return Value

Returns a new collection with the objects in the <objects> argument
removed or retained from the <base_collection> argument. In case
of unsuccessful execution, an error is returned that can be trapped by
using the catch command.

Description

The remove_from_collection command is used to remove elements from a
collection, creating a new collection.

By default, this command removes all elements, which are specified in the
<objects> argument and are also present in the
<base_collection> argument, from the result collection. If you
specify the -intersect argument, all elements in the <objects>
argument, which are also present in the <base_collection>
argument, are retained while others are removed.

Depending on the nature of the <base_collection> argument, the
following actions are taken on the <objects> argument:

 Case 1: The <base_collection> argument is homogeneous, that
is, all objects in the collection are of the same object class

 If the <objects> argument is a collection, the
remove_from_collection command removes or retains the objects in
455
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
the <objects> argument from the <base_collection>
argument to the result collection.

 If the <objects> argument is a pattern, the
remove_from_collection command searches for the design object’s
name patterns by using the object class of the base collection and
then removes or retains all the matched objects in the resulting
collection.

 Case 2: The <base_collection> argument is heterogeneous, that
is, not all objects in the collection are of the same object class

 If the <objects> argument is a collection, the
remove_from_collection command removes or retains the objects
from the <objects> argument to the result collection.

 If the <objects> argument is a pattern, the
remove_from_collection command ignores all implicit object
patterns.

 Case 3: The <objects> argument is empty, that is, ""

 If the -intersect argument is provided, the result is also empty.

 If the -intersect argument is not provided, the result is a copy of the
base collection.

Arguments

The remove_from_collection command has the following arguments:

[-intersect]

Use this argument to indicate that objects in the <objects> argument,
which are also present in the <base_collection> argument, are to be
retained in the result collection. By default, these objects are removed
from the result collection.

<base_collection>

Use this argument to specify the base collection from which objects
need to be removed or retained.
456
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<objects>

Use this argument to specify a list of named objects or collections to be
removed or retained from the base collection in the result collection.

Examples

sg_shell> set cells [get_cells U*]
{"U0", "U1", "U2"}

sg_shell> set nets [get_nets N*]
{"N0", "N1", "N2"}

sg_shell> remove_from_collection $cells U1
{"U0", "U2"}

sg_shell> remove_from_collection $nets [get_nets N1]
{"N0", "N2"}

sg_shell> set mix [add_to_collection $cells $nets]
{"U0", "U1", "U2", "N0", "N1", "N2"}

sg_shell> remove_from_collection $mix N*
remove_from_collection: warning: nothing implicitly matched
'N*'
{"U0", "U1", "U2", "N0", "N1", "N2"}

sg_shell> remove_from_collection $mix [get_nets N2]
{"U0", "U1", "U2", "N0", "N1"}

sg_shell> remove_from_collection $cells ""
{"U0", "U1", "U2"}

sg_shell> remove_from_collection $cells "" -intersect

sg_shell> remove_from_collection $mix [get_cells]
{"N0", "N1", "N2"}

sg_shell> remove_from_collection $mix [get_nets] -intersect
{"N0", "N1", "N2"}

See Also

append_to_collection, add_to_collection, sizeof_collection, filter_collection
457
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sizeof_collection
Used to determine the number of objects in a collection

Syntax

sizeof_collection <collection>

Scope

Project

Return Value

Returns the size of a given collection if the collection exists. In case of
unsuccessful execution, an error is returned that can be trapped by using
the catch command.

Description

The sizeof_collection command determines the number of objects in a
collection.

Arguments

The sizeof_collection command has the following argument:

<collection>

Use this argument to specify the collection for which the total number of
objects needs to be determined.

Examples

sg_shell> set X [get_lib_cells mylib_20c.OR*]
{"mylib_20c.OR2", "mylib_20c.OR3", "mylib_20c.OR2P",
"mylib_20c.OR3P", "mylib_20c.OR4", "mylib_20c.OR4P"}

sg_shell> sizeof_collection $X

6

See Also

foreach_in_collection, filter_collection
458
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Attribute Commands

An attribute is a value associated with a design or a library object that
carries some information about that object. This information is captured in
various data types, such as int, float, string, boolean, and so on. You can
write procedures in Tcl to fetch the attribute information and generate
custom reports on the design or library.

Attributes can be of the following types:
 Application attributes: Application attributes are defined and used

internally by the tool. The values of these attributes are inferred and set
during design read operation. You can fetch the values of these
attributes on design or library objects by using attribute commands.
These attributes are read-only. You cannot set, modify, remove, or
redefine these attributes.
Application attributes can be categorized in the following groups:
 Built-in Attributes

 Product Attributes

Refer to Appendix B: Application Attributes for the complete list of
application attributes defined in SpyGlass.

 User-defined attributes: You can define your own attributes. These
attributes can be set, fetched, modified, and removed. SpyGlass does
not use these attributes internally.
In addition, these attributes are not persistent across different sg_shell
sessions and are lost once the project is closed. Even if you reopen the
same project, the attributes are not restored. You have to redefine these
attributes for further usage.

Attribute support is available for all object models, which include the
following:
 Library Object Model: Attributes classified as lib, lib_cell, lib_pin,

lib_timing_arcs, and so on.
 Hierarchical Netlist Object Model: Attributes classified as du_cell,

du_pin, du_port, du_net, and so on.
 Flat Netlist Object Model: Attributes classified as flat_cell, flat_pin,

flat_port, flat_net, and so on.
 Atrenta Design Constraints Object Model: Attributes tagged as

adc_node.
459
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
These commands perform various operations on attributes, which include
define, set, get, list, remove, and destroy. The following table describes the
various attribute commands:

Command Description
define_user_attribute Used to define a new user-defined attribute
set_user_attribute Used to set a user attribute to a specified value on

an object
get_attribute Used to retrieve the value of an attribute on an

object
list_attributes Used to display a list of currently defined attributes
remove_user_attribute Used to remove attributes set with

set_user_attribute command
destroy_user_attribute Used to destroy an attribute
460
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
define_user_attribute
Used to define a new user-defined attribute

Syntax

define_user_attribute -type data_type -classes class_list
attr_name

Scope

Any

Return Value

Returns an empty string when the attribute is defined successfully. In case
of unsuccessful execution, an error is returned that can be trapped by
using the catch command.

Description

The define_user_attribute command defines a new user-defined attribute.
A user-defined attribute is any attribute that SpyGlass does not understand
by default. User-defined attributes can be applied to most object classes in
SpyGlass. SpyGlass cannot use these attributes, but a user can use them
in scripts, procedures, and so on.

NOTE: A user can list the user-defined attributes by using the list_attributes command.

Arguments

The define_user_attribute command has the following arguments:

-type data_type

Use this argument to specify the data type of the attribute. The
supported data types are string, int, float, and boolean.

-classes class_list

Use this argument to define the attribute for one or more classes. The
valid object classes are lib, lib_cell, lib_pin, lib_timing_arcs, design,
du_cell, du_port, du_net, du_pin, flat_pin, flat_port, flat_cell, and
flat_net. While providing multiple class names, it should be specified
within brackets or quotes and using space as delimiter.
461
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
attr_name

Use this argument to specify the attribute name.

Examples

sg_shell> define_user_attribute -class lib_cell -type string
cellAttr
define_user_attribute: info: defining new attribute
'cellAttr' of type 'string'
sg_shell> set_user_attribute [get_lib_cells mylib_20c.AN*]
cellAttr attr1
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN2' with value 'attr1'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN3' with value 'attr1'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN2P' with value 'attr1'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN3P' with value 'attr1'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN4' with value 'attr1'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN4P' with value 'attr1'
sg_shell> get_lib_cells mylib_20c.A* -filter {cellAttr ==
attr1}
{"mylib_20c.AN2", "mylib_20c.AN3", "mylib_20c.AN2P",
"mylib_20c.AN3P", "mylib_20c.AN4", "mylib_20c.AN4P"}

See Also

get_attribute, set_user_attribute, remove_user_attribute, destroy_user_attribute,
list_attributes, filter_collection
462
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
set_user_attribute
Used to set a user attribute to a specified value on an object

Syntax

set_user_attribute [-class class_name] object attr_name
value

Scope

Project

Return Value

Returns an empty string when the attribute is set successfully. In case of
unsuccessful execution, an error is returned that can be trapped by using
the catch command.

Description

The set_user_attribute command sets a user attribute to a specified value
on an object.

Arguments

The set_user_attribute command has the following arguments:

object

Use this argument to specify the object from which the attribute value
needs to be set. Object must be either a collection or a named object
with its class_name. If name (string) is used, only single string is
allowed. Using wildcard characters is the only way to specify more than
one string.

[-class class_name]

Use this argument to specify the class name of an object, if object is a
name. Valid classes are lib, lib_cell, lib_pin, design, du_cell, du_port,
du_net, du_pin, flat_pin, flat_port, flat_cell, and flat_net.
463
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
attr_name

Use this argument to specify the attribute name whose value needs to
be set on the given object.

value

The value of the attribute is used to set on the object. The value should
conform to the type of the attribute, that is, int, float, string, and so on.

Examples

sg_shell> define_user_attribute -class lib_cell -type string
cellAttr
define_user_attribute: info: defining new attribute
'cellAttr' of type 'string'
sg_shell> set_user_attribute -class lib_cell mylib_20c.AN2
cellAttr attr1
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN2' with value 'attr1'
sg_shell> set_user_attribute [get_lib_cells mylib_20c.AO4*]
cellAttr attr6
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AO4' with value 'attr6'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AO4P' with value 'attr6'
sg_shell> get_lib_cells mylib_20c.A* -filter "cellAttr ==
attr1"
{"mylib_20c.AN2"}

See Also

get_attribute, define_user_attribute, remove_user_attribute,
destroy_user_attribute, list_attributes, filter_collection
464
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_attribute
Used to retrieve the value of an attribute on an object

Syntax

get_attribute [-class class_name] object attr_name value

Scope

Project

Return Value

Returns the value of attribute of the object(s). In case the attribute is not
set on the object(s), an empty string is returned. In case of unsuccessful
execution, an error is returned that can be trapped by using the catch
command.

Description

The get_attribute command retrieves the value of an attribute on an
object. The object is either a collection or a named object. If it is a name,
the -class option is required.

Arguments

The get_attribute command has the following arguments:

object

Use this argument to specify the object from which the attribute value
needs to be retrieved. Object must be either a collection or a named
object with its class_name. If name (string) is used, only single string is
allowed. Using wildcard characters is the only way to specify more than
one string.

[-class class_name]

Use this argument to specify the class name of an object, if object is a
name. Valid classes are lib, lib_cell, lib_pin, design, du_cell, du_port,
du_net, du_pin, flat_pin, flat_port, flat_cell, and flat_net.
465
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
attr_name

Use this argument to specify the name of the attribute whose value
needs to be retrieved.

Examples

sg_shell> define_user_attribute -class lib_cell -type string
cellAttr
define_user_attribute: info: defining new attribute
'cellAttr' of type 'string'
sg_shell> set_user_attribute -class lib_cell mylib_20c.AN2
cellAttr attr1
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AN2' with value 'attr1'
sg_shell> set_user_attribute [get_lib_cells mylib_20c.AO4*]
cellAttr attr6
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AO4' with value 'attr6'
set_user_attribute: info: setting attribute 'cellAttr' on
object 'mylib_20c.AO4P' with value 'attr6'
sg_shell> get_attribute [get_lib_cells mylib_20c.AN2]
cellAttr
attr1
sg_shell> get_attribute [get_lib_cells mylib_20c.AO4P]
cellAttr
attr6

See Also

set_user_attribute, define_user_attribute, remove_user_attribute,
destroy_user_attribute, list_attributes, filter_collection
466
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
list_attributes
Used to display a list of currently defined attributes

Syntax

list_attributes
[-application]
[-class class_name | attr_pattern]
[-verbose]

Scope

Any

Return Value

None

Description

The list_attributes command displays a list of currently defined attributes.
sg_shell attributes are divided into the following two categories:
 Application-defined attributes

 User-defined attributes

There are a number of application attributes. It is often useful to limit the
listing to the following:
 A specific object class by using the class_name argument

 A specific attribute name by using the attr_pattern argument

Arguments

The list_attributes command has the following arguments:

[-application]

By default, the list_attributes command lists all user-defined attributes.
Use this argument to add all application attributes to the listing.

[-class class_name]

Use this argument to limit the listing to attributes of a single class. Valid
467
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
classes are adc_node, cdc_conv_node, cdc_glitch_node,
cdc_node, clock, clock_domain, design, du_cell,
du_net, du_pin, du_port, flat_cell, flat_net,
flat_pin, flat_port, lib, lib_cell, lib_pin,
lib_timing_arcs, message, pwr_intent_node,
pwr_retention_node, pwr_isolation_node,
pwr_level_shift_node, pwr_psw_node,
pwr_supply_node, reset_flop_node, reset_sync_node,
reset, paths_node, cdc_source_node,
cdc_conv_signal_node, cdc_glitch_source_node,
rule, and sdc_node.

[attr_pattern]

Use this argument to limit the listing to attributes that match the
attr_pattern argument. The short help includes the possible values
of the attributes supported by the SpyGlass CDC product. You can only
specify wildcard patterns in this argument. The attr_pattern and
class_name arguments are mutually exclusive.

[-verbose]

Use this argument to display the short help of the application attributes
as well. The short help includes the possible values of the attributes
supported by the SpyGlass CDC product. This argument has no
significance if the -application argument is not specified.

Examples

sg_shell> list_attributes -class lib -application
**
Report : List of Attribute Definitions
**
Attribute Name Object Type User-Def

full_name lib string builtin
base_name lib string builtin
default_cell_leakage_power lib float builtin
default_fanout_load lib float builtin
468
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
default_inout_pin_cap lib float builtin
default_input_pin_cap lib float builtin
default_leakage_power_density lib float builtin
default_max_capacitance lib float builtin
default_max_fanout lib float builtin
default_max_transition lib float builtin
default_output_pin_cap lib float builtin
default_wire_load_area lib float builtin
default_wire_load_capacitance lib float builtin
default_wire_load_resistance lib float builtin
nom_process lib float builtin
nom_temperature lib float builtin
nom_voltage lib float builtin
voltage_unit lib string builtin
time_unit lib string builtin
current_unit lib string builtin
capacitive_load_unit lib string builtin
pulling_resistance_unit lib string builtin
leakage_power_unit lib string builtin
default_connection_class lib string builtin
default_operating_conditions lib string builtin
default_power_rail lib string builtin
default_threshold_voltage_group lib string builtin
default_wire_load lib string builtin
default_wire_load_mode lib string builtin
default_wire_load_selection lib string builtin
define_cell_area lib string builtin
delay_model lib string builtin
technology lib string builtin

sg_shell> list_attributes -verbose -application default_m*

**
Report : List of Attribute Definitions
**

default_max_capacitance
469
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands

Object(s) : lib
Type : float
Product : builtin
Help : Default maximum capacitance as defined in the
 library

default_max_fanout

Object(s) : lib
Type : float
Product : builtin
Help : Default maximum fan-out as defined in the
 library

default_max_transition

Object(s) : lib
Type : float
Product : builtin
Help : Default maximum transition as defined in the
 library

See Also

get_attribute, set_user_attribute, define_user_attribute, remove_user_attribute,
destroy_user_attribute, filter_collection
470
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
remove_user_attribute
Used to remove attributes set with set_user_attribute command

Syntax

remove_user_attribute -class class_name object attr_name

Scope

Project

Return Value

Returns an empty string when an attribute is removed from the objects
successfully. In case of unsuccessful execution, an error is returned that
can be trapped by using the catch command.

Description

The remove_user_attribute command removes the attributes set with the
set_user_attribute command. Application attributes cannot be removed by
this command.

NOTE: This command only removes the attribute value. The attribute is not deleted from
the attribute list.

Arguments

The remove_user_attribute command has the following arguments:

object

Use this argument to specify the object from which the attribute value
needs to be removed. Object must be either a collection or a named
object with its class_name. If name (string) is used, only single string is
allowed. Using wildcards is the only way to specify more than one string.

[-class class_name]

Use this argument to specify the class name of an object, if object is a
name. Valid classes are lib, lib_cell, lib_pin, design, du_cell, du_port,
du_net, du_pin, flat_pin, flat_port, flat_cell, and flat_net.
471
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
attr_name

Use this argument to provide the name of the attribute.

Examples

sg_shell> remove_user_attribute -class lib_cell
mylib_20c.AO12P cellAttr
remove_user_attribute: info: removing attribute 'cellAttr'
from object 'mylib_20c.AO12P'
sg_shell> remove_user_attribute [get_lib_cells
mylib_20c.AN2*] cellAttr
remove_user_attribute: info: removing attribute 'cellAttr'
from object 'mylib_20c.AN2'
remove_user_attribute: info: removing attribute 'cellAttr'
from object 'mylib_20c.AN2P'

See Also

get_attribute, set_user_attribute, define_user_attribute, destroy_user_attribute,
list_attributes, filter_collection
472
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
destroy_user_attribute
Used to destroy an attribute

Syntax

destroy_user_attribute attr_name

Scope

Any

Return Value

Returns an empty string when the attribute is destroyed successfully. In
case of unsuccessful execution, an error is returned that can be trapped by
using the catch command.

Description

The destroy_user_attribute command destroys the attr_name attribute
defined by using the define_user_attribute command. Any further query
about this attribute generates an unknown attribute error.

Arguments

The destroy_user_attribute command has the following argument:

attr_name

Use this argument to specify the name of the attribute that needs to be
destroyed.

Examples

sg_shell> destroy_user_attribute srtattr
destroy_user_attribute: info: destroying user attribute
'srtattr'

See Also

get_attribute, set_user_attribute, define_user_attribute, remove_user_attribute,
list_attributes, filter_collection
473
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Product Commands

Product commands can be further categorized in the following groups:
 SpyGlass Base Commands

 SpyGlass Lint Turbo Commands

 SpyGlass Constraints Commands

 SpyGlass CDC Commands

 SpyGlass DFT Commands

 SpyGlass Power Verify Commands

 SpyGlass Power Estimate and Reduce Commands

The information provided by the product commands is computed as part of
the design analysis done during the execution of the run_goal command.
So, it is required that you execute the run_goal command in the currently
selected goal for these product commands to be functional.
474
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass Base Commands
The following table describes the Tcl commands that are a part of the
SpyGlass Base product:

Command Description
get_combloop Creates a list of collection of combinational loop in

the current design that match certain criteria
475
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_combloop
Creates a list of combinational loop in the current design that
match certain criteria

Syntax

get_combloop [-from <from_pattern>]

Scope

Goal

Return Value

Returns an empty string or list of combinational loops in a design. The
empty string is returned if nothing matched the filtering criterion. In case
of unsuccessful execution, an error is returned that can be trapped using
the catch command.

Description

The get_combloop command creates a list of combinational loop in a
design that match certain criteria. To get the list of combinational loop in a
design, the user has to use the CombLoop rule of the openmore policy.

This command fails in case of the situations if:
 Flattened design view does not exist

 No data is available from the CombLoop rule

Arguments

None

Examples

sg_shell> get_combloop -from top.q_sync1 //returns list of
collection of combinational loop in which net is present
which passed through -from
sg_shell> get_combloop //returns list of collection of all
combinational loop in the design
476
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_nets
477
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass Lint Turbo Commands
The following table describes the Tcl commands that are a part of the
SpyGlass Lint Turbo product:

Command Description
get_lint_formal_results Gets a list of violations of lint turbo rules in the

current design
report_lint_formal_resu
lts

Reports properties of violations of lint turbo rules in
the current design
478
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_lint_formal_results
Gets a list of violations of lint turbo rules in the current design

Syntax

get_lint_formal_results
 [-rules <formal-Lint-rule-names >]
 [-modules <List-of-module>]
 [-filter expression]

Scope

Project

Return Value

Returns a collection of violations of lint turbo rules in the current design.
This collection can be used as an input to other commands, such as the
report_lint_formal_results command. If no violations are found, an empty
collection is returned.

Description

The get_lint_formal_results command creates a collection of violations of
lint turbo rules in the current design.

Arguments

<-rules>

Use this argument to specify the rules for which violations need to be
reported.
Possible options are AV_WIDTH_MISMATCH_ASSIGN,
AV_WIDTH_MISMATCH_EXPR, AV_WIDTH_MISMATCH_EXPR02,
AV_WIDTH_MISMATCH_EXPR03, AV_DONTCARE_MISMATCH,
AV_CASE_DEFAULT_MISSING, AV_WIDTH_MISMATCH_FUNCTION,
AV_SIGNED_UNSIGNED_MISMATCH, AV_WIDTH_MISMATCH_CASE,
AV_WIDTH_MISMATCH_PORT, and AV_CASE_DEFAULT_REDUNDANT.

[-modules]

Use this argument to specify the modules in which violations need to
479
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
debug.

[-filter expression]

Use this argument to specify a filter expression over the property status
attributes of formal properties such as PROVED. Possible options are
NOT_ANALYZED, PROVED, FAILED, CONS_UNSAT, ANALYZED, INT_ERR.
Use following format for the expression.

[av_property_status==NOT_ANALYZED]

Examples

Example 1

In the following example, the get_lint_formal_results command returns all
the violations for lint turbo rules in the design.

sg_shell> get_lint_formal_results

Example 2

In the following example, the command returns all the violations for lint
turbo rules in the design unit (module) 'sub'.

sg_shell> get_lint_formal_results -modules sub

Example 3

In the following example, the command returns all the violations for the
lint turbo Av_width_mismatch_assign rule in the design.

sg_shell> get_lint_formal_results -rules
AV_WIDTH_MISMATCH_ASSIGN

Example 4

In the following example, the command returns all the violations for lint
turbo rules in the design with formal status is "proved".

sg_shell> get_lint_formal_results -filter
av_property_status==PROVED
480
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

None
481
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_lint_formal_results
Reports properties of violations of lint turbo rules in the current
design

Syntax

report_lint_formal_results
 [<Lint turbo rule violations>]

Scope

Project

Return Value

None

Description

The report_lint_formal_results reports the properties of lint turbo rules in
the current design.

NOTE: The report_lint_formal_results command fails if an improper collection of objects,
which does not contain lint turbo rule violations returned by the
get_lint_formal_results command, has been provided as an input to the
report_lint_formal_results command.

Arguments

<Lint turbo rule violations>

Collection used in the report_lint_formal_results command is a set of
violations returned by the get_lint_formal_results command.

Examples

Example 1

In the following example, the report_lint_formal_results command reports
all the violations for lint turbo rules in the design.

sg_shell> report_lint_formal_results
[get_lint_formal_results]
482
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

In the following example, the command reports all the violations for lint
turbo rules in the design unit (module) 'sub'.

sg_shell> report_lint_formal_results
[get_lint_formal_results -modules sub]
483
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass Constraints Commands
The following table describes the various Tcl commands that are a part of
the SpyGlass Constraints product:

Command Description
autofix_sdc Generates SDC file having list of missing/incorrect

constraints specified through the constraint rules
get_constrained_muxes Used to get a list of MUXes where select pins are

unconstrained and data pins are constrained
get_sdc Used to get a list of SDC commands on the basis of

filtering criteria, if specified
write_sdc_node Used to print the SDC constraints for the given SDC

nodes
export_sdc Used to export the SDC from user updated CSV
update_crossing_file Translates the crossing file into user csv
484
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
autofix_sdc
Generates SDC file having list of missing/incorrect constraints specified
through the constraint rules

Syntax

autofix_sdc <rules> <-f>

Scope

Project

Return Value

Returns a string containing name of SDC file that has been generated.

Description

The autofix_sdc command is used to generate SDC file having a list of
missing/incorrect constraints specified through the constraint rules.

Arguments

<rules>

Use this argument to specify a comma separated list of rule names.

<-f>

(Optional) Use this argument to forcibly generate the SDC file. If an SDC
file already exists, then use this argument to overwrite the existing file.

Examples

sg_shell> autofix_sdc

 autofix_sdc: error: Please specify some rules

sg_shell> autofix_sdc Inp_Del01a
 out/test/test_goal/spyglass_reports/constraints
 autofix_sdc.sdc is successfully generated
485
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

None
486
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_constrained_muxes
Used to get a list of MUXes where select pins are unconstrained
and data pins are constrained

Syntax

get_constrained_muxes

Scope

Project

Return Value

Returns an empty string or a list of MUXes in case of successful execution.
An empty string is returned if nothing matched the filtering criterion. In
case of unsuccessful execution, an error is returned that can be trapped by
using the catch command.

Description

The get_constrained_muxes command is used to get a list of MUXes in the
design, where select pins are unconstrained and data pins are constrained.

Arguments

None

Examples

sg_shell> get_constrained_muxes

top.m1 top.m2

See Also

filter_collection
487
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_sdc
Used to get a list of SDC commands on the basis of filtering criteria,
if specified

Syntax

get_sdc
<constr_name | -of_objects objects>
[-filter expression]
[-regexp | -exact]

Scope

Project

Return Value

Returns an empty string or a collection of SDC commands in case of
successful execution. An empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution, an error is returned
that can be trapped by using the catch command.

Description

The get_sdc command is used to get a list of user-specified SDC
commands on the basis of filtering criteria, if specified.

Arguments

The get_sdc command has the following arguments:

<constr_name>

Use this argument to specify the constraint name to get SDC
commands. Otherwise, SDC commands of all constraints are reported
on the basis of filtering criteria, if any.

<-of_objects objects>

Use this argument to create a collection of SDC commands defined on
the specified objects. The objects that can be specified are pin names,
collection of pins, ports, instances, or nets.

NOTE: The constr_name and -of_objects arguments are mutually exclusive.
488
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-filter expression]

Use this argument to filter a group with an expression. The supported
criterion in filter for this command is sdc_type. The following
examples illustrate the usage of this argument:

-filter sdc_type==create_clock

-filter sdc_type==set_input_delay

[-exact]

Use this argument to consider wildcard characters as plain characters
for constraint names.

Examples

Example 1: Without -filter

sg_shell> get_sdc
_sggrp6

Example 2: With -filter

sg_shell> get_sdc -of_objects <objects> -filter
sdc_type==create_clock
_sggrp7

Example 3: get_sdc usage with write_sdcnode

sg_shell> set sdcs [get_sdc -of_objects <objects> -filter
sdc_type==create_clock]
_sggrp9
sg_shell> foreach_in_collection node $sdcs { write_sdc_node
$node }
create_clock -name clk1 -period 10 -waveform { 0 5 }
[get_ports clk1]
create_clock -name clk2 -period 12 -waveform { 0 6 }
[get_ports clk2]

See Also

write_sdc_node, sdc_type
489
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
write_sdc_node
Used to print the SDC constraints for the given SDC nodes

Syntax

write_sdc_node <sdc_collection>

Scope

Project

Return Value

Returns an empty string or a string containing printed SDC constraints
corresponding to the SDC nodes. In case of unsuccessful execution, an
error is returned that can be trapped by using the catch command.

Description

The write_sdc_node command prints the SDC constraint supplied by the
user as an SDC node or a collection of SDC nodes.

Arguments

The write_sdc_node command has the following argument:

<sdc_collection>

Use this argument to specify a collection of SDC nodes. It can be obtained
by using the get_sdc command.

Examples

sg_shell> set clocks [get_sdc create_clock]
sg_shell> write_sdc_node $clocks
create_clock -name clk1 -period 10 -waveform { 0 5 }
[get_ports clk1]
create_clock -name clk2 -period 12 -waveform { 0 6 }
[get_ports clk2]

See Also

get_sdc
490
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
export_sdc
Generates the SDC file from the user updated CSV

Syntax

export_sdc <out_dir> <-f>

Scope

Project

Return Value

Returns a string containing the names of the CSV files that have been
exported to the SDC along with the file path.

Description

The export_sdc command generates the actual SDC files from the updated
CSV files that were generated after running the SDC_GenerateIncr
rule. The command reports an error if no CSV files are present or the
SDC_GenerateIncr rule was not executed before running this
command.

Arguments

The export_sdc command has the following argument:

<out_dir>

Use this argument to specify the path where the SDC file should be
generated.

NOTE: By default, the SDC file is generated in the spyglass_reports/
constraints/exportSDCGen directory. To specify a different directory,
make sure you have created the directory in which you want the SDC files to be
generated. In addition, ensure you have write permissions to the directory.

<-f>

(Optional) Use this argument to forcibly generate the SDC files into the
user-specified directory, using <out_dir> argument. If an SDC file is
already present in the user-specified directory, then this option can be used
491
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
to forcibly generate or overwrite the existing file.

Examples

sg_shell> export_sdc
Block1.csv is successfully translated to ./test/test_goal
spyglass_reports/constraints/exportSDCGen/Block1.sdc
top.csv is successfully translated to ./test/test_goal
spyglass_reports/constraints/exportSDCGen/top.sdc

sg_shell> export_sdc sdc_files
Block1.csv is successfully translated to ./sdc_files
Block1.sdc
top.csv is successfully translated to ./sdc_files/top.sdc

See Also

update_crossing_file
492
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
update_crossing_file
Translates the crossing file into user csv

Syntax

update_crossing_file

Scope

Project

Return Value

Returns a string showing the number of crossing pairs that have been
translated to CSV along with the file path.

Description

The update_crossing_file command is used to translate the crossing file to
user CSV file.

Examples

sg_shell> update_crossing_file
1 pair(s) as classified in crossing file ./test/test_goal/
spyglass_reports/constraints/top-crossings.csv have been
updated successfully

See Also

export_sdc
493
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass CDC Commands
The following table describes the various Tcl commands that are a part of
the SpyGlass CDC product. You can also refer to the Appendix E: CDC
Application Commands section.

Command Description
get_cdc Creates a list of clock domain crossings in the current

design that match certain criteria
get_cdc_coherency Returns the collection of Ac_conv issue based in field

values
get_cdc_glitch Creates collection of clock domain crossings in current

design that may have glitches and match certain criteria
get_cdc_sources Returns source of a crossing given by a destination name

or an object returned from get_cdc collection
get_conv_sync_sign
als

Returns a collection of crossings for a given convergence
object that is an element of collection returned from
get_cdc_coherency

get_glitch_sources Returns a collection of sources for a given glitch prone
crossing or a destination

get_multi_flop_sync
_info

Returns a collection of synchronizer flip-flops for a given
crossing

get_paths Reports the complete paths between the specified start
and end points

get_reset_sync Returns status of flip-flops with the reset synchronization
issues in the current design that match certain criteria

get_reset_sync_nam
es

Return the reset synchronizer information in the current
design that match certain criteria

report_cdc Reports clock domain crossing details
report_cdc_coherenc
y

Displays the collection of coherency/convergence issues
reported by get_cdc_coherency

report_cdc_glitch Reports clock domain crossing with glitches

report_paths Reports elements in a defined path in current design

report_reset_sync Reports reset synchronization issues related information

report_reset_sync_n
ames

Reports reset synchronization related information
494
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_cdc
Creates a collection of clock domain crossings in the current design
that match certain criteria

Syntax

get_cdc
[-from <from_pattern>]
[-to <to_pattern>]
[-from_clocks <f_clock>]
[-to_clocks <t_clock>]
[-from_domains <f_domain>]
[-to_domains <t_domain>]
[-from_objects <f_object>]
[-to_objects <t_object>]
[-of_objects <obj>]
[-regexp]
[-filter <expr>]
[-dump_crossing_path]
[-crossing_path_limit <value>]
[-disable_flop_chain]

Scope

Goal

Return Value

Returns an empty string or a collection of clock domain crossing objects in
case of successful execution. An empty string is returned if nothing
matches the filtering criterion. In case of unsuccessful execution, an error
is returned which can be trapped using the catch command.

Description

Creates a collection of clock domain crossings in the current design or
instance that matches a certain criteria. The command returns a collection,
if any crossing matches the various input specifications and also passes the
filtering criteria, if specified. If no objects match the criteria, an empty
string is returned.
495
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The get_cdc command fails when:
 Flattened design view does not exist.

 No data is available from Ac_sync_group rules.

Arguments

The get_cdc command has the following arguments:

< -from >

Use this argument to specify net names, pin names, or port names of
source object in crossing.

< -to >

Use this argument to specify net names, pin names, or port names of
destination object in crossing.

[-from_clocks]

Use this argument to specify name of the source clock in the sgdc/sdc file.
Clock name can be port name, pin name, net name, or clock tag name.

[-to_clocks]

Use this argument to specify name of the destination clock specified in
sgdc/sdc file. Clock name can be port name, pin name, net name, or clock
tag name.

[-from_domains]

Use this argument to specify name of the source domain specified in sgdc
or sdc file.

[-to_domains]

Use this argument to specify the name of the destination in the sgdc/sdc
file.

[-from_objects]

Use this argument to specify collection of source clock objects or collection
of domain objects or collection of net objects.
496
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-to_objects]

Use this argument to specify collection of destination clock objects or
collection of domain objects or collection of net objects.

[-of_objects]

Collection of clock domain crossings.

[-filter <filter_expression>]

Use this argument to specify filter expression over named attributes of
crossings such as 'is_synchronized', 'is_data', 'num_sources',
'num_source_domains', 'sync_method', 'failure_reason', 'src_type',
'des_type'.

Following table describes the filter attributes available for this argument:

Filter Attribute Description
is_synchronized (Boolean) True if the crossing is synchronized,

false otherwise
is_data (Boolean) True if the crossing is a data crossing
num_sources (String) The number of sources in a crossing
num_source_domains (String) The number of source domains in a

crossing
sync_method (String) The synchronization method as reported

by Ac_sync01 and Ac_sync02 rules. For details,
refer to the Reasons for Synchronized Crossings
section of the SpyGlass CDC Rules Reference
Guide.
In the reason string, replace the space with '_' to
use the string as a filter value. For example,
specify 'Conventional Multi-Flop Synchronization
Scheme' as 'Conventional_Multi-
Flop_Synchronization_Scheme'
497
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
failure_reason (String) Reason the crossing is unsynchronized as
reported by Ac_unsync01 and Ac_unsync02 rules.
For details, refer to the Reasons for
Unsynchronized Crossings section of the SpyGlass
CDC Rules Reference Guide. In the reason string,
replace the space with '_' to use the string as
filter value. For example specify 'Qualifier not
found' as 'Qualifier_not_found'

src_type (String) The type of the source as reported by
Ac_sync_group rules. It can have values - flop,
library-cell, latch, primary-input, black-box.

dest_type (String) The type of the destination as reported
by Ac_sync_group rules. It can have values - flop,
library-cell, latch, primary-output, black-box.

cdc_rule_name (String) Name of the rule which generate the
violation

dest_name (String) The output net name of the destination
of a crossing

dest_clocks (String) Name of clocks which drive the
destination. In case of multiple clocks, all clock
names are shown.

dest_domain (String) The clock domain of destination. If the
domain name is not specified, the clock domain
name is the same as the clock name. If
destination is driven by multiple clocks, all the
clock domains are shown.

dest_internal_domain
_id

(Integer) A unique tag number generated for the
destination clock domain.

dest_clock_tag (String) the tag defined in sgdc file for destination
clock. This attribute returns a value if a tag has
been defined for at least one clock. Else returns
and empty string. Clocks for which tags have not
been defined will receive internally generated
tags. In case of multiple clocks, all tags are
shown.

dest_file_line (String) Design file name and line number where
the destination is used. File name and line
number is separated by a colon.

Filter Attribute Description
498
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
[-regexp]

If '-regexp' switch is given then patterns are seen as real regular
expressions rather than simple wildcard patterns. This switch is not needed
for wildcard pattern matching. Wildcard pattern matching is on by default.
Regular expression can only be specified for design objects names in fields
'-from', '-to', '-from_clock', '-to_clock'.

[-dump_crossing_path]

When the -dump_crossing_path is specified, the crossing paths are
computed for the specified crossings and reported by the subsequent
report_cdc commands.

[-crossing_path_limit <value>]

This argument accepts an integer value to limit the number of crossings

overall_failure_reason (String) Overall reason for unsynchronized
crossing

overall_synch_schem
e

(String) Name of the synchronization method
used to synchronize a crossing

dest_parent_inst_na
me

(String) Name of the parent instance of the
destination

crossing_module_na
me

(String) Name of the crossing module

potential_qualifier_na
me

(String) Name of the potential qualifier

multi_flop_synchroniz
er_names

(String) Names of flip flops which are used to
synchronize the crossing

multi_flop_synchroniz
er_stages

(Integer) Number of flip-flops used to
synchronize the crossing

dest_module_name (String) Module name of the destination of the
crossing

dest_objects (Collection) Destination net objects of the
crossing

multi_flop_synchroniz
er_objects

(Collection) Module name of the destination of the
crossing

Filter Attribute Description
499
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
that will show the crossing paths. This argument accepts values from 0 to
any number. By default it shows all crossing. If the value is 0, no crossings
are shown.

[-disable_flop_chain]

Disables populating chain flops (shift registers) beyond the synchronized
point.

Examples

sg_shell> get_cdc -from top.q_sync1 //returns collection of
crossings having source as 'top.q_sync1'
_sggrp4

sg_shell> get_cdc -to_clock top.clk2 //returns collection of
crossings having destination clock as 'top.clk2'
_sggrp5

sg_shell> get_cdc -filter is_synchronized==false //returns
collection of all unsynchronized crossings
_sggrp6

sg_shell> get_cdc -to_object [get_clocks tag4] //return
collection of crossing having destination clock tag as 'tag4'
_sggrp10

sg_shell> get_cdc -from q_sync1.* -regexp //return
collection of crossings having source matching regular
expression 'q_sync1.*'
_sggrp1

sg_shell> get_cdc -filter sync_method==Conventional_multi-
flop_for_metastability_technique //return collection of
crossings having synchronization method as specified
_sggrp10

sg_shell> get_cdc –from top.FF1 –to top.FF2 –
dump_crossing_path
500
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

report_cdc, get_clocks, get_domains
501
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_cdc_coherency
Returns the collection of Ac_conv issue based in field values

Syntax

get_cdc_coherency
[-from <from_pattern>]
[-to <to_pattern>]
[-from_clock <f_clock>]
[-to_clock <t_clock>]
[-from_domain <f_domain>]
[-to_domain <t_domain>]
[-from_object <f_object>]
[-to_object <t_object>]
[-of_object <obj>]
[-regexp]
[-filter <expr>]
[-num_convergences <num_conv_paths>]

Scope

Goal

Return Value

Returns an empty string or a collection of coherency issues in case of
successful execution. The empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution an error is returned.

Description

This command is used to return the collection of Ac_conv issue based in
some field values. The collection returned can also be filtered on the basis
of some attributes.

NOTE: Each Ac_conv violation/convergence issue has multiple crossings involved. Match
with a crossing’s attribute is sufficient for it to be returned as part of the output
collection.

Arguments

The get_cdc_coherency command has the following arguments:
502
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-from

Use this argument to get the list of net name, pin name, and port name of
crossings source.

-to

Use this argument to get the list of net name, pin name, and port name of
crossings destination.

-from_clock

Use this argument to get the list of source clocks specified in the sgdc/sdc
file. Source clock is the clock of crossing’s source.

-to_clock

Use this argument get the list of destination clocks specified in the sgdc/
sdc file. Destination clock means the clock of crossing’s destination.

-from_domain

Use this argument to get the list of source domains specified in the sgdc/
sdc file. Source domain means the domain of crossing’s source.

-to_domain

Use this argument to get the list of destination domains specified in the
sgdc/sdc file. Destination domain means the domain of crossing’s
destination.

-from_object

Use this argument to get the list of source clock object, domain objects,
net objects, pin objects that are returned from other tcl commands, for
example, get_nets, get_pins, and get_clocks.

-to_object

Use this argument to get the list of destination clock object, domain
objects, net objects, pin objects that are returned from other tcl
commands, for example, get_nets, get_pins, and get_clocks.
503
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-of_object

Use this argument to get a collection of objects returned by the tcl
command get_cdc or get_cdc_coherency.

-regexp

Use this argument to indicate that all the arguments are regular
expressions.

-filter

Following table describes the filter attributes available for this argument:

-num_convergences

 Use this argument to specify the number of convergences to be reported

Filter Attribute Description
is_graycoded (String) Yes, no, unknown or disabled to return

convergences with functional check as PASSED,
FAILED, Partially-proved or DISABLED
respectively

is_comb_conv (Boolean) True if the conv is in Ac_conv02
is_seq_conv (Boolean) True if the conv is in Ac_conv01
is_nonconv_bus (Boolean) True if the conv is in Ac_conv04
is_user_defined (Boolean) True if the conv is due to user-defined

gray-coding constraint reported in Ac_conv05
num_sources (Integer) The number of converging signals
num_source_domains (Integer) The number of source domains in a

crossing (will be more than 1 for Ac_conv03)
cdc_rule_name (String) Name of rule which generates the

violation
conv_gate (String) Output net name of gate on which signals

converge. Returns N.A. for Ac_conv04 and
Ac_conv05.

sync_count (String) Number of signals converge
status (String) Result of the gray encoding check.

Returns N.A. for Ac_conv01, Ac_conv02 and
Ac_conv03.
504
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
for the same set of synchronizers. The default values is 1. Specify -1 to
report all the computed parallel convergences. The value specified for the
num_convergences parameter should be less than or equal to the value
specified to the compute_num_convergences parameter.

Note that parallel convergences are not checked for gray encoding and
therefore the status is shown as Not-Analyzed.

NOTE: To use this argument, run the Ac_conv01, Ac_conv02, or Ac_conv03 rule with the
compute_num_convergences <num> parameter. The number specified
with this parameter is the maximum number of convergences you can query with
the TCL command.

Examples

Consider the following commands:

sg_shell> get_cdc_coherency //return collection of all
coherency issues
_sggrp3

sg_shell> get_cdc_coherency -from q12 //returns collection of
coherency issues where crossing source matches 'q12'
_sggrp4

sg_shell> get_cdc_coherency -from q12_typo //error case
get_cdc_coherency: error: Please specify valid net or pin
with '-from' field

sg_shell> get_cdc_coherency -filter is_comb_conv==false //
return crossing which are of type other than Ac_conv02
_sggrp5

sg_shell> get_cdc_coherency -filter is_seq_conv==true //
return coherency issue of type Ac_conv01
_sggrp6
505
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_cdc_coherency -filter is_user_defined==true //
return coherency issue of type Ac_conv05
_sggrp7

sg_shell> get_cdc_coherency -num_convergences=3 //calculates
three parallel convergences

sg_shell> get_cdc_coherency -num_convergences=‘-1’ //
calculates all possible parallel convergences

See Also

report_cdc, report_cdc_coherency
506
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_cdc_glitch
Creates collection of clock domain crossings in current design that
may have glitches and match certain criteria

Syntax

get_cdc_glitch
[-to <to_pattern>]
[-to_clocks <t_clock>]
[-to_domains <t_domain>]
[-to_objects <t_object>]
[-of_objects <obj>]
[-regexp]
[-filter <expr>]

Scope

Goal

Return Value

Returns an empty string or a collection of clock domain crossing objects
that may have glitches, in case of successful execution. The empty string is
returned if nothing matched the filtering criterion. In case of unsuccessful
execution an error is returned that can be trapped using the catch
command.

Description

This command creates a collection of clock domain crossings in the current
design/instance that may have glitches and match certain criteria. The
command returns a collection, if any crossing with glitches matches the
various input specifications and also passes the filtering criteria, if
specified. If no objects match the criteria, the empty string is returned.

The get_cdc_glitch command fails when:
 Flattened design view does not exist.

 No data is available from the Ac_glitch03 rule.
507
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Arguments

The get_cdc_glitch command has the following arguments:

<-to>

Use this argument to specify net names, pin names, or port names of
destination object in crossing.

[-to_clocks]

Use this argument to specify the name of the destination clock in the sgdc/
sdc file. Clock name can be port name, pin name, net name, or clock tag
name.

[-to_domains]

Use this argument to specify the domain of the destination in the sgdc/sdc

file.

[-to_objects]

Use this argument to specify collection of destination clock objects using
get_clocks or collection of domain objects using get_domains or collection
of net objects using get_nets.

[-of_objects]

Collection of clock domain crossings returned by the get_cdc_glitch or
get_cdc command.

[-regexp]

If '-regexp' switch is given then patterns are seen as real regular
expressions rather than simple wildcard patterns. This switch is not needed
for wildcard pattern matching. Wildcard pattern matching is on by default.
Regular expression can only be specified for design objects names in fields
'-from', '-to', '-from_clocks', and '-to_clocks.'

[-filter <filter_expression>]

Use this argument to specify filter expression over named attributes of
crossings such as 'multi_source_glitch_check',
'has_reconvergent_sources', 'has_multi_domain_sources',
508
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
'has_destination_domain', 'num_sources', and 'num_source_domains.'

Following table describes the filter attributes available for this argument:

Filter Attribute Description
multi_source_glitch_check (String) Status of grey-encoding check performed

on the same domain sources. It can have "pass",
"fail" or "unknown" values.

has_reconvergent_sources (Boolean) True if the crossing has a reconvergent
source

has_multi_domain_sources (Boolean) True if the crossing has multiple
domain sources

has_destination_domain (Boolean) True if the crossing has a destination
domain signal in fanin

num_sources (String) The number of sources in a crossing
num_source_domains (String) The number of source domains in a

crossing
cdc_rule_name (String) Name of rule which generates the

violation
dest_name (String) Output net name of the destination
dest_clocks (String) Names of clocks that drive the

destination. In case of multiple clocks, all clock
names are shown.

dest_domain (String) Clock domain of destination. If the
domain name is not specified, the clock domain
name is the same as the clock name. If
destination is driven by multiple clocks, all the
clock domains are shown.

dest_internal_domain_id (String) Unique tag number generated for the
destination clock domain

dest_clock_tag (String) Tag name specified in the SGDC file for
clock net connected to destination. This attribute
returns a value if a tag has been defined for at
least one clock. Else, returns an empty string.
Clocks for which tags have not been defined will
receive internally generated tags. In case of
multiple clocks, all tags are shown.

status (String) Result of gray encoding check
failure_reason (String) Reason for the status
509
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

Consider the following commands:

sg_shell> get_cdc_glitch -to_clocks top.clk2 //returns
collection of glitchy crossings having destination clock as
'top.clk2'
_sggrp5

sg_shell> get_cdc_glitch -filter
has_reconvergent_sources==false //returns collection of
those glitchy crossings which have reconvergent sources
_sggrp6

sg_shell> get_cdc_glitch -to_objects [get_clocks tag4] //
returns collection of crossing having destination clock tag
as 'tag4'
_sggrp10

sg_shell> sg_shell> get_cdc_glitch -to q_sync1.* -regexp //
return collection of crossings having destination matching
regular expression 'q_sync1.*'
_sggrp1

See Also

report_cdc_glitch, get_clocks, get_domains, get_cdc
510
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_cdc_sources
Returns source of a crossing given by a destination name or an
object returned from get_cdc collection

Syntax

get_cdc_sources
[<destination_name>]
[-of_objects <cdc-object>]

Scope

Goal

Return Value

Returns an empty string or a collection of clock domain crossing's source
objects in case of successful execution.

Description

This command gives source list of a clock domain crossing in the current
design/instance that matches certain criteria.

The get_cdc_sources command fails when:
 Flattened design view does not exist.

 No data is available from the Ac_sysnc_group rules.

Arguments

The get_cdc_sources command has the following arguments:

<-destination_name>

Use this argument to specify net names, pin names or port names of a
clock domain crossings object.

<-of_objects>

Use this argument to specify the clock domain crossing object list of filter
attributes.
511
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
List of filter attributes:

Examples

Consider the following commands:

sg_shell> set cdc_vars [eval [concat get_cdc]];
 foreach_in_collection var $cdc_vars {
 set src_vars [get_cdc_sources -of_objects
 $var];
 }

See Also

report_cdc, get_clocks, get_domains

Filter Attribute Description
source_name (String) Source name
source_clocks (String) Source clocks name
source_domain (String) Source domain
source_type (String) The type of the source as reported by the

Ac_sync_group rules. It can have values - flop,
library-cell, latch, primary-input, and black-box.

source_file_line (String) RTL file and line of the source definition
source_parent_inst_name (String) Parent instance name
source_internal_domain_id (Integer) Internal domain id of the source
source_clock_tag (String) User-defined tag name of the clock
source_failure_reason (String) Reason the crossing is unsynchronized as

reported by the Ac_unsync01 and Ac_unsync02
rules. Refer section Reasons for Unsynchronized
Crossings in the SpyGlass CDC Rules Reference
Guide. In the reason string, space needs to be
replaced with '_' to use the string as filter value.
For example: 'Qualifier not found' need to be
specified as 'Qualifier_not_found'.

source_synch_scheme (String) Sync scheme name
source_qualifier_name (String) Name of the qualifier
source_qualifier_depth (String) Depth of the qualifier
512
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_conv_sync_signals
Returns a collection of crossings for a given convergence object
that is an element of collection returned from get_cdc_coherency

Syntax

get_conv_sync_signals
[<converegnce>]

Scope

Goal

Return Value

Returns an empty string or a collection of clock domain crossing objects in
case of successful execution.

Description

The get_conv_sync_signals command returns a collection of crossings for a
given convergence object which is an element of collection returned from
the get_cdc_coherency command.

The get_conv_sync_signals command fails when:

 Flattened design view does not exist.

 No data is available from the Ac_conv rules.

Arguments

The get_conv_sync_signals command has the following arguments:

<converegnce>

Use this argument to specify an element of collection returned from the
get_cdc_coherency comamnd.
513
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
List of filter attributes:

Examples

Consider the following commands:

sg_shell> set cdc_vars [eval [concat get_cdc_coherency]];
 foreach_in_collection var $cdc_vars {
 set src_vars [get_conv_sync_signals $var];
 }

Filter Attribute Description
dest_name (string) Output net name of destination
source_names (string) Output net names of sources
seq_depth (Integer) Number of sequential elements from

destination to the convergent object
diverging_nets (String) Output net names of sources which

diverge and then converge
dest_clocks (String) Names of clocks which drive the

destination
dest_clock_tag (String) Tag name specified in the SGDC file for

clock net connected to destination. This attribute
returns a value if a tag value has been defined for
at least one clock. Else, returns an empty string.
Clocks for which tags have not been defined will
receive internally generated tags. In case of
multiple clocks, all tags are shown.

source_clocks (String) Names of clocks which drive the source
source_clock_tag (String) Tag name specified in the SGDC file for

clock net connected to source. This attribute
returns a value if a tag value has been defined for
at least one clock. Else, returns an empty string.
Clocks for which tags have not been defined will
receive internally generated tags. In case of
multiple clocks, all tags are shown.

dest_file_line (String) Design file name and line number where
the destination is used. File name and line
number are separated by a colon.
514
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_cdc_coherency, report_cdc_coherency, get_cdc
515
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_glitch_sources
Returns a collection of sources for a given glitch prone crossing or
a destination

Syntax

get_glitch_sources
[<destination_name>]
[-of_objects <cdc-object>]

Scope

Goal

Return Value

Returns an empty string or a collection of source objects in case of
successful execution.

Description

The get_glitch_sources command returns a collection of sources for a given
glitch prone crossing or a destination. The crossing object should be an
element of collection returned from the get_cdc_glitch command.

The get_glitch_sources command fails when:
 Flattened design view does not exist.

 No data is available from the Ac_glitch03 rule.

Arguments

The get_glitch_sources command has the following arguments:

<destination_name>

Use this argument to specify net names, pin names or port names of a
destination of a glitch prone crossing.

<-of_objects>

Use this argument to specify collection of elements returned from the
get_cdc_glitch command.
516
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
List of filter attributes:

Examples

Consider the following commands:

sg_shell> set cdc_vars [eval [concat get_cdc_glitch]];
 foreach_in_collection var $cdc_vars {
 set src_vars [get_glitch_sources $var];

 }

See Also

get_cdc_glitch, report_cdc_glitch, get_cdc

Filter Attribute Description
source_name (String) Output net name of source
source_type (String) Source type as flop, latch, library-cell,

port, or black box
source_clocks (String) Names of clocks which drive the source.

In case of multiple clocks, all clock names are
shown.

source_clock_tag (String) Tag name specified in the SGDC file for
clock net connected to source. This attribute
returns a value if a tag value has been defined for
at least one clock. Else, returns an empty string.
Clocks for which tags have not been defined will
receive internally generated tags. In case of
multiple clocks, all tags are shown.

source_domain (String) Clock domain of source. If the domain
name is not specified, the clock domain name is
the same as the clock name. If source is driven
by multiple clocks, all the clock domains are
shown.

source_internal_domain_id (Integer) Unique tag number generated for the
source clock domain

is_reconv (Boolean) True if source reaches its destination
through multiple paths

is_async (Boolean) True if source is not synchronized with
its the destination
517
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_multi_flop_sync_info
Returns a collection of synchronizer flip-flops for a given crossing

Syntax

get_multi_flop_sync_info [<cdc-object>]

Scope

Goal

Return Value

Returns an empty string or a collection of synchronizer flops in case of
successful execution.

Description

 The get_multi_flop_sync_info command returns a collection of
synchronizer flip flops for a given crossing, which is synchronized by
multiple flip-flop synchronization scheme. The collection is considered
empty if the crossing is unsynchronized or synchronized by other method.

The get_multi_flop_sync_info command fails when:
 Flattened design view does not exist.

 No data is available from the Ac_sync rule group.

Arguments

The get_multi_flop_sync_info command has the following arguments:

<cdc-object>

Use this argument to specify the element of collection returned by the
get_cdc command.

List of filter attributes:

Filter Attribute Description
sync_name (String) Output net name of the synchronizer flip-

flop
sync_module_name (String) Module name of the synchronizer flip-flop
518
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

Consider the following commands:

sg_shell> set cdc_vars [eval [concat get_cdc]];
foreach_in_collection var $cdc_vars {
set flops [get_multi_flop_sync_info $var];
foreach_in_collection sync $flops {
set syncname [get_attribute $sync
sync_name];

 }
 }

See Also

report_cdc, get_cdc_sources, get_cdc
519
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_reset_sync
Returns status of flip-flops with the reset synchronization issues in
the current design that match certain criteria

Syntax

get_reset_sync [<reset>] [-reset_objects <rst_obj>] [-
to_objects <to_objects>] [-of_objects <obj>] [-to
<to_flop_net>] [-resets <resets>] [-regexp] [-filter <expr>]

Scope

Goal

Return Value

Returns an empty string or a collection of reset flip-flops in case of
successful execution. The empty string is returned if nothing matched the
filtering criterion. In case of unsuccessful execution, an error is returned
that can be identified using the catch command.

Description

The get_reset_sync command creates a collection of reset violation
objects in the current design/instance that match certain criteria. The
command returns a collection of resets related violations reported by
the Ar_sync01, Ar_unsync01, Ar_asyncdeassert01, and Ar_syncdeassert01
rules and also passes the filtering criteria (if specified). If no objects match
the criteria, the empty string is returned.

The get_reset_sync command fails, if:
 Flattened design view does not exist.

 No data is available from the Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, Ar_syncdeassert01 rules.

Arguments

The get_reset_sync command has the following arguments:

 <reset>

Collection of resets returned by the get_resets command.
520
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-reset_objects <rst_obj>

Collection of resets returned by the get_resets command.

-to_objects <object>

Collection of destination net objects returned by the get_nets or get_pins
command.

 -of_objects <object>

Collection of reset sync objects returned by the get_reset_sync command.

 -to <to_flop_net>

Name of destination flop output net or pin name.

-resets <resets>

Name of flop output net or pin name of a reset.

-filter <filter_expression>

Filter expression can be specified over named attributes of crossings such
as is_synchronized, is_sync_deasserted, missing_synchronizer,
invalid_reset_syn-synchronizer, different_domain_synchronizer, multi-
flop_reset_synchronizer, user-defined_reset_synchronizer,
reset_constrained_through_abstract_port_constraint,
reset_constrained_through_input_constraint, and generated_reset.

The following table describes the filter attributes available for this
argument:

Filter Attribute Description
dest_clocks (String) Returns the clocks applied on the reset

flip-flop
dest_resets (String) Returns the resets applied on the reset

flip-flop
dest_domain (String) Returns the domain name of the clock on

the reset flip-flop
multi_flop_synchroniz
er_names

(String) Returns names of driven nets of the reset
synchronizer flip-flop chain

dest_file_line (String) Returns the destination file
521
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-regexp

If this argument is specified, the patterns are considered as real regular
expressions rather than simple wildcard patterns. This argument is not
needed for wildcard pattern matching. Wildcard pattern matching is on by
default. Regular expression can only be specified for design object names
in the -to and -resets arguments.

Examples

sg_shell> get_reset_sync //returns all possible reset flop
information related to flaged violations

 _sggrp1

sg_shell> report_reset_sync [get_reset_sync -to
{top111.top0_.inst_22.q}] //returns reset flop information
related to violations flaged on provided destination

 //Retrieving related attributes:

 set sync_flops [get_reset_sync];

 foreach_in_collection flop $sync_flops {
 set dest_resets [get_attribute $flop dest_resets];
 set dest_clocks [get_attribute $flop dest_clocks];
 set dest_domain [get_attribute $flop dest_domain];
 set dest_file_line [get_attribute $flop
dest_file_line];

 puts [format "dest_resets:%s dest_clocks:%s
dest_domain:%s dest_file_line:%s" $dest_resets $dest_clocks
$dest_domain $dest_file_line];
 }

See Also

get_reset_sync_names, report_reset_sync_names, report_reset_sync
522
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_reset_sync_names
Return the reset synchronizer information in the current design
that match certain criteria

Syntax

get_reset_sync_names [<reset>] [-of_objects <obj>] [-resets
<resets>][-regexp] [-filter <expr>]

Scope

Goal

Return Value

Returns the available reset synchronizer information in case of successful
execution. In case of unsuccessful execution, an error is returned that can
be identified using the catch command.

Description

The get_reset_sync_names command creates a collection of reset
synchronizer information objects in the current design/instance that match
certain criteria. The command returns a collection of reset synchronizers
related to violations reported by the Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, Ar_syncdeassert01 rules and also pass the filtering
criteria (if specified). If no objects match the criteria, an empty string is
returned.

The get_reset_sync_names command fails, if:
 Flattened design view does not exist.

 No data is available from the Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, and Ar_syncdeassert01 rules.

Arguments

The get_reset_sync_names command has the following arguments:

 <reset>

Specifies collection of resets returned by the get_reset command.
523
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 -of_objects <object>

Collection of reset synchronizers returned from the get_reset_sync
command.

 -resets <resets>

Specifies name of flip-flop output net name of a reset.

-filter <filter_expression>

Filter expression can be specified over named attributes of crossings such
as is_synchronized, is_sync_deasserted,missing_synchronizer,
invalid_reset_synchronizer, different_domain_synchronizer, multi-
flop_reset_synchronizer, user-defined_reset_synchronizer,
reset_con strained_through_abstract_port_constraint,
reset_con strained_through_input_constraint, and generated_reset.

The following table describes the filter attributes available for this
argument:

-regexp

If this argument is specified, then the patterns are seen as real regular
expressions rather than simple wildcard patterns. This switch is not needed
for wildcard pattern matching. Wildcard pattern matching is on by default.
Regular expression can only be specified for design objects names in the
-to and -resets arguments.

Filter Attribute Description
reset (String) Returns the reset for the synchronizer
clock (String) Returns the clock applied on the reset

flip-flop
sync_name (String) Returns the synchronizer flip-flop names

of that synchronizer
module (String) Returns names of reset synchronizer

module
sync_type (String) Returns the synchronization type
sync_count (String) Returns the synchronizer flip-flop count
524
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> get_reset_sync_names
 _sggrp1

sg_shell> set sync_nms [get_reset_sync_names -of_objects
[get_reset_sync]];

 //Retrieving related attributes:

 foreach_in_collection nm $sync_nms {

 set reset [get_attribute $nm reset];

 set clock [get_attribute $nm clock];

 set sync_name [get_attribute $nm sync_name];

 set module [get_attribute $nm module];

 set sync_type [get_attribute $nm sync_type];

 set sync_count [get_attribute $nm sync_count];

 puts [format "reset:%s clock:%s sync_name:%s module:%s
type:%s sync_count:%s" $reset $clock $sync_name $module
$sync_type $sync_count];

 }

See Also

get_reset_sync, report_reset_sync_names, report_reset_sync
525
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_paths
Reports the complete paths between the specified start and end
points

Syntax

get_paths [-from <from_pattern>] [-to <to_pattern>] [-
from_objects <f_object>] [-to_objects <t_object>] [-
of_objects <obj>] [-regexp] [-type

 clock|async_reset|sync_reset|data] [-path_limit
<limit>]

Scope

Project

Return Value

Returns a collection of complete paths between the specified start and/or
end points.

Description

The get_paths command returns the complete path between the specified
start and end points in current design matching specified criteria.

It is mandatory to run the propagate_clocks and/or propagate_resets
command before get_paths when using with -type clock/async_reset/
sync_reset, so that the flip-flops/latches driven by clocks/resets are
reported.

If the start or end point is a clock or reset, the path is computed between
the flip-flops data path driven by the specified clocks/resets.

The following are the stop points while finding a path:
 Black-box without assume_path/abstract_port path_type combo|buf|inv

 Blocked path

 Flops, latches, clock gating cells

 Library sequential elements without combinational arc

The get_paths command fails if:
526
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 The design query view type selected is not flat

 The flattened view of design is not present

Arguments

The get_paths command has the following arguments:

 [<from>]

The argument returns the list of net name, pin name, port name of a start
point.

[<to>]

The argument returns the list of net name, pin name, port name of an end
point.

[<from_objects>]

The argument returns the clock/reset objects returned from get_clocks/
get_resets commands, net objects, pin objects that are returned from
other Tcl commands, (for example, get_nets or get_pins). This is for start
points.

[<to_objects>]

The argument returns the clock/reset objects returned from get_clocks/
get_resets commands, net objects, pin objects that are returned from
other Tcl commands (for example, get_nets or get_pins). This is for end
points.

[<of_objects>]

The argument specifies collection of flat cells, flat nets and flat pins.
Collection of resets driving specified flat objects are returned.

[<regexp>]

The collection indicates that all the arguments are regular expressions.

[<type>]

By default, it is set to data. It can have clock, async_reset, sync_reset if
user wants to see data paths for specific clock, asynchronous or
527
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
synchronous resets.

[<path_limit>]

This argument limits the number of paths to be shown. By default, it shows
paths for 1000 start/end points. Specify 0 to show all the paths.

Examples

___ ___

|FF1| |--\ |--\ |--\ |FF2|

| |----|N1 |-----|N2 |------|N3 |-----| |---

|>__| |--/ |--/ |--/ |>__|

sg_shell> get_paths -from top.FF1 -to top.FF2
sg_shell> get_paths -from {top.FF1} -to {top.FF2}

sg_shell> get_paths -from {top.FF11 top.FF12} -to {top.FF21
top.FF22}

sg_shell> get_paths -of_objects [get_paths -from {top.FF11
top.FF12} -to {top.FF21 top.FF22}

See Also

report_paths
528
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_cdc
Reports clock domain crossing details

Syntax

report_cdc [<crossings>] [-dump_csv <file-name>]

Scope

Goal

Return Value

None

Description

The report_cdc command is used to report crossing details as given in the
Ac_sync_group_detail.

The report_cdc command fails when:
 flattened design view does not exist.

 No data is available from Ac_sync_group rules.

 An improper collection is provided as an input to the report_cdc
command. A collection is called improper when it does not consist of
crossings, that is, a collection returned by a command other than the
get_cdc command.

Arguments

The report_cdc command has the following arguments:

<crossings>

Use this argument to specify a collection of crossings returned by the
get_cdc command. This command reports crossing details in a tabular
format. If this option is not specified, all the crossing in current_design will
be reported.

[-dump_csv <file-name>]

Use this argument to generate the report in CSV file specified as <file-
529
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
name>. It generates the file in the spyglass_reports/clock-
reset/tcl_dump directory. The report is generated with the columns
S.No., Rule Name, Dest Name, Dest Clock(s), Source Name, Source
Clock(s), Failure Reason, Synch. Scheme, Dest File:Line, and Source
File:Line.

Examples

sg_shell> report_cdc //reports all the crossing in
current_design

Following is the output of the above command:
===
Synchronized Scalar Signal Crossings (Ac_sync01)
===

+++

S.No. Dest.Name Dest.Clock Names Source Name Source Clock Names Sync. Scheme

===

1 top.q_sync2 top.clk3,top.clk4, top.q_sync1 top.clk1,top.clk2 Conventional
 top.clk5 Multi-flop for
 Metastability
 Technique
++

===
Synchronized Vector Signal Crossings (Ac_sync02)

===
+++
S.No. Dest. Name Dest.Clock Names Source Name Source Clock Names Sync. Scheme

===
1 top.q_sync2 top.clk3,top.clk4, top.q_sync1 top.clk1,top.clk2 Conventional
 _bus[7:0] ,top.clk5 _bus[7:0] Multi-flop for
 Metastability
 Technique
+++

sg_shell> report_cdc [get_cdc -to_object [get_clocks tag4]]
//report all the crossing returned by get_cdc command

sg_shell> report_cdc [get_clocks] //negative scenario
530
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
where improper collection is provided as input

See Also

get_cdc
531
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_cdc_coherency
Displays the collection of coherency/convergence issues reported
by get_cdc_coherency

Syntax

report_cdc_coherency [<conv_issues>]

Scope

Goal

Return Value

None

Description

This command is used to display the coherency/convergence issues
present in design, in tabular format.

Arguments

The report_cdc_coherency command has the following arguments:

conv_issues

Use this argument to pass the list of convergence issues returned by the
get_cdc_coherency command. If no collection is passed to this
command, all the coherency issues present is design are reported.

Examples

Consider the following commands:

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_user_defined==true]

==
===

(Ac_conv05)

==
532
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
===

++
+++++++++++++++++++

S.No. Signals Status

==
===================

1 gray.reg2[1:0],gray.reg2_in[1:0] PASSED

++
+++++++++++++++++++

sg_shell> report_cdc_coherency [get_cdc_coherency -from
current_state]

==
===

(Ac_conv04)

==
===

++
+++++++++++++++++++

S.No. Count Signals Status

==
===================

1 3 gray.reg1[0:2] PASSED

++
+++++++++++++++++++

sg_shell> report_cdc_coherency

==
533
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
===

(Ac_conv01)

==
===

++
+++++++++++++++++++

S.No. Count Signals Converging Gate

==
===================

1 2 test2.sync2.r[0] test2.o1

 test2.sync1.r[0]

++
+++++++++++++++++++

==
===

(Ac_conv03)

==
===

++
+++++++++++++++++++

S.No. Count Signals Converging Gate

==
===================

1 3 test2.sync3.r[0] test2.o1

 test2.sync2.r[0]

 test2.sync1.r[0]

++
534
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
+++++++++++++++++++

See Also

report_cdc, get_cdc_coherency
535
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_cdc_glitch
Reports clock domain crossing with glitches

Syntax

report_cdc_glitch [<crossings>]

Scope

Goal

Return Value

None

Description

The report_cdc_glitch command is used to report crossing that may have
glitches as reported by the Ac_glitch03 rule.

This command fails when:
 flattened design view does not exist.

 No data is available from the Ac_glitch03 rule.

 An improper collection is provided as an input to the report_cdc_glitch
command. A collection is called improper when it does not consist of
crossings, that is, a collection returned by a command other than the
get_cdc_glitch command.

Arguments

The report_cdc command has the following arguments:

<crossings>

Use this argument to specify a collection of crossings with glitches returned
by the get_cdc_glitch command. This command reports details of the
crossing with glitches in a tabular format. If this option is not specified, all
the crossings with glitches in current_design are reported.

Examples

sg_shell> report_cdc_glitch //reports all the crossings with
536
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
glitches in current_design
 1. Destination Name: top.q1
 Destination Internal Domain ID: 5
 Destination Clock(s): Domain : Internal Domain ID: Tag Name
 top.hierInst1.c1: d1: 1: T1
 top.hierInst2.c2: d2: 2: <NA>
 Gray Encoding Check: DISABLED
 Reason: Source reconverges
 Total Sources: 1
 Total Source Domains: 1

sg_shell> report_cdc_glitch [get_cdc_glitch -to_objects
[get_clocks tag4]] //report all the glitchy crossin
gs returned by get_cdc_glitch command

sg_shell> report_cdc_glitch [get_clocks] //negative scenario
where improper collection is provided as input
report_cdc_glitch: error: collection type mismatch. Refer
'report_cdc_glitch -help' or 'man report_cdc_glitch'

See Also

get_cdc_glitch
537
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_paths
Reports elements in a defined path in current design

Syntax

report_paths [<paths>]

Scope

Project

Return Value

None

Description

The report_paths command is used to report results returned by the
get_paths command in the current design.

 It is mandatory to run the get_paths command before running
report_paths, so that paths are reported.

The report_paths command fails, if:
 Design query view type selected is not flat.

 Flattened design view is not present.

 An improper collection (a collection that is not of paths as returned by
the get_paths command) of objects has been provided as input to the
report_paths command.

Arguments

The report_paths command has the following arguments:

 [<paths>]

The argument reports the collection returned by the get_paths command
in current design.

Examples

sg_shell> report_paths
538
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Start Point: Top.FF1

End Point: Top.FF2

Path Type: Data

Path:

a) Top.N1

Top.N2

Top.N3

b) Top.N11

Top.N21

Top.N31

See Also

get_paths
539
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_reset_sync
Reports reset synchronization issues related information

Syntax

report_reset_sync [<reset_syncs>]

Scope

Goal

Return Value

None

Description

 The report_reset_sync command is used to display the collection of reset
synchronizer issues returned by the get_reset_sync command.

The report_reset_sync command fails, if:
 Flattened design view does not exist.

 No data is available from the Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, and Ar_syncdeassert01 rules.

 An improper collection (a collection that is not of reset_flop_node, that
is a collection returned by a command other than get_reset_sync) has
been provided as input to the report_reset_sync command.

Arguments

The report_reset_sync command has the following arguments:

 <reset_syncs>

Collection of reset synchronization issues returned by the get_reset_sync
command. If this option is not specified, all the sync issues in
current_design are reported.

 Examples

sg_shell> report_reset_sync //reports all the crossing
in current_design
540
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands

 Report : flops of reset synchronizer

 ==

 Dest Name : test.t

 Dest Type : flop

 Dest Reset(s) : test.rst (clear)

 Dest Clock(s) : test.clk1

 Sync Method : User-defined reset synchronizer
(Name:sync_cell)

 Failure Reason : N.A.

 De-assertion Status : Synchronously de-asserted
relative to clock signal 'test.clk1'

 Reset Synchronizer Names : N.A.

 ==

 Report : flops of reset synchronizer

 ==

 Dest Name : test.t

 Dest Type : flop

 Dest Reset(s) : test.rst (clear)

 Dest Clock(s) : test.clk1

 Sync Method : User-defined reset synchronizer
(Name:sync_cell)
541
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 Failure Reason : N.A.

 De-assertion Status : Synchronously de-asserted
relative to clock signal 'test.clk1'

 Reset Synchronizer Names : N.A.

 ==

See Also

get_reset_sync, get_reset_sync_names, report_reset_sync_names
542
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_reset_sync_names
Reports reset synchronization related information

Syntax

report_reset_sync_names [<reset_syncs>]

Scope

Goal

Return Value

None

Description

 The report_reset_sync_names command is used to report crossing details
as given in the Ac_sync_group_detail report.

The report_reset_sync_names command fails, if:
 Flattened design view does not exist.

 No data is available from the Ar_sync01, Ar_unsync01,
Ar_asyncdeassert01, and Ar_syncdeassert01 rules.

 An improper collection (a collection that is not of reset_sync_node, that
is the collection returned by a command other than
get_reset_sync_names) has been provided as input to the
report_reset_sync_names command.

Arguments

The report_reset_sync_names command has the following arguments:

 <crossings>

Collection of crossings returned by the get_reset_sync_names command.
If this option is not specified, all the reset synchronizations in
current_design will be reported.

 Examples

sg_shell> report_reset_sync_names //reports all reset
543
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
synchonizers in the design

 Report : reset synchronizer information

 ==

 Reset : test.rst

 Synchronizer Flop(s) : N.A.

 Synchronizer Flop Count : N.A.

 Synchronizer Clock(s) : test.clk1

 Type : User-defined reset synchronizer

 ==

See Also

get_reset_sync, get_reset_sync_names, report_reset_sync
544
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass DFT Commands
The following table describes the Tcl commands that are a part of the
SpyGlass DFT product:

Command Description
dft_generate_coverage Generates coverage information for selected

modules and instances.
dft_generate_fault_report Generates pin wise fault information for

selected modules and instances.
dft_generate_scan_report Generates instance-wise scannability

information of flip-flops or latches in the
selected modules and scannability
information for selected flip-flops or latch
instances in the current design.

dft_generate_latch_status_repor
t

Generates instance-wise transparency
information of latches in selected modules
and transparency information for selected
latch instances in current design.

cv_is_cmt_present Check if the passed constraint_message_tag
is present on the specified flat-object.

dsm_assert_illegal_path Defines the illegal connectivity check for a
path.

dsm_assert_illegal_value Defines a check that a logic value should not
be present on a design node.

cv_define_user_macro Define a new user marco.
cv_delete_user_macro Delete a user macro.
cv_reset_user_macros Delete all user macros.
cv_get_list_of_user_macros Get list of user macros.
cv_add_element_to_user_macro Add flat-object to user macro's collection.
cv_get_cell_list_of_user_macro Get cell list of user macro.
cv_get_pin_list_of_user_macro Get pin list of user macro.
cv_get_port_list_of_user_macro Get port list of user macro.
cv_is_element_present_in_user_
macro

Check if flat-object is present in the user
macro collection.

cv_remove_element_from_user_
macro

Remove flat-object from user macro's
collection.
545
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dft_generate_coverage
Generates coverage information for selected modules and
instances

Syntax

dft_generate_coverage
[-top <top_name>]
[-report_file <report_file>]
[-fault_model <fault_model>]
[-module <list_of_modules>]
[-instance <list_of_instances>]

Scope

Goal

Return Value

The dft_generate_coverage command returns info, warning and error
messages:
 The info message is shown for the values of different fields used as

shown in the following example:

 info: Using 'stuck_at'(default) for fault_model

 info: top field not defined

 warning message is shown if something expected is not found as shown
in the following example:

 warning: No module with name 'moid' found in design
'my_design'

 error message is shown if command can not proceed further as shown
in the following example:

 error: Unable to open 'my_design_sa_file' for writing

 error: No top design 'my_design' found

Description

This command is used to generate selective coverage information for
specific set of modules, instances or ports.
546
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
This command uses already completed coverage analysis. Therefore, it is
necessary to run the Info_coverage, Info_transitionCoverage, and
Info_random_resistance rules, which perform stuck-at, transition and
random resistance coverage analysis, respectively.

Arguments

The dft_generate_coverage command has the following arguments:

-top <top-name>

This argument takes the name of the top design unit, coverage information
for specified modules and instance will be reported for this top only. If
there is only one design unit then this argument is optional.

-report_file <report-file>

This is an optional argument, its default value is stdout. It takes the full
path name of the report file.

NOTE: Using this option is recommended.

fault_model <fault-model>

This is an optional argument. It’s default value is stuck_at. It is used to
specify the fault model for which information needs to be reported.
Supported values are stuck_at, transition, and rrf.
 stuck_at is used for stuck-at fault model. The Info_coverage rule of

SpyGlass DFT generates the data for this fault model.
 transition is used for transition fault model. The

Info_transitionCoverage rule of SpyGlass DFT generates the data for
this fault model. The dsm_launch_method parameter needs to be set
as loc/los to generate the required data.

 rrf is used for random resistance fault model. The
Info_random_resistance rule of SpyGlass DFT generates the data for
this fault model.

-module <list-of-modules>

This is an optional argument. It is used to specify all the modules for which
the coverage information needs to be reported. This argument takes a list.
547
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-instance <list-of-instances>

This is an optional argument. It is used to specify all the instances (full
path of the instantiation) for which the coverage information needs to be
reported. This argument takes a list.

Examples

sg_shell > dft_generate_coverage \
-top my_design -report_file path_to_target_file/
stuck_at_DT_for_mod.rpt \
-fault_model stuck_at \
-module "modeA modB

sg_shell > dft_generate_coverage

See Also

N/A
548
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dft_generate_fault_report
Generates pin wise fault information for selected modules and
instances

Syntax

dft_generate_fault_report

 [-top <top-name>]

 [-report_file <report-file>]

 [-fault_model <fault-model>]

 [-fault_type <fault-type>]

 [-module <list-of-modules>]

 [-instance <list-of-instances>]

 [-port]

Scope

Goal

Return Value

Returns returns info, warning and error messages.

Description

This command is used to generate selective fault information for specific
set of modules, instances or ports. It uses already completed fault
analysis, so it is necessary to run the Info_coverage and
Info_transitionCoverage rules, which perform stuck at and transition fault
analysis respectively.

Arguments

The dft_generate_fault_report command has the following
arguments:

-top <top-name>

This argument takes the name of the top design unit, fault information for
549
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
specified modules and instance will be reported for this top only. If there is
only one design unit then this argument is optional.

-report_file <report-file>

This is an optional argument, its default value is stdout. It takes the full
path name of the report file.

NOTE: Using this option is recommended

fault_model <fault-model>

This is an optional argument. It’s default value is stuck_at. It is used to
specify the fault model for which information needs to be reported.
Supported values are stuck_at, transition_loc and transition_los.
 stuck_at is used for stuck-at fault model. The Info_coverage rule of

SpyGlass DFT generates the data for this fault model.
 transition_loc is used for transition fault model with lauch on capture.

The Info_transitionCoverage rule of SpyGlass DFTDSM generates the
data for this fault model. The dsm_launch_method parameter needs
to be set as loc.

 transition_los is used for transition fault model with lauch on capture.
The Info_transitionCoverage rule of SpyGlass DFTDSM generates the
data for this fault model. The dsm_launch_method parameter needs
to be set as los.

-fault_type <fault-type>

This is an optional argument, its default value is all. It specifies the
categories of the fault that needs to be reported. The supported options
are all, detected, undetected, synthesis_redundant,
false_path, unused, untestable, tied, blocked,
logical_redundant, and all_except_detected.

-module <list-of-modules>

This is an optional argument. It is used to specify all the modules for which
the fault information needs to be reported. This argument takes a list.

-instance <list-of-instances>

This is an optional argument. It is used to specify all the instances (full
550
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
path of the instantiation) for which the fault information needs to be
reported. This argument takes a list.

-port

This is an optional argument. If specified then the fault information for all
ports is reported.

NOTE: If module, instance, and port are not defined then fault information for complete
design unit is reported.

Examples

sg_shell > dft_generate_fault_report \
 -top my_design -report_file
path_to_target_file/stuck_at_detected_for_mod.rpt \
 -fault_model stuck_at -fault_type detected \
 -module "modeA modB"

sg_shell > dft_generate_fault_report

See Also

dft_generate_scan_report, dft_generate_latch_status_report
551
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dft_generate_scan_report
Generates instance-wise scannability information of flip-flops or
latches in the selected modules and scannability information for
selected flip-flops or latch instances in the current design

Syntax

dft_generate_scan_report
 [-top <top-name>]
 [-type <scan-type>]
 [-module <list-of-modules>]
 [-instance <list-of-instances>]

Scope

Goal

Return Value

Returns info, warning and error messages.

Description

This command is used to generate a report of scannability information
of flip-flops or latches in a specific set of modules and scannability
information for selected flip-flops or latch instances in current design. This
report should be generated after one of the DFT goals has been run.

Arguments

The dft_generate_scan_report command has the following
arguments:

-top <top-name>

This argument takes the name of the top design unit, scan information for
specified modules and instance will be reported for this top only. If there is
only one design unit then this argument is optional.

-type <scan-type>

This is an optional argument. Its default value is 'all'. It specifies the
scannability types that need to be reported. The supported options are
552
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
all, scan_forced, scan_inferred, no_scan_forced,
no_scan_inferred, unscannable_clock, unscannable_reset,
and unscannable_clock_reset.

-module <list-of-modules>

This is an optional argument. It is used to specify all the modules for which
the scan information needs to be reported. This argument takes a list.

-instance <list-of-instances>

This is an optional argument. It is used to specify all the instances (full
path of the instantiation) for which the scan information needs to be
reported. This argument takes a list.

Examples

sg_shell > dft_generate_scan_report \
-top my_design \
-type scan_forced \
-module "modeA modB"

sg_shell > dft_generate_scan_report

See Also

dft_generate_fault_report, dft_generate_latch_status_report
553
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dft_generate_latch_status_report
Generates instance-wise transparency information of latches in
selected modules and transparency information for selected latch
instances in current design

Syntax

dft_generate_latch_status_report
 [-top <top-name>]
 [-mode <simulation-mode>]
 [-type <transparency-type>]
 [-module <list-of-modules>]
 [-instance <list-of-instances>]

Scope

Goal

Return Value

Returns info, warning and error messages.

Description

This command is used to generate a report of transparency data of
latches in a specific set of modules or transparency information for
selected latch instances in the current design. This report should be
generated after one of the DFT/DFT_DSM goals has been run.

Arguments

The dft_generate_latch_status_report command has the
following arguments:

-top <top-name>

This argument takes the name of the top design unit, transparency
information for specified modules and instance will be reported for this top
only. If there is only one design unit then this argument is optional.

-mode <simulation-mode>

This is an optional argument that specifies the simulation mode which the
554
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
transparency information should generate. The supported options are
shift, capture, and atspeed. The default mode is capture mode.

-type <transparency-type>

This is an optional argument, its default value is 'all'. It specifies the
transparency types that needs to be reported. The supported options are
all, transparent_forced, transparent_clock_off,
transparent_control, shadow, lockup_source, and
lockup_destination.

-module <list-of-modules>

This is an optional argument. It is used to specify all the modules for which
the transparency information needs to be reported. This argument takes a
list.

-instances <list-of-instances>

This is an optional argument. It is used to specify all the instances (full
path of the instantiation) for which the transparency information needs to
be reported. This argument takes a list.

Examples

sg_shell > dft_generate_latch_status_report \
-top my_design -mode capture \
-type transparent_control \
-module "modeA modB"

sg_shell > dft_generate_latch_status_report \
-mode atspeed

See Also

dft_generate_fault_report, dft_generate_scan_report
555
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_is_cmt_present
Check if the given constraint_message_tag is present on the
specified flat-object.

Syntax

cv_is_cmt_present
-flat_object <flat_object>
-cmt_name <constraint_message_tag_name>

Scope

Goal

Return Value

 Returns 1 if the specified constraint_message_tag, along with
modifier, is found and returns 0 if it is not found.

 Error messages are shown if something unexpected is found and
command cannot proceed further.

Description

The cv_is_cmt_present command is used to query whether a given
flat_object has passed or failed a specific connectivity check captured via
constraint_message_tag.

Arguments

The cv_is_cmt_present command has the following arguments:

-flat_object <flat_object>

This argument takes a flat_object and not its name.

-cmt_name <constraint_message_tag_name>

This is the constraint_message_tag name along with :PASS or :FAIL
modifier.
556
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell > cv_is_cmt_present \
-flat_object [get_ports clkout] \
-cmt_name OUTPUT_CLK_CHECK:PASS

See Also

None
557
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dsm_assert_illegal_path
Defines the illegal connectivity check for a path

Syntax

dsm_assert_illegal_path
-from <from_list> -to <to_list>
[-path_type <type>]
[-use_shift]
[-use_capture]
[-use_capture_at_speed]
[-waveform]

Scope

dsm

Return Value

The dsm_assert_illegal_path command returns connectivity status
between specified pairs of nodes.

Description

This command defines an illegal-connectivity check for a path from a
pin specified with the -from argument to a pin specified with the -to
argument under specific simulation condition. The simulation condition
is the state of circuit, when dsm_assert_illegal_path command is
issued.

Arguments

The dsm_assert_illegal_path command has the following
arguments:

<from_list> | <to_list>

Specifies the start-point and end-point nodes, respectively, in the circuit for
which a path is searched after the circuit is simulated into the desired state
(with the -tag argument specified) or a net connection is checked (without
the -tag argument specified). These arguments can assume one of the
558
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
following values: list of top-module port names, internal net names, or
terminal names.

<type>

This is an optional argument. Accepts only the following predefined list of
values: buffered, sensitized, and sensitizable. The default value of this
qualifier is sensitizable.

-use_shift | -use_capture | -use_capture_at_speed

These are optional arguments. For any of these modifiers, the
dsm_assert_illegal_path command simulates testmode of that particular
mode.

NOTE: If more than one of the -tag, , -use_shift, -use_capture, or
-use_capture_at_speed arguments is specified, an error condition occurs.

-waveform

This is an optional argument. This option generates a waveform for better
debugging in GUI mode.

Examples

sg_shell > dsm_assert_illegal_path -from top.a[2:0] top.b
-to top.c[3:0]

See Also

None
559
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dsm_assert_illegal_value
Defines a check that a logic value should not be present on a design
node

Syntax

dsm_assert_illegal_value
-name <node_list>
-value <value_list>
[-match_n_bits <size>
[-use_shift]
[-use_capture]
[-use_capture_at_speed]
[-waveform]

Scope

dsm

Return Value

The dsm_assert_illegal_value command returns the following warning
messages when node has the illegal value:

dsm_assert_illegal_value returns "Node '<node_name>' has
illegal value <current_sim_valu

Description

This command is used to check whether specific value on user specified
design node is not achieved under specific simulation condition. The
simulation condition is the state of the circuit, when the
dsm_assert_illegal_value command is issued.

Arguments

The dsm_assert_illegal_value command has the following
arguments:
560
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
<node_list>

This argument can assume one of the following values: Top-module port
name, Internal net name, or Terminal name. You can specify more than
one pin name for this argument.

<value_list>

This is a logic value string of 0, 1, X or Z. A single-bit value signifies a
check at the end of complete simulation. If the value of the argument is X,
it signifies do-not-compare.

<size>

This is an optional argument. It specifies the number of least significant
bits to be considered. If <size> is greater than <value> (specified with -
value argument), the latter is padded with X to match the former's width.

-use_shift | -use_capture | -use_capture_at_speed

These are optional arguments. For any of these modifiers, the
dsm_assert_illegal_value command simulates testmode of that particular
mode. If more than one of the -tag, -use_shift, -use_capture, or
-use_capture_at_speed arguments is specified, an error condition occurs.
Only one of these modifiers should be specified with the
dsm_assert_illegal_value command.

-waveform

This is an optional argument. This option generates a waveform for better
debugging in GUI mode.

Examples

sg_shell > dsm_assert_illegal_value -name top.U_CGC.TE -
value 1 -use_capture

See Also

None
561
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_define_user_macro
Define a new user marco.

Syntax

cv_define_user_macro
-macro <user_macro_name>

Scope

Goal

Return Value

 Returns 1 if macro creation was successful.

 Error messages are shown if something unexpected is found.

Description

The cv_define_user_macro command is used to define a new user
macro which can be used for subsequent connectivity checks.

Arguments

The cv_define_user_macro command has the following arguments:

-macro <user_macro_name>

This argument takes new user macro name.

Examples

sg_shell > cv_define_user_macro \
-macro user_macro_1

See Also

None
562
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_delete_user_macro
Delete a user macro.

Syntax

cv_delete_user_macro
-macro <user_macro_name>

Scope

Goal

Return Value

 Returns 1 if macro deletion was successful.

 Error messages are shown if something unexpected is found.

Description

The cv_delete_user_macro command is used to delete a user macro.

Arguments

The cv_delete_user_macro command has the following arguments:

-macro <user_macro_name>

This argument takes user macro name to be deleted.

Examples

sg_shell > cv_delete_user_macro \
-macro user_macro_1

See Also

None
563
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_reset_user_macros
Delete all user macros.

Syntax

cv_reset_user_macros

Scope

Goal

Return Value

 Returns 1 on successful deletion.

 Error messages are shown if something unexpected is found.

Description

The cv_reset_user_macros command is used to delete all user
macros.

Examples

sg_shell > cv_reset_user_macros

See Also

None
564
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_get_list_of_user_macros
Get list of user macros.

Syntax

cv_get_list_of_user_macros

Scope

Goal

Return Value

 Returns list of user macros.

 Error messages are shown if something unexpected is found.

Description

The cv_get_list_of_user_macros command is used to get list of
user macros.

Examples

sg_shell > cv_get_list_of_user_macros

See Also

None
565
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_add_element_to_user_macro
Add flat-object to user macro's collection.

Syntax

cv_add_element_to_user_macro
-macro <user_macro_name>
-flat_object <flat_object>

Scope

Goal

Return Value

 Returns 1 if flat_object was successfully added to the user macro.

 Error messages are shown if something unexpected is found.

Description

The cv_add_element_to_user_macro command is used to add a
flat_object to the user macro's collection.

Arguments

The cv_add_element_to_user_macro command has the following
arguments:

-macro <user_macro_name>

This argument takes user macro name.

-flat_object <flat_object>

This argument takes a flat_object and not its name

Examples

cv_add_element_to_user_macro \
-macro user_macro_1 \
-flat_object [get_pins test.mod_i1.and_1.A0]
566
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

None
567
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_get_cell_list_of_user_macro
Get cell list of user macro.

Syntax

cv_get_cell_list_of_user_macro
-macro <user_macro_name>

Scope

Goal

Return Value

 Returns collection of cells.

 Error messages are shown if something un-expected is found.

Description

The cv_get_cell_list_of_user_macro is used to get list of cells
present in the collection of the passed user macro.

Arguments

The cv_get_cell_list_of_user_macro command has the following
arguments:

-macro <user_macro_name>

This argument takes user macro name.

Examples

cv_get_cell_list_of_user_macro \
-macro user_macro_1

See Also

None
568
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_get_pin_list_of_user_macro
Get pin list of user macro.

Syntax

cv_get_pin_list_of_user_macro
-macro <user_macro_name>

Scope

Goal

Return Value

 Returns collection of pins.

 Error messages are shown if something un-expected is found.

Description

The cv_get_pin_list_of_user_macro is used to get list of pins
present in the collection of the passed user macro

Arguments

The cv_get_pin_list_of_user_macro command has the following
arguments:

-macro <user_macro_name>

This argument takes user macro name.

Examples

cv_get_pin_list_of_user_macro \
-macro user_macro_1

See Also

None
569
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_get_port_list_of_user_macro
Get port list of user macro.

Syntax

cv_get_port_list_of_user_macro
-macro <user_macro_name>

Scope

Goal

Return Value

 Returns collection of ports.

 Error messages are shown if something un-expected is found.

Description

The cv_get_port_list_of_user_macro is used to get list of ports
present in the collection of the passed user macro.

Arguments

The cv_get_port_list_of_user_macro command has the following
arguments:

-macro <user_macro_name>

This argument takes user macro name.

Examples

cv_get_port_list_of_user_macro \
-macro user_macro_1

See Also

None
570
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_is_element_present_in_user_macro
Check if flat-object is present in the user macro’s collection.

Syntax

cv_is_element_present_in_user_macro
-macro <user_macro_name>
-flat_object <flat_object>

Scope

Goal

Return Value

 Returns 1 if flat_object is present in passed macro's collection and 0
otherwise.

 Error messages are shown if something unexpected is found.

Description

The cv_is_element_present_in_user_macro is used to check if
flat_object is present in user macro's collection.

Arguments

The cv_is_element_present_in_user_macro command has the
following arguments:

-macro <user_macro_name>

This argument takes user macro name.

-flat_object <flat_object>

This argument takes a flat_object and not its name.

Examples

cv_is_element_present_in_user_macro \
-macro user_macro_1 \
-flat_object [get_pins test.mod_i1.and_1.A0]
571
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

None
572
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cv_remove_element_from_user_macro
Remove flat-object from user macro's collection.

Syntax

cv_remove_element_from_user_macro
-macro <user_macro_name>
-flat_object <flat_object>

Scope

Goal

Return Value

 Returns 1 if flat_object was successfully removed from macro’s
collection and 0 otherwise.

 Error messages are shown if something unexpected is found.

Description

The cv_remove_element_from_user_macro is used to remove a
flat_object from the user macro's collection.

Arguments

The cv_remove_element_from_user_macro command has the
following arguments:

-macro <user_macro_name>

This argument takes user macro name.

-flat_object <flat_object>

This argument takes a flat_object and not its name.

Examples

cv_remove_element_from_user_macro \
-macro user_macro_1 \
-flat_object [get_pins test.mod_i1.and_1.A0]
573
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

None
574
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass Power Verify Commands
The following table describes the various Tcl commands that are a part of
the SpyGlass Power Verify product:

Command Description
check_pwr_intent_cros
sing

Displays the crossing type between the two power
intent nodes

get_pwr_intent Gives a power intent node on which user can
query information

get_retention_info Gives a power retention node containing
information related to retention strategy applied
on an instance

get_isolation_info Gives a power isolation node containing
information related to isolation strategy applied
on an instance

get_power_switch_info Gives a power PSW node containing information
related to create_power_switch strategy applied
on an instance

get_level_shifter_info Gives a power level shifter node containing
information related to level shifter strategy
applied on an instance

get_supply_info Gives a power supply node containing information
related to power supply corresponding to a design
net

report_retention_info Displays the information of the power retention
node

report_isolation_info Displays the information of the power isolation
node

report_pwr_intent Displays the information of the power intent node
that is given as input

report_power_switch_i
nfo

Displays the information of the power PSW node

report_level_shifter_inf
o

Displays the information of the power level shifter
node

report_supply_info Displays the information of the power supply node
575
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_pwr_intent
Gives a power intent node for a design element on which user can
query information

Syntax

get_pwr_intent [get_cells | get_pins | get_ports]

Scope

Goal

Return Value

Returns a collection of power intent nodes.

Description

This get_pwr_intent command gives a power intent node on which
user can query information, such as domain name or power supply, etc.

This command works on ports and leaf level cells (instances and pins) and
returns a collection of power intent nodes.

Arguments

None

Examples

sg_shell> get_pwr_intent [get_cells]

sg_shell> get_pwr_intent [get_cells *]

sg_shell> get_pwr_intent [get_cells top.inst1]

See Also

report_pwr_intent, check_pwr_intent_crossing, power_domain, power_supply,
ground_supply, voltage_range_min, voltage_range_max
576
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_pwr_intent
Displays the information of the power intent node

Syntax

report_pwr_intent <pwr_intent_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_pwr_intent command displays the information of the
power intent node that is given as an input. The following information is
displayed, in columns, for an element that is being probed:
 Domain name: It shows the name of the domain in which the element is

present.
 Voltage range: It shows the voltage range of the domain. The voltage

range displayed is in the following format:

voltage_range_min: voltage_range_max

Voltage values for voltage_range_min and voltage_range_max
can be equal depending on the power intent. The off and 0 volt values
are not shown for a domain.

 Power supply: It shows the power supply connected to the element.

 Ground supply: It shows the ground supply connected to the element.
NOTE: Power supply and ground supply are not shown in the SGDC format.

Arguments

The report_pwr_intent command has the following arguments:

pwr_intent_node

Use this argument to report the details power intent.
577
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> report_pwr_intent [get_pwr_intent [get_cells]]

sg_shell> report_pwr_intent [get_pwr_intent [get_cells
top.inst1]

The following is the output of the above command:

Domain : top
Voltage Range : 0.6:0.6
Power Supply : VTOP
Ground Supply : VSS

sg_shell> report_pwr_intent [get_pwr_intent [get_cells
top.inst2]

The following is the output of the above command:

Domain : PD1
Voltage Range : 0.6:0.8
Power Supply : VDD1
Ground Supply : VSS

sg_shell> report_pwr_intent [get_pwr_intent [get_cells
top.inst2]

The following is the output of the above command in the SGDC format:

Domain : PD1
Voltage Range : 0.6:0.8

See Also

get_pwr_intent, check_pwr_intent_crossing, power_domain, power_supply,
ground_supply, voltage_range_min, voltage_range_max
578
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
check_pwr_intent_crossing
Displays the crossing type between the two power intent nodes

Syntax

check_pwr_intent_crossing -from <pwr_intent_node1> -to
<pwr_intent_node2> -type <isolation | level_shift>

Scope

Goal

Return Value

Displays a string.

Description

This command takes as an input a pair of power intent node and type of
the check (isolation or level_shift) based on the state defined in power
intent and returns a string.

Arguments

The check_pwr_intent_crossing command has the following
arguments:

-from

Use this argument to specify the source power intent node.

-to

Use this argument to specify destination power intent node.

-type

Use this argument to specify the relationship type (isolation or level_shift).

Examples

sg_shell> check_pwr_intent_crossing –from [get_pwr_intent [
get_cells top.inst1]] -to [get_pwr_intent [get_cells
579
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
top.inst2]] –type isolation

sg_shell> check_pwr_intent_crossing –from [get_pwr_intent [
get_cells top.inst1]] -to [get_pwr_intent [get_cells
top.inst2]] –type level_shift

See Also

get_pwr_intent, report_pwr_intent, power_domain, power_supply,
ground_supply, voltage_range_min, voltage_range_max
580
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_retention_info
Gives a power retention node containing information related to
retention strategy applied on an instance

Syntax

get_retention_info [get_cells]

Scope

Goal

Return Value

Returns a collection of power retention nodes.

Description

This get_retention_info command gives a power retention node on
which user can query the following information:
 Strategy name

 Domain name

 Retention power supply

 Retention ground supply

 Save signal

 Restore signal

This command works on instances on which retention strategy is applied.

Arguments

None

Examples

sg_shell> get_retention_info [get_cells]

sg_shell> get_retention_info [get_cells *]

sg_shell> get_retention_info [get_cells top.inst1.buf1]
581
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

name, power_domain, retention_ground_supply, retention_power_supply,
save_signal, restore_signal, report_retention_info
582
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_isolation_info
Gives a power isolation node containing information related to
isolation strategy applied on an instance

Syntax

get_isolation_info [get_cells]

Scope

Goal

Return Value

Returns a collection of power isolation nodes.

Description

This get_isolation_info command gives a power isolation node on
which user can query the following information:
 Strategy name

 Domain name

 Source supply

 Sink supply

 Isolation power supply

 Isolation ground supply

 Clamp value

 Location

 Isolation signal

 Isolation sense

This command works on instances on which isolation strategy is applied.

Arguments

None
583
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> get_isolation_info [get_cells]

sg_shell> get_isolation_info [get_cells *]

sg_shell> get_isolation_info [get_cells top.inst1.iso]

See Also

name, power_domain, isolation_power_net, isolation_sense, isolation_signal,
location, clamp_value, source, sink, report_isolation_info
584
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_power_switch_info
Gives a power PSW node containing information related to
create_power_switch strategy applied on an instance

Syntax

get_power_switch_info [get_cells]

Scope

Goal

Return Value

Returns a collection of power PSW nodes.

Description

This get_power_switch_info command gives a power PSW node on
which user can query the following information:
 Strategy name

 Domain name

 Input supply

 Output supply

 Control signal

This command works on instances on which power switch strategy is
applied.

Arguments

None

Examples

sg_shell> get_power_switch_info [get_cells]

sg_shell> get_power_switch_info [get_cells *]

sg_shell> get_power_switch_info [get_cells top.inst1.psw]
585
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

name, power_domain, input_supply_port, output_supply_port, control_port,
report_power_switch_info
586
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_level_shifter_info
Gives a power level shifter node containing information related to
level shifter strategy applied on an instance

Syntax

get_level_shifter_info [get_cells]

Scope

Goal

Return Value

Returns a collection of power level shifter nodes.

Description

This get_level_shifter_info command gives a power level shifter
node on which user can query the following information:
 Strategy name

 Domain name

 Source supply

 Sink supply

 Input supply

 Output supply

 Location

 Type

This command works on instances on which power level shifter strategy is
applied.

Arguments

None

Examples

sg_shell> get_level_shifter_info [get_cells]
587
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_level_shifter_info [get_cells *]

sg_shell> get_level_shifter_info [get_cells top.inst1.ls]

See Also

name, power_domain, source, sink, input_supply_port, output_supply_port,
location, rule, report_level_shifter_info
588
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_supply_info
Gives a power supply node containing information related to power
supply corresponding to a design net

Syntax

get_supply_info [get_nets]

Scope

Goal

Return Value

Returns a collection of power supply nodes.

Description

This get_supply_info command gives a power supply node on which
user can query the following information:
 Supply name

 Type

 Voltage range min

 Voltage range max

This command works on design nets on that corresponds to a power supply
in UPF.

Arguments

None

Examples

sg_shell> get_supply_info [get_nets]

sg_shell> get_supply_info [get_nets *]

sg_shell> get_supply_info [get_nets top.vdd]

See Also

 supply_name, rule, voltage_range_min, voltage_range_max, report_supply_info
589
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_retention_info
Displays the information of the power retention node

Syntax

report_retention_info <pwr_retention_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_retention_info command displays the information of
the power retention node that is given as an input. The following
information is displayed, in columns, for an element that is being probed:
 Strategy name: Name of the strategy

 Domain name: Name of the domain as defined in power intent

 Retention power supply: Name of the retention power supply net

 Retention ground supply: Name of the retention ground supply net

 Save signal: Full Name of the retention save signal along with the value

 Restore signal: Full Name of the retention restore signal along with the
value

Arguments

The report_retention_info command has the following arguments:

pwr_retention_node

Use this argument to report the details of the retention node.

Examples

sg_shell> report_retention_info [get_retention_info [
get_cells]]
590
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands

See Also

name, power_domain, retention_ground_supply, retention_power_supply,
save_signal, restore_signal, get_retention_info
591
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_isolation_info
Displays the information of the power isolation node

Syntax

report_isolation_info <pwr_isolation_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_isolation_info command displays the information of
the power isolation node that is given as an input. The following
information is displayed, in columns, for an element that is being probed:
 Strategy name: Name of the strategy

 Domain name: Name of the domain as defined in power intent

 Source supply: Name of the source supply set as defined in power intent

 Sink supply: Name of the sink supply set as defined in power intent

 Isolation power supply: Name of the isolation power supply as defined in
power intent

 Isolation ground supply: Name of the isolation ground supply as defined
in power intent

 Clamp value: <0 | 1 | any | Z | latch> as defined in power
intent

 Location: Location as defined in power intent

 Isolation signal: List of isolation signals as defined in power intent

 Isolation sense: <low | high>

Arguments

The report_isolation_info command has the following arguments:
592
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
pwr_isolation_node

Use this argument to report the details of the isolation node.

Examples

sg_shell> report_isolation_info [get_isolation_info [
get_cells]]

See Also

name, power_domain, isolation_power_net, isolation_sense, isolation_signal,
location, clamp_value, source, sink, get_isolation_info, report_power_switch_info
593
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_power_switch_info
Displays the information of the power PSW node

Syntax

report_power_switch_info <pwr_psw_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_power_switch_info command displays the information
of the power PSW node that is given as an input. The following information
is displayed, in columns, for an element that is being probed:
 Strategy name: Name of the strategy

 Domain name: Name of the domain as defined in power intent

 Input supply: Name of the input supply net

 Output supply: Name of the output supply_net supply net

 Control signal: Full Name of the power switch control signal

Arguments

The report_power_switch_info command has the following
arguments:

pwr_psw_node

Use this argument to report the details of the power PSW node.

Examples

sg_shell> report_power_switch_info [get_power_switch_info [
get_cells]]
594
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

name, power_domain, input_supply_port, output_supply_port, control_port,
get_power_switch_info
595
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_level_shifter_info
Displays the information of the power level shifter node

Syntax

report_level_shifter_info <pwr_level_shift_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_level_shifter_info command displays the information
of the power level shifter node that is given as an input. The following
information is displayed, in columns, for an element that is being probed:
 Strategy name: Name of the strategy

 Domain name: Name of the domain as defined in power intent

 Source supply: Name of the source supply set

 Sink supply: Name of the sink supply set

 Input supply: Name of the input supply set

 Output supply: Name of the output supply set

 Location: Location as defined in power intent

 Type: High_To_Low or Low_To_High or Both

Arguments

The report_level_shifter_info command has the following
arguments:

pwr_level_shift_node

Use this argument to report the details of the power level shifter node.
596
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> report_level_shifter_info [get_level_shifter_info
[get_cells]]

See Also

name, power_domain, source, sink, input_supply_port, output_supply_port,
location, rule, get_level_shifter_info
597
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_supply_info
Displays the information of the power supply node

Syntax

report_supply_info <pwr_supply_node>

Scope

Goal

Return Value

Displays a string.

Description

The report_supply_info command displays the information of the
power level shifter node that is given as an input. The following information
is displayed, in columns, for an element that is being probed:
 Supply name: Name of the power supply

 Type: Type of the supply power/ground/pwell/nwell

 Voltage range min: The maximum voltage value of the range of the
supply net

 Voltage range max: The maximum voltage value of the range of the
supply net

Arguments

The report_supply_info command has the following arguments:

pwr_supply_node

Use this argument to report the details of the power supply node.

Examples

sg_shell> report_supply_info [get_supply_info [get_nets]]
598
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

supply_name, rule, voltage_range_min, voltage_range_max, get_supply_info
599
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
SpyGlass Power Estimate and Reduce Commands
The following table describes the various Tcl commands that are a part of
the SpyGlass Power Estimate and SpyGlass Power Reduce products:

Command Description
report_power_stats_for
_cell

Generates power attributes report for the given
flat cells

report_power_stats_for
_reg

Generates a report for given flat cells of register
type with required attributes
600
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_power_stats_for_cell
Generates power attributes report for the given flat cells

Syntax

report_power_stats_for_cell [-cell_size_for_power]
[-internal_power] [-leakage_power] [-switching_power]
[-power_type] [-max_capacitance] [-area]
[-leakage_power_model] [-all] <cell names>

Scope

Goal

Return Value

Displays a report.

Description

The report_power_stats_for_cell command is used to generate a report for
the given attributes.

Arguments

The report_power_stats_for_cell command has the following arguments:

-cell_size_for_power

 Gives the relative size of a flat cell as used for set_cell_allocation.

-internal_power

Gives the total internal power consumed by the given flat cell.

-leakage_power

Gives the total leakage power consumed by the given flat cell.

-switching_power

Gives the total switching power consumed by switching on all the fan-out
nets.
601
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-power_type

Gives the power contribution type of the given flat cell.

-area

Gives the area of corresponding library cell as defined in the technology
library.

-max_capacitance

 Indicates the maximum capacitive load that this flat cell can drive.

-all

Displays all the attributes on given cells.

<cellnames>

It is the list of flat cell names used for report generation.

Examples

sg_shell> report_power_stats_for_cell -internal_power -
max_capacitance [get_cells

out put:

--

cellName max_capacitance internal_power

--

Top.F2.F1 20.0 2.23279994315817e-6

Top.F1.F1 20.0 3.4325228170928312e-6

Top.F4.F1 20.0 4.284173428459326e-6

Top.F5.F1 20.0 1.155974587163655e-6

Top.PP1.rtlc_I2 20.0 2.0269306233444695e-8

Top.PP.N1 20.0 3.0516972060468106e-8

sg_shell> report_power_stats_for_cell -all Top.NAN11
602
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
out put:

--
cellName cell_size_for_power internal_power leakage_power
switching_power power_type area max_capacitance
leakage_power_model

--
Top.NAN11 not_defined 3.045476262286684e-7
6.072121139233388e-10 6.84218150581728e-7 combinational
3.444000005722046 20.0 state_dependent

See Also

get_attribute, get_cells
603
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
report_power_stats_for_reg
Generates a report for given flat cells of register type with required
attributes

Syntax

report_power_stats_for_reg [-cell_size_for_power]
[-internal_power] [-leakage_power] [-switching_power]
[-max_capacitance] [-area] [-leakage_power_model]
[gating_efficiency][is_clock_gated][clock_net]
[clock_net_frequency] [root_clock_for_power]
[root_clock_frequency][output_frequency]
[output_capacitance][-all] <cell names>

Scope

Goal

Return Value

Displays a report.

Description

The report_power_stats_for_reg command is used to generate a report for
the given attributes on given registers.

Arguments

The report_power_stats_for_reg command has the following arguments:

-cell_size_for_power

 Gives the relative size of a flat cell used in set_cell_allocation.

-internal_power

Gives the total internal power consumed by the given flat cell.

-leakage_power

Gives the total leakage power consumed by the given flat cell.
604
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
-switching_power

Gives the total switching power consumed by switching on all the fan-out
nets.

-area

Gives the area of corresponding library cell as defined in the technology
library.

-max_capacitance

 Indicates the maximum capacitive load that this flat cell can drive.

-root_clock_for_power

Gives the root clock name for the given register flat cell.

-root_clock_frequency

Gives the frequency of the root clock for a register flat cell.

-clock_net

Gives the immediate net connected to clock pin of a register flat cell.

-clock_net_frequency

Gives the frequency of the immediate net connected to clock pin of a
register flat cell.

-output_frequency

Gives the frequency of immediate net connected to the output of a register
flat cell.

-output_capacitance

Gives the total load (wire and pin capacitances) on the output of register
flat cell.

-gating_efficiency

Gives the efficiency of gating for a particular register flat cell. It is
indicative of how good the gating is on a particular register.
605
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 It is equivalent to:

(1 - (clock_net_frequency/root_clock_frequency))*100

-is_clock_gated

Shows whether a register is gated or not.

-all

 Show all the attributes on given cells.

<reg_names>

 It is the list of register names used for report generation.

Examples

sg_shell> report_power_stats_for_reg -internal_power -
max_capacitance [get_cells]

out put:

--

cellName max_capacitance internal_power

--

Top.F2.F1 20.0 2.23279994315817e-6
Top.F1.F1 20.0 3.4325228170928312e-6
Top.F4.F1 20.0 4.284173428459326e-6
Top.F5.F1 20.0 1.155974587163655e-6
Top.PP1.rtlc_I2 20.0 2.0269306233444695e-8
Top.PP.N1 20.0 3.0516972060468106e-8

sg_shell> report_power_stats_for_reg -internal_power
Top.F5.F1

out put:

cellName internal_power

Top.F5.F1 1.155974587163655e-6
606
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_attribute, get_cells
607
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Built-in Attributes
Built-in application attributes are classified on the basis of the following
object classes:
 lib

 lib_cell

 lib_pin

 lib_timing_arcs

 cdc_conv_signal_node

 cdc_conv_node

 cdc_glitch_node

 cdc_glitch_source_node

 cdc_node

 cdc_source_node

 design

 du_cell

 du_pin

 du_port

 du_net

 flat_inst

 flat_cell

 flat_pin

 flat_port

 flat_net

 adc_node

 sdc_node

 clock

 clock_domain

 message

 rule
608
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 reset

 reset_flop_node

 reset_sync_node

 paths_node (no attributes)

Refer to List of Built-in Attributes for the complete list of built-in application
attributes defined in SpyGlass.
609
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
lib

The following table describes the various application attributes that are a
part of the lib object class.

Attribute Name Type Description
full_name string Full qualified name of a given

library. For example, for the
mylib_20c library, full_name is
mylib_20c

base_name string Basic name of a given library. For a
lib object, full_name and
base_name are same

file_name string File path from which the library is
read

default_cell_leakage_power float Default cell leakage power as
defined in the library

default_fanout_load float Default fan-out load as defined in
the library

default_inout_pin_cap float Default capacitance of an inout pin
as defined in the library

default_input_pin_cap float Default capacitance of an input pin
as defined in the library

default_leakage_power_density float Default leakage power density as
defined in the library

default_max_capacitance float Default maximum capacitance as
defined in the library

default_max_fanout float Default maximum fan-out as
defined in the library

default_max_transition float Default maximum transition as
defined in the library

default_output_pin_cap float Default capacitance of an output pin
as defined in the library

default_wire_load_area float Default wire load area as defined in
the library

default_wire_load_capacitance float Default wire load capacitance as
defined in the library
610
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
default_wire_load_resistance float Default wire load resistance as
defined in the library

nom_process float Process of the design as defined in
the library

nom_temperature float Temperature of the design as
defined in the library

nom_voltage float Voltage of the design as defined in
the library

time_unit string Time unit used in the library
voltage_unit string Voltage unit used in the library
current_unit string Current unit used in the library
capacitive_load_unit string Capacitive load unit used in the

library
pulling_resistance_unit string Pulling resistance unit used in the

library
leakage_power_unit string Leakage power unit used in the

library
default_connection_class string Default value of the connection class

in the library
default_operating_conditions string Default value of the operating

conditions in the library
default_power_rail string Default power rail in the library
default_threshold_voltage_group string Default threshold voltage group in

the library
default_wire_load string Default value of the wire load in the

library
default_wire_load_mode string Default value of the wire load mode

in the library
default_wire_load_selection string Default value of the wire load

selection in the library
define_cell_area string Definition of library cell area inside

the library
delay_model string Delay model used in this library
technology string Technology used in the library

Attribute Name Type Description
611
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
lib_cell

The following table describes the various application attributes that are a
part of the lib_cell object class.

object_class string Class of a given object. In this case,
it is always lib

sglib_name string Name of the sglib that contains the
object

Attribute Name Type Description
full_name string Full qualified name of a given library cell.

For example, for the AN2 cell of the
mylib_20c library, full_name is
mylib_20c.AN2

base_name string Basic name of a given library cell. For
example, for the AN2 cell of the
mylib_20c library, base_name is AN2

file_name string File path from which the library cell is read
line_num int Line number of the file where the library

cell definition is started
is_flop boolean Value is true if the library cell is a

flip-flop, otherwise the value is false
is_latch boolean Value is true if the library cell is a latch,

otherwise the value is false
is_sequential boolean Value is true if the library cell is a

sequential cell
is_combinational boolean Value is true if the library cell is not a

sequential cell
is_level_shifter boolean Value is true if the library cell is a level

shifter cell

Attribute Name Type Description
612
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_clock_gating_cell boolean Value is true if the library cell is a clock
gating cell

is_macro_cell boolean Value is true if the lib cell is a macro cell

is_memory_cell boolean Value is true if the library cell is a
memory cell

is_pad_cell boolean Value is true if the library cell is used as
an I/O pad cell

is_three_state boolean Value is true if the library cell is a
three-state device

is_mux boolean Value is true if the library cell is a
multiplexer

is_isolation_cell boolean Value is true if the library cell is an
isolation cell

dont_touch boolean The true value indicates that this library
cell is not optimized during compilation

dont_use boolean The true value indicates that this library
cell is not used in the design

number_of_pins int Number of pins of the library cell
area float Area of the library cell
object_class string Class of a given object. In this case, it is

always lib_cell
sglib_name string Name of the sglib that contains the object
always_on boolean Value is true if the library cell is always

on
input_voltage_range string Returns the value of input voltage range of

the library cell
level_shifter_type string Indicates the level shifter type of the

library cell
output_voltage_range string Returns the value of output_voltage_range

of the library cell
retention_cell string Indicates the type of retention register
switch_cell_type string Indicates the switch cell type of the library

cell

Attribute Name Type Description
613
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
lib_pin

The following table describes the various application attributes that are a
part of the lib_pin object class.

Attribute Name Type Description
full_name string Full qualified name of a given library pin.

For example, for the A pin of the AN2
cell of the mylib_20c library,
full_name is mylib_20c.AN2.A

base_name string Basic name of a given library pin. For
example, for the A pin of the AN2 cell of
the mylib_20c library, base_name is
A

direction string Direction of the library pin
fanout_load float Fan-out load of an input library pin
max_capacitance float Indicates the maximum capacitive load

that this output or inout library pin can
drive

min_capacitance float Indicates the minimum capacitive load
that this output or inout library pin can
drive.

capacitance float Capacitance of the library pin
max_fanout float Maximum fan-out load that an output pin

can drive
min_fanout float Minimum fan-out load that an output pin

can drive
max_transition float Maximum acceptable transition time of a

library pin
min_transition float Minimum acceptable transition time of a

library pin
function string Function of the library pin relative to

input pins
connection_class string Indicates which pins to connect to the

pins of other cells
driver_type string Indicates the driver information (pullup

or pulldown) of a library pin
614
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
x_function string Indicates the condition relative to the
input pins for which the output is at the X
state

memory_read boolean The true value indicates that it is a
memory read pin of a memory cell

memory_write boolean The true value indicates that it is a
memory write pin of a memory cell

clock_gate_clock_pin boolean Indicates whether the library pin is a
clock pin of a clock gating cell

clock_gate_enable_pin boolean Indicates whether the library pin is the
enable pin of a clock gating cell

clock_gate_obs_pin boolean Indicates whether the output pin of a
clock gating cell is connected to an
observability signal

clock_gate_out_pin boolean Indicates whether the library pin is an
output pin of a clock gating cell

clock_gate_test_pin boolean Indicates whether the input pin of a clock
gating cell is connected to a test_mode
signal

is_preset_pin boolean Indicates whether the pin is a preset pin
of a library cell

is_clear_pin boolean Indicates whether the pin is a clear pin of
a library cell

is_data_pin boolean Indicates whether the pin is a data pin of
a library cell

is_clock_pin boolean Indicates whether the pin is a clock pin
of a library cell

is_mux_select_pin boolean Indicates whether the pin is a select pin
of a multiplexer

is_pad boolean Indicates whether the pin is a pad pin of
a pad cell

is_enable_pin boolean Indicates whether the pin is an enable
pin of a latch

is_load_pin boolean Indicates whether the pin is a load pin of
a library cell

Attribute Name Type Description
615
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_async_pin boolean Indicates whether the pin is an
asynchronous input pin of a library cell

is_three_state_enable
_pin

boolean The true value indicates it is an enable
pin of a three-state device

is_three_state_output
_pin

boolean The true value indicates it is an output
pin of a three-state device

is_vector boolean Indicates whether the pin is a vector
(bus) pin of a library cell

bus_width int Bus width of the bus containing the
library pin

lsb int LSB of the bus containing the library pin
msb int MSB of the bus containing the library pin
index int Indicates the index of the bus pin
object_class string Class of a given object. In this case, it is

always lib_pin
sglib_name string Name of the sglib that contains the

object
related_power_pin collection Related power pin corresponding to the

library pin
related_ground_pin collection Related ground pin corresponding to the

library pin
pg_type string Returns the pg_type of the pg_pin as

defined in the library
is_power_pin boolean Indicates whether the library pin is a

power pin of a cell
is_ground_pin boolean Indicates whether the library pin is a

ground pin of a cell
is_pg_pin boolean Indicates whether the library pin is a

power or ground pin of a cell
always_on boolean Value is true if the library pin is always

on
input_voltage_range string Returns the value of input voltage range

of the library pin

Attribute Name Type Description
616
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
lib_timing_arcs

The following table describes the various application attributes that are a
part of the lib_timing_arcs object class.

isolation_cell_data_pin boolean Returns the value of
isolation_cell_data_pin as defined on the
library pin

isolation_cell_enable_
pin

boolean Returns the value of
isolation_cell_enable_pin as defined on
the library pin

level_shifter_data_pin boolean Returns the value of
level_shifter_data_pin as defined on the
library pin

level_shifter_enable_pi
n

boolean Returns the value of
level_shifter_enable_pin as defined on
the library pin

output_voltage_range string Returns the value of
output_voltage_range of the library pin

pg_function string Returns the pg_function of the pg_pin as
defined in the library

power_down_function string Returns the value of
power_down_function of the library pin

retention_pin string Returns the value of retention_pin as
defined on the library pin

std_cell_main_rail boolean Returns the value of std_cell_main_rail
as defined on the library pin

switch_function string Returns the value of switch_function as
defined on the library pin

switch_pin boolean Indicates whether the library pin is a
switch_pin or not

voltage_value float Returns the voltage value of the pg_pin
is_isolated boolean Returns the value of is_isolated as

defined on the library pin

Attribute Name Type Description
617
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cdc_conv_signal_node

The following table describes the various application attributes that are a
part of the cdc_conv_signal_node object class.

cdc_conv_node

The following table describes the various application attributes that are a

Attribute Name Type Description
from_lib_pin collection The library pin from which library timing arc

originates
to_lib_pin collection The library pin at which library timing arc ends
timing_type string Timing type of the library timing arc
timing_sense string Timing sense of the library timing arc
sdf_cond string Shows the Standard Delay Format condition

related to the library timing arc
object_class string Class of a given object. In this case, it is always

lib_timing_arcs
sglib_name string Name of the sglib that contains the object

Attribute Name Type Description
dest_clock_tag char Returns the destination clock's tag
dest_clocks char Returns the destination clock's information
dest_file_line char Returns the file line information of the

destination
dest_name char Returns the name of destination
diverging_nets char Gets the divergent point of a convergent

signal
source_clock_tag char Returns the source clock's tag name
source_clocks char Returns the source clocks
source_names char Returns the source name
seq_depth int Gets the count of sequential cells from a

destination to convergent point
618
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
part of the cdc_conv_node object class.

cdc_glitch_node

The following table describes the various application attributes that are a
part of the cdc_glitch_node object class.

Attribute Name Type Description
is_comb_conv boolean Checks the presence of Ac_conv02 rule

violation
is_nonconv_bus boolean Checks the presence of Ac_conv04 rule

violation
is_seq_conv boolean Checks the presence of Ac_conv01 rule

violation
is_user_defined boolean Checks the presence of Ac_conv05 rule

violation
cdc_rule_name boolean Returns the rule name which the convergence

reported
conv_gate boolean Returns converging gate
is_graycoded boolean Checks if the converging signals are grey

encoded
status boolean Returns the status
sync_count boolean Returns the number of synchronizers
num_source_doma
ins

int Checks the number of source domains in a
crossing

num_sources int Checks the number of sources in a crossing

Attribute Name Type Description
has_destination_d
omain

boolean Returns those glitch crossings which have
destination domain signal

has_multi_domain
_sources

boolean Returns those glitch crossings which have
multi-domain sources

has_reconvergent_
sources

boolean Returns those glitch crossings which have re-
convergent sources

cdc_rule_name char Returns the rule name
dest_clock_tag char Returns the destination clock's tag name
619
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cdc_glitch_source_node

The following table describes the various application attributes that are a
part of the cdc_glitch_source_node object class.

dest_clocks char Returns the destination clocks
dest_domain char Returns the destination domain
dest_name char Returns the destination name
failure_reason char Checks the crossing synchronization failure

reason
multi_source_glitc
h_check

char Return those glitch crossings which have gray-
encoding check status as PASSED, FAILED or
unknown

status char Return the status
dest_internal_dom
ain_id

int Returns the destination domain id

num_source_doma
ins

int Checks the number of source domains in a
crossing

num_sources int Checks the number of sources in a crossing

Attribute Name Type Description
is_async boolean Checks whether crossing is asynchronous
is_reconv boolean Checks whether crossing is asynchronous
source_clock_tag char Returns the source clock's tag name
source_clocks char Returns the source clocks
source_domain char Returns the source domain
source_name char Returns the source name
source_type char Checks the source type of a single source as

reported by Ac_sync_group rules. It can have
values: flip-flop, library-cell, latch,primary
input, black-box

source_internal_do
main_id

int Returns the source domain id

Attribute Name Type Description
620
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cdc_node

The following table describes the various application attributes that are a
part of the cdc_node object class.

Attribute Name Type Description
is_data boolean Checks if crossing is a data crossing
is_synchronized boolean Checks if crossing is synchronized or not
cdc_rule_name char Returns the rule name
crossing_module_
name

char Checks the crossing module name

dest_clock_tag char Returns the destination clock's tag name
dest_clocks char Returns the destination clocks
dest_domain char Returns the destination domain
dest_file_line char Returns the file line information of the

destination
dest_module_nam
e

char Gets the module name of the destination of
the crossing

dest_name char Returns the destination name
dest_parent_inst_
name

char Checks the crossing destination parent
instance

dest_type char Checks the destination type as reported by
Ac_sync_group rules. It can have values:
[flop,library-cell,latch,primary-output,black-
box]

failure_reason char Checks the crossing synchronization failure
reason

multi_flop_synchro
nizer_names

char Checks the multi flip-flop synchronizer
information of a crossing

overall_failure_rea
son

char Checks the crossing synchronization failure
reason

overall_synch_sch
eme

char Returns the overall synchronization scheme

potential_qualifier
_name

char Checks the qualifier of a crossing
621
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cdc_source_node

The following table describes the various application attributes that are a
part of the cdc_source_node object class.

src_type char Checks the source type as reported by
Ac_sync_group rules. It can have values:
flip-flop, library-cell, latch, primary input,
black-box

sync_method char Check the crossing synchronization method
dest_internal_dom
ain_id

int Returns the destination domain id

multi_flop_synchro
nizer_stages

int Checks the number of flip-flip flops used to
synchronize the crossing

num_source_doma
ins

int Checks the number of source domains in a
crossing

num_sources int Checks the number of sources in a crossing
dest_objects collection Destination net objects of the crossing
multi_flop_synchro
nizer_objects

collection Module name of the destination of the
crossing

Attribute Name Type Description
source_clock_tag char Returns the source clock tag name
source_clocks char Returns the source clocks
source_domain char Returns the source domain
source_failure_rea
son

char Checks the crossing source failure reason

source_file_line char Returns the file line information of the source
source_name char Returns the source name
source_parent_inst
_name

char Checks the crossing source parent instance

source_qualifier_n
ame

char Checks the crossing source qualifier name

source_synch_sch
eme

char Checks the crossing source sync scheme

Attribute Name Type Description
622
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
design

The following table describes the various application attributes that are a
part of the design object class.

source_type char Checks the source type of a single source as
reported by Ac_sync_group rules. It can have
values: flip-flop, library-cell, latch,primary
input, black-box

source_internal_do
main_id

int Returns the source domain id

source_qualifier_d
epth

int Checks the crossing source qualifier depth

Attribute Name Type Description
full_name string Full qualified name of a given design
base_name string Basic name of a given design
file_name string File path from which the design is read
line_num int Line number of the file where the design

definition starts
is_flop boolean Value is true if the design is a flip-flop,

otherwise the value is false
is_latch boolean Value is true if the design is a latch,

otherwise the value is false
is_sequential boolean Value is true if the design is a sequential

cell
is_combinational boolean Value is true if the design is not a

sequential cell
is_level_shifter boolean Value is true if the design is a level shifter

module
is_clock_gating_cell boolean Value is true if the design is a clock gating

cell

Attribute Name Type Description
623
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_memory_cell boolean Value is true if the design is a memory cell

is_pad_cell boolean Value is true if the design is used as an I/
O pad cell

is_three_state boolean Value is true if the design is a three-state
device

is_mux boolean Value is true if the design is a multiplexer

number_of_pins int Number of ports of a design
rtl_name string RTL name of the design
language string Language in which the design is written
is_primitive boolean The true value indicates that the design is

a primitive gate type
is_macro boolean The true value indicates that the design is

a hard macro
is_user_module boolean The true value indicates that the definition

of this design is supplied by the user
is_lib boolean The true value indicates that the design is

a library cell
is_blackbox boolean The true value indicates that the design is

a black box
is_hierarchical boolean The true value indicates that the design is

hierarchical
is_leaf boolean The true value indicates that the design is

leaf level cell
object_class string Class of a given object. In this case, it is

always design
is_stop boolean The true value indicates that the design

has been stopped with the stop project file
command

is_celldefine boolean The true value indicates that the design is
defined as celldefine

is_empty boolean The true value indicates that the design
has no logical definition inside its interface
definition

Attribute Name Type Description
624
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
du_cell

The following table describes the various application attributes that are a
part of the du_cell object class.

is_top boolean The true value indicates that the design is
inferred or set as a top module

level_shifter_type string Indicates the level shifter type of the design
switch_cell_type string Indicates the switch cell type of the design

Attribute Name Type Description
full_name string Full qualified name of a given du cell. For

example, for the inst_IV cell, full_name is
inst_IV

base_name string Basic name of a given du cell. For du_cell,
full_name and base_name are same

master_name string Master module name of a given du cell
file_name string File path from which the du cell is read
line_num int Line number of the file where the du cell is

defined
number_of_pins int Number of pins of a du cell
is_hierarchical boolean The true value means the design is not a leaf

level cell
is_leaf boolean The true value means the design is a leaf level

cell
is_user_module boolean The true value indicates that the definition of

this du cell is supplied by the user
object_class string Class of a given object. In this case, it is always

du_cell
is_blackbox boolean The true value indicates that the du cell is a

black box

Attribute Name Type Description
625
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The following table describes the application attributes that are a part of
the du_cell object class and that give meaningful results only for the
leaf-level cells.

is_stop boolean The true value indicates that the du cell has
been stopped with the stop project file command

is_celldefine boolean The true value indicates that the du cell is
defined as celldefine

is_empty boolean The true value indicates that the du cell has no
logical definition inside its interface definition

is_top boolean The true value indicates that the du cell is
inferred or set as a top module

level_shifter_typ
e

string Indicates the level shifter type of the du cell

retention_cell string Indicates the type of retention register
switch_cell_type string Indicates the switch cell type of the du cell

Attribute Name Type Description
is_flop boolean Value is true if the du cell is a flip-flop,

otherwise the value is false
is_latch boolean Value is true if the du cell is a latch,

otherwise the value is false
is_sequential boolean Value is true if the du cell is a sequential

cell
is_combinational boolean Value is true if the du cell is a pure

combinational cell
is_level_shifter boolean Value is true if the du cell is used in the

design module as a level shifter cell
is_clock_gating_cell boolean Value is true if the du cell is a clock gating

cell
is_macro_cell boolean Value is true if the du cell is a macro cell

Attribute Name Type Description
626
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_memory_cell boolean Value is true if the du cell is a library
memory cell instance

is_pad_cell boolean Value is true if the du cell is used as an I/
O pad cell

is_three_state boolean Value is true if the du cell is a three-state
device

is_mux boolean Value is true if the du cell is a multiplexer

is_isolation_cell boolean Value is true if the du cell is an isolation
cell

dont_touch boolean The true value indicates that the du cell is
an instance of a library cell with the
dont_touch attribute

dont_use boolean The true value indicates that the du cell is
an instance of a library cell with the
dont_use attribute

area float Area of the du cell
is_primitive boolean The true value indicates that the du cell is

a primitive gate type
is_macro boolean The true value indicates that the du cell is

a design module macro
is_lib boolean The true value indicates that the du cell is

an instance of a library cell

Attribute Name Type Description
627
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
du_pin

The following table describes the various application attributes that are a
part of the du_pin object class.

Attribute Name Type Description
full_name string Full qualified name of a given du pin. For

example, for the A pin of the inst1 cell,
full_name is inst1.A

base_name string Basic name of a given du pin. For example, for
the A pin of the inst1 cell, base_name is A

file_name string File path from which the du pin is read
line_num int Line number of the file where the du pin is

defined
direction string Direction (input/output/inout) of a du pin
is_vector boolean Indicates whether the pin is a vector (bus) pin of

a du cell
bus_width int Bus width of the bus containing this du pin
lsb int LSB of the bus containing this du pin
msb int MSB of the bus containing this du pin
object_class string Class of a given object. In this case, it is always

du_pin
related_power_p
in

collection Related power pin corresponding to the du pin

related_ground_
pin

collection Related ground pin corresponding to the du pin

is_power_pin boolean Indicates whether the du pin is a power pin of a
cell

is_ground_pin boolean Indicates whether the du pin is a ground pin of a
cell

is_pg_pin boolean Indicates whether the du pin is a power or
ground pin of a cell

isolation_cell_da
ta_pin

boolean Returns the value of isolation_cell_data_pin as
defined on the du pin

isolation_cell_en
able_pin

boolean Returns the value of isolation_cell_enable_pin as
defined on the du pin
628
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The following table describes the application attributes that are a part of
the du_pin object class and that give meaningful results only for the leaf-
level pins.

level_shifter_dat
a_pin

boolean Returns the value of level_shifter_data_pin as
defined on the du pin

level_shifter_ena
ble_pin

boolean Returns the value of level_shifter_enable_pin as
defined on the du pin

power_down_fun
ction

string Returns the value of power_down_function of
the du pin

switch_function string Returns the value of switch_function as defined
on the du pin

switch_pin boolean Indicates whether the du pin is a switch_pin or
not

is_isolated boolean Returns the value of is_isolated as defined on
the du pin

Attribute Name Type Description
memory_read boolean The true value indicates a memory

read pin of a memory cell
memory_write boolean The true value indicates a memory

write pin of a memory cell
clock_gate_clock_pin boolean Indicates whether the du pin is a clock

pin of a clock gating cell
clock_gate_enable_pin boolean Indicates whether the du pin is the

enable pin of a clock gating cell
clock_gate_obs_pin boolean Indicates whether the output pin of a

clock gating cell is connected to an
observability signal

clock_gate_out_pin boolean Indicates whether the du pin is the
output pin of a clock gating cell

clock_gate_test_pin boolean Indicates whether the input pin of a clock
gating cell is connected to a test_mode
signal

Attribute Name Type Description
629
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
du_port

The following table describes the various application attributes that are a
part of the du_port object class.

is_preset_pin boolean Indicates whether the pin is a preset pin
of a du cell

is_clear_pin boolean Indicates whether the pin is a clear pin of
a du cell

is_data_pin boolean Indicates whether the pin is a data pin of
a du cell

is_clock_pin boolean Indicates whether the pin is a clock pin
of a du cell

is_mux_select_pin boolean Indicates whether the pin is a select pin
of a multiplexer

is_pad boolean Indicates whether the pin is a pad pin of
a pad cell

is_enable_pin boolean Indicates whether the pin is an enable
pin of a latch

is_load_pin boolean Indicates whether the pin is a load pin of
a du cell

is_async_pin boolean Indicates whether the pin is an
asynchronous input pin of a du cell

is_three_state_enable_
pin

boolean The true value indicates that it is an
enable pin of a three-state device

is_three_state_output_
pin

boolean The true value indicates that it is an
output pin of a three-state device

Attribute Name Type Description
630
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
du_net

The following table describes the various application attributes that are a
part of the du_net object class.

Attribute Name Type Description
full_name string Bit-blasted name of a given port of a design or

module. For example, for the A bus port that
contains two bits, full_name is {A[0],
A[1]}

base_name string Basic name of a given port of a design or
module. For example, for the A bus port that
contains two bits, base_name is A

file_name string File path from which the du port is read
line_num int Line number of the file where the du port is

defined
direction string Direction of the du port
is_vector boolean Indicates whether the port is a vector (bus) pin

of a design or module
bus_width int Bus width of the bus containing this du port
lsb int LSB of the bus containing this du port
msb int MSB of the bus containing this du port
object_class string Class of a given object. In this case, it is

always du_port

Attribute Name Type Description
full_name string Bit-blasted name of a given net of a design or

module. For example, for the A net that
contains two bits, full_name is {A[0],
A[1]}

base_name string Basic name of a given net of a design or a
module. For example, for the A net that
contains two bits, base_name is A
631
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
flat_inst

The following table describes the various application attributes that are a
part of the flat_inst object class.

file_name string File path from which the du net is read
line_num int Line number of the file where the du net is

defined
direction string Direction of the du net
is_vector boolean Indicates whether the net is a vector net
bus_width int Number of bits of the vector net
lsb int LSB of the vector net
msb int MSB of the vector net
object_class string Class of a given object. In this case, it is

always du_net
is_generated boolean The true value indicates that the given du

net has been generated internally
is_record boolean The true value indicates that the given du

net is a record net
is_multidim boolean The true value indicates that the given du

net is a multidimensional net

Attribute Name Type Description
sync_module_nam
e

char Gets the module name of a synchronizer flip-
flop.

sync_name char Gets the output net name of a synchronizer
flip-flop.

Attribute Name Type Description
632
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
flat_cell

The following table describes the various application attributes that are a
part of the flat_cell object class.

Attribute Name Type Description
full_name string Full qualified name of a given flat cell. For

example, after flattening of a design,
full_name of a cell may be
top.inst_mid1.inst_b1.rtlc_I
1

base_name string Basic name of a given flat cell. For example,
after flattening of a design, base_name of
the same cell is rtlc_I1

master_name string Master module name of a given flat cell
file_name string File path from which the flat cell is read
line_num int Line number of the file where the flat cell

instance is declared
is_flop boolean Value is true if the flat cell is a flip-flop,

otherwise the value is false
is_latch boolean Value is true if the flat cell is a latch,

otherwise the value is false
is_sequential boolean Value is true if the flat cell is a sequential

cell
is_combinational boolean Value is true if the flat cell is a pure

combinational cell
is_level_shifter boolean Value is true if the flat cell is used in the

design as a level shifter cell
is_clock_gating_cell boolean Value is true if the flat cell is a clock gating

cell
is_macro_cell boolean Value is true if the flat cell is a macro cell

is_memory_cell boolean Value is true if the flat cell is a library
memory cell instance
633
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_pad_cell boolean Value is true if the flat cell is used as an
I/O pad cell

is_three_state boolean Value is true if the flat cell is a three-state
device

is_mux boolean Value is true if the flat cell is a multiplexer

is_isolation_cell boolean Value is true if the flat cell is an isolation
cell

dont_touch boolean The true value indicates the flat cell
instance of a library cell with the dont_touch
attribute

dont_use boolean The true value indicates the flat cell
instance of a library cell with the dont_use
attribute

number_of_pins int Number of pins of the flat cell
area float Area of the flat cell
is_lib boolean The true value indicates the flat cell is an

instantiation of a library cell
is_blackbox boolean The true value indicates the flat cell is a

black box
is_hierarchical boolean The false value indicates the flat cell is

not a hierarchical cell. This is always false
is_leaf boolean The true value indicates the flat cell is a

leaf level flat cell. This is always true
path_name string Full path name of a given flat cell
object_class string Class of a given object. In this case, it is

always flat_cell
is_stop boolean The true value indicates that the flat cell

has been stopped with the stop project file
command

is_celldefine boolean The true value indicates that the flat cell is
defined as celldefine

Attribute Name Type Description
634
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_empty boolean The true value indicates that the flat cell
has no logical definition inside its interface
definition

is_top boolean The true value indicates that the flat cell is
inferred or set as a top module

clocks collection When this attribute is retrieved on a flat_cell,
it returns a collection of clocks through which
the cell is driven

domain collection When this attribute is retrieved on a flat_cell,
it returns a collection of domains of clocks
through which the cell is driven

level_shifter_type string Indicates the level shifter type of the flat cell
retention_cell string Indicates the type of retention register
switch_cell_type string Indicates the switch cell type of the flat cell
standard_sdc_name string Provides the un-changed standard SDC

names of a given flat cell and are available
only after SDC files/commands have been
read. For example, after flattening of a
design, standard_sdc_name of a cell may be
{IF1.FOR1[0].genblk1.genblk1[0].IF2.inst/
fifo_out_reg}.

Attribute Name Type Description
635
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
flat_pin

The following table describes the various application attributes that are a
part of the flat_pin object class.

non_standard_sdc_
name

string Provides the non-standard SDC names of a
given net of a design or module without
taking into account effect of
define_name_rules/change_names SDC
commands, but difference in name from
standard_sdc is only visible if
allow_non_standard_sdc is specified which
works with the following options:
• set_option use_if_generate_prefix {true/

false}
• set_option use_for_generate_prefix

{true/false}
• set_option unlabeled_generate_prefix

{true/false}
For example, after flattening of a design,
non_standard_sdc_name of a cell may be {
IF1.FOR1[0].IF2.inst..[0]/fifo_out_reg }.

modified_sdc_name string Provides the SpyGlass names after the
combined effect of attribute
non_standard_sdc_name and
define_name_rules/change_names SDC
commands, and are available only after SDC
files/commands have been read
For example, change_name rules {“inst”,
“I”} is specified in sdc file, after flattening of
a design, modified_sdc_name of a cell may
be { IF1.FOR1[0].IF2.I..[0]/fifo_out_reg }.

Attribute Name Type Description
636
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Attribute Name Type Description
full_name string Full qualified name of a given flat pin. For

example, for the A pin of the inst1 cell,
full_name is inst1.A

base_name string Basic name of a given flat pin. For example,
for the A pin of the inst1 cell, base_name
is A

file_name string File path from which the flat pin is read
line_num int Line number of the file where the flat pin is

defined
direction string Direction of the flat pin
memory_read boolean The true value indicates that the flat pin is

a memory read pin of a memory cell
memory_write boolean The true value indicates that the flat pin is

a memory write pin of a memory cell
clock_gate_clock_pi
n

boolean Indicates whether the flat pin is a clock pin
of a clock gating cell

clock_gate_enable_
pin

boolean Indicates whether the flat pin is an enable
pin of a clock gating cell

clock_gate_obs_pin boolean Indicates whether this output pin of a clock
gating cell is connected to an observability
signal

clock_gate_out_pin boolean Indicates whether the flat pin is the output
pin of a clock gating cell

clock_gate_test_pin boolean Indicates whether the input pin of a clock
gating cell is connected to a test_mode
signal

is_preset_pin boolean Indicates whether the pin is a preset pin of a
flat cell

is_clear_pin boolean Indicates whether the pin is a clear pin of a
flat cell

is_data_pin boolean Indicates whether the pin is a data pin of a
flat cell

is_clock_pin boolean Indicates whether the pin is a clock pin of a
flat cell
637
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_mux_select_pin boolean Indicates whether the pin is a select pin of a
multiplexer

is_pad boolean Indicates whether the pin is a pad pin of a
pad cell

is_enable_pin boolean Indicates whether the pin is an enable pin of
a latch

is_load_pin boolean Indicates whether the pin is a load pin of a
flat cell

is_async_pin boolean Indicates whether the pin is an asynchronous
input pin of a flat cell

is_three_state_enab
le_pin

boolean The true value indicates the pin is an
enable pin of a three-state device

is_three_state_outp
ut_pin

boolean The true value indicates the pin is an
output pin of a three-state device

is_vector boolean Indicates whether the pin is a vector (bus)
pin of a flat cell

bus_width int Bus width of the bus containing the flat pin
lsb int LSB of the bus containing the flat pin
msb int MSB of the bus containing the flat pin
index int Index of the vector pin
object_class string Class of a given object. In this case, it is

always flat_pin
related_power_pin collection Related power pin corresponding to the flat

pin
related_ground_pin collection Related ground pin corresponding to the flat

pin
is_power_pin boolean Indicates whether the flat pin is a power pin

of a cell
is_ground_pin boolean Indicates whether the flat pin is a ground pin

of a cell
is_pg_pin boolean Indicates whether the flat pin is a power or

ground pin of a cell
clocks collection When this attribute is retrieved on a flat_pin,

it returns a collection of clocks through which
the pin is driven

Attribute Name Type Description
638
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
domain collection When this attribute is retrieved on a flat_pin,
it returns a collection of domains of clocks
through which the pin is driven

isolation_cell_data_
pin

boolean Returns the value of isolation_cell_data_pin
as defined on the flat pin

isolation_cell_enabl
e_pin

boolean Returns the value of
isolation_cell_enable_pin as defined on the
flat pin.

level_shifter_data_p
in

boolean Returns the value of level_shifter_data_pin
as defined on the flat pin

level_shifter_enable
_pin

boolean Returns the value of level_shifter_enable_pin
as defined on the flat pin

power_down_functi
on

string Returns the value of power_down_function
of the flat pin

switch_function string Returns the value of switch_function as
defined on the flat pin

switch_pin boolean Indicates whether the flat pin is a switch_pin
or not

is_isolated boolean Returns the value of is_isolated as defined
on the flat pin

standard_sdc_name string Provides the un-changed standard SDC
names of a given flat pin and are available
only after SDC files/commands have been
read. For example, for the Q pin,
standard_sdc_name may be
{IF1.FOR1[0].genblk1.genblk1[0].IF2.inst/
fifo_out_reg/Q}.

Attribute Name Type Description
639
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
flat_port

The following table describes the various application attributes that are a
part of the flat_port object class.

non_standard_sdc_
name

string Provides the non-standard SDC names of a
given net of a design or module without
taking into account effect of
define_name_rules/change_names SDC
commands, but difference in name from
standard_sdc is only visible if
allow_non_standard_sdc is specified, which
works with the following options:
• set_option use_if_generate_prefix {true/

false}
• set_option use_for_generate_prefix

{true/false}
• set_option unlabeled_generate_prefix

{true/false}
For example, for the A pin of the cell,
non_standard_sdc_name is
{IF1.FOR1[0].IF2.inst..[0]/fifo_out_reg/
Q}}.

modified_sdc_name string Pprovides the SpyGlass names after the
combined effect of attribute
non_standard_sdc_name and
define_name_rules/change_names SDC
commands, and are available only after SDC
files/commands have been read
For example, change_name rules {“inst”,
“I”} is specified in sdc file, for the Q pin of
the cell, modified_sdc_name may be
{IF1.FOR1[0].IF2.I..[0]/fifo_out_reg/Q}}.

Attribute Name Type Description
640
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Attribute Name Type Description
full_name string Bit-blasted name of a given port of a design or

module. For example, for A bus port that
contains two bits, full_name is {A[0],
A[1]}

base_name string Basic name of a given port of a design or
module. For example, for A bus port that
contains two bits, base_name is A

file_name string File path from which the flat port is read
line_num int Line number of the file where the flat port is

defined
direction string Direction of the flat port
is_vector boolean Indicates whether the port is a vector (bus) pin

of a design or module
bus_width int Bus width of the bus containing this flat port
lsb int LSB of the bus containing this flat port
msb int MSB of the bus containing this flat port
index int Indicates the index of the vector port
object_class string Class of a given object. In this case, it is always

flat_port
standard_sdc_na
me

string Provides the un-changed standard SDC names of
a given port of a design or module and are
available only after SDC files/commands have
been read. For example, for the A bus port that
contains two bits, standard_sdc_name may be
{A[0], A[1]}.
641
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
flat_net

The following table describes the various application attributes that are a
part of the flat_net object class.

non_standard_s
dc_name

string Provides the non-standard SDC names of a given
port of a design or module without taking into
account effect of define_name_rules/
change_names SDC commands, but difference in
name from standard_sdc are only visible if
allow_non_standard_sdc is specified, which
works with the following options:
• set_option use_if_generate_prefix {true/

false}
• set_option use_for_generate_prefix {true/

false}
• set_option unlabeled_generate_prefix {true/

false}
For example, for the A bus port that contains two
bits, non_standard_sdc_name is {A[0], A[1]}.

modified_sdc_na
me

string Provides the SpyGlass names after the combined
effect of attribute non_standard_sdc_name and
define_name_rules/change_names SDC
commands, and are available only after SDC
files/commands have been read
For example, for the A bus port that contain two
bits and change_name rules {“A”, “a”} is
specified in sdc file, modified_sdc_name may be
{ a[0],a[1]}.

Attribute Name Type Description
full_name string Bit-blasted name of a given net of a design or

module. For example, for A net that contains two
bits, full_name is {A[0], A[1]}

base_name string Basic name of a given net of a design/module.
For example, for A net that contains two bits,
base_name is A

Attribute Name Type Description
642
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
file_name string File path from which the flat net is read
line_num int Line number of the file where the flat net is

defined
direction string Direction of the flat net
path_name string Full path name of a given flat net
is_vector boolean Indicates whether the net is a vector net
bus_width int Number of bits of the vector net
lsb int LSB of the vector net
msb int MSB of the vector net
index int Indicates the index of the vector net
net_type string Indicates if the net is any kind of supply or

tristate net type
object_class string Class of a given object. In this case, it is always

flat_net
is_generated boolean The true value indicates that the given flat net

has been generated internally
is_record boolean The true value indicates that the given flat net

is a record net
is_multidim boolean The true value indicates that the given flat net

is a multidimensional net
standard_sdc_na
me

string Provides the un-changed standard SDC names of
a given net of a design or module and are
available only after SDC files/commands have
been read. For example, for the A net ,
standard_sdc_name may be
{IF1.FOR1[0].genblk1.genblk1[1].IF2.inst/A}.

Attribute Name Type Description
643
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
adc_node

The following table describes the various application attributes that are a
part of the adc_node object class.

non_standard_s
dc_name

string Provide the non-standard SDC names of a given
net of a design or module without taking into
account effect of define_name_rules/
change_names SDC commands, but difference in
name from standard_sdc is only visible if
allow_non_standard_sdc is specified, which
works with the following options:
• set_option use_if_generate_prefix {true/

false}
• set_option use_for_generate_prefix {true/

false}
• iset_option unlabeled_generate_prefix {true/

false}}
For example, for the A net,
non_standard_sdc_name may be
{IF1.FOR1[0].IF2.inst..[1]/A}.

modified_sdc_na
me

string Provides the SpyGlass names after the combined
effect of attribute non_standard_sdc_name and
define_name_rules/change_names SDC
commands, and are available only after SDC
files/commands have been read.
For example, change_name rules {“inst”, “I”} is
specified in sdc file, for the A net
modified_sdc_name may be {
IF1.FOR1[0].IF2.I..[1]/A }.

Attribute Name Type Description
file_name string File path from which the Atrenta Design

Constraint, or ADC, node is read
current_design string Name of the current design
object_class string Class of a given object. In this case, it is always

adc_node

Attribute Name Type Description
644
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sdc_node

The following table describes the various application attributes that are a
part of the sdc_node object class.

clock

The following table describes the various application attributes that are a
part of the clock object class.

clock_domain

The following table describes the various application attributes that are a
part of the clock_domain object class.

Attribute Name Type Description
object_class string Class of a given object. In this case, it is always

sdc_node

Attribute Name Type Description
clk_name string Clock tag name corresponding to a given clock
clk_net collection Clock net, which is a flat net, corresponding to a

given clock
domain collection Domain corresponding to a given clock. This

collection can be used as an input to commands,
such as get_clocks, report_domains, and
get_registers

edgelist string Edgelist of a given clock
period float Period of a given clock
file_name string File name from which a clock is read
clock_type string Type of a given clock
645
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
message

The following table describes the various application attributes that are a
part of the message object class.

rule

The following table describes the various application attributes that are a

Attribute Name Type Description
clocks collection Collection of clocks of a specified domain. This

collection can be used as an input to
commands, such as get_domains,
report_clocks, and get_registers

domain_name string Domain name corresponding to a specified
clock domain

Attribute Name Type Description
file_name string Returns the file path from which the object

is read
has_arglabels boolean Returns if a message has argument labels

defined or not
line_number int Returns the line number of the message
severity_label string Returns the severity label of the message
severity_class string Returns the severity class of the message
weight int Returns the weight of the message
msg string Returns the complete message
static_message string Returns the static part of the message
secondary_messages message

collection
Return the list of secondary messages of a
given message, if present.

is_waived boolean Returns the status of the message, if it
was waived or not

message_id string Returns the message id of the message
object_class string Returns the class of a given object
du_name string Returns the name of the design unit if

present
646
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
part of the rule object class.

reset

The following table describes the various application attributes that are a
part of the reset object class.

reset_flop_node

The following table describes the various application attributes that are a
part of the reset_flop_node object class.

Attribute Name Type Description
rule_name string Returns the registered name of the rule
alias_name string Returns the alias of the rule
policy_name string Returns the name of parent policy
is_enabled boolean Returns true or false, whether the rule is

enabled for the current run
rule_type int Returns the view type of the rule
violation_count int Gives the number of violations reported by the

rule
rule_language string Returns the language type as Verilog, VHDL, or

Mixed
is_mandatory boolean Returns true if the rule is mandatory otherwise

false
return_status int Returns the status of the execution function of

rule
object_class string Returns the class of a given object

Attribute Name Type Description
reset_name char Returns the name of the reset

Attribute Name Type Description
dest_clocks char Returns the destination clocks
dest_domain char Returns the destination domain
647
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
reset_sync_node

The following table describes the various application attributes that are a
part of the reset_sync_node object class.

dest_file_line char Returns the file line information of the
destination

dest_resets char Returns the resets applied on the flip-flop
multi_flop_synchro
nizer_names

char Checks the multi flop synchronizer information
of a crossing

Attribute Name Type Description
clock char Returns the clock for provided synchronizer
module char Returns the reset synchronizer module
reset char Returns the reset for provided synchronizer
sync_count char Returns the number of synchronizers
sync_name char Gets the output net name of a synchronizer

flip-flop
sync_type char Returns the synchronization type

Attribute Name Type Description
648
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Product Attributes

Product attributes can be further categorized in the following groups:
 Base Attributes

 CDC Attributes

 Constraints Attributes

 DFT Attributes

 Power Attributes

 Power Verify Attributes

Refer to List of Product Attributes for the complete list of product attributes
defined in SpyGlass.

Product attributes are saved/restored so that these are accessible when a
user comes back to a previously run goal. The save_goal and restore_goal
commands are there to save/restore the design query data for the
currently selected goal. However, there are following product attributes for
which save/restore is not supported:

Attribute Name Object Type Product
dest_type cdc_node string SpyGlass CDC
failure_reason cdc_node string SpyGlass CDC
is_comb_conv cdc_conv_node boolean SpyGlass CDC
is_data cdc_node boolean SpyGlass CDC
is_graycoded cdc_conv_node boolean SpyGlass CDC
is_nonconv_bus cdc_conv_node boolean SpyGlass CDC
is_seq_conv cdc_conv_node boolean SpyGlass CDC
is_synchronized cdc_node boolean SpyGlass CDC
is_user_defined cdc_conv_node boolean SpyGlass CDC
num_source_domains cdc_node int SpyGlass CDC
num_source_domains cdc_conv_node int SpyGlass CDC
num_sources cdc_node int SpyGlass CDC
num_sources cdc_conv_node int SpyGlass CDC
src_type cdc_node string SpyGlass CDC
649
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Base Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass products.

sync_method cdc_node string SpyGlass CDC
ground_supply pwr_intent_node string SpyGlass Power

Verify
power_domain pwr_intent_node string SpyGlass Power

Verify
power_supply pwr_intent_node string SpyGlass Power

Verify
voltage_range_max pwr_intent_node float SpyGlass Power

Verify
voltage_range_min pwr_intent_node float SpyGlass Power

Verify
sdc_type sdc_node string SpyGlass

Constraints

Attribute Name Object Type Description
is_async_sync_reset flat_net boolean Returns the reset net used as both

synchronously and
asynchronously

is_clock_used_as_no
nclock

flat_net boolean Returns the flip-flop clock signal
net which is used as non clock
signal in a design

is_clock_used_with_
both_edges

flat_net boolean Returns the clock signal driving on
both edges

is_constant_pin flat_pin boolean Returns the pin of an instance at
which a constant value reaches

is_disabled_cell flat_cell boolean Returns the disabled gate
is_internally_generat
ed_reset

flat_net boolean Returns the internally generated
reset

is_latch_clock_drive
n_on_both_edges

flat_net boolean Returns the clock net trigger
latches

is_multiple_driver flat_net boolean Returns the flattened net that has
multiple drivers
650
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_reset_used_as_no
nreset

flat_net boolean Returns the asynchronous reset or
preset net which is used as non-
asynchronous reset or preset
signal

is_reset_used_with_
both_polarity

flat_net boolean Returns the reset or set net which
is used as both positive and
negative polarity in same design
unit

is_unregistered_port du_port boolean Returns the ports, which are not
registered, of the module

Attribute Name Object Type Description
651
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_async_sync_reset
Returns the reset net used as both synchronously and
asynchronously

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if reset is used as both synchronously and asynchronously to
reset latch.

Description

The is_async_sync_reset attribute returns the reset nets that are used to
reset latch, both synchronously and asynchronously, in design. To get the
list of these reset net run the LatchReset rule of the latch policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -filter
"is_async_sync_reset == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
652
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_clock_used_as_nonclock
Returns the flip-flop clock signal net which is used as non clock
signal in a design

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if clock signal is used as non clock signal.

Description

The is_clock_used_as_nonclock attribute returns the flip-flop clock signal
that is used as a non-clock signal in a design. To get the list of clock net
that are used as non-clock in a design, you can run the STARC-1.4.3.4 rule
of starc policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> set net_iter [get_nets * -filter
"is_clock_used_as_nonclock == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
653
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_clock_used_with_both_edges
Returns the clock signal driving on both edges

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if clock signal is driven on both the edges.

Description

The is_clock_used_with_both_edges attribute returns the clock signal that
is driven on both the edges. To get the list of these clocks in a design, you
can run the W391 rule of the lint policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> set net_iter [get_nets * -filter
"is_clock_used_with_both_edges == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
654
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_constant_pin
Returns the pin of an instance at which a constant value reaches

Scope

Goal

Object

This attribute is defined on the flat_pin object type.

Return Value

Returns true if a constant value reaches at the flattened pin

Description

The is_constant_pin attribute returns the pin of an instance at which a
constant value reaches. To get a list of constant pins of instances, run any
of the following rules from the SpyGlass ERC product:
 FlopClockConstant: This rule reports flip-flop instances for which a

clock pin is tied to a constant value. Use this rule to get a constant clock
pin of a flip-flop.

 FlopDataConstant: This rule reports flip-flop instances for which the
data pin is tied to a constant value. Use this rule to get a constant data
pin of a flip-flop.

 FlopSRConst: This rule reports flip-flop instances for which the set or
reset pins are permanently enabled. Use this rule to get a set or reset
pin that is permanently enabled.

 FlopEConst: This rule reports flip-flop instances for which the enable
pin is permanently disabled or enabled. Use this rule to get an enable
pin that is permanently disabled or enabled.

 MuxSelConst: This rule reports MUX gate instances for which the select
pin is tied to a constant value. Use this rule to get the MUX select pin
that is constant.

 LatchDataConstant: This rule reports latch instances for which the
data pin is tied to a constant value. Use this rule to get latch data pin
driven by a constant value.
655
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
 LatchEnableConstant: This rule reports latch instances for which the
enable pin is tied to a constant value. Use this rule to get latch enable
pin driven by a constant value.

The FlopClockConstant, FlopEConst, and FlopSRConst rules are a part of
the following GuideWare methodologies:

 ./New_RTL/rtl_handoff/lint/structure

 ./New_RTL/initial_rtl/lint/structure

 ./New_RTL/detailed_rtl/lint/structure

 ./New_RTL/ip_handoff/lint/structure

Please select the appropriate methodology as per the requirement or
create a custom methodology to run these rules.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> set flop_iter [get_cells * -filter "is_flop ==
true"]
sg_shell> set flop_iter_with_const_clk [get_pins -of_objects
$flop_iter -filter "is_clock_pin == true && is_constant_pin
== true"]

NOTE: You can iterate on the “flop_iter_with_const_clk” list, depending on the
requirement.

See Also

get_attribute, filter_collection
656
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_disabled_cell
Returns the disabled gate

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns true if flattened gate is disabled

Description

The is_disabled_cell attribute returns the flattened instance of AND or
NAND gate in which at least one pin is tied low, or NOR or OR gate in which
at least one pin is tied high.

Run the DisabledAnd or DisabledOr rule of the SpyGlass ERC product, or
create a custom goal to run these rules.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> set disabled_gate_list [get_cells -filter {
is_disabled_cell == true }]
sg_shell> set disabled_gate_list [get_cells -filter {
is_disabled_cell == true }]

NOTE: You can iterate on the “disabled_gate_list” list, depending on the requirement.

See Also

get_attribute, filter_collection
657
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_internally_generated_reset
Returns the internally generated reset

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true on a net if it is used as a internally generated reset in the
design.

Description

The is_internally_generated_reset attribute returns the internally
generated reset in design. To get the list of these internally generated reset
nets, run the IntReset rule of openmore policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -filter
"is_internally_generated_reset == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
658
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_latch_clock_driven_on_both_edges
Returns the clock net trigger latches

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if different level of user defined clocks trigger the latches in
design

Description

The is_latch_clock_driven_on_both_edges attribute returns those clock
nets whose different levels trigger the laches in the design. To get the list
of these clock nets, you can run the ClockEdges rule of latch policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> set net_iter [get_nets * -filter
"is_latch_clock_driven_on_both_edges == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
659
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_multiple_driver
Returns the flattened net that has multiple drivers

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if flattened net has multiple drivers

Description

The is_multiple_driver attribute returns the nets that have multiple drivers.
To get a list of multiple-driven nets in a design, run the W415 rule of the
SpyGlass lint product. This rule is a part of the following GuideWare
Methodologies:

 ./IP_netlist/ip_risk/lint/ip_netlist

 ./IP_netlist/ip_audit/lint/ip_netlist

 ./IP_RTL/ip_risk/lint/ip_rtl

 ./IP_RTL/ip_audit/lint/ip_rtl

 ./New_RTL/rtl_handoff/lint/simulation

 ./New_RTL/initial_rtl/lint/simulation

 ./New_RTL/detailed_rtl/lint/simulation

 ./New_RTL/ip_handoff/lint/simulation

 ./SoC/soc_postlayout/lint/soc_netlist

 ./soc_postlayout/lint/soc_netlist

 ./soc_postsynth/lint/soc_netlist

 ./soc_prelim/lint/soc_netlist

 ./soc_rtl/lint/soc_rtl

Please select the appropriate methodology as per the requirement or
660
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
create a custom methodology to run the rule.

Examples

sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -filter
"is_multiple_driver == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
661
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_reset_used_as_nonreset
Returns the asynchronous reset or preset net which is used as non
asynchronous reset or preset signal

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if asynchronous reset or preset net is used as a non-
asynchronous reset or preset signal.

Description

The is_reset_used_as_nonreset attribute returns the asynchronous reset
or preset net that is used as a non-asynchronous reset or preset signal.

To get the list of reset net that are used as non reset in a design, you can
run the STARC-1.3.1.3 rule of the starc policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> set net_iter [get_nets * -filter
"is_reset_used_as_nonreset == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
662
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_reset_used_with_both_polarity
Returns the reset or set net which is used as both positive and
negative polarity in same design unit

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true if reset or set is used as both positive and negative polarity in
a design.

Description

The is_reset_used_with_both_polarity attribute returns those reset or set
signals that are used as both positive and negative polarity in the same
design unit. To get the list of both polarity reset in a design, you can run
the W392 rule of the lint policy.

Select the above rule or create a custom methodology.

Examples

sg_shell> set_pref dq_design_view_type flat

sg_shell> set net_iter [get_nets * -filter
"is_reset_used_with_both_polarity == true"]

NOTE: You can iterate on the “net_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
663
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_unregistered_port
Returns the ports, which are not registered, of the module

Scope

Goal

Object

This attribute is defined on the du_port object type.

Return Value

Returns true if a DU port is unregistered

Description

The is_unregistered_port attribute returns the port of the module that is
not registered. To set the attribute, run the RegInputOutput-ML rule of the
SpyGlass moreLint product. The attribute is set on the DU object of type
port.

The RegInputOutput-ML rule is a part of the following GuideWare
Methodologies:

 ./New_RTL/rtl_handoff/audit/datasheet_io_audit

 ./New_RTL/initial_rtl/audit/datasheet_io_audit

 ./New_RTL/detailed_rtl/audit/datasheet_io_audit

 ./New_RTL/ip_handoff/audit/datasheet_io_audit

 ./IP_RTL/ip_audit/audit/datasheet_io_audit

 ./IP_netlist/ip_audit/audit/datasheet_io_audit

 ./SoC/soc_postlayout/audit/datasheet_io_audit

 ./SoC/soc_postsynth/audit/datasheet_io_audit

 ./SoC/soc_prelim/audit/datasheet_io_audit

 ./SoC/soc_rtl/audit/datasheet_io_audit

Please select the appropriate methodology as per the requirement or
create a custom methodology to run the rule.
664
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> set_pref dq_design_view_type du
sg_shell> set port_iter [get_ports * -filter
"is_unregistered_port == true"]

NOTE: You can iterate on the “port_iter” list, depending on the requirement.

See Also

get_attribute, filter_collection
665
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
CDC Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass CDC product.

Attribute Name Object Type Description
dest_type cdc_node string Checks the type of destination

instance present in a crossing
failure_reason cdc_node string Reports the reason of

unsynchronization of a CDC
crossing

is_comb_conv cdc_conv_
node

boolean Checks whether the converging
signals are reported by the
Ac_conv02 rule

is_data cdc_node boolean Checks whether a CDC crossing
is a data crossing

is_graycoded cdc_conv_
node

string Checks whether the converging
signals are gray encoded

is_nonconv_bus cdc_conv_
node

boolean Checks whether the converging
signals are reported by the
Ac_conv04 rule

is_seq_conv cdc_conv_
node

boolean Checks whether the converging
signals are reported by the
Ac_conv01 rule

is_synchronized cdc_node boolean Checks whether a CDC crossing
is synchronized

is_user_defined cdc_conv_
node

boolean Checks whether the converging
signals are reported by the
Ac_conv05 rule

num_sources cdc_node,
cdc_conv_
node

int Checks number of sources
present in a crossing

num_source_domain
s

cdc_node,
cdc_conv_
node

int Checks number of source
domains present in a crossing
666
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
src_type cdc_node string Checks the type of source
instance present in a crossing

sync_method cdc_node string Reports the reason of
synchronization of a CDC
crossing

Attribute Name Object Type Description
667
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
dest_type
Checks the type of destination instance present in a crossing

Syntax

get_attribute [get_cdc] dest_type

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a string of flip-flop, library-cell, latch, primary output, and black
box.

Description

The dest_type attribute tells the type of destination instance in a crossing.
Query on this attribute should be made only when the Ac_sync_group rules
(Ac_sync01, Ac_sync02, Ac_unsync01, and Ac_unsync02) have been run.

Examples

sg_shell> report_cdc [get_cdc -filter dest_type==latch]

See Also

get_attribute, filter_collection
668
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
failure_reason
Reports the reason of unsynchronization of a CDC crossing

Syntax

get_attribute [get_cdc] failure_reason

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a string value stating the reason of unsynchronization.

Description

The failure_reason attribute tells the reason of unsynchronization of a CDC
crossing.

Query on this attribute should be made only when the Ac_unsync01 or
Ac_unsync02 rule has been run.

Examples

sg_shell> report_cdc [get_cdc -filter
failure_reason==Qualifier_not_found]

NOTE: In the reason string, replace the space as "_" to use the string as a filter value.

See Also

get_attribute, filter_collection
669
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_comb_conv
Checks whether the converging signals are reported by the
Ac_conv02 rule

Syntax

get_attribute [get_cdc_coherency] is_comb_conv

Scope

Goal

Object

This attribute is defined on the cdc_conv_node object type.

Return Value

Returns a boolean value.

Description

The is_comb_conv attribute checks whether the converging signals have
been violated by the Ac_conv02 rule.

Examples

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_comb_conv==true]

See Also

get_attribute, filter_collection
670
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_data
Checks whether a CDC crossing is a data crossing

Syntax

get_attribute [get_cdc] is_data

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a boolean value.

Description

The is_data attribute checks whether a CDC crossing is a data crossing.

Query on this attribute should be made only when the Ac_sync_group rules
have been run.

Examples

sg_shell> report_cdc [get_cdc -filter is_data == true]

See Also

get_attribute, filter_collection
671
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_graycoded
Checks whether the converging signals are gray encoded

Syntax

get_attribute [get_cdc_coherency] is_graycoded

Scope

Goal

Object

This attribute is defined on the cdc_conv_node object type.

Return Value

Returns a string.

Description

The is_graycoded attribute checks whether the functional check on the
converging signals has been passed.

This attribute has the following values:
 yes: When this value is set, the is_graycoded attribute returns only

those convergence violations that have been functionally checked for
gray coding and their status is PASSED.

 no: When this value is set, the is_graycoded attribute returns only those
convergence violations that have been functionally checked for gray
coding and their status is FAILED.

 unknown: When this value is set, the is_graycoded attribute returns
only those convergence violations that have been functionally checked
for gray coding and their status is PA.

 disabled: When this value is set, the is_graycoded attribute reports
violation for the convergence rules that do not perform functional gray
coding check.

Query on this attribute should be made only when the Ac_conv rules have
been run.
672
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_graycoded==yes]

See Also

get_attribute, filter_collection
673
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_nonconv_bus
Checks whether the converging signals are reported by the
Ac_conv04 rule

Syntax

get_attribute [get_cdc_coherency] is_nonconv_bus

Scope

Goal

Object

This attribute is defined on the cdc_conv_node object type.

Return Value

Returns a boolean value.

Description

The is_nonconv_bus attribute checks whether the converging signals have
been violated by the Ac_conv04 rule.

Examples

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_nonconv_bus==true]

See Also

get_attribute, filter_collection
674
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_seq_conv
Checks whether the converging signals are reported by the
Ac_conv01 rule

Syntax

get_attribute [get_cdc_coherency] is_seq_conv

Scope

Goal

Object

This attribute is defined on the cdc_conv_node object type.

Return Value

Returns a boolean value.

Description

The is_seq_conv attribute checks whether the converging signals has been
violated by the Ac_conv01 rule.

Examples

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_seq_conv==true]

See Also

get_attribute, filter_collection
675
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_synchronized
Checks whether a CDC crossing is synchronized

Syntax

get_attribute [get_cdc] is_synchronized

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a boolean value.

Description

The is_synchronized attribute checks whether a CDC crossing is
synchronized.

Query on this attribute should be made only when the Ac_sync_group rules
have been run.

Examples

sg_shell> report_cdc [get_cdc -filter
is_synchronized==false]

See Also

get_attribute, filter_collection
676
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_user_defined
Checks whether the converging signals are reported by the
Ac_conv05 rule

Syntax

get_attribute [get_cdc_coherency] is_user_defined

Scope

Goal

Object

This attribute is defined on the cdc_conv_node object type.

Return Value

Returns a boolean value.

Description

The is_user_defined attribute checks the presence of signal convergence
due to the user-defined gray_signals constraint. All of these converging
signals are reported by the Ac_conv05 rule.

Examples

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
is_user_defined==true]

See Also

get_attribute, filter_collection
677
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
num_sources
Checks number of sources present in a crossing

Syntax

get_attributes [<get_cdc/get_cdc_coherency>] num_sources

Scope

Goal

Object

This attribute is defined on the cdc_node and cdc_conv_node object
types.

Return Value

Returns an integer value.

Description

The num_sources attribute tells the count of sources in a crossing.

Query on this attribute should be made only when convergence rules
(Ac_conv01, Ac_conv02, Ac_conv03, Ac_conv04, Ac_conv05) or
Ac_sync_group rules (Ac_sync01, Ac_sync02, Ac_unsync01, Ac_unsync02)
have been run.

Examples

sg_shell> report_cdc [get_cdc -filter num_sources>2]

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
num_sources>3]

See Also

get_attribute, filter_collection
678
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
num_source_domains
Checks number of source domains present in a crossing

Syntax

get_attributes [<get_cdc/get_cdc_coherency>]
num_source_domains

Scope

Goal

Object

This attribute is defined on the cdc_node and cdc_conv_node object
types.

Return Value

Returns an integer value.

Description

The num_source_domains attribute tells the count of source domains in a
crossing.

Query on this attribute should be made only when convergence rules
(Ac_conv01, c_conv02, Ac_conv03, Ac_conv04, Ac_conv05) or
Ac_sync_group rules (Ac_sync01, Ac_sync02, Ac_unsync01, Ac_unsync02)
have been run.

Examples

sg_shell> report_cdc [get_cdc -filter num_source_domains>2]

sg_shell> report_cdc_coherency [get_cdc_coherency -filter
num_source_domains>3]

See Also

get_attribute, filter_collection
679
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
src_type
Checks the type of source instance present in a crossing

Syntax

get_attribute [get_cdc] src_type

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a string of flip-flop, library-cell, latch, primary input, and black

box.

Description

The src_type attribute tells the type of source instance in a crossing.

Query on this attribute should be made only when the Ac_sync_group rules
(Ac_sync01, Ac_sync02, Ac_unsync01, Ac_unsync02) have been run.

Examples

sg_shell> report_cdc [get_cdc -filter src_type==flop]

See Also

get_attribute, filter_collection
680
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sync_method
Reports the reason of synchronization of a CDC crossing

Syntax

get_attribute [get_cdc] sync_method

Scope

Goal

Object

This attribute is defined on the cdc_node object type.

Return Value

Returns a string value stating the reason of syncrhonization.

Description

The num_source_domains attribute reports the reason of synchronization
of a CDC crossing.

Query on this attribute should be made only when the Ac_sync01 or
Ac_sync02 rule has been run.

Examples

sg_shell> report_cdc [get_cdc -filter
sync_method==~synchronizing_cell*]

NOTE: In the reason string, replace the space as "_" to use the string as a filter value.

sg_shell> report_cdc [get_cdc -filter
sync_method==Conventional_multi-
flop_for_metastability_technique]

See Also

get_attribute, filter_collection
681
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Constraints Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass Constraints product.

Attribute Name Object Type Description
sdc_type sdc_node string Returns the SDC constraint type of the

SDC node
timing_state flat_cell

flat_pin
flat_port
flat_net

string Returns the constrained status of the
queried design object
682
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sdc_type
Returns the SDC constraint type of the SDC node

Scope

Goal

Object

This attribute is defined on the sdc_node object type.

Return Value

Returns a string value if the query is successful and nothing if the query is
unsuccessful

Description

The sdc_type attribute returns the SDC constraint type of the SDC node.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_sdc -of_objects top.U0.A]
sdc_type

The output of this command is as follows:

create_clock

Example 2

Consider the following command:

sg_shell> get_sdc -filter { sdc_type == create_clock }

This command does not generate any output.

See Also

get_attribute, filter_collection
683
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
timing_state
Returns the constrained status of the queried design object

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_cell

 flat_pin

 flat_port

 flat_net

Return Value

Returns a non empty string

Description

The timing_state attribute returns the constraint status of the queried
design object. If the object is constrained with an SDC constraint, it returns
constrained; otherwise, it returns unconstrained.

Consider the following points while using this attribute:

 For data pins of MUXes, this attribute returns constrained, if any
clock is reaching the pin.

 For select pins of MUXes, this attribute returns constrained, if the
pin is set to a constant value.

Examples

sg_shell> get_attribute [get_ports top.clk] timing_state
constrained

sg_shell> get_ports -filter { timing_state == constrained }
{top.clk}
684
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_attribute, filter_collection
685
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
DFT Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass DFT product.

Attribute Name Object Type Description
atspeed_sim_value flat_pin

flat_port
flat_net

string Gets atspeed_capture mode
simulation value (1 | 0 | X | Z)
for user-specified design node
(flat_net | flat_pin | flat_port)
in current design

capture_sim_value flat_pin
flat_port
flat_net

string Gets capture mode simulation
value (1 | 0 | X | Z) for user-
specified design node (flat_net
| flat_pin | flat_port) in current
design

get_atspeed_clock_n
_phase

flat_pin
flat_port
flat_net

string Gets the atspeed mode source
clock, source clock phase and
phase at a user specified design
node in current design

get_capture_clock_n
_phase

flat_pin
flat_port
flat_net

string Gets the capture mode source
clock, source clock phase and
phase at a user specified design
node in the current design

get_dft_functional_cl
ock_n_phase

flat_pin
flat_port
flat_net

string Gets the functional source
clock, source clock phase and
phase at a user specified design
node in current design

get_latch_atspeed_s
tatus

flat_inst string Gets the atspeed transparency
status for user specified latch in
current design

get_latch_capture_st
atus

flat_inst string Gets the capture transparency
status for user specified latch in
current design

get_latch_shift_statu
s

flat_inst string Gets the shift transparency
status for user specified latch in
current design

get_scan_status flat_inst string Gets the scannability status for
user specified flip-flop or latch
in current design
686
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_shift_clock_n_p
hase

flat_inst string Gets the shift mode source
clock, source clock phase and
phase at a user specified design
node in current design

is_scannable flat_cell boolean Checks whether a flip-flop is
scannable

obs_probability flat_port
flat_pin
flat_net

float Gets the probability that the flat
port, pin or net is observable
when random test pattern is
applied

one_cnt_probability flat_port
flat_pin
flat_net

float Gets the probability that the flat
port, pin or net is at 1 when
random test pattern is applied

pg_sim_value flat_pin
flat_port
flat_net

string Gets power_ground simulation
value (1 | 0 | X | Z) for user-
specified design node (flat_net
| flat_pin | flat_port) in current
design

rand_fault_cov_esti
mate

design float Gets the fault coverage
estimate of top module for the
dft_pattern_count random test
patterns

rand_test_cov_estim
ate

design float Gets the test coverage estimate
of top module for
dft_pattern_count random test
patterns

sa0_det_probability flat_port
flat_pin
flat_net

float Gets the probability that stuck
at 0 fault on flat port, pin or net
is detected after
dft_pattern_count random test
patterns are applied

sa1_det_probability flat_port
flat_pin
flat_net

float Gets the probability that stuck
at 1 fault on flat port, pin or net
is detected after
dft_pattern_count random test
patterns are applied

sa0_fault_detectabili
ty

flat_port
flat_pin

string Gets the stuck_at zero fault
detectability

Attribute Name Object Type Description
687
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sa1_fault_detectabili
ty

flat_port
flat_pin

string Gets the stuck_at one fault
detectability

shift_sim_value flat_pin
flat_port
flat_net

string Gets shift mode simulation
value (1 | 0 | X | Z) for
user-specified design node
(flat_net | flat_pin | flat_port)
in current design

static_controllability flat_pin
flat_port
flat_net

string Gets static controllability (3-bit-
string (y/n): zero-control_one-
control_zee-control: nnn | nny |
nyn | nyy | ynn | yny | yyn |
yyy) for user-specified design
node (flat_net | flat_pin |
flat_port) in current design

static_observability flat_pin
flat_port

string Gets static observability (y
(yes_observable) | n
(not_observable)) for user-
specified design node (flat_pin |
flat_port) in current design

t01_fault_detectabili
ty_los

flat_pin
flat_port

string Gets zero to one transition fault
detectability with launch on
shift

t10_fault_detectabili
ty_los

flat_pin
flat_port

string Gets one to zero transition fault
detectability with launch on
shift

t01_fault_detectabili
ty_loc

flat_pin
flat_port

string Gets zero to one transition fault
detectability with launch on
capture

t10_fault_detectabili
ty_loc

flat_pin
flat_port

string Gets one to zero transition fault
detectability with launch on
capture

zero_cnt_probability flat_port
flat_pin
flat_net

float Gets the probability that the flat
port, pin, or net is at 0 when
random test pattern is applied

Attribute Name Object Type Description
688
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
atspeed_sim_value
Gets atspeed_capture mode simulation value (1 | 0 | X | Z) for
user-specified design node (flat_net | flat_pin | flat_port) in
current design

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
atspeed_sim_value

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

string: 1 | 0 | X | Z

Description

The atspeed_sim_value attribute displays the atspeed_capture mode
simulation value (1 | 0 | X | Z) for a user-specified design node (flat_net |
flat_pin | flat_port) in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
DSM goals has been run.

Examples

sg_shell> current_goal dft_dsm_clocks
sg_shell> run_goal
.
.
<output of run_goal>
689
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
.

.
sg_shell> get_attribute [get_nets top.U0.A]
atspeed_sim_value
<1 | 0 | X |Z>

See Also

capture_sim_value, pg_sim_value, capture_sim_value
690
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
capture_sim_value
Gets capture mode simulation value (1 | 0 | X | Z) for user-
specified design node (flat_net | flat_pin | flat_port) in current
design

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
capture_sim_value

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

string: 1 | 0 | X | Z

Description

The capture_sim_value attribute displays the capture mode simulation
value (1 | 0 | X | Z) for a user-specified design node (flat_net | flat_pin |
flat_port) in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.
.
<output of run_goal>
691
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
.

.
sg_shell> get_attribute [get_nets top.U0.A]
capture_sim_value
<1 | 0 | X |Z>

See Also

pg_sim_value, pg_sim_value, capture_sim_value
692
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_atspeed_clock_n_phase
Gets the atspeed mode source clock, source clock phase and phase
at a user specified design node in current design

Syntax

get_attribute < object: flat_port | flat_pin | flat_net >
get_atspeed_clock_n_phase

Scope

Goal

Object

This attribute is defined on the flat_port | flat_pin | flat_net
object type.

Return Value

String

Description

The get_atspeed_clock_n_phase attribute gets the atspeed mode source
clock, source clock phase and phase at a user specified design node in the
current design. Query on this attribute should be made only when one of
the DFT goals has been run.

Examples

 sg_shell> run_goal
 .
 .
 <output of run_goal>
 .
 .
sg_shell> get_attribute [get_nets top.tclk1]
get_atspeed_clock_n_phase < <clock_name>, <-1 | 0 | 1>, <-1 |
0 | 1 > >
693
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_shift_clock_n_phase, get_capture_clock_n_phase,
get_dft_functional_clock_n_phase
694
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_capture_clock_n_phase
Gets the capture mode source clock, source clock phase and phase
at a user specified design node in the current design

Syntax

get_attribute < object: flat_port | flat_pin | flat_net >
get_capture_clock_n_phase

Scope

Goal

Object

This attribute is defined on the flat_port | flat_pin | flat_net
object type.

Return Value

String

Description

The get_capture_clock_n_phase attribute gets the capture mode source
clock, source clock phase and phase at a user specified design node in the
current design. Query on this attribute should be made only when one of
the DFT goals has been run.

Examples

sg_shell> current_goal dft_scan_ready

 sg_shell> run_goal

 .

 .

 <output of run_goal>

 .

 .

sg_shell> get_attribute [get_nets top.tclk1]
695
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_capture_clock_n_phase < <clock_name>, <-1 | 0 | 1>, <-1 |
0 | 1 > >

See Also

get_shift_clock_n_phase, get_atspeed_clock_n_phase,
get_dft_functional_clock_n_phase
696
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_dft_functional_clock_n_phase
Gets the functional source clock, source clock phase and phase at a
user specified design node in current design

Syntax

get_attribute < object: flat_port | flat_pin | flat_net >
get_dft_functional_clock_n_phase

Scope

Goal

Object

This attribute is defined on the flat_port | flat_pin | flat_net
object type.

Return Value

String

Description

The get_dft_functional_clock_n_phase attribute gets the functional mode
source clock, source clock phase and phase at a user specified design
node. Query on this attribute should be made only when one of the DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready

sg_shell> run_goal

 .

 .

 <output of run_goal>

 .

 .

sg_shell> get_attribute [get_nets top.tclk1]
697
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_dft_functional_clock_n_phase < <clock_name>, <-1 | 0 |
1>, <-1 | 0 | 1 > >

See Also

get_shift_clock_n_phase, get_atspeed_clock_n_phase,
get_capture_clock_n_phase
698
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_latch_atspeed_status
Gets the atspeed transparency status for user specified latch in
current design

Syntax

 get_attribute <object: flat_inst> get_latch_atspeed_status

Scope

Goal

Object

This attribute is defined on the flat_inst object type.

Return Value

String

Description

The get_latch_atspeed_status attribute gets the atspeed transparency
status for the user specified latch. Query on this attribute should be made
only when one of the DFT goals has been run.

Examples

sg_shell> current_goal get_latch_atspeed_status
 sg_shell> run_goal
 .
 .
 <output of run_goal>
 .
 .
sg_shell> get_attribute [get_cells top.ld_1]
get_latch_atspeed_status < transparent_forced |
transparent_clock_off | transparent_control | shadow |
lockup_source | lockup_destination >
699
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_scan_status, get_latch_shift_status, get_latch_capture_status
700
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_latch_capture_status
Gets the capture transparency status for user specified latch in
current design

Syntax

get_attribute <object: flat_inst> get_latch_capture_status

Scope

Goal

Object

This attribute is defined on the flat_inst object type.

Return Value

String

Description

The get_latch_capture_status attribute gets the capture transparency
status for the user specified latch. Query on this attribute should be made
only when one of the DFT goals has been run.

Examples

 sg_shell> current_goal get_latch_capture_status

 sg_shell> run_goal

 .

 .

 <output of run_goal>

 .

 .

sg_shell> get_attribute [get_cells top.ld_1]
get_latch_capture_status < transparent_forced |
transparent_clock_off | transparent_control | shadow |
lockup_source | lockup_destination >
701
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_scan_status, get_latch_shift_status, get_latch_atspeed_status
702
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_latch_shift_status
Gets the shift transparency status for user specified latch in
current design

Syntax

get_attribute <object: flat_inst> get_latch_shift_status

Scope

Goal

Object

This attribute is defined on the flat_inst object type.

Return Value

String

Description

The get_latch_shift_status attribute gets the shift transparency status for
user specified latch in current design. Query on this attribute should be
made only when one of the DFT goals has been run.

Examples

sg_shell> current_goal get_latch_shift_status

 sg_shell> run_goal

 .

 .

 <output of run_goal>

 .

 .

sg_shell> get_attribute [get_cells top.ld_1]
get_latch_shift_status < transparent_forced |
transparent_clock_off | transparent_control | shadow |
lockup_source | lockup_destination >
703
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_scan_status, get_latch_capture_status, get_latch_atspeed_status,
704
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_scan_status
Gets the scannability status for user specified flip-flop or latch in
current design

Syntax

get_attribute <object: flat_inst> get_scan_status

Scope

Goal

Object

This attribute is defined on the flat_inst object type.

Return Value

String

Description

The get_scan_status attribute gets scannability status for user specified
flip_flop or latch in the current design. Query on this attribute should be
made only when one of the DFT goals has been run.

Examples

sg_shell> current_goal get_scan_status
 sg_shell> run_goal
 .
 .
 <output of run_goal>
 .
 .
sg_shell> get_attribute [get_cells top.ff_1]
 get_scan_status < scan_forced | scan_inferred |
no_scan_forced | no_scan_inferred | unscannable_clock |
unscannable_reset | unscannable_clock_reset >
705
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_latch_shift_status, get_latch_capture_status, get_latch_capture_status,
get_latch_atspeed_status
706
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
get_shift_clock_n_phase
gets the shift mode source clock, source clock phase and phase at a
user specified design node in current design

Syntax

get_attribute < object: flat_port | flat_pin | flat_net >
get_shift_clock_n_phase

Scope

Goal

Object

This attribute is defined on the flat_port | flat_pin | flat_net
object type.

Return Value

String

Description

The get_shift_clock_n_phase attribute gets the shift mode source clock,
source clock phase and phase at a user specified design node in the current
design. Query on this attribute should be made only when one of the DFT
goals has been run.

Examples

sg_shell> get_attribute [get_nets top.tclk1]
get_shift_clock_n_phase < <clock_name>, <-1 | 0 | 1>, <-1 | 0
| 1 > >

See Also

get_dft_functional_clock_n_phase, get_atspeed_clock_n_phase,
get_capture_clock_n_phase
707
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_scannable
Checks whether a flip-flop or a latch is scannable

Syntax

get_attribute <object: flat_cell> is_scannable

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

bool: true | false

Description

The is_scannable attribute checks whether a flip-flop or a latch is
scannable.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.
.
<output of run_goal>
.
.
sg_shell> get_attribute [get_cell FD1] is_scannable
<true | false>

See Also

None
708
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
obs_probability
Gets the probability that the flat port, pin or net is observable when
random test pattern is applied

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
obs_probability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

float

Description

The obs_probability attribute is used to get the probability that the flat
port, pin or net is observable when random test pattern is applied.

The obs_probability attribute returns observe_1 probability for a single
pattern. This is independent of the pattern count specified using the
dft_pattern_count parameter.

Query on this attribute should be made only when Info_random_resistance
rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class flat_pin "test.inst1.pin"
obs_probability
709
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

zero_cnt_probability, sa0_det_probability, sa1_det_probability,
one_cnt_probability
710
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
one_cnt_probability
Gets the probability that the flat port, pin or net is at 1 when
random test pattern is applied

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
one_cnt_probability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

float

Description

The one_cnt_probability attribute is used to get probability that the flat
port, pin or net is at 1 when random test pattern is applied.

The one_cnt_probability attribute returns control_1 probability for a single
pattern. This is independent of the pattern count specified using the
dft_pattern_count parameter.

Query on this attribute should be made only when Info_random_resistance
rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class flat_pin "test.inst1.pin"
one_cnt_probability
711
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

zero_cnt_probability, sa0_det_probability, sa1_det_probability, obs_probability
712
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
pg_sim_value
Gets power_ground simulation value (1 | 0 | X | Z) for user-
specified design node (flat_net | flat_pin | flat_port) in current
design

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
pg_sim_value

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

string: 1 | 0 | X | Z

Description

The pg_sim_value attribute displays the power_ground simulation value (1
| 0 | X | Z) for a user-specified design node (flat_net | flat_pin | flat_port)
in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.
.
<output of run_goal>
713
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
.

.
sg_shell> get_attribute [get_nets top.U0.A] pg_sim_value
<1 | 0 | X |Z>

See Also

pg_sim_value, capture_sim_value, capture_sim_value
714
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
rand_fault_cov_estimate
Gets the fault coverage estimate of top module for the
dft_pattern_count random test patterns

Syntax

get_attribute <object: design> rand_fault_cov_estimate

Scope

Goal

Object

This attribute is defined on the design object type

Return Value

float

Description

The rand_fault_cov_estimate attribute is used to get fault coverage
estimate of top module for the dft_pattern_count random test patterns.

Query on this attribute should be made only when the
Info_random_resistance rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class design "top_design"
rand_fault_cov_estimate

See Also

rand_test_cov_estimate
715
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
rand_test_cov_estimate
Gets the test coverage estimate of top module for
dft_pattern_count random test patterns

Syntax

get_attribute <object: design> rand_test_cov_estimate

Scope

Goal

Object

This attribute is defined on the design object type

Return Value

float

Description

The rand_test_cov_estimate attribute is used to get the test coverage
estimate of top module for dft_pattern_count random test patterns.

Query on this attribute should be made only when the
Info_random_resistance rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class design "top_design"
rand_test_cov_estimate

See Also

rand_fault_cov_estimate
716
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sa0_det_probability
Gets the probability that stuck at 0 fault on flat port, pin or net is
detected after dft_pattern_count random test patterns are applied

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
sa0_det_probability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

float

Description

The sa0_det_probability attribute is used to get the probability that stuck
at 0 fault on flat port, pin or net is detected after dft_pattern_count
random test patterns are applied.

Query on this attribute should be made only when the
Info_random_resistance rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class flat_pin "test.inst1.pin"
sa0_det_probability

See Also

zero_cnt_probability, sa1_det_probability, one_cnt_probability, obs_probability
717
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sa1_det_probability
Gets the probability that stuck at 1 fault on flat port, pin or net is
detected after dft_pattern_count random test patterns are applied

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
sa1_det_probability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

float

Description

The sa1_det_probability attribute is used to get the probability that stuck
at 1 fault on flat port, pin or net is detected after dft_pattern_count
random test patterns are applied.

Query on this attribute should be made only when the
Info_random_resistance rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class flat_pin "test.inst1.pin"
sa1_det_probability

See Also

zero_cnt_probability, sa0_det_probability, one_cnt_probability, obs_probability
718
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sa0_fault_detectability
Gets the stuck_at zero fault detectability

Syntax

get_attribute <object: flat_pin | flat_port>
sa0_fault_detectability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The sa1_fault_detectability attribute is used to get the stuck_at zero (s/0)
fault detectability.

Query on this attribute should be made only when the one of the goals with
the Info_coverage rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> current_goal dft/dft_scan_ready

sg_shell> run_goal

 <output of run_goal>

sg_shell> get_attribute -class flat_pin "top.myInst.in1"
sa0_fault_detectability

See Also

sa1_fault_detectability
719
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sa1_fault_detectability
Gets the stuck_at one fault detectability

Syntax

get_attribute <object: flat_pin | flat_port>
sa1_fault_detectability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The sa1_fault_detectability attribute is used to get the stuck_at one (s/1)
fault detectability.

Query on this attribute should be made only when the one of the goals with
the Info_coverage rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> current_goal dft/dft_scan_ready
sg_shell> run_goal
 <output of run_goal>
sg_shell> get_attribute -class flat_pin "top.myInst.in1"
sa1_fault_detectability

See Also

sa0_fault_detectability
720
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
shift_sim_value
Gets shift mode simulation value (1 | 0 | X | Z) for user-specified
design node (flat_net | flat_pin | flat_port) in current design

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
shift_sim_value

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

string: 1 | 0 | X | Z

Description

The shift_sim_value attribute displays the shift mode simulation value
(1 | 0 | X | Z) for a user-specified design node (flat_net | flat_pin |
flat_port) in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.
.
<output of run_goal>
.

721
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute [get_nets top.U0.A] shift_sim_value
<1 | 0 | X |Z>

See Also

pg_sim_value, capture_sim_value, pg_sim_value
722
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
static_controllability
Gets static controllability (3-bit-string (y/n): zero-control_one-
control_zee-control: nnn | nny | nyn | nyy | ynn | yny | yyn | yyy)
for user-specified design node (flat_net | flat_pin | flat_port) in
current design

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
static_controllability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_net

 flat_pin

 flat_port

Return Value

string: 3-bit-string (y/n): zero-control_one-control_zee-control: nnn | nny
| nyn | nyy | ynn | yny | yyn | yyy

Description

The static_controllability attribute displays static controllability (3-bit-
string (y/n): zero-control_one-control_zee-control: nnn | nny | nyn | nyy |
ynn | yny | yyn | yyy) for a user-specified design node (flat_net | flat_pin |
flat_port) in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.

723
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
.
<output of run_goal>
.
.
sg_shell> get_attribute [get_nets top.U0.A]
static_controllability <nnn | nny | nyn | nyy | ynn | yny |
yyn | yyy>

See Also

static_observability
724
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
static_observability
Gets static observability (y (yes_observable) | n (not_observable))
for user-specified design node (flat_pin | flat_port) in current
design

Syntax

get_attribute <object: flat_pin | flat_port>
static_observability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string: y (yes_observable) | n (not_observable)

Description

The static_observability attribute displays static observability (y
(yes_observable) | n (not_observable)) for a user-specified design node
(flat_net | flat_pin | flat_port) in the current design.

Query on this attribute should be made only when one of the SpyGlass DFT
goals has been run.

Examples

sg_shell> current_goal dft_scan_ready
sg_shell> run_goal
.
.
<output of run_goal>
.
.

725
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute [get_pins top.U0.A]
static_observability
<y | n>

See Also

static_controllability
726
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
t01_fault_detectability_los
Gets zero to one transition fault detectability with launch on shift

Syntax

get_attribute <object: flat_pin | flat_port>
t01_fault_detectability_los

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The t01_fault_detectability_los attribute is used to get the zero to one
transition (slow to rise - t/01) fault detectability with launch on shift.

Query on this attribute should be made only when the one of the goals with
the Info_transitionCoverage rule of the SpyGlass DFT DSM has been run
with the dsm_launch_method parameter as los.

Examples

sg_shell> current_goal dft_dsm_best_practice
sg_shell> run_goal
 <output of run_goal>
sg_shell> get_attribute -class flat_pin "top.myInst.in1"
t01_fault_detectability_los

See Also

t10_fault_detectability_los
727
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
t10_fault_detectability_los
Gets one to zero transition fault detectability with launch on shift

Syntax

get_attribute <object: flat_pin | flat_port>
t10_fault_detectability_los

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The t10_fault_detectability_los attribute is used to get the one to zero
transition (slow to fall - t/10) fault detectability with launch on shift.

Query on this attribute should be made only when the one of the goals with
the Info_transitionCoverage rule of the SpyGlass DFT DSM has been run
with the dsm_launch_method parameter as los.

Examples

sg_shell> current_goal dft_dsm_best_practice
sg_shell> run_goal
 <output of run_goal>
sg_shell> get_attribute -class flat_pin "top.myInst.in1"
t10_fault_detectability_los

See Also

t01_fault_detectability_los
728
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
t01_fault_detectability_loc
Gets zero to one transition fault detectability with launch on
capture

Syntax

get_attribute <object: flat_pin | flat_port>
t01_fault_detectability_loc

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The t01_fault_detectability_loc attribute is used to get the zero to one
transition (slow to rise - t/01) fault detectability with launch on capture.

Query on this attribute should be made only when the one of the goals with
the Info_transitionCoverage rule of the SpyGlass DFT DSM has been run
with the dsm_launch_method parameter as loc.

Examples

sg_shell> current_goal dft_dsm_best_practice
sg_shell> run_goal
 <output of run_goal>
sg_shell> get_attribute -class flat_pin "top.myInst.in1"
t01_fault_detectability_loc
729
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

t10_fault_detectability_loc
730
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
t10_fault_detectability_loc
Gets one to zero transition fault detectability with launch on
capture

Syntax

get_attribute <object: flat_pin | flat_port>
t10_fault_detectability_loc

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_pin

 flat_port

Return Value

string

Description

The t10_fault_detectability_loc attribute is used to get the one to zero
transition (slow to fall - t/10) fault detectability with launch on capture :
fault category.

Query on this attribute should be made only when the one of the goals with
the Info_transitionCoverage rule of the SpyGlass DFT DSM has been run
with the dsm_launch_method parameter as loc.

Examples

sg_shell> current_goal dft_dsm_best_practice
sg_shell> run_goal
 <output of run_goal>
sg_shell> get_attribute -class flat_pin "top.myInst.in1"
t10_fault_detectability_loc
731
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

t01_fault_detectability_loc
732
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
zero_cnt_probability
Gets the probability that the flat port, pin, or net is at 0 when
random test pattern is applied

Syntax

get_attribute <object: flat_net | flat_pin | flat_port>
zero_cnt_probability

Scope

Goal

Object

This attribute is defined on the following object types:

 flat_port

 flat_pin

 flat_port

Return Value

float

Description

The zero_cnt_probability attribute is used to get the probability that the
flat port, pin, or net is at 0 when random test pattern is applied.

The zero_cnt_probability attribute returns control_0 probability for a single
pattern. This is independent of the pattern count specified using the
dft_pattern_count parameter.

Query on this attribute should be made only when the
Info_random_resistance rule of the SpyGlass DFT DSM has been run.

Examples

sg_shell> get_attribute -class flat_pin "test.inst1.pin"
zero_cnt_probability
733
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

sa0_det_probability, sa1_det_probability, one_cnt_probability, obs_probability
734
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Power Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass Power family.

Attribute Name Object Type Description
activity flat_net float Returns the activity of a flat

net
blackbox_internal_po
wer

flat_cell float Returns the total internal
power consumed by all the
black box cells of a hierarchy

blackbox_leakage_po
wer

flat_cell float Returns the total leakage
power consumed by all the
black box cells of a hierarchy

blackbox_switching_p
ower

flat_cell float Returns the total switching
power consumed by all the
black box cells of a hierarchy

capacitance_source flat_net string Returns the source of the
capacitance of a flat net

cell_size_for_power flat_cell float Returns the relative size of a
flat cell as used for
set_cell_allocation

clock_internal_power flat_cell float Returns the total internal
power consumed by all the
clock cells of a hierarchy

clock_leakage_power flat_net float Returns the total leakage
power consumed by all the
clock cells of a hierarchy

clock_switching_pow
er

flat_cell float Returns the total switching
power consumed by all the
clock cells of a hierarchy

combinational_intern
al_power

flat_cell float Returns the total internal
power consumed by all the
combinational cells of a
hierarchy

combinational_leakag
e_power

flat_net float Returns the total leakage
power consumed by all the
combinational cells of a
hierarchy
735
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
combinational_switch
ing_power

flat_cell float Returns the total switching
power consumed by all the
combinational cells of a
hierarchy

fanout_capacitance flat_net float Returns the total pin
capacitance of a given net

internal_power flat_cell float Returns total internal power
consumed by the given flat
cell

io_internal_power flat_cell float Returns the total internal
power consumed by all the io
cells of a hierarchy

io_leakage_power flat_net float Returns the total leakage
power consumed by all the io
cells of a hierarchy

io_switching_power flat_cell float Returns the total switching
power consumed by all the io
cells of a hierarchy

is_activity_annotated flat_net boolean Returns a Boolean value, as
an annotation status of a
given net

is_clock_gated flat_cell boolean Returns the gating status for
the given flat cell

is_internal_power_de
fined

lib_cell boolean Returns a boolean value,
based on whether internal
power tables is specified for
a library cell or not

is_instantiated flat_cell boolean Returns a boolean value as
instantiation status for the
given flat cell

leakage_power flat_cell float Returns total leakage power
consumed by the given flat
cell

leakage_power_mode
l

lib_cell string Returns leakage power
model of a library cell

megacell_internal_po
wer

flat_cell float Returns the total internal
power consumed by all the
megacell cells of a hierarchy

Attribute Name Object Type Description
736
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
megacell_leakage_po
wer

flat_cell float Returns the total leakage
power consumed by all the
megacell cells of a hierarchy

megacell_switching_p
ower

flat_cell float Returns the total switching
power consumed by all the
megacell cells of a hierarchy

memory_internal_po
wer

flat_cell float Returns the total internal
power consumed by all the
memory cells of a hierarchy

memory_leakage_po
wer

flat_cell float Returns the total leakage
power consumed by all the
memory cells of a hierarchy

memory_switching_p
ower

flat_cell float Returns the total switching
power consumed by all the
memory cells of a hierarchy

net_frequency flat_net float Returns the frequency of the
flat net

other_internal_power flat_cell float Returns the total internal
power consumed by all those
cells of a hierarchy that do
not fall into any standard cell
category

other_leakage_power flat_cell float Returns the total leakage
power consumed by all those
cells of a hierarchy that do
not fall into any standard cell
category

other_switching_pow
er

flat_cell float Returns the total switching
power consumed by all those
cells of a hierarchy that do
not fall into any standard cell
category

power_type flat_cell string Returns the type of a flat cell
categorized for reporting the
power consumption

net_capacitance flat_net float Returns the wire capacitance
of a flat net

Attribute Name Object Type Description
737
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
probability flat_net float Returns the probability of a
flat net

root_clock_for_power flat_cell float Returns the root clock name
for the given register flat cell

sequential_internal_p
ower

flat_cell float Returns the total internal
power consumed by all the
sequential cells of a
hierarchy

sequential_leakage_p
ower

flat_cell float Returns the total leakage
power consumed by all the
sequential cells of a
hierarchy

sequential_switching
_power

flat_cell float Returns the total switching
power consumed by all the
sequential cells of a
hierarchy

switching_power flat_cell float Returns total switching
power consumed by the
given flat cell

virtual_buffer_info flat_net string Returns virtual buffer
information for the given flat
net

virtual_internal_powe
r

flat_net float Returns total internal power
consumed by all virtual
buffers on a given flat net

virtual_leakage_powe
r

flat_net float Returns total leakage power
consumed by all virtual
buffers on the given flat net

virtual_switching_po
wer

flat_net float Returns total switching
power consumed all virtual
buffers on the given flat net

vt_classification lib_cell string Returns threshold voltage
group of a library cell

Attribute Name Object Type Description
738
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
activity
Returns the activity of a flat net

Syntax

get_attribute [get_nets <net_name>] activity

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value if the query is successful

Description

The activity attribute measures the relative toggles of a net with respect to
the fastest clock in the design. The fastest clock toggles two times in a
cycle. Therefore, the activity of the fastest clock is 2. If a signal toggles at
half the frequency of that of the fastest clock, the activity of that signal will
be 1. Therefore, the activity value will range from 0 to 2.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A] activity

The output of this command is as follows:

0.5

Example 2

Consider the following command:

sg_shell> get_attribute [get_nets] -class flat_net top.w1
activity
739
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The output of this command is as follows:

0.6

Example 3

The following command gives the activity information for all the nets in the
design:

sg_shell> get_attribute [get_nets -filter
{defined(activity)}] activity

See Also

get_attribute, filter_collection
740
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
blackbox_internal_power
Returns the total internal power consumed by all the black box
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
blackbox_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The blackbox_internal_power attribute returns the total internal power
consumed by the black box cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
blackbox_internal_power

The output of this command is as follows:

0.0365
741
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
742
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
blackbox_leakage_power
Returns the total leakage power consumed by all the black box
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
blackbox_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The blackbox_leakage_power attribute returns the total leakage power
consumed by the black box cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
blackbox_leakage_power

The output of this command is as follows:

0.0365
743
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
744
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
blackbox_switching_power
Returns the total switching power consumed by all the black box
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
blackbox_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The blackbox_switching_power attribute returns the total switching power
consumed by the black box cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
blackbox_switching_power

The output of this command is as follows:

0.0365
745
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
746
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
capacitance_source
Returns the source of the capacitance of a flat net

Syntax

get_attribute [get_nets <net_name>] capacitance_source

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a string value if the query is successful

Description

The capacitance_source attribute gives the source for the given flat net.
The capacitance of a net can be calculated as follows:

 If you specify the capacitance by using the wire_load and
wire_load_table structures in the technology library, the return
status will be WIRE_LOAD.

 If you set the capacitance by using an SPEF file, the return status will be
SPEF.

 If you specify the capacitance by using the set_load command in SDC,
the return status will be SDC.

 If you estimate the capacitance in SpyGlass by using the physical
information in the LEF file, the return status will be LEF.
747
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A]
capacitance_source

The output of this command is as follows:

WIRE_LOAD

Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net top.w1
capacitance_source

The output of this command is as follows:

LEF

See Also

get_attribute, filter_collection
748
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
cell_size_for_power
Returns the relative size of a flat cell as used for set_cell_allocation

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value on successful query.

Description

The cell_size_for_power attribute returns the relative size of the flat cell
used for set_cell_allocation. It’s value is greater than 0.0.

Examples

Consider the following command:

sg_shell> get_attribute -class top.U0 cell_size_for_power

The output of this command is as follows:

1.0

See Also

get_attribute, filter_collection
749
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
clock_internal_power
Returns the total internal power consumed by all the clock cells of
a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
clock_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The clock_internal_power attribute returns the total internal power
consumed by the clock cells of the given hierarchical instance during the
goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
clock_internal_power

The output of this command is as follows:

0.0365
750
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
751
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
clock_leakage_power
Returns the total leakage power consumed by all the clock cells of
a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
clock_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The clock_leakage_power attribute returns the total leakage power
consumed by the clock cells of the given hierarchical instance during the
goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
clock_leakage_power

The output of this command is as follows:

0.0365
752
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
753
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
clock_switching_power
Returns the total switching power consumed by all the clock cells
of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
clock_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The clock_switching_power attribute returns the total switching power
consumed by the clock cells of the given hierarchical instance during the
goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
clock_switching_power

The output of this command is as follows:

0.0365
754
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
755
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
combinational_internal_power
Returns the total internal power consumed by all the combinational
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
combinational_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The combinational_internal_power attribute returns the total internal
power consumed by the combinational cells of the given hierarchical
instance during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
combinational_internal_power

The output of this command is as follows:

0.0365
756
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
757
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
combinational_leakage_power
Returns the total leakage power consumed by all the combinational
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
combinational_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The combinational_leakage_power attribute returns the total leakage
power consumed by the combinational cells of the given hierarchical
instance during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
combinational_leakage_power

The output of this command is as follows:

0.0365
758
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
759
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
combinational_switching_power
Returns the total switching power consumed by all the
combinational cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
combinational_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The combinational_switching_power attribute returns the total switching
power consumed by the combinational cells of the given hierarchical
instance during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
combinational_switching_power

The output of this command is as follows:

0.0365
760
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
761
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
fanout_capacitance
Returns the total pin capacitance of a given net

Syntax

get_attribute [get_nets <net_name>] fanout_capacitance

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value if the query is successful and nothing if the query is
unsuccessful

Description

The fanout_capacitance attribute returns the total pin capacitance of the
given net. It is the arithmetic sum of the capacitance of the pins that are
connected to the given flat net.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A]
fanout_capacitance

The output of this command is as follows:

0.5

Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net top.w1
fanout_capacitance
762
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The output of this command is as follows:

.32

Example 3

The following command gives the fan-out capacitance of all the nets in the
design where the fanout_capacitance attribute is defined:

sg_shell> get_attribute [get_nets -filter
{defined(fanout_capacitance)}] fanout_capacitance

See Also

get_attribute, filter_collection
763
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
internal_power
Returns total internal power consumed by the given flat cell or
hierarchical cell

Syntax

get_attribute -class flat_cell <cell_name> internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value on successful query

Description

The internal_power attribute returns total internal power consumed by the
given instance during the execution of the goal.

You can get the internal power of a hierarchical cell by setting the
enable_hier_flattening option to yes, before the execution of the
goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg internal_power

The output of this command is as follows:

0.0000423

Example 2

Consider the following command:
764
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg internal_power

The output of this command is as follows:

0.0002345

Example 3

For getting internal_power of a hierarchical cell, set the following
option, before executing the goal (this can also be specified in a.spq file):

sg_shell> set_option enable_hier_flattening yes

Run the goal:

sg_shell> set_pref dq_design_view_type hier_flat

sg_shell> get_attribute -class flat_cell top.U_MEM1
internal_power

The output of this command is as follows:

0.0365

You can switch to flat_view from hier_flat by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
765
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
io_internal_power
Returns the total internal power consumed by all the io cells of a
hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
io_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The io_internal_power attribute returns the total internal power consumed
by the io cells of the given hierarchical instance during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
io_internal_power

The output of this command is as follows:

0.0365

You can switch to flat_view from hier_flat, by setting the following
766
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
767
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
io_leakage_power
Returns the total leakage power consumed by all the io cells of a
hierarchy

Syntax

get_attribute -class flat_cell <cell_name> io_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The io_leakage_power attribute returns the total leakage power consumed
by the io cells of the given hierarchical instance during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
io_leakage_power

The output of this command is as follows:

0.0365

You can switch to flat_view from hier_flat, by setting the following
option:
768
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
769
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
io_switching_power
Returns the total switching power consumed by all the io cells of a
hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
io_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The io_switching_power attribute returns the total switching power
consumed by the io cells of the given hierarchical instance during the goal
execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
io_switching_power

The output of this command is as follows:

0.0365
770
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
771
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_activity_annotated
Returns a boolean value, as an annotation status of a given net

Syntax

get_attribute [get_nets <net_name>] is_activity_annotated

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns true, if the given net is annotated, and false, if the given net is
not annotated

Description

The is_activity_annotated attribute returns the activity annotation status.
The attribute determines whether the activity on a net is annotated or not.
If the net is captured in the specified simulation file (VCD/FSDB/SAIF) or
the SGDC file by using the activityor clockcommand, the return status will
be true. If the activity is not specified or is propagated by using the
internal activity engine, the return status will be false.

Activity annotation will not be defined, if the given net is a supply net,
synthesis-generated net, hanging net, or undriven net.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A]
is_activity_annotated

The output of this command is as follows:

true
772
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net top.w1
is_activity_annotated

The output of this command is as follows:

false

Example 3

The following command gives the activity annotation for all nets in the
design:

sg_shell> get_attribute [get_nets -filter
{defined(is_activity_annotated)}] is_activity_annotated

See Also

get_attribute, filter_collection
773
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_clock_gated
 Returns the gating status for the given flat cell

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a boolean value on successful query.

Description

The is_clock_gated attribute returns a boolean value to indicate if given flat
cell is clock gated or not. This attribute is not defined for flat cells other
than registers.

Examples

Consider the following commands:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg is_clock_gated

The output of this command is as follows

true

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg is_clock_gated

The output of this command is as follows:

false

See Also

get_attribute, filter_collection
774
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_internal_power_defined
Returns a boolean value, based on whether internal power tables
are specified for a library cell or not

Syntax

get_attribute -class lib_cell <cell_name>
is_internal_power_defined

Scope

Goal

Object

This attribute is defined on the lib_cell object type.

Return Value

Returns a boolean value.

Description

The is_internal_power_defined attribute returns true if internal power table
is specified for a library cell, otherwise it returns false.

Examples

Consider the following command:

sg_shell> get_attribute -class lib_cell my_lib.my_cell
is_internal_power_defined

The output of this command is as follows:

true

See Also

get_attribute, filter_collection
775
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
is_instantiated
Returns a boolean value as instantiation status for the given flat
cell

Syntax

get_attribute -class flat_cell <cell_name> is_instantiated

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

 Returns true, if the given cell is instantiated in the design (RTL or
netlist)

 Returns false, if the given cell is not instantiated and is inferred during
synthesis

Description

The is_instantiated attribute returns true if the flat cell is instantiated in
the design. Here, instantiated means that the cell exists in the RTL or
netlist given to the tool. A cell is not instantiated if it is inferred by
synthesis.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg is_instantiated

The output of this command is as follows:

false
776
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg is_instantiated

The output of this command is as follows:

false

See Also

get_attribute, filter_collection
777
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
leakage_power
Returns total leakage power consumed by the given flat cell or
hierarchical cell

Syntax

get_attribute -class flat_cell <cell_name> leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value on successful query

Description

The leakage_power attribute returns total leakage power consumed by the
given instance during the execution of the goal.

You can get the leakage power of a hierarchical cell by setting the
enable_hier_flattening option to yes, before the execution of the
goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg leakage_power

The output of this command is as follows:

0.0000423

Example 2

Consider the following command:
778
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg leakage_power

The output of this command is as follows:

0.0002345

Example 3

For getting leakage_power of a hierarchical cell, set the following
option, before executing the goal (this can also be specified in a.spq file):

sg_shell> set_option enable_hier_flattening yes

Run the goal:

sg_shell> set_pref dq_design_view_type hier_flat

sg_shell> get_attribute -class flat_cell top.U_MEM1
leakage_power

The output of this command is as follows:

0.036523

You can switch to flat_view from hier_flat by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
779
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
leakage_power_model
Returns leakage power model of a library cell

Syntax

get_attribute -class lib_cell <cell_name>
leakage_power_model

Scope

Goal

Object

This attribute is defined on the lib_cell object type.

Return Value

Returns a string value on successful query. Return values can be
state_dependent, cell_default, and not_defined.

Description

The leakage_power_model attribute returns leakage power model for the
given library cell. Leakage power model of a library cell is given as follows:
 If state based leakage power is defined for the given cell, then return

status will be state_dependent.

 If state based leakage power is not defined for given cell and cell default
leakage power is defined, then the return status will be
cell_default.

 If cell default leakage power is not defined for given cell, and lib default
leakage power is defined, then return status will be lib_default.

 If library default leakage power is also not defined then return status
will be not_defined.

Examples

Example 1

Consider the following command:
780
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute -class lib_cell my_lib.my_cell_1
leakage_power_model

The output of this command is as follows:

state_dependent

Example 2

Consider the following command:

sg_shell> get_attribute -class lib_cell my_lib.my_cell2
leakage_power_model

The output of this command is as follows:

lib_default

See Also

get_attribute, filter_collection
781
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
megacell_internal_power
Returns the total internal power consumed by all the megacell cells
of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
megacell_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The megacell_internal_power attribute returns the total internal power
consumed by the megacell cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
megacell_internal_power

The output of this command is as follows:

0.0365
782
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
783
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
megacell_leakage_power
Returns the total leakage power consumed by all the megacell cells
of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
megacell_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The megacell_leakage_power attribute returns the total leakage power
consumed by the megacell cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
megacell_leakage_power

The output of this command is as follows:

0.0365
784
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
785
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
megacell_switching_power
Returns the total switching power consumed by all the megacell
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
megacell_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The megacell_switching_power attribute returns the total switching power
consumed by the megacell cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
megacell_switching_power

The output of this command is as follows:

0.0365
786
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
787
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
memory_internal_power
Returns the total internal power consumed by all the memory cells
of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
memory_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The memory_internal_power attribute returns the total internal power
consumed by the memory cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
memory_internal_power

The output of this command is as follows:

0.0365
788
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
789
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
memory_leakage_power
Returns the total leakage power consumed by all the memory cells
of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
memory_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The memory_leakage_power attribute returns the total leakage power
consumed by the memory cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
memory_leakage_power

The output of this command is as follows:

0.0365
790
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
791
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
memory_switching_power
Returns the total switching power consumed by all the memory
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
memory_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The memory_switching_power attribute returns the total switching power
consumed by the memory cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
memory_switching_power

The output of this command is as follows:

0.0365
792
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
793
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
net_frequency
Returns the frequency of the flat net

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value on successful query.

Description

The net_frequency attribute returns the frequency of a flat net. The
frequency is the measurement of the number of complete AC cycles that
occur in one second for a net on an average. The frequency is measured in
Hertz (Hz).

Examples

Consider the following commands:

sg_shell> get_attribute [get_nets top.U0.A] net_frequency

The output of this command is as follows

0.0

sg_shell> get_attribute [get_nets -filter
{defined(net_frequency}] net_frequency

The above command gives frequency information of all nets

sg_shell> get_attribute -class flat_net top.w1
net_frequency

The output of this command is as follows:

400.00
794
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_attribute, filter_collection
795
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
other_internal_power
Returns the total internal power consumed by all those cells of a
hierarchy that do not fall into any standard cell category

Syntax

get_attribute -class flat_cell <cell_name>
other_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The other_internal_power attribute returns the total internal power
consumed during the goal execution by those cells of the given hierarchical
instance that do not fall into any standard cell category.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
other_internal_power

The output of this command is as follows:

0.0365
796
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
797
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
other_leakage_power
Returns the total leakage power consumed by all those cells of a
hierarchy that do not fall into any standard cell category

Syntax

get_attribute -class flat_cell <cell_name>
other_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The other_leakage_power attribute returns the total leakage power
consumed during the goal execution by those cells of the given hierarchical
instance that do not fall into any standard cell category.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
other_leakage_power

The output of this command is as follows:

0.0365
798
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
799
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
other_switching_power
Returns the total switching power consumed by all those cells of a
hierarchy that do not fall into any standard cell category

Syntax

get_attribute -class flat_cell <cell_name>
other_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The other_switching_power attribute returns the total switching power
consumed during the goal execution by those cells of the given hierarchical
instance that do not fall into any standard cell category.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
other_switching_power

The output of this command is as follows:

0.0365
800
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
801
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
power_type
Returns the category of power to which this flat cell is contributing

Syntax

get_attribute -class flat_cell <cell_name> power_type

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a string value on successful query. Return value can be
combinational, sequential, clock, black_box, memory,
iopad, and others.

Description

The power_type attribute returns the power contribution type of the given
flat cell during power estimation. That is, while categorizing the power
consumption on component basis, each cell power contribution is
distributed into one category.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg power_type

The output of this command is as follows:

sequential

Example 2

Consider the following command:
802
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg power_type

The output of this command is as follows:

combinational

See Also

get_attribute, filter_collection
803
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
net_capacitance
Returns the wire capacitance of a flat net

Syntax

get_attribute [get_nets <net_name>] net_capacitance

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value if the query is successful

Description

The net_capacitance attribute represents a float value. It specifies the total
capacitive load of the specified net, excluding the capacitance of the
connected pins. The capacitance will be expressed in the form of
picofarads, or pF.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A] net_capacitance

The output of this command is as follows:

0.5

Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net top.w1
net_capacitance
804
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The output of this command is as follows:

0.32

See Also

get_attribute, filter_collection
805
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
probability
Returns the probability of a flat net

Syntax

get_attribute [get_nets <net_name>] probability

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value if the query is successful and nothing if the query is
unsuccessful

Description

The probability attribute returns the probability of a flat net. Probability is
the percentage of the time in which the signal is high on the given net. For
example, if a net is high for 70% of the time, its probability will be 0.7.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute [get_nets top.U0.A] probability

The output of this command is as follows:

0.5

Example 2

Consider the following command:

sg_shell> get_attribute [get_nets] -class flat_net top.w1
probability
806
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The output of this command is as follows:

0.6

Example 3

The following command gives the activity information for all nets in the
design:

sg_shell> get_attribute [get_nets -filter
{defined(activity)}] probability

See Also

get_attribute, filter_collection
807
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
root_clock_for_power
Returns the root clock name for the given register flat cell

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The root_clock_for_power returns the root clock net name for the
registers. For non-register flat cells, this attribute will be undefined.

In addition, this command also returns root clock for a latch if the
pe_ignore_latch_in_inferred_clock parameter is set to no.

NOTE: The Tcl attribute for root clock and gating status is available under the
adv_power_rednso license.

Examples

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg root_clock_for_power

The output of this command is as follows:

Top.clk1

See Also

get_attribute, filter_collection
808
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sequential_internal_power
Returns the total internal power consumed by all the sequential
cells of a hierarchy

Syntax

get_attribute [get_nets <net_name>]
sequential_internal_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The sequential_internal_power attribute returns the total internal power
consumed by the sequential cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
sequential_internal_power

The output of this command is as follows:

0.0365
809
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
810
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sequential_leakage_power
Returns the total leakage power consumed by all the sequential
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
sequential_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The sequential_leakage_power attribute returns the total leakage power
consumed by the sequential cells of the given hierarchical instance during
the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
sequential_leakage_power

The output of this command is as follows:

0.0365
811
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
812
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sequential_switching_power
Returns the total switching power consumed by all the sequential
cells of a hierarchy

Syntax

get_attribute -class flat_cell <cell_name>
sequential_switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value if the query is successful

Description

The sequential_switching_power attribute returns the total switching
power consumed by the sequential cells of the given hierarchical instance
during the goal execution.

This information is available only for hierarchical instances and not leaf cell.
You need to specify the enable_hier_flattening option before
running the goal.

Examples

sg_shell> set_option enable_hier_flattening yes

sg_shell> set_pref dq_design_view_type hier_flat
sg_shell> get_attribute -class flat_cell top.U_MEM1
sequential_switching_power

The output of this command is as follows:

0.0365
813
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
You can switch to flat_view from hier_flat, by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
814
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
switching_power
Returns total switching power consumed by the given flat cell or
hierarchical cell

Syntax

get_attribute -class flat_cell <cell_name> switching_power

Scope

Goal

Object

This attribute is defined on the flat_cell object type.

Return Value

Returns a float value on successful query

Description

The switching_power attribute returns total switching power consumed by
the given instance during the execution of the goal. This switching power is
consumed by charging and discharging of the load connected to the output
pins of this flat cell.

You can get the switching power of a hierarchical cell by setting the
enable_hier_flattening option to yes, before the execution of the
goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.fifomem_reg switching_power

The output of this command is as follows:

0.0000423
815
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_cell
top.U_MEM1.U_FF1.mem_reg switching_power

The output of this command is as follows:

0.0002345

Example 3

For getting switching_power of a hierarchical cell, set the following
option, before executing the goal (this can also be specified in a.spq file):

sg_shell> set_option enable_hier_flattening yes

Run the goal:

sg_shell> set_pref dq_design_view_type hier_flat

sg_shell> get_attribute -class flat_cell top.U_MEM1
switching_power

The output of this command is as follows:

0.0365

You can switch to flat_view from hier_flat by setting the following
option:

sg_shell> set_pref dq_design_view_type flat

See Also

get_attribute, filter_collection
816
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
virtual_buffer_info
Returns virtual buffer information for the given flat net

Syntax

get_attribute -class flat_net <net_name> virtual_buffer_info

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a string with a list of pairs on successful query.

Description

The virtual_buffer_info attribute returns all virtual buffers (SpyGlass
assumed buffers) and their count on the given flat net during the execution
of the goal.

Return value consist of pairs. Each pair represents the buffer name and
their count.

Generally, SpyGlass estimates some buffers during power estimation for
clock nets and high fanout nets, based on maximum pin capacitance and
load on the net.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_net Top.mDec_net_0_2770
virtual_buffer_info

The output of this command is as follows:

{BUF_B1 2 }
817
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net Top.r1tlc_N0
virtual_buffer_info

The output of this command is as follows:

{BUF_B3 1 }

See Also

get_attribute, filter_collection
818
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
virtual_internal_power
Returns total internal power consumed by all virtual buffers on a
given flat net

Syntax

get_attribute -class flat_net <net_name>
virtual_internal_power

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value on successful query.

Description

The virtual_internal_power attribute returns total internal power consumed
by all virtual buffers on a given flat net during the execution of the goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.fifomem_reg.o2 virtual_internal_power

The output of this command is as follows:

0.0000423
819
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.mem_reg.o1 virtual_internal_power

The output of this command is as follows:

0.0002345

See Also

get_attribute, filter_collection
820
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
virtual_leakage_power
Returns total leakage power consumed by all virtual buffers on the
given flat net

Syntax

get_attribute -class flat_net <net_name>
virtual_leakage_power

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value on successful query.

Description

 The virtual_leakage_power attribute returns total leakage power
consumed by all virtual buffers on the given flat net during the execution of
the goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.fifomem_reg.I1 virtual_leakage_power

The output of this command is as follows:

0.0000423
821
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.mem_reg.o2 virtual_leakage_power

The output of this command is as follows:

0.0002345

See Also

get_attribute, filter_collection
822
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
virtual_switching_power
Returns total switching power consumed by all virtual buffers on
the given flat net

Syntax

get_attribute -class flat_net <net_name>
virtual_switching_power

Scope

Goal

Object

This attribute is defined on the flat_net object type.

Return Value

Returns a float value on successful query.

Description

The virtual_switching_power attribute returns total switching power
consumed by all virtual buffers on the given flat net during the execution of
the goal.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.fifomem_reg.i1 virtual_switching_power

The output of this command is as follows:

0.0000423
823
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class flat_net
top.U_MEM1.U_FF1.mem_reg.i2 virtual_switching_power

The output of this command is as follows:

0.0002345

See Also

get_attribute, filter_collection
824
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
vt_classification
Returns threshold voltage group of a library cell

Syntax

get_attribute -class lib_cell <cell_name> vt_classification

Scope

Goal

Object

This attribute is defined on the lib_cell object type.

Return Value

Returns a string value on successful query.

Description

The vt_classification attribute gives the threshold voltage group of given
library cell during the power estimation. This can be based on the
threshold_voltage_group attribute in the library or on the
vt_mix_percentage SGDC command. The user can create own groups
using the vt_mix_percentage command, even if the
threshold_voltage_group attribute is not specified in the .lib file. This
attribute returns a resultant voltage group assigned to each cell using .lib
information and vt_mix_percentage information.

Examples

Example 1

Consider the following command:

sg_shell> get_attribute -class lib_cell
SR50_N_25_1.2_CORE_UHD.db.BF006Q vt_classification

The output of this command is as follows:

-cell:*BF*
825
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Example 2

Consider the following command:

sg_shell> get_attribute -class lib_cell typical2.AO21X2
vt_classification

The output of this command is as follows:

-lib:typical2

See Also

get_attribute, filter_collection
826
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
Power Verify Attributes

The following table describes the various Tcl application attributes that are
a part of the SpyGlass Power Verify solution.

Attribute Name Object Type Description
clamp_value pwr_isolation_node string Displays the clamp

value of the isolation
strategy

control_port pwr_psw_node string Displays the control
signal of power switch

ground_supply pwr_intent_node string Displays the ground
supply name

input_supply_port pwr_psw_node string Displays the input
supply of power switch

input_supply_set pwr_level_shift_nod
e

string Displays the input
supply set of level
shifter

isolation_ground_net pwr_isolation_node string Displays the isolation
ground net of the
isolation strategy

isolation_power_net pwr_isolation_node string Displays the isolation
power supply of the
isolation strategy

isolation_sense pwr_isolation_node string Displays the isolation
sense of the isolation
strategy

isolation_signal pwr_isolation_node string Displays the isolation
signal of the isolation
strategy

location pwr_isolation_node
pwr_level_shift_nod
e

string Displays the location of
the applied strategy

name pwr_isolation_node
pwr_retention_node
pwr_psw_node
pwr_level_shift_nod
e

string Displays the name of
the strategy
827
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
output_supply_port pwr_psw_node string Displays the input
supply of power switch

output_supply_set pwr_level_shift_nod
e

string Displays the output
supply set of level
shifter

power_domain pwr_intent_node string Displays the power
domain name

power_supply pwr_intent_node string Displays the power
supply name

restore_signal pwr_retention_node string Displays the restore
signal of the retention
strategy

retention_ground_su
pply

pwr_retention_node string Displays the retention
ground supply of the
retention strategy

retention_power_sup
ply

pwr_retention_node string Displays the retention
power supply of the
retention strategy

save_signal pwr_retention_node string Displays the save
signal of the retention
strategy

sink pwr_isolation_node string Displays the sink
supply of an applied
strategy

source pwr_isolation_node
pwr_level_shift_nod
e

string Displays the source
supply of an applied
strategy

supply_name pwr_supply_node string Displays the supply
name corresponding to
a design net

rule pwr_level_shift_nod
e

string Displays the rule of
level shifter strategy

type pwr_supply_node string Displays the type of
supply net

voltage_range_min pwr_intent_node float Returns the minimum
value to voltage range

voltage_range_max pwr_intent_node float Returns the maximum
value to voltage range

Attribute Name Object Type Description
828
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
clamp_value
Displays the clamp value of the isolation strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]]
clamp_value

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node object.

Return Value

Returns a string value on successful query.

Description

The clamp_value attribute gives the clamp value of the isolation strategy
applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] clamp_value

The output of this command is as follows:

1

See Also

get_attribute
829
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
control_port
Displays the control signal of power switch

Syntax

get_attribute [get_power_switch_info [get_cells <cell-
name>]] control_port

Scope

Goal

Object

This attribute is defined on the pwr_psw_node object.

Return Value

Returns a string value on successful query.

Description

The control_port attribute gives the control signal of the power switch
corresponding to cell name.

Examples

Consider the following command:

sg_shell> get_attribute [get_power_switch_info [get_cells
top.sw1.psw]] control_port

The output of this command is as follows:

top.sw1.CTRL

See Also

get_attribute
830
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
input_supply_port
Displays the input supply of power switch

Syntax

get_attribute [get_power_switch_info [get_cells <cell-
name>]] input_supply_port

Scope

Goal

Object

This attribute is defined on the pwr_psw_node object.

Return Value

Returns a string value on successful query.

Description

The input_supply_port attribute gives the input supply of the power switch
corresponding to cell name.

Examples

Consider the following command:

sg_shell> get_attribute [get_power_switch_info [get_cells
top.sw1.psw]] input_supply_port

The output of this command is as follows:

VDD1

See Also

get_attribute
831
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
input_supply_set
Displays the input supply set of level shifter

Syntax

get_attribute [get_level_shifter _info [get_cells
<cellname>]] input_supply_set

Scope

Goal

Object

This attribute is defined on the pwr_level_shift_node object.

Return Value

Returns a string value on successful query.

Description

The input_supply_set attribute gives the input supply set of the
power switch corresponding to cell name.

Examples

Consider the following command:

sg_shell> get_attribute [get_level_shifter _info [get_cells
top.sw1.psw]] input_supply_set

The output of this command is as follows:

ss1

See Also

get_attribute
832
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
isolation_ground_net
Displays the isolation ground net of the isolation strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]

] isolation_ground_net

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node object.

Return Value

Returns a string value on successful query.

Description

The isolation_ground_net attribute gives the isolation ground
supply of the isolation strategy applied on the cell.

Examples

Consider the following command:

sg_shell> sg_shell> get_attribute [get_isolation_info [
get_cells top.iso]] isolation_ground_net

The output of this command is as follows:

VSS

See Also

get_attribute
833
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
isolation_power_net
Displays the isolation power supply of the isolation strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] isolation_power_net

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node object.

Return Value

Returns a string value on successful query.

Description

The isolation_power_net attribute gives the isolation power supply of the
isolation strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] isolation_power_net

The output of this command is as follows:

VDD

See Also

get_attribute
834
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
isolation_sense
Displays the isolation sense of the isolation strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] isolation_sense

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node object.

Return Value

Returns a string value on successful query.

Description

The isolation_sense attribute gives the isolation sense of the isolation
strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] isolation_sense

The output of this command is as follows:

high

See Also

get_attribute
835
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
isolation_signal
Displays the isolation signal of the isolation strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] isolation_signal

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node object.

Return Value

Returns a string value on successful query.

Description

The isolation_signal attribute gives the isolation signal of the isolation
strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] isolation_signal

The output of this command is as follows:

top.iso

See Also

get_attribute
836
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
location
Displays the location of the applied strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] location

get_attribute [get_level_shifter_info [get_cells <cell-
name>]] location

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node and
pwr_level_shift_node object.

Return Value

Returns a string value on successful query.

Description

The location attribute gives the location of the strategy applied (isolation or
level shifter) on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] location

sg_shell> get_attribute [get_level_shifter_info [get_cells
top.ls1]] location

The output of this command is as follows:

parent
837
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_attribute
838
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
name
Displays the name of the strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]]

name
get_attribute [get_retention_info [get_cells <cell-name>]]

name
get_attribute [get_power_switch_info [get_cells <cell-
name>]]

name
get_attribute [get_level_shifter_info [get_cells <cell-
name>]]

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node,
pwr_retention_node, pwr_psw_node, and
pwr_level_shift_node objects.

Return Value

Returns a string value on successful query.

Description

The name attribute gives the name of the strategy applied (isolation,
retention, power switch, or level shifter) on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells

top.iso]] name
839
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
The output of this command is as follows:

iso1

sg_shell> get_attribute [get_retention_info [get_cells

top.ret]] name

The output of this command is as follows:

ret1

sg_shell> get_attribute [get_power_switch_info [get_cells

top.psw]] name

The output of this command is as follows:

psw1

sg_shell> get_attribute [get_level_shifter_info [get_cells

top.ls]] name

The output of this command is as follows:

ls1

See Also

get_attribute
840
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
output_supply_port
Displays the input supply of power switch

Syntax

get_attribute [get_power_switch_info [get_cells <cell-
name>]] output_supply_port

Scope

Goal

Object

This attribute is defined on the pwr_psw_node object.

Return Value

Returns a string value on successful query.

Description

The output_supply_port attribute gives the output supply of the power
switch corresponding to cell name.

Examples

Consider the following command:

sg_shell> get_attribute [get_power_switch_info [get_cells
top.sw1.psw]] output_supply_port

The output of this command is as follows:

VDDg

See Also

get_attribute
841
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
output_supply_set
Displays the input supply set of level shifter

Syntax

get_attribute [get_level_shifter _info [get_cells
<cellname>]] output_supply_set

Scope

Goal

Object

This attribute is defined on the pwr_level_shift_node object.

Return Value

Returns a string value on successful query.

Description

The output_supply_set attribute gives the output supply set of the
power switch corresponding to cell name.

Examples

Consider the following command:

sg_shell> get_attribute [get_level_shifter _info [get_cells
top.sw1.psw]] output_supply_set

The output of this command is as follows:

ss2

See Also

get_attribute
842
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
power_domain
Displays the power domain name

Syntax

get_attribute [get_pwr_intent [get_cells < cell_name > |
get_pins < pin_name > | get_ports < port_name >]]
power_domain

Scope

Goal

Object

This attribute is defined on the pwr_intent_node object.

Return Value

Returns a string value on successful query.

Description

The power_domain attribute gives the name of the power domain.

Examples

Consider the following command:

sg_shell> get_attribute [get_pwr_intent [get_cells
top.inst1]] power_domain

The output of this command is as follows:

top

See Also

get_attribute
843
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
power_supply
Displays the power supply name

Syntax

get_attribute [get_pwr_intent [get_cells < cell_name > |
get_pins < pin_name > | get_ports < port_name >]]
power_supply

Scope

Goal

Object

This attribute is defined on the pwr_intent_node object.

Return Value

Returns a string value on successful query.

Description

The power_supply attribute gives the name of the power supply.

Examples

Consider the following command:

sg_shell> get_attribute [get_pwr_intent [get_cells
top.inst1]] power_supply

The output of this command is as follows:

VTOP

See Also

get_attribute
844
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
ground_supply
Displays the ground supply name

Syntax

get_attribute [get_pwr_intent [get_cells < cell_name > |
get_pins < pin_name > | get_ports < port_name >]]
ground_supply

Scope

Goal

Object

This attribute is defined on the pwr_intent_node object.

Return Value

Returns a string value on successful query.

Description

The ground_supply attribute gives the name of the ground supply.

Examples

Consider the following command:

sg_shell> get_attribute [get_pwr_intent [get_cells
top.inst1]] ground_supply

The output of this command is as follows:

VSS

See Also

get_attribute
845
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
restore_signal
Displays the restore signal of the retention strategy

Syntax

get_attribute [get_retention_info [get_cells <cell-name>]
] restore_signal

Scope

Goal

Object

This attribute is defined on the pwr_retention_node object.

Return Value

Returns a string value on successful query.

Description

The restore_signal attribute gives the restore signal of the retention
strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_retention_info [get_cells
top.inst1.buf]] restore_signal

The output of this command is as follows:

top.inst1.res

See Also

get_attribute
846
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
retention_ground_supply
Displays the retention ground supply of the retention strategy

Syntax

get_attribute [get_retention_info [get_cells <cell-name>]
] retention_ground_supply

Scope

Goal

Object

This attribute is defined on the pwr_retention_node object.

Return Value

Returns a string value on successful query.

Description

The retention_ground_supply attribute gives the retention ground supply
of the retention strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_retention_info [get_cells
top.inst1.buf]] retention_ground_supply

The output of this command is as follows:

VSS

See Also

get_attribute
847
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
retention_power_supply
Displays the retention power supply of the retention strategy

Syntax

get_attribute [get_retention_info [get_cells <cell-name>]
] retention_power_supply

Scope

Goal

Object

This attribute is defined on the pwr_retention_node object.

Return Value

Returns a string value on successful query.

Description

The retention_power_supply attribute gives the retention power supply of
the retention strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_retention_info [get_cells
top.inst1.buf]] retention_power_supply

The output of this command is as follows:

VDD

See Also

get_attribute
848
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
save_signal
Displays the save signal of the retention strategy

Syntax

get_attribute [get_retention_info [get_cells <cell-name>]
] save_signal

Scope

Goal

Object

This attribute is defined on the pwr_retention_node object.

Return Value

Returns a string value on successful query.

Description

The save_signal attribute gives the save signal of the retention strategy
applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_retention_info [get_cells
top.inst1.buf]] save_signal

The output of this command is as follows:

top.inst1.save

See Also

get_attribute
849
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
sink
Displays the sink supply of an applied strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] sink

get_attribute [get_level_shifter_info [get_cells <cell-
name>]] sink

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node and
pwr_level_shift_node objects.

Return Value

Returns a string value on successful query.

Description

The sink attribute gives the sink supply of the strategy applied on the cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] sink

sg_shell> get_attribute [get_level_shifter_info [get_cells
top.ls1]] sink

The output of this command is as follows:

SS1

See Also

get_attribute
850
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
source
Displays the source supply of an applied strategy

Syntax

get_attribute [get_isolation_info [get_cells <cell-name>]
] source

get_attribute [get_level_shifter_info [get_cells <cell-
name>]] source

Scope

Goal

Object

This attribute is defined on the pwr_isolation_node and
pwr_level_shift_node objects.

Return Value

Returns a string value on successful query.

Description

The source attribute gives the source supply of the strategy applied on the
cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_isolation_info [get_cells
top.iso]] source

sg_shell> get_attribute [get_level_shifter_info [get_cells
top.ls1]] source

The output of this command is as follows:

SS2
851
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
See Also

get_attribute
852
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
supply_name
Displays the supply name corresponding to a design net

Syntax

get_attribute [get_supply_info [get_nets <net-name>]]
supply_name

Scope

Goal

Object

This attribute is defined on the pwr_supply_node object.

Return Value

Returns a string value on successful query.

Description

The supply_name attribute gives the supply name corresponding to a
design net.

Examples

Consider the following command:

sg_shell> get_attribute [get_supply_info [get_nets top.VDD]
] supply_name

The output of this command is as follows:

VDD

See Also

get_attribute
853
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
rule
Displays the rule of level shifter strategy

Syntax

get_attribute [get_level_shifter_info [get_cells <cell-
name>]] rule

Scope

Goal

Object

This attribute is defined on the pwr_level_shift_node objects.

Return Value

Returns a string value on successful query.

Description

The rule attribute gives the type of the level shifter strategy applied on the
cell.

Examples

Consider the following command:

sg_shell> get_attribute [get_level_shifter_info [get_cells
top.ls1]] rule

The output of this command is as follows:

Low_To_High

See Also

get_attribute
854
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
type
Displays the type of supply net

Syntax

get_attribute [get_supply_info [get_nets <net-name>]] type

Scope

Goal

Object

This attribute is defined on the pwr_supply_node object.

Return Value

Returns a string value on successful query.

Description

The rule attribute gives the type of the supply net.

Examples

Consider the following command:

sg_shell> get_attribute [get_supply_info [get_nets top.VDD]
] rule

The output of this command is as follows:

power

See Also

get_attribute
855
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
voltage_range_min
Returns the minimum value to voltage range

Syntax

get_attribute [get_pwr_intent [get_cells < cell_name > |
get_pins < pin_name > | get_ports < port_name >]]
voltage_range_min

Scope

Goal

Object

This attribute is defined on the pwr_intent_node object.

Return Value

Returns a float value on successful query.

Description

The voltage_range_min attribute gives the minimum value to voltage
range.

Examples

Consider the following command:

sg_shell> get_attribute [get_pwr_intent [get_cells
top.inst1]] voltage_range_min

The output of this command is as follows:

0.6000000238418579

See Also

get_attribute
856
Synopsys, Inc.

Debug Commands

SpyGlass Tcl Commands
voltage_range_max
Returns the maximum value to voltage range

Syntax

get_attribute [get_pwr_intent [get_cells < cell_name > |
get_pins < pin_name > | get_ports < port_name >]]
voltage_range_max

Scope

Goal

Object

This attribute is defined on the pwr_intent_node object.

Return Value

Returns a float value on successful query.

Description

The voltage_range_max attribute gives the maximum value to voltage
range.

Examples

Consider the following command:

sg_shell> get_attribute [get_pwr_intent [get_cells
top.inst1]] voltage_range_max

The output of this command is as follows:

0.6000000238418579

See Also

get_attribute
857
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
Miscellaneous Commands
Miscellaneous commands include commands related to shell features. The
following table describes the various miscellaneous commands:

Command Description
alias Creates an alias for a group of word(s)
benchmark Monitors run time and memory usage between two

designated check points in sg_shell
capture Captures output (stdout or stderr) of script to a file
gui_set_preference Specifies SpyGlass preferences using Tcl Shell
gui_add_menu Creates a new toolbar menu item and returns the Id
show_error Displays the last error that occurred during a particular

command invocation along with its trace
source Evaluates a file or resource as a Tcl script
unalias Removes an alias set for a group of word(s)
858
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
alias
Creates an alias for a group of word(s)

Syntax

alias <alias-name>
[<expansion>]

Scope

Any

Return Value

String, <alias-name>, if a new alias is being created. Otherwise,
returns nothing.

Description

The alias command creates an alias for a group of words, the first of which
should be an existing command. This command is like the usual UNIX
shell's alias command.

The alias command can be used in the following ways:
 To display the list of existing aliases

Specify the alias command without any argument to display a list of
existing aliases. This command returns nothing.

 To display the value of a particular alias

Specify the command, alias <alias-name>, to display the value of
the specified alias (<alias-name>). This command returns nothing.

 To create a new alias

Specify the command, alias <alias-name> [<expansion>], to
create a new alias of the specified name (<alias-name>), which
expands to the words as specified in the expansion (<expansion>).

This command returns the string, <alias-name>.

Examples

sg_shell> alias np { new_project start.prj -projectwdir ./
859
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
start }
new_project start.prj -projectwdir ./start
sg_shell> np

sg_shell> alias ho { help -option }
help -option
sg_shell> ho

sg_shell> alias
[ho] -> help -option
[np] -> new_project start.prj -projectwdir ./start
[quit] -> exit

sg_shell> alias np
[np] -> new_project start.prj -projectwdir ./start

See Also

unalias
860
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
benchmark
Monitors run-time and memory usage between two designated
check points in sg_shell

Syntax

benchmark
[-start <check-point-name>] | [-show <data-object>]
[-h]

Scope

Any

Return Value

 Returns a data object when the -start argument is specified

 Returns nothing when the -show argument is specified

Description

The benchmark command monitors runtime and memory usage at various
stages. The benchmark data shown is calculated with respect to some
previous check points as marked by the benchmark -start command.
Therefore, sg_shell first determines a check point by using the
benchmark -start point-1 command, and stores the result in some
variable. Then, at a later time, whenever you wish to see the details such
as memory usage and run time, with respect to the check-point "point-1",
you can specify the command, benchmark -show $data.

The invocation benchmark -start point-1 returns a list containing
some data. The contents of this list are as follows:

{ malloc'ed-memory heap-memory user-time system-time
cpu-time elapsed-time check-point-name }

The data in the above list denotes the absolute figures at the time of
fetching this list. This list should be stored in some variable, say
check_point_start_data. This variable should be used to see the
incremental statistics at any later stage by using the command,
benchmark -show $check_point_start_data.
861
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
Arguments

This command has the following arguments:

-h

(Optional) Prints memory figures in human readable units, such as KB
and MB.

-show <data-object>

(Optional) Displays the information for the specified data,
<data-object>.

-start <check-point-name>

(Optional) Marks a start check point for benchmarking.

Examples

sg_shell> set lnk_dsg_data [benchmark -start
link_design_start]
mmem 11008308 hmem 88879104 usr_tm 0.11 sys_tm 0.11 cpu_tm
0.22 elapsed_tm 1252041322.090611 name link_design_start

sg_shell> link_design
.
.
.
sg_shell> benchmark -show $lnk_dsg_data
Benchmark (memory/time related) information

check-point: link_design_start
malloc'ed memory = 35426708 bytes (24418400 bytes)
heap size = 118157312 bytes (29278208 bytes)
user time = 2.480 sec (2.370 sec)
system time = 1.060 sec (0.950 sec)
cpu time = 3.540 sec (3.320 sec)

Note: figures in the parentheses show incremental data wrt
the nearest check-point named 'link_design_start'
862
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
(Use '-h' for human readable units)

sg_shell> benchmark -show $lnk_dsg_data -h
Benchmark (memory/time related) information

check-point: link_design_start
malloc'ed memory = 33.79 MB (23.29 MB)
heap size = 112.68 MB (27.92 MB)
user time = 2.480 sec (2.370 sec)
system time = 1.060 sec (0.950 sec)
cpu time = 3.540 sec (3.320 sec)

Note: figures in the parentheses show incremental data wrt
the nearest check-point named 'link_design_start'
863
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
capture
Captures output (stdout or stderr) of script to a file

Syntax

capture
[-stdout] [-stderr] [-append]
<output-file>
<command-string>

Scope

Any

Return Value

None

Description

The capture command redirects the output (stdout or stderr) of the
specified command, <command-string>, to the specified output file,
<output-file>. Here, <command-string> must be provided in curly
brackets {}.

If there is any error generated by a command, that error is also captured in
the specified file depending on whether the error is flagged on stdout or
stderr.

For example, consider that an error has been reported during the execution
of the write_report <rpt_name> command as part of the following
command:

sg_shell> capture my.rpt {write_report <rpt_name>}

In this case, the error is captured in the my.rpt file itself.

The capture command is useful to store the output of commands
generating voluminous output, such as the link_design, run_goal, and
write_report commands.

Arguments

This command has the following arguments:
864
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
-stdout

(Optional) Redirects stdout to the specified output file.

-stderr

(Optional) Redirects stderr to the specified output file.

-append

(Optional) Appends the output to the specified output file. If the
specified output file does not exist, sg_shell creates that output file.

<output-file>

Specifies the output file in which the output needs to be stored.

<command-string>

Specifies one or more command strings.

Examples

sg_shell> capture -stdout output.log {link_design}

In the above example, only stdout (default) part of the output from
link_design is captured and written into output.log. If output.log exists, the
content of the file is overwritten. If output.log does not exist, it will be
created. Nothing is returned.

sg_shell> capture -stderr output.log {link_design}

In the above example, only stderr part of the output from link_design is captured
and written into output.log. If output.log exists, the content of the file is overwritten. If
output.log does not exist, it will be created. Nothing is returned.

sg_shell> capture -stdout -stderr output.log {link_design}

In the above example, both stdout and stderr parts of the output from
link_design is captured and written into output.log. If output.log exists, the content of
the file is overwritten. If output.log does not exist, it will be created. Nothing is
returned.

sg_shell> capture -append -stdout output.log {link_design}

In the above example, only stdout part of the output from link_design is
865
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
captured and written into output.log. If output.log exists, the content of the
file is appended. If output.log does not exist, it will be created. Nothing is
returned.
866
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
gui_set_preference
Specifies SpyGlass preferences using Tcl Shell

Syntax

gui_set_preference <preference-key> <preference-value>

Scope

Any

Return Value

None

Description

The gui_set_preference command is used to set the SpyGlass preferences
using Tcl Shell User Interface.

Sanity checks are used to check the compatibility of the provided value
with the allowed set of values for the given preference. See the Setting
SpyGlass Preferences Using Tcl Shell Interface section for more details about
using this command.

Arguments

This command has the following arguments:

<preference-key>

Specifies a string that is used to uniquely identify a particular
preference.

<preference-value>

Specifies the value that should be set to the given preference.

Examples

sg_shell> gui_set_preference AutoReloadProject true

In the above example, AutoReloadProject is a boolean type
preference and can have any of the true, false, yes, no, 1, and 0
867
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
values.
868
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
gui_add_menu
Creates a new toolbar menu item and returns the Id

Syntax

gui_add_menu
[-label label_name]
[-icon icon_name]
[-callback callback_function]
[-in menu_id]
[-args list_of_callback_arguments]
[-window window_name]
[-context context]

Scope

Any

Return Value

None

Description

The gui_add_menu command is used to create a new toolbar menu item
and return the Id.

Arguments

This command has the following arguments:

-args <list_of_callback_arguments>

Specify the arguments for the callback function.

-callback <callback_function>

Specifies the callback function associates with the menu item.

-context <rmb|context>

Used to add menu item to (RMB) context menu
869
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
-icon <icon_name>

Specifies an icon to the menu item.

-in <menu_id>

Specifies the parent menu id.

-label <label_name>

Specifies a label to the menu item.

-window <window_name(s)>

Used to specify windows to add menu item.

Examples

NA
870
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
show_error
Displays the last error that occurred during a particular command
invocation along with its trace

Syntax

show_error

Scope

Any

Return Value

None

Description

The show_error command displays the last error that occurred during a
particular command execution along with its trace.

Examples

sg_shell> this_is_an_erroneous_command
invalid command name "this_is_an_erroneous_command"
sg_shell> show_error
Detailed Error Trace

invalid command name "this_is_an_erroneous_command"
while executing

"this_is_an_erroneous_command"
871
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
source
Evaluates a file or resource as a Tcl script

Syntax

source [-encoding <encoding_name>]
[-continue_on_error]
<file_name>

Scope

Any

Return Value

Return value of the last command executed in the script <file_name>

Description

The source command takes the contents of the specified file or resource
and passes it to the Tcl interpreter as a text script. The return value of this
command is the return value of the last command executed in the script. If
an error occurs in evaluating the contents of the script, the source
command returns that error. If a return command is invoked from within
the script, the remainder of the file is skipped and the source command
returns normally with the result from the return command.

The end-of-file character for files is "\32" (^Z) for all platforms. The source
command reads files up to this character. This restriction does not exist for
the read or gets commands, allowing for files containing code and data
segments (scripted documents). If you require a "^Z" in code for string
comparison, you can use "\032" or "\u001a", which will be safely
substituted by the Tcl interpreter into "^Z".

Arguments

This command has the following arguments:

-continue_on_error

Use this option to continue with the execution of the rest of the script even
after encountering errors.
872
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
NOTE: The -continue_on_error option, similar to the -tcl_file_continue_on_error option for
startup files, should be used only when you require all the errors, such as ADC
syntax errors, to be reported in one go. Refer to Continue-on-error mechanism for
the Tcl startup file section for more details on continue-on-error mechanism.

-encoding

Use this option to specify encoding of the data stored in the script file
<file_name>. When the -encoding option is omitted, the system
encoding is assumed.

file_name

Use this option to specify the Tcl script file to be read.

Examples

Consider a Tcl command file, cmds.tcl, as follows:

cmds.tcl
new_project -f test.prj
read_file test.v
error in the below line
no_such_command -opt1 -opt2
puts "Compiling design ..."
compile_design
puts "Compilation finished"
run_design_query_proc [get_cells]
puts "Design query proc executed"
puts "Finished"
========

If you now source the above file in sg_shell, compilation would stop at line
number 4, and the source command exits and reports an error at line
number 4.

If you want to skip line number 4 and continue even after encountering
errors in the startup file, use the -continue_on_error option as follows:

sg_shell> source cmds.tcl -continue_on_error
873
Synopsys, Inc.

Miscellaneous Commands

SpyGlass Tcl Commands
unalias
Removes an alias set for a group of word(s)

Syntax

unalias <alias-name>

Scope

Any

Return Value

None

Description

The unalias command is used to unalias a previously set alias for a group
of words. This command is similar to the UNIX shell's unalias command.

Examples

sg_shell> alias np { new_project start.prj -projectwdir ./
start }
new_project start.prj -projectwdir ./start
sg_shell> unalias np

See Also

alias
874
Synopsys, Inc.

Appendix A: Deprecated
Command Names and
Their Corresponding
New Commands
The following table lists the old commands and their corresponding new
commands in Console:

Old Command New Command
set_option current_methodology current_methodology
set_option stop_module set_option stop
set_option define_macro set_option define <macro>
set_option
include_file_search_paths

set_option incdir <path>

set_option
verilog_library_extensions

set_option libext <exts>

set_option verilog_library_files set_option v <files>
set_option
verilog_library_directories

set_option y <dirs>

set_option verilog_standard set_option enableSV <yes | no>
set_option disablev2k <yes | no>

set_option allow_duplicate_modules set_option allow_module_override <yes
| no>

set_option vhdl_standard set_option 87 <yes | no>
set_option work_logical_name set_option work <arg>
875
Synopsys, Inc.

Appendix A: Deprecated Command Names and Their Corresponding New Commands
set_option vhdl_sort_method set_option sort <yes | no>
set_option hdl_parameter set_option param <parameter>
set_option analyze_designware set_option dw <yes | no>
set_option black_boxes set_option inferblackbox <yes | no>

set_option inferblackbox_rtl <yes | no>
set_option nobb <yes | no>

set_option message_printing_limit set_option lvpr <value>
set_option define_synthesis_pragma set_option pragma <list-of-pragmas>
set_option enable_clock_gating set_option sgsyn_clock_gating
set_option clock_gating_threshold set_option

sgsyn_clock_gating_threshold
set_option memory_size_limit set_option mthresh <value>
set_option handle_large_memory set_option handlememory <yes | no>
set_option enable_save_restore set_option enable_save_restore
set_option precomp_lib_check set_option hdllibdu <yes | no>
set_option cache_directory set_option cachedir <dir-name>
add_file read_file
create_report set_option report
create_report -file set_option reportfile
create_report -maxsize set_option report_max_size
create_report -style set_option report_style
define_precomp_lib set_option libhdlfiles <lib-name>
define_lib_map set_option lib <lib-name>
define_goal_setup current_goal

Old Command New Command
876
Synopsys, Inc.

Appendix B: Application
Attributes
The following is a list of the applicaiton attributes:
 List of Built-in Attributes

 List of Product Attributes
877
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
List of Built-in Attributes
The following is the list of built-in attributes defined in SpyGlass:

Attribute Name Object Type
area lib_cell float
area du_cell float
area flat_cell float
always_on lib_cell boolean
always_on lib_pin boolean
base_name lib string
base_name lib_cell string
base_name lib_pin string
base_name design string
base_name du_cell string
base_name du_pin string
base_name du_port string
base_name du_net string
base_name flat_cell string
base_name flat_pin string
base_name flat_port string
base_name flat_net string
bus_width lib_pin int
bus_width du_pin int
bus_width du_port int
bus_width du_net int
bus_width flat_pin int
bus_width flat_port int
bus_width flat_net int
capacitance lib_pin float
capacitive_load_unit lib string
clk_name clock string
clk_net clock collection
878
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
clock_gate_clock_pin lib_pin boolean
clock_gate_clock_pin du_pin boolean
clock_gate_clock_pin flat_pin boolean
clock_gate_enable_pin lib_pin boolean
clock_gate_enable_pin du_pin boolean
clock_gate_enable_pin flat_pin boolean
clock_gate_obs_pin lib_pin boolean
clock_gate_obs_pin du_pin boolean
clock_gate_obs_pin flat_pin boolean
clock_gate_out_pin lib_pin boolean
clock_gate_out_pin du_pin boolean
clock_gate_out_pin flat_pin boolean
clock_gate_test_pin lib_pin boolean
clock_gate_test_pin du_pin boolean
clock_gate_test_pin flat_pin boolean
clock_type clock string
clocks flat_cell collection
clocks flat_pin collection
clocks clock_domain collection
connection_class lib_pin string
current_design adc_node string
current_unit lib string
default_cell_leakage_power lib float
default_connection_class lib string
default_fanout_load lib float
default_inout_pin_cap lib float
default_input_pin_cap lib float
default_leakage_power_density lib float
default_max_capacitance lib float
default_max_fanout lib float
default_max_transition lib float
default_operating_conditions lib string

Attribute Name Object Type
879
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
default_output_pin_cap lib float
default_power_rail lib string
default_threshold_voltage_group lib string
default_wire_load lib string
default_wire_load_area lib float
default_wire_load_capacitance lib float
default_wire_load_mode lib string
default_wire_load_resistance lib float
default_wire_load_selection lib string
define_cell_area lib string
delay_model lib string
direction lib_pin string
direction du_pin string
direction du_port string
direction du_net string
direction flat_pin string
direction flat_port string
direction flat_net string
domain flat_cell collection
domain flat_pin collection
domain clock collection
domain_name clock_domain string
dont_touch lib_cell boolean
dont_touch du_cell boolean
dont_touch flat_cell boolean
dont_use lib_cell boolean
dont_use du_cell boolean
dont_use flat_cell boolean
driver_type lib_pin string
edgelist clock string
fanout_load lib_pin float
file_name lib string

Attribute Name Object Type
880
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
file_name lib_cell string
file_name design string
file_name du_cell string
file_name du_pin string
file_name du_port string
file_name du_net string
file_name flat_cell string
file_name flat_pin string
file_name flat_port string
file_name flat_net string
file_name adc_node string
file_name clock string
file_name message string
from_lib_pin lib_timing_arcs collection
full_name lib string
full_name lib_cell string
full_name lib_pin string
full_name design string
full_name du_cell string
full_name du_pin string
full_name du_port string
full_name du_net string
full_name flat_cell string
full_name flat_pin string
full_name flat_port string
full_name flat_net string
function lib_pin string
has_arglabels message boolean
index lib_pin int
index flat_pin int
index flat_port int
index flat_net int

Attribute Name Object Type
881
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
input_voltage_range lib_cell string
input_voltage_range lib_pin string
is_async_pin lib_pin boolean
is_async_pin du_pin boolean
is_async_pin flat_pin boolean
is_blackbox design boolean
is_blackbox du_cell boolean
is_blackbox flat_cell boolean
is_celldefine design boolean
is_celldefine du_cell boolean
is_celldefine flat_cell boolean
is_clear_pin lib_pin boolean
is_clear_pin du_pin boolean
is_clear_pin flat_pin boolean
is_clock_gating_cell lib_cell boolean
is_clock_gating_cell design boolean
is_clock_gating_cell du_cell boolean
is_clock_gating_cell flat_cell boolean
is_clock_pin lib_pin boolean
is_clock_pin du_pin boolean
is_clock_pin flat_pin boolean
is_combinational lib_cell boolean
is_combinational design boolean
is_combinational du_cell boolean
is_combinational flat_cell boolean
is_data_pin lib_pin boolean
is_data_pin du_pin boolean
is_data_pin flat_pin boolean
is_empty design boolean
is_empty du_cell boolean
is_empty flat_cell boolean
is_enable_pin lib_pin boolean

Attribute Name Object Type
882
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
is_enable_pin du_pin boolean
is_enable_pin flat_pin boolean
is_flop lib_cell boolean
is_flop design boolean
is_flop du_cell boolean
is_flop flat_cell boolean
is_generated du_net boolean
is_generated flat_net boolean
is_ground_pin lib_pin boolean
is_ground_pin du_pin boolean
is_ground_pin flat_pin boolean
is_hierarchical design boolean
is_hierarchical du_cell boolean
is_hierarchical flat_cell boolean
is_isolated lib_pin boolean
is_isolated du_pin boolean
is_isolated flat_pin boolean
is_isolation_cell lib_cell boolean
is_isolation_cell du_cell boolean
is_isolation_cell flat_cell boolean
is_latch lib_cell boolean
is_latch design boolean
is_latch du_cell boolean
is_latch flat_cell boolean
is_leaf design boolean
is_leaf du_cell boolean
is_leaf flat_cell boolean
is_level_shifter lib_cell boolean
is_level_shifter design boolean
is_level_shifter du_cell boolean
is_level_shifter flat_cell boolean
is_lib design boolean

Attribute Name Object Type
883
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
is_lib du_cell boolean
is_lib flat_cell boolean
is_load_pin lib_pin boolean
is_load_pin du_pin boolean
is_load_pin flat_pin boolean
is_macro design boolean
is_macro du_cell boolean
is_macro_cell lib_cell boolean
is_macro_cell du_cell boolean
is_macro_cell flat_cell boolean
is_memory_cell lib_cell boolean
is_memory_cell design boolean
is_memory_cell du_cell boolean
is_memory_cell flat_cell boolean
is_multidim du_net boolean
is_multidim flat_net boolean
is_multiple_driver flat_net boolean
is_mux lib_cell boolean
is_mux design boolean
is_mux du_cell boolean
is_mux flat_cell boolean
is_mux_select_pin lib_pin boolean
is_mux_select_pin du_pin boolean
is_mux_select_pin flat_pin boolean
is_pad lib_pin boolean
is_pad du_pin boolean
is_pad flat_pin boolean
is_pad_cell lib_cell boolean
is_pad_cell design boolean
is_pad_cell du_cell boolean
is_pad_cell flat_cell boolean
is_pg_pin lib_pin boolean

Attribute Name Object Type
884
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
is_pg_pin du_pin boolean
is_pg_pin flat_pin boolean
is_power_pin lib_pin boolean
is_power_pin du_pin boolean
is_power_pin flat_pin boolean
is_preset_pin lib_pin boolean
is_preset_pin du_pin boolean
is_preset_pin flat_pin boolean
is_primitive design boolean
is_primitive du_cell boolean
is_record du_net boolean
is_record flat_net boolean
is_sequential lib_cell boolean
is_sequential design boolean
is_sequential du_cell boolean
is_sequential flat_cell boolean
is_stop design boolean
is_stop du_cell boolean
is_stop flat_cell boolean
is_three_state lib_cell boolean
is_three_state design boolean
is_three_state du_cell boolean
is_three_state flat_cell boolean
is_three_state_enable_pin lib_pin boolean
is_three_state_enable_pin du_pin boolean
is_three_state_enable_pin flat_pin boolean
is_three_state_output_pin lib_pin boolean
is_three_state_output_pin du_pin boolean
is_three_state_output_pin flat_pin boolean
is_top design boolean
is_top du_cell boolean
is_top flat_cell boolean

Attribute Name Object Type
885
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
is_user_module design boolean
is_user_module du_cell boolean
is_waived message boolean
is_vector lib_pin boolean
is_vector du_pin boolean
is_vector du_port boolean
is_vector du_net boolean
is_vector flat_pin boolean
is_vector flat_port boolean
is_vector flat_net boolean
isolation_cell_data_pin lib_pin boolean
isolation_cell_data_pin du_pin boolean
isolation_cell_data_pin flat_pin boolean
isolation_cell_enable_pin lib_pin boolean
isolation_cell_enable_pin du_pin boolean
isolation_cell_enable_pin flat_pin boolean
language design string
leakage_power_unit lib string
level_shifter_data_pin lib_pin boolean
level_shifter_data_pin du_pin boolean
level_shifter_data_pin flat_pin boolean
level_shifter_enable_pin lib_pin boolean
level_shifter_enable_pin du_pin boolean
level_shifter_enable_pin flat_pin boolean
level_shifter_type lib_cell string
level_shifter_type design string
level_shifter_type du_cell string
level_shifter_type flat_cell string
line_num lib_cell int
line_num design int
line_num du_cell int
line_num du_pin int

Attribute Name Object Type
886
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
line_num du_port int
line_num du_net int
line_num flat_cell int
line_num flat_pin int
line_num flat_port int
line_num flat_net int
line_number message int
lsb lib_pin int
lsb du_pin int
lsb du_port int
lsb du_net int
lsb flat_pin int
lsb flat_port int
lsb flat_net int
master_name du_cell string
master_name flat_cell string
max_capacitance lib_pin float
max_fanout lib_pin float
max_transition lib_pin float
memory_read lib_pin boolean
memory_read du_pin boolean
memory_read flat_pin boolean
memory_write lib_pin boolean
memory_write du_pin boolean
memory_write flat_pin boolean
message_id message string
min_capacitance lib_pin float
min_fanout lib_pin float
min_transition lib_pin float
modified_sdc_name flat_cell string
modified_sdc_name flat_pin string
modified_sdc_name flat_port string

Attribute Name Object Type
887
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
modified_sdc_name flat_net string
msb lib_pin int
msb du_pin int
msb du_port int
msb du_net int
msb flat_pin int
msb flat_port int
msb flat_net int
msg message string
net_type flat_net string
nom_process lib float
nom_temperature lib float
nom_voltage lib float
non_standard_sdc_name flat_cell string
non_standard_sdc_name flat_pin string
non_standard_sdc_name flat_port string
non_standard_sdc_name flat_net string
number_of_pins lib_cell int
number_of_pins‘ design int
number_of_pins du_cell int
number_of_pins flat_cell int
object_class lib string
object_class lib_cell string
object_class lib_pin string
object_class lib_timing_arcs string
object_class design string
object_class du_cell string
object_class du_pin string
object_class du_port string
object_class du_net string
object_class flat_cell string
object_class flat_pin string

Attribute Name Object Type
888
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
object_class flat_port string
object_class flat_net string
object_class adc_node string
object_class sdc_node string
object_class message string
output_voltage_range lib_cell string
output_voltage_range lib_pin string
path_name flat_cell string
path_name flat_net string
period clock float
pg_function lib_pin string
pg_type lib_pin string
power_down_function lib_pin string
power_down_function du_pin string
power_down_function flat_pin string
probability flat_net float
pulling_resistance_unit lib string
related_ground_pin lib_pin collection
related_ground_pin du_pin collection
related_ground_pin flat_pin collection
related_power_pin lib_pin collection
related_power_pin du_pin collection
related_power_pin flat_pin collection
retention_cell lib_cell string
retention_cell du_cell string
retention_cell flat_cell string
retention_pin lib_pin string
rtl_name design string
severity_label message string
severity_class message string
sdf_cond lib_timing_arcs string
sglib_name lib string

Attribute Name Object Type
889
Synopsys, Inc.

List of Built-in Attributes

Appendix B: Application Attributes
sglib_name lib_cell string
sglib_name lib_pin string
sglib_name lib_timing_arcs string
std_cell_main_rail lib_pin boolean
standard_sdc_name flat_cell string
standard_sdc_name flat_pin string
standard_sdc_name flat_port string
standard_sdc_name flat_net string
static_message message string
switch_cell_type lib_cell string
switch_cell_type design string
switch_cell_type du_cell string
switch_cell_type flat_cell string
switch_function lib_pin string
switch_function du_pin string
switch_function flat_pin string
switch_pin lib_pin boolean
switch_pin du_pin boolean
switch_pin flat_pin boolean
technology lib string
time_unit lib string
timing_sense lib_timing_arcs string
timing_type lib_timing_arcs string
to_lib_pin lib_timing_arcs collection
weight message int
voltage_unit lib string
voltage_value lib_pin float
x_function lib_pin string

Attribute Name Object Type
890
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
List of Product Attributes
The following is the list of product attributes defined in SpyGlass:

Attribute Name Object Type Product
activity flat_net float SpyGlass Power family
blackbox_internal_power flat_cell float SpyGlass Power family
blackbox_leakage_power flat_cell float SpyGlass Power family
blackbox_switching_pow
er

flat_cell float SpyGlass Power family

atspeed_sim_value flat_pin
flat_port
flat_net

string SpyGlass DFT

capacitance_source flat_net string SpyGlass Power family
capture_sim_value flat_pin

flat_port
flat_net

string SpyGlass DFT

cell_size_for_power flat_cell float SpyGlass Power family
clock_internal_power flat_cell float SpyGlass Power family
clock_leakage_power flat_cell float SpyGlass Power family
clock_switching_power flat_cell float SpyGlass Power family
clamp_value pwr_isolati

on_node
string SpyGlass Power Verify

control_port pwr_psw_n
ode

string SpyGlass Power Verify

combinational_internal_
power

flat_cell float SpyGlass Power family

combinational_leakage_
power

flat_cell float SpyGlass Power family

combinational_switching
_power

flat_cell float SpyGlass Power family

dest_type cdc_node string SpyGlass CDC
failure_reason cdc_node string SpyGlass CDC
fanout_capacitance flat_net float SpyGlass Power family
891
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
get_atspeed_clock_n_ph
ase

flat_pin
flat_port
flat_net

string SpyGlass DFT

get_capture_clock_n_ph
ase

flat_pin
flat_port
flat_net

string SpyGlass DFT

get_dft_functional_clock
_n_phase

flat_pin
flat_port
flat_net

string SpyGlass DFT

get_latch_atspeed_statu
s

flat_inst string SpyGlass DFT

get_latch_capture_statu
s

flat_inst string SpyGlass DFT

get_latch_shift_status flat_inst string SpyGlass DFT
get_scan_status flat_inst string SpyGlass DFT
get_shift_clock_n_phase flat_pin

flat_port
flat_net

string SpyGlass DFT

ground_supply pwr_intent
_node

string SpyGlass Power Verify

input_supply_port pwr_psw_n
ode

string SpyGlass Power Verify

input_supply_set pwr_level_
shift_node

string SpyGlass Power Verify

internal_power flat_cell float SpyGlass Power family
io_internal_power flat_cell float SpyGlass Power family
io_leakage_power flat_cell float SpyGlass Power family
io_switching_power flat_cell float SpyGlass Power family
is_activity_annotated flat_net boolean SpyGlass Power family
is_async_sync_reset flat_net boolean SpyGlass latch

is_clock_gated flat_cell boolean SpyGlass Power family
is_clock_used_as_nonclo
ck

flat_net boolean SpyGlass starc

Attribute Name Object Type Product
892
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
is_clock_used_with_both
_edges

flat_net boolean SpyGlass lint

is_constant_pin flat_pin boolean SpyGlass ERC
is_comb_conv cdc_conv_n

ode
boolean SpyGlass CDC

is_data cdc_node boolean SpyGlass CDC
is_disabled_cell flat_cell boolean SpyGlass ERC
is_graycoded cdc_conv_n

ode
string SpyGlass CDC

is_internal_power_defin
ed

lib_cell boolean SpyGlass Power family

is_instantiated flat_cell boolean SpyGlass Power family
is_multiple_driver flat_net boolean SpyGlass lint
is_nonconv_bus cdc_conv_n

ode
boolean SpyGlass CDC

is_latch_clock_driven_on
_both_edges

flat_net boolean SpyGlass latch

is_internally_generated_
reset

flat_net boolean SpyGlass openmore

is_reset_used_as_nonre
set

flat_net boolean SpyGlass starc

is_reset_used_with_both
_polarity

flat_net boolean SpyGlass lint

is_scannable flat_cell boolean SpyGlass DFT
is_seq_conv cdc_conv_n

ode
boolean SpyGlass CDC

is_synchronized cdc_node boolean SpyGlass CDC
is_unregistered_port du_port boolean SpyGlass moreLint
is_user_defined cdc_conv_n

ode
boolean SpyGlass CDC

isolation_ground_net pwr_isolati
on_node

string SpyGlass Power Verify

isolation_power_net pwr_isolati
on_node

string SpyGlass Power Verify

Attribute Name Object Type Product
893
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
isolation_sense pwr_isolati
on_node

string SpyGlass Power Verify

isolation_signal pwr_isolati
on_node

string SpyGlass Power Verify

leakage_power flat_cell float SpyGlass Power family
leakage_power_model lib_cell string SpyGlass Power family
location pwr_isolati

on_node
pwr_level_
shift_node

string SpyGlass Power Verify

name pwr_isolati
on_node
pwr_retenti
on_node
pwr_psw_n
ode
pwr_level_
shift_node

string SpyGlass Power Verify

megacell_internal_power flat_cell float SpyGlass Power family
megacell_leakage_powe
r

flat_cell float SpyGlass Power family

megacell_switching_pow
er

flat_cell float SpyGlass Power family

memory_internal_power flat_cell float SpyGlass Power family
memory_leakage_power flat_cell float SpyGlass Power family
memory_switching_pow
er

flat_cell float SpyGlass Power family

net_capacitance flat_net float SpyGlass Power family
net_frequency flat_net float SpyGlass Power family
num_source_domains cdc_node

cdc_conv_n
ode

int SpyGlass CDC

num_sources cdc_node
cdc_conv_n
ode

int SpyGlass CDC

Attribute Name Object Type Product
894
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
obs_probability flat_port
flat_pin
flat_net

float SpyGlass DFT

one_cnt_probability flat_port
flat_pin
flat_net

float SpyGlass DFT

other_internal_power flat_cell float SpyGlass Power family
other_leakage_power flat_cell float SpyGlass Power family
other_switching_power flat_cell float SpyGlass Power family
output_supply_port pwr_psw_n

ode
string SpyGlass Power Verify

output_supply_set pwr_level_
shift_node

string SpyGlass Power Verify

pg_sim_value flat_pin
flat_port
flat_net

string SpyGlass DFT

power_domain pwr_intent
_node

string SpyGlass Power Verify

power_supply pwr_intent
_node

string SpyGlass Power Verify

power_type flat_cell string SpyGlass Power family
probability flat_net float SpyGlass Power family
rand_fault_cov_estimate design float SpyGlass DFT
rand_test_cov_estimate design float SpyGlass DFT
restore_signal pwr_retenti

on_node
string SpyGlass Power Verify

retention_ground_supply pwr_retenti
on_node

string SpyGlass Power Verify

retention_power_supply pwr_retenti
on_node

string SpyGlass Power Verify

root_clock_for_power flat_cell float SpyGlass Power family
rule pwr_level_

shift_node
string SpyGlass Power Verify

Attribute Name Object Type Product
895
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
sa0_det_probability flat_port
flat_pin
flat_net

float SpyGlass DFT

sa1_det_probability flat_port
flat_pin
flat_net

float SpyGlass DFT

sa0_fault_detectability flat_port
flat_pin

string SpyGlass DFT

sa1_fault_detectability flat_port
flat_pin

string SpyGlass DFT

save_signal pwr_retenti
on_node

string SpyGlass Power Verify

sink pwr_isolati
on_node

string SpyGlass Power Verify

sequential_internal_pow
er

flat_cell float SpyGlass Power family

sequential_leakage_pow
er

flat_cell float SpyGlass Power family

sequential_switching_po
wer

flat_cell float SpyGlass Power family

sdc_type sdc_node string SpyGlass Constraints
shift_sim_value flat_pin

flat_port
flat_net

string SpyGlass DFT

source pwr_isolati
on_node
pwr_level_
shift_node

string SpyGlass Power Verify

src_type cdc_node string SpyGlass CDC
static_controllability flat_pin

flat_port
flat_net

string SpyGlass DFT

static_observability flat_pin
flat_port

string SpyGlass DFT

supply_name pwr_supply
_node

string SpyGlass Power Verify

Attribute Name Object Type Product
896
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
switching_power flat_cell float SpyGlass Power family
sync_method cdc_node string SpyGlass CDC
timing_state flat_cell

flat_pin
flat_port
flat_net

string SpyGlass Constraints

t01_fault_detectability_l
os

flat_port
flat_pin

string SpyGlass DFT

t10_fault_detectability_l
os

flat_port
flat_pin

string SpyGlass DFT

t01_fault_detectability_l
oc

flat_port
flat_pin

string SpyGlass DFT

t10_fault_detectability_l
oc

flat_port
flat_pin

string SpyGlass DFT

type pwr_supply
_node

string SpyGlass Power Verify

virtual_buffer_info flat_net string SpyGlass Power family
virtual_internal_power flat_net float SpyGlass Power family
virtual_leakage_power flat_net float SpyGlass Power family
virtual_switching_power flat_net float SpyGlass Power family
voltage_range_max pwr_intent

_node
float SpyGlass Power Verify

voltage_range_min pwr_intent
_node

float SpyGlass Power Verify

vt_classification lib_cell string SpyGlass Power family
zero_cnt_probability flat_port

flat_pin
flat_net

float SpyGlass DFT

Attribute Name Object Type Product
897
Synopsys, Inc.

List of Product Attributes

Appendix B: Application Attributes
898
Synopsys, Inc.

Appendix C: SpyGlass
Report Names
You can specify a report name to the <report-names> argument of the
following commands:
 set_option report <report-name>

Refer to the SpyGlass Console Reference Guide for details.
 write_report <report-name>

 define_report <report-name>

This Appendix provides links to the sections containing valid report names
of each product that can be used with the <report-names> argument.

Use the following links to refer to the valid reports names for required
product:
 Generic Reports

 General Reports

 Custom Reports

 Default Reports

 Product-specific Reports

 SpyGlass area Reports

 SpyGlass audits Reports
899
Synopsys, Inc.

Appendix C: SpyGlass Report Names
 SpyGlass lint Reports

 SpyGlass morelint Reports

 SpyGlass OpenMore Reports

 SpyGlass STARC Reports

 SpyGlass STARC02 Reports

 SpyGlass STARC05 Reports

 SpyGlass CDC Reports

 SpyGlass Constraints Reports

 SpyGlass DFT Reports

 SpyGlass DFT DSM Reports

 SpyGlass Power Family Reports

 SpyGlass Power Verify Reports

 SpyGlass TXV Reports
900
Synopsys, Inc.

General Reports

Appendix C: SpyGlass Report Names
General Reports
The following general reports are generated by SpyGlass.

Report Name Description
count This report lists the number of times SpyGlass found

each type of message.
inline This report displays the contents of the RTL source file

annotated with violation messages.
sign_off This report lists summary and detailed information about

the SpyGlass analysis run.
moresimple_filesort This report is similar to the moresimple report except

that the rule messages are sorted in the following order:
• File name for a given file
• Severity
• Weight
• Rule
• Line number

moresimple_rulesort This report is similar to the moresimple report except
that the rule messages are sorted by the rule name first
and for a given rule, by their file and line

moresimple_sevclass This report is similar to the moresimple report with
additional information displaying the severity class.

score This report provides a built-in scoring system for code
checks.

ignosimple This report truncates long names and messages to fit the
contents in the reports layout.

summary This report displays a summary list of message counts by
each particular rule type along with the severity class
and rule short help.
901
Synopsys, Inc.

Custom Reports

Appendix C: SpyGlass Report Names
Custom Reports
The following custom reports are generated by SpyGlass.

Report Name Description
count_sevsort This report displays the severity label name, the rule

name, and the rule message count for each rule.
moresimple_csv The moresimple_csv report has the same details as the

moresimple report but in a comma-separated format
without the header/footer lines.The moresimple_csv
Report.

score_detail This report is the enhanced version of the score_report.
902
Synopsys, Inc.

Default Reports

Appendix C: SpyGlass Report Names
Default Reports
The following default reports are generated by SpyGlass.

Report Name Description
ignore_summary This report lists design units/files that are ignored in the

current run.
moresimple The moresimple report is similar to the simple report.

However, it does not truncate long names and messages.
no_msg_reporting_r
ules

This report displays a list of rules that did not report any
violation or waived during SpyGlass run.

stop_summary This report lists design units and files that are skipped
from SpyGlass checking in the current run.

stop_summary This report lists design units and files that are skipped
from SpyGlass checking in the current run

elab_summary This report shows the following design information:
• RTL design unit names
• Elaborated names
• Parameter values

waiver This report generates information about waived
messages during SpyGlass run.
903
Synopsys, Inc.

SpyGlass area Reports

Appendix C: SpyGlass Report Names
SpyGlass area Reports
The following reports are generated by the SpyGlass area product:

Report Name Description
diff This report compares the results of two SpyGlass Analysis

runs (one before modifications and the second after
modifications) to generate area-related differences in the
two runs.

GateCountReport This report contains module-wise gate count information.
In addition, this report contains the information, such as
area factor, prototype NAND gate name, prototype NAND
gate area, gate count, and instance count of the complete
design.
904
Synopsys, Inc.

SpyGlass audits Reports

Appendix C: SpyGlass Report Names
SpyGlass audits Reports
The following reports are generated by the SpyGlass audits product:

Report Name Description
Audit-RTL This report is generated when the rtl_audit goal is run and

provides information about the RTL of the design.
Audit-Structure This report is generated when the structure_audit

goal is run and provides information about the structural
data of the design.
905
Synopsys, Inc.

SpyGlass lint Reports

Appendix C: SpyGlass Report Names
SpyGlass lint Reports
The following reports are generated by the SpyGlass lint product:

Report Name Description
SignalUsageReport This report contains the details of the violating bits of

multi-dimensional arrays, memory, and vector signals.
W448_Report This report contains the details of the reset nets used

synchronously and asynchronously.
906
Synopsys, Inc.

SpyGlass morelint Reports

Appendix C: SpyGlass Report Names
SpyGlass morelint Reports
The following report is generated by the SpyGlass morelint product:

Report Name Description
ReportPortInfo The report displays all top-level modules/entities port first

followed by the black box instances.
907
Synopsys, Inc.

SpyGlass OpenMore Reports

Appendix C: SpyGlass Report Names
SpyGlass OpenMore Reports
The following report is generated by the SpyGlass OpenMore product:

Report Name Description
CombLoopReport This report contain the details of all the combinational

loops detected by the CombLoop rule.
908
Synopsys, Inc.

SpyGlass STARC Reports

Appendix C: SpyGlass Report Names
SpyGlass STARC Reports
The following reports are generated by the SpyGlass STARC product:

Report Name Description
STARC-1213 This report contains the details of all the combinational

loops detected by the STARC-1.2.1.3 rule.
STARC_1316 This report shows all the synchronous and asynchronous

usage of the reset net.
909
Synopsys, Inc.

SpyGlass STARC02 Reports

Appendix C: SpyGlass Report Names
SpyGlass STARC02 Reports
The following reports are generated by the SpyGlass STARC02 product:

Report Name Description
STARC_1316 This report shows all the synchronous and asynchronous

usage of the reset net.
STARC02_2414 This report contains the details of all the combinational

loops detected by the STARC02-2.4.1.4 rule.
910
Synopsys, Inc.

SpyGlass STARC05 Reports

Appendix C: SpyGlass Report Names
SpyGlass STARC05 Reports
The following report is generated by the SpyGlass STARC05 product:

Report Name Description
STARC_1316 This report shows all the synchronous and asynchronous

usage of the reset net.
911
Synopsys, Inc.

SpyGlass CDC Reports

Appendix C: SpyGlass Report Names
SpyGlass CDC Reports
The following reports are generated by the SpyGlass CDC product:

Report Name Description
Clock-Reset-Summary Provides information on clocks, resets, unconstrained

clock nets, and clock-domain crossings in a design.
Clock-Reset-Detail Provides information on the following:

• Synchronized and unsynchronized clock domain
crossings

• Crossings filtered by using the cdc_false_path
constraint

• Flip-flops that have their data pin tied to a constant
• Synchronization techniques

CKTree Shows clock hierarchy in a tree-like format (also called
clock tree).

CKCondensedTree Shows a condensed clock tree in which unlike the
CKTree report, this report shows the number of leaves
instead of actually listing the leaves.

RSTree Shows set/reset trees in a design.
PortClockMatrix Provides information on constraints coverage of ports.
SynchInfo Provides information on destinations and synchronizers

involved in different synchronization schemes.
CrossingInfo Provides information on source and destination flip-

flops for all synchronized and unsynchronized
crossings.

CKPathInfo Provides information on clock cells on clock paths.
CKSGDCInfo Provides information on user-specified constraints.
CKSync01 Provides information on unsynchronized crossings in a

design
CDC-report Provides summary on design, design setup, and

verification results.
adv_cdc Provides information that helps you to analyze the

cause of a bug and helps you to gather functional
analysis statistics.

adv_reg Provides information on clocks, resets, and registers in
a design.
912
Synopsys, Inc.

SpyGlass CDC Reports

Appendix C: SpyGlass Report Names
NoClockCell-Summary Provides information on the objects specified by the
noclockcell_start, noclockcell_stop_instance,
noclockcell_stop_module, and noclockcell_stop_signal
constraints.

DeltaDelay-Concise Shows a list of delta delay values for each clock in a
design and number of flip-flops and latches for each
delta delay value.

DeltaDelay-Detailed Shows a list of delta delays for each clock, net names of
flip-flops for each delay value, and net names of latches
for each delay value.

DeltaDelay02-Detailed Shows a list of flip-flops that can cause simulation
problems due to delta delay issues.

DeltaDelay-Summary Provides information on objects specified by the
deltacheck_start, deltacheck_stop_instance,
deltacheck_stop_module, deltacheck_stop_signal
constraints.

Ac_sync_group_detail Shows details of violations reported by the Ac_sync02,
Ac_sync01, Ac_unsync02, and Ac_unsync01 rules.

Ac_sync_qualifier Shows all the control-crossing synchronizers with their
qualifiers usage status in synchronizing data crossings.

Glitch_detailed Shows a summary of all the sources that are crossing
destinations and contain glitch-related issues.

Report Name Description
913
Synopsys, Inc.

SpyGlass Constraints Reports

Appendix C: SpyGlass Report Names
SpyGlass Constraints Reports
The following reports are generated by the SpyGlass Constraints product:

Report Name Description
tc_report_disable_ti
ming

Lists disabled timing points set by set_disable_timing.

tc_unparsed_comma
nds

Lists unparsed and unpopulated commands.

tc_block11_info Provides a list of registered input/output/inout ports
False_Path01 Provides the unconnected points specified in

set_false_pat.
MCP01 Provides the unconnected points specified in -from/-

through/-to of set_multicycle_path.
TE_Consis01 Provides the unconnected points specified in -from/-

through/-to of set_max_delay.
TE_Consis02 Provides the unconnected points specified in -from/-

through/-to of set_min_delay.
Clock-Mapping Provides information about the matched and ambiguous

clocks specified in reference and implement
EQUIV_SDC_NON_E
QUIVALENT_DESIGN
_REPORT

Provides information about the sequential elements
(registers) and ports for which the mapping information
is not provided in the mapping file

tc_dont_touch_info Lists modules with the set_dont_touch constraint
tc_dont_use_info Lists cells with the set_dont_use or dont_use attribute

set
clk_domain_false_pa
th

Determine CDC that have different clocks.

sync_clock_uncertai
nty

Identify domain crossing synchronous clocks that do not
have set_clock_uncertainty.

tc_clk_gen01a_info Identify sequential cells that have clock pins driven by
the reported clock net

tc_clk_gen01b_info Identify all sequential cells that have clock pins driven by
the reported constant or hanging clock net

tc_clock_info View all generated clocks and source clocks
tc_latency_info View the sum of source and network latencies of clocks
914
Synopsys, Inc.

SpyGlass Constraints Reports

Appendix C: SpyGlass Report Names
SDC_Methodology31 Identify clock paths comprising the feedback path
mcp_domain_<integ
er>

Determine the domain relationships between clocks used
by set_multicycle_path.
915
Synopsys, Inc.

SpyGlass DFT Reports

Appendix C: SpyGlass Report Names
SpyGlass DFT Reports
The following reports are generated by the SpyGlass DFT product:

Report Name Description
dft_ff_edge Lists all the flip-flops that are triggered by

positive and negative edges of a clock
dft_ff_set_reset_active Lists all flip-flops and the combination that

makes the Async pins of these flip-flops
simultaneously active

dft_ff_set_reset_sequential_i
n_capture

Lists all flip-flops whose set/reset pins are
driven by sequential elements/black box in
capture mode

dft_ff_set_reset_sequential_i
n_shift

Lists all flip-flops whose set/reset pins are
driven by sequential elements/black box in shift
mode

dft_ff_X_source_for_tristate_
enable

Lists all the flip-flops that could cause X on
Tri- Enable's

dft_latch_enable Contains the details regarding info latch
mapping

dft_mandatory_sgdc Lists all the missing mandatory constraints
needed by a dft rule

dft_no_fault_instances Lists all blocks for which all faults, internal and
boundary pins, are treated as no fault

dft_optional_sgdc Lists all the missing optional constraints needed
by a SpyGlass DFT rule.

dft_summary Lists a summary of autofix performed by the
SpyGlass DFT product

dft_tristate Lists all the tristate buses in the circuit
dft_initialized_ffs list all the initialized flip-flops after an

initialization sequence is applied
potentially_detected_faults Lists all the potentially detectable faults
scan_chain Lists all flip-flops that are or are not a part of

some scan chains
scan_wrap Contains a scanwrap list of all black boxes and

their related information
916
Synopsys, Inc.

SpyGlass DFT Reports

Appendix C: SpyGlass Report Names
soc_06_rpt Lists the hierarchical name of all the instances
appended with a pin name

stil_file Lists all STIL constructs
stuck_at_faults Lists all stuck-at faults
stuck_at_coverage Contains the summary and details of stuck at

fault numbers
stuck_at_coverage_audit Contains the coverage audit summary
test_points_selected_2 Lists suggested test points
undetected_faults Lists undetected faults and their causes
917
Synopsys, Inc.

SpyGlass DFT DSM Reports

Appendix C: SpyGlass Report Names
SpyGlass DFT DSM Reports
The following reports are generated by the SpyGlass DFT DSM product:

Report Name Description
atspeed_03_rpt Lists all the cross-domain paths between

flip-flops that are asynchronous in functional
domain and synchronous in the at-speed
testmode domain.

atspeed_04_rpt Lists all the cross-domain paths between
flip-flops that are synchronous in functional
domain and asynchronous in the at-speed
testmode domain.

atspeed_05_rpt Lists all maximum and minimum number of
logic levels for paths that are true 'testmode
false' path found in the at-speed testmode

atspeed_07_rpt Lists all the at-speed test clocks that are
gated by the same set of logic.

atspeed_08_rpt Lists all the at-speed clocks that need to be
balanced and that have different gates along
the clock paths.

atspeed_clock_synchronization Lists an ordered list of domain pairs.

dft_dsm_clock_frequency Lists frequency assignment data of a design,
as given in the constraint files.

dft_dsm_clock_gating_cell Lists information about clock gating cells
(CGCs) in a design, name of the master
module, type, test-enable pin clock source
(shift mode), number of flip-flops connected,
and CG rule violations (if any).

dft_dsm_constr-err-file Lists all the violations of the
dftDsmConstraintCheck_01 rule.

dft_dsm_enabled_flipflops Lists information, such as flip-flop count,
domain name, clock name, and flip-flop
name on a per clock domain basis.

dft_dsm_ip_report Lists information on values, such as for
mode, for control, for observe, and for clock
on per instance basis.
918
Synopsys, Inc.

SpyGlass DFT DSM Reports

Appendix C: SpyGlass Report Names
ff_clock_reconvergence Lists all the re-convergent combinational
paths.

random_pattern_coverage Lists the coverage estimate associated with
a module.

random_pattern_faults Lists information related to fault detection,
controllability, and observability probabilities
at ports and terminals.

transition_coverage Lists the summary and details of transition
fault numbers.

transition_coverage_audit Lists the predicted improvement in the
transition coverage number after each major
step.

transition_coverage_clockdomain Lists the number of different types of faults
in a clock domain with the fault coverage
and test coverage within the domain, and
shows a summary below the detailed
information.

transition_faults Lists the pin-based fault data for transition
faults.

Report Name Description
919
Synopsys, Inc.

SpyGlass Power Family Reports

Appendix C: SpyGlass Report Names
SpyGlass Power Family Reports
The following reports are generated by SpyGlass Power Family:

Report Name Description
pe_activity Contains activity information.
pe_adv_reduction Shows clock gating statistics. In addition, contains

information about the power saved by new clock gating
candidates.

pe_audit Contains detailed information about the rules in the
SpyGlass Power Estimate and SpyGlass Power Reduce
solutions.

pe_custom_wireloa
d_debug

Lists the fan-outs and the corresponding number of nets
used for generating a wireload table.

pe_cycle_power Specifies the power consumption for each clock
cycle in the design.

pe_debug_info Contains debug information of nets that are
not set from the simulation file.

pe_design_stats Shows the details of the technology cells used to
synthesize the design. For a gate level design, the
statistics of the cells in the gate-level design are shown
here.

pe_enable_scorecar
d

Contains the module-wise and instance-wise summaries
of existing clock enables and new gating opportunities in
the design.

pe_non_gated_flop
_scorecard

Contains a summary of existing non-gated flip-flops.

pe_power_savings_
non_gated_flop_sco
recard

Contains a summary of existing non-gated flip-flops and
estimates their power savings.

pe_summary Describes the various aspects of power consumption
of the design.

pe_reduction Shows clock-gating statistics and information about the
power saving.

pe_cell_allocation Provides the activity details for the complete design
reported per gating cell.
920
Synopsys, Inc.

SpyGlass Power Family Reports

Appendix C: SpyGlass Report Names
pe_cell_sizing_info Contains sizing information of the libraries used in the
SpyGlass run. You can gain clarity on the library
interpretation of SpyGlass and you can check the size of a
library cell. In addition, view the report to verify the
calculated cell size.

pe_spef_info Contains information of multiple and missing capacitance
data available from spef files.

pe_tvg_info Contains multi-voltage leakage estimates.
pe_wireload Contains information about wireload used for calculating

the capacitance of nets present in the design. It also
reports the detailed net capacitance for each net in the
design.

rme_summary Lists AutoFix information.
pe_clock_gating_su
mmary

Contains information on clock-gating count based on the
clock domains in a design.

sec_status Contains the information on status of assertion and type
of equivalence of the equivalent points formally checked
by SEC for equivalence.

Report Name Description
921
Synopsys, Inc.

SpyGlass Power Verify Reports

Appendix C: SpyGlass Report Names
SpyGlass Power Verify Reports
The following reports are generated by the SpyGlass Power Verify product:

Report Name Description
lp_assertion_info This report contains information on the OVL assertions.
lp_autofix_info This report contains information on auto insertion of level

shifters.
lp_constr_info This report contains information on voltage domain specific

design information provided using SGDC/UPF/CPF files.
lp_cons_req This report lists missing constraints that are required by

the rules.
lp_crossing_data This report contains domain crossing data information as

inferred by SpyGlass using the SGDC/CPF/UPF files and
library files.

lp_domain_info Thid report contains domain related information for the
domain crossings.

lp_lib_data This report contains information from the library files as
interpreted by the SpyGlass Power Verify solution.

lp_multivt_perbloc
k

This report contains the instantiation information about VT
type library cells in each hierarchy.

lp_multivtreport This report contains the instantiation information about VT
type library cells in the complete design.

lp_power_data This report contains information about user-specified CPF/
UPF commands parsed by SpyGlass.

lp_power_state This report shows the power state information specified in
the power intent SGDC/ CPF/UPF files.

lp_psw_info This report contains the list of valid power switch strategies
defined in the UPF file.

lp_ret_info This report contains the list of valid retention strategies
defined in the UPF file.

lp_retention_cell_li
st

This report lists the retention instances found in the
design.

lp_supply_connecti
on

This report displays the instance path name, followed by
the power pin and corresponding supply net connection.

lp_vd_info This report provides level-shift, isolation and power-switch
information for domains in the design.
922
Synopsys, Inc.

SpyGlass Power Verify Reports

Appendix C: SpyGlass Report Names
lp_wild_card This report contains the matches found for the cell names
specified in the SGDC constraints with wildcards (* or ?).

LP-report This report is generated when you specify the
set_option report LP-report command in
the project file.

lp_strategy_info This report contains the list of valid isolation and/or level
shifter strategies defined in the UPF file. In addition, this
report contains the expanded list of elements to which that
strategy is applied.

lp_multi_supply_in
stance

This report lists the multi-supply instances that do
not have an associated connect_supply_net command.

lp_special_pin_con
nection

The report shows the primary port connection to special
pins.

Report Name Description
923
Synopsys, Inc.

SpyGlass TXV Reports

Appendix C: SpyGlass Report Names
SpyGlass TXV Reports
The following reports are generated by the SpyGlass TXV product:

Report Name Description
txv.rpt Consists of information related to:

• Run, Options, and Design Audit
• Setup Audit Information
• Analysis and Verification

txv_compactpath
_file

Displays information about the paths before path
compaction and the paths-after-path compaction.

txv_path_summa
ry_report.rpt

Contains the path summary of the false path and multi-cycle
path constraints analyzed by the SpyGlass TXV solution.

txv_uninitialized
_reg_file

Contains the names of the associated uninitialized register
names for each functionally verified sequentially failed
constraint.
924
Synopsys, Inc.

Appendix D: Preference
Variables Supported by
the set_pref Command
Overview
The following preference variables are supported by the set_pref command:
 sh_command_log_file

 goal_show_hidden

 goal_enforce_prerequisite

 dq_design_view_type

 collection_display_limit
925
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
sh_command_log_file
Specifies the path name for sg_shell's command log file

Syntax

set_pref sh_command_log_file "./mycommands.log"

Scope

Any

Return Value

None

Description

The sh_command_log_file preference variable is used to set the path
name of the command log file.The default value for this preference variable
is './sg_shell_command.log'. This means that if sg_shell is being run in
interactive mode, then all the commands being entered on sg_shell's
prompt will be logged into a file called sg_shell_command.log in the current
directory. If this log file already exists, then it is truncated.

To preserve the commands log for each run of sg_shell, you should specify
a unique name for the commands log file for each interactive run of
sg_shell by inserting the following command in your .sg_shell.startup file
(either $HOME/.sg_shell.startup or $CWD/.sg_shell.startup or through "-
tcl $MYPATH/startup.tcl"):

set_pref sh_command_log_file "./sg_shell_command_[clock
seconds].log"

You can set the sh_command_log_file variable at any stage of sg_shell's
interactive run and its effect will be visible immediately after being set. The
commands entered before setting this variable (including the set_pref
command to set the new log file) are logged into the previously set
command log file. All the commands entered after setting the new log file
will be logged in the new log file.
926
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
Examples

The following example shows how to display the variable/value pairs.

You start the sg_shell as:

unix_shell> sg_shell

sg_shell banner

sg_shell> help

...

...

sg_shell> open_project xyz.prj

...

sg_shell> run_goal

...

sg_shell> set_pref sh_command_log_file "new_log_file.log"

set_pref: info: command log file is now at `new_log_file.log'

(Previously, it was at `./sg_shell_command.log')

sg_shell> close_project

...

sg_shell> exit

Considering the sequence above, the contents of the default log file,
./sg_shell_command.log, are as follows:

--

help

open_project xyz
927
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
run_goal

set_pref sh_command_log_file "new_log_file.log"

--

The contents of the new log file, new_log_file.log, are as follows:

--

close_project

exit

--

If you specify a path name for sh_command_log_file, then ensure
that intermediate directories in the path name already exist. If they do not
exist, then an error message will appear and this variable specification will
be ignored. Refer to the following example:

sg_shell> pwd

/u/sam/prj

sg_shell> exec ls ./logs/

other_cmds.log

sg_shell_command.log

sg_shell> set_pref sh_command_log_file "/u/sam/prj/logs/
today/sg_shell_command_[clock seconds].log"

set_pref: error: could not open `/u/sam/prj/logs/today/
sg_shell_command_1255417358.log' for writing

(Please re-check the value of `sh_command_log_file' variable)

sg_shell> get_pref

sh_command_log_file ./sg_shell_command.log
928
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
sg_shell>

See Also

set_pref, get_pref, help
929
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
goal_show_hidden
Enables visibility of hidden goals of methodology

Syntax

set_pref goal_show_hidden yes

Scope

Any

Return Value

None

Description

The goal_show_hidden preference variable makes the hidden goals of
methodology visible. After enabling this preference variable, the hidden
goals are shown like normal goals and get visible in the goal summary
report. These goals can also be visible in the available goal list by using the
help -goal command.

Default value of this preference variable is false.

Examples

sg_shell> current_goal initial_rtl/audit -alltop
ERROR [158] 'initial_rtl/audit-mixed.spq' : Unable to
locate goal file in following search paths -
$(SPYGLASS_HOME)/GuideWare/New_RTL

Trying to find best-matches for given goal specification ...
Following best-matches found for this goal specification:
initial_rtl/audit/block_profile
ERROR [38] Failed loading goal as one or more goals
specified could not be found or do(es) not have read
permissions
current_goal: error: loading of goal 'initial_rtl/audit'
failed
sg_shell> set_pref goal_show_hidden true
sg_shell> current_goal initial_rtl/audit -alltop
930
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
ERROR [158] 'initial_rtl/audit-mixed.spq' : Unable to
locate goal file in following search paths -
$(SPYGLASS_HOME)/GuideWare/New_RTL
Trying to find best-matches for given goal specification ...
Following best-matches found for this goal specification:
initial_rtl/audit/block_profile
initial_rtl/audit/rtl_audit ## hidden goal
initial_rtl/audit/structure_audit ## hidden goal
initial_rtl/audit/datasheet_io_audit ## hidden goal

See Also

set_pref, get_pref, help
931
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
goal_enforce_prerequisite
Enforces prerequisite goal run before goal run

Syntax

set_pref goal_enforce_prerequisite yes

Scope

Any

Return Value

None

Description

The goal_enforce_prerequisite preference variable enforces the running of
prerequisite goals before running some goals. If you try running a goal
without first running its prerequisite goals, sg_shell reports an error and
lists the prerequisite goals that need to be run before proceeding with this
goal run.

Default value of this preference variable is false.

Examples

sg_shell> set_pref goal_enforce_prerequisite yes
sg_shell> current_goal detailed_rtl/constraint_generation/
gen_sdc -alltop
...
#assuming 'detailed_rtl/constraint/sdc_quick_check' is pre-
requisite goal of this goal and was not run yet
...
sg_shell> run_goal
run_goal: error: pre-requisite goal for detailed_rtl/
constraint_generation/gen_sdc was not run
please run detailed_rtl/constraint/sdc_quick_check goal
before running this goal
932
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
See Also

set_pref, get_pref, help
933
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
dq_design_view_type
Specifies the view on which design query commands are executed

Syntax

set_pref dq_design_view_type du

Scope

Any

Return Value

None

Description

The dq_design_view_type preference variable specifies the view on which
design query commands work. The values that can be specified are du,
flat, or hier_flat. The default value of this preference variable is
flat.

The preference variable impacts the Netlist Commands as follows:

Value of the
dq_design_view_type
preference variable

Impact on the Netlist Commands

du These commands return a collection of cells, nets,
pins, and ports of the current design unit (du). You
can dive into hierarchies by using the current_design
command.

flat These commands return a collection of flattened leaf
objects. While working with this view, set the
current_design command to top.

hier_flat These commands return a collection of flattened
objects, which may be leaf or hierarchical. You can
dive into hierarchies by using the current_instance
command. The hier_flat view is only effective if
you compile your design or run a goal by using the
enable_hier_flattening option.
934
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
Examples

sg_shell> current_design
{"SISO"}
sg_shell> set_pref dq_design_view_type du
du
sg_shell> get_cells
{"icgc_inst", "comb_cloud_inst_1", "sf_inst_1",
"comb_cloud_inst_2", "sf_inst_2"}
sg_shell> current_design [get_master sf_inst_1]
{"SCAN_FLOP"}
sg_shell> get_cells
{"mux_inst_sf", "flop_inst_sf", "bbox_inst"}
sg_shell> set_pref dq_design_view_type flat
flat
sg_shell> get_cells
get_cells: error: current_design is set as non-top. Please
set current_design to a top module for executing design query
commands on flattened view
sg_shell> current_design SISO
{"SISO"}
sg_shell> get_cells
{"SISO.sf_inst_1.flop_inst_sf",
"SISO.sf_inst_2.flop_inst_sf",
"SISO.icgc_inst.latch_inst_icgc",
"SISO.sf_inst_1.bbox_inst", "SISO.sf_inst_2.bbox_inst",
"SISO.sf_inst_1.mux_inst_sf.leaf_mux_inst",
"SISO.sf_inst_2.mux_inst_sf.leaf_mux_inst",
"SISO.icgc_inst.and_inst_icgc", "SISO.comb_cloud_inst_1",
"SISO.comb_cloud_inst_2"}
sg_shell> set_pref dq_design_view_type hier_flat
hier_flat
sg_shell> get_cells
{"SISO.comb_cloud_inst_2", "SISO.comb_cloud_inst_1",
"SISO.icgc_inst", "SISO.sf_inst_2", "SISO.sf_inst_1"}
sg_shell> current_instance SISO.sf_inst_1
{"SISO.sf_inst_1"}
sg_shell> get_cells
935
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
{"SISO.sf_inst_1.bbox_inst", "SISO.sf_inst_1.flop_inst_sf",
"SISO.sf_inst_1.mux_inst_sf"}

See Also

set_pref, get_pref, current_design, current_instance, help
936
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the
collection_display_limit
Specifies the maximum number of objects that can be displayed by
any command that returns a displayable collection

Syntax

set_pref collection_display_limit 10

Scope

Any

Return Value

None

Description

The collection_display_limit preference variable controls the maximum
number of objects that can be displayed by any command that returns a
displayable collection. The default value of the preference variable is 100.

When a command, such as get_cells, is used at the command prompt, the
result is implicitly queried. If the collection contains displayable objects,
their full names are displayed. You can limit the number of objects
displayed by setting this preference variable to an appropriate integer. A
value of 0 displays the string representation of the collection handle,
instead of the object names in the collection.

To determine the current value of this preference variable, you can use the
following command:

get_pref collection_display_limit

Examples

sg_shell> get_pref collection_display_limit
100

sg_shell> set_pref collection_display_limit 5
5

sg_shell> get_cells
{"U0","U1","U2","U3","U4",...}
937
Synopsys, Inc.

Overview

Appendix D: Preference Variables Supported by the set_pref Command
sg_shell> set_pref collection_display_limit 0
0

sg_shell> get_cells
_sggrp4

See Also

set_pref, get_pref, help
938
Synopsys, Inc.

Appendix E: CDC
Application Commands
The following is a list of the CDC application commands:
 List of CDC Commands
939
Synopsys, Inc.

List of CDC Commands

Appendix E: CDC Application Commands
List of CDC Commands
The following is the list of CDC application commands defined in SpyGlass:

Command Name Description Return
Value

Syntax

get_clocks Obtains
clocks

Collection
of clock
objects

get_clocks
 [<clkName>]
 [-filter
<filter_expression>]
 [-of_objects <obj>]

get_domains Obtains
domains

Collection
of domain
objects

get_domains
 [<dName>]
 [-of_objects <obj>]

propagate_clocks Propagates
clocks
forward

None propagate_clocks // no
argument, works on
get_clocks

get_registers Obtains
registers

Collection
of cells
driven by
specified
clocks/
resets

get_registers
 <patterns>
 [-all]
 [-edge_triggered |-
level_sensitive | -
posedge_triggered |
 -negedge_triggered]

report_clocks Reports
clocks

None report_clocks
 [<clocks>]
 [-verbose]

report_domains Reports
domains

None report_clocks
 [<clocks>]
 [-verbose]
940
Synopsys, Inc.

List of CDC Commands

Appendix E: CDC Application Commands
get_cdc Obtains
crossings

Collection
of crossing
objects

get_cdc
[-from <from_pattern>]
[-to <to_pattern>]
[-from_clock <f_clock>]
[-to_clock <t_clock>]
[-from_domain
<f_domain>] [-
to_domain <t_domain>]
[-from_object
<f_object>] [-to_object
<t_object>]
[-of_object <obj>]
[-regexp]
[-filter <expr>]

report_cdc Reports
crossings

None

get_cdc_glitch Obtains
glitches in
CDC paths

Collection
of crossing
objects
that may
have
glitches

get_cdc_glitch
 [-to <to_pattern>]
 [-to_clocks
<t_clock>]
 [-to_domains
<t_domain>]
 [-to_objects
<t_object>]
 [-of_objects <obj>]
 [-regexp]
 [-filter <expr>]

report_cdc_glitch Reports
glitches in
CDC paths

None report_cdc_glitch
[<crossings>]

Command Name Description Return
Value

Syntax
941
Synopsys, Inc.

List of CDC Commands

Appendix E: CDC Application Commands
get_cdc_coherency Obtains
convergence
s

Collection
of <conv-
issues>
objects

get_cdc_coherency
 [-from
<from_pattern>]
 [-to <to_pattern>]
 [-from_clock
<f_clock>]
 [-to_clock
<t_clock>]
 [-from_domain
<f_domain>]
 [-to_domain
<t_domain>]
 [-from_object
<f_object>]
 [-to_object
<t_object>]
 [-of_object <obj>]
 [-regexp]
 [-filter <expr>]

report_cdc_coherenc
y

Reports
convergence
s

None report_cdc_coherency
[<conv_issues>]

get_cdc_sources Obtains the
list of
sources of a
crossing

Collection
of
crossing's
source
objects

get_cdc_sources

[<destination_name>]
 [-of_objects <cdc-
object>]

get_conv_sync_sign
als

Obtains all
synchronizer
s of a
convergence

Collection
of crossing
objects

get_conv_sync_signals
[<converegnce>]

get_glitch_sources Obtains
glitch prone
source-list

Collection
of
crossing's
source
objects

get_glitch_sources

[<destination_name>]
 [-of_objects <cdc-
object>]

Command Name Description Return
Value

Syntax
942
Synopsys, Inc.

List of Topics

About This Book ... 31
abstract_block_violation.. 967
abstract_file .. 969
abstract_interface_param.. 972
abstract_interface_port ... 974
abstract_port... 976
activity ... 1000
activity_data.. 1006
ADC Commands ... 233
ADC Setup Commands .. 233
adc_node .. 644
add_fault .. 1010
allow_combo_logic ... 1017
allow_test_point... 1020
always_on_buffer ... 1020
always_on_cell... 1022
always_on_path ... 1024
always_on_pin ... 1023
antenna_cell .. 1025
aon_buffered_signals .. 1026
assertion_signal ... 1027
associate_lib.. 1029
assume_path ... 1031
assume_waveform ... 1030
atspeed_clock_frequency .. 1034
Attribute Commands... 459
balanced_clock .. 1036
Base Attributes .. 650
blackbox_power ... 1038
block .. 1041
blocksize ... 1044
breakpoint... 1046
Built-in Attributes ... 608
bypass.. 1047
Capturing stdout and stderr ... 64
CDC Attributes ... 666
943
Synopsys, Inc.

cdc_attribute ... 1048
cdc_check_glitch .. 1053
cdc_conv_node .. 618
cdc_conv_signal_node .. 618
cdc_define_transition.. 1053
cdc_false_path... 1055
cdc_filter_coherency ... 1068
cdc_filter_path... 1072
cdc_glitch_node ... 619
cdc_glitch_source_node .. 620
cdc_matrix_attributes ... 1073
cdc_node .. 621
cdc_source_node.. 622
cell_hookup ... 1076
cell_pin_info .. 1077
cell_tie_class ... 1078
clock... 1080
clock... 645
clock_buffer... 1095
clock_domain... 645
clockgating.. 1124
clock_group... 1096
clock_path_wrapper_module.. 1100
clock_pin... 1102
clock_root ... 1103
clock_sense... 1104
clock_shaper ... 1105
Collection Commands.. 437
Command Logging in sg_shell .. 66
Common SDC Flow ... 73
complex_cell.. 1125
compressor ... 1127
Constraints Attributes ... 682
Contents of This Book ... 32
Control Signal .. 1597
Custom Reports ... 902
Data Signal ... 1599
dbist... 1128
Debug Commands .. 345
decompressor .. 1129
Default Reports .. 903
944
Synopsys, Inc.

define_clock_tree ... 1131
define_illegal_input_values .. 1137
define_legal_input_values ... 1138
define_library_group... 1140
define_macro... 1141
define_reset_order ... 1146
define_tag... 1150
delay_buffer .. 1162
deltacheck_ignore_instance ... 1164
deltacheck_ignore_module .. 1165
deltacheck_start... 1166
deltacheck_stop_instance.. 1168
deltacheck_stop_module ... 1169
deltacheck_stop_signal ... 1171
Design Query Commands .. 351
Design Setup Commands... 114
design .. 623
design_map_info.. 1172
DFT Attributes ... 686
dftmax_partition .. 1175
dft_report_coverage ... 1181
dft_report_fault_list.. 1178
dft_stitching_exception ... 1179
disable_timing ... 1182
disallow_modification_type .. 1183
disallow_upf_command ... 1185
domain ... 1186
domain_inputs ... 1188
domain_outputs ... 1189
domain_signal ... 1191
dont_touch.. 1193
Dual Design Read Flow.. 75
du_cell.. 625
du_net.. 631
du_pin .. 628
du_port... 630
enable_seq_propagation ... 1546
Error Handling in Tcl Commands... 51
Error Scenarios and Messages .. 53
Errors and Messages Flagged in sg_shell ... 50
Example.. 1357
945
Synopsys, Inc.

Exit Codes Reported by sg_shell ... 58
expect_frequency... 1195
false_path ... 1198
Features of sg_shell.. 62
fifo ... 1199
flat_cell... 633
flat_inst .. 632
flat_net... 642
flat_pin ... 636
flat_port.. 640
For All Products.. 1591
For SpyGlass Auto Verify solution and SpyGlass CDC solution 1152
For SpyGlass CDC solution and SpyGlass Auto Verify Solution 1272
For SpyGlass CDC solution... 1406
For SpyGlass CDC Solution .. 1527
For SpyGlass CDC Solution .. 1589
For SpyGlass CDC solution, SpyGlass Constraints solution, and SpyGlass Auto Verify solu-
tion .. 1081
For SpyGlass Constraints solution ... 1521
For SpyGlass DFT DSM solution .. 1525
For SpyGlass DFT DSM Solution.. 1651
For SpyGlass DFT solution and SpyGlass DFT DSM solution 1154
For SpyGlass DFT solution and SpyGlass DFT DSM solution 1273
For SpyGlass DFT solution and SpyGlass DFT DSM solution 1623
For SpyGlass DFT solution, SpyGlass DFT DSM solution 1087
For SpyGlass Power Estimation and SpyGlass Power Reduction Solutions 1666
For SpyGlass Power Family .. 1410
For SpyGlass Power Verify solution ... 1609
For SpyGlass Power Verify solution ... 1653
For SpyGlass Power Verify solution, SpyGlass ERC Product, and SpyGlass Power Estimation
and SpyGlass Power Reduction solutions.. 1093
For SpyGlass STARC Product, SpyGlass STARC02 product, SpyGlass STARC05 product,
and SpyGlass STARCad-21 product ... 1640
For SpyGlass TXV solution ... 1404
For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions.... 1520
For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions.... 1612
force_no_scan ... 1201
force_probability .. 1209
force_scan... 1498
force_stable_value ... 1501
force_ta .. 1206
946
Synopsys, Inc.

force_unstable_value .. 1503
formal_analysis_filter.. 1211
fsm .. 1213
gating_cell .. 1216
gating_cell_enable.. 1222
General Debug Commands .. 345
General Reports ... 901
generated_clock... 1223
glitch_free_module ... 1228
Goal Setup or Run Commands.. 161
gray_signals .. 1229
Handling of Duplicate Constraint Specifications... 959
History Support in sg_shell .. 65
ignore_clock_gating.. 1230
ignore_crossing.. 1232
ignore_nets ... 1570
ignore_supply_pin .. 1234
illegal_constraint_message_tag.. 1235
illegal_path ... 1238
illegal_value .. 1248
initialize_for_bist .. 1259
initstate .. 1259
input .. 1262
input_drive_strength .. 1265
input_isocell .. 1267
instance_trace ... 1269
Invoking Tcl Shell From Command-Line ... 39
Invoking Tcl Shell From SpyGlass ... 42
Invoking the Tcl Shell Interface .. 39
ip_block .. 1271
isolation_cell.. 1275
isolation_wrapper ... 1278
keeper .. 1279
latched_port .. 1281
levelshifter .. 1282
lib .. 610
lib_cell .. 612
lib_pin .. 614
Library Commands ... 352
lib_timing_arcs .. 617
List of Built-in Attributes.. 878
947
Synopsys, Inc.

List of CDC Commands.. 940
List of Preferences .. 77
List of Product Attributes ... 891
lp_ignore_cells_for_erc ... 1284
make_mandatory_upf_commands_options .. 1285
mapped_pin_map... 1286
mcp_info... 1288
memory .. 1298
memory_force ... 1299
memory_inst_port .. 1306
memory_port... 1300
memory_read_pin .. 1307
memory_tristate .. 1309
memory_type .. 1310
memory_write_disable .. 1312
memory_write_pin ... 1313
message ... 646
meta_design_hier... 1315
meta_inst.. 1316
meta_module .. 1317
meta_monitor_options .. 1319
Miscellaneous Commands .. 858
mode_condition ... 1321
module_bypass .. 1323
module_pin ... 1325
monitor_time... 1327
multivt_lib... 1329
Netlist Commands .. 369
network_allowed_cells .. 1331
no_atspeed ... 1333
noclockcell_start .. 1345
noclockcell_stop_instance.. 1346
noclockcell_stop_module ... 1347
noclockcell_stop_signal ... 1349
no_convergence_check ... 1337
no_fault .. 1338
non_pd_inputcells .. 1350
non_safety_related... 1574
no_test_point .. 1344
num_flops ... 1351
operating_mode_set ... 1356
948
Synopsys, Inc.

output .. 1358
output_not_used.. 1360
Overriding GUI Preferences.. 81
Overview... 925
pg_cell.. 1362
pg_pins_naming... 1364
pin_voltage ... 1365
pll .. 1369
port_time_delay... 1370
Power Attributes .. 735
Power Verify Attributes ... 827
power_data ... 1373
power_down.. 1374
power_down_sequence ... 1376
power_management_test_control_cell .. 1378
power_management_unit .. 1379
power_rail_mapping ... 1380
power_state .. 1382
power_switch... 1384
Product Attributes .. 649
Product Commands... 474
Project File .. 37
Properties of Tcl Command Arguments .. 46
pr_safe_clocks ... 1386
pulldown ... 1388
pullup ... 1390
Purpose .. 1424
qualifier .. 1391
quasi_static ... 1404
quasi_static_style... 1411
ram_instance... 1414
ram_switch ... 1415
rdc_false_path ... 1418
reference_toplevel_isolation_signal... 1423
ref_power_data.. 1421
Renamed Constraints.. 960
repeater.. 1424
repeater_buffer.. 1425
Reporting Commands.. 305
require_constraint_message_tag .. 1430
require_path.. 1433
949
Synopsys, Inc.

require_pulse... 1445
require_stable_value .. 1448
require_strict_path ... 1451
require_structure ... 1458
require_value .. 1461
reset -async .. 1474
reset .. 1472
reset .. 647
reset_filter_path .. 1476
reset_flop_node ... 647
reset_pin... 1481
reset_sense... 1054
reset_synchronizer ... 1482
reset_sync_node .. 648
retention_cell... 1484
retention_instance.. 1488
rme_config .. 1489
rule .. 646
safety_related.. 1573
scan_cell ... 1506
scan_chain .. 1507
scan_enable_source ... 1511
scan_ratio ... 1512
scan_type ... 1513
scan_wrap... 1516
Screen Output Logging in sg_shell .. 67
sdc_data ... 1520
SDC-Equivalent Commands ... 240
sdc_node .. 645
select_wireload_model .. 1527
seq_atpg... 1531
ser_data ... 1572
Session Commands .. 84
set ... 1532
set_case_analysis... 1533
set_cell_allocation .. 1547
set_cell_name_pattern.. 1553
set_clock_gating_type .. 1559
set_fully_decoded_bus.. 1562
set_lib_name... 1577
set_lib_timing_mode .. 1576
950
Synopsys, Inc.

set_mega_cell.. 1563
set_monitor_cell .. 1578
set_pin ... 1581
set_power_info .. 1564
set_power_scaling.. 1582
set_slew ... 1495
set_supply_node .. 1586
Setting SpyGlass Preferences Using Tcl Shell Interface 77
sg_clock_group.. 1587
sgdc ... 1588
sg_multicycle_path... 1566
shadow_ratio ... 1592
show_power_calc_details .. 1593
Signal Handling in sg_shell .. 69
signal_in_domain ... 1594
signal_type.. 1597
simulation_data ... 1600
special_cell.. 1604
special_module .. 1605
Specifying a Project File as the Startup File .. 56
Specifying a Tcl File as the Startup File.. 54
Specifying Collection Objects in ADC Commands... 290
Specifying Inputs to the sg_shell .. 44
Specifying SGDC File to SpyGlass ... 955
spef_data.. 1606
SpyGlass area Reports .. 904
SpyGlass audits Reports .. 905
SpyGlass Base Commands... 475
SpyGlass CDC Commands ... 494
SpyGlass CDC Reports .. 912
SpyGlass Constraints Commands.. 484
SpyGlass Constraints Reports... 914
SpyGlass Design Constraints.. 963
SpyGlass DFT Commands .. 545
SpyGlass DFT DSM Reports.. 918
SpyGlass DFT Reports ... 916
SpyGlass lint Reports .. 906
SpyGlass Lint Turbo Commands ... 478
SpyGlass morelint Reports... 907
SpyGlass OpenMore Reports .. 908
SpyGlass Power Estimate and Reduce Commands ... 600
951
Synopsys, Inc.

SpyGlass Power Family Reports .. 920
SpyGlass Power Verify Commands .. 575
SpyGlass Power Verify Reports ... 922
SpyGlass STARC Reports ... 909
SpyGlass STARC02 Reports ... 910
SpyGlass STARC05 Reports ... 911
SpyGlass TXV Reports... 924
Startup Files in sg_shell .. 52
stil_data.. 1565
supply .. 1609
switchoff_wrapper_instance... 1613
sync_cell ... 1615
sync_reset_style .. 1620
syn_set_dont_use .. 1568
Syntax.. 1430
test_mode... 1623
test_point ... 1641
tie_x... 1643
tristate_cell ... 1645
Typographical Conventions .. 33
ungroup_cells .. 1646
use_library_group .. 1649
Using Escape Names in sg_shell ... 71
Using Key Combinations for Performing Actions .. 77
Using Named and Positional Arguments ... 45
Using sg_shell Commands ... 45
Using the Help Feature.. 62
Using the Tab Completion Feature .. 63
Utility Commands ... 291
validation_filter_path .. 1525
voltage_domain ... 1651
vt_mix_percentage... 1670
Waiver Commands ... 322
watchpoint .. 1674
wireload_selection .. 1676
Working with SGDC Files ... 956
Writing Constraints in an SGDC File .. 954
952
Synopsys, Inc.

Appendix:
SpyGlass Design
Constraints
SpyGlass® Design Constraints (SGDC) are used to:
 Provide additional design information that is not apparent in RTL.

 Restrict SpyGlass analysis to a set of design objects.
Version N-2017.12-SP1 953
Synopsys, Inc.

Writing Constraints in an SGDC File

Appendix: SpyGlass Design Constraints
Writing Constraints in an SGDC File
You can write constraints in a text file that can have any extension.
However, it is recommended that you use the .sgdc extension to distinguish
this file from other files.
954 Version N-2017.12-SP1

Synopsys, Inc.

Specifying SGDC File to SpyGlass

Appendix: SpyGlass Design Constraints
Specifying SGDC File to SpyGlass
Specify SGDC files in any of the following ways:

 By using the read_file -type sgdc <SGDC-file-name>
command in a project file

 By using the Add Files(s) option under the Add Design Files tab in
Atrenta Console GUI

You can specify multiple SGDC files. In this case, SpyGlass processes these
files in the specified order.
Version N-2017.12-SP1 955
Synopsys, Inc.

Working with SGDC Files

Appendix: SpyGlass Design Constraints
Working with SGDC Files
The following table describes various tasks that you can perform in SGDC
files:

Task Description
Adding comments Use # or // to add comments.

Defining a scope for constraints A scope defines a design unit for which
the specified constraints are applicable.
To define a scope, use the
current_design <design-unit> command
before writing SGDC commands, where
<design-unit> can be any of the
following:
• For Verilog: <module-name>
• For VHDL:

<entity-name>,
<entity-name>.<archname>,
<configuration-name>,
<libname>.<configuration-name>

For details, refer to the Defining a Scope
for Constraints topic of the Atrenta
Console User Guide.

Specifying multiple values to
constraint arguments

You can specify multiple values to
arguments in different ways.
For details, refer to the Specifying
Multiple Values for a Constraint
Argument topic of the Atrenta Console
User Guide.

Handle interdependencies between
constraint arguments

When two arguments of the same
constraint are interdependent, specify
the exact matching number of values
with each argument.
For details, refer to the Handling
Interdependencies between Different
Arguments topic of the Atrenta Console
User Guide.
956 Version N-2017.12-SP1

Synopsys, Inc.

Working with SGDC Files

Appendix: SpyGlass Design Constraints
Specify signals names in the correct
format

Certain constraint arguments accept
names of signals, such as clock signals
and low power signals.
Based on the type of signals, such as
scalar or vector signals or the design
hierarchy in which signals are present,
you must specify signal names in a
correct format so that SpyGlass can
identify them correctly.
For details, refer to the Specifying Signal
Names topic of the Atrenta Console User
Guide.

Define and use variables Variables are used to store values that
can be used as argument values of
constraints.
Once you define a variable and assign a
value to it, you can use that variable
name as the value of a constraint
argument. SpyGlass internally expands
that variable name to its value for that
argument.
For details, refer to the Defining and
Using Variables topic of the Atrenta
Console User Guide.

Include an SGDC file in another
SGDC file

Use the include directive to include
an SGDC file in another SGDC. The
include directive is used in the
following format:
include <file-name>

For details, refer to the Including an
SGDC File in Another SGDC File topic of
the Atrenta Console User Guide.

Task Description
Version N-2017.12-SP1 957
Synopsys, Inc.

Working with SGDC Files

Appendix: SpyGlass Design Constraints
Implement compilation of SGDC
commands based on certain
conditions

To use the same SGDC file for different
functional and testing analysis modes,
compile different commands from the
same SGDC file based on different
conditions.
For details, refer to the Conditionally
Specifying SGDC Constraints topic of the
Atrenta Console User Guide.

Importing Block-Level SGDC
Commands to Chip-Level

While integrating design blocks at chip-
level, you can migrate block-level SGDC
files to the chip-level for performing
chip-level analysis.
For details, refer to the Importing Block-
Level SGDC Commands to Chip-Level
topic of the Atrenta Console User Guide.

Using the :: operator to define a
scope for searching instances in
design units

For details, refer to the Implementing
Scoping in SGDC Commands topic of the
Atrenta Console User Guide.

Task Description
958 Version N-2017.12-SP1

Synopsys, Inc.

Handling of Duplicate Constraint Specifications

Appendix: SpyGlass Design Constraints
Handling of Duplicate Constraint
Specifications

If you have given multiple specifications for a constraint that can be
applied only once on a design object, the following actions occur:
 SpyGlass considers only the last specification of that constraint.

 SpyGlass reports the SGDCWRN_115 warning and ignores the rest of
the specifications of that constraint.

Consider the following example:

current_design top

set_case_analysis -name in -value 0
set_case_analysis -name in -value 1

For the above example, SpyGlass considers only the last
set_case_analysis constraint specification and ignores the first
constraint specification that sets the value of the in pin to 0.
Version N-2017.12-SP1 959
Synopsys, Inc.

Renamed Constraints

Appendix: SpyGlass Design Constraints
Renamed Constraints
Some SGDC constraints have been renamed to improve readability and
consistency with all the other constraints in SpyGlass. The original names,
however, are still supported for backward compatibility.

The following table lists the old names and the corresponding new names
of constraints:

Old Name New Name
aonbuffer always_on_buffer
aonbufferedsignals aon_buffered_signals
apcell antenna_cell
balancedClock balanced_clock
cellhookup cell_hookup
clockPin clock_pin
clockshaper clock_shaper
defineTag define_tag
expectFrequency expect_frequency
gatingcell gating_cell
gatingcell_enable gating_cell_enable
ignorepdcrossing ignore_crossing
inisocell input_isocell
IP_block ip_block
isocell isolation_cell
lpsignal assertion_signal
memory3s memory_tristate
memoryreadpin memory_read_pin
memorytype memory_type
memorywritedisable memory_write_disable
memorywritepin memory_write_pin
moduleByPass module_bypass
modulePin module_pin
nofault no_fault
960 Version N-2017.12-SP1

Synopsys, Inc.

Renamed Constraints

Appendix: SpyGlass Design Constraints
noScan force_no_scan
pdsequence power_down_sequence
pdsignal domain_signal
pgcell pg_cell
pgpins_naming pg_pins_naming
pi_drive_strength input_drive_strength
pinvoltage pin_voltage
porttimedelay port_time_delay
powerdomaininputs domain_inputs
powerdomainoutputs domain_outputs
powerswitch power_switch
pullDown pulldown
pullUp pullup
raminstance ram_instance
ramswitch ram_switch
requirePath require_path
requireValue require_value
resetPin reset_pin
retain_instance retention_instance
retencell retention_cell
scanchain scan_chain
scanratio scan_ratio
scantype scan_type
scanwrap scan_wrap
sdcschema sdc_data
selectwireloadmodel select_wireload_model
seqATPG seq_atpg
set_black_box_power blackbox_power
set_cell_pin_info cell_pin_info
set_cell_tie_class cell_tie_class
set_design_map_info design_map_info
set_instance_for_activity_trace instance_trace

Old Name New Name
Version N-2017.12-SP1 961
Synopsys, Inc.

Renamed Constraints

Appendix: SpyGlass Design Constraints
setPin set_pin
shadowratio shadow_ratio
smodule special_module
specialcell special_cell
testclock_frequency atspeed_clock_frequency
testclockFrequency atspeed_clock_frequency
testmode test_mode
testpoint test_point
voltagedomain voltage_domain
wireloadselection wireload_selection

Old Name New Name
962 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
SpyGlass Design Constraints
The following table lists the SpyGlass Design Constraints (SGDC) used by
various SpyGlass products:

SpyGlass Auto Verify Solution
clock reset define_tag
set_case_analysis special_module breakpoint
watchpoint formal_analysis_filter
SpyGlass CDC Solution
assume_path breakpoint cdc_false_path
cdc_filter_path clock deltacheck_stop_instan

ce
define_tag deltacheck_ignore_instanc

e
deltacheck_ignore_mo
dule

deltacheck_start deltacheck_stop_module deltacheck_stop_signal
fifo input ip_block
network_allowed_cells noclockcell_start noclockcell_stop_instan

ce
noclockcell_stop_module noclockcell_stop_signal noclockcell_stop_instan

ce
noclockcell_stop_module noclockcell_stop_signal no_convergence_check
num_flops output output_not_used
port_time_delay reset set_case_analysis
signal_in_domain watchpoint quasi_static
define_reset_order allow_combo_logic abstract_port
sync_cell sgdc quasi_static_style
noclockcell_stop_instanc
e

signal_type abstract_file

monitor_time gray_signals clock_path_wrapper_m
odule

clock_sense cdc_matrix_attributes repeater
cdc_attribute meta_inst meta_module
reset_filter_path rdc_false_path sg_clock_group
cdc_check_glitch cdc_define_transition
Version N-2017.12-SP1 963
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
meta_monitor_options sdc_data validation_filter_path
SpyGlass Constraints Solution
assume_path clock domain
mapped_pin_map sdc_data block
blocksize clock_group abstract_file
SpyGlass DFT Solution
assume_path balanced_clock bypass
clock clock_pin clock_shaper
complex_cell dbist define_illegal_input_va

lues
define_legal_input_value
s

define_tag dont_touch

dft_stitching_exception force_ta gating_cell
initialize_for_bist ip_block keeper
memory_force memory_read_pin memory_tristate
memory_type memory_write_disable memory_write_pin
module_bypass module_pin no_fault
force_no_scan pll pulldown
pullup require_path require_strict_path
require_structure require_value reset -async
reset_pin rme_config force_scan
scan_cell scan_chain scan_ratio
scan_type scan_wrap seq_atpg
set_pin shadow_ratio test_mode
test_point tie_x tristate_cell
abstract_file illegal_path illegal_constraint_mess

age_tag
require_constraint_mess
age_tag
SpyGlass DFT DSM Solution
abstract_port atspeed_clock_frequency clock
clock_root clock_shaper clockgating
complex_cell compressor decompressor
define_tag expect_frequency false_path
964 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_ta gating_cell gating_cell_enable
ip_block module_bypass no_atspeed
no_fault force_no_scan pll
pulldown pullup require_pulse
reset force_scan scan_chain
scan_enable_source scan_wrap test_mode
test_point voltage_domain abstract_file
sg_multicycle_path
SpyGlass ERC Product
set_case_analysis clock reset
set abstract_file
SpyGlass latch Product
assume_path set_case_analysis abstract_file
SpyGlass Power Verify Solution
always_on_cell always_on_pin always_on_buffer
always_on_buffer assume_path cell_hookup
clock ignore_crossing input_isocell
isolation_cell delay_buffer assertion_signal
multivt_lib non_pd_inputcells power_down_sequence
domain_signal pg_cell pg_pins_naming
pin_voltage power_down domain_inputs
domain_outputs power_switch power_state
ram_instance ram_switch retention_instance
retention_cell set_case_analysis cell_pin_info
cell_tie_class special_cell supply
switchoff_wrapper_insta
nce

voltage_domain power_data

ignore_supply_pin antenna_cell isolation_wrapper
aon_buffered_signals levelshifter set_power_info
associate_lib set_supply_node disallow_upf_command
make_mandatory_upf_co
mmands_options

reference_toplevel_isolati
on_signal

SpyGlass OpenMore Product
Version N-2017.12-SP1 965
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_case_analysis abstract_file
SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
activity activity_data blackbox_power
clock clock_buffer define_clock_tree
define_library_group design_map_info gating_cell
input_drive_strength instance_trace memory
memory_port mode_condition operating_mode_set
pg_cell power_rail_mapping power_state
pr_safe_clocks repeater_buffer rme_config
sdc_data select_wireload_model set_case_analysis
set_cell_allocation set_clock_gating_type syn_set_dont_use
ignore_nets set_monitor_cell set_power_scaling
set_mega_cell spef_data supply
ungroup_cells use_library_group voltage_domain
memory_inst_port vt_mix_percentage wireload_selection
ignore_clock_gating disallow_modification_typ

e
set_slew

SpyGlass STARC
Product
set_case_analysis test_mode abstract_file
SpyGlass STARC02 Product
test_mode abstract_file
SpyGlass STARC05 Product
test_mode abstract_file
SpyGlass STARCad-21 Product
test_mode abstract_file
SpyGlass TXV Solution
clock initstate quasi_static
reset simulation_data mcp_info
assume_waveform
966 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
abstract_block_violation

Purpose

The abstract_block_violation constraint specifies information
about the violation reported during the generation of abstract view of a
design block. This constraint is generated in the SGDC file representing the
abstract view.

NOTE: SpyGlass generates this constraint for its internal use.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution, SpyGlass Constraints solution, SpyGlass base products

Syntax

The syntax to specify the abstract_block_violation constraint is
as follows:

abstract_block_violation
-name <rule-name>
-sev <severity>
[-count <violation-count> | -waived_count
<waived-violation-count>]

[-is_builtin]

Arguments

-name <rule-name>

Specifies the name of the rule that reports a violation.

-sev <severity>

Specifies the rule severity.

-count <violation-count>

Specifies the number of violations reported for the rule specified in the -
name <rule-name> argument.
Version N-2017.12-SP1 967
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-waived_count <waived-violation-count>

Specifies the number of violations waived for the rule specified in the -name
<rule-name> argument.

-is_builtin

Specifies that the rule specified in the -name <rule-name> argument is a
built-in rule.

Example

Consider the following constraint generated during abstract block
generation:

abstract_block_violation -name WarnAnalyzeBBox -sev Warn
-count 1 -is_builtin

The above constraint specifies that during abstract block generation, one
violation of the WarnAnalyzeBBox built-in rule is reported, and the severity
of the rule is Warning.
968 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
abstract_file

Purpose

The abstract_file constraint is used to specify the product version
and the block SGDC file using which the abstract view of a block was
generated.

The advantage of specifying this information is that if an abstract view
becomes incompatible in a particular release, you can specify the product
version and the original block SGDC file of that abstract view to SpyGlass.
This way, SpyGlass uses the specified abstract view during the SoC
validation.

In some cases, the block SGDC file specified by this constraint refers to
some additional files through any of the following specifications:

 include <sgdc_file>

 sgdc -import <block_name> <block_constraint_file>

 sdc_data -type <sdc_file>

 power_data -format <cpf|upf> -file <cpf/upf-file>

 activity_data -format <vcd|fsdb|saif> -file <file>

In such cases, package the additional files manually along with the block
SGDC file.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution, SpyGlass Constraints solution, SpyGlass base products

Syntax

The syntax to specify the abstract_file constraint is as follows:

abstract_file
-version <version-string>
-scope <dft|const|base|cdc>
[-block_file <original-block-sgdc-files>]
[-abstract_searchpath <search_paths for block-sgdc

file(s)>]
Version N-2017.12-SP1 969
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-version <version-string>

Specifies the version number of an abstract view. This version number is
product-specific.

During SoC validation run, SpyGlass uses this value to perform following
abstraction model version checks:
 When the current product version supports higher abstraction version

than the supplied abstracted model SGDC, the
SGDC_abstract_file01 rule reports the following warning
message:

SoC results for product <product> as abstracted model for
block <block-name> is not up-to-date. Please regenerate these
abstract model using latest <product> policy

 If the supplied abstracted SGDC is generated using a product that has a
higher abstraction version than the current product version, the
SGDC_abstract_file02 rule reports the following error message:

Abstracted models provided for product <product> are
generated with newer <product> policy, and are not compatible
with the current <product> product used. Please re-generate
these abstract models with current <policy-name> policy

-scope <dft|const|base|cdc>

Specifies the scope in which an abstract view is generated.

A scope specifies a product.

-block_file <original-block-sgdc-files>

Specifies a space-separated list of block SGDC files using which the
abstract view was generated.

-abstract_searchpath <search_paths for block-sgdc file(s)>

 Specifies a space-separated list of search paths to locate block SGDC files.
970 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Consider the following example:

abstract_file -version 1.0 -scope dft
-block_file blk1_dft.sgdc

The above example means that the abstract view being used during SoC
validation was generated from the blk1_dft.sgdc file. This abstract view is of
the 1.0 version and was generated by using SpyGlass DFT.
Version N-2017.12-SP1 971
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
abstract_interface_param

Purpose

The abstract_interface_param constraint specifies the definition of
the parameter abstracted.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution, SpyGlass Constraints solution, SpyGlass base products

Syntax

The syntax to specify the abstract_interface_param constraint is
as follows:

abstract_interface_param
-name <param-name>
-value <param-value>

Arguments

-name <param-name>

Specifies the name of the parameter.

-value <param-value>

Specifies the value of the parameter.

Example

Consider the following RTL specification:

module reorder_bits(in,out);
 parameter SIZE = 10;
 parameter FLIPBIT = ((SIZE + 1) >> 2);
 input [SIZE:0] in;
 output reg [SIZE:0] out;
972 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
endmodule

abstract_interface_parameter -name "SIZE" -value "10"

abstract_interface_parameter -name "FLIPBIT" -value "((SIZE
+ 1) >> 2)"
Version N-2017.12-SP1 973
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
abstract_interface_port

Purpose

The abstract_interface_port constraint specifies the definition of
the port abstracted.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution, SpyGlass Constraints solution, SpyGlass base products

Syntax

The syntax to specify the abstract_interface_port constraint is as
follows:

abstract_interface_port
-name <port-name>
-definition <port-def>

Arguments

-name <port-name>

Specifies the name of the port net.

-definition <port-def>

Specifies the way it is defined in the RTL.

Example

Consider the following RTL specification:

module reorder_bits(in,out);
 parameter SIZE = 10;
 parameter FLIPBIT = ((SIZE + 1) >> 2);
 input [SIZE:0] in;
 output reg [SIZE:0] out;
974 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
endmodule

abstract_interface_port -name "in" -definition "input
[SIZE:0] in; "

abstract_interface_port -name "out" -definition "output reg
[SIZE:0] out; "
Version N-2017.12-SP1 975
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
abstract_port

Purpose

The abstract_port constraint is used to define abstracted information
for block ports.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution, SpyGlass Constraints solution, SpyGlass base products

Syntax

The syntax to specify the abstract_port constraint is as follows:

abstract_port
-module <module-name>
-ports <port-name-list>
-clock <clock-port-list >
[-reset <reset-name>]
[-combo <yes | no | unknown>]
[-sync <active | inactive>
-from <src-clk list> -to <dest-clk list>
[-seq <yes | no>]
[-sync_names <sync-names>]

]
[-related_ports <related-ports>]
[-scope <dft | cdc | const | base>]
[-mode <mode-name>]
[-connected_inst <instance-name>]
[-inst_master <instance-master>]
[-inst_pin <instance-pin>]
[-path_logic <path-logic>]
[-path_polarity <path-polarity>]
[-phase_list <min|max|rise|fall|setup|hold|start|end>]
[-multiplier_value <multiplier-value>]
[-path_constraint <min_delay | max_delay>]
[-ignore]
[-combo_ifn <clock_port>]
976 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-start]
[-end]
[-direction <input/output>]
[-init <initial_value>]

NOTE: The SpyGlass DFT DSM solution uses only the following options of this constraint:

 -module
 -ports
 -clock

Arguments

-module <module-name>

Specifies the name of a module for which this constraint is being specified.

-ports <port-name-list>

Specifies a space-separated list of port names of a module specified in the
-module <module-name> argument.

See Example 8 for the SpyGlass CDC generated abstract_port
-ports constraint for the output ports and Example 9 for specifying the
-ports argument for input ports.

-clock <clock-port-list>

Specifies clock input, inout, or output ports of a module by which the ports
specified by the -ports <port-name-list> argument is driven. You can also
specify a clock as a virtual clock.

See Example 8 for the SpyGlass CDC generated abstract_port
-clock constraint for the output ports and Example 9 for specifying the
-clock argument for input ports.

-reset <reset-name>

Specifies the reset name assigned to the port of an abstract view.

While creating abstract views for design blocks, if a sequential element
with a reset pin reaches a block port, the Ac_abstract01 and Ac_blksgdc01
rules dump the -reset <reset-name> argument to the abstract_port
Version N-2017.12-SP1 977
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
constraint generated for the abstract view. However, if an input port of the
design block reaches a sequential element having a reset pin, the
Clock_info15 and Setup_port01 rule dumps this argument.

NOTE: This functionality works only if the enable_soc_rdc parameter is set to yes.

Consider the following scenario when the enable_soc_rdc parameter is
set to yes:

FIGURE 1.

For the above case, the Ac_abstract01 rule generates the following
abstract_port constraint for the block port D1:

abstract_port -ports D1 -clock C1 -reset RST1

Based on the generated reset information, the Ac_abstract_validation01,
Ac_abstract01, Ac_resetcross01, and Ar_resetcross01 rules perform
checks related to invalid reset crossings between the abstract views and
top-level modules.

To specify the -reset argument of the abstract_port constraint on an
input port, RST1, specify the following constraint:

abstract_port -ports RST1 -clock C1 -reset RST1

-combo <yes | no | unknown>

Specifies the presence of a combinational logic in the input cone of a port
specified with the -ports <port-name-list> argument.

By default, the value of this argument is unknown, which means that

Design block

C1

RST1

D1
978 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
related validation checks should not be performed.

You can set this argument to yes or no.

See Example 8 for the SpyGlass CDC generated abstract_port
-combo constraint for the O4 output port and Example 9 for specifying the
-combo argument for the IN4 input port.

-sync <active | inactive>

Specifies whether a port is driven by a control synchronizer or a data
synchronizer.

Set this argument to active if a port is driven by a control synchronizer
that can act as a synchronized enable for other data crossings.

Set this argument to inactive if a port is driven by a data synchronizer
that cannot act as a synchronized enable for other data crossings.

See Example 8 for the SpyGlass CDC generated abstract_port -sync
constraint for the O2 and O3 output ports. The -sync argument is not
applicable for input ports.

-from <src-clk-list>

Specifies a space-separated list of clock ports or virtual clock names that
are reaching to the source of a synchronizer. The -from argument is used
only with the -sync argument.

See Example 8 for the SpyGlass CDC generated abstract_port -from
constraint for the O2 and O3 output ports. The -from argument is not
applicable for input ports.

-to <dest-clk list>

Specifies a space-separated list of clock ports or virtual clock names that
are reaching to the destination of a synchronizer. The -to argument is
used only with the -sync argument.

See Example 8 for the SpyGlass CDC generated abstract_port -to
constraint for the O2 and O3 output ports. The -to argument is not
applicable for input ports.
Version N-2017.12-SP1 979
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-seq <yes | no>

Specifies whether sequential elements exist in the input cone of a port
between the synchronizer and the port specified by using the -ports <port-
name-list> argument.

You can set this argument to yes or no. By default, it is set to no.

See Example 8 for the SpyGlass CDC generated abstract_port -seq
constraint for the O3 output port. The -seq argument is not applicable for
input ports.

-sync_names <sync-names>

Specifies a space-separated list of hierarchical net or hierarchical pin
names of synchronizers. The -sync_names argument is used only with
the -sync argument.

See Example 8 for the SpyGlass CDC generated abstract_port
-sync_names constraint for the O2 and O3 output ports. The
-sync_names argument is not applicable for input ports.

-related_ports <related-ports>

Specifies a list of ports that have a sequential path to the ports specified by
the -ports <port-name-list> argument. The direction of related ports should
either be inout or reverse of the direction of the ports specified by the -
ports <port-name-list> argument.

For example, if you specify -ports P[1:0] and -related_ports
in1[2:0] for this constraint, it implies that 0,1, and 2 bits of the in1
port are driving both the P[0] and port P[1] ports.

NOTE: The -related_ports and -sync <active | inactive> arguments of this
constraint are mutually exclusive.

See Example 8 for the SpyGlass CDC generated abstract_port
-related_ports constraint for the O1 and O4 output ports. The
-related_ports argument is not applicable for input ports.

-scope <dft | cdc | const | base>

Specifies the scope in which an abstract view should be generated. A scope
specifies a product.
980 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-mode <mode-name>

Specifies the mode for which the Interface Logic Model (ILM) modeling
information is generated.

The following table describes the mode for the scopes specified by the -
scope <dft | cdc | const | base> argument:

-connected_inst <instance-name>

Specifies the name of the instance whose pin should be connected with the
IP port. The master of this instance is specified by the -inst_master
<instance-master> argument.

For example, consider the following figure:

FIGURE 2. Specifying the instance name

In the above figure, x_reg is the instance name of the master flip-flop

Scope Mode for the Scope
dft The modes can be shift, capture, and atspeed under which SpyGlass

DFT analysis is performed. The abstract_port modeling is generated
for these modes.

cdc The mode is set_case_analysis because SpyGlass CDC analysis is
based on this constraint.

base The mode is set_case_analysis because SpyGlass Base analysis is
based on this constraint.

const The mode is the same as the one specified by the sdc_data constraint.
The abstract_port modeling is done for each mode of SDC data.

RTL_FD

D

x_reg

IP1

IP1_inst

P1
Version N-2017.12-SP1 981
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
RTL_FD.

The following is the abstract_port constraint specification in this case:

current_design IP1

abstract_port -ports P1 -inst_master RTL_FD -connected_inst
x_reg -inst_pin D

-inst_master <instance-master>

Specifies the master type, such as RTL_FD and RTL_LD, of the instance
specified by the -connected_inst <instance-name> argument.

For example, consider the following figure in which RTL_LD is the master
of the x_reg latch:

FIGURE 3. Specifying the instance master

In the above figure, specify RTL_LD in the -inst_master <instance-master>
argument while connecting the P1 port with the D pin of the x_reg
instance. The following is the abstract_port constraint specification in
this case:

current_design IP1

abstract_port -ports P1 -inst_master RTL_LD -connected_inst
x_reg -inst_pin D

RTL_LD

D

x_reg

IP1

IP1_inst

P1
982 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Specifying a Black Box Master

In the -inst_master <instance-master> argument, you can also specify a
black box master name corresponding to the black box instance specified
by the -connected_inst <instance-name> argument. Use the following format
while specifying the black box master name:

-inst_master "BBOX:<black-box-master-name>"

For example, consider the following figure in which adder is the master
of the adder_2_1 instance:

FIGURE 4. Specifying the black box master

For the above scenario, specify adder in the -inst_master argument
while connecting the P1 port with the A pin of the adder_2_1 instance,
as shown below:

current_design IP1

abstract_port -ports P1 -inst_master "BBOX:adder"
-connected_inst adder_2_1 -inst_pin A

-inst_pin <instance-pin>

Specifies the pin that should be connected with the port specified by the -
ports <port-name-list> argument. This pin is present on the instance of the
master specified by the -inst_master <instance-master> argument.

For example, consider the following figure:

adder

A

IP1

IP1_inst

P1

adder_2_1
Version N-2017.12-SP1 983
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 5. Specifying the instance pin

In the above figure, D is the instance pin present on the x_reg instance
whose master is RTL_FD. In this case, specify the following constraint to
connect the D pin of the x_reg instance with the P1 port:

current_design IP1

abstract_port -ports P1 -inst_master RTL_FD -connected_inst
x_reg -inst_pin D

-path_logic <path-logic>

Specifies the logic that exists between the connection from:
 An input port to an output port.

 A port (specified by -ports <port-name-list>) to an instance pin (specified
by -inst_pin <instance-pin>).

 An instance pin (specified by -inst_pin <instance-pin>) to a port (specified
by -ports <port-name-list>).

 A port to a hanging path by using the logic specified by the
-path_logic argument.

You can specify any of the following values as the path logic:

Path Logic Description
combo Specifies that the connection is through a combinational logic.

RTL_FD

D

x_reg

IP1

IP1_inst

P1
984 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
See Example 8 for the SpyGlass CDC generated abstract_port
-path_logic constraint for the O4 and O5 output ports and Example 9
for specifying the -path_logic argument for the IN5 input port.

For example, consider the following figure:

FIGURE 6. Specifying the path logic

In the above figure, consider that you want to perform the following
actions:

 Create a connection from P1 to D such that a combinational logic exists
between the connection. Specify the following constraints in this case:

current_design IP1

abstract_port -ports P1 -inst_master RTL_FD -
connected_inst x_reg -inst_pin D -path_logic combo

 Create a connection from the P2 port to a hanging terminal by using an
inverter. Specify the following constraint in this case:

abstract_port -ports P2 -path_logic inv

After specifying the above constraints, Figure 6 changes to the following:

buf Specifies that the connection is through a buffer.
inv Specifies that the connection is through an inverter.

Path Logic Description

RTL_FD

D

x_reg

IP1

IP1_inst

P1

P2
Version N-2017.12-SP1 985
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 7. Inserting a combinational logic

Handling Multiple Connection Paths Belonging to Different Scopes

Consider the following figure:

FIGURE 8. Handling Connections of Different Scopes

In the above figure, consider that you want to connect the P1, P2, and P3
ports with the D pin of the x_reg instance such that:

 The connection from P1 to D belongs to the CDC scope.
To create this connection, specify the following constraint:

abstract_port -ports P1 -inst_master RTL_FD
-connected_inst x_reg -inst_pin D -path_logic combo

RTL_FD

D

x_reg

IP1

IP1_inst

P1

Combinational logic

P2 Hanging terminal

RTL_FD

D

x_reg

IP1_inst

P1

P2

P3

IP1
986 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-scope cdc

 The connection from P2 to D belongs to the DFT scope in the shift
mode.
To create this connection, specify the following constraint:

abstract_port -ports P2 -inst_master RTL_FD
-connected_inst x_reg -inst_pin D -path_logic combo
-scope dft -mode shift

 The connection from P3 to D belongs to the DFT scope in the capture
mode.
To create this connection, specify the following constraint:

abstract_port -ports P3 -inst_master RTL_FD
-connected_inst x_reg -inst_pin D -path_logic combo
-scope dft -mode capture

After specifying the above constraints, SpyGlass generates connections, as
shown in the following figure:
Version N-2017.12-SP1 987
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 9. Handling Connections of Different Scopes

In the above figure, notice the MUX present between the connections.

SpyGlass inserts this MUX so that only one connection of a particular scope
(CDC, DFT in the shift mode, or DFT in the capture mode) is active at a
time. Therefore:

 When the CDC select line of the MUX is on, the connection between P1
and D is active.

 When the DFT select line of the MUX is on for the shift mode, the
connection between P2 and D is active.

 When the DFT select line of the MUX is on for the capture mode, the
connection between P3 and D is active.

RTL_FD

D

x_reg

IP1

IP1_inst

P1

P2

CDC

DFT

MUX

Connection of CDC scope

Connection of DFT scope

MUX select lines

P3
Connection of DFT scope

(shift mode)

DFT
(capture mode)

for shift mode

in capture mode
988 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-path_polarity <path-polarity>

Specifies the polarity of the path containing a combinational logic.

You can specify any of the following values as the path polarity:

NOTE: Specify this argument only if you specify -path_logic combo in the
abstract_port constraint specification.

-phase_list <min|max|rise|fall|setup|hold|start|end>

Specifies options associated with SDC commands used by SpyGlass
Constraints solution.

For example, when you set the value of this argument to setup for
multi-cycle paths specified by the set_multicycle_path SDC
command, SpyGlass abstracts the setup-related information while
generating an abstract view.

-multiplier_value <multiplier-value>

Specifies a multiplier value for the set_multicycle_path SDC
command.

-path_constraint <min_delay | max_delay>

Set this argument to min_delay or max_delay if a path is constrained
by using the set_max_delay or set_min_delay SDC command,
respectively.

-ignore

Indicates that the specified block port is not considered for SpyGlass
analysis.

The Clock_info15 rule of the SpyGlass CDC solution generates the
abstract_port -ignore constraint if all the fan-out of an input port

Path Polarity Description
buf Specifies that the path containing the combinational logic is

buffered.
inv Specifies that the path containing the combinational logic is

inverted.
Version N-2017.12-SP1 989
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
are hanging or blocking. See Example 4.

The Ac_abstract01 rule of the SpyGlass CDC solution generates the
abstract_port -ignore constraint if all the fan-in of an output port
are hanging or blocking.

NOTE: It is not mandatory to specify the -clock argument of the abstract_port
constraint when you specify the -ignore argument of this constraint.

[-combo_ifn <clock_port>]

Indicates the clock port associated with the control synchronizer.

See Example 9 for specifying the -combo_ifn argument for IN4 input
port. The -combo_ifn argument is not applicable for output ports.

[-start>]

Set this argument to validate the domain assumption and other CDC
attributes applied on the design object by using the abstract_port
constraint from its fanin cone.

Note that CDC verification is performed from the design object, which has
the abstract_port constraint specified, to the output cone of the
specified port/pin.

NOTE: This argument is used by the SpyGlass CDC solution only.

Table 1 below summarizes verification/validation with regard to CDC start
points.

If the -start argument is not specified for an abstract_port, SpyGlass
CDC considers the design objects specified in Table 2 as the start point.

TABLE 1

CDC start point

Verification Primary Input/Blackbox output

Validation Primary Output/Blackbox input
990 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints

[-end>]

Set this argument to validate the domain assumption and other CDC
attributes applied on the design object by using the abstract_port
constraint from its fan-out cone.

Note that CDC verification is performed from the design object, which has

TABLE 2

Object Type Default Description

Top-level input port -start

Top-level inout port -start
-end

For input side, it will be considered as
-start and for output side, it will be
treated as -end

Black-box output -start

Black-box inout -start
-end

For output side, it will be considered as
-start and for input side, it will be
considered as -end

Abstracted block
output (seen at
higher level of
hierarchy)

-start Similar to black box handling

Abstracted block
input (seen at the
higher level of
hierarchy)

-start Differs from blackbox handling as well as
the description in Table 1 to avoid
backward compatibility issues for existing
SoC flow. SpyGlass CDC validates the
abstract port and therefore consider it as
CDC start point rather than as CDC end
point.

Abstracted block
inout (seen at the
higher level of
hierarchy)

-start Differs from blackbox handling as well as
the description in Table 1 to avoid
backward compatibility issues for existing
SoC flow. SpyGlass CDC validates
abstract port and therefore consider it as
CDC start point rather than as CDC end
point.
Version N-2017.12-SP1 991
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
the abstract_port constraint specified, to the input cone of the
specified port/pin.

NOTE: This argument is used by the SpyGlass CDC solution only.

Table 3 summarizes verification/validation with regard to CDC end points.

If the -end argument is not specified for an abstract_port, SpyGlass CDC
considers the design objects specified in Table 4 as the end point.

[-direction]

Set this argument to specify direction of an inout port that is constrained
by using the abstract_port constraint to consider it as an input port or
output port. Possible values for this field are input and output.

[-comment]

Indicates if the input port is hanging, blocked, or the related clock is
unconstrained.

The Setup_port01 rule of the SpyGlass CDC solution generates the
abstract_port -comment constraint if the input port is purely
hanging or blocked. Possible values of the -comment field are hanging
path, blocked path, and unconstrained clock. The -comment
field is generated along with the -ignore field of the abstract_port
constraint.

[-init]

Indicates the initial state of the delay element to be applied in formal
modeling.

TABLE 3

CDC end point

Verification Primary output/Blackbox input

Validation Primary input/Blackbox output
992 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Example 1

Consider the following example:

abstract_port -module MOD -ports P1 -clock Ck2
-related_ports IN1 -scope cdc

The above example implies that the P1 output port of the MOD module is
driven by a flip-flop clocked by the Ck2 clock, and there is no synchronizer
in an input cone of the port. The flip-flop is driven by the IN1 input port.
This is shown in the following figure:

FIGURE 10. Example 1

Example 2

Consider the following example:

abstract_port -module MOD -port P1 -clock Ck2
-combo yes -sync active -from Ck1 -to Ck2
-sync_names MOD.U1.sync -scope cdc

The above example implies that the P1 port of the MOD module is an
output of a control synchronizer (from the source clock Ck1 to the
destination clock Ck2) and there is a combinational logic present between
a synchronizer and the port. This is shown in the following figure:

MOD

IN1

CK2

P1
Version N-2017.12-SP1 993
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 11. Example 2

Here, MOD.U1.sync is the hierarchical name of synchronizer output.

In this case, the port can act as a synchronized enable at a higher
hierarchy for other crossings.

Example 3

Consider the following example:

abstract_port -module MOD -ports P1 -clock Ck2 -scope cdc

The above example implies that the P1 output port of the MOD module is
driven by an unsynchronized crossing with the destination clock Ck2. This
is shown in the following figure:

FIGURE 12. Example 3

MOD

IN1

CK1

CK2

U1

P1
sync

Synchronizer Combinational
logic

MOD

CK2

P1

flop1
994 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 4

Consider the following figure:

FIGURE 13.

The following constraint, indicating that all the fan-out of the P2 input port
are hanging, is generated by SpyGlass in this case:

abstract_port -module IP1 -ports P2 -ignore

Example 5

Consider the following example:

FIGURE 14.

RTL_FD

D

x_reg

IP1

IP1_inst

P1

P2 Hanging terminal
Version N-2017.12-SP1 995
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In the above example, the validation check is performed for port P1 and
data domain mismatch is reported by the Ac_abstract_validation01 rule.

Example 6

Consider the following example:

FIGURE 15.

In the above example, the Ac_unsync01 rule reports a violation between
the ff flop and P1 port.

NOTE: Note that no validation check is performed for output ports when the block is
instantiated at the SoC level.

Example 7

Consider a scenario where two constraints, one with -start and another
with -end is defined for a inout port.

In this case, if the inout port is driven by a flop, then both validation and
verification is performed (assuming the rules are enabled) with regard to -
start and -end respectively.

Similarly if the inout port is feeding a flop, then both validation and
996 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
verification is performed because the -start/-end arguments are
specified on the same port. Therefore, it is possible that SpyGlass CDC
reports three violations for the same port because validation check is not
performed for the -end argument on output or inout ports.

Consider the following schematic:

FIGURE 16.

In the above example, the P port is an inout port of the BLK block. The
abstraction of the BLK block generates the following constraints:

abstract_port -ports P -clock C2 -start

At SoC level, the validation check is performed for the abstract_port
constraint with the -start argument and it reports domain mismatch for the
C4 clock because the FF1 flop is driving the P inout port. Similarly, a
crossing is reported for C3 (where the P port is the source of the crossing)
because the FF2 flop is driven by the P port.

Example 8

Refer to the schematic shown in Figure 17. The figure shows the various
output ports and the corresponding abstract_port constraint
generated by SpyGlass CDC for each output port.
Version N-2017.12-SP1 997
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 17.

Example 9

Refer to the schematic shown in Figure 18. The figure shows the various
input ports and the corresponding abstract_port constraint that you
can specify for each input port.
998 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 18.

Rules

The abstract_port constraint is used by the following rules:

SpyGlass CDC Solution
Clock synchronization
rules (except
Clock_sync05)

Block constraint
validation rules

Ac_abstract01

Ac_blksgdc01 Reset_sync02 Reset_sync03
Ar_unsync01 Ar_sync01 Ar_asyncdeassert01
Ar_syncdeassert01 Ar_resetcross01 Ar_resetcross_matrix01
SpyGlass DFT Solution
All rules
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 999
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
activity

Purpose

Use the activity constraint to specify activity values and probability
values of input signal used for the rules that report power/activity. The
activity value for an individual non-clock signal or all non-clock signals
contained in a specified instance can be specified.

The ways in which activity and probability of a net can be determined, in
decreasing order of priority, are as follows:
1. The simulation file
2. The -name and -instname arguments of the activity constraint
3. The -all_primary_input, -all_register_output, -

all_blackbox_output, -all_register_enable, or
-all_power_essential_signals arguments of the activity
constraint

4. The -default_startpoints argument of the activity constraint
5. The -default argument of the activity constraint

NOTE: The pe_activity_priority parameter is by default set to 'sim'. If it is changed to
'sgdc', points 2 and 3 take higher priority over point 1. For more information on this
parameter, refer to the SpyGlass Power Estimation and SpyGlass Power Reduction
Rules Reference Guide.

Nets for which activity and probability are not specified by any of the above
points, the values are propagated from the fan-in using the SpyGlass
activity propagation engine.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the activity constraint is as follows:

current_design <du-name>
activity
-name <sig-name> | -instname <inst-name> | -

default_startpoints | -default
-prob <p-value>
1000 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-activity <a-value>
-all_primary_input
-all_register_output
-all_blackbox_output
-clock <clk-name>
-clock_enable_instname <flip-flop-inst-name>
-all_register_enable
-all_power_essential_signals

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <sig-name>

Name of the non-clock signal for which you are specifying the activity
value.

-instname <inst-name>

Name of the instance under which you are specifying the activity value for
all non-clock signals. This field supports regular expressions.

The -instname field supports a hierarchical instance name and NOT
leaf-level cell name or black boxes.

-default_startpoints

Indicates that the specified probability and activity values are applicable to
all unannotated primary inputs and blackbox outputs.

When you specify this argument:

 You can specify only the -activity and -prob arguments.

 The -instname argument is optional because SpyGlass automatically
takes the top of the design. If you specify the -instname argument,
make sure the value is the name of the top of the design. Otherwise, a
FATAL message is reported.
Version N-2017.12-SP1 1001
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-default

Indicates the specified probability and activity values are applicable to all
nets, which are non-clock nets, and for which these values have not been
specified by:

 Any other argument of the activity constraint

 The simulation file

-prob <p-value>

Probability of a signal being high (a real value between zero and one).

-activity <a-value>

The toggle activity value (a real number representing the number of
transitions from zero to one or from one to zero in a clock cycle).

-all_primary_input

When you specify this argument with -instname argument, the activity
values are set for all the input/inout pins of the respective hierarchical
instance. Otherwise, the activity values are set for all the primary input/
inout pins of the top domain in the design.

-all_register_output

If this field is specified, it sets the activity values for all the nets driven by
registers.

The scope of this field can be specified through the -instname field of
activity constraint. If scope is not specified, it sets the activity values
for all the nets driven by registers in the design. For example:

activity -instname top.a -activity 0.3 -prob 0.5
-all_register_output

The above example sets the activity values of the nets driven by registers
in the top.a hierarchy.

-all_blackbox_output

If this field is specified, it sets the activity values for all the nets that are
driven by black boxes.
1002 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The scope of this field can be specified through the -instname field of
activity constraint. For example:

activity -instname top.a -activity 0.3 -prob 0.5
-all_blackbox_output

The above example sets the activity values of the nets driven by black
boxes in the top.a hierarchy.

If the scope is not specified, it sets the activity values for all the nets that
are driven by the black boxes in the design.

-clock <clk-name>

In general, all the activity values are considered with respect to the fastest
clock in the design. However, if you want to specify the activity of a net
with respect to a local clock of a block, use this argument.

Consider the following example:

clock -name "clk1" -period 10

activity -instname "Top" -activity 0.5 -prob 0.3

clock -name "INST1.clk2" -period 20

activity -name "INST1.n1" -activity 0.5 \
-clock INST1.clk2 -prob 0.4

Here, activity value for the n1 net of the INST1 block is considered with
respect to the local clock INST1.clk2 rather than clk1, which is the
fastest clock in the design. The last command of the above specification is
equivalent to the following:

activity -name "INST1.n1" -prob 0.40 -activity 0.25

The activity value for the n1 net of the INST1 block remains the same as
it is considered with respect to clk1 clock.

-clock_enable_instname <flip-flop-inst-name>

Name of the flip-flop instance on whose enable you want to apply an
activity value or a probability value.

For example, consider the following specification of the activity
constraint:
Version N-2017.12-SP1 1003
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
activity -clock_enable_instname FF1 -activity 0.5 -prob 0.3

The above specification implies that the activity value 0.5 and the
probability value 0.3 should be applied on the enable of the FF1 flip-flop
instance.

-all_register_enable

Sets the activity and probability values for all register enables.

The scope of this argument can be specified through the -instname
argument of the activity constraint. The scope includes the module and
all the underlying instances within the module. If the scope is not specified,
it sets the activity and probability for all register enables in the design.

In the following example, activity and probability values are set:

activity -instname top.M1 -prob 0.9 -activity 0.1
-all_register_enable
activity -instname top.M2 -prob 0.9 -activity 0.1
-all_register_enable

-all_power_essential_signals

Sets the activity and probability values for all essential signals.

The scope of this argument can be specified through the -instname
argument of the activity constraint. The scope includes the module and
all the underlying instances within the module. If the scope is not specified,
it sets the activity and probability for all Power-Essential signals in the
design.

In the following example, the activity values for all Power-Essential signals
of module M1 have the probability of 0.9 and activity of 0.1:

activity -instname top.M1 -prob 0.9 -activity 0.1
-all_power_essential_signals

Rules

The activity constraint is used by the following rules:
1004 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PESTR03 PESTR05
PESTR06 PESTR13 poweraudit
Version N-2017.12-SP1 1005
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
activity_data

Purpose

Specifies a simulation file for rules in the SpyGlass Power Estimation and
SpyGlass Power Reduction solutions.

The activity_data constraint specifies the VCD, FSDB, and SAIF file
that is to be translated to SpyGlass activity format used by rules in the
SpyGlass Power Estimation and SpyGlass Power Reduction solutions.

The activity_data constraint takes a set of information that was
previously supported by some spyParameters. However, some new
features like SAIF file input and multiple VCD are not supported by these
spyParameters. Therefore, it is recommended that you use the
activity_data constraint for all simulation inputs.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the activity_data constraint is as follows:

current_design <du-name>
activity_data

-format <format> -file <file-name>
-starttime <start-time>
-endtime <end-time>
-weight <value> -sim_topname <simulation top>
-instname <instance-name>
-sim_rtl_design_nl
[-parallel_saif <saif-file-name>]
[-parallel_saif_topname <saif-top-name>]

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).
1006 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-format <format>

Name of the activity data format.

This argument can have any of the following values: "SAIF", "VCD", or
"FSDB", depending on the type of the specified simulation file.

-file <file-name>

Name of the VCD/FSDB/SAIF file.
NOTE: You can specify compressed VCD file that has been generated by using the gzip

utility.

-starttime <start-time>

(Optional) Start time for VCD/FSDB file analysis with a time unit. The
allowed time units are s, ms, us, ns, ps, and fs. In case, you do not
specify a time unit, the timescale value provided in the VCD/FSDB file is
used to infer the time value.

For example, if you specify the <start-time> as three with no time
unit, and the corresponding VCD file is as shown below:

##

$date

 Dec 18, 2009 17:48:09

$end

$timescale

 1ns

$end

##

Then, the time value will be inferred as 3ns.

If you do not specify this argument, the start time given in VCD/FSDB file
is used for analysis.

-endtime <end-time>

(Optional) End time for VCD/FSDB file analysis with a time unit. If you do
not specify a time unit, the timescale value provided in the VCD/FSDB file
Version N-2017.12-SP1 1007
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
is used to infer the time value.

If you do not specify the <end-time> argument, the end time given in
VCD/FSDB file is used for analysis.

-weight <value>

The percentage value (an integer number between 0 and 100) denoting
weights assigned to the multiple VCD/FSDB files.

When using the <value> argument, you should specify weights for all the
VCD/FSDB files. In case you do not specify this argument, the weights are
considered based on simulation times of each VCD/FSDB file.

The sum of the <value> arguments specified for all the
activity_data constraints should be 100.

If multiple VCD/FSDB files are specified and the weight is not specified, the
average power estimation is done based on the weighted average of the
duration of each VCD/FSDB file. For example:

If VCD1 has simulation values from 0 to 500 ns and VCD2 has simulation
values from 200 ns to 450 ns, the average power is calculated, assuming
that in a complete duration of
(500 ns - 0) + (450 ns - 200 ns) = 750 ns,
VCD1 runs for 500 ns and VCD2 runs for 250 ns.
Therefore, the weight of VCD1:VCD2 will be 2:1.

However, if weights are specified for VCD/FSDB files, the duration of VCD/
FSDB file is not considered while taking weighted average for power
estimation.

-sim_topname <simulation top>

Name of the instantiated top module in the VCD/FSDB/SAIF file.

If you do not specify <simulation top>, SpyGlass attempts to
automatically infer the hierarchy in the VCD/FSDB/SAIF file corresponding
to the top design.

-instname <instance-name>

(Optional) Name of the hierarchical instance for which the simulation file is
applicable. This field is specified when horizontal simulation file flow is
used.
1008 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-sim_rtl_design_nl

(Optional) This field should be specified if simulation file is used with gate
level design.

-parallel_saif <saif-file-name>

This is an optional argument and is used to specify the Switching Activity
Interchange Format (SAIF) file name with the simulation file formats VCD/
FSDB.

During the annotation process, if any signal is not found in the VCD/FSDB
files, that signal's activity is retrieved from the parallel SAIF when the
signal is present in the parallel SAIF file.

-parallel_saif_topname <saif-top-name>

This is an optional argument and is used to specify the parallel SAIF top
name. If you do not specify the parallel SAIF top name, the -
sim_topname argument is considered as the parallel SAIF top name.

Rules

The activity_data constraint is used by the following rules in the
SpyGlass Power Estimation and SpyGlass Power Reduction solutions:

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PESAE02 PESAE03
poweraudit PESTR03 PESTR05 PESTR06
PESTR13 PESAE04 PESAE06
Version N-2017.12-SP1 1009
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
add_fault

Purpose

The add_fault constraint is used to specify faults to be considered while
calculating fault/test coverage. When add_fault is used then all faults
that are not specified as add_fault are treated as no_fault and
ignored while calculating fault/test coverage.

Product

SpyGlass DFT solution

Syntax

The syntax to specify the add_fault constraint is as follows:

add_fault
-name <du-name> | <inst-name>

[- fault <hier_pin_names>]
[- net <hier_net_names>]
[- net_input <hier_net_names>]
[- net_output <hier_net_names>]
[- clock_control <hier_net_names>]
[- set_control <hier_net_names>]
[- reset_control <hier_net_names>]
[- register_suffix]
[- instance_suffix]
[- module_suffix]

NOTE: The add_fault constraint supports wildcard characters. Using wildcards, expression
is expanded only within the hierarchy.

Arguments

The add_fault constraint has the following arguments:

-name <du-name> | <inst-name>

Specifies name of a module or instance that needs to be marked as
add_fault.
1010 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You can specify a single or space-separated list of design unit names /
hierarchical instance names:

You can specify design unit names, hierarchical instance names, or a
combination of both.

-fault <hier_pin_names>

(Optional) Space-separated list of hierarchical names of pins or ports.

Do not use this argument in case of RTL design because pin names will
contain generated names and will fail SGDC sanity check at the RTL.

-net <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults in the direct fanin or fanout of the net as add_fault.

-net_input <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults in the direct fanin of the net as add_fault.

-net_output <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults in the direct fanout of the net as add_fault.

-clock_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults associated with the registers, where clock pin is topologically driven
by the specified clock, as add_fault.

-set_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
fault associated with the registers, where set pin is topologically driven by
the specified set signal, as add_fault.

-reset_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
fault associated with the registers, where reset pin is topologically driven
by the specified reset signal, as add_fault.
Version N-2017.12-SP1 1011
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-register_suffix <suffixes>

Space-separated list of suffixes to be specified as add_fault. The
-register_suffix argument should not be used along with other arguments
of the add_fault constraint, that is, -name, -clock_control, -set_control, or
-reset_control.

If the value of the dft_treat_suffix_as_pattern parameter is set to on, the
register_suffix value is used as a pattern to be matched with the register
name. The pattern may be present anywhere in the register name,
excluding the path.

If the value of the dft_check_path_name_for_register_suffix
parameter is on, the value of the -register_suffix field will be
matched with the register name along with the path in which the register is
present.

-instance_suffix <suffixes>

Define this field to use suffix based pattern match for all instance names.

-module_suffix <suffixes>

Define this field to use suffix based pattern match for all module names.

If the value of the dft_treat_suffix_as_pattern parameter is on,
the value of the -module_suffix field will be matched with the module
name along with the path in which the module is present.

Rules

The add_fault constraint is used by the following rules:

Example

Example 1

Consider the following add_fault definition:

SpyGlass DFT Solution

Info_coverage Coverage_audit
SpyGlass DFT DSM Solution

Info_transitionCoverage Info_transitionCoverage_audit
1012 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
add_fault -name sub1 -fault top.in4
add_fault constraint definition:

Now, consider the schematic for the same (Figure 19):

FIGURE 19. Terminals marked as add_fault

In the above schematic, instance, in4, and terminals inside sub1 are
marked as add_fault. The faults of other terminals are not used for
coverage calculations.

Example 2: Specifying list of suffixes using the -register_suffix
argument

Consider the following example:

R1 (register 1) name: top.u_ctrl.u2.u1.ff1_ctrl
R2 (register 2) name: top.u_ctrl.u2.u1.ff1_state
R3 (register 3) name: top.u_core.u2.u1.ff1_state_ctrl
Version N-2017.12-SP1 1013
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
R4 (register 4) name: top.u_ctrl_state.u2.u1.ff1_ctrl_state
1014 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Now, consider the following add_fault descriptions:

add_fault -register_suffix ctrl
add_fault -register_suffix state

The following table lists the results when combination of values are used
for the dft_treat_suffix_as_pattern and
dft_check_path_name_for_register_suffix parameters:

Example 3:Specifying list of suffixes using the -instance_suffix
argument

Consider the following example:

R1 (register 1) name: top.u_ctrl.u2.u1.ff1_ctrl
R2 (register 2) name: top.u_ctrl.u2.u1.ff1_state
R3 (register 3) name: top.u_core.u2.u1.ff1_state_ctrl
R4 (register 4) name: top.u_ctrl_state.u2.u1.ff1_ctrl_state

I1 (instance 1) name: top.u_ctrl.u2.u1.inst1_ctrl
I2 (instance 2) name: top.u_ctrl.u2.u1.inst1_state
I3 (instance 3) name: top.u_core.u2.u1.inst1_state_ctrl
I4 (instance 4) name: top.u_ctrl_state.u2.u1.inst1_ctrl_state

TABLE 4 Pattern Matching for the -register_suffix argument

Value of
dft_treat_suffix_
as_pattern

Value of
dft_check_path_n
ame_for_register_
suffix

Value of -
register_suffix

Matched
Registers

off off ctrl R1, R3

state R2, R4

off on ctrl R1, R2, R3

state R2, R4

on off ctrl R1, R3, R4

state R2, R3, R4

on on ctrl R1, R2, R3,
R4

state R2, R3, R4
Version N-2017.12-SP1 1015
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Now, consider the following add_fault descriptions:

add_fault -instance_suffix ctrl
add_fault -instance_suffix state

The following table lists the results when combination of values are used
for the dft_treat_suffix_as_pattern and
dft_check_path_name_for_instance_suffix parameters:

TABLE 5 Pattern Matching for the -instance argument

Value of
dft_treat_suffix_
as_pattern

Value of
dft_check_path_n
ame_for_instance
_suffix

Value of -
instance_suffix

Matched
Registers/
Instances

off off ctrl R1, R3, I1,
I3

state R2, R4, I2,
I4

off on ctrl R1, R2, R3,
I1, I2, I3

state R2, R4, I2,
I4

on off ctrl R1, R3, R4,
I1, I3, I4

state R2, R3, R4,
I2, I3, I4

on on ctrl R1, R2, R3,
R4, I1, I2,
I3, I4

state R2, R3, R4,
I2, I3, I4
1016 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
allow_combo_logic

Purpose

The allow_combo_logic constraint allows combinational logic between
crossings only if the logic is within the modules specified using this
constraint.

NOTE: The allow_combo_logic constraint specifications will be applicable to all the
clock-domain crossings in the design.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the allow_combo_logic constraint is as follows:

current_design <du-name>
allow_combo_logic
[-name <space-separated-list>]
[-all]
[-none]

Arguments

-name <space-separated-list>

(Optional) Specifies a space-separated list of modules and/or library cells.
You can also use wildcard characters while specifying module/library cell
names. For example, you can specify names, as shown in the following
examples:

allow_combo_logic -name MD1 MD2 MD3
allow_combo_logic -name "MD*"
allow_combo_logic -name "MD*" "AB*" PQR

-all

(Optional) Specifies that all the combinational logic should be allowed in a
crossing path.
Version N-2017.12-SP1 1017
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-none

(Optional) Specifies that no combinational logic should be allowed in the
crossing path.

If the allow_combo_logic constraint is specified multiple times, the
order of preference (starting from the highest priority) will be as follows:

1. allow_combo_logic -all

2. allow_combo_logic -none

3. allow_combo_logic -name <list>

NOTE: Do not use the -all and -none arguments together in the same
allow_combo_logic constraint.

Rules

The allow_combo_logic constraint is used by the following rules:

Example

Consider an example, as shown in the following figure:

FIGURE 20. Ac_unsync01/Ac_unsync02 Rule Example

In the above example, by default, the Ac_unsync01/Ac_unsync02 rule is

SpyGlass CDC Solution
Ac_sync01 Ac_sync02 Ac_unsync01 Ac_unsync02
Ac_glitch03 Ac_conv01 Ac_conv02 Ac_conv03
Clock_sync09
1018 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reported for the crossing between FF1 and FF2. Now consider that you
specify the allow_combo_logic constraint, as given below:

allow_combo_logic -name MOD

In the above case, the combinational logic will be allowed if it is inside the
module, MOD, between the crossing path. Therefore, the crossing will be
reported as synchronized by the Ac_sync01/Ac_sync02 rule.
Version N-2017.12-SP1 1019
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
allow_test_point

Purpose

The allow_test_point constraint is used to specify modules or
instance which should be considered for suggesting test points.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the allow_test_point constraint is as follows:

current_design <du-name>
allow_test_point
-name <module-name | instance_list>

Arguments

-name <module-name | instance_list>

Name of the module or the list of instances to be considered for suggesting
the test points.

Rules

The allow_test_point constraint is used by the
Info_random_resistance rule.

always_on_buffer

Purpose

The always_on_buffer constraint is used to specify always-on buffers.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was aonbuffer.
1020 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the always_on_buffer constraint is as follows:

current_design <du-name>
always_on_buffer
-name <cell-name>
[-vddcpin <vddc-pin>]

Arguments

<du-name>

Name of the design unit under which you are specifying the always-on
buffer.

-name <cell-name>

Name of the buffer cell. You can use wildcard characters while specifying
the cell name.

-vddcpin <vddc-pin>

Name of the VDDC pin of the always-on buffer as used by LPPLIB11 and
LPPLIB06 rules of the SpyGlass Power Verify solution.

Rules

The always_on_buffer constraint is used by the following rules:

SpyGlass Power Verify Solution
LPSVM08 LPSVM09 LPSVM10 LPSVM26
LPSVM28 LPSVM31 LPSVM40 LPSVM47
LPSVM48 LPSVM52 LPSVM53 LPSVM56
LPSVM57 LPSVM59 LPPLIB06 LPPLIB11
LPPLIB15 LPPLIB17
Version N-2017.12-SP1 1021
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
always_on_cell

Purpose

The always_on_cell constraint is used to specify library cell names
that should be instantiated in always-on domains only (that is, they should
not be instantiated in switchable domains).

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the always_on_cell constraint is as follows:

current_design <du-name>
always_on_cell
-name <cell-name-list>

[-locate <domain-type>]

Arguments

<du-name>

Name of the design unit under which you are specifying the always-on
cells.

-name <cell-name-list>

Space-separated name list of always-on cells.

-locate <domain-type>

It can be AON (Always-On Domain), OFF (power domain), or BOTH (any
domain).

NOTE: You can use wildcard characters while specifying the cell names using the -name
argument.

Rules

The always_on_cell constraint is used by the following rules:
1022 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints

always_on_pin

Purpose

The always_on_pin constraint is used to specify always-on cell pins.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the always_on_pin constraint is as follows:

current_design <du-name>
always_on_pin
-cell <name>
-pin <pin-name-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the always-on
pins.

-cell <name>

Name of the design unit for which always-on pins are being specified.

-pin <pin-name-list>

Space-separated name list of always-on input/inout pins of the design unit
<name>.

SpyGlass Power Verify Solution
LPSVM09 LPSVM10 LPSVM28 LPSVM31
LPSVM47 LPSVM54 LPSVM57 LPSVM59
LPPLIB17
Version N-2017.12-SP1 1023
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: You can use wildcard characters while specifying the cell name using the -cell
argument.

Rules

The always_on_pin constraint is used by the following rule.

always_on_path

Purpose

The always_on_path constraint is used to specify paths that should be
always-on. There should not be any element that is driven by a switchable
supply along the paths specified as always-on path.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the always_on_path constraint is as follows:

current_design <du-name>
always_on_path
-from <start-point-name>
-to <end-point-name>

Arguments

<du-name>

Name of the design unit under which you are specifying the always-on
cells.

-from <start-point-name>

Specifies the start point of always_on_path.

SpyGlass Power Verify Solution

LPSVM53
1024 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to <end-point-name>

Specifies the end point of always_on_path.
NOTE: Here, <start-point-name>/<end-point-name> can be:

 Top-level port (like TOP.in)
 Any hierarchical signal name (like TOP.u1.sig1)
 Pin of a hierarchical leaf level instance (like TOP.u1.LIB1.Z)
 Any hierarchical port of user defined module (like TOP.u1.clk_out)

Rules

The always_on_pin constraint is used by the following rule.

antenna_cell

Purpose

The antenna_cell constraint is used to specify the antennae protection
cells (diode cells) that should be ignored.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was apcell.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the antenna_cell constraint is as follows:

current_design <du-name>
antenna_cell
-name <cell-name-list>

SpyGlass Power Verify Solution

LPAON02
Version N-2017.12-SP1 1025
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit under which you are specifying the cells.

-name <cell-name-list>

Space-separated list of the cell names. You can use wildcard characters
while specifying the cell name using the -name argument.

Rules

The antenna_cell constraint is used by the following rules:

aon_buffered_signals

Purpose

The aon_buffered_signals constraint is used to specify signals that
should be driven by an always-on buffer.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
aonbufferedsignals.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the aon_buffered_signals constraint is as
follows:

current_design <du-name>
aon_buffered_signals

SpyGlass Power Verify Solution
LPSVM04A LPSVM04B LPSVM04C LPSVM08
LPSVM09 LPSVM10
1026 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-names <sig-name-list>
[-terminatingcells <cell-pin-name-list>]
[-ignorecells <ignorecell-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying signals.

-names <sig-name-list>

Space-separated name list of signals driven by an always-on buffer
(specified by using the always_on_buffer constraint).

-terminatingcells <cell-pin-name-list>

Space-separated cell-pin pair names list of terminating cells and their
terminating pins.

NOTE: You can use wildcard expressions while specifying this list.

-ignorecells <ignorecell-name-list>

Space-separated name list of cells to be ignored while traversing the
fan-out of the specified signals. You can use wildcard characters while
specifying cells to be ignored.

Rules

The aon_buffered_signals constraint is used by the following rules:

assertion_signal

Purpose

Specifies Power On Reset (POR) signals and low power signals.

SpyGlass Power Verify Solution

LPSVM40 LPPLIB11
Version N-2017.12-SP1 1027
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was lpsignal.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the assertion_signal constraint is as follows:

current_design <du-name>
assertion_signal
-name <sig-name>
-value <0 | 1>
-type <POR | PORCHECK>

Arguments

<du-name>

Name of the design unit under which you are specifying the special signals.

-name <sig-name>

Name of the special signal.

-value <0 | 1>

The -value argument specifies whether the signal is active high (1) or
active low (0).

-type <POR | PORCHECK>

Specify the -type argument with value POR for POR signals and with
value PORCHECK for low-power signals.

Rules

The assertion_signal constraint is used by the following rule:

SpyGlass Power Verify Solution

LPSVM42
1028 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
associate_lib

Purpose

The associate_lib constraint is used to associate the library names
and library cells with the domains declared in the UPF.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the associate_lib constraint is as follows:

associate_lib
–domain <domain-name>
-lib <list of library-name>
-cell <list of cell-name>

Arguments

-domain <domain-name>

Name of a domain as declared in the UPF.

-lib <list of library-name>

List of one or more library names as defined in the .lib file with keyword:

library(library-name){
}

-cell <list of cell-name>

List of one or more cell names as defined in the .lib fie with keyword:

cell (cell-name){
}

NOTE: Wildcards are supported for cell names. Both ‘-lib’ and ‘-cell’ fields are optional and
can be specified together. The -domain argument is mandatory.
Version N-2017.12-SP1 1029
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The associate_lib constraint is used by the following rule:

assume_waveform

Purpose

The assume_waveform constraint is used to specify a user-defined
waveform on a design object. This waveform is then used during the formal
verification of false path (set_false_path) and multicycle path
(set_multicycle_path) constraints in SpyGlass TXV.

You can specify the waveform in terms of edge list corresponding to a
particular SDC create_clock or create_generated_clock.

Product

SpyGlass TXV solution

Syntax

The syntax of the assume_waveform keyword in a SpyGlass Design
Constraints file is as follows:

current_design <du-name>
assume_waveform

-clock <sdc-clock-name>
-edgelist <list-of-edges>
-object <port | pin | net>

Arguments

-clock <sdc-clock-name>

The name of an SDC create_clock/create_generated_clock as

SpyGlass Power Verify Solution

LPPLIB20 SGDC_lowpower118
1030 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
specified in the -name argument of the SDC create_clock/
create_generated_clock command.

-edgelist <list-of-edges>

The waveform with reference to the SDC clock specified in the -clock
argument.

-object <port-name | pin-name | net-name>

The design object where this waveform needs to be applied during
verification of false path or multicycle path constraints. You can either
specify a port, pin, or net name.

Example

If the SDC clock is specifed as:

create_clock -name clk1 -period 10 clk

The corresponding assume_waveform can be specified as:

assume_waveform
-clock "clk1"
-edge_list "{1 3 5}"
-object "in1"

Rules

The assume_waveform constraint is used by the following rules:

assume_path

SpyGlass TXV Solution

Txv_MCP01 Txv_FP01
Version N-2017.12-SP1 1031
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The assume_path constraint is used to specify the paths that exist
between the input pins and the output pins of black boxes.

NOTE: The assume_path constraint will be deprecated in a future SpyGlass release.
Use the abstract_port constraint instead of this constraint.

NOTE: Use this constraint if you want SpyGlass rules to consider combinational path from
an input to output ports of a black box, whereas use the abstract_port constraint if
you want to associate or specify a clock on an input or output port.

Product

SpyGlass CDC solution, SpyGlass Constraints solution, SpyGlass latch
product, SpyGlass DFT solution

Syntax

The syntax of using the assume_path keyword in a SpyGlass Design
Constraints file is as follows:

current_design <du-name>
assume_path -name <bbdu-name>

-input <input-pin-name>
-output <output-pin-name>

Arguments

-name <bbdu-name>

A black box module name (for Verilog designs) or a black box entity name
(for VHDL designs).

For VHDL designs, this constraint is applied to all architectures of the
specified entity.

-input <input-pin-name>

The name of an input pin of the black box design unit <bbdu-name>.

-output <output-pin-name>

A list of output pin names of the black box design unit <bbdu-name>.
1032 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Consider the following example:

assume_path -name BBOX -input d -output q qbar

This constraint indicates that paths exist between input pin d and output
pins q and qbar of black box design unit BBOX.

For SpyGlass CDC Solution

For the SpyGlass CDC solution, clock domain propagation through black
boxes is normally limited, because the exact relationship between input
pins and output pins is not known. If only one clock signal is propagated to
a black box instance, it is assumed that all pins of the black box instance
are in the domain of that clock signal and further clock domain propagation
is performed. However, if more than one clock signal propagates to the
instance, it is not possible to assume any clock domain information.

One way to extend the clock domain propagation through a black box
instance is to specify which output pins belong to the same clock domain as
a particular input pin.

The Ac_unsync01/Ac_unsync02 and Ac_sync01/Ac_sync02 rules allow you
to specify that paths exist between input pins and output pins of black
boxes and, thus, clock domain propagation can traverse through these
black boxes. These paths can be specified using the assume_path keyword
in a SpyGlass Design Constraints file.

For SpyGlass Constraints Solution

For the SpyGlass Constraints solution, assume_path constraint helps in
determining different paths available, for a black box module, between the
specified list of input pins and output pins.

Rules

The assume_path constraint is used by the following rules:

SpyGlass CDC Solution

All rules
SpyGlass Constraints Solution
Version N-2017.12-SP1 1033
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
atspeed_clock_frequency

Purpose

The atspeed_clock_frequency constraint is used to specify
frequencies associated with a test clock. The
atspeed_clock_frequency constraint might potentially affect the
way SpyGlass infers at-speed clock domain.

NOTE: Prior to the SpyGlass 4.4.0 release, the names of this constraint were
testclock_frequency and testclockFrequency.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the atspeed_clock_frequency constraint is as
follows:

current_design <du-name>
atspeed_clock_frequency

-name <testclock-node>
-freqList <freq-symbol-list>
[-enables <assign-node-paths>
 -values <combination1 combination2>]

All rules
SpyGlass latch Product

LatchFeedback
SpyGlass DFT Solution

Clock_04
1034 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit under which you are specifying the instance
hierarchies.

-name <testclock-node>

Path to the test clock node. This node must be declared as a test clock.

-freqList <freq-symbol-list>

 List of frequency symbols with which the test clock is associated. These
can be actual numbers like 100, 200 or alphanumeric symbols like F1, f2,
etc.

-enables <assign-node-paths>

(Optional) Paths to nodes that enable a particular frequency.

-values <combination1 combination2>

(Optional) Binary strings (0s and 1s) that specify a combination to be
applied to the enable pins. The length of the combination should be equal
to the number of enable pins.

Examples

Consider the following example to specify frequencies (symbols/numeric)
at nodes of interest that are declared as test clocks:

clock -name top.u2.clockout -testclock -atspeed

atspeed_clock_frequency -name top.u2.clockout -freqList 100
200 400 800 -enables s1 s2 s3 s4 -values 1000 0100 0010 0001

NOTE: Each symbol or value in the example has a corresponding set of enabling conditions.

You can infer the following from the example:
 The test clock can have frequencies: 100, 200, 400, and 800.

 These frequencies are selected by signals on the pins s1, s2, s3, and
s4.

 Frequency 100 is produced when s1, s2, s3, & s4 are 1000.
Version N-2017.12-SP1 1035
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Frequency 200 is produced when s1, s2, s3, & s4 are 0100.

 Frequency 400 is produced when s1, s2, s3, & s4 are 0010.

 Frequency 800 is produced when s1, s2, s3, & s4 are 0001.

Rules

The atspeed_clock_frequency constraint is used by the following
rules.

balanced_clock

Purpose

The balanced_clock constraint specifies points within the clock
distribution system where all clocks fed from that point are to be
considered in the same clock domain.

Product

SpyGlass DFT solution

Syntax

The syntax of using the balanced_clock keyword in a SpyGlass Design
Constraints file is as follows:

balanced_clock
-name <hier-pin-name-list>
[-domain <domain-name>]

Arguments

-name <hier-pin-name-list>

Hierarchical name of a clock pin.

SpyGlass DFT DSM Solution

All rules that use clock domain
1036 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The pin can be a primary pin as well as an internal pin.

You can specify a single hierarchical pin name or a space-separated list of
hierarchical pin names. When you specify a clock pin list, all flip-flops
triggered by these clock pins are assumed to be in the same clock domain
by the rules that check for clock domains.

-domain <domain-name>

(Optional) Specifies the domain of the specified balanced clock.

The domain name can be any valid string.

When the domain name is not specified, a default domain name is created
and all balanced clocks specified in one balanced_clock constraint are
assumed to be in this domain.

When multiple balanced_clock constraints are used with the same
domain name, all clocks specified in these balanced_clock constraints
are assumed to be in this (common) domain.

Thus, the following specifications create four domains: clkA, clkB,
clkC, and clkD U clkE:

balanced_clock -name clkA
balanced_clock -name clkB
balanced_clock -name clkC
balanced_clock -name clkD -domain big
balanced_clock -name clkE -domain big

Examples

Consider the following example:

module top(...)
...
m1 u1 (clock, ...);
...
m2 u2 (...,clock, ...);
...
endmodule

For example, when top.u1.clock is declared in a balanced_clock
constraint, all flip-flops inside instance u1 will be considered to be in the
Version N-2017.12-SP1 1037
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
same clock domain and not in the same clock domain as the flip-flops in
instance u2.

Another example of the balanced_clock constraint is as follows:

balanced_clock -name top.inst1.clkPort

The above specification indicates that the clkPort pin of the instance
inst1 in the top-level design unit top is the balanced clock pin.

balanced_clock -name clk1

The above specification indicates that the clk1 port of the top-level design
unit is the balanced clock pin.

Rules

The balanced_clock constraint is used by the following rules:

blackbox_power

Purpose

The blackbox_power constraint is used for modeling the black boxes
during power estimation.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
set_black_box_power.

Three models are supported for the black box modeling. Refer to the
Modeling Black Boxes in Power Estimation section in the SpyGlass Power
Estimation and SpyGlass Power Reduction Rules Reference Guide for
details.

Different arguments of this constraint are used for a different purpose for
each model, as explained below:

SpyGlass DFT Solution
Clock03 Clock_10 Scan_22 (optional)
1038 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Refer to the Case 1 of the Modeling Black Boxes in Power Estimation
section for the description of this scenario.

current_design <du-name>
 blackbox_power
 –modname <mod-name> | -instname <inst-name> }
 -leakage <lfloat> -internal <ifloat>
 -switching <sfloat>
 -input_pin_cap <ipcfloat>

Where:

 <du-name>: Module name (for Verilog designs) or design unit name
in <entity-name>.<arch-name> format (for VHDL designs)

 <mod-name>: Name of the black box module

 <inst-name>: Hierarchical instance name of the black box

 <lfloat>: Leakage power of the black box (in Watts)

 <ifloat>: Internal power of the black box (specified in Watts)

 <sfloat>: Switching power of the black box (specified in Watts)

 <ipcfloat>: Average input pin capacitance of the each pin of
the black box (in Farad).

 Refer to the Case 2 of the Modeling Black Boxes in Power Estimation
section for the description of this scenario:

 current_design <du-name>
 blackbox_power
 –modname <mod-name> | -instname <inst-name>
 -leakage <lfloat> -internal <ifloat_list>
 -switching <sfloat_list>
 -clocks <clk_pin_list>
 -input_pin_cap <ipcfloat>

Where:

 <du-name>: Module name (for Verilog designs) or design unit name
in <entity-name>.<arch-name> format (for VHDL designs)

 <mod-name>: Name of the black box module
Version N-2017.12-SP1 1039
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 <inst-name>: Hierarchical instance name of the black box

 <lfloat>: Leakage power of the black box (in Watts)

 <ifloat_list>: Space separated list of internal power in `Watts/
Hz` contributed by the logic on clocks <clk_pin_list>

 <sfloat_list>: Space separated list of Switching power in
`Watts/Hz` contributed by the logic on the clock <clk_pin_list>

 <clk_pin_list>: List of the clock pins in the black box

 <ipcfloat>: Average input pin capacitance of the each pin of the
black box (in Farad).

 Refer to the Case 3 of the Modeling Black Boxes in Power Estimation
section for the description of this scenario:

 current_design <du-name>
 blackbox_power
 -modname <mod-name> | -instname <inst-name>
 -leakage <lfloat> -internal <ifloat_list>
 -switching <sfloat_list>
 -input_pin_cap <ipcfloat> -activity <afloat>
 -clocks <clk_pin_list>
 -equiv_nand2_count <gate-count>
 -register_count <reg-count>

Where:

 <du-name>: Module name (for Verilog designs) or design unit name
in <entity-name>.<arch-name> format (for VHDL designs)

 <mod-name>: Name of the black box module

 <inst-name>: Hierarchical instance name of the black box

 <lfloat>: Leakage power of the black box (in Watts)

 <ifloat-list>: Space separated list of percentage of internal
power contributed by the logic on the clocks <clk_pin_list>

 <sfloat_list>: Space separated list of percentage of switching
power contributed by the logic on the clocks <clk_pin_list>

 <ipcfloat>: Average input pin capacitance of the each pin of the
black box (in Farad)
1040 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 <afloat>: Average activity of the black box

 <clk_pin_list>: List of the clock pins in the black box

 <gate-count>: NAND gate equivalent for combinational gates of
the black box

 <reg-count>: Register count of the black box.

Rules

The blackbox_power constraint is used by the following rules:

block

Purpose

The block constraint is used to specify the blocks (design units) under the
current_design unit.

Product

SpyGlass Constraints solution

Syntax

The syntax of the block constraint is as follows:

current_design <du_name>
block -name <block1-name> <block2-name>

or

current_design <top_design_name>
block -name <block1-name>
block -name <block2-name>

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

PEPWR01 PEPWR02
Version N-2017.12-SP1 1041
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du_name>

Name of the top design unit

-name <block-name>

Name of the design partition to be synthesized.

Each <block-name> should name a module (for Verilog) or entity (for
VHDL) appearing in the design that should be treated as a top-level
partition. More than one block constraints may appear, or all blocks may be
specified in one constraint.

NOTE: The top design is also considered as a block and all block-level rules are run on it
unless explicitly mentioned otherwise.

Rules

The block constraint is used by the following rules:

SpyGlass Constraints

Clk_Lat01 Clk_Lat02 Clk_Lat03 Clk_Uncert01

High_Fan04 High_Fan05 Clk_Consis05 Clk_Gen13
Clk_Gen17 Clk_Gen18 Clk_Gen21 Clk_Lat09
Check_Timing04 Clk_Lat06 Clk_Lat07 Clk_Trans04
Clk_Trans05 Clk_Trans06 Clk_Trans07 Clk_Trans08
Clk_Trans16 Clk_Trans17 Clk_Trans12 Clk_Trans11
Clk_Uncert05 Combo_Paths01 Combo_Paths02 Combo_Paths03
Combo_Paths04 Const_Struct01 Const_Struct02 Const_Struct04a
Const_Struct04b Const_Struct05 Const_Struct09 IO_Consis02
Dont_Touch05 Block05 Block11 Clk_Gen01a
Clk_Gen01b Clk_Gen33 Clk_Gen03 Clk_Gen06
Clk_Gen07 Clk_Gen14 Clk_Gen23 Clk_Gen24
Clk_Gen26 Clk_Gen27 Check_Timing03 Clk_Gen29
Clk_Gen30 Clk_Gen31 Clk_Gen32 Show_Clock_Prop

agation

Clk_Uncert03 Clk_Uncert08 Clk_Gen09 Clk_Gen02
1042 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Disable_Timing0
2

Block10 Combo_Paths06 SDC_Methodology
29

Show_Case_Anal
ysis

SDC_DnStrm08 DomainAnalysis DomainInfo

DomainError Domain_SGDC_
Consis

Dont_Touch02 Dont_Touch03

False_Path07 False_Path08 CheckMCP False_Path04a
False_Path04 False_Path03 High_Fan10 High_Fan02
Inp_Del03a Inp_Del03b Inp_Trans05 Inp_Trans01
Inp_Del01a Inp_Del01b Inp_Del01c IO_Consis07
TE_Consis01 MCP04a MCP04 MCP03
TE_Consis02 SDC_Methodolo

gy65
Op_Del01a Op_Del01b

Op_Del01c Op_Del03a Op_Del03b SDC_Case_Sanity
01

SDC_Methodolog
y66

SDC_Methodolo
gy67

SDC_Methodology6
8

Check_Timing02

Load02b Load02a Disable_Timing01 SDC_Methodology
30

SDC_Methodolog
y31

SDC_Methodolo
gy44_MG

SDC_Methodology4
7_MG

High_Fan06

High_Fan07 Test_Rules05 Test_Rules06 Clk_Uncert07
Clk_Gen08 High_Fan12 High_Fan01a High_Fan01
High_Fan09 High_Fan14 High_Fan15 High_Fan08
Inp_Del05 Inp_Del07a Inp_Del07 Inp_Trans07
Inp_Trans06 Inp_Trans01a IO_Consis01 SDC_Methodology

25
SDC_Methodolog
y62

High_Fan11 SDC_Methodology2
6

SDC_Methodology
63

Op_Trans01 MCP06 SDC_Methodology2
8

Block06

Op_Del05 Op_Del07a Op_Del07 SDC_Methodology
01

SDC_Methodolog
y03

SDC_Methodolo
gy05a

SDC_Methodology0
6

SDC_Methodology
07
Version N-2017.12-SP1 1043
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
blocksize

Purpose

The blocksize constraint is used to define the maximum or minimum
allowed block size for each synthesizable block. The SpyGlass Constraint
solution reports any block that does not lie in these limits. By default, the
maximum block size is 100000 and the minimum is 5000.

Product

SpyGlass Constraints solution

SDC_Methodolog
y09

SDC_DnStrm05 SDC_DnStrm06 SDC_Methodology
10

SDC_Methodolog
y11

SDC_Misc_Setu
p01

SDC_DnStrm07 SDC_Methodology
22

SDC_Methodolog
y23

SDC_Methodolo
gy24

SDC_Report04 SDC_Misc_Power0
1

SDC_Misc_Comm
and01

Clk_Trans09 Test_Rules01 Test_Rules02

Test_Rules03 Test_Rules04 Clk_Gen05 High_Fan03a
High_Fan03b Dont_Touch04 Inp_Del02 MCP05
Op_Del09 Op_Del02 SDC_DnStrm04a SDC_DnStrm04
SDC_Report01 SDC_Misc_WLM

01
SDC_DnStrm01 SDC_DnStrm02

SDC_DnStrm03 SDC_Methodolo
gy02

SDC_DnStrm04 SDC_DnStrm04a

SDC_Methodolog
y12

SDC_Methodolo
gy13

SDC_Report03 SDC_Methodology
27

SDC_Methodolog
y70

SDC_Report01 Load01 XBuf01

Inp_Del14 Op_Del14
1044 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the block constraint is as follows:

current_design <du_name>

block -name <block1-name> <block2-name>

blocksize -min <minimum-blocksize> -max <maximum-blocksize>

Arguments

<du_name>

Name of the top design unit

-min <minimum-blocksize>

(Optional) Specifies the minimum block size for the blocks

-max <maximum-blocksize>

(Optional) Specifies the maximum block size for the blocks

Examples

The following code snippet sets the minimum block size to 20000 and the
maximum block size to 120000.

current_design top

 sdc_data -type top.sdc

 block -name lower1 lower2 lower3

 blocksize -min 20000 -max 120000
Version N-2017.12-SP1 1045
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
breakpoint

Purpose

The breakpoint constraint is used to specify breakpoints in a design.

Using the breakpoint constraint, you can specify internal signals of a
design to be considered as input ports of the design during functional
analysis. The functional analysis will stop at the breakpoints.

Product

SpyGlass Auto Verify solution, SpyGlass CDC solution

Syntax

The syntax of the breakpoint constraint is as follow:

current_design <du-name>
breakpoint
-name <pin-name-list>

Arguments

-name <pin-name-list>

Space-separated list of hierarchical pin names.

Example

The following constraint defines signals sig1 and sig2 in the design unit
top as breakpoints:

breakpoint –name top.sig1 top.sig2

Rules

The breakpoint constraint is used by the following rules:

SpyGlass CDC Solution
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08
1046 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
bypass

Purpose

The bypass constraint is used to specify the design units (black boxes)
that must be bypassed.

The intention is to declare design units that will not contain internal scan
wrappers. The bypass constraint specifies modules whose output pins
must be isolated from scan registers.

Use the Scan_20 rule of the SpyGlass DFT solution to check that such
design units are so connected.

Product

SpyGlass DFT solution

Syntax

The syntax of the bypass constraint is as follows:

bypass -name <du-name>

NOTE: The bypass constraint supports wildcard characters.

Arguments

-name <du-name>

The name of the design unit to be bypassed.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

Ac_fifo01 Ac_handshake01 Ac_handshake0
2

Clock_sync03a

Ac_conv02
SpyGlass Auto Verify Solution
All rules
Version N-2017.12-SP1 1047
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as bypassed.

You can specify a single design unit name or a space-separated list of
design unit names.

Rules

The bypass constraint is used by the following rule:

cdc_attribute

Purpose

The cdc_attribute constraint is used to specify mutually exclusive and
unrelated signals such that:
 Convergence-related violations are suppressed for such signals, and

 Glitch issues are filtered if the specified signals are on a control crossing.

Product

SpyGlass CDC solution

Syntax

The syntax of the cdc_attribute constraint is as follows:

cdc_attribute
[-exclusive <mutually-exclusive-signal-names>] |
[-unrelated <unrelated-signal-names>]

SpyGlass DFT Solution

Scan_20
1048 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-exclusive <mutually-exclusive-signal-names>

Space-separated list of mutually exclusive source or destination signals,
such as hierarchical net, hierarchical terminal, or port.

Such signals cannot toggle at the same time, that is, they are gray
encoded.

-unrelated <unrelated-signal-names>

Space-separated list of unrelated source or destination signals, such as
hierarchical net, hierarchical terminal, or port.

Such signals have no timing relationship (for example, interrupts).
NOTE: For the Ac_glitch03 rule, SpyGlass CDC does not consider sources specified through

-unrelated argument because it assumes that the design uses custom
techniques to avoid the glitch for these sources.

Examples

Example 1

Consider the scenario shown in the following figure:
Version N-2017.12-SP1 1049
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 21.

In the above scenario, the Ac_glitch03 rule reports convergence issues at
the r1 and r3 destination for the X, Y, and Z sources that are mutually
exclusive due to gray encoding.

To suppress the Ac_glitch03 rule violations due to X, Y, and Z, specify the
following constraint:

cdc_attribute -exclusive X Y Z

logic1 logic2

c2

c3

x

y

c1

X

Y

Z

r1 r2

r3 r4

set_parameter allow_combo_logic yes
1050 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider the following files specified for SpyGlass analysis:

module top(rst, in1, in2, in3, in4, clk1,

 input rst, in1, in2, in3, in4, clk1, clk2;
 output out1;
 wire w1,w2;
 DES des(.d0(in1), .d1(in2), .d2(in3),

 DFF fReg1(.clk(clk2), .d(w1), .q(w2));
 SYNC sync(.clk(clk2), .rst(rst),

endmodule
module DES(d0, d1,d2, d3,c1, out);
 input d0, d1, d2, d3,c1;
 output out;
 wire f1, f2, f3, w1;
 DFF fReg1(.clk(c1), .d(d0), .q(f1));
 DFF fReg2(.clk(c1), .d(d1), .q(f2));
 DFF fReg3(.clk(c1), .d(d3), .q(f3));
 MUX mux_1(.in1(f1) , .in2(f2),

 assign out = w1 & f3;
endmodule

module MUX(in1 , in2, sel, out);
 input in1, in2, sel;
 output out;
 wire out;
 assign out = (sel) ? in1: in2;
endmodule

module DFF(clk, d, q);
 input clk;
 input d;
 output q;
 reg q;
 always @(posedge clk) begin

input clk;

 clk2, out1);

.d3(in4),.c1(clk1), .out(w1));

 .in(w2), .out(out1));

 .sel(d2), .out(w1));

// test.v
// constr.sgdc

current_design top

clock -name clk1 -domain d1
clock -name clk2 -domain d2

// Project File
set_parameter allow_combo_logic yes
Version N-2017.12-SP1 1051
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For the above example, the Ac_glitch03 rule reports the following crossing:

FIGURE 22.

In the above crossing, the f1, f2, and f3 signals are mutually exclusive.
If you do not want to report the crossings containing these signals, specify
the following constraint:

cdc_attribute -exclusive top.des.f1 top.des.f2 top.des.f3

Rules

The cdc_attribute constraint is used by the following rule:

SpyGlass CDC Solution

Ac_glitch03 Ac_conv01 Ac_conv02 Ac_conv03

Ac_conv04

Violation Message:

Glitch check performed on destination flop 'top.fReg1.q' clocked by 'top.clk2'
(3 source(s), 1 domain(s)). Multi-source toggling check : 'FAILED

f1

f2

f3
1052 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
cdc_check_glitch

Purpose

The cdc_check_glitch constraint is used to generate glitch
expressions for any net in the design.

Product

SpyGlass CDC solution

Syntax

Use the cdc_check_glitch constraint as follows to generate glitch
expressions:

cdc_check_glitch -name <net-name> -type <type>

Arguments

-name <net-name>

Specifies the hierarchical name of the net/pin.

-type <type>

Can be any subset {010, 101}

Examples

The following specification builds a glitch expression for the top.A net for
the 010 glitch:

cdc_check_glitch -name top.A -type 010

The following specification builds a glitch expression for the top.B net for
both 101 and 010 glitch:

cdc_check_glitch -name top.B -type 010 101

cdc_define_transition
Version N-2017.12-SP1 1053
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The cdc_define_transition constraint is used to specify the
permitted transitions of any net.

Product

SpyGlass CDC solution

Syntax

Use the cdc_define_transition constraint as follows to specify the
premitted transitions:

cdc_define_transition -name <net-name> -type <type>

Arguments

-name <net-name>

Specifies the hierarchical name of the net/pin.

-type <type>

Can be any subset {00, 11, 01, 10, 010, 101}, excluding {00, 11}

Examples

The following specification specifies the permitted transitions of the top.A
net:

cdc_define_transition -name top.A -type {00, 11, 01, 10}

reset_sense

Purpose

The reset_sense constraint is used for stopping reset propagation at
specified point in reset path.

Product

SpyGlass CDC solution
1054 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

Use the reset_sense constraint as follows to stop reset propagation:

reset_sense -pins <object_list>

Arguments

-object_list <list_of_objects>

Declares pins, hierarchical pins, or cell pins on which reset propagation
should stop.

Examples

The following specification stops reset propagation:

current_design top

 reset -name top.rst1 -value 0

 reset_sense -name top.pin1

 reset_sense -name top.M1.pin2

cdc_false_path

Purpose

The cdc_false_path constraint is used to specify false paths so that
clock-domain crossings along these paths are ignored for rule checking.
Such crossings are reported in Section C of The Clock-Reset-Detail Report
of the SpyGlass CDC.

Note the following points:
 Use this constraint instead of waivers for SpyGlass CDC rules.

 If you want to suppress rule-checking on crossings that contain static
signals, you can also use the quasi_static constraint.

 The internal rule FalsePathSetup checks for valid
cdc_false_path constraints.
Version N-2017.12-SP1 1055
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Virtual clocks can be specified in the -from and -to arguments only of
the cdc_false_path constraint. Note the following points for virtual
clocks in the cdc_false_path constraint:

 Only one virtual clock can be specified in the -from or -to
arguments. For example, cdc_false_path -from
<virtual_clk1 virtual_clk2> is not supported:

 You can specify a virtual clock with real clock. For example,
cdc_false_path -from <virtual_clock> -to
<real_clock> is supported.

 If a virtual clock is specified in any of the two arguments and non-
clock object is specified in the other argument, the
SGDC_cdc_false_path06 rule reports a sanity Error.

Advantages of using the cdc_false_path Constraint

Following are the advantages:

 Targets violations of the SpyGlass CDC solution with –to, -through, -
from that accommodate various schemes of filtering for crossings, for
example, –from clk1 will take out all crossings initiated at flip-flops
clocked by clk1.

 The constraint is understood by rules (waivers are applied post
process), and as a result crossings as well as convergence issues may
be filtered based on the cdc_false_path specification.

 More portable as it does not refer to rule names or messages.

 Reduces the size of the *.vdb file.

 As compared to the quasi_static constraint, the cdc_false_path
constraint provides more flexibility in specifying the type of crossing
through various options (-from, -to, and -through).

If one_cross_per_dest parameter set to yes and if a crossing (s1-
>d1) is waived off using cdc_false_path constraint (source s1 for a
destination d1), the other crossing (s2->d1) of the same destination
having another source s2 is reported. In case of waivers specified for one
source (s1->d1), none of the crossings (s1->d1, s2->d1) will be
reported for the destination.
1056 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass CDC solution

Syntax

Use the cdc_false_path constraint as follows to specify the false
paths:

current_design <du-name>

cdc_false_path
[-from <obj1-name>]
[-to <obj2-name>]
[-through <obj3-name>]
[-from_type <obj1-type>]
[-to_type <obj2-type>]
[-from_obj <src-pin-name>]
[-to_obj <des-pin-name>]
[-from_clk <src-clk-name>]
[-to_clk <des-clk-name>]

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs)

-from <obj1-name>

The name of a clock (real or virtual) source or the net connected to the
clock pin of sequential elements, a clock tag (specified by the -tag
argument of the clock constraint), a master design unit, a flip-flop output
net, a port of a master design unit of the source, or an input/inout port.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.
Wildcard expressions are matched to clock tag names only if no nets are present in
the design with the same name. If a net is found in the design, clock tag name will
not be inferred.
Version N-2017.12-SP1 1057
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to <obj2-name>

The name of a clock (real or virtual) source or the net connected to the
clock pin of sequential elements, a clock tag (specified by the -tag
argument of the clock constraint), a master design unit, a flip-flop output
net, or a port of a master design unit of the destination.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-through <obj3-name>

Name of an internal net, master design unit, or a port of the master design
unit.

Note that specifying cdc_false_path -through X -through Y is
equivalent to specifying cdc_false_path -through X Y.

You can use regular expressions and wildcard characters (‘*’ and ‘?’) while
specifying names. For details, refer to the Using Regular Expressions and
Wildcard Characters topic of the Atrenta Console User Guide.

NOTE: Set the hier_wild_card parameter to yes to match the expression with the
hierarchies. For example, the top.*.n1 expression is matched to
top.u1.n1 and top.u1.u2.n1. By default, the cdc_false_path
constraint matches only top.u1.n1.
Setting the value of the hier_wild_card parameter to yes runtime
performance of the cdc_false_path constraint is impacted.

-from_type <obj1-type>

Type of the signal specified in the -from <obj1-name> argument for which
the crossings need to be filtered out.

This argument accepts any of the following values:

NOTE: Use this argument only when you specify the -from <obj1-name> argument.

-to_type <obj2-type>

Type of the signal specified in -to <obj2-name> for which the crossings need
to be filtered out.

clock data all (default)
1058 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
This argument accepts any of the following values:

NOTE: Use this argument only when you specify the -to <obj2-name> argument.

-from_obj

The name of the output pin or net connected to the source of the crossing.
The -from_obj argument cannot be used with the -from, -to,
-through, -from_type, or the -to_type arguments.

-to_obj

The name of the output pin or net connected to the destination of the
crossing. The -to_obj argument cannot be used with the -from, -to,
-through, -from_type, or the -to_type arguments.

-from_clk

Name of the object or the tag names of clocks that drive the source of the
crossing. Note that virtual clocks are not supported. The -from_clk
argument cannot be used with the -from, -to, -through,
-from_type, or the -to_type arguments.

-to_clk

Name of the object or the tag names of clocks that drive the destination of
the crossing. Note that virtual clocks are not supported. The -to_clk
argument cannot be used with the -from, -to, -through,
-from_type, or the -to_type arguments.

NOTE: If objects specified with the -from_obj/to_obj arguments are not driven by the
clocks specified with the -from_clk/-to_clk arguments, the SGDC_cdc_false_path09
rule reports an error.

Specifying Arguments of the cdc_false_path Constraint

Please note the following points:

 You must specify at least one of the -from, -to, and -through
arguments.

clock data all (default)
Version N-2017.12-SP1 1059
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 When you specify a clock name (hierarchical net name) with the -from
or -to argument, it should be a hierarchical net name. Then the
applicable paths are paths originating from or terminating at flip-flops
triggered by the specified clock.

 When a master design unit is specified with the -from or -to
arguments, the applicable paths are paths originating from or
terminating at all flip-flops in all instances of the specified design unit.
When you specify a master design unit name with the -through
argument, the applicable paths are all paths passing through all
instances of the specified design unit.

 When you specify a flip-flop output net (hierarchical net name) with the
-from or -to arguments, the applicable paths are paths originating
from or terminating at the corresponding flip-flop.

 When you specify a pin name (of a master design unit) (in <du-name>/
<pin-name> format) with the -from or -to arguments, the
applicable paths are paths originating from or terminating at all flip-
flops connected to the specified pin in all instances of the corresponding
master design unit. When you specify a pin name (of a master design
unit) with the -through argument, the applicable paths are all paths
passing through the specified pin in all instances of the corresponding
master design unit.

 When you specify an internal net (hierarchical net name) with the
-through argument, the applicable paths are paths containing the
specified net.

 When you specify a clock net with the -from or -to arguments, only
those flip-flops that are exclusively triggered by the clock net are
considered. Flip-flops where this clock net and some other clock net(s)
are converging are not considered.

Specifying Object Names to the cdc_false_path Constraint

The following points describe different ways of specifying different objects
to the cdc_false_path constraint:

 Specify net names as hierarchical names with respect to top level.
The top-level name is optional. For example, you can specify
top.U1.net1 or U1.net1.
1060 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Specify design units (sub modules) as simple design unit names, such
as myDU1.

 Specify top-level port names as simple names. For example, in1.

Specify port of a design unit (submodule) as <du-name>/<port-
name> or <du-name>.<port-name>. You should not specify
instance names or top-level design unit name.

Wild Card Support for the cdc_false_path Constraint

You can use the following wild card characters while specifying object
names:
 Asterisk (*): To match none, one, or multiple object names

For example, top.*.n1 matches with top.U1.n1.

 Question mark (?): To match none or one object name

Handling Escaped Names

You cannot specify wildcards with escaped names directly. In such cases,
replace the escape character (\) with a wildcard character.

For example, for the source flip-flop output top.\rdPtr1 and
top.\rdPtr2, you cannot specify the following constraint:

cdc_false_path -from "top.\rdPtr*”

Instead, you should specify the following:

cdc_false_path -from "top.*rdPtr*”

Handling an Array of Instances

For an array of instances in a design, escaped character is appended as
part of the hierarchy name. Therefore, wildcard in such names should also
be specified as mentioned above.

For example, if the design top has an array of instances U_INST[1:10]
and n1 is the net inside the module of these instances. In this case,
SpyGlass generates the following nets:

top.\U_INST[1].n1
top.\U_INST[2].n1
…

Version N-2017.12-SP1 1061
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Now, to declare cdc_false_path for the n1 net inside any of these
instances, you cannot specify the name as top.\U_INST[*].n1.
Instead, you should specify this as follows:

cdc_false_path -to "top.*U_INST*.n1"

NOTE: The hier_wild_card parameter is set to yes and the cdc_false_path
constraint matches all hierarchies based on the specified wildcard expression.
For example, if you specify the wildcard expression top.*.n1, the
cdc_false_path constraint matches the hierarchies top.u1.n1 and
top.u1.u2.n1. However, by default, the cdc_false_path constraint
matches only top.u1.n1. In this example, if you specify the wildcard expression
as top.*.*.n1, the cdc_false_path constraint matches
top.u1.u2.n1.

Vector Name Support in the cdc_false_path Constraint

You can specify vector object names as simple object names, object names
with width specification, part-select, or bit-select.

You must use the Verilog bus-width specification format for specifying
vector object names even for VHDL designs. For example,
in1(7 downto 0) must be specified as in1[7:0] or in1[0:7].
Similarly, a part-select should be written as say in1[6:3] or in1[3:6].
A bit-select should be written as say in1[4].

You can also use wildcards in vector names. in1[*] matches any bit of
in1.

The bit-width specification using wildcards for part-select is assumed to be
higher bit first. Therefore, the order of bits is important. in1[*:3]
matches in1[7:3]. in1[3:*] matches in1[3:0]. in1[0:*] does
not match anything!

Scope of False Paths specified by the cdc_false_path Constraint

The scopes for different object types are described below:

 Clock name (hierarchical net name) with the -from or -to
argument: Applicable paths are considered to originate from or
terminate at the flip-flops triggered by the specified clock.
1062 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Master design unit specified with the -from or -to arguments:
Applicable paths are considered to originate from or terminate at all flip-
flops in all instances of the specified design unit.

 Master design unit name with the -through argument:
Applicable paths are considered as all paths passing through all
instances of the specified design unit.

 Flip-flop output net (hierarchical net name) with the -from or
-to arguments: Applicable paths are considered as the paths
originating from or terminating at the corresponding flip-flop.

 Net Objects: While specifying a net object, all nets directly connected
to that net object (anywhere in the top-level design) are implicitly
considered, in addition to the specified net object.

For example, top.U1.net1 implicitly specifies directly connected net
top.net1. This effect is more profound and often comes as a surprise
when combined with a wildcard net specification. For example, if you
specify top.U1.* with the intention to match all nets connected to
output pins of flip-flops within top.U1, that will ultimately result in
matching of every net within top.U1 and every net present anywhere
in the design unit name, top, that is directly connected to any net
within top.U1. The most unexpected result is that this will match any
clock net specified at higher levels that are directly connected to nets
within top.U1. The best way to match all sources of crossings (or
destinations of crossings) within a sub-module is to specify the design
unit name of the sub-module directly. For example, cdc_false_path
-from A command matches all crossings that originate within the
sub-module A.

 Pin name with the -from or -to arguments: When you specify a
pin of a master design unit in the <du-name>/<pin-name> format)
with the -from or -to arguments, the applicable paths are the paths
originating from or terminating at all the flip-flops connected to the
specified pin in all instances of the corresponding master design unit.

 Pin name with the -through argument: When you specify a pin of a
master design unit with the -through argument, the applicable paths
are all paths passing through the specified pin in all instances of the
corresponding master design unit.
Version N-2017.12-SP1 1063
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Internal net (hierarchical net name) with the -through
argument: Applicable paths are the paths containing the specified net.

Handling Merged Clocks with the cdc_false_path Constraint

When multiple clocks reach a clock pin of a flip-flop or a latch, such clocks
are called merged clocks.

To waive clock crossing involving a flip-flop or a latch triggered by merged
clocks, specify each clock pair to the cdc_false_path constraint. For
example, consider the following figure:

FIGURE 23. Example of merged clocks

In the above case, specify the following constraints to waive the crossing:

cdc_false_path -from CK1 -to CK2
cdc_false_path -from CK1 -to CK3
cdc_false_path -from CK2 -to CK1
cdc_false_path -from CK2 -to CK3

The crossing is reported if you do not specify all combinations of clock
pairs. The violation message reports the clock pair that is not specified by
using the cdc_false_path constraint is reported.

NOTE: This is not supported for crossings that involve black boxes or primary ports. In
such cases, specify all the clocks in the same constraint.

Alternatively, you can specify names of all clocks from a merged set as a
space-separated list by using the -from or -to argument, as shown in
1064 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
the following example:

cdc_false_path -from clk1 clk2 ...

You can specify the above constraint in the following manner:

cdc_false_path -from CK1 CK2 -to CK1 CK2 CK3

Clock crossing involving merged clocks are not waived if one of the clocks
is not specified.

You cannot specify multiple objects that are not merged clocks. Such
specification does not match any clock crossing and the FalsePathSetup
rule reports a violation. For example, the following specification is invalid:

cdc_false_path ... -to top.U1.Q clk2

Impact of one_cross_per_dest Parameter on cdc_false_path Constraint

Setting the one_cross_per_dest rule parameter to yes (default value)
results in only the first found clock crossing of a destination object to be
reported.

If you set a valid cdc_false_path constraint on this first found clock
crossing, then the next found clock crossing for the same destination
object is reported. For example, there are three clock crossings between
sources s1, s2, and s3 and the destination d1 and these clock crossings
are found as say, s1->d1, s2->d1, and s3->d1. Normally, the crossing
s1->d1 will be reported. If you set a valid cdc_false_path constraint
on this path, the second found crossing s2->d1 is reported:

cdc_false_path -from s1 -to d1

If you have only specified the -to argument (without -from argument) in
a valid cdc_false_path constraint, all clock crossing involving the
destination object are waived.

cdc_false_path Sanity Checking Rules

Following are the sanity checking rules for the cdc_false_path
Version N-2017.12-SP1 1065
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
constraint:

Example

Example 1

cdc_false_path -from clk1 -to top.lower.q

The above specification suppresses all the paths originating from flip-flops
triggered by clock clk1 and terminating at flip-flop top.lower.q.

Example 2

cdc_false_path -through LOWER/out1

The above specification suppresses all the paths passing through pin out1
of all instances of master design unit LOWER.

Example 3

cdc_false_path -from "top.b1.*" -to "block1" -from_type clock

The above specification suppresses all the paths that are:

 Originating from the flip-flops clocked by the clock that reaches the b1
instance.

 Terminating at the block1 block.

Rule Checks
SGDC_cdc_false_path01 Existence of object specified with the -from

argument (without wildcards)
SGDC_cdc_false_path02 Existence of object specified with the -to argument

(without wildcards)
SGDC_cdc_false_path03 Existence of object specified with the -through

argument (without wildcards)
SGDC_cdc_false_path04 Existence of object specified with the -from/-to/

-through arguments (with wildcards)

FalsePathSetup Flags when a cdc_false_path constraint
specification does not waive any clock crossing
1066 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 4

cdc_false_path -from "top.b1.*" -to "block1" -from_type data

The above specification suppresses all the paths originating from the data
path of the b1 instance and terminating at the block1 block.

In this case, the clocks reaching the b1 instance are not honored for
suppressing the crossings.

Example 5

cdc_false_path -from "block1" -to "top.b1.*" -to_type clock

The above specification suppresses all the paths originating from the
block1 block and terminating at flip-flops that are clocked by the same
clock reaching the b1 instance.

Rules

The cdc_false_path constraint is used by the following rules:

SpyGlass CDC Solution
Clock_sync03a Clock_sync03b Clock_sync08 Clock_sync08a
Clock_sync09 Ac_cdc01a Ac_cdc08 Ac_handshake01
Ac_cdc01b Ac_cdc01c Ac_conv02 Ac_conv03
Ac_handshake0
2

Ac_conv01 Ac_unsync01 Ac_unsync02

Ac_conv04 Ac_conv05 Ac_crossing01 Ac_datahold01a
Ac_sync01 Ac_sync02 Ac_meta01 Ac_glitch01
Ac_glitch02 Ac_glitch03
Version N-2017.12-SP1 1067
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
cdc_filter_coherency

Purpose

The cdc_filter_coherency constraint is used to specify points at or
beyond which no convergence of signals should be reported. Filtering
convergence this way helps in debugging convergences-related issues.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the cdc_filter_coherency constraint is as
follows:

cdc_filter_coherency
[-stop_points <stop-points>]
[-conv_gates <conv-points>]
[-unrelated <list-of-synchronizers>]

Arguments

-stop_points <stop-points>

Space-separated list of hierarchical net names, hierarchical terminals,
ports, or instances beyond which convergence should not be propagated.

See Example 2.

-conv_gates <conv-points>

Space-separated list of hierarchical net names, hierarchical terminals,
ports, or instances at which convergence should not be reported.

See Example 1.

-unrelated <list-of-synchronizers>

Space-separated list of synchronizers such that the Ac_conv01,
Ac_conv02, Ac_conv03, and Ac_conv04 rules do not report violations on
the convergences involving these synchronizers.
1068 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: Use the cdc_attribute constraint instead of the cdc_filter_coherency constraint with
the -unrelated argument. If the cdc_filter_coherency -unrelated constraint is used
together with the cdc_attribute constraint, SpyGlass CDC ignores the
cdc_filter_coherency constraint and honors the cdc_attribute constraint.

See Example 3.

Example

Consider the scenario shown in the following figure:

FIGURE 24.

Example 1 and Example 2 shows how you can filter coherence shown in the
above scenario.

Example 1

Consider the following constraint specification:

cdc_filter_coherency -conv_gates top.G2

On specifying the above constraint, no convergence will be reported on G2
shown in Figure 24. However, convergence on G1 will get reported, which
was not reported earlier.

S1 D1

S2 D2

S3 D3

G1

G2
Version N-2017.12-SP1 1069
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider the following constraint specification:

cdc_filter_coherency -stop_points top.G1

On specifying the above constraint, propagation from S1 and S2 will be
stopped on G1 shown in Figure 24. Therefore, no convergence will be
reported on G2. However, convergence will be reported at G1 for S1 and
S2.

Example 3

Consider the following figure:

FIGURE 25. Example of -unrelated Argument of cdc_filter_coherency Constraint

In the above figure, if you do not want the Ac_conv01, Ac_conv02,
Ac_conv03, or Ac_conv04 rules to report convergence on gateB, specify
the sync0, sync1, and sync2 synchronizers as unrelated by specifying
any of the following constraints:

src0

src1

src2

src3

sync0

sync1

sync2

sync3

gateA gateB

gateC
1070 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
cdc_filter_coherency -unrelated sync0 sync1 sync2

or

cdc_filter_coherency -unrelated src0 src1 src2

However, note that the value specified by the -unrelated argument is
not migrated to the block-level boundary during SoC-level verification. In
such cases, specify the constraint manually at the top level. For example,
consider the following figure:

FIGURE 26.

In the above scenario, consider that you have given the following
constraints:

cdc_filter_coherency -unrelated sync0 sync1 sync2

In this case, the above constraint will not automatically migrate to the
block boundary. Therefore, you must manually specify the following
constraint to suppress the Ac_conv01, Ac_conv02, Ac_conv03, or
Ac_conv04 violations at gateB:

cdc_filter_coherency -unrelated p1 p2

src0

src1

src2

src3

sync0

sync1

sync2

sync3

gateA gateB

gateC

block

p1

p2

p3
Version N-2017.12-SP1 1071
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: The cdc_attribute -unrelated constraint performs the same check as
the cdc_filter_coherency -unrelated constraint. For example, the
following two constraints perform the same checks:

cdc_filter_coherency -unrelated sync0 sync1 sync2

cdc_attribute -unrelated sync0 sync1 sync2

Rules

The cdc_filter_coherency constraint is used by the following rules:

cdc_filter_path

Purpose

The cdc_filter_path constraint allows you to specify paths so that the
Ac_unsync01/Ac_unsync02 and Ac_sync01/Ac_sync02 rules of the
SpyGlass CDC solution do not consider clock crossings along these paths.

The cdc_filter_path constraint is the same as cdc_false_path.

Product

SpyGlass CDC solution

Rules

The cdc_filter_path constraint is used by the following rules:

SpyGlass CDC Solution

Ac_conv01 Ac_conv02 Ac_conv03 Ac_conv04

SpyGlass CDC Solution

Ac_sync01 Ac_sync02 Ac_unsync01 Ac_unsync02
1072 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
cdc_matrix_attributes

Purpose

The cdc_matrix_attributes constraint is used to set a limit for
SpyGlass-CDC attributes during the SpyGlass-CDC setup stage.

To check if an attribute exceeds the specified limit, view the report
generated by the Setup_req01 rule, and fix the issue that is causing the
limit to exceed. This way, you can ensure that the design statistics (in the
form of attributes) are good enough to proceed with SpyGlass CDC
verification.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the cdc_matrix_attributes constraint is as
follows:

current_design <du-name>
cdc_matrix_attributes
-src_clock_limit <int>
-gen_clock_limit <int>
-sync_reset_limit <int>
-async_reset_limit <int>
-domain_limit <int>
-crossing_limit <int>
-src_per_dest_limit <int>
-crossing_per_clock_pair_limit <int>

NOTE: If you specify "-1" to any of the above arguments, the Setup_req01 rule does not
perform checking for the limit corresponding to that argument. You must specify -1
in double quotes (" ").
Version N-2017.12-SP1 1073
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit.

-src_clock_limit <int>

Specifies the maximum number of source clocks.

By default, this argument is set to 200.

-gen_clock_limit <int>

Specifies the maximum number of generated clocks.

By default, this argument is set to 1000.

-sync_reset_limit <int>

Specifies the maximum number of synchronous resets.

By default, this argument is set to 500.

-async_reset_limit <int>

Specifies the maximum number of asynchronous resets.

By default, this argument is set to 500.

-domain_limit <int>

Specifies the maximum number of clock domains.

By default, this argument is set to 200.

-crossing_limit <int>

Specifies the maximum number of clock-domain crossings in a design.

By default, this argument is set to 5000.

-src_per_dest_limit <int>

Specifies the maximum number of sources that reach a particular
destination.

By default, this argument is set to 50.
1074 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-crossing_per_clock_pair_limit <int>

Specifies the maximum number of crossings between each clock pair.

By default, this argument is set to 500.

Example

The following example sets a limit for various SpyGlass-CDC attributes:

cdc_matrix_attributes -src_clock_limit "-1"
-gen_clock_limit 2 -sync_reset_limit 0 -async_reset_limit 0
-domain_limit 1 -crossing_limit 8 -src_per_dest_limit 0
-crossing_per_clock_pair_limit 0

Refer to the documentation of the CDC matrix report to see the information
generated in this report based on the limit set by the
cdc_matrix_attributes constraint.

Rules

The cdc_matrix_attributes constraint is used by the following
rules:

SpyGlass CDC Solution

Setup_req01
Version N-2017.12-SP1 1075
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
cell_hookup

Purpose

The cell_hookup constraint is used to specify the special cell hookups
as used by the LPSVM44 rule of the SpyGlass Power Verify solution.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was cellhookup.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the cell_hookup constraint is as follows:

current_design <du-name>
cell_hookup
-signame <sig-name>
[-names <cell-pin-name-list>]
[-ignorecells <ignorecell-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the special cells.

-signame <sig-name>

Name of the signal to be checked for connections.

-names <cell-pin-name-list>

Space-separated cell-pin pair name list of special cells and their pins. If you
need to specify more than one pin for a cell, specify the cell-pin pair more
than once as in the following example:

... -names cell1 p1 cell1 p2 ...

You can use wildcard characters while specifying the cell-pin pair names
using the -names argument.
1076 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-ignorecells <ignorecell-name-list>

Space-separated list of cells to be skipped while traversing the fan-out of
the specified signals. You can use wildcard characters while specifying cells
to be ignored using the -ignorecells argument.

Rules

The cell_hookup constraint is used by the following rules:

cell_pin_info

Purpose

Specifies pin-to-supply name pairs for multi-supply cells.
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was

set_cell_pin_info.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the cell_pin_info constraint is as follows:

current_design <du-name>
cell_pin_info
-cellname <cell-name>
-pin_name_supply <pin-sname-pair-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the pin-to-supply

SpyGlass Power Verify Solution
LPSVM44 LP_SGDC_CHECKS (optional)
Version N-2017.12-SP1 1077
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
name pairs for multi-supply cells.

-cellname <cell-name>

Simple cell name or a regular expression.

-pin_name_supply <pin-sname-pair-list>

Space-separated pair list of pin name and its supply name as in the
following example:

cell_pin_info -cellname "INVX2*"
-pin_name_supply VSS VSS1 VDD VDDC IN VDDC OUT VDDC

Rules

The cell_pin_info constraint is used by the following rule:

cell_tie_class

Purpose

Specifies tie conditions for multi-power and multi-ground cells.
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was

set_cell_tie_class.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the cell_tie_class constraint is as follows:

current_design <du-name>
cell_tie_class
-cell <cell-name> | -instance <inst-name>

SpyGlass Power Verify Solution

LPSVM49
1078 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-tie1 <power-pin-net-name>
-tie0 <ground-pin-net-name>
[-no_tie <no-tie-pin-name-list>]
[-exception <exception-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying tie conditions.

-cell <cell-name>

Name of the cell for which you are specifying tie conditions.

-instance <inst-name>

Name of the cell instance for which you are specifying tie conditions.

You can use wildcard characters while specifying cell names (using the -
cell argument) and instance names (using the -instance argument).

For example,

 cell_tie_class -cell “RSHL*” -tie1 vdd -tie0 vss -no_tie A
E

-tie1 <power-pin-net-name>

Name of the power pin of the cell <cell-name> when the cell is a
multi-power, multi-ground cell or name of the net connected to the
power pin of cell instance <inst-name> when the cell instance is an
instance of a multi-power, multi-ground cell. The field accepts a scalar
net or bit select of the vector net.

-tie0 <ground-pin-net-name>

Name of the ground pin of the cell <cell-name> when the cell is a
multi-power, multi-ground cell or name of the net connected to the
ground pin of cell instance <inst-name> when the cell instance is an
instance of a multi-power, multi-ground cell. The field accepts a scalar
net or bit select of the vector net
Version N-2017.12-SP1 1079
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-no_tie <no-tie-pin-name-list>

(Optional) Specifies a space-separated name list of pins of cell <cell-
name> or nets connected to pins of cell instance <inst-name> that
should not be connected to the power/ground pins/nets specified using
the -tie1/-tie0 arguments.

-exception <exception-list>

(Optional) Specifies the pins of cell <cell-name> or nets connected to
pins of cell instance <inst-name> that should not be connected to the
power/ground pins/nets specified using the -tie1/-tie0 arguments
and should be connected to the specified power/ground pins/nets.

<exception-list> is a space-separated list of the following tuples
for each exception pin/net:

<pin-net-name> <pwr-pin-net-name> <gnd-pin-net-name>

For example:

-exception Z top.VSS_3 top.VSS_5

Rules

The cell_tie_class constraint is used by the following rule:

clock

NOTE: The clock SGDC command is not supported in Tcl shell. Instead, you can use the
create_clock, create_clock_attribute, and create_generated_clock commands to
specify clock and its attributes in Tcl shell.

Purpose

The clock constraint is used to define clocks of a design.

The definition of design clocks is of high importance for proper functionality

SpyGlass Power Verify Solution

LPPLIB14
1080 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
of associated products. Wrong assumptions on clock periods/edges may
cause undetected bugs or false rule violations.

Product

SpyGlass Auto Verify solution, SpyGlass Constraints solution, SpyGlass DFT
solution, SpyGlass DFT DSM solution, SpyGlass Power Estimation and
SpyGlass Power Reduction solutions, SpyGlass ERC product, SpyGlass
Power Verify solution, and SpyGlass CDC solution.

For SpyGlass CDC solution, SpyGlass Constraints solution, and
SpyGlass Auto Verify solution

Syntax

The syntax of the clock constraint is as follows:

current_design <du-name>
clock
-name <clk-name> | -tag <logical-clock-name>
[-period <period>]
[-edge <edge-list>]
[-domain <domain-name>]
[-add]

Arguments

<du-name>

Specifies any of the following:
 Module name for Verilog designs

 Design unit name in the <entity-name>.<arch-name> format for
VHDL designs

-name <clk-name>

The clock port/pin name.
You can specify a single port/pin name or a space-separated list of port/
Version N-2017.12-SP1 1081
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pin names.

For top-level port/pin, <clk-name> can be the port’s/pin’s full
hierarchical name or its simple name. For other pins, <clk-name>
must be the pin’s full hierarchical name.

If the clock name is an escape name, it should be enclosed in q% and %,
as shown in the following example:

clock -name q%top.\ipcie/txbclk[0]%

NOTE: If you define multiple clocks on multiple terminals that are derived by the same net,
such clocks are considered as different clocks by SpyGlass CDC solution.

-tag <logical-clock-name>

(Optional) Logical name of the clock.
Based on the specified logical name (tag), the spreadsheet of the
following rules displays the source and destination clock tag names:

SpyGlass reports a violation if multiple clocks have the same tag name
but different characteristics, such s domain.

If you do not specify the -name argument of the clock constraint, the
name specified by the -tag argument is considered as the virtual clock
name.

-period <period>

(Optional) Clock period (in nanoseconds) to be used in clock domain
crossing checks.
You can specify the clock period as any positive floating-point number.
SpyGlass Auto Verify solution rounds off the specified number to the
nearest multiple of 0.5.
If you do not specify the clock period, SpyGlass Auto Verify solution
assumes the clock period to be 10.

Ac_glitch01 Ac_glitch02 Ac_sync02 Ac_sync01
Ac_unsync02 Ac_unsync01 Ac_cdc01a Ac_cdc01b
Ac_cdc01c
1082 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-edge <edge-list>

(Optional) Clock-edge value list.
By default, clock edges are assumed 0, 50, 100, and so on.
The following command describes a 100MHz clock with posedge at zero
ns and negedge at five ns.

clock –name top.clk –period 10 –edge {0 5}

-domain <domain-name>

(Optional) Clock domain name.
The domain name can be any valid string not containing whitespace
characters.
If the domain name is not specified, the clock domain name is the same
as the clock name.

NOTE: The -domain argument of the clock constraint is ignored by the SpyGlass
Constraints solution.

You must provide all clock sources of a design along with their attributes
(period and edges). The associated products first analyze the clocks of a
design prior to any functional analysis. At least one source clock is
expected for any register clock pin. If no source clock could be identified
for a register, an error message is issued and no functional analysis is
performed.

The clock definitions are reported through the Av_clkinf01 rule of the
SpyGlass Auto Verify solution or the Propagate_Clocks rule of the
SpyGlass CDC solution. You can visualize and explore the clocks definitions
through schematic highlight and RTL back-annotations. You can determine
the missing clocks and provide their definition and re-run the analysis
again.

If you are unsure of the clock domains in your design, use the SpyGlass
CDC solution to identify clock sources of a design.

The associated products support multiple asynchronous clocks and gated
clocks. The source clocks are supposed to be linked to the register clock pin
through combinational or sequential gates. SpyGlass Auto Verify solution
analyzes the clock circuitry while analyzing the functionality of a design. In
particular, clock dividers are participating in functional analysis.
Version N-2017.12-SP1 1083
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-add

(Optional) Use this argument to specify multiple clocks on the same object.

You can specify multiple clock constraints on the same object (specified by
the -name <clk-name> argument) only if you specify the -add argument.
This argument overrides the unique check on the -name <clk-name>
argument.

Consider the scenario shown in the following figure:

FIGURE 27.

In the above scenario, the block pin clk can have any of the clock, C1 or
C2, coming through the MUX depending upon the MUX select line. This
means that this block can have two different values for the clk clock.
Therefore, it is necessary to define multiple clocks on the same object in
the above case.

In such cases, use the -add argument in the next clock constraint
specification on the same object, as shown in the following example:

clock -name top.clk -tag C1 -domain A -period 10.0
clock -name top.clk -tag C2 -domain B -period 10.0 -add

In the above example, the -name argument is the unique key of the
clock constraint. That is, only one clock can be applied on a single object
(in this case, clk). To add another clock with the same -name argument,
the -add argument is used.

MUX BLOCK
clk

sel

C1

C2
1084 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Primary Clocks

A primary clock is a source clock defined using the clock constraint. A
primary clock may be directly connected to a clock pin of a register or it
may pass through combinational and/or sequential logic before reaching
the clock pin of a register. You should define the following potential primary
clock sources:
 Primary inputs of a design

 Black box outputs (for example, PLL outputs)

In addition, you can define an intermediate signal of a design as a primary
clock. For instance, if a MUX is selecting between two clock sources running
at 33MHz and 66MHz, and if you want to check the functionality of a design
for 66MHz, the output of the MUX can be defined as a primary clock with
66MHz frequency. Alternatively, the 66MHz source clock can be defined as
a clock and a constraint can be set for the MUX select pin to select the
66MHz clock only.

Derived Clocks

A derived clock is a clock that is generated internally from a primary clock.
The primary clock could pass through a combinational logic or sequential
logic or both to generate a derived clock. Assume a clock port traversing a
clock divider, the clock port should be defined as a primary clock and the
output of clock divider feeding some registers’ clock is a derived clock
(assuming you have not defined it as a primary clock).

The concept of derived clocks is important for some specific rules where
the relative frequencies of the derived clocks are used to determine if the
crossing is from a fast clock domain to a slow clock domain. For structural
analysis (needed by some rules), the frequency seen by the derived clock
is the maximum frequency of all source clocks in the fan-in cone of the
derived clock. If this assumption is not appropriate, you can define a
primary clock for the internal signal that is directly controlling the register.

The SpyGlass Auto Verify solution and SpyGlass CDC solution support
complex gated clocks such that they can analyze the functionality of a
design in the presence of such complex gated clocks. However, these
products do not attempt to determine the exact phase and frequency of
such clocks and do not report them. For instance, if these products carry
out functional analysis on the design illustrated in the figure shown below.
However, the clock report (the Av_clkinf01 rule of the SpyGlass Auto Verify
solution or the Propagate_Clocks rule of the SpyGlass CDC solution) will
Version N-2017.12-SP1 1085
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
only report the clocks defined by you that are ck1, ck2, and ck3.

Default clock

If the clock definitions of primary clocks provided by you are missing the
period or edge information, default clock attributes will be assigned to
them.

A default clock has a period of 10ns (100 MHz) with a rising edge at 0 and
a falling edge at 5ns. While the default clock can be used with a design with
a single clock feeding all registers with a single phase, it may lead to
erroneous failure or success of the rules of the associated products for
gated clock or multi-clock designs.

Clock Definition Impact on Functional Analysis

The associated products determine the source clocks for all registers in a
design. The functional analysis is carried out by evaluating each register at
the active edge of its controlling clocks.

For example, in the figure shown below, clocks ck1, ck2, and ck3 are
defined as clocks using the clock constraint. Register R1 is seeing ck1
and ck2 as clocks, while register R2 is seeing ck1, ck2, and ck3 as
clocks. Therefore, register R1 is evaluated at the active edges of ck1 as
well as the active edges of ck2, while register R2 is evaluated at the active
edges of all three clocks — ck1, ck2, and ck3.

FIGURE 28. Clock Definition Impact

ck1

ck2

ctr

ck3

R1 R2
1086 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The clock constraint is used by the following rules:

For SpyGlass DFT solution, SpyGlass DFT DSM solution

Purpose

The clock constraint declares the clock pins used as test clocks.

SpyGlass CDC Solution
Clock_check01 Clock_check02 Clock_check03 Clock_check04
Clock_check05 Clock_check06a Clock_check06b Clock_check07
Clock_converge01 Clock_delay01 Clock_delay02 Clock_glitch01
Clock_glitch02 Clock_glitch03 Clock_info02 Clock_info03a
Clock_info03b Clock_info03c Clock_info05 Clock_info05a
Clock_info06 Clock_info07 Clock_info14 Clock_info15
Clock_info16 Clock_Reset_check

01
Clock_Reset_Info
01

Clock_sync03a

Clock_sync03b Clock_sync05 Clock_sync06 Clock_sync08
Clock_sync08a Clock_sync09 Propagate_clocks Ar_resetcross01
Reset_sync01 Reset_sync02 Reset_sync03 Reset_sync04
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08

Ac_fifo01 Ac_conv01 Ac_conv02 Ac_conv03
Ac_sync01 Ac_sync02 Ac_unsync02 Setup_quasi_st

atic01
Ar_resetcross_mat
rix01

Ac_conv04 Ac_conv05 Ac_handshake0
1

Ac_handshake02
SpyGlass Auto Verify Solution
All rules

SpyGlass Constraints Solution
SDC_GenerateIncr
Version N-2017.12-SP1 1087
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

clock
-name <pin-name>]

[-sysclock | -testclock]
[-atspeed]
 [-value <value>]
[-fflimit <limit>]
[-fflimit_percentage <percentage>]
[-domain <dom-name>]
[-pll_reference]
[-frequency <frequency>]
[-period]
[-scanshift]
[-capture]

Arguments

-name <pin-name>

Complete hierarchical name of a clock port/pin.

The pin can be a primary pin as well as an internal pin.

You can specify a single port/pin’s full hierarchical name or a space-
separated list of full hierarchical port/pin names.

For primary ports, you can also specify the simple port name, as in the
following example:

current_design top
clock -name in15 ...

When you specify this argument with the clock constraint, all the clocks
specified irrespective of the presence/absence of the -testclock and -
atspeed modifiers, are considered as functional clocks.

-sysclock

Specifies that the clock is a system clock.
1088 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: By default, the clock pin specified with the clock constraint is considered as a
system clock. Therefore, you need not use the -sysclock argument unless
required for clarity.

-testclock

Specifies that the clock is a test clock.

When you specify this argument with the clock constraint, all the clocks
specified irrespective of the presence/absence of the -atspeed modifier are
considered as slow clocks. Such clocks are used during scan shift and
stuck-at capture.

NOTE: You should use this option for all the rules of the SpyGlass DFT DSM solution.
Otherwise, the clock pin specified with the clock constraint is considered as a
system clock. Therefore, the coverage reported is very low.

-atspeed

Specifies that the clock operates at the system frequency.

When you specify this argument with the clock constraint, all the clocks
specified irrespective of the presence/absence of the -testclock modifier
are considered as atspeed clocks. Such clocks are used during atspeed
test.

NOTE: This option is not applicable for the SpyGlass DFT solution. Use this option for all
the DSM rules. Otherwise, the coverage reported will be very low.

-value <value>

Determines the edge (first or second) on which the capture will occur.

You can specify the value as rto or rtz. If the value is not specified, rtz
is assumed.

For information on rtz and rto clocks, refer to Test clocks section in
SpyGlass DFT Rules Reference Guide.

-fflimit <limit>

Specifies the maximum number of flip-flops that can be driven by one test
clock, as checked by the Clock_25 rule of the SpyGlass DFT solution.

NOTE: This option is not applicable for the SpyGlass DFT DSM solution.
Version N-2017.12-SP1 1089
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-fflimit_percentage <percentage>

This signifies the upper limit on the percentage of total flip-flops driven by
a given test clock. If the specified limit is crossed, the Clock_25 rule
generates a violation message.

NOTE: This option is not applicable for the SpyGlass DFT DSM solution.

-domain <dom-name>

Specifies the domain name. This option provides a mechanism to merge
two or more clocks into the same domain.

NOTE: This option is not applicable for the SpyGlass DFT solution. This option is only
applicable for the at-speed clocks. All the at-speed clocks not merged in the same
domain are considered as asynchronous.

-pll_reference

Specifies that the clock should be used only as a pll reference clock and
should not be used for any other purpose.

NOTE: Ensure that the -pll_reference modifier is specified for the PLL_03 rule to run.

-frequency <frequency>

Specifies frequencies (in MHz) or a logical frequency name (as a string)
associated with a test clock.

-period

Specifies period, in nanoseconds, associated with a test clock.

-scanshift

(Optional) Indicates that the clock is only required during the scan shifting
operations.

NOTE: You can specify both the -scanshift argument and the -capture argument
together. However, you can not specify -scanshift and -testclock arguments
together.

-capture

(Optional) Indicates that the clock is only required during the capture
operations.

NOTE: You can specify both the -scanshift argument and the -capture argument
1090 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
together. However, you can not specify -capture and -testclock arguments
together.

Notes

 If the same pin is used as a system clock and a test clock, use two clock
constraints — one with -sysclock or no argument and the other with
the -testclock argument.

 If a clock constraint is a proper subset of another clock constraint, then
it is recommended to ignore the sub-set clock constraint.
Consider the following example:

clock -name clk -testclock
clock -name clk -testclock -atspeed // ignore above

In the example above, you can ignore the first clock definition as it a
sub-set of the second one.
Using multiple definitions for the same clock constraint, generates
multiple messages for the same clock.

Example

For SpyGlass DFT DSM solution:

Example 1
If the following constraints are used as shown in the diagram in the
illustration shown below, all flip-flops in D1 and in D2 will be considered as
the same at-speed domain.

clock -name Ca -testclock -atspeed -domain CC

clock -name Cb -testclock -atspeed -domain CC
Version N-2017.12-SP1 1091
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 29. Flip-Flops in same at-speed domain

Example 2
Consider the following example:

clock -name clk1 -atspeed -testclock -period 10

In the above example, the clock, clk1, is assumed to be running with a 10
nanosecond period in at-speed mode.

Example 3
The following table lists some examples on various definitions of the clock
constraint.

Rules

The clock constraint is used by the following rules.

Example Description
clock -name Used as a functional clock
clock -name clk
-testclock

Used as a functional and a slow clock

clock -name clk -atspeed Used as a functional and an atspeed clock
clock -name clk
-testclock -atspeed

Used as a functional, slow, and an atspeed clock
1092 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass Power Verify solution, SpyGlass ERC Product, and
SpyGlass Power Estimation and SpyGlass Power Reduction
solutions

Purpose

The clock constraint declares the clocks used in the design.

Product

SpyGlass Power Verify solution, SpyGlass Power Estimation and SpyGlass
Power Reduction solutions, and SpyGlass ERC product

Syntax

The syntax to specify the clock constraint is as follows:

current_design <du-name>
clock

SpyGlass DFT DSM Solution
Atspeed_01 Atspeed_02 Atspeed_03 Atspeed_04
Atspeed_05 Atspeed_06 Atspeed_07 Atspeed_08
Atspeed_09 Atspeed_11 Diagnose_01 Diagnose_03
Diagnose_04 Info_transitionCove

rage
Info_transition
CoverageAudit

Info_atSpeedClock

PLL_01 PLL_02 Atspeed_12 Atspeed_13
Atspeed_14 PLL_03 Atspeed_26 Atspeed_27
Info_enabledFlops

SpyGlass DFT Solution
clock_01 clock_02 clock_03 clock_04
clock_05 clock_06 clock_08 clock_14
clock_18 clock_21 clock_26 Info_blackboxDrive

r
Latch_04 Topology_11
Version N-2017.12-SP1 1093
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <clk-name>
[-period <period>]

NOTE: The SpyGlass ERC product uses only the -name argument of the clock
constraint to specify the names of the clock pin, ports, or nets. The -period
argument is ignored by the SpyGlass ERC product.

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <clk-name>

Name of the clock port, pin, or net.

-period <period>

The clock period (in nanoseconds).

You can specify multiple clock constraints.

Rules

The clock constraint is used by the following rules:

NOTE: The information provided by the clock constraint overrides the simulation

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
poweraudit PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PESTR03 PESTR05
PESTR06 PESTR07 PESTR08 PESTR09
PESTR10 PESTR11 PESTR12 PESTR13
SpyGlass ERC Product

clockPinsConnectedToClockNets
SpyGlass Power Verify Solution

LPSVM42 LPSVM43
1094 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
information provided by the activity_data constraint.

clock_buffer

Purpose

Specifies a buffer library cell that should be used in clock lines while
estimating a clock tree.

If you do not specify any buffer using the clock_buffer constraint, the
related rules heuristically infer the best buffer cell to be used.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the clock_buffer constraint is as follows:

current_design <top-du-name>
clock_buffer
-cellname <cell-name>
[-libname <lib-name>]
[-maxfanout <num>]

Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-cellname <cell-name>

Name of the buffer cell of library <lib-name>.

NOTE: The -libname argument is optional.

Specify a library name using the optional -libname argument only when
a cell with the same name is available in more than one library.
Version N-2017.12-SP1 1095
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: If you do not use the -libname argument, the library that contains the specified
cell name will be taken.

-maxfanout <num>

<num> is the maximum allowed fan-out for the specified buffer cell. Then,
SpyGlass creates cascade of sets of buffer cell instances, each set having
the specified number of buffer cell instances, to create the required
buffering. If you do not specify the -maxfanout argument, SpyGlass
creates the required buffering based on the max_capacitance attribute
value for the buffer cell.

Example

Consider the following example, the clock_buffer constraint is
specified for a net having a fan-out of 500:

clock_buffer -cellname BUFX4 -maxfanout 16,

Then SpyGlass will assume 500/16 = 31.25 ~ 32 (rounded off)
buffers at the first stage.

At the second stage, it will assume 32/16 = 2 buffers.

At the third stage, it will assume one root buffer. Therefore, a total of 32 +
2 + 1=35 buffers will be assumed.

Rules

The clock_buffer constraint is used by the following rules:

clock_group

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
1096 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The clock_group constraint is used to specify the clock relationship
(domain, synchronous/asynchronous, exclusive). In this document, the
domain term is used to denote the clock relationship. The wildcard support
is provided for the clock_group constraint.

NOTE: The domain constraint has been renamed to clock_group. For backward
compatibility, the domain constraint is currently still available.

Product

SpyGlass Constraints solution

Syntax

The clock_group constraint is used in the following syntax:

current_design <du-name>
clock_group -name <clock_group-name>
[-clock_pin <clk-pin-name-list>]
[-clock <SDC-clk-name-list>]

Arguments

<du-name>

The top-level module name (for Verilog designs) or the top-level entity
name (for VHDL designs) or a synthesis partition name specified using the
block keyword.

-name <clock_group-name>

(Mandatory) Specifies a clock group name. It can be any valid string.

-clock_pin <clk-pin-name-list>

Specifies space-separated list of design clock pin names.

If this argument is used, all clocks specified on the clock pin are considered
synchronous.

-clock <SDC-clk-name-list>

Specifies a space-separated list of SDC clock names.
Version N-2017.12-SP1 1097
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
If both options are specified, then the clock_group will include all the
clocks specified with -clock option and all the clocks defined on the clock
pin specified with the -clock_pin option.

Example

Let the clock group information be provided as follows:

current_design top
clock_group -name d1 -clock { C1 C2 }
clock_group -name d2 -clock { C3 }

In the above example, clocks C1 and C2 are synchronous, and clocks C1
and C3, C2 and C3 are asynchronous. You cannot specify the same clock in
two different clock_group constraints. If you do so then the
DomainSanityCheck rule reports a FATAL message.

If the same clock_group is specified in multiple lines of an SGDC file,
the union of clocks (specified in multiple lines) will be in the same
clock_group. For example:

clock_group -name d1 -clock {C1 C2}
clock_group -name d1 -clock {C4}

Here, clocks C1, C2, C4 will be assumed as synchronous.

All create clocks and their derived clocks will be assumed to be
synchronous if you have specified the clock_group constraint among
create clocks and their derived clocks. You can even specify clock and its
derived clocks in a different clock_group. For example:

C1 -> GC1 -> GC2 where GC2 is derived from GC1 and so on.

// C1, GC1, GC2 will be assumed to be synchronous unless the
user overrides it
clock_group -name d1 -clock C1

// User specified clock GC2 with a different group name
clock_group -name d2 -clock GC2

The domainsanitycheck rule reports a violation if you specify create
clock and its derived clock in different clock groups.
1098 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: All SGDC-dependent rules will be impacted.

Rules

The clock_group constraint is used by the following rules:

SpyGlass Constraints Solution
Clk_Gen05 Clk_Lat03 Clk_Uncert03 False_Path07
False_Path08 Domain_SGDC_Consis
Version N-2017.12-SP1 1099
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
clock_path_wrapper_module

Purpose

The clock_path_wrapper_module constraint is used to exclude
modules from the checks performed by the Clock_hier01, Clock_hier02,
and Clock_hier03 rules.

Product

SpyGlass CDC solution

Syntax

The syntax of the clock_path_wrapper_module constraint is as
follows:

current_design <du-name>
 clock_path_wrapper_module -names <module-list>

Arguments

The clock_path_wrapper_module constraint has the following
arguments:

<du-name>

The name of the design unit from which you want to exclude modules from
the checks performed by the Clock_hier01, Clock_hier02, and Clock_hier03
rules.

-names <module-list>

Space separated list of module names.

Example

If you want to exclude specific modules, specify the module names in a
space separated list, as shown in the following:

clock_path_wrapper_module -names MOD1 MOD2

In this example, the checks performed by the Clock_hier01, Clock_hier02,
1100 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
and Clock_hier03 will exclude MOD1 and MOD2.

Rules

The clock_path_wrapper_module constraint is used by the following
rules:

SpyGlass CDC Solution

Clock_hier01 Clock_hier02 Clock_hier03
Version N-2017.12-SP1 1101
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
clock_pin

Purpose

The clock_pin constraint is used to specify black box pins that should be
assumed clock pins.

Then the Clock_11 rule, which uses clock source analysis, treats a pin
specified with the clock_pin constraint just as it does clock pins on flip-
flops. The source of such a pin must be a test clock controlled just as any
other clock source.

This is particularly useful to ensure that the clock logic connected to a black
box is designed for SpyGlass DFT solution even before the box itself is
available.

Product

SpyGlass DFT solution

Syntax

The syntax of the clock_pin constraint is as follows:

clock_pin
-name <du-name>.<port-name>
[-value <value>]

Arguments

The clock_pin constraint has the following arguments:

<du-name>

The name of the design unit (black box) for which you are specifying the
clock pin.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are processed.

You can specify a single design unit name or a space-separated list of
1102 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
design unit names.

<port-name>

Name of the clock port on the design unit (black box).

You can specify only a single port name.

-value <value>

(Optional) The active value for this clock port <port-name>. This
argument can take one of the following values: rtz or rto

For information on rtz and rto clocks, refer to the Test clocks section in
SpyGlass DFT Rules Reference Guide.

Rules

The clock_pin constraint is used by the following rules:

clock_root

Purpose

The clock_root constraint is used to specify the starting node of a clock
tree for checking whether clock tree is balanced.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was clockgen.

Product

SpyGlass DFT DSM solution

Syntax

clock_root
-name <lst_signal_names>

SpyGlass DFT Solution

Clock_11 Clock_11_capture
Version N-2017.12-SP1 1103
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

The clock_root constraint has the following arguments:

-name <lst_signal_names>

List of signal names

Rules

The clock_root constraint is used by the following rule:

clock_sense

Purpose

Use the clock_sense constraint to stop propagation of clocks from the
specified pins.

Product

SpyGlass CDC solution

Syntax

clock_sense
-pins <pins-list>
[-tag <tag-names>]

Arguments

The clock_sense constraint has the following arguments:

-pins <pins-list>

Specifies the pins at which clock propagation should stop.

SpyGlass DFT DSM Solution

Atspeed_08
1104 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-tag <tag-names>

Specifies tags so that the propagation of the clocks associated with the
specified tags is stopped at the pins specified by the -pins <pins-list>
argument.

If you do not specify this argument, SpyGlass stops the propagation of all
the clocks at the pins specified by the -pins <pins-list> argument.

Example

Consider the following constraints specification:

current_design top
clock -name top.clk1 -domain D1 -tag C1
clock -name top.clk1 -domain D2 -tag C2
clock_sense -pins AND.in1 -tag C1
clock_sense -pins AND.in2

In this case:

 Propagation of the clk1 clock is stopped at the in1 pin of the AND
gate.

 Propagation of all the clocks is stopped at the in2 pin of the AND gate.

Rules

The clock_sense constraint is used by the following rule:

clock_shaper

Purpose

The clock_shaper constraint is a module that controls clock pulse
propagation in a design by enabling/disabling it under certain conditions or
by modifying frequencies. Here, clock shaping means changing the

SpyGlass CDC Solution

All clock-checking rules
Version N-2017.12-SP1 1105
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
frequency, that is, pulse shape, duty cycle, and enabling condition of the
individual clock propagation unit.

However, a clock gating cell (CGC) can only enable or disable a clock. It is
not responsible for clock shaping.

Consider the following figure:

FIGURE 30. A clock shaper

The above figure represents a clock distribution network. The clock shaper
is used as a key element in the network.

The structure and the use model of a clock shaper can be very versatile,
ranging from a simple clock buffer to a complex programmable structure.
The following are some uses of a clock shaper:
 PLL (clock generator)

 Frequency multiplier

 Frequency divider

 Flip-flop based divide-by-2 counter

 Crossbar switch between set of input and output clock pins with possible
frequency manipulation

Clock shaper
1106 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
A module must be declared as clock_shaper and proper constraint
options must be given for proper functioning in this way. Clock shapers are
treated as black boxes by simulation.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was clockshaper.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

clock_shaper
-name <module-name>
[-clkin <clkin-pin-list>]
[-clkout <clkout-pin-list>]
[-reset <reset-pin> -resetvalue <reset-value>]
[-enable <en-pin-list> -envalue <en-value-list>]
[-freqcontrols <freq-ctrl-pins> -freqcontrolvalues

<values_string>]
[-freqmult <mult-values>]
[-clockout_reference_inputclock <clkout pins, mapped

clkin pins>]
[-clockout_frequency_multiplier <clkout pins, mapped freq

multiplier>]
[-register]
[-pll]
[-divider]
[-maskcaptureATspeed]
[-scan_clock <name>]
[-scan_clock_value <value>]
[-scan_set <name<]
[-scan_set_value <name>]
[-scan_reset <name>]
[-scan_reset_value <value>]

NOTE: The clock_shaper constraint supports wildcard characters.

NOTE: See Arguments used by the dftDsmConstraintCheck_01 rule to view the arguments
used by the dftDsmConstraintCheck_01 rule.
Version N-2017.12-SP1 1107
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

General Arguments

The clock_shaper constraint has the following arguments:

-name <module-name>

The name of the module to be declared as a clock shaper. You can also
specify an instance name as an input, if you have specified -register
argument. This implies that instance-based clock_shapers are allowed only
for flip-flops. Module names specified using this argument, are allowed for
any user module. However, if the module is not a black box, then software
forces it to be treated as black box and you would see the InfoAnalyzeBBox
rule violation for that module.

-clkin <clkin-pin-list>

List of clock input pins of the clock shaper. Do not specify this argument, if
you have specified the -register argument.

-clkout <clkout-pin-list>

List of clock output pins of the clock shaper. Do not specify this argument,
if you have specified the -register argument.

-reset <reset-pin>

(Optional) Reset pin of the clock shaper. When this is activated, the clock
shaper does not propagate any clock pulse through its output.

-enable <en-pin-list>

(Optional) List of control pins of the clock shaper. These pins should be
activated for the clock shaper to propagate clock pulses. By default, a clock
shaper is considered enabled.

-freqcontrols <freq-ctrl-pins>

(Optional) Pins that control or modify frequency of the clock pulse(s)
propagating through the clock shaper.

-freqmult <mult-values>

(Optional) Multiplying values for a frequency of clock pulses propagating
1108 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
through a clock shaper.

-resetvalue <reset-value>

A single 0 or 1 value. The value specifies the signal that activates the
corresponding reset pin.

-envalue <en-value-list>

List of a space-separated single 0,1, or X (don't care) values where each
value is for corresponding enable pin given through the -enable switch. For
such values, clock shaper is enabled when each enable get its
corresponding value.

You can also specify a list of space-separated string of values where each
value string is of size of number of enable pins given. For such values,
clock shaper is enabled when value at the enable pins satisfies any one
value string.

-freqcontrolvalues <values_string>

Binary strings (0s and 1s) that specify a combination to be applied to their
respective pins. The length of the combination should be equal to the
number of pins that it refers.

-clockout_reference_inputclock <clkout pin, related clkin pins>

Specifies a relation of clkout pin with clkin pins, based on frequency control
values in case of multi-pin support.

-clockout_frequency_multiplier <clkout pins, mapped freq multiplier>

Specifies a multiplicative factor to an input frequency based on frequency
control value so that clkout has a modified frequency.

-register

Applies the clock_shaper constraint on hierarchical flip-flop instances or
output net of the flip-flops. When you specify this option, you do not need
to provide -clockin and -clockout fields because the clock pin of the flip-flop
is treated as clockin and the output pin of the flip-flop is treated as
clockout. In addition, the default value of the multiplication factor is 0.5.
You can change the value of the multiplication factor by using the
-clockout_frequency_multiplier option along with the
Version N-2017.12-SP1 1109
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-register option. Also, you need to specify this argument to specify the
instance name for the -name argument.

-pll

(Optional) Enables the clock shaper to work as a PLL. All the PLL checks are
applied to this constraint.

-divider

(Optional) Enables the clock shaper to work as a clock divider.

-scan_clock <name>

Specifies the name of clock shaper pin driving clock pin of flops inside clock
shaper.

-scan_clock_value <value>

Accepts either rising_edge or falling_edge, as values, to specify
clock pin phase.

-scan_set <name>

Specifies the name of the clock shaper pin, which is driving the set pin of
flip-flops inside clock shaper.

-scan_set_value <value>

Accepts either high or low, as values, to specify set pin phase.

-scan_reset <name>

Specifies the name of the clock shaper pin, which is driving the reset pin of
flip-flops inside clock shaper.

-scan_reset_value <value>

Accepts either high or low, as values, to specify set pin phase.

For more information on support for clock shaper with scannable flip-flops,
refer to Support for clock shaper with scannable flops section in the
SpyGlass DFT Rules Reference Guide.
1110 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments used by the dftDsmConstraintCheck_01 rule

-testmodepins

Specifies the pins that determine whether the clockshaper is enabled in a
given test mode. The values of these pins for given test modes should be
passed under the scanshift or capture mode.

-scanshift

Binary strings (0s and 1s) that specify a combination to be applied to their
respective pins in the scanshift mode. The length of the combination should
be equal to the number of pins that it refers.

-capture

Binary strings (0s and 1s) that specify a combination to be applied to their
respective pins in the capture mode. The length of the combination should
be equal to the number of pins that it refers.

-captureATspeed

Binary strings (0s and 1s) that specify a combination to be applied to their
respective pins in the CaptureATspeed mode. The length of the
combination should be equal to the number of pins that it refers.

-maskcaptureATspeed

This option masks the test mode pin values under captureATspeed. For any
test mode pin, the enabling condition is not checked if the corresponding
bit is one in maskcaptureATspeed.

This argument is applicable only to the Atspeed_17_captureatspeed rule. It
does not impact atspeed clock propagation.

Rules

The clock_shaper constraint is used by the following rules:

SpyGlass DFT Solution
All rules
Version N-2017.12-SP1 1111
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Consider the following examples:

Clock Shaper Without an Enable Pin

Consider the following clock_shaper constraint specification having a
clock input pin and a clock output pin:

clock_shaper -name cg_cell
-clkin clk -clkout clko

In this case, the clk pin is connected to the clko pin with frequency
multiplier 1.

Clock Shaper With a Single Enable Pin

Consider the following clock_shaper constraint specification having a
single enable pin:

clock_shaper -name cg_cell
-clkin clk -clkout clko
-enable en -envalue 11000

Here, the clk pin is connected to the clko pin with frequency multiplier 1
when the en pin has the specified value. If the enable value is not
satisfied, the clko pin remains at X (don’t care).

Clock Shaper With Multiple Enable Pins

Example 1

Consider the following clock_shaper constraint specification having
multiple enable pins:

clock_shaper -name cg_cell
-clkin clk -clkout clko

SpyGlass DFT DSM Solution

All rules Specifically used by: Atspeed_12, Atspeed_13,
Atspeed_17_shift,
Atspeed_17_capture and
Atspeed_17_captureatspeed,
dftDsmConstraintCheck_01
1112 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-freqcontrols en1 en2 en3 en4 en5
-freqcontrolvalues 111xx XX011
-freqmult 1 1

In this case, the clock shaper is enabled in the following two cases:

 The en1, en2, and en3 pins are equal to 111 irrespective of the values
on the en4 and en5 pins.

 The en3, en4, and en5 pins are equal to 011 irrespective of the values
on the en1 and en2 pins.

If neither of the above cases is satisfied, the device is disabled so that the
output remains at X (don’t care).

The above example also illustrates the use of don't care conditions on the
enable pins.

Example 2
Consider the following example:

clock_shaper -name cs1
-clkin clk_in1
-clkout clk_out1 clk_out2 clk_out
-enable en1 en2 en3 -envalue 0 1 0
-freqcontrols freq_cnt1 freq_cnt2 freq_cnt3 freq_cnt4
-freqcontrolvalues x000 1001 1111
-freqmult 1 1 1 1 1 1 1 1 1

In the above example, clock shaper is enabled when value at en1, en2
and en3 is 0, 1 and 0 respectively.

Example 3
Consider the following example:

clock_shaper -name cs2
-clkin clk_in1
-clkout clk_out1 clk_out2 clk_out3
-enable en1 en2 en3 -envalue 011 1xx
-freqcontrols freq_cnt1 freq_cnt2 freq_cnt3 freq_cnt4
-freqcontrolvalues x000 1001 1111
-freqmult 1 1 1 1 1 1 1 1 1

In the above example, clock shaper is enabled when value at en1, en2
Version N-2017.12-SP1 1113
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
and en3 is 0, 1 and 1 respectively or value at en1 is 1

Clock Shaper With Multiple Clock-input and Clock-output Pins

A clock shaper can have multiple clock-input and clock-output pins. The
input to output mapping is illustrated in the following example:

clock_shaper -name cg_cell
-clkin clk1 clk2 clk3 -clkout clko1 clko2 clko3

In the above example, the connections are parallel, that is, the clk1 pin is
connected to the clko1 pin, the clk2 pin is connected to the clko2 pin,
the clk3 pin is connected to the clko3 pin, with frequency multiplier 1.

NOTE: If the length of the clkin pin list is not equal to the length of the clkout pin
list, the clock_shaper constraint specification is ignored and a warning
message is reported.

Clock Shaper With Frequency Division

Consider the following divide-by-2 clock_shaper constraint
specification:

clock_shaper -name shaper
-clkin clk -clkout clko -freqmult 0.5

In this case, the frequency of the clko pin is half of that of the clk pin.

Now consider the following clock_shaper constraint specification which
produces the same result as the above specification:

clock_shaper -name shaper
-clkin clk -clkout clko
-clockout_frequency_multiplier clko 0.5

NOTE: If the length of the clkin pin list is not equal to the length of the clkout pin
list, the clock_shaper constraint specification is ignored and a warning
message is reported.

The advantage of using the -clockout_frequency_multiplier
argument of the clock_shaper constraint over the -freqmult
argument is that it provides flexibility to handle more complex clock
shapers.

NOTE: The -clockout_frequency_multiplier argument of the
clock_shaper constraint has higher priority than the -freqmult argument.
1114 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Clock Shaper With Frequency Multiplication

Consider the following clock_shaper constraint specification:

clock_shaper -name cg_cell
-clkin clk -clkout clko -freqmult 2.0

In this case, the frequency of the clko pin is twice that of the clk pin.

Clock Shaper With Multiple Clock-output Pins With the Same Frequency
Multiplication

Consider the following divide-by-2 clock_shaper constraint
specification:

clock_shaper -name cg_cell
-clkin clk1 clk2 clk3 -clkout clko1 clko2 clko3
-freqmult 0.5

In this case, the cg_cell clock shaper has multiple clockin to clockout
paths and the same divide-by-2 occurs on all the paths.

NOTE: If the length of the clkin pin list is not equal to the length of the clkout pin
list, the clock_shaper constraint specification is ignored and a warning
message is reported.

Clock Shaper With Multiple Clock-output Pins With Different Frequency
Multipliers

Consider the following clock_shaper constraint specification:

clock_shaper -name cg_cell
-clkin clk1 clk2 clk3 -clkout clko1 clko2 clko3
-clockout_frequency_multiplier clko1 1.2
-clockout_frequency_multiplier clko2 1.5
-clockout_frequency_multiplier clko3 1.7

In the above example, the three clock-output pins, clko1, clko2, and
clko3, have different frequency multiplications, that is, 1.2, 1.5, and
1.7, respectively.

NOTE: The clock-output pin that does not have a frequency multiplier specified, is assigned
a multiplier of 1.0 by default.

Clock Shaper With a Single Clock-out Pin and Selectable Frequency
Version N-2017.12-SP1 1115
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Multipliers

Consider the following clock shaper with the selectable frequency
multiplication capability:

clock_shaper -name var_multiplier
-clkin cin -clkout cout
-freqcontrols fc0 fc1 -freqcontrolvalues 00 01 10
-freqmult 1.0 0.5 0.25

In this case, the behavior of the clock shaper is described in the following
table:

NOTE: If the length of the freqcontrols pin list is not equal to the length of the
freqcontrolvalues pin list, the clock_shaper constraint specification
is ignored and a warning message is reported.

Clock Shaper With Multiple Clock-input/Clock-output Pairs

The frequency control syntax is also used for specifying the mapping
between the input and output clocks for clock shapers that can handle
multiple clocks simultaneously.

The following table lists the arguments used to define the clock shaper
control port names, the active values on these ports, and the clockin to
clockout mapping:

fc0 fc1 Output
0 0 cout frequency = cin frequency
0 1 cout frequency = cin frequency * 0.5
1 0 cout frequency = cin frequency * 0.25
1 1 The clock_shaper constraint is disabled

Argument of the
clock_shaper constraint

Defines

-freqcontrols The control pins on a clock shaper
-freqcontrolvalues A list of values on the control pins
-clockout_reference_inputclock An output clock pin and a list of input clock

pins that can be mapped to this output clock
1116 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Please note that the number of sets of control values must match the
number of input clocks. In addition, each set of values must be unique
because SpyGlass searches the value list in the left to right order.

Now consider the following clock_shaper constraint specification with
the selectable frequency multiplication capability:

clock_shaper -name cg_cell
-clkin clk1 clk2 clk3 -clkout clko1 clko2 clk03
-freqmult 1.2 1.5 1.7

In the above example, a list of multipliers is specified. All frequency
multiplications are applied in parallel, that is, the nth multiplier in the list is
applied to the nth clockin/clockout pair.

NOTE: If the lengths of the clkin pin list, the clkout pin list, and the freqmult list
are not equal, the clock_shaper constraint specification is ignored and a
warning message is reported.

Clock Shaper With Selectable Mapping of Clock-input Pins to Clock-
output Pins

clock_shaper -name CCN
-clkin ck1 ck2 -clkout gck1 gck2
-freqcontrols e1 e2 e3 -freqcontrolvalues 111 000
-clockout_reference_inputclock gck1 ck1 ck2
-clockout_reference_inputclock gck2 ck2 ck1
Version N-2017.12-SP1 1117
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: If the length of the clockout_reference_inputclock pin list is not
equal to the length of the clkout pin list, the clock_shaper constraint
specification is ignored and a warning message is reported.

Clock Shaper With Selectable Clock-input/Clock-output Pairs and
Different Frequencies

The syntax for clock shapers can be used to describe complex devices that
not only have selectable clockin to clockout mapping but also have
different frequency multipliers for each selection.

The syntax of the -clockout_frequency_multiplier argument of
the clock_shaper constraint specifies a clockout pin and a list of
frequency multipliers to be used in the same order as the values specified
in the -freqcontrolvalues argument.

Consider the following clock_shaper constraint specification in which
the input clocks are mapped to the output clocks with different frequency
multipliers:

clock_shaper -name OCC
-clkin clkin1 clkin2 clkin3
-clkout clkout1 clkout2 clkout3 clkout4
-clockout_reference_inputclock clkout1 clkin1 clkin2
-clockout_reference_inputclock clkout2 clkin2 clkin1
-clockout_reference_inputclock clkout3 clkin3 clkin3
-clockout_reference_inputclock clkout4 clkin3 clkin3
-clockout_frequency_multiplier clkout1 0.5 4
-clockout_frequency_multiplier clkout2 0.25 8
-clockout_frequency_multiplier clkout3 0 2
1118 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
clkout4 0.125 0
-freqcontrols en1 en2 -freqcontrolvalues 11 00

Clock Shaper With PLL Support

Consider the following clock_shaper constraint specification in which a
clock shaper is specified as a PLL:

clock_shaper -pll -name myPLL
-clkin ref_clk -clkout clk1 clk2
-reset reset -resetvalue 0

The SpyGlass DFT DSM solution allows the use of PLLs. Please refer to
rules, such as PLL_01and PLL_02 for details.

Clock Shaper With Register Support

Consider the following conventional flip-flop based divide-by-2 counter:
Version N-2017.12-SP1 1119
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above counter can be constrained by using the -register argument
of the clock_shaper constraint as shown below:

clock_shaper -name dclk1_d4 -register

clock_shaper -name dclk1_d8 -register

NOTE: Please note the following points:

 The -register argument of the clock_shaper constraint specifies that
the module is a flip-flop based frequency divider.

 The default multiplication value is 0.5, which can be overridden.

 The name for the clock shaper is the net connected to the output of the flip-flop
(the flip-flop is not explicitly instantiated in the RTL).

 In case of an instantiated technology library cell, the constraint can be applied
on the instance.

 The clock_shaper constraint cannot be applied on a level-sensitive latch.

Consider the following schematic generated by the Info_testclock rule:
1120 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The clock_shaper constraint specification in this case is as follows:

clock_shaper -name gclk -register

In the above schematic, the clock propagation through the flip-flop-based
clock shapers is represented by the carrot (^) symbol.

Now consider the following multiplier with frequency multiplication value
different from 0.5:

always @(posedge RCLK or negedge RST) begin
 if(!RST)
 clk <= 2'h0;
 else
 clk <= clk - 1'b1;
end

To model such a multiplier, use the
-clockout_frequency_multiplier argument of the
clock_shaper constraint.

The following figure specifies a countdown counter that can manipulate the
frequency functionally:

The output frequencies of the above counter are as follows:

Clock Pin Output Frequency of the Counter
clk[0] 50
clk[1] 25
Version N-2017.12-SP1 1121
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above result can be modeled in the following two ways:

clock_shaper -name clk[1] -register
-clockout_frequency_multiplier 0.25

Or

clock_shaper -name clk[1] -register
-freqmult 0.25

NOTE: If both the -clockout_frequency_multiplier and -freqmult
arguments of the clock_shaper constraint are specified, the
-clockout_frequency_multiplier is used and the -freqmult
argument is ignored.

Clock Shaper With External Enable Decode

clock_shaper -name cg -clkin ref -clkout cout
-enable en -envalue 1

FIGURE 31. Clock shaper with external enable decode

Clock Shaper With Multiple Clock-out and Clock-in Pins

clock_shaper -name CST -clkin clkin1 clkin2 clkin3 -
clkout clkout1 clkout2 clkout3
-clockout_reference_inputclock clkout1 clkin2 clkin1 clkin3
-clockout_reference_inputclock clkout2 clkin1 clkin3 clkin3
1122 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clockout_reeference_inputclock clkout3 clkin3 clkin2 clkin1
-clockout_frequency_multiplier clkout1 0.5 2 2
-clockout_frequency_multiplier clkout2 0.25 4 4
-clockout_frequency_multpier clkout3 0.125 8 0
-freqcontrols en1 en2 en3
-freqcontrolvalues 110 001 111

The following figure illustrates the input-output mapping of clock shaper,
when -freqcontrols pins gets 110 under capture at-speed mode:

The following figure illustrates the input-output mapping of clock shaper,
when -freqcontrol pins get 001 under capture at-speed mode:

The following figure illustrates the input-output mapping of clock shaper,
when -freqcontrol pins get 111 under capture at-speed mode:
Version N-2017.12-SP1 1123
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
clockgating

Purpose

The clockgating constraint is used to specify gating conditions for test
clocks.

NOTE: Three test mode options are supported: scanshift, capture, and captureATspeed.
Because these categories are not at-speed clock specific, additional data is needed
to specify the gating signals that are specific to an at-speed test clock. See rule
Atspeed_07 for an example.

Product

SpyGlass DFT DSM solution

Syntax

clockgating
-name <clk-name>
-pin <lst_signal_names>
-value <values>

Arguments

The clockgating constraint has the following arguments:

-name <clk_name>

The name of the test clock, which is gated.
1124 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-pin <lst_signal_names>

List of signal names that act as a gating signal for the specified test clock.

-value <values>

List of values corresponding to the gating signals.

Rules

The clockgating constraint is used by the following rule:

complex_cell

Purpose

A complex cell is a module that controls clock pulse propagation in a
design, by enabling/disabling it under different test mode conditions.
Complex cells are instances of clock_shaper, and are treated as black
boxes by simulation.

NOTE: The complex_cell constraint will be deprecated in a future SpyGlass release.
Please make use of clock_shaper constraint in place of this constraint.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

complex_cell
-name <cell-name>
-tclkinport <clkin-pin>
-tclkoutport <clkout-pins>
-testmodepins <tm-pins>
-scanshift <values>
-capture <values>

SpyGlass DFT DSM Solution

Atspeed_07
Version N-2017.12-SP1 1125
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-captureStatic <values>
-captureATspeed <values>

[-maskcaptureATspeed <values>]

Arguments

The complex_cell constraint has the following arguments:

-name <cell-name>

Name of the module to be declared as a complex cell.

-tclkinport <clkin-pin>

 Clock input pin of the complex cell (can be one pin only).

-tclkoutport <clkout-pins>

 Clock output pin of the complex cell (can be one pin only).

-testmodepins <tm-pins>

Pins that determine whether the complex cell is enabled in a given test
mode. Values of these pins for given test modes should be passed under
the arguments, such as -scanshift and -capture.

<values>

Binary strings (0 and 1) that specify a combination to be applied to their
respective pins. The length of the combination should be equal to the
number of pins that it refers.

For example, if there are three test mode pins, arguments, such as
-scanshift and -capture, should have values of length three.

Rules

The complex_cell constraint is used by the following rules:

SpyGlass DFT Solution
All rules
1126 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
compressor

Purpose

This constraint is used to specify test data compressors and data output
pins.

The compressor constraint is used when data from internal chains is driving
an on-chip compressor.

Product

SpyGlass DFT DSM solution

Syntax

The syntax of the compressor constraint is as follows:

compressor
-name <mod-name| instance>
-dataout <list of compressor module ports>

Arguments

-name <mod-name| instance>

Name of an instance or a module. If the -name argument is a module
name, then all instances of that name will be defined as compressors with
the same data output port names. The -dataout ports are assumed as the
compressed scan out data.

-dataout <list of compressor module ports>

List of output ports of compressor driving primary outputs.

SpyGlass DFT DSM Solution

All rules Specifically used by: Atspeed_12, Atspeed_13,
Atspeed_17_shift,
Atspeed_17_capture, and
Atspeed_17_captureatspeed
Version N-2017.12-SP1 1127
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

If the -name field contains a module name, then the constraint information
will be applied to all instances of this name unless another compressor
constraint refers to a specific instance of the same module name. For
example, consider the SGDC listed below in which top.u1 is an instance
of module compA:

compressor -name compA -datain depins[31:0]

compressor -name top.u1 -datain depins[15:0]

In this example, top.u1 is intended to have 16 tail registers whereas all
other instances of compA have 32 head registers.

Rules

The compressor constraint is used by the following rules:

dbist

Purpose

The dbist constraint specifies the set of conditions, both pins and values,
that when simulated will force the circuit into a state for DBIST mode.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was Dbist.

Product

SpyGlass DFT solution

Syntax

The syntax of the dbist constraint is as follows:

dbist
-name <name>

SpyGlass DFT DSM Solution
TC_01 TC_02 TC_03 TC_04 TC_05
1128 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-value <value>

NOTE: The dbist constraint supports wildcard characters.

Arguments

The dbist constraint has the following arguments:

-name <name>

Complete hierarchical name of DBIST port/pin.

The pin can be a primary pin as well as an internal pin.

You can specify a single port/pin’s full hierarchical name or a space-
separated list of full hierarchical port/pin names. The port/pin name
supports wildcard.

For primary ports, you can also specify the simple port name as in the
following example:

current_design top
dbist -name in15 ...

-value <value>

Value list for the DBIST pin.

The value list is the sequence of one or more values (each value being 0, 1,
X, Z, or a combination) that when applied to the DBIST pin, will cause the
circuit to enter DBIST mode.

Rules

The dbist constraint is used by the following rules:

decompressor

Purpose

This constraint is used to specify a test data decompressor and it's data
input pins.

SpyGlass DFT Solution
Latch_16 Tristate_17
Version N-2017.12-SP1 1129
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT DSM solution

Syntax

The syntax of the dbist constraint is as follows:

decompressor
-name <mod-name| instance>
-datain <list of decompressor module ports>

Arguments

-name <mod-name| instance>

Name of an instance or a module. If the -name field contains a module
name, the constraint information is applied to all instances of this name
unless another decompressor constraint refers to a specific instance of the
same module name.

-datain <list of decompressor module ports>

List of input ports of decompressor driven by primary inputs.

Examples

Consider the following example:

Decompressor -name decompA -datain depins[31:0]
Decompressor -name top.u1 -datain depins[15:0]

In the SGDC listed above, top.u1 is an instance of module decompA.

Rules

The decompressor constraint is used by the following rules:
SpyGlass DFT DSM Solution
TC_01 TC_02 TC_03 TC_04 TC_05
1130 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_clock_tree

Purpose

The define_clock_tree constraint is used to approximate the
buffering in the clock tree and to apply the correction factor on the clock
pin capacitance of the flop.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the define_clock_tree constraint is as follows:

define_clock_tree
-name <clock-netname>
-leaf_fanout <fvalue>
-intermediate_fanout <fvalue>
-intermediate_buffer <im-buffer/inverter-cellname>
-leaf_buffer <leaf-buffer/inverter-cellname>
[-leaf_cap_per_fanout <fvalue>]
[-wire_cap_correction_factor <fvalue>]
[-pin_cap_correction_factor <fvalue>]
[-root_buffer <root-buffer/inverter-cellname>]
[-root_buffer_lib <root-buffer/inverter-libname>]

[-intermediate_buffer_lib <im-buffer/inverter-libname>
]

[-leaf_buffer_lib <leaf-buffer/inverter-libname>]
[-icgc_fanout <int>]
[-root_fanout <fvalue>]
[-icgc_cell <icgc-cellname>]
[-icgc_cell_lib <icgc-libname>]

NOTE: The icgc_cell and icgc_cell_lib arguments will be supported in a
future release.
Version N-2017.12-SP1 1131
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <clock-netname>

Specifies the RTL net name of the clock source.
NOTE: This argument supports wildcard characters. Refer to Example 4 for more

information.

-leaf_fanout <fvalue>

Specifies a floating-point value as the average fan-out of the leaf-level
buffer.

The specified value must be greater than or equal to 2.

NOTE: You must specify the -leaf_fanout argument if the
define_clock_tree constraint is used to calculate the buffering in the clock
tree.

-leaf_cap_per_fanout <fvalue>

(Optional) Specifies the capacitance per fanout of nets connecting the leaf
buffer to flip-flops. Also, range of fanout multiple is 0 to INF.

-wire_cap_correction_factor <fvalue>

(Optional) Specifies a correction factor (floating-point value) to scale the
capacitance obtained from the wireload model.

The default value is 1.0.

-pin_cap_correction_factor <fvalue>

(Optional) Specifies a correction factor (floating-point value) to scale the
capacitance of the fan-out clock pin of the net. Note that the fan-out clock
pin of the net is also the fan-in of the flop.

The default value is 1.0.

-root_buffer <root-buffer/inverter-cellname>

(Optional) Specifies the cell name to be used as buffer/inverter at the root
level.

NOTE: You must specify the -root_fanout argument of the
1132 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_clock_tree constraint with the -root_buffer argument of the
constraint.

-root_buffer_lib <root-buffer/inverter-libname>

(Optional) Specifies the library name of the buffer/inverter at the root
level.

NOTE: You must specify the -root_buffer argument of the
define_clock_tree constraint with the -root_buffer_lib argument
of the constraint.

-intermediate_buffer <im-buffer/inverter-cellname>

Specifies the cell name to be used as buffer/inverter at the intermediate
levels.

NOTE: You must specify the -intermediate_fanout argument of the
define_clock_tree constraint with the -intermediate_buffer
argument of the constraint.

-intermediate_buffer_lib <im-buffer/inverter-libname>

(Optional) Specifies the library name of the buffer/inverter at the
intermediate levels.

NOTE: You must specify the -intermediate_buffer argument of the
define_clock_tree constraint with the
-intermediate_buffer_lib argument of the constraint.

-leaf_buffer <leaf-buffer/inverter-cellname>

Specifies the cell name to be used as buffer/inverter at the leaf level.

NOTE: You must specify the -leaf_fanout argument of the
define_clock_tree constraint with the -leaf_buffer argument of the
constraint.

-leaf_buffer_lib <leaf-buffer/inverter-libname>

(Optional) Specifies the library name of the buffer/inverter at the leaf level.

NOTE: You must specify the -leaf_buffer argument of the
define_clock_tree constraint with the -leaf_buffer_lib argument
of the constraint.
Version N-2017.12-SP1 1133
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: If a root buffer or inverter is not specified, SpyGlass uses an intermediate buffer/
inverter specified in the define_clock_tree constraint.

-icgc_fanout <int>

(Optional) Specifies the maximum fan-out of all the ICGCs, where all fan-
outs are going to sink, in the netlist. If there are no such ICGCs, the
leaf_fanout is taken as the icgc_fanout.

-root_fanout <fvalue>

(Optional) Specifies a floating-point value as the average fan-out of the
root level buffers/inverters

-intermediate_fanout <fvalue>

Specifies a floating-point value as the average fan-out of the intermediate
level buffers/inverters

Examples

Example 1

Consider the following define_clock_tree constraint specification:

define_clock_tree
-name CLKNET
-leaf_fanout 16.00
-wire_cap_correction_factor 2.0
-root_fanout 4.00
-intermediate_fanout 4.00
-intermediate_buffer BUFI
-leaf_buffer BUFL

In the above define_clock_tree constraint, the root-level buffer/
inverter is not specified. In this case, SpyGlass uses the intermediate-level
buffer/inverter (BUFI) as the root-level buffer/inverter.

Therefore, the buffers/inverters at each level will be as follows:
1134 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider a clock tree having 1000 pins with the following specification of
the define_clock_tree constraint:

define_clock_tree
-name CLKNET
-leaf_fanout 16.00
-wire_cap_correction_factor 2.0
-intermediate_fanout 4.00
-root_fanout 4.00
-root_buffer BUFR
-intermediate_buffer BUFI
-leaf_buffer BUFL

In this case, the number of drivers required at each level will be as follows:
 Level 0: Number of BUFL drivers = 1000/16 = 63

 Level 1: Number of BUFI drivers = 63/(16/4) = 16

 Level 2: Number of BUFI drivers = 16/4 = 4

 Level 3: Number of BUFR driver = 4/4 = 1

Now, consider that the wireload for nets with fan-out as 16 is 4 pF and the
wire capacitance correction factor is 2. In this case, the capacitance of nets
will be 4 * 2 = 8 pF.

Example 3

Consider a clock tree having 1000 pins with the following specification of
the define_clock_tree constraint:

define_clock_tree
-name CLKNET
-leaf_fanout 16.00

Buffer/Inverter at Level Buffer/Inverter
Intermediate-level(s) BUFI
Leaf-level BUFL
Root-level BUFI
Version N-2017.12-SP1 1135
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-wire_cap_correction_factor 2.0
-root_fanout 4.00
-intermediate_fanout 4.00
-root_buffer BUFR
-intermediate_buffer BUFI
-leaf_buffer BUFL
-pin_cap_correction_factor 3.5

In this case, the specified pin cap correction for the CLKNET is 3.5.
1136 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 4

Consider the following example that shows the extracted
define_clock_tree constraint from a netlist by the PECLKTREE rule:

define_clock_tree
-name "*"
-root_buffer BUFX8
-intermediate_buffer BUFX2
-leaf_buffer BUFXL
-leaf_fanout 16.00
-intermediate_fanout 8.00
-root_fanout 2.00
-leaf_cap_per_fanout 0.100

In this example, the clock tree in the netlist design has on average 16.00
as leaf fan-out and the average capacitance of every fan-out of the leaf
nets is 0.10pf. The netlist has on average an intermediate fan-out of 8.00
and the root fan-out of 2.00. In addition, the buffer names specified in this
example are determined from the clock tree of the netlist.

Rules

define_illegal_input_values

Purpose

If illegal values are specified on a set of inputs, all input values not
specified for that set of inputs are considered legal.

Product

SpyGlass DFT solution

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05 PEPWR13
PEPWR14 poweraudit
Version N-2017.12-SP1 1137
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the define_illegal_input_values is as follows:

define_illegal_input_values -name
-name <node_names>
-value <values>

Arguments

-name <node_names>

Specifies the list of node names. The names may refer to internal nodes or
top-level ports.

-value <values>

Specifies the list of illegal value combinations. It is the only set of invalid
simulation sequence.

Examples

Consider the following example:

define_illegal_input_values -name I1 I2 -values 00 11

In the above example, for nodes, I1 and I2, the invalid set of value
combination is 00 and 11. All the values except 00 and 11 are considered
valid.

Rules

The define_illegal_input_values constraint is used by the
following rules:

define_legal_input_values

SpyGlass DFT Solution

Async_06
1138 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

If legal input values are specified for a set of inputs, all input values not
specified for that set of inputs are considered illegal.

Product

SpyGlass DFT solution

Syntax

The syntax of the define_legal_input_values is as follows:

define_legal_input_values -name
-name <node_names>
-value <values>

Arguments

-name <node_names>

Specifies the list of node names. The names may refer to internal nodes or
top-level ports.

-value <values>

Specifies the list of legal value combinations. It is the set of valid
simulation sequence.

Examples

Consider the following example:

define_legal_input_values -name I1 I2 -values 10 01

In the above example, for nodes, I1 and I2, only the value combinations,
10 or 01, are allowed. All the values except 10 and 01 are considered
invalid.

Rules

The define_legal_input_values constraint is used by the following
Version N-2017.12-SP1 1139
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
rules:

define_library_group

Purpose

Defines the groups of Synopsys technology libraries at different PVT
values. Library groups need to be defined because same cell definition is
possible in multiple libraries at different PVT values.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the define_library_group constraint is as
follows:

current_design <top-du-name>
define_library_group
-name <lib-grp-name>
-libname <lib-name-list>

Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <lib-grp-name>

Name of the library group. The specified name should be unique.

SpyGlass DFT Solution

Async_06
1140 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-libname <lib-name-list>

Name of the library/libraries that you want to add in the specified library
group.

NOTE: You can also use the -libname argument as -libnames to specify a single
library or a group of libraries.

Consider the following example, for the libraries: L1, L2, L3, L4 and L5, use
the define_library_group constraint as:

define_library_group -name G1 -libname L1 L2

define_library_group -name G2 -libname L3 L4

NOTE: Refer to the SGDC command use_library_group to specify library groups to various
design hierarchies.

Rules

The define_library_group constraint is used by the following rules:

define_macro

Enables you to create dynamic macros in SpyGlass DFT. You can set your
own set of macros (User-Defined Macros or UDMs) using this constraint.

Macros created using this constraint are similar to other dynamic macros,
that is, Tcl-based UDMs.

All the macros defined using this constraint can be further specified
through -type, -from_type, -to_type, and/or -except_type arguments of
other constraints (test_mode & require*). It is similar to other macros
(static-macros and Tcl-based UDMs) being provided as input.

Product

SpyGlass DFT solution

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1141
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The following is the syntax for the define_macro constraint:

define_macro
-macro <udm_name>
[-name <node_name>]
[-type <design_object_type>]

[-except <except_node_name>]
[-except_type <except_design_object_type>]
[-filter_in_name <include_node_name>]
[-filter_in_type <include_design_object_type>]
[-cmt <cmt_expression>]
[-filter_in_cmt <include_cmt_expression>]
[-ignorecase]

Arguments

-macro <udm_name>

(Mandatory) Name of user-defined macro (UDM)

Name of macro should be unique, that is, it should meet the following
conditions :
 It should not match with any static-macro (such as INPUT_PORTS,

OUTPUT_PORTS) or tcl-based macro name
 Multiple specifications of macro are not allowed

-name <node_name>

(Optional) The name can be a top-module port, or any internal net name,
or terminal name.

NOTE: Wildcard and scoping is also allowed. For example, “my_module::*visa*”,
“*powergood*”. Also, it is recommended to specify at least one of the following
fields: –name, -type or –cmt.

-type <design_object_type>

(Optional) Same as <node_name> but it takes only macros as input.
NOTE: Both static-type and dynamic-type macros are supported
1142 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-except <except_node_name>

(Optional) Same as <node_name> but defines design nodes that are to be
excluded.

-except_type <except_design_object_type>

(Optional) Same as <design_object_type> but defines design nodes that
are to be excluded.

-filter_in_name <include_node_name>

(Optional) Same as <node_name> but defines design nodes that are to be
included.

-filter_in_type <except_design_object_type>

(Optional) Same as <design_object_type> but defines design nodes that
are to be included.

-cmt <cmt_expression>

(Optional) Same as <node_name> but takes constraint_message_tag
expression as input nodes for which expression holds true.

-filter_in_cmt <include_cmt_expression>

(Optional) Same as <cmt_expression> but includes design nodes for which
constraint_message_tag expression holds true

-ignorecase

(Optional) to ignore the case for <nodename> specified as -name/-except/
-filter_in_name

NOTE: It applies on all fields which take design_node_name as input

Examples

Example 1

Consider below constraint specifications:

define_macro -macro my_macro -name “*powergood*” -
ignorecase test_mode -type my_macro -value

In the above example, my_macro is the user-specified macro which is
Version N-2017.12-SP1 1143
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
passed as –type field input for the test_mode constraint.

Example 2 : OR of –name and -type

Consider the following constraint description:

define_macro -macro my_macro1 -name “*powergood*” -type
INPUT_PORTS -ignorecase

In the above example, my_macro1 contains all input ports and objects
matching with *powergood* (case-insensitive). This signifies an OR
operation.

Example 3: AND (through filter_in) of –name and -type

Consider the following constraint description:

define_macro -macro my_macro2 -filter_in_name
“*powergood*” -type INPUT_PORTS –ignorecase

define_macro -macro my_macro3 -name “*powergood*” -
filter_in_type INPUT_PORTS –ignorecase

In the above example, my_macro2 and my_macro3 will contain all input
ports matching with “*powergood*” (case-insensitive). This signifies an
AND operation.

Example 4: Selection based on –cmt

Consider the following constraint description:

define_macro -macro my_macro4 -cmt “CHK_1:PASS &&
CHK_2:FAIL || CHK_3:PASS”

In the above example, my_macro4 contains all design objects
corresponding to the given tag expression, that is, - CHK_1:PASS &&
CHK_2:FAIL || CHK_3:PASS, whereas, CHK_1, CHK_2 and CHK_3
are the constraint_message_tags.

Example 5: AND (through filter_in) of –type and –cmt

Consider the following constraint description:

define_macro -macro my_macro5 -type INPUT_PORTS –
filter_in_cmt “CHK_1:PASS || CHK_2:PASS”

In the above example, my_macro5 contains all such input ports for which
1144 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
the tag expression, that is, - CHK_1:PASS || CHK_2:FAIL holds
true.

Example 6: Defining a UDM from already defined UDM

Consider the following constraint description:

define_macro -macro my_macro6 -name “*powergood*” -
ignorecase

define_macro –macro my_macro7 –type my_macro6 –name
“my_module::*visa*”

In the above example, my_macro7 contains all design objects matching
with *powergood* (case-insensitive) and objects corresponding to
my_module::*visa*.

Example 7: Exclusion based on type

Consider the following constraint description:

define_macro -macro my_macro8 -name “*powergood*” –
except_type “INPUT_PORTS” “OUTPUT_PORTS” -ignorecase

In the above example, my_macro8 contains all internal design objects
matching with *powergood* (case-insensitive).

Example 8: Usage of UDM in test_mode

Consider the following constraint description:

define_macro -macro my_macro -name “*powergood*” –
filter_in_type INPUT_PORTS –ignorecase

test_mode –type my_macro –value 1

A value 1 is defined (as test_mode) on all input ports for which name
matches with *powergood* (case-insensitive).

Example 9: Mandatory field –macro missing

Consider the following constraint description:

define_macro -name obj1

In the above example, an SGDC syntax error for missing mandatory field,
-macro, is reported.
Version N-2017.12-SP1 1145
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 10: Invalid macro name

Consider the following constraint description:

define_macro -macro “” –name obj1 ## Missing macro name

define_macro –macro INPUT_PORTS –name obj2 ## static macro
name used

define_macro –name “M&” –name obj3 ## macro name can only
contain ‘a-z’, ‘A-Z’, ‘0-9’ and ‘_’

Example 10: Undefined macro

Consider the following constraint description:

define_macro -macro my_macro

In the above example, the define_macro constraint must have at least
one of the following fields defined: -name, -type, and -cmt

Example 11: Unique key violation

Consider the following constraint description:

define_macro -macro my_macro1 -name obj1
define_macro –macro my_macro1 –name obj2

In the above example, the define_macro constraint is already specified
for the my_macro1 object, which is of UNIQUE type field, -macro.

Rules

The define_macro constraint is used by the following rules:

define_reset_order

SpyGlass DFT solution
dftSGDCDefineMacroCh
eck_01

dftSGDCDefin
eMacroCheck
_02
1146 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Specifies the reset order, which determines the flow of data from one reset
to another reset.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the define_reset_order constraint is as
follows:

current_design <du-name>

define_reset_order
-from <from-rst-list>
-to <to-rst-list>

Arguments

-from <from-rst-list>

Specifies the name of the source resets in the reset ordering. You can
specify a space-separated list of hierarchical reset net names in this
argument.

This argument supports wildcard characters.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-to <to-rst-list>

Specifies the name of the destination resets in the reset ordering. You can
specify a space-separated list of hierarchical reset net names in this
argument.

This argument supports wildcard characters.
NOTE: The resets specified in the above arguments should match with one of the

asynchronous resets specified in the reset constraint or inferred through the
use_inferred_resets parameter.
Version N-2017.12-SP1 1147
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: Set the hier_wild_card parameter to yes to match the expression with the
hierarchies. For example, the top.*.rst1 expression is matched to
top.u1.rst1 and top.u1.u2.rst1. By default, the
define_reset_order constraint matches only top.u1.rst1.
Setting the value of the hier_wild_card parameter to yes runtime
performance of the define_reset_order constraint is impacted.

Examples

Consider the following examples:

Example1

define_reset_order -from R1 -to R2
define_reset_order -from R1 -to R3

The above example defines the flow of data from R1 to R2 and from R1 to
R3.

Example2

define_reset_order -from RST1 -to RST2
define_reset_order -from RST2 -to RST1

The above example shows bidirectional reset ordering. Such cases are
reported by the SGDC_05 rule.

Example3

Consider an example in which the f1 flip-flop has the R1 reset pin, and the
f2 flip-flop has the R2 reset pin. Also, consider that R1 comes from
primary resets, r1, r2, and r3, and R2 comes from r1, r2, r4, and r5.
In this case, the design is fine if every reset that exists in fan-in of R1 but
not R2 (R1-R2) happens before (through a define_reset_order
constraint) every reset in the fan-in of R2.

This guarantees that asynchronously resetting flip-flop, f1, does not cause
metastability on flip-flop, f2. If the specified condition is not met, a
violation will be reported. For example, the reset ordering is fine in the
following case:

define_reset_order -from r3 -to r1
1148 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_reset_order -from r3 -to r2
define_reset_order -from r3 -to r4
define_reset_order -from r3 -to r5

NOTE: A violation is reported if the first flip-flop has preset/clear pins and the second
flip-flop does not have any of them.

Example4

The following example specifies a reset crossing from top.RST1 to
top.RST2:

define_reset_order -from top.RST1 -to top.RST2

Example5

The following example specifies reset ordering from top.RST1 to
top.RST2 and top.RST3:

define_reset_order -from top.RST1 -to top.RST2 top.RST3

Example6

The following example specifies a reset ordering between flip-flops where
source receives RST1 and RST2 and destination receives RST3 and RST4:

define_reset_order -from RST1 -to RST3 RST4
define_reset_order -from RST2 -to RST3 RST4

Example7

The following example specifies a reset ordering between flip-flops where
source receives RST1 and RST2 and destination receives RST2 and RST3:

define_reset_order -from RST1 -to RST2 RST3
define_reset_order -from RST2 -to RST3

Rules

The define_reset_order constraint is used by the following rules:

SpyGlass CDC solution
Ac_resetcross01 Ar_resetcross01 Ar_resetcross_ma

trix01
Version N-2017.12-SP1 1149
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_tag

Purpose

The define_tag constraint is used to define a named condition for
application of certain stimulus at the top port or an internal node. The
connectivity checks are made by applying one or more of the user-defined
conditions such that circuit can be simulated into the desired mode.

The define_tag constraint can be used in the following different ways:
1. Provide initial state of a design

To provide an initial state for a design, each register needs to be
initialized using the define_tag constraint. The following example
initializes a register foo of design unit top to the value 0:

define_tag –tag initState –name top.foo –value 0

The following example initializes a vector register foo[7:0] of design
unit top to the value 0:

define_tag –tag initState –name top.foo[7:0]
–value “0”

2. Provide an initialization vector
A simulation vector that would initialize registers of a design. The
following example initializes registers by applying three different vectors
on three inputs of a design:

define_tag –tag initSeq –name top.reset1
–value 1 1 1 x x x

define_tag –tag initSeq –name top.reset2
–value x x x 1 1 1

define_tag –tag initSeq –name top.d
–value 0 0 0 0 0 0

In this example, reset1 is asserted for three cycles to initialize some
set of registers, reset2 is asserted to initialize another set of registers
while some other registers are initialized by providing 0 on a data line
“d” for six cycles. Note that reset1 and reset2 can be asserted
simultaneously if they can reset registers independently.
The value can be 0, 1, or x (case-insensitive). Note that each value is
1150 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
separated by a blank.
Vectors can also be initialized as in the following example:

define_tag –tag initSeq –name top.foo[0:3]
–value {h 0 6}

The above specification indicates that the vector top.foo would be
assigned 0 (in Hex) or 0000 (in binary) in the first cycle and 6 (in Hex)
or 0110 (in binary) in the second cycle.

NOTE: When you specify an initial sequence using the define_tag constraint, other
initial values specified with the reset constraints are ignored.

3. Specifying the bit-stuck values for nets

NOTE: The define_tag constraint is used for specifying the bit-stuck values only for
SpyGlass Auto Verify solution. This feature is not used by SpyGlass CDC solu-
tion.

Bit-stuck values for nets are checked by the Av_bitstuck01 rule of
the SpyGlass Auto Verify solution.

The Av_bitstuck01 rule of the SpyGlass Auto Verify solution checks
only those nets that are specified with the -name argument of a
define_tag constraint defining a tag named netBitStuck as in the
following example:

define_tag -tag netBitStuck -name top.var[0]
-value 0

Then, the Av_bitstuck01 rule checks the stuck-at condition based
on the value of the -value argument. If you do not specify the
-value argument, both stuck-at 0 and stuck-at 1 conditions are
checked.

Using Wildcards

You can use wildcards with the -value argument while specifying the
define_tag constraints.

You can specify the sequences of ones, zeros, and x’s using the * wildcard
character that indicates the number of times the particular value on its left
is to be applied.

Consider the following define_tag specification:

define_tag –tag initSeq –name top.rst1 –value 0 0 1 1
Version N-2017.12-SP1 1151
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above specification can be rewritten using the wildcard character as
follows:

define_tag –tag initSeq –name top.rst1
–value <2*0> <2*1>

Please note the following:
 You must enclose the values containing wildcards in <>.

 The format to use the wildcard is <N*V> (no spaces) where V is the
value to be applied and N is the number of times the value is to be
repeated. The value V can be 0,1, x, or X and N can be any non-zero
positive integer number).

 The one set of operations with the wildcard character must be separated
by a blank space with the next operation. For example:

-value <3*1> 000 <50*x> 101

Here, the sequence applied will be three 1’s, three 0’s, fifty x’s,
sequence 101.

Product

SpyGlass Auto Verify solution, SpyGlass CDC solution, SpyGlass DFT
solution, and SpyGlass DFT DSM solution

For SpyGlass Auto Verify solution and SpyGlass CDC solution

Syntax

The syntax of the define_tag constraint is as follows:

current_design <du-name>

define_tag
-tag <initState | initSeq | netBitStuck>
-name <flop-name> | <net-name>
-value <value> | <value-list>

NOTE: netBitStuck is used for the -tag argument only for the SpyGlass Auto Verify
solution. This feature is not used by the SpyGlass CDC solution.
1152 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-tag <initState | initSeq | netBitStuck>

The -tag argument accepts only a predefined list of values (case-
sensitive).

-name <flop-name> | <net-name>

The -name argument accepts a hierarchical net name (scalar or vector).

-value <value> | <value-list>

The -value argument accepts values as follows:

NOTE: The first row is only applicable for SpyGlass Auto Verify solution. This feature is not
used by SpyGlass CDC solution.

Rules

The define_tag is used by the following rules:

Value of -tag
argument

Signal
Type

Allowed value of -value argument

initState,
netBitStuck

Scalar 1, 0, or x
Vector Binary or hexadecimal number

initSeq Scalar Sequence of 1,0, and x
Vector Sequence of Binary or Hexadecimal

numbers

SpyGlass CDC Solution
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08
Ac_fifo01 Ac_handshake01 Ac_handshake02 Clock_sync03a
Ac_conv02
SpyGlass Auto Verify Solution

Av_initstate01 Av_bitstuck01
Version N-2017.12-SP1 1153
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass DFT solution and SpyGlass DFT DSM solution

Purpose

The define_tag constraint is used to define a named condition for
application of certain stimulus at the top port or an internal node. The
connectivity checks are made by applying one or more of the user-defined
conditions such that circuit can be simulated into the desired mode.

This condition is defined in one of the following methods:
1. Application of logic value on a specified node

This method is used to define a named condition under which given
value is applied to specified node (top module port or internal node) for
one or more LE simulation cycles. For example:

define_tag –tag s1 –name top.EN –value 0101

This statement defines a condition by name s1 to mean that logic value
(or sequence) 0101 be applied on pin top.EN. The semantics of the
define_tag constraint is similar to the test_mode constraint.
Multiple pin-value pairs can be associated under the same condition
name. For example,
define_tag –tag s1 –name top.EN1 –value 0101
define_tag –tag s1 –name top.EN2 –value 0100
However, please note these should not be mutually conflicting as shown
below.

define_tag –tag s1 –name top.EN1 –value 0101
define_tag –tag s1 –name top.EN1 –value 0100

In addition, there is no precedence between various pin-value
specifications under the same condition name, and all of these are
simulated in parallel by SpyGlass LE engine.
Name can be a top-module port, any internal net name, or terminal
name. It may also be bit-select or part-select.

You can specify repeat sequences for the define_tag constraint.
For fields that require repeat sequence, specify the values as <I*S>.
Here, S is any string that does not contain the <, >, and * characters.
However, S can contain another <I*S> expression. I is an integer that is
always interpreted as a decimal value. The expression <I*S> means
1154 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
that the sequence S will be repeated I number of times.
NOTE: Tagging for nesting is not allowed. For example, the following define_tag

statements are not allowed:

define_tag -name sub_seq -value <5*01>
define_tag -name main_seq -value <100*sub_seq>

However, you can achieve the same result by using the setvar command.
2. Group various conditions together to create a new condition name

This method is used to group one or more previously defined conditions
under a new condition name. The semantics of this method are
equivalent to creating a new condition name to represent all pin-value
specifications defined under the conditions being merged. For example:

define_tag –tag smode100
–merge <list-of-previously-defined-conditions>

This statement defines a condition by name smode100 to mean the
grouping of all individual pin-value specifications as specified after the -
merge argument. It should be noted that condition names require a
‘define before use’ model and therefore, use of any undefined condition
name will report a syntax error in reading SGDC file.
The affect of merging multiple condition names into a single condition is
the same as defining multiple pin-value specifications under the same
condition name. As previously described, these should not be mutually
conflicting. In addition, there is no precedence between various pin-
value specifications coming from the same or different condition names,
and all of these are simulated in parallel by SpyGlass LE engine.

The above two methods of defining a condition cannot be used
simultaneously. You can either define a condition by pin-value specification
or by merge specification. A condition created by merge method can be
defined only once.

Further, a condition cannot be modified (or appended to with additional
pin-value specification) after it has been used. This limitation has been
defined to avoid any ambiguity in SGDC specification, and ensure
WYSIWYG advantage for end users.

The condition creation by the merge method can be used for aliasing
purposes also by specifying only one condition name after the -merge
argument. This is a very useful feature because now all subsequent
Version N-2017.12-SP1 1155
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
connectivity check commands can use the alias name and the alias name
can be changed to point to different condition group(s) by a very simple
edit at one location only.

Now, you can run SpyGlass analysis under a different condition group by
making just one small change in the SpyGlass Design Constraints file.

NOTE: The scope of a condition is restricted to the current_design specification
only.

You can also specify the define_tag constraint for a bus signal as
shown below.

define_tag -tag T1 -name top.in[2:0] -value {b 001}

Where in is the 2:0 vector net.

When to use the define_tag constraint

You should use define_tag constraint for the connectivity specific
(Soc_xx rules) and scan chain-specific rules only. The idea is that if
different parts of a circuit operate under a different set of simulation
conditions, you can do the connectivity checks under a different simulation
condition in a single run of SpyGlass analysis.
You should also use define_tag constraint when the test initialization
sequence is complex (such as, a TAP controller controlling the scan chains).
In such cases, setting up proper test mode may take multiple runs of
SpyGlass analysis. Thus, define_tag constraint enables you to try out
different initialization sequences using different define_tag statements,
so that you can evaluate and infer which initialization sequence is
appropriate in a single run of SpyGlass using the require_value
constraint.
You should use test_mode constraint to define the final set of simulation
condition under which chip is tested. The define_tag constraint is used by
all rules except the SoC rules.

Syntax

The syntax of the define_tag constraint is as follows:

define_tag
-tag <any-string-name>
-name <net-name>
-value <value> | <value-list>
1156 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-merge <tag> | <tag-list>

Arguments

-tag <any-string-name>

The -tag argument accepts any string name.

-name <net-name>

The -name argument accepts a hierarchical net name| port | hierarchical
terminal name (scalar or vector).

-value <value> | <value-list>

The -value argument accepts values of any string constituted using 1, 0,
X, Z.

-merge <tag> | <tag-list>

The –merge argument accepts tag name or a list of tag names. Please
note that tags specified as a value to –merge field must be defined using
define_tag.

Examples

Consider the following examples:

Example1

define_tag -name abc -value "<5*10>"

The above example will be expanded as follows:

define_tag -name abc -value 1010101010

Example2

define_tag -name abc -value "11<5*10>010"

The above example will be expanded as follows:

define_tag -name abc -value 111010101010010

Example3

define_tag -name abc -value "<50*11<5*10>>010"
Version N-2017.12-SP1 1157
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above example will be expanded as follows:

define_tag -name abc -value 111010101010...(repeated 50 times
followed by 010)

You can also set a variable using the command setvar to obtain the
above result as follows:

setvar x 11<5*10>

define_tag -name abc -value "<50*${x}>010"

The above example will be expanded as follows:

define_tag -name abc -value 111010101010...(repeated 50 times
followed by 010)

Consider the following example that has three conditions (C1, C2, and C3)
and three condition groups (CG1, CG2, and CG3):

define_tag –tag C1 ...
define_tag –tag C2 ...
define_tag –tag C3 ...
define_tag –tag CG1 -merge C1 C2
define_tag –tag CG2 -merge C2 C3
define_tag –tag CG3 -merge C3 C1

Now, you want to apply the condition groups one-by-one. Normally, you
would need to create the constraints of each group separately. However,
you can create an alias condition (say TM) with the first condition group
CG1 as follows:

define_tag –tag TM -merge CG1

Use the alias condition TM in subsequent constraints and run SpyGlass
analysis. Next, modify the alias condition TM to the next condition group
CG2 as follows:

define_tag –tag TM -merge CG2

Example 4

Consider the following sample input values:

define_tag -name vec[3:0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net
1158 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above input is expanded as shown below:

define_tag -name vec[0] -value "1010"
define_tag -name vec[1] -value "0000"
define_tag -name vec[2] -value "0000"
define_tag -name vec[3] -value "0000“

Example 5

Consider the following sample input values:

define_tag -name vec[3:0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "0"
define_tag -name vec[1] -value "1"
define_tag -name vec[2] -value "0"
define_tag -name vec[3] -value "1“

Example 6

Consider the following sample input values:

define_tag -name vec[3:0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "1"
define_tag -name vec[1] -value "0"
define_tag -name vec[2] -value "0"
define_tag -name vec[3] -value "0“

Example 7

Consider the following sample input values:

define_tag -name vec -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "1010"
define_tag -name vec[1] -value "0000"
define_tag -name vec[2] -value "0000"
Version N-2017.12-SP1 1159
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_tag -name vec[3] -value "0000“

Example 8

Consider the following sample input values:

define_tag -name vec -value { b 1010 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "0"
define_tag -name vec[1] -value "1"
define_tag -name vec[2] -value "0"
define_tag -name vec[3] -value "1“

Example 9

Consider the following sample input values:

define_tag -name vec -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "1"
define_tag -name vec[1] -value "0"
define_tag -name vec[2] -value "0"
define_tag -name vec[3] -value "0“

Example 10

Consider the following sample input values:

define_tag -name vec[0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "1010“

Example 11

Consider the following sample input values:

define_tag -name vec[0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:
1160 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
define_tag -name vec[0] -value "0"

Example 12

Consider the following sample input values:

define_tag -name vec[0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value "1"

Example 13

Consider the following sample input values:

define_tag -name sclr -value { b 1 0 1 0 }

where sclr is the scalar net

The above input is expanded as shown below:

define_tag -name sclr -value "1010"

Example 14

Consider the following sample input values:

define_tag -name sclr -value { b 1010 }

where sclr is the scalar net

The above input is expanded as shown below:

define_tag -name sclr -value "0“

Example 15

Consider the following sample input values:

define_tag -name sclr -value { b 1 }

where sclr is the scalar net

The above input is expanded as shown below:

define_tag -name sclr -value "1“

Example 16

Consider the following sample input values:

define_tag -name vec -value { h 6 }
Version N-2017.12-SP1 1161
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
where vec is the 3:0 vector net

The above input is expanded as shown below:

define_tag -name vec[0] -value “0"
define_tag -name vec[1] -value “1"
define_tag -name vec[2] -value “1"
define_tag -name vec[3] -value "0“

Rules

The define_tag constraint is used by the following rules:

delay_buffer

Purpose

The delay_buffer constraint is used to specify the delay buffers.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the delay_buffer constraint is as follows:

current_design <du_name>

delay_buffer
-names <cell-name-list>

SpyGlass DFT Solution
Info_scanchain Scan_22 Scan_24 Scan_25
Scan_26 Scan_29 Diagnose_Scan

Chain
SpyGlass Connectivity Verify
Soc_01 Soc_02 Soc_04
SpyGlass DFT DSM Solution
Atspeed_21 Info_Atspeed_21
1162 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du_name>

Name of the design unit under which you are specifying the cells.

-names <cell-name-list>

Space-separated list of the cell names. You can use wildcard characters
while specifying the cell name using the -names argument.

Rules

The delay_buffer constraint is used by the following rules:

SpyGlass Power Verify Solution
LPPSW03 LPPSW04
Version N-2017.12-SP1 1163
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
deltacheck_ignore_instance

Purpose

Specifies the instance to be ignored for delta delay value checking.

Then, the DeltaDelay01 rule does not report the delta delay values for all
flip-flops/latches in the specified instance. However, the actual delta delay
value for the specified instance is used for further calculations.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_ignore_instance
constraint is as follows:

current_design <du-name>
deltacheck_ignore_instance
-name <inst-name>

Arguments:

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the instance to be ignored.

-name <inst-name>

The hierarchical name of the instance to be ignored.

You can specify multiple instances to be ignored using multiple
deltacheck_ignore_instance constraints.

NOTE: For VHDL design units, instance names are case-insensitive.

Rules

The detlacheck_ignore_instance constraint is used by the
following rule:
1164 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
deltacheck_ignore_module

Purpose

Specifies the design unit to be ignored for delta delay value checking.

Then, the DeltaDelay01 rule does not report the delta delay values for all
flip-flops/latches in all instances of the specified design unit. However, the
actual delta delay values for these instances are used for further
calculations.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_ignore_module constraint
is as follows:

current_design <du-name>
deltacheck_ignore_module
-name <ignr-du-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the design unit to be ignored

-name <ignr-du-name>

The name of the design unit to be ignored.

You can specify multiple design units to be ignored using multiple

SpyGlass CDC Solution

DeltaDelay01
Version N-2017.12-SP1 1165
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
deltacheck_ignore_module constraints.

NOTE: For VHDL design units, names of the design units to be ignored are case-insensitive.

Rules

The deltacheck_ignore_module constraint is used by the following
rule:

deltacheck_start

Purpose

Specifies the start points (clock ports, clock pins, or clock nets) for
checking by the DeltaDelay01 rule.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_start constraint is as
follows:

current_design <du-name>
deltacheck_start
-name <sig-name>
[-value <value>]

Arguments

<du-name>

Module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the start point clock port/pin/net.

SpyGlass CDC Solution

DeltaDelay01
1166 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <sig-name>

Hierarchical name of a clock port/pin/net.

-value <value>

Expected delta delay value at all flip-flops/latches triggered by the clock
port/pin/net specified with the -name argument.

You can specify multiple start point signals using multiple
deltacheck_start constraints.

Examples

The following example specifies net clk1 of design unit top as the start
point:

current_design top
deltacheck_start -name top.clk1

If you do not specify any deltacheck_start constraints, the
DeltaDelay01 rule infers all clock source ports/nets/pins and uses them as
the start points.

The -value argument is an optional argument used for clock pin
balancing. When you do not specify the -value argument, the
DeltaDelay01 rule expects the delta delay value for all flip-flops/latches
triggered by the specified clock to be the same. When you specify the -
value argument, the DeltaDelay01 rule expects the delta delay value for all
flip-flops/latches triggered by the specified clock to be the same and equal
to the specified value.

The following example specifies net clk1 of design unit top as the start
point and expects all flip-flops/latches to have a delta delay value of 1:

current_design top
deltacheck_start -name top.clk1 -value 1

When you want all flip-flops/latches in the design to have the same delta
delay value, specify the (same) expected value with the -value argument
for all specified clocks.

Rules

The deltacheck_start constraint is used by the following rule:
Version N-2017.12-SP1 1167
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
deltacheck_stop_instance

Purpose

Specifies the instance where the DeltaDelay01 rule should stop further
traversal along the clock tree when the clock pin of the specified instance is
hit.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_stop_instance constraint
is as follows:

current_design <du-name>
deltacheck_stop_instance
-name <inst-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop point instance

-name <inst-name>

The hierarchical name of the stop point instance.

You can specify multiple stop point instances using multiple
deltacheck_stop_instance constraints.

NOTE: For VHDL design units, instance names are case-insensitive.

SpyGlass CDC Solution

DeltaDelay01
1168 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

The following example specifies instance I21 as the stop point instance
under the design unit top:

current_design top
deltacheck_stop_instance -name top.I21

Here, the DeltaDelay01 rule stops further traversal along the clock tree
when the clock pin of instance top.I21 is hit.

The clock traversal automatically stops at instances of a stopped design
unit (stopped using the set_option stop <du-name> command in
the project file or the equivalent in the GUI). Therefore, you need not
specify such design unit instances with the
deltacheck_stop_instance constraint.

Rules

The deltacheck_stop_instance constraint is used by the following
rule:

deltacheck_stop_module

Purpose

Specifies the design unit where the DeltaDelay01 rule should stop further
traversal along the clock tree when the clock pin of an instance of the
specified design unit is hit.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_stop_module constraint is

SpyGlass CDC Solution

DeltaDelay01
Version N-2017.12-SP1 1169
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
as follows:

current_design <du-name>
deltadelay_stop_module
-name <stp-du-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop point design unit.

-name <stp-du-name>

The name of the stop point design unit.

You can specify multiple stop point design units using multiple
deltacheck_stop_module constraints.

NOTE: For VHDL design units, names of stop point design units are case-insensitive.

Examples

The following example specifies design unit m1 as the stop point design
unit under the design unit top:

current_design top
deltacheck_stop_module -name m1

Here, the DeltaDelay01 rule stops further traversal along the clock tree
when the clock pin of an instance of design unit m1 is hit.

The clock traversal automatically stops at instances of a stopped design
unit (stopped using the set_option stop <du-name> command in
the project file or the equivalent option in the Atrenta Console GUI).
Therefore, you need not specify such design units with the
deltacheck_stop_module constraint.

Rules

The deltacheck_stop_module constraint is used by the following
rule:
1170 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
deltacheck_stop_signal

Purpose

Specifies the design points (ports, pins, or nets) where the DeltaDelay01
rule should stop further traversal along the clock tree.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the deltacheck_stop_signal constraint is
as follows:

current_design <du-name>
deltacheck_stop_signal
-name <sig-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop point.

-name <sig-name>

The hierarchical name of the end point port, pin, or net.

You can specify multiple stop points using multiple
deltacheck_stop_signal constraints.

NOTE: For VHDL design units, signal name is case-insensitive.

SpyGlass CDC Solution

DeltaDelay01
Version N-2017.12-SP1 1171
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

The following example specifies pin d1 of instance I31 in design unit top
as the stop point:

current_design top
deltacheck_stop_signal -name top.I31.d1

Here, the DeltaDelay01 rule stops further traversal along the clock tree
when the pin top.I1.d1 is hit.

The clock traversal automatically stops at the design points (ports, pins, or
nets) that belong to instances of a stopped design unit (stopped using the
set_option stop <du-name> command in the project file or the
equivalent option in the Atrenta Console GUI). Therefore, you need not
specify such design points with the deltacheck_stop_signal
constraint.

Rules

The deltacheck_stop_signal constraint is used by the following
rule:

design_map_info

Purpose

The design_map_info constraint can be used to improve RTL to RTL
simulation file annotation as well as to improve netlist to RTL simulation file
annotation. You can specify either of the following while using the
design_map_info constraint:

 The match_point_rtl and the match_point_gate arguments to
map netlist to RTL simulation data (sim_file is optional).

The design_map_info constraint is used for mapping RTL
matchpoints with the corresponding gate-level matchpoints. Currently,

SpyGlass CDC Solution

DeltaDelay01
1172 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
only sequential cell ouputs are considered for matching. Use the
match_point_rtl argument to specify the name of sequential cell
output used in the RTL. To specify the name of the corresponding
sequential cell output used in the gate-level netlist, use the
match_point_gate argument.
Please note that it is recommended to use matchpoints instead of net
names to match RTL and gate-level netlist.

 The gatenet and the rtlnet arguments to map netlist to RTL
simulation data

In addition, the design_map_info constraint is also used to specify a
mapping between the RTL net names and gate-level net names. You can
use the design_map_info constraint to manually map a simulation
hierarchy with a design hierarchy. SpyGlass PE considers both the
simulation and design hierarchies and tries to create a mapping between
the simulation hierarchy and the design hierarchy. However, if there is a
mismatch in name or a change in the hierarchy, the signals present in
this hierarchy are not mapped automatically.

 The sim_hier_name, design_hier_name arguments to map RTL
to RTL simulation data (sim_file is optional)

The design_map_info constraint is also used for mapping the
hierarchical instance name in the RTL with the corresponding
hierarchical name in the simulation file. Use the design_hier_name
argument to specify the hierarchical instance name in the RTL and the
sim_hier_name argument to specify the corresponding hierarchical
name in the simulation file. If you have multiple simulation files for the
same design and if the mapping is applicable to only one simulation file,
use the sim_file argument to specify the simulation file. Note that
the sim_file argument is optional.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
set_design_map_info.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
Version N-2017.12-SP1 1173
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax to specify the design_map_info constraint is as follows:

current_design <du-name>
design_map_info
-match_point_rtl <matchpoints_rtl>
-match_point_gate <matchpoints_gate-level>

OR

current_design <du-name>
design_map_info
-rtlnet <rtl-netname>
-gatenet <gate-netname>

OR

design_map_info
-sim_hier_name <simulation_hierarchy>
-design_hier_name <design_hierarchy>
-sim_file <simulation_file>

Arguments

<matchpoints_rtl>

Specifies the hierarchical name of sequential cell output as used in the RTL.

<matchpoints_gate-level>

Specifies the hierarchical name of sequential cell output as used in the
gate-level netlist.

<rtl-netname>

Specifies the hierarchical RTL net name.

<gate-netname>

Specifies the gate-level net name corresponding to the RTL net name
specified in the <rtl-netname> field.
1174 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<simulation_hierarchy>

Specifies the name of the simulation hierarchy to be mapped to the design
hierarchy specified in the design_hierarchy argument.

<design_hierarchy>

Specifies the name of the design hierarchy to be mapped to the simulation
hierarchy specified in the simulation_hierarchy argument.

< simulation_file >

Specifies the name of the simulation file. Relative or absolute paths can be
used to specify the file name. The name specified in this argument should
be any of the names specified in the -file argument of the activity_data
constraint.

If this name is not provided, SpyGlass searches for the simulation
hierarchy in all the simulation files specified by the activity_data constraint.
In case no match is found, SpyGlass exits with a FATAL error. If multiple
matches are found, the mapping is applied to all the matching files.

Rules

The design_map_info constraint is used by the following rules:

dftmax_partition

Purpose

The dftmax_partition constraint is used to specify partitions in the design
targeted for DFTMAX Ultra codecs to automate the planning and
configuration of DFTMAX Ultra in an SoC.

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PEPWR20 PEPWR21
PEPWR22 PEPWR23 PEPWR24 PEPWR25
PEPWR28
Version N-2017.12-SP1 1175
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT Product

Syntax

The syntax for dftmax_partition constraint is as follows:

dftmax_partition
[-name <partition_name>]
[-blocklist <list_of_blocks>]
[-type <streaming_compression_type>]
[-inputs <SI_count>]
[-outputs <SO_count>]
[-chain_count <number_of_chains>]

Arguments

-name <partition_name>

NOTE: (Mandatory) Specifies a label for each DFTMAX Ultra codec partition NOTE :
Specified name should be unique, that js, no two codec partitions can have same
label. Refer to Example 1 for more information.

-blocklist <list_of_blocks>

(Mandatory) Specifies the list of blocks (top-level instances) to be included
in codec partition.

NOTE: This argument supports wildcard characters. Refer to example 3 for more
information.

-type <streaming_compression_type>

(Optional) Specifies the streaming compression type, only ultra/ULTRA is
supported for now.

-inputs <SI_count>

(Optional) Specifies the number of scan-in pins.

If the –inputs argument is not specified, then the allocation of scan-in pins
is done by SpyGlass.
1176 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-outputs <SO_count>

(Optional) Specifies the number of scan-out pins.

If the –outputs argument is not specified, then the allocation of scan-out
pins is done by SpyGlass.

-chain_count <number_of_chains>

(Optional) Specifies the number of scan chains.

If the –chain_count argument is not specified, then the allocation of scan
chains is done by SpyGlass.

Examples

The following examples show the usage of dftmax_partition constraint:

Example 1

Consider the following constraint definition:

dftmax_partition –name partition1 –blocklist u1 u2

The above example indicates that block (top-level instances), u1 and u2,
are considered in codec partition, partition1.

Example 2

Consider the following constraint definitions:

dftmax_partition -name partition1 -blocklist u1 -inputs 2
dftmax_partition -name partition2 -blocklist u2 -outputs 4
dftmax_partition -name partition3 -blocklist u1 -chain_count
4
dftmax_partition -name partition4 -blocklist u3 -inputs 4 –
outputs 6

The above example considers:
 2 scanin pins for codec partition, partition1

 4 scanout pins for codec partition, partition2

 4 scan chains for codec partition, partition3, and

 4 scanin pins & 6 scanout pins for codec partition, partition4.

Example 3

Consider the following constraint definition:
Version N-2017.12-SP1 1177
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
dftmax_partition -name partition1 -blocklist “u*”

The above example uses wildcard expression to indicate that all the blocks
(top-level instances) starting with the string, u, are considered in codec
partition, partition1.

Example 4

Consider the following constraint defintions:

dftmax_partition -name partition1 -blocklist u1
dftmax_partition -name default_partition -blocklist u2

The above example considers block u1 in codec partition, partition1 and
block u2 in default codec partition.

In the absence of the dftmax_partition command for default codec
partition, SpyGlass considers all unallocated blocks (top-level instances)
for default codec partition.

Rules

The dftmax_partition constraint is used by the Info_dftmax_configuration
rule of the SpyGlass DFT product.

dft_report_fault_list

Purpose

Use this constraint to define the modules and/or instances for which the
fault list needs to be generated.

Product

SpyGlass DFT Solution

Syntax

The syntax to specify the dft_report_fault_list constraint is as follows:

dft_report_fault_list
[-module < module_name>]
[-instance < hier_instance_name>]
1178 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<module_name>

Specifies the module names for which fault data is included in the fault
report.

<hier_instance_name>

Specifies the hierarchical path of the instances for which fault data is
included in the fault report.

Rules

All rules of the SpyGlass DFT solution use this constraint.

dft_stitching_exception

Purpose

If the design state is pre_scan_stitched, a CGC that has a test_enable tied
to ground (VSS), allows the test clock to propagate through it during shift
mode. In this case it is assumed that after scan stitching (-
dftDesignState=post_scan_stitched), the grounded test_enable pin of the
CGC will be properly connected with the SCAN_MODE signal.

For the SoC designs containing both pre_scan_stitched and
post_scan_stitched IP blocks, set the dftDesignState parameter to
pre_scan_stitched and use the dft_stitching_exception constraint to
designate the design areas as post_scan_stitched. For such exceptions, the
CGC is treated as a regular CGC and if its test_enable_pin is tied to ground,
the test clock does not propagate through it during shift mode.

For example, consider the following figure where one CGC output allows
clock to propagate but other CGC output is used to drive a constant value.
Version N-2017.12-SP1 1179
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT solution

Syntax

The syntax to specify the dft_stitching_exception constraint is as follows:

dft_stitching_exception
-clock_gating_cell
[-module < module_name>]
[-instance < hier_instance_name>]

Arguments

-clock_gating_cell

Specifies the need to apply the stitching exception to the clock gating cells
that are part of the modules/instances specified using the -module/-
instance arguments.

<module_name>

Specifies the name of the design unit, CGC module, or the module
containing all the ignored CGCs.
1180 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<hier_instance_name>

Specifies the hierarchical path of:
 The instance containing all the ignored CGCs

 The CGC instance

Rules

All rules of the SpyGlass DFT and SpyGlass DFT DSM solution use this
constraint.

dft_report_coverage

Purpose

The dft_report_coverage constraint is used to specify list of modules and
instances, which needs to be included in the fault coverage report.

Product

SpyGlass DFT product

Syntax

dft_report_coverage
-module <module_names>
-instance <instance_names>

Arguments

-module <module_names>

List of module names. This argument supports wildcard characters.

-instance <instance_names>

List of full hierarchical name of instances. This argument supports wildcard
characters.
Version N-2017.12-SP1 1181
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

dft_report_coverage -module mymod mymod2 -instance
top.lel1.inst1

Rules

The dft_coverage_report constraint is used by the following rules of
the SpyGlass DFT Product:

disable_timing

Purpose

The disable_timing constraint is used to disable the timing arcs
between the specified pins of a library cell.

Product

All SpyGlass products

Syntax

disable_timing
-name <name>
-from <from-pin>
-to <to-pin>

Arguments

-name <name>

Name of the library cell or an instance.

-from <from-pin>

Name of the pin from which the timing arc should be disabled. The pin
should be a single-bit or multi-bit pin.

Info_coverage Info_transition_coverage
1182 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to <to-pin>

Name of the pin till which the timing arc starting from the -from <from-pin>
should be disabled. The pin should be a single-bit or multi-bit pin.

Rules

All rules of all the SpyGlass products.

disallow_modification_type

Purpose

The disallow_modification_type constraint is used to specify the
type of modification to be disallowed in the RTL generated by the AutoFix
feature.

Product

SpyGlass Power Reduce

Syntax

disallow_modification_type
[-port_insertion]
[-generate_unroll]
[-max_hier <int>]
[-bus_split]

Arguments

-port_insertion

Specifies that the AutoFix feature should not perform RTL modification
causing insertion of a port.

-generate_unroll

Specifies that the AutoFix feature should not perform RTL modification
resulting in unroll of generate statements.
Version N-2017.12-SP1 1183
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-max_hier <int>

Specifies the maximum number of hierarchies so that any signal that
requires routing in the modified RTL beyond the specified hierarchy is not
auto fixed.

-bus_split

Specifies that the AutoFix feature should not perform RTL modification that
requires bus spilt of destination register.

Examples

Example 1

Consider the following constraint:

disallow_modification_type -port_insertion

In this example, the AutoFix feature does not perform RTL modification
that results in the insertion of a port.

Example 2

Consider the following constraint:

disallow_modification_type -max_hier 3

In this example, any power reduction opportunity that requires routing of a
signal through more than three hierarchical boundaries are not auto fixed.

Rules

The disallow_modification_type constraint is used by the
following rules:

PEPWR20 PEPWR21 PEPWR22 PEPWR23
PEPWR24 PEPWR25 PEPWR28 PEPWR29
PESTR20 PESTR21 PESTR22 PESTR23
PESTR24 PESTR25 PESTR28 PESTR29
1184 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
disallow_upf_command

Purpose

This command is used to allow/disallow specified UPF commands and their
options.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the disallow_upf_command constraint is as
follows:

disallow_upf_command –name <command-name> -options <option-
list>

Arguments

-name <command-name>

(Mandatory) Specifies the name of the UPF 1.0/2.0 command. The
command name is checked against UPF 1.0/2.0 for sanity checking of the
constraint in the SGDC_lowpower119 rule.

-options <option-list>

(Optional) Specifies the arguments of the UPF command. The arguments
specified in the -options argument are not supported and all other
options of that command will be supported. If you provide
disallow_upf_command <command-name> only, without specifying –
options argument, then the whole command will be disallowed. The
specified arguments are checked against UPF 1.0/2.0 for sanity checking of
the constraint in the SGDC_lowpower119 rule.

Rules

The disallow_upf_command constraint is used by the following rule:
Version N-2017.12-SP1 1185
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
domain

Purpose

The domain constraint is used to specify the clock domain information in
the design. The wildcard support is provided for the domain constraint.

NOTE: The domain constraint has been renamed to clock_group. For backward
compatibility, the domain constraint is currently still available.

Product

SpyGlass Constraints solution

Syntax

The domain constraint is used in the following syntax:

current_design <du-name>
domain -name <domain-name>
[-clock_pin <clk-pin-name-list>]
[-clock <SDC-clk-name-list>]

Arguments

<du-name>

The top-level module name (for Verilog designs) or the top-level entity
name (for VHDL designs) or a synthesis partition name specified using the
block keyword.

-name <domain-name>

(Mandatory) Specifies the clock domain name. It can be any valid string.

SpyGlass Power Verify Solution

SGDC_lowpo
wer119

UPFSEM_42 UPFSEM_43
1186 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clock_pin <clk-pin-name-list>

Specifies a space-separated list of design clock pin names. If this option is
used then all clocks specified on the clock pin will be considered in the
same domain.

-clock <SDC-clk-name-list>

Specifies a space-separated list of SDC clock names.

If both options are specified, then the domain will include all the clocks
specified with -clock option and all the clocks defined on the clock pin
specified with the -clock_pin option.

Example

Let the clock domain information be provided as follows:

current_design top
domain -name d1 -clock { C1 C2 }
domain -name d2 -clock { C3 }

In the above example, clocks C1 and C2 are synchronous, and clocks C1
and C3, C2 and C3 are asynchronous. You cannot specify the same clock in
two different domains. If you do so, the DomainSanityCheck rule
reports a FATAL message.

If the same domain is specified in multiple lines of an SGDC file, the union
of clocks (specified in multiple lines) will be in the same domain. For
example:

domain -name d1 -clock {C1 C2}
domain -name d1 -clock {C4}

Here, clocks C1, C2, C4 will be assumed as synchronous.

All create clocks and their derived clocks will be assumed to be
synchronous if you have specified the domain among create clocks and
their derived clocks. You can even specify clock and its derived rules in a
different domain. For example:

C1 -> GC1 -> GC2 where GC2 is derived from GC1 and so on.

// C1, GC1, GC2 will be assumed in same domain
domain -name d1 -clock C1
// User specified clock GC2 to d2 domain
Version N-2017.12-SP1 1187
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
domain -name d2 -clock GC2

No domainsanitycheck violation will be thrown if you specify create
clock and its derived clock in a different domain.

NOTE: All SGDC-dependent rules will be impacted.

Rules

The domain constraint is used by the following rules:

domain_inputs

Purpose

Specifies expected values of various inputs of a power domain under a
power-down condition.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
powerdomaininputs.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the domain_inputs constraint is as follows:

current_design <du-name>
domain_inputs
-name <pd-condition-name>
[-value <input-value-pairs>]
[-default <0 | 1 | 2>]

SpyGlass Constraints Solution
Clk_Gen05 Clk_Lat03 Clk_Uncert03 False_Path07
False_Path08 Domain_SGDC_Consis
1188 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit under which you are specifying the power domain
input values under power-down condition.

-name <pd-condition-name>

Name of the power-down condition specified by using the voltage_domain
constraint (the -inputs argument).

-value <input-value-pairs>

Space-separated list of input-value pairs where each pair is a space-
separated pair of power domain input signal name and its expected
power-down value (0 for active low and 1 for active high).

-default <0 | 1 | 2>

Specifies the expected steady state value of power domain inputs or
outputs. Specify 0 for active low, 1 for active high, and 2 for hold specified
value.

Examples

You can specify vector inputs in one specification if all bits of the vector
input are expected to attain the same value under power-down condition,
as in the following example:

domain_inputs -name V3_PD_COND -value in[3:0] 1

Rules

The domain_inputs constraint is used by the following rule:

domain_outputs

SpyGlass Power Verify Solution

LPSVM47
Version N-2017.12-SP1 1189
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The domain_outputs constraint is used to specify the values of various
signals under the steady state condition specified in voltage_domain
constraint.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
powerdomainoutputs.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the domain_outputs constraint is as follows:

current_design <du-name>
domain_outputs
-name <ss-condition-name>
[-default <0 | 1 | 2>]
[-dest]
[-value <signal-value-pairs>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power domain
output values under steady state.

-name <ss-condition-name>

Name of the steady state condition specified using the voltage_domain
constraint.

-default <0 | 1 | 2>

Specifies the expected steady state value for all signals except those
specified with the -value argument. Specify 0 for active low, 1 for active
high, and 2 for hold earlier value.
1190 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-dest

If -dest argument is specified, then isolation cells are placed in
destination domain hierarchy. Otherwise, isolation cells are placed in top
hierarchy.

-value <signal-value-pairs>

Space-separated list of signal-value pairs <signal-value-pairs>
where each pair is a space-separated pair of power domain output signals
and its expected steady state value (0 for active low, 1 for active high, and
2 for hold earlier value).

Rules

The domain_outputs constraint is used by the following rule:

domain_signal

Purpose

Specifies the power-up/power-down signals.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pdsignal.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the domain_signal constraint is as follows:

current_design <du-name>
domain_signal
-name <sig-name>
-value <0 | 1>

SpyGlass Power Verify Solution

LPSVM23
Version N-2017.12-SP1 1191
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-clocks <clk-name-list>]
[-seqsignals <sig-name-list>]
[-seqvalue <value-seq>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power-up/
power-down signals.

-name <sig-name>

Name of the power-up/power-down signal.

-clocks <clk-name-list>

Specifies a space-separated name list of clock sources associated with
power-up/power-down.

-value <0 | 1>

Specifies whether the signal is active high (1) or active low (0).

-seqsignals <sig-name-list>

Specifies a space-separated name list of signals to be checked for value
sequence specified by the -seqvalue argument.

-seqvalue <value-seq>

Specifies a space-separated list of value sequence for signals specified with
the -seqsignals argument. The width of the sequence must be the
same as the number of signals specified with the -seqsignals argument
and should describe the signal values at all transitions of all signals during
the power-up/power-down. In addition, use only 0 and 1 to described the
sequence.

Examples

Consider the following example:

domain_signal -name N1 -value 0 -clocks C1
-seqsignals N2 N3 -seqvalue 00 01 10 11
1192 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Here, there are two nets N2 and N3 and the expected sequence is a space-
separated list of pairs of two values (0/1) indicating the expected value for
each signal, respectively. Thus, both nets are expected to have a value of 0
at power-down. Then, the net N3 is expected to change from 0 to 1 at a
later time while net N2 is expected to remain at 0. Then, the net N2 is
expected to change from 0 to 1 and net N3 is expected to change from 1 to
0 later. Lastly, both nets are expected to attain a value of 1 before power-
up. If these nets do not follow the specified sequence, the LPSVM43 rule of
the SpyGlass Power Verify solution reports a violation when the first
mismatch is encountered.

Rules

The domain_signal constraint is used by the following rule:

dont_touch

Purpose

The dont_touch constraint specifies the modules/nets that are not
considered for AutoFix.

Product

SpyGlass DFT solution

Syntax

The syntax of the dont_touch constraint is as follows:

dont_touch
 -module <module-name>
 -net <net-name>
-auto_fix

SpyGlass Power Verify Solution

LPSVM43
Version N-2017.12-SP1 1193
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: The dont_touch constraint supports wildcard characters.

Arguments

The dont_touch constraint has the following arguments:

-module <module-name>

The name of the module that should not be considered for AutoFix.

-net <net-name>

Name of the net (complete hierarchical net name) that should not be
considered for AutoFix.

Example

dont_touch -module m1 -auto_fix

dont_touch -net net1 -auto_fix

NOTE: The -module and -net arguments should not be used together. In addition, you
should always specify the -auto_fix argument.

Rules

The dont_touch constraint is used by the following rules:

SpyGlass DFT Solution
Async_07 Clock_11 Latch_05 Latch_08
TA_06
1194 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
expect_frequency

Purpose

The expect_frequency constraint is used to specify that a certain
frequency value is expected at a node in the design. This constraint uses
MHz as the frequency unit.

NOTE: require_frequency is an alias for the expect_frequency constraint
used by the SpyGlass DFT DSM solution.

There could be a hard macro with no clockshaper inside the hard macro.
Therefore, a macro top-level pin directly connects to flip-flops. In such a
case, the macro designer has the expect_frequency constraint at this
macro-top-level pin.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
expectFrequency.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the expect_frequency constraint is as follows:

current_design <du-name>
expect_frequency

[-name <path>]
[-except <path to cellport | top_level_pin_name>]
[-type <DO_objlist>]
[-except_type <ExceptDO_obj_type>]
-freqList <freq-symbol-list>
[-multiplier <freq multiplier>]
[-constraint_message_tag <value>]

Arguments

<du-name>

(Optional) Name of the design unit under which you are specifying the
Version N-2017.12-SP1 1195
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
instance hierarchies.

-name <path>

(Optional) Path to the node where the given frequency is expected,
otherwise respective violation occurs.

-except <path to cellport | top_level_pin_name>

(Optional) Same as <path> but defines design nodes whose path need not
be specified.

-type <DO_objlist>

(Optional) Same as <path> but it takes only macros as inputs.

-except_type <ExceptDO_obj_type>

(Optional) Same as <DO_obj_type> but it takes only macros as inputs.

-freqList <freq-symbol-list>

List of frequency symbols with which the test clock is associated. These can
be actual numbers like 100, 200 or alphanumeric symbols like F1, f2, and
so on.

-multiplier <freq multiplier>

(Optional) Specifies the frequency multiplier for all frequencies given
through the -freqList argument.

If different multipliers are required, use multiple expect_frequency
constraints for the same design node.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

Supported Macros

(Optional) To view the list of macros supported by the
expect_frequency constraint, see Supported Macros.
1196 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Example 1

Consider the following examples to specify expected frequencies (symbols/
numeric) at nodes of interest:

expect_frequency –name u1.u7 –freqList F6

expect_frequency –name u2.u3.clk –freqlist 256

You can ensure the following:
 Node of interest in the design achieves ‘expected’ frequency.

 Node of interest in the design does not attain any other frequency.

Example 2

Consider the following example:

expect_frequency -name q1_reg.CP -freqList f0 f1 -multiplier
0.25

Above constraint implies that q1_reg.CP should get f0*0.25 and
f1*0.25 frequencies only.

Example 3

Consider the following examples:

expect_frequency -name q1_reg.CP -freqList f0
-multiplier 0.25

expect_frequency -name q1_reg.CP -freqList f1 -multiplier 1.5

Above constraints imply that q1_reg.CP should get f0*0.25 and
f1*1.5 frequencies only.

Rules

The expect_frequency constraint is used by the following rule:

SpyGlass DFT DSM Solution

Atspeed_13
Version N-2017.12-SP1 1197
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
false_path

Purpose

The false_path constraint enables you to input false and multi-cycle
paths that are to be excluded from at-speed testing.

NOTE: You can convert the set_false_path SDC command to false_path SGDC command
using the SDC to SGDC conversion. For details, refer to Atrenta Console Reference
Guide.

Product

SpyGlass DFT DSM solution

Syntax

false_path
[-from <from_list>]
[-through <through_list>]
[-to <to_list>]

NOTE: You should specify at least one of these options for the false_path constraint.

Arguments

The false_path constraint has the following arguments:

-from <from_list>

Specifies a list of objects that act as the start point for the multi-cycle path.
A valid start point is a clock, a primary input or inout port, a sequential cell,
a clock pin of a sequential cell. If a clock is specified, all registers related to
the clock are considered as start points.

-to <to_list>

Specifies a list of objects that act as endpoint for the multi-cycle path. A
valid endpoint is a primary output or inout port, a sequential cell, a data
pin of a sequential cell.
1198 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-through <through_list>

Specifies a list of pins or nets that you want to disable.
NOTE: The DFT DSM policy does not support the -through option.

Rules

The false_path constraint is used by the following rules:

fifo

Purpose

The fifo constraint provides a mechanism to provide FIFO information so
that SpyGlass can perform complete recognition and verification of FIFOs.

Product

SpyGlass CDC solution

Syntax

The syntax of using the fifo keyword in a SpyGlass Design Constraints
file is as follows:

current_design <du-name>

fifo
[-memory <memory_name>]
[-rd_data <read_data> -wr_data <write_data>]
[-rd_ptr <read_pointer> -wr_ptr <write_pointer>]

SpyGlass DFT DSM Solution
Info_transitionCoverage Atspeed_05 Atspeed_06 Diagnose_03
Info_transitionCoverageAudit
Version N-2017.12-SP1 1199
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-memory <memory_name>

Allows you to provide the memory usage of the fifo. Memory can be a black
box/library cell name, hierarchical net name, hierarchical instance name, or
module name of the hierarchical instance containing memory.

-rd_data <read_data> / -wr_data <write_data>

Can be hierarchical nets or hierarchical instance pins. These should be
specified as vector signals. Scalar signals are not considered. Both
<read_data> and <write_data> options should be specified
together.

You can use a combination of wildcard characters (‘*’ and ‘?’) when
specifying hierarchical net names.

-rd_ptr <read_ptr> / -wr_ptr <write_ptr>

Can be hierarchical nets or hierarchical instance pins. These should be
vector signals. Scalar signals are not considered. Both <read_ptr> and
<write_ptr> options should be specified together.

You can use a combination of wildcard characters (‘*’ and ‘?’) when
specifying hierarchical net names.

Rules

The fifo constraint is used by the following rules:

SpyGlass CDC Solution
Clock_sync03a Clock_sync03b Clock_sync08 Clock_sync08a
Clock_sync09 Ac_fifo01 Ac_unsync01 Ac_unsync02
Ac_sync01 Ac_sync02
1200 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_no_scan

Purpose

The force_no_scan constraint is used to exclude black box, latches,
and flip-flops from being declared scannable even if they so qualify.

The force_no_scan constraint may be used when there is no intention
for scan insertion in a module or circuit or when sequential ATPG tools are
planned (in conjunction with the seq_atpg constraint.).

Specifying this constraint impacts the reported scan flip-flop percentage.
That is, if you specify this constraint, specified and inferred flip-flops are
excluded from the denominator while computing the scannable flip-flop
percentage.

NOTE: Prior to SpyGlass 5.4.0 release, the name of this constraint was no_scan

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the force_no_scan constraint is as follows:

force_no_scan
-name <du-name> | <net-name> | <hier-inst> |
-clock_control <signal-name> |
-set_control <signal-name> |
-reset_control <signal-name>
-register_suffix <suffixes>
-module_suffix <suffixes>
[-black_box]
[-latch]
[-flip-flop]

NOTE: The force_no_scan constraint supports wildcard characters. Using wildcards,
expression is expanded only within the hierarchy.

Arguments

The force_no_scan constraint has the following arguments:
Version N-2017.12-SP1 1201
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <du-name>

The name of the design unit from which scan should be excluded.

You can specify design units that are single flip-flops or design units where
one or more flip-flops are described besides other logic. Then, all flip-flops
in the specified design unit are excluded from scan.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can specify a single design unit name or a space-separated list of
design unit names.

-name <net-name>

The name of a net that is connected to the output pin of a flip-flop.

Then, the corresponding flip-flop is excluded from scan.

You can specify a simple net name or a hierarchical net name. The net
specified as simple net name is searched at the top-level.

You can specify a single net name or a space-separated list of net names.

-name <hier-inst>

The name of the hierarchical instance names that should be excluded from
scan.

-clock_control <signal-name>

Flip-flops whose clock control pin is driven by the specified signal are
excluded from the scan.

-set_control <signal_name>

Flip-flops whose set control pin is driven by the specified signal are
excluded from the scan.

-reset_control <signal_name>

NOTE: The traversal involved in this is structural only.

-register_suffix <suffixes>

Space-separated list of suffixes to be specified as noscan. The
1202 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-register_suffix argument should not be used along with other
arguments of the force_no_scan constraint, that is, -name, -clock_control,
-set_control, or -reset_control.

If the value of the dft_treat_suffix_as_pattern parameter is set
to on, the register_suffix value is used as a pattern to be matched with the
register name. The pattern may be present anywhere in the register name,
excluding the path.

If the value of the dft_check_path_name_for_register_suffix
parameter is on, the value of the -register_suffix field will be
matched with the register name along with the path in which the register is
present.

-module_suffix <suffixes>

Define this field to use suffix based pattern match for all module names.

If the value of the dft_treat_suffix_as_pattern parameter is on,
the value of the -module_suffix field will be matched with the module
name along with the path in which the module is present.

-black_box

 Marks only black boxes as no scan.

-latch

Marks only latches as no scan.

-flip_flop

Marks only flip-flops as no scan.
NOTE: If you do not specify either -blackbox, -latch, or -flip-flop options, then all black

boxes, latches, and flip-flops are marked as no scan.

Examples

You can use the force_no_scan constraint in the following ways:

Specifying only the design unit names with the -name argument

By specifying a design unit name using the -name argument only, all
instances of this design unit are considered non-scannable. The following
Version N-2017.12-SP1 1203
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_no_scan constraint indicates that all flip-flops within all instances
of modName1 will not be considered scannable:

force_no_scan -name modName1

Specifying only the net names with the -name argument

By specifying a net name using the -name argument only, the
corresponding flip-flop will be considered non-scannable. The following
force_no_scan constraint indicates that the flip-flop whose output pin
is connected to net reg_123 (at the top-level) will not be considered
scannable:

force_no_scan -name reg_123

Specifying only the hierarchical instance names with the -name
argument

By specifying a hierarchical instance name using the -name argument
only, all the flip-flops inside the given hierarchy will be considered as non-
scannable. The following force_no_scan constraint indicates that the
flip-flop that lies inside the hierarchy top.inst1 will not be considered
scannable:

force_no_scan -name top.inst1

NOTE: The Scan_08 and Scan_16 rules ignore flip-flops specified in a
force_no_scan constraint. The effects of a force_no_scan constraint
specification are visible with the TA_01 or TA_02 testability analysis rules.

NOTE: The force_no_scan constraint overrides the force_scan constraint.

Specifying list of suffixes using the -register_suffix argument

Consider the following example:

R1 (register 1) name: top.u_ctrl.u2.u1.ff1_ctrl
R2 (register 2) name: top.u_ctrl.u2.u1.ff1_state
R3 (register 3) name: top.u_core.u2.u1.ff1_state_ctrl
R4 (register 4) name: top.u_ctrl_state.u2.u1.ff1_ctrl_state

Now, consider the following force_no_scan descriptions:

force_no_scan -register_suffix ctrl
force_no_scan -register_suffix state
1204 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The following table lists the results when combination of values are used
for the dft_treat_suffix_as_pattern and
dft_check_path_name_for_register_suffix parameters:

Rules

The force_no_scan constraint is used by the following rules:

TABLE 6 Pattern Matching for the -register_suffix argument

Value of
dft_treat_suffix_
as_pattern

Value of
dft_check_path_n
ame_for_register_
suffix

Value of -
register_suffix

Matched
Registers

off off ctrl R1, R3

state R2, R4

off on ctrl R1, R2, R3

state R2, R4

on off ctrl R1, R3, R4

state R2, R3, R4

on on ctrl R1, R2, R3,
R4

state R2, R3, R4

SpyGlass DFT Solution

All rules
Version N-2017.12-SP1 1205
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_ta

Purpose

The force_ta constraint specifies control and/or observe values for
ports/pins/nets.

Use the force_ta constraint when it is known that various ports/pins/
nets are be connected or tied off at the next higher level of assembly in
order to evaluate the effect of coverage within the current design.

If some pins of this design cannot be fully controlled or observed when
instantiated in a larger design and the force_ta constraint is not used,
the coverage for this design is reported as unrealistically high.

When test_mode, force_ta, or test_point constraints are specified on the
same node, following is the priority among different constraints:
 Test_mode

 User-specified specific force_ta / test_point

 Effect of dft_treat_primary_inputs_as_x_source and
dft_treat_primary_outputs_as_unobservable parameters

For example, if test_mode 1 and test_point control are applied
on the same node then the test_mode constraint will be considered.

Also, if the test_mode, force_ta, or test_point constraints are
found in the fanout of each other, following is the priority among different
constraints:
 The constraint in the fanout gets the priority

 Fanin effect is blocked by the specified / resolved constraint on the node

For example, consider that test_mode 1 is applied on the input of buffer
and test_point control is applied on the output of the same buffer.
In this case, input will have simulation value 1 and nyn controllability but
output will have yyn controllability and no simulation value.

NOTE: The force_ta constraint impacts the observability for the fan-in logic-cone of the net
where force_ta is applied. However, it does not impact the terminal. Similarly, it
impacts the controllability of the fan-out logic cone of the net where force_ta is
applied. However, it does not impact the terminal. See Figure 55 and Figure 56 for
more information on the application of the force_ta constraint.
1206 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax for force_ta constraint is as follows:

force_ta
 -name <net-name>

-control <ctrl-value> | -observe <obs-value>

Arguments

-name <net-name>

The port/pin/net on which control or observe value is being set.

You can specify a single port/pin/net name or a space-separated list of
port/pin/net names.

The port names can be simple names while pin names and net names
should be hierarchical names.

-control <ctrl-value>

The control value for a port/pin/net.

The possible control values are as follows:

<ctrl-value> Purpose
nnn Not controllable
ynn Controllable to 0
nyn Controllable to 1
nny Controllable to Z
yyn Controllable to 0 and 1
yny Controllable to 0 and Z
nyy Controllable to 1 and Z
yyy Controllable to 0, 1, and Z
Version N-2017.12-SP1 1207
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-observe <obs-value>

The observe values for a port/pin/net.

The possible observe values are as follows:

Examples

Consider the following example:

force_ta -name pin1[3:2] -value ynn
force_ta -name outPin -observe n
force_ta -name inPin[1:2] -control nyy

Here, the port pin1[3:2] is being made controllable to just '0', port
outPin is being made unobservable, and port inPin[1:2] is being
made controllable to '1' and 'Z'.

Rules

The force_ta constraint is used by the following rules:

<cvalue> or <obs-value> Purpose
n Not observable
y Observable

SpyGlass DFT Solution
Bist_04 Info_uncontrollable Info_unobservable Info_undetectCause
Info_path Info_coverage Info_untestable Coverage_audit
TA_01 TA_02 TA_06
SpyGlass DFT DSM Solution
All rules
1208 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_probability

Purpose

The force_probability constraint is used to specify the probability of
controllability and observability of a design node.

Product

SpyGlass DFT DSM solution

Syntax

The syntax of the force_probability is as follows:

force_probability
-name <node_name>
[-control_one <ctrl1_prob>]
[-control_zero <ctrl0_prob>]
[-observe <obs_prob>]

Arguments

-name <node_name>

Name of the pin, port, or net for which probability is specified.

-control_one <ctrl1_prob>

(Optional) Probability of controllability to 1 for the design node.

-control_zero <ctrl0_prob>

(Optional) Probability of controllability to 0 for the design node.

-observe <obs_prob>

(Optional) Probability of observability for the design node.

Rules

The force_probability constraint is used by the
Version N-2017.12-SP1 1209
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Info_random_resistance rule of the SpyGlass DFT DSM solution:

Examples

The following examples show the usage of the force_probability
constraint:

Example 1

force_probability -name in1 -control_zero 0.4 -control_one
0.6

Example 2

force_probability -name Q -observe 0.05

Example 3

force_probability -name top.inst.in1 -control_zero 0.4
-control_one 0.6 -observe 0.5
1210 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
formal_analysis_filter

Purpose

The formal_analysis_filter constraint is used to specify the
modules or hierarchies on which formal analysis should be ignored or
performed.

Product

SpyGlass Auto Verify

Syntax

The syntax of the formal_analysis_filter constraint is as follows:

formal_analysis_filter
–module_names <design-unit-names>

[-rules <rule-names>]
[-hierarchical <yes | no>]
[-analyze <yes | no>]

Arguments

–module_names <design-unit-names>

Specifies the design units on which formal analysis should be ignored or
performed.

For Verilog design, a design unit name is a module name.

For VHDL design, a design unit name is an entity name (<entity-name>) or
an architecture name (<entity-name>.<architecture-name>).

-rules <rule-names>

Specifies the SpyGlass Auto Verify rules on which this constraint is
applicable.

By default, this constraint is applicable to all the SpyGlass Auto Verify
rules.
Version N-2017.12-SP1 1211
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-hierarchical <yes | no>

Set this argument is set to yes so that the nets present directly inside the
specified module (–module_names <design-unit-names>) are only considered
for matching with the Start Nets of a property.

By default, this argument is set to yes so that the nets present within the
specified module (–module_names <design-unit-names> and also its
submodules are considered for matching with the Start Nets of a property.

-analyze <yes | no>

By default, this argument is set to no so that property analysis by formal
engines is ignored when all the Start Nets of that property belong to the
specified block (–module_names <design-unit-names>) or hierarchy (-
hierarchical <yes | no>).

For example, consider the user-specified modules M1 and M2. In this case,
by default:

 If the P1 property contains the start nets N1 (present in M1) and N2
(present in M2), P1 is ignored.

 If the P2 property contains start net N1 (present in M1) and N2 (present
in M3), P2 is not ignored.

Set this argument to yes to start property analysis by formal engines
when any one of the start nets of that property belong to the specified
block or hierarchy.

Start Nets

Start nets are the nets from where the property/assertion checking should
start.

For SpyGlass Auto Verify RTL rules, such as Av_deadcod01 and
Av_range01, start nets belong to the RTL block in which a property is
modeled.

For SpyGlass Auto Verify flat rules, such as Av_bus01, Av_bus02, and
Av_staticnet01, the driver of the net on which the property is modeled is
considered as the start net.

Rules

The formal_analysis_filter constraint is used by the following
1212 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
rules:

fsm

Purpose

The fsm constraint is used to:

 Modify or remove the FSMs, FSM states, and FSM transitions.

 Add FSMs, FSM states, and FSM transition.

Product

SpyGlass Auto Verify

Syntax

The syntax of the fsm constraint is as follows:

Usage 1

fsm
-name <fsm-logical-name>
[-state_value <state-values>]
[-from_state_value <from-state-values>]
[-to_state_value <to-state-values>]
[-append | -remove]

Usage 2

fsm
-module <module-name>
-state_variables <FSM-state-variables>]
[-state_value <state-values>]
[-from_state_value <from-state-values>]
[-to_state_value <to-state-values>]
[-append | -remove]

SpyGlass Auto Verify
All implicit property rules
Version N-2017.12-SP1 1213
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <fsm-logical-name>

Specifies the name of the FSM to be added, modified, or deleted.

-module <module-name>

Specifies the module in which the FSM is encoded.

It can be a top-level module or a sub module/entity in the design.

-state_variables <FSM-state-variables>

Specifies a space-separated list of synthesized nets of a module.

Some examples are as follows:
 -state_variables state[4:0]

 -state_variables state

 -state_variables state[4] state[3] state[2] state[1] state[0]

Note that a space-separated list is considered as concatenation. Therefore,
check for the order of values specified to this argument. Consider the
following example:

fsm -module M1
-state_variables curr_state0 curr_state1
-state_value 00 01

The equivalent RTL for the above fsm constraint is as follows:

case (curr_state0, curr_state1)
2'b00: …
2'b01: …
endcase

-state_value <state-values>

Specifies a space-separated list of state values for the FSM.

The allowed values to this argument are same as the allowed values to the
-value argument of the set_case_analysis constraint. For details,
refer to the documentation of the set_case_analysis constraint.
1214 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Some examples of the values to this argument are as follows:
 1010101010

 “d 5” or “D 5”

 “h AB” or “H AB”
NOTE: When the width of a state variable mismatches with the state value, redundant bits

are removed or non-specified bits in the state value are considered as zero.

-from_state_value <state-values> -to_state_value <state-values>

The arguments together specify the transition of an FSM.

The format of the <state-value> arguments is same as described in -
state_value <state-values>.

If you specify a new state value for an FSM, which is not
automatically-detected, or if you specify a state value that is not already
specified to the -state_value <state-values> argument, SpyGlass adds that
state value to the -state_value <state-values> argument.

-append | -remove

-append is the default argument over -remove.

Use -append to modify the RTL of the automatically-detected FSM or
create a new FSM.

Use -remove to remove the specified FSM state, state values (and its
corresponding transition), or transition from an FSM.

Examples

Example 1

The following constraint removes the FSM detected on s[4:0] from the M1
module:

fsm -module M1 -state_variables s[4:0] -remove"

Example 2

The following constraint removes the FSM state 0000 and its corresponding
transition with the FSM state variable s[4:0] from the M1 module:

fsm -module M1 -state_variables s[4:0] -state_value 0000 -
Version N-2017.12-SP1 1215
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
remove

Example 3

Consider the following constraint:

fsm -module M1 -state_variables s[4:0] -from_state_value
0000 -to_state_value 0001 -append

When you specify the above constraint, one of the following occurs based
on a condition:

 Condition: When an FSM with the s[4:0] state variable is not
detected in the M1 module
Result: SpyGlass adds a new FSM with the specified state values
transition.

 Condition: When an FSM with the s[4:0] state variable is detected in
the M1 module but either of states, 0000 or 0001, is not detected
Result: SpyGlass adds the specified state values and the new transition
to the FSM.

 Condition: When an FSM with the s[4:0] state variable is detected in
the M1 module along with both the states, 0000 and 0001
Result: SpyGlass adds the specified transition to the FSM.

 Condition: When an FSM with the s[4:0] state variable is detected in
the M1 module but both the states, 0000 and 0001, and their transition
is automatically-detected
Result: SpyGlass reports the SGDC_fsm_Setup01 violation.

gating_cell

Purpose

Specifies the user-defined clock-gating cell.

By default, a 2 input gate on the clock line or an integrated clock-gating is
detected as a clock-gating cell.

You should use the gating_cell constraint to specify complex clock-
gating cells.
1216 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Key Points

 For a white box model, gating_cell constraint specification takes
precedence over the synthesizable logic.

 If the gating_cell sgdc command is specified on a lib cell then its
internal functionality is completely ignored and the cell is treated like a
black box with the gating_cell constraint.

 For SpyGlass DFT or SpyGlass DFT DSM solution, the gating_cell
constraint is not necessary when the white box model resembles a
latch-based standard integrated clock gating library cell.
This automatic inference is controlled by the dft_infer_clock_gating_cell
parameter. For details of this parameter, please refer to SpyGlass DFT
Rules Reference Guide or SpyGlass DFT DSM Rules Reference Guide.

 Prior to SpyGlass 4.3.0 release, the name of this constraint was
gatingcell.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions,
SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax to specify the gating_cell constraint is as follows:

current_design <du-name>
gating_cell
-name <cell-name>
[-clkinTerm <clk-in-pin>]
[-clkoutTerm <clk-out-pin>]
[-enTerm <enable-pin>]
[-enValue <enable-value>]
[-testenTerm <test-enable-pin>]
[-testenValue <test-enable-value>]
[-cgcEdgeType <positive | negative>]
[-obsTerm <obs-pin>]

NOTE: The gating_cell constraint supports wildcard characters.
Version N-2017.12-SP1 1217
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-clkinTerm <clk-in-pin>

Name of the clock input terminal, which is a single-bit pin.

-clkoutTerm <clk-out-pin>

Name of the output clock terminal, which can be either single-bit or multi-
bit.

-enTerm <enable-pin>

Name of the input enable terminal through which a clock-gating cell can be
enabled or disabled. This can be either a single-bit or a multi-bit pin. The
size of <enable_pin> should match the size of <clk_out_pin>. Also,
if you want to enable the ith bit of the <clk_out_pin>, ensure that the
ith bit of the <enable_pin> is set. To understand the relationship
between the multi-bit system-enable and clock-out pins, refer to Figure 32.

NOTE: If <enable-pin> is not specified, it implies that a clock-gating cell is always
enabled. Therefore, a clock reaching <clk-in-name> always passes through
<clk-out-name>.

-enValue <enable-value>

NOTE: This option is not applicable for the SpyGlass Power Estimation and SpyGlass Power
Reduction solutions.

Value on the enable pin that disables the gating cell and allows a clock
reaching the input terminal to pass through the clock output terminal.

NOTE: If <enable-pin> is specified and <value> is not specified, it implies that the
signal value is active high (value 1).

-testenTerm <test-enable-pin>

Name of the input enable terminal in the test mode. The pin through which
a clock-gating cell can be enabled or disabled in the test mode.
1218 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-testenValue <test-enable-value>

NOTE: This option is not applicable for the SpyGlass Power Estimation and SpyGlass Power
Reduction solutions.

Value on the enable pin in the test mode that disables the gating cell and
allows a clock reaching the input terminal to pass through the clock output
terminal.

-cgcEdgeType <positive | negative>

Used to define the edge of the clock gating cell. By default, edge type is
positive. You can also set the value of this argument as negative.

Positive Edge
Positive edge type signifies that latch-enable pin gets the inverted clock
(clock input to gating_cell).

The following figure illustrates a positive edge type:

Negative Edge

Negative edge type signifies that latch-enable pin gets the clock (clock
input to gating_cell) without inversion.

The following figure illustrates a negative edge type:
Version N-2017.12-SP1 1219
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-obsTerm <obs-pin>

Name of the observation pin using which we observe the enable signal of
the cell.

Consider the following example:

module dpICG(I, SE, Z, EN);
parameter width = 1;
output [width -1:0] Z;
input [width-1:0] EN;
input I;
input SE;

endmodule

The following figure shows the schematic for the above code:
1220 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 32. Relation Between Multi-Bit System-Enable Pin and Clock-Out Pin

The above code and figure explain the relationship between the multi-bit
system-enable and clock-out pins.

Rules

The gating_cell constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PESTR03 PESTR05
PESTR06 PESTR07 PESTR08 PESTR09
PESTR10 PESTR11 PESTR12 PESTR13
poweraudit
SpyGlass DFT Solution
All rules
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 1221
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
gating_cell_enable

Purpose

The gating_cell_enable is used to specify the gating cell enable
signal.

NOTE: Prior to SpyGlass 4.4 release, the name of this constraint was gatingcell_enable.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the gating_cell_enable constraint is as
follows:

gating_cell_enable
 -name <signal-name>
-type phased_clock_enable
-pipeline_depth <depth> |
–pipeline_depth_range <min max>

Arguments

-name <signal-name>

Signifies root level input ports, which are used to drive the test enable pin
of a clock-gating cell.

-type phased_clock_enable

Specifies that the phased clocks would be used in the LSSD design style.

-pipeline_depth <depth>

Signifies the pipeline stage that is expected on gating_cell_enable signal.
You can specify a positive integer value as an input.

NOTE: Specify either -pipeline_depth or pipeline_depth_range argument. Do not use both
the arguments together.
1222 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-pipeline_depth_range <min max>

Specifies the range of pipeline stages expected on gating_cell_enable
signal.

NOTE: Specify either -pipeline_depth or pipeline_depth_range argument. Do not use both
the arguments together.

Rules

The gating_cell_enable constraint is used by the following rule:

generated_clock

Purpose

The generated_clock constraint is used to specify the clock that
traverses from the output (hierarchical pin or net) of a sequential element.

By default, when a clock reaches a sequential element, it propagates
beyond that sequential element irrespective of whether the output of the
element is reaching a clock pin.

Use this constraint to stop propagation of such clocks beyond sequential
elements such that the clock specified by this constraint is propagated
beyond the sequential element. For details, see Examples.

If the generated_clock constraint is defined at the output of a combo logic
that is placed just after first sequential element receiving the master clock,
the generated_clock constraint is honored. For details, see Example 3.

This constraint is read only if the enable_generated_clocks
parameter is set to yes.

NOTE: During SDC-to-SGDC translation, the create_generated_clocks SDC
command is saved as the generated_clock constraint.

SpyGlass DFT DSM Solution
CG_04
Version N-2017.12-SP1 1223
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass CDC solution

Syntax

The syntax to specify the generated_clock constraint is as follows:

current_design <du-name>
generated_clock -name <clk-obj-name>
-source <source-obj-name>
[-tag <tag-name>]
[-divide_by <divide-factor>]
[-multiply_by <mult-factor>]
[-master_clock <source-clock-tag-name>]
[-add]
[all]

Arguments

-name <clk-obj-name>

Specifies the name of the clock pin or net present on the output of a
sequential element so that the generated clock propagates from that pin or
net.

See Example 1.

-source <source-obj-name>

Specifies the clock reaching the sequential element so that propagation of
this clock beyond the sequential element is stopped when the
generated_clock constraint is specified.

See Example 1.

-tag <tag-name>

Specifies the tag of the generated clock.

See Example 1.
1224 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-divide_by <divide-factor>

Specifies the frequency division factor.

For example, if this argument is 2, the generated clock period is twice as
long as the master clock period.

-multiply_by <mult-factor>

Specifies the frequency multiplication factor.

For example, if this argument is 3, the generated clock period is one-third
as long as the master clock period.

-master_clock <source-clock-tag-name>

Specifies the tag name of the clock that is the master of the source clock
specified by the -source <source-obj-name> argument.

See Example 1.

-add

Specify this argument to add multiple generate_clock constraints on a
single object.

See Example 2.

Examples

Example 1

Consider the following figure:
Version N-2017.12-SP1 1225
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 33. Example 1 - generated clock

In the above scenario, by default, the clk clock propagates beyond the
ff1 flip-flop.

To stop the propagation of clk beyond ff1 and propagate another clock
from the output p1 of ff1, perform the following steps:
1. Set the enable_generated_clocks parameter to yes.
2. Specify the following constraint to generate a clock on the output p1 of

the ff1 flip-flop, where the source clock CP is derived from the master
clock top.clk (tag T1):

generated_clock -name top.ff1.p1 -source top.ff1.CP
-tag GT1 -divide_by 2 -master_clock T1

After performing the above steps, a generated clock propagates from the
p1 pin of the ff1 flip-flop.

Example 2

Consider the following figure:

ff1 ff2

p1

CP

clk

top

clock -name top.clk -period 10 -domain d1 -tag T1
// SGDC File:
1226 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 34. Example 2 - generated clock

In the above scenario, multiple master clocks converge on the source clock
srcClk. In this case, to stop propagation of srcClk beyond ff1 and
enable a generated clock traverse from out1 of ff1, perform the
following steps:
1. Set the enable_generated_clocks parameter to yes.
2. Specify the following constraints:

generated_clock -name out1 -source srcClk -master_clock C1
-tag T1 -divide_by 2

generated_clock -name out1 -source srcClk -master_clock C2
-tag T2 -add -divide_by 2

You should specify a generated_clock constraint with respect to
each master clock of the source clock.
Alternatively, select one master clock by defining a mode and then
specify one generated_clock constraint with respect to the selected
master clock.

Example 3

Consider the following figure:

C1

C2

srcClk

out1
ff1

ff2

clock -name C1 -period 10 -domain d1 -tag T1
// SGDC File:

clock -name C2 -period 15 -domain d2 -tag T2
Version N-2017.12-SP1 1227
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 35. Example 3 - generated clock

In the above example, if the generated_clock constraint is defined
on the gen_clk net with source as div_clk_reg.CP, SpyGlass CDC
honors this constraint and the generated clock is created on the
gen_clk net.

glitch_free_module

Purpose

The glitch_free_module constraint is used to specify the modules
where if a constant value is reaching the data pin of a flop in the module, it
will be propagated to the output of the flop even if preset/clear pins are
present.

Product

SpyGlass CDC Solution

Syntax

The syntax to specify the glitch_free_module constraint is as follows:

glitch_free_module -name <du-name>
1228 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <du-name>

Name of the module (for Verilog designs) and <entity-name> or <entity-
name>.<arch-name> (for VHDL designs).

Example

glitch_free_module -name MOD

Rules

The glitch_free_module constraint is used by the following rules:

gray_signals

Purpose

The gray_signals constraint is used to specify the signals that should
be gray encoded.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the gray_signals constraint is as follows:

gray_signals -name <signal-name-list>

Arguments

-name <signal-name-list>

Specifies a space-separated list of signals, such as hierarchical net names,

SpyGlass CDC Solution
All CDC rules
Version N-2017.12-SP1 1229
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
hierarchical terminals, and ports.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

Rules

The gray_signals constraint is used by the following rules:

ignore_clock_gating

Purpose

The ignore_clock_gating constraint is used to disable generation of
clock-gating logic for:
 Enabled flip-flops driven by the specified clock nets.

 Enabled flip-flops present within the specified modules.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the ignore_clock_gating constraint is as
follows:

ignore_clock_gating
-clock <clock-nets> | -module <module-list>

Arguments

-clock <clock-nets>

List of clock nets so that clock-gating logic is not generated for the enabled

SpyGlass CDC Solution
Ac_conv05 SGDC_gray_signals01 SGDC_gray_signals02
SGDC_gray_signals03
1230 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
flip-flops driven by these clock nets. The type of clock nets supported are:
 Port clocks

 Clocks driven by black boxes

 Clocks specified using the clock SGDC constraint

-module <module-list>

List of modules so that clock-gating logic is not generated for the enabled
flip-flops present within these modules.

Examples

Consider the top design that has:

 The clk1 and ckl2 clocks.

 The middle1 and middle2 modules.

For the above design, consider you specify the following constraints:

ignore_clock_gating -clock "top.clk1"
ignore_clock_gating -module "middle1"

On specifying the above constraints, SpyGlass will not use ICGC for
enabled flops present either in middle or driven by the top.clk1 clock. It
uses the ICGC only for the enabled flip-flops inside middle2 and driven
by the top.clk2 clock.

Rules

The ignore_clock_gating constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power
Reduction solutions

PEPWR01 PEPWR02 PEPWR03 PEPWR14 PEPWR20
PEPWR21 PEPWR22 PEPWR23 PEPWR24 PEPWR25
PEPWR28 PESTR03 PESTR06 PESTR08 PESTR12
PESTR13 PESTR20 PESTR21 PESTR22 PESTR23
PESTR24 PESTR25 PESTR28 poweraudit
Version N-2017.12-SP1 1231
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ignore_crossing

Purpose

The ignore_crossing constraint is used to specify power domain to
voltage domain crossings and power domain to power domain crossings
that should be ignored by the LPSVM08, LPSVM09, LPSVM10, LPSVM23,
and LPSVM47 rules of the SpyGlass Power Verify solution.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
ignorepdcrossing.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the ignore_crossing constraint is as follows:

current_design <du-name>
ignore_crossing
-from <src-pd-name>
-to <dest-pd-name> | <vd-name>

Arguments

<du-name>

Name of the design unit under which you are specifying the crossings to be
ignored

-from <src-pd-name> | -to <dest-pd-name>

Name of the power domain (source, destination)

<vd-name>

Name of the voltage domain (only destination)
1232 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The ignore_crossing constraint is used by the following rules:

SpyGlass Power Verify Solution
LPSVM08 LPSVM09 LPSVM10 LPSVM22
LPSVM23 LPSVM47
Version N-2017.12-SP1 1233
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ignore_supply_pin

Purpose

The ignore_supply_pin constraint is used to specify specific pins of a
cell on which the LPPLIB06 or LPPLIB15 rules should not report a violation.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the ignore_supply_pin constraint is as follows:

current_design <du-name>
ignore_supply_pin
-cell <cell-name>
-pin <pin-name-list>

Arguments

<du-name>

Name of the design unit

-cell <cell-name>

Name of a cell. This field supports wildcards.

-pin <pin-name-list>

Name of specific pins of a cell. This field supports wildcards.

Rules

The ignore_supply_pin constraint is used by the following rules:

SpyGlass Power Verify Solution
LPPLIB06 LPPLIB15
1234 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
illegal_constraint_message_tag

Purpose

The illegal_constraint_message_tag constraint checks the
constraint_message_tag expression matches the expression for the design
nodes. If specific combination of tags are present in the design for a
particular node then it reports violations.

Product

SpyGlass DFT Product

Syntax

The syntax to specify the illegal_constraint_message_tag
constraint is as follows:

illegal_constraint_message_tag
[-name <nodename>]
[-except <except_nodename>]
[-except_type <exceptDo-nodename>]
[-type <DO_nodename>]
[-constraint_message_tag_expression

<constraint_message_tag_expression>]

Argument

[-name] <nodename>

Specifies the name of the top-module port, or any internal net or terminal
or leaf instance for which the specified tag expression must be satisfied. A
module name specified expands to list of all its instantiations (full
hierarchical name). When at least one of the pins of the instance gets
required expression, a FAIL status is generated. However, if none of the
pins of the instance gets required expression, a PASS status is generated.

For more information, see Example 2.

[-except <except_nodename>]

Specifies the name of the top-module port, any internal net, terminal, or
leaf instance name, which needs to be excluded from rule checking.
Version N-2017.12-SP1 1235
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-except_type <exceptDo-nodename>

Specifies the name of macro for which the specified tag expression must be
satisfied.

-type <DO_nodename>

Specifies the name of the macro, which needs to be excluded from rule
checking.

-constraint_message_tag_expression <constraint_message_tag_expres-
sion>

Signifies the message tag expression specified using logical '||' and '&&'
operator and their combinations and :PASS and :FAIL values of tags. You
can also use braces ('(',')') when specifying message tag expression.

Examples

Example 1

Consider the following example:

 -from "top.cgc_1.clkout" -to_type
FLIP_FLOrequire_pathP_CLOCK LATCH_ENABLE
-constraint_message_tag CGC_CHECK_1

require_path -from "top.cgc_2.clkout" -to_type
FLIP_FLOP_CLOCK LATCH_ENABLE -constraint_message_tag
CGC_CHECK_2

illegal_constraint_message_tag -type ICG -
constraint_message_tag_expression "CGC_CHECK_1:PASS ||
CGC_CHECK_2:FAIL"

In the above example, the illegal_constraint_message_tag
reports violation if CGC_CHECK_1 does not have any violation or
CGC_CHECK_2 have any violation.
1236 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider the following top instantiation:

FIGURE 36. Top Instantiation

Now, consider the following SGDC command:

illegal_constraint_message_tag –name clock_cell <other
options>

The above SGDC command implies:

illegal_constraint_message_tag –name top.u1.u11 top.u2.u21
top.u2.u22 <other options>
Version N-2017.12-SP1 1237
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
illegal_path

Purpose

The illegal_path constraint is used to define nodes between which path
should not exist.

Product

SpyGlass DFT solution

Syntax

The syntax of the illegal_path constraint is as follows:

illegal_path
[-from <from_node_list>] [-to <to_node_list>]
[-except_from <except_from_list>]
[-except_to <except_to_list>]
[-from_type <from_type_list>]
[-from_one_of <fromoneof_pinlist>]
[-from_one_of_type <fromoneof_DO_pinlist>]
[-exact_sequential_depth <sequential_depth>]
[-sequential_depth <value>]
[-except_from_type <except_from_type_list>]
[-to_type <to_type_list>]
[-except_to_type <except_to_type_list>]
[-to_one_of <tooneof_pinlist>]
[-to_one_of_type <tooneof_DO_pinlist>]
[-tag <tag_name> | -use_shift | -use_capture |
-use_captureATspeed]

[-path_type <buffered | sensitized | topological |
sensitizable>]
[-constraint_message_tag <value>]
[-report_failure_as_info]
[-min_to_paths <value>]
[-max_to_paths <value>]
[-min_from_paths]
[-max_from_paths]
[-filter_in_cmt_from
1238 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<constraint_message_tag_expression>]
[-filter_in_cmt_to <constraint_message_tag_expression>]
[-named_association]
[-positional_association]
[-instance_association]
[-instance_filter_in_cmt_from

<constraint_message_tag_expression>]
[-instance_filter_in_cmt_to

<constraint_message_tag_expression>]
[-filter_in_from <include_from_pinlist>]
[-filter_in_to <include_to_pinlist>]
[-filter_in_type_from <include_from_DO_pinlist>]
[-filter_in_type_to <include_to_DO_pinlist>]
[-ignorecase]

Guidelines for Using Arguments

The following combination of arguments are not allowed for the illegal_path
constraint:

 The –from_one_of argument can not be used with the –to_one_of
argument

 The –min_from_paths argument cannot be used with the
–max_from_paths argument

 The –min_to_paths argument cannot be used with –
max_to_paths argument

Also, The –min_to_paths, max_to_paths, min_from_paths, and
max_from_paths arguments should have the corresponding –from/
from_type/from_one_of/ from_one_of_type arguments, as well
as, the –to/to_one_of/to_type /to_one_of_type arguments.

Arguments

-from <from_node_list>

(Optional) This is a list of top-module port names, internal net names, or
Version N-2017.12-SP1 1239
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
terminal names from which path should not exist to nodes specified
through <to node list> and <to type list>, if both <to type list> and <to
node list> are not given then this implies that nodes given in <from node
list> should not be driving any leaf cell/top module port.

-to <to_node_list>

(Optional) This is a list of top-module port names, internal net names, or
terminal names to which path should not exist from nodes specified
through <from node list> and <from type list>, if both <from type list>
and <from node list> are not given then this implies that nodes given in
<to node list> should not be driven by any leaf cell/top module port.

-exact_sequential_depth <sequential_depth>

(Optional) Defines the exact sequential depth. This argument takes an
integer as an input.

Note that you can not use this argument with the -sequential_depth
argument.

-sequential_depth <value>

Specifies the number of sequential elements between end points specified
on an illegal path. This means that the illegal_path check will go through
the specified number of sequential elements. You can specify an integer
value as an input to this argument.

It is recommended to use this argument when the path type is set to
sensitizable. For other path_types, that is, direct, buffered, and sensitized,
a sequential element is a stop-point. This is so because path through
sequential cell is neither buffered nor sensitized path.

-except_from <except_from_list>

(Optional) Nodes specified in this list are effectively removed from list of
nodes specified in <from node list>

-except_to <except_to_list>

(Optional) Nodes specified in this list are effectively removed from list of
nodes specified in <to node list>
1240 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-from_type <from_type_list>

(Optional) Same as <from node list> but it takes only macros as inputs.

-from_one_of <fromoneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-from_one_of_type <fromoneof_DO_pinlist>

(Optional) Same as -from_one_of <fromoneof_pinlist> but it
takes only macros as inputs.

-except_from_type <except_from_type_list>

(Optional) This is a list of macros, nodes specified through this list are
effectively removed from list of nodes specified through <from type list>.

-to_type <to_type_list>

(Optional) Same as <to node list> but it takes only macros as inputs.

-to_one_of <tooneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-to_one_of_type <tooneof_DO_pinlist>

(Optional) Same as -to_one_of <tooneof_pinlist> but it takes
only macros as inputs.

-except_to_type <except_to_type_list>

(Optional) This is a list of macros, nodes specified through this list are
effectively removed from the list of nodes specified through <to type list>.

-tag <tag name> | -use_shift | -use_capture | -use_captureATspeed

(Optional) These arguments are used to specify simulation condition under
which path is searched between from nodes and to nodes. If none of them
are specified then path is searched after simulating all power-ground
connections. Please note that only one of these arguments can be used to
specify simulation condition in the illegal_path constraint.
Version N-2017.12-SP1 1241
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<tag name> is a condition name that has been previously defined by using
the define_tag constraint.

If -use_shift, -use_capture or -use_captureATspeed is specified then shift,
capture or captureAtspeed mode is simulated respectively.

-path_type <buffered | sensitized | topological | sensitizable>

The -path_type argument accepts only predefined list of values:
buffered, sensitized, topological, and sensitizable. The default value of this
qualifier is sensitizable. This argument determines the type of path that is
searched between from and to nodes.

See for more information, see Example 6 and Example 7.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.

Supported Macros

To view the list of macros supported by the require_strict_path constraint,
see Supported Macros.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

-min_to_paths <value>

(Optional) Specifies minimum number of expected successful paths. You
can not specify this argument with -from_one_of and
-from_one_of_type arguments.

-max_to_paths <value>

(Optional) Specifies maximum number of expected successful paths.

The following are the rules for using this argument:
 If you are using both the -min_to_paths and -max_to_paths arguments,

then the value of the -max_to_paths argument should be greater than
the -min_to_paths argument.
1242 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 You can not specify this argument with -from_one_of and
-from_one_of_type arguments.

-min_from_paths <value>

(Optional) Specifies minimum number of expected successful paths. You
can not specify this argument with -from_one_of and
-from_one_of_type arguments.

-max_from_paths <value>

(Optional) Specifies maximum number of expected successful paths. The
following are the rules for using this argument:
 If you are using both the -min_from_paths and -max_from_paths

arguments, then the value of the -max_from_paths agument should be
greater than the -min_from_paths argument.

 You can not specify this argument with -from_one_of and
-from_one_of_type arguments.

-named_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same name, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.

-positional_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same position, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.

-instance_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same instance, from the expanded from-to-set. Individual
checks are then performed on each such sub-group. This argument is
useful while looking for a self-loop type structure.

-filter_in_cmt_from <constraint_message_tag_expression>, -fil-
ter_in_cmt_to <constraint_message_tag_expression>

(Optional) Filters the staring-point and end-point when the
constraint_message_tag_expression holds TRUE for the specified node.
Version N-2017.12-SP1 1243
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: You can not use –filter_in_cmt_from argument with the –
instance_filter_in_cmt_from argument and –filter_in_cmt_to argument with the -
instance_filter_in_cmt_to argument.

-instance_filter_in_cmt_from <constraint_message_tag_expression>,
instance_filter_in_cmt_to <constraint_message_tag_expression>

(Optional) Filters the starting-point and end-point when the
constraint_message_tag_expression holds TRUE for the associated
instance of the specified node.

NOTE: You can not use –instance_filter_in_cmt_from argument with the –
filter_in_cmt_from argument and –instance_filter_in_cmt_to argument with the -
filter_in_cmt_to argument.

-filter_in_from <include_from_pinlist>, -filter_in_to
<include_to_pinlist>

(Optional) Same as the -from and -to arguments but defines design nodes
that are to be included.

-filter_in_type_from <include_from_DO_pinlist>, -filter_in_type_to
<include_from_DO_pinlist>

(Optional) Same as -from_type and -to_type but defines design nodes
that are to be included.

-ignorecase

(Optional) Ignores the case for the nodename specified using the -from,
-to, -except_from, -except_to, -filter_in_name_from, and -
filter_in_name_to arguments.

NOTE: This is applicable on all fields which take design-node name as an input.

Rules

The illegal_path constraint is used by the following rules:

SpyGlass Connectivity Verify solution
Soc_09
SpyGlass DFT Solution
Conn_09
1244 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Example 1

illegal_path -from top.clk1 -to_type module1:FLIP_FLOP_CLOCK
-use_shift -path_type sensitized

The above example implies that there should be no sensitized path from
top.clk1 to clock pin of any flip-flop inside instances of module1 in shift
mode.

Example 2

illegal_path -from_type top.inst1:FLIP_FLOP_OUT -to_type
top.inst2:FLIP_FLOP_DATA -tag tag1 -path_type sensitizable

The above example implies that there should be no sensitizable path from
output pin of any flip-flop inside test.inst1 to data pin of any flip-flop
inside top.inst2 in tag tag1.

Example 3

illegal_path -from top.ip1

The above example implies that top.ip1 should not be driving any leaf
cell or top module port.

Example 4

illegal_path -to top.op1

The above example implies that top.op1 should not be driven by any leaf
cell or top module port.

Example 5

illegal_path -from top.ip1 -to_type FLIP_FLOP_DATA
-except_to_type test.inst1:FLIP_FLOP_DATA -use_shift

The above example implies that there should be no sensitizable path from
top.ip1 to data pin of any flip-flop outside test.inst1 in shift mode.

Example 6

Consider the following schematic:
Version N-2017.12-SP1 1245
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 37.

Now, consider the following constraint description:

illegal_path –from d1 –to bidi1 –path_type topological –
sequential_depth 1

For the above example, a topological path is traced through the flip-flop if
the sequential depth greater than 0 is specified, even if the tristate buffer
is disabled.

Example 7

Consider the following schematic:

FIGURE 38.

Now, consider the following constraint description:

require_path –from clk1 –to clk_out1 –path_type topological

For the above example, a topological path is traced through the tristate
buffer even though the path is blocked by value 0 on the enable pin of the
tristate buffer.
1246 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 8

Consider the following constraint specification:

illegal_path -from_type FLIP_FLOP_OUTPUT -to sig1
–filter_in_cmt_from “X1:PASS”

The above example implies that there should be no path to sig1 from flip-
flop outputs, which have passed the check for
constraint_message_tag, X1.

Example 9

Consider the following constraint specification:

illegal_path -from sig1 –to_type FLIP_FLOP_RESET
–filter_in_cmt_to “X1:PASS”

The above example implies that there should be no path from sig1 to flip-
flop reset pins, which have passed the check for
constraint_message_tag X1.

Example 10

Consider the following constraint specification:

illegal_path -from sig1 –to sig2 –filter_in_cmt_from
“X1:PASS” –filter_in_cmt_to “X2:PASS”

The above example implies that there should be no path from sig1 to
sig2, where, sig1 has passed the check for
constraint_message_tag, X1 and sig2 has passed the check for
constraint_message_tag, X2.

Example 11

Consider the following constraint specification:

illegal_path -from_type FLIP_FLOP_OUTPUT -to sig1
–instance_filter_in_cmt_from “X1:PASS”

The above example implies that there should be no path to sig1 from flip-
flop outputs whose instances have passed the check for the
constraint_message_tag, X1.

Example 12

Consider the following constraint specification:
Version N-2017.12-SP1 1247
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
illegal_path -from sig1 –to_type FLIP_FLOP_RESET
–filter_in_cmt_to “X1:PASS”

The above example implies that there should be no path from sig1 from
flip-flop reset pins whose instances have passed the check for the
constraint_message_tag, X1’

Example 13

Consider the following constraint specification:

illegal_path -from sig1 –to sig2 –filter_in_cmt_from
“X1:PASS” –filter_in_cmt_to “X2:PASS”

The above example implies that there should be no path from sig1 to
sig2, where, sig1’s instance have passed the check for
constraint_message_tag, X1 and sig2’s instance has passed the
check for constraint_message_tag, X2.

Example 14

Consider the following constraint specifications:

illegal_path -filter_in_from “in*” –from_type INPUT_PORTS –filter_in_to
“out*” –to_type OUTPUT_PORTS –ignorecase

illegal_path -filter_in_from “in*” –from_type INPUT_PORTS
–to “out*” –filter_in_type_to OUTPUT_PORTS –ignorecase

illegal_path -from “in*” –filter_in_type_from INPUT_PORTS
–filter_in_to “out*” –to_type OUTPUT_PORTS –ignorecase

illegal_path -from “in*” –filter_in_type_from INPUT_PORTS
–to “out*” –filter_in_type_to OUTPUT_PORTS –ignorecase

In the above example, each illegal_path constraint ensures that no
path from input ports matching with “in*” (case-insensitive) to output
ports matching with “out*” (case-insensitive).

illegal_value
1248 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The illegal_value constraint checks for the presence of illegal value on a
certain node when the circuit has been simulated using the condition
specified by the -tag argument.

When illegal_value is used twice for the same node, spyglass
interprets as neither 0 nor 1.

Product

SpyGlass DFT solution

Syntax

The syntax for the illegal_value constraint is as follows:

illegal_value
[-name <nodename>]
[-except <except_nodename>]
[-type <DO_nodename>]
[-except_type <exceptDO_nodename>]
[-value <value>]
[-value_type <type>]
[–tag <condname> | -use_shift |
 -use_capture | -use_captureATspeed]
[-matchNBits <num>]
[-constraint_message_tag <value>]
[-report_failure_as_info]
[-filter_in_cmt <constraint_message_tag_expression>]
[-instance_filter_in_cmt

<constraint_message_tag_expression>
[-filter_in_name <include_nodename>]
[-filter_in_type <include_DO_nodename>]
[-ignorecase]

Arguments

-name <nodename>

(Optional) The name can be a top-module port, or any internal net name,
Version N-2017.12-SP1 1249
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
or terminal name. More than one pin name can be specified, and it is
effectively read as a concise description of as many individual value
checks.

NOTE: Specify either -name or -type argument.

-except <except_nodename>

(Optional) Same as <nodename> but defines design nodes that are not to
be used as name.

-type <DO_nodename>

 Same as <nodename> but it takes only macros as inputs.

NOTE: Specify either -name or -type argument.

To view the list of macros supported by the illegal_value constraint,
see Supported Macros.

-except_type <exceptDO_nodename>

Same as <DO_nodename> but it takes only macros as inputs.

-value <value>

The value is a logic value string of 0, 1, X, Z, 1_or_0, and 0_or_1. A single-
bit value means check at end of complete simulation. The X value is
treated as do-not-compare. A multi-bit value means check on cycle-by-
cycle simulation basis. For specification of a vector value, SGDC multi-bit
specification format (same as used for the test_mode constraint) should
be used.

You can specify repeat sequences for the illegal_value constraint.

For fields that require repeat sequence, you can specify the values as
<I*S>. Here, S is any string that does not contain the <, >, and *
characters. However, S can contain another <I*S> expression. I is an
integer that is always interpreted as a decimal value. The expression
<I*S> means that the sequence S will be repeated I number of times.

value_type <type>

Specify one the following values:
1250 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 active: Implies 1 for non-inverting clock-pin and 0 for inverting clock-
pin.

 inactive: Implies 0 for non-inverting clock-pin and 1 for inverting clock-
pin.

NOTE: Specify either -value or -value_type argument. Otherwise, the illegal_value
constraint is ignored for analysis.

To view the list of macros supported by the -value_type field of the
require_value and illegal_value constraints, see List of Macros Supported by
the require_value and illegal_value Constraints.
 FLIP_FLOP_RESET

 SCAN_FLIP_FLOP_RESET

 LATCH_RESET

 FLIP_FLOP_SET

 SCAN_FLIP_FLOP_SET

 LATCH_SET

 FLIP_FLOP_ENABLE

 SCAN_FLIP_FLOP_ENABLE

 LATCH_ENABLE

 FLIP_FLOP_CLOCK

 SCAN_FLIP_FLOP_CLOCK

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.

-tag <condname>

(Optional) A condition previously defined by using the define_tag constraint.
It describes a stimulation condition.

Note that only one condition name can be defined in a illegal_value
specification. However, simulation for a given condition name simulates all
pin-value specifications simultaneously. The built-in power-ground
connections are also simulated in this process.
Version N-2017.12-SP1 1251
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, illegal_value simulates test mode of that
particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.

NOTE: If more than one of the -tag, -use_shift, -use_capture, or

-use_captureATspeed arguments is specified, an error condition occurs.
You should specify exactly one of these modifiers with illegal_value
constraint.

-matchNBits <num>

(Optional) Specifies that only the <num> number of least significant bits
are to be considered. If <num> is greater than <value> (specified with -
value argument), the latter is padded with X to match the former’s width.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

-filter_in_cmt <constraint_message_tag_expression>

(Optional) Filters the specified node when the
constraint_message_tag_expression holds TRUE on the associated
instance of the node.

NOTE: You can not use this argument with the –instance_filter_in_cmt argument.

-instance_filter_in_cmt <constraint_message_tag_expression

(Optional) Filters the specified node when the
constraint_message_tag_expression is TRUE for the associated instance.

NOTE: You can not use this argument with the –filter_in_cmt argument.

-filter_in_name <include_nodename>

(Optional) Same as the -name argument but defines design nodes that are
to be included.
1252 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-filter_in_type <include_DO_nodename>

(Optional) Same as the -type argument but defines design nodes that are
to be included.

-ignorecase

(Optional) Ignores the case for the nodename specified using the -name,
-except_to, and -filter_in_name arguments.

NOTE: It is applicable to all the arguments, which take design-node name as input.

Examples

Consider the following examples:

Example1

illegal_value -name abc -value "<5*10>"

The above example will be expanded as follows:

illegal_value -name abc -value 1010101010

Example2

illegal_value -name abc -value "11<5*10>010"

The above example will be expanded as follows:

illegal_value -name abc -value 111010101010010

Example3

illegal_value -name abc -value "<50*11<5*10>>010"

The above example will be expanded as follows:

illegal_value -name abc -value 111010101010...(repeated 50
times followed by 010)

You can also set a variable using the command setvar to obtain the
above result as follows:

setvar x 11<5*10>

illegal_value -name abc -value "<50*${x}>010"

The above example will be expanded as follows:
Version N-2017.12-SP1 1253
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
illegal_value -name abc -value 111010101010...(repeated 50
times followed by 010)

NOTE: Tagging for nesting is not allowed. For example, the following illegal_value
statements are not allowed:

illegal_value -name sub_seq -value <5*01>
illegal_value -name main_seq -value <100*sub_seq>

However, you can achieve the same result by using the setvar command.

Example 5

illegal_value –tag s1 –name top.U1.U2.SEF
–value 1010 -matchNBits 2

Example 6

Consider the following example:

-illegal_value –name p1 –value 0X110_or_110

The above constraint specification means:
 first bit must not be 0

 second bit is don’t care

 third and fourth bits must not be 1

 fifth should be neither 0 nor 1

 sixth should not be 1

 seventh bit should not be 0

Example 7

Consider the following sample input values:

illegal_value -name vec[3:0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "1010"
illegal_value -name vec[1] -value "0000"
illegal_value -name vec[2] -value "0000"
illegal_value -name vec[3] -value "0000“
1254 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 8

Consider the following sample input values:

illegal_value -name vec[3:0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "0"
illegal_value -name vec[1] -value "1"
illegal_value -name vec[2] -value "0"
illegal_value -name vec[3] -value "1“

Example 9

Consider the following sample input values:

illegal_value -name vec[3:0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "1"
illegal_value -name vec[1] -value "0"
illegal_value -name vec[2] -value "0"
illegal_value -name vec[3] -value "0“

Example 10

Consider the following sample input values:

illegal_value -name vec -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "1010"
illegal_value -name vec[1] -value "0000"
illegal_value -name vec[2] -value "0000"
illegal_value -name vec[3] -value "0000“

Example 11

Consider the following sample input values:

illegal_value -name vec -value { b 1010 }

where vec is the 3:0 vector net
Version N-2017.12-SP1 1255
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above input is expanded as shown below:

illegal_value -name vec[0] -value "0"
illegal_value -name vec[1] -value "1"
illegal_value -name vec[2] -value "0"
illegal_value -name vec[3] -value "1“

Example 12

Consider the following sample input values:

illegal_value -name vec -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "1"
illegal_value -name vec[1] -value "0"
illegal_value -name vec[2] -value "0"
illegal_value -name vec[3] -value "0“

Example 13

Consider the following sample input values:

illegal_value -name vec[0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "1010“

Example 14

Consider the following sample input values:

illegal_value -name vec[0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value "0"

Example 15

Consider the following sample input values:

illegal_value -name vec[0] -value { b 1 }

where vec is the 3:0 vector net
1256 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above input is expanded as shown below:

illegal_value -name vec[0] -value "1"

Example 16

Consider the following sample input values:

illegal_value -name sclr -value { b 1 0 1 0 }

where sclr is the scalar net

The above input is expanded as shown below:

illegal_value -name sclr -value "1010"

Example 17

Consider the following sample input values:

illegal_value -name sclr -value { b 1010 }

where sclr is the scalar net

The above input is expanded as shown below:

illegal_value -name sclr -value "0“

Example 18

Consider the following sample input values:

illegal_value -name sclr -value { b 1 }

where sclr is the scalar net

The above input is expanded as shown below:

illegal_value -name sclr -value "1“

Example 19

Consider the following sample input values:

illegal_value -name vec -value { h 6 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

illegal_value -name vec[0] -value “0"
illegal_value -name vec[1] -value “1"
illegal_value -name vec[2] -value “1"
illegal_value -name vec[3] -value "0“
Version N-2017.12-SP1 1257
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 20

Consider the following constraint specification:

illegal_value -type FLIP_FLOP_OUTPUT -value 0 –filter_in_cmt
“X1:PASS && X2:FAIL”

In the above example, the illegal_value constraint ensures that there
should be value 0 on any flip-flop output, which has passed the check for
constraint_message_tag, X1 and failed the check for
constraint_message_tag, X2.

Example 21

Consider the following constraint specification:

illegal_value -type FLIP_FLOP_OUTPUT -value 0
–instance_filter_in_cmt “X1:PASS && X2:FAIL”

In the above example, the illegal_value constraint checks that none of the
flip-flop output whose instance have passed the check for
constraint_message_tag X1 and failed the check for
constraint_message_tag X2, have a value 0.

Example 22

Consider the following constraint specifications:

illegal_value -filter_in_name “out*” –type OUTPUT_PORTS –
ignorecase –value 0
illegal_path -name “out*” –filter_in_type OUTPUT_PORTS –
ignorecase -value 0

In above cases, each illegal_value constraint will check that none of the
output ports matching with “out*” (case-insensitive) have value 0

Rules

The illegal_value constraint is used by the following rule:

SpyGlass Connectivity Verify Solution

Soc_10
SpyGlass DFT Solution

Conn_10
1258 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
initialize_for_bist

Currently, the initialize_for_bist constraint is merged with
test_mode constraint and can be used as an argument to the test_mode
constraint.

initstate

Purpose

The initstate command is used to specify the initial state sequence for
the design.

You can specify the initial state sequence in a Tcl file or have the product
read it from a VCD file.

NOTE: Use the simulation_data constraint instead of the initstate constraint because the
initstate constraint may be deprecated in the future.

Product

SpyGlass TXV solution

NOTE: The initstate command is not required for combinational analysis.

Syntax

The syntax of the initstate constraint is as follow:

current_design <du-name>
initstate
-type <tcl | vcd>
-file <file-name>
[-mode <mode-name>]
[-time <value>]
[-scopename <block-name>]
[-modulename <module-name>]
Version N-2017.12-SP1 1259
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit under which you are specifying the initial state
sequence.

-type <tcl | vcd>

The -type argument specifies the input file type as tcl for Tcl file or vcd
for VCD file.

-file <file-name>

The -file argument specifies the Tcl file or the VCD file.

-mode <mode-name>

The -mode argument is optional and is used to specify the applicable
mode (one of the mode values specified with the -mode argument of the
sdc_data constraint.) If you do not specify the -mode argument, the
SpyGlass TXV solution assumes that the specified initial state sequence is
applicable for all modes.

-time <value>

The -time argument is optional and is used to read the initial state by
using a timestamp.

-scopename <block-name>

The -scopename argument is used if the given VCD file is for a full chip
but you want to perform verification for a sub-block module. The
hierarchical path of the block module's instantiation (in VCD) must be
specified to the initstate constraint.

For example, consider a VCD file with a top module top and a sub module
block2 that lies within another block block1. Therefore, while
performing the verification of block2, the following must be defined to
initialize the block2 module from the VCD file generated for the full chip
design:

current_design block2
1260 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
initstate -type vcd -scopename
"top.block1_inst.block2_inst" -file chip.vcd

NOTE: For sequential analysis, it is recommended that you either provide sufficient
reset and set_case_analysis constraints so that the SpyGlass TXV
solution automatically reads the initial state sequence or specify the initstate
constraint. If the number of sequential elements initialized is high, the quality of
the result produced by the SpyGlass TXV solution is good.

-modulename <module-name>

The -modulename argument is used specify the top module.

Examples

Consider the example below:

initstate -type vcd -modulename A -scopename B -file
design.vcd

In the above example, A is the name of the top module and B is the sub
block module name. Here, the top module name A will replace the sub
block module name B and initial state sequence is read for the sub block
module.

An example of the Tcl File is as follows:

set sig1 0xffffffff
incr a
for {set i 1} {$i<=4} {incr i} {
 force xyz [incr a 4]
 simulate 2 -clk clk1
}
force sig2 [incr a]
simulate 2

Rules

The initstate constraint is used by the following rules:
SpyGlass TXV Solution
All rules
Version N-2017.12-SP1 1261
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
input

Purpose

The input constraint is used to specify clock domain at input ports.

Product

SpyGlass CDC solution

Syntax

The syntax of using the input keyword in a SpyGlass Design Constraints
file is as follows:

current_design <du-name>
clock -name <clk-name> -domain <domain-name>
input -name <input-name-list>

 -clock <src-clk-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs)

-name <clk-name>

The clock signal name.

-domain <domain-name>

The clock domain name.

-name <input-name-list>

Port names in <input-name-list> can be scalar ports, bus ports, or
wildcard names (matching against all top-level ports of appropriate type).

If you specify the same input port in multiple input constraint
1262 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
specifications, SpyGlass considers the last input constraint specification.
Consider the following example in which the same input port, in1, is
specified in two different input constraint specifications:

input –name in1 –clock clk2
input –name in1 –clock clk4

In this example, SpyGlass considers the last input constraint
specification, which is input in1 clocked by clock clk4.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-clock <src-clk-name>

For SpyGlass CDC solution, this argument is the name of the effective
source clock of a primary input port or a virtual clock specified by the -tag
<logical-clock-name> argument of the clock constraint. For virtual clock
specification, see Example 2.

For SpyGlass Auto Verify solution, this argument is the name of the clock
constraining the specified primary input ports.

NOTE: Do not specify clock domain names to this argument.

Examples

Example 1

Consider the following input constraint specification:

input -name in1 -clock clk1

The above specification matches input port with the name in1

If you want to check synchronization for paths starting from input ports,
you need to provide information about the source clocks associated with
those ports. The input constraint is used for this purpose.

Consider the following example:
Version N-2017.12-SP1 1263
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 39. Clock Crossing

Assume that the input port in1 is in the clock domain (say D1) of clock clk1
and is connected to the data pin of flip-flop top.q1 that is triggered by clock
clk2. Therefore, there is clock domain crossing between primary input port
in1 (clock domain D1) and the flip-flop top.q1 (clock domain D2). This
situation can be specified as follows:

current_design top
clock -name top.clk1 -domain D1
clock -name top.clk2 -domain D2
...
input -name in1 -clock top.clk1
...

NOTE: You must specify top-level simple (non-hierarchical) port names with the -name
argument of the input and output constraints.

Example 2

You can specify input constraints using virtual clocks if the clock domain of
the input port is not known or is not present in the current design. For
example, assume that the input port in1 in Example 1 is in the clock
domain of the virtual clock vclk. This situation can be specified as follows:

current_design top
clock -name top.clk2 -domain D2
...

in1

clk2

clk1

q1

clock crossing
1264 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
input -name in1 -clock vclk
...

Note that there is no clock constraint for the virtual clock vclk.

In this case, there is clock domain crossing between primary input port
in1 (clock domain vclk) and the flip-flop top.q1.

If input constraint is defined for multiple ports with the same virtual clock,
these ports are considered to be in the same domain.

You can use the match many (*) and match one (?) wildcard characters
with the -name argument of the input constraint by specifying the
regular expression enclosed in double quotes (““).

However, do not specify a wildcard character if you want to apply the
input constraint for the whole bus. For example, if you want to specify all
bits of the vector input port, say in[0:15], use the following constraint:

input -name "in" -clock clk

Rules

The input constraint is used by the following rules:

input_drive_strength

Purpose

Specifies the maximum capacitance (in picofarads) that any input port can
drive.

The maximum capacitance value is used by these rules for estimating the
clock buffers and high fan-out buffers on input lines.

SpyGlass CDC Solution

All clock
synchronization
rules except the
Clock_sync05 rule

Reset_sync01 Reset_sync02 Reset_sync03

Reset_sync04
Version N-2017.12-SP1 1265
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In case input_drive_strength constraint is not specified, the
primary ports of the design will be considered to have infinite drive
strength. The value of input_drive_strength is used to estimate the
buffers for ports nets that have a high load.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
pi_drive_strength.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the input_drive_strength constraint is as
follows:

current_design <top-du-name>
input_drive_strength
-value <value>

Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-value <value>

The maximum capacitance value.

You can specify only one input_drive_strength constraint for one
top-level design unit.

Rules

The input_drive_strength constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
1266 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
input_isocell

Purpose

Specifies the isolation cells at inputs of a power domain.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was inisocell.

NOTE: Currently, a level shifter with an enable pin (clamp level shifter cell) is also treated
as isolation cell.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the input_isocell constraint is as follows:

current_design <du-name>
input_isocell
-names <cell-name-list>
[-pin <pin-name-list>]
[-belongsto <pd-name>]
[-input_pin <pin-name>]
[-enable_pin <pin-name>]
[-inhibit]

Arguments

<du-name>

Name of the design unit under which you are specifying the input-side
isolation cells.

-names <cell-name-list>

Space-separated name list of input-side isolation cells. You can use
wildcard characters while specifying the cell names using the -names
argument.
Version N-2017.12-SP1 1267
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-pin <pin-name-list>

Space-separated name list of pins that are allowed to be connected outside
of a power domain.

-belongsto <pd-name>

Name of the power domain for which you are specifying the input-side
isolation cells.

-input_pin|-enable_pin <pin-name>

The -input_pin and -enable_pin arguments specify the input pin
name and the enable pin name for the cells specified with other
arguments. Then, these pin names are used in isolation cell instances for
named association.

-inhibit

Specifies that the specified cells should not be used as input-side isolation
cells.

Rules

The input_isocell constraint is used by the following rules:

SpyGlass Power Verify Solution
LPSVM48 LPSVM51 LPSVM52 LPSVM60
1268 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
instance_trace

Purpose

Specifies the instances or design units for which the PESAE04 and
PESAE06 rules generate the activity trace or PEPWR01 and PEPWR02
with n-cycles generate the power trace.

By default, if the instance_trace constraint is not specified, the
respective rules dump the activity/power trace for the top design in the
activity/power browser. If you specify this constraint, the pe_cycle_power
report lists the peak power consumed and the time interval for the
specified instances.

NOTE: For more information on the pe_cycle_power report, refer to the SpyGlass Power
Estimation and SpyGlass Power Reduction Rules Reference Guide.

You should use the instance_trace constraint to specify additional
hierarchies (using the -instname or -meminst argument) for which the
activity/power trace needs to be created.

NOTE: A design hierarchy specified with -meminst argument is only used to create a
power trace.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
set_instance_for_activity_trace.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the instance_trace constraint is as follows:

current_design <top-du-name>
instance_trace

-name <tag-name>
[-instname <inst-name-list>]
[-meminst <mem-inst-list>]
[-clock <clk-name>]

[-type <type-name>]
[-component <component-name>]
Version N-2017.12-SP1 1269
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).
The Power Activity Product works only with designs having a single top-
level design unit (checked by the PECHECK05 rule). You must specify the
name of the top-level design unit.

NOTE: The power/activity trace for the top-level design unit is always generated.

-name <tag-name>

Symbolic name for activity/power trace to be generated. The <tag-name>
is a symbolic alphanumeric string used as the activity trace label in the
SpyGlass Activity/Power Browser.

Each symbolic name specified by the -name argument can correspond to
multiple instance names. If there are multiple instance names specified,
the symbolic name for each instance name is derived by appending an ID
with the symbolic name specified.

See Viewing Results in Activity Browser section in the
SpyGlass Power Estimation and SpyGlass Power Reduction Rules Reference
Guide for more details.

-instname <inst-name-list>

Name of the instances for which you want the activity/power trace.

This argument supports wildcards. Therefore, you can use wildcard
characters while specifying the instance names. Currently, only the asterisk
(*) operator and question mark (?) are supported as wildcard characters.
In addition, you must specify wildcard names enclosed in double quotes
("").

NOTE: If you do not specify the -instname argument, respective rules generate the
activity/power trace for the top-level design unit only.

-meminst <mem-inst-list>

Memory instances or design hierarchies, for which you want the power
trace. For the design hierarchies, the trace is done for all the memories
1270 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
instantiated under the specified hierarchy.

You can also use wildcards for specifying the memory instances.

In case of multiple instances, a power trace is done for all memory
instances in a single graph.

-clock <clk-name>

List of root clocks of the specified instance for which the graph will be
populated by PESAE06 rule.

-type <type-name>

Used to specify the type of power. It can have the following values:
leakage, internal, switching, all, and total. The total value for
-type attribute generates the total component power graph and it
overwrites all other options. For more information, see the Viewing the
Power Graph section in the SpyGlass Power Estimation and SpyGlass Power
Reduction Rules Reference Guide.

-component <component-name>

Used to specify the design component that you want to include in the
graph. It can have following values: combinational, sequential,
clock, memory, blackbox, iopad, and all values. For more
information, see the Viewing the Power Graph section in the SpyGlass
Power Estimation and SpyGlass Power Reduction Rules Reference Guide.

Rules

The instance_trace constraint is used by the following rules:

ip_block

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

PESAE04 PESAE06 PEPWR01 PEPWR02
Version N-2017.12-SP1 1271
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass CDC solution and SpyGlass Auto Verify Solution

Purpose

Your design may have IP blocks instantiated where you are only interested
in clock domain crossing synchronization status at the interface to ensure
that the IP block is hooked up correctly.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was IP_block.

Product

SpyGlass CDC solution, SpyGlass Auto Verify solution

Syntax

Use the ip_block constraint to specify the IP blocks in your design in the
following format:

ip_block -name <du-name>

Arguments

-name <du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs). You can
specify more than one IP Block design unit as a space-separated list.

Then, the clock synchronization checking rules will check for
synchronization status of the clock crossing at the interface and ignore the
clock crossings within the IP block.

NOTE: Violations of any GuideWare rule of SpyGlass CDC solution are not reported for IP
modules specified by the ip_block constraint.

The following figure summarizes the above situation:
1272 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 40. Synchronization Status Check

Rules

The ip_block constraint is used by the following rules:

For SpyGlass DFT solution and SpyGlass DFT DSM solution

Purpose

Specifies the design units for which you want to generate the boundary
information.

SpyGlass CDC Solution
Ac_unsync01 Ac_unsync02 Clock_sync08 Clock_sync03a
Clock_sync03b Ac_handshake01 Clock_sync08a Clock_sync09
Ac_handshake02 Ac_cdc01a Ac_cdc01b Ac_cdc01c
Ac_cdc08 Propagate_Clocks Ac_conv01 Ac_conv02
Ac_conv03 Ac_fifo01 Ac_sync02 Ac_sync01
SpyGlass Auto Verify Solution
Av_bus01 Av_bus02 Av_deadcode01 Av_staticnet01
Av_case01 Av_case02 Av_bitstuck01 Av_fsm_analysis
Av_dontcare01 AV_setreset01 Av_staticreg01 Av_divide_by_zero

IP Block
Version N-2017.12-SP1 1273
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

Use the ip_block constraint to specify the IP blocks in your design in the
following format:

ip_block -name <du-name>
[-create_constraints]
[-create_report]
[-clock]
[-mode]
[-control]
[-observe]

Arguments

-name <du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs). You can
specify more than one IP Block design units as a space-separated list.

-create_constraints

Generates boundary information for a constraint file in an SGDC format.

-create_report

Generates boundary information for a report file in a textual format.

-clock

Lists clock-specific boundary information for Shift mode, Capture mode,
and at-speed mode in the generated report.

-mode

Lists test mode-specific boundary information for Shift mode, Capture
mode, and at-speed mode in the generated report.
1274 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-control

Generates controllability-specific boundary information for the IP block in
Capture mode.

-observe

Generates observable-specific boundary information for the IP block in
Capture mode.

Rules

The ip_block constraint is used by the following rules:

isolation_cell

Purpose

The isolation_cell constraint is used to specify the isolation cells in
power domains.

NOTE: Currently, a level shifter with an enable pin (clamp level shifter cell) is also treated
as isolation cell.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was isocell.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the isolation_cell constraint for the LPSVM08,
LPSVM09, LPSVM10, LPSVM22, LPSVM31, LPSVM35, LPSVM48, and
LPSVM51 rules of the SpyGlass Power Verify solution is as follow:

SpyGlass DFT Solution

CreateDebugSGDC
SpyGlass DFT DSM Solution

Info_IP_Report
Version N-2017.12-SP1 1275
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
current_design <du-name>
isolation_cell
-names <name-list>
[-belongsto <dom-name>]

The syntax to specify the isolation_cell constraint for the LPSVM23
rule of the SpyGlass Power Verify solution is as follows:

current_design <du-name>
isolation_cell
[-iso_enable_val <0 | 1>]
[-and_cell <cell-name>]
[-or_cell <cell-name>]
[-latch_cell <cell-name>]
[-not_cell <cell-name>]
[-and_cell_for_isosig <cell-name>]
[-or_cell_for_isosig <cell-name>]
[-input_pin <pin-name>]
[-output_pin <pin-name>]
[-enable_pin <pin-name>]
[-config 1 | 2 | 3 | 4]

Arguments

<du-name>

Name of the design unit under which you are specifying the level shifters
with isolation capability.

-names <name-list>

Space-separated name list of output-side isolation cells.

You can use wildcard characters while specifying the cell names using the -
names argument. Currently, only the star (*) operator for zero or more
times and question mark (?) for zero or one time are supported. In
addition, you must specify wildcard names enclosed in double quotes ("").

-belongsto <dom-name>

Name of the power domain for which you are specifying the <name-
list>.
1276 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
If you do not specify the -belongsto argument, the specified cells are
applicable for all power domains.

-iso_enable_val <0 | 1>

A value 0 or 1 of the -iso_enable_val argument specifies that the
steady state of the power domain is active low or active high respectively.

-and_cell|-or_cell|-latch_cell <cell-name>

The cell name <cell-name> specified with the -and_cell,
-or_cell, and -latch_cell arguments are the AND cell, OR cell, and
Latch Cell to be used as isolation cells, respectively.

You should specify the -and_cell, -or_cell, and -latch_cell
arguments if any of the power domain output signals has an expected
steady state value of active low, active high, or hold, respectively.

-not_cell <cell-name>

 The cell name <cell-name> specified with the -not_cell argument is
the NOT cell to be used to change the polarity of the isolation cell.

-and_cell_for_isosig|-or_cell_for_isosig <cell-name>

If you specify multiple isolation signals with the -isosig argument of the
voltage_domain constraint, specify the cell to be used for generating a
single isolation signal by specifying AND or OR gates for the signals using
the -and_cell_for_isosig argument or the
-or_cell_for_isosig argument, respectively.

When you specify the -and_cell_for_isosig argument, the AND
gate is applied to the signal. Similarly, when you specify the
-or_cell_for_isosig argument, the OR gate is applied to the
signals. You should specify only one of these arguments

-input_pin|-output_pin|-enable_pin <pin-name>

The -input_pin, -output_pin, and -enable_pin arguments
specify the input pin name, the output pin name, and the enable pin name
for the cells specified with other arguments. Then, these pin names are
used in isolation cell instances for named association.
Version N-2017.12-SP1 1277
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-config

The -config argument specifies the order of values in the isolation cell
instantiations as follows:

The same configuration without the enable part is also applicable for the
NOT cell used for changing the polarity of the isolation signal. Thus, the
configurations 1 and 3 indicate input-output and configurations 2 and
4 indicate output-input.

Configuration is useful when pin names are not provided and the instances
do not have named association.

Rules

The isolation_cell constraint is used by the following rules:

isolation_wrapper

Purpose

The isolation_wrapper constraint specifies the isolation wrapper modules.
The wrapper module name should be specified in the -name argument.
Wildcard characters are also supported.

Value Order
1 input-enable-output
2 output-input-enable
3 enable-input-output
4 output-enable-input

SpyGlass Power Verify Solution
LPSVM08 LPSVM09 LPSVM10 LPSVM22
LPSVM23 LPSVM31 LPSVM35 LPSVM48
LPSVM51
1278 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the isolation_wrapper constraint is as follows:

isolation_wrapper -name <isolation-wrapper-mod-name>

Arguments

-name <isolation-wrapper-mod-name>

Use this argument to specify the wrapper module name.

Rules

The isolation_wrapper constraint is used by the following rules:

keeper

Purpose

The keeper constraint is used to specify bus-keeper design units or nets
connected to a (virtual) bus-keeper design unit instance so that various
rules can take appropriate action.

For example, the Scan_21 rule uses the keeper constraint to check
whether a scan flip-flop exists in the fan-in of the enable pin of a bus-
keeper design unit. The Tristate_06 rule and the Tristate_09 rules ignore
those floating tristate signals that are connected to an instance of the bus-
keeper design unit or are connected to the specified net.

Product

SpyGlass DFT solution

SpyGlass Power Verify Solution
LPSVM08 LPSVM22 LPSVM47 LPSVM60
Version N-2017.12-SP1 1279
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the keeper constraint for the Scan_21 rule is as follows:

keeper
-name <du-name>
[-pin <pin-name> -value <value>]

The syntax of the keeper constraint for the Tristate_06 and
Tristate_09 rules is as follows:

keeper
[-name <du-name> -pin <pin-name> -value <value>]
| [-name <net-name>]

NOTE: The keeper constraint supports wildcard characters.

Arguments

-name <du-name>

The name of the bus-keeper design unit (black box).

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as keeper design units.

You can specify a single design unit name or a space-separated list of
design unit names.

-pin <pin-name>

(Optional) The enable pin on the bus-keeper design unit (black box). You
can specify only a single pin name.

If you do not specify the enable pin, the design unit (black box) is always
assumed an enabled bus-keeper.

-value <value>

(Optional) The expected value (0,1, X, or Z) on the enable pin
<pin-name> under the shift mode.
1280 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You need to specify the value only if you have specified the pin name.

-name <net-name>

(Optional) The net that is connected to a tristate signal to be ignored.

You need to specify the hierarchical net name with respect to the top (with
top name being optional).

Rules

The keeper constraint is used by the following rules:

latched_port

Purpose

The latched_port constraint is used to specify that a vector port is error-
free.

Product

SpyGlass Power Estimation Solution

Syntax

The syntax to specify the latched_port constraint is as follows:

current_design <du-name>
latched_port
-port_name <name>

Arguments

<du-name>

Name of the design unit under which you are specifying the latched port.

SpyGlass DFT Solution
Scan_21 Tristate_06 Tristate_09
Version N-2017.12-SP1 1281
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-port_name <name>

Name of the vector port that you want to declare as error-free.

Rules

The latched_port constraint is used by the PRARITH01 rule.

levelshifter

Purpose

The levelshifter constraint is used to specify the names of design
units to be used as level shifters.

NOTE: Currently, a level shifter with an enable pin (clamp level shifter cell) is also treated
as isolation cell.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the levelshifter constraint is as follows:

current_design <du-name>
levelshifter
-name <name-list>
-from <vd-name>
-to <vd-name>
[-inTerm <term-name>]
[-enableTerm <term-name-list>]
[-outTerm <term-name>]
[-inSupplyTerm <term-name>]
[-outSupplyTerm <term-name>]
[-enableNet <en-net-name>]
[-locate <vd-name> | src | dest]
1282 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Name of the design unit under which you are specifying the level shifters.

-name <name-list>

Space separated list of names of the level shifter design units. You can use
wildcard characters while specifying level shifter cell names using the -
name argument. Currently, only the ‘*’ operator for zero or more times and
‘?’ for zero or one time are supported. You must enclose wildcard-based
names in double quotes ("").

-to <vd-name>

Name of a voltage domain specified using the voltage_domain (SpyGlass
Power Verify solution) constraint.

-inTerm <term-name> / -outTerm <term-name>

Name of the input/output terminal

-enableNet <en-net-name>

Name of the net to which the enable terminal is to be connected.

-enableTerm <term-name-list>

Space-separated name list of enable terminals.

When you specify the -enableTerm argument, SpyGlass assumes the
level shifter to have isolation capability (and requires you to also specify
such level shifters with the isolation_cell constraint). Then, the
LPSVM08, LPSVM09, and LPSVM10 rules of the SpyGlass Power Verify
solution do not skip such level shifter instances (with isolation capability) at
the output of power domains.

-outTerm <term-name>

Use the -inSupplyTerm and -outSupplyTerm arguments to specify
the input-side supply terminal and output-side supply terminal respectively
as used by the LPPLIB05 rule of the SpyGlass Power Verify solution.
Version N-2017.12-SP1 1283
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-locate <vd-name> | src | dest

The -locate argument specifies the location (voltage domain) of the
level shifter instance. For LPSVM30 rule of the SpyGlass Power Verify
solution, you can specify the actual voltage domain or specify src or dest
(case-insensitive) to indicate that the level shifter instance should be
placed in the source voltage domain or destination voltage domain,
respectively. If the -locate argument is not specified, the LPSVM30 rule
of the SpyGlass Power Verify solution places all level shifter instances at
the top of the design hierarchy.

Rules

The levelshifter constraint is used by the following rules:

lp_ignore_cells_for_erc

Purpose

The lp_ignore_cells_for_erc constraint is used to specify the cells
that should be ignored while checking of LPERC rules. You can use wildcard
characters while specifying cell names using the -names argument.
Currently, only the * operator is supported. You must enclose wildcard-
based names in double quotes ("").

Product

SpyGlass Power Verify solution

SpyGlass Power Verify Solution
LPSVM04A LPSVM04B LPSVM04C LPSVM04D
LPSVM08 LPSVM09 LPSVM10 LPSVM17
LPSVM30 LPPLIB04 LPPLIB05 LPPLIB06
LPPLIB07 LPPLIB15
1284 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax to specify the lp_ignore_cells_for_erc constraint is as
follows:

lp_ignore_cells_for_erc -names <cell-name-list>

Arguments

-names <cell-name-list>

A space separated list of cell names is specified.

Rules

The lp_ignore_cells_for_erc constraint is used by the following
rules:

make_mandatory_upf_commands_options

Purpose

This command is used to make optional arguments of a UPF command as
mandatory.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the
make_mandatory_upf_commands_options constraint is as follows:

make_mandatory_upf_commands_options –name <command-name> -
options <option-list>

SpyGlass Power Verify Solution
LPERC01A LPERC01B LPERC01C LPERC02A
LPERC02B LPERC03A LPERC04A LPERC04B
Version N-2017.12-SP1 1285
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <command-name>

(Mandatory) Specifies the name of the UPF 1.0/2.0 command. The
command name is checked against UPF 1.0/2.0 for sanity checking of the
constraint in the SGDC_lowpower119 rule.

-options <option-list>

(Mandatory) Specifies the arguments of the UPF command. These
arguments once specified become mandatory. The specified arguments are
checked against UPF 1.0/2.0 for sanity checking of the constraint in the
SGDC_lowpower119 rule.

Rules

The make_mandatory_upf_commands_options constraint is used
by the following rule:

mapped_pin_map

Purpose

When SpyGlass analyzes the RTL description, there is no knowledge about
post-synthesis pin names. The design is synthesized internally, using the
SpyGlass synthesis libraries that may use pin names different from the
actual ones. Therefore, you need to define a pin name mapping for the
different types of pins.

The mapped_pin_map constraint is used to define the mapping between
the pin names specified in the user’s library and the SpyGlass synthesis
library.

SpyGlass Power Verify Solution

SGDC_lowpo
wer119

UPFSTX_18
1286 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Constraints solution

Syntax

The syntax to specify the mapped_pin_map constraint is as follows:

current_design <du-name>
mapped_pin_map
[-clock <clock_pin_names_list>]
[-enable <enable_pin_names_list>]
[-data <data_pin_names_list>]
[-out <output_pin_names_list>]
[-preset <preset_pin_names_list>]
[-clear <clear_pin_names_list>]

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-clock <clock_pin_names_list>

(Optional) Specify the list of clock-pin names in the user's library.

-enable <enable_pin_names_list>

(Optional) Specify the list of enable-pin names in the user's library.

-data <data_pin_names_list>

(Optional) Specify the list of data-pin names in the user's library.

-out <output_pin_names_list>

(Optional) Specify the list of output-pin names in the user's library.

-preset <preset_pin_names_list>

(Optional) Specify the list of preset-pin names in the user's library.
Version N-2017.12-SP1 1287
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clear <clear_pin_names_list>

(Optional) Specify the list of clear-pin names in the user's library.

NOTE: The mapped_pin_map constraint is required only when analyzing RTL
descriptions. For netlists, the information is obtained from the corresponding gate
library (.sglib files or .lib files).

For example, consider the following:

current_design top
mapped_pin_map
-clock CK CP -enable EN EX -data D -out Q QN

The above specification indicates that pins named CK or CP are clock pins
in the user-specified technology library cells. Similarly, pins named EN or
EX are enable pins, pins named D are data pins, and pins named Q or QN
are output pins.

Rules

The mapped_pin_map constraint is not rule-specific. It is used by the
whole SpyGlass Constraints solution.

mcp_info

Purpose

The mcp_info SGDC constraint is used to specify enables and other
attributes to verify the SDC multicycle path constraints.

NOTE: The mcp_info SGDC command gets priority over any parameters.

Product

SpyGlass TXV Solution

Syntax

The syntax of the mcp_info constraint is as follows:

current_design <du-name>
1288 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
mcp_info
-name <name>
[-multiplier <MUL>]
[-launch_clock <LC>]
[-launch_enable <LE>]
[-launch_flop <LE>]
[-capture_clock <CC>]
[-capture_enable <CE>]
[-capture_flop <CE>]
[-cpath_enable]
[-start/-end]

-sdc_file_name <file-name>
-sdc_line <line-number>
[-force_ldce <0 | 1>]
[-make_pi <list-of-signals>]
[-IConstrs <expression>]

Arguments

-name <name>

(Mandatory) Used to match the name of the set_multicycle_path
constraint defined in the SDC file. You can specify the name of a
set_multicycle_path constraint in the SDC file by using the
comment argument:

set_multicycle_path 2 -from C1 -to C2 -comment {Atrenta -name
<name1>}

-multiplier <MUL>

(Optional) Used to specify the path multiplier of the
set_multicycle_path constraint.

-launch_clock <LC>

(Optional) Used to specify the SDC name of the clock that is traversing to
the source point of the timing path constrained by the
set_multicycle_path constraint.
Version N-2017.12-SP1 1289
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-launch_enable <LE>

(Optional) Used to specify the start-point enable expression in terms of
user specified signals in the RTL.

NOTE: Do not use this argument to specify clock path enables.

-launch_flop <flop-list>

(Optional) Use this argument to specify an enable for the launch flip-flop.
This argument must be used with the -launch_enable argument.

Apart from the -launch_enable argument, no mcp_info
argument is supported with the -launch_flop argument.

This argument supports wildcards.

See Example 3: Specifying Enables for Launch/Capture Flip-Flops.

-capture_clock <CC>

(Optional) Used to specify the SDC name of the clock that is traversing to
the end-point of the timing path constrained by the
set_multicycle_path constraint.

-capture_enable <CE>

(Optional) Use to specify the end-point enable expression in terms of user
specified signals in the RTL.

NOTE: Do not use this argument to specify clock path enables.

-capture_flop <flop-list>

(Optional) Use this argument to specify an enable for the capture flip-flop.
This argument must be used with the -capture_enable argument.

Apart from the -capture_enable argument, no mcp_info
argument is supported with the -capture_flop argument.

This argument supports wildcards.

See Example 3: Specifying Enables for Launch/Capture Flip-Flops.

-cpath_enable

(Optional) Specify this argument to detect enables only in the clock path
for both source and destination.
1290 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The following mcp_info arguments are not supported with this
argument:

 -capture_enable

 -launch_enable

 -force_ldce

 -launch_flop

 -capture_flop

See Example 4: Specifying cpath_enable.

-start/-end

(Optional) If the multi-cycle information is relative to the period of the start
clock, specify -start. Otherwise, specify -end. If neither is specified, -
end is taken as default. A FATAL violation message is reported if you
specify both -start and -end in the same mcp_info constraint.

-sdc_file_name <file-name>

(Mandatory, if either force_ldce, make_pi, or lConstrs is specified)

Used to specify the name of the SDC file which contains the multicycle path
specification. For this specification, the force_ldce, make_pi, or
lConstrs arguments are applied.

The SDC file must exist in the project working directory. Do not specify the
file name as an absolute or relative path.

-sdc_line <line-number>

(Mandatory, if either force_ldce, make_pi, or lConstrs is specified)

Used to state the line number of the SDC file specified using the
sdc_file_name argument. This is the line number of the multicycle path
specification on which the force_ldce, make_pi, or lConstrs
arguments are applied.

-force_ldce <0 | 1>

(Optional) This argument forces multicycle path verification on the basis of
Version N-2017.12-SP1 1291
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
data transition on the source side, instead of verification based on the
source enable.

Set this argument to 1 to verify on the basis of data transition on the
source side.

Options Not Supported With force_ldce

The following arguments cannot be specified with the force_ldce
argument: -launch_enable, -launch_clock, or -
capture_clock. If any of the existing options is combined with
-force_ldce, a violation is reported. See Example 2: The force_ldce
Argument Violations.

-make_pi <list-of-signals>

(Optional) Use to specify the signals whose fan-in cone is not to be
considered during multicycle path verification. The SpyGlass TXV solution
cuts off the design present in the fan-in of the specified signals and treats
these signals as primary inputs.

Specify the list of signals by separating the signal names by the “@”
symbol. For example, sig1@sig2@sig3.

-lConstrs <expression>

(Optional) Initializes signals.

This argument takes an expression, which comprises the value of the
signals, so that the final expression is always true. It can take simple
expressions, such as &, I, and ~.

Example

This section contains the following examples:
 Example 1: Flows of Multicycle Path Verification

 Example 2: The force_ldce Argument Violations

 Example 3: Specifying Enables for Launch/Capture Flip-Flops

Example 1: Flows of Multicycle Path Verification

The flow of multicycle path verification is in two categories:
1292 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Name specified in the mcp_info SGDC command matches with that in
the SDC file

 Name specified in the mcp_info SGDC command does not match with
that in the SDC file

Name Specified in the SGDC File Matches

In this example, the name MCP1 matches with the name specified in the
SDC file. Therefore, the values specified in the SGDC file are used to verify
the set_multicycle_path constraint. You can use this approach to
override some of the attributes or to provide missing information that
SpyGlass is not able to infer.

SDC

set_multicycle_path 3 -from {ff1_reg/CP} -to {ff2_reg/D} -
comment {Atrenta -name <MCP1>; My comment}

SGDC

mcp_info -name MCP1 -launch_clock CLK -launch_enable
test.src_en -capture_clock CLK2 -capture_enable
test.dst_en

Considerations
The following considerations are applied during the verification:

 If either of the -multiplier, -start/-end, -launch_clock, -
launch_enable, -capture_clock, or -capture_enable
arguments is specified, the value specified in the SGDC constraint
overrides that attribute for all the timing paths constrained through the
set_multicycle_path constraint.

 For the SDC clocks specified in the -launch_clock and -
capture_clock arguments, SpyGlass checks whether the clocks
specified are traversing at either the source or destination. If not, those
clocks are ignored.

 The enable expression specified in the -launch_enable or -
capture_enable argument is not validated by SpyGlass. The
verification is performed based on the assumption that these signals are
the enabling condition for the start/end-points.

Name Specified in the SGDC File Does Not Match
Version N-2017.12-SP1 1293
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In this example, the name MCP11 does not match with the name specified
in the SDC file. You can use this approach when you do not have a
set_multicycle_path constraint and want to validate the timing path
formally.

SDC

set_multicycle_path 3 -from {ff1_reg/CP} -to {ff2_reg/D} -
comment {Atrenta -name <MCP1>; My comment}

SGDC

mcp_info -name MCP11 -launch_clock CLK -launch_enable
test.src_en -capture_clock CLK2 -capture_enable
test.dst_en

Considerations
The following considerations are applied during the verification:

 The -name argument would be a name that does not match with any of
the existing set_multicycle_path constraints.

 The -multiplier argument is mandatory for this flow.

 If -start is specified, the -launch_capture argument is
mandatory to determine the multi-cycle information relative to the
period of the start clock.

 If -end is specified, the -capture_clock argument is mandatory to
determine the multi-cycle information relative to the period of the end
clock.

 Either the -launch_enable or -capture_enable arguments must
be specified. The missing enable is taken as one.

 If either of -launch_capture or -capture_clock is not specified,
the verification is done based on the multi-cycle information relative to
the period of the start clock.

Example 2: The force_ldce Argument Violations

This example shows the violation message that is reported when the
-force_ldce argument is specified with unsupported arguments.
Consider the following mcp_info SGDC specification.

mcp_info
 -name "MCP1"
1294 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 -multiplier 2
 -launch_clock "clk"
 -capture_clock "pclk"
 -launch_enable "(pclkn)&pclkn"
 -capture_enable "pclkn"
 -start
 -sdc_file_name "test.sdc"
 -sdc_line 8
 -force_ldce 1

The SpyGlass TXV solution reports the following violation because the
-force_ldce argument cannot be specified with -launch_enable,
-launch_clock, or -capture_clock:

For mcp_info command '-force_ldce' and '-launch_enable' are
not supported together. '-force_ldce' and '-launch_clock' are
not supported together. '-force_ldce' and '-capture_clock' are
not supported together.

Example 3: Specifying Enables for Launch/Capture
Flip-Flops

This section contains the following examples:
 Specifying launch_flop

 Specifying capture_flop

 Impact of Multiple mcp_info Commands

 Multiple launch_flop/capture_flop Options Specified for Same mcp_info
Command

Specifying launch_flop
For the launch flip-flop, specify the hierarchical name of the output
terminal (Q terminal) of the launch flip-flop, as shown in the following
mcp_info specification.

mcp_info -launch_flop "F1.Q, F2.Q, F3.Q" -launch_enable "e1"
-name MCP1

Specifying capture_flop
For the capture flip-flop, specify the hierarchical name of the input terminal
Version N-2017.12-SP1 1295
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
(falling on the data path) of the launch flip-flop, as shown in the following
mcp_info specification.

mcp_info -capture_flop "F5.D, F6.D, F7.D" -capture_enable
"e2" -name MCP1

However, if the mcp_info specification is:

mcp_info -capture_flop "F5.D, F6.D, F7.D" -name MCP1

The Txv_mcp_info rule reported the following violation:

TXV_SGDC_MCP: For mcp_info command '-capture_flop' cannot be
used without '-capture_enable'.

Impact of Multiple mcp_info Commands

You can specify multiple mcp_info commands with the same -name
argument.

In this example, the following snippet shows one mcp_info specification
with launch_enable/capture_enable, while the other specification
shows without launch_flop/capture_flop.

mcp_info -name "MCP1" -launch_flop "F1.Q" -launch_enable "e1"

mcp_info -name "MCP1" -launch_enable "e2"

In this case, e1 is the enable for flip-flop F1, while enable e2 is for all
other launch flip-flops.

Multiple launch_flop/capture_flop Options Specified for Same
mcp_info Command

For the following set_multicycle_path SDC commands, multiple
launch_flop/capture_flop arguments have been specified for the
same flip-flop in the same mcp_info command:
1296 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The mcp_info SGDC specification is as follows.

The Txv_mcp_info rule generates the following violation messages:

TXV_SGDC_MCP:Duplicate entry for test.sgdc:8 "mcp -name MCP2 -
multiplier 2 -launch_enable en3 -start " ignored for sdc
constraint

TXV_SGDC_MCP:Duplicate entry for test.sgdc:12 "mcp -name MCP2 -
multiplier 2 -capture_enable en3 -start " ignored for sdc
constraint

TXV_SGDC_MCP:Duplicate entry for -capture_flop test.ff3_reg.D
test.sgdc:14 "mcp -name MCP2 -multiplier 2 -capture_enable en2
-capture_flop test.ff3_reg.D -start " ignored for sdc
constraint.

Example 4: Specifying cpath_enable

The following mcp_info specification shows how to specify the
-cpath_enable argument:

mcp_info -name MCP1 -cpath_enable

Rules

The mcp_info constraint is used by the following rules:

SpyGlass Txv Solution

Txv_MCP01
Version N-2017.12-SP1 1297
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
memory

Purpose

The memory constraint is used to specify information about memory cells
in the design. This information is used by PEPWR18 rule for memory
splitting and PESTR11 rule for identifying the enable signals of the memory
cells.

You can specify the memory details like its address ports, data ports,
enable signals and their polarity using this constraint. Half-sized equivalent
and quarter-sized equivalent memories can also be specified for the
memory cells.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the memory constraint is as follows:

memory
-name <list-of-memory-cells>
-address <list-of-address-ports>
-data <list-of-data-ports>
-halfsize <module-name1>
-quartersize <module-name2>
-enable <list-of-enables>
-enable_polarity <en-polarity>

Arguments

-name <list-of-memory-cells>

Name of a memory cell or a list of memory cells. You can also use wildcards
for specifying the memory cell names.

While specifying multiple memory cells or wildcard specification with the -
name argument, you cannot use any of -address, -data, -halfsize
or -quartersize argument.
1298 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-address <list-of-address-ports>

List of address ports of a memory cell.

NOTE: For the -address/-data argument of the memory constraint, generally, the
address/data bus that is defined in library as A[0:32] is specified as 'A'. For
some libraries, where the address/data bus is in form of bits like A1, A2, A3, and
so on, you can collectively specify 'A%d' for all the pins. The tool infers all such pins
from the library as the pins of the specified address/data bus.

-data <list-of-data-ports>

List of data ports of a memory cell.

-halfsize <module-name1>

Half-sized equivalent for a memory cell.

-quartersize <module-name2>

Quarter-sized equivalent for a memory cell.

-enable <list-of-enables>

List of enable signals of the specified list of memory cells.

-enable_polarity <en-polarity>

Polarity of the specified enable signals.

Rules

The memory constraint is used by the following rules:

memory_force

Currently, the memory_force constraint is merged with test_mode

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 PEPWR18 PESTR11
poweraudit
Version N-2017.12-SP1 1299
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
constraint and can be used as an argument to the test_mode constraint.

memory_port

Purpose

The memory_port constraint is used to specify information about
memory cells or submodules in the design. This constraint can be specified
at the technology cell level and at the wrapper level. When you have an
RTL module with MBIST and other peripheral logic contained inside a
wrapper, it is recommended that you specify the complete wrapper as
memory using the memory_port constraint. In such cases, you will
specify the ports of the wrapper memory in the arguments, such as -when
and -clock. Refer to the Examples section for more details.

Refer to the Rules section for a list of rules that use the information
specified in the memory_port constraint to determine memory
specifications.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the memory_port constraint is as follows:

memory_port
-name <list-of-memory-cells>
-data <data-port>
-address <address-port>
-operation <read|write|unwanted>
-posedge|-negedge <clk_pin>
-when <pin-state>
-label <label-name>
-async
-retain_output <0|1|yes|no>
-rom
-cycle_count <0|1>
-writethru
1300 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-data_out <data-out-port>
-write_mask <write-mask-port>
-write_mask_value <0|1>
-sleep_mode_when <pin-sleep-state>
-down_cycles <num-cycles-mem-down>
-wakeup_cycles <num-cycles-mem-wakeup>

Arguments

-name <list-of-memory-cells>

Name of a memory cell or a list of memory cells or sub-modules. A sub-
module refers to a design unit that can act as a memory.

You can also use wildcards for specifying the name of memory cells and
modules.

-data <data-port>

Specifies the data port of a memory module.

-address <address-port>

Specifies the address port of a memory module.

NOTE: For the -address/-data argument, the address/data bus that is defined in
library as A[0:32] is specified as 'A'. For some libraries, where the address/data
bus is in form of bits such as A1, A2, A3, you can collectively specify A* for all the
pins. The tool infers all such pins from the library as the pins of the specified
address/data bus.

-operation <read|write|unwanted>

Specifies the type of operation to be performed on a memory module. The
unwanted operation represents a condition, where the memory control
pins are in an unexpected state. For example, if a clock edge is applied
while the chip enable for the memory is turned off.

-when <pin-state>

Lists conditions, comprising of states of pins required to trigger the
specified operation on a memory module. In this option, you can specify
Version N-2017.12-SP1 1301
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pins, which should be asserted high and pins, which must be asserted low
(with a ! prefix). For example, if CE must be high and WENB must be low
for the write operation, you need to specify: -when "CE !WENB"

To specify the condition, you can use any of the following operators:

()&|^!.

-posedge|-negedge <clk_pin>

Specifies whether the specified operation occurs on rising or falling
transition of the associated clock pin.

-label <label-name>

Specifies a unique label to identify a memory_port constraint.

-async

Specifies that the memory is an asynchronous read memory.

When this argument is specified in the PESAE07 rule, the read frequency of
the memory is calculated based on the change in the address bus.

NOTE: Do not specify the -async argument with the -posedge and -negedge
arguments.

-retain_output <0|1|yes|no>

Specifies whether the output retains its value or not when the memory is
switched off.

Default value is 1.

-rom

Specifies that the memory is a read-only memory.

When this argument is specified, all PE rules, except PESTR28 and
PEPWR28, treat the memory cell as a read-only memory. Therefore, all

Value Condition
0 | no Data at the read output pin does not retain its value
1 | yes Data at the read output pin retains its value
1302 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
write operations are ignored if the -rom argument is specified in a read
operation.

NOTE: Do not specify the -rom argument with the -write argument.

-cycle_count <0|1>

Specifies the number of clock cycles for the data to be available at the
memory output from the time the read condition is enabled.

Default value is 0.

-writethru

Specifies whether the memory is write-through or not.

Specifying this argument ensures that the data written to the data port
(specified by the -data argument) is read and available at the data
output port (specified by the -data_out argument).

-data_out <data-out-port>

Specifies the data output port corresponding to the data port, when the
-writethru argument is specified.

NOTE: The -writethru and -data_out arguments must be specified together.

-write_mask <write-mask-port>

Specifies the write mask port for the data port.

The write data port is masked if the value on the port specified by the
-write_mask argument is equal to the value specified by the
-write_mask_value argument.

-write_mask_value <0|1>

Specifies the value of the write mask port (specified by the -write_mask
argument) for which the write data port is masked.

For example, consider that the write mask port is Q[0:63] and the write
mask value is 1. In this case, the write data port will be masked only if the
value on the Q[0:63] port is equal to 1.

NOTE: The -write_mask_value and -write_mask arguments must be specified
Version N-2017.12-SP1 1303
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
together.

NOTE: The -writethru, -data_out, -write_mask_value, and
-write_mask arguments must be specified for the write operation only. For the
read operation, these arguments are ignored.

-sleep_mode_when <pin-sleep-state>

Specifies the states of pins required to trigger light sleep mode on a
memory module.

In this option, you can specify the memory pin that should be asserted
high. For example, if the LS pin must be high to trigger light sleep mode,
specify the following expression:

-sleep_mode_when LS

-down_cycles <num-cycles-mem-down>

Specifies the number of clock cycles required to assert the light sleep pin of
the memory for it to enter light sleep mode.

-wakeup_cycles <num-cycles-mem-wakeup>

Specifies the number of clock cycles required to de-assert the light sleep
pin of the memory for it to recover from light sleep mode.

Examples

This example illustrates how to use the memory_port constraint at
wrapper (submodule) level.

The image below, memInst.I1 is the hierarchical boundary in the design
for the module (wrapper) memwrapper. The mtest_i port is the test
mode data and control logic.
1304 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The memory_port constraint specification for the memwrapper wrapper
using the module ports as follows.

#-- Wrapper memwrapper

Read operation

memory_port -name " memwrapper " \

 -operation read \

 -label syncread \

 -posedge rd_clk \

 -when "!wr_en" \

 -address "rd_addr" \

 -data "rd_data" \

 -retain_output yes \

 -cycle_count 0

Write operation

memory_port -name " memwrapper " \

 -operation write \

 -label syncwrite \
Version N-2017.12-SP1 1305
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 -posedge wr_clk \

 -when "wr_en" \

 -address "wr_addr" \

 -data "wr_data"

Rules

The memory_port constraint is used by the following rules of the
SpyGlass Power Estimation and SpyGlass Power Reduction solutions:

memory_inst_port

Purpose

The memory_inst_port constraint is used to overwrite the value of the
retain_output parameter of the memory_port constraint.

The retain_output argument of the memory_port constraint specifies if
memory will retain it's output value or not when memory is switched off. In
some cases, it may happen that though the value of the retain_output
argument specified in the memory_port constraint is '1' but for a particular
instance of that memory, the user does not care about the output when
memory is turned off. To capture this information, user can specify this
constraint.

Consider the following memory_port constraint specifications:

memory_port -name mem_inst -posedge “CLKA” -data “QA” \
-when “!WEA MEA” -operation read -address “ADRA” -
retain_output 1

memory_port -name mem_inst -posedge “CLKA” -data “DA” \
-when “WEA MEA” -operation write -address “ADRA”

PESAE07 PEPWR20 PEPWR21 PEPWR22 PEPWR23
PEPWR24 PEPWR25 PEPWR28 PESTR20 PESTR21
PESTR22 PESTR23 PESTR24 PESTR25 PESTR28
PEPWR02 PEPWR29 PESTR29
1306 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
memory_inst_port -term “top.m1.QA” -retain_output x

In the above example, the memory cell is mem_inst as specified by the
-name argument of the memory_port constraint. The value of the
-retain_output argument for the QA read data bus of the m1 memory
instance is overridden by the memory_inst_port constraint. For all
other instances, the value of the -retain_output argument will remain
1.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the memory_inst_port constraint is as follows:

memory_inst_port
-term <full-hierarchical-path-of-the-terminal>
-retain_output <x|X>

Arguments

-term <full-hierarchical-path-of-the-terminal>

Specifies the name of the read data pin of the memory instance. You can
use wildcards for specifying the memory terminal names. This should be
the same as the name of the data bus specified in the read operation of the
memory_port constraint.

-retain_output <x|X>

Used to override the value from '1' to 'x' for a particular instance.
NOTE: This overriding of the value from '1' to 'x' is restricted to PESTR25 and PEPWR25

only

memory_read_pin
Version N-2017.12-SP1 1307
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The memory_read_pin constraint is used to specify the read pin port
name on a memory and the inactive value on that port.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
memoryreadpin.

Product

SpyGlass DFT solution

Syntax

The syntax of the memory_read_pin constraint is as follows:

memory_read_pin
 -memname <mem-name>
-readport <readpin-name-list>
-value <value>

Arguments

The memory_read_pin constraint has the following arguments:

-memname <mem-name>

The memory design unit (black box) type name (specified using a
memory_type constraint).

You can specify a single design unit name or a space-separated list of
design unit names.

-readport <readpin-name-list>

Names of read pins in the specified memory module type.

You can specify only a single pin name or a list of pin names.

-value <value>

The inactive value (0,1, X, or Z) for this read pin <readpin-name>.

NOTE: The inactive value is a single value that when applied to the read pin on this
memory will disable read from the memory.
1308 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Notes

 The memory_read_pin constraint requires use of a memory_type
constraint with the same type specified. The specified pin is a read pin
on this memory type.

 The memory_read_pin constraint may be used in conjunction with
test_mode constraint.

Rules

The memory_read_pin constraint is used by the following rule:

memory_tristate

Purpose

The memory_tristate constraint defines pins on memories and the
values necessary to prevent the output of those memories from being a
high impedance value.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was memory3s.

Product

SpyGlass DFT solution

Syntax

The syntax of the memory_tristate constraint is as follows:

memory_tristate
-memname <mem-name>
-enableport <enable-pin>
-value <value>

SpyGlass DFT Solution

RAM_06
Version N-2017.12-SP1 1309
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-memname <mem-name>

The memory design unit name.

-enableport <enable-pinl>

Name of the enable pin on the memory.

-value <value>

Value (string) of the enable pin.

Rules

The memory_tristate constraint is used by the following rules:

memory_type

Purpose

The memory_type constraint specifies the memory design unit (black
box) names. Then, all instances of these design units in the design are
assumed to be memory instances.

NOTE: In addition to memory_type constraint, memory instances are automatically
inferred from library cells as well.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was memorytype.

Product

SpyGlass DFT solution

Syntax

The syntax of the memory_type constraint is as follows:

SpyGlass DFT Solution
All Tristate rules
1310 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
memory_type -name <mem-name>
[-q_pin <q-pin-name>]
[-d_pin <d-pin-name>]
[-path_type <combinational | sequential>]
[-clock_pin <clk-pin-name>]

NOTE: The memory_type constraint supports wildcard characters.

Arguments

-name <mem-name>

The memory design unit (black box) name.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as memory design units.

You can specify a single design unit name or a space-separated list of
design unit names.

NOTE: The memory_type constraint supports wildcard expressions. The supported
meta-characters are * (asterisk) and ? (question mark) where * matches any
number of characters and ? matches only one character. The wildcard support is
applicable for non-escaped names only. If the meta-characters appear inside an
escaped name, they are treated as literals. For example, in the expression
“top.\mid*\bottom”, mid* is considered as a literal and does expand to “mid1,
mid2, and so on. In addition, if you specify a hierarchical path using a wildcard, any
sub-portion of this path that contains the wildcard does not cross the module
boundary while searching for the expression in the design. This means that each
level in the hierarchy path should be mentioned explicitly in the wildcard string. For
example, the expression “top.mid*.bottom” will expand to “top.mid1.bottom” and
not to “top.mid2.bottom”.

NOTE: The expression on which a wildcard his used should always be enclosed within
double quotes. For example, “top.mid*.bottom”.

NOTE: The wildcard support is applicable for design objects only. For non-design objects,
the support is not applicable.

-q_pin <q-pin-name>

Q-pin of the memory design unit (black box) name.
Version N-2017.12-SP1 1311
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-d_pin <d-pin-name>

Data pin of the memory design unit (black box) name.

-path_type <combinational | sequential>

When this argument is set as sequential/combinational, the path
between <d-pin-name> to <q-pin-name> is treated as sequential/
combinational path, respectively. By default, this is set as sequential.

-clock_pin <clk-pin-name>

Clock pin of the memory design unit.

Notes

More than one memory_type constraint may be necessary. If more than
one memory_type constraint is used, they will all be processed in
parallel.

Rules

The memory_type constraint is used by the following rules:

memory_write_disable

Purpose

The memory_write_disable constraint is used to specify the top-level
primary ports and values that, when simulated, will disable all write
enables to memories.

NOTE: The memory_write_disable constraint will be deprecated in a future release.

SpyGlass DFT Solution
RAM_01 RAM_02 RAM_03 RAM_04
RAM_05 RAM_06 RAM_07 RAM_08
RAM_09 RAM_10 RAM_11
1312 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass DFT solution

Syntax

The syntax of the memory_write_disable constraint is as follows:

memory_write_disable
 -name <port-name>
 -value <value>

Arguments

-name <port-name>

Name of the top-level primary port required to disable all write enables to
memories.

You can specify a single primary port name or a space-separated list of
primary port names.

-value <value>

Value list for a primary port.

The value list is the sequence of one or more values (each value being 0,1,
X, Z, or a combination) that when applied to the top-level port will disable
all write enables to memories.

NOTE: See memory_write_pin constraint for more details.

Rules

The memory_write_disable constraint is used by the following rules:

memory_write_pin

SpyGlass DFT Solution

Info_memorywritedisable RAM_05 RAM_08
Version N-2017.12-SP1 1313
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The memory_write_pin constraint is used to specify the write-pin port
name on a memory and the inactive value on that port.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
memorywritepin.

Product

SpyGlass DFT solution

Syntax

The syntax of the memory_write_pin constraint is as follows:

memory_write_pin
 -memname <mem-name>
-writeport <writepin-name-list>

 -value <value>

Arguments

-memname <mem-name>

The memory design unit (black box) type name (specified using a
memory_type constraint).

You can specify a single design unit name or a space-separated list of
design unit names.

-writeport <writepin-name-list>

Names of write pins in the specified memory module type.

You can specify a single pin name or a list of pin names.

-value <value>

The inactive value (0,1, X, or Z) for this write pin <writepin-name>.

Notes

 The inactive value is a single value that when applied to the write pin on
this memory will disable write to memory.
1314 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 The memory_write_pin constraint requires use of a memory_type
constraint with the same type specified.

 The memory_write_pin constraint may be used in conjunction with
memory_write_disable and/or test_mode constraints.

Rules

The memory_write_pin constraint is used by the following rules:

meta_design_hier

Purpose

The meta_design_hier constraint is used to specify the top-level
design name and the hierarchical name of the design with respect to the
simulation testbench to be used by the Ac_meta01 rule.

Product

SpyGlass CDC solution

Syntax

The syntax of the meta_design_hier constraint is as follows:

meta_design_hier
-name <top-design-name>
-inst <hier-instance-name>

Arguments

-name <top-design-name>

The name of the top-level module for a Verilog design or top-level entity
name for a VHDL design.

SpyGlass DFT Solution

RAM_05 RAM_06 RAM_08
Version N-2017.12-SP1 1315
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-inst <hier-instance-name>

The name of the hierarchical instance of the top-level design with respect
to the simulation testbench.

Example

Consider an example in which the name of the top-level design is FSM,
which is instantiated in the testbench top, tb, as I1. In this case, the
meta_design_hier constraint should be specified in the following
manner:

meta_design_hier -name FSM -inst tb.I1

Rules

The meta_design_hier constraint is used by the following rules:

meta_inst

Purpose

The meta_inst constraint is used to specify instances for which monitors
should be generated by the Ac_meta01 rule.

Product

SpyGlass CDC Solution

Syntax

The syntax of the meta_inst constraint is as follows:

meta_inst

SpyGlass Auto Verify Solution
Av_deadcode01 Av_staticnet01
SpyGlass CDC solution
Ac_meta01 Ac_datahold01a Ac_cdc01 Ac_conv02
1316 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <instance-name>
-type <allow | ignore>

Arguments

-name <instance-name>

Specifies the hierarchical name of an instance.

-type <allow | ignore>

Set the value to allow to generate monitors for the signals present in the
specified instance hierarchy.

Set the value to ignore to disable monitors generation for the signals
present in the specified instance hierarchy.

Example

Specify the following constraint to generate monitors for the top.U1.U2
instance:

meta_inst -name top.U1.U2 -type allow

Rules

The meta_inst constraint is used by the following rule:

meta_module

Purpose

The meta_module constraint is used to specify modules/entities for
which monitors should be generated by the Ac_meta01 rule.

SpyGlass CDC solution
Ac_meta01
Version N-2017.12-SP1 1317
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass CDC Solution

Syntax

The syntax of the meta_module constraint is as follows:

meta_module
-name <du-name>
-type <allow | ignore>

Arguments

-name <du-name>

For Verilog design, this argument specifies a module name.

For VHDL design, this argument specifies an entity name (<entity-name>)
or an architecture name (<entity-name>.<architecture-name>).

-type <allow | ignore>

Set the value to allow to generate monitors for the specified module/
entity.

Set the value to ignore to disable monitors generation for the specified
module/entity.

Example

Specify the following constraint to generate monitors for the MOD module:

meta_module -name MOD -allow

Rules

The meta_module constraint is used by the following rule:

SpyGlass CDC solution
Ac_meta01
1318 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
meta_monitor_options

Purpose

The meta_monitor_options constraint is used to specify the
attributes used during monitor generation by the Ac_meta01 rule.

Product

SpyGlass CDC Solution

Syntax

The syntax of the meta_monitor_options constraint is as follows:

meta_monitor_options
-setup_hold_time <setup-hold-time>
-init_time <init-time>
-error_inject_threshold <threshold>
-phase_shift_control <cycle-count>
-log_file <file-name>
-print_setup_hold_violation <violation-type>

Arguments

-setup_hold_time <setup-hold-time>

Use this argument to define the setup/hold time (in percentage).

For example, if you set this argument to 10 and the period of the clk clock
is 90, the setup/hold time for clk will be 9 ns. In this case, the Ac_meta01
rule will force metastability only if the difference between the clock edge
and data change is within 9 ns.

Allowed value: Integer greater than 0

Default value: 10
NOTE: You can also use the setup_hold_time parameter to specify the setup/hold time.

However, preference is given to this constraint argument, if specified.

-init_time <init-time>

Use this argument to specify the initialization time before starting
Version N-2017.12-SP1 1319
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
metastability analysis.

Allowed value: Integer greater or equal to 0. The value should be
specified in the ns range.

Default value: 1 (which means analysis starts after 1 ns)
NOTE: You can also use the meta_init_time parameter to specify the initialization time.

However, preference is given to this constraint argument, if specified.

-error_inject_threshold <threshold>

Use this argument to specify the threshold value for the random value
above which error is injected in monitors in case of setup/hold violations.

Allowed value: Any value between 0 to 1

Default value: 0.5
NOTE: You can also use the meta_error_inject_threshold parameter to specify the

threshold limit. However, preference is given to this constraint argument, if
specified.

-phase_shift_control <cycle-count>

Use this argument to specify the number of clock cycles after which the
phase of a clock should be shifted by one unit during metastability analysis.

Allowed value: Any integer greater than or equal to 0. If you specify 0,
phase of the clock is never shifted.

NOTE: You can also use the phase_shift_control parameter to specify the phase shift.
However, preference is given to this constraint argument, if specified.

-log_file <file-name>

Use this argument to specify the log file where all the messages generated
during simulation are saved.

Default value: ""

-print_setup_hold_violation <violation-type>

Use this argument to specify the criteria to dump setup/hold violations on
the screen output or in the file specified by -log_file <file-name>.

Allowed values:
1320 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Default value: both

Example

The following example shows the usage of the meta_monitor_options
constraint:

meta_monitor_options -setup_hold_time 10 -init_time 2
-error_inject_threshold 0.3 -phase_shift_control 1000
-dump_in_file -log_file "log.txt"

Rules

The meta_monitor_options constraint is used by the following rule:

mode_condition

Purpose

The mode_condition constraint is used to specify conditions in which a
mode of the specified mode set should be active.

Refer to the Example section for more details.

See also the PESAE08 rule documentation.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

error Details of setup/hold violations when an error is injected are dumped
no_error Details of setup/hold violations when no error is injected are dumped
both Details of all the setup/hold violations are dumped
none Details of none of the setup/hold violations are dumped

SpyGlass CDC solution
Ac_meta01
Version N-2017.12-SP1 1321
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the mode_condition constraint is as follows:

mode_condition
-name <mode_set_name>
-value <mode_name>
-on_condition <condition>

Arguments

-name <mode_set_name>

Specifies the name of a mode set.

-value <mode_name>

Specifies the name of the mode for which conditions are being defined.

-on_condition <condition>

Specifies mode conditions in which the specified mode should be active.
You can specify mode condition by creating a logical expression of valid
nets in a design.

Example

After you create a mode set and modes, you need to specify conditions
under which a particular mode should be active by using the
mode_condition constraint. You can create such conditions by using
logical expressions.

Consider the following specification:

mode_condition -name SPEED -value SLOW -on_condition "top.w1
& top.w2 | (!top.speed) "

The above constraint implies that the mode "SLOW" of the mode set
"SPEED is active when mode condition as specified by the expression with
the on_condition swtich is true.
1322 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The mode_condition constraint is used by the following rules:

module_bypass

Purpose

The module_bypass constraint is used to specify modules such as
memories that are designed with a bypass between data-in port and data-
out port.

The module_bypass constraint is used to propagate the test signals
through the instance of a module, such as an analog level shifter. This
constraint is used by the testability analysis engine. It helps transfer the
controllability values from the input side to the output side and observable
figures in the reverse direction.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the module_bypass constraint is as follows:

module_bypass
 -name <du-name>
[-bpin <bpin-name-list> -value <value-list>]
 -iport <port-name-list>
-oport <port-name-list>
[-invert_polarity]

NOTE: The module_bypass constraint supports wildcard characters.

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
All rules running in EST mode
Version N-2017.12-SP1 1323
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <du-name>

The name of the design unit (black box) to be bypassed.

The design unit must be a black box, that is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as bypassed.

You can specify a single design unit name or a space-separated list of
design unit names.

-bpin <bpin-name-list>

(Optional) List of names of the bypass pins on a design unit (black box).

-value <value-list>

(Optional) The active value (0 or 1) for all the bypass pins <bpin-name-
list>.

The specified bypass pins and values are assumed to be mapped on
one-to-one basis. You need to specify the exact same number of bypass
pins and values with both the -bpin and -value arguments.

-iport <port-name-list> / -oport <port-name-list>

Input/Output port name list of the module being bypassed.

The port name list is a space-separated simple name list, as in the
following example:

...
-iport in1 in2 -oport q qbar
...

Then, the specified input ports and output ports are assumed to be directly
connected on one-to-one basis. The mapped ports transfer the
controllability and simulation values from the input ports to the output
ports and the observable values from the output ports to the input ports.

You need to specify the exact same number of ports with both the -iport
1324 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
and -oport arguments. If the number of ports with two arguments is
different, the extra ports are ignored because they do not have
corresponding elements to map and transfer values.

NOTE: The module names, specified using the -name argument of module_bypass
constraint, are automatically created as black boxes for SpyGlass DFT solution
analysis.

-invert_polarity

(Optional) Specify for inverting the polarity of output signals. This applies
to all in port and out port specified with iport/oport pair in the constraint.

Rules

The module_bypass constraint is used by the following rules:

module_pin

Purpose

The module_pin constraint is used to specify the set of pins for which the
hierarchy of all instantiations is to be generated.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was modulePin.

Product

SpyGlass DFT solution

Syntax

The syntax of the module_pin constraint is as follows:

module_pin

SpyGlass DFT Solution
All rules
SpyGlass Connectivity Verify Solution
All rules
Version N-2017.12-SP1 1325
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <du-name>
[-pin <pin-name-list>]
[-allpins]
[-allinputs]
[-alloutputs]
[-exclude_module_list]

Arguments

-name <du-name>

Name of the design unit for which you are specifying pins.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs).

You can only specify a single design unit name.

-pin <pin-name-list>

(Optional) Space-separated list of pin names under the specified design
unit.

If you specify none of the arguments (-pin, -allpins,
-allinputs, or -alloutputs), the Soc_06 rule generates hierarchy of
all instantiations for all design unit pins.

-allpins

(Optional) Equivalent to specifying the -pin argument. Specify a space-
separated list of all the pins on the specified design unit.

-allinputs

(Optional) Equivalent to specifying the -pin argument. Specify a space-
separated list of all input pins on the specified design unit.

-alloutputs

(Optional) Equivalent to specifying -pin argument. Specify a space-
separated list of all output pins on the specified design unit.
1326 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-exclude_module_list

(Optional) Space-separated list of modules to be excluded from generating
the instance list.

NOTE: This argument supports wildcard characters.

Rules

The module_pin constraint is used by the following rule:

monitor_time

Purpose

The monitor_time constraint is used to specify the design initialization
time frames during simulation. The rest of the simulation time is
considered as the design's functional time.

The SystemVerilog Assertions (SVA) generated for assumptions and
partially proved rules during simulation are active in the design's functional
time. These SVA assertions are stored in SystemVerilog files that are
located in the test_reports/clock-reset/assertions/ directory. For details, refer to
cdc_dump_assertions parameter documentation in the SpyGlass CDC
Rules Reference Guide.

Product

SpyGlass CDC solution

Syntax

The syntax of the monitor_time constraint is as follows:

monitor_time
-type <time-frame-type>
-frame <start-time> <end-time>

SpyGlass DFT Solution

Soc_06
Version N-2017.12-SP1 1327
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-type <time-frame-type>

Specifies the type of time frame. The valid value is initialization.

-frame <start-time> <end-time>

Specifies a space-separated list of start and end times of the time frames
of the specified type.

Examples

Consider the following monitor_time constraints:

monitor_time -type initialization -frame {0 5}

monitor_time -type initialization -frame {20 25}

The above constraints imply that the initialization time frames are from 0
to 5 seconds and then from 20 to 25 seconds.

In addition, it is also implied that the functional time frames are from 5 to
20 seconds and then from 25 seconds onwards. This is also illustrated in
the following figure:

Rules

The monitor_time constraint is used by the following rules:

SpyGlass CDC Solution

Ac_datahold01a Ac_cdc01 Ac_conv02

0 5 25

Simulation time

20

Initialization

Functional Functional

Initialization
1328 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
multivt_lib

Purpose

The multivt_lib constraint is used to specify the VT library groups and
their member libraries for the LPSVM29, LPSVM33, LPSVM33A, and
LPSVM34 rules and the MTCMOS libraries for the LPSVM35 and LPSVM36
rules of the SpyGlass Power Verify solution.

Product

SpyGlass Power Verify solution

Syntax

Specifying VT Library Groups

The syntax to specify the multivt_lib constraint for VT Library Groups
is as follows:

current_design <du-name>
multivt_lib
-type <lib-group-name>
-names <lib-name-list>

Specifying MTCMOS Libraries

The syntax to specify the multivt_lib constraint for MTCMOS Libraries
is as follows:

current_design <du-name>
multivt_lib
-type <keyword>
-names <lib-name-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the VT library
groups or MTCMOS libraries.
Version N-2017.12-SP1 1329
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-type <lib-group-name>

Identifier for the VT library group.

<keyword>

Identifier for the MTCMOS libraries.

The supported values of <keyword> are:

 mtcmosH (indicates an MTCMOS library with cells having supply-side
sleep devices [transistors])

 mtcomsF (indicates an MTCMOS library with cells having ground-side
sleep devices [transistors])

 mtcmosHF (indicates an MTCMOS library with cells having both supply-
side and ground-side sleep devices [transistors])

All other libraries are assumed to be CMOS libraries.

-name <lib-name-list>

Space-separated list of member library names (without the extension).

You can specify the names of gate (.lib) libraries (usually specified with
the read_file -type gateslib <file> command in the project file)
as well as the SpyGlass precompiled gate libraries (.sglib) libraries
(usually specified by using the read_file -type sourcelist
<file-name>.f command in the project file).

Examples

Consider the following multivt_lib constraint specification:

multivt_lib -type highvt -names CORE9GPHS1 CORE9GPHS2
multivt_lib -type lowvt -names CORE9GPLL1 CORE9GPLL2

The above specification indicates that there is a VT library group named
highvt of libraries named CORE9GPHS1 and CORE9GPHS2 (ignoring the
extension). This means that you would be specifying either of the following
while running SpyGlass analysis:

spyglass -batch ...
-gateslib CORE9GPHS1.lib -gateslib CORE9GPHS1.lib
...
1330 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Or

spyglass -batch ...
-sglib CORE9GPHS1.sglib -sglib CORE9GPHS1.sglib
...

Similarly, there is another VT library group named lowvt of libraries
named CORE9GPLL1 and CORE9GPLL2 (ignoring the extension).

Rules

The multivt_lib constraint is used by the following rules:

network_allowed_cells

Purpose

Specifies cells that can be allowed or disallowed in clock trees (or other
trees).

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the network_allowed_cells constraint is as
follows:

current_design <du-name>
network_allowed_cells
-name <name-list>
[-type <type-list>]
[-from <from-list>]
[-disallow]

SpyGlass Power Verify Solution
LPSVM29 LPSVM33 LPSVM33A LPSVM34
LPSVM35 LPSVM36
Version N-2017.12-SP1 1331
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <name-list>

Specifies a space-separated list of names of the allowed/disallowed gate-
level netlist cells.

-type <type-list>

Specifies whether only clock, reset, or both trees should be checked.

-from <from-list>

Specifies a space-separated list of names of nets from which the check
should start.

You can use a combination of wildcard characters (‘*’ and ‘?’) when
specifying netlist cells, clock and/or reset trees, and nets.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-disallow

Indicates that the cells specified with the -name argument should be
disallowed. By default, the specified cells are the only cells allowed in the
network. If the -disallow argument is specified, these cells are the only
cells NOT allowed in the network.

If you supply the -type argument, you must also specify the clock names,
reset names, or both using the clock and reset constraints.

If you supply both the -type argument and the -from argument, the -
type argument overrides the -from argument.

If you do not supply both -type and -from arguments, the complete
design is checked for allowed/disallowed cells. For example, consider the
following:

current_design top
clock -name clk1
network_allowed_cells -name A1234 -type clock
1332 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In this case, the Clock_Reset_check01 rule reports instances of cells other
than A1234 found in the clock tree of clock signal clk1.

Examples

Now consider the following example:

current_design top
reset -name rst1
network_allowed_cells -name A1234
-type reset -disallow

In this case, the Clock_Reset_check01 rule reports instances of
A1234 found in the reset tree of reset signal rst1.

Another example is as follows:

current_design top
network_allowed_cells -name A1234
-from w1 -disallow

In this case, the Clock_Reset_check01 rule reports instances of the
A1234 found in the fan-out tree of net w1.

NOTE: Only one network_allowed_cells constraint can be specified. If you want to specify
constraints for multiple clocks or resets, use a single network_allowed_cells
constraint.

Rules

The network_allowed_cells constraint is used by the following rule:

no_atspeed

Purpose

The no_atspeed constraint is used to exclude flip-flops from being used
in at-speed testing, even if they so qualify. The no_atspeed constraint may

SpyGlass CDC Solution

Clock_Reset_check01
Version N-2017.12-SP1 1333
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
be used when there is no intention to use module or circuit for at-speed
testing.

Product

SpyGlass DFT DSM solution

Syntax

The syntax for specifying the no_atspeed constraint is as follows:

no_atspeed
-name <du-name> | <net-name> | <hier-inst> |
-clock_control <signal-name> |
-set_control <signal-name> |
-reset_control <signal-name>
 -register_suffix <suffixes>
-module_suffix <suffixes>

NOTE: The no_atspeed constraint supports wildcard characters. Using wildcards,
expression is expanded only within the hierarchy.

Arguments

-name <du-name>

The name of the design unit from which flip-flops should be excluded in at-
speed testing. You can specify design units that are single flip-flops or
design units where one or more flip-flops are described besides other logic.
Then, all flip-flops in the specified design unit are excluded from at-speed
testing. The design unit name <du-name> can be specified as module
name (for Verilog designs) or as entity name (for VHDL designs). For VHDL
designs, all architectures of the specified entity are considered. You can
specify a single design unit name or a space-separated list of design unit
names.

-name <net-name>

The name of a net that is connected to the output pin of a flip-flop. Then,
the corresponding flip-flop is excluded from at-speed testing. You can
specify a simple net name or a hierarchical net name. The net
specified as simple net name is searched at the top-level. You can specify a
single net name or a space-separated list of net names.
1334 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<signal-name>

Flip-flops whose control pins (clock, set, or reset) are driven by this signal
are excluded in the scan. The <signal-name> argument can have the
following values:
 CLOCK: For the clock_control option, if the <signal-name>

argument is driving CLOCK pin of the flip-flop.
 SET: For the set_control option, if the <signal-name> argument is

driving SET pin of the flip-flop.
 RESET: For the reset_control option, if the <signal-name> argument is

driving RESET pin of the flip-flop.

-register_suffix <suffixes>

Space-separated list of suffixes to be specified as no_atspeed. The
-register_suffix argument should not be used along with other
arguments of the no_atspeed constraint, that is, -name, -clock_control,
-set_control, or -reset_control.

If the value of the dft_treat_suffix_as_pattern parameter is set
to on, the register_suffix value is used as a pattern to be matched with the
register name. The pattern may be present anywhere in the register name,
excluding the path.

If the value of the dft_check_path_name_for_register_suffix
parameter is on, the value of the -register_suffix field will be
matched with the register name along with the path in which the register is
present.

-module_suffix <suffixes>

Define this field to use suffix based pattern match for all module names.

If the value of the dft_treat_suffix_as_pattern parameter is on,
the value of the -module_suffix field will be matched with the module
name along with the path in which the module is present.

Examples

You can use the no_atspeed constraint in the following ways:

 Specifying only the design unit names with the -name argument
Version N-2017.12-SP1 1335
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
By specifying a design unit name using the -name argument only, all
instances of this design unit are not considered for at-speed testing. The
following no_atspeed constraint indicates that all flip-flops within all
instances of modName1 will not be considered for at-speed testing:

no_atspeed -name modName1

 Specifying only the net names with the -name argument
By specifying a net name using the -name argument only, the
corresponding flip-flop is not considered for at-speed testing. The
following no_atspeed constraint indicates that the flip-flop whose output
pin is connected to net reg_123 (at the top-level) is not considered for
at-speed testing:

no_atspeed -name reg_123

 Specifying only the hierarchical instance names with the -name
argument
By specifying a hierarchical instance name using the -name argument
only, all the flip-flops inside the given hierarchy are not considered for
at-speed testing. The following no_atspeed constraint indicates that the
flip-flop that lies inside the hierarchy top.inst1 is not considered for at-
speed testing.

no_atspeed -name top.inst1

 Specifying list of suffixes using the -register_suffix argument:
Consider the following example:

current_design top_no_scan
force_no_scan -register_suffix ff1

In the above example, All flip-flops with name ending with ff1 will be
marked force_no_scan.

Rules

The no_atspeed constraint is used by the following rules:

SpyGlass DFT DSM Solution
Info_transitionCoverage Info_noAtspeed Atspeed_11
Info_transitionCoverage_audit
1336 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
no_convergence_check

Purpose

The no_convergence_check constraint is used to specify the net
names that should not be checked for convergence.

If convergence is found on a gate, SpyGlass does not report a violation on
that gate if you specify its output net through this constraint.

NOTE: Use the cdc_attribute constraint instead of the no_convergence_check constraint. If
the no_convergence_check constraint is used together with the cdc_attribute
constraint, SpyGlass CDC ignores the no_convergence_check constraint and honors
the cdc_attribute constraint.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the no_convergence_check constraint is as
follows:

no_convergence_check -name <sig-name-list>

Arguments

-name <sig-name-list>

Space-separated list of hierarchical net names, hierarchical terminals, and
ports that should not be checked for convergence.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

Examples

The following example shows the usage of this constraint:

no_convergence_check -name top.U1.net1 top.net2
Version N-2017.12-SP1 1337
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
When you specify the above constraint, SpyGlass does not check the
top.U1.net1 and top.net2 rules for convergence.

Rules

The no_convergence_check constraint is used by the following rules:

no_fault

Purpose

The no_fault constraint is used to prevent faulting for a module.

As SpyGlass DFT solution has the means to estimate fault coverage (see
the Info_coverage rule), the no_fault constraint is useful to obtain more
representative fault coverage numbers under special conditions. For
example, when a design contains a synthesizable module that will be
tested by some not yet implemented means, faults within each instance of
that module will be included in the fault count total, thereby decreasing the
fault coverage estimate. Use of the no_fault constraint removes such
faults from consideration.

NOTE: Prior to SpyGlass 4.4 release, the name of this constraint was nofault.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the no_fault constraint is as follows:

no_fault -name <du-name> | <inst-name>
[- fault <hier_pin_names>]
[- net <hier_net_names>]
[- net_input <hier_net_names>]
[- net_output <hier_net_names>]

SpyGlass CDC Solution

Clock_sync03a Clock_sync03b Ac_conv01
Ac_conv02 Ac_conv03
1338 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[- clock_control <hier_net_names>]
[- set_control <hier_net_names>]
[- reset_control <hier_net_names>]
[- register_suffix]
[- instance_suffix]
[- module_suffix]

NOTE: The no_fault constraint supports wildcard characters. Using wildcards,
expression is expanded only within the hierarchy.

Arguments

The no_fault constraint has the following arguments:

-name <du-name>

Name of the design unit whose instances are to be bypassed.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as no-fault design units.

You can specify a single design unit name or a space-separated list of
design unit names.

-name <inst-name>

Hierarchical name of the instance to be bypassed.

You can specify a single hierarchical instance name or a space-separated
list of hierarchical instance names.

NOTE: You can specify design unit names, hierarchical instance names, or a combination of
both.

-fault <hier_pin_names>

(Optional) Space-separated list of hierarchical names of pins or ports.
NOTE: Do not use this argument in case of RTL design because pin names will contain

generated names and will fail SGDC sanity check at the RTL.

-net <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
Version N-2017.12-SP1 1339
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
faults in the direct fanin or fanout of the net as no_fault.

-net_input <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults in the direct fanin of the net as no_fault.

-net_output <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults in the direct fanout of the net as no_fault.

-clock_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
faults associated with the registers, where clock pin is topologically driven
by the specified clock, as no_fault.

-set_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
fault associated with the registers, where set pin is topologically driven by
the specified set signal, as no_fault.

-reset_control <hier_net_names>

(Optional) Space-separated list of hierarchical names of nets. Mark all the
fault associated with the registers, where reset pin is topologically driven
by the specified reset signal, as no_fault.

-register_suffix <suffixes>

Space-separated list of suffixes to be specified as no_fault. The
-register_suffix argument should not be used along with other
arguments of the no_fault constraint, that is, -name, -clock_control, -
set_control, or -reset_control.

If the value of the dft_treat_suffix_as_pattern parameter is set
to on, the register_suffix value is used as a pattern to be matched
with the register name. The pattern may be present anywhere in the
register name, excluding the path.

If the value of the dft_check_path_name_for_register_suffix
parameter is on, the value of the -register_suffix field will be
1340 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
matched with the register name along with the path in which the register is
present.

-instance_suffix <suffixes>

Define this field to use suffix based pattern match for all instance names.

-module_suffix <suffixes>

Define this field to use suffix based pattern match for all module names.

If the value of the dft_treat_suffix_as_pattern parameter is on,
the value of the -module_suffix field will be matched with the module
name along with the path in which the module is present.

Examples

Specifying list of suffixes using the -register_suffix argument

Consider the following example:

R1 (register 1) name: top.u_ctrl.u2.u1.ff1_ctrl
R2 (register 2) name: top.u_ctrl.u2.u1.ff1_state
R3 (register 3) name: top.u_core.u2.u1.ff1_state_ctrl
R4 (register 4) name: top.u_ctrl_state.u2.u1.ff1_ctrl_state

Now, consider the following no_fault descriptions:

no_fault -register_suffix ctrl
no_fault -register_suffix state
Version N-2017.12-SP1 1341
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The following table lists the results when combination of values are used
for the dft_treat_suffix_as_pattern and
dft_check_path_name_for_register_suffix parameters:

Example 3:Specifying list of suffixes using the -instance_suffix
argument

Consider the following example:

R1 (register 1) name: top.u_ctrl.u2.u1.ff1_ctrl
R2 (register 2) name: top.u_ctrl.u2.u1.ff1_state
R3 (register 3) name: top.u_core.u2.u1.ff1_state_ctrl
R4 (register 4) name: top.u_ctrl_state.u2.u1.ff1_ctrl_state

I1 (instance 1) name: top.u_ctrl.u2.u1.inst1_ctrl
I2 (instance 2) name: top.u_ctrl.u2.u1.inst1_state
I3 (instance 3) name: top.u_core.u2.u1.inst1_state_ctrl
I4 (instance 4) name:
top.u_ctrl_state.u2.u1.inst1_ctrl_state

TABLE 7 Pattern Matching for the -register_suffix argument

Value of
dft_treat_suffix_
as_pattern

Value of
dft_check_path_n
ame_for_register_
suffix

Value of -
register_suffix

Matched
Registers

off off ctrl R1, R3

state R2, R4

off on ctrl R1, R2, R3

state R2, R4

on off ctrl R1, R3, R4

state R2, R3, R4

on on ctrl R1, R2, R3,
R4

state R2, R3, R4
1342 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Now, consider the following no_fault descriptions:

no_fault -instance_suffix ctrl
no_fault -instance_suffix state

The following table lists the results when combination of values are used
for the dft_treat_suffix_as_pattern and
dft_check_path_name_for_instance_suffix parameters:

TABLE 8 Pattern Matching for the -instance argument

Value of
dft_treat_suffix_
as_pattern

Value of
dft_check_path_n
ame_for_instance
_suffix

Value of -
instance_suffix

Matched
Registers/
Instances

off off ctrl R1, R3, I1,
I3

state R2, R4, I2,
I4

off o ctrl R1, R2, R3,
I1, I2, I3

state R2, R4, I2,
I4

on off ctrl R1, R3, R4,
I1, I3, I4

state R2, R3, R4,
I2, I3, I4

on on ctrl R1, R2, R3,
R4, I1, I2,
I3, I4

state R2, R3, R4,
I2, I3, I4
Version N-2017.12-SP1 1343
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The no_fault constraint is used by the following rules:

no_test_point

Purpose

The no_test_point constraint is used to exclude modules or instance,
which should not be considered for suggesting test points.

Product

SpyGlass DFT DSM solution

Syntax

The syntax of the no_test_point constraint is as follows:

no_test_point
-name <module-name | <instance_list>

Arguments

The no_test_point constraint has the following arguments:

-name <module-name | <instance_list>

Name of the module or the list of instances to be considered for suggesting
the test points.

Rules

The no_test_point constraint is used by the
Info_random_resistance rule.

SpyGlass DFT Solution

Info_coverage Coverage_audit
SpyGlass DFT DSM Solution

Info_transitionCoverage Info_transitionCoverage_audit
1344 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
noclockcell_start

Purpose

Specifies start points (ports or nets) for checking.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the noclockcell_start constraint is as
follows:

current_design <du-name>
noclockcell_start
-name <port-net-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the start point

-name <port-net-name>

The hierarchical name of the start point port/net.

You can specify multiple start point signals using multiple
noclockcell_start constraints.

NOTE: You must specify at least one noclockcell_start constraint for the
NoClockCell rule to perform rule-checking.

Examples

The following example specifies net clk1 of design unit top as the start
point:

current_design top
noclockcell_start -name top.clk1
Version N-2017.12-SP1 1345
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The noclockcell_start constraint is used by the following rule:

noclockcell_stop_instance

Purpose

Specifies the instance where the NoClockCell rule should stop further
traversal along the clock tree when the clock pin of the specified instance is
hit.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the noclockcell_stop_instance
constraint is as follows:

current_design <du-name>
noclockcell_stop_instance
-name <inst-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop point instance

-name <inst-name>

The hierarchical name of the stop point instance.

SpyGlass CDC Solution

NoClockCell
1346 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You can specify multiple stop point instances using multiple
noclockcell_stop_instance constraints.

Examples

The following example specifies instance I21 as the stop point instance
under the design unit top:

current_design top
noclockcell_stop_instance -name top.I21

Here, the NoClockCell rule stops further traversal along the clock tree when
the clock pin of instance top.I21 is hit.

The clock traversal automatically stops at instances of a stopped design
unit (stopped using the set_option stop <du-name> command in
the project file or the equivalent option in Atrenta Console GUI). Therefore,
you need not specify such design unit instances with the
noclockcell_stop_instance constraint.

Rules

The noclockcell_stop_instance constraint is used by the following
rule:

noclockcell_stop_module

Purpose

Specifies the design unit where the NoClockCell rule should stop further
traversal along the clock tree when the clock pin of an instance of the
specified design unit is hit.

Product

SpyGlass CDC solution

SpyGlass CDC Solution

NoClockCell
Version N-2017.12-SP1 1347
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax for specifying the noclockcell_stop_module constraint is
as follows:

current_design <du-name>
noclockcell_stop_module
-name <du-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop-point design unit.

-name <du-name>

Name of the stop-point design unit.

You can specify multiple stop point design units using multiple
noclockcell_stop_module constraints.

Examples

The following example specifies design unit m1 as the stop-point design
unit under the design unit top:

current_design top
noclockcell_stop_module -name m1

Here, the NoClockCell rule stops further traversal along the clock tree
when the clock pin of an instance of design unit m1 is hit.

The clock traversal automatically stops at instances of a stopped design
unit (stopped using the set_option stop <du-name> command in
the project file or the equivalent option in Atrenta Console GUI). Therefore,
you need not specify such design units with the
noclockcell_stop_module constraint.

Rules

The noclockcell_stop_module constraint is used by the following
1348 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
rule:

noclockcell_stop_signal

Purpose

Specifies the design points (ports, pins, or nets) where the NoClockCell
rule should stop further traversal along the clock tree.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the noclockcell_stop_signal constraint is
as follows:

current_design <du-name>
noclockcell_stop_signal
-name <sig-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the stop point.

-name <sig-name>

The hierarchical name of the end point port/pin/net.

You can specify multiple stop points using multiple
noclockcell_stop_signal constraints.

SpyGlass CDC Solution

NoClockCell
Version N-2017.12-SP1 1349
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example

The following example specifies pin d1 of instance I1 in design unit top
as the stop point:

current_design top
noclockcell_stop_signal -name top.I1.d1

Here, the NoClockCell rule stops further traversal along the clock tree when
the pin top.I1.d1 is hit.

The clock traversal automatically stops at the design points (ports, pins, or
nets) that belong to instances of a stopped design unit (stopped using the
set_option stop <du-name> command in the project file or the
equivalent option in Atrenta Console GUI). Therefore, you need not specify
such design points with the noclockcell_stop_signal constraint.

Rules

The noclockcell_stop_signal constraint is used by the following
rule:

non_pd_inputcells

Purpose

The non_pd_inputcells constraint is used to specify the cells that
should not be present at the input stage of the power/voltage domain.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the non_pd_inputcells constraint is as follows:

SpyGlass CDC Solution

NoClockCell
1350 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
current_design <du-name>
non_pd_inputcells
-names <cell-name-list>
[-pd <pd-name>]
[-pins <pin_list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the input cells.

-names <cell-name-list>

Space-separated list of cell names. You can use wildcard characters while
specifying cell names using the -names argument.

-pd <pd-name>

Name of the always-on domain/power domain for which the specified cells
are to be checked.

If you do not specify the -pd argument, SpyGlass assumes that the
specified cells are to be checked for all specified power/voltage domains.

<pin-list>

Name of the input pins of cells, which should not be present in at the input.

When the pin list is not specified, all input pins are considered.

Rules

The non_pd_inputcells constraint is used by the following rule:

num_flops

SpyGlass Power Verify Solution

LPSVM50
Version N-2017.12-SP1 1351
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Specifies the minimum number of flip-flops required in synchronizer chain
for the Conventional Multi-Flop Synchronization Scheme.

Product

SpyGlass CDC solution

Syntax

The syntax of the num_flops constraint is as follows:

num_flops
-to_domain <dest-clk-domain>
-value <num>
[-from_domain <src-clk-domain>]
[-cells <library-cell-names>]
[-lib <library-names>]
[-reset]
[-rdc]

or

num_flops
-to_clk <dest-clk-name>
-value <num>
[-from_clk <src-clk-name>]
[-cells <library-cell-names>]
[-lib <library-names>]
[-reset]
[-rdc]

or

num_flops
-to_period <dest_clk_period>
-value <num>
[-cells <library-cell-names>]
[-lib <library-names>]
[-reset]
1352 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-rdc]

or

num_flops -default <def_val>
[-cells <library-cell-names>]
[-lib <library-names>]
[-reset]

NOTE: Please note the following points:

 You must specify the -to_clk argument while specifying the -from_clk
argument.

 You must specify the -to_domain argument while specifying the
-from_domain argument.

Arguments

The syntax of using the num_flops constraint in a SpyGlass Design
Constraints file is as follows:

-from_domain <src-clk-domain>

The domain name of the source clock.

-to_domain <dest-clk-domain>

The domain name of the destination clock.

-from_clk <src-clk-name>

Name of the source clock.

-to_clk <dest-clk-name>

Name of the destination clock.

-to_period <dest-clk-period>

Period of the destination clock. The value is applicable to all the crossings
with destination clocks that have period less than or equal to <dest-
clk-period>.
Version N-2017.12-SP1 1353
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-value <num>

The minimum number of flip-flops required in a synchronizer chain for the
crossing specified through:
 The source clock specified by -from_clk <src-clk-name> or the source

clock of the domain specified by -from_domain <src-clk-domain>.
 The destination clock specified by -to_clk <dest-clk-name> or the

destination clock of the domain specified by -to_domain <dest-clk-
domain>.

The synchronizer chain in this case is the structure of the Conventional
Multi-Flop Synchronization Scheme.

NOTE: The minimum value for this argument is 1. However, if you specify the -reset
argument, the minimum value for this argument should be 2.

For domain pairs not mentioned with this constraint, the number of
flip-flops to be used for multi-flop synchronization is the value of the
parameter, num_flops, which is 2 by default.

-default <def_val>

The number of flip-flops for crossings not specified with the num_flops
constraint.

Some of the examples of the num_flops constraint are as follows:

num_flops -from_clk clk1 -to_clk clk2 -value 3

The above specification specifies that for multi-flop synchronization, at
least three flip-flops should be used for the crossings between the clocks,
clk1 and clk2.

num_flops -from_domain D1 -to_domain D2 -value 3

The above specification specifies that for multi-flop synchronization, at
least three flip-flops should be used for the crossings between all the clocks
in domains, D1 and D2.

num_flops -to_period 20 -value 4

The above specification specifies that for all the crossings with destination
clocks that have period less than or equal to 20, at least four flip-flops
should be used for multi-flop synchronization.

num_flops -default 2
1354 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above specification specifies that for all the clock crossings for which
the num_flops constraint is not specified, at least two flip-flops should be
used for multi-flop synchronization.

-cells <library-cell-names>

Space-separated list of library cell names. You can use wildcard characters
while specifying library cell names.

The following example shows the usage of the -cells argument:

num_flops -from_domain D1 -to_domain D2 -cells X_CELL
-value 3

In this case, for crossings from D1 to D2, the X_CELL cell is allowed to be
a part of the synchronizer chain and there should be minimum of three
such cells in the chain, including the destination instance.

-lib <library-names>

Space-separated list of library names.

The following example shows the usage of the -lib argument:

num_flops -from_domain D1 -to_domain D2 -lib LIB1
-value 3

In this case, for crossings from D1 to D2, only the cells from the LIB1
library are allowed to be a part of the synchronizer chain and there should
be minimum three such cells in the chain, including the destination
instance.

-reset

Applies the num_flops constraint on reset synchronizers with respect to
a clock, domain, or frequency.

When you specify this argument, the minimum value specified to the -value
<num> argument should be 2.

NOTE: You cannot specify the -from_clk/-from_domain arguments along with the
-reset argument.

-rdc

Enables the Ar_resetcross01 rule to apply the num_flops constraints on
Version N-2017.12-SP1 1355
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reset domain crossings.

It is used to set a limit on the number of synchronizer flip-flops.

When you specify this argument, the minimum value specified to the -value
<num> argument should be 2.

Rules

The num_flops constraint is used by the following rules:

operating_mode_set

Purpose

The operating_mode_set constraint is used to assign modes to a
mode set.

For example, you can create a mode set, SPEED, that contains a set of two
modes, FAST and SLOW.

Refer to the Example section for more details.

See also the PESAE08 rule documentation

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

SpyGlass CDC Solution
Ac_sync01 Ac_sync02 Ac_unsync01 Ac_unsync02
Ar_resetcross_m
atrix01

Ar_cross_analysi
s01

Clock_sync08 Clock_sync03a

Clock_sync03b Clock_sync08a Clock_sync09 Ac_handshake01
Ac_handshake02 Ac_glitch03 Ac_cdc01a Ac_cdc01b
Ac_cdc01c Ac_cdc08 Ac_conv01 Ac_conv02
Ac_conv03 Ar_sync01 Reset_sync04 Reset_sync01
Ar_unsync01 Reset_sync03 Ar_resetcross01 Ac_conv04
1356 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the operating_mode_set constraint is as follows:

operating_mode_set
-name <mode_set_name>
-values <mode_names>

Arguments

-name <mode_set_name>

Specifies the name of a mode set

-values <mode_names>

Specifies mode names that should be included in the mode set

Example

A design can operate in multiple modes at a time. For example, it can
operate in TX mode, RX mode, SLOW mode, or FAST mode.

You can group all related modes under one category, where each category
is known as a mode set.

For example, you can group the TX and RX mode under one mode set,
STATE by specifying the following constraint:

operating_mode_set -name STATE -values TX RX

The following specification shows how to create a mode set, SPEED, with
SLOW and FAST modes by using the operating_mode_set constraint:

operating_mode_set -name SPEED -values SLOW FAST

Rules

The operating_mode_set constraint is used by the following rules:
Version N-2017.12-SP1 1357
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
output

Purpose

The output constraint is used to specify clock domain at output ports. If
you want to check synchronization for paths ending on output ports, you
need to provide information about the destination clocks associated with
those ports. The output constraints are used for this purpose.

You need to specify effective source clocks or destination clocks using the
clock keyword and port-clock pairs using the output keyword in a
SpyGlass Design Constraints file.

Product

SpyGlass CDC solution

Syntax

The syntax of using the output constraint in a SpyGlass Design
Constraints file is as follows:

current_design <du-name>
clock -name <clk-name> -domain <domain-name>
output -name <output-name-list>
-clock <dest-clk-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs).

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
All rules running in EST mode
1358 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <clk-name>

The clock signal name or a virtual clock name.

-domain <domain-name>

The clock domain name.

-name <output-name-list>

Port names that can be scalar ports, bus ports, or wildcard names
(matching against all top-level ports of appropriate type.

If you specify the same output port in multiple output constraint
specifications, SpyGlass considers the last output constraint
specification. Consider the following example in which the same output
port, out1, is specified in two different output constraint specifications:

output –name out1 –clock clk2
output –name out1 –clock clk4

In the above example, SpyGlass considers the last output constraint
specification, that is, output out1 clocked by clock clk4.

-clock <dest-clk-name>

The name of the destination clock for a primary output port or a virtual
clock specified by the -tag <logical-clock-name> argument of the clock
constraint. For virtual clock specification, see Example 2.

You can use the match many (*) and match one (?) wildcard characters
with the -name argument of the output constraints by specifying the
regular expression enclosed in double quotes (““).

NOTE: Do not specify clock domain names to this argument.

Examples

Example 1

Consider the following output constraint specification:

output -name "out?" -clock clk1

The above specification matches all output ports whose names start with
out followed by zero or one character, such as out, out1.
Version N-2017.12-SP1 1359
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider the following constraints:

clock -name clk1 -domain d1
clock -name clk2 -domain d2 -tag c1
clock -tag c2 -domain d3

output -name out1 -clock c2

In the above specification, the virtual clock c2 is specified to the -clock
argument of the output constraint. However, note that you cannot
specify c1 to the -clock argument as c1 is not a virtual clock.

Rules

The output constraint is used by the following rules:

output_not_used

Purpose

In a multi-flop synchronizer, if the synchronizing flip-flops feed more than
one destination, the value seen by the destination may be subject to cycle
uncertainty or even go metastable, making the synchronizer ineffective.
Synchronization check will fail if synchronizing flip-flops feed multiple
destinations.

It is often possible that a design has synchronizing flip-flops with multiple
fan-outs where only one fan-out is active at a time. Provide case analysis
that will enable only one fan-out thereby preventing Ac_unsync01/
Ac_unsync02 violations.

There can be cases in which a fan-out is feeding a primary output (ignoring
buffers and inverters) and case-analysis cannot be used, as shown in the

SpyGlass CDC Solution

All clock synchronization rules except the Clock_sync06 rule
1360 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
following figure.

FIGURE 41. Fan-out Feeding Primary Output

In such cases, you may use the constraint, output_not_used.

Product

SpyGlass CDC solution

Syntax

Use the output_not_used constraint as follows to specify the name of
the primary output port so that the connection is ignored while checking for
synchronization:

current_design <du-name>
output_not_used -name { <port-name> }

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs).

-name <port-name>

The name of the primary output port.

You can use a combination of wildcard characters (‘*’ and ‘?’) when

clk2

clk1

D
primary
output
Version N-2017.12-SP1 1361
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
specifying port names.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

Rules

The output_not_used constraint is used by the following rules:

pg_cell

Purpose

The pg_cell constraint is used to specify the names of power/ground
pins for cells present in the input netlist, which are missing from the
respective PLIB/LIB/LEF libraries.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pgcell.

Product

SpyGlass Power Verify solution, SpyGlass Power Estimation and SpyGlass
Power Reduction solutions

Syntax

The syntax to specify the pg_cell constraint is as follows:

current_design <du-name>
pg_cell
-name <lib-group-name>
[-powerTerms <term-name-list>]

SpyGlass CDC Solution

Ac_sync01 Ac_sync02 Clock_sync08 Clock_sync03a

Clock_sync03b Clock_sync08a Clock_sync09 Propagate_clocks
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08
Ac_conv02 Ac_conv03 Ac_handshake01 Ac_handshake02
Ac_conv01 Ac_unsync01 Ac_unsync02
1362 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-groundTerms <term-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the PG cell pins.

-name <lib-group-name>

Specifies an identifier for a PG cell.

You can use wildcard characters while specifying cell names by using the
-name argument.

-powerTerms <term-name-list> / -groundTerms <term-name-list>

Space-separated list of member power/ground terminal names.

Examples

The following example declares a PG cell named PX_120_LS having
power terminal named VDDEXT and ground terminal named VSSEXT:

pg_cell -name PX_120_LS
-powerTerms VDDEXT -groundTerms VSSEXT

The following example declares a PG cell named PX_150_LS having
power terminals named VDDEXT and VDDBULK and ground terminals
named VSSEXT and VSSBULK:

pg_cell -name PX_150_LS
-powerTerms VDDEXT VDDBULK
-groundTerms VSSEXT VSSBULK

Rules

The pg_cell constraint is used by the following rules:

SpyGlass Power Verify Solution
LPPLIB04 LPPLIB05 LPPLIB06 LPPLIB07
LPPLIB08 LPPLIB11 LPPLIB15 LPPLIB16
Version N-2017.12-SP1 1363
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pg_pins_naming

Purpose

Specifies power/ground pin names for single supply cells that need to be
checked.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
pgpins_naming.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the pg_pins_naming constraint is as follows:

current_design <du-name>
pg_pins_naming
[-power <pwr-pin-names>]
[-ground <gnd-pin-names>]
[-biaspower <bias-pwr-pin-names>]
[-biasground <bias-gnd-pin-names>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power/ground
pin names for single supply cells.

-power <pwr-pin-names> & -ground <gnd-pin-names>

Simple pin name lists or lists of regular expressions. You can use wildcard
characters while specifying power/ground pin names.

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
All rules running in EST mode
1364 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-biaspower <bias-pwr-pin-names> & -biasground <bias-gnd-pin-names>

Simple bias pin name lists or lists of regular expressions. You can use
wildcard characters while specifying power/ground pin names.

Rules

The pg_pins_naming constraint is used by the following rules:

pin_voltage

Purpose

Specifies voltage/power domain for primary ports, pins of design units, or
instances in the design.

NOTE: The voltage_domain constraint allows you to specify the voltage/power domains of
design units and instances. Use the pin_voltage constraint to specify voltage/
power domains of pins.

The different ways to specify the pin_voltage constraint are as follows:

 Specify voltage/power domain for all pins of all instances of a specified
design unit

Use the -module and -default arguments, as in the following
example:

current_design top
voltage_domain -name VD1 ...
pin_voltage -voltage VD1 -module my_block -default

The above specification indicates that the voltage/power domain of all
pins of all instances of design unit my_block is VD1.

 Specify voltage/power domain for named pins of all instances of a
specified design unit

Use the -module and -names arguments, as in the following

SpyGlass Power Verify Solution

LPSVM49 LPPLIB18A LPPLIB18B
Version N-2017.12-SP1 1365
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
example:

current_design top
voltage_domain -name VD1 ...
pin_voltage -voltage VD1 -module my_block -names A D

The above specification indicates that the voltage/power domain of pins
named A and D of all instances of design unit my_block is VD1.

 Specify the voltage/power domain for all pins of the specified instance

Use the -instance and -default arguments as in the following
example:

current_design top
voltage_domain -name VD1 ...
pin_voltage -voltage VD1 -instance top.U1 -default

The above specification indicates that the voltage/power domain of all
pins of instance U1 under design unit top is VD1.

 Specify the voltage/power domain for named pins of the specified
instance

Use the -instance and -names arguments, as in the following
example:

current_design top
voltage_domain -name VD1 ...
pin_voltage -voltage VD1 -instance top.U1 -names A D

The above specification indicates that the voltage/power domain of pins
named A and D of instance U1 under design unit top is VD1.

 Specify the voltage/power domain for selected pins of the bus of the
specified instance

Use the -instance and -names arguments as in the following
example:

current_design top1
voltage_domain -name Vtop -value 1.2 -modname top1
pin_voltage -voltage Vtop -instance top1.mid1 \

-names in[0:2]

The above specification indicates that the voltage/power domain of pins
named in[0], in[1], and in[2]of instance mid1 under design unit
1366 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
top1 is Vtop.

Please note the following:

 A pin_voltage specification using the -instance argument
overrides the pin_voltage constraint using the -module argument
for the same instance.

For example, assume design unit M1 has two instances U1 and U2 in
design unit top. If you specify the following pin_voltage
constraints, the inferred voltage/power domain for pin D of instance U2
under design unit top is VD2:

...
pin_voltage -voltage VD1 -module M1 -default
...
pin_voltage -voltage VD2 -instance top.U2 -names D
...

Here, the inferred voltage/power domain for all pins of instance U1
under design unit top and all pins except pin D of instance U2 under
design unit top is VD1.

 The inferred voltage/power domain for all pins for which a
pin_voltage constraint is not specified is the same as voltage/power
domain of their parent instance.

 All voltage/power domain checking is applicable to pins specified with
the pin_voltage constraint just like for design units and instances
specified with the voltage_domain constraint.

 You can also specify external voltage/power domains (created with the
standalone -external argument of the voltage_domain constraint)
with the -voltage argument of the pin_voltage constraint.

The pin_voltage constraint overrides the voltage_domain constraint for
pins. Therefore, if you have specified the voltage/power domain for a pin
with both these constraints, the pin_voltage constraint information is
used and the voltage_domain constraint information is ignored.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pinvoltage.
Version N-2017.12-SP1 1367
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the pin_voltage constraint is as follows:

current_design <du-name>
pin_voltage
-voltage <vpd-name>
[-module <du-name> -default]
| [-module <du-name> -names <pin-name-list>]

 | [-instance <du-name> -default]
| [-instance <du-name> -names <pin-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the voltage/power
domain for pins.

-voltage <vpd-name>

Name of a voltage domain or a power domain already specified using the
voltage_domain constraint.

You can use wildcard characters while specifying module names (using the
-module argument) and instance names (using the -instance
argument).

Rules

The pin_voltage constraint is used by the following rules:

SpyGlass Power Verify Solution
LPSVM04A LPSVM04B LPSVM04C LPSVM04D
1368 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pll

Purpose

The pll constraint is used to specify the PLL (Phase Lock Loops) modules.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the pll constraint is as follows:

pll -name <mod-name>
-clkin <port-name>
-clkout <port-name>
[-reset <rst-port-name>
-value <value-that-resets-the-pll>]

NOTE: The pll constraint supports wildcard characters.

Arguments

The pll constraint has the following arguments:

-name <mod-name>

The PLL module name.
NOTE: Any module declared as a PLL will automatically be created as a black box in

SpyGlass DFT DSM solution.

-clkin <port-name> / -clkout <port-name>

Input/Output port name of the pll module.

Consider the following example:

...
-clkin in1 -clkout qbar
...

NOTE: Only one clkin port name is allowed.
Version N-2017.12-SP1 1369
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-reset <rst-port-name>

(Optional) Name of the reset pin on the design unit (black box). You can
specify only a single pin name.

-value <value-that-resets-the-pll>

(Optional) The active value (0 or 1) for the pin <rst-port-name>.

Rules

This pll constraint is used by the following rules:

port_time_delay

Purpose

Specifies the design units to be checked by the PortTimeDelay rule.
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was

porttimedelay.

Product

SpyGlass CDC solution

Syntax

The syntax for specifying the port_time_delay constraint is as follows:

current_design <du-name>
port_time_delay
-name <ptddu-name>
[-ignore_instances <instance-list>]
[-ignore_ports <port-name-list>]

SpyGlass DFT Solution
All rules
SpyGlass DFT DSM Solution

PLL_01 PLL_02
1370 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-notimedelay_ports <ntdport-name-list>]

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs) under
which you are specifying the design unit <ptddu-name> to be checked.

-ignore_instances <instance-list>

(Optional) Allows you to specify a space-separated hierarchical name list
<instance-list> of instances that should be ignored by the
PortTimeDelay rule, if found in the path.

-ignore_ports <port-name-list>

(Optional) Allows you to specify a space-separated name list
<port-name-list> of ports of the design unit <ptddu-name>
specified with the -name argument that should be ignored by the
PortTimeDelay rule.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-notimedelay_ports <ntdport-name-list>

(Optional) Allows you to specify a space-separated name list
<ntdport-name-list> of ports of the design unit <ptddu-name>
specified with the -name argument that should be checked for unexpected
time delay value by the PortTimeDelay rule.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

Rules

The port_time_delay constraint is used by the following rule:
Version N-2017.12-SP1 1371
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
SpyGlass CDC Solution

PortTimeDelay
1372 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
power_data

Purpose

Specifies the details of files from which power data is to be taken.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the power_data constraint is as follows:

power_data
-format <CPF | UPF>]
-file <file-name-list>

-version <version-number>

Arguments

-file <file-name-list>

List of files that contain power data.
NOTE: For the CPF or UPF flow, SpyGlass also honors the following SGDC commands:

-version <version-number>

Specify this argument as 1 or 1.0 (for UPF 1.0) and 2 or 2.0 (for UPF 2.0).
This is would set the default UPF version.

activity always_on_buffer assume_path
cell_hookup cell_pin_info cell_tie_class
multivt_lib non_pd_inputcells power_data
pg_pins_naming power_down_sequence ram_instance
set_case_analysis switchoff_wrapper_instance
special_cell assertion_signal clock
power_down ram_switch
Version N-2017.12-SP1 1373
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The power_data constraint is used by the following rules:

power_down

Purpose

Specifies power-down conditions as used by the LPSVM28 rule.

Product

SpyGlass Power Verify solution

SpyGlass Low Power
LPPLIB04 LPPLIB07 LPLSH01 LPLSH02
LPLSH03 LPLSH04 LPLSH05 LPSVM04A
LPSVM04B LPSVM04C LPSVM04D LPSVM04E
LPSVM17 LPSVM24 LPISO01 LPISO02
LPISO03 LPISO04A LPISO04B LPISO04C
LPISO05 LPISO06A LPISO06B LPSVM08
LPSVM09 LPSVM010 LPSVM12A LPSVM12B
LPSVM22 LPSVM26 LPSVM31 LPSVM47
LPSVM51 LPSVM60 LPPLIB10 LPSVM38
LPSVM56B LPSVM57 LPSVM59 LPCONN01
LPCONN02 LPCONN03 LPPLIB06 LPPLIB15
LPPLIB16 LPPLIB17 LPPLIB18A LPPLIB18B
LPPLIB19A LPSUP03 LPPSW01 LPPSW02
LPPSW03 LPPSW04 LP_DECOMPILE_

CONSTR
UPF_lowpower02

UPF_lowpower03 UPF_lowpower04 UPF_lowpower05 UPF_lowpower08
UPF_lowpower11 UPF_lowpower12 UPF_lowpower13 UPF_lowpower14
UPF_lowpower16
1374 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax to specify the power_down constraint is as follows:

current_design <du-name>
power_down
[-domain <pd-name>]
-signame <sig-name-list>
-value <value-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the power-down
conditions.

-domain <pd-name>

Power domain name.

When you specify a power domain name using the -domain argument,
the LPSVM28 rule of the SpyGlass Power Verify solution checks whether
the specified pin(s)/net(s) attain the expected value when the specified
power domain is switched off. If you do not specify the -domain
argument of the power_down constraint, the LPSVM28 rule checks
whether the specified pin(s)/net(s) attain the expected value when all
power domains are switched off.

-signame <sig-name-list>

Space-separated list of pin/net names that are to be checked.

You can use wildcard characters (*) while specifying the pin/net names.

-value <value-list>

Space-separated list of expected values.

NOTE: For the -value argument of the power_down constraint, use only 0 or 1 to
specify expected values. The constraint check reports any other value specified.
Version N-2017.12-SP1 1375
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

The following specification indicates that all pins of instance top.mod1 are
to be expected to attain a value of 1 when the power domain V3 is
switched off:

power_down -domain V3 -signame “top.mod1.*” -value 1

The following specification indicates that all pins of instance top.I1 with
names starting with vd_in are to be expected to attain a value of 0 when
the power domain V3 is switched off:

power_down -domain V3 -signame “top.I1.vd_in*” -value 0

You can also specify vector nets using the power_down constraint. These
can be specified in different ways. For example, a 4-bit input signal can be
specified as follows:

power_down -domain V3 -signame top.I1.vd_in[0:3] -value 0

power_down -domain V3 -signame top.I1.vd_in -value 0

power_down -domain V3 -signame top.I1.vd_in[0] -value 0 -
signame top.I1.vd_in[1] -value 1 -signame top.I1.vd_in[2] -
value 0 -signame top.I1.vd_in[3] -value 1

Rules

The power_down constraint is used by the following rule:

power_down_sequence

Purpose

The power_down_sequence constraint is used to specify the registers
that should be connected to the specified power-down signal.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pdsequence.

SpyGlass Power Verify Solution

LPSVM28
1376 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the power_down_sequence constraint is as
follows:

current_design <du-name>
power_down_sequence
-signalname <sig-name>
-instnames <inst-name-list>
[-ignorecells <ignorecell-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power-down
signals.

-signalname <sig-name>

Name of the power-down signal to be checked.

-instnames <inst-name-list>

Space-separated list of register cell instance names. You can use wildcards
while specifying the cell instance names.

-ignorecells <ignorecell-name-list>

Space-separated list of cells to be ignored while traversing the fan-out of
the specified power-down signal. You can use wildcard characters while
specifying cells to be ignored using the -ignorecells argument.

Examples

The following example specifies that signal vdd should be directly
connected to instances top.mid.inst1, top.mid.inst2 and
top.mid.inst3 only (ignoring instances of cells isoBuf and isoAnd
while traversing the fan-out of the power-down signal):
Version N-2017.12-SP1 1377
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
power_down_sequence
-signalname vdd
-instnames top.mid.inst1 top.mid.inst2 top.mid.inst3
-ignorecells isoBuf isoAnd

Rules

The power_down_sequence constraint is used by the following rule:

power_management_test_control_cell

Purpose

A power_management_test_control_cell is used to specify PMUWRs in the
design.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the power_managament_test_control_cell
constraint is as follows:

power_management_test_control_cell
-name <module-name>
-control_output <control_pin>

Arguments

-name <module-name>

The name of the module to be declared as PMUWR.

SpyGlass Power Verify Solution

LPSVM41
1378 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-control_output <control_pin>

Output control pin of PMUWR.

Rules

The power_management_test_control_cell constraint is used by
the following rules:

power_management_unit

Purpose

A power_management_unit is used to specify PMUs in the design.

Product

SpyGlass DFT DSM solution

Syntax

The syntax to specify the power_managament_unit constraint is as
follows:

power_management_unit
-name <module-name>

Arguments

-name <module-name>

The name of the module to be declared as PMU. This is a mandatory field.

Rules

The power_management_unit constraint is used by the following
rules:

SpyGlass DFT DSM Solution

SP_02 SP_03 SP_04 SP_05
Version N-2017.12-SP1 1379
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
power_rail_mapping

Purpose

The power_rail_mapping constraint specifies a mapping between the
supply rail(s) in design and power rails in the technology library for an
instance of the design.

If there are multiple technology libraries, you need to specify a mapping
with each library separately.

NOTE: The supply rails in design can be specified by using the supply constraint.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the power_rail_mapping constraint is as
follows:

current_design <top-du-name>
power_rail_mapping
[-design <inst-name>]
-lib <lib-name>
-lib_rail <lib-rail-name>
-design_rail <inst-rail-name>
-default_lib_rail

Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

SpyGlass DFT DSM Solution

SP_02 SP_03 SP_04
1380 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-design <inst-name>

Name of the instance (under the environment <top-du-name>) for
which you are specifying the instance-to-supply rail mapping. If you do not
specify an instance name using the -design argument, the specified
instance-to-supply rail mapping is applicable to all instances under the
environment <top-du-name> unless overridden by another
power_rail_mapping constraint specifying a particular instance.

NOTE: The -design argument is optional.

-lib <lib-name>

Name of library from which some gates are mapped to the gates in
instance <inst-name>.

-lib_rail <lib-rail-name>

Name of library supply applicable for instance <inst-name>.

-default_lib_rail

The -default_lib_rail argument is used to specify default supply rail
for the libraries where default_power_rail attribute is not specified.

NOTE: You should not use -default_lib_rail along with the -lib_rail
argument. This will result in a fatal error generated by the
SGDC_power_est25 rule.

-design_rail <inst-rail-name>

Name of the supply rail (defined using the supply constraint) that maps
to the library supply <lib-rail-name> for instance <inst-name>.

Example

Consider a library, lib1, which has three power rails, rail1, rail2, and
rail3. Also, consider a top-level design, top, and an instance, inst,
instantiated in that design. Design, top, has two supply rails, VDD1 and
VDD2, specified by using the supply constraint.

Now, if you want to map the design rail, VDD1, with power rails, rail1
Version N-2017.12-SP1 1381
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
and rail2, and map design rail, VDD2, with power rail, rail3, use the
power_rail_mapping constraint, as shown below:

power_rail_mapping -design top -design_rail VDD1 -lib lib1 -
lib_rail rail1

power_rail_mapping -design top -design_rail VDD1 -lib lib1 -
lib_rail rail2

power_rail_mapping -design top -design_rail VDD2 -lib lib1 -
lib_rail rail3

The above commands connect library rails, rail1 and rail2, to design
rail, VDD1, and library rail, rail3, to design rail, VDD2. The power values
corresponding to rail1 and rail2 are reported in VDD1. Similarly,
power values corresponding to rail3 are reported in VDD2.

If you want to specify a separate mapping for inst, then specify the
following commands:

power_rail_mapping -design top.inst -design_rail VDD1 lib
lib1 -lib_rail rail1

power_rail_mapping -design top.inst -design_rail VDD2 lib
lib1 -lib_rail rail3

NOTE: If a mapping between library rail and supply rail is not defined, the power
corresponding to the library rail is reported in an internally generated supply rail,
OTHER_RAILS.

Rule

The power_rail_mapping constraint is used by the following rules:

power_state

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR01 PEPWR02 poweraudit
1382 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Specifies the legal combinations of domain states (voltage values), that is,
those combinations of domain states that can exist at the same time during
operation of the design.

NOTE: The voltage specified in the power_state constraint is applied for the
respective domain. However, if you do not specify a domain in any of the defined
power states, the corresponding voltage value is taken from the voltage_domain
constraint specification.

NOTE: For the SpyGlass Power Estimation and SpyGlass Power Reduction solutions, only
one power state is honored at a time, currently.

Product

SpyGlass Power Verify solution, SpyGlass Power Estimation and SpyGlass
Power Reduction solutions

Syntax

The syntax to specify the power_state constraint is as follows:

current_design <du-name>
power_state
-name <pd-condition-name>
-domains <domain-name-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the power state
conditions.

-name <pd-condition-name>

Name of the power state condition.

-domains <domain-name-list>

Domain name@voltage-value. For example:

power_state -name LL -domains VA@0.8 VB@0.8

NOTE: A domain that is declared as voltage domain (always-on) is always on. However, a
Version N-2017.12-SP1 1383
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
domain declared as power domain (switchable) can be either on or off. Each
valid state for the full design will have some domains on and some domains off.
The power_state constraint describes one power state. You can use the
constraint to specify all power domains that are on in a specific power mode. Each
power domain specified by the -domains argument list is powered on, and the
other power domains that are not listed are powered off.

Rules

The power_state constraint is used by the following rules:

power_switch

Purpose

The power_switch constraint is used to specify the power switches in
power domains.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was powerswitch.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the power_switch constraint is as follows:

current_design <du-name>
power_switch
-name <name>

SpyGlass Power Verify Solution
LPSVM08 LPSVM09 LPSVM10 LPSVM23
LPSVM47 LPSVM48 LPSVM60
SpyGlass Power Estimate
All rules that use voltage information
1384 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-pwroutpin <out-pin-name>]
[-pwrinpin <in-pin-name>]
[-en_inv_in <en-in-pin-name>]
[-en_inv_in_2 <en-in-pin2-name>]
[-en_inv_out <en-out-pin-name>]
[-en_buf_in <en-buf-pin-name>]
[-enableval <0 | 1>]
[-enableval_2 <0 | 1>]
[-exclude <pin-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power switch.

-name <name>

Name of the power switch. You can specify names using wildcards.

-pwroutpin <out-pin-name>

Name of the power-out terminal

-pwrinpin <in-pin-name>

Name of the power-in terminal

-en_inv_in <en-in-pin-name>

Name of the enable input terminal

-en_inv_in_2 <en-in-pin2-name>

Name of the enable input terminal
NOTE: This argument is used in case of dual enable power switch.

-en_inv_out <en-out-pin-name>

Name of the enable output terminal
Version N-2017.12-SP1 1385
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-en_buf_in <en-buf-pin-name>

Name of the buffer enable input terminal.

If you specify the -en_inv_out and -en_buf_in arguments, the
power switch is assumed as dual enable port power switch.

-enableval <0 | 1>

Specifies the value of the signal at enable pin. You can specify the
argument as 0 (active low) or 1 (active high).

-enableval_2 <0 | 1>

Specifies the value of the signal at the second enable pin. You can specify
the argument as 0 (active low) or 1 (active high). This option is used in
case of dual enable port power switch.

-exclude <pin-name-list>

Specifies a list of supply pins that are not to be checked for power and
ground connections.

NOTE: You can specify the same design unit as the power switch for multiple power
domains.

Rules

The power_switch constraint is used by the following rules:

pr_safe_clocks

Purpose

Power reduction rules recommend the RTL changes that do not introduce
any clock domain issues in the design. Therefore, the rules need to ensure
that every transformation is safe from the clock crossing perspective.

A design may contain clocks that are physically different but have the same

SpyGlass Power Verify Solution
LPSVM06 LPSVM45 LPPLIB17 LPPLIB15
1386 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
domain, frequency, and phase. Such clocks are termed as safe clocks.

The pr_safe_clocks constraint is used to specify a list of such clocks
that can be used by SpyGlass to report power reduction recommendations.

For example, consider the following figure:

In the above figure, when you run SpyGlass for the Block block, SpyGlass
sees two clocks, C1 and C2. However, these clock nets are connected to
the Clk clock at the chip level. In this case, you should specify the
following command in the SGDC file:

pr_safe_clocks -name C1 C2

The above command specifies that C1 and C2 are actually same and any
transformation across them is safe.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the pr_safe_clocks constraint is as follows:

pr_safe_clocks
-name <clk-list>
Version N-2017.12-SP1 1387
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-name <clk-list>

List of clocks that are physically different but have the same domain,
frequency, and phase

Rules

The pr_safe_clocks constraint is used by the following rules:

pulldown

Purpose

The pulldown constraint is used to specify the pull-down design units so
that various rules can take appropriate actions.

The Scan_21 rule of the SpyGlass DFT solution uses the pulldown
constraint to check whether a scan flip-flop exists in the fan-in of the
enable pin. The Tristate_09 rule uses the pulldown constraint to check
whether the enable pin of the pull-down design unit gets the expected
value in the capture mode. The Topology_12 rule uses the pulldown
constraint to check whether primary inputs are connected to a pull-down
device.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pullDown.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the pulldown constraint is as follows:

pulldown

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Rules of SpyGlass Power Reduce
1388 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 -name <du-name>
[-pin <pin-name>]
[-value <value>]

NOTE: The pulldown constraint supports wildcard characters.

Arguments

<du-name>

The pull-down design unit (black box) name.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can specify a single design unit name or a space-separated list of
design unit names.

-pin <pin-name>

(Optional) The enable pin on the pull-down design unit (black box).

You can specify only a single pin name.

If you do not specify the enable pin, the design unit (black box) is always
assumed as an enabled pull-down.

-value <value>

(Optional) The expected value (0, 1, X, or Z) on the enable pin
<pin-name> under the shift mode.

You need to specify the value only if you have specified the pin name.

Rules

The pulldown constraint is used by the following rules:

SpyGlass DFT Solution
Scan_21 Tristate_06 Topology_12 Tristate_09
Version N-2017.12-SP1 1389
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pullup

Purpose

The pullup constraint is used to specify the pull-up design units so that
various rules of SpyGlass DFT solution can take appropriate actions.

The Scan_21 rule uses the pullup constraint to check whether a scan
flip-flop exists in the fan-in of the enable pin. The Tristate_09 uses the
pullup constraint to check whether the enable pin of the design unit gets
the expected value in the capture mode. The Topology_12 rule uses the
pullup constraint to check whether primary inputs are connected to a
pull-up device.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was pullUp.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the pullup constraint is as follows:

pullup
-name <du-name>
[-pin <pin-name>]
[-value <value>]

NOTE: The pullup constraint supports wildcard characters.

Arguments

<du-name>

The pull-up design unit (black box) name.

SpyGlass DFT DSM Solution
All rules
1390 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can specify a single design unit name or a space-separated list of
design unit names.

-pin <pin-name>

(Optional) The enable pin on the pull-up design unit (black box).

You can specify only a single pin name.

If you do not specify the enable pin, the design unit (black box) is always
assumed as an enabled pull-up.

-value <value>

(Optional) The expected value (0, 1, X, or Z) on the enable pin <pin-
name> under the shift mode.

You need to specify the value only if you have specified the pin name.

Rules

The pullup constraint is used by the following rules:

qualifier

Purpose

Specifies a qualifier for synchronizing a clock domain crossing by the
Qualifier Synchronization scheme.

SpyGlass DFT Solution
Scan_21 Tristate_06 Topology_12 Tristate_09
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 1391
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass CDC solution

Syntax

The syntax of the qualifier constraint is as follows:

Usage 1:

qualifier
-name <qualifier-name>
-from_clk <src_clk_list>
-to_clk <dest_clk_list>
-type <type> -strict
[-crossing]
[-ignore]
[-reset]

Usage 2:

qualifier
-name <qualifier-name>
-from_domain <src_domain_list>
-to_domain <dest_domain_list>
-type <type> -strict
[-crossing]
[-ignore]
[-reset]

Usage 3:

qualifier
-name <qualifier-name>
-ignore

Usage 4:
1392 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
qualifier
-name <qualifier-name>
-from_obj <src-obj-list>
-to_obj <dest-obj-list>
-ignore

Usage 5:

qualifier
-enable <hierarchical-verilog-expression>
-from_obj <src-obj-list>
-to_obj <dest-obj-list>

Usage 6:

qualifier
-name <qualifier-name>
-from_obj <src-obj-list>
-to_obj <dest-obj-list>

Usage 7:

qualifier
-name <qualifier-name>
-rdc
[-from_obj <src-obj-list> -to_obj <dest-obj-list>]
[-to_clk <dest-clock-list>]
[-to_domain <dest-domain-list>]
[-from_rst <source_reset_list> -to_rst <dest_reset_list>]

Usage 8:

qualifier

[–src_qual <src_qual_name>]
[-dest_qual <dest_qual_name>]
[-dest_qual_depth <dest_qual_depth>]
[–src_qual_depth <src_qual_depth>]
-from_clk <src_clk_list>
Version N-2017.12-SP1 1393
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to_clk <des_clk_list>

Usage 9:

qualifier

[-src_qual <src_qual_name>]
[-dest_qual <dest_qual_name>]
-from_domain <src_domain_list>
-to_domain <des_domain_list>

Usage 10:

qualifier

[-src_qual <src_qual_name>]
[-dest_qual <dest_qual_name>]
-from_obj <src_obj_of_crossing>
-to_obj <des_obj_of_crossing>

Arguments

-name <qualifier-name>

Name of the qualifier (port, net, hierarchical terminal). You can also specify
the output of the destination in a control synchronized crossing to this
argument.

You can also specify a pin name (of a master design unit) in the
<du-name>/<pin-name> format.

You can also use wildcard characters (‘*’ and ‘?’) while specifying names.

NOTE: Set the hier_wild_card parameter to yes to match the expression with the
hierarchies. For example, the top.*.n1 expression is matched to
top.u1.n1 and top.u1.u2.n1. By default, the qualifier constraint
matches only top.u1.n1.
Setting the value of the hier_wild_card parameter to yes, run-time
performance of the qualifier constraint is impacted.
1394 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-from_clk <src-clk-list>

Space-separated list of clock names that drive the source of a crossing to
be synchronized by the qualifier specified by -name <qualifier-name>.

Specify this argument with -to_clk <dest-clk-list>.

See Example 1.
NOTE: While specifying the list of clock names, either specify individual clock names in

double quotes or do not use double quotes at all. See Example 8.

-to_clk <dest-clk-list>

Space-separated list of clock names that drive the destination of a crossing
to be synchronized by the qualifier specified by -name <qualifier-name>.

Specify this argument with -from_clk <src-clk-list>.

See Example 1.
NOTE: While specifying the list of clock names, either specify individual clock names in

double quotes or do not use double quotes at all. See Example 8.

-from_domain <src-domain-list>

Space-separated list of domain names that drive the source of a crossing
to be synchronized by the qualifier specified by -name <qualifier-name>.

Specify this argument with -to_domain <dest-domain-list>.

See Example 2.

-to_domain <dest-domain-list>

Space-separated list of domain names that drive the destination of a
crossing to be synchronized by the qualifier specified by -name <qualifier-
name>.

Specify this argument with -from_domain <src-domain-list>.

See Example 2.

-from_obj <src-obj-list>

Space-separated list of objects (hierarchical net, pin, or port) of a source
such that the crossings containing such sources are not synchronized by
the qualifier specified by -name <qualifier-name>.

Specify this argument with -to_obj <dest-obj-list> and -ignore.
Version N-2017.12-SP1 1395
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
See Example 3.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-to_obj <dest-obj-list>

Space-separated list of objects (hierarchical net, pin, or port) of a
destination such that the crossings containing such destinations are not
synchronized by the qualifier specified by -name <qualifier-name>.

For library cells and black boxes, specify their input pin or input net names
to this argument.

Specify this argument with -from_obj <src-obj-list> and -ignore.

See Example 3.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

-type <type>

Can be des if the qualifier reaches to the destination of a crossing or it can
be src if it reaches to the source of a crossing.

By default, the type is des.

See Example 4 and Example 5.

-strict

Whether to allow strict synchronization checks for qualifier synchronization
scheme. Specify -strict option to allow these checks.

Qualifier propagation stops on arithmetic macros and memories when the
-strict option is specified in the qualifier constraint.

NOTE: Refer to the Qualifier Synchronization Scheme section of the SpyGlass CDC Rules
Reference Guide for details.

See Example 6.

-crossing

Specify this argument to consider a crossing as synchronized if the
specified qualifier defines a crossing output that contains only a single
destination flip-flop.
1396 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-ignore

Marks the qualifier specified by the -name <qualifier-name> argument as an
invalid qualifier for the specified objects, domains, or clock crossings in the
design.

This argument is useful when SpyGlass infers a qualifier in the design but
you do not want SpyGlass to consider it as a valid qualifier.

See Example 1, Example 2, Example 3, and Example 4.
NOTE: This argument should not be used with the -type <type>, -strict, and -crossing

argument of the qualifier constraint.

-enable <hierarchical-verilog-expression>

Specifies the expression representing an enable condition of a qualifier. The
expression uses Verilog hierarchical names and operators.

The names specified to this argument should be valid design objects and
should have the same domain as that of -to_obj <dest-obj-list> in their fan-
in.

NOTE: It is mandatory to specify the both the -to_obj <dest-obj-list> and -from_obj <src-
obj-list> arguments with the -enable argument.

The -enable argument supports hierarchical scoping. If any qualifier -
enable is provided at block level sgdc and the sgdc is used in top-level
design, the qualifier constraint is migrated to the top and therefore the
signals are migrated to the top.

The following example shows the usage of this argument:

qualifier -enable "top.en_out" -from_obj top.src.q -to_obj
top.des.q

-reset

Specify this argument to consider a crossing as synchronized if the
specified qualifier is present on a reset path.

For example, specify the following constraint to synchronize a clock domain
crossing only on reset paths.

qualifier -name qual -from_clk clk1 -to_clk clk2 -reset

-rdc

Specify this argument to consider a rdc crossing as synchronized if the
Version N-2017.12-SP1 1397
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
specified qualifier is present on a data or control path.
For example, specify the following constraint to synchronize a reset domain
crossing.

qualifier -name qual -from_rst r1 -to_rst r2 -rdc

-src_qual

Specifies name of the valid qualifier (port, net, hierarchical terminal),
which when reaches the source of the crossing at the enable pin, or the
select pin of the recirculation multiplexer at that source, or enable pin of
the clock-gating cell driving the clock pin of the source can synchronize the
data crossing.

See Example 9, Example 10, and Example 11

NOTE: When both src_qual and dest_qual are specified, then both of them should satisfy
their individual criteria for a data crossing to be considered as synchronized.

-dest_qual

Use this argument to specify the name of the valid qualifier (port, net,
hierarchical terminal), which can block the source before reaching the
destination to synchronize the data crossing.

See Example 9, Example 10, and Example 11

NOTE: The -src_qual and -dest_qual arguments cannot be specified with the following
arguments of the qualifier constraint: -name, -enable, -from_rst, -to_rst,
-thru_obj, -type, -crossing, -ignore, and -rdc.

-src_stable

Use this argument to specify the source stability criteria. When this
argument is specified, mux-based synchronization does not check for
destination domain signal on other data pins of mux and synchronization
analysis reports it as synchronized.

The src_qual and the dest_qual are both mandatory arguments with
the src_stable argument. For a qualifier reaching mux select pin, use
the dest_qual argument to specify the destination qualifier.

-src_qual_depth

Specifies the qualifier depth i.e. the number of sequential elements allowed
from qualifier declaration till source of crossings.
1398 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
See Example 9, Example 10, and Example 11

-dest_qual_depth

Specifies the qualifier depth i.e. the number of sequential elements allowed
from qualifier declaration till destination of crossings.

See Example 9, Example 10, and Example 11

NOTE: When cdc_qualifier_depth is not specified, then the rule will give a sanity message
that use cdc_qualifier_depth to modify depth and depth = 3 has been used in
current analysis.

Examples

Consider the scenario shown in the following figure:

FIGURE 42. Specifying crossings synchronized by a qualifier

In the above scenario, you can specify the crossings that should or should
not be synchronized by the qual qualifier. This is described in the
examples below.

clk1

net qual

clk1 clk2

clk2

clk2
clk3

net n1

net n3

(qualifier)

net n2

net n4

clk1, clk3 => d1 domain
clk2 => d2 domain
Version N-2017.12-SP1 1399
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 1

In the scenario shown in Figure 42, to enable qual to synchronize the
crossing between the source driven by the clk1 clock and destination
driven by the clk2 clock, specify the following constraint:

qualifier -name qual -from_clk clk1 -to_clk clk2

To ignore this crossing such that qual does not synchronize this crossing,
specify -ignore to this constraint, as shown below:

qualifier -name qual -from_clk clk1 -to_clk clk2 -ignore

Example 2

In the scenario shown in Figure 42, to enable qual to synchronize the
crossing between the source driven by the d1 domain clock and
destination driven by the d2 domain clock, specify the following constraint:

qualifier -name qual -from_domain d1 -to_domain d2

To ignore this crossing such that qual does not synchronize this crossing,
specify -ignore to this constraint, as shown below:

qualifier -name qual -from_domain d1 -to_domain d2 -ignore

Example 3

In the scenario shown in Figure 42, if you do not want qual to synchronize
the crossing between the source containing the n1 net and a destination
containing the n2 net, specify the following constraint:

qualifier -name qual -from_obj n1 -to_obj n2 -ignore

Example 4

Consider the following constraint:

qualifier -name qual -from_clk c1 -to_clk c2 c3 -type src

The above constraint specifies a qualifier for synchronization of the
1400 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
crossings where the source is driven by c1 and destination by c2 and c3.
The type src specifies that qual is reaching the source of the crossings.

Example 5

Consider the following constraint:

qualifier -name qual -from_domain d1 d2 -to_domain d3 d4
-type des

The above constraint specifies a qualifier for synchronization of the
crossings where the source is driven by clocks from domain d1 and d2 and
destination by clocks of domain d3 and d4. The type des specifies that
qual is reaching the destination of the crossings.

Example 6

Consider the following constraint:

qualifier -name qual -from_clk c1 c2 -to_clk c3 -strict

The above constraint specifies a qualifier for synchronization of the
crossings where the source is driven by c1 and c2 and destination by c3
and qual is reaching the destination of the crossings. In addition, the
constraint specifies that strict synchronization checks should be allowed for
qualifier synchronization scheme.

Example 7

The following constraint shows the usage of the -enable argument with
respect to the scenario shown in Figure 42:

qualifier -enable "qual" -from_obj "n1" -to_obj "n2"

Example 8

The following example shows the correct way to specify clock names in
-from_clk and -to_clk where either individual clock names are
specified in double quotes or no double quotes are used at all:

qualifier -name "xyz" -from_clk "clk1" "clk2" "clk3" -to_clk
Version N-2017.12-SP1 1401
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
"ck1" "ck2"

qualifier -name "xyz" -from_clk clk1 clk2 clk3 -to_clk ck1
ck2

The following example shows the incorrect way of specifying clock names
in -from_clk and -to_clk:

qualifier -name "xyz" -from_clk "clk1 clk2 clk3" -to_clk
"ck1 ck2"

Example 9

The following example shows the qualifier constraint specification for
synchronizing a crossing from the clk1 clock to the clk2 clock using the
source qualifier.

qualifier –src_qual squal -from_clk clk1 –to_clk clk2

This constraint specification synchronizes the crossing if the squal source
qualifier is reaching the source of the crossing at the enable pin or the
select pin of the recirculation multiplexer at that source or enable pin of the
clock-gating cell driving the clock pin of the source.

In the following schematic, the squal source qualifier is reaching the
enable pin of the source of the crossing src1_reg.

FIGURE 43.

Example 10

The following example shows the qualifier constraint specification for
synchronizing a crossing from the clk1 clock to the clk2 clock.

qualifier -src_qual squal -dest_qual dqual -from_clk clk1
1402 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to_clk clk2

This constraint specification synchronizes the crossing if:

 The squal source qualifier is reaching the source of that crossing at the
enable pin or select pin of the recirculation multiplexer at that source or
enable pin of the clock-gating cell driving the clock pin of the source.

 The dqual destination qualifier is blocking the source before reaching
the destination.

In the following schematic, the squal source qualifier is reaching the
enable pin of the source of the crossing src1_reg and the dqual
destination qualifier is reaching the enable pin of the destination flip-flop
out1_reg.

FIGURE 44.

Example 11

The following example shows the qualifier constraint specification for
synchronizing a crossing from the clk1 clock to the clk2 clock using the
destination qualifier with permissible sequential depth of 2.

qualifier -dest_qual qual -from_clk clk1 -to_clk clk2
-dest_qual_depth 2

In the following schematic, the qual destination qualifier is qualifying the
crossing through depth 2.
Version N-2017.12-SP1 1403
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 45.

Rules

The qualifier constraint is used by the following rules:

quasi_static

For SpyGlass TXV solution

Purpose

There are some primary inputs, flip-flops, nets, or terms present in the
design, which may change briefly at the start but assume a static value of
0 or 1 for the rest of the circuit operation.

You can specify the primary inputs, flip-flops, nets, or terms as static

SpyGlass CDC Solution
Clock_sync08 Clock_sync08a Clock_sync03a Clock_sync03b
Clock_sync09 Ac_cdc01a Ac_cdc01b Ac_cdc01c
Ac_cdc08 Propagate_Clocks Ac_conv02 Ac_sync01
Ac_sync02 Ac_unsync01 Ac_unsync02 Ac_conv04
Ar_cross_analysis01 Ar_resetcross01
1404 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
signals using the quasi_static constraint to skip the verification of
paths that involve such signals.

Product

SpyGlass TXV solution

Syntax

The syntax to specify the quasi_static constraint is as follows:

quasi_static -name <sig-name-list>

Arguments

-name <sig-name-list>

List of hierarchical net/term names of the static signal

Example

If A is a static signal then you need to specify the quasi_static
constraint in the .sgdc file as follows:

quasi_static -name top.A

Note

 Wildcard characters “*” and “?” can be used with the quasi_static
constraint.

 If the hierarchical net/term name of a static signal specified with the
-name argument does not exist as a net/term in the current design,
SGDC_quasi_static01rule reports a violation.

Rules

The quasi_static constraint is used by the following rules:

SpyGlass TXV Solution
FP_Pass_Verif05 FP_Skip_Verif02 MCP_Pass_Verif03
MCP_As_FP_Verif07 MCP_Skip_Verif03
Version N-2017.12-SP1 1405
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass CDC solution

Purpose

The quasi_static constraint is used to specify signals whose value is
predominantly static. Clock domain crossings containing such static signals
are reported as synchronized under the Delay Signals Synchronization
Scheme.

You can use this constraint if any of the following conditions hold true:
 If the value of signals is predominantly static

 If a clock on the destination flip-flop is stopped

 If a reset is active on a destination flip-flop

 If the logic in the clock domain crossing path is not sensitive to any
metastability issue

Signals specified by this constraint are propagated beyond buffers,
inverters, and transparent latches. In addition, a signal is propagated if all
inputs of an RTL gate or all related inputs of a black box that has the
assume_path constraint set on it are quasi-static.

If all inputs of a combinational logic present in a crossing path are
quasi-static except the source path, the logic is considered as safe even
when the allow_combo_logic parameter is set to no. Therefore, the
logic is allowed while checking in the Conventional Multi-Flop
Synchronization Scheme.

NOTE: The quasi_static constraint impacts the behavior of the Reset_check07 rule. Refer
to the help on Reset_check07 rule for details.

For example, consider the following figure:
1406 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In the above figure, crossing between the C1 and C2 clocks is reported as
synchronized by using the Conventional Multi-Flop Synchronization
Scheme.

Quasi static signals are auto inferred when a flop, latch, or CGC is receiving
a constant clock. SpyGlass CDC infers the output net of such flop, latch, or
CGC as quasi_static. For example, consider the following schematic:

In the above schematic, clk1 is held at constant value
(set_case_analysis -name clk1 value 1), and the src1_reg
flop is receiving constant clock. Therefore, SpyGlass CDC infers the flop
Version N-2017.12-SP1 1407
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
output src1 as quasi static.

NOTE: Please note the following points:

 Quasi-static signals are not propagated beyond flip-flops, normal
latches, and pure black boxes.

 This constraint is only applicable to Clock Domain Crossing (CDC) data
paths. It is NOT applicable to either clock paths or side paths/inputs to
CDC data paths.

 It is recommended that you use this constraint very carefully. If not
used carefully, this constraint may mask some of the real design issues.

 If a crossing contains signals other than static signals, it is
recommended that you use the cdc_false_path constraint to specify false
paths.

 By default, the quasi_static constraint does not propagate through
flops/sequential elements. Use the num_quasi_seq_elem parameter
to specify the depth of flops/sequential element up to which the
quasi_static constraint should propagate. Set the
num_quasi_seq_elem parameter to -1 to propagate the constraint
through infinite number of flops/sequential elements.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the quasi_static constraint is as follows:

current_design <du-name>
quasi_static -name <sig-name-list>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs)
1408 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-name <sig-name-list>

The list of port names, hierarchical net/term names, and/or hierarchical pin
names of predominantly static signals.

NOTE: Set the hier_wild_card parameter to yes to match the expression with the
hierarchies. For example, the top.*.n1 expression is matched to
top.u1.n1 and top.u1.u2.n1. By default, the quasi_static
constraint matches only top.u1.n1.
Setting the value of the hier_wild_card parameter to yes runtime
performance of the quasi_static constraint is impacted.

Example

You can specify bit-selects and part-selects with the quasi_static
constraint, as in the following example:

current_design top
quasi_static -name "top.I1.NetA2B[0]"
quasi_static -name "top.I1.NetA2B[1]"
clock -name clkA -domain A -value rtz
clock -name clkB -domain B -value rtz

You can also use regular expressions and wildcard characters while
specifying signal names. For example, consider that your design contains
buses, such as netBus1[0:7] and netBus2[0:15]. In this case, if
you want to specify both these buses, specify the following constraint:

quasi_static -name "top.netBus*"

For details on using regular expressions and wildcard characters, refer to
the Using Regular Expressions and Wildcard Characters topic of the Atrenta
Console User Guide.

Rules

The quasi_static constraint is used by the following rules:

SpyGlass CDC Solution
Clock_info05b Reset_check07 Clock_sync03a Clock_sync03b
Clock_sync05 Clock_sync06 Clock_sync08 Clock_sync08a
Version N-2017.12-SP1 1409
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass Power Family

Purpose

Specifies quasi static signals in a design.

Quasi static signals are the signals that are constant for most of the time
and toggle for the remaining time. This feature of these signals can be
used to find clock gating opportunities in a design.

Product

SpyGlass Power Family

Syntax

The syntax of the quasi_static signal is as follows:

current_design <du-name>
quasi_static -name <sig-name-list>
[-value <value>]

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs)

-name <signal-name>

Name of the signal that is considered as quasi static.

Clock_sync09 Ac_cdc01a Ac_cdc01b Ac_cdc01c
Ac_cdc08 Ac_handshake01 Ac_handshake02 Ac_conv01
Ac_conv02 Ac_conv03 Ac_sync01 Ac_sync02
Ac_unsync01 Ac_unsync02 Reset_sync02 Setup_quasi_static

01
Ac_coherency06 Propagate_Clocks Ar_converge01
1410 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The signal name can be the name of a port, hierarchical net/term, or
hierarchical pin.

-value <value>

The static value on the quasi static signal.

If you do not specify this argument, the value is picked from the simulation
file.

Rules

The quasi_static constraint is used by the following rules:

quasi_static_style

Purpose

Specifies a criterion based on which SpyGlass infers quasi-static signals in
a design.

If a signal matches the specified criteria, SpyGlass infers it as a quasi-static
signal.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the quasi_static_style constraint is as
follows:

current_design <du-name>
quasi_static_style
[-min_seq_fanouts <fanout-count>]

SpyGlass Power Family

PEPWR20 PEPWR21 PEPWR22 PEPWR23
PEPWR24 PEPWR25 PEPWR33
Version N-2017.12-SP1 1411
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-min_domain_fanouts <domain-count>]
[-names <pattern-list>]
[-check_all_signals]
[-report_full_count]

Arguments

-min_seq_fanouts <fanout-count>

Specifies the minimum number of sequential elements a signal must drive.

The default value is 10.

-min_domain_fanouts <domain-count>

Specifies the minimum number of clock-domains in the fan-out cone of a
signal.

The default value is 1.

-names <pattern-list>

Specifies a naming pattern for signals.

If a signal matches the specified pattern, only then SpyGlass checks if that
signal is a quasi-static signal based on the criteria specified by other
arguments of this constraint.

For details, see Example 1, Example 2, and Example 3.
NOTE: You can use wildcard expressions while specifying patterns.

-check_all_signals

Specifies that all the output of sequential elements, output pins of black
boxes, or input ports should be checked to see if they are quasi-static
signals.

By default, SpyGlass considers only the sources of clock-domain crossings
to detect quasi-static signals.

-report_full_count

Specify this argument to report the complete sequential fan-out count and
domain count of the inferred quasi_static signal in the spreadsheet
1412 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
report.

Examples

Example 1

Consider the following example:

quasi_static_style -names "cfg*" "*_cfg" "*_stable?"

When you specify the above constraint, SpyGlass infers the signals that
match all the following criteria:
 The signal is the source of a clock-domain crossing.

 The signal name matches any of the following criteria:

 The name starts with the string cfg.

 The name ends with _cfg.

 The name is succeeded by a character at the end of _stable.

 The fan-out count of the signal is at least 10.
NOTE: In the absence of the -min_seq_fanouts <fanout-count> argument, SpyGlass

considers the default fan-out count as 10.

 The domain count of the signal is at least 1.
NOTE: In the absence of the -min_domain_fanouts <domain-count> argument, Spy-

Glass considers the default domain count as 1.

Example 2

Consider the following example:

quasi_static_style -names "*cfg*" -min_seq_fanouts 20
-check_all_signals

When you specify the above constraint, SpyGlass infers the signals that
match all the following criteria:

 The signal name contains the string cfg.

 The fan-out count of the signal is at least 20.

 The domain count of the signal is at least 1.
Version N-2017.12-SP1 1413
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: In the absence of the -min_domain_fanouts <domain-count> argument, Spy-
Glass considers the default domain count as 1.

Example 3

Consider the following example:

quasi_static_style -names "cfg" -min_seq_fanouts 20
-min_domain_fanouts 3

When you specify the above constraint, SpyGlass infers the signals that
match all the following criteria:
 The signal is the source of a clock-domain crossing.

 The signal name is cfg, such as top.SB1.cfg and top.cfg.

 The fan-out count of the signal is at least 20.

 The domain count of the signal is at least 3.

Example 4

Consider the following example:

quasi_static_style -min_seq_fanouts 20 -min_domain_fanouts 3

When you specify the above constraint, SpyGlass infers the signals that
match all the following criteria:
 The fan-out count of the signal is at least 20.

 The domain count of the signal is at least 3.

Rules

The quasi_static_style constraint is used by the following rules:

ram_instance

SpyGlass CDC Solution
Setup_quasi_static01 SGDC_quasi_static_style01 SGDC_quasi_static_style02
1414 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Specifies RAM switch instance-to-RAM instance connections.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was raminstance.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the ram_instance constraint is as follows:

current_design <du-name>
ram_instance
-switch_instance <swt-inst-name>
-ram_instance <ram-inst-name>

Arguments

<du-name>

Name of the design unit under which you are specifying the connection.

-switch_instance <swt-inst-name>

Name of the RAM switch instance.

-ram_instance <ram-inst-name>

Name of the RAM instance.

Rules

The ram_instance constraint is used by the following rule:

ram_switch

SpyGlass Power Verify Solution

LPPLIB12
Version N-2017.12-SP1 1415
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Specifies the RAM switches as checked by the LPSVM46 and LPPLIB12
rules.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was ramswitch.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the ram_switch constraint is as follows:

current_design <du-name>
ram_switch
-switch_name <swt-name>
-switch_enable_pin <swt-en-pin-name>
[-switch_vss_outpin <swt-vss-outpin-name>]
-memory_cellnames <mem-cell-name-list>
[-memory_vss_pin <mem-vss-pin-name>]

Arguments

<du-name>

Name of the design unit under which you are specifying the RAM switch.

-switch_name <swt-name>

Name of the RAM switch

-switch_enable_pin <swt-en-pin-name>

Name of the enable pin of the RAM switch.

-switch_vss_outpin <swt-vss-outpin-name>

Name of the VSS pin of the RAM switch.

-memory_cellnames <mem-cell-name-list>

Space-separated cell name list of memory cells
1416 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-memory_vss_pin <mem-vss-pin-name>

Name of the memory cell VSS pin.

Rules

The ram_switch constraint is used by the following rules:

SpyGlass Power Verify Solution

LPPLIB12 LPSVM46
Version N-2017.12-SP1 1417
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
rdc_false_path

Purpose

NOTE: This constraint is deprecated. Use the reset_filter_path constraint instead of this
constraint.

The rdc_false_path constraint is used to specify false paths so that
reset crossings along these paths are ignored from rule checking.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the rdc_false_path constraint is as follows:

current_design <du-name>
rdc_false_path
-from_rst <frm-rst-list>
-to_rst <to-rst-list>
-clock <clk-obj-list>
-from_obj <from-obj-list>
-to_obj <to-obj-list>
-type <rdc | sync | deassert>

Arguments

-from_rst <frm-rst-list>

Space-separated list of objects (hierarchical net, pin, or port) of a source
such that the reset crossings containing such sources are not reported by
Ar_resetcross01 rule.

-to_rst <to-rst-list>

Space-separated list of objects (hierarchical net, pin, or port) of a
destination such that the reset crossings containing such destinations are
not reported by Ar_resetcross01 rule.
1418 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clock <clk-obj-list>

Space-separated list of source or destination clocks.

-from_obj <from-obj-list>

Space-separated list of hierarchical nets, pins, or ports of the source in the
reset crossing so that the reset crossings containing such sources are not
reported by the Ar_resetcross01 rule.

-to_obj <to-obj-list>

Space-separated list of hierarchical nets, pins, or ports of the destination in
the reset crossing so that the reset crossings containing such destinations
are not reported by the Ar_resetcross01 rule.

-type <rdc | sync | deassert>

(Optional) The default value is rdc. This value is for backward
compatibility.

Set this argument to deassert to filter the Ar_asyncdeassert01 and
Ar_syncdeassert01 rule violations reported for the reset paths specified by
this constraint.

Set this argument to sync to filter the Ar_unsync01 and Ar_sync01 rule
violations reported for the reset paths specified by this constraint.

NOTE: If you specify the sync or deassert value to this argument then you can specify
only -from_rst and -clock arguments to the reset_filter_path constraint.

Examples

Example 1

Consider the following Ar_resetcross01 spreadsheet showing violations
related to invalid crossings:
Version N-2017.12-SP1 1419
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 46.

From the above set of violations, if you do not want to report the reset
crossings between the top.r1 and top.r2 resets, specify the following
constraint:

rdc_false_path -from_rst r1 -to_rst r2

After specifying the above constraint, the violations reported in the cells 2C
and 33 in Figure 46 are not reported.

Example 2

To suppress the Ar_resecross01 violations for the reset crossings between
r1 to r2, r1 to r3, and r1 to r4 resets, specify the following constraint:

rdc_false_path -from_rst r1 -to_rst r2 r3 r4

Rules

The rdc_false_path constraint is used by the following rules:

SpyGlass CDC Solution

Ar_resetcross01 Ar_resetcross_matrix01
1420 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ref_power_data

Purpose

The ref_power_data constraint is used to specify values for reference
power numbers in the Correlation View of the Power Explorer.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the ref_power_data constraint is as follows:

current_design <du-name>
ref_power_data
-type <component-type>
-<power-type> <value>

Arguments

-type <component-type>

The type can be total, combinational, sequential, blackbox, others, iopad,
memory, clock, or megacell.

-<power-type> <value>

This argument can be leakage, internal, switching, or total. The value can
be specified in floating point format and not in scientific format.

Examples

The following SGDC specification defines combinational, sequential,
memory, and total power attributes and their values. These values are
populated in the SpyGlass Power Reference Matrix.

ref_power_data -type combinational -leakage 0.001

ref_power_data -type sequential -internal 0.008
Version N-2017.12-SP1 1421
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ref_power_data -type memory -total 0.0002

ref_power_data -type total -total 0.10

Rules

The ref_power_data constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions

PEPWR01
PEPWR02
1422 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reference_toplevel_isolation_signal

Purpose

The reference_toplevel_isolation_signal constraint is used to
specify reference top-level isolation signal at SoC level.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the
reference_toplevel_isolation_signal constraint is as follows:

reference_toplevel_isolation_signal
-name <isolation-control-signal-name-at-soc>
-supply <supply-name>

Arguments

-name <isolation-control-signal-name-at-soc>

Use this argument to specify the name of the correct isolation enable signal
at the SoC level.

-supply <supply-name>

Use this argument to specify the correct supply of the driver of isolation
data pin. This is matched against the actual supply of the driver of the
isolation cell data pin.

Examples

The following SGDC specification defines the top.iso1 signal as a
reference top-level isolation signal for supply VDD1.

reference_toplevel_isolation_signal -name top.iso1 -supply
VDD1
Version N-2017.12-SP1 1423
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The reference_toplevel_isolation_signal constraint is used
by the following rules:

repeater

Purpose

Specifies the name of repeater modules or library cells inserted between
sequential elements to meet timing requirements of a design.

Product

SpyGlass CDC solutions

Syntax

The syntax to specify the repeater constraint is as follows:

repeater -names <object-names>

Arguments

-names <object-names>

Space-separated list of repeaters.

NOTE: Set the hier_wild_card parameter to yes to match the expression specified
in this argument with hierarchies.

Examples

Example 1

The following constraint specifies two repeater modules, MOD1 and MOD2:

SpyGlass Power Verify Solutions

LPSVM22 LPISO01
1424 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
repeater -names MOD1 MOD2

Example 2

The following example uses wildcard expression to indicate that all
instances starting with the string Rep should be considered as repeaters:
repeater -names "Rep*"

Rules

The repeater constraint is used by the following rules:

repeater_buffer

Purpose

A design may contain some very long nets that may or may not have a
very high fan-out. After placement of such designs, repeater buffers can be
inserted on such lengthy nets to ensure that the high capacitance of these
nets can be switched properly.

The repeater_buffer constraint is used to specify information of such
repeater buffers that can be inserted on a lengthy net.

Repeater buffers are inserted in series on a net, as shown in the following
figure:

SpyGlass CDC Solution

Ac_repeater01
Version N-2017.12-SP1 1425
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 47. Repeater Buffers Inserted

Please note the following points:
 This constraint is considered independent of the value of the

pe_infer_clock_net_bufs and
pe_infer_high_fanout_bufs parameters.

 When the pe_infer_clock_net_bufs and/or
pe_infer_high_fanout_bufs parameter is set to yes, only the
repeater_buffer constraint information is used for the nets for
which it is provided.

For the nets for which the repeater_buffer constraint information
is not provided, the default virtual buffer algorithm is used.

 This constraint honors the mix_vt_constraint and
syn_set_dont_use commands.

 Power of such lengthy nets is reported in the same hierarchy because it
happens for nets with virtual buffers.

 Capacitance of additional nets is calculated based on wire-load. So even
if the capacitance of the original net is set using SPEF or SDC (set_load),
repeater_buffer constraints will be applied.
Note that this is a different behavior with respect to virtual buffers.

Lengthy net in the original RTL design

Repeater buffers inserted on the net
1426 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Power of nets with virtual buffers is proportionately distributed in the
hierarchies where the fan-out elements of that net are present. This is
because the assumption there is that a buffer tree is getting created.
Therefore, a majority of buffers are in the side where the fan-out
elements are present. However, in case of a repeater_buffer
structure, power of repeater buffers will be assigned and the nets in the
hierarchy which completely encloses that net. Such nets will not honor
the pe_report_virtual_power_at_driving_instance
parameter.

 Consider a net that has a fan-out of more than one, as shown in the
following figure:

FIGURE 48. Net with Multiple Fan-outs

Now consider that you set three repeater buffers on the above net. In
this case, SpyGlass will assume the following structure:
Version N-2017.12-SP1 1427
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 49. Net with Three Repeater Buffers

Therefore, in this case also, the additional elements are N buffers and N
nets with a single fan-out.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the repeater_buffer constraint is as follows:

repeater_buffer
-name <net-name-list>
-cell <cell-name>
[-lib <library-name>]
-count <count>

Arguments

-name <net-name-list>

Specifies a space-separated list of nets in a design for which repeater
buffers should be considered.
1428 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-cell <cell-name>

Specifies a cell name that should be repeated on a net.

-lib <library-name>

Specifies the library from which the cell should be picked.

-count <count>

Specifies the number of buffers that should be considered.

Examples

The following command specifies two buffers of type BUF1 that should be
used as repeater buffers, each on NET1 and NET2:

repeater_buffer -name "NET1 NET2" -cell BUF1 -count 2

You can specify the same information separately for each net, as shown in
the following example:

repeater_buffer -name NET2 -cell BUF1 -count 2
repeater_buffer -name NET1-cell BUF1 -count 2

Rules

The repeater_buffer constraint is used by the following rule:

SpyGlass Power Estimation and SpyGlass Power Reduction solutions
PEPWR02
Version N-2017.12-SP1 1429
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_constraint_message_tag

Purpose

The require_constraint_message_tag checks whether
constraint_message_tag_expression is used for the design nodes or not. It
reports violation, if specific combination of tags are absent or present in
the design for a particular node.

Syntax

The syntax for the require_constraint_message_tag constraint is as
follows:

require_constraint_message_tag
[-name <nodename>]
[-except <except_nodename>]
[-except_type <exceptDo-nodename>]
[-type <DO_nodename>]
[-constraint_message_tag_expression

<constraint_message_tag_expression>]

Arguments

-name <nodename>

Specifies the name of the top-module port, or any internal net or terminal
or leaf instance for which the specified tag expression must be satisfied. A
module name specified expands to list of all its instantiations (full
hierarchical name). When at least one of the pins of the instance gets
required expression, a PASS status is generated. However, if none of the
pins of the instance gets required expression, a FAIL status is generated.

For more information, see Example 3.

-except <except_nodename>

Specifies the name of the top-module port, any internal net, terminal, or
leaf instance name, which needs to be excluded from rule checking.
1430 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-except_type <exceptDo-nodename>

Specifies the name of macro for which the specified tag expression must be
satisfied.

-type <DO_nodename>

Specifies the name of the macro, which needs to be excluded from rule
checking.

-constraint_message_tag_expression <constraint_message_tag_expres-
sion>

Signifies the message tag expression specified using logical '||' and '&&'
operator, their combinations, and :PASS and :FAIL values of tags. You
can also use braces ('(',')') when specifying message tag expression.

Examples

Example 1

 require_value -name "top.l_1.out" -value 0
-constraint_message_tag LATCH_VALUE_CHECK
require_path -from_type LATCH_OUT -to_type FLIP_FLOP_RESET
-constraint_message_tag LATCH_CHECK
require_constraint_message_tag -type LATCH
-constraint_message_tag_expression "LATCH_CHECK:PASS &&
LATCH_VALUE_CHECK:PASS"

In the above example, the require_constraint_message_tag
looks for absence of any violation on LATCH_CHECK and
LATCH_VALUE_CHECK constraint_message_tags. It will report info
message, if the specified expression is met otherwise gives error.

Example 2

require_constraint_message_tag -type FLIP_FLOP
-constraint_message_tag_expression "(CHECK_1:PASS ||
CHECK_2:FAIL) && CHECK_3:PASS"

In the above example, the require_constraint_message_tag looks for the
absence of violation on CHECK_1 and CHECK_3 and presence of violation
CHECK_2.
Version N-2017.12-SP1 1431
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 3

Consider the following top instantiation:

FIGURE 50. Top Instantiation

Now, consider the following SGDC command:

require_constraint_message_tag –name clock_cell <other
options>

The above SGDC command implies:

require_constraint_message_tag –name top.u1.u11 top.u2.u21
top.u2.u22 <other options>
1432 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_path

Purpose

The require_path constraint checks for the existence of the path
between the specified nodes. However, the destination node may have
paths existing to other nodes.

To check for the existence of the path originating from the source node that
does not have any other destination node, except for the specified one, use
the require_strict_path constraint.

NOTE: Buffers and inverters are single-input, single-output devices. Therefore, there is no
interference from external logic while tracing a net connectivity.

Product

SpyGlass DFT solution

Syntax

The syntax for require_path constraint is as follows:

require_path
[–tag <condname> | -use_shift |
 -use_capture | -use_captureATspeed]
[-from <frompinlist>]
[-from_one_of <fromoneof_pinlist>]
[-except_from <exceptfrom_pinlist>]
[-from_type <from_DO_pinlist>]
[-from_one_of_type <fromoneof_DO_pinlist>]
[-except_from_type <exceptfrom_DO_pinlist>]
[-exact_sequential_depth <sequential_depth>]
[-to <topinlist>]
[-to_one_of <tooneof_pinlist>]
[-except_to <exceptto_pinlist>]
[-to_type <to_DO_pinlist>]
[-to_one_of_type <tooneof_DO_pinlist>]
[-except_to_type <exceptto_DO_pinlist>]
[-invert] [-noinvert]
[-parallel]
Version N-2017.12-SP1 1433
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-path_type <buffered | sensitized | sensitizable | direct
| topological>]
[-sequential_depth <value>]
[-constraint_message_tag <value>]
[-min_to_paths <value>]
[-max_to_paths <value>]
[-report_failure_as_info]
[-filter_in_cmt_from <constraint_message_tag_expression>]
[-filter_in_cmt_to <constraint_message_tag_expression>]
[-named_association]
[-positional_association]
[-instance_association]
[-instance_filter_in_cmt_from
<constraint_message_tag_expression>]

[-instance_filter_in_cmt_to
<constraint_message_tag_expression>]
[-filter_in_from <include_from_pinlist>]
[-filter_in_to <include_to_pinlist>]
[-filter_in_type_from <include_from_DO_pinlist>]
[-filter_in_type_to <include_to_DO_pinlist>]
[-ignorecase]

Arguments

-tag <condname>

(Optional) Specifies a condition name that is previously defined by using
the define_tag constraint.

This condition describes stimulation of circuit into a desired state. Please
note only one condition name can be defined in a require_path
specification. However, simulation for a given condition name simulates all
pin-value specification simultaneously, whether defined directly by pin-
value specification, or merge of other define_tag specifications. The
built-in power-ground connections are also simulated in this process
automatically.

If the -tag argument is specified, an un-blocked path must exist when the
defined condition is simulated. If the -tag argument is not specified, the
1434 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_path constraint defines a connectivity check that requires a
net connection to exist from pin(s) specified with the -from argument to
pin(s) specified with the -to argument. A net connection means a net
connection across hierarchical boundaries between the specified start point
and end-point(s) and may only contain buffers or inverters.

-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, require_path simulates test mode of that
particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.

NOTE: If more than one of the -tag, -use_shift, -use_capture, or

-use_captureATspeed arguments is specified, an error condition occurs.
You should specify only one or none of these modifiers with require_path
constraint.

-from <frompinlist>, -to <topinlist>

These are the start-point and end-point nodes, respectively, in a circuit (as
controlled by effective current_design specification) for which a path
is searched after the circuit has been simulated by LE into the desired state
(with the -tag argument specified) or a net connection is to be checked
(without the -tag argument specified).

Either of these can be a list of top-module port names, internal net names,
or terminal names. It is effectively read as a concise description of
connectivity check from the each node in the <frompinlist> list to
each node in the <topinlist> list.

-from_one_of <fromoneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-except_from <exceptfrom_pinlist>

(Optional) Excludes the specified objects from nodes.
Version N-2017.12-SP1 1435
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-from_type <from_DO_pinlist>

(Optional) Same as <frompinlist> but it takes only macros as inputs.

-from_one_of_type <fromoneof_DO_pinlist>

(Optional) Same as <fromoneof_pinlist> but it takes only macros as
inputs

-except_from_type <exceptfrom_DO_pinlist>

(Optional) Same as <exceptfrom_pinlist> but it takes only macros
as inputs.

-exact_sequential_depth <sequential_depth>

(Optional) Defines the exact sequential depth. This argument takes an
integer as an input.

Note that you can not use this argument with the -sequential_depth
argument.

-to_one_of <tooneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-except_to <exceptto_pinlist>

(Optional) Excludes the specified objects from nodes.

-to_type <to_DO_pinlist>

(Optional) Same as <topinlist> but it takes only macros as inputs.

-to_one_of_type <tooneof_DO_pinlist>

(Optional) Same as <tooneof_pinlist> but it takes only macros as
inputs.

-except_to_type <exceptto_DO_pinlist>

(Optional) Same as <tofrom_pinlist> but it takes only macros as
inputs.
1436 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-invert | -noinvert

(Optional) These additional qualifiers mean that check is performed to
check a positive polarity or negative polarity path between the two nodes.

If neither of these is specified, polarity is not relevant for such paths.

-parallel

(Optional) Specifies that paths should be searched from a node in the
<frompinlist> list to a node at the same relative position in the
<topinlist> list. Thus, the paths should be searched from the first
node in the <frompinlist> list to the first node in the <topinlist>
list, and so on.

When you specify the -parallel argument, you need to specify the
exact same number of nodes in both the <frompinlist> list and the
<topinlist> list. Otherwise, the constraint is not processed.

If the -parallel argument is specified, the require_path constraint assumes
that paths should be searched from a node specified with the -from
argument to a node specified with the -to argument at the same relative
position.

-path_type

The -path_type argument accepts only the following predefined list of
values: buffered, sensitized, sensitizable, direct, and
topological. The default value of this qualifier is sensitizable.

For more information, see Example 2 and Example 3.

-sequential_depth <value>

Specifies the number of sequential elements between end points specified
on a success path. This means that the require_path check will go through
the specified number of sequential elements. You can specify an integer
value as an input to this argument.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.
Version N-2017.12-SP1 1437
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-min_to_paths <value>

Specifies minimum number of expected successful paths. You can not
specify this argument with -from_one_of and -from_one_of_type
arguments.

-max_to_paths <value>

Specifies maximum number of expected successful paths. Following are the
rules for using this parameter:
 If you are using both the -min_to_paths and -max_to_paths arguments,

then the value of the -max_to_paths argument should be greater than
the -min_to_paths argument.

 You can not specify this argument with -from_one_of and -
from_one_of_type arguments.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

NOTE: The require_path constraint supports wildcard expressions. The supported
meta-characters are * (star) and ? (question mark) where * matches any number
of characters and ? matches only one character. The wildcard support is applicable
for non-escaped names only. If the meta-characters appear inside an escaped
name, they are treated as literals. For example, in the expression
“top.\mid*\bottom”, mid* is considered as a literal and does expand to “mid1,
mid2, and so on. In addition, if you specify a hierarchical path using a wildcard, any
sub-portion of this path that contains the wildcard does not cross the module
boundary while searching for the expression in the design. This means that each
level in the hierarchy path should be mentioned explicitly in the wildcard string. For
example, the expression “top.mid*.bottom” will expand to “top.mid1.bottom”, and
not to “top.mid2.bottom”.

NOTE: The expression on which a wildcard is used should always be enclosed within double
quotes. For example, “top.mid*.bottom”.

NOTE: The wildcard support is applicable for design objects only. For non-design objects,
the support is not applicable.

-named_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same name, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.
1438 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-positional_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same position, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.

-instance_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same instance, from the expanded from-to-set. Individual
checks are then performed on each such sub-group. This argument is
useful while looking for a self-loop type structure.

-filter_in_cmt_from <constraint_message_tag_expression>, -fil-
ter_in_cmt_to <constraint_message_tag_expression>

(Optional) Filters the staring-point and end-point when the
constraint_message_tag_expression holds TRUE for the specified node.

NOTE: You can not use –filter_in_cmt_from argument with the –
instance_filter_in_cmt_from argument and –filter_in_cmt_to argument with the -
instance_filter_in_cmt_to argument.

-instance_filter_in_cmt_from <constraint_message_tag_expression>,
instance_filter_in_cmt_to <constraint_message_tag_expression>

(Optional) Filters the starting-point and end-point when the
constraint_message_tag_expression holds TRUE for the
associated instance of the specified node.

NOTE: You can not use –instance_filter_in_cmt_from argument with the –
filter_in_cmt_from argument and –instance_filter_in_cmt_to argument with the -
filter_in_cmt_to argument.

-filter_in_from <include_from_pinlist>, -filter_in_to
<include_to_pinlist>

(Optional) Same as the -from and -to arguments but defines design
nodes that are to be included.

-filter_in_type_from <include_from_DO_pinlist>, -filter_in_type_to
<include_from_DO_pinlist>

(Optional) Same as the -from_type and -to_type arguments but
defines design nodes that are to be included.
Version N-2017.12-SP1 1439
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-ignorecase

(Optional) to ignore the case for <nodename> specified as the -from, -
to, -except_from, -except_to, -filter_in_name_from, and -
filter_in_name_to arguments.

NOTE: It applies on all fields which take design-node name as input.

Supported Macros

SpyGlass DFT solution supports the following macros:

Macros Representing Collection Of Pins/Ports
FLIP_FLOP_DATA FLIP_FLOP_OUT FLIP_FLIP_CLOCK
FLIP_FLOP_SET FLIP_FLOP_RESET FLIP_FLOP_ENABLE
SCAN_FLIP_FLOP_DATA SCAN_FLIP_FLOP_OUT SCAN_FLIP_FLOP_CLOC

K
SCAN_FLIP_FLOP_SET SCAN_FLIP_FLOP_RESET SCAN_FLIP_FLOP_ENABL

E
LATCH_DATA LATCH_OUT LATCH_SET
LATCH_RESET LATCH_ENABLE MUX_SELECT
CGC_CLOCK_IN CGC_CLOCK_OUT CGC_SYSTEM_ENABLE
CGC_TEST_ENABLE BLACK_BOX BLACK_BOX_OUTPUT
BLACK_BOX_INPUT INPUT_PORTS OUTPUT_PORTS
INOUT_PORTS ALL_PORTS TIED_0
TIED_1 TIED_SGDC TIED_0_SGDC
TIED_1_SGDC MEMORY_ADDRESS MEMORY_CLOCK
MEMORY_DATA MEMORY_ENABLE MEMORY_OUT
MUX_DATA MUX_OUTPUT UNDRIVEN_NET
UNDRIVEN_PIN X_SOURCES PLL_CLOCK_IN
PLL_CLOCK_OUT PLL_RESET DIVIDER_CLOCK_IN
DIVIDER_CLOCK_OUT DIVIDER_RESET CLOCK_SHAPER_CLOCK_

IN
CLOCK_SHAPER_CLOCK
_OUT

CLOCK_SHAPER_RESET

Macros Representing Collection of Instances
1440 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: TIED_* macros are used to filter out already selected set using the -except_type,
-except_from_type, or -except_to_type arguments.

For more information on using macros in SGDC, see the Using Macros in
SGDC section in the SpyGlass DFT Rules Reference Guide.

Examples

Example 1

Some examples of the require_path constraint are as follows:

require_path –tag s1 –from top.SEF
–to top.U1.U3.inst_add.D

require_path –tag s100mode –from top.U10.inst_mdd.Q
–to top.Q1

require_path –from top.EN
–to top.U1.U2.DIF top.U1.U4.DIF

Some examples of the require_path constraint with the -parallel
argument are as follows:

require_path –tag s11 –from top.SEF top.SFF
–to top.U1.D, top.U2.D -parallel

Here, the paths will be searched from the top.SEF node to the
top.U1.D node and from the top.SFF node to the top.U2.D node.

require_path –tag s101 –from top.SEF[2:0] top.SFF
–to top.FGT[3:0] - parallel

The above specifications imply that the following paths should be searched:

 From the top.SEF[2] node to the top.FGT[3] node

 From the top.SEF[1] node to the top.FGT[2] node

 From the top.SEF[0] node to the top.FGT[1] node

 From the top.SFF node (exists as a scalar node) to the top.FGT[0]
node

FLIP_FLOP SCAN_FLIP_FLOP LATCH
MUX LATCH ICG
CGC BLCAK_BOX MEMORY
Version N-2017.12-SP1 1441
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

Consider the following schematic:

FIGURE 51.

Now, consider the following constraint description:

require_path –from d1 –to bidi1 –path_type topological –
sequential_depth 1

For the above example, a topological path is traced through the flip-flop if
the sequential depth greater than 0 is specified, even if the tristate buffer
is disabled.

Example 3

Consider the following schematic:

FIGURE 52.

Now, consider the following constraint description:
1442 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_path –from clk1 –to clk_out1 –path_type topological

For the above example, a topological path is traced through the flip-flop if
the sequential depth greater than 0 is specified, even if the tristate buffer
is disabled.

Example 4

Consider the following constraint specification

require_path -from_type FLIP_FLOP_OUTPUT -to sig1
–filter_in_cmt_from “X1:PASS”

In the above example, the require_path constraint checks for path to sig1
from flip-flop outputs, which have passed the check for
constraint_message_tag, X1.

Example 5

Consider the following constraint specification:

require_path -from sig1 –to_type FLIP_FLOP_RESET –
filter_in_cmt_to “X1:PASS”

In the above example, the require_path constraint checks for path from
sig1 to flip-flop reset pins, which have passed the check for
constraint_message_tag, X1.

Example 6

Consider the following constraint specification:

require_path -from sig1 –to sig2 –filter_in_cmt_from
“X1:PASS” –filter_in_cmt_to “X2:PASS”

In the above example, the require_path constraint checks for path from
sig1 to sig, where sig1 has passed the check for
constraint_message_tag, X1 and sig2 has passed the check for
constraint_message_tag, X2.

Example 7

Consider the following constraint specification:

require_path -from_type FLIP_FLOP_OUTPUT -to sig1
–instance_filter_in_cmt_from “X1:PASS”

In the above example, the require_path constraint checks for path to sig1
Version N-2017.12-SP1 1443
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
from flip-flop outputs, whose instances have passed the check for
constraint_message_tag, X1.

Example 8

Consider the following constraint specification:

require_path -from sig1 –to_type FLIP_FLOP_RESET
–instance_filter_in_cmt_to “X1:PASS”

In the above example, the require_path constraint checks for path from
sig1 to flip-flop reset pins, whose instances have passed the check for
constraint_message_tag, X1.

Example 9

Consider the following constraint specification:

require_path -from sig1 –to sig2 –
instance_filter_in_cmt_from “X1:PASS” –
instance_filter_in_cmt_to “X2:PASS”

In the above example, the require_path constraint checks for path from
sig1 to sig, where sig1’s instances has passed the check for
constraint_message_tag, X1 and sig2’s instances have passed the
check for constraint_message_tag, X2.

Example 10

Consider the following constraint specifications:

require_path -filter_in_from “in*” –from_type INPUT_PORTS
–filter_in_to “out*” –to_type OUTPUT_PORTS –ignorecase

require_path -filter_in_from “in*” –from_type INPUT_PORTS
–to “out*” –filter_in_type_to OUTPUT_PORTS –ignorecase

require_path -from “in*” –filter_in_type_from INPUT_PORTS
–filter_in_to “out*” –to_type OUTPUT_PORTS –ignorecase

require_path -from “in*” –filter_in_type_from INPUT_PORTS
–to “out*” –filter_in_type_to OUTPUT_PORTS –ignorecase

In above cases, each require_path constraint checks for the path from
1444 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
input ports matching with “in*” (case-insensitive) to output ports
matching with “out*” (case-insensitive).

Example 11

Consider the following constraint specification:

require_path -from FLIP_FLOP_OUT to FLIP_FLOP_DATA -
instance_association

In the above example, the require paths are split into N numbers, that is,
number equal to the flip-flop count of the design. Each require path checks
for a path between flip-flop-Q-pin and its own D-pin (self-loop). In absence
of ‘-instance_association’ modifier, check would imply path from a flip-flop-
Q to any flip-flop-D-pin.

Rules

The require_path constraint is used by the following rules:

require_pulse

Purpose

The require_pulse constraint defines a check that requires a pulse
sequence to be established on a certain node, when the circuit is simulated
using the condition specified by the -tag argument.

Product

SpyGlass DFT solution

SpyGlass DFT Solution
Conn_02
SpyGlass Connectivity Verify Solution

Soc_02
Version N-2017.12-SP1 1445
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

require_pulse
-tag <condition_name>
[-name <pin/net hier name>]
[-count <num-of-pulses>]
[-except <except_pin_hier_name>]
[-except_type <except_DO>]
[-after <observe_after_bit_number>]
[-before <observe_before_bit_number>]
[-high_width <number_of_bits_during_high_phase>]
[-low_width <number_of_bits_during_low_phase>]
[-type <DO_objlist>]
[-constraint_message_tag <value>]

Arguments

-tag <condition-name>

(Mandatory) Tag name of the define_tag constraint under which simulation
is to be done.

-name <pin/net hier name>

 (Optional) Pin or net hier name, where pulse pattern is to be checked.

-count <num-of-pulses>

(Optional) Total number of pulses required. The default value of this
argument is 1.

-after <observe_after_bit_number>

(Optional) Pulse pattern checking starts after this bit number. The default
value of this argument is 0.

-before <observe_before_bit_number>

(Optional) Pulse pattern checking ends before this bit number. The default
value of this argument is the value of the last simulation cycle.
1446 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-high_width <number_of_bits_during_high_phase>

(Optional) Number of bits during high phase. The default value of this
argument is 1.

-low_width <number_of_bits_durin_low_phase>

(Optional) Number of bits during low phase. The default value of this
argument is 1.

-type <DO_objlist>

(Optional) Specifies a collection of design objects, which require a pulse.
This argument takes macros as input.

-except <except_pin_hier_name>

same as -name but defines design nodes which are not to be used as
name.

-except_type <except_DO>

same as <except_pin_hier_name> but it takes only macros as inputs.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.

Supported Macros

To view the list of macros supported by the require_pulse constraint,
see Supported Macros.

Rules

The require_pulse constraint is used by the following rules:

SpyGlass DFT Solution
Conn_15
SpyGlass DFT DSM Solution
Atspeed_21 Info_Atspeed_21
Version N-2017.12-SP1 1447
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_stable_value

Purpose

The require_stable_value constraint specifies nodes whose value is
expected to be stable.

Product

SpyGlass DFT solution

Syntax

The syntax for the require_stable_value constraint is as follows:

require_stable_value
 [-name <nodename>]
[-value <value>]

 [-except <except_nodename>]
 [-type <DO_nodename>]
 [-except_type <exceptDO_nodename>]
 [-tag <condname> | -use_shift | -use_capture |

-use_captureATspeed]
 [-constraint_message_tag <value>]
 [-report_failure_as_info]

Arguments

-name <nodename>

(Optional) The name can be a top-module port, or any internal net name,
or terminal name. More than one pin name can be specified, and it is
effectively read as a concise description of as many individual value
checks.

NOTE: Specify either -name or -type argument.

-value <value>

(Optional) You can specify the following values: 0, 1 and 0_or_1.

SpyGlass DFT first checks whether the signal is stable. Then, the current
value of the signal is compared with the value specified using this
1448 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
argument. Accordingly, the Conn_14 rule displays the violation messages.

-except <except_nodename>

(Optional) Same as <nodename> but defines design nodes that are not to
be used as name.

-type <DO_nodename>

 Same as <nodename> but it takes only macros as inputs.

NOTE: Specify either -name or -type argument.

To view the list of macros supported by the require_stable_value
constraint, see Supported Macros.

-except_type <exceptDO_nodename>

Same as <DO_nodename> but it takes only macros as inputs.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.

-tag <condname>

(Optional) A condition previously defined by using the define_tag constraint.
It describes a stimulation condition.

Note that only one condition name can be defined in a
require_stable_value specification. However, simulation for a given
condition name simulates all pin-value specifications simultaneously. The
built-in power-ground connections are also simulated in this process.

-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, require_stable_value simulates test
mode of that particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.
Version N-2017.12-SP1 1449
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: If more than one of the -tag, -use_shift, -use_capture, or

-use_captureATspeed arguments is specified, an error condition occurs.
You should specify exactly one of these modifiers with
require_stable_value constraint.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

Examples

Currently Unavailable

Rules

The require_stable_value constraint is used by the following rule:

SpyGlass Connectivity Verify Solution

Soc_14
SpyGlass DFT Solution

Conn_14
1450 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_strict_path

Purpose

The require_strict_path constraint is used to check for the existence of
path between the specified nodes. However, no other path, in the fanout
cone of the specified from-node' should exist.

The following illegal end-points are not user-controlled in the
require_strict_path constraint:
 Primary output ports

 Flip-flop

 Black-box

 Non-transparent latch

 Any logic when the path_type = direct

 Any gate which is neither a buffer nor an inverter when path_type =
buffered

The design analysis is stopped when one of the following conditions hold
true:
 A valid end-point is found in the design

 The path is blocked
NOTE: Use combination of the require_path and illegal_path constraints if you want to

specify both (required and illegal) as the type of end-points.

To check for the existence of the path between the specified nodes, which
may have paths to other nodes, use the require_path constraint.

NOTE: Buffers and inverters are single-input, single-output devices. Therefore, there is no
interference from external logic while tracing a net connectivity.

Product

SpyGlass DFT solution

Syntax

The syntax for the require_strict_path constraint is as follows:

require_strict_path
Version N-2017.12-SP1 1451
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-from_one_of_type <fromoneof_DO_pinlist>]
[-to_one_of_type <tooneof_DO_pinlist>]
[-except_from_type <exceptfrom_DO_pinlist>]
[-except_to_type <exceptto_DO_pinlist>]
[-from_type <from_DO_pinlist>]
[-to_type <to_DO_pinlist>]
[-from <from-pinlist>]
[-except_from <exceptfrom_pinlist>
[-from_one_of <fromoneof_pinlist>]
[-to <to-pinlist>]
[-except_to <exceptto_pinlist>]
[-to_one_of <tooneof_pinlist>]
[–tag <cond-name> | -use_shift | -use_capture |
-use_captureATspeed]

[-path_type <buffered | sensitized | sensitizable |
direct | topological>]

[-sequential_depth <value>]
[-constraint_message_tag <value>]
[-min_to_paths <value>]
[-max_to_paths <value>]
[-report_failure_as_info]
[-filter_in_from <include_from_pinlist>]
[-filter_in_to <include_to_pinlist>]
[-filter_in_type_from <include_from_DO_pinlist>]
[-filter_in_type_to <include_to_DO_pinlist>]
[-filter_in_cmt_from <from_cmt_expression>]
[-filter_in_cmt_to <to_cmt_expression>]
[-instance_filter_in_cmt_from <from_cmt_expression>]
[-instance_filter_in_cmt_to <to_cmt_expression>]
[-named_association]
[-positional_association]
[-instance_association]
[-ignorecase]
1452 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-from_one_of_type <fromoneof_DO_pinlist>

(Optional) Same as <fromoneof_pinlist> but it takes only macros as
inputs.

-to_one_of_type <tooneof_DO_pinlist>

(Optional) Same as <tooneof_pinlist> but it takes only macros as
inputs.

-except_from_type <exceptfrom_DO_pinlist>

(Optional) Same as <exceptfrom_pinlist> but it takes only macros
as inputs.

-except_to_type <exceptto_DO_pinlist>

(Optional) Same as <tofrom_pinlist> but it takes only macros as
inputs.

-from_type <from_DO_pinlist>

(Optional) Same as <frompinlist> but it takes only macros as inputs.

-to_type <to_DO_pinlist>

(Optional) Same as <topinlist> but it takes only macros as inputs.

-except_from <exceptfrom_pinlist>

(Optional) Excludes the specified objects from nodes.

-from_one_of <fromoneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-except_to <exceptto_pinlist>

(Optional) Excludes the specified objects from nodes.
Version N-2017.12-SP1 1453
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to_one_of <tooneof_pinlist>

(Optional) Specifies that no error message is reported, if there is at least
one success case among the specified nodes.

-from <from-pinlist>, -to <to-pinlist>

These are the start-point and end-point nodes, respectively, in a circuit (as
controlled by effective current_design specification) for which a path
is searched after the circuit has been simulated by LE into the desired state
(with the -tag argument specified) or a net connection is to be checked
(without the -tag argument specified).

Either of these can be a list of top-module port names, internal net names,
or terminal names. It is effectively read as a concise description of
connectivity check from each node in the <from-pinlist> list to each
node in the <to-pinlist> list.

-tag <cond-name>

(Optional) Specifies a condition name that is previously defined by using
the define_tag constraint.

This condition describes stimulation of circuit into a desired state. Please
note only one condition name can be defined in a
require_strict_path specification. However, simulation for a given
condition name simulates all pin-value specification simultaneously,
whether defined directly by pin-value specification, or merge of other
define_tag specifications. The built-in power-ground connections are
also simulated in this process automatically.

If the -tag argument is specified, an un-blocked path must exist when the
defined condition is simulated. If the -tag argument is not specified, the
require_strict_path constraint defines a connectivity check that
requires a net connection to exist from pin(s) specified with the -from
argument to pin(s) specified with the -to argument. A net connection
means a net connection across hierarchical boundaries between the
specified start point and end-point(s) and may only contain buffers or
inverters.
1454 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-use_shift | -use_capture | -use_captureATspeed

(Optional) For any of these modifiers, the require_strict_path
constraint simulates the test mode of that particular mode.

If the -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates the shift, capture, or
captureAtspeed mode, respectively.

NOTE: Specify only one of the -tag, -use_shift, -use_capture, or
-use_captureATspeed fields with the require_strict_path
constraint.

-path_type

The -path_type argument accepts only the following predefined list of
values: buffered, sensitized, sensitizable, direct, and
topological. The default value of this qualifier is sensitizable.

-sequential_depth <value>

Specifies the number of sequential elements between end points specified
on a success path. This means that the require_path check will go through
the specified number of sequential elements. You can specify an integer
value as an input to this argument.

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.

-min_to_paths <value>

Specifies minimum number of expected successful paths. You can not
specify this argument with -from_one_of and -from_one_of_type
arguments.

-max_to_paths <value>

Specifies maximum number of expected successful paths. Following are the
rules for using this parameter:
Version N-2017.12-SP1 1455
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 If you are using both the -min_to_paths and -max_to_paths arguments,
then the value of the -max_to_paths agument should be greater than
the -min_to_paths argument.

 You can not specify this argument with -from_one_of and -
from_one_of_type arguments.

Supported Macros

To view the list of macros supported by the require_strict_path constraint,
see Supported Macros.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

-filter_in_from <include_from_pinlist>,-filter_in_to
<include_to_pinlist>

(Optional) Same as the -from and -to arguments but defines design
nodes that are to be included.

-filter_in_type_from <include_from_DO_pinlist>, -filter_in_type_to
<include_from_DO_pinlist>

(Optional) Same as the -from_type and -to_type arguments but
defines design nodes that are to be included.

-filter_in_cmt_from <include_from_cmt_expression>, -filter_in_c-
mt_to <include_to_cmt_expression>

(Optional) Same as the -from and -to arguments but it considers
constraint_message_tag (cmt) expressions as input and includes
design nodes for which cmt expression holds true, that is, on that specific
node.

-instance_filter_in_cmt_from <include_from_cmt_expression>, -
instance_filter_in_cmt_to <include_to_cmt_expression>

(Optional) Same as the –filter_in_cmt_from and –
filter_in_cmt_to arguments but it includes design nodes for which
cmt expression holds true on the associated instance.

The cmt expression holds true on associated instance if it holds true on any
1456 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pin of the that instance including the design node.
NOTE: You cannot use the –instance_filter_in_cmt_from argument with the

–filter_in_cmt_from argument and the –instance_filter_in_cmt_to argument with
the –filter_in_cmt_to argument.

-named_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same name, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.

-positional_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same position, from the expanded from-to-set. Individual
checks are then performed on each such sub-group.

-instance_association

(Optional) Use this argument to create multiple groups of from-to nodes,
based on the same instance, from the expanded from-to-set. Individual
checks are then performed on each such sub-group. This argument is
useful while looking for a self-loop type structure.

-ignorecase

(Optional) Ignores the case for the nodename specified using the -from,
-to, -except_from, -except_to, -filter_in_name_from, and
the -filter_in_name_to arguments.

This is applicable for all the arguments, which consider the design-node
name as input.

Examples

Some examples of the require_strict_path constraint are as
follows:

require_strict_path –tag s1
–from top.SEF –to top.U1.U3.inst_add.D

require_strict_path –tag s100mode
–from top.U10.inst_mdd.Q –to top.Q1
Version N-2017.12-SP1 1457
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_strict_path
–from top.EN –to top.U1.U2.DIF top.U1.U4.DIF

Rules

The require_strict_path constraint is used by the following rule:

require_structure

Purpose

The require_structure constraint is used to define a structure check
for all paths from source pins to destination pin.

The source pins are the hierarchical pins, which are specified using the
-from and -from_one_of arguments. You can specify multiple values for
the source pin.

The destination pins are the hierarchical pins, which are specified using the
-to argument. The destination pin can assume only one value.

The structure type is controlled by the -structure argument, which may
take one of the following values: and, or, or xor.

The type of check is controlled by the -type argument, which may take one
of the following values: Structural or Simulation

Product

SpyGlass DFT solution

Syntax

require_structure

SpyGlass DFT Solution
Conn_08
SpyGlass Connectivity Verify Solution

Soc_08
1458 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-[from <src_node_names>]
[-from_one_of <src_node_names>
-to <destn_node_name>
-structure <and | or | xor>
[-type <STRUCTURAL | SIMULATION>]
[-cycle <number>]
[-constraint_message_tag <value>]

Arguments

-from <src_node_names>

Name of hierarchical source pin. You can specify multiple values for the
source pin.

-from_one_of <src_node_names>

Name of hierarchical source pin. You can specify multiple values for the
source pin. However, rule checks whether at least one of the values
specified using this argument is present in the fan-in.

-to <destn_node_name>

Name of hierarchical destination pin.

-structure <and | or | xor>

Specifies the structure, which may take one of the following values: and,
or, xor.

-type <STRUCTURAL | SIMULATION>

Specifies the type of check as Structural or Simulation. Default type is
Structural.

-cycle <number>

Specifies number of simulation cycles

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
Version N-2017.12-SP1 1459
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
generated by the respective rule for the said constraint.
NOTE: This argument accepts only alpha-numeric characters and underscore.

Examples

Consider the following example:

require_structure -from top.pin1 top.pin2 top.pin3 -to
top.pinX -structure and

Rules

The require_structure constraint is used by the following rules:

SpyGlass DFT Solution
Conn_07
SpyGlass Connectivity Verify Solution

Soc_07
1460 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_value

Purpose

The require_value constraint defines a check that requires a logic
value to be established on a certain node when the circuit has been
simulated using the condition specified by the -tag argument.

The require_value constraint has two optional fields: -allowInversion
and matchNBits.

When require_value is used twice for the same node, SpyGlass checks
twice on the net per the specified value.

NOTE: The require_value constraint supports scoped statements and wildcards for both the
module name and the pin/net name.

Product

SpyGlass DFT solution

Syntax

The syntax for require_value constraint is as follows:

require_value
[-name <nodename>]
[-except <except_nodename>]
[-type <DO_nodename>]
[-except_type <exceptDO_nodename>]
[-value <value>]
[-value_type <type>]
[–tag <condname> | -use_shift |
 -use_capture | -use_captureATspeed]
[-allowInversion]
[-matchNBits <num>]
[-constraint_message_tag <value>]
-[report_failure_as_info]
[-filter_in_cmt <constraint_message_tag_expression>]
[-instance_filter_in_cmt

<constraint_message_tag_expression>]
[-filter_in_name <include_nodename>]
Version N-2017.12-SP1 1461
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-filter_in_type <include_DO_nodename>]
[-ignorecase]

Arguments

-name <nodename>

(Optional) The name can be a top-module port, or any internal net name,
or terminal name. More than one pin name can be specified, and it is
effectively read as a concise description of as many individual value
checks.

NOTE: Specify either -name or -type argument.

-except <except_nodename>

(Optional) Same as <nodename> but defines design nodes that are not to
be used as name.

-type <DO_nodename>

 Same as <nodename> but it takes only macros as inputs.

NOTE: Specify either -name or -type argument.

To view the list of macros supported by the require_value constraint,
see Supported Macros.

-except_type <exceptDO_nodename>

Same as <DO_nodename> but it takes only macros as inputs.

-value <value>

The value is a logic value string of 0, 1, X, Z, 1_or_0, and 0_or_1. A single-
bit value means check at end of complete simulation. The X value is
treated as do-not-compare. A multi-bit value means check on cycle-by-
cycle simulation basis. For specification of a vector value, SGDC multi-bit
specification format (same as used for the test_mode constraint) should
be used.

You can specify repeat sequences for the require_value constraint.

For fields that require repeat sequence, you can specify the values as
1462 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<I*S>. Here, S is any string that does not contain the <, >, and *
characters. However, S can contain another <I*S> expression. I is an
integer that is always interpreted as a decimal value. The expression
<I*S> means that the sequence S will be repeated I number of times.

value_type <type>

Specify one the following values:
 active: Implies 1 for non-inverting pin and 0 for inverting clock-pin.

 inactive: Implies 0 for non-inverting pin and 1 for inverting clock-pin.
NOTE: Specify either -value or -value_type argument. Otherwise, the require_value

constraint is ignored for analysis.

List of Macros Supported by the require_value and illegal_value
Constraints

You can use only the following set of macros along with the –value_type
argument of the require_value and illegal_value constraints:
 FLIP_FLOP_RESET

 SCAN_FLIP_FLOP_RESET

 LATCH_RESET

 FLIP_FLOP_SET

 SCAN_FLIP_FLOP_SET

 LATCH_SET

 FLIP_FLOP_ENABLE

 SCAN_FLIP_FLOP_ENABLE

 LATCH_ENABLE

 FLIP_FLOP_CLOCK

 SCAN_FLIP_FLOP_CLOCK

-constraint_message_tag <value>

Specifies a string value that gets prefixed in the violation message
generated by the respective rule for the said constraint.

NOTE: This argument accepts only alpha-numeric characters and underscore.
Version N-2017.12-SP1 1463
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-tag <condname>

(Optional) A condition previously defined by using the define_tag constraint.
It describes a stimulation condition.

Note that only one condition name can be defined in a require_value
specification. However, simulation for a given condition name simulates all
pin-value specifications simultaneously. The built-in power-ground
connections are also simulated in this process.

-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, require_value simulates test mode of that
particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.

NOTE: If more than one of the -tag, -use_shift, -use_capture, or

-use_captureATspeed arguments is specified, an error condition occurs.
You should specify exactly one of these modifiers with require_value
constraint.

-allowInversion

(Optional) Indicates that the inverted simulated pattern is also considered
as valid pattern.

-matchNBits <num>

(Optional) Specifies that only the <num> number of least significant bits
are to be considered. If <num> is greater than <value> (specified with -
value argument), the latter is padded with X to match the former’s width.

-report_failure_as_info/-report_failures_as_info

Reports all the failures as info severity message.

-filter_in_cmt <constraint_message_tag_expression>

(Optional) Filters the specified node when the
constraint_message_tag_expression holds TRUE on the node itself.

NOTE: Note that you can not use this argument with the –instance_filter_in_cmt
1464 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
argument.

-instance_filter_in_cmt <constraint_message_tag_expression

Filters the specified node when the constraint_message_tag_expression
holds TRUE for the associated instance of the node.

NOTE: You can not use this argument with the –filter_in_cmt argument.

-filter_in_name <include_nodename>

(Optional) Same as the -name argument but defines design nodes that are
to be included.

-filter_in_type <include_DO_nodename>

(Optional) Same as the -type argument but defines design nodes that are
to be included.

-ignorecase

(Optional) Ignores the case for the nodename specified using the -name,
-except_to, and -filter_in_name arguments.

NOTE: It is applicable to all the arguments, which take design-node name as an input.

Examples

Consider the following examples:

Example 1

require_value -name abc -value "<5*10>"

The above example will be expanded as follows:

require_value -name abc -value 1010101010

Example 2

require_value -name abc -value "11<5*10>010"

The above example will be expanded as follows:

require_value -name abc -value 111010101010010

Example 3

require_value -name abc -value "<50*11<5*10>>010"
Version N-2017.12-SP1 1465
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above example will be expanded as follows:

require_value -name abc -value 111010101010...(repeated 50 times
followed by 010)

You can also set a variable using the command setvar to obtain the
above result as follows:

setvar x 11<5*10>

require_value -name abc -value "<50*${x}>010"

The above example will be expanded as follows:

require_value -name abc -value 111010101010...(repeated 50 times
followed by 010)

NOTE: Tagging for nesting is not allowed. For example, the following require_value
statements are not allowed:

require_value -name sub_seq -value <5*01>
require_value -name main_seq -value <100*sub_seq>

However, you can achieve the same result by using the setvar command.

Example 4

require_value –tag s1 –name top.U1.U2.SEF
–value 1010 -allowInversion -matchNBits 2

Example 5

Consider the following example:

-require_value –name p1 –value 0X110_or_110

The above constraint specification means:
 first bit must not be 0

 second bit is don’t care

 third and fourth bits must not be 1

 fifth should be neither 0 nor 1

 sixth should not be 1

 seventh bit should not be 0

Example 6

Consider the following sample input values:
1466 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_value -name vec[3:0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1010"
require_value -name vec[1] -value "0000"
require_value -name vec[2] -value "0000"
require_value -name vec[3] -value "0000“

Example 7

Consider the following sample input values:

require_value -name vec[3:0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "0"
require_value -name vec[1] -value "1"
require_value -name vec[2] -value "0"
require_value -name vec[3] -value "1“

Example 8

Consider the following sample input values:

require_value -name vec[3:0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1"
require_value -name vec[1] -value "0"
require_value -name vec[2] -value "0"
require_value -name vec[3] -value "0“

Example 9

Consider the following sample input values:

require_value -name vec -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1010"
Version N-2017.12-SP1 1467
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
require_value -name vec[1] -value "0000"
require_value -name vec[2] -value "0000"
require_value -name vec[3] -value "0000“

Example 10

Consider the following sample input values:

require_value -name vec -value { b 1010 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "0"
require_value -name vec[1] -value "1"
require_value -name vec[2] -value "0"
require_value -name vec[3] -value "1“

Example 11

Consider the following sample input values:

require_value -name vec -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1"
require_value -name vec[1] -value "0"
require_value -name vec[2] -value "0"
require_value -name vec[3] -value "0“

Example 12

Consider the following sample input values:

require_value -name vec[0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1010“

Example 13

Consider the following sample input values:

require_value -name vec[0] -value {b 1010}
1468 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "0"

Example 14

Consider the following sample input values:

require_value -name vec[0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value "1"

Example 15

Consider the following sample input values:

require_value -name sclr -value { b 1 0 1 0 }

where sclr is the scalar net

The above input is expanded as shown below:

require_value -name sclr -value "1010"

Example 16

Consider the following sample input values:

require_value -name sclr -value { b 1010 }

where sclr is the scalar net

The above input is expanded as shown below:

require_value -name sclr -value "0“

Example 17

Consider the following sample input values:

require_value -name sclr -value { b 1 }

where sclr is the scalar net

The above input is expanded as shown below:

require_value -name sclr -value "1“
Version N-2017.12-SP1 1469
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 18

Consider the following sample input values:

require_value -name vec -value { h 6 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

require_value -name vec[0] -value “0"
require_value -name vec[1] -value “1"
require_value -name vec[2] -value “1"
require_value -name vec[3] -value "0“

Example 19

Consider the following constraint specification:

require_value -type FLIP_FLOP_OUTPUT -value 0_or_1
–filter_in_cmt “X1:PASS && X2:FAIL”

In the above example, the require_value constraint will check for value 0/1
on flip-flop outputs which have passed the check for the
constraint_message_tag X1 and failed the check for
constraint_message_tag X2.

Example 20

Consider the following constraint specification:

require_value -type FLIP_FLOP_OUTPUT -value 0_or_1
–instance_filter_in_cmt “X1:PASS && X2:FAIL”

In the above example, the require_value constraint will check for value 0/1
on flip-flop outputs whose instance have passed the check for
constraint_message_tag X1 and failed the check for
constraint_message_tag X2.

Example 21

Consider the following constraint specifications:

require_value -filter_in_name “out*” –type OUTPUT_PORTS –
ignorecase –value 0

require_path -name “out*” –filter_in_type OUTPUT_PORTS –
ignorecase -value 0
1470 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In above cases, each require_value constraint will check for value 0 on
output ports matching with “out*” (case-insensitive).

Rules

The require_value constraint is used by the following rule:

SpyGlass Connectivity Verify Solution

Soc_01 Soc_01_Info

SpyGlass DFT Solution

Conn_01
Version N-2017.12-SP1 1471
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reset

Purpose

Rules that check for resets require you to specify the names of reset
signals using the reset keyword in a SpyGlass Design Constraints file.

Product

SpyGlass Auto Verify solution, SpyGlass CDC solution, SpyGlass DFT DSM
solution, SpyGlass TXV solution, and SpyGlass ERC product

Syntax

The syntax of using the reset keyword in a SpyGlass Design Constraints
file is as follows:

current_design <du-name>
reset -name <rst-name>
[-async | -sync]
[-value <0 | 1>]
[-soft]

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs).

-name <rst-name>

The reset port/pin name.

The pin can be a top-level port/pin/net as well as an internal pin.

You can specify a single port/pin/net name or a space-separated list of
port/pin/net names.

For top-level port/pin/nets, <rst-name> can be the port/pin/net’s full
hierarchical name or its simple name. For internal pins, <rst-name>
must be the pin’s full hierarchical name.
1472 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-async, -sync

(Optional) Specifies the reset type as asynchronous or synchronous.

If neither the -async argument nor the -sync argument is specified, the
reset is assumed to be an asynchronous reset.

Any combinational gate in the data transfer path between flip-flops at the
clock domain crossing or the data paths around the synchronizing flip-flops
is allowed if one of the inputs to the gate is a signal declared as
synchronous reset using the reset constraint with the -sync argument.

All advanced clock rules and the Reset_Check03 and Reset_Check04 rules
also work with synchronous resets and therefore require you to specify
these signals using the reset constraint with the -sync argument.

-value <0 | 1>

(Optional) Specifies the reset value as 1 or 0.

If the value is specified as 0, the reset is active low. Otherwise, the reset is
active high.

If the -value option is not specified, the SpyGlass TXV solution assumes
the reset to be active high for auto initialization.

-soft

NOTE: This option is not applicable for the SpyGlass DFT DSM solution.

(Optional) Specifies if the reset is a soft reset.

If this option is specified in the reset constraint, the reset signal is
marked as a soft reset; otherwise it is marked as a hard reset.

Active state of the reset is used during initialization irrespective of hard or
soft reset. However, if reset is defined as hard, it will be deactivated during
functional analysis while soft reset will be used as other signals during
functional analysis.

NOTE: The -soft argument is only applicable to SpyGlass CDC formal rules. This argument
has no impact on SpyGlass CDC structural rules.
If a reset is mentioned by using the -soft argument, that reset is used for
initialization and then ignored for functional analysis.

For SpyGlass TXV Solution

The SpyGlass TXV solution honors the SGDC reset constraint as follows:
Version N-2017.12-SP1 1473
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 If you do not provide the -soft option, the SpyGlass TXV solution
deactivates the corresponding reset signal during verification by placing
“~(active-value)” in it. You can specify the -soft option to stop the
deactivation so that the signal is considered during verification.

 The -sync/-async options do not have any impact in the verification.
The SpyGlass TXV solution deactivates all reset signals unless the
-soft option is specified.

Rules

The reset constraint is used by the following rules:

reset -async

SpyGlass Auto Verify Solution
All rules
SpyGlass CDC solution
Clock_Reset_check0
1

Clock_Reset_Info
01

Propagate_resets Reset_check03

Reset_check04 Reset_check06 Reset_check10 Reset_check11
Reset_sync02 Reset_sync03 Reset_sync04 Reset_info02
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08
Ac_fifo01 Ac_handshake01 Ac_handshake02 Ac_conv01
Ac_conv02 Ac_conv03 Ar_resetcross_

matrix01
Reset_sync01

Setup_quasi_static01 Ac_unsync01 Ac_unsync02 Ac_conv04

Ac_conv05 Ar_resetcross01
SpyGlass DFT DSM Solution

PLL_02
SpyGlass ERC Solution

resetPinConnnectedToResetNet
SpyGlass TXV Solution
All rules
1474 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

NOTE: reset -async is an alias for the reset constraint used by the SpyGlass DFT
solution.

The reset -async constraint is used to specify asynchronous set or
reset pins in test mode as used by the Async_10 rule of the SpyGlass DFT
solution.

Product

SpyGlass DFT solution

Syntax

reset -async
-name <port-name>

Arguments

-name <port-name>

The asynchronous port name.

Rules

The reset -async constraint is used by the following rules:

SpyGlass DFT Solution

Async_10 Info_blackboxDriver
Version N-2017.12-SP1 1475
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reset_filter_path

Purpose

The reset_filter_path constraint specifies reset paths so that the
reset crossings on these paths are ignored from SpyGlass analysis.

For example, the Ar_resetcross01 and Ar_sync_group rules will
not report violations for the destination reset and destination clock
specified by this constraint.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the reset_filter_path constraint is as follows:

current_design <du-name>
reset_filter_path
[-from_rst <frm-rst-list>]
[-to_rst <to-rst-list>]
[-to_clock <destination-clock-obj-list>]
[-from_clock <source-clock-obj-list>]
[-clock <destination-clock-obj-list>]
[-from_obj <from-obj-list>]
[-to_obj <to-obj-list>]
[-type <rdc | sync | deassert | reset_sync02>]
[-no_des_rst]

Arguments

-from_rst <frm-rst-list>

Space-separated list of objects (hierarchical net, pin, or port) of a source
such that the reset crossings containing such sources are not considered
for SpyGlass analysis.
1476 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to_rst <to-rst-list>

Space-separated list of objects (hierarchical net, pin, or port) of a
destination such that the reset crossings containing such destinations are
not reported.

-from_clock <source-clk-list>

Space-separated list of source clocks.

-to_clock <dest-clk-list>

Space-separated list of destination clocks.

-no_des_rst

Optional argument to waive sequential instances that are involved in RDC
but do not have any resets.

-from_obj <from-obj-list>

Space-separated list of hierarchical nets, pins, or ports of the source in the
reset crossing so that the reset crossings containing such sources are not
reported.

-to_obj <to-obj-list>

Space-separated list of hierarchical nets, pins, or ports of the destination in
the reset crossing so that the reset crossings containing such destinations
are not reported.

-clock <destination-clock-obj-list>

(Optional) Space-separated list of destination clocks. Note that the
-clock argument behaves the same way as the -to_clock argument.

-type <rdc | sync | deassert | reset_sync02>

(Optional) The default value is rdc. This value is for backward
compatibility. This option is applicable only for the Ar_resetcross01 rule.

Set this argument to deassert to filter the Ar_asyncdeassert01 and
Ar_syncdeassert01 rule violations reported for the reset paths specified by
this constraint.
Version N-2017.12-SP1 1477
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Set this argument to sync to filter the Ar_unsync01 and Ar_sync01 rule
violations reported for the reset paths specified by this constraint.

Set this argument to reset_sync02 to filter the Reset_sync02 rule
violations reported for the reset paths specified by this constraint.

NOTE: If you specify the sync or deassert value to this argument then you can specify
only -from_rst and -clock arguments to the reset_filter_path constraint.

The reset_filter_path constraint supports the following net names
in the -from_rst argument of the reset_filter_path constraint:

 Nets connected to source flop output

 Nets connected to source port

 Reset nets reported in the violation message of Reset_sync02

The reset_filter_path constraint also supports net connected to
destination flop output in the -to_rst argument.

For example, consider the schematic shown in Figure 53.

FIGURE 53.

In this case, you can specify the n1 or the n2 source resets in the
-from_rst argument and n3 in the -to_rst argument of the
reset_filter_path constraint to not consider the reset crossings
containing such reset nets during SpyGlass analysis.

If any of the nets specified in the -from_rst/-to_rst do not have the
reset constraint specified, set the
allow_unconstrained_reset_in_rfp parameter to yes to
consider the unconstrained reset net.
1478 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Handling Multiple Clocks or Resets

For example, if a destination flip-flop receives the R1 and R2 resets and
the C1 and C2 clocks, specify the following constraints to filter the
Ar_unsync01, Ar_sync01, Ar_asyncdeassert01, and Ar_syncdeassert01
rule violations:

reset_filter_path -from_rst R1 R2 -clock C1 C2 -type sync

reset_filter_path -from_rst R1 R2 -clock C1 C2 -type deassert

Examples

Example 1

Consider the following Ar_asyncdeassert01 spreadsheet showing violations
related to invalid crossings:

FIGURE 54.

From the above set of violations, if you want to suppress reporting
Ar_asyncdeassert01 and Ar_syncdeassert01 violations from the top.r1
reset to top.c clock, specify the following constraint:

reset_filter_path -from_rst r1 -clock c -type deassert

After specifying the above constraint, the violations reported in the cells 2C
and 33 in Figure 54 are not reported.

Rules

The reset_filter_path constraint is used by the following rules:
Version N-2017.12-SP1 1479
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
SpyGlass CDC Solution and RDC

Ar_unsync01 Ar_sync01 Ar_asyncdeassert01
Ar_sync_group Ar_syncdeassert01 Ar_resetcross01

RFPSetup Ar_resetcross_matrix01
1480 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
reset_pin

Purpose

The reset_pin constraint is used to specify black box pins that should be
assumed to be reset pins.

Then, the Async_07 rule of the SpyGlass DFT solution that uses
asynchronous source analysis treats a pin specified with the reset_pin
constraints just like it does the reset pins on flip-flops. The source of such a
pin must be test mode controlled just as any other asynchronous source.

Product

SpyGlass DFT solution

Syntax

The syntax of the reset_pin constraint is as follows:

reset_pin
-name <du-name>.<port-name>
[-value <value>]
[-synchronous]
[-asynchronous]

Arguments

<du-name>

The name of the design unit (black box) for which you are specifying the
reset pin.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are processed.

You can specify a single design unit name or a space-separated list of
design unit names.
Version N-2017.12-SP1 1481
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<port-name>

Name of the asynchronous reset port on the design unit (black box).

You can specify only a single port name.

-value <value>

The active value (0 or 1) for this asynchronous reset port <port-name>.

-synchronous

Implies that the reset pins are synchronous.

-asynchronous

Implies that the reset pins are asynchronous.

Rules

The reset_pin constraint is used by the following rules:

reset_synchronizer

Purpose

The reset_synchronizer constraint is used to specify a reset
synchronizer signal along with its asserted reset value.

During SpyGlass analysis, the tool uses this signal as a synchronizing point
as if a multi-flop reset synchronizer is present with its initial state value.

Product

SpyGlass CDC solution

SpyGlass DFT Solution

Async_07 Async_07Lssd
1482 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax of the reset_synchronizer constraint is as follows:

reset_synchronizer
-name <synchronizer-name>
-reset <source-reset>
-clock <synchronizer-clock> | <tag-name>
-value <synchronizer-reset-active-value>
-ignore

Arguments

-name <synchronizer-name>

Specifies the name of the synchronizer output.

You can specify a hierarchical net name, pin name, or top port name to this
argument.

NOTE: You can use a combination of wildcard characters, such as * and ? while specifying
the name of a synchronizer output.

-reset <source-reset>

Specifies the name of the source reset for which
<synchronizer-name> is acting as a synchronizer.

You can specify a hierarchical net name, pin name, or top port name to this
argument.

NOTE: You can use a combination of wildcard characters, such as * and ? while specifying
the name of a reset source.

-clock <synchronizer-clock>

Specifies the clock of the synchronizer.

You can specify a hierarchical net name, pin name, or top port name to this
argument.

NOTE: You can use a combination of wildcard characters, such as * and ? while specifying
the clock of a synchronizer.
Version N-2017.12-SP1 1483
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clock <tag-name>

Specifies the tag name specified by the -tag argument of the clock
constraint.

-value <synchronizer-reset-active-value>

Specifies 0 or 1 to indicate the active assertion value of the reset
synchronizer provided by the user by using this constraint.

SpyGlass uses this value for de-assertion verification purposes. This value
does not have any impact on the Ar_sync01 and Ar_unsync01 rules.

-ignore

Specifies that all the synchronizers from the object specified in the -name
argument be ignored for synchronization of reset crossings.

NOTE: If you use the -ignore argument along with the -name argument, the other
arguments of the reset_synchronizer constraint are not required.

Rules

The reset_synchronizer constraint is used by the following rules:

retention_cell

Purpose

Specifies the retention latch cells as used by the LPSVM33, LPSVM33A,
LPSVM34, LPSVM56, LPSVM57, LPSVM58, LPSVM59 rules or the SRPG cells
as used by the LPSVM38 and LPPLIB10 rules of the SpyGlass Power Verify
solution.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was retencell.

SpyGlass CDC Solution
Ar_sync01 Ar_unsync01 Ar_syncdeassert01
Ar_asyncdeassert01 Reset_sync02 Reset_check07
Reset_check10
1484 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Verify solution

Syntax

Defining Retention Latch Cells

The syntax to specify the retention_cell constraint for LPSVM33,
LPSVM33A, LPSVM34, and LPSVM58 rules of the SpyGlass Power Verify
solution is as follows:

current_design <du-name>
retention_cell
-name <cell-name-list>
[-save <save-pin-name>]
[-restore <restore-pin-name>]
[-clk <clk-pin-name>]
[-clkval <0 | 1>]
[-qTerm <q-pin-name>]
[-memory]

Defining SRPG Cells

The syntax to specify the retention_cell constraint for the LPSVM38
and LPPLIB10 rules of the SpyGlass Power Verify solution is as follows:

current_design <du-name>
retention_cell
-name <cell-name-list>
[-domains <domain-name-list>
[-vddpin <vdd-pin-name>]
[-vddcpin <vddc-pin-name>]

Defining Retention Cells with Control Pins

The syntax to specify the retention_cell constraint for LPSVM56,
LPSVM57 and LPSVM59 rules of the SpyGlass Power Verify solution is as
follows:

current_design <du-name>
retention_cell
-name <cell-name-list>
Version N-2017.12-SP1 1485
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-sleep <sl-pin-name>]
[-save <sa-pin-name>]
[-restore <rst-pin-name>]
[-sleepval <0 | 1>]
[-saveval <0 | 1>]
[-restoreval <0 | 1>]

Arguments

<du-name>

Name of the design unit under which you are specifying retention latch
cells, SRPG cells, or retention cells with control pins.

-name <cell-name-list>

Space-separated name list of the retention latch cells or SRPG Cells or
retention cells with control pins.

-save <save-pin-name> | -restore <restore-pin-name> | -clk <clk-pin-
name> | -qTerm <q-pin-name>

Names of the save pin, restore pin, clock pin, and the output pin of the
retention latch cell, respectively.

The LPSVM33 rule of the SpyGlass Power Verify solution uses the output
pin name specified using the -qTerm argument. If you do not specify the
-qTerm argument, the LPSVM33 rule assumes the output pin name to be
Q.

The LPSVM33A rule of the SpyGlass Power Verify solution uses only the
retention cell names.

The LPSVM34 rule of the SpyGlass Power Verify solution uses the save,
restore, and clock pin names specified using the -save, -restore, and
-clk arguments, respectively. You can specify any combination of these
arguments. If you do not specify any of these arguments, the LPSVM34
rule does not perform any checks.

-clk <clk-pin-name> | -clkval <0 | 1>

The LPSVM58 rule of the SpyGlass Power Verify solution uses the -clk
1486 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
argument defining the clock pin of the retention cell and the -clkval
argument defining the active value of that clock.

-memory

The LPSVM57 rule of the SpyGlass Power Verify solution uses the -
memory argument to define the retention memories. Other retention cell
violations are not reported when this Boolean variable is given with the
retention_cell constraint.

-domains <domain-name-list>

Space-separated voltage domain name list.

-vddpin <vdd-pin-name> | -vddcpin <vddc-pin-name>

Names of the Vdd pin (the pin to be connected to the OFF supply) and the
Vddc pin (the pin to be connected to the always-on supply) of the SRPG
cell, respectively. These values are used by the LPPLIB10 rule of the
SpyGlass Power Verify solution.

-sleep <sl_pin-name> | -save <sa-pin-name> | -restore <rst-pin-name>

Name of the sleep pin, save pin, and restore pin.

-sleepval <0|1> | -saveval <0|1> | -restoreval <0|1>

The -sleepval, -saveval, and -restoreval arguments specify
the active value of the respective control pins.

The LPSVM59 rule of the SpyGlass Power Verify solution uses the -sleep
argument defining the sleep pin of the retention cell and the -sleepval
argument defining the active value of that sleep pin.

The LPSVM59 rule of the SpyGlass Power Verify solution also uses -save
argument defining the save pin of the retention cell and the -saveval
argument defining the active value of that save pin. The rule also uses -
restore argument defining the restore pin of the retention cell and the -
restoreval argument defining the active value of that restore pin.

Rules

The retention_cell constraint is used by the following rules:
Version N-2017.12-SP1 1487
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
retention_instance

Purpose

Specifies the hierarchy information of retention cell instances.
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was

retain_instance.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the retention_instance constraint is as
follows:

current_design <du-name>
retention_instance
-name <inst-name-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the retention cell
instances.

-name <inst-name-list>

Space-separated hierarchical instance name list (name of any instance or
the top-level design unit) indicating the regions to be checked.

NOTE: Wildcard support is provided for -name argument of the

SpyGlass Power Verify Solution
LPSVM33 LPSVM33A LPSVM34 LPSVM56
LPSVM57 LPSVM58 LPSVM59 LPSVM38
LPPLIB10
1488 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
retention_instance constraint.

Rules

The retention_instance constraint is used by the following rules:

rme_config

Purpose

The rme_config constraint is used to configure the output of RME.

Product

SpyGlass DFT solution

Syntax

rme_config
-module_prefix <module-prefix>
| -module_suffix <module-suffix>
| -instance_prefix <instance-prefix>
| -instance_suffix <instance-suffix>
| -port_prefix <port-prefix>
| -wire_prefix <wire-prefix>
| -file_prefix <file-prefix>
| -file_suffix <file-suffix>
| -tm_port <tm-port-name>
| -tclk_port <tclk-port-name>
| -logic_at_top
| -insert_disable_logic
| -port_type <port_type>
| -wire_naming_style <wire_naming_style>
| -delay_set_reset_type <delay_set_reset_type>
| -delay_clock_type <delay_clock_type>

SpyGlass Power Verify Solution

LPSVM38 LPSVM58
Version N-2017.12-SP1 1489
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
| -verilog_delay_text <verilog_delay_string>
| -vhdl_delay_text <vhdl_delay_string>
| -insert_undef_in_clone_module <undef_value>
| -obs_tp_module_name <module_name>
| -cnt_tp_module_name <module_name>
| -cnt0_tp_module_name <module_name>
| -cnt1_tp_module_name <module_name>

Arguments

-module_prefix <module-prefix>

Specifies the prefix of modified design modules and entities.

For example, if you want to specify the prefix of modified design modules
as atrenta_modified_, specify the rme_config constraint as
follows:

rme_config -module_prefix atrenta_modified_

The default value is "".

NOTE: The -module_prefix argument of the rme_config constraint is not
applicable for the design top module.

-module_suffix <module-suffix>

Specifies the suffix of modified design modules and entities.

The default value is "".
NOTE: The -module_suffix argument of the rme_config constraint is not applicable for the

design top module.

-instance_prefix <instance-prefix>

Specifies the prefix of modified instances.

The default value is "".

-instance_suffix <instance-suffix>

Specifies the suffix of modified instances.

The default value is "".
1490 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-port_prefix <port-prefix>

Specifies the prefix of new ports that are added to design modules and
instances.

For input ports, the default value is atrenta_iport_. For output ports,
the default value is atrenta_oport.

-wire_prefix <wire-prefix>

Specifies the prefix of new wires that are added to design modules.

The default value is atrenta_wire.

-file_prefix <file-prefix>

Specifies the prefix of modified and newly generated files.

For modified files, the default value is atrenta_modified_. For newly
generated files, the default value is atrenta_generated_.

The user-specified prefix is applied only if the following conditions are
satisfied:
 The RTL file contains description for single design module only.

 The name of RTL file (without extension) is the same as that of the
design module.

-file_suffix <file-suffix>

Specifies the suffix of modified and newly generated files.

The default value is "".

-tm_port <tm-port-name>

Test mode port name. This argument is specific to the SpyGlass DFT
solution.

-tclk_port <tclk-port-name>

Test clock port name. This argument is specific to the SpyGlass DFT
solution.

-logic_at_top

Specifies that all glue logic should be created in the top module. This
Version N-2017.12-SP1 1491
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
argument is specific to the SpyGlass Power Estimation and SpyGlass Power
Reduction solutions.

-insert_disable_logic

Specifies that disable logic should be inserted. This argument is specific to
the SpyGlass Power Estimation and SpyGlass Power Reduction solutions.

-port_type <port_type>

Specifies the data type of port in V2K and SystemVerilog modules. Possible
values are wire and reg_wire.

-wire_naming_style <wire_naming_style>

Specifies the naming style of wires inserted by the AutoFix feature.

The possible values are as follows:

-delay_set_reset_type <delay_set_reset_type>

Specifies whether the flip-flop inserted by the AutoFix feature is a set
flip-flop or a reset flip-flop. In addition, it also specifies the polarity of the
set/reset pin of the flip-flop.

The possible values are as follows:

Value Naming Style of Inserted Wires
prefix_only <prefix>_<count>
prefix_and_pin <prefix>_<driver_instance_pin>_<count>

Value Type of the flip-flop
active_high_set An active high set flip-flop
active_low_set An active low set flip-flop
active_high_reset An active high reset flip-flop
active_low_reset An active low reset flip-flop
active_high_set_reset An active high set/reset flip-flop
active_low_set_reset An active low set/reset flip-flop
1492 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-delay_clock_type <delay_clock_type>

Specifies the polarity of the clock of the flip-flop inserted by the AutoFix
feature.

The possible values are as follows:

-verilog_delay_text <verilog_delay_string>

Specifies the delay string to be inserted in a flip-flop definition in Verilog.
The string is inserted in the following format:

q <= <verilog_delay_string> d;

Where q and d are the output pin and the input pin, respectively, of the
flip-flop.

For example, if you want to add a numeric delay in a flip-flop definition in
Verilog, specify the delay string as follows:

-verilog_delay_text = "# 10"

In this case, the modified RTL of the flip-flop will be as follows:

q <= # 10 d;

As another example, if you want to add a tick define delay in a flip-flop
definition in Verilog, specify the delay string as follows:

-verilog_delay_text = "# `MY_DELAY"

In this case, the modified RTL of the flip-flop will be as follows:

q <= # `MY_DELAY d;

Please note that you have to specify a proper declaration of MY_DELAY in
this case.

-vhdl_delay_text <vhdl_delay_string>

Specifies the delay string to be inserted in a flip-flop definition in VHDL. In
addition, the after keyword is also inserted in the flip-flop definition.

Value Type of the clock
active_high An active high clock
active_low An active low clock
Version N-2017.12-SP1 1493
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The delay string and the after keyword are inserted in the following
format:

q <= d after <vhdl_delay_string>;

Where, q and d are the output pin and the input pin, respectively, of the
flip-flop.

For example, if you want to add a numeric delay in a flip-flop definition in
VHDL, specify the delay string as follows:

-vhdl_delay_text = "10ns"

In this case, the modified RTL of the flip-flop will be as follows:

q <= d after 10ns;

As another example, if you want to add a tick define delay in a flip-flop
definition in VHDL, specify the delay string as follows:

-vhdl_delay_text = "MY_DELAY"

In this case, the modified RTL of the flip-flop will be as follows:

q <= d after MY_DELAY;

Please note that you have to specify a proper declaration of MY_DELAY in
this case.

-insert_undef_in_clone_module <undef_value>

Specify to add the `undef of macros in the Atrenta uniquified blocks. The
possible values are 0 & 1.

If undef_value is 1, then `undef macros are inserted in Atrenta uniquified
blocks. Default undef_value is 0.

-obs_tp_module_name <module_name>

Specifies the module name of the observe testpoint.

-cnt_tp_module_name <module_name>

Specifies the module name of the control testpoint.

-cnt0_tp_module_name <module_name>

Specifies the module name of the control-0 testpoint.
1494 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-cnt1_tp_module_name <module_name>

Specifies the module name of the control-1 testpoint.

Rules

The rme_config constraint is used by the following rules:

set_slew

Purpose

The set_slew constraint is used to specify slew value of all the nets of a
clock domain of type data or clock. Apart from the set_slew constraint,
the slew value can be specified in various ways. The following list shows
the order from the highest priority to the lowest priority:
1. The set_annotated_transition SDC constraint
2. The set_slew SGDC constraint
3. The value from SpyGlass Physical in the SpyGlass Physical - Power

Estimate flow
4. The pe_auto_infer_slew parameter
5. The pe_slew parameter

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the set_slew constraint is as follows:

set_slew
 -value <val>

SpyGlass DFT Solution
Async_07 Clock_11 Clock_11_capture Latch_08
TA_06 Topology_01
Version N-2017.12-SP1 1495
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 [-clock <clock-net-name>]
 [-type <data | clock>]
 [-rise]
 [-fall]

NOTE: If both -rise and -fall arguments are defined, the value is considered as both the
value of the rise slew and the fall slew.

Arguments

-value <val>

Specifies positive float value with the unit of time. By default, the unit is
nanoseconds.

-clock <clock-net-name>

Specifies the clock net name. List is supported.

-type <data | clock>

Specifies the type of net.

-rise

Specifies the rise slew value.

-fall

Specifies the fall slew value.

Examples

Example 1

In the following SGDC specification, the value v1 is applicable for all the
nets of the design.

set_slew -value v1
1496 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 2

You can overwrite the value for clock or data nets by specifying the type
argument. In the following SGDC specification, the value v2 is applicable
to all the data nets of the design.

set_slew -value v2 -type data

Example 3

In the following SGDC specification, the value v3 is applicable for all the
clock nets of the clock domain c1

set_slew -value v3 -type clock -clock c1

Example 4

In the following SGDC specification, value v1 is applied to nets of type
clock and value v2 is applied to nets of type of data. The value v3 is not
applied to any net and is ignored.

set_slew -value v1 -type clock -clock clk1

set_slew -value v2 -type data -clock clk1

set_slew -value v3 -clock clk1

Example 5

In the following SGDC specification, the first set_slew SGDC
specification is taken. Therefore, value v1 is applied. All other SGDC
constraint specifications of the same constraint are ignored.

set_slew -type data -value v1

set_slew -type data -value v2

Example 6

For nets in a merged clock domain, the value specified for the fastest clock
domain is used. Suppose, clock net n1 is a clock net in a merged clock
domain of clocks c1 and c2. In addition, the clock c1 is faster than clock
c2. In the following specification, the value v1 is taken.

set_slew -clock c1 -value v1

set_slew -clock c2 -type clock -value v2
Version N-2017.12-SP1 1497
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The set_slew constraint is used by the following rules:

force_scan

Purpose

The force_scan constraint is used to declare flip-flops as scannable
even if they do not so qualify.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the force_scan constraint is as follows:

force_scan
 -name <du-name> | <reg-name> |
 -clock_control <signal-name> |
 -set_control <signal-name> |
 -reset_control <signal-name>
 -register_suffix <suffixes>
 -module_suffix <suffixes>
[-latch]
[-flip_flop]

NOTE: The force_scan constraint supports wildcard characters. Using wildcards,
expression is expanded only within the hierarchy.

Arguments

-name <du-name>

Specifies the name of the design unit from which scan is included.

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions

All rules
1498 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You can specify design units that are single flip-flops or design units where
one or more flip-flops are described besides other logic. Then, all flip-flops
in the specified design unit are included in scan.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can specify a single design unit name or a space-separated list of
design unit names.

-name <reg-name>

The name of a net that is connected to the output pin of a flip-flop.

Then, the corresponding flip-flop is included in scan.

You can specify a simple net name or a hierarchical net name. The net
specified as simple net name is searched at the top-level.

You can specify a single net name or a space-separated list of net names.
NOTE: You can specify design unit names, net names, or a combination of both.

<signal-name>

Flip-flops whose control pins (clock, set, or reset) are driven by this signal
are included in the scan.

NOTE: The traversal involved in this is structural only.

The <signal-name> argument can have the following values:
 CLOCK: For the clock_control option, if the <signal-name> argument is

driving CLOCK pin of the flip-flop.
 SET: For the set_control option, if the <signal-name> argument is

driving SET pin of the flip-flop.
 RESET: For the reset_control option, if the <signal-name> argument is

driving RESET pin of the flip-flop.

-register_suffix <suffixes>

Space-separated list of suffixes to be specified as scannable. The
-register_suffix argument should not be used along with other
arguments of the force_scan constraint, that is, -name, -
clock_control, -set_control, or -reset_control.
Version N-2017.12-SP1 1499
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
If the value of the dft_treat_suffix_as_pattern parameter is set
to on, the register_suffix value is used as a pattern to be matched
with the register name. The pattern may be present anywhere in the
register name, excluding the path.

If the value of the dft_check_path_name_for_register_suffix
parameter is on, the value of the -register_suffix field will be
matched with the register name along with the path in which the register is
present.

-module_suffix <suffixes>

Define this field to use suffix based pattern match for all module names.

If the value of the dft_treat_suffix_as_pattern parameter is on,
the value of the -module_suffix field will be matched with the module
name along with the path in which the module is present.

-latch

Marks only latches as scannable.

-flip_flop

Marks only flip-flops as scannable.
NOTE: If you do not specify either -latch or -flip-flop options, then, both latches and flip-

flops are marked as scannable.

Examples

You can use the force_scan constraint in the following ways:

Specifying only the design unit names with the -name argument

By specifying a design unit name using the -name argument only, all
instances of this design unit are considered scannable. The following
force_scan constraint indicates that all flip-flops within all instances of
modName1 will be considered scannable:

force_scan -name modName1

Specifying only the register names with the -name argument

By specifying a net name using the -name argument only, the
corresponding flip-flop will be considered scannable. The following
1500 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
force_scan constraint indicates that the flip-flop whose output pin is
connected to net reg_123 (at the top-level) will be considered scannable:

force_scan -name reg_123

Specifying list of suffixes using the -register_suffix argument

Consider the following example:

current_design top_scan
force_scan -register_suffix ff1

In the above example, All flip-flops with name ending with ff1 will be
marked as scan.

Rules

The force_scan constraint is used by the following rules:

force_stable_value

Purpose

The force_stable_value constraint specifies nodes that will have a
stable value during the scan shift and capture modes.

Product

SpyGlass DFT solution

Syntax

The syntax for the force_stable_value constraint is as follows:

force_stable_value
 [-name <nodename>]
 [-except <except_nodename>]
 [-type <DO_nodename>]
 [-except_type <exceptDO_nodename>]

SpyGlass DFT Solution

All rules
Version N-2017.12-SP1 1501
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 [-value <value>]
 [-tag <condname> | -use_shift | -use_capture |

-use_captureATspeed]

Arguments

-name <nodename>

(Optional) The name can be a top-module port, or any internal net name,
or terminal name. More than one pin name can be specified, and it is
effectively read as a concise description of as many individual value
checks.

NOTE: Specify either -name or -type argument.

-except <except_nodename>

(Optional) Same as <nodename> but defines design nodes that are not to
be used as name.

-type <DO_nodename>

 Same as <nodename> but it takes only macros as inputs.

NOTE: Specify either -name or -type argument.

To view the list of macros supported by the force_stable_value
constraint, see Supported Macros.

-except_type <exceptDO_nodename>

Same as <DO_nodename> but it takes only macros as inputs.

-value <value>

The value is a logic value string of 0, 1, X, Z, 1_or_0, and 0_or_1. A single-
bit value means check at end of complete simulation. The X value is
treated as do-not-compare. A multi-bit value means check on cycle-by-
cycle simulation basis. For specification of a vector value, SGDC multi-bit
specification format (same as used for the test_mode constraint) should
be used.

You can specify repeat sequences for the force_stable_value
constraint.
1502 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For fields that require repeat sequence, you can specify the values as
<I*S>. Here, S is any string that does not contain the <, >, and *
characters. However, S can contain another <I*S> expression. I is an
integer that is always interpreted as a decimal value. The expression
<I*S> means that the sequence S will be repeated I number of times.

-tag <condname>

(Optional) A condition previously defined by using the define_tag constraint.
It describes a stimulation condition.

Note that only one condition name can be defined in a
force_stable_value specification. However, simulation for a given
condition name simulates all pin-value specifications simultaneously. The
built-in power-ground connections are also simulated in this process.

-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, force_stable_value simulates test mode
of that particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.

NOTE: If more than one of the -tag, -use_shift, -use_capture, or

-use_captureATspeed arguments is specified, an error condition occurs.
You should specify exactly one of these modifiers with
require_stable_value constraint.

Examples

Rules

The force_stable_value constraint is used by the following rule:

force_unstable_value

SpyGlass Connectivity Verify Solution

Soc_14
Version N-2017.12-SP1 1503
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The force_unstable_value constraint specifies nodes that will have
an unstable value during the scan shift and capture modes.

Product

SpyGlass DFT solution

Syntax

The syntax for the force_unstable_value constraint is as follows:

force_unstable_value
 [-name <nodename>]
 [-except <except_nodename>]
 [-type <DO_nodename>]
 [-except_type <exceptDO_nodename>]
 [-value <value>]
 [-tag <condname> | -use_shift | -use_capture |

-use_captureATspeed]

Arguments

-name <nodename>

(Optional) The name can be a top-module port, or any internal net name,
or terminal name. More than one pin name can be specified, and it is
effectively read as a concise description of as many individual value
checks.

NOTE: Specify either -name or -type argument.

-except <except_nodename>

(Optional) Same as <nodename> but defines design nodes that are not to
be used as name.

-type <DO_nodename>

 Same as <nodename> but it takes only macros as inputs.

NOTE: Specify either -name or -type argument.
1504 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
To view the list of macros supported by the force_unstable_value
constraint, see Supported Macros.

-except_type <exceptDO_nodename>

Same as <DO_nodename> but it takes only macros as inputs.

-value <value>

The value is a logic value string of 0, 1, X, Z, 1_or_0, and 0_or_1. A single-
bit value means check at end of complete simulation. The X value is
treated as do-not-compare. A multi-bit value means check on cycle-by-
cycle simulation basis. For specification of a vector value, SGDC multi-bit
specification format (same as used for the test_mode constraint) should
be used.

You can specify repeat sequences for the force_unstable_value
constraint.

For fields that require repeat sequence, you can specify the values as
<I*S>. Here, S is any string that does not contain the <, >, and *
characters. However, S can contain another <I*S> expression. I is an
integer that is always interpreted as a decimal value. The expression
<I*S> means that the sequence S will be repeated I number of times.

-tag <condname>

(Optional) A condition previously defined by using the define_tag constraint.
It describes a stimulation condition.

Note that only one condition name can be defined in a
force_unstable_value specification. However, simulation for a given
condition name simulates all pin-value specifications simultaneously. The
built-in power-ground connections are also simulated in this process.

-use_shift | -use_capture | -use_captureATspeed

For any of these modifiers, force_unstable_value simulates test
mode of that particular mode.

If -use_shift, -use_capture, or -use_captureATspeed
argument is specified, the constraint simulates all, shift, capture, or
captureAtspeed test_mode constraints, respectively.

NOTE: If more than one of the -tag, -use_shift, -use_capture, or
Version N-2017.12-SP1 1505
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-use_captureATspeed arguments is specified, an error condition occurs.
You should specify exactly one of these modifiers with
require_stable_value constraint.

Examples

Currently Unavailable

Rules

The force_unstable_value constraint is used by the following rule:

scan_cell

Purpose

The scan_cell constraint is used to define scan cell design units and
their data pins as used by the Scan_18 rule.

Product

SpyGlass DFT solution

Syntax

The syntax of the scan_cell constraint is as follows:

scan_cell
-module <du-name>
-datapin <dpin-name>

Arguments

-module <du-name>

The name of the scan cell design unit.

The design unit name <du-name> can be specified as module name (for

SpyGlass Connectivity Verify Solution

Soc_14
1506 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can only specify a single design unit name.

-datapin <dpin-name>

Name of the data pin of the scan cell design unit.

Rules

The scan_cell constraint is used by the following rule:

scan_chain

Purpose

The scan_chain constraint is used to specify the scan chains for the
rules mentioned in the Rules section.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was scanchain.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the scan_chain constraint is as follows:

scan_chain
[-module <name>]
-scanin <pin-name>
-scanout <pin-name>
[-scanin_clock_pin <pin-name>]
[-scanout_clock_pin <pin-name>]
[-scanin_clock_pin_phase_inverted]

SpyGlass DFT Solution

Scan_18
Version N-2017.12-SP1 1507
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-scanout_clock_pin_phase_inverted]

Arguments

-scanin <pin-name> / -scanout <pin-name>

Complete hierarchical name of starting/ending port/pin.

The starting/ending points can be primary ports as well as internal pins.
NOTE: The -scanin and -scanout arguments support wildcard expressions.

For primary ports, you can also specify the simple port name as in the
following example:

current_design top
scan_chain -scanin in15 -scanout out23 ...

-module <name>

(Optional) Name of the black box module.

Specifying this option implies that the software should assume a valid scan
chain from its specified scan-in through the scan-out port.

-scanin_clock_pin <pin-name>

(Optional) Specifies the scanin clock pin name.

-scanout_clock_pin <pin-name>

(Optional) Specifies the scanout clock pin name.

-scanin_clock_pin_phase_inverted

(Optional) Specifies whether the scan-in clock pin phase is inverted or not.

-scanout_clock_pin_phase_inverted

(Optional) Specifies whether the scan-out clock pin phase is inverted or
not.

NOTE: The SpyGlass DFT product honors the -scanin_clock_pin,
-scanout_clock_pin, -scanin_clock_pin_phase_inverted, and
-scanout_clock_pin_phase_inverted arguments only when you have specified a
black-box module using the -module argument.
1508 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The scan_chain constraint is used by the following rules:

Examples

The following examples show the usage of the scan_chain constraint.

Example 1

Consider the following example:

module test (input [1:0] si, output [1:0] so);

scan_chain -scanin si -scanout so

The above example will be expanded as follows:

scan_chain -scanin si[1] -scanout so[1]

scan_chain -scanin si[0] -scanout so[0]

Example 2

Consider the following example:

module test (input [19:0] scanin_bus, output [63:0]
scanout_bus);

scan_chain -scanin_bus[15:0] -scanout_bus[31:16]

The above example will be expanded as follows:

SpyGlass DFT Solution
Info_scanchain Info_stilFile Diagnose_ScanChain Scan_22
Scan_24 Scan_25 Scan_26 Scan_29
Scan_32 Scan_33 Scan_34 Scan_35
Scan_36 Scan_38 Scan_39 Scan_40
Scan_41 Topology_15 dftSGDCSTX_069
SpyGlass DFT DSM Solution
SP_01 SP_05
SpyGlass Built-in Solution
SGDC_scanchain
01

SGDC_scanchain0
2

SGDC_scanchain03
Version N-2017.12-SP1 1509
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
scan_chain -scanin scanin_bus[15] -scanout scanout_bus[31]

scan_chain -scanin scanin_bus[14] -scanout scanout_bus[30]

scan_chain -scanin scanin_bus[13] -scanout scanout_bus[29]

...

scan_chain -scanin scanin_bus[1] -scanout scanout_bus[17]

scan_chain -scanin scanin_bus[0] -scanout scanout_bus[16]

Example 3

Consider the following example:

scan_chain -module bbox_scan_chain -scanin si1 -scanout so1
-scanin_clock_pin si1clk -scanout_clock_pin so1clk_inv
-scanin_clock_pin_phase_inverted false
-scanout_clock_pin_phase_inverted true

In the above example, the black box module, bbox_scan_chain, has a
scan chain from its scanin pin, si1, to its scanout pin, so1. In this case,
the clock pin of scan in flop is driven by pin, si1clk, with no phase
inversion. Whereas, the scanout flop clock pin is driven by pin,
so1clk_inv, with inversion.
1510 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
scan_enable_source

Purpose

This constraint is used to define the source signal for scan chain enables.
Such sources are then used by various Scan Enable rules.

If this constraint is not used, potential nodes are determined as candidates
for use in a scan_enable_source constraint. In that case, Scan Enable
rules will use these potential nodes as the basis for checking rule
compliance.

Product

SpyGlass DFT DSM solution

Syntax

The syntax of the scan_enable_source constraint is as follows:

scan_enable_source
-name <SE_name>
[-active_value <0 | 1>]
[-mode <combinational | sequential>]
[-clock <clock-name>]

Arguments

-name <SE_name>

Specifies the scan enable name

-active_value <0 | 1>

(Optional) Check that when this scan_enable source has -active_value
(and any specified define tags are also simulated), the scan enable pins on
flip-flops fed by this source are enabled for scan.

-mode <combinational | sequential>

(Optional) Specifies how to treat the associated source node, that is,
whether to consider it as combinational or sequential.
Version N-2017.12-SP1 1511
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-clock <clock-name>

(Optional) Specifies the name of the clock.

Rules

The scan_enable_source constraint is used by the following rules:

scan_ratio

Purpose

The scan_ratio constraint is used to determine what fraction of the flip-
flops should be scanned or scannable. You can calculate scan_ratio using
the following formula:

scan_ratio = (scannable flip-flops + forced/inferred scan
flip-flops) / (total number of flip-flops – forced/
inferred_no_scan flip-flops - synthesis_redundant flip-
flops)

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was scanratio.

Product

SpyGlass DFT solution

Syntax

The syntax of the scan_ratio constraint is as follows:

scan_ratio -value <value>

SpyGlass DFT DSM Solution
All Scan Enable rules
1512 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-value <value>

A scan ratio as a decimal value less than 1 such as 0.95.

Rules

The scan_ratio constraint is used by the following rule:

scan_type

Purpose

The scan_type constraint is used to specify the SpyGlass DFT type
(LSSD or MUXSCAN).

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was scantype.

Product

SpyGlass DFT solution

Syntax

The syntax of the scan_type constraint is as follows:

scan_type
[-lssd | -clock | -muxscan | -allscan]

Arguments

The scan_type constraint has the following arguments:

SpyGlass DFT Solution

Scan_11
Version N-2017.12-SP1 1513
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-lssd

(Optional) SpyGlass DFT solution scannability type.

The -lssd argument specifies that scannability depends only on sets and
resets being inactive in the shift mode. Scannability no longer depends on
test clock controllability since, in LSSD, a separate test clock that is
independent of all system clocks is inserted during scan replacement and
synthesis.

-clock

The -clock argument specifies that scannability depends only on the test
clock controllability.

-muxscan

The -muxscan argument (default) specifies that scannability depends on
the test clock controllability and set/reset controllability.

NOTE: If both -lssd argument and -clock argument are specified, it is assumed that
the -muxscan argument has been specified.

-allscan

The -allscan argument specifies that all flip-flops except those declared
as no scan flip-flops (using the force_no_scan constraint) are to be
considered as scannable.

Rules

The scan_type constraint is used by the following rules:

SpyGlass DFT Solution
Async_07Lssd Async_09 Bist_04 clock_23
Info_uncontrollable Info_unobservable Info_undetecCause Info_coverage
Info_untestable Info_unused Info_noscanFlopsTe

xtReport
Info_scanchain

Coverage_audit Latch_15 Scan_08 Scan_11
Scan_16 Scan_17 Scan_18 Scan_19
1514 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Scan_20 Scan_21 Scan_22 Scan_24
Scan_25 Scan_26 TA_06
Version N-2017.12-SP1 1515
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
scan_wrap

Purpose

The scan_wrap constraint is used to specify black box design units or
instances that will be designed with scan wrappers.

Use of the scan_wrap constraint causes the input pins of the designated
black box design unit or instance to be treated as observable, output pins
to be treated as controllable and inout pins to be treated as both
controllable and observable.

You can use the dftSetAllBBScanwrapped parameter to make all the black
boxes scan-wrapped.

You can use force_ta constraint to override the controllability and
observability of individual pins of the scan wrapped module. Please refer to
the Specifying force_ta constraint on the individual pins of the scan wrapped
module section in the Examples section for more information.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was scanwrap.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the scan_wrap constraint is as follows:

scan_wrap
-name <du-name> | <inst-name>
[-enable <en-pin-list>]
[-envalue <en-value-list>]

NOTE: The scan_wrap constraint supports wildcard characters.

Arguments

-name <du-name>

The scanwrap design unit (black box) name.
1516 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are considered.

You can specify a single design unit name or a space-separated list of
design unit names.

-name <inst-name>

The scanwrap design unit (black box) hierarchical instance name.

The master design unit of the specified instance must be a black box. That
is, its definition must not exist in the design or in the specified libraries, if
any.

You can specify a single instance name or a space-separated list of instance
names.

-enable <en-pin-list>

List of enable pins of design unit. These pins should be activated for scan
wrap to be enabled.

-envalue <en-value-list>

The enable value of the enable pins. It is the list of 0 or 1 values. These
values specify the signals that activate the corresponding enable pins.

Examples

You can use the scan_wrap constraint in the following ways:

Specifying only the design unit names with the -name argument

By specifying a black box design unit name using the -name argument
only, all instances of this design unit are considered as scan-wrapped. The
following scan_wrap constraint indicates that all instances of modName1
will be considered scan-wrapped:

scan_wrap -name modName1

Specifying only the instance names with the -name argument

By specifying a hierarchical instance name using the -name argument,
Version N-2017.12-SP1 1517
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
only the corresponding instance will be considered scan-wrapped. The
following scan_wrap constraint indicates that the instance BB_I123 (at
the top-level) will be considered scan-wrapped:

scan_wrap -name BB_I123

Specifying enable pins of the scan wrapped design unit

Consider the following command:

scan_wrap -name bb_inst1 -enable en1 en2 -envalue 0 1

The above command describes that enable pins, en1 and en2, should
have values 0 and 1 respectively for scan wrap to enabled for bb_inst1.

Specifying force_ta constraint on the individual pins of the scan
wrapped module

Consider the following constraint description file, test.sgdc:

current_design top
test_mode -name en -value 1

scan_wrap -name bbox_en -enable en -envalue 1
scan_wrap -name non_bbox
scan_wrap -name bbox

 force_ta -name "bbox::op2" -control nyn
 force_ta -name "bbox::in2" -observe n

In the above example, scan_wrap constraint is applied on the module,
bbox. Then, force_ta constraint is applied on black box instances, op2 and
in2. Here, force_ta constraint takes precedence over the scan_wrap
constraint. Therefore, op2 and in2 are uncontrollable and unobservable,
respectively.

Figure 55 and Figure 56 illustrate the uncontrollable and unobservable
conditions after specifying the force_ta constraint.
1518 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 55. force_ta: Uncontrollable condition

FIGURE 56. force_ta: Unobservable condition

Rules

The scan_wrap constraint is used by the following rules:

SpyGlass DFT Solution
Async_02_shift Async_02_capture Bist_04 Info_uncontrolla

ble
Info_unobservable Info_undetectCause Info_coverage Info_untestable
Info_unused Coverage_audit RAM_01 RAM_02
RAM_03 RAM_04 RAM_05 RAM_06
RAM_07 RAM_08 RAM_09 RAM_10
Scan_17 TA_06
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 1519
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
sdc_data

Purpose

The sdc_data constraint is used to specify the SDC file.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was sdcschema.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions,
SpyGlass Constraints solution, SpyGlass DFT DSM solution, SpyGlass CDC
solution

For the SpyGlass Power Estimation and SpyGlass Power Reduction
Solutions

Syntax

The syntax to specify the sdc_data constraint is as follows:

current_design <du-name>
sdc_data -file <file-list>

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-file <file-list>

Space-separated list of SDC files or a single SDC file.

Rules

The sdc_data constraint is used by the following rules:
1520 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass Constraints solution

Syntax

The syntax to specify the sdc_data constraint is as follows:

current_design <du-name>
sdc_data -file <file-list>

[-level <level>]
[-mode <mode>]
[-corner best | worst]

Arguments

<du-name>

The top-level module name (for Verilog designs) or the top-level entity
name (for VHDL designs) or a synthesis partition name specified using the
block keyword.

–file <file-list>

Specifies a list of associated SDC files. You can also specify compressed
SDC files in the gzip format with this argument.

If in the SGDC file, multiple SDC files are specified in different SDC
schemas with identical values of mode/corner options or if no value is
specified for these options, SpyGlass reports a violation message.
Therefore, the correct way to specify multiple SDC files is based on the
following conditions:
 If the SDC files are dependent, specify all the files with a single

SDC-schema as shown in the following example:

sdc_data -file bar1.sdc bar2.sdc

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1521
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 If the SDC files are independent, specify each file in a different schema
with its respective mode as shown in the following example:

sdc_data -file bar1.sdc -mode test -corner best
sdc_data -file bar2.sdc -mode func -corner typical

If you are specifying a list of SDC files with the -file argument, ensure
that the SDC files are specified in the correct order so that the definition of
a variable is available before it is used.

All of the following arguments are attached to these SDC files to qualify the
scope of these SDC files.

If rules that require SDC are run and no sdc_data constraint is specified
in SGDC, the following fatal message is reported.

SGDC_sdc_data02: SDC_data is required to run some of the
selected rule(s).

NOTE: The -type argument that was used to specify SDC files is replaced by the -file
argument. While the -type argument is still available for backward compatibility,
its functionality is expected to change in future.

-level <level>

(Optional) Specifies the scope of the SDC File type by design phase. You
can specify either rtl, prelayout, postlayout, or all.

Use this argument to specify the design phase to which a particular SDC
file is applicable. In the SpyGlass Constraint solution, most rules work in a
specific, pre-defined design phase. Pre-defined design phase is
configurable by specifying goals. Therefore, you do not need to specify the
level argument.

The rules that work across design phases are: Const_Struct03 and
Clk_Uncert04. Therefore, these rules leverage the design phase
specified in the level argument. The following example illustrates the use
of the level argument.

#Constraints.sgdc

current_design top

sdc_data -file top_function_pre.sdc -level prelayout -mode
function
1522 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
sdc_data -file top_function_post.sdc -level postlayout -mode
function

sdc_data -file top_scan_all.sdc -level all -mode scan

#top_function_pre.sdc

set_case_analysis 1 [get_ports "MODE1"]

set_case_analysis 1 [get_ports "MODE2"]

#top_function_post.sdc

set_case_analysis 1 [get_ports "MODE1"]

set_case_analysis 0 [get_ports "MODE2"]

#top_scan_all.sdc

set_case_analysis 1 [get_ports "MODE1"]

set_case_analysis 1 [get_ports "MODE2"]

After you run the Const_Struct03 rule, violation messages are
reported because:

 the set_case_analysis settings for the function mode, which is
specified in top_function_pre.sdc, and scan mode, which is specified in
top_scan_all.sdc, are identical.

 the set_case_analysis settings for the same function mode in
different phases, which is top_function_pre.sdc file for the Pre-layout
phase and top_function_post.sdc file for the Post-layout phase, are not the
same.

–mode <mode>

(Optional) Specify the mode name to indicate a functional mode of
operation, such as test mode, functional mode, or bypass mode, for the
design. The rules in the SpyGlass Constraints solution are independently
evaluated for each mode of operation and coverage is generated for each
specified mode.
Version N-2017.12-SP1 1523
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For example, you can specify the functional mode or the scan shift mode.
As the mode name is user-defined, it does not follow any pattern; its only
purpose is to differentiate one mode from another. If omitted, the current
schema applies to all modes.

In addition, you can specify a seed SDC file for the SDC_GenerateIncr
rule by specifying seed as the mode name.

When using constraints management of the SpyGlass Constraints solution,
the mode values have specific meanings. For example, mode could be
flatTop or block for the Equiv_SDC_block rule.

–corner [best | worst]

(Optional) Identifies the analysis corner for the Const_Struct08,
Const_Struct09, Inp_Trans05, and Inp_Trans06 rules.

For all other rules, the associated files will be assumed valid for both best
and worst corners, where applicable.

block -name <name-list>

(Optional) Specifies sub-blocks that are partitions from synthesis if the
current design is actually a top-level design.

Each name in <name-list> should name a module (for Verilog) or entity
(for VHDL) appearing in the design that should be treated as a top-level
partition. More than one block constraint may appear, or all blocks may
be specified in one constraint.

NOTE: The top design is also considered as a block and all block-level rules are run on it
unless explicitly mentioned otherwise.

blocksize [-min <num>] [-max <num>]

(Optional) Specify the minimum and maximum allowed block sizes in terms
of gate count.

You must specify at least one of the -min and -max arguments with valid
integer values.

By default, the minimum block size is 5000 gates and maximum block size
is 100000 gates.
1524 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The sdc_data constraint is used by the following rules.

For SpyGlass DFT DSM solution

Syntax

The syntax to specify the sdc_data constraint is as follows:

current_design <du-name>
sdc_data -file <sdc-file-name>

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-file <sdc-file-name>

Name of the SDC file.

Rules

The sdc_data constraint is used by the following rule:

validation_filter_path

SpyGlass Constraints Solution

All rules except the ParamSanityCheck01a, ParamSanityCheck01b,
Const_Struct02, SDC_GenerateIncr, and Block02 rules

SpyGlass DFT DSM Solution
Atspeed_05
Version N-2017.12-SP1 1525
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The validation_filter_path constraint is used to filter data domain
violations reported during block validation. For example, consider the
following schematic:

FIGURE 57.

In addition, consider the following SGDC constraints at the top level and
block level respectively:

Sgdc constraint at top level

clock -name clk1 -domain d1
clock -name clk2 -domain d2
validation_filter_path -from_obj "test.src1" -to_clock
"clk1"

Sgdc constraint at block level

clock -name clk1 -domain d1
clock -name clk2 -domain d2
abstract_port -ports in -clock clk1

In the above scenario, data domain violations between src1_reg and
b1.in are filtered because the validation_filter_path constraint
has been specified.
1526 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass CDC solution

For SpyGlass CDC Solution

Syntax

The syntax to specify the validation_filter_path constraint is as
follows:

validation_filter_path -from_obj <src-object-name>
-to_clock <clock-of-destination-port>

Arguments

-from_obj <src-object-name>

Name of the source object that is causing the data domain violation.

-to_clock <clock-of-destination-port>

Name of the block’s clock port associated with the destination block port
that is causing the data domain violation.

Rules

The validation_filter_path constraint is used by the following
rules:

select_wireload_model

Purpose

The select_wireload_model constraint is used to specify the
wire-load model for the design.

SpyGlass CDC Solution
Ac_abstract_validation01
Version N-2017.12-SP1 1527
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
selectwireloadmodel.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the select_wireload_model constraint is as
follows:

select_wireload_model
[-instname <inst-name-list>]
-wireload <wl-name> | -wireloadtable <wltable-name>
-net_type < clock | clock_leaf | clock_non_leaf |

hard_macro | std_logic >
-size <float>
-start_size <float>
-end_size <float>

-tvg <string>

Arguments

-wireload <wl-name>

Name of the wire_load structure in the associated technology library.

-wireloadtable <wltable-name>

Name of the wire_load_table structure in the associated technology
library.

-instname <inst-name-list>

The instance names must be hierarchical names with respect to the
current_design <du-name>. This requirement is checked by the
SGDC_power_est17 rule. If you do not specify instance names using the
optional -instname argument, the specified wire-load model condition is
applicable to all instances under the environment <du-name> unless
1528 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
overridden by another select_wireload_model constraint specifying
particular instance(s).

You can specify multiple select_wireload_model constraints.

If you do not specify any select_wireload_model constraint, the
default_wire_load_selection library attribute is used for inferring
the wire-load models. If both are not specified or available, the
default_wire_load library attribute is used. This requirement is
checked by the SGDC_power_est10 rule.

The actual wire-loads used by these rules are reported in the
pe_wireload Report.

NOTE: The -instname argument cannot be specified while specifying the wire-load
model for the top-level design unit. Until now, you needed to specify the name of
the top-level design unit with the -instname argument. Therefore, you must
modify your existing select_wireload_model constraints for the top-level
design units accordingly. Otherwise, SpyGlass will exit with a fatal error
(SGDC_power_est17).

-net_type < clock|clock_leaf|clock_non_leaf|hard_macro|std_logic >

Defines the type of net:
 clock: Clock nets

 clock_leaf: Clock nets, which are directly connected to the clock pin of
latches and registers, are considered as clock_leaf nets.

 clock_non_leaf: Clock nets, which are directly connected to buffers,
inverters, or ICGCs, are considered as clock_non_leaf nets.

 hard_macro: Nets are the input of cells with no functionality
(memories, blackboxes etc.)

 std_logic: Combinational and sequential nets

For clock_leaf and clock_non_leaf types of nets, additional
capacitance tables are generated when the
power/power_calibration goal is run on the reference netlist.

-size <float>

Specifies the relative size of a cell.
Version N-2017.12-SP1 1529
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The smaller the specified value, the smaller is the size.

The specified value must be greater than 0. In addition, float values that
are less than 1 are supported. For any value greater than 1, specify an
integer. If you specify an unsupported value, a violation message is
reported.

After the SpyGlass Power Estimate product run, a pe_cell_sizing_info.csv
file is created. Open this file to review the sizing interpretation of the
libraries.

-start_size <float>

Defines a specific start size or a size range.

The specified value must be greater than 0. In addition, float values that
are less than 1 are supported. For any value greater than 1, specify an
integer. If you specify an unsupported value, a violation message is
reported.

-end_size <float>

Defines a specific start size or a size range.

The specified value must be greater than 0. In addition, float values that
are less than 1 are supported. For any value greater than 1, specify an
integer. If you specify an unsupported value, a violation message is
reported.

-tvg <string>

Defines the string which corresponds to vt of the design.

Rules

The select_wireload_model constraint is used by the following
rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
1530 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
seq_atpg

Purpose

The seq_atpg constraint is used when sequential ATPG tools are planned.

Sequential ATPG will not require all flip-flops to be scanned. Instead, the
state of non-scan flip-flops is controlled by properly controlling their next
state function as well as their clocks. Repeated actions of this type, which
will results in multi vector tests, allow various states to be loaded into the
non-scan flip-flops.

The default condition for SpyGlass DFT solution is combinational ATPG. In
that case, the state of non-scan flip-flops is controllable only if their set and
reset pins, if any, are controllable. When the seq_atpg constraint is set to
sequential mode, the state of non-scan flip-flops is controllable only if their
data pins are controllable.

The seq_atpg constraint causes controllability of non-scannable designs
to accurately model the power of an ideal sequential ATPG and, therefore,
provide a more realistic estimate of fault coverage. The seq_atpg
constraint may be applied whether or not scan is intended.

Product

SpyGlass DFT solution

Syntax

The syntax of the seq_atpg constraint is as follows:

seq_atpg -value 1

Arguments

-value

The seq_atpg constraint is specified with value 1 to enable the feature.

Rules

The seq_atpg constraint is used by the following rules:
Version N-2017.12-SP1 1531
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set

Purpose

The set constraint is used to specify the names of set signals.

Product

SpyGlass ERC Product

Syntax

The syntax of using the set keyword in a SpyGlass Design Constraints file
is as follows:

current_design <du-name>
set -name <set-name>

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs).

-name <set-name>

The set port/pin name.

The pin can be a top-level port/pin as well as an internal pin.

You can specify a single port/pin name or a space-separated list of port/pin
names.

For top-level port/pins, <set-name> can be the port/pin’s full hierarchical
name or its simple name. For internal pins, <set-name> must be the
pin’s full hierarchical name.

SpyGlass DFT Solution

Info_undetectCause Info_coverage
1532 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The set constraint is used by the following rule:

set_case_analysis

Purpose

The set_case_analysis constraint specifies the case analysis
conditions.

NOTE: For SpyGlass DFT and SpyGlass DFT DSM products, the set_case_analysis
constraint is treated as the test_mode -functional constraint.

Product

SpyGlass Auto Verify solution, SpyGlass Power Verify solution, SpyGlass
Power Estimation and SpyGlass Power Reduction solutions, SpyGlass ERC
product, SpyGlass CDC solution, SpyGlass latch product, SpyGlass
OpenMore product, and SpyGlass STARC product., SpyGlass DFT solution,
SpyGlass DFT DSM solution

Syntax

The set_case_analysis constraint uses the following syntax:

current_design <du-name>
set_case_analysis
-name {<name>}
-value <value>

SpyGlass ERC Solution

setPinConnectedToSetNet
Version N-2017.12-SP1 1533
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

 The module name (for Verilog designs) or design unit name in
<entity-name>.<arch-name> format (for VHDL designs) in the
design

-name <name>

A primary port name or hierarchical name of a pin/net. The pin can be a
primary pin or an internal pin.

You can also specify a space-separated list of primary port names or
hierarchical pin/net names.

The following example shows that the set_case_analysis constraint
has been defined on internal net top.U1.U13.tm1 and top.U3.tm3
with value 0:

current_design top
set_case_analysis
-name top.U1.U13.tm1 -value 0

For primary ports, you can also specify the simple port name as in the
following example:

current_design top
set_case_analysis -name in15 -value 1

NOTE: The value set on the signal specified with the set_case_analysis keyword is
automatically propagated through the design. You do not need to set values for
other signals in the path.

NOTE: The set_case_analysis constraints support wildcard characters. The
supported meta-characters are * (star) and ? (question mark), where * matches
any number of characters and ? matches only one character. The wildcard support
is applicable for non-escaped names only. If the meta-characters appear inside an
escaped name, they are treated as literals. For example, in the expression
"top.\mid* .bottom", \mid* is considered as a literal and does expand
to mid1, mid2, and so on. In addition, if you specify a hierarchical path by using
a wildcard, any sub-portion of this path that contains the wildcard does not cross
the module boundary while searching for the expression in the design. This means
that each level in the hierarchy path should be mentioned explicitly in the wildcard
1534 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
string. For example, the expression “top.mid*.bottom” will expand to
top.mid1.bottom”, and not to “top.mid1.u1.bottom”.

NOTE: The expression on which a wildcard is used should always be enclosed within double
quotes. For example, “top.mid*.bottom”.

NOTE: The wildcard support is applicable for design objects only. For non-design objects,
the support is not applicable.

-value <value>

Value list for a pin. The value list is the sequence of one or more values
(each value being 0, 1, X, Z, or a combination).

You can also specify repeat sequences for the value as <I*S>. Here, S is
any string that does not contain the <, >, and * characters. However, S can
contain another <I*S> expression. I is an integer that is always
interpreted as a decimal value. The expression <I*S> means that the
sequence S will be repeated I number of times.

Consider the following examples:

Example1:

set_case_analysis -name abc -value "<5*10>"

The above example will be expanded as follows:

set_case_analysis -name abc -value 1010101010

Example2:

set_case_analysis -name abc -value "11<5*10>010"

The above example will be expanded as follows:

set_case_analysis -name abc -value 111010101010010

Example3:

set_case_analysis -name abc -value "<50*11<5*10>>010"

The above example will be expanded as follows:

set_case_analysis -name abc -value 111010101010...(repeated
50 times followed by 010)

You can also set a variable using the command setvar to obtain the
above result as follows:
Version N-2017.12-SP1 1535
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
setvar x 11<5*10>
set_case_analysis -name abc -value "<50*${x}>010"

The above example will be expanded as follows:

set_case_analysis -name abc -value 111010101010...(repeated
50 times followed by 010)

NOTE: If the set_case_analysis keyword is not specified or is incorrectly specified,
the feature is not enabled.

To specify the values for a vector signal, you can specify the value as a
binary/decimal/hexadecimal number enclosed in curly brackets as in the
following example:

set_case_analysis -name a[7:0] -value {h 0F}

The above specification can also be written with different value bases as
follows:

set_case_analysis -name a[7:0] -value {d 15}
set_case_analysis -name a[7:0] -value {h F}
set_case_analysis -name a -value {b 00001111}
set_case_analysis -name a[7:0] -value {b 00001111}

Values are assigned depending on the position of 0th bit in the Bus
declaration as shown in Figure 58. If the 0th Bit is the Left Significant Bit
(LSB), the assignment happens from left to right. If the 0th Bit is the Right
Significant Bit (RSB), the assignment happens from right to left.

FIGURE 58.

If the SGDC sequence is less than the bits on the bus, the remaining bits
get 0 as shown in Figure 59.
1536 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 59.

If the SGDC sequence is more than the bits on the bus, the extra SGDC
sequence is ignored as shown in Figure 60.

FIGURE 60.

You can also specify the set_case_analysis constraint using .sdc file
as follows:

set_case_analysis 0|1 [get_ports <name>]

While specifying the set_case_analysis constraint using the .sdc file,
specify the following command in the SGDC file:

sdc_data -file <sdc-file-name>

For SpyGlass ERC Product and SpyGlass CDC solution

For SpyGlass ERC product and SpyGlass CDC solution, if any combinational
gate is found between a starting point and destination point, it is assumed
that the signal would reach the destination depending on the other inputs
to these gates. If the signal is found to be blocked due to the scalar values
specified for other inputs at these gates, by using the
set_case_analysis constraint, you can stop the further processing of
that particular path.

NOTE: For the SpyGlass CDC solution, the information supplied by the
set_case_analysis constraint is also printed in the Section A: Case
Analysis Settings section of the SpyGlass CDC-Summary
Report.
Version N-2017.12-SP1 1537
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

For SpyGlass CDC solution

The following examples show usage of set_case_analysis constraint.

Consider the following example:

module test(clk1, clk2, testclock, tm, data, out);
input clk1, clk2, testclock, tm, data;
output out;

reg out, temp;

wire clock1, clock2;

assign clock1 = tm ? testclock : clk1;
assign clock2 = tm ? testclock : clk2;

always @(posedge clock1)
temp <= data;

always @(posedge clock2)
out <= temp;

endmodule

Normally, SpyGlass will mark the clock crossing between flip-flops temp
and out if the clock names clk1 and clk2 are specified using the clock
keyword in a design constraints file.

However, SpyGlass will not mark the clock crossing between flip-flops
temp and out if you also supply a design constraint file as follows:

current_design test
set_case_analysis -name tm -value 1

If you supply set_case_analysis constraints, the information is also
printed in the Section A: Case Analysis Settings section of the
SpyGlass CDC Summary Report.

Set-case analysis and power-ground can be propagated through flip-flops
without specifying clock events when the set_option
enable_const_prop_thru_seq yes command is specified in the
1538 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
project file. With this option, flip-flops will be considered as feed through
buffers during case analysis and constant propagation, regardless of the
clock, set, and reset feeding the flip-flops. The same process is applied to
latches and other sequential elements.

This is illustrated in the following figure:

FIGURE 61. Flip-Flops as Feed-Through Buffers

For SpyGlass Power Verify solution

NOTE: For the SpyGlass Power Verify solution, the value for set_case_analysis will
not be propagated, if the combination logic lies in power domain only for rules
based on simulation (use LE for simulation).

Examples

As shown in the following figure, the value for test_mode is specified as
0 by set_case_analysis constraint and it goes to the logic (OR gate)
rtlc_I3 is in power domain, the value of set_case_analysis is not
propagated beyond OR gate and the value at output net will be X.
Version N-2017.12-SP1 1539
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 62. The test_mode constraint used by the set_case_analysis constraint

Examples For SpyGlass DFT Solution

Example 1

Consider the following sample input values:

set_case_analysis -name vec[3:0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below

set_case_analysis -name vec[0] -value "1010"
set_case_analysis -name vec[1] -value "0000"
set_case_analysis -name vec[2] -value "0000"
set_case_analysis -name vec[3] -value "0000“

Example 2

Consider the following sample input values:

set_case_analysis -name vec[3:0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "0"
set_case_analysis -name vec[1] -value "1"
set_case_analysis -name vec[2] -value "0"
set_case_analysis -name vec[3] -value "1“
1540 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 3

Consider the following sample input values:

set_case_analysis -name vec[3:0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "1"
set_case_analysis -name vec[1] -value "0"
set_case_analysis -name vec[2] -value "0"
set_case_analysis -name vec[3] -value "0“

Example 4

Consider the following sample input values:

set_case_analysis -name vec -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "1010"
set_case_analysis -name vec[1] -value "0000"
set_case_analysis -name vec[2] -value "0000"
set_case_analysis -name vec[3] -value "0000“

Example 5

Consider the following sample input values:

set_case_analysis -name vec -value { b 1010 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "0"
set_case_analysis -name vec[1] -value "1"
set_case_analysis -name vec[2] -value "0"
set_case_analysis -name vec[3] -value "1“

Example 6

Consider the following sample input values:

set_case_analysis -name vec -value { b 1 }

where vec is the 3:0 vector net
Version N-2017.12-SP1 1541
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "1"
set_case_analysis -name vec[1] -value "0"
set_case_analysis -name vec[2] -value "0"
set_case_analysis -name vec[3] -value "0“

Example 7

Consider the following sample input values:

set_case_analysis -name vec[0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "1010“

Example 8

Consider the following sample input values:

set_case_analysis -name vec[0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "0"

Example 9

Consider the following sample input values:

set_case_analysis -name vec[0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value "1"

Example 10

Consider the following sample input values:

set_case_analysis -name sclr -value { b 1 0 1 0 }

where sclr is the scalar net

The above input is expanded as shown below:

set_case_analysis -name sclr -value "1010"
1542 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 11

Consider the following sample input values:

set_case_analysis -name sclr -value { b 1010 }

where sclr is the scalar net

The above input is expanded as shown below:

set_case_analysis -name sclr -value "0“

Example 12

Consider the following sample input values:

set_case_analysis -name sclr -value { b 1 }

where sclr is the scalar net

The above input is expanded as shown below:

set_case_analysis -name sclr -value "1“

Example 13

Consider the following sample input values:

set_case_analysis -name vec -value { h 6 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

set_case_analysis -name vec[0] -value “0"
set_case_analysis -name vec[1] -value “1"
set_case_analysis -name vec[2] -value “1"
set_case_analysis -name vec[3] -value "0“

Rules

The set_case_analysis constraint is used by the following rules:

SpyGlass Auto Verify Solution
All rules
SpyGlass CDC Solution
All rules except the DeltaDelay01, NoClockCell, and PortTimeDelay rules.
SpyGlass DFT Product
Version N-2017.12-SP1 1543
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
All rules
SpyGlass DFT DSM Product
All rules
SpyGlass ERC Product
FloatingInputs FlopClockConstant FlopClockUnd

riven
FlopDataConstant

FlopDataUndriven FlopSRConst FlopEConst FlopSR
LatchEnableUndriv
en

LatchEnableConstant LatchDataUn
driven

LatchDataConstan
t

MuxSelConst DisabledAnd DisabledOr TristateConst
FlopClockX FlopDataX FlopSREX LatchEnableX
LatchDataX checkNetDriver checkIOPinCo

nnectedToNet
noCombinatorialF
eedBack

clockPinsConnecte
dToClkNets

resetPinConnectedTo
ResetNet

setPinConnec
tedTosetNet

SpyGlass latch Product
LatchFeedback

SpyGlass OpenMore Product
CombLoop
SpyGlass STARC Product
STARC05-1.2.1.3
SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 PESTR05 PESTR06
PESTR07 PESTR08 PESTR09 PESTR10
PESTR11 PESTR12 PESTR03 PESTR13
poweraudit
SpyGlass Power Verify Solution
LPSVM08 LPSVM09 LPSVM10 LPSVM28
LPSVM31 LPSVM47 LPSVM51 LPSVM52
LPSVM53 LPSVM56 LPSVM57 LPSVM59
LPPLIB17 LPSVM12 LPSVM15 LPSVM60
1544 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: For the SpyGlass Power Estimation and SpyGlass Power Reduction solutions, the
set_case_analysis constraint set on a net, overrides the simulation file
(VCD/FSDB) and activity constraint information. In addition, if you want the
set_case_analysis constraint to propagate through the sequential cells, set
the set_option enable_const_prop_thru_seq yes command in
the project file.
Version N-2017.12-SP1 1545
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
enable_seq_propagation

Purpose

The enable_seq_propagation constraint provides flexibility to allow
constant propagation through specific modules. In constant propagation,
flip-flops are considered as feed through buffers during simulation
regardless of the clock, set, and reset feeding the flip-flops. The same
process is applied to latches and other sequential elements.

Use the enable_seq_propagation constraint to specify modules in
which constants need to be propagated through sequential circuits during
simulation.

Product

SpyGlass CDC

Syntax

The syntax to specify the enable_seq_propagation constraint is as
follows:

enable_seq_propagation
-module <module-name>

Arguments

-module <module-name>

Specifies the module name.

Examples

To allow sequential propagation within all instances of the mod1 module,
set the following constraint:

enable_seq_propagation
 -module mod1
1546 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_cell_allocation

Purpose

The set_cell_allocation constraint is used to achieve a distribution
across multiple sizes for the same cell types in the different clock domains
in the design.

The sizes are relative, that is, size 1 refers to smallest size of a particular
type and 2 the second higher size. In addition, each size has an associated
percentage.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the set_cell_allocation constraint is as
follows:

set_cell_allocation

 -type <combinational | sequential>

 -size <float> | -alphabet_size <char>

 -group <grp-name> | -cellname <cell-name-pattern> |

 -libname <lib-name>

 -area

 -percentage <float>

 [-clock_period <float>]

 [-clock <string>]

 [-instname <string>]

NOTE: The -clock_period, -clock, and -instname arguments are mutually exclusive.

Arguments

-type <combinational | sequential>

Specifies the type of cell.
Version N-2017.12-SP1 1547
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Possible values are combinational and sequential.

-size <float>

Specifies the relative size of a cell.

The smaller the specified value, the smaller is the size.

The specified value must be greater than 0. In addition, float values that
are less than 1 are supported. For any value greater than 1, specify an
integer. If you specify an unsupported value, a violation message is
reported.

After the SpyGlass Power Estimate product is run, a pe_cell_sizing_info.csv
file is created. Open this file to review the sizing interpretation of the
libraries.

See Example 1, Example 2, and Example 3 for more information.
NOTE: You cannot specify this argument with the -alphabet_size argument.

-alphabet_size <char>

Specifies the relative size of a cell in character size format, such as L or M.

If you specify an unsupported value, a violation message is reported.

After the SpyGlass Power Estimate product is run, a pe_cell_sizing_info.csv
file is created. Open this file to review the sizing interpretation of the
libraries.

See Example 3 for more information.
NOTE: You cannot specify this argument with the -size argument.

-group <grp-size>

Specifies the name of the threshold voltage group (name specified with the
default_threshold_voltage_group/threshold_voltage_group attribute in the
library). This argument supports lists. See Example 4 for more information.

-cellname <cell-name-pattern>

Specifies a pattern to match cell names of a certain group of cells. This
argument supports lists.
1548 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-libname <lib-name>

Specifies the name of the library. This argument supports lists.

-area

Specifies that the size of the cell will be calculated based on the area of the
library cell. By default, the max_cap attribute of the library cell is used to
calculate the size of the cell.

-percentage <float>

Specifies the percentage of cell size specified in the -size argument.

The specified percentage can be between 0 and 100 or 100. For example,
you can specify the percentage as 0.1, 20, and 100. However, please
note that the percentage cannot be 0.

NOTE: The sum of the values specified for a type of cell (sequential / combinational) in
different set_cell_allocation constraints for different clocks periods and
clock names must be equal to 100.

-clock_period <float>

(Optional) Specifies the period of the clock for which the constraints is to
be applied.

NOTE: The -clock_period, -clock, and -instname arguments are mutually exclusive.

-clock <string>

(Optional) Specifies the clock name for which the constraint is to be
applied. The type of clock nets supported are:
 Port clocks

 Clocks driven by black boxes

 Clocks specified using the clock SGDC constraint

NOTE: The -clock_period, -clock, and -instname arguments are mutually exclusive.

-instname <string>

(Optional) Specifies the hierarchical instance name for which the constraint
is to be applied. See Example 2 for more information.

NOTE: The -clock_period, -clock, and -instname arguments are mutually exclusive.
Version N-2017.12-SP1 1549
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Example 1

Consider that you have a set of sequential cells of four different sizes in
your SGLIB file. Also, consider the following:
 80% of the cells in clock domain CLK1 should use cells of size 2 and

20% of the cells in clock domain CLK1 should use size 4
 75% of the cells in clock domain CLK2 should use cells of size 4 and

25% of the cells in clock domain CLK2 should use size 8

To specify the above in SpyGlass, specify the following set of constraints:

set_cell_allocation -type sequential -size 2
-percentage 80 -clock CLK1

set_cell_allocation -type sequential -size 4
-percentage 20 -clock CLK1

set_cell_allocation -type sequential -size 4
-percentage 75 -clock CLK2

set_cell_allocation -type sequential -size 8
-percentage 25 -clock CLK2

Please note that in this case, cells of size 1 and 3 will not be present in the
design.

Example 2

You can specify the cell distribution as per the hierarchical instance. For
example, suppose there is an instance called top.u1. In this instance,
consider the following:
 40% of sequential cells should use cells of size 2

 60% of sequential cells should use cells of size 4
To specify the above in SpyGlass, specify the following set of constraints:

current_design top
1550 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_cell_allocation -instname top.u1 -type sequential -size 2
-percentage 40

set_cell_allocation -instname top.u1 -type sequential -size 4
-percentage 60

…

Example 3

You can specify the cell distribution as per the hierarchical instance. For
example, suppose there is an instance called top.u1. In this instance,
consider the following:
 40% of sequential cells should use cells of size L

 60% of sequential cells should use cells of size 4
To specify the above in SpyGlass, specify the following set of constraints:

current_design top

set_cell_allocation -instname top.u1 -type sequential -
alphabet_size L -percentage 40

set_cell_allocation -instname top.u1 -type sequential -size 4
-percentage 60

…

Example 4

Consider that you have the following distribution of the cells in the input
Netlist with respect to their size and threshold voltage group in the liberty
file:
 40% of the sequential cell area in clock domain CLK1 is occupied by cells

of size 2 and group “group1”
 40% of the sequential cell area in clock domain CLK1 is occupied by cells

of size 2 and group “group2”
 20% of the sequential cell area in clock domain CLK1 is occupied by cells

of size 4 and group “group1”
 40% of the sequential cell area in clock domain CLK2 is occupied by cells

of size 4 and group “group1”
 40% of the sequential cell area in clock domain CLK2 is occupied by cells

of size 4 and group “group2”
Version N-2017.12-SP1 1551
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 20% of the sequential cell area in clock domain CLK2 is occupied by cells
of size 8 and group “group1”

The PECELLDIST rule extracts the following set of constraints on the above
Netlist:

set_cell_allocation -type sequential -size 2 -group “group1”

-percentage 40 -clock CLK1

set_cell_allocation -type sequential -size 2 -group “group2”

-percentage 40 -clock CLK1

set_cell_allocation -type sequential -size 4 -group “group1”

-percentage 20 -clock CLK1

 set_cell_allocation -type sequential -size 4 -group “group1”

-percentage 40 -clock CLK2

set_cell_allocation -type sequential -size 4 -group “group2”

-percentage 40 -clock CLK2

set_cell_allocation -type sequential -size 8 -group “group1”

-percentage 20 -clock CLK2

Rules

The set_cell_allocation constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PECELLDIST PECHECK37 PECHECK40
1552 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_cell_name_pattern

Purpose

The set_cell_name_pattern constraint is used to identify the sizing
information by using the naming convention of cells.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the set_cell_name_pattern constraint is as
follows:

set_cell_name_pattern
-name <pattern>

 [-expand]

Arguments

-name <pattern>

Specifies the predefined values that form the naming convention of cells.

The pattern takes the following syntax %sx%d, where

 %s stands for the string part of the name that does not convey the size

 x in this case is a constant string that exists in each cell name

 %d stands for the drive of the cell; it is not restricted to a number and
can be some predefined characters, such as:
 L: Low strength

 M: Medium strength

 V: High strength

See Example 1, Example 2, and Example 3.

Alternatively, this pattern can take the following syntax
%sx[%d/<alphabets>], where
Version N-2017.12-SP1 1553
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 %s stands for the string part of the name that does not convey the size

 x in this case is a constant string that exists in each cell name

 [%d/<alphabets>] represents the drive of the cell. Brackets are
used to denote size of the cell. Therefore, either %d or brackets can be
inside a cell name pattern.
The Brackets are introduced to match some specific type of cells with
the drive strength given inside the brackets. This extends to match the
drive not only to L,M, or V but any valid size in alphabets such as P, Q
etc. (if the library supports such type of cells). For example, if you
specify %sx[LPQ], it matches only those cells which have drive
strength L, P or Q.
Only alphabetic characters and %d is allowed inside brackets. The
following are examples of wrong usage:
 %sX[12]

 %sX[_0]

See Example 4, Example 5, and Example 6.

-expand

(Optional) Enables you to specify all possible cell name patterns (multiple
trigger constraints) in a single expression in the set_cell_name_pattern
constraint.

Use the -expand argument of the set_cell_name_pattern
constraint to specify multiple trigger constraints in a single expression.
SpyGlass expands the specified expression to all possible patterns during
correlation.

For example, earlier if you needed to specify the following 13 constraints:

vt_mix_percentage -cellname "XY12_LH_*"

vt_mix_percentage -cellname "XY12_LHD_*"

vt_mix_percentage -cellname "XY12_LHS_*"

vt_mix_percentage -cellname "XY12_LHS1_*"

vt_mix_percentage -cellname "XY12_LL_*"

vt_mix_percentage -cellname "XY12_LLD_*"

vt_mix_percentage -cellname "XY12_LLS_*"
1554 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
vt_mix_percentage -cellname "XY12_LLS1_*"

vt_mix_percentage -cellname "XY12_LS_*"

vt_mix_percentage -cellname "XY12_LSD_*"

vt_mix_percentage -cellname "XY12_LSP_*"

vt_mix_percentage -cellname "XY12_LSS_*"

vt_mix_percentage -cellname "XY12_LSS1_*"

Now, you can specify these constraints using only a single expression, as
follows:

set_cell_name_pattern -name "XY12_L{H,L,S}{*,D,S}{*,1}_*" -
expand

See Example 7.

Examples

Example 1

In the following set_cell_name_pattern constraint specification, the
cell named dti_hvt_28m_and2x2 is represented.

set_cell_name_pattern -name “%sx%d”

In this example, the

 %s corresponds to dti_hvt_28m_and2

 x corresponds to x

 %d corresponds to the drive, which is 2

Example 2

In the following set_cell_name_pattern constraint specification, the
cell named dti_hvt_28m_and2xp5 is represented. In this cell, the size is
0.5.

set_cell_name_pattern -name “%sx%d”

In this example:

 %s corresponds to dti_hvt_28m_and2

 x corresponds to x
Version N-2017.12-SP1 1555
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 %d corresponds to the drive, which is p5. The p signifies a decimal
value.

However, for the following set_cell_name_pattern constraint
specification, the p is considered as a character. Therefore, the size is 5.

set_cell_name_pattern -name “%sxp%d”

Example 3

In the following set_cell_name_pattern constraint specification, the
cell named abc_x2_def_x4 is represented. In this cell, the drive is 4.

set_cell_name_pattern -name “%sx%d”

In this example, the

 %s corresponds to abc_x2_def_

 x corresponds to x

 %d corresponds to the drive, which is 4.

In this example, if the drive was represented by 2 in the cell name
abc_x2_def_x4, the following set_cell_name_pattern constraint
specification can be used:

set_cell_name_pattern -name “%sx%d%s”

Example 4

In the following set_cell_name_pattern constraint specification, the
ABC2FGXP (drive P) and ABCDE2333LMXQ (drive Q) cells are
represented.

set_cell_name_pattern %sX[PQ]

In this example, the

 %s corresponds to ABC2FG and ABCDE2333LM

 x corresponds to X

 [PQ] corresponds to cells with drive strengths P or Q matching the
pattern %sXP or %sXQ.

1556 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example 5

In the following set_cell_name_pattern constraint specification, all
the cells with drive strengths L or M and with patterns as %sL%s or
%sM%s are matched.

set_cell_name_pattern %s[LM]%s

Therefore, the following cells are matched:
 ABC2LPQR: This cell is matched with cell strength as L and not 2.

 ABCTT2MW: This cell is matched with cell strength as M and not 2.

However, a cell named ABCPQR2L is not matched because the cell might
have L as drive strength, but it does not match the pattern.

Example 6

In the following set_cell_name_pattern constraint specification, all
cells that have the %sX%d or %sXT patterns are matched:

set_cell_name_pattern %sX[%dT]

%d and brackets cannot be used in one cell name pattern. However, you
can use %d inside brackets. For example, %sX[PQR%d] means to match
%sXP, %sXQ, %sXR, or %sX%d.

Example 7

Consider the following expression:

set_cell_name_pattern -name
"AB{C1,D1}*{H,*}{LVT,HVT,MVT}X%d*" -expand

For the above example, SpyGlass expands the
"AB{C1,D1}*{H,*}{LVT,HVT,MVT}X%d*" expression to all the possible
patterns, as follows:

ABC1*HLVTX*

ABC1*HHVTX*

ABC1*HMVTX*

ABC1*LVTX*
Version N-2017.12-SP1 1557
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ABC1*HVTX*

ABC1*MVTX*

ABD1*HLVTX*

ABD1*HHVTX*

ABD1*HMVTX*

ABD1*LVTX*

ABD1*HVTX*

ABD1*MVTX*

NOTE: Since, a %d is present in the expression, the sizing constraint is also generated
internally. Hence, the AB{C1,D1}*{H,*}{LVT,HVT,MVT}X%d* expression is
converted into “AB%sX%d%s.”

Rules

The set_cell_name_pattern constraint is used by the following
rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PECELLDIST PECHECK40 SGDC_power_est67
1558 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_clock_gating_type

Purpose

The set_clock_gating_type constraint is used to specify the name
of the cell that should be used as the clock-gating cell.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the set_clock_gating_type constraint is as
follows:

current_design <du-name>
set_clock_gating_type

[-libname <lib-name>]
-cellname <cell-name>
[-control_location <control-locations>
[-control_function <control-function>]
[-posedge]
[-negedge]

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-libname <lib-name>

(Optional) Name of the library in which the ICGC is located.

-cellname <cell-name>

Name of the cell to be used as the clock-gating cell.
NOTE: You can also specify cell names using regular expressions.
Version N-2017.12-SP1 1559
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-control_location <control_location>

(Optional) Specifies the control point on the clock gate cell. This field can
have the following enumeration values:

none | before | after

If you specify the value as before / after, a clock gate cell having an
OR gate with the original register enable and a test signal is picked up.
These values (before/after) signify the position of the OR gate with
respect to the register.

-control_function <control_function>

(Optional) Specifies the control signal on the clock gate cells. It can have
the following enumeration values:

test_mode | scan_enable

-posedge

(Optional) Specifies the polarity of the clock-edge logic. This field means
that a clock-gate cell having positive edge clock logic should be picked-up.

-negedge

(Optional) Specifies the polarity of the clock-edge logic. This field means
that a clock-gate cell having negative edge clock logic should be picked-up.

NOTE: If you do not specify either of the -posedge or -negedge options, the best
ICG cell present in the library is chosen. Further, if you specify either of the two
options along with an unknown/invalid combination for the other two values, the
best ICG cell with posedge or negedge polarity is selected, respectively, along with
an appropriate warning.

NOTE: The clock-gate name fields (cellname and libname) and clock-gate
characteristic fields (control_location, control_function,
posedge, negedge) should not be specified together.

Consider the following example:

set_clock_gating_type -control_location before -posedge -
control_function scan_enable

Here, a clock-gating cell having positive edge logic at clock and an OR gate
before the register with scan_enable signal and enable signal of register
1560 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
is picked up.

SpyGlass selects the best ICGC cell based on the following table:

Rules

The set_clock_gating_type constraint is used by the following
rules:

Clock-edge
polarity

Control
signal

Control
point

ICGC type

posedge - - latch_posedge
negedge - - latch_negedge
posedge scan_enable before latch_posedge_precontrol
posedge scan_enable after latch_posedge_postcontrol
posedge test_mode before latch_posedge_precontrol_obs
posedge test_mode after latch_posedge_postcontrol_ob

s
negedge scan_enable before latch_negedge_precontrol
negedge scan_enable after latch_negedge_postcontrol
negedge test_mode before latch_negedge_precontrol_obs
negedge test_mode after latch_negedge_postcontrol_ob

s

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR14 poweraudit
Version N-2017.12-SP1 1561
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_fully_decoded_bus

Purpose

The set_fully_decoded_bus constraint is used to specify three state
buses for which if one tristate enable is active, it ensure that enables of all
the other tristate devices driving it are disabled.

Product

SpyGlass DFT DSM Solution

Syntax

The syntax of set_fully_decoded_bus is as follows:

set_fully_decoded_bus
-name <net_name_list>

Arguments

-name <node_name>

List of fully decoded three state buses.

Rules

The set_fully_decoded_bus constraint is used by the
Info_random_resistance rule of the SpyGlass DFT DSM solution.

Examples

The following example shows the usage of the
set_fully_decoded_bus constraint:

set_fully_decoded_bus -name top.net
1562 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_mega_cell

Purpose

The set_mega_cell constraint is used to defined megacells in a design.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

set_mega_cell
-name <cell-names>

Arguments

-name <cell-names>

The names of the cells that you want SpyGlass to consider as megacells.
You can only specify black boxes, grey boxes, or library cells that have no
functionality as megacells.

To specify a range of cells as megacells, use wildcards.

Examples

Example 1: Specifying Multiple Megacells

The following constraint specification defines three cells as megacells:

set_mega_cell -name MPX41PND MPX42PND MPX43PND

Example 2: Specifying Multiple Megacells by Using Wildcards.

The following constraint specification defines all cells that begin with the
prefix MPX as megacells:

set_mega_cell -name MPX*
Version N-2017.12-SP1 1563
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_power_info

Purpose

The set_power_info constraint is used to specify user attributes on the
pins of library cell.

NOTE: Wildcard support is provided for the set_power_info constraint. Supported
meta-characters are * (star) and ? (question mark), where * matches any number
of characters and ? matches only one character.

Product

SpyGlass Power Verify

Syntax

The syntax to specify the set_power_info constraint is as follows:

current_design <du-name>
set_power_info

-cell <cell-name>
-pin <pin-name>
-attribute <attribute-name>
-value < true | false>

Arguments

current_design <du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

cell <cell-name>

Name of the library cell.

pin <pin-name>

Name of the pin of the library cell.
1564 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
attribute <attribute-name>

Name of the user specified attribute that needs to be applied on the pin of
the library cell.

value <true | false>

Value of the user specified attribute applied on the pin of the library cell.

Examples

In this example, the has_pass_gate attribute is applied to the macro
cell at in1 pin.

set_power_info -cell macro -pin in1 -attribute has_pass_gate
-value true

Rules

The set_power_info constraint is used by the following rule:

stil_data

Purpose

The stil_data constraint is used to specify the STIL file.

Product

SpyGlass DFT

Syntax

The syntax to specify the stil_data constraint is as follows:

stil_data
-file <file_name>
[-mode <mode_name>]

SpyGlass Power Verify
LPCONN06
Version N-2017.12-SP1 1565
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-file <file_name>

Specifies the path to a stil file.

-mode <mode_name>

Specifies the mode that is described in STIL file. If not specified, global
mode without name is selected.

Examples

Consider the following example:

stil_data -file test.stil -mode Internal_scan

sg_multicycle_path

Purpose

The sg_multicycle_path constraint enables you to specify multi-cycle
paths, which you want to exclude from the at-speed testing.

NOTE: You can convert the set_muticycle_path SDC command to sg_muticycle_path SGDC
command using the SDC to SGDC conversion. For details, refer to the Atrenta
Console Reference Guide.

Product

SpyGlass DFT DSM

Syntax

The syntax to specify the sg_multicycle_path constraint is as
follows:

sg_multicycle_path
[-from <from_list>]
1566 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-to <to_list>]
[-through <through_list>]
[-path_multiplier <integer_value>]

Arguments

-from <from_list>

Specifies a list of objects that act as the start point for the multi-cycle path.
A valid start point is a clock, a primary input or inout port, a sequential cell,
a clock pin of a sequential cell. If a clock is specified, all registers and
primary inputs related to the clock are considered as start points.

-to <to_list>

Specifies a list of objects that act as endpoint for the multi-cycle path. A
valid endpoint is a primary output or inout port, a sequential cell, a data
pin of a sequential cell.

-through <through_list>

Specifies a list of pins or nets that you want to disable.
NOTE: The DFT DSM policy does not support the -through option.

-path_multiplier <integer_value>

Specifies the number of cycles that a path must have for setup or hold,
relative to the start point or end point clock, before data is required at the
endpoint. For example, specifying a path_multiplier of 2 for setup implies a
2-cycle data path.

Examples

Consider the following example:

sg_multicycle_path -from FF1 -to FF2 -path_multiplier 2

Here, path from FF1 to FF2 is a 2-cycle path.
Version N-2017.12-SP1 1567
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
syn_set_dont_use

Purpose

The syn_set_dont_use constraint is used to exclude selected cells
from technology mapping and timing optimization.

NOTE: Wildcard support is provided for the syn_set_dont_use constraint. Supported
meta-characters are * (star) and ? (question mark), where * matches any number
of characters and ? matches only one character.

The SpyGlass Power Estimation and SpyGlass Power Reduction solutions
allow overrides for the syn_set_dont_use constraint. However, the
override statements are taken collectively and no order is followed while
processing them.

Let us see the implication on the syn_set_dont_use constraint using
the following example:

syn_set_dont_use -libname TSMC -cellname "*"
syn_set_dont_use -libname TSMC -cellname "*VT*" -exclude 1
syn_set_dont_use -libname TSMC -cellname "*HVT*" -exclude 1

Here, the first command tells SpyGlass to ignore all cells (specified with an
*). The second command excludes *VT* cells from the ignored set. Third
one excludes *HVT* cells (that are already included in the second
statement). SpyGlass processes all these statements collectively and uses
only *VT* cells for technology mapping and timing optimization.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the syn_set_dont_use constraint is as follows:

current_design <du-name>
syn_set_dont_use

[-libname <lib-name>]
-cellname <cell-names-list>
1568 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-exclude <0|1|yes|no>

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-libname <lib-name>

(Optional) Name of the library in which the cells are located.

-cellname <cell-names-list>

A space-separated list of cells that are to be excluded.
NOTE: You can also specify cell names using regular expressions.

-exclude <0|1|yes|no>

(Optional) In some cases, where a cell in the technology library has
dont_use attribute set as true, and you want to use that cell for
mapping, set the -exclude argument to 1. The specified cell gets
included as a candidate for mapping, when this argument is set to 1.

You should use the -exclude argument for including cells like integrating
clock-gating cells that have the dont_use attribute set as true in the
technology library for mapping.

Rules

The syn_set_dont_use constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1569
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ignore_nets

Purpose

The ignore_nets constraint is used to exclude nets from the expression
of a new/strengthened enable.

For example, consider the following figure:

In the above figure, the FF1 flip-flop is connected to the A net, which is
connected to the B net. The B net is connected to the C net, which is then
connected to the D net. The D net is connected to the E net, which is
connected to the FF2 flip-flop. The FF2 flip-flop is connected to the F net.

Now consider that the enable expression in this case is C & X, where X is
a net in the design (not shown in the above figure).

Consider that you have specified the following ignore_nets constraint:

ignore_nets -net C

In this case, the nets to be excluded from the enable expression are A, B,
C, D, and E. Therefore, the enable expression in this case will be X.

The search for the net to be excluded is done forward and backward.
However, the navigation from one net to another net is limited to going
through buffers and inverters. For example, consider the following
expression:

C = A & B

For the above expression, if the constraint is set on the B net, the C net will
not be excluded from the expression.

NOTE: If the specified net is not available after synthesis, the net is not removed from the
enable expression.

The ignore_nets constraint is applied on a net directly when the net
name is specified. However, the constraint can also be indirectly applied on
1570 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
the net by specifying a buffer name or an inverter name.

NOTE: Wildcard support is provided for the ignore_nets constraint. Supported meta-
characters are * (star) and ? (question mark), where * matches any number of
characters and ? matches only one character.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the ignore_nets constraint is as follows:

current_design <du-name>
ignore_nets

-net <net-names-list>

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-net <net-names-list>

A space-separated list of nets that are to be excluded from the expression
of a new/strengthened enable.

NOTE: You can also specify net names using regular expressions.

Rules

The ignore_nets constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR20 PEPWR21 PEPWR22 PEPWR23
PEPWR24 PEPWR25 PEPWR28 PESTR20
Version N-2017.12-SP1 1571
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ser_data

Purpose

The ser_data constraint is used to specify register properties with
respect to soft errors occurrence and detection.

Product

SpyGlass DFT

Syntax

The syntax to specify the ser_data constraint is as follows:

ser_data
-name <module/instance name>
-lreg <data>
[-lsm <data>]
[-dc <data>]
[-dcl <data>]

Arguments

name <module/instance name>

Name of the module or instance.

-lreg <data>

-lsm <data>

PESTR21 PESTR22 PESTR23 PESTR24
PESTR25 PESTR28
1572 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-dc <data>

-dcl <data>

Example

Rules

The ser_data constraint is used by the following rules:

safety_related

Purpose

The safety_related constraint specifies safety related modules/
instances/registers and output ports.

By default, all outputs are safety related. However, explicitly specified
registers and outputs safety overrides the default behavior.

Product

SpyGlass DFT

Syntax

The syntax to specify the safety_related constraint is as follows:

safety_related
-name <module/ instance name>
-output <port_name>

SpyGlass DFT
Info_soft_error_propagation
Version N-2017.12-SP1 1573
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

name <module/instance name>

Name of the module or instance.

-output <port_name>

Name of the safety related output ports. To specify all the output ports, use
''*''.

Example

safety_related -output “*”

The above example considers all output ports as safety related.

Rules

The safety_related constraint is used by the following rules:

non_safety_related

Purpose

The non_safety_related constraint specifies non-safety related
modules/instances/registers and output ports.

By default, all registers are non-safety related. However, explicitly specified
registers and outputs non-safety overrides the default behavior.

Product

SpyGlass DFT

Syntax

The syntax to specify the non_safety_related constraint is as
follows:

SpyGlass DFT
Info_soft_error_propagation
1574 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
non_safety_related
-name <module/ instance name>
-output <port_name>

Arguments

name <module/instance name>

Name of the module or instance.

-output <port_name>

Name of the non-safety related output ports. To specify all the output
ports, use ''*''.

Example

non_safety_related -output “*”

The above example considers all output ports as non-safety related.

Rules

The non_safety_related constraint is used by the following rules:

SpyGlass DFT
Info_soft_error_propagation
Version N-2017.12-SP1 1575
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_lib_timing_mode

Purpose

The set_lib_timing_mode constraint is used to select the active
timing mode of cell groups.

Product

SpyGlass Core

Syntax

The syntax to specify the set_lib_timing_mode constraint is as
follows:

set_lib_timing_mode
-modes <timing-mode-names>
-instances <instances-list>

Arguments

-modes <timing-mode-names>

List of the names of timing modes defined in a liberty file.

-instances <instance-list>

List of instances of liberty cells.

Example

Consider the following cell definition in a liberty file:

// Define mode definition
mode_definition (Mode_def1) {

mode_value(mode1) { /* empty when-sdf_cond */ }
mode_value(mode2) { /* empty when-sdf_cond */ }

}

pin(Q) {
direction : output;
1576 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
timing() {
related_pin : "clk1";
mode(Mode_def1, mode1);
}
timing() {

Now consider U1 as the instance of the library cell. In this case, if you
define the following constraint, SpyGlass enables the timing arc only for
clk1 and therefore, only clk1 will be propagated for U1:

set_lib_timing_mode -modes mode1 -instances U1

Rules

The set_lib_timing_mode constraint is used by the following rules:

set_lib_name

Purpose

The set_lib_name constraint is used to specify the cell name defined in
the corresponding liberty file.

Product

SpyGlass Power Verify

Syntax

The syntax to specify the set_lib_name constraint is as follows:

set_lib_name -cell <cell-name>

SpyGlass Core
SGDC_set_lib_timing_mode01 SGDC_set_lib_timing_mode02
Version N-2017.12-SP1 1577
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-cell <cell-name>

Name of the cell defined in the liberty file.

Example

Consider the following command:

...

set_lib_name -cell cellA -cell cellB
...

If this constraint is not specified in the SGDC file, the UPF_lowpower26 rule
does not run and reports following message:

set_lib_name is not specified in SGDC file, it is mandatory for
the rule to run"

Rules

The set_lib_name constraint is used by the following rule:

set_monitor_cell

Purpose

The set_monitor_cell constraint is specified to estimate the power of
special cells, such as mega cells, which consume huge power.

By default, the SpyGlass Power Estimate solution estimates the power of a
cell based on the activity and probability values. However, when the cell is
specified using this constraint, all the instances of the cell are calculated in
a high accuracy mode. In this mode, all the when conditions of the internal
and leakage power of the cell are calculated by considering individual
signals and the temporal behavior of the cell.

SpyGlass Power Verify
UPF_lowpower26
1578 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Consider that A and B are pins of an AND cell and their signals are as
follows:

Now consider that the activity and probability for the A and B pins are as
follows:

The following table shows the activity and probability of the AND condition
when the calculations are based on the activity and probability of the A and
B pins:

Now, if you apply the set_monitor_cell constraint on these pins, the
activity and probability of the AND condition will be as follows:

The activity and probability values in the above table are more accurate as
compared to the values based on the activity and probability of the A and B

Pin Activity Probability
A 1 0.5
B 1 0.5

AND Condition Activity Probability
A&B 1 0.25

AND Condition Activity Probability
A&B 0 0
Version N-2017.12-SP1 1579
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
pins.

NOTE: The run time and memory consumption increases if the set_monitor_cell
constraint is applied on all the cells in a design.

NOTE: This constraint is applied by default for all memories and hard macros. Set the value
of the pe_enable_monitor_for_mem parameter to 0 to disable automatic power
estimation by monitors on memories and hard macros.

NOTE: If you are using the set_monitor_cell constraint along with the
pe_num_clock_cycles_avg_power parameter in the PECHECK34 rule, the value of
the pe_num_clock_cycles_avg_power parameter should be reasonably high. It is
recommended that you set the value of the parameter to a value higher than 50.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the set_monitor_cell constraint is as follows:

set_monitor_cell
-name <cell-name>

Arguments

-name <cell-name>

Name of the library cell for which power accuracy calculation is to be used.

You can also use wildcard characters while specifying cell names.

Examples

Consider the following example:

set_monitor_cell -name "RSHL*"

The above example implies that all the cell names that match with the
wildcard expansion will be evaluated in the high accuracy mode.

Rules

The set_monitor_cell constraint is used by the following rules:
1580 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
set_pin

Purpose

The set_pin constraint is used to specify black box pins that should be
assumed to be set/reset pins.

Then, the Async_07 rule of the SpyGlass DFT solution treats the pin
specified with the set_pin constraints as if it is the set/reset pin on a flip-
flop. The source of such a pin must be a test mode controlled to the
inactive state.

Product

SpyGlass DFT solution

Syntax

The syntax of the set_pin constraint is as follows:

set_pin
-name <du-name>.<port-name>
[-value <value>]
[-synchronous]
[-asynchronous]

Arguments

<du-name>

The name of the design unit (black box) for which you are specifying the
set pin.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

SpyGlass Power Estimation and SpyGlass
Power Reduction Solutions
PEPWR02 PECHECK34
Version N-2017.12-SP1 1581
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are processed.

You can specify a single design unit name or a space-separated list of
design unit names.

<port-name>

Name of the asynchronous set port on the design unit (black box).

You can specify only a single port name.

-value <value>

The active value (0 or 1) for this asynchronous set port <port-name>.

-synchronous

Implies that the set pins are synchronous.

-asynchronous

Implies that the set pins are asynchronous.

Rules

The set_pin constraint is used by the following rules:

set_power_scaling

Purpose

The set_power_scaling constraint is used to scale the power
estimation values of the design.

SpyGlass DFT Solution

Async_07 Async_07Lssd
1582 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax of the set_power_scaling constraint is as follows:

set_power_scaling
-type <design-element-type>
[-leakage <leakage-power-factor>]
[-internal <internal-power-factor>]
[-switching <switching-power-factor>]

Arguments

-type <design-element-type>

The type of design element for which you are specifying the power scaling
factor.

The possible values are as follows:

NOTE: The values specified in the -type argument of the set_power_scaling
constraint are case-insensitive.

-leakage <leakage-power-factor>

Power scaling factor for leakage power of the design element (in Watts).

Type of Design Element Value Specified in <design-element-type>
Black box blackbox
Clock clock
Combinational element combinational
IO pad iopad
Memory memory
Sequential element sequential
Megacell megacell
Version N-2017.12-SP1 1583
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Default value is 1.0, which specifies that no scaling is required.

-internal <internal-power-factor>

Power scaling factor for internal power of the design element (in Watts).

Default value is 1.0, which specifies that no scaling is required.

-switching <switching-power-factor>

Power scaling factor for switching power of the design element (in Watts).

Default value is 1.0, which specifies that no scaling is required.

NOTE: You must specify at least one of the -leakage, -internal, or
-switching arguments of the set_power_scaling constraint.

Examples

Example 1

Consider the following example:

set_power_scaling -type combinational -leakage 0.95

The above example specifies that the leakage power of the combinational
elements in the design should be scaled by 0.95 (95%).

Example 2

Consider the following SGDC file snippet:

set_power_scaling -type combinational
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type sequential
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type iopad
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type memory
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type blackbox
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type clock
 -leakage 0.5 -internal 1.5 -switching 2.0
set_power_scaling -type megacell
1584 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 -leakage 0.5 -internal 1.5 -switching 2.0

In this case, the pe_summary report will contain the following section for the
power scaling values:

Power scaling factors used to scale the power consumed
by each logical component of the design. This information
is specified using 'set_power_scaling' constraint
##
Power Scaling Factor:

Leakage Internal Switching
Combinational Power : 0.50 1.50 2.00
Sequential Power : 0.50 1.50 2.00
Black Box Power : 0.50 1.50 2.00
Memory Power : 0.50 1.50 2.00
IO PAD Power : 0.50 1.50 2.00
Clock Power : 0.50 1.50 2.00
Mega Cell Power : 0.50 1.50 2.00

Power Summary:

 Leakage Internal Switching Total
Total Power : 67.8nW 55.1uW 35.6uW 90.8uW
Combinational Power : 19.8nW 3.25uW 6.82uW 10.1uW
Sequential Power : 46.6nW 46.9uW 6.13uW 53.1uW
Black Box Power : 0W 0W 0W 0W
Memory Power : 0W 0W 0W 0W
IO PAD Power : 0W 0W 0W 0W
Clock Power : 1.40nW 4.94uW 22.7uW 27.6uW
Mega Cell Power : 2.26pW 0W 0W 2.26pW

The above section of the pe_summary report has the following tables:

 Power Scaling Factor: Shows the power scaling factors as comments

 Power Summary: Shows the scaled power values
Version N-2017.12-SP1 1585
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For details on this report, refer to pe_summary Report in the SpyGlass
Power Estimation and SpyGlass Power Reduction Rules Reference Guide.

Rules

The set_power_scaling constraint is used by the following rules:

set_supply_node

Purpose

The set_supply_node constraint is used to specify PG pin of a library
cell that needs to be considered as a valid driver during the execution of
the UPF_lowpower09 rule.

Product

SpyGlass Power Verify solution

Syntax

The syntax of the set_supply_node constraint is as follows:

set_supply_node -cell <cell-name> -pin <pin-name>

Arguments

-cell <cell-name>

(Mandatory) Specify the name of the cell to be considered as supply.

-pin <pin-name>

(Mandatory) Specify the PG pin of the cell to be considered as a supply
port.

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR20 PEPWR21 PEPWR22 PEPWR23
PEPWR24 PEPWR25 PEPWR28 SGDC_power_est

62
1586 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Consider the following example:

set_supply_node -cell C28SOI_BBGEN -pin vddcore

In the above example, the pin vddcore of cell C28SOI_BBGEN is being
considered as a valid driver.

Rules

The set_supply_node constraint is used by the following rules:

sg_clock_group

Purpose

The sg_clock_group constraint defines asynchronous relationship
between clocks.

NOTE: This constraint works only if the sta_based_clock_relationship parameter is set to
either only_scg or scg_functional. For details on this parameter, refer to the
SpyGlass CDC Rules Reference Guide.

Syntax

The syntax of the sg_clock_group constraint is as follows:

current_design <du-name>
sg_clock_group
-group1 <clk-tag-list1>
-group2 <clk-tag-list2>

Arguments

The sg_clock_group constraint has the following arguments:

SpyGlass Power Verify Solution
UPF_lowpower09
Version N-2017.12-SP1 1587
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-group1 <clk-tag-list1>

The clock tag list for which asynchronous relationship is needed.

-group2 <clk-tag-list2>

The clock tag list for which asynchronous relationship is needed.

Example

Consider the following example:

clock -name top.clk1 -period 10 -tag T1
clock -name top.clk2 -period 12 -tag T2
sg_clock_group -group1 { T1 } -group2 { T2 }

In the above example, the clk1 and clk2 clocks are made asynchronous
to each other.

Rules

The sg_clock_group constraint is used by the following rules:

sgdc

Purpose

The sgdc constraint is used to specify a block-level SGDC file to be
imported or specify blocks for which block-level SGDC file is to be
generated.

SpyGlass CDC Solution
Ac_sync_group rules Ac_glitch03 Clock_sync05 Clock_sync06
1588 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass CDC Solution

Syntax

The syntax of the sgdc constraint is as follows:

Usage 1

sgdc -import <block-name> <SGDC-file>
-instance_list <instance-list>
-bbox_instance_list <instance-list>

Usage 2

sgdc -export <blocks>

Arguments

The sgdc constraint has the following arguments:

-import <block-name>

Specifies the block name.

<SGDC-file>

Specifies an SGDC file that needs to be imported for the specified block,
<block-name>.

It is recommended that you specify an absolute path of the file.

-instance_list <instance-list>

Specifies the list of instances (hierarchical name) that should be bound to
the abstract model specified in the abstracted SGDC file (<SGDC-file>).

-bbox_instance_list <instance-list>

Specifies the list of instances (hierarchical name) that should be treated as
black boxes.

-export <blocks>

Specifies a space-separated list of blocks for which a block-level SGDC file
Version N-2017.12-SP1 1589
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
should be generated.

Rules

The sgdc constraint is used by the following rules:

Examples

Example 1

Consider the following sgdc constraint specification:

sgdc -import B1 "/u/user1/B1.sgdc"

The above specification implies that the block-level SGDC file, /u/user1/
B1.sgdc, is to be imported for the B1 block.

Suppose the B1 block has three instances: i1, i2, and i3. In this
scenario, consider that you want to:

 Bind i1 with an abstract model.

 Treat i2 as a black box.

SpyGlass CDC Solution
Ac_blksgdc01 SGDC_clock_validati

on01
SGDC_clock_valid
ation02

SGDC_clock_dom
ain_validation01

SGDC_clock_d
omain_validati
on02

SGDC_set_case_anal
ysis_validation01

SGDC_set_case_
analysis_validatio
n02

SGDC_reset_valid
ation01

SGDC_reset_v
alidation02

SGDC_reset_validati
on03

SGDC_reset_valid
ation04

SGDC_virtualcloc
k_validation01

SGDC_input_v
alidation01

SGDC_input_validati
on02

SGDC_num_flops
_validation01

SGDC_num_flops
_validation02

SGDC_output_
validation01

SGDC_output_validat
ion02

SGDC_abstract_p
ort_validation01

SGDC_abstract_p
ort_validation02

SGDC_abstrac
t_port_validati
on03

SGDC_abstract_port
_validation04

SGDC_qualifier_v
alidation01

SGDC_qualifier_v
alidation02

SGDC_cdc_fal
se_path_valid
ation01

SGDC__validation01 SGDC__validation
02
1590 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 Use the complete synthesized view for i3.

To accomplish the above requirements, specify the following command:

sgdc -import B1 "/u/user1/B1.sgdc" -instance_list i1
-bbox_instance_list i2

Example 2

Consider the following sgdc constraint specification:

sgdc -export B1 B2 B3

The above specification implies that a block-level SGDC file would be
generated for the B1, B2, and B3 blocks.

For All Products

Purpose

The sgdc constraint is used in hierarchical methodology flow in which an
abstracted view of an IP is used during SoC-level verification. For details,
refer to the Using the Hierarchical Methodology chapter of the Atrenta
Console User Guide.

Use this constraint to specify an IP and the path where the abstracted view
of that IP is saved.

Syntax

The syntax of the sgdc constraint is as follows:

sgdc -import <IP-name> <abstracted-view-path>
-instance_list <instance-list>
-bbox_instance_list <instance-list>

Arguments

The sgdc constraint has the following arguments:

-import <IP-name>

Specifies the IP name.
Version N-2017.12-SP1 1591
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
<abstracted-view-path>

Specifies the path at which the abstracted view of the specified IP is saved.

-instance_list <instance-list>

Specifies the list of instances that should be bound to the abstract model
specified in the abstracted SGDC file (<SGDC-file>).

-bbox_instance_list <instance-list>

Specifies the list of instances that should be treated as black boxes.

shadow_ratio

Purpose

The shadow_ratio constraint is used to specify the fraction of the total
logic that is allowed to be shadowed by memories.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was shadowratio.

Product

SpyGlass DFT solution

Syntax

The syntax of the shadow_ratio constraint is as follows:

shadow_ratio -value <value>

Arguments

The shadow_ratio constraint has the following arguments:

-value <value>

The shadow ratio as a decimal value less than 1 such as 0.95.

Rules

The shadow_ratio constraint is used by the following rule:
1592 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
show_power_calc_details

Purpose

The show_power_calc_details constraint is used to specify
instances for which power calculation debug data is required. Wildcard and
list is supported for this constraint.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

show_power_calc_details
 -instname <leaf-level-instances>

Arguments

instname <leaf-level-instances>

The instance names for which you want to generate power calculation
debug data.

To specify a range of instances, use wildcards.

Examples

Example 1: Specifying Multiple Instances

The following constraint specification defines two instances:

show_power_calc_details -instname top.A.i1 top.A.i2

Example 2: Specifying Multiple Instances by Using Wildcards.

The following constraint specification:

SpyGlass DFT Solution

RAM_01
Version N-2017.12-SP1 1593
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
show_power_calc_details -instname top.A.*

Here, debug data is generated for all the leaf-level instances under the
top.A hierarchy.

signal_in_domain

Purpose

By default, the schemes Synchronized Enable Synchronization
Scheme, Recirculation MUX Synchronization Scheme, and
MUX-Select Sync (Without Recirculation)
Synchronization Scheme, fail if a black box is hit while traversing
back from a flip-flop enable pin or a MUX select pin, respectively.

The signal_in_domain constraint is used in case a black box instance
where more than one clock is reaching is encountered while marking clock
domains. By default, all the input/output pins of such black boxes are
considered in the domains of all the clocks reaching to the black box as it is
not possible to ascertain the exact clock domain of black box input/output
pins.

NOTE: Use this constraint if you want to associate or specify a clock on an input or output
port, whereas, use the assume_path constraint if you want SpyGlass rules to
consider combinational path from an input to output port of a black box.

Product

SpyGlass CDC solution

Syntax

Use the signal_in_domain constraint to specify that the black box
input/output pins are in the same clock domain as the specified black box
clock input pin or to specify that the black box output pin is synchronized
with respect to the specified black box clock input pin:

current_design <du-name>
signal_in_domain
-name <bb-name>
-domain <pin-name>
-signal <sig-list>
1594 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-synchronized

Arguments

<du-name>

The module name (for Verilog designs) or the design unit name in
<entity-name>.<arch-name> format (for VHDL designs).

-name <bb-name>

The name of the black box module. You can use wildcard characters while
specifying the black box module name.

-domain <pin-name>

The name of the black box clock input or output pin.

You can also specify virtual clocks to this argument.

-signal <sig-list>

A list of black box input/output pin names. You can use wildcard characters
while specifying pin names.

NOTE: You must specify only relative path of black box input/output pins. This argument
does not accept a complete hierarchical path.

-synchronized

The -synchronized argument indicates that black box output pins in
the signal list <sig-list> are synchronized in the domain of a clock
specified through the <pin-name> argument. This information can be
useful where the specified black box output is used as a synchronized
enable controlling a data crossing. In such a case, the data crossing is
considered synchronized.

NOTE: It is recommended to use abstract_port to specify the clocks and related
information for black box output ports.

Examples

Consider the following example:
Version N-2017.12-SP1 1595
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 63. Signal_in_domain Constraint Example

The output pins out1 and out2 are in rd_clk and wr_clk domains,
respectively. The input pin in1 is in the wr_clk domain. This is specified
using the signal_in_domain constraint as follows:

signal_in_domain -name MEM -domain rd_clk -signal out1
signal_in_domain -name MEM -domain wr_clk -signal out2
signal_in_domain -name MEM -domain wr_clk -signal in1

In the example given above, if the output pin out2 is considered to be
synchronized in domain wr_clk, this is specified using the
signal_in_domain constraint as follows:

signal_in_domain -name MEM -domain wr_clk -signal out2 -
synchronized

NOTE: Multiple signal_in_domain should not be assigned on the same output pin of a black
box.

NOTE: The assume_path and signal_in_domain constraints should not
propagate different domains on the same output pin of a black box.

Rules

The signal_in_domain constraint is used by the following rules:

SpyGlass CDC Solution
Ac_unsync01 Ac_unsync02 Clock_sync08 Clock_sync03a
Clock_sync03b Ac_handshake01 Clock_sync08a Clock_sync09
Ac_handshake02 Ac_cdc01a Ac_cdc01b Ac_cdc01c

in1

rd_clk

wr_clk

out1

out2

MEM
1596 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
signal_type

The signal_type constraint specifies if a signal is a Control Signal or Data
Signal.

For information on using this constraint, refer to its Syntax and Arguments.

Control Signal

A control signal is a signal that is:
 The output of a clock-domain crossing, the source of a clock-domain

crossing, or an input port acting as the source for a clock-domain
crossing.

 Considered as synchronized by any of the following synchronization
schemes (also known as control synchronization schemes):
 Conventional multi-flop synchronization scheme

 Synchronizing cell synchronization scheme

 Qualifier synchronization scheme by using the qualifier -crossing
constraint

 Recirculation MUX synchronization scheme

This means that even if a control signal has a valid qualifier present in its
input cone but it is not synchronized by any of the control synchronization
schemes, it will be reported as unsynchronized by Ac_unsync01/
Ac_unsync02 rules.

For example, consider the scenario shown in the following figure:

Ac_cdc08 Propagate_clocks Ac_conv01 Ac_conv02
Ac_conv03 Ac_sync02 Ac_sync01
Version N-2017.12-SP1 1597
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 64.

In the above figure, although the Q1 qualifier exists on the enable pin, the
control signal D1 is not synchronized by any of the control synchronization
schemes. Therefore, SpyGlass reports the D1 signal as unsynchronized.

The Ac_glitch03 Rule Behavior for Control Signals

The Ac_glitch03 rule performs glitch checks on the unsynchronized
crossings having a virtual domain on the output port when both the
following conditions hold true:

 The output port is specified as -type control in the signal_type
constraint.

 The glitch_on_vck_port value is specified to the
cdc_reduce_pessimism parameter.

For details on the Ac_glitch03 rule behavior based on the above conditions,
refer to the documentation of the Ac_glitch03 rule.

Considering the Output of Convergence as a Valid Qualifier

When a qualifier merges with a source, the output of convergence is not
considered as a valid qualifier to qualify other sources if the
allowed_merged_qualifier parameter is set to no. However, if the
source is a control signal, the convergence output may still act as a
qualifier.

signal_type -name D1 -type control
// constr.sgdc
1598 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
By default, the allowed_merged_qualifier parameter is set to yes,
and such convergence outputs are considered as valid qualifiers.

Data Signal

A data signal is a signal that is:
 The output of a clock-domain crossing, the source of a clock-domain

crossing, or an input port acting as the source for a clock-domain
crossing.

 Considered as synchronized by a data synchronization scheme, which is
a scheme other than the following control synchronization schemes:
 Conventional multi-flop synchronization scheme

 Synchronizing cell synchronization scheme

 Qualifier synchronization scheme by using the qualifier -crossing
constraint

This means that even if a data signal is synchronized by a multi-flop or a
synchronizer cell (specified by the sync_cell constraint), it will be reported
as unsynchronized by Ac_unsync01/Ac_unsync02 rules.

For example, consider the scenario shown in the following figure:

FIGURE 65.

In the above figure, the data signal D1 has a multi-flop structure in its

signal_type -name D1 -type control
// constr.sgdc
Version N-2017.12-SP1 1599
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
path, but it is not synchronized by any of the data synchronization
schemes. Therefore, SpyGlass reports the D1 signal as unsynchronized.

Product

SpyGlass CDC solution

Syntax

The syntax of the signal_type constraint is as follows:

signal_type
–name <signal-name>
-type <control | data>

Arguments

-name <signal-name>

Name of a signal that can be any of the following:
 Output of a clock-domain crossing

 Source of a clock-domain crossing

 Input port acting as the source for a clock-domain crossing

You can use wildcard characters while specifying a signal name.

-type <control | data>

Signal type as data or control.

Rules

The signal_type constraint is used by the following rules:

simulation_data

SpyGlass CDC Product
Ac_sync01 Ac_sync02 Ac_unsync01 Ac_unsync02
Ac_glitch03
1600 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The simulation_data command is used to specify the initial state
sequence for the design.

You can specify the initial state sequence in a Tcl file or have the product
read it from a VCD file.

NOTE: The simulation_data command is not required for combinational analysis.

Product

SpyGlass TXV, SpyGlass CDC, and SpyGlass Auto Verify

Syntax

The syntax of the simulation_data constraint is as follow:

current_design <du-name>
simulation_data
-type <tcl | vcd>
-file <file-name>
[-mode <mode-name>]
[-time <value>]
[-scopename <block-name>]
[-modulename <module-name>]

Arguments

<du-name>

Name of the design unit under which you are specifying the initial state
sequence.

-type <tcl | vcd>

The -type argument specifies the input file type as tcl for Tcl file or vcd
for VCD file.

-file <file-name>

The -file argument specifies the Tcl file or the VCD file.
Version N-2017.12-SP1 1601
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-mode <mode-name>

The -mode argument is optional and is used to specify the applicable
mode (one of the mode values specified with the -mode argument of the
sdc_data constraint.) If you do not specify the -mode argument, the
SpyGlass assumes that the specified initial state sequence is applicable for
all modes.

-time <value>

The -time argument is optional and is used to read the initial state by
using a timestamp.

-scopename <block-name>

The -scopename argument is used if the given VCD file is for a full chip
but you want to perform verification for a sub-block module. The
hierarchical path of the block module's instantiation (in VCD) must be
specified to the simulation_data constraint.

For example, consider a VCD file with a top module top and a sub module
block2 that lies within another block block1. Therefore, while
performing the verification of block2, the following must be defined to
initialize the block2 module from the VCD file generated for the full chip
design:

current_design block2
simulation_data -type vcd -scopename
"top.block1_inst.block2_inst" -file chip.vcd

-modulename <module-name>

The -modulename argument is used to specify the hierarchical name of
the module in the design corresponding to the module instance in the VCD
file specified in the -scopename option.

For example, if top.block1_inst.block2_inst in the VCD
hierarchy corresponds to block1.block2 in the design, specify the
simulation_data constraint as:

current_design block2

simulation_data
1602 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-type vcd
-scopename "top.block1_inst.block2_inst"
-modulename "block1.block2" -file chip.vcd

NOTE: For sequential analysis, it is recommended that you either provide sufficient
reset and set_case_analysis constraints so that the SpyGlass TXV
solution automatically reads the initial state sequence or specify the
simulation_data constraint. If the number of sequential elements initialized
is high, the quality of the result produced by the SpyGlass TXV solution is good.

Examples

Consider the example below:

simulation_data -type vcd -modulename A -scopename B -file
design.vcd

In the above example, A is the name of the top module and B is the sub
block module name. Here, the top module name A will replace the sub
block module name B and initial state sequence is read for the sub block
module.

An example of the Tcl File is as follows:

set sig1 0xffffffff
incr a
for {set i 1} {$i<=4} {incr i} {
 force xyz [incr a 4]
 simulate 2 -clk clk1
}
force sig2 [incr a]
simulate 2

Rules

The initstate constraint is used by the following rules:
SpyGlass TXV Solution
All rules
SpyGlass CDC Solution
Version N-2017.12-SP1 1603
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
special_cell

Purpose

The special_cell constraint is used to specify special cells as checked
by the LPSVM37 and LPPLIB13 rules.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was specialcell.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the special_cell constraint is as follows:

current_design <du-name>
special_cell
-name <cell-name-list>
[-regions <inst-name-list>]
[-supplies <supply-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the special cells.

-name <cell-name-list>

Space-separated list of special cell names. You can use wildcard characters
while specifying cells using the -name argument.

Ac_initstate01
SpyGlass Auto Verify Solution
Av_initstate01
1604 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-regions <inst-name-list>

Space-separated hierarchical instance name list (name of any instance or
the top-level design unit) indicating the regions to be checked as used by
the LPSVM37 rule of the SpyGlass Power Verify solution.

-supplies <supply-name-list>

Space-separated supply name list as used by the LPPLIB13 rule.

Rules

The special_cell constraint is used by the following rules:

special_module

Purpose

The special_module command is used to define property and
constraint modules. All OVL modules are supposed to be specified as
special modules. If not, these modules are treated as regular design
modules.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was smodule.

Product

SpyGlass Auto Verify solution

Examples

The following command in a SpyGlass Design Constraints file will treat all
modules whose name starts with “assert_” as assertion or constraint
modules.

special_module –type ASSERTION –name "assert_*" -regexp

In the presence of OVL modules, this constraint is a requirement to run

SpyGlass Power Verify Solution

LPSVM37 LPPLIB13
Version N-2017.12-SP1 1605
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
SpyGlass Auto Verify solution (otherwise the OVL checks are not
performed). It is included as a constraint in the goal for SpyGlass Auto
Verify solution. Therefore, you need not specify this, unless an OVL
assertion is written which does not start with the keyword “assert”. For
example, if you define new OVL assertions, all starting with the prefix
“user1…”, the following command should be given in the SpyGlass Design
Constraints file:

special_module –type ASSERTION –name "user1_*" -regexp

Rules

The special_module constraint is used by the following rule:

spef_data

Purpose

The spef_data constraint specifies the SPEF (Standard Parasitic
Extraction Format) file.

For post-route ("signoff") power estimation, accuracy improves if the
actual routed parasitics are used to get the net capacitances instead of
wire-load models. The actual routed parasitics are stored in the SPEF file,
which is an accepted industry standard for storing extracted parasitics.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the spef_data constraint is as follows:

current_design <du-name>
spef_data -file <spef-file-name>

[-modname <du-name>]

SpyGlass Auto Verify Solution

Av_ovl01
1606 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-instname <inst-name>]
[-spef_topname <top-name>]

NOTE: If the capacitance of a net is specified using both spef file and set_load
command, the set_load is given preference.

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-file <spef-file-name>

Name of the SPEF file.
NOTE: You can also specify compressed SPEF file that has been generated by using the

gzip utility.

-modname <du-name>

(Optional) Name of the design unit (specified as module name or the entity
name) for which SPEF file is specified.

-instname <inst-name>

(Optional) Name of the instance for which SPEF file is specified.

In case neither modname nor instname is given, the SPEF file will be
applied for the design unit specified using DESIGN in the SPEF file.

-spef_topname <top-name>

(Optional) Path of the hierarchy in the SPEF file corresponding to the
design.

This argument is useful if you want to use SPEF information for a specific
instantiated module from a top-level SPEF file. In this case, the
spef_topname argument is used to specify the instantiated name of the
module in the SPEF file.
Version N-2017.12-SP1 1607
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Examples

Example 1 - Specifying modname and instname

An example of spef_data constraint is given below:

FIGURE 66. spef_data Constraint Example

Consider a top design module top consisting of two blocks - Core
(instance C1) and MC (instance M1). There are three SPEF files - top.SPEF
(for top), Core.SPEF (for instance top.C1), and MC.SPEF (for instance
top.M1).

The SPEF files can be specified as follows:

current_design top

 spef_data -file top.SPEF -modname top

 spef_data -file Core.SPEF -instname top.C1

 spef_data -file MC.SPEF -instname top.M1

NOTE: While calculating the capacitance value for any net from the spef file, the coupling
capacitance value can be included or excluded using
pe_include_coupling_capacitance switch.

Example 2 - Specifying spef_topname

Suppose a design has an instance U0 of module MC_RF. This module is
inside the TOP module. For the design, the associated SPEF file is TOP.SPEF.

From the TOP.SPEF file, you can use the SPEF data only for the instance U0

MC (M1)Core (C1)

top
1608 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
by specifying the following SGDC constraints:

current_design MC_RF

spef_data -file TOP.SPEF -spef_topname U0

NOTE: Hierarchical format is supported for specifying spef_topname argument. The
hierarchy separator used in the argument must match the separator defined in the
SPEF file.

Rules

The spef_data constraint is used by the following rules:

supply

Product

SpyGlass Power Verify solution, SpyGlass Power Estimation and SpyGlass
Power Reduction solutions

For SpyGlass Power Verify solution

Purpose

The supply constraint is used to specify the supply and ground port
names for all the LPPLIB rules.

Syntax

The syntax to specify the supply constraint is as follows:

current_design <du-name>
supply
-name <name>

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1609
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-value <fvalue>
[-net <net-name>]
[-on <sig-name-list>]
[-on_2 <sig-name-list>]
[-parent <supply-name>]
[-alwayson 0 | 1]
[-onval 0 | 1]
[-onval_2 0 | 1]
[-isosig <sig-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the power and
ground ports

-name <name>

Simple name of the power/ground port (post-synthesis pin)

-value <fvalue>

Voltage value at the specified port.

-net <net-name>

(Optional) Name of the supply nets that are inside a block. For example,
the name ua.VDDX will be used to refer to supply net inside the block
top.ua.

-on <sig-name>

(Optional) Space-separated list of -on signals. For each power switch
instance, the enable is connected to the -on signal. If an expression
involving several terms is given, an error will be reported. Also, there is an
interaction between the -on switch and the -alwayson switch. If the -
on argument is specified, -alwayson should not be specified as ‘1’. If -
alwayson is 1 and -on is also specified, an error will be reported.
1610 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-on_2 <sig2-name>

(Optional) Space-separated list of -on_2 signals. In case of dual enable
power switch, for each power switch instance, the second enable is
connected to the -on_2 signal.

-parent <supply-name>

(Optional) Name of the parent supply net. The input and output supply net
for power switches have a parent-child relationship. That is, the supply net
outside the domain is the parent, and the supply net inside the domain is
the child. To derive the parent-child relationship the -parent
switch is specified. When the option is specified, for any supply X that has
power switches, the parent supply should be connected to the input power
pin of the power witch, and the supply X should be connected to the output
power pin of the power switch.

-alwayson <0 | 1>

(Optional) The type of supply. Can be set to 0 (switched off) or 1 (always
on).

If -alwayson (and also -on and -parent arguments) is not specified
with the supply constraint, supply is considered an always-on supply (-
alwayson is set to 1). If -on and -parent arguments are specified,
supply is considered a switched off supply (-alwayson is set to 0).

-onval <0 | 1>

(Optional) Space-separated list of values for the -on signals. Can be set to
0 (active low) or 1 (active high).

-onval_2 <0 | 1>

(Optional) Space-separated list of values for the -on_2 signals. Can be set
to 0 (active low) or 1 (active high).

-isosig <sig-name-list>

(Optional) Name of the isolation signal(s) for the supply being defined as a
space-separated list.
Version N-2017.12-SP1 1611
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The supply constraint is used by the following rules:

For the SpyGlass Power Estimation and SpyGlass Power Reduction
Solutions

Purpose

The supply constraint is used to specify the supply rails information.

NOTE: Use the supply constraint for multiple voltage domain designs only. For single
voltage domain designs, the supply rails information is inferred from the associated
technology library.

Syntax

The syntax to specify the supply constraint is as follows:

current_design <du-name>
supply
-name <supply-name>
-value <fvalue>
[-on <on-expr>]
[-isnetdriver]

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <supply-name>

Name of the supply rail.

SpyGlass Power Verify Solution

All LPPLIB rules
1612 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-value <fvalue>

The voltage value for the supply rail.

Use the -on argument to specify the condition for supply rails that may be
off under certain conditions. <on-expr> is the signal-based Boolean
expression that indicates the supply rail ON condition.

-isnetdriver

The -isnetdriver argument specifies whether the supply rail is a net
driver. You can use this argument to specify the net drivers.

Examples

The following value indicates that supply rail S1 has a voltage value of 1.2:

supply -name S1 -value 1.2

The following example specifies a supply rail named A1 that has a supply
voltage of 1.2 and is ON only when both in1 and in2 signals are high:

supply -name A1 -value 1.2 -on top.in1 & top.in2

The following example specifies a supply rail named G123 that has a
supply voltage of 1.2 and is a net driver:

supply -name G123 -value 1.2 -isnetdriver

Rules

The supply constraint is used by the following rules:

switchoff_wrapper_instance

Purpose

The switchoff_wrapper_instance constraint is used to specify the

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 poweraudit
Version N-2017.12-SP1 1613
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
instance hierarchy.

Product

SpyGlass Power Verify solution

Syntax

The syntax to specify the switchoff_wrapper_instance constraint
is as follows:

current_design <du-name>
switchoff_wrapper_instance
-name <hier-list>

Arguments

<du-name>

Name of the design unit under which you are specifying the instance
hierarchies.

-name <hier-list>

Space-separated list of hierarchical references.

Examples

The following example specifies top.SOW1 and top.SOW2 as the
instance hierarchies:

switchoff_wrapper_instance -name top.SOW1 top.SOW2

Rules

The switchoff_wrapper_instance constraint is used by the
following rule:

SpyGlass Power Verify Solution

LPSVM55
1614 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
sync_cell

Purpose

The sync_cell constraint is used to specify synchronizer cells that
should be considered valid for control crossings that contain specified
frequencies, source/destination clocks, or domains.

NOTE: If you use the synchronize_cells or synchronize_data_cells
parameter along with this constraint, the constraint is used for the specified clocks
and frequencies and the parameter will be applicable for the rest of the crossings.

NOTE: If the synchronize_cells parameter is defined and the sync_cell
constraint is specified with the -from_clk/to_clk/from_domain/
to_domain arguments, then the sync_cell constraint is honored for the
specific clock/domain pair. For other clock/domain pairs, the
synchronize_cells parameter is honored.
However if the sync_cell -name constraint is used without any argument,
then it is honored by default and the parameter is ignored.

NOTE: This constraint is not applicable for data crossings. It is applicable for control
crossings.

Product

SpyGlass CDC solution

Syntax

The syntax to specify the sync_cell constraint is as follows:

Usage 1:

sync_cell
-name <synchronizer-modules>
[-to_clk <dest-clk>
[-from_clk <src-clk>]

]
[-user_tag <user-tag-string>]
[-rdc]
[-reset]
Version N-2017.12-SP1 1615
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Usage 2:

sync_cell
-name <synchronizer-modules>
[-to_domain <dest-domain
[-from_domain <src-domain>]

]
[-user_tag <user-tag-string>]
[-rdc]
[-reset]

Usage 3:

sync_cell
-name <synchronizer-modules>
[-to_period <dest-period>
[-from_period <src-period>]

]
[-user_tag <user-tag-string>]
[-rdc]
[-reset]

Usage 4:

sync_cell
-name <synchronizer-modules>
[-user_tag <user-tag-string>]
[-rdc]
[-reset]

NOTE: Please note the following points:

 You can specify any one of the following combination of arguments:

 -from_clk and -to_clk

 -from_domain and -to_domain

 -from_period and -to_period

You cannot mix the above combinations.
1616 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 You must specify the -to_clk argument while specifying the
-from_clk argument.

 You must specify the -to_domain argument while specifying the
-from_domain argument.

 You must specify the -to_period argument while specifying the
-from_period argument.

Arguments

-name <synchronizer-modules>

Space-separated list of synchronizer cells/modules. You can use wildcard
characters while specifying such modules.

Details of such modules are discussed in the following points:
 Such modules can either be user-defined modules containing at least

one sequential element or it can be a sequential library cell.
NOTE: Such modules cannot be black boxes. For black boxes, use the qualifier con-

straint along with the synchronize_cells parameter.

 You can specify multiple synchronizer cells for the same clock, domain,
or period, as shown in the following example:

sync_cell -name SYNC1 SYNC2 SYNC3 -to_period 10

 If clock names are specified in some sync_cell constraints and in
other constraints, domain or period is specified for those clocks, all the
sync_cell constraints will be considered.
Consider the following example:

clock -name top.clk1 -domain d1 -period 10
clock -name top.clk2 -domain d2 -period 20
sync_cell -name SYNC1 -from_clk top.clk1 -to_clk top.clk2
sync_cell -name SYNC2 -from_domain d1 -to_domain d2
sync_cell -name SYNC3 -to_period 20

In this case, all the SYNC1, SYNC2, and SYNC3 synchronizer cells will
be considered valid for crossings from clk1 (d1) to clk2 (d2).
Version N-2017.12-SP1 1617
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 For the same synchronizer cell, if multiple sync_cell constraints are
specified for different clocks, domains, and clock periods, the
synchronizer cell is considered valid for all the specified clocks, domains,
and clock periods.
This is explained in the following examples:

// SYNC1 cell is valid for crossings from
// CLK1 to CLK2 and crossings with
// destination CLK3

sync_cell -name SYNC1 -from_clk CLK1 -to_clk CLK2
sync_cell -name SYNC1 -to_clk CLK3

// SYNC2 cell is valid for crossings with destination
// clock period 20 and 40

sync_cell -name SYNC2 -to_period 20
sync_cell -name SYNC2 -to_period 40

// SYNC3 cell is valid for crossings from domain
// D1 -> D2 and also for crossings from D3 to D4

sync_cell -name SYNC3 -from_domain D1 -to_domain D2
sync_cell -name SYNC3 -from_domain D3 -to_domain D4

-from_clk <src-clk>

Name of source clock.

You can use wildcard characters while specifying a source clock.

-to_clk <dest-clk>

Name of destination clock.

You can use wildcard characters while specifying a destination clock.

-from_domain <src-domain>

Name of source domain.
1618 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-to_domain <dest-domain>

Name of destination domain.

-from_period <src-period>

Source clock period value.

-to_period <dest-period>

Destination clock period value.

-user_tag <user-tag-string>

A string that is appended to the control-crossings-related violation
messages of rules using this constraint.

Use this string to filter messages as per your requirement. For example,
you add a custom filter in a spreadsheet to show or hide messages
containing the specified string.

-rdc

Enables the Ar_resetcross01 apply the sync_cell constraints on reset
domain crossings.

-reset

Specifies that a clock domain crossing on reset path be considered as
synchronized.

Examples

Example 1

Consider the following constraints:

sync_cell -name SYNC1 -from_period 50 -to_period 10
sync_cell -name SYNC2 -to_period 20

In this case, SYNC1 is the valid synchronizer module/cell for crossings with
destination clock period 10 and source clock period 50. However, for
crossings with destination clock period 20, SYNC2 is the valid synchronizer.
Version N-2017.12-SP1 1619
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Rules

The sync_cell constraint is used by the following rules:

sync_reset_style

Purpose

The sync_reset_style constraint is used by SpyGlass CDC solution
during detection and validation of a synchronous reset in a design.

Product

SpyGlass CDC solution

Syntax

The following is the syntax of the sync_reset_style constraint:

sync_reset_style
[-max_load <max-sequential-elements>]
[-min_load <min-sequential-elements>]
[-combo <yes | no | buf_inv>]
[-active <low | high | both>]
[-pragma <yes | no | mixed>]
[-first_if <yes | no>]

SpyGlass CDC Solution
Clock_sync08 Clock_sync03a Clock_sync03b Ac_handshake01
Ac_handshake02 Ar_resetcross_m

atrix01
Ar_cross_analysi
s01

Clock_sync08a

Clock_sync09 Ac_cdc01a Ac_cdc01b Ac_cdc01c
Ac_cdc08 Propagate_Clock

s
Ac_conv01 Ac_conv02

Ac_conv03 Ac_glitch02 Ac_sync01 Ac_sync02
Ac_unsync01 Ac_unsync02 Ac_glitch03 Ar_resetcross01
Ac_conv04
1620 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

-max_load <max-sequential-elements>

Specifies the maximum load allowed on a synchronous reset.

This load is specified in terms of the total number of the following types of
terminals driven by a synchronous reset:

The default value of this argument is -1, which means that any load is
allowed on a synchronous reset. You can specify the load ranging from 0 to
any positive integer value.

-min_load <min-sequential-elements>

Specifies the minimum load allowed on a synchronous reset.

The default value of this argument is 0, which means that no load is
allowed on a synchronous reset. You can specify the load ranging from 0 to
any positive integer value.

-combo <yes | no | buf_inv>

Specifies if combo logic is allowed between the reset source and data pin of
a flip-flop.

You can specify any of the following values for this argument:

-active <low | high | both>

Specifies the polarity of the usage path of a synchronous reset signal.

sequential element terminals tristate terminals
mux instance control terminals black box terminals

Value Description
yes (Default) Specifies that all combinational logic is allowed
no Specifies that no combo logic, except SpyGlass-generated buffer, is

allowed in the reset path
buf_inv Specifies that any number of buffers, inverters, or combinational

logic equivalent to buffer
Version N-2017.12-SP1 1621
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You can specify any of the following values for this argument:

NOTE: SpyGlass ignores the -active argument when flip-flops are created by using a
library cell instance.

-pragma <yes | no | mixed>

Specifies if the synopsys_set_reset pragma should be present in the
RTL.

You can specify any of the following values for this argument:

NOTE: Please note the following points:

 VHDL does not have any pragmas, therefore, all flip-flops created using VHDL
RTL are considered with presence of pragmas to avoid reporting for pragma
mismatch in VHDL code.

 SpyGlass CDC solution this argument in case of netlist design.

-first_if <yes | no>

Specifies the modeling of synchronous reset usage in the first if condition
of a synchronous block.

If you set this argument to yes, synchronous reset should be used in the
first if condition.

Value Description
low Specifies that the reset is active-low
high Specifies that the reset is active high
both (Default) Specifies that the reset can be used as active-high or

active-low

Value Description
yes Specifies that pragma should be present in all usage of RTL
no (Default) Specifies that pragma may or may not be present in the

synchronous usage of RTL.
SpyGlass CDC solution does not check the presence of pragma in
such cases.

mixed Specifies that pragma should be present in at least one usage of
synchronous reset at RTL
1622 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
By default, this argument is set to no, which means that no rule-checking
is done. In this case, synchronous reset may or may not be used in the first
if block in the RTL design.

Rules

The sync_reset_style constraint is used by the following rules:

test_mode

Purpose

The test_mode constraint specifies the set of conditions, both pins and
values, that when simulated, will force the circuit in test mode.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was testmode.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution, SpyGlass STARC
product, SpyGlass STARC02 product, SpyGlass STARC05 product, and
SpyGlass STARCad-21 product

For SpyGlass DFT solution and SpyGlass DFT DSM solution

In SpyGlass DFT solution, the test_mode constraint when specified
forces the circuit into a state for scan shifting or for capture. In mux-scan,
for example, during scan shift, all internally generated clocks should be by-
passed with a test clock and all flip-flop sets and resets should be held
inactive. In capture mode, all system latches should be made transparent.

Generally, there are cases in which the same pin must have different
values to differentiate scan shift from capture. To support such cases, the

SpyGlass CDC Solution
Reset_info01 Ar_syncrstactive01 Ar_syncrstcombo01
Ar_syncrstload01 Ar_syncrstload02 Ar_syncrstpragma01
Ar_syncrstrtl01
Version N-2017.12-SP1 1623
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
syntax of the test_mode constraint enables you to provide the following
types of values:
 Values that are the same in shift and capture (no optional syntax

required)
 Values that complement from shift to capture (use the

-invertInCapture argument)

 Values that are non-X in shift and X in capture (use the -scanshift
argument)

 Values that are X in shift and non-X in capture (use the -capture
argument)

When test_mode, force_ta, or test_point constraints are specified on the
same node, following is the priority among different constraints:
 Test_mode

 User-specified specific force_ta / test_point

 Effect of dft_treat_primary_inputs_as_x_source and
dft_treat_primary_outputs_as_unobservable parameters

For example, if test_mode 1 and test_point control are applied
on the same node then the test_mode constraint will be considered.

Also, if the test_mode, force_ta, or test_point constraints are
found in the fanout of each other, following is the priority among different
constraints:
 The constraint in the fanout gets the priority

 Fanin effect is blocked by the specified / resolved constraint on the node

For example, consider that test_mode 1 is applied on the input of buffer
and test_point control is applied on the output of the same buffer.
In this case, input will have simulation value 1 and nyn controllability but
output will have yyn controllability and no simulation value.

Syntax

The syntax of the test_mode constraint is as follows:

test_mode
[-name <name>]
-value <value>
1624 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-scanshift]
[-capture]
[-functional]
[-captureATspeed]
[-invertInCapture]
[-initialize_for_bist]
[-memory_force]
[-type <design_object_type>]
[-except <except_node_name>]
[-except_type <except_design_object_type>]
[-filter_in_name <include_node_name>]
[-filter_in_type <include_design_object_type>]
[-ignorecase]
[-power_ground]

NOTE: The test_mode constraint supports wildcard characters.

Arguments

-name <name>

Complete hierarchical name of a test mode port/pin.

The pin can be a primary pin as well as an internal pin.

You can specify a single port/pin’s full hierarchical name or a space-
separated list of full hierarchical port/pin names.

This is an optional field and you can specify multiple names in a single
constraint without being split.

NOTE: Specify at least one of –name or –type arguments.

The following example shows that the test_mode constraint has been
defined on internal net top.U1.U13.tm1 and top.U3.tm3:

current_design top
test_mode -name top.U1.U13.tm1, top.U3.tm3 ...

For primary ports, you can also specify the simple port name as in the
following example:

current_design top
Version N-2017.12-SP1 1625
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name in15 ...

-value <value>

Value list for a test mode pin.

The value list is the sequence of one or more of the following values:
 0

 1

 X

 Z

 Combination

 'p'(010) / 'P'(010)

 'n'(101) / 'N'(101)

The 'p'(010) denotes a rising edge or a positive edge. The value 'n'(101)
denotes a falling edge or a negative edge. Here a bit corresponds to a
pulse. Therefore, if you specify, '1' or '0' or 'X' or 'Z', they will be repeated
three times in the command.

See the Usage of Different Clock Edges section, to understand the usage of
different clock edges.

Applying these values to the test mode pin causes the circuit to enter the
test mode.

You can specify repeat sequences for the test_mode constraint.

For fields that require repeat sequence, you can specify the values as
<I*S>. Here, S is any string that does not contain the <, >, and *
characters. However, S can contain another <I*S> expression. I is an
integer that is always interpreted as a decimal value. The expression
<I*S> means that the sequence S will be repeated I number of times.

-scanshift

(Optional) Indicates that the test mode pin is only required during the scan
shifting operations. Such a pin may be used for ATPG purposes when not
scanning.

NOTE: You can specify both the -scanshift argument and the -capture argument
together.
1626 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: Use of the -scanshift argument will generally increase the estimated fault
coverage since both 0 and 1 values are allowed on such pins, whereas without this
argument only the specified value is allowed.

-capture

(Optional) Indicates that the test mode pin is only required during the
capture operations.

NOTE: You can specify both the -scanshift argument and the -capture argument
together.

-functional

(Optional) Indicates that the test mode signal is only required during the
functional mode.

NOTE: The set_case_analysis constraint is treated as the
test_mode -functional constraint.

-captureATspeed

NOTE: This option is not applicable for the SpyGlass DFT solution.

(Optional) You should use this option to define test mode signals
exclusively for the at-speed rules.

This option helps you to apply the test mode condition exclusively for at-
speed capture cycle that can be different from the capture used by stuck-at
testing or from scan shifting. Consider the following figure:
Version N-2017.12-SP1 1627
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 67. PLL burst during captureATspeed

-invertInCapture

(Optional) Indicates that the value specified with the -value argument
should be simulated in the shift mode as is whereas the inverse of this
value (complement of the value for single-bit values or last-bit complement
of pattern values) should be simulated in the capture mode.

-initialize_for_bist

Defines a way to drive all registers to a known state.

You can drive registers to a known state asynchronously, sequentially, or in
some combination of both.

If there is a global reset signal, an initialize_for_bist argument specifies
that signal and the value that makes all asynchronous sets or resets
ACTIVE.

-memory_force

Lists the primary ports and values that, when simulated, will force all
memories used in a circuit to have non-x values on their outputs.
1628 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-type <design_object_type>

(Optional) Same as -name argument but it takes only macros as input.
NOTE: Both static-type and dynamic-type macros are supported.

To view the list of macros supported by test_mode constraint, see
Supported Macros.

-except <except_name>

(Optional) Same as the the -name argument, but defines design nodes that
are to be excluded.

-except_type <except_design_object_type>

(Optional) Same as the -design argument, but defines design nodes that
are to be excluded.

-filter_in_name <include_name>

(Optional) Same as the -name argument, but defines design nodes that are
to be included.

-filter_in_type <include_design_object_type>

(Optional) Same as the -type argument, but defines design nodes that are
to be included.

-ignorecase

(Optional) To ignore the case for a test mode name specified using the -
name, -except, or -filter_in_name arguments.

NOTE: It applies on all fields which take design_node_name as an input.

-power_ground

(Optional) To specify a constant value to a design node in the power
ground mode.

NOTE: The test_mode constraint considers the specified nets or other design nodes as VCC
or VSS.
Version N-2017.12-SP1 1629
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Notes

1. More than one test_mode constraint may be necessary for your
design. If more than one test_mode constraint is used, they will all be
simulated in parallel for determining scannability but only the
test_mode constraints without the -scanshift argument will have
fixed values when determining test coverage.

2. The values supplied through the test_mode constraint are 0, 1, Z, and
X (note case-sensitivity for Z and X). Since the simulator built into
SpyGlass DFT solution is designed for sequential circuits, the value lists
may contain sequences of values. For example, the following constraint
directive will cause three rising clock edges on a signal tclk and
involve six simulation cycles:

test_mode –name tclk –value 010101

3. Special attention is necessary for a signal that is used both as a test
mode signal (that is, used in a test_mode constraint) and as a test
clock signal (used in a clock constraint with -testclock argument).
In such a case, the last value listed in the test_mode constraint must
be an X so that the signal is free to be pulsed as a test clock.

4. The last value in all test_mode value lists is used by controllability
analysis and is preserved for all rules that depend on the test_mode
constraint. For example, the following constraint will cause the signal
tclk to be uncontrollable to a logic zero since the last value is 1:

test_mode –name tclk –value 010101

5. Test mode signals that are required to maintain the test mode state
must not have a value list that ends in X because the X-value, just as 0s
and 1s, will be simulated and be the final value on this pin. This will
often cause the propagation of X values into the circuit and override
other simulation results established by prior values.

Examples

General Usage

Consider the following examples:

Example1

test_mode -name abc -value "<5*10>"

The above example will be expanded as follows:
1630 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name abc -value 1010101010

Example2

test_mode -name abc -value "11<5*10>010"

The above example will be expanded as follows:

test_mode -name abc -value 111010101010010

Example3

test_mode -name abc -value "<50*11<5*10>>010"

The above example will be expanded as follows:

test_mode -name abc -value 111010101010...(repeated 50 times followed
by 010)

You can also set a variable using the command setvar to obtain the
above result as follows:

setvar x 11<5*10>

test_mode -name abc -value "<50*${x}>010"

The above example will be expanded as follows:

test_mode -name abc -value 111010101010...(repeated 50 times followed
by 010)

Example 4

Tagging is not allowed during nesting. For example, the following
test_mode statements are not allowed:

test_mode -name sub_seq -value <5*01>
test_mode -name main_seq -value <100*sub_seq>

However, you can achieve the same result by using the setvar command.

NOTE: For information and examples on specifying values for vector signals, refer to
“Specifying Values for Vector Signals section” in the SpyGlass DFT Rules Reference
Guide.

Example 5

Consider the following figure:
Version N-2017.12-SP1 1631
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In the above example, the value, 1, is applied on the SET pin of the flip-
flop ensuring that this pin is inactive during shift mode, that is, when the
scan data is shifted in the scan chain. However, during capture phase, the
combo logic applies the value, 1, on the same pin, if appropriate inputs are
fed to it.

Example 6

Consider the following sample input values:

test_mode -name vec[3:0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1010"
test_mode -name vec[1] -value "0000"
test_mode -name vec[2] -value "0000"
test_mode -name vec[3] -value "0000“

Example 7

Consider the following sample input values:

test_mode -name vec[3:0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "0"
test_mode -name vec[1] -value "1"
test_mode -name vec[2] -value "0"
1632 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name vec[3] -value "1“

Example 8

Consider the following sample input values:

test_mode -name vec[3:0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1"
test_mode -name vec[1] -value "0"
test_mode -name vec[2] -value "0"
test_mode -name vec[3] -value "0“

Example 9

Consider the following sample input values:

test_mode -name vec -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1010"
test_mode -name vec[1] -value "0000"
test_mode -name vec[2] -value "0000"
test_mode -name vec[3] -value "0000“

Example 10

Consider the following sample input values:

test_mode -name vec -value { b 1010 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "0"
test_mode -name vec[1] -value "1"
test_mode -name vec[2] -value "0"
test_mode -name vec[3] -value "1“

Example 11

Consider the following sample input values:
Version N-2017.12-SP1 1633
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name vec -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1"
test_mode -name vec[1] -value "0"
test_mode -name vec[2] -value "0"
test_mode -name vec[3] -value "0“

Example 12

Consider the following sample input values:

test_mode -name vec[0] -value { b 1 0 1 0 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1010“

Example 13

Consider the following sample input values:

test_mode -name vec[0] -value {b 1010}

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "0"

Example 14

Consider the following sample input values:

test_mode -name vec[0] -value { b 1 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value "1"

Example 15

Consider the following sample input values:

test_mode -name sclr -value { b 1 0 1 0 }

where sclr is the scalar net
1634 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above input is expanded as shown below:

test_mode -name sclr -value "1010"

Example 16

Consider the following sample input values:

test_mode -name sclr -value { b 1010 }

where sclr is the scalar net

The above input is expanded as shown below:

test_mode -name sclr -value "0“

Example 17

Consider the following sample input values:

test_mode -name sclr -value { b 1 }

where sclr is the scalar net

The above input is expanded as shown below:

test_mode -name sclr -value "1“

Example 18

Consider the following sample input values:

test_mode -name vec -value { h 6 }

where vec is the 3:0 vector net

The above input is expanded as shown below:

test_mode -name vec[0] -value “0"
test_mode -name vec[1] -value “1"
test_mode -name vec[2] -value “1"
test_mode -name vec[3] -value "0“

Example 19

Consider the following sample input values:

test_mode –name tm[1] tm[0] –value 1

In above example, the value 1, is applied on both tm[0] and pins.

Usage of Different Clock Edges

Usage of Positive Edge
Version N-2017.12-SP1 1635
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Consider the following sample input values:

test_mode -name tm1 -value 1 0 0 p
test_mode -name tm2 -value 0 0 1 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1
test_mode -name tm5 -value 0 1 1 0

The above input is expanded as shown below:

test_mode -name tm1 -value 1 0 0 010
test_mode -name tm2 -value 0 0 1 111
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1
test_mode -name tm5 -value 0 1 1 000

Usage Of Negative Edge
Consider the following sample input values:

test_mode -name tm1 -value 1 0 0 N
test_mode -name tm2 -value 0 0 1 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1
test_mode -name tm5 -value 0 1 1 0

The above input is expanded as shown below:

test_mode -name tm1 -value 1 0 0 101
test_mode -name tm2 -value 0 0 1 111
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1 000

Usage Of Positive Edge In Between
Consider the following sample input values:

test_mode -name tm1 -value 1 0 0 p 0 1
test_mode -name tm2 -value 0 0 1 1 0 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1
test_mode -name tm5 -value 0 1 1 0 1 1

The above input is expanded as shown below:

test_mode -name tm1 -value 1 0 0 010 0 1
1636 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name tm2 -value 0 0 1 111 0 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1
test_mode -name tm5 -value 0 1 1 000 1 1

Usage Of Multiple Edges
Example 1
Consider the following sample input values:

test_mode -name tm1 -value 1 0 0 p 0 1 n
test_mode -name tm2 -value 0 0 1 1 0 1 0 0 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1 1 1 0 0 0 0
test_mode -name tm5 -value 0 1 1 0 1 1 0 1 0

The above input is expanded as shown below:

test_mode -name tm1 -value 1 0 0 010 0 1 101
test_mode -name tm2 -value 0 0 1 111 0 1 000 0 1
test_mode -name tm3 -value 1 0
test_mode -name tm4 -value 0 0 1 111 1 0 000 0 0
test_mode -name tm5 -value 0 1 1 000 1 1 000 1 0

Example 2

Consider the following sample input values:

test_mode -name clk1 -value P P P P 0 N N N
test_mode -name din1 -value 0 0 1 1 0 1 0 0
test_mode -name din2 -value 1 0 0 1
test_mode -name din3 -value 0 0 1 1 1 0 0 0

The above input is expanded as shown below:

test_mode -name clk1 -value 010 010 010 010 0 101 101 101
test_mode -name din1 -value 000 000 111 111 0 111 000 000
test_mode -name din2 -value 111 000 000 111
test_mode -name din3 -value 000 000 111 111 1 000 000 000

Usage of pulse in bit-wise assignment
Consider the following sample input values:
Version N-2017.12-SP1 1637
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_mode -name tm[3:0] -value {b 0np1}

The above input, is expanded bit-wise as shown below:

test_mode -name tm[3] -value 0
test_mode -name tm[2] -value n
test_mode -name tm[1] -value p
test_mode -name tm[0] -value 1

The above input is expanded bit-wise with pulse expanded:

test_mode -name tm[3] -value 000
test_mode -name tm[2] -value 101
test_mode -name tm[1] -value 010
test_mode -name tm[0] -value 111

Usage of UDM in test_mode

Consider the following constraint specification:

define_macro -macro my_macro -name “*powergood*” –
filter_in_type INPUT_PORTS –ignorecase

test_mode –type my_macro –value 1

In the above example, a value 1 is defined (as test_mode) on all input
ports for which name matches with “*powergood*” (case-insensitive)

Usage of -ignorecase in test_mode

Consider the following constraint specification:

test_mode -name "mid::*out*" "mid::*in*" -except "mid::*in*"
-ignorecase -value 0

In the above example, a value 0 is defined (as test_mode) on all pins
matching “mid::*in*” (case-insensitive)

OR of –name and -type

Consider the following constraint specification:

test_mode -name “*powergood*” -type INPUT_PORTS –ignorecase
–value 0
1638 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In the above example, a value 0 is defined (as test_mode) on all input
ports and objects matching with “*powergood*” (case-insensitive). This
signfies an OR operation.

AND (through filter_in) of –name and -type)

Consider the following constraint specification:

test_mode -filter_in_name “*powergood*” -type INPUT_PORTS –
ignorecase –value 0

test_mode -name “*powergood*” -filter_in_type INPUT_PORTS –
ignorecase –value 0

For both of the above cases, test_mode value 0 is defined on all input ports
matching with “*powergood*” (case-insensitive). This signifies an AND
operation.

Exclusion based on type

Consider the following constraint specification:

test_mode -name “*powergood*” –except_type “INPUT_PORTS”
“OUTPUT_PORTS” –ignorecase –value 0

In the above example, a value 0 is defined (as test_mode) on all internal
design objects matching with “*powergood*” (case-insensitive).

Rules

The test_mode constraint is used by the following rules:

SpyGlass DFT Solution
All rules
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 1639
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
For SpyGlass STARC Product, SpyGlass STARC02 product,
SpyGlass STARC05 product, and SpyGlass STARCad-21 product

Purpose

In these products, the test_mode constraint causes certain rules of the
products to work in test mode where all scan flip-flops are controlled by
test clocks and all asynchronous set and reset pins are inactive

Syntax

The syntax of the test_mode constraint is as follows:

current_design <du-name>
test_mode
-name <signame>
-value <value>

Arguments

<du-name>

Name of the design unit under which you are specifying the test mode pin.

-name <signame>

Hierarchical name of the test mode pin.

-value <value>

A logic pattern which, when applied on the test mode pin, will put the
circuit in the test mode.

Rules

The test_mode constraint is used by the following rules:

SpyGlass STARC Product
STARC-3.3.2.2a STARC-3.3.2.2.b STARC-3.3.2.3
SpyGlass STARC02 Product
STARC02-3.3.1.1 STARC02-3.3.1.4a STARC02-3.3.2.3
1640 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
test_point

Purpose

The test_point constraint specifies where a test point should be added
in a design without the necessity of changing the source RTL.

The test_point constraint is used as seeding information for testability
analysis. This seeding then influences coverage calculations just as if it was
directly controllable, observable or both — depending on the value of the -
type argument. The benefit is that when the TA_01 or TA_02 rules make
recommendations, the source RTL description does not have to be
modified.

When test_mode, force_ta, or test_point constraints are specified on the
same node, following is the priority among different constraints:
 Test_mode

 User-specified specific force_ta / test_point

 Effect of dft_treat_primary_inputs_as_x_source and
dft_treat_primary_outputs_as_unobservable parameters

For example, if test_mode 1 and test_point control are applied
on the same node then the test_mode constraint will be considered.

Also, if the test_mode, force_ta, or test_point constraints are
found in the fanout of each other, following is the priority among different
constraints:
 The constraint in the fanout gets the priority

 Fanin effect is blocked by the specified / resolved constraint on the node

For example, consider that test_mode 1 is applied on the input of buffer
and test_point control is applied on the output of the same buffer.

SpyGlass STARC05 Product
STARC05-3.3.1.4a STARC05-3.3.2.3
SpyGlass STARCad-21 Product
starcad_21_Prereq
Version N-2017.12-SP1 1641
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
In this case, input will have simulation value 1 and nyn controllability but
output will have yyn controllability and no simulation value.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was testpoint.

Product

SpyGlass DFT solution, SpyGlass DFT DSM solution

Syntax

The syntax of the test_point constraint is as follows:

test_point
 -name <tp-name>
-type <control | observe | full>

NOTE: The test_point constraint supports wildcard characters.

Arguments

-name <tp-name>

Complete hierarchical name of a test point net, port, or pin.

The pin can be a primary pin as well as an internal pin.

You can specify a single port/pin/net’s full hierarchical name or a
space-separated list of full hierarchical port/pin/net’s names.

For primary ports, you can also specify the simple port name as in the
following example:

current_design top
test_point -name in15 ...

-type <control | observe | full>

Type of test point.

A value of control specifies that the test point is directly controllable,
observe specifies that the test point is directly observable, and full
specifies that the test point is directly controllable and observable.
1642 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Example

Consider the following example:

test_point -name "AND::b" -type control

The above command will apply test_point to all instantiations of the
AND gate, and is equivalent to the following commands:

testpoint -name "test.inst2.b" -type control
testpoint -name "test.inst1.b" -type control

Rules

The test_point constraint is used by the following rules:

tie_x

Purpose

The tie_x constraint specifies the X-generator design unit (black box)
names. Then, all instances of these design units in the design are assumed
as X-generator instances. The tie_x constraint support wildcards.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was TIE_X.

Product

SpyGlass DFT solution

Syntax

The syntax of the tie_x constraint is as follows:

SpyGlass DFT Solution
Info_testclock Info_uncontrollable Info_undetectCause Info_coverage
Coverage_audit TA_06
SpyGlass DFT DSM Solution
All rules
Version N-2017.12-SP1 1643
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
tie_x
-name <bb-name>
-xpin <xpin-name-list>

NOTE: The tie_x constraint supports wildcard characters.

Arguments

The tie_x constraint has the following arguments:

-name <bb-name>

The X-generator design unit (black box) name.

The design unit must be a black box. That is, its definition must not exist in
the design or in the specified libraries, if any.

The design unit name <du-name> can be specified as module name (for
Verilog designs) or as entity name (for VHDL designs). For VHDL designs,
all architectures of the specified entity are treated as X-generator design
units.

You can specify a single design unit name or a space-separated list of
design unit names.

-xpin <xpin-name-list>

A space-separated name list of X-generator design unit (black box) output
pins that are X-generator pins.

Notes

More than one tie_x constraint may be necessary. If more than one
tie_x constraint is used, they all will be processed in parallel.

Rules

The tie_x constraint is used by the following rule:

SpyGlass DFT Solution
BIST_05
1644 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
tristate_cell

Purpose

The tristate_cell constraint is used to define the tristate cells.

Product

SpyGlass DFT solution

Syntax

The syntax of the tristate_cell constraint is as follows:

tristate_cell
-name <mod-name>
-zpin <inout-port>
-enpin <input-port>
[-envalue <tri-buf-val>]
-dpin <input-data-pin>
-oppin <output-port>

NOTE: The tristate_cell constraint supports wildcard characters.

Arguments

The tristate_cell constraint has the following arguments:

-name <mod-name>

Tristate buffer module name.

Names may refer to the modules where pins are generating X.

-zpin <inout-port>

Inout port driving the tristate buffer

-enpin <input-port>

Input port driving the tristate buffer
Version N-2017.12-SP1 1645
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-envalue <tri-buf-val>

Value to make tristate cell act as a buffer. This value can be set as 1 or 0.

-dpin <input-data-pin>

Input data pin

-oppin <output-port>

Output port

Rules

The tristate_cell constraint is used by the following rule:

ungroup_cells

Purpose

Use this constraint to ungroup instances in the current module.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the ungroup_cells constraint is as follows:

ungroup_cells
[-inst <inst-list>]
[-all]
[-flatten]
[-small <num>]
[-level <depth>]
[-mod <mod-list>]

SpyGlass DFT Solution
Tristate_16
1646 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
[-mod_all <mod-all-list>]

Arguments

-inst <inst-list>

Specifies a list of instances (in the current module) that needs to be
ungrouped.

You can specify the current module by using the current_design
constraint.

For Verilog, the value provided by this argument is case-sensitive. For
VHDL, this value is not case-sensitive.

-all

Specifies that all instances in the current module should be ungrouped.

-flatten

Specifies that the specified instances should be ungrouped recursively until
leaf-level cells. By default, the behavior is single level flattening.

NOTE: The -all argument is automatically considered if you specify the -flatten
argument.

-small <num>

Specifies a number of leaf cells so that all instances in the current module
that have less than the specified number of leaf cells should be ungrouped.

If you specify the -small <num> argument, all instances under the
current design are considered. That is, the -inst argument cannot be
specified in this case.

NOTE: Please note the following points:

 The -all argument is automatically considered if you specify the -small
argument.

 If you specify the -small and -all arguments together, SpyGlass reports a
fatal violation.
Version N-2017.12-SP1 1647
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-level <depth>

Specifies a depth so that all instances at a depth greater or equal to the
specified depth should be dissolved.

NOTE: Please note the following points:

 The -all argument is automatically considered if you specify the -depth
argument.

 If you specify the -level and -all arguments together, SpyGlass reports a
fatal violation.

-mode <mod-list>

Specifies a list of modules so that all instances of these modules within the
current module are dissolved.

You can specify a current module by using the current_design
command.

By default, only immediate instances of the specified modules are
dissolved. To dissolve instances hierarchically until leaf level, specify the
-flatten argument of this constraint along with the -mod argument.

-mod_all <mod-all-list>

Specifies a list of modules so that all instances of these modules across the
whole design are dissolved.

By default, only immediate instances of the specified modules are
dissolved. To dissolve instances hierarchically until leaf-level, specify the
-flatten argument of this constraint along with the -mod_all
argument.

NOTE: If you specify the -mod_all argument along with the -inst, -mod, or -all
argument of this constraint, SpyGlass reports a fatal violation.

Examples

The following examples show the usage of the ungroup_cells
constraint:

 The following command is used to ungroup the mid1 and mid2
instances in the top module.

current_design top
1648 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
ungroup_cells -inst mid1 mid2

 The following command is used to ungroup the mid1 and mid2
instances in the top module recursively till leaf-level:

current_design top
ungroup_cells -inst mid1 mid2 -flatten

 The following command is used to ungroup all instances of the M1 and
M2 modules in the top module:

current_design top
ungroup_cells -mod M1, M2

 The following command is used to ungroup all instances in the mid
module recursively till leaf-level:

current_design mid
ungroup_cells -all -flatten

 The following command is used to ungroup all instances in all
hierarchies with respect to top that have less than N leaf cells:

current_design top
ungroup_cells -small N

Rules

The ungroup_cells constraint is used by the following rules:

use_library_group

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
All rules running in EST mode
Version N-2017.12-SP1 1649
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

Helps in specifying the instance and library group mapping, that is,
specifying the library group from which the cell definition of the instance
needs to be picked.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the use_library_group constraint is as follows:

current_design <du-name>
use_library_group
-name <lib-grp-name>
-instname <inst-name-list>

Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <lib-grp-name>

Name of the library group(s) to which the cell definition of the specified
instance belongs.

NOTE: You can also use the -name argument as -names to specify a single library or a
group of libraries.

-instname <inst-name-list>

Hierarchical path and name of an instance or a top-level design unit name
to which library groups should be bound.

Consider the following example, suppose the top design unit name, top,
has two instances, g1 and g2, with the same library cell definition but the
cell definitions are in different library groups (say, G1 and G2) at different
PVT values.
1650 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Now, if you want to pick the cell definition for instance g1 from library
group G1 and the cell definition for instance g2 from library group G2, use
the use_library_group constraint as follows:

use_library_group -name G1 -instname top.g1

use_library_group -name G2 -instname top.g2

NOTE: Refer to the SGDC command define_library_group to group all libraries that are
characterized at same PVT together.

Rules

The use_library_group constraint is used by the following rules:

voltage_domain

Product

SpyGlass DFT DSM solution, SpyGlass Power Verify solution, SpyGlass
Power Estimation and SpyGlass Power Reduction solutions

For SpyGlass DFT DSM Solution

Purpose

The voltage_domain constraint is used to specify the voltage/power
domains in the design and its information is used by SP_01 rule of the
SpyGlass DFT DSM solution.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
voltagedomain.

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1651
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Syntax

The syntax to specify the voltage_domain constraint is as follows:

current_design <du-name>
voltage_domain
[-modname <du-name>]
[-instname <inst-name-list>]

Arguments

<du-name>

Name of the design unit under which you are specifying the voltage/power
domains. This is the environment for the voltage/power domains.

-modname <du-name>

(Optional) Name of top-level design unit, specified as module name or the
entity name.

Use the -modname argument, as in the following examples:

current_design top
voltage_domain -modname top

The above example applies to Verilog module named top.

current_design top.rtl
voltage_domain -modname top

The above example applies to VHDL entity named top with an architecture
named rtl. If only the entity name is specified with current_design
specification, the last compiled architecture is used in case of entities with
multiple architectures.

-instname <inst-name-list>

(Optional) Space-separated list of instance names.

The instance name must be a hierarchical instance name with respect to
the top-level design unit specified as the environment.

You can use wildcard characters while specifying instance names.
1652 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
NOTE: The voltage domain information is applicable hierarchically.

Rules

The voltage_domain constraint is used by the following rule:

For SpyGlass Power Verify solution

Purpose

The voltage_domain constraint is used to specify the voltage/power
domains in the design and its information is used by voltage and power
domain rules.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
voltagedomain.

Syntax

The syntax to specify the voltage_domain constraint is as follows:

current_design <du-name>
voltage_domain

-name <name>
-value <fvalue-list>

[-instname <inst-name-list>]
[-portname <port-name-list>]

| -modname <du-name>
[-portname <port-name-list>]

| -portname <port-name-list> -external
[-netname <net-name-list>]

| -netname <net-name-list> -external
| -external
[-isosig <iso-sig-list> -isoval <iso-value-list>
| -inisosig <iniso-sig-list>

SpyGlass DFT DSM Solution
SP_01
Version N-2017.12-SP1 1653
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-inisoval <iniso-value-list>
| -noisosig]
[-generate_iso_logic]
[-outputs <ss-condition-name>]
[-supplyname <port-name-list>]
[-clkdomain <clk-name-list>]
[-enableports <en-port-name-with-limit-list>]
[-inputs <pd-condition-name>]
[-isolatedinputs <pin-name-list>]
[-isolatedoutputs <pin-name-list>]
[-isolatedoutputs <pin-name-list>]
[-biaspowernet <bias-pwr-net>]
[-biasgroundnet <bias-gnd-net>]
[-sleepnet <net-name>]
[-sleepval 0 | 1]
[-stopclock <net-name>]
[-stopclockval 0 | 1]
[-savenet <net-name>]
[-saveval 0 | 1]
[-restorenet <net-name>]
[-restoreval 0 | 1]

Arguments

<du-name>

Name of the design unit under which you are specifying the voltage/power
domains. This is the environment for the voltage/power domains.

-name <name>

Name of the voltage/power domain.

-value <fvalue-list>

Voltage values (floating-point values) of the voltage/power domain.

For voltage domains, you should specify only one positive non-zero value.

For power domains, you should specify two values (space-separated) that
indicate the ON and OFF voltage values of the power domain. The first
1654 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
value should be a positive non-zero value and the second value should be
zero.

-instname <inst-name-list>

(Optional) Space-separated list of instances belonging to the voltage/
power domain.

The instance name must be a hierarchical instance name with respect to
the top-level design unit specified as the environment.

You can use wildcard characters while specifying instance names.
NOTE: The voltage domain information is applicable hierarchically.

NOTE: If you do not use the -instname argument, you must specify the -modname
argument or the -portname argument with the -external argument, or the
-external argument.

-modname <du-name>

(Optional) Name of top-level design unit (specified as module name or the
entity name) belonging to the voltage/power domain. Then, all instances of
the design unit are assumed to be in the voltage/power domain being
specified.

Use the -modname argument as in the following examples:

current_design top
voltage_domain -name vd1 -value 1.2 -modname top

The above example applies to Verilog module named top.

current_design top.rtl
voltage_domain -name vd1 -value 1.2 -modname top

The above example applies to VHDL entity named top with an architecture
named rtl. If only the entity name is specified with current_design
specification, the last compiled architecture is used in case of entities with
multiple architectures.

NOTE: You must specify the voltage domain information for top-level design unit using –
modname argument.

NOTE: The voltage domain information is applicable hierarchically.

NOTE: If you do not use the -modname argument, you must specify the -instname
Version N-2017.12-SP1 1655
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
argument, the -portname argument with the -external argument, or the
-external argument.

-portname <port-name-list>

(Optional) Space-separated list of ports of other design units/instances
that belong to a different voltage/power domain but are directly connected
to an instance of the specified voltage/power domain.

You can use wildcard characters while specifying port names where ports
can be top-level or of a user-defined module.

Consider the following example:

FIGURE 68. Port of a Design Unit Belonging to a Different Voltage Domain

Here, the port EN of top-level design unit top of voltage domain VD1 is
directly connected to the instance top.A of voltage domain VD2. If you do
not specify the port EN to be in voltage domain VD2, the connection
becomes a voltage domain crossing from VD1 to VD2 and you would need
to insert a level shifter in the path.

The above situation is specified as follows:

voltage_domain -name VD1 -value 1.2 -modname top
voltage_domain -name VD2 -value 1.5
-instname top.A -portname EN

You can also specify the individual pins of hard macro instances (black box
instances) to be in a different voltage/power domain than the voltage/

Design unit top of voltage domain VD1

Instance A of voltage domain VD2

EN
1656 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
power domain of the hard macro instance.

Consider the following example where pin pin1 is of a different voltage/
power domain than its parent hard macro instance (black box instance)
M1_inst1:

FIGURE 69. Children Pin of a Different Voltage Domain From its Parent Instance

The above situation can be specified as follows:

voltage_domain -name VD1 -value 1.2 -modname top
voltage_domain -name VD2 -value 1.5
-instname top.M1_inst1

voltage_domain -name VD3 -value 1.7
-portname top.M1_inst1.pin1

NOTE: You need to specify the full hierarchical name of the pin having a different voltage/
power domain.

NOTE: Only the ports of top-level design units and pins of leaf level instances can be
specified with the -portname argument.

-netname <net-name-list>

(Optional) Space-separated list of nets of other design units that belong to
a different voltage/power domain but are directly driven by an instance of
the specified voltage/power domain.

Consider the following example where all the output nets of the design unit
top.M1_inst1 are in domain VD2 working at 1.5 volts except net out3
which is being driven by 1.2 volts.

Design unit top

Hard Macro Instance M1_inst1

pin1

Voltage domain VD1

Voltage domain VD2

pin2

Voltage domain VD3
Version N-2017.12-SP1 1657
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
FIGURE 70. All Output Nets Belong to Same Voltage Domain

The above situation can be specified as follows:

voltage_domain -name VD1 -value 1.2 -modname top -
netname top.M1_inst1.out3
voltage_domain -name VD2 -value 1.5
-instname top.M1_inst1

You can use wildcard characters while specifying net names.

The constraint also supports specification of vector nets. For example, a 4
bit net top.M1_inst1.out3 can be specified as either:

top.M1_inst1.out3, top.M1_inst1.out3[0:3]

or

top.M1_inst1.out3[0] top.M1_inst1.out3[1]
top.M1_inst1.out3[2] top.M1_inst1.out3[3]

You need to specify the full hierarchical name of the net having a different
voltage/power domain. The field is used by LPSVM04 rule of the SpyGlass
Power Verify solution for checking correct level shifters.

-external

(Optional) Specifies that the voltage domain specified for a port is external
to the design.

You can use the -external argument with the -portname argument

Design unit top

M1_inst1

out3

Voltage domain VD1

Voltage domain VD2

out2

Voltage domain VD1
1658 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
(to indicate that the voltage/power domain is applicable to the port and is
external to the design) or as a stand-alone argument (to indicate that the
voltage/power domain is external to the design).

NOTE: You can specify the external voltage/power domains (using the stand-alone -
external argument of the voltage_domain constraint). Then, the
specified domain name can be used by the pin_voltage constraint.

-isosig <iso-sig-list>

(Optional) Name of the isolation signal(s) for the power domain being
defined as a space-separated list.

NOTE: You must specify an isolation signal for a power domain for the related checks to be
performed. If you are not specifying -isosig argument, it is mandatory to
specify either -inisosig with the input isolation signal(s) for the power domain
or -noisosig indicating that the power domain does not have an isolation
signal.

If you are specifying an internal signal, please ensure that you specify the
signal name at the point of creation, as in the following example:

FIGURE 71. Signal Name At The Point Of Creation

Power domains

Isolation Signal to
be specified

Logic generating
the isolation Signal
Version N-2017.12-SP1 1659
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-isoval <iso-value-list>

(Optional) Assert value(s) of the isolation signal(s) being specified with the
-isosig argument as a space-separated list.

The assert value is the value that the isolation signal attains under the
power-down conditions. In normal mode, the isolation signal gets the
inverse of the assert value.

NOTE: The number of isolation values specified with the -isoval argument must match
the number of isolation signals specified with the -isosig argument. Otherwise,
SpyGlass reports a FATAL message.

-inisosig <iniso-sig-list>

(Optional) Name of the input isolation signal(s) for the power domain being
defined as a space-separated list.

NOTE: The object(s) specified with the -inisosig argument should be a top-level
port, net, or instance terminal in the design unit specified as current design of the
voltage_domain constraint

-inisoval <iniso-value-list>

(Optional) Assert value(s) of the input isolation signal(s) being specified
with the -inisosig argument as a space-separated list.

The valid values for -inisoval argument are only 0 or 1.

NOTE: The number of isolation values specified with the -inisoval argument must
match the number of input isolation signals specified with the -inisosig
argument. Otherwise, SpyGlass reports a FATAL message.

-noisosig

(Optional) Indicates that the power domain does not have an isolation
signal.

When you specify the -noisosig argument, the power domain checking
rules do not perform isolation signal-related checking.

NOTE: It is mandatory to specify either of -isosig, -inisosig, or -noisosig
arguments.
1660 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-supplyname <port-name-list>

(Optional) Specifies a space-separated simple name list of power/ground
rails (ports) in the design.

These ports are associated with the supply constraint.

-generate_iso_logic -outputs <ss-condition-name>

(Optional) The -generate_iso_logic argument enables generation of
missing isolation logic by the LPSVM23 rule of the SpyGlass Power Verify
solution and the -output argument specifies the steady state conditions
(any valid string) as specified using the domain_outputs constraint.

In addition, the LPSVM09 rule of the SpyGlass Power Verify solution uses
the -output argument along with the domain_outputs constraint.

Consider the following example that defines the power domain V3 that
does not have isolation logic:

voltage_domain
 -name V3 -value 1.2 0
 -instname top.u6
 -isosig isosig6
 -isoval 1
 -generate_iso_logic
 -outputs PD_V3_OUT

Here, the -generate_iso_logic argument enables generation of
missing isolation logic and the -outputs argument defines the steady
state condition as PD_V3_OUT. For defining PD_V3_OUT,use
domain_outputs constraint as follows:

domain_outputs -name PD_V3_OUT -value top.d_o 0 top.ack_o 0
top.err_o 0 -default 1

-clkdomain <clk-name-list>

(Optional) Specifies the valid clock domains of the voltage domain for
clocks described using the clock constraint.
Version N-2017.12-SP1 1661
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-enableports <en-port-name-with-limit-list>

(Optional) Specifies a space-separated list of enable ports of a power
domain along with the individual power switch enable connection limit as
checked by the LPSVM45 rule of the SpyGlass Power Verify solution.

Consider the following constraint specification specifying power domain
PD1:

voltage_domain -name PD1 -value 1.2 0
-instname "TOP.lower1" -isosig top.iso_sig
-isoval 1 -enableports 'EN1 1 EN2 100 EN3[2] 100'

The -enableports argument of the voltage_domain constraint
specifies the ports of power domain through which enable signals of power
switches must be connected. The enable port of the power domain and the
maximum number of power switch enables allowed to be connected to it
are specified as a space-separated pair. For example, EN1 1 indicates that
only one power switch enable can be connected to port EN1.

Specify "-1" as the limit to indicate that any number of power switch
enables can be connected. For example, EN12 "-1".

-inputs <pd-condition-name>

(Optional) Specifies the power domain input expected value condition
name that is specified with the domain_inputs constraint.

-isolatedinputs <pin-name-list>

(Optional) Specifies the power domain input name list (hierarchical pin
name list) when these power domain inputs are to be assumed as already
isolated and, therefore, no isolation-related checking should be performed
on these inputs.

You can also use wildcard characters and bus notation while specifying the
pin names for this argument.

-isolatedoutputs <pin-name-list>

(Optional) Specifies the power domain output name list (hierarchical pin
name list) when these power domain outputs are to be assumed as already
isolated and, therefore, no isolation-related checking should be performed
on these outputs.
1662 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
You can also use wildcard characters and bus notation while specifying the
pin names for this argument.

-biaspowernet <bias-pwr-net>

(Optional) Specifies the name of bias power net associated with the
domain.

-biasgroundnet <bias-gnd-net>

(Optional) Specifies the name of bias ground net associated with the
domain.

-sleepnet <net-name>

(Optional) Specifies a sleep net of a power domain as used by the
LPSVM56, LPSVM57, LPSVM58, and LPSVM59 rules of the SpyGlass
Power Verify solution.

NOTE: The -sleepnet argument should be specified along with the -sleepval
argument. For example,

voltage_domain -instname P1 -sleepnet SL1 -sleepval 1

-sleepval 0 | 1

(Optional) Specifies the active value of a sleep net of a power domain (0 or
1) as used by the LPSVM58 and LPSVM59 rules of the SpyGlass Power
Verify solution.

NOTE: The -sleepval argument should be specified along with the -sleepnet
argument.

-stopclock <net-name>

(Optional) Specifies the stop clock net of a power domain.

-stopclockval 0 | 1

(Optional) Specifies the active value of a stop clock net of a power domain
(0 or 1).

-savenet <net-name>

(Optional) Specifies the save net of a power domain as used by the
Version N-2017.12-SP1 1663
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
LPSVM57 and LPSVM59 rules of the SpyGlass Power Verify solution.

NOTE: The -savenet argument should be specified along with the -saveval
argument. For example:

voltage_domain -instname P1 -savenet SA1 -saveval 1

-saveval 0 | 1

(Optional) Specifies the active value of the save net of the power domain
(0 or 1) as used by the LPSVM59 rule of the SpyGlass Power Verify
solution.

NOTE: The -saveval argument should be specified along with the -savenet
argument.

-restorenet <net-name>

(Optional) Specifies the restore net of a power domain as used by the
LPSVM57 and LPSVM59 rules of the SpyGlass Power Verify solution.

NOTE: The -restorenet argument should be specified along with the
-restoreval argument. For example:

voltage_domain -instname P1 -restorenet RS1 -restoreval

1

-restoreval 0 | 1

(Optional) Specifies the active value of the restore net of a power domain
(0 or 1) as used by the LPSVM59 rule of the SpyGlass Power Verify
solution.

NOTE: The -restoreval argument should be specified along with the
-restorenet argument.

Examples

Consider the following example:

module top(in1, in2, iso_sig, out1, out2);
input in1, in2, iso_sig;
output out1, out2;

wire C1, D1;
1664 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
lower lower1(in1, C1);
lower \lower2 (in2, D1);
assign out1 = C1 & iso_sig;
assign out2 = D1 & iso_sig;

endmodule

module lower(in, out);
input in;
output out;

assign out = in;
endmodule

All constraint specifications are with respect to the top-level module top.
Therefore, the environment is defined as follows:

current_design top

Now, the top-level module top is in the voltage domain named say VD1.
This situation is specified as follows:

current_design top
voltage_domain -name VD1 -value 1.2 -modname top

Next, assume that the instance lower1 is in a different voltage domain.
This situation is specified as follows:

current_design top
...
voltage_domain -name VD2 -value 1.5

-instname top.lower1

Since port in1 of module top (which is in voltage domain VD1) is directly
connected to instance lower1 (which is in voltage domain VD2), you can
also specify the port using the -portname argument to avoid crossing
message for a voltage domain, as shown in the following example:

current_design top
...
voltage_domain -name VD2 -value 1.5
-instname top.lower1
-portname in1
Version N-2017.12-SP1 1665
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Next, assume that the instance \lower2 is in the power domain PD1
having signal iso_sig as the isolation signal with assert value 1. This
situation is described as follows:

current_design top
...
voltage_domain -name PD1 -value 1.2 0

-instname "top.\lower2 "
-isosig top.iso_sig -isoval 1

NOTE: When you use flattened netlists as inputs instead of RTL files, you can specify all
flattened instance names in a scope by using the asterisk (*) wildcard character
instead of listing them individually by using the -instname argument. For
example, when the scope top.\U1 contains three flattened instances,
top.\U1/U11, top.\U1/U12, and top.\U1/U13, specify them as
"top.\U1*".

For SpyGlass Power Estimation and SpyGlass Power Reduction
Solutions

Purpose

The voltage_domain constraint is used to specify the design unit
present in different voltage_domain as used by the rules in the
SpyGlass Power Estimation and SpyGlass Power Reduction solutions.

Syntax

The syntax to specify the voltage_domain constraint is as follows:

current_design <du-name>
voltage_domain

-name <name>
-value <value>
-instname <inst-name-list>
| -modname <du-name>
| -portname <port-name-list>
| -netname <net-name-list>
1666 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <name>

Name of the voltage domain.

-value <value>

Voltage value (floating-point values) of the specified voltage domain.

NOTE: The first voltage value in the volatage_domain constraint should be non-zero
and the second should be zero (if defined). Multiple non-zero values are not
allowed.

-instname <inst-name-list>

(Optional) Space-separated list of instances belonging to the specified
voltage domain.

The instance name must be a hierarchical instance name with respect the
top-level design unit specified as the environment.

NOTE: The voltage domain information is applicable hierarchically.

NOTE: You can also specify the instance names using regular expressions.

-modname <du-name-list>

(Optional) Space-separated list of top-level design units (specified as
module name or the entity name) belonging to the specified voltage
domain. Then, all instances of these design units are assumed in the
specified voltage domain.

Use the -modname argument, as in the following examples:

current_design top
voltage_domain -name vd1 -value 1.2 -modname top

The above example applies to Verilog module named top.

current_design top.rtl
voltage_domain -name vd1 -value 1.2 -modname top
Version N-2017.12-SP1 1667
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
The above example applies to VHDL entity named top with an architecture
named rtl. If only the entity name is specified with current_design
specification, the last compiled architecture is used in case of entities with
multiple architectures.

NOTE: The voltage domain information is applicable hierarchically.

-portname <port-name-list>

(Optional) Space-separated name list of primary ports belonging to the
specified voltage domain.

NOTE: You can also specify the port names using regular expressions.

-netname <net-name-list>

(Optional) Space-separated name list of nets belonging to the specified
voltage domain.

NOTE: You can also specify the net names using regular expressions.

Notes

You must specify at least one of the -instname, -modname,
-netname, or -portname arguments. This requirement is checked by
the SGDC_power_est18 rule.

Examples

Consider the following example:

module top(in1, in2, iso_sig, out1, out2);
input in1, in2, iso_sig;
output out1, out2;

wire C1, D1;

lower lower1(in1, C1);
lower \lower2 (in2, D1);
assign out1 = C1 & iso_sig;
assign out2 = D1 & iso_sig;

endmodule
1668 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
module lower(in, out);
input in;
output out;

assign out = in;
endmodule

All constraint specifications are with respect to the top-level module top.
Therefore, the environment is defined as follows:

current_design top

Now, the top-level module top is in the voltage domain named say VD1.
This situation is specified as follows:

current_design top
voltage_domain -name VD1 -value 1.2 -modname top

Next, assume that the instance lower1 is in a different voltage domain.
This situation is specified as follows:

current_design top
...
voltage_domain -name VD2 -value 1.5

-instname top.lower1

NOTE: When you use flattened netlists as input instead of RTL files, you can specify all
flattened instance names in a scope by using the asterisk (*) wildcard character
instead of listing them individually by using the -instname argument. For
example, when the scope top.\U1 contains three flattened instances,
top.\U1/U11, top.\U1/U12, and top.\U1/U13, specify them as
"top.\U1*".

Rules

The voltage_domain constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1669
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
vt_mix_percentage

Purpose

The vt_mix_percentage constraint is used to specify the percentage
number of cells of a threshold voltage group in a library or a complete
library to be processed by the PEPWR01 and PEPWR02 rules.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the vt_mix_percentage constraint is as follows:

current_design <top-du-name>
vt_mix_percentage
-group <grp-name> | -cellname <cell-name-pattern> |
-libname <lib-name>
[-weight <value>]
[-instname <inst-name>]
[-clock <clock-name>]
[-clock_period <clock-period>]

Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-group <grp-name>

Name of the threshold voltage group (name specified with the
default_threshold_voltage_group/
threshold_voltage_group attribute in the library).

This argument supports lists.
1670 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
-cellname <cell-name-pattern>

Specifies a pattern to match cell names of a certain group of cells.

This argument supports lists.

-libname <lib-name>

Name of the library.

This argument supports lists.

-weight <value>

The percentage value (a floating-point number between 0 and 100).

Do not specify this argument if the PEVTDIST rule is run.

-instname <inst-name>

Name of the instance for which the percentage value is applicable.

-clock <clock-name>

Name of the clock for which the percentage values are applicable.

-clock_period <clock_period>

Clock period (in nanoseconds) for which the percentage values are
applicable.

NOTE: Please note the following:

 To specify values for a top-level design unit, do not use the -instname
argument. However, to specify values for a specific instance hierarchy, use the
-instname argument.

 You must at least define the percentage value for the top-level design unit.
Specifying values for specific instance hierarchies is optional.

 For any specific run, you can use only one of the following arguments: -
group, -libname, or -cellname. You cannot use a combination of two
or more of these arguments to specify the VT mix information in the same run.

 You must use the -group argument to specify values when the associated
library has a default_threshold_voltage_group/
threshold_voltage_group attribute set.
Version N-2017.12-SP1 1671
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 The sum of values specified for the top-level design unit or an instance hierarchy
in different vt_mix_percentage constraints must be equal to 100.

 Do not specify any two arguments together out of the -clock,
-clock_period, and -instname arguments.

 You can specify only one argument when using -clock, -clock_period,
and -instname arguments. You cannot use these three arguments together.

The following example specifies percentage values for the top-level design
unit top (first two vt_mix_percentage constraints) and for instance
hierarchy top.inst1 (Next two vt_mix_percentage constraints):

current_design topther
vt_mix_percentage -group tvg1 -weight 60
vt_mix_percentage -group tvg2 -weight 40
vt_mix_percentage -group tvg1

-instname top.inst1 -weight 30

vt_mix_percentage -group tvg2
-instname top.inst2 -weight 70

Examples

 Consider a scenario in which you have a set of libraries with cells of two
threshold voltage groups, DEFAULT1 and DEFAULT2. If you want to
tell SpyGlass that 75% of the design should use cells from the
DEFAULT1 group and 25% from the DEFAULT2 group, specify the
following commands:

vt_mix_percentage -group DEFAULT1 -weight 75
vt_mix_percentage -group DEFAULT2 -weight 25

 Consider a scenario in which you have two libraries, typical1NOTVG
and typical2NOTVG. Both the libraries have cells of a specific
threshold voltage, but the threshold_voltage_group attribute is
not specified in the library files. In this case, you can directly specify the
library names, as shown below:

vt_mix_percentage -libname typical2NOTVG -weight 25
vt_mix_percentage -libname typical1NOTVG -weight 75
1672 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
 You can specify the percentage usage of cells from different groups for
specific hierarchical instances as well. This is shown in the following
example:

select_wireload_model -wireload tsmc13_wl20
vt_mix_percentage -libname typical2NOTVG -weight 60
vt_mix_percentage -libname typical1NOTVG -weight 40

vt_mix_percentage -libname typical1 -instname
top.inst1 -weight 75
vt_mix_percentage -libname typical2 -instname
top.inst1 -weight 25

vt_mix_percentage -libname typical1 -instname
top.inst2 -weight 25
vt_mix_percentage -libname typical2 -instname
top.inst2 -weight 75

In the above example, for the top-level design, top, the ratio of the
usage of cells from the typical2NOTVG and typical1NOTVG
libraries is 60:40.

In addition, for the top.inst1 module within the top-level design, the
ratio of the usage of cells from the typical1 and typical2 libraries
is 75:25. Similarly, for the top.inst2 module, the ratio of the usage
of cells from the typical1 and typical2 libraries is 25:75.

 You can also specify the percentage usage directly based on the cell
names, as shown in the following example:

vt_mix_percentage -cellname "VT2*" -weight 75
vt_mix_percentage -cellname "VT1*" -weight 25

In the above example, the percentage usage of all the cell names
starting with the string, VT2, will be 75. Similarly, the percentage usage
of all the cell names starting with the string, VT1, will be 25.

 You can specify the percentage usage of cells from different groups for
specific clocks. This is shown in the following example:

select_wireload_model -wireload tsmc13_wl20
vt_mix_percentage -libname typical2NOTVG -weight 60 -clock
top.clk1
Version N-2017.12-SP1 1673
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
vt_mix_percentage -libname typical1NOTVG -weight 40 -clock
top.clk1

vt_mix_percentage -libname typical2NOTVG -weight 30 -clock
top.clk2

vt_mix_percentage -libname typical1NOTVG -weight 70 -clock
top.clk2

 You can specify the percentage usage of cells from different groups for
specific clock periods. This is shown in the following example:

select_wireload_model -wireload tsmc13_wl20

vt_mix_percentage -libname typical2NOTVG -weight 60
-clock_period 10

vt_mix_percentage -libname typical1NOTVG -weight 40
-clock_period 10

vt_mix_percentage -libname typical2NOTVG -weight 30
-clock_period 20

vt_mix_percentage -libname typical1NOTVG -weight 70
-clock_period 20

 The following constraints specifications show how to specify multiple
library names:

vt_mix_percentage -libname typical1 typical2 -weight 60

Rules

The vt_mix_percentage constraint is used by the following rules:

watchpoint

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
1674 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Purpose

The watchpoint command can be used to specify watch points in a
design.

In case of a functional rule-violation reported by SpyGlass Auto Verify
solution or SpyGlass CDC solution, the simulation trace produced contains
only the registers and primary inputs involved in the failure. The
watchpoint constraint can be used to force SpyGlass Auto Verify
solution and SpyGlass CDC solution to generate the waveform for an
internal signal.

Product

SpyGlass Auto Verify solution, SpyGlass CDC solution

Syntax

The syntax of the watchpoint constraint is as follows:

watchpoint
-name <pin-name-list>

Arguments

-name <pin-name-list>

Space-separated list of hierarchical pin names.

Examples

The following constraint defines signals sig3 in the design unit top as a
watch point:

watchpoint –name top.sig3

Rules

The watchpoint constraint is used by the following rules:
Version N-2017.12-SP1 1675
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
wireload_selection

Purpose

Specifies the default wire-load selection table to be used for power
estimation by the rules in the SpyGlass Power Estimation and SpyGlass
Power Reduction solutions. Normally, the
default_wire_load_selection library attribute defines the default
wire-load selection table to be used. You can overwrite this default value or
specify the value if not available in the library using the
wireload_selection constraint.

NOTE: Prior to SpyGlass 4.3.0 release, the name of this constraint was
wireloadselection.

Product

SpyGlass Power Estimation and SpyGlass Power Reduction solutions

Syntax

The syntax to specify the wireload_selection constraint is as
follows:

current_design <top-du-name>
wireload_selection
-name <wlst-name>
[-libname <lib-name>]

SpyGlass CDC Solution
Ac_cdc01a Ac_cdc01b Ac_cdc01c Ac_cdc08
Ac_fifo01 Ac_handshake0

1
Ac_handshake0
2

Clock_sync03a

Ac_conv02
SpyGlass Auto Verify Solution
All rules
1676 Version N-2017.12-SP1

Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
Arguments

<top-du-name>

Module name (for Verilog designs) or design unit name in <entity-
name>.<arch-name> format (for VHDL designs).

-name <wlst-name>

Name of the wire-load selection table of the library <lib-name>.

-libname <lib-name>

(Optional) Library name.

Specify a library name only when a wire-load selection table with the same
name is available in more than one library.

NOTE: Please note the following points:

 If you do not use the -name argument, the default wire-load selection table
name will be taken from the library specified with the -libname argument.

 If you do not use the -libname argument, the library that contains the
specified name of the wire-load selection table will be taken.

 Though both the -name and -libname arguments are optional, you must
specify at least one argument with the wireload_selection constraint.
If you do not specify any one argument, the above rules report a syntax error.

The actual wire-loads used by these rules are reported in the
pe_wireload Report in the SpyGlass Power Estimation and SpyGlass
Power Reduction solutions.

Rules

The wireload_selection constraint is used by the following rules:

SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
PEPWR01 PEPWR02 PEPWR03 PEPWR05
PEPWR13 PEPWR14 poweraudit
Version N-2017.12-SP1 1677
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SpyGlass Design Constraints
1678 Version N-2017.12-SP1

Synopsys, Inc.

	SpyGlass® Tcl Shell Interface User Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Using the Tcl Shell Interface
	Project File
	Invoking the Tcl Shell Interface
	Invoking Tcl Shell From Command-Line
	Invoking Tcl Shell From SpyGlass

	Specifying Inputs to the sg_shell
	Using sg_shell Commands
	Using Named and Positional Arguments
	Properties of Tcl Command Arguments
	Errors and Messages Flagged in sg_shell
	Error Handling in Tcl Commands
	Startup Files in sg_shell
	Error Scenarios and Messages
	Specifying a Tcl File as the Startup File
	Specifying a Project File as the Startup File
	Exit Codes Reported by sg_shell

	Features of sg_shell
	Using the Help Feature
	Using the Tab Completion Feature
	Capturing stdout and stderr
	History Support in sg_shell
	Command Logging in sg_shell
	Screen Output Logging in sg_shell
	Signal Handling in sg_shell
	Using Escape Names in sg_shell
	Common SDC Flow
	Dual Design Read Flow
	Using Key Combinations for Performing Actions
	Setting SpyGlass Preferences Using Tcl Shell Interface
	List of Preferences
	Overriding GUI Preferences

	SpyGlass Tcl Commands
	Session Commands
	gui_set_obw_dialog_labels
	gui_configure_obw_dialog
	gui_save_session
	gui_restore_session
	new_project
	open_project
	save_project
	close_project
	current_project
	import_project
	exit
	set_pref
	get_pref

	Design Setup Commands
	read_file
	get_file
	remove_file
	set_option
	get_option
	report_option
	remove_option
	link_design
	compile_design
	read_power_data
	read_sdc_data
	read_activity_data

	Goal Setup or Run Commands
	current_methodology
	addpolicy
	current_goal
	define_goal
	define_regression
	set_goal_option
	get_goal_option
	get_messages
	get_message_arg
	get_message_labels
	get_rules
	remove_goal_option
	get_run_option
	set_run_option
	set_parameter
	get_parameter
	report_parameter
	run_goal
	save_goal
	restore_goal

	ADC Setup Commands
	ADC Commands
	SDC-Equivalent Commands
	create_clock
	create_clock_attribute
	create_generated_clock
	define_sgdc_severity_class
	end_sgdc_severity_class
	set_annotated_transition
	set_case_analysis
	set_dft_signal
	set_dont_touch_network
	syn_set_dont_use
	set_driving_cell
	set_false_path
	set_ideal_network
	set_input_delay
	set_load
	set_multicycle_path
	set_output_delay
	set_scan_group
	set_wire_load_mode
	set_wire_load_model

	Specifying Collection Objects in ADC Commands

	Utility Commands
	get_adc
	report_adc
	remove_adc
	save_adc
	convert_sgdc2adc

	Reporting Commands
	define_filter
	define_view
	define_report
	write_report
	write_aggregate_report

	Waiver Commands
	waive
	get_waiver
	report_waiver
	remove_waiver
	save_waiver
	convert_swl2awl

	Debug Commands
	General Debug Commands
	gui_start
	help
	report_design_status

	Design Query Commands
	Library Commands
	get_libs
	get_lib_cells
	get_lib_pins
	get_lib_timing_arcs

	Netlist Commands
	current_instance
	current_design
	get_cells
	get_nets
	get_pins
	get_ports
	report_cell
	get_fanin_pins
	get_fanin_ports
	get_fanout_pins
	get_fanout_ports
	get_master
	get_parent
	get_clocks
	get_clock_relation
	report_clock_relation
	report_clocks
	get_registers
	get_resets
	get_value
	propagate_clocks
	propagate_resets
	get_domains
	report_domains
	report_resets

	Collection Commands
	add_to_collection
	append_to_collection
	compare_collections
	filter_collection
	foreach_in_collection
	index_collection
	query_objects
	remove_from_collection
	sizeof_collection

	Attribute Commands
	define_user_attribute
	set_user_attribute
	get_attribute
	list_attributes
	remove_user_attribute
	destroy_user_attribute

	Product Commands

	SpyGlass Base Commands
	get_combloop

	SpyGlass Lint Turbo Commands
	get_lint_formal_results
	report_lint_formal_results

	SpyGlass Constraints Commands
	autofix_sdc
	get_constrained_muxes
	get_sdc
	write_sdc_node
	export_sdc
	update_crossing_file

	SpyGlass CDC Commands
	get_cdc
	get_cdc_coherency
	get_cdc_glitch
	get_cdc_sources
	get_conv_sync_signals
	get_glitch_sources
	get_multi_flop_sync_info
	get_reset_sync
	get_reset_sync_names
	get_paths
	report_cdc
	report_cdc_coherency
	report_cdc_glitch
	report_paths
	report_reset_sync
	report_reset_sync_names

	SpyGlass DFT Commands
	dft_generate_coverage
	dft_generate_fault_report
	dft_generate_scan_report
	dft_generate_latch_status_report
	cv_is_cmt_present
	dsm_assert_illegal_path
	dsm_assert_illegal_value
	cv_define_user_macro
	cv_delete_user_macro
	cv_reset_user_macros
	cv_get_list_of_user_macros
	cv_add_element_to_user_macro
	cv_get_cell_list_of_user_macro
	cv_get_pin_list_of_user_macro
	cv_get_port_list_of_user_macro
	cv_is_element_present_in_user_macro
	cv_remove_element_from_user_macro

	SpyGlass Power Verify Commands
	get_pwr_intent
	report_pwr_intent
	check_pwr_intent_crossing
	get_retention_info
	get_isolation_info
	get_power_switch_info
	get_level_shifter_info
	get_supply_info
	report_retention_info
	report_isolation_info
	report_power_switch_info
	report_level_shifter_info
	report_supply_info

	SpyGlass Power Estimate and Reduce Commands
	report_power_stats_for_cell
	report_power_stats_for_reg

	Built-in Attributes
	lib
	lib_cell
	lib_pin
	lib_timing_arcs
	cdc_conv_signal_node
	cdc_conv_node
	cdc_glitch_node
	cdc_glitch_source_node
	cdc_node
	cdc_source_node
	design
	du_cell
	du_pin
	du_port
	du_net
	flat_inst
	flat_cell
	flat_pin
	flat_port
	flat_net
	adc_node
	sdc_node
	clock
	clock_domain
	message
	rule
	reset
	reset_flop_node
	reset_sync_node
	Product Attributes
	Base Attributes
	is_async_sync_reset
	is_clock_used_as_nonclock
	is_clock_used_with_both_edges
	is_constant_pin
	is_disabled_cell
	is_internally_generated_reset
	is_latch_clock_driven_on_both_edges
	is_multiple_driver
	is_reset_used_as_nonreset
	is_reset_used_with_both_polarity
	is_unregistered_port

	CDC Attributes
	dest_type
	failure_reason
	is_comb_conv
	is_data
	is_graycoded
	is_nonconv_bus
	is_seq_conv
	is_synchronized
	is_user_defined
	num_sources
	num_source_domains
	src_type
	sync_method

	Constraints Attributes
	sdc_type
	timing_state

	DFT Attributes
	atspeed_sim_value
	capture_sim_value
	get_atspeed_clock_n_phase
	get_capture_clock_n_phase
	get_dft_functional_clock_n_phase
	get_latch_atspeed_status
	get_latch_capture_status
	get_latch_shift_status
	get_scan_status
	get_shift_clock_n_phase
	is_scannable
	obs_probability
	one_cnt_probability
	pg_sim_value
	rand_fault_cov_estimate
	rand_test_cov_estimate
	sa0_det_probability
	sa1_det_probability
	sa0_fault_detectability
	sa1_fault_detectability
	shift_sim_value
	static_controllability
	static_observability
	t01_fault_detectability_los
	t10_fault_detectability_los
	t01_fault_detectability_loc
	t10_fault_detectability_loc
	zero_cnt_probability

	Power Attributes
	activity
	blackbox_internal_power
	blackbox_leakage_power
	blackbox_switching_power
	capacitance_source
	cell_size_for_power
	clock_internal_power
	clock_leakage_power
	clock_switching_power
	combinational_internal_power
	combinational_leakage_power
	combinational_switching_power
	fanout_capacitance
	internal_power
	io_internal_power
	io_leakage_power
	io_switching_power
	is_activity_annotated
	is_clock_gated
	is_internal_power_defined
	is_instantiated
	leakage_power
	leakage_power_model
	megacell_internal_power
	megacell_leakage_power
	megacell_switching_power
	memory_internal_power
	memory_leakage_power
	memory_switching_power
	net_frequency
	other_internal_power
	other_leakage_power
	other_switching_power
	power_type
	net_capacitance
	probability
	root_clock_for_power
	sequential_internal_power
	sequential_leakage_power
	sequential_switching_power
	switching_power
	virtual_buffer_info
	virtual_internal_power
	virtual_leakage_power
	virtual_switching_power
	vt_classification

	Power Verify Attributes
	clamp_value
	control_port
	input_supply_port
	input_supply_set
	isolation_ground_net
	isolation_power_net
	isolation_sense
	isolation_signal
	location
	name
	output_supply_port
	output_supply_set
	power_domain
	power_supply
	ground_supply
	restore_signal
	retention_ground_supply
	retention_power_supply
	save_signal
	sink
	source
	supply_name
	rule
	type
	voltage_range_min
	voltage_range_max

	Miscellaneous Commands
	alias
	benchmark
	capture
	gui_set_preference
	gui_add_menu
	show_error
	source
	unalias

	Appendix A: Deprecated Command Names and Their Corresponding New Commands
	Appendix B: Application Attributes
	List of Built-in Attributes
	List of Product Attributes

	Appendix C: SpyGlass Report Names
	General Reports
	Custom Reports
	Default Reports
	SpyGlass area Reports
	SpyGlass audits Reports
	SpyGlass lint Reports
	SpyGlass morelint Reports
	SpyGlass OpenMore Reports
	SpyGlass STARC Reports
	SpyGlass STARC02 Reports
	SpyGlass STARC05 Reports
	SpyGlass CDC Reports
	SpyGlass Constraints Reports
	SpyGlass DFT Reports
	SpyGlass DFT DSM Reports
	SpyGlass Power Family Reports
	SpyGlass Power Verify Reports
	SpyGlass TXV Reports

	Appendix D: Preference Variables Supported by the set_pref Command
	Overview
	sh_command_log_file
	goal_show_hidden
	goal_enforce_prerequisite
	dq_design_view_type
	collection_display_limit

	Appendix E: CDC Application Commands
	List of CDC Commands

	Appendix: SpyGlass Design Constraints
	Writing Constraints in an SGDC File
	Specifying SGDC File to SpyGlass
	Working with SGDC Files
	Handling of Duplicate Constraint Specifications
	Renamed Constraints
	SpyGlass Design Constraints
	abstract_block_violation
	abstract_file
	abstract_interface_param
	abstract_interface_port
	abstract_port
	activity
	activity_data
	add_fault
	allow_combo_logic
	allow_test_point
	always_on_buffer
	always_on_cell
	always_on_pin
	always_on_path
	antenna_cell
	aon_buffered_signals
	assertion_signal
	associate_lib
	assume_waveform
	assume_path
	atspeed_clock_frequency
	balanced_clock
	blackbox_power
	block
	blocksize

	breakpoint
	bypass
	cdc_attribute
	cdc_check_glitch
	cdc_define_transition
	reset_sense
	cdc_false_path

	cdc_filter_coherency
	cdc_filter_path
	cdc_matrix_attributes

	cell_hookup
	cell_pin_info
	cell_tie_class
	clock
	For SpyGlass CDC solution, SpyGlass Constraints solution, and SpyGlass Auto Verify solution
	For SpyGlass DFT solution, SpyGlass DFT DSM solution
	For SpyGlass Power Verify solution, SpyGlass ERC Product, and SpyGlass Power Estimation and SpyGlass Power Reduction solutions
	clock_buffer
	clock_group

	clock_path_wrapper_module
	clock_pin
	clock_root
	clock_sense
	clock_shaper
	clockgating
	complex_cell
	compressor
	dbist
	decompressor
	define_clock_tree
	define_illegal_input_values
	define_legal_input_values
	define_library_group
	define_macro
	define_reset_order
	define_tag
	For SpyGlass Auto Verify solution and SpyGlass CDC solution
	For SpyGlass DFT solution and SpyGlass DFT DSM solution
	delay_buffer

	deltacheck_ignore_instance
	deltacheck_ignore_module
	deltacheck_start
	deltacheck_stop_instance
	deltacheck_stop_module
	deltacheck_stop_signal
	design_map_info
	dftmax_partition
	dft_report_fault_list
	dft_stitching_exception
	dft_report_coverage
	disable_timing
	disallow_modification_type
	disallow_upf_command
	domain
	domain_inputs
	domain_outputs
	domain_signal
	dont_touch

	expect_frequency
	false_path
	fifo

	force_no_scan
	force_ta
	force_probability
	formal_analysis_filter
	fsm
	gating_cell
	gating_cell_enable
	generated_clock
	glitch_free_module
	gray_signals
	ignore_clock_gating
	ignore_crossing

	ignore_supply_pin
	illegal_constraint_message_tag

	illegal_path
	illegal_value
	initialize_for_bist
	initstate
	input
	input_drive_strength
	input_isocell

	instance_trace
	ip_block
	For SpyGlass CDC solution and SpyGlass Auto Verify Solution
	For SpyGlass DFT solution and SpyGlass DFT DSM solution
	isolation_cell
	isolation_wrapper
	keeper
	latched_port
	levelshifter
	lp_ignore_cells_for_erc
	make_mandatory_upf_commands_options
	mapped_pin_map
	mcp_info
	memory
	memory_force
	memory_port
	memory_inst_port
	memory_read_pin
	memory_tristate
	memory_type
	memory_write_disable
	memory_write_pin
	meta_design_hier
	meta_inst
	meta_module
	meta_monitor_options
	mode_condition
	module_bypass
	module_pin
	monitor_time
	multivt_lib
	network_allowed_cells
	no_atspeed
	no_convergence_check
	no_fault
	no_test_point
	noclockcell_start
	noclockcell_stop_instance
	noclockcell_stop_module
	noclockcell_stop_signal
	non_pd_inputcells
	num_flops
	operating_mode_set
	Example
	output
	output_not_used
	pg_cell
	pg_pins_naming
	pin_voltage
	pll
	port_time_delay

	power_data
	power_down
	power_down_sequence
	power_management_test_control_cell
	power_management_unit
	power_rail_mapping
	power_state
	power_switch
	pr_safe_clocks
	pulldown
	pullup
	qualifier
	quasi_static
	For SpyGlass TXV solution
	For SpyGlass CDC solution
	For SpyGlass Power Family
	quasi_static_style
	ram_instance
	ram_switch

	rdc_false_path
	ref_power_data
	reference_toplevel_isolation_signal
	repeater
	Purpose
	repeater_buffer

	require_constraint_message_tag
	Syntax

	require_path
	require_pulse
	require_stable_value

	require_strict_path
	require_structure

	require_value
	reset
	reset -async

	reset_filter_path
	reset_pin
	reset_synchronizer
	retention_cell
	retention_instance
	rme_config
	set_slew
	force_scan
	force_stable_value
	force_unstable_value
	scan_cell
	scan_chain

	scan_enable_source
	scan_ratio
	scan_type

	scan_wrap
	sdc_data
	For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
	For SpyGlass Constraints solution
	For SpyGlass DFT DSM solution
	validation_filter_path
	For SpyGlass CDC Solution
	select_wireload_model
	seq_atpg
	set
	set_case_analysis

	enable_seq_propagation
	set_cell_allocation
	set_cell_name_pattern
	set_clock_gating_type
	set_fully_decoded_bus
	set_mega_cell
	set_power_info
	stil_data
	sg_multicycle_path

	syn_set_dont_use
	ignore_nets
	ser_data
	safety_related
	non_safety_related

	set_lib_timing_mode
	set_lib_name
	set_monitor_cell
	set_pin
	set_power_scaling
	set_supply_node
	sg_clock_group
	sgdc
	For SpyGlass CDC Solution
	For All Products
	shadow_ratio
	show_power_calc_details
	signal_in_domain
	signal_type
	Control Signal
	Data Signal
	simulation_data
	special_cell
	special_module
	spef_data
	supply
	For SpyGlass Power Verify solution
	For the SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
	switchoff_wrapper_instance
	sync_cell
	sync_reset_style
	test_mode
	For SpyGlass DFT solution and SpyGlass DFT DSM solution
	For SpyGlass STARC Product, SpyGlass STARC02 product, SpyGlass STARC05 product, and SpyGlass STARCad-21 product
	test_point
	tie_x
	tristate_cell
	ungroup_cells
	use_library_group
	voltage_domain
	For SpyGlass DFT DSM Solution
	For SpyGlass Power Verify solution
	For SpyGlass Power Estimation and SpyGlass Power Reduction Solutions
	vt_mix_percentage
	watchpoint
	wireload_selection

