
SpyGlass® lint
Rules Reference Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..19
About This Book .. 19
Contents of This Book ... 20
Typographical Conventions ... 21

Using the Rules in the SpyGlass lint Product23
SpyGlass lint Rule Parameters .. 24

allow_clk_in_condition ...24
allviol...25
casesize ...27
checkblocking ...28
checkfullbus..28
checkfullrecord..29
check_bbox_driver ..30
check_case_type ...30
check_complete_design..31
check_concat_max_width ...32
checkconstassign...32
check_const_selector ...33
check_counter_assignment ...34
check_counter_assignment_turbo..36
checkDriverInModule..36
checknonblocking ..36
check_genvar ...37
check_implicit_senselist ...38
check_initialization_assignment...38
check_latch ..39
check_lrm_and_natural_width...39
checkOperatorOverload ..40
check_param_association ...42
check_shifted_only ..42
check_shifted_width ..43
check_sign_extend ..43
check_static_natural_width...44
v
Synopsys, Inc.

check_static_value...44
checksyncreset..47
check_sequential ...47
check_temporary_flop ..48
check_unsign_overflow...48
concat_width_nf ..49
considerInoutAsOutput ...49
control_sig_detection_nf...50
datapath_or_control...51
do_not_run_W71...52
disable_rtl_deadcode ...52
disable_signal_usage_report ...53
dump_array_bits ...53
fast..54
force_handle_shift_op ..55
flag_only_instance_ports ..55
handle_case_select ..56
handle_equivalent_drivers ..56
handle_large_bus ..57
handle_large_expr ...58
handle_lrm_param_in_shift...58
handle_shift_op...59
handle_static_caselabels...61
handle_zero_padding ...61
ignore_auto_function_return ...62
ignore_bitwiseor_assignment ..62
ignoreCellName ...63
ignore_cond_having_identifier ...64
ignore_equivalent_drivers ...64
ignore_forloop_indexes ..65
ignore_genvar ...65
ignore_generatefor_index ...66
ignore_greybox_drivers ..66
ignore_hier_scope_var ...67
ignore_in_ports ...67
ignore_inout ...68
ignore_integer_constant_labels ...68
ignore_local_variables ..69
ignoreModuleInstance ..69
ignore_nonBlockCondition...70
ignore_macro_to_nonmacro..70
vi
Synopsys, Inc.

ignore_multi_assign_in_forloop ...71
ignore_pli_tasks_and_functions...72
ignore_reinitialization...72
ignore_scope_names ...73
ignoreSeqProcess ..73
limit_task_function_scope...74
new_flow_width ..74
nocheckoverflow..83
not_used_signal ..84
process_complete_condop ..85
report_all_messages..85
report_blackbox_inst ...86
report_cast...86
report_if_blocks_only...87
report_inter_nba ...87
reportLibLatch...88
reportconstassign ..89
report_only_overflow ...89
report_semicolon...90
report_struct_name_only ...91
reportsimilarassgn ...91
set_message_severity..92
sign_extend_func_names ...92
simplesense..93
strict..93
traverse_function ..98
treat_concat_assign_separately...98
treat_latch_as_combinational..99
use_carry_bit..99
use_lrm_width .. 100
use_natural_width ... 101
verilint_compat ... 101
waiver_compat.. 102

SpyGlass lint Product Reports ..104
SignalUsageReport... 104
W448_Report.. 106

verilint Pragmas for SpyGlass lint Product ...107
Reporting Hierarchical Paths..108
Determining Signals Required in the Sensitivity List109
Rule Severity Classes ...111
vii
Synopsys, Inc.

Same or Similar Rules in Other SpyGlass Products 112

Rules in SpyGlass lint..115
Array Rules ... 117

W17 : Prefer full range of a bus/array in sensitivity list. Avoid bits or slices
118

W86 : Not all elements of an array are set..120
W111 : Not all elements of an array are read....................................122
W488 : A bus variable appears in the sensitivity list but not all bits of the

bus are read in the contained block (Verilog)
An array signal appears in the sensitivity list but not all bits of the
array are read in the process (VHDL)................................126

Case Rules... 128
W69 : Ensure that a case statement specifies all possible cases and has a

default clause..129
W71 : Ensure that a case statement or a selected signal assignment has a

default or OTHERS clause..133
W171 : Case label is non-constant. ...139
W187 : The 'default' or 'others' clause should be the last clause in a case

statement ...141
W226 : Case select expression is constant..143
W263 : Reports a case expression width that does not match case select

expression width..146
W332 : Not all cases are covered - default clause will be used.............152
W337 : Reports illegal case construct labels......................................153
W398 : Reports a case choice when it is covered more than once in a case

statement ...156
W453 : Large case constructs should not be used..............................161
W551 : Ensure that a case statement marked full_case or a priority/unique

case statement does not have a default clause...................163
Lint_Reset Rules ... 166

W392 : Reports reset or set signals used with both positive and negative
polarities within the same design unit167

W395 : Multiple asynchronous resets or sets in a process or always may not
be synthesizable ..174

W396 : A process statement has clock signal, but no asynchronous reset
signal ...176

W402 : If you internally generate reset signals, do so in a single module
viii
Synopsys, Inc.

instantiated at the top-level of the design 178
W402a : Synchronous reset signal is not an input to the module......... 180
W402b : Asynchronous set/reset signal is not an input to the module .. 182
W448 : Reset/set is used both synchronously and asynchronously....... 184
W501 : A connection to a reset port should not be a static name......... 188

Lint_Clock Rules...190
W391 : Reports modules driven by both edges of a clock 191
W401 : Clock signal is not an input to the design unit 195
W422 : Unsynthesizable block or process: event control has more than one

clock.. 199
W500 : A connection to a clock port is not a simple name 203

Usage Rules ...204
W34 : Macro defined but never used ... 206
W88 : All elements of a memory are not set 207
W120 : A variable has been defined but is not used (Verilog)

A signal/variable has been declared but is not used (VHDL) . 209
W121 : A variable name collides with and may shadow another variable ...

215
W123 : Identifies the signals and variables that are read but not set ... 219
W143 : Macro has been redefined ... 228
W154 : Do not declare nets implicitly .. 230
W175 : A parameter/generic has been defined but is not used 231
W188 : Do not write to input ports.. 232
W215 : Reports inappropriate bit-selects of integer or time variables ... 233
W216 : Reports inappropriate range select for integer or time variable. 236
W240 : An input has been declared but is not read............................ 239
W241 : Output is never set .. 243
W333 : Unused UDP.. 246
W423 : A port with a range is redeclared with a different range 247
W468 : Index variable is too short .. 249
W493 : A variable is not declared in the local scope, that is, it assumes

global scope.. 250
W494 : Inout port is not used... 252
W494a : Input port is not used... 254
W494b : Output port is not used... 255
W495 : Inout port is never set.. 256
W497 : Not all bits of a bus are set ... 258
W498 : Not all bits of a bus are read ... 260
ix
Synopsys, Inc.

W528 : A signal or variable is set but never read...............................262
W529 : `ifdef is not supported by all tools..269
W557 : Range value and part-selects of parameters should be avoided.

270
W557a : This rule has been deprecated ...271
W557b : This rule has been deprecated ...272
W558 : This rule has been deprecated ...273

Lint_Tristate Rules .. 274
W438 : Ensure that a tristate is not used below top-level of design......275
W541 : A tristate is inferred ...278

Assign Rules.. 279
W19 : Reports the truncation of extra bits ..281
W164 : W164c : LHS width is greater than RHS width of assignment

(Extension) ...286
W257 : Synthesis tools ignore delays...293
W280 : A delay has been specified in a nonblocking assignment..........295
W306 : Converting integer to real ...297
W307 : Converting unsigned (reg type) to real298
W308 : Converting real to integer ...299
W309 : Converting unsigned (reg type) to integer300
W310 : Converting integer to unsigned (reg type)301
W311 : Converting real to unsigned (reg type)302
W312 : Converting real to single bit ..303
W314 : Converting multi-bit reg type to single bit304
W317 : Reports assignment to a supply net......................................305
W336 : Blocking assignment should not be used in a sequential block (may

lead to shoot through) ..307
W397 : Destination of an assignment is an IN port311
W414 : Reports nonblocking assignment in a combinational block312
W446 : Output port signal is being read (within the module)...............316
W474 : Variable assigned but not deassigned318
W475 : Variable deassigned but not assigned320
W476 : Variable forced but not released...321
W477 : Variable released but not forced...323
W484 : Possible loss of carry or borrow due to addition or subtraction..324
W505 : Ensure that the signals or variables have consistent value.330

Function-Task Rules .. 335
W190 : Task or procedure declared but not used...............................336
x
Synopsys, Inc.

W191 : Function declared but not used.. 338
W242 : This rule has been deprecated (Verilog)

A function is calling itself; that is, it is recursive (VHDL) 339
W243 : Recursive task enable .. 340
W345 : Presence of an event control in a task or procedure body may not

be synthesizable.. 342
W346 : Task may be unsynthesizable because it contains multiple event

controls.. 344
W372 : A PLI function ($something) not recognized 345
W373 : A PLI task ($something) is used but not recognized................ 346
W424 : Ensure that a function or a sub-program does not sets a global

signal/variable... 347
W425 : Ensure that a function or a sub-program does not uses a global

signal/variable... 351
W426 : Ensure that the task does not sets a global variable 354
W427 : Ensure that a task does not uses a global variable 357
W428 : Ensure that a task is not called inside a combinational block.... 360
W429 : Task called in a sequential block .. 363
W489 : The last statement in a function does not assign to the function

(Verilog)
The last statement in a function does not assign to the function
(VHDL)... 365

W499 : Ensure that all bits of a function are set................................ 367
Function-Subprogram Rules...369

W416 : Reports functions in which the range of the return type and return
value of a function are not same...................................... 370

Delay Rules ..373
W126 : Do not use non-integer delays... 374
W127 : Delay values should not contain X (unknown value) or Z (high-

impedance state)... 375
W128 : Avoid using negative delays .. 377
W129 : Variable delay values should be avoided 378

Lint_Latch Rules ..380
W18 : Do not infer latches ... 381

Instance Rules ...383
W107 : Do not make bus connections to primitive gates (and, or, xor, nand,

nor, xnor)... 384
xi
Synopsys, Inc.

W110 : Identifies a module instance port connection that has incompatible
width as compared to the port definition386

W110a : Use same port index bounds in component instantiation and entity
declaration..391

W146 : Use named-association rather than positional association to connect
to an instance ...396

W156 : Do not connect buses in reverse order398
W210 : Number of connections made to an instance does not match number

of ports on master ...401
W287a : Some inputs to instance are not driven or unconnected.........404
W287b : Output port to an instance is not connected.........................407
W287c : Inout port of an instance is not connected or connected net is

hanging ..410
W504 : Integer is used in port expression ..412

Synthesis Rules ... 414
AllocExpr : Identifies the allocator expressions which are not synthesizable

417
ArrayEnumIndex : No related reports or files.AssertStmt : Assertion

statements have no significance in synthesis421
badimplicitSM1 : Identifies the sequential logic in a non-synthesizable

modelling style where clock and reset cannot be inferred422
badimplicitSM2 : Identifies the implicit sequential logic in a non-

synthesizable modeling style where states are not updated on
the same clock phase ...425

badimplicitSM4 : Identifies the non-synthesizable implicit sequential logic
where event control expressions have multiple edges428

BlockHeader : Identifies ports and generics in the block statement header
which are not synthesizable...430

bothedges : Identifies the variable whose both the edges are used in an
event control list..433

BothPhase : Identifies the processes that are driven by both the edges of a
clock ..435

ClockStyle : A clocking style is used which may not be synthesizable...438
DisconnSpec : Identifies the disconnection specification constructs which

are not synthesizable ...440
EntityStmt : Statements in entity block may be ignored by some synthesis

tools ..443
ExponOp : This rule has been deprecated.444
ForLoopWait : Identifies the WAIT statements used in FOR-loop constructs
xii
Synopsys, Inc.

which are not synthesizable .. 445
IncompleteType : Identifies the incomplete type declarations which are

not synthesizable... 448
infiniteloop : While/forever loop has no break control 451
InitPorts : Default initial value of in/out/inout port may be ignored by some

synthesis tools .. 453
IntGeneric : Identifies the non-integer type used in the declaration of a

generic which is not synthesizable.................................... 454
LinkagePort : Identifies the linkage ports which are not synthesizable. 456
LoopBound : Identifies the for loop range bounds that are not locally or

globally static.. 458
mixedsenselist : Mixed conditions in sensitivity list may not be

synthesizable (Verilog)
Edge and level conditions are mixed in if statement (VHDL). 460

MultiDimArr : This rule has been deprecated. 462
MultipleWait : Identifies multiple wait statements having the same clock

expression which are not synthesizable............................. 463
NoTimeOut : Identifies the timeout expression in a wait statement, which

is not synthesizable.. 465
PhysicalTypes : Identifies the physical constructs which are not

synthesizable .. 468
PortType : Identifies ports of unconstrained types which are not

synthesizable .. 471
PreDefAttr : Identifies the pre-defined attributes which are not

synthesizable .. 473
readclock : Unsynthesizable implicit sequential logic: clock read inside

always block. .. 475
ResFunction : Identifies the resolution functions which are not

synthesizable .. 476
ResetSynthCheck : This rule group checks all synthesis issues related to

reset.. 478
SigVarInit : Identifies the initial values of signals and variables which are

not synthesizable... 479
SynthIfStmt : Identifies the IF statements which are not synthesizable

482
UserDefAttr : Identifies the user-defined attributes which are not

synthesizable .. 485
W43 : Reports unsynthesizable wait statements................................ 488
W182c : Identifies the time declarations which are not synthesizable... 491
xiii
Synopsys, Inc.

W182g : Identifies the tri0 net declarations which are not synthesizable....
493

W182h : Reports tri1 net declarations that are not synthesizable.........495
W182k : Reports trireg declarations that are not synthesizable497
W182n : Reports MOS switches, such as cmos, pmos, and nmos, that are

not synthesizable ...499
W213 : Reports PLI tasks or functions that are not synthesizable501
W218 : Reports multi-bit signals used in sensitivity list503
W239 : Reports hierarchical references that are not synthesizable505
W250 : Reports disable statements that are not synthesizable507
W293 : Reports functions that return real values...............................510
W294 : Reports real variables that are unsynthesizable......................513
W295 : Reports event variables that are not synthesizable515
W339 : Identity operators and non-constant divisors are not synthesizable.

518
W339a : Case equal operator (===) and case not equal (!==) operators

may not be synthesizable..519
W430 : The "initial" statement is not synthesizable............................522
W442 : This rule group checks all synthesis issues related to reset524
W442a : Ensure that for unsynthesizable reset sequence, first statement in

the block must be an if statement525
W442b : Ensure that for unsynthesizable reset sequence, reset condition is

not too complex...528
W442c : Ensure that the unsynthesizable reset sequence are modified only

by ! or ~ in the if condition..531
W442f : Ensure that the unsynthesizable reset sequence is compared using

only == and != binary operator in the if condition534
W464 : Ensure that the unrecognized synthesis directive is not used in the

design ..537
W496a : Reports comparison to a tristate in a condition expression542
W496b : Reports comparison to a tristate in a case statement545
W503 : An event variable is never triggered548
WhileInSubProg : Reports unsynthesizable While statements used inside

subprograms...549
Expression Rules ... 552

W116 : Identifies the unequal length operands in the bit-wise logical,
arithmetic, and ternary operators.....................................553

W159 : Condition contains a constant expression565
W180 : Zero extension of extra bits...567
xiv
Synopsys, Inc.

W224 : Multi-bit expression found when one-bit expression expected .. 569
W289 : Reports real operands that are used in logical comparisons 571
W292 : Reports the comparison of real operands 573
W341 : Constant will be 0-extended.. 576
W342 : Reports constant assignments that are X-extended 578
W343 : Reports constant assignments that are Z-extended 580
W362 : Reports an arithmetic comparison operator with unequal length....

582
W443 : 'X' value used ... 590
W444 : 'Z' or '?' value used.. 593
W467 : Use of don’t-care except in case labels may lead to simulation/

synthesis mismatch.. 596
W486 : Reports shift overflow operations ... 599
W490 : A control expression/sub-expression is a constant.................. 604
W491 : Reports case expression with a width greater than the specified

value ... 607
W561 : A zero-width-based number may be evaluated as 32-bit number ..

609
W563 : Reduction of a single-bit expression is redundant 610
W575 : Logical NOT operating on a vector.. 611
W576 : Logical operation on a vector... 612

MultipleDriver Rules...613
W259 : Signal has multiple drivers ... 614
W323 : Multiply driven inout net ... 616
W415 : Reports variable/signals that do not infer a tristate and have

multiple simultaneous drivers .. 617
W415a : Signal may be multiply assigned (beside initialization) in the same

scope ... 621
W552 : Different bits of a bus are driven in different sequential blocks. 632
W553 : Different bits of a bus are driven in different combinational blocks.

634
Simulation Rules ..635

W122 : A signal is read inside a combinational always block but is not
included in the sensitivity list (Verilog)
A signal is read inside a combinational process but is not included
in the sensitivity list (VHDL) .. 636

W167 : Module has no input or output ports 645
W456 : A signal is included in the sensitivity list of a combinational always

block but not all of its bits are read in that block (Verilog)
xv
Synopsys, Inc.

A signal is included in the sensitivity list of a process but not all
of its bits are read in that block (VHDL)646

W456a : A signal is included in the sensitivity list of a combinational always
block but none of its bits are read in that block (Verilog)
A signal is included in the sensitivity list of a combinational
process block but none of its bits are read in that block (VHDL).
650

W502 : Ensure that a variable in the sensitivity list is not modified inside the
always block ...654

W526 : Use case statements rather than if/else, where feasible, if
performance is important ..657

Event Rules ... 660
W238 : Mixing combinational and sequential styles............................661
W245 : Probably intended "or", not "|" or "||" in sensitivity list663
W253 : Data event has an edge..665
W254 : Reference event does not have an edge666
W256 : A notifier must be a one-bit register667
W326 : Event variable appearing in a posedge/negedge expression668
W421 : Reports “always” or “process” constructs that do not have an event

control ...670
Loop Rules... 673

W66 : Ensure that a repeat construct has a static control expression....674
W352 : Reports “for” constructs with condition expression..................677
W478 : This rule has been deprecated ...681
W479 : Checks if loop step statement variables are not properly

incremented or decremented ...682
W480 : Ensure that the loop index is of integer type..........................684
W481a : Ensure that a for loop uses the same step variable as used in the

condition ..687
W481b : Ensure that a for loop uses the same initialization variable as used

in the condition..691
Lint_Elab_Rules .. 694

W162 : Extension of bits in constant integer conversion697
W163 : Truncation of bits in constant integer conversion699
W164a : Identifies assignments in which the LHS width is less than the RHS

width ...700
W164b : Identifies assignments in which the LHS width is greater than the

RHS width...722
W316 : Reports extension of extra bits in integer conversion741
xvi
Synopsys, Inc.

W328 : Truncation in constant conversion, without loss of data........... 744
Verilint_Compat Rules..745

W313 : Converting integer to single bit.. 746
W348 : Unspecified width for integer expression in a concatenation..... 747

Miscellaneous Rules ...749
W189 : Nested Synopsys translate_off comments 750
W192 : Empty block.. 752
W193 : Empty statement... 753
W208 : Nested Synopsys translate_on comments 754
W350 : A control character appears inside a string 755
W351 : A control character appears inside a comment 756
W433 : More than one top-level design unit 757
W527 : Dangling else in sequence of if conditions. Make sure nesting is

correct ... 759
W546 : Duplicate design unit.. 761
W701 : Included file is not used.. 762
LINT_abstract01 : Generates relevant base policy constraints for block

abstraction ... 763
LINT_blksgdc01 : Migrates relevant top-level lint constraints to block

boundaries.. 768
LINT_sca_validation : Reports unconstrained port of abstracted block

driven by a constant value from top-level.......................... 771

Appendix:
SGDC Constraints ..777
xvii
Synopsys, Inc.

xviii
Synopsys, Inc.

Preface
About This Book
The SpyGlass® lint Rules Reference Guide describes the SpyGlass rules
that check HDL designs for coding style, language construct usage,
simulation performance, and synthesizability.
19
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass lint Rules Reference Guide consists of the following chapters:

Chapter Describes...
Using the Rules in the SpyGlass
lint Product

The usage concepts and rule
parameters for the SpyGlass lint
product

Rules in SpyGlass lint The SpyGlass Lint Rules
20
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
21
Synopsys, Inc.

Typographical Conventions

Preface
22
Synopsys, Inc.

Using the Rules in the
SpyGlass lint Product
It is recommended to use the Guideware (or other) rule goals to run
specific rules in this product. These goals may be customized for your
specific requirements. It is not recommend to use SpyGlass without
selecting specific rules or goals. In case, if you use SpyGlass in such a
manner, a default set of rules from the product are run. The fast,
fullpolicy, strict, and verilint_compat parameters influence
the rules enabled in this default set.

The SpyGlass® lint product has the following special usage features:
SpyGlass lint Rule Parameters

SpyGlass lint Product Reports

verilint Pragmas for SpyGlass lint Product

Reporting Hierarchical Paths

Rule Severity Classes

Same or Similar Rules in Other SpyGlass Products
23
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
SpyGlass lint Rule Parameters
This section provides detailed information on the SpyGlass lint product rule
parameters.

You can set these parameters in both Atrenta Console and Tcl by using the
following syntax:

set_parameter <parameter_name> <parameter_value>

For more information on setting the parameters, refer to the SpyGlass Tcl
Interface User Guide and Atrenta Console User Guide.

NOTE: Unless specified otherwise, all rule parameters are optional.

allow_clk_in_condition
Specifies whether the W122 rule traverses a combinational block present
inside a sequential block.

By default, the allow_clk_in_condition parameter is set to no.

If you set this parameter to yes, the rule does not traverse a
combinational block present inside a sequential block and does not report a
violation in such cases.

NOTE: The allow_clk_in_condition parameter is supported only for Verilog functionality.

Used by W122

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter allow_clk_in_condition yes

Usage in goal/
source files

-allow_clk_in_condition=yes
24
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
allviol
Specifies whether all or limited number of the W257 (Verilog) rule
messages should be reported.

By default, the allviol rule parameter is unset and the W257 rule
reports only a maximum of 500 messages per design and a maximum of
20 messages per module.

You can set the value of the allviol rule parameter to Yes (to report all
messages) or to No (to report limited messages). You can also set the
value of this parameter to a comma or space-separated list of rules.

NOTE: The actual number of messages reported for a rule is also governed by the
set_option lvpr <rule-name>=<num> command.

The following table lists the rules of SpyGlass products that use the
allviol rule parameter:

Used by W257, W314 (Verilog)
Options yes, no, comma or space-separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter allviol yes

Usage in goal/
source files

-allviol=”W257, W314”

ERC
checkIOPinConnectedToN
et

DisabledAnd DisabledOr

FloatingInputs FlopClockConstant FlopClockUndriven
FlopClockX FlopDataConstant FlopDataUndriven
FlopDataX FlopEConst FlopSRConst
FlopSREX LatchDataConstant LatchDataUndriven
LatchDataX LatchEnableConstant LatchEnableUndriven
LatchEnableX MuxSelConst OutNotUsed
25
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
TristateConst
Lint
W257 W314
MoreLint
BitDataType-ML InlineComment-ML MultiOpInModule-ML
NoArray-ML RedundantLogicalOp-ML ResetPreventSRl-ML
UseBusWidth-ML UseSRLPrim-ML
OpenMORE
CombLoop ConstantComment HardConst
Indent NameLength NoGates
NoTopGates PortComment PortGrpComment
SigHierName SignalComment TypeComment
VariableComment
STARC
STARC-1.1.2.6a STARC-1.1.2.6b STARC-1.2.1.3
STARC-1.5.1.1 STARC-1.5.1.2 STARC-1.5.1.5
STARC-1.6.2.2a STARC-1.6.3.1 STARC-1.6.3.2
STARC-2.3.1.3 STARC-2.7.3.5 STARC-3.1.3.4b
STARC-3.5.6.3b
STARC2002
STARC02-1.1.2.6a STARC02-1.1.2.6b STARC02-1.2.1.3
STARC02-1.5.1.1 STARC02-1.5.1.2 STARC02-1.5.1.5
STARC02-1.6.2.2 STARC02-1.6.3.1 STARC02-1.6.3.2
STARC02-2.3.1.3 STARC02-2.7.3.5 STARC02-3.1.3.4b
STARC02-3.5.6.3b
STARC2005
STARC05-1.1.2.6a STARC05-1.1.2.6b STARC05-1.1.3.3e
STARC05-1.2.1.3 STARC05-1.5.1.1 STARC05-1.5.1.2
STARC05-1.6.2.2a STARC05-1.6.3.1 STARC05-1.6.3.2
STARC05-2.3.1.3 STARC05-3.1.3.4b STARC05-3.1.4.2
26
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
assume_driver_load
Use the assume_driver_load parameter in replacement of
checkDriverInModule parameter.

By default, the assume_driver_load parameter is not set and the
W415 rule does not report a violation, if a net connected to output port of
an instance is not driven inside that instance.

The assume_driver_load parameter performs the rule checking for
the W415 rule based on the following parameter values:

load: Considers the inout and input pins as loads.

driver: Considers inout and output pins as drivers.

both or yes: Considers inout pins as both divers as well as loads.
Output pins are considered as drivers. Input pins are considered as
loads.

casesize
Specifies the maximum permissible width of case selector expression and
the maximum number of case clauses allowed as checked by the W453
rule.

By default, the W453 rule flags case constructs where the case selector
expression is wider than 16 bits and the number of case clauses is more
than 20.

Used by W415
Options no, yes, both, driver, load
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-
based usage

set_parameter assume_driver_load driver
set_parameter assume_driver_load both

Usage in goal/
source files

-assume_driver_load=both
27
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Specify the casesize rule parameter as follows:

set_parameter casesize '8-16'

Please note that the two values specified by the casesize rule parameter
are separated by a hyphen.

checkblocking
Specifies to check for blocking assignment statements only while rule
checking with the W415a rule.

By default, the checkblocking rule parameter is not set and the W415a
rule checks for all kinds of multiple assignment within the same scope.

You can set the value of the checkblocking rule parameter to yes (to
enable the mode) or to no (to disable the mode).

checkfullbus

Used by W453
Options <character-string>
Default value "16-20"
Example
Console/Tcl-
based usage

set_parameter casesize '8-16'

Usage in goal/
source files

-casesize="8-16"

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter checkblocking yes

Usage in goal/
source files

-checkblocking=yes
28
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
The following table describes the impact of this parameter on the SpyGlass
lint product rules:

checkfullrecord
Specifies whether the W456a, W123, W528, W120, and W240 rules should
check for all the elements of a VHDL record.

By default, the checkfullrecord parameter is set to no.

Set this parameter to yes to not report violation for a record:

 W456a: if all elements of the record are not read.

 W123: if at least one element of the record is read and set.

Rule Rule behavior
When the checkfullbus
parameter is set to no

When the checkfullbus
parameter is set to yes

W240 Reports a violation if any bit
of the input port is unread

Reports a violation only when the
entire input port is unread

W120 Reports a violation if any bit
of a variable is defined or
declared but not used in the
current scope of a module
or an architecture

Reports a violation only when all
bits of a variable are completely
unused in the current scope of a
module or an architecture

W528 Reports a violation if any bit
of a variable is set but not
read in the current scope of
a module or an architecture

Reports a violation only when all
bits of a variable are completely
unread in the current scope of a
module or an architecture

Used by W240, W120, W528

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter checkfullbus yes

Usage in goal/
source files

-checkfullbus=yes
29
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
 W528: if at least one element of the record is set and read.

W120: if at least one element of the record is used.

W240: if at least one element of the record is read.

check_bbox_driver
Specifies if the W415 rule should consider the black-box as a driver.

By default, this parameter is set to no and the rule W415 does not consider
black-box as a driver. Set the check_bbox_driver parameter to yes to
consider the black-box as a valid driver.

check_case_type
Specifies the case types on which user want to perform rule checking.

By default, the check_case_type parameter is set to all and W551 rule
reports violation for all three case types, that is, full_case, unique case and

Used by W456a, W123, W528, W120, W240
Options yes, no, comma separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter checkfullrecord yes

Usage in goal/
source files

-checkfullrecord=yes

Used by W415

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_bbox_driver yes

Usage in goal/
source files

-check_bbox_driver=yes
30
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
priority case.

Set the value of the parameter to one or more of the following values as
shown in the table:

You can assign more than one of the above values to the parameter and
rule checking is performed on all case types passed.

Consider the following example:

set_parameter check_case_type 'priority,unique'

In the above example, the W551 rule detects the presence of default
clause in priority cases as well as unique cases.

check_complete_design
Specifies whether the W391 and W392 should check within the complete
design.

By default, check_complete_design parameter is set to no and the
rules W391 and W392 rules checks within the design unit.

You can set the value of check_complete_design parameter to yes

Value Description
priority The W551 rule checks only for priority case.
unique The W551 rule checks only for unique case.
full_case The W551 rule checks only for full_case case.
all The W551 rule checks for priority, unique, and

full_case cases.

Used by W551
Options priority, unique, full_case, all
Default value all
Example
Console/Tcl-
based usage

set_parameter check_case_type full_case

Usage in goal/
source files

-check_case_type="priority"
31
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
to check within the complete design for violations.

check_concat_max_width
Specifies the width to be considered by the W164a and W164b Verilog rules
after adding zero concatenated bits.

If the RHS expression is concatenated with zero bits, by default, no
violation is reported when the width of the LHS expression is present
between the width of the RHS expression without considering zero
concatenated bits and the width of the RHS after adding zero concatenated
bits.

When you set the check_concat_max_width parameter to yes, the
RHS width is considered as the width after adding zero concatenated bits.
That is, the violation is reported if the LHS width does not match the RHS
width after adding zero concatenated bits.

checkconstassign

Used by W391, W392
Options yes, no, comma separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter check_complete_design yes

Usage in goal/
source files

-check_complete_design=yes

Used by W164a, W164b

Options yes, no, comma separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter check_concat_max_width yes

Usage in goal/
source files

-check_concat_max_width=yes
32
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Specifies whether the W415 rule should flag cases where the same constant
value is assigned multiple times.

By default, the checkconstassign rule parameter is set to no, and the
W415 rule ignores cases where a net is driven multiple times by the same
constant value or supply nets.

Set the value of the checkconstassign rule parameter to yes to flag
cases where a net is driven multiple times by the same constant value or
supply nets.

For example, the W415 rule does not report violation in the following case
if the checkconstassign rule parameter is set to no:

assign out = 1'b0;
..
assign out = 1'b0;

check_const_selector
Specifies if the W171 and W226 rules check for the case selector.

By default, the check_const_selector parameter is set to no.

If you set this parameter to yes:

The W171 rule checks weather case selector is constant or not. The
W171 rule does not report any violation if case selector is a constant
and case label belongs to one-hot operation, although case label is a
variable.

Used by W415
Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-
based usage

set_parameter checkconstassign yes

Usage in goal/
source files

-checkconstassign=yes
33
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
The W226 rule checks weather all case labels are one-hot. If so, the rule
dose not report a violation even if the case selector is a constant.

check_counter_assignment
Reports a violation for the counter assignments.

By default, the value of this parameter is set to no and the rule does not
check counter type assignments. Set the
check_counter_assignment parameter to yes to report violation for
counter type of assignments.

When you set the value of the check_counter_assignment parameter to
turbo, an assignment statement is considered as counter type
assignment in the following conditions:

Any constant (including based numbers or parameters) is added to or
subtracted from a variable/signal on the RHS of the assignment.
The variable on RHS matches the variable on the LHS expression, that
is, the same variable is used on both sides, LHS and RHS, of assignment
with same bit-width.

The following settings can be performed to report the counter type of
assignments:

Set the check_counter_assignment parameters to yes.

Verilog RTL: Set the check_static_value parameter to yes to enable rule
checking on static expressions and expressions that have a static part.

Used by W171, W226

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_const_selector yes

Usage in goal/
source files

-check_const_selector=yes
34
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
An assignment expression is considered as counter type assignment if
the following conditions are met:

1 is added to a variable/signal on the RHS of the assignment

The variable on RHS matches the variable on the LHS expression,
that is, the same variable is used on both sides, LHS and RHS, of
assignment with same bit-width

For example, the following assignments are considered as counter type
assignments:

reg [5:0]a, b;
reg [1:0]c, d;
always @(*)
begin
a = a+1;
b = a+1;
a = 1+a;
c[1] = c[1] + 1;
d[1:0] = 1 + d[1:0];
end

The following assignments are not considered as counter type
assignments (as explained with the in-line comments):

reg [5:0]a, b;
reg [1:0]c, d;
always @(*)
begin
a = a+b; //1 is not added to a variable
b[2:0]= a+1; //width of the variable on RHS does not
 match width of LHS

c[1:0]= (c[1]*2)+1; //addition of 1 is with an
 expression instead of variable

d[1:0]= 2 + d[1:0]; //2 is added instead of 1

c[1:0] = 1 + d[1:0]; //RHS variable 'd' does not match
35
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
 with LHS variable 'c'
end

VHDL RTL: Set the strict parameter to yes to enable rule checking on
static expressions and expressions that have a static part.
The check_counter_assignment parameter is enabled only if the
nocheckoverflow parameter is set to no.

NOTE: Consider the following points:

The check_counter_assignment parameter is applicable for the W164a (Verilog
and VHDL) and W164b (VHDL only) rules.
When check_counter_assignment is set to turbo, counters defined by the same
option are not reported by the W164a rule.

check_counter_assignment_turbo
This parameter is deprecated. The functionality of the
check_counter_assignment_turbo parameter is now covered by the turbo
option of check_counter_assignment parameter.

checkDriverInModule
The checkDriverInModule has been deprecated and will be removed
in the next major release. Use the assume_driver_load parameter in
replacement of the checkDriverInModule parameter.

checknonblocking

Used by W164a, W164b, W116
Options yes, no, turbo
Default value no
Example
Console/Tcl-
based usage

set_parameter check_counter_assignment yes

Usage in goal/
source files

-check_counter_assignment = yes
36
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Specifies to check for non-blocking assignment statements only while rule
checking with the W415a rule.

By default, the checknonblocking rule parameter is not set and the
W415a rule checks for all kinds of multiple assignments within the same
scope. It does not distinguish between blocking and nonblocking
assignment statements.

You can set the value of the checknonblocking rule parameter to yes
(to enable the mode) or to no (to disable the mode).

check_genvar
Specifies whether the W116 rule should report violations for genvar
variables.

By default, the check_genvar parameter is set to no and the W116
does not report a violation when the operands are genvar.

When this parameter is set to yes, the W116 rule reports violation for
unequal length operands in the bit-wise logical, arithmetic, and ternary
operators, although operands are genvar. This parameter is applicable for
Verilog only.

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter checknonblocking yes

Usage in goal/
source files

-checknonblocking=yes

Used by W116
Options yes, no
Default value no
Example
37
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
check_implicit_senselist
Specifies whether the W502 rule reports violation for always @* and
always_comb.

By default, the W502 rule does not report violation for always @* and
always_comb.

Set the value of the check_implicit_senselist parameter to yes
to report violation for such cases.

check_initialization_assignment
By default, the rule W415a reports a violation for the following cases:

when an entire vector is initialized with an initialization value and a
subset of the vector is overwritten.
when an entire packed struct is initialized with an initialization value and
a subset of the struct is overwritten.

Set the value of the parameter to yes to disable the violations for the
above cases.

Console/Tcl-
based usage

set_parameter check_genvar yes

Usage in goal/
source files

-check_genvar=yes

Used by W502
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_implicit_senselist yes

Usage in goal/
source files

-check_implicit_senselist=yes
38
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
However, at this parameter value (yes), the rule reports a violation when:

a vector is initialized with an initialization value and the entire vector is
assigned again with another value.
a violation when a packed struct is initialized with an initialization value
and the entire packed struct is assigned again with another value.

check_latch
Specifies whether the W392 rule check for the non-edge triggered cases.

By default, this parameter is set to no and the W392 rule reports the edge
triggered cases only.

Set the check_latch parameter to yes to enable the W392 rule to report
the non-edge triggered cases also.

check_lrm_and_natural_width

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_initialization_assignment yes

Usage in goal/
source files

-check_initialization_assignment=yes

Used by W392
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_latch yes

Usage in goal/
source files

-check_latch=yes
39
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Enables the W164a and W164b rules to calculate both LRM and natural
width before reporting violation for the assignment statement. If any of
these width matches with RHS, then no violation is reported for the
assignment.

checkOperatorOverload
Specifies whether the W116 rule reports inconsistent bit-width mismatch
and the W164a and W164b rules evaluate width of the expression without
considering overloaded operators.

This parameter is applicable for VHDL rules only.
For the W116 rule:

By default, the checkOperatorOverload parameter is set to yes
and the W116 rule does not report inconsistent bit-width mismatch for
the overloaded operators from non-IEEE packages. Set the value of this
parameter to no to report violations in such cases.

For the W164a and W164b rules:

By default, the checkOperatorOverload parameter is set to yes
and the W164a and W164b rules evaluate the width of the expression
considering the overloaded operator. Set this parameter to no to
evaluate width of the expression without considering overloaded
operators.

Used by W164a, W164b
Options yes, no
Default value no
Example
Console/Tcl-
based example

set_parameter check_lrm_and_natural_width yes

Usage in goal/
source files

-check_lrm_and_natural_width=yes

Used by W116, W164a, W164b
Options yes, no, comma separated list of rules
Default value yes
40
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Example
Console/Tcl-
based usage

set_parameter checkOperatorOverload no

Usage in goal/
source files

-checkOperatorOverload=no
41
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
check_param_association
Specifies whether the W146 rule reports violation for parameters in
instantiation.

By default, the value of the parameter is set to no and the W146 rule does
not report violation for parameter instances.

Set the value of the parameter to yes to report such cases.

check_shifted_only
This parameter has been deprecated and its functionality is covered by the
handle_shift_op parameter. The following table describes the corresponding
values of both the parameters for your reference:

Used by W146
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter check_param_association yes

Usage in goal/
source files

-check_param_association=yes

check_shifted_only
Parameter Values

Corresponding
handle_shift_op
Parameter Values

Description

yes,
both,
<Rule-Name>

shift_both or
<Rule-Name>

Shifted width is considered
for the both, left and right
shift expressions

left shift_left Shifted width is considered
only for the left shift
expressions

right shift_right Shifted width is considered
for the right shift
expressions only

no no Default behavior
42
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
check_shifted_width
Specifies whether to consider the natural width of the left operand for a left
shift expression.

By default, this parameter is set to no and for a left shift expression, the
W486 rule evaluates the default width as 32 bits if left operand is constant
integer and right operand is non static.

Set this parameter to yes to consider the natural width of the left operand
in such a case.

check_sign_extend
Checks for width mismatch due to sign extension in signed comparisons.

NOTE: The check_sign_extend parameter is valid for the Verilog functionality of the W362
rule.

By default, this parameter is set to no and the W362 rule does not check
for width mismatch due to sign extension in signed comparisons.

Set this parameter to yes or W362 to check for width mismatch due to
sign extension in signed comparisons.

Used By W486
Options yes, no, comma separated list of rules
Default Value no
Example
Console/Tcl-
based usage

set_parameter check_shifted_width yes

Usage in goal/
source files

-check_shifted_width=yes

Used By W362
Options yes, no, W362
Default Value no
Example
43
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
check_static_natural_width
Enables the specified rule to check for natural width of a static expression
even when the value of the nocheckoverflow parameter is set to yes.

check_static_value
Enables the W164a, W164b, W116, and W362 rules to report a violation for
static expressions and non-static expressions that contain static
expressions.

By default, this parameter is set to no. In this case, the specified rules do
not report a violation for static expressions and non-static expressions that
contain static expressions.

In addition, the parameter enables the W484 rule to report a violation for
static expressions and non-static expressions that contain static
expressions, irrespective of the value of the new_flow_width parameter.

Other possible values are only_const and only_expr.
NOTE: The check_static_value parameter is valid for Verilog rules W164a, W164b, W116,

and W362, and VHDL rule W116.

The following table describes the options supported by the
check_static_value parameter:

Console/Tcl-
based usage

set_parameter check_sign_extend yes

Usage in goal/
source files

-check_sign_extend=yes

Used By W164a, W164b
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter check_static_natural_width yes

Usage in goal/
source files

-check_static_natural_width=yes
44
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Parameter
Value

Rule Behavior

only_const Rules report violations for cases that involve static expressions.
For example:
set_parameter check_static_value only_const
In the above example, all the affected rules report violations for
cases that involve static expressions.
Specify the value followed by the rule names to enable the
specified rules to report violations for this parameter value. For
example:
set_parameter check_static_value only_const,W164a,W116
In the above example, the W164a and W116 rules report
violations for cases that involve static expressions.

only_expr Rules report violations for non-static expressions that contain a
static part. For example:
set_parameter check_static_value only_expr
In the above example, all the affected rules report violations for
non-static expressions that contain a static part.
Specify the value followed by the rule names to enable the
specified rules to report violations for this parameter value. For
example:
set_parameter check_static_value only_expr,W164b
In the above example, the W164b rule reports a violation for non-
static expressions that contain a static part.

only_static Rule will not report violation for expressions, which dose not have
any static part.

yes All the affected rules report violations for all cases of width
mismatch, involving static expressions and non-static expressions
that contain a static part.

<rule_list> Specified rules report violations for all cases of width mismatch,
involving static expressions and non-static expressions that
contain a static part.
Set the value of the parameter to the list of rules:
set_parameter check_static_value W164b,W116,W362

This sets the parameter to yes for the W164b, W116 and W362
rules.
45
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
\

Consider the following example:

module TEST();
wire [7:0] sig1, sig2;

assign sig1 = 8'hFF + 2'b10; //CASE A
assign sig1 = sig2 + 8'hFF; //CASE B

endmodule

Assume that you want to specify the parameter only for the W164a rule.

In the above example, if the check_static_value parameter is set to yes or
rule name, the W164a rule reports a violation in both CASE A and CASE B.

If you want to report a violation for CASE B, that is, for non-static
expressions having a static part, set the check_static_value parameter as

no None of the rules report violations for static expressions or
non-static expressions that contain static expressions.

Setting
different
values for
rules

This parameter can be set to different value for different rules,
for example:
set_parameter check_static_value
only_expr,W116,W362,only_const,W164b,yes,W484,W164a

This sets the parameter to only_expr for the W116 and W362
rules, only_const for the W164b rule and yes for the W484,
and W164a rules.

Used by W164a, W164b, W116, W362, W484

Options yes, no, only_const, only_expr, only_static, comma separated
list of rules

Default value no
Example
Console/Tcl-
based usage

set_parameter check_static_value W164a, W116

Usage in goal/
source files

-check_static_value=only_expr

Parameter
Value

Rule Behavior
46
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
shown below:

set_parameter check_static_value only_expr,W164a

However, if you want to report a violation for CASE A, that is, for cases
involving static expressions, set the check_static_value parameter as
shown below:

set_parameter check_static_value only_const,W164a

checksyncreset
Specifies whether the W392 rule flags or ignores synchronous resets.

By default, the checksyncreset rule parameter is set to yes and the
W392 rule considers synchronous resets for rule checking.

You can set the value of the checksyncreset rule parameter to yes (to
consider synchronous resets) or to no (to ignore synchronous resets).

check_sequential
Specifies whether the W71 rule checks sequential block for missing default.

By default, the check_sequential rule parameter is set to no and the
W71 rule does not check for missing default in case construct inside
sequential block.

You can set the value of the check_sequential rule parameter to yes
(to see violations of sequential block) or to no (to ignore violations of
sequential block).

Used by W392
Options yes, no
Default value yes
Example
Console/Tcl-
based usage

set_parameter checksyncreset no

Usage in goal/
source files

-checksyncreset=no
47
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
check_temporary_flop
Specifies whether the W336 rule reports a violation for temporary flip-flops.

By default, the check_temporary_flop parameter is set to no and the
W336 rule does not report violations for temporary flip-flops.

Set the value of the check_temporary_flop parameter to yes to
report temporary flip-flops.

check_unsign_overflow
Specifies whether the W164a and W164b rules suppress overflow in
unsigned signals due to sign extension.

By default, this parameter is set to no. This indicates the rule suppresses
the overflow when sign extension is used for unsigned signals in addition or

Used by W71
Options yes, no
Default value no
Example
Console/Tcl-
based example

set_parameter check_sequential yes

Usage in goal/
source files

-check_sequential=yes

Used by W336
Options yes, no
Default value no
Example
Console/Tcl-
based example

set_parameter check_temporary_flop yes

Usage in goal/
source files

-check_temporary_flop=yes
48
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
subtraction operation.

If you set this parameter to yes or <rule-name>, the rule does not
suppress the overflow when sign extension is used for unsigned signals in
addition or subtraction operation.

NOTE: Irrespective of the value of this parameter, the rule suppresses the overflow when
sign extension is used for signed signals in addition or subtraction operation.

concat_width_nf
Enables the W164a rule to use new algorithm to calculate the width of
concatenations ignoring the self-determined nature of concatenation items.

By default, this parameter is set to no. Set this parameter to yes to enable
the rule to calculate the width of concatenations ignoring the self
determined nature of the concatenation items.

considerInoutAsOutput

Used by W164a, W164b

Options yes, no, <rule-name>
Default value no
Example
Console/Tcl-
based example

set_parameter check_unsign_overflow yes

Usage in goal/
source files

-check_unsign_overflow=yes

Used by W164a
Options yes, no

Default value no
Example
Console/Tcl-
based example

set_parameter concat_width_nf no

Usage in goal/
source files

-concat_width_nf=no
49
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Enables the W122 rule to consider the inout port as output port. Therefore,
the signal, which is passed to that port is considered as set.

By default, the value of the considerInoutAsOutput parameter is no. In this
case, the W122 rule considers the inout port as both input and output.
Therefore, the signal that is passed to the inout port is considered as both
read and set.

NOTE: This parameter is applicable only for VHDL.

Set the value of the parameter to yes to consider the inout port as output
port.

control_sig_detection_nf
Defines the control signal detection to be done by the W164a rule.

By default, the control_sig_detection_nf parameter is set to no.

If you set this parameter to yes, the rule treats a signal to be a control
signal only if it is used in a conditional operator or control binary operator
within the scope of currently processing statement. The rule does not
consider the signal to be a control signal even if it is used as a control
signal in other places of the module (that is, the statements other than the
current statement).

Used by W122
Options yes, no
Default value no
Example
Console/Tcl-
based example

set_parameter considerInoutAsOutput yes

Usage in goal/
source files

-considerInoutAsOutput=yes

Used by W164a
Options yes, no
Default value no
Example
50
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
datapath_or_control
Specifies whether the W164a rule should check the specified type of
signals.

By default, the datapath_or_control parameter is set to no and the
rule reports violations for all type of signals.

Set this parameter to datapath, control, or all to specify the type of
signals to be checked.

The following are the details of the possible values of this parameter:
no: This is the default value. Existing violation message are reported.

all: The W164a rule checks for all type of signals (both datapath and
control signals) at the LHS of assignment, which is the same as the
existing behavior. The violation messages mention the type of the
signals on the LHS of the assignment (datapath or control).
datapath: Only datapath signals are checked and violation messages
mention the type of the signals (datapath signal) at the LHS of the
assignment.
control: Only control signals are checked and violation messages
mention the type of signals (control signal) at the LHS of the
assignment.

Console/Tcl-
based example

set_parameter control_sig_detection_nf yes

Usage in goal/
source files

-control_sig_detection_nf=yes

Used by W164a

Options datapath, control, all, no
Default value no
Example
51
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
do_not_run_W71
Specifies whether to run W71 (Verilog) rule or not. This parameter is
provided to block duplicate violation in case the W69 and W71 rules are run
in mixed mode (Verilog, VHDL).

By default, the do_not_run_W71 rule parameter is set to no and W71
(Verilog and VHDL) rule is run.

You can set the value of the do_not_run_W71 parameter to yes to
block W71 (Verilog) rule.

disable_rtl_deadcode
The disable_rtl_deadcode parameter specifies whether to report a violation
for disabled code in loops and conditional (if condition, ternary operator)
statements.

NOTE: The disable_rtl_deadcode parameter is valid for both Verilog and VHDL.

By default, this parameter is set to no and the respective rules report a
violation for disabled code in loops and conditional (if condition, ternary
operator) statements.

Set this parameter to yes to disable violations for disabled code in loops

Console/Tcl-
based example

set_parameter datapath_or_control all

Usage in goal/
source files

-datapath_or_control=all

Used by W71
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter do_not_run_W71 yes

Usage in goal/
source files

-do_not_run_W71=yes
52
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
and conditional (if condition, ternary operator) statements.

disable_signal_usage_report
Use this parameter to disable the generation of data for the specific rule for
the SignalUsageReport report.

By default, the value of this parameter is no. In this case, all rule related
data is reported in the SignalUsageReport report.

dump_array_bits
Specified whether the W123 rule should report the multi-dimensional signals/
bits information.

By default, the dump_array_bits parameter is set to no.

Used By W116, W164a, W164b, W164c, W362, W484, W486, W456a
Options yes, no, <rule-name>
Default Value no
Example
Console/Tcl-
based usage

set_parameter disable_rtl_deadcode yes

Usage in goal/
source files

-disable_rtl_deadcode=yes

Used By W241, W528
Options yes, no, <rule-name>
Default Value no
Example
Console/Tcl-
based usage

set_parameter disable_signal_usage_report {W241}

Usage in goal/
source files

-disable_signal_usage_report=W241
53
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Set this parameter to yes, to enable the W123 rule to include multi-
dimensional signals/bits information in the violation message.

This parameter is applicable to VHDL only.

fast
Specifies to suppress the synthesis of the source RTL description. If this
parameter is set, the following rules are not run:

By default, the fast rule parameter is not set. Thus, the source RTL
description is synthesized and the above rules are run.

You can set the value of the fast rule parameter to Yes to (suppress
synthesis) or to No (to synthesize the source RTL description).

For the W414 and W428 rules, the fast rule parameter is not set by default
and the synthesis version of these rules is run. Set the value of the fast
parameter to Yes to suppress the synthesis and execute the RTL version
of the W414 and W428 rules.

Used By W123
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter dump_array_bits yes

Usage in goal/
source files

-dump_array_bits=yes

W18 W287a W287b W323 W336 W391 W392
W396 W401 W402 W402b W415 W438 W448
W541
54
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
force_handle_shift_op
Enables the W164a rule to honor the handle_shift_op parameter even if the
nocheckoverflow parameter is set.

By default, the force_handle_shift_op parameter is set to no.

Set this parameter to yes to enable the W164a rule to honor
handle_shift_op parameter value even if the nocheckoverflow parameter is set
to yes.

flag_only_instance_ports
Enables the W446 rule to report violation for module output ports that are
connected to instance input pin.

Used by W18, W287a, W287b, W323, W336, W391, W392, W396,
W401, W402, W402b, W414, W415, W428, W438, W448,
W541

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter fast yes

Usage in goal/
source files

-fast=yes

Used By W164a
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter force_handle_shift_op yes

Usage in goal/
source files

-force_handle_shift_op=yes
55
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
handle_case_select
Enables you to specify the maximum width of case selector that the
supported rule should process.

You can specify any integer value as an input to the parameter. By default,
the parameter is set to 64. Set the value to -1 to enable the supporting
rules to process case statements with any case selector width.

If the width of a case selector is greater than the value specified for the
handle_case_select parameter, the rules ignore the case statement and
reports a violation.

handle_equivalent_drivers
Enables the W415 rule to report violations when a net is simultaneously
driven by two identical instances of two input gates of type BUFF, NOT, OR,
NOR, AND, or, NAND and both instances are driven by same input signals.

By default, the value of the parameter is set to no. In this case, the rule

Used By W446
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter flag_only_instance_ports yes

Usage in goal/
source files

-flag_only_instance_ports=yes

Used by W69, W71
Options Any integer value
Default value 64
Example
Console/Tcl-
based usage

set_parameter handle_case_select 23

Usage in goal/
source files

-handle_case_select=23
56
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
will not report violation for above scenario.

Set the value of the parameter to yes to report violations when a net is
simultaneously driven by two identical instances of two input gates of type
BUFF, NOT, OR, NOR, AND, or, NAND and both instances are driven by
same input signals.

For example, consider the following assignment statements:

assign a = b & c;

assign a = b & c;

The W415 rule will report violation for above assignments when the value
of the handle_equivalent_drivers parameter is set to yes.

handle_large_bus
The handle_large_bus parameter specifies whether to check large
arrays.

By default, this parameter is set to no and the respective rules do not
process large arrays.

Set this parameter to yes to process large arrays (greater than 50,000)
and report violation if not used correctly. If you set this parameter to
<rule-name>, the handle_large_bus parameter performs the
check for that particular rule only.

Used By W415
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_equivalent_drivers yes

Usage in goal/
source files

-handle_equivalent_drivers=yes

Used By W111, W120, W123, W240, W241, W446, W494, W495,
W528

Options yes, no, <rule-name>
57
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
handle_large_expr
Specifies whether the W484 rule should handle large expressions.

By default, if the RHS expression is a binary expression and each term is a
concatenation expression padded with zero bits, the rule checks for
overflow while considering zero padded bits. That is, violation is not
reported if the actual width of the expression can be accommodated in zero
padded bits.

When the handle_large_expr parameter is set to yes, the W484 rule
limits this checking for expressions containing up to 25 terms and for
larger expressions, the LRM width is considered.

handle_lrm_param_in_shift
Specifies whether the W164a rule should honor use_lrm_width parameter in
the width calculations of shift expressions.

By default, the handle_lrm_param_in_shift parameter is set to no.

Set this parameter to yes to enable the W164a rule to honor the
use_lrm_width parameter in the width calculations of shift expressions.

Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_large_bus yes

Usage in goal/
source files

-handle_large_bus=yes

Used By W484
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_large_expr yes

Usage in goal/
source files

-handle_large_expr=yes
58
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
handle_shift_op
Specifies whether to consider shifted or non-shifted width of a shift
expression.

By default the handle_shift_op parameter is set to no. In this case,
both the shifted and non-shifted widths of a left or right shift expression
are compared and no violation is reported if any of these widths matches
the LHS expression. But, the rule does not calculate shifted width, if the
RHS of the shift expression is non-static.

NOTE: This parameter is effective when the nocheckoverflow parameter is set to no.

The handle_shift_op parameter can be set to shift_left,
shift_right, shift_both, no_shift, no, no_shift_forced, or
comma separated list of rule names, to compare shifted and non-shifted
widths of a left or right shift expression.

The behavior of these options is as follows:

shift_left: Shifted width is considered for those left-shift
expressions that have the RHS of shift expression as either static or
non-static. For example:

set_parameter handle_shift_op shift_left

In this case, the parameter will be set to shift_left for all the rules
that use this parameter.
Or

set_parameter handle_shift_op shift_left, W164b, W110

In this case, the parameter will be set to shift_left for the specified

Used By W164a
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_lrm_param_in_shift yes

Usage in goal/
source files

-handle_lrm_param_in_shift=yes
59
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
rules only.

shift_right: Shifted width is considered for those right-shift
expressions that have the RHS of shift expression as static. For
example:

set_parameter handle_shift_op shift_right

Or

set_parameter handle_shift_op shift_left,W164a,W110

shift_both: Shifted width is considered for both left and right shift
expressions, as stated above for parameter values shift_left and
shift_right. For example:

set_parameter handle_shift_op shift_both

Or

set_parameter handle_shift_op shift_both,W164b,W110

Comma separated list of rules: This sets the value of the
parameter to shift_both for the specified rules. For example:

set_parameter handle_shift_op W164b,W110,W164a

no_shift: Non-shifted width is considered for both left and right shift
expressions, that is, the width of the LHS of shift expression is
considered. This is applicable only for those shift expressions that have
the LHS as non static and the RHS as static. For example:

set_parameter handle_shift_op no_shift

Or

set_parameter handle_shift_op no_shift,W164b,W164a

no: Default behavior.

no_shift_forced: Checks for the non-shifted width of the shift
operator regardless of the staticness of the RHS and LHS expression of
the shifted operation.
This parameter can also be set to different values for different rules, for
example:

set_parameter handle_shift_op
shift_left,W110,W164b,shift_both,W164a
60
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
This sets the parameter to shift_left for the W110 and W164b rules
and shift_both for the W164a rule.

NOTE: This parameter is applicable for both Verilog and VHDL.

handle_static_caselabels
Specifies whether the W263 rule should ignore static case labels having less
width than the case selector.

By default, the handle_static_caselabels parameter is set to no.

Set this parameter to yes to ignore violations for static case labels, which
are of less width than the width of case selector when case labels are
parameters.

handle_zero_padding

Used By W164a, W164b, W110
Options shift_left, shift_right, shift_both,

no_shift, no, no_shift_forced, rule
name

Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_shift_op shift_left

Usage in goal/
source files

-handle_shift_op=shift_left

Used By W263
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_static_caselabels yes

Usage in goal/
source files

-handle_static_caselabels=yes
61
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Performs leading zero expansion and truncation of RHS of an assignment.
This is performed only if the RHS of the assignment is static. This
parameter also considers the width specified by the width specifier of
sized-base numbers when handling zero padding.

ignore_auto_function_return
Allows the W499 rule to ignore name of automatic functions to be set in all
branches of function body. That is, if this parameter is set while the
function is automatic, and all other outputs are assigned in all branches,
then no violation is reported.

By default, the value of this parameter is no. In this case, the W499 rule
reports the automatic function name when the return-by-function-name is
not specified in all the branches in the function body.

ignore_bitwiseor_assignment
Specifies whether the W415a rule reports violations for a bitwise or

Used By W164a, W164b, W362
Options yes, no, <rule_name>
Default Value no
Example
Console/Tcl-
based usage

set_parameter handle_zero_padding no

Usage in goal/
source files

-handle_zero_padding=no

Used By W499
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter ignore_auto_function_return yes

Usage in goal/
source files

-ignore_auto_function_return=yes
62
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
assignment inside the for loop that is assigned multiple times on the
same line.

By default, the value of the ignore_bitwiseor_assignment is set to
no and the rules report a violations for a bitwise or assignment inside
the for loop that is assigned multiple times on the same line.

Set the value of the parameter to yes to not to report violations in such
cases.

ignoreCellName
Specifies the modules that should be ignored by the W336 rule.

By default, the ignoreCellName parameter is not set.

Set this parameter to a comma separated list of PERL regular expressions
containing names of the modules that should be ignored by the W336 rule.

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_bitwiseor_assignment yes

Usage in goal/
source files

-ignore_bitwiseor_assignment=yes

Used By W336
Options Comma separated list of PERL regular expressions
Default Value ""
Example
Console/Tcl-
based usage

set_parameter ignoreCellName "module_1,mod_*"

Usage in goal/
source files

-ignoreCellName="module_1,mod_*"
63
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
ignore_cond_having_identifier
Specifies whether the W159 rule should ignore the constants defined by
parameters, localparams or constant integers.

By default, the value of the ignore_cond_having_identifier is set
to no and the W159 rule considers constants defined by parameters,
localparams or constant integers, for rule checking.

Set the value of this parameter to yes to not report violation for such
constants.

ignore_equivalent_drivers
Ignores violation for a net, which is:

Driven by two identical instances of basic two input gates of type OR/
NOR/AND/NAND.
both instances are driven by same input signals.

By default, the value of the parameter is yes. In this case, the rule ignores
violation for such nets.

Set the value of the parameter to no to report violation for such nets as
stated above.

For example, the W415 rule does not report violation for the following
scenario when the value of the ignore_equivalent_drivers parameter is set
to yes.

assign a = b & c;

assign a = b & c;

Used by W159
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_cond_having_identifier yes

Usage in goal/
source files

-ignore_cond_having_identifier=yes
64
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
ignore_forloop_indexes
Specifies whether the W116 rule should ignore the for expressions that
contain index variables of for loops.

By default, the value of the ignore_forloop_indexes is set to no
and the W116 reports the for expressions that contain index variables of
for loops.

Set the value of this parameter to yes to not report violation for such
cases.

ignore_genvar
Specifies whether the W121 rule should ignore violations for variable
shadowed by genvar variables.

By default, the value of the ignore_genvar parameter is set to no and
the W121 rule reports violations for variables shadowed by genvar

Used by W415
Options yes, no
Default value yes
Example
Console/Tcl-
based usage

set_parameter ignore_equivalent_drivers no

Usage in goal/
source files

-ignore_equivalent_drivers=no

Used by W116
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_forloop_indexes yes

Usage in goal/
source files

-ignore_forloop_indexes=yes
65
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
variables.

Set the value of this parameter to yes to not report violation for such
cases.

ignore_generatefor_index
Specifies whether the W226 rule should ignore for case statements inside
generte-for blocks if the case selector is a loop variable of
generate-for loop.

By default, the value of the ignore_generatefor_index parameter
is set to no.

Set the value of this parameter to yes to ignore violations for case
statements inside generte-for blocks, if the case selector is a loop
variable of generate-for loop.

ignore_greybox_drivers

Used by W121
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_genvar yes

Usage in goal/
source files

-ignore_genvar=yes

Used by W226
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_generatefor_index yes

Usage in goal/
source files

-ignore_generatefor_index=yes
66
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Enables the W415 rule to do not consider greybox as a valid driver,

By default, the value of the parameter is no. Default value is no. If the
value of the parameter is set to yes, the W415 rule will not consider
greybox as a valid driver.

ignore_hier_scope_var
Specifies whether the W123 rule should ignore user-defined data types.

By default, the value of the ignore_hier_scope_var is set to no and
the W123 rule reports all user-defined data types.

Set the value of this parameter to yes to not report any violation for user-
defined data types. This parameter is applicable for Verilog only.

ignore_in_ports
Specifies whether the W111 considers input and inout ports for rule
checking.

Used by W415
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_generatefor_index yes

Usage in goal/
source files

-ignore_generatefor_index=yes

Used by W123
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_hier_scope_var yes

Usage in goal/
source files

-ignore_hier_scope_var=yes
67
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
By default, the value of the ignore_in_ports is set to no and the
W111 rule considers input and inout ports for rule checking.

Set the value of the parameter to yes to ignore input and inout ports for
rule checking.

ignore_inout
Specifies whether the W210 rule should ignore the inout ports.

By default, the value of the ignore_inout is set to no and the W210
rule considers inout ports for rule checking.

Set the value of this parameter to yes to not report any violation for the
inout ports.

ignore_integer_constant_labels
Use this parameter to ignore violations for constant case labels of integer
type.

Used by W111
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_in_ports yes

Usage in goal/
source files

-ignore_in_ports=yes

Used by W210
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_inout yes

Usage in goal/
source files

-ignore_inout=yes
68
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
ignore_local_variables
Specifies whether the W336 rule should ignore variables defined inside the
sequential blocks.

By default, the value of the ignore_local_variables parameter is
set to no and the W336 rule reports violations for variables (left hand side
of the assignment) defined inside the sequential block.

Set the value of this parameter to yes to ignore violations for such cases.

ignoreModuleInstance
Specifies whether the W123 rule flags or ignores the unset variables that
are only used in instance port mapping.

By default, the ignoreModuleInstance rule parameter is set to no
and the W123 rule flags the unset variables that are also used in instance

Used by W263
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_integer_constant_labels yes

Usage in goal/
source files

-ignore_integer_constant_labels=yes

Used by W336
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_local_variables yes

Usage in goal/
source files

-ignore_local_variables=yes
69
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
port mapping.

Set the value of the ignoreModuleInstance rule parameter to yes to
ignore the unset variables that are only used in instance port mapping.

ignore_nonBlockCondition
Specifies whether the W415a rule reports or ignores non-blocking
assignments to a variable inside a conditional construct, if the variable is
also assigned in a non-blocking manner before the conditional construct.

By default, the parameter is not set and the rules report conditions.

You can set the value of the ignore_nonBlockCondition parameter
to yes (to ignore such conditions) or to no (to flag such conditions).

ignore_macro_to_nonmacro

Used by W123
Options yes, no
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-
based usage

set_parameter ignoreModuleInstance yes

Usage in goal/
source files

-ignoreModuleInstance=yes

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_nonBlockCondition yes

Usage in goal/
source files

-ignore_nonBlockCondition=yes
70
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Enables the W121 rule to ignore name matching for macro to non-macro
names. However, the W121 rule still checks for the macro to macro name
matching.

ignore_multi_assign_in_forloop
Specifies whether the W415a rule checks inside a for loop for multiple
assignments on the same line.

When this parameter is set to Yes, the rules do not report a violation for a
signal in the for loop that is assigned multiple times on the same line.

By default, the value of the ignore_multi_assign_in_forloop
parameter is set to no and the rules report a violation for multiple
assignments on the same line.

Consider the following example:

reg a, b, c;
for(i = 0; i < 2; i = i + 1)
begin
a = a + 1;

end

In the above example, the rules, in default mode, reports a violation for
signal a assigned in the for loop. But, when the
ignore_multi_assign_in_forloop parameter is set to Yes, no
violation is reported for multiple assignments on the same line in the for
loop.

Used by W121
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_macro_to_nonmacro yes

Usage in goal/
source files

-ignore_macro_to_nonmacro=yes
71
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
ignore_pli_tasks_and_functions
Specifies the PLI tasks and functions that should be ignored by the W213
rule.

By default, the ignore_pli_tasks_and_functions parameter is
not set.

Set this parameter to a comma-separated list of PLI tasks or functions that
should be ignored by the W213 rule.

ignore_reinitialization
Specifies whether the W415a rule should ignore violations for re-
initialization assignments inside the for loops.

By default, the ignore_reinitialization parameter is not set and

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_multi_assign_in_forloop yes

Usage in goal/
source files

-ignore_multi_assign_in_forloop=yes

Used by W213
Options Comma-separated list of PLI task or function names
Default value ""
Example
Console/Tcl-
based usage

set_parameter ignore_pli_tasks_and_functions
display,initial

Usage in goal/
source files

-ignore_pli_tasks_and_functions=display,initial
72
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
the rules report violations for re-initialization when the
check_initialization_assignment parameter is set to yes. Set this parameter
to yes to ignore violations for re-initialization assignments inside the for
loops.

ignore_scope_names
Specifies whether the W121 rule should ignore rule checking on scope
names.

By default, the ignore_scope_names parameter is not set and the
W121 rule checks for scope names.

Set this parameter to yes to ignore rule checking on scope names.

ignoreSeqProcess
Specifies whether the W122 rule checks inside the sequential process block.

By default, the value of the ignoreSeqProcess parameter is set to no and

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_reinitialization yes

Usage in goal/
source files

-ignore_reinitialization=yes

Used by W121
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignore_scope_names yes

Usage in goal/
source files

-ignore_scope_names=yes
73
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
the W122 rule ignores the signals read inside clock condition, but reports
violation for the signals read inside other conditions in sequential block.

You can set the value of the parameter to yes to ignore all signals read
inside sequential process block.

limit_task_function_scope
Use this parameter to ignore rule checking if a signal is declared with
function/task scope as well as with module scope.

new_flow_width
The new_flow_width parameter specifies the new width flow. By default,
this parameter is set to yes. This indicates the new width related changes
are executed by default.

Set this parameter to no to calculate the width of expressions by using the
width calculation algorithm of the SpyGlass 4.4.1 release.

Used by W122
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter ignoreSeqProcess yes

Usage in goal/
source files

-ignoreSeqProcess=yes

Used by W121
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter limit_task_function_scope yes

Usage in goal/
source files

-limit_task_function_scope=yes
74
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Set this parameter to a space/comma-separated list of rules to execute
new width related changes only for specific rules. In this case, the width of
expressions for other rules, which are not specified in this parameter, is
calculated by using the width calculation algorithm of the SpyGlass 4.4.1
release.

Enhancements in Shift Operation
The shift operation is modified with respect to the nocheckoverflow and
use_lrm_width parameters for width calculation in the following rules:

SpyGlass lint solution: W116, W164a, W164b, W362, W486

SpyGlass STARC solution: STARC-2.10.3.1, STARC-2.10.3.2a,
STARC-2.10.3.2b, STARC-2.10.3.2c
SpyGlass STARC02 solution: STARC02-2.10.3.1, STARC02-2.10.3.2a,
STARC02-2.10.3.2b, STARC02-2.10.3.2c
SpyGlass STARC05 solution: STARC05-2.10.3.1, STARC05-2.10.3.2a,
STARC05-2.10.3.2b, STARC05-2.10.3.2c

The following shift operations are enhanced:
Left Shift Operations

Used By Lint: W110, W116, W164a, W164b, W164c, W362, W484,
W486
STARC: STARC-2.10.3.1, STARC-2.10.3.2a, STARC-
2.10.3.2b, STARC-2.10.3.2c, STARC-2.10.6.1
STARC02: STARC02-2.10.3.1, STARC02-2.10.3.2a,
STARC02-2.10.3.2b, STARC02-2.10.3.2c, STARC02-2.10.6.1
STARC05: STARC05-2.10.3.1, STARC05-2.10.3.2a,
STARC05-2.10.3.2b, STARC05-2.10.3.2c, STARC05-2.10.6.1

Options yes, no, comma/space-separated list of rules
Default Value yes
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-
based usage

set_parameter new_flow_width “W116, W164a, W110”
set_parameter new_flow_width no

Usage in goal/
source files

-new_flow_width=yes
75
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Right Shift Operations

For the W486 rule, only left shift operation is enhanced.
76
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Left Shift Operations
The following table describes changes that are introduced in the left shift
operation:

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckoverflow
=yes

Width when use_l-
rm_width=yes

Vari-
able

Vari-
able

Width is the width of Op1 Width is the width of
Op1

Width is the width of
Op1

Vari-
able

Con-
stant

Following width are calcu-
lated:
• Width of Op1
• Modified width = (width of

Op1 + value of Op2)
If any one of the above
width matches, no viola-
tion is reported.
Example
Op1[3:0] << 4
Here, following width is
calculated:
• Width of Op1, that is, 4
• Modified width (L(Op1) +

Value of Op2), that is, 8
Consider the following
sample operations and
their results:
out[3:0] = Op1[3:0] <<
4; // No Violation
out[7:0] = Op1[3:0] <<
4; // No Violation
out[5:0] = Op1[3:0] <<
4; // Violation
out[2:0] = Op1[3:0] <<
4; // Violation

Width is the width of
Op1.
Example
Op1[3:0] << 4
Here, width is the
width of Op1, that is,
4.
Consider the following
sample operations and
their results:
out[3:0] = Op1[3:0]
<< 4; // No Violation
out[7:0] = Op1[3:0]
<< 4; // Violation
out[5:0] = Op1[3:0]
<< 4; // Violation
out[2:0] = Op1[3:0]
<< 4; // Violation

This parameter will
have no impact on
width and behavior will
be dependent on the
value of the nocheck-
overflow parameter.
77
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Con-
stant

Vari-
able

Following cases are con-
sidered:
• Op1 is based number:

Width is the size of a
based number. For exam-
ple:
 4'b1010 << Op2
Here width is 4.

• Op1 is a constant: Width
is 32 bit. For example:
10 << Op2
Here width is 32.

• Op1 is an un-sized
based number: Width is
32 bit. For example:
'b1011 << Op2
Here width is 32.

• Op1 is mix of based and
constant: If width of
based number is greater
than natural width of com-
plete expression, width of
the based number is con-
sidered. Else, natural
width of complete expres-
sion result is considered.
For example:
4'b1010+ 8<<Op2: Width
is 5.
4'b1010 +3<<Op2: Width
is 4.
2'b10 + 8<<Op2: Width is
4.
4 + 8 << Op2: Width is 4.

Following cases are
considered:
• Op1 is a based num-

ber: Width is the size
of a based number.
For example:
4'b1010 << Op2
Here width is 4.

• Op1 is a constant:
Width is 32 bit. For
example:
10 << Op2
Here width is 32.

• Op1 is an un-sized
based number: Width
is 32 bit. For example:
'b1011 << Op2
Here width is 32 bit.

• Op1 is mix of based
and constant: If an
expression is a mix of
constant and sized or
un-sized based num-
ber, then width is
always 32 bit. For
example:
4'b1010 + 8 << Op2:
Width is 32bit.
4'b1010 + 23 << Op2:
Width is 32.
2'b10 + 8 <<
Op2:Width is 32.
4 + 38 << Op2:Width is
32.

Width is the LRM width
of Op1. The behavior
in this case is same as
when nocheckoverflow
= no. Following cases
are considered:
• If Op1 is un-sized con-

stant, then width is 32
bit.

• If Op1 is mix of con-
stant and based num-
ber, then width is the
natural width.

• If Op1 is mix of con-
stant and variable,
then width of constant
is considered as natu-
ral width.

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckoverflow
=yes

Width when use_l-
rm_width=yes
78
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Con-
stant

Con-
stant

Sized Constants:
Following widths are cal-
culated:
• Width of Op1
• Modified width = (width of

Op1 + value of Op2)
If any one of the above
width matches, no viola-
tion is reported. For
example:
4'b1010 << 4
Here, following widths are
calculated:
• Width of Op1, that is, 4.
• Modified width, which is 8.
Consider the following
sample operations and
their results:
out[3:0] = 4'b1101 <<
4; // No Violation
out[7:0] = 4'b1101 <<
4; // No Violation
out[5:0] = 4'b1101 <<
4; // Violation
out[3:0] = 4'b1010 + 8
<< 2 //Violation. Here
width is 7.
out[5:0] = 4'b1010 + 3
<< 2 // No Violation.
Here width is 6.
out[5:0] = 2'b10 + 8 <<
2 // No Violation. Here
width is 6.
Un-sized Constants:
In this case of un-sized
constants op1, only one
width (natural width) is
calculated for complete
expression (op1 << op2).

Following cases are
considered:
• Op1 is based num-

ber: Width is the size
of based number. For
example:
4'b1010 << Op2
Here, width is 4.

• Op1 is mix of based
and constant: If an
expression is a mix of
constant and sized or
un-sized based num-
ber, width is always 32
bit. Consider the fol-
lowing examples:

4'b1010 + 8 << Op2 //
Width is 32bit
4'b1010 + 23 << Op2 //
Width is 32
2'b10 + 8 << Op2 //
Width is 32
4 + 38 << Op2 //
Width is 32

• Un-sized Constants:
In this case of un-sized
constants op1, only
one width (natural
width) is calculated for
complete expression
(op1 << op2).

Following cases are
considered:
• If any un-sized con-

stant is used as Op1,
then width is 32 bit.

• If any constant is part
of a large expression
used as Op1, then
width is calculated as
natural width.

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckoverflow
=yes

Width when use_l-
rm_width=yes
79
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Right Shift Operations
The following table describes changes that are introduced in the right shift
operations:

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckover-
flow=yes

Width when use_l-
rm_width=yes

Vari-
able

Vari-
able

Width is width of Op1 Width is the width of
Op1

Width is the width of
Op1

Vari-
able

Con-
stant

Width is the width of Op1 Width is the width of
Op1

This parameter will
have no impact on
width and behavior
will be dependent on
the value of the
nocheckoverflow
parameter.
80
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Con-
stant

Vari-
able

Following cases are consid-
ered:
• Op1 is based number:

Width is the size of a based
number. For example:
4'b1010 >> Op2
Here width is 4.

• Op1 is a constant: Width is
32 bit. For example:
10 >> Op2
Here width is 32.

• Op1 is an un-sized based
number: Width is 32 bit. For
example:
'b1011 >> Op2
Here width is 32.

• Op1 is mix of based and
constant: If width of based
number is greater than com-
plete expression natural
width, then width of the
based number is consid-
ered. Else, natural width of
complete expression result
is considered. For example:
4'b1010+ 8>>Op2: Width is
5.
4'b1010+ 3>>Op2: Width is
4.
2'b10 + 8>> Op2: Width is 4.
4 + 8 >>Op2: Width is 4.

Following cases are
considered:
• Op1 is a based num-

ber: Width is the size
of a based number.
For example:
4'b1010 >> Op2
Here width is 4.

• Op1 is a constant:
Width is 32 bit. For
example:
10 >> Op2
Here width is 32.

• Op1 is an un-sized
based number: Width
is 32 bit. For example:
'b1011 >> Op2
Here width is 32 bit.

• Op1 is mix of based
and constant: If an
expression is a mix of
constant and sized or
un-sized based num-
ber, width is always 32
bit. For example:
4'b1010 + 8 >> Op2:
Width is 32.
4'b1010 + 23 >> Op2:
Width is 32.
2'b10 + 8 >>
Op2:Width is 32.
4 + 38 >> Op2:Width is
32.

Width is the width of
Op1

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckover-
flow=yes

Width when use_l-
rm_width=yes
81
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Con-
stant

Con-
stant

Sized Constants:
Following widths are calcu-
lated:
• Width of Op1
• Modified width = (width of

Op1 - value of Op2)
If any one of the above
width matches, no viola-
tion is reported. For exam-
ple:
4'b1010 >> 3
Here, following widths are
calculated:
• Width of Op1, that is, 4.
• Modified width, which is 1.
Consider the following sam-
ple operations and their
results:
out[3:0] = 4'b1101 >> 3; /
/ No Violation
out[7:0] = 4'b1101 >> 3; /
/ Violation
out[5:0] = 4'b1101 >> 4; /
/ Violation
out[2:0] = 4'b1101 >> 1; /
/ No Violation
out[3:0] = 4'b1010 + 8 >>
2 // Violation. Width is 3.
out[5:0] = 4'b1010 + 3 >>
2 // Violation, Width is 2.
out[5:0] = 2'b10 + 8 >> 2
// Violation. Width is 2.
Un-sized constants:
For un-sized constants op1,
only natural width is calcu-
lated for the complete
expression (op1 >> op2).

Following cases are
considered:
• Op1 is a based num-

ber: Width is the size
of based number. For
example:
4'b1010 >> Op2
Here width is 4.

• Op1 is mix of based
and constant: If an
expression is a mix of
constant and sized or
un-sized based num-
ber, width is always 32
bit. For example:
4'b1010 + 8 >> Op2:
Width is 32.
4'b1010 + 23 >> Op2:
Width is 32.
2'b10 + 8 >>
Op2:Width is 32.
4 + 38 >> Op2:Width is
32

• Un-sized constants:
For un-sized constants
op1, only natural width
is calculated for the
complete expression
(op1 >> op2).

Following cases are
considered:
• If any un-sized con-

stant is used as
Op1, width is 32 bit.

• If any constant is
part of a large
expression used as
Op1, width is calcu-
lated as natural
width.

Op 1 Op 2 Width in default mode
(nocheckoverlow=no)

Width when
nocheckover-
flow=yes

Width when use_l-
rm_width=yes
82
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
The above enhancements in shift operation are valid only for simple
expressions as shown below:

<expression1> <left or right shift operator> <expression2>

These enhancements are not valid when the shift operation is part of an
expression or in case of multiple shift operations in an expression.

Handling of Unary Negation
In case of unary negation, such as -a[3:0], width is calculated as
follows:

Variable: If an operand is a variable, such as -a[3:0], width is
incremented by one. Therefore, width of -a[3:0] is 5. This is
applicable only when the nocheckoverflow parameter is set to no.

Based number: If an operand is a based number, such as -3'b101,
width is incremented by one. Therefore, width of -3'b101 is 4. This is
applicable only when the nocheckoverflow parameter is set to no.

Constant or unsized based number: In case of constants, the natural
width is calculated first and is then incremented by one. For example, -9
is 5. An unsized based number is treated similarly. For example, width
of
-'b101 is 4.

However, if you set the use_lrm_width parameter to yes, width is
considered as 32 bit.

NOTE: This behavior is effective only if the nocheckoverflow parameter is set to no
(default value).

nocheckoverflow
Specifies whether the related rules check the bit-width as per LRM.

By default, the nocheckoverflow rule parameter is set to no, and the
affected rules do not check the bit-width as per LRM.

You can set the value of nocheckoverflow rule parameter to yes to check
the bit-width as per LRM. You can also specify the rule name as an
argument to the nocheckoverflow rule parameter to enable LRM-based
checking for that particular rule.
83
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
not_used_signal
Specifies a comma-separated name list of signals to be ignored by the
W528 rule.

By default, the value of this parameter is nil, which means that rule
checking by the rule will be done for all the signals.

You can specify full names or regular expressions. The following example
matches the signal named date_signal and all signal names starting
with bus_:

"data_signal,bus_*"

Used by Lint: W116, W164a, W164b, W164c, W486, W110, W263,
W362
MoreLint: AsgnOverflow-ML
STARC: STARC-2.1.3.1, STARC-2.8.1.6, STARC-2.10.3.1,
STARC-2.10.3.2a, STARC-2.10.3.2b, STARC-2.10.3.2c,
STARC-3.2.3.2
STARC2002: STARC02-2.1.3.1, STARC02-2.8.1.6,
STARC02-2.10.3.1, STARC02-2.10.3.2a, STARC02-
2.10.3.2b, STARC02-2.10.3.2c, STARC02-3.2.3.2
STARC2005: STARC05-2.1.3.1, STARC05-2.8.1.6,
STARC05-2.10.3.1, STARC05-2.10.3.2a, STARC05-
2.10.3.2b, STARC05-2.10.3.2c, STARC05-3.2.3.2

Options yes, no, rule name
Default value no
Default Value in
GuideWare2.0

yes

Example
Console/Tcl-
based usage

set_parameter nocheckoverflow yes
set_parameter nocheckoverflow W164c

Usage in goal/
source files

-nocheckoverflow=yes
-nocheckoverflow=W164a

Used by W528
Options comma-separated list of signals
Default value nil
84
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
process_complete_condop
Enables the rule checking on both the operands of the condop assignment.

By default, the value of this parameter is no.

Set the value of the parameter to yes to enable the rule checking on both
operands of the condop assignment.

NOTE: The process_complete_condop parameter is valid even when the value of the
nocheckoverflow parameter is set to yes.

report_all_messages
Specifies whether the W122, W456, and W502 rules report the bit index
information.

By default, the report_all_messages parameter is set to no.

Set this parameter to yes or rule name(s) to report the bit information in
the violation messages of the W122, W456, and W502 rules.

NOTE: If this parameter is set, the violation messages are also modified and old waivers do
not work. See the specific rule messages for details.

Example
Console/Tcl-
based usage

set_parameter not_used_signal "data_signal,bus_*"

Usage in goal/
source files

-not_used_signal="data_signal,bus_*"

Used by W164a, W164b

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter process_complete_condop yes

Usage in goal/
source files

-process_complete_condop=yes
85
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
report_blackbox_inst
Specifies whether the W110 rule reports violation for port width mismatch
for black box instances.

By default, the value of this parameter is set to no. In this case, the W110
rule does not report violation for port width mismatch for black box
instances.

Set the value of the parameter to yes to report violation for port width
mismatch for black box instances.

report_cast
Used to specify whether the newly introduced message should be reported
instead of the previous one.

The W372 rule specifically reports for '$cast' PLI tasks or functions if this

Used by W122, W456, W502

Options yes, no, comma separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter report_all_messages yes

Usage in goal/
source files

-report_all_messages=yes

Used by W110
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter report_blackbox_inst yes

Usage in goal/
source files

-report_blackbox_inst=yes
86
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
parameter is set to yes.

report_if_blocks_only
Specifies whether the W193 rule reports the use of semicolon with the if,
else, and else-if statements.

By default, the value of the report_if_blocks_only parameter is set
to no.

Set the value of this parameter to yes to report violations only when a
semicolon is used with the if, else, and else-if statements.

report_inter_nba
Specifies whether the W280 rule reports the inter-nonblocking assignment
delay.

Used by W372
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter report_cast yes

Usage in goal/
source files

-report_cast=yes

Used by W193
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter report_if_blocks_only yes

Usage in goal/
source files

-report_if_blocks_only=yes
87
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
By default, the value of this parameter is set to no. In this case, the W280
rule does not report inter-nonblocking assignment delay.

Set the value of the parameter to yes to report violation for such cases.

reportLibLatch
Specifies whether latches inferred from both .sglib and .lib libraries are
reported, as checked by the W18 rule.

By default, the reportLibLatch rule parameter is set to no, and the
W18 rule does not report library latches.

Set the reportLibLatch rule parameter to yes to report library
latches.

Used by W280
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter report_inter_nba yes

Usage in goal/
source files

-report_inter_nba=yes

Used by W18
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter reportLibLatch yes

Usage in goal/
source files

-reportLibLatch=yes
88
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
reportconstassign
The reportconstassign parameter specifies whether the W116 rule checks
for constants whose width is less than the operand.

NOTE: The reportconstassign parameter is valid for Verilog only.

By default, the reportconstassign parameter is set to no and the W116 rule
does not report a violation for constants whose width is less than the other
operand.

If you set this parameter to yes, the W116 rule reports a violation in such
cases.

report_only_overflow
Specifies whether the W504 rule reports violations only for integers or
constant integers where the width of port expression is greater than the
width of port.

By default, the report_only_overflow parameter is set to no.

If you set this parameter to yes, the W504 rule reports violations only for
integers or constant integers where the width of port expression is greater
than the width of port.

For example:

module top ();
blk1 u_blk1 (.a(3));//Violation with report_only_overflow
blk2 u_blk2 (.b(3)); //No violation with report_only_overflow
endmodule
module blk1 (input a);

Used By W116
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter reportconstassign yes

Usage in goal/
source files

-reportconstassign=yes
89
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
...
endmodule
module blk2 (input [2:0] b);
...
endmodule

However, there are some special cases while calculating width of port
expression:

If port expression contains shift operator, the width of expression will be
width of LHS operand. For example:

(32 >> 2) - width of 32

If port expression contains arithmetic operators (+, -, *, /, %), the
width of expression will be maximum width out of LHS and RHS
operands. For example:

(4+16) - width of 16

report_semicolon
Specifies if the W193 rule reports the use of extra semicolon.

By default, the report_semicolon parameter is set to no.

If you set this parameter to yes, the W193 rule reports the use of extra
semicolon.

Used By W504

Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter report_only_overflow yes

Usage in goal/
source files

-report_only_overflow=yes
90
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
report_struct_name_only
By default, rule W123 gives the violation messages for each violation bit of
the struct variables.

Set the value of the parameter to yes to enable the W123 rule to report
one violation for a struct variable.

NOTE: this parameter is applicable only for Verilog.

reportsimilarassgn
Specifies whether the W415a rule should check assignments in which RHS
value is the same.

By default, the reportsimilarassgn parameter is set to no and the
rules do not report violation if the RHS value in an assignment is the same
as the RHS value in the previous assignment.

Set the reportsimilarassgn rule parameter to yes to report such

Used By W193
Options yes, no
Default Value no
Example
Console/Tcl-
based usage

set_parameter report_semicolon yes

Usage in goal/
source files

-report_semicolon=yes

Used by W123

Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter report_struct_name_only yes

Usage in goal/
source files

-report_struct_name_only=yes
91
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
cases.

set_message_severity
Sets the severity of violation messages reported by the W210 rule.

By default, the set_message_severity rule parameter is set to no
and the W210 rule reports all unconnected ports with message severity as
Warning.

Set the set_message_severity parameter to yes if you want to
report unconnected input or inout ports with messages severity as Error.

sign_extend_func_names
The sign_extend_func_names parameter lists the function names that are
used for sign extension. This parameter enables the respective rules to
recognize VHDL sign extension functions.

NOTE: The sign_extend_func_names parameter is valid for VHDL only.

Used by W415a
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter reportsimilarassgn yes

Usage in goal/
source files

-reportsimilarassgn=yes

Used by W210
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter set_message_severity yes

Usage in goal/
source files

-set_message_severity=yes
92
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
The respective rules calculate the width of extend functions as per the
const extension argument specified in the argument list.

simplesense
Specifies for the W122 rule to flag the signals that are read in an always
construct and being set in blocking assignment statement but are not
present in the sensitivity list.

By default, the simplesense rule parameter is not set. Thus, if a signal
is assigned some value through a blocking assignment and is later read in
same always construct, the W122 rule ignores that signal provided its bit
index is not a variable.

You can set the value of the simplesense rule parameter to yes or 1
(to enable the mode) or to no or 0 (to disable the mode).

strict

Used By W116, W164a, W164b
Options comma-separated list of function names
Default Value EXTEND
Example
Console/Tcl-
based usage

set_parameter sign_extend_func_names EXTEND

Usage in goal/
source files

-sign_extend_func_names="EXTEND"

Used by W122
Options yes, no
Default value no
Example
Console/Tcl-
based usage

set_parameter simplesense yes

Usage in goal/
source files

-simplesense=yes
93
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Specifies the strict rule-checking mode.

The effect of the strict rule parameter on SpyGlass lint product rules is
as follows:

Rule Language strict rule parameter
Not set Set

W19 Verilog Does not report truncation of
zeroes for binary based numbers

Reports truncation of zeroes for
binary based numbers

W69 Verilog Does not check case constructs in
sequential always constructs

Checks case constructs in
sequential always constructs

W71 Verilog Does not report missing
default clause in fully
specified case constructs

Reports missing default
clause in fully specified case
constructs also

VHDL Does not report missing
default clause in fully
specified case constructs

Reports missing default
clause in fully specified case
constructs also

W116 Verilog • Ignores Addition (+) and
Multiplication (*) operations.

• Reports on Subtraction (-),
Division (/), or Modulus (%)
operations only if the width of
the right operand is greater
than the width of the left
operand.

• Ignores ternary operators.

• Checks Addition (+) and
Multiplication (*) operations
also.

• Reports whenever there is a
width mismatch irrespective of
the relative sizes of the
operands.

• Checks for ternary operators
also.

VHDL • Ignores Addition (+) and
Multiplication (*) operations.

• Reports on Subtraction (-),
Division (/), or Modulo (mod),
Remainder (rem) operations
only if the width of the right
operand is greater than the
width of the left operand.

• Checks Addition (+) and
Multiplication (*) operations
also.

• Reports whenever there is a
width mismatch of the
operands.
94
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
W122 Verilog Does not report memories and
delay variables that are read in
the always construct but are
not present in the sensitivity list.

Reports memories and delay
variables that are read in the
always construct but are not
present in the sensitivity list.

VHDL Reports a violation for a signal
that is read in the process
block and initialized to a value
outside the process block but
is not completely present in the
sensitivity list.

Does not report a violation for a
signal that is read in the
process block and initialized to
a value outside the process
block.

W156 VHDL Does not report the reverse
connections involving static
expressions.

Reports such reverse connections
also.

W164a Verilog Assignments in which the RHS
expression contains wire or
reg objects are reported.

All assignments are reported.
Integer port signals in the RHS
expression are also reported.

VHDL Does not report violation in case
of addition and subtraction
expression, if any one operand is
a constant and its width is less.

Reports violation case of addition
and subtraction expression, if any
one operand is a constant and its
width is less.

W164b Verilog Assignments in which the RHS
expression contains wire or
reg objects are reported.

All assignments are reported.
Integer port signals in the RHS
expression are also reported.

VHDL Does not report violation in case
of addition and subtraction
expression, if any one operand is
a constant and its width is less.

Reports violation case of addition
and subtraction expression, if any
one operand is a constant and its
width is less.

W226 VHDL Does not check inside subprogram
descriptions

Check inside subprogram
descriptions also

W263 Verilog Not run even if specified Run if specified
W287a Verilog Does not flag when the net

connected to an instance input
port is coming out of a black box
instance

Flags such instance input ports

W323 Verilog Ignores busholders as drivers Considers busholders as drivers

Rule Language strict rule parameter
Not set Set
95
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
W337 Verilog Ignores string variables, which
are used as case items

Reports violation for string
variables, which are used as case
items

W341 Verilog Not run even if specified Run if specified
W342 Verilog Not run even if specified Run if specified
W343 Verilog Not run even if specified Run if specified
W362 Verilog Does not flag when the right or

left expression is a constant, a
based number, or a parameter

Reports violation for the cases of
width mismatch, if the right or left
expression is a constant, a based
number, or a parameter, when set
along with the check_static_value
parameter. Also, violation will not
be reported for width mismatch in
condition of "for-loop"

W398 Verilog Does not report violation for the
non-static case labels

Reports violation for the non-
static case labels

W415 Verilog,
VHDL

Does not consider instances,
bus-holders and top-level inout
ports as drivers.

Considers instances, bus-holders
and top-level inout ports as
drivers also.

W443 Verilog Does not check the presence of X
value in the default statement
of the case construct.

Checks the default statement
also.

W444 Verilog Does not check the presence of Z
value in the default statement
of the case construct.

Checks the default statement
also.

W456 Verilog Does not report for constants
present in sensitivity lists.

Report for constants present in
sensitivity lists also.

W456a Verilog Does not report for constants
present in sensitivity lists.

Report for constants present in
sensitivity lists also.

W479 Verilog Does not report violation if the
step variable is not present in the
initialization or condition part.

Reports violation if the step
variable is not present in the
initialization or condition part.

W481a Verilog Reports violation only if none of
the step variable is present in the
condition statement.

Reports violation for all the step
variables that are not present in
the condition statement.

Rule Language strict rule parameter
Not set Set
96
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
You can set the value of the strict rule parameter to Yes (in the Atrenta
Console) or 1 (in the batch mode) to enable the mode or to No (in the
Atrenta Console) or 0 (in the batch mode) to disable the mode).

You can also set the value of strict rule parameter to a comma or space
separated list of rules. In such a case, checking will be performed only for
the rules specified in the list.

W484 Verilog Does not flag the following types
of assignments:
a = a + 1;
a = b + 1;
Where b is of same or lesser bit-
width than a.
Also, the rule does not flag for the
following assignment:
assign result = {b[0],b} +
{c[0],c};

Reports such assignments also.

W490 VHDL Does not check for constant
control expressions in subprogram
descriptions.

Checks for constant control
expressions inside subprogram
descriptions also.

W494 Verilog,
VHDL

Reports violation for completely
unused ports only.

Reports violation for partially
unused ports also.

W494a VHDL Reports violation for completely
unused ports only.

Reports violation for partially
unused ports also.

W494b VHDL Reports violation for completely
unused ports only.

Reports violation for partially
unused ports also.

W504 Verilog Does not report violation for
integers used in expressions
containing scalar values, such
as, 4'h4-2, 4'h4-i, where i
is an integer variable.

Reports violation for integers used
in expressions containing scalar
values.

Rule Language strict rule parameter
Not set Set
97
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
traverse_function
Specifies whether the inputs should be considered as read when being read
inside a function.

By default, the traverse_function parameter is set to no and the
W123 rule considers the inputs as unread when being read inside the
function block.

Set this parameter to yes to enable the W123 rule to consider such inputs
as read. This parameter is applicable to VHDL only.

treat_concat_assign_separately

Used by W19, W69, W71, W116, W122, W156, W164a, W164b,
W226, W263, W287a, W323, W337, W341, W342, W343,
W362, W415, W443, W444, W456, W456a, W481a, W484,
W490, W494, W494a, W494b, W504

Options yes, no, comma/space-separated list of rules
Default value no
Default Value in
GuideWare2.0

W343,W342

Example
Console/Tcl-
based usage

set_parameter strict yes

Usage in goal/
source files

-strict=yes

Used by W123
Options yes, no
Default value no
Example
Console \ Tcl-
based example

set_parameter traverse_function yes

Usage in goal/
source files

-traverse_function=yes
98
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Use this parameter to report violation for each bucket assignment in
unpacked array separately. For a packed array, a violation is reported for
the whole array.

treat_latch_as_combinational
Specifies to treat combinational block inferring latch as combinational block
while rule checking with the W336 and W414 rules.

By default, the treat_latch_as_combinational rule parameter is
not set and the W336 and W414 rules treat combinational block inferring
latch as sequential block.

You can set the value of the treat_latch_as_combinational rule
parameter to yes (to enable the mode) or to no (to disable the mode).

use_carry_bit

Used by W164a, W164b
Options yes, no
Default value no
Example
Console \ Tcl-
based example

set_parameter treat_concat_assign_separately yes

Usage in goal/
source files

-treat_concat_assign_separately=yes

Used by W336, W414
Options yes, no, comma separated list of rules
Default value no
Default Value in
GuideWare2.0

yes

Example
Console \ Tcl-
based example

set_parameter treat_latch_as_combinational yes

Usage in goal/
source files

-treat_latch_as_combinational=yes
99
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Enables the W116 (Verilog) rule to get the width after considering the carry
bit of addition.

By default, the use_carry_bit parameter is set to no and the width is
taken as maximum of the two operands for a binary expression having plus
and minus operators.

Set this parameter to yes or <rule-name> to get width after considering
the carry bit of addition. No violation is reported, even using this
parameter, for sub-expressions of a binary expression if all terms have the
same width and all operators are either plus or minus.

use_lrm_width
Specifies whether the related rules should consider the LRM width, which is
32 bits, for unsized based numbers and integer constants.

By default, the use_lrm_width parameter is set to no, and the natural
width of integer constants is considered, which is log2(N)+1.

Set this parameter to yes to consider the LRM width, which is 32 bits, for
unsized based numbers and integer constants.

Set this parameter to a rule name so that the use_lrm_width
parameter is applicable to the specified rules only. For the other rules,
which are not specified with this parameter, SpyGlass considers the natural
width for integer value.

NOTE: For new width related changes, refer to the New Width Flow Application Note.

Used by W116
Options yes, no, rule name
Default value no
Example
Console \ Tcl-
based example

set_parameter use_carry_bit yes

Usage in goal/
source files

-use_carry_bit=yes
100
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
use_natural_width
Use this parameter to calculate the width using the natural width.

verilint_compat
Specifies to run the rules that are normally not required as they check for
syntax errors (that are already reported by SpyGlass) or are redundant
and to enable processing of the verilint Pragmas for SpyGlass lint Product.

Used by Lint: W164a, W164b, W164c, W110, W116, W263, W362,
W486
STARC: STARC-2.1.3.1, STARC-2.8.1.6, STARC-
2.10.3.1,STARC-2.10.3.2a,STARC-2.10.3.2b, STARC-
2.10.3.2c, STARC-3.2.3.2
STARC2002: STARC02-2.1.3.1, STARC02-2.8.1.6, STARC02-
2.10.3.1,STARC02-2.10.3.2a,STARC02-2.10.3.2b, STARC02-
2.10.3.2c, STARC02-3.2.3.2
STARC2005: STARC05-2.1.3.1, STARC05-2.8.1.6, STARC05-
2.10.3.1,STARC05-2.10.3.2a,STARC05-2.10.3.2b, STARC05-
2.10.3.2c, STARC05-3.2.3.2

Options yes, no, comma-separated rule list
Default value no
Example
Console \ Tcl-
based example

set_parameter use_lrm_width yes

Usage in goal/
source files

-use_lrm_width=yes

Used by W224
Options yes, no
Default value no
Example
Console \ Tcl-
based example

set_parameter use_natural_width yes

Usage in goal/
source files

-use_natural_width=yes
101
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
By default, the verilint_compat rule parameter is not set and the
following rules are not run:

You can set the value of the verilint_compat rule parameter to yes
or 1 (to enable the mode) or to no or 0 (to disable the mode).

waiver_compat
Enables the waivers in the W121, W143, W398, W392, W402b, W415a, and
W546 rules to work correctly even if the line numbers of the RTL get
changed.

By default, this parameter is set to no and the violations are not waived
when:

Rule message has line number string

Waivers are applied based upon the message string (having line
number), and during subsequent runs
RTL has changed and hence the line number

If you set the value of this parameter to yes or <rule-name>, it ensures
that the specified rules do not generate the line number information in the
first run itself. Thus waivers work correctly even if the line numbers of the
RTL gets changed in the subsequent runs.

W159 W162 W163 W259 W313 W316
W326 W328 W348 W464 W474 W475
W476 W477 W488 W493 W546

Used by W159, W162, W163, W259, W313, W316, W326, W328,
W348, W464, W474, W475, W476, W477, W488, W493, W546

Options yes, no
Default value no
Example
Console \ Tcl-
based example

set_parameter verilint_compat yes

Usage in goal/
source files

-verilint_compat=yes
102
Synopsys, Inc.

SpyGlass lint Rule Parameters

Using the Rules in the SpyGlass lint Product
Used by W121, W143, W398, W392, W402b, W415a, W546

Options no, yes, comma or space separated list of rules
Default value no
Example
Console/Tcl-
based usage

set_parameter waiver_compat yes

Usage in goal/
source files

-waiver_compat=yes
103
Synopsys, Inc.

SpyGlass lint Product Reports

Using the Rules in the SpyGlass lint Product
SpyGlass lint Product Reports
The SpyGlass lint product generates the following reports in the
spyglass_reports/lint directory:

You can also access the Reports from the Reports menu in the Atrenta
Console.

SignalUsageReport
The SignalUsageReport is generated by W86, W111, W120, W123, W240,
W241, W497, W498, and W528 rules. This report contains the details of the
violating bits of multi-dimensional arrays, memory, and vector signals. You
can view the report from the spyglass_reports/lint folder.

NOTE: You can also access the SignalUsageReport report at the consolidated_reports
directory.

A sample format of SignalUsageReport is given below:

##

Module : test(Hierarchy :test)

W123 : Following Bits of signal ‘sig2’ (File Name: case1.v
Line No. :55) are read but not set

[0][1][1][4:1] [0][1][2][4:1] [0][1][3][4:1]

Report Name Description

SignalUsageReport This report contains the details of the violating bits of
multi-dimensional arrays, memory, and vector
signals.

W448_Report This report contains the details of the reset nets used
synchronously and asynchronously.
104
Synopsys, Inc.

SpyGlass lint Product Reports

Using the Rules in the SpyGlass lint Product
[0][2][3][4:1] [1][2][3][4:1]

W123 : Following Bits of signal ‘sig1’ (File Name: case1.v
Line No. :25) are read but not set

[0][1][1][4:1] [0][1][3][4:1] [0][2][3][4:1]
[1][2][3][4:1]

Module : test(Hierarchy :test)

W528 : Following Bits of signal ‘check’ (File Name: case1.v
Line No. :55) are set but not read
[0][2][4:0]

Module: test(Hierarchy :test)

W111 : Following Bits of signal ‘mem’ (File Name: case1.v
Line No. : 7) are not read
[0][2][4:0]

The SignalUsageReport displays data for each rule module wise.
105
Synopsys, Inc.

SpyGlass lint Product Reports

Using the Rules in the SpyGlass lint Product
W448_Report
The W448_Report is generated by the W448 rule. This report contains the
details of the reset nets used synchronously and asynchronously. You can
view the report from the spyglass_reports/lint folder.

NOTE: You can also access the W448_Report report at the consolidated_reports directory.

Use the following option to generate this report:

set_option report W448_Report

A sample format of the W448_Report is given below:

##
Module: test

Net Name: rst

 Synchronous usage

out2

 Asynchronous usage

out1

106
Synopsys, Inc.

verilint Pragmas for SpyGlass lint Product

Using the Rules in the SpyGlass lint Product
verilint Pragmas for SpyGlass lint Product
You can use the verilint pragma to disable checking of a specified part
of the RTL description for the specified rule(s). This feature is enabled by
the verilint_compat rule parameter.

To disable the checking of a code block, specify the following verilint
pragma at the start of the code block:

// verilint <rule-name-list> off

Then, at the end of the code block, specify the following verilint
pragma:

// verilint <rule-name-list> on

The <rule-name-list> is a comma-separated or space-separated list
of rules names. These rule names can be the exact rule name (like W122
or bothedges) or can be the numeric portion of the rule name (like 122
for the W122 rule).

For example, you may want to disable rule-checking in the following
portions of the design:

W110 : from line no 12 to line no 15
W120, W130 : from line no 12 to line no 20
W140 : from line no 12 to line no 25

Specify the verilint pragmas as follows:

line 12: // verilint 110,120,130,140 off
line 15: // verilint W110 on
line 20: // verilint 120 W130 on
line 25: // verilint W140 on

You can also add comments with the verilint pragma. All text after the
on or off keywords is assumed to be a comment.
107
Synopsys, Inc.

Reporting Hierarchical Paths

Using the Rules in the SpyGlass lint Product
Reporting Hierarchical Paths
Some of the rule messages also report the hierarchical path of the scope
containing the rule-violating objects.

For Verilog designs, the hierarchical path is the complete hierarchical name
of the containing scope.

For VHDL designs, the hierarchical path can be
<entity-name>(<arch-name>) for rule-violating objects in
architectures, <entity-name>(<arch-name>):<block-name> for
rule-violating objects in blocks in architectures, <entity-name>
(<arch-name>):<component-instance-name>@<entity-name
>(<arch-name>) for rule-violating objects in component instances.
108
Synopsys, Inc.

Determining Signals Required in the Sensitivity List

Using the Rules in the SpyGlass lint Product
Determining Signals Required in the
Sensitivity List

SpyGlass checks all potential cases where a signal is read inside an
always construct but not present in the sensitivity list.

Signals in Assignment Statements
If a signal is assigned some value through a blocking assignment and is
later read in same always construct, that signal is ignored provided its bit
index is not a variable.

Signals in for Constructs
SpyGlass ignores the for construct loop index variables if they are used
afterwards in the construct. Also, a signal whose bit-select is used as the for
construct loop index variable, is assumed to be read and the signals used
in the corresponding step expressions are ignored.

SpyGlass does not expand nested for constructs. Only the last for
construct is processed.

Only simple for constructs as in the following example are expanded:

for (i = 0; i < n2; i = i + 1)
out[i] = in[i];

In this example, the value of n2 should be a constant value.

In case of for construct loop variables, only arithmetic expressions with
some constant value are computed. All other cases are treated as variable
bit indexes and the whole bus is required to be present in the sensitivity
list. Consider the following example:

for (i = 0; i < n2; i = i + 1)
out[i] = in[i + n3];

The value of n3 should be some constant value. If n3 is not a constant,
then signal in as a whole should be in the sensitivity list. Expressions like
n3 - i are not be expanded.

Bit-selects of Variables
If any signal’s bit-select is a variable, then that signal either as whole
should be present in the sensitivity list or it should be with same index
109
Synopsys, Inc.

Determining Signals Required in the Sensitivity List

Using the Rules in the SpyGlass lint Product
variable expression present in the sensitivity list. Consider the following
examples:

always @(in or i)
out = in[i];

or

always @(in[i] or i)
out = in[i];

Since the bit index is a variable in both examples, the signal in as a whole
should be present in the sensitivity list or the signal in should be present
in the sensitivity list with same index variables expression.

Memories
In case of memories, if the word-select is a variable, then the whole bus
should be in the sensitivity list or the bus should be present in the
sensitivity list with same index variables expression.
110
Synopsys, Inc.

Rule Severity Classes

Using the Rules in the SpyGlass lint Product
Rule Severity Classes
The SpyGlass lint product rule severity labels have been classified under
the SpyGlass pre-defined rule severity classes as follows:

See the Atrenta Console Reference Guide for more information about
SpyGlass predefined rule severity classes.

Rule Severity Class Contains the Rule Severity Labels...
WARNING Warning, Guideline
INFO Info
DATA Data
111
Synopsys, Inc.

Same or Similar Rules in Other SpyGlass Products

Using the Rules in the SpyGlass lint Product
Same or Similar Rules in Other SpyGlass
Products

The following table lists same rules in the Lint, OpenMORE, and STARC
products:

TABLE 1 Same Rules in Standard Products

Rule Lint OpenMORE STARC

VHDL BothPhase -- STARC-2.3.3.2

W526 CaseOverIf --

-- PortOrder_C STARC-3.1.3.2c

W259 -- STARC-2.5.1.5a

W415 -- STARC-2.5.1.5b

-- ExprParen STARC-2.10.1.2

W122 NotInSens STARC-2.2.2.1

W456 -- STARC-2.2.2.2

W71 -- STARC-2.8.1.4

W422 -- STARC-2.3.3.1

ClockStyle -- STARC-2.3.1.2c

W489 -- STARC-2.1.8.9

W146 NamedAssoc STARC-3.2.3.1

-- NoTab STARC-3.1.4.3

-- ConsCase STARC-1.1.1.5
112
Synopsys, Inc.

Same or Similar Rules in Other SpyGlass Products

Using the Rules in the SpyGlass lint Product
Verilog+VHDL -- ClockPhase STARC-1.2.1.1a

-- SepClock STARC-1.4.3.1b

-- IntClock STARC-1.2.1.2

-- GateClockAtTop STARC-1.4.1.1

-- GateResetAtTop STARC-1.3.3.4

-- PortOrder_A STARC-3.1.3.2a

W448 -- STARC-1.3.1.6

-- PortOrder_B STARC-3.1.3.2b

W18 InferLatch STARC-2.2.1.3

Verilog W526 CaseOverIf --

W575 STARC-2.10.2.3

W415 -- STARC-2.5.1.5a

-- ExprParen STARC-2.1.4.1

W146 NamedAssoc STARC-3.2.3.1

W224 STARC-2.1.5.3

W484 -- STARC-2.10.6.1

W352 -- STARC-2.9.1.2d

W468 -- STARC-2.1.6.4

W456 NotReqSens --

-- NoTab STARC-3.1.4.3

W336 NonBlockAssign STARC-2.3.1.1

TABLE 1 Same Rules in Standard Products (Continued)

Rule Lint OpenMORE STARC
113
Synopsys, Inc.

Same or Similar Rules in Other SpyGlass Products

Using the Rules in the SpyGlass lint Product
The following table lists similar rules in the Lint, OpenMORE, and STARC
products:

When these products are run together, you can ignore one of these
duplicate rule pairs for rule-checking by using set_option
ignorerules {rule_names} command in the batch mode.

TABLE 2 Similar Rules in Standard Products

Rule Lint OpenMORE STARC

VHDL W456a NotReqSens --

-- ReserveName STARC-1.1.1.3a

-- Indent STARC-2.7.3.5

-- LineLength STARC-3.1.4.5

Verilog+VHDL -- IntReset STARC-1.3.2.2

-- CombLoop STARC-1.2.1.3

-- RegOutputs STARC-1.6.2.1

Verilog W238 STARC-2.3.2.2

W496b -- STARC-2.10.1.5b

W362 -- STARC-2.10.3.1

W110 -- STARC-3.2.3.2

W122 NotInSens STARC-2.2.2.1

-- Indent STARC-2.7.3.5

-- LineLength STARC-3.1.4.5

W336 NonBlockAssign STARC-2.3.2.1

W164 -- STARC-2.10.3.2b

W263 -- STARC-2.8.1.6
114
Synopsys, Inc.

Rules in SpyGlass lint
The SpyGlass lint product provides the following types of rules:
Array Rules

Case Rules

Lint_Reset Rules

Lint_Clock Rules

Usage Rules

Lint_Tristate Rules

Assign Rules

Function-Task Rules

Function-Subprogram Rules

Delay Rules

Lint_Latch Rules

Instance Rules

Synthesis Rules

Expression Rules

MultipleDriver Rules
115
Synopsys, Inc.

Rules in SpyGlass lint
Simulation Rules

Event Rules

Loop Rules

Lint_Elab_Rules

Verilint_Compat Rules

Miscellaneous Rules
116
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
Array Rules
The SpyGlass lint product provides the following array related rules:

Rule Flags...
W17 Arrays in sensitivity lists that are not completely specified
W86 Arrays where all elements are not set
W111 Arrays where all elements are not read in the process
W488 Arrays that appear in the sensitivity list but all elements of the

arrays are not read in the process
117
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
W17
Prefer full range of a bus/array in sensitivity list. Avoid bits or
slices

Language
Verilog, VHDL

Rule Description
The W17 rule flags those arrays in sensitivity lists that are not completely
specified.

While the logic inside a combinational construct (always construct or
process construct) may be sensitive only to certain index or bit-slices of
an array, using only index or bit-slices in the construct’s sensitivity list can
lead to subtle errors if the construct design is subsequently changed.

NOTE: The W17 rule is also grouped under the Simulation Rules group.

Message Details
Verilog
The following message appears at the location of an always construct’s
sensitivity list in hierarchy <hier-path> that has a bus <bus-name>
that is not completely specified:

Bus '<bus-name>' specified in sensitivity list with incomplete
range[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding functions/tasks.

VHDL
The following message appears at the location of a process construct’s
sensitivity list in hierarchy <hier-path> that has an array
<array-name> of type <sig-type> but the array is not completely
specified:

Complete vector <sig-type> '<array-name>' is not used in the
sensitivity list. [Hierarchy: ‘<hier-path>’]

Where, <sig-type> can be signal, port, or variable and <hier-
118
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
path> is the complete hierarchical name of the containing scope excluding
subprograms.

Severity
Warning

Suggested Fix
This is partly a question of taste. If you specify the whole bus and some
bits are not read in the block, you may get a warning that the sensitivity
list is over-specified. In such cases, it is not possible to satisfy both
requirements simultaneously, so you must decide which requirement you
want to ignore. From an implementation point of view, it is safest to ignore
this rule.
119
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
W86
Not all elements of an array are set

Language
VHDL

Rule Description
The W86 rule flags arrays where all elements are not set.

Designs where all elements of arrays are not set, may not fully exercise all
paths in to the array and thus may mask possible errors in index or bit-
slice selection.

The W86 rule will not check for memory elements having non-static index.

To see the details of the bits that are not set, refer to the SignalUsageReport
report in the spyglass_reports/lint directory.

Message Details
Arrays used in Process Sensitivity Lists
The following message appears at the location of a process’ sensitivity list
that has an array <array-name> of type <array-type> and all array
elements are not set in the process scope (hierarchy <hier-path>):

Not all the elements of <array-type> '<array-name>' (Bits:
<offending-bits>) are set. [Hierarchy: ‘<hier-path>’]

Where, the <array-type> can be signal, port, or variable and
<hier-path> is the complete hierarchical name of the containing scope
excluding subprograms.

Arrays not used in Process Sensitivity Lists
The following message appears at the location of an array declaration
<array-name> of type <array-type> that is not used in any process
sensitivity list and all array elements are not set in the scope <hier-
path>:

Not all the elements of <array-type> '<array-name>' (Bits:
<offending-bits>) are set [Hierarchy: ‘<hier-path>’]

Where, the <array-type> can be signal, port, or variable and
120
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
<hier-path> is the complete hierarchical name of the containing scope
excluding subprograms.

Severity
Warning

Suggested Fix
This is an informational rule. No action may be required if all locations
(required) can actually be set.
121
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
W111
Not all elements of an array are read

Language
Verilog, VHDL

Rule Description
The W111 rule reports a violation for arrays where all elements of the array
are not read.

The W111 rule checks for input/inout ports, internal signals, and variables.

An array with unused elements indicates that the model does not fully
exercise all paths out of the array and thus may mask possible errors in
index or bit-slice selection.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, the W111 rule reports violation for array declared as input/
inout port, internal signal or variable but not read. Set the value of the
ignore_in_ports parameter to yes to ignore input and inout ports for rule
checking.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

To see the details of the bits that are not read, refer to the
SignalUsageReport report in the spyglass_reports/lint directory.

NOTE: The W111 rule only checks static indexes.

The W111 rule is also grouped under the Usage Rules group.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.
122
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
Message Details
Verilog
Message 1
The following message appears at the location of an array
<array-name> in hierarchy <hier-path> that is not read completely:

Not all elements of array '<array-name>' are 'read' [Hierarchy:
‘<hier-path>’]

Where, <array-type> can be signal, port, or variable. The
<hier-path> is the complete hierarchical name of the containing scope
excluding functions/tasks.

Message 2
The following message is displayed when the signal size is greater than
50,000 and the handle_large_bus parameter is disabled:

Signal '<signal-name>' size too big thus not processed, use
'set_parameter handle_large_bus yes' for enabling handling of
these signals

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.

VHDL
The following message appears at the location of an array
<array-name> of type <array-type> in hierarchy <hier-path>
that is not read completely. The message also displays the bits which are
not read in the array:

Not all the elements of <array-type> '<array-name>'
'(<offending-bits>)' are read. [Hierarchy: ‘<hier-path>’]

Where, <array-type> can be signal, port, or variable. The
<hier-path> is the complete hierarchical name of the containing scope
excluding subprograms.

Severity
Warning
123
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
Suggested Fix
Consider this rule primarily informational.

Verilog Examples
Consider the following example:

module top (out,in);
output [1:0] out;
input [2:0] in;

assign out=in[1:0];

endmodule

In the above example, the W111 rule reports a violation because all bits of
the array in are not read. The following message is reported by this
example:

Not all elements of array 'in[2]' are 'read' [Hierarchy:
':top']

VHDL Examples
Consider the following example where all bits of array a are not read in
architecture arc_e_l of entity e_l:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity e_l is
port(a: in bit_vector(4 downto 0);
b: out bit_vector(3 downto 0));

end e_l;

architecture arc_e_l of e_l is
begin
b <= a(3 downto 0);

end arc_e_l;
124
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
In the above example, the W111 rule reports a violation as all bits of array
a are not read in the architecture arc_e_l of entity e_l. The following
message is reported by this example:

Not all the elements of in port 'a' (Bits: 4) are read.
[Hierarchy: ':e_l(arc_e_l):']
125
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
W488
A bus variable appears in the sensitivity list but not all bits of the
bus are read in the contained block (Verilog)
An array signal appears in the sensitivity list but not all bits of the
array are read in the process (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The W488 rule flags the bus variables that appear in the sensitivity list but
not all bits of that bus are read in the contained block.

While such designs are allowed, they may impact simulation performance.
Many simulators re-evaluate the block on each change in each bit, even
though the evaluation is redundant.

NOTE: The W488 rule supports generate-if and generate-for block.

NOTE: The W488 rule is switched off by default. You can enable this rule by either
specifying the set_goal_option addrules W488 command or by setting
the verilint_compat rule parameter to yes.

VHDL
The W488 rule flags those arrays that appear in the sensitivity list but all
elements of the arrays are not read in the process.

While such designs are allowed, they may impact simulation performance.
Many simulators re-evaluate the process on each change in each element
of an array in the sensitivity list, even though the evaluation is redundant.

NOTE: The W488 rule also grouped under the Simulation Rules group.

Message Details
Verilog
The following message appears at the location of the contained block’s
sensitivity list that contains a bus/memory variable, <var-name>, and all
the bits/words of that variable are not read in the contained block:

Bus/Memory '<var-name>' (or some of its bits/words) which is
126
Synopsys, Inc.

Array Rules

Rules in SpyGlass lint
not read in always block is not required in the sensitivity
list[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

VHDL
The following message appears at the location of a process’ sensitivity list
that has an array <array-name> of type <array-type> and all array
elements are not read in the process scope (hierarchy <hier-path>):

Array <array-type> '<array-name>' is in the sensitivity list
but not all its bits are read inside the process [Hierarchy:
‘<hier-path>’]

The <array-type> can be signal, port, or variable and
<hier-path> is the complete hierarchical name of the containing scope
excluding subprograms.

Severity
Warning

Suggested Fix
Verilog
 There is a trade-off in fixing this rule versus W122, W456 and W456a rules.
It is recommended to clear W122, W456 and W456a rules and waive or
ignore the W488 rule.

VHDL
Remove variables from the sensitivity list if they are not required. This will
help improve simulation performance without effecting synthesis behavior.
127
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Case Rules
The SpyGlass lint product provides the following case construct related
rules:

Rule Flags...
W69 case constructs that do not have all possible clauses described and also

do not have the default clause
W71 case constructs that do not contain a default clause

W171 Expressions used as case clause labels

W187 case constructs where the default clause is not the last clause

W226 case constructs where the selector is a constant or a static expression

W263 case clause labels whose widths do not match the width of the
corresponding case construct selector

W332 case constructs that do not have all possible clauses described and
have a default clause

W337 Illegal case construct labels

W398 Duplicate choices in CASE construct
W453 case constructs with large selector bit-width and more number of case

clauses
W551 case constructs with the default clause and full_case pragma applied or

priority/unique case constructs with default clause
128
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W69
Ensure that a case statement specifies all possible cases and has a
default clause

When to Use
Use this rule to identify case constructs that does not describes all possible
cases and does not have a default clause.

Rule Description
The W69 rule reports violation for case constructs that do not have all
possible clauses described and also do not have the default clause.

NOTE: The W69 rule supports generate-if and generate-for block.

NOTE: By default, the W69 rule is switched off, and will be deprecated in a future SpyGlass
release. You can use the W71 rule as a replacement of the W69 rule.

Rule Exceptions
The W69 rule ignores case constructs with full_case pragma specified.

Language
Verilog

Default Weight
5

Parameter(s)
handle_case_select: Use this parameter to specify the maximum width of
case selector that the supported rule should process.
strict: The default value is no. Set the value of the parameter to yes to
check the case constructs in sequential always constructs. You can also
specify a comma-separated list of rule as an input to the parameter.

Constraint(s)
None
129
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Messages and Suggested Fix
Message 1
The following message appears at the first line of a case construct in a
combinational always construct that does not have all possible clauses
described and also does not have a default clause:

[WARNING] Case statement is missing cases and has no default in
Combinational block [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Potential Issues

A violation is reported when a CASE construct in a combinational always
construct does not describes all possible clauses, including the default
clause.

Consequences of Not Fixing
A latch is inferred, if the case construct does not describe all possible states
and also does not have a default clause. While you may have intended to
infer a latch, it is advisable to examine such cases to avoid creation of
unexpected logic.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 2
The following message appears at the first line of a case construct in a
sequential always construct that does not have all possible clauses described
and also does not have a default clause when the strict rule parameter
has been set:

[WARNING] Case statement is missing cases and has no default in
Sequential block [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Potential Issues

A violation is reported when a CASE construct in a combinational always
construct does not describes all possible clauses, including the default
130
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
clause when the strict parameter is set.

Consequences of Not Fixing
A latch may be inferred, if the case construct does not describe all possible
states and also does not have a default clause. While you may have intended
to infer a latch, it is advisable to examine such cases to avoid creation of
unexpected logic.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the case statement with missing default is declared.

To fix the violation, you can perform any of the following tasks:
add case clauses (or a default clause) for those cases that are not covered
and specify the appropriate behavior in that default clause.

add pragma full_case to the case statement, implying you know that
the remaining cases can never happen.

Example Code and/or Schematic
Example 1
Consider the following example where the case construct does not have all
possible cases described (case in3=2'b10 is not described) and also
does not have a default clause:

...
always@(in1 or in2 or in3 or mem)
begin

case(in3)
2'b00 : out[0] = in1 || mem[0];
2'b01 : out[1] = in1 && mem[1];
2'b11 : out[2] = in2 && mem[3];

endcase
end
...

For this example, SpyGlass generates the following message:

Case statement is missing cases and has no default [Hierarchy:
‘<hier-path>’]
131
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Example 2
Consider the following example:

module mod(sel,o1,o2,o4);

input [1:0] sel;
output [3:0] o1, o2,o4;
reg [3:0] o1, o2,o4
reg [3:0] mem[0:3];

always@(sel)
begin

case(sel) //violation(Case statement is missing cases
and has no default in combinational block)

2'b00 : o1 = mem[0];
2'b01 : o2 = mem[1];
2'b11 : o4 = mem[3];

endcase
end

endmodule

In the above example, the W69 rule reports a violation as the case
statement has missing cases and a missing default clause.

Default Severity Label
Warning

Rule Group
Case, Lint_Elab_Rules

Reports and Related Files
No related reports or files.
132
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W71
Ensure that a case statement or a selected signal assignment has a
default or OTHERS clause

When to Use
Use this rule to identify case constructs without the default or OTHERS
clause.

Description
The W71 rule reports violation for case constructs without the default clause
(Verilog designs) and case constructs and selected signal statements
without the OTHERS clause.

A default (or OTHERS) clause should always be specified in a case construct to
handle unexpected situations even if the construct covers all potential
situations.

NOTE: The W71 rule supports generate-if and generate-for block.

Rule Exceptions
For Verilog designs, the W71 rule does not report for missing default clause
in the following cases:

If the target signals in the case construct are assigned using a blocking
or nonblocking assignment statement before the case statement
Case constructs that are inside always construct that infer a flip-flop (Set
check_sequential rule parameter to report such cases).
Case constructs with associated full_case pragma and unique / priority
cases.
Fully-specified case constructs.

Case statements with static case select (including generate case).

For VHDL designs, the W71 rule has the following exceptions:

The syntax is reported if all case constructs are not covered.

When selector is a port and all the case constructs are covered, then the
others clause is not required. Hence, no violation is reported in such a
case.
133
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
When case selector is a variable then the others clause must be used.

Language
Verilog, VHDL

Default Weight
5

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameter(s)
handle_case_select: Use this parameter to specify the maximum width of
case selector that the supported rule should process.
strict: The default value is no. Set the value of the parameter to yes to
report fully-specified case constructs without the default clause.
check_sequential: The default value is no. Set the value of the parameter
to yes to enable rule checking in sequential block.
do_not_run_W71: The default value is no. Set the value of the parameter
to yes to block the W71 rule. This parameter is provided to avoid
duplicate violation in case the W69 and W71 rules are run in mixed
mode.

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a case construct is
defined without a default clause:

[WARNING] Case statement does not have a default clause and is
not preceded by assignment of target signal <block-type>
[Hierarchy: ‘<hier-path>’]

Where, <block-type> can be either a sequential or a combinational
block and the <hier-path> is the complete hierarchical name of the
134
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
containing scope excluding subprograms.

Potential Issues

A violation is reported when a case construct is defined without a
default clause.

Consequences of Not Fixing
If all possible cases of the case construct selector are covered, this is not
directly an error. However, if the case construct selector has an undefined
value (X or Z) and there is no default clause, then the design simulation may
produce unexpected results.

If the width of the case construct selector changes as the design evolves,
then what had once been a fully covered case construct may become only
partially covered and can lead to inferred latches. Hence, it is
recommended to always describe a default clause even if all possible cases of
the case construct selector are described.

How to Debug and Fix

Double-click the violation message. The HDL Viewer window is displayed.
The HDL Viewer window highlights the line where the case statement with
missing default is declared.

To fix the violation, add a default clause to specify default behavior. If you
are specifying simulation X behavior, bracket this behavior in
translate_off and translate_on pragmas.

VHDL
The following message appears at the location where a construct of
<type> is defined without an OTHERS clause:

[WARNING] Others clause not found in '<type>' statement

Where, <type> can be a CASE (for case constructs) or
selected signal assignment (for Selected Signal Assignments).

Potential Issues

A violation is reported when a CASE construct or a selected signal
assignment is defined without an OTHERS clause.

Consequences of Not Fixing
If all possible cases of the case construct selector are covered, this is not
directly an error. However, if the case construct selector has an undefined
135
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
value (X or Z) and there is no default clause, then the design simulation may
produce unexpected results.

If the width of the case construct selector changes as the design evolves,
then what had once been a fully covered case construct may become only
partially covered and can lead to inferred latches. Hence, it is
recommended to always describe a OTHERS clause even if all possible cases
of the case construct selector are described.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window is displayed.
The HDL Viewer window highlights the line where the case statement with
missing OTHERS clause is declared

To fix the violation, add an OTHERS clause to specify default behavior. If you
are specifying simulation X behavior, bracket this behavior in
translate_off and translate_on pragmas.

Example Code and/or Schematic
Verilog
Consider the following example where the case construct has all possible
clauses described but does not have the default clause:

...
always@(in1 or in2 or mem)
begin

case(in2)
2'b00 : out1 = in1 || mem[0];
2'b01 : out1 = in1 && mem[1];
2'b10 : out1 = in1 && mem[2];
2'b11 : out1 = in1 && mem[3];

endcase
end

...

For this example, SpyGlass generates the W71 rule message, if you
analyze the example using the strict rule parameter.

VHDL
Example of CASE Construct
136
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Consider the following example where the CASE construct does not have
an OTHERS clause defined:

entity ent is
port(a: in bit_vector(1 downto 0);

b: out bit_vector(1 downto 0));
end ent;

architecture arc of ent is
begin
process(a)
begin
case a is
when "00" | "11" => b <= a;
when "01" | "10" => b <= not a;

end case;
end process;

end arc;

For this example, SpyGlass generates the following message:

Others clause not found in 'CASE' statement

Example of Selected Signal Assignment Statement
Consider the following example where the select assignment statement
does not have an OTHERS clause:

entity ent is
port(a: in bit_vector(1 downto 0);

b: out bit_vector(1 downto 0));
end ent;

architecture arc of ent is
begin
with a select
b <= a when "00" | "11", not a when "01" | "10";

end arc;

For this example, SpyGlass generates the following message:

Others clause not found in 'selected signal assignment'
statement
137
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Case, Lint_Elab_Rules

Reports and Related Files
No related reports or files.
138
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W171
Case label is non-constant.

Language
Verilog

Rule Description
The W171 rule flags expressions used as case clause labels.

Typical state machine descriptions require constant case clause labels as in
the following example:

case (x)
1: ...
2: ...

25: ...
...
endcase

Some designers may represent complex if conditions as a case construct
as in the following example:

case (sel)
expr1: ...
expr2: ...
...

endcase

The W171 rule flags such case constructs.

The W171 rule flags non-static case clause labels provided they are not
assigned a constant value elsewhere in the design.

By default, the check_const_selector parameter is set to no and the rule
gives violation when case label is non-constant. If you set the
check_const_selector parameter to yes, this rule checks weather
case selector is constant or not. The rule does not report any violation if
case selector is a constant and case label belongs to one-hot operation,
although case label is a variable.
Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
139
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a non-constant case
clause label is encountered:

Case-label is not constant

Rule Severity
Warning

Suggested Fix
Generally nothing to fix, unless you find a case which does not match
expectations.

Examples
Consider the following example where one clause of the case construct has
a non-constant label (sel):

module test;
reg [1:0] addr_int, data_out, data_in;
reg clk, sel;

always @(posedge clk)
case (1)
0 : data_out <= data_in;

(sel) : data_out <= data_in;
2 : if (~sel) data_out <= data_in;
3 : data_out <= 2'bz;
default : data_out <= 2'bx;

endcase
endmodule

For this example, SpyGlass generates the W171 rule message.
140
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W187
The 'default' or 'others' clause should be the last clause in a case
statement

Language
Verilog, VHDL

Rule Description
The W187 rule flags those case constructs where the default clause (Verilog)
or others clause (VHDL) is not the last clause in the construct.

While the default clause (or others clause) can be placed anywhere in the case
construct, it is recommended to place it as the last clause for better
understanding.

Message Details
Verilog
The following message appears at the first line of a case construct where
the default clause is not the last clause in the construct:

Default clause should be last clause in a case stmt

VHDL
The following message appears at the first line of a case construct where
the others clause is not the last clause in the construct:

OTHERS clause should be last clause in a case stmt

Rule Severity
Warning

Suggested Fix
Move the default clause (Verilog) or others clause (VHDL) to the end of the case
statement.

Verilog Examples
Consider the following example where the default clause of the case construct
is not the last clause:
141
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
module test;
 reg [1:0] addr_int, data_out, data_in;
reg clk, clk1;
reg [1:0]sel;
reg [3:0] a_1, b_1;

always @(posedge clk or posedge clk1)
case (sel)
default : data_out <= 2'bx;
0 : data_out <= data_in;
1 : data_out <= data_in;
2 : if (a_1 == b_1) data_out <= data_in;
3 : if (a_1 != b_1) data_out <= 2'b11;

endcase
endmodule

For this example, SpyGlass generates the W187 rule message.
142
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W226
Case select expression is constant

Language
Verilog, VHDL

Rule Description
Verilog
The W226 rule flags case constructs where the case construct selector is a
constant or a static expression.

Typical state machine descriptions require non-constant case construct
selector as in the following example:

case (x)
1: ...
2: ...

25: ...
...
endcase

Some designers may represent complex if conditions as a case construct
as in the following example:

case (1)
expr1: ...
expr2: ...
...

endcase

The above case construct uses a constant case construct selector (1) and is
equivalent to the following if construct:

if (expr1)
else if (expr2)
else ...

The W226 rule flags such case constructs.

By default, the check_const_selector parameter is set to no. When you set
the parameter to yes, the W226 rule checks weather all case labels are
143
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
one-hot. If so, the rule dose not report a violation even if the case selector
is a constant.

VHDL
The W226 rule flags case constructs or selected signal assignments where
the selector is a constant or a static expression.

A constant control expression or sub-expression evaluates to a TRUE/
FALSE situation and thus, the construct is always executed or never
executed.

By default, the W226 rule does not check inside function bodies unless the
strict rule parameter is set.

By default, the value of the ignore_generatefor_index parameter is set to no.
Set the value of this parameter to yes to ignore violations for case
statements inside generte-for blocks, if the case selector is a loop
variable of generate-for loop.

Message Details
Verilog
The following message appears at the start of a case construct where the
selector is a constant or static expression <expr>:

Case select expression '<expr>' is constant

VHDL
The following message appears at the location of a statement <stmt>
where the selector is a constant or static expression:

The <stmt> expression is constant

Where <stmt> can be CASE construct or selected signal assignment
statement.

Rule Severity
Warning

Suggested Fix
Generally nothing to fix, unless you find a case which does not match
expectations.
144
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Examples
Verilog
Consider the following case construct that has a constant select expression:

case (1)
0 : cc_data_out <=cc_data_in;
(sel) : cc_data_out <=cc_data_in;
2 : if (~sel) cc_data_out <= cc_data_in;
3 : cc_data_out <= 2'bz;
default : cc_data_out <= 2'bx;

endcase

For this example, SpyGlass generates the W226 rule message.

VHDL
Consider the following example:

case bit_vector'("11") is
when "00" | "01" => q <= d;
when others => q <= not d;

end case;

In the above example, the W226 rule reports a violation because the case
construct selector is a constant bit_vector'("11").The following
message is reported by this example:

The case expression is constant
145
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W263
Reports a case expression width that does not match case select
expression width

When to Use
A violation is reported when a case expression width does not match the
select expression width.

Description
The W263 rule reports the case clause labels whose widths do not match
the width of the corresponding case construct selector.

This rule calculates the width of case expressions on the basis of the
following conditions:

If the nocheckoverflow rule parameter is set to yes or W263, width is
calculated as per LRM. However, for constants, natural width is
considered.

If the nocheckoverflow rule parameter is set to no, width is calculated
according to the following methods:

 For plus/minus operator, value-based width is considered.

For multiplication operator, width is sum of operand widths.

For division operator, LHS width is considered.

For concat operator, width is calculated as sum of all the operands.

Rule Exceptions
The W263 rule does not report a violation in the following scenarios:

When case select is a static expression

When case expression is a constant (integer/macro) or unsized based
number, and its width is smaller than the case select width

Language
Verilog

Default Weight
5

146
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Turbo Mode Support
The Turbo mode support is available for this rule. For more information, see
the SpyGlass Lint Turbo Structural User Guide.

Parameter(s)
ignore_integer_constant_labels: Default value is no. Set the value of the
parameter to yes to ignore violations for constant case labels of integer
type.

nocheckoverflow: Default value is no. This indicates the W263 rule does
not check the bit-width as per LRM. Set this parameter to yes or rule
name to check the bit-width as per LRM.
strict: The W263 rule is switched off by default. You can enable this rule
by specifying the set_goal_option addrules W263 command.

use_lrm_width: Default value is no and the W263 rule considers the
natural width of integer constants and unsized based numbers. Set this
parameter to yes to consider LRM width of integer constants and
unsized based numbers, which is 32.

handle_static_caselabels: Default value is no. Set this parameter to yes
to ignore violations for static case labels, which are of less width than
the width of case selector.

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location of a case clause label whose
width (<case-label-width>) is not same as the case construct selector
width (<selector-width>).

[WARNING] Case label (<case-label-name>) width (<case-label-
width>) does not match selector (<selector-name>) width
(<selector-width>) [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Potential Issues
147
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Violation may arise when the case label width does not match the selector
width.

Consequences of Not Fixing
When the case clause labels are of width smaller than the width of the case
construct selector, it might lead to unwanted target in case expressions.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line of case label. Scroll up the HDL Viewer window to view the case
selector and the width mismatch. Alternatively, open the HDL in editor and
search for case selector.

Modify the case expressions to explicitly match the case selector in all bits.
This makes the behavior of the RTL code easier to understand and does not
rely on undefined behavior in handling unmatched bits.

Example Code and/or Schematic
Example 1
Consider the following example where the sel clause of the case construct
is of width 4 bits and the case clause labels have the same or different bit-
widths.

module test(in, out, sel, data);
input [3:0] in, data, sel;
output [3:0]out;
reg [3:0]out;

parameter [3:0]S = 23;
parameter [2:0]P = 10;
parameter [15:0]Q = 16'h1101;
parameter R = 2;

always @(in or sel)
begin
case (sel)

S : out = 4'b0000;
P : out = 4'b0000;
Q : out = 4'b0001;
R : out = 4'b0011;
148
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
in: out = 4'b0011;
4'b1010 : out = 4'b0011;
3'b110 : out = 4'b0011;
default out = 0;

endcase
end

endmodule

The case clause labels (S, in, and 4'b1010) have the same width (4 bits)
as the case construct selector sel.

The case clause labels P (3 bits), Q (16 bits), R (32 bits being an integer),
and 3'b110 (3 bits) do not have the same bit-width as the case construct
selector sel.

Example 2
Consider the following example:

module mod(sel,o1,o2,o3,o4,clk);
input clk;
input [1:0] sel;
output [3:0] o1, o2, o3, o4;
reg [3:0] o1, o2, o3, o4;
reg [3:0] mem[0:3];

always@(sel)
begin
case(sel)
2'b00 : o1 = mem[0];
2'b01 : o2 = mem[1] ;
1'b1 : o4 = mem[3];
default : o4 = mem[2];

endcase
end

endmodule

In the above example, the W263 rule reports a violation as the case label
width does not match the selector width.
149
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Example 3
Consider the following example:

case (sel)
(a[2:0]+b[2:0]): out=1'b1;

In the above example, width of a[2:0]+b[2:0] is 4.

Example 4
Consider the following example:

case (sel)
(a[2:0]*b[2:0]): out=1'b1;
(a1[2:0]*b1[2]): out=1'b0;

In the above example, the a[2:0]*b[2:0] is 6. Also, the width of
a1[2:0]*b1[2] is 3.

Example 5
Consider the following example:

case (sel)
(a[2:0]/b[2]): out=1'b0;

In the above example, width of a[2:0]/b[2] is 3.

Example 6
Consider the following example:

case(sel)
{1'b0,a[2:0]}: out=1'b1;
{1'b1,a[2:0]}: out=1'b0;

In the above example, width is 3 for the first expression, ignoring all the
leading 0s. The width is 4 bits for the second expression.

Example 7
Consider the following example:

module top(input clk);
wire [7:0] pState;
wire in1,in2;
reg out;
150
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
parameter ASTATE = 4;
parameter BSTATE = 512;

always @ (posedge clk) begin
case (pState)
ASTATE : out = in1;
BSTATE : out = in2;
endcase

end
endmodule

In the above example, the W263 rule does not report a violation when the
case label width is less than the selector width, since the case labels
ASTATE and BSTATE are parameters.

Default Severity Label
Warning

Rule Group
Lint_Elab_Rules, Case

Reports and Related Files
None
151
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W332
Not all cases are covered - default clause will be used

Language
Verilog

Rule Description
The W332 rule flags case constructs that do not have all possible clauses
described and have a default clause.

The W332 rule ignores case constructs that have Synopsys full_case pragma
specified.

While such case constructs are allowed, the W332 rule informs that the
default clause will almost certainly be exercised.

Message Details
The following message appears at the first line of a case construct that does
not have all possible clauses described and has a default clause:

Not all cases are covered in case statement: default case may
be used

Rule Severity
Warning

Suggested Fix
No fix required, but check default case carefully to make sure you cover all
default possibilities.
152
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W337
Reports illegal case construct labels

When to Use
Use this rule to report violation for illegal case construct labels.

Description
The W337 rule reports illegal case construct labels, which includes the
following types:

Labels of type real
The case constructs are evaluated by comparing the case construct
selector value against each case clause label in turn. As real values
cannot be accurately compared, it is recommended not to use real
values as case labels.

Labels containing X, Z, or ?

The case labels containing X have meaning only for the casex constructs.
The case labels containing Z and ? have meaning for the casex and casez
constructs.

time and event variables as labels.

By default, the W337 rule does not report violations for string variables,
which are used as case items. Set the value of the strict parameter to yes
to report violations for such cases.

Language
Verilog

Parameters
strict: The default value is no. Set the value of the strict parameter to yes
to report violations for string variables, which are used as case items.

Constraints
None
153
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Messages and Suggested Fix
The following message appears at the location of a rule-violating case
construct label.

[WARNING] Illegal value as case item

Potential Issues
Violation may arise when an illegal value is used as a case construct label.

Consequences of Not Fixing
Real values cannot be accurately compared.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the illegal case item.

Use only integer or reg values as case selectors and in case expressions. If
you need to use X, Z, or ? in a label, use the appropriate case type.

Example Code and/or Schematic
module top;

reg source;
reg dest;
reg clk;
reg sel;
reg out;

always @(posedge clk)
case (sel)

out : dest <=source;
1 : dest <=source;
8'b11110000 : dest <=source;
8'b1111xxxx : dest <=source;
8'b1111zzzz : dest <=source;
8'b1111???? : dest <=source;
0.1 : dest <=source;

default : dest <=source;
endcase
154
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
endmodule

In the above example, the W337 rule reports a violation as illegal case
construct labels, such as, x, z, and ? are used in the design. The rule will
also flag a violation as a real value (0.1) is used as a case label.

Default Severity Label
Warning

Rule Group
Case

Reports and Related Files
None
155
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W398
Reports a case choice when it is covered more than once in a case
statement

When to Use
Use this rule to identify duplicate case constructs.

Rule Description
The W398 rule reports duplicate choices in case construct. It is most likely
that this error occurs while using don't-care values in the case labels. It is
the only way that this condition can occur in VHDL. Consider the following
Verilog example:

casex (choice)
100: ...
10?: ...// violation
default: ...

endcase;

Consider the following VHDL example:

case (choice)
when "100" => ...
when "10-" => ...-- violation
when others => ...

end case;

Rule Exceptions
The W398 rule does not process case constructs when the
parallel_case pragma is specified.

Language
Verilog, VHDL

Parameters
strict: The strict parameter is applicable only for the Verilog rule. Default
value for this parameter is no. In this case, the rule does not report
violation for the non-static case labels. Set the value of the parameter to
yes or <rule-name> to report violations for non-static case labels.
156
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
waiver_compat: Default value is no. If you set the value of this parameter
to yes or <rule-name>, it ensures that the rule does not generate
the line number information in the first run itself. Thus waivers work
correctly even if the line numbers of the RTL gets changed in the
subsequent runs.

Constraints
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a duplicate choice
<duplicate_case> of an already existing case label <existing-
case-label> in case construct is encountered.

[WARNING] Case '<duplicate_case>' covered more than once at
'<existing-case-label>'

Potential Issues

Violation may arise when a case choice is covered more than once in a
case statement.

Consequences of Not Fixing
Repeated clauses in case construct are redundant and may result in an error
for some applications. All such redundant choices are not covered by
simulator and synthesis tool.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the duplicate case label is used.

To find the initial usage of the overlapping case label, scroll up the HDL
Viewer window or search backward for the second expression given in the
violation message.

To fix this problem, carefully examine offending case items and modify the
coding to avoid overlap.

VHDL
The following message appears at the location of a statement <stmt>
157
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
when a clause value <valuec> overlaps the value of another clause
<valuee> found earlier at a line <num>.

[WARNING] Choice <valuec> overlaps with another entry <valuee>
(line no <num>) in <stmt> statement

Where <stmt> can be a case construct or a selected signal assignment
statement.

Potential Issues
Violation may arise when a clause value overlaps with another clause value
in a case construct or in a signal assignment statement.

Consequences of Not Fixing
Repeated clauses in a case construct or a signal assignment statement is
redundant and may result in an error for some applications. All such
redundant choices are not covered by simulator and synthesis tool.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the duplicate case label is used.

To find the initial usage of the overlapping case label, scroll up the HDL
Viewer window or search backward for the second expression given in the
violation message.

To fix this problem, carefully examine offending case items and modify the
coding to avoid overlap.

Example Code and/or Schematic
Verilog Example
Consider the following example where the choice 2'b00 is repeated:

module test(a, b, c, o1);
 input [3:0]c;
 input [3:0]a;
 input [1:0]b;
 output [3:0]o1;
 reg [3:0]o1;

 always@(c or b)
 begin
158
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
 case(b)
 2'b00 : o1 = a || c;
 2'b01 : o1 = a & c;
 2'b00 : o1 = a | c; //violation by default
 c : o1 = a ^ b;
 2'b11 : o1 = a ^ c;
 c : o1 = a || b; //violation when strict is set
 default : o1 = 0;
 endcase
 end
endmodule

In the above example, the W398 rule reports a violation for the case label
2’b00 because it is repeated within the same case block. When the strict
parameter is set, the W398 rule reports a violation for the case label c
because it is a non-static case label.

VHDL Example
Example of a CASE Construct

In the following example, the clauses 0-0 and -00 (at line 13) overlap:

12: case sig3 is
13: when "-00" => sig1 <= sig2;
14: when "0-0" => sig1 <= sig2 + 10;
15: when "000" => sig1 <= sig2 + 20;
16: when "010" => sig1 <= sig2 + 20;
17: when "011" => sig1 <= sig2 + 20;
18: when "100" => sig1 <= sig2 + 20;
19: when "101" => sig1 <= sig2 + 20;
20: when "110" => sig1 <= sig2 + 20;
21: when "111" => sig1 <= sig2 + 20;
22: when others => null;
23: end case;

Example of a Select Statement

In the following example, the clauses --- and ZX1 overlap:

with a select
b <= 0 when "ZX1",

6 when "ZX0",
159
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
8 when "---",
unaffected when others;

Default Severity Label
Warning

Rule Group
Case

Reports and Related Files
None
160
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W453
Large case constructs should not be used

Language
Verilog

Rule Description
The W453 rule flags case constructs with large selector bit-width and large
number of case clauses.

By default, the W453 rule flags case constructs with the case select
condition bit-width greater than 16 bits and the number of case clauses
greater than 20. Use the casesize rule parameter to change the default
values.

The W453 rule flags case constructs where both conditions are violated
(select bit-width and number of clauses). Violation of one condition is not a
rule-violation.

When case select expression has larger width, number of case clauses
becomes larger to cover all the cases. Also, this is a readability problem for
user.

NOTE: The W453 rule supports generate-for and generate-case blocks.

Message Details
The following message appears when a case construct with a large condition
bit-width <bit-width> and more number of case clauses <num-of-
clauses>, is encountered:

case construct is too wide with condition bit-width '<bit-
width>' bits, and '<num-of-clauses>' clauses. [Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.

Severity
Warning
161
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Suggested Fix
In the case of large case selector width, try to break the case statement into
several case statements with small case selector width.
162
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
W551
Ensure that a case statement marked full_case or a priority/unique
case statement does not have a default clause.

When to Use
Use this rule to identify the case statements that are marked either
full_case or priority/unique_case and have a default clause.

Description
The W551 rule reports violation for the following constructs with a default
clause:

case constructs with full_case pragma

priority/unique case constructs

The W551 rule checks for priority cases inside always blocks, initial blocks,
tasks and functions in all scopes like generate block, packages, global
scope, and interfaces.

The rule reports violation when a priority modifier is used with case,
casex, or casez statements with default clause as one of its case
selection item.

Language
Verilog

Default Weight
5

Parameter(s)
check_case_type: Default value is all. Therefore, the W551 rule checks for
priority, unique, and full_case cases. Set the value of the parameter to
either priority or unique or full_case to check for priority, unique and
full_case cases, respectively. You can also specify multiple values for the
parameter so as to check for the specified cases.

Constraint(s)
None
163
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
Messages and Suggested Fix
The following message appears at the first line of a case construct with the
default clause and full_case pragma or priority/unique case construct with a
default clause:

[WARNING] Case statement marked <type> has a default clause

Where, <type> can be full_case or priority_case or
unique_case.

Potential Issues
The W551 rule may report a violation because of the following reasons:

Full_case pragma or the default clause is redundant.

In case of priority/unique case the default clause is redundant.

Consequences of Not Fixing
This rule points to the need of intent review. If the designer meant to
specify full_case then there should not be a reason for a default clause. A
review at the RTL coding stage can help you uncover subtle design issues.

How to Debug and Fix
Use either the full_case pragma directive or the default clause in a case
construct. For priority/unique case constructs, default clause is redundant.

To fix the violation, remove either the full_case pragma or the default clause.

Example Code and/or Schematic
Example 1
Consider the following example:

module test(inp, outp, sel);
input [3:0] inp;
input [1:0] sel;
output outp;
reg outp;

always @(sel or inp)
case(sel)

//synopsys full_case
2'bx0 : outp = inp[0];
164
Synopsys, Inc.

Case Rules

Rules in SpyGlass lint
2'b01 : outp = inp[1];
2'b10 : outp = inp[2];
default: outp = inp[3];

endcase

endmodule

In the above example, the W551 rule reports a violation as the case
statement specified full_case has a default statement.

Example 2
Consider the following example:

module test;
wire a, b, c;
logic x;
always @ (a, b, c)
begin
priority casez (c)
a: x = 1'b0;
b: x = 1'b1;
default: x = x;
endcase

end
endmodule

In the above example, the rule reports a violation as the default clause is
used with a priority case.

Default Severity Label
Warning

Rule Group
Case

Reports and Related Files
No related reports or files.
165
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Lint_Reset Rules
The SpyGlass lint product provides the following reset related rules:

Rule Flags...
W392 Reset/Set signals that have been used in both negative and positive

polarity in the same architecture
W395 process/always blocks that use multiple asynchronous set/reset signals
W396 Processes that have a clock signal but no asynchronous reset signal
W402 Reset signals that are internally generates at level other than the top-

level of the design
W402a Synchronous reset signals that are not inputs to the module
W402b Asynchronous reset signals that are not inputs to the module
W448 Signals that are used both as synchronous and asynchronous reset/set

in a design
W501 Reset ports in component instantiations that are connected to static

names (generic or constant)
166
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W392
Reports reset or set signals used with both positive and negative
polarities within the same design unit

When to Use
Use this rule to identify reset or set signals used with both positive and
negative polarities.

Description
The W392 rule reports reset or set signals that have been used in both
negative and positive polarities in the same module.

Rule Exceptions
The W392 rule fails to run if you set the fast rule parameter to yes and
SpyGlass lint product is run. Also, this rule does not report a violation for
set/reset pin driven by constant value that can be propagated.

Language
Verilog, VHDL

Parameters
checksyncreset: Default value is yes. This indicates the W392 rule
considers synchronous resets for rule checking. The rule tries to find the
synchronous resets from RTL always blocks. The rule also honors the
reset -sync constraint and looks for the out-of-phase flip-flops. Set this
parameter to no to ignore synchronous resets.

check_complete_design: Default value is no. This indicates the W392 rule
checks within the design unit. Set this parameter to yes to check within
the complete design.

fast: Default value is no. Set this parameter to yes to suppress
synthesis. Hence, the W392 rule will be switched off.
waiver_compat: Default value is no. If you set the value of this parameter
to yes or <rule-name>, it ensures that the rule does not generate
the line number information in the first run itself. Thus waivers work
correctly even if the line numbers of the RTL gets changed in the
subsequent runs.
167
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
check_latch: Default value is no and the rule reports the edge triggered
cases only. Set the check_latch parameter to yes to enable the rule
to report non-edge triggered cases also.

Constraint(s)
set_case_analysis: The W392 rule supports the constant value
propagation. Therefore, this rule does not traverse on a blocked path.
For black boxes, this rule traverses further only if the assume_path
constraint is specified in the SGDC file.

Tcl Attributes
is_reset_used_with_both_polarity: This Tcl attribute returns
those reset or set signals that are used as both positive and negative
polarity in the same design unit.
For example:

sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -
filter"is_reset_used_with_both_polarity == true"]

For more details, refer to the
is_reset_used_with_both_polarity attribute in the Base
Attributes section of the SpyGlass Tcl Shell Interface User Guide.

Messages and Suggested Fix
Message 1
The following message appears at the location where a different polarity of
a reset signal <rst-name> is used when another polarity has already
been used in the same module <module-name> in a file <file-name>,
line <num>.

[WARNING] Reset '<rst-name>' also used with different polarity
in module '<module-name>'(file: '<file-name>' line: '<num>')

Potential Issues
Violation may arise when two different IP blocks, each operating perfectly
fine with a given polarity of reset/set, are connected together at a SoC
level.
168
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Also, in some cases, the designer might intend to have mutually exclusive
operations (usually different modes of design).

Consequences of Not Fixing
When both polarities of reset/set signal are used, one logic block always
remain in a reset/set state. If a reset/set signal is high, the logic that
operates on positive reset/set polarity would be reset/set. However, when
the reset/set signal is de-asserted, some other portion of logic would be
reset/set. The usage leads to mutually exclusive blocks of logic.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of first usage of the reset.

Also, the corresponding Incremental schematic displays the following
information:

Negative polarity Reset Path from Reset Source to Flip-Flop Reset Pin.

Positive polarity Reset Path from Reset Source to Flip-Flop Reset Pin.

Flip-Flop with Negative polarity Reset.

Flip-Flop with Positive polarity Reset.

The violation message also shows the file and line number of reset used
with different polarity. User can trace the RTL code with this information to
see the other usage of the reset.

NOTE: If the Incremental schematic is not supported for the violation, it means the
violation is related to synchronous resets.

In majority of cases, such behavior is unintentional. To fix this problem,
review the design and change the reset logic so that externally reset is
active only in one state.

Message 2
The following message appears if the check_latch parameter is set as the
rule will check for latches:

[WARNING] Reset <rst-name> used with different polarity in the
design at latches <latch1-name> and <latch2-name>

Potential Issues
Violation may arise when two different IP blocks, each operating perfectly
fine with a given polarity of reset/set, are connected together at a SoC
level.
169
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Also, in some cases, the designer might intend to have mutually exclusive
operations (usually different modes of design).

Consequences of Not Fixing
When both polarities of reset/set signal are used, one logic block always
remain in a reset/set state. If a reset/set signal is high, the logic that
operates on positive reset/set polarity would be reset/set. However, when
the reset/set signal is de-asserted, some other portion of logic would be
reset/set. The usage leads to mutually exclusive blocks of logic.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of first usage of the reset.

Also, the corresponding Incremental schematic displays the following
information:

Negative polarity Reset Path from Reset Source to Latch Reset Pin.

Positive polarity Reset Path from Reset Source to Latch Reset Pin.

Latch with Negative polarity Reset.

Latch with Positive polarity Reset.

The violation message also shows the file and line number of reset used
with different polarity. User can trace the RTL code with this information to
see the other usage of the reset.

Example Code and/or Schematic
Verilog
Example 1:
Consider the following example:

module test3(Q1, Q2, DataIn, C_SCLK1, C_SRST1);
input [2:0] DataIn;
input C_SCLK1;
input C_SRST1;
output [2:0] Q1, Q2;
reg clk;
reg [2:0] Q1,Q2,Q3;
always @(posedge C_SCLK1 or posedge C_SRST1)
begin
170
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
if (C_SRST1) //VIOLATION
Q1 = 2'b11;

else
Q1 = DataIn[1:0];

end
always @(posedge C_SCLK1 or negedge C_SRST1)begin
if (!C_SRST1)
Q2 = 2'b11;

else
Q2 = DataIn[1:0];

end
endmodule

In the above example, W392 rule reports a violation as both polarities of
reset signal, C_SRST, is used in the same module.

Example 2:
Consider the following example, where the check_latch parameter has been
set to yes:

module test (y1, y2, data1, data2, enable, preset, clear);
 input data1, data2, enable, preset, clear;
 output y1, y2;
 reg y1, y2;

 always @(enable or clear or preset or data1)
 begin: forset1_PROC
 if (clear)
 y1 = 0;
 else
 if (preset) //high active "preset"
 y1 = 1;
 else
 if (enable)
 y1 = data1;
 end

 always @(enable or clear or preset or data2)
 begin: forset2_PROC
171
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
 if (clear)
 y2 = 0;
 else
 if (!preset) //low active "preset"
 y2 = 1;
 else
 if (enable)
 y2 = data2;
 end
endmodule

For the above example, the rule reports the following violation message:

Reset 'test.preset' used with different polarity in the design
at latches 'test.y2' and 'test.y1'

VHDL
Consider the following example where both polarities of the rst reset
signal have been used in same architecture.

library IEEE;
use ieee.std_logic_1164.all;

entity ent is
port (d, clk, rst: in bit; q1,q2: out bit);

end ent;

architecture behav of ent is
begin
process(clk,rst)
begin
if (rst = '1') then
q1 <= '0';

elsif clk'event and clk ='1' then
q1 <= d;

end if;
end process;
172
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
process(clk,rst)
begin
if rst = '0' then
q2 <= '0';

elsif clk'event and clk ='1' then
q2 <= d;

end if;
end process;

end behav;

The schematic for this example is given below:

FIGURE 1. Incremental schematic

Default Severity Label
Warning

Rule Group
Lint_Reset

Reports and Related Files
None
173
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W395
Multiple asynchronous resets or sets in a process or always may
not be synthesizable

Language
Verilog, VHDL

Rule Description
The W395 rule reports if more than one asynchronous reset or set signals
exist in the same process or always block.

Some synthesis tools may be able to handle process or always blocks
with multiple asynchronous resets or sets but such designs are unlikely to
be portable.

NOTE: The rule supports generate-if and generate-for blocks.

Message Details
Verilog
The following message appears at the start of an always block that uses
multiple asynchronous set or reset signals (<rst-list>):

Multiple set/reset signals <rst-list> used in the always block
may not be synthesizable [Hierarchy: ‘<hier-path>’]

VHDL
The following message appears at the start of a process block that uses
multiple asynchronous set or reset signals (<rst-list>):

Multiple set/reset signals <rst-list> used in the process block
may not be synthesizable

Severity
Warning

Suggested Fix
Precompute a single condition under which the process or always block
should be reset or set, and use that condition as a reset or set inside the
174
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
process or always block.

Examples
VHDL
Consider the following example where the process block uses two reset
signals (rst1 and rst2):

process(clk1,rst1,rst2)
begin
if (rst1 = '1') then
t <= '0';

elsif (rst2 = '1') then
t <= '0';

elsif (clk1'event and clk1 = '1') then
t <= not in1;

end if;
end process;

For this example, SpyGlass generates the following message:

Multiple set/reset signals 'rst1', 'rst2' used in the process
block may not be synthesizable

Verilog
Consider the following example where the always block uses two reset
signals (rst1 and rst2):

always @(posedge clk, posedge rst1, posedge rst2)
 begin
 if (rst1)
 t <= 1'b0;
 else if (rst2)
 t <= 1'b0;
 else if(clk)
 t <= in1 & in2;
 end

For this example, SpyGlass generates the following message:

Multiple set/reset signals 'rst1', 'rst2' used in the always
block may not be synthesizable
175
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W396
A process statement has clock signal, but no asynchronous reset
signal

Language
VHDL

Rule Description
The W396 rule flags processes that have a clock signal but no
asynchronous reset signal.

If a process statement has a clock signal then an asynchronous reset signal
must be given so that the corresponding sequential circuit starts from a
known state.

NOTE: You can enable the W396 rule by either specifying the set_goal_option
addrules W396 command. However, this rule will not run if you set the fast
rule parameter to yes and lint product is run.

Message Details
Following message appears at the start of a process that has a clock signal
but no asynchronous reset signal:

Process has a clock signal, but not an asynchronous reset
signal

Severity
Warning

Suggested Fix
Use this rule to check processes which are not asynchronously reset. If you
are using only synchronous reset, ignore the rule.

Examples
Consider the following example where the process has a clock signal clk
but no asynchronous reset signal:

entity test is
176
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
port(in1: in bit;
clk: in bit;
q: out bit);

end test;

architecture behav of test is
begin

process(clk)
begin

if(clk'event and clk = '1') then
q <= in1;

end if;
end process;

end behav;

For this example, SpyGlass generates the W396 rule message.
177
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W402
If you internally generate reset signals, do so in a single module
instantiated at the top-level of the design

Language
VHDL

Rule Description
The W402 rule flags reset signals that are internally generated at level
other than the top-level of the design.

Internal reset generation creates significant problems for SpyGlass DFT
methodologies. If you must gate resets, you should localize gating to one
module at the top-level of the design and provide a method to disable
gating in test mode.

The W402 rule reports violation if any one or more condition described
below occurs:

Top-level module has asynchronous resets and they are not ports

Asynchronous resets are generated in more than one instance

All asynchronous resets are generated in an instance, but all output
ports of that instance are not reset ports.

NOTE: You can enable the W402 rule by either specifying the set_goal_option
addrules W402 command. However, this rule will not run if you set the fast
rule parameter to yes and lint product is run.

Message Details
Following message appears at the location where a reset signal
<rst-name> is generated at a level other than the top-level of the
design:

Gated reset <rst-name> is not generated in single module at top
level

Severity
Warning
178
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Suggested Fix
Consider gating the generated reset with an externally controllable test
mode signal.
179
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W402a
Synchronous reset signal is not an input to the module

Language
Verilog

Rule Description
The W402a rule flags synchronous reset signals that are not inputs to the
module.

A signal appears to be used as a synchronous reset and is generated inside
the same module. This can cause difficulties in verification where it may be
desirable to start all logic in a reset state.

The W402a rule flags gated, buffered, or internally generated synchronous
reset signals.

NOTE: Synchronous reset detection in the SpyGlass lint product is heuristic. Hence, this
rule may report some false errors.

Message Details
The following message appears at the location where a reset signal <rst-
name> is used in the module <module-name> that is not an input to the
module:

Reset '<rst-name>' is not an input to the module '<module-
name>'

Severity
Warning

Suggested Fix
If the error is false, consider waiving it.

Examples
Consider the following example where synchronous reset signal rst is not
an input to the module:

module test(in, out, clk);
180
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
input [3:0] in;
input clk;
output [3:0] out;
reg [3:0] out;
reg rst;

always@(posedge clk)
begin

if(rst) out <= 0;
else out <= in;

end
endmodule

For this example, SpyGlass generates the following message:

Reset 'rst' is not an input to the module 'test'
181
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W402b
Asynchronous set/reset signal is not an input to the module

Language
Verilog

Rule Description
The W402b rule flags asynchronous set/reset signals that are not inputs to
the module.

The W402b rule flags gated, buffered, or internally generated
asynchronous set/reset signals.

Such set/reset signals may cause problems for SpyGlass DFT tools.

NOTE: You can enable the W402b rule by specifying the set_goal_option
addrules W402b command. However, this rule will not run if you set the fast
rule parameter to yes and SpyGlass lint product is run.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameters
waiver_compat: Default value is no. If you set the value of this parameter to
yes or <rule-name>, it ensures that the rule does not generate the line
number information in the first run itself. Thus waivers work correctly even
if the line numbers of the RTL gets changed in the subsequent runs.

Message Details
The following message appears at the location where the output of a flip-
flop <flop-name> is first assigned when its asynchronous <pin-type>
signal <pin-name> is not an input to the module <module-name>:

<pin-type> '<pin-name>' to flop '<flop-name>' (line <num>, file
<file-name>) is gated or internally generated (in module
<module-name>)

where <pin-type> is set or reset and <pin-name> is the name of
set/reset.
182
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
Consider gating the generated set/reset with an externally controllable test
mode signal.

Examples
Consider the following example where asynchronous reset signal rst is
not an input to the module:

module test(in, out, clk);
input [3:0] in;
input clk;
output [3:0] out;
reg [3:0] out;
reg rst;

always @(posedge clk or posedge rst)
begin
if(rst) out <= 0;
else if(!rst) out <= 1;
else out <= in;

end
endmodule

For this example, SpyGlass generates the following message:

'test.rst' to FF 'out[3]' (line 23, file test.v) is gated or
internally generated (in module test)
183
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W448
Reset/set is used both synchronously and asynchronously

Language
Verilog, VHDL

Rule Description
The W448 rule reports signals that are used both as synchronous reset/set
and asynchronous reset in a design.

Using a signal both as a synchronous and asynchronous reset/set can be
confusing and difficult to debug. An exception to this is the generation of
an "asynchronous assert, synchronous deassert" reset, but such cases
should be localized.

Synchronous reset/set function is triggered with respect to a clock edge/
phase. The reset/set signal can transition well in advance meeting the
required set up and hold times. However, the resetting effect of a
synchronous reset/set is synchronized to the clock edge.

The asynchronous reset/set takes place immediately after the assertion of
the reset/set signal. Here, no clock edge/phase is required for resetting
function.

If a single signal is used both synchronously and asynchronously then the
cycle partitioning intent should be reviewed. In such cases, the integrity of
scan and capture operations may get hampered during testing phase.
However, there are some rare cases when the requirement is to use a
reset/set signal both synchronously and asynchronously.

Use the following option to generate the W448_Report, which lists the reset
nets that are used synchronously and asynchronously:

-report=W448_Report

NOTE: In Lint, synchronous reset/set detection is heuristic and subject to false errors.

NOTE: You can enable the W448 rule by specifying the set_goal_option
addrules W448 command. However, this rule will not run if you set the fast
rule parameter to yes and SpyGlass lint product is run.

Design Impact
Functionality (bug escape) and testability
184
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Message Details
Following message appears at the location where a reset signal
<rst-name> is declared that is used both as a synchronous reset and
asynchronous reset in the same design:

Reset '<rst-name>' used both synchronously and asynchronously

Rule Severity
Warning

Suggested Fix
Check each case to ensure you understand the implications of using both
edge-based and state-based reset. Try to prefer usage based on just one
style and localize variants as much as possible

Examples (Verilog)
Consider the following example where signal rst is used both as
synchronous reset as well as asynchronous reset:

module test(in, out1, out2, clk, rst);
input in;
input clk, rst;
output out1, out2;
reg out1, out2;
always @(posedge clk or posedge rst)
begin
if(rst) out1 <= 0;
else out1 <= in;

end

always@(posedge clk)
begin
if(rst) out2 <= 0;
else out2 <= in;

end
endmodule

For this example, SpyGlass generates the following message:
185
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
Reset 'rst' is used as both synchronous and asynchronous reset

The schematic for the above example is shown below:

FIGURE 2. Incremental schematic

Examples (VHDL)
Consider the following example where the signal reset is used both as
synchronous and asynchronous resets in the same architecture:

entity test is
port(d: in Bit;

clk: in Bit;
reset: in Bit;

q1: out Bit;
q2: out Bit);

end test;

architecture structure of test is
begin
P1: process(clk, reset)
begin
if (reset = '1') then

q1 <= '0';
186
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
elsif (clk'event and clk = '1') then
q1 <= d;

end if;
end process P1;

P2: process(clk)
begin
if (clk'event and clk = '0') then
if (reset = '1') then

q2 <= '0';
else

q2 <= d;
end if;
end if;

end process P2;
end structure;

For this example, SpyGlass generates the following message:

Reset 'reset' is used as both synchronous and asynchronous
reset

The schematic for the above example is shown below:

FIGURE 3. Incremental schematic
187
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
W501
A connection to a reset port should not be a static name

Language
VHDL

Rule Description
The W501 rule flags reset ports in component instantiations that are
connected to static names (generic or constant).

Message Details
The following message appears at the location where the reset port <rst-
name> is connected to a generic or constant in a component instantiation:

Connection to <reset> port '<rst-name>' is a static name
(<type>)

Where <type> can be generic or constant.

Severity
Warning

Suggested Fix
Always connect a real signal. Tie that signal off if you really want to disable
the reset.

Examples
Consider the following example where the reset port rst of instantiation
INST1 is tied to a constant value 0:

...
INST1: test port map (d => input(0),

clk => clk,
rst => '0',
q => s1);

INST2: test port map (d => s1,
188
Synopsys, Inc.

Lint_Reset Rules

Rules in SpyGlass lint
clk => clk,
rst => input(1),
q => output);

...

For this example, SpyGlass generates the following message:

Connection to reset port 'rst' is a static name (constant)

Also, the reset port rst of instantiation INST2 is connected to signal
input(1) which is not a constant or generic. Hence, SpyGlass does not
flag a message here.
189
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
Lint_Clock Rules
The SpyGlass lint product provides the following clock related rules:

Rule Flags...
W391 Modules where both edges of a clock are used to describe sequential

elements
W401 Clock signals that are not input to the module where they are used
W422 Event control descriptions with more than one clock
W500 Clock ports of component instances that use bus, indexed-name,

sliced-name, expressions, or concatenation
190
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
W391
Reports modules driven by both edges of a clock

When to Use
Use this rule to identify modules driven by both edges of a clock.

Description
The W391 rule reports modules where both edges of a clock are used to
describe sequential elements.

Rule Exceptions
The W391 rule fails to run if you set the fast rule parameter to yes and
SpyGlass lint product is run.

Also, no rule checking is done when a clock is driven by a constant value,
which is propagated through an assignment or by using the SGDC file.

Language
Verilog, VHDL

Parameters
check_complete_design: Default value is no. This indicates the W391 rule
checks within the design unit. Set this parameter to yes to check within
the complete design.

Constraints
set_case_analysis: The W391 rule supports the constant value
propagation. Therefore, this rule does not traverse on a blocked path.
assume_path: A path through a black box is treated as a blocked path if
there is no assume_path constraint specified in the SGDC file for that
black box.

Tcl Attributes
is_clock_used_with_both_edges: This Tcl attribute returns the
clock signal that is driven on both the edges.
For example:
191
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -filter
"is_clock_used_with_both_edges == true"]

For more details, refer to the is_clock_used_with_both_edges
attribute in the Base Attributes section of the SpyGlass Tcl Shell
Interface User Guide.

Messages and Suggested Fix
For a design unit <module-name> where different edges of a clock signal
<clk-name> have been used to define sequential elements <hier-
flop1-name> and <hier-flop2-name>, respectively, the following
message appears at the location where the output net of a second flip-flop
<hier-flop2-name> is first set.

[WARNING] Design unit '<module-name>' uses both edges of clock
'<clk-name>' (1st at flop '<hier-flop1-name>', 2nd at flop
'<hier-flop2-name>')

Potential Issues
Violation may arise when a module uses both edges of a clock.

Consequences of Not Fixing
As a result of using both the edges, the behavior of that module gets
dependent on the duty cycle of the clock.

How to Debug and Fix
Double-click the violation message to view the Incremental Schematic
corresponding to the message. The Incremental Schematic displays the
following information:

Negative Edge Clock Path from Clock Source to Flip-Flop Clock Pin.

Positive Edge Clock Path from Clock Source to Flip-Flop Clock Pin.

Flip-Flop with Negative Edge Clock.

Flip-Flop with Positive Edge Clock.

To fix the problem, avoid using both edges of a clock in general. If
absolutely necessary, localize such cases as much as possible, that is, use
different edges for different modules.
192
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
Example Code and/or Schematic
Verilog Example
Consider the following example where a flip-flop out1 is described using
the posedge of clock clk when a flip-flop out2 has already been
described using the negedge of the same clock clk in the same module
test.

module test (out1, out2, in1, in2, clk);
input in1, in2, clk;
output out1, out2;

reg out1, out2;

always @(posedge clk)
out1 = in1;

always @(negedge clk)
out2 = in2;

endmodule

VHDL Example
Consider the following example where both edges of the clk clock signal
are used to describe sequential elements:

architecture rtl of test is
begin
P1 : process(clk, reset1)
begin
if (reset1 = '1') then

q1 <= '0';
elsif(clk'event and clk = '1') then
q1 <= d;

end if;
end process P1;

P2 : process(clk)
begin
if(clk'event and clk = '0') then
193
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
if (reset2 = '1') then
q2 <= '0';

else
q2 <= d;

end if;
end if;

end process P2;
end rtl;

Default Severity Label
Warning

Rule Group
Lint_Clock

Reports and Related Files
None
194
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
W401
Clock signal is not an input to the design unit

Language
Verilog, VHDL

Rule Description
The W401 rule flags clock signals that are not inputs to the modules where
the clock signals are used to describe flip-flops.

The W401 rule flags clock signals that are gated, buffered, or internally
generated in the module where they are used.

Using internally generated clocks may cause problems in timing budgeting
and in SpyGlass DFT tools.

The W401 rule does not flag a violation for clock pin driven by a constant
value, which can be propagated through assignment or using the SGDC
file.

NOTE: You can enable the W401 rule by specifying the
set_goal_option addrules W401 command. However, this rule will not
run, if you set the value of the fast rule parameter to yes and SpyGlass lint
product is run.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a rule-violating clock
<clk-name> is used in design unit <du-name>:

Clock '<clk-name>' is not an input to design unit '<du-name>'

Rule Severity
Warning

Suggested Fix
Localize clock generation and gating to a single module if possible, so that
195
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
timing and test issues can be managed carefully with respect to that one
module rather than in many locations in the design.

Examples (Verilog)
Consider the following example where the DFF_clk of flip-flop out1 is
internally generated:

module test(in1, in2, in3, out1);
input in1, in2, in3;
output out1;

my_clock mod1(in1, in2, in3, out1);
endmodule

module my_clock(in1, in2, clock, out1);
input in1, in2, clock;
output out1;

reg DFF_clk, out1;

always@(posedge clock)
begin
DFF_clk <= in1;

end

always@(posedge DFF_clk)
begin
out1 <= in2;

end
endmodule

For this example, SpyGlass generates the following message:

Clock 'test.mod1.DFF_clk' is not an input to design unit
'my_clock'

Examples (VHDL)
Consider the following example where the clock signal intClk of flip-flop
output is internally generated (process FF_CLK) in architecture
196
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
struct_CLK_Source of entity ent_CLK_Source:

entity ent_CLK_Source is
port (data: in Bit;

clk_in: in Bit;
reset: in Bit;
output: out Bit);

end ent_CLK_Source;

architecture struct_CLK_Source of ent_CLK_Source is
signal intClk: Bit;
begin
FF_CLK: process(clk_in)
begin
if(clk_in'event and clk_in = '1') then
intClk <= data;

end if;
end process FF_CLK;

FF: process(intClk, reset)
begin
if (reset = '1') then
output <= '0';

elsif (intClk'event and intClk = '1') then
output <= data;

end if;
end process FF;

end struct_CLK_Source;

entity ent_Test is
port(d: in Bit;

clk: in Bit;
rst: in Bit;

dataOut: out Bit);
end ent_Test;

architecture struct_Test of ent_Test is
component CLK_Source
197
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
port (data: in Bit;
clk_in: in Bit;
reset: in Bit;
output: out Bit);

end component;

begin
inst1: ent_CLK_Source

port map (data => d,
clk_in => clk,
reset => rst,
output => dataOut);

end struct_Test;

For this example, SpyGlass generates the following message at the
location of instantiation inst1 of entity ent_CLK_Source:

Clock 'ent_Test.inst1.intClk' is not an input to design unit
'ent_CLK_Source(struct_CLK_Source)'
198
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
W422
Unsynthesizable block or process: event control has more than one
clock

When to Use
Use this rule to identify the potentially unsynthesizable block or process.

Description
The W422 rule reports violation for always constructs or process constructs
having event control descriptions with more than one clock.

For Verilog, the W422 rule flags potentially un-synthesizable block as
shown below:

always @(posedge clk1 or posedge clk2) ...

For VHDL designs, SpyGlass recognizes the following types of constructs as
clocks:

Rule Exceptions
The W422 rule reports violation for potentially un-synthesizable block. It is
possible that the block is synthesizable by some synthesis tool.

Default Weight
5

Language
Verilog, VHDL

Parameter(s)
None

clk'event and clk = '1'

not clk'stable and clk = '1'

wait until clk = '1'

wait until clk'event and clk = '1'

falling_edge(clk) or rising_edge(clk)
199
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location of an event control
description using more than one clock:

[WARNING] Block might be un-synthesizable by some tool: event
control has more than one clock

Potential Issues
Violation may arise when an event control uses more than one clock.

Consequences of Not Fixing
The violating block may not be synthesizable by some synthesis tool as an
event control has more than one clock.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
start line of the always block in which more than one clock event control
is used.

If you want to switch on edges of both clock signals, precompute a
combined clock signal and switch on the appropriate edge of that combined
signal.

VHDL
The following message appears at the first line of a process construct that
has two clocks <clk1-name> and <clk2-name>:

[WARNING] Multiple clock signals <clk1-name>, <clk2-name> used
in the process may not be synthesizable

Potential Issues
Violation may arise when multiple clock signals are used in a process
construct.

Consequences of Not Fixing
Many synthesis tools support more than one clock inside a process, but this
is not considered good coding style because the trigger conditions for the
200
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
process as a whole can be confusing.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
start line of the process block in which more than one clock event control
is used.

Unless you know for certain that your synthesis tool can handle multiple
clocks in a process, break these cases into multiple processes, each with a
single clock.

Example Code and/or Schematic
Verilog
The following Verilog code shows the example of an event control
construct, which is not synthesizable:

module mod(in1, in2, clk1, clk2, out1);
input in1, in2;
input clk1, clk2;
output out1;
reg out1;

always@(posedge clk1 or posedge clk2)
out1 = in1 ^ in2;

endmodule

The W422 rule reports a violation message for the above example.

VHDL
Consider the following example where two clocks clk1 and clk2 are used in
the same process:

library IEEE;
use ieee.std_logic_1164.all;

entity multclk is
port(

d,clk1,clk2 : in std_logic;
q1 : out std_logic

);
201
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
end multclk;

architecture arc of multclk is

begin
process(clk1, clk2)
begin
if (clk1'event and clk1 = '1') then
q1 <= '0';

end if;
if (clk2'event and clk2 = '1') then
q1 <= d;

end if;
end process;

For this example, SpyGlass generates the following message:

Multiple clock signals clk1, clk2 used in the process may not
be synthesizable

Default Severity Label
Warning

Rule Group
Lint_Clock

Reports and Related Files
No related reports or files.
202
Synopsys, Inc.

Lint_Clock Rules

Rules in SpyGlass lint
W500
A connection to a clock port is not a simple name

Language
VHDL

Rule Description
The W500 rule flags clock ports of component instances that use bus,
indexed-name, sliced-name, selected-name, expression, or concatenation.

It is recommended to use simple names as clocks.

Message Details
Following message appears at the location where the connection to clock
port <clk-name> of an instantiation is not a simple name:

Connection to <clock> port '<clk-name>' is not a simple name

Severity
Warning

Examples (VHDL)
In the following examples, the connection to clock port clk is not a simple
name:

-- Bit-select connected to clock port
INST: test port map

(d => s1, clk => input(0), q => output);

-- Expressions connected to clock port
INST: test port map

(d => input(0), clk => (c and d), q => output);

-- Constants connected to clock port
INST: test port map

(d=> input(0), clk=>('0' XOR '1'), q=> output);
203
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Usage Rules
The following usage rules have been deprecated:

The SpyGlass lint product provides the following usage related rules:

W557a W557b W558

Rule Flags...
W34 Macros that are defined but not used
W88 Memories where all their elements are not set in the design
W111 Arrays where all elements are not read in the process
W120 Variables that are declared but not used
W121 Object names that are not unique within the current scope
W123 Signal/ variable that has been read out but is never set
W143 Macros redefinitions in the same file
W154 Implicit net declarations
W175 Generics that are never used
W188 Assignments to input ports
W215 Bit-selects of integer or time variables
W216 Part-selects of integer or time variables
W240 Input ports that are never read
W241 Output ports that are not completely set
W333 UDPs (user-defined primitives) that are never instantiated
W423 Ports that are re-declared with a different range in the same module
W468 Variables used as array index that are narrower than the array width
W493 Use of shared variables with global scope
W494 Inout ports that are never used
W494a Input ports that are never read
W494b Output ports that are never set
W495 Inout ports that are read but never set
W497 Bus signals that are not completely set in the design
W498 Bus signals that are not completely read in the design
204
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W528 Signals or variables that are set but never read
W529 Preprocessor conditional directives
W557 Runs the W557a and W557b rules
W557a This rule has been deprecated
W557b This rule has been deprecated
W558 This rule has been deprecated

Rule Flags...
205
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W34
Macro defined but never used

Language
Verilog

Rule Description
The W34 rule flags macros that are defined but are not used.

You may define a macro but may not use it in the design. Such a case is
not an error but generally a mistake.

NOTE: By default, the W34 rule is switched off and will be deprecated in a future SpyGlass
release. The problem reported by this rule can be handled by most of the
commercial compilers.

Message Details
The following message appears at the location where an unused macro
<macro-name> is defined in the file, included through the include
directive:

Macro '<macro-name>' is never used

Rule Severity
Info

Suggested Fix
Check all such cases. If you see a macro reported that you think should be
used, suspect a possible typing error.
206
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W88
All elements of a memory are not set

Language
Verilog

Rule Description
The W88 rule flags memories where all their elements are not set in the
design.

The W88 rule does not check for memory elements having non-static
index.

When testing logic, this indicates that the model does not fully exercise all
paths into the memory and thus possible errors in address selection may
be masked.

Message Details
The following message appears at the location where a memory
<mem-name> is declared but all its elements are not set in the design:

All elements of memory '<mem-name>' are not set [Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
process.

Rule Severity
Warning

Examples
Consider the following example where all elements of memory mem are not
set in the design:

module test(in1, in2, out1);
input [3:0] in1, in2;
output [3:0] out1;

reg [3:0] out1;
207
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
reg [7:0] mem [0:3];

always@(in1)
begin
out1 = in1 & in2;
mem[0] = {in1,out1};
mem[2] = {in1,in2};

end
endmodule

For this example, SpyGlass generates the following message:

All elements of memory 'mem' are not set [Hierarchy: ‘test’]
208
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W120
A variable has been defined but is not used (Verilog)
A signal/variable has been declared but is not used (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The W120 rule reports the variables that are declared but are not used in
scope of the module where they are defined.

The rule checks all non-port variables (wire, reg, integer, time
variables, etc.) and requires that the variable must be either set, read, or
both in the current scope. For vector variables, the rule requires that each
bit must be either set, read, or both in the current scope. Therefore, the
rule reports any bits of vector variables that are neither set nor read in the
current scope.

While such constructs are allowed, the rule helps you clean up your design.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, the rule reports a violation if any bit of a variable is defined but
not used in the current scope of a module. If you set the checkfullbus
parameter to yes, the rule reports a violation only when all bits of a
variable are completely unused in the current scope of a module.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

NOTE: This rule does not check the same variable used in different generate blocks.

VHDL
The W120 rule reports signals or variables that are never used in the
design.

The rule requires that the signal or variable must be either set, read, or
both. For vector signals or variables, the rule requires that each bit must
209
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
be either set, read, or both. Therefore, the rule reports any bits of vector
signals or variables that are neither set nor read in the current scope.

While such constructs are allowed, the rule helps you clean up your design.

For multidimensional variables, only the total count of unused bits is
reported in the violation message. To see the details of the violating bits,
please refer to the SignalUsageReport. You can access the report from the
spyglass_reports/lint directory.

By default, the rule reports a violation if any bit of a variable is declared but
not used in the current scope of an architecture. If you set the checkfullbus
parameter to yes, the rule reports a violation only when all bits of a
variable are completely unused in the current scope of an architecture.

By default, value checkfullrecord is set to no. Set this parameter to yes to
not report violation for a record if at least one element of the record is
used.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
Message 1
The following message appears at the location where a variable
<var-name> is declared but never used in the design:

Variable '<var-name>'<no_of_bits> declared but not used
[Hierarchy: ‘<hier-path>’]

Where,

 <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

<no_of_bits> is the number of unused bits of multidimensional
array.

Message 2
The following message is displayed when the signal size is greater than
210
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
50,000 and the handle_large_bus parameter is disabled:

Signal '<signal-name>' size too big thus not processed, use
'set_parameter handle_large_bus yes' for enabling handling of
these signals

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.

VHDL
The following message appears at the location where a signal
<sig-name> is declared that is never used in the design:

The signal '<sig-name>'<bits> is not used [Hierarchy: ‘<hier-
path>’]

The following message appears at the location where a variable <var-
name> is declared that is never used in the design:

The variable '<var-name>'<bits> is not used [Hierarchy: ‘<hier-
path>’]

Where, <bits> refers to unused bits of vector variable/signal . For
multidimensional array, <bits> is the total number of unused bits.

Also, the following message is generated, when the W120 rule flags a
violation for vector or multidimensional signal:

Please refer to 'SignalUsageReport.rpt' for details of
violating bits

In the Console, click on the above violation message to view the
SignalUsageReport.

Rule Severity
Warning

Suggested Fix
Check all such cases. If you see a variable reported that you think should
be used, suspect a possible typing error.
211
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Examples (Verilog)
Example 1
Consider the following example:

module W120_mod2(in1, clk, out1);
 input [2:0] in1;
 input clk;
 output [2:0] out1;
 reg [2:0] out1;

 wire [4:0] net;

 always@(posedge clk)
 #20 out1 <= in1 && net[2:0];

endmodule

In this example, not all bits of the net are used in the always block.
Therefore, by default, the W120 rule reports a violation. However, if you
set the checkfullbus parameter to yes, the rule does not report any
violation.

Example 2
Consider the following example:

module W120_top(i1, clock, o1);
 inout [2:0] i1;
 input clock;
 output [2:0] o1;

 W120_mod my_mod(i1, clock, o1);

endmodule

module W120_mod(in1, clk, out1);
 input [2:0] in1;
 input clk;
 output [2:0] out1;
 reg [2:0] out1;
212
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
 wire [2:0] net;

 always@(posedge clk)
 #20 out1 <= in1;

endmodule

In this example, all bits of the net are completely unused in the always
block. Therefore, by default, the W120 rule reports a violation. The rule will
also report a violation even if you set the checkfullbus parameter to yes.

Examples (VHDL)
Example 1
Consider the following example:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity entW120 is
 port(a: in std_logic;
 b: in std_logic;
 z: out std_logic
);
end entW120;

architecture behav of entW120 is
signal sig1: std_logic_vector(2 DOWNTO 0);
begin
 process(a, b)
 begin
 z <= a or sig1(0);
 end process;
end behav;

In this example, not all bits of the sig1 signal are used in the process
block. Therefore, by default, the W120 rule reports a violation. However, if
you set the checkfullbus parameter to yes, the rule does not report any
213
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
violation.
214
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W121
A variable name collides with and may shadow another variable

Language
Verilog

Rule Description
The W121 rule flags object names that are not unique within the current
scope.

The W121 rule flags an object name that is same as the name of another
object of different object type located within the same scope.

The W121 rule checks for name case variants within a specific scope, that
is, the boundaries of a module, a UDP, a function, a task, or a named block.
If a scope is contained in another scope (say, a named always construct
in a module), the names in the containing scope (module) are also checked
against the names in the contained scope (named always construct).

Names are not checked across parallel scopes.
NOTE: The W121 rule supports generate-if, generate-for, and generate-case blocks.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameters
waiver_compat: Default value is no. If you set the value of this parameter
to yes or <rule-name>, it ensures that the rule does not generate
the line number information in the first run itself. Thus waivers work
correctly even if the line numbers of the RTL gets changed in the
subsequent runs.

ignore_genvar: Default value is no and the W121 rule reports violations
for variables shadowed by genvar variables. Set the value of this
parameter to yes to not report violation for such cases.

ignore_scope_names: Default value is no and the W121 rule checks for
scope names. Set this parameter to yes to ignore rule checking on
scope names.
215
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
ignore_macro_to_nonmacro: Default value is no. Set the value of the
parameter to yes to ignore name matching for macro to non-macro
names.
limit_task_function_scope: Default value is no. Set the value of the
parameter to yes to ignore rule checking if a signal is declared with
function/task scope as well as with module scope.

Message Details
The following message appears at the location where an object name
<name> is declared that is same as the name of another object of different
object type located within the same scope:

Name '<name>' is not unique - may shadow another variable
(Previously used at line no. <line-num> in <file-name>)

Where <line-num> is the line number where the variable of similar name
has been defined earlier and <file-name> is the file in which the
variable of similar name has been defined earlier.

Rule Severity
Warning

Suggested Fix
In general, this is considered as loose coding style. It is best to ensure that
variables within a given scope have unique names. Take cases reported by
this rule and change names so the rule is not violated.

Examples
The following example shows some cases of name clashes:

`define M1 1
module test (in1, in2, clk, rst, out1, out2);
input in1, in2, clk, rst;
output out1, out2;
reg out1, out2;
wire test;
assign test = rst ? in1 : in2;
always @(clk)
216
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
begin : P2
out1 = P1(in1 , rst);
M1(in1, in2, out2);

end
always@(posedge clk)
begin: block1
if (rst)
begin: block1
reg out1;
out1 = P1(in2, rst);
M1(in1, `M1, out2);

end
else
begin
out1 = 0;
out2 = 1;

end
end

task M1;
input in, sel;
output out;
out = in & sel;

endtask
function P1;
input in, sel;
P1 = in & sel;

endfunction
endmodule

The wire test has a name clash with the module test. Thus, SpyGlass
generates the following message:

Name 'test' is not unique - may shadow another variable

(Previously used at line no. 2 in top.v)

There are two blocks named block1 in the same always construct. Thus,
SpyGlass generates the following message:

Name 'block1' is not unique - may shadow another variable

(Previously used at line no. 14 in top.v)
217
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
The register out1 declared in the always construct has a name clash
with a register with same name declared outside the construct. Thus,
SpyGlass generates the following message:

Name 'out1' is not unique - may shadow another variable

(Previously used at line no. 10 in top.v)

The task M1 has a name clash with parameter M1. Thus, SpyGlass
generates the following message:

Name 'M1' is not unique - may shadow another variable

(Previously used at line no. 19 in top.v)
218
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W123
Identifies the signals and variables that are read but not set

When to Use
Use this rule to identify signals and variables that are read but not set.

Description
Verilog
The W123 rule reports violations for the variables that are read but not set
in the design.

The rule determines the non-port value within a module which is read but
never assigned a value. The rule also checks for all the reg, wire, and
integer variables that are declared inside the module.

The W123 rule in addition to static conditions, simple non-static conditions
involving FOR-loop index are also evaluated.

NOTE: Inside the nested for loops, signals of user-defined type like structures,
interfaces, etc. are considered fully set if used on the left-hand side of an
expression and fully read if used on the right-hand side of an expression.

For multidimensional variables, only the total count of violating bits that
are read but not set, is reported in the violation message. To see the
details of the violating bits, refer to the SignalUsageReport report in the
spyglass_reports/lint directory.

A gate of a CMOS transistor needs to be at a defined state and electrical
level of logic 1 or 0, for the transistor to function as an on-off switch. If the
gate of a transistor is left floating, then the corresponding transistor can
get into a limbo state of partially on.

In the context of a logic gate, such a partially-on transistor can lead to
indeterminate logic value and analog electrical state on the output of that
gate.

For an inverter, if the input is left floating, both the n and p transistors can
be partially on creating a steady state path from VDD to ground.

In such cases, the output of a transistor would be in a non-digital state,
that is, somewhere between logic 1 and 0. This state would then propagate
to all the input pins of gates in the fan-out cone of the inverter. Those
219
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
gates, in turn would produce a non-digital output and would propagate
further. Thus potentially large number of nodes in a chip would be in the
indeterminate non-digital state.

Also, the steady state path created between VDD and ground through the
inverter transistors leads to an excessive current draw from VDD. When
many nodes are in this indeterminate state, a large amount of current is
drawn from VDD leading to a burn-out or latch-up of the chip.

VHDL
The W123 rule reports violations for signals or variables that are read but
not set in the design. The rule evaluates only the static conditions.

For multidimensional variables, only the total count of offending bits that
are read but not set, is reported in the violation message. To see the
details of the violating bits, refer to the SignalUsageReport report in
the report from the spyglass_reports/lint directory.

Rule Exceptions
For VHDL, following are the exceptions to the W123 rule:

The rule does not report violations for variables read inside dead code
(conditional or selected signal assignment).
The rule does not consider assignments inside a conditional statement
when the condition is false. In VHDL, only the static conditions are
evaluated. In Verilog, in addition to static conditions, simple non-static
conditions involving FOR-loop index are also evaluated.

NOTE: The rule does not evaluate the complex IF-conditions involving more than one loop
variable. The rule checks both the assignments inside the if and the else
constructs.

Language
Verilog, VHDL

Default Weight
10

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.
220
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Parameter(s)
ignoreModuleInstance: Default value is no. Set this parameter to yes to
ignore the unset variables that are used only in the instance port
mapping.

handle_large_bus: Default value is no and this rule does not process
large arrays. Set the parameter to yes to process large arrays (greater
than 50,000) and report violation if not used correctly.

traverse_function: Default value is no. Set this parameter to yes to
consider the inputs as read when being read inside a function. This
parameter is applicable to VHDL only.

checkfullrecord: Default value is no. Set this parameter to yes to not
report violation for a VHDL record if at least one element of the record is
read and set.

ignore_hier_scope_var: Default value is no and the W123 rule reports all
user-defined data types. Set the value of this parameter to yes to not
report any violation for the user-defined data types. This parameter is
applicable for Verilog only.

dump_array_bits: Default value is no. Set this parameter to yes, to
enable the W123 rule to include multi-dimensional signals/bits
information in the violation message. This parameter is applicable to
VHDL only.
report_struct_name_only: By default, the value of the parameter is no.
Set the value of the parameter to yes to enable the W123 rule to report
one violation for a struct variable.

Constraint(s)
None

Messages and Suggested Fix
Verilog
Message 1
The following message is displayed when the <var-name> variable that is
never set in the design, is read for the first time:

[WARNING] Variable '<var-name>'<no_of_bits> read but never set
221
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
[Hierarchy: ‘<hier-path>’]

Where,

 <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

<no_of_bits> is the number of offending bits of multidimensional
array, which are read but not set.

Potential Issues
A violation is reported when a variable is read but never set.

Consequences of Not Fixing
It is a poor design practice to set values across hierarchy boundaries by
using hierarchical names. Reading uninitialized value may result in
undriven nets post synthesis.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which the variable is read. To check whether the
variable is set, search the variable name in the source file and check all the
usages of the variable in the corresponding module or architecture. To view
the list of signal bits that are read but not set, open the SignalUsageReport
section from the Tools -> Report menu or double-click the violation
message referring to the report in Atrenta Console

To resolve the violation, review the RTL to determine why the variable is
not set. Also, check for the typing error in the variable name.

Message 2
The following message is displayed when the signal size is greater than
50,000 and the handle_large_bus parameter is disabled:

[INFO] Signal '<signal-name>' size too big thus not processed,
use 'set_parameter handle_large_bus yes' for enabling handling
of these signals

Potential Issues

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.

Consequences of Not Fixing
None
222
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
How to Debug and Fix
None

Message 3
The following message is displayed when the report_struct_name_only
parameter is set to yes:

[INFO] Variable '<variable_name> (total bits
<violation_bit_count>)' read but never set.[Hierarchy:
'<hierarchy>']"

Potential Issues
The violation message is reported when the report_struct_name_only
parameter is set to yes

Consequences of Not Fixing
None

How to Debug and Fix
None

VHDL
Message 1
The following message is displayed for the <sig-name> signal that is
read but not set in the design:

[WARNING] The signal '<sig-name>' <bits> is read but not set
[Hierarchy: ‘<hier-path>’]

Potential Issues
A violation is reported when a signal is read but never set.

Consequences of Not Fixing
Reading uninitialized value may result in undriven nets post synthesis.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which the signal is read. To check whether the signal
is set, search the signal name in the source file and check all the usages of
the signal in the corresponding module or architecture. To view the list of
signal bits that are read but not set, open the SignalUsageReport section
from the Tools -> Report menu or double-click the violation message
223
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
referring to the report in Atrenta Console.

To resolve the violation, review the RTL to determine why the signal is not
set. Also, check for the typing error in the signal name.

Message 2
The following message is displayed at the location of the declaration of a
variable <var-name> that is read but not set in the design:

[WARNING] The variable '<var-name>' <bits> is read but not set
[Hierarchy: ‘<hier-path>’]

Where, <bits> are the vector bits, which are read but not set.

Potential Issues
A violation is reported when a variable is read but never set.

Consequences of Not Fixing
Reading uninitialized value may result in undriven nets post synthesis.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which the variable is read. To check whether the
variable is set, search the variable name in the source file and check all the
usages of the variable in the corresponding module or architecture. To view
the list of variable bits that are read but not set, open the SignalUsageReport
section from the Tools -> Report menu or double-click the violation
message referring to the report in Atrenta Console.

To resolve the violation, review the RTL to determine why the variable is
not set. Also, check for the typing error in the variable name.

Message 3
The following message is generated, when the W123 rule reports a
violation for vector or multidimensional signal:

[INFO] Please refer to 'SignalUsageReport.rpt' for details of violating bits

Potential Issues
A violation is reported when a vector or a multi-dimensional signal is read
but not set in the design.

Consequences of Not Fixing
Reading an uninitialized value may result in undriven nets post synthesis.
224
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which the signal is read. To check whether the signal
is set, search the signal name in the source file and check all the usages of
the signal in the corresponding module or architecture. To view the list of
signal bits that are read but not set, open the SignalUsageReport section
from the Tools -> Report menu or double-click the violation message
referring to the report in Atrenta Console.

To resolve the violation, review the RTL to determine why the signal is not
set. Also, check for the typing error in the signal name.

Example Code and/or Schematic
Example 1
In the following example code, SpyGlass reports a violation for the
net[2:0] variable, which is read but never set:

module test(in1, clk, out1);
input [2:0] in1;
input clk;
output [2:0] out1;
reg [2:0] out1;

wire [2:0] net;

always@(posedge clk)
out1 <= in1 && net;

endmodule

Example 2
Consider the following example:

always @(posedge clk) begin
for (k = 0; k < 3; k = k + 1)
begin
if (k > 3)
sig2[k] <= sig1[k];
else
225
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
sig2[k] <= 1'b0;
end

end

The W123 rule does not report a violation for the above example as a
signal is assigned inside the IF conditional statement, which is false.

Example 3
Consider the following VHDL example:

architecture rtl of test is
signal match : std_logic;
signal input1 : std_logic;

function fnout(
 input2 : in std_logic;
 match1 : in std_logic
)
return std_logic is
variable match2 : std_logic;
begin
 match2 := match1; -- match used inside the function

return match2;
end fnout;

begin

y <= fnout(input1,match);

end architecture;

In the above example, as the traverse_function parameter is set to yes,
the input1 signal is not being read inside the function block, so it is not
considered as read while the match signal is being read inside the function
block, so it is considered as read.

Default Severity Label
Warning, Info
226
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Rule Group
Usage

Reports and Related Files
SignalUsageReport
227
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W143
Macro has been redefined

Language
Verilog

Rule Description
The W143 rule flags macros redefinitions in the same file.

Redefining a macro in the same file in which it was originally defined, is
likely to cause confusion and limit readability.

The W143 rule also flags a violation if a macro is defined in a file, and then
the same file is included in a separate file where the macro is redefined.
Consider an example in which a macro, M1, is defined in a file, F1, and F1
is included in a separate file, F2. If you redefine the macro, M1, in F2, this
rule will report violation. These apparent errors can be ignored.

Parameters
waiver_compat: Default value is no. If you set the value of this parameter to
yes or <rule-name>, it ensures that the rule does not generate the line
number information in the first run itself. Thus waivers work correctly even
if the line numbers of the RTL gets changed in the subsequent runs.

Message Details
The following message appears, at the location where a macro <macro-
name> is redefined, providing details of the line number <line-num>
and the file name <file-name> in which the macro was previously
defined:

Redefining macro '<macro-name>'. Previously defined at line
'<line-num>' in file '<file-name>'

Rule Severity
Warning
228
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Suggested Fix
If the macro is redefined with a different value, rewrite the code to use a
different macro in the second case. Redefining the same macro with a
different value can make the code error-prone.
229
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W154
Do not declare nets implicitly

Language
Verilog

Rule Description
The W154 rule flags implicit net declarations.

While implicit net declarations may be convenient for handling unconnected
(don't care) outputs, they can also result through misspelling of net names
which are intended to be connected.

Running the W154 rule ensures that all implicit declarations are flagged. If
you require all nets to be declared, the W154 rule effectively becomes a
spell-check for net connections; any message found represents a true
error.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a net <net-name>
is used that is not explicitly declared:

Declare net '<net-name>' explicitly

Rule Severity
Guideline

Suggested Fix
Explicitly declare all nets found by this rule (after checking they are not a
result of spelling errors).
230
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W175
A parameter/generic has been defined but is not used

Language
Verilog, VHDL

Rule Description
The W175 rule reports parameters and generics that are never used in the
design.

While such constructs are allowed, the rule helps you clean up your design.
NOTE: For Verilog designs, the rule also reports a violation for unused local parameters.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location where a parameter
<param-name> is declared that is never used in the design:

Parameter '<param-name>' declared but not used

VHDL
The following message appears at the location where a generic <gen-
name> is declared that is never used in the design:

The generic '<gen-name>' is not used

Rule Severity
Warning

Suggested Fix
Confirm that parameter/generic is really redundant. Remove it if possible
to reduce clutter in the design and to reduce warning messages from
SpyGlass.
231
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W188
Do not write to input ports

Language
Verilog

Rule Description
The W188 rule flags assignments to input ports.

Writing to an input port creates a wire-or inside the module. Also it creates
a possibility for the port to behave as an inout port, which may drive the
external logic to a conflict, where a user of the module assumed the port to
always behave as an input port.

Message Details
The following message appears at the location where an input port
<port-name> is assigned a value:

input port '<port-name>' should not be assigned any value

The following message appears at the location where an input port
<port-name> is instantiated:

input port '<port-name>' should not be connected to an instance
output port

Rule Severity
Warning

Suggested Fix
Buffer or gate the internal feedback to ensure it cannot drive back out
through the input port.
232
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W215
Reports inappropriate bit-selects of integer or time variables

When to Use
Use this rule to identify inappropriate bit-selects of integer or time
variables.

Description
The W215 rule reports bit-selects of integer or time variables.

NOTE: The W215 rule supports generate-if, generate-for, and generate-case blocks.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a bit-select of a
variable <var-name> of type <var-type> is used:

[WARNING] Inappropriate bit select for <var-type> variable:
"<var-name>"

Where <var-type> can be integer or time.

Potential Issues
A violation is reported when a bit-select is used for an integer or time
variable.

Consequences of Not Fixing
Bit-selects are not meaningful for integer variables and time variables.
233
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where a bit-select is used for a variable whose data type is integer or
time. You can confirm the data type of the variable by scrolling up the HDL
to the most recent definition of the signal.

To fix the violation, remove the bit-select. If you want to select a bit from
an integer variable, either mask and shift, or assign the integer to a reg
and then do bit-select on the reg.

Example Code and/or Schematic
Consider the following example:

module W215_mod2(in1, sel, out1);
input in1, sel;
output out1;
reg out1;

integer i;
initial
i = 10;

always@(in1 or sel)
if(sel == 1'b1)
out1 <= in1;

else
out1 <= i[0];

endmodule

In the above example, the W215 rule reports inappropriate bit-selects for
the int variable.

Default Severity Label
Warning

Rule Group
Usage
234
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Reports and Related Files
None
235
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W216
Reports inappropriate range select for integer or time variable

When to Use
Use this rule to identify inappropriate range selects for integer or time
variables.

NOTE: The W216 rule supports generate-if, generate-for, and generate-case blocks.

Description
The W216 rule reports range selects of integer or time variables.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where range select of a
variable <var-name> of a type <var-type> is used.

[WARNING] Inappropriate range select for <var-type> variable:
"<var-name>"

Where <var-type> can be integer or time.

Potential Issues
A violation is reported when a range select is used for an integer or time
variable.

Consequences of Not Fixing
Range selects are not meaningful for integer variables and time variables.
236
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where integer or time variable is used with selected range.

Remove the range select. If you want to select a range from an integer
variable, either mask and shift, or assign the integer to a reg and then do
range select on the reg.

Example Code and/or Schematic
Consider the following example:

module W216_mod2(in1, sel, out1);
input [1:0] in1;
input sel;
output [1:0] out1;
reg [1:0] out1;

integer i;

initial
i = 10;

always@(in1 or sel)
if(sel == 1'b1)
out1 = in1;

else
out1 = i[1:0];

endmodule

In the above example, the W216 rule reports inappropriate range select for
the int_part_sel variable.

Default Severity Label
Warning

Rule Group
Usage
237
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Reports and Related Files
None
238
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W240
An input has been declared but is not read

Language
Verilog, VHDL

Rule Description
The W240 rule reports input ports that are never read in the module.

While such ports are allowed, the rule helps you clean up your design.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, the rule reports a violation if any bit of the input port is unread.
If you set the checkfullbus parameter to yes, the rule reports a violation
only when the entire input port is unread.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

By default, value checkfullrecord is set to no. Set this parameter to yes to
not report violation for a VHDL record if at least one element of the record
is read.

To see the bits of the input that are not read, refer to the SignalUsageReport
report in the spyglass_reports/lint directory.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
Message 1
The following message appears at the location where an input port
<port-name> is declared but never read in the module:
239
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Input '<port-name>' declared but not read. [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Message 2
The following message is displayed when the signal size is greater than
50,000 and the handle_large_bus parameter is disabled:

Signal '<signal-name>' size too big thus not processed, use
'set_parameter handle_large_bus yes' for enabling handling of
these signals

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.

VHDL
The following message appears at the location where an input port
<port-name> is declared that is never read in the process. For multi-bit
ports the rule also displays the offending bits in the message.

Not all the elements of in port '<port-name>' '(<offending-
bits>)' are read [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
process.

Rule Severity
Warning

Suggested Fix
In most cases, you should remove the input. This will force a change in
design units instantiating this module. In some special cases, for example
scan-enable, an unconnected input appears as a place holder for later logic
insertion. These cases should be waived.

Examples
VHDL
Consider the following example:
240
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
entity test is
port(a: in bit_vector(0 to 5) ;

b: in bit;
c: in bit;
z: out bit

);
end test;

architecture behav of test is
begin
process(a, b)
begin
z <= a(3) or b;

end process;
end behav;

For this example, SpyGlass generates the following messages:

Not all the elements of in port 'a' (Bits: 0:2 4:5) are read
[Hierarchy: ‘test(behav):’]

Not all the elements of in port 'c' are read [Hierarchy:
‘test(behav):’]

The first message indicates that the bits of vector a at the 0, 1, 2, 4, and 5
position numbers of the port were not read and the second message
indicates that none of the bits of vector c were read.

Verilog
Consider the following example:

module ffd (z,a,b,c);
input b,c;
output reg z;
input [5:0] a;

always @(a,b)
z<=a[3] | b;

endmodule

In the above example, the W240 rule reports a violation because the input
c is never read in the module. The following message is reported by this
example:
241
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Input 'c' declared but not read.[Hierarchy: ':ffd']
242
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W241
Output is never set

Language
Verilog, VHDL

Rule Description
The W241 rule flags output ports that are not set (completely set for VHDL
design) in the module.

While such ports (for example a Qbar output from a flip-flop) are allowed,
un-set outputs can confuse other users.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

To see the details of the output that is not set, refer to the
SignalUsageReport report in the spyglass_reports/lint directory.

By default, all rule related data is reported in the SignalUsageReport report.
Set the value of the disable_signal_usage_report parameter to rule-name to
disable data generation in the SignalUsageReport report for the specified
rule.

Message Details
Verilog
Message 1
The following message appears at the location where an output port
<port-name> is declared that is not set in the module:

Output '<port-name>' is never set. [Hierarchy: ‘<hier-path>’]

The <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.
243
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Message 2
The following message is displayed when the signal size is greater than
50,000 and the handle_large_bus parameter is disabled:

Signal '<signal-name>' size too big thus not processed, use
'set_parameter handle_large_bus yes' for enabling handling of
these signals

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.

VHDL
The following message appears at the location where an output port
<port-name> is declared that is not completely set in the process:

Not all the elements of out port '<port-name>' '<offending-
bits>' are set [Hierarchy: ‘<hier-path>’]

Where, <offending-bits> refers to the offending bits for multi-bit
ports.

The <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Rule Severity
Warning

Suggested Fix
In most cases, you should remove the output. This will force a change in
design units that are instantiating this module. In some special cases, an
undriven output appears as a place holder for later logic insertion. These
cases should be waived.

Examples
Verilog
Consider the following example:

module test1(out1,out2,in1,in2);
input [13:0] in1;
input [13:0] in2;
244
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
output [15:0] out1;
output out2;

assign out1[13:0]= in1 | in2;

endmodule

In the above example, the W241 rule reports two violations because the
output out2 and out1[15:14] are never set in the module. The
following messages are reported by this example:

Output 'out1[15:14]' is never set.[Hierarchy: ':test1']

Output 'out2' is never set.[Hierarchy: ':test1']

VHDL
Consider the following example:

entity test1 is
port(in1: in bit_vector(13 downto 0);
in2: in bit_vector(13 downto 0);
out1: out bit_vector(15 downto 0);
out2: out bit);

end test1;

architecture behav of test1 is
begin

process(in1, in2)
begin

out1(13 downto 0) <= in1 or in2;
end process;

end behav;

In the above example, the W241 rule reports two violations because the
output out2 and out1 (bits: 15:14) are never set in the architecture
behave of entity test1 . The following messages are reported by this
example:

Not all the elements of out port 'out1' (Bits: 15:14) are set.
[Hierarchy: ':test1(behav):']

Not all the elements of out port 'out2' are set. [Hierarchy:
':test1(behav):']
245
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W333
Unused UDP

Language
Verilog

Rule Description
The W333 rule flags UDPs (user-defined primitives) that are never
instantiated in the design.

While such descriptions are allowed, the W333 rule helps you clean up your
design.

Message Details
The following message appears at the first line of a UDP declaration <udp-
name> that is never instantiated in the design:

UDP '<udp-name>' has not been used in the design

Rule Severity
Warning

Suggested Fix
Check all such cases to make sure you expect the UDP not to be
instantiated in the design. To exclude such cases from analysis, use the
set_option top command.
246
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W423
A port with a range is redeclared with a different range

Language
Verilog

Rule Description
The W423 rule flags ports that are re-declared with a different range in the
same module.

While such description is not necessarily an error, it may not be the design
intent.

Message Details
The following message appears at the location where a port
<port-name> is re-declared with a different range:

Port '<port-name>'(Range <previous-range>) is redeclared with
different range <latest-range>. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

This rule also highlights previous declaration with different range.

Rule Severity
Warning

Suggested Fix
In some cases this may be a neat way of compactly managing a
calculation, but it can be confusing. Recommend in general you avoid this
style. If necessary, declare and assign to a temporary bus of the
appropriate width.

Examples
In the following example, the input port in1 is being re-declared as a wire
with a different range:

input [15:0] in1;
247
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
wire [20:0] in1;

While such description is not necessarily an error, it may not be the design
intent. In the above example, the top five bits of wire in1 will not be
driven by the input port in1.
248
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W468
Index variable is too short

Language
Verilog

Rule Description
The W468 rule flags variables used as array index that are narrower than
the array width.

When a variable used to index a bit-select or array has a width narrower
than the width of the bus or the size of the array, some elements of the bus
or array will not be accessible.

Message Details
The following message appears at the location where the value of variable
or signal <name> used to index an array or a bus signal bit-select
<vector-name> that is narrower than the bit-width of the array or bus,
is encountered:

Variable/Signal '<vector-name>' is indexed by '<name>' which
can not index the full range of this vector. [Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Rule Severity
Warning

Suggested Fix
If possible, use an index large enough to span the full range of the vector.

If you intend to access only a lower subset of bits, make this explicit by
using a concat of the correct width with upper bits set to zero, for example.
249
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W493
A variable is not declared in the local scope, that is, it assumes
global scope

Language
Verilog, VHDL

Rule Description
The W493 rule flags variables that are read but not declared in the local
scope.

Using variables in this manner causes the variable value to be read from a
more global scope, if available or for the variable to be implicitly declared,
and possibly not set.

This design practice is not recommended and may result in unexpected
values.

NOTE: The W493 rule supports generate-if and generate-for blocks.

NOTE: (Verilog) The W493 rule is switched off by default. You can enable this rule by
specifying the set_goal_option addrules W493 command.

Message Details
Verilog
The following message appears at the location where a variable <var-
name> is read that is not declared in the local scope:

Temporary variable '<var-name>' is not declared in local scope

VHDL
The following message appears at the location where a shared variable
<var-name> is used:

Shared Variable '<var-name>' used. Avoid using shared variables

Rule Severity
Fatal (Verilog) / Warning (VHDL)
250
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Suggested Fix
It is always best to avoid coding which depends on or creates side-effects.
Pass values from other contexts explicitly as parameters/arguments.
251
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W494
Inout port is not used

Language
Verilog, VHDL

Rule Description
The W494 rule flags inout ports that are never read or set in the design.

While such ports are allowed, the W494 rule helps you clean up your
design.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, the rule reports violation for the completely unused inout ports.
Set the value of the strict parameter to yes to also report violation for
partially unused ports.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

Message Details
The following message appears at the location where an inout port
<port-name> is declared but never read or set in the design:

Verilog
Unused inout '<port-name>'. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope.

VHDL
The inout port '<port-name>' is not used

Rule Severity
Warning
252
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Suggested Fix
Check to make sure you intended to ignore the output value.
253
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W494a
Input port is not used

Language
VHDL

Rule Description
The W494a rule flags input ports that are never read in the design.

While such ports are allowed, the W494a rule helps you clean up your
design.

By default, the rule reports violation for the completely unused input ports.
Set the value of the strict parameter to yes to also report violation for
partially unused ports.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where an input port
<port-name> is declared that is never set in the design:

The in port '<port-name>' is not used

Severity
Warning

Suggested Fix
Determine if the input port is really not required. If not, consider removing
the port.
254
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W494b
Output port is not used

Language
VHDL

Rule Description
The W494b rule flags output ports that are never set in the design.

While such ports are allowed, the W494b rule helps you clean up your
design.

By default, the rule reports violation for the completely unused output
ports. Set the value of the strict parameter to yes to also report violation
for partially unused ports.

Message Details
The following message appears at the location where an output port
<port-name> is declared that is never set in the design:

The out port '<port-name>' is not used

Severity
Warning

Suggested Fix
Determine if the output port is really not required. If not, consider
removing the port.
255
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W495
Inout port is never set

Language
Verilog, VHDL

Rule Description
The W495 rule flags inout ports that are read in the design but never set.

While such ports are allowed, the W495 rule helps you clean up your
design so that you can redefine such inout ports as input ports.

It is an error in CMOS to let an input float, unless that input has a pull-
up or pull-down. Since an inout has an input mode, this condition is an
error.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

Message Details
The following message appears at the location where an inout port
<port-name> is declared that is read in the design but is never set:

Verilog
Undriven inout '<port-name>'. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

VHDL
The inout port '<port-name>' is not set

Rule Severity
Warning
256
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Suggested Fix
If you don’t care about the input value, tie it high or low, but do not let it
float.
257
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W497
Not all bits of a bus are set

Language
Verilog

Rule Description
The W497 rule flags multi-bit signals that are not completely set in the
design.

The W497 rule does not check multi-bit input and inout ports.

When some bits of a multi-bit signal are not set in the design, these bits
may achieve unknown values and may infer latches or flip-flops during
synthesis.

For all multi-bit signals (single-dimension vectors and multidimensional
arrays), the total count of unset bits is reported in the violation message.
To see the details of the violating bits, please refer to the SignalUsageReport.
You can access the report from the spyglass_reports/lint directory.

Message Details
The following message appears at the location of a multi-bit signal
declaration <sig-name> when all bits of the signal are not set in the
design:

Not all bits of bus '<sig-name>'<no-of_bits> are set
[Hierarchy: ‘<hier-path>’]

Where,

<hier-path> is the complete hierarchical path of the signal.

<no_of_bits> is the number of unset bits of vector or
multidimensional signals.

Also, the following message is generated, when the W497 rule flags a
violation for vector or multidimensional signal:

Please refer to 'SignalUsageReport.rpt' for details of violating bits

In the Console, click on the above violation message to view the
SignalUsageReport.
258
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
If the bits are not required, use a narrower bus, or tie the unused bits to a
fixed value.
259
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W498
Not all bits of a bus are read

Language
Verilog

Rule Description
The W498 rule flags multi-bit signals that are not completely read in the
design.

When some bits of a multi-bit signal are not read in the design, it may not
be an error but should be examined closely as you would always expect all
bits to be read.

For all multibit signals (single-dimension vectors and multidimensional
arrays), the total count of unread bits is reported in the violation message.
To see the details of the violating bits, please refer to the SignalUsageReport.
You can access the report from the spyglass_reports/lint directory.

Message Details
The following message appears at the location of a multi-bit signal
declaration <sig-name> when all bits of the signal are not read in the
design:

Not all bits of bus '<sig-name>'<no_of_bits> are read
[Hierarchy: ‘<hier-path>’]

Where,

<hier-path> is the complete hierarchical path of the signal.

<no_of_bits> is the number of unread bits of vector or
multidimensional signals.

Also, the following message is generated, when the W498 rule flags a
violation for vector or multidimensional signal:

Please refer to 'SignalUsageReport.rpt' for details of violating bits

In the Console, click on the above violation message to view the
SignalUsageReport.
260
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
No fix necessarily required, but such cases should be examined for possible
errors.
261
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W528
A signal or variable is set but never read

Language
Verilog, VHDL

Rule Description
The W528 rule reports variables that are set in the design but are never
read. In addition, the rule reports vector variables if all bits are not read in
a scope of a process.

However, in case of indirect addressing with parameters (Verilog designs),
the vector variable is assumed to be completely read if the complete range
of the vector variable can be accessed. See Examples below for details.

While setting unused variables is allowed, the rule helps you clean up your
design of unused variables, thereby reducing clutter in the design
description or possibly preventing a potential name confusion error.

NOTE: For Verilog, inside the nested for loops, signals of user-defined type like
structures, interfaces, etc. are considered fully set if used on the left-hand side of
an expression and fully read if used on the right-hand side of an expression.

To avoid violations for certain signals by this rule, provide a
comma-separated list of those signals in the not_used_signal parameter. You
can specify full signal names or regular expressions in the parameter. For
example, if you specify the list, "data_signal,bus_*", in the
parameter, the rule does not report a violation for the data_signal
signal and all the signals with names starting from bus_.

For multidimensional variables, only the total count of offending bits (set
but not read) is reported in the violation message. To see the details of the
violating bits, please refer to the SignalUsageReport. You can access the
report from the spyglass_reports/lint directory.

By default, the rule reports a violation if any bit of a variable is set but not
read in the current scope of a module or an architecture. If you set the
checkfullbus parameter to yes, the rule reports a violation only when all
bits of a variable are completely unread in the current scope of a module or
an architecture.

By default, this rule does not process large arrays. Set the handle_large_bus
262
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

By default, value checkfullrecord is set to no. Set this parameter to yes to
not report violation for a record if at least one element of the record is set
and read.

By default, all rule related data is reported in the SignalUsageReport report.
Set the value of the disable_signal_usage_report parameter to rule-name to
disable data generation in the SignalUsageReport report for the specified
rule.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
Message 1
The following message appears at the location where a variable
<var-name> is set but is never read in the design:

Variable '<var-name>'<no_of_bits> set but not read. [Hierarchy:
‘<hier-path>’]

Where,

<hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

<no_of_bits> is the number of bits of multidimensional array, which
are set but not read.

Message 2
The following message is displayed when the signal size is greater than
50,000 and the handle_large_bus parameter is disabled:

Signal '<signal-name>' size too big thus not processed, use
'set_parameter handle_large_bus yes' for enabling handling of
these signals

If the handle_large_bus parameter is not enabled, the violation for
signals of size greater than 50,000 is missed.
263
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
VHDL
The following message appears at the location of the declaration of a signal
<sig-name> that is set but not read in the design:

The signal '<sig-name>' <bits> is set but not read

The following message appears at the location of the declaration of a
variable <var-name> that is set but not read in the design:

The variable '<var-name>' <bits> is set but not read

Where, <bits> are the vector bits that are set but not read. For
multidimensional array, <bits> is the total number of bits that are set but
not read.

In addition, the following message is generated, when the W528 rule flags
a violation for vector or multidimensional signal:

Please refer to 'SignalUsageReport.rpt' for details of
violating bits

In the Console, click the above violation message to view the
SignalUsageReport.

Rule Severity
Warning

Suggested Fix
Check your logic. If the declaration and set are redundant, remove both to
reduce clutter in rule-check reports.

Examples (Verilog)
Example 1
Consider the following example where the signal bigbus is completely set
in the first assign statement:

module test1 (a, b);
input [13:0] a;
output [1:0] b;
wire [255:0] bigbus;
264
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
assign bigbus =
{{16{4'h0}},{16{4'h0}},{16{4'h0}},{16{4'h0}}};

assign b={bigbus[a[13:7]],bigbus[a[6:0]]};
endmodule

However, the second assign statement that assigns to signal b using
indirect addressing, only 128 bits (2**(13-7+1) or 2**(6-0+1)) of signal
bigbus can be addressed. Therefore, the W528 rule reports a violation
message.

Now, consider the following example:

module test2 (a,b);
input [15:0] a;
output [1:0] b;
wire [255:0] bigbus;

assign bigbus =
{{16{4'h0}}, {16{4'h0}}, {16{4'h0}}, {16{4'h0}}};

assign b={bigbus[a[15:8]], bigbus[a[7:0]]};
endmodule

The signal bigbus is completely set in the first assign statement. In
addition, the second assign statement that assigns to signal b using
indirect addressing, all 256 bits (2**(15-8+1) or 2**(7-0+1)) of signal
bigbus can be addressed. Therefore, the W528 rule does not report a
violation message.
265
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
Example 2
Consider the following example:

module mod(in1, clk, out1);
 input [1:0] in1;
 input clk;
 output [1:0] out1;
 reg [1:0] out1;
 reg [1:0] set;

 assign set = 2'b10;

 always @(posedge clk)
 out1[0] = in1[0] & set[0];

endmodule

In this example, the W528 rule, by default, reports a violation for the set
signal. If you set the checkfullbus parameter to yes or not_used_signal
parameter to set, the rule does not report any violation.

Examples (VHDL)
Example 1
Consider the following example:

library ieee;
use ieee.std_logic_1164.all;

entity test is
 port (
 a : in bit;
 b : in bit;
 y : out bit
);
end test;

architecture test_arc of test is
 signal sig : std_logic_vector (7 downto 0);
266
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
 signal sig1 : std_logic_vector (7 downto 0);
begin
 sig <= ("11001010");
 y <= a and b;
 sig1(1) <= sig(0);
end test_arc;

In this example, the W528 rule, by default, reports a violation for sig and
sig1 signals. If you set the checkfullbus parameter to yes, the rule does
not report a violation for the sig signal.

Example 2
Consider the following example:

library ieee;
use ieee.std_logic_1164.all;

entity top is

end entity;

architecture behav of top is
type HADDR_RANGE_ARRAY is array (natural range <>) of
std_logic_vector (7 downto 0);
SIGNAL master_haddr : HADDR_RANGE_ARRAY (7 downto 0);
SIGNAL master_haddr1 : HADDR_RANGE_ARRAY (7 downto 0);
SIGNAL master_out : HADDR_RANGE_ARRAY (7 downto 0);
begin
 master_haddr <=
("11001010","11001010","11001010","11001010","11001010","110
01010","11001010","11001010");
blk: process
begin
test: for i in 0 to 5 loop
 master_out (i) <=master_haddr (i) and
master_haddr1(i);
end loop test;
end process blk;
end behav;
267
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
In this example, the W528 rule, by default, reports a violation for
master_addr and master_out signals. If you set the not_used_signal
parameter to master_out, the rule does not report a violation for the
master_out signal. If you set the not_used_signal parameter to
master_*, the rule does not report any violation for signals with names
starting from master_.
268
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W529
`ifdef is not supported by all tools

Language
Verilog

Rule Description
The W529 rule flags 'ifdef compiler directives used in the design.

Some synthesis tools do not support preprocessor conditional directives.

Message Details
The following message appears at the location where a 'ifdef compiler
directive is encountered:

Compiler directive 'ifdef is not supported by all synthesis
tools

Rule Severity
Warning

Suggested Fix
Avoid using these directives in synthesizable logic.
269
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W557
Range value and part-selects of parameters should be avoided.

The W557 rule runs the W557a and W557b rules.
270
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W557a
This rule has been deprecated

The W557a rule has been deprecated. Range values for parameter are
synthesizable by almost all synthesis tools.
271
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W557b
This rule has been deprecated

The W557b rule has been deprecated. Part-Select on parameter value are
synthesizable by almost all synthesis tools.
272
Synopsys, Inc.

Usage Rules

Rules in SpyGlass lint
W558
This rule has been deprecated

The W558 rule has been deprecated. Bit-Select on parameter value are
synthesizable by almost all synthesis tools.
273
Synopsys, Inc.

Lint_Tristate Rules

Rules in SpyGlass lint
Lint_Tristate Rules
The SpyGlass lint product provides the following miscellaneous rules:

Rule Flags...
W438 Tristate descriptions that are not at the top-level of the design
W541 Inferred tristate nets
274
Synopsys, Inc.

Lint_Tristate Rules

Rules in SpyGlass lint
W438
Ensure that a tristate is not used below top-level of design

When to Use
Use this rule to identify the tristate descriptions that are used below top-
level of the design.

Description
The W438 rule flags tristate descriptions that are not at the top-level of the
design. Tristate busing should be restricted to the top-level of the design.

In most of the current SoC designs, tristate signals are not widely used. If
tristate signals are used, their usage is usually for muxing of the top-level
buses or for some specialized fabric. Such fabrics are usually implemented
at the top-level of SoC, and most of the designers prefer to manage the
hierarchy accordingly for bus-holder cells, which in some technologies
require a weak resistor. Bus holder cells ensure that the tristate bus does
not float for a long time.

Rule Exceptions
You can enable the W438 rule by specifying the set_goal_option
addrules W438 command. However, this rule will not run if you set the
fast rule parameter to yes and SpyGlass lint product is run.

Language
Verilog

Default Weight
5

Parameter(s)
fast: The default value is no. Set the value of the parameter to yes to
suppress synthesis of the source RTL description.

Constraint(s)
None
275
Synopsys, Inc.

Lint_Tristate Rules

Rules in SpyGlass lint
Messages and Suggested Fix
The following message appears at the location where a tristate net <sig-
name> is used at a level other than the top-level:

[WARNING] Tristate function '<sig-name>' used below top level
of design

Potential Issues
 Violation may arise when a tristate function is used below top level of
design.

Consequences of Not Fixing
For local sub-modules and lower level hierarchy blocks, use of tristates
should be avoided for testability, timing, and reliability reasons.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the tristate value, z, is used in the design.

To fix the violation, use muxing at lower levels, rather than tristates.

Example Code and/or Schematic
Consider the following example where tristate descriptions are not at the
top-level:

module test(a1, b1, x, y, ena, out1, clk);
input [3:0] x, y;
input clk;
input [1:0] ena;
output [3:0] a1, b1, out1;

reg [3:0] out1;

always @(posedge clk)
begin
out1 <= x | y;

end

state1 ONE (a1, b1, x, y, ena);
endmodule
276
Synopsys, Inc.

Lint_Tristate Rules

Rules in SpyGlass lint
module state1(a, b, x, y, ena);
input [1:0] ena;
input [3:0] x, y;
output [3:0] a, b;

assign a = (ena == 2'b01) ? x : 4'bz;
assign b = (ena == 2'b10) ? 4'bz : y;

endmodule

For this example, SpyGlass generates the following violation messages:

Tristate function 'a[3:0]' used below top level of design

Tristate function 'b[3:0]' used below top level of design

Default Severity Label
Warning

Rule Group
Lint_Tristate

Rule Severity
Warning
277
Synopsys, Inc.

Lint_Tristate Rules

Rules in SpyGlass lint
W541
A tristate is inferred

Language
Verilog

Rule Description
The W541 rule flags inferred tristate nets.

NOTE: You can enable the W541 rule by specifying the set_goal_option
addrules W541 command. However, this rule will not run if you set the fast
rule parameter to yes and SpyGlass lint product is run.

Message Details
The following message appears at the location where a tristate signal
<sig-name> is inferred:

A tristate '<sig-name>' is inferred

Rule Severity
Info

Suggested Fix
Use muxing wherever possible, rather than tristates.

Examples
A tristate net sig is inferred for the following assignment:

assign sig = enable ? in1 : 1'bz;
278
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Assign Rules
The SpyGlass lint product provides the following assignment related rules:

Rule Flags...
W19 Usage of constants where the constant is wider than the usage context
W164 Assignments in which LHS width does not match with the RHS width of

an expression
W164c Assignments in which the LHS width is greater than the (implied) width

of the RHS expression
W257 AFTER clauses
W280 Intra-assignment delays specified with nonblocking assignments
W306 integer type to real type conversions

W307 Unsigned type (reg type) to real type conversions

W308 real type to integer type conversions

W309 Unsigned type (reg type) to integer type conversions

W310 integer type to unsigned type (reg type) conversions

W311 real type to unsigned type (reg type) conversions

W312 real type to single-bit type conversions

W314 Multi-bit reg types to single-bit conversions

W317 Assignments to supply nets
W336 Blocking assignment used in sequential always constructs

W397 Value assignments to input ports
W414 nonblocking assignments used in combinational always constructs

W446 Output ports that are read in the module where they are set
W474 Variables that are assigned but not deassigned
W475 Variables that are deassigned without being assigned
W476 Variables that are forced but are not released
W477 Variables that are released without being forced
279
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W484 Possible loss of carry or borrow bits during assignments using addition
and subtraction arithmetic operators

W505 Signals or variables that are being assigned values using both blocking
and nonblocking assignments

Rule Flags...
280
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W19
Reports the truncation of extra bits

When to Use
Detects truncation of extra bits.

Rule Description
Reports a violation when you have specified a constant value wider than
the specified width of the constant.

For example, constant 4'b10110 is truncated to 4'b0110 and a
message is flagged.

Rule Checking for Binary Based Numbers
The W19 rule reports violation for the following cases:

If significant bits are truncated.

For loss of non-significant bits, if you set the value of the strict
parameter to yes.

Rule Checking for Decimal Based Numbers
The W19 rule reports a violation if significant bits are truncated.

Rule Checking for Hexadecimal and Octal Based Numbers
The W19 rule reports violation for the following cases:

If significant bits are truncated.

If based word contains more bits than specified size and there is
truncation of non-significant bits. However, the W19 rule does not report
a violation if based word can fit well within the specified size, as this is a
valid design practice.

Rule Exceptions
The W19 rule does not check for unused macro definitions and unused
parameters.

Language
Verilog
281
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Default Weight
5

Parameter(s)
strict: The default value of the parameter is no and the rule W19 does
not report truncation of zeroes for binary based numbers. If you set the
the value of this parameter to yes or the rule name, the rule also
reports truncation of zeroes for binary based numbers.

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a constant <const-
name> is being truncated as it is wider than the usage context:

[WARNING] Constant <const-name> will be truncated

Potential Issues
A violation is reported when you have specified a constant value wider than
the specified width of the constant.

Consequences of Not Fixing
When constant value is wider than the width of the constant, it results in
truncation of extra bits. This in turn leads to data loss and unexpected code
behavior.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where truncation of extra bit on constant number is violated. Search
for the based number that is described in the violation message in the
highlighted line.

To resolve the violation, determine the width specification and the constant
value. Fix the width specification, if incorrect.
282
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Example Code and/or Schematic
Example 1
Consider the following example:

module operator(clk1,out1);

input clk1;
output out1;
reg out1;

always @(posedge clk1) begin
out1 = 1'b101; //(Constant 1'b101 will be truncated)
if(out1 == 2'b0101)//Constant 2'b0101 will be truncated)
begin
end

end

endmodule

In the above example, the W19 rule generates the truncation message for
the constants, 1'b101 and 2'b0101, as the constants are wider than the
usage context.

Example 2
Consider the following example:

2'b111

In the above example, the rule reports a violation.

Example 3
Consider the following example:

2'b011

In the above example, the rule reports a violation for this expression, if
you have set the strict parameter to yes.

Example 4
Consider the following example:

2'd15, 1’d3
283
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
In the above example, the W19 rule reports a violation.

Example 5
Consider the following example:
2'd03, 4'd0014

In the above example, the rule does not report a violation for this
expression.

Example 6
Consider the following example:

3'hF, 2'o7

In the above example, the rule reports a violation.

Example 7
Consider the following example:

3'h01, 3'o01

In the above example, the rule reports a violation.

Example 8
Consider the following example:
3'h1, 2'o1

In the above example, the rule does not report a violation for this
expression.

Default Severity Label
Warning

Rule Group
Assign

Reports and Related Files
None
284
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W164
Language

Verilog, VHDL

Rule Description
The W164 rule runs the W164a and W164b rules.
285
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W164c
LHS width is greater than RHS width of assignment (Extension)

Language
Verilog

Rule Description
The W164c rule flags assignments in which the LHS width is greater than
the (implied) width of the RHS expression.

The W164c rule is same as the W164b rule except the following two
conditions:

The W164c rule checks for all assignments (including those assignments
containing no wire or reg objects) and the W164b rule checks all
assignments only when the strict rule parameter is set.
The W164c rule, unlike W164b rule, does not report a violation, if the
RHS is an unsigned unbased constant.

NOTE: The W164c rule is switched off by default and can be run only when specially
selected in Atrenta Console or is specified using the set_goal_option
addrules W164c command in the batch mode.

By default, the W164c rule considers the natural width of integer
constants, which is log2(N)+1. Set the value of the use_lrm_width rule
parameter to yes to consider the LRM width of integer constants, which is
32 bits.

By default, the rule executes the new width related changes. Set the
new_flow_width parameter to no to calculate the width of expressions by
using the width calculation algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to New Width Flow Application Note.

When a signed signal is divided by another signed signal, the W164c rule
calculates the width as follows:

<width of numerator> + 1

Consider the following example:

wire signed [2:0] a_3_sign, b_3_sign, c_sign_div;
assign c_sign_div = a_3_sign / b_3_sign;
286
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
The W164c rule reports a violation for the above assignment when the RHS
width is 4. This calculation is valid only for simple division expressions.

By default, the W164c rule reports violation for disabled code in loops and
conditional (if condition, ternary operator) statements. Set the value of the
disable_rtl_deadcode parameter to yes to disable violations for disabled code
in loops and conditional (if condition, ternary operator) statements.

By default, the width is calculated considering the best fit width of an
expression. That is the width in which maximum value of an expression can
be accommodated.

When you set the value of the nocheckoverflow parameter to yes then width
is calculated according to the LRM and the natural width is considered for
constants.

The behavior of the rule is explained by the cases below.
For Constant Expressions

For constant integer expressions, the width is calculated based on the
value of expression:

out[5:0] = 2 + 15 ; //RHS Width = 5 (Value = 17),
 violation
out[10:0] = 100 << 4 ; //RHS Width = 11, NoViolation
out[6:0] = 100 >> 2 ; //RHS Width = 5

If constant is not a part of sub-expression then the specified width is
considered:

out[11:0] = 12'b0 ; //RHS Width = 12, No violation

If the width of a based number is not specified then the natural width
is considered:

out[11:0] = 'h344; //RHS Width = 10, violation

For above cases, behavior of rule remains same when the
nocheckoverflow parameter is set to yes.

For Arithmetic Operators

For addition operator, the width is calculated as the width in which
maximum value of expression is accommodated. Consider the
following example:

out[3:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS Width
4, No violation
287
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Max value RHS 3 + 3 + 3 = 9
RHS Width = 4

out[2:0] = in1[1:0] + (3/3) ; //RHS Width 3, No
violation
Max Value RHS = 3 + 1 = 4
RHS Width = 3

out[6:0] = in1[5:0] + 5'b1010; //RHS Width 7, No
violation
out[4:0] = 15 + 3'b111; //RHS width 5, No
violation

For the subtraction operator, the width is calculated in a similar way
as it is done for addition:

out[4:0] = in1[3:0] - in1[1:0]; //RHS Width 5, No
violation
out[4:0] = in1[3:0] - 4'b1010; //RHS Width 5, No
violation

For the multiplication operator, the width is calculated as follows:
When both operands are variable, then the RHS width is the sum of
the width of both operands:

out[5:0] = in1[1:0] * in2[1:0] * in3[1:0]; //RHS Width
6, No violation
out[4:0] = in1[2:0] * in1[1:0]; //RHS Width 5,
No violation

When one operand is static and other is variable, then the RHS width
is calculated considering maximum value of the expression:

out[7:0] = in1[3:0] * 4'b1; //RHS Width 4, Max
value = 15*1 = 15, Violation
out[7:0] = in1[3:0] * 4'b10; //RHS Width 5, Max
value = 15*2 = 30, Violation
out[7:0] = in1[3:0] * 4'b1010; //RHS Width 8, Max
value = 15*10 = 150, No violation
out[6:0] = in1[3:0] * 4; //RHS Width 6, Max
value = 15*4 = 60, violation
288
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
For the division operator, the width of the RHS is assumed as the
width of left operand:

out[2:0] = in1[2:0]/in1[1:0]; //RHS Width 3, No
violation

out[2:0] = in1[1:0]/in1[2:0]; //RHS Width 2, Violation

out[3:0] = in1[3:0]/4'b10; //RHS Width 4, No
violation

out[3:0] = 4/in1[3:0]; //RHS Width 3,violation

When the nocheckoverflow parameter is set to yes, the width is
assumed to be the same as the width of term having maximum
width. Consider the following example:

out[3:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS Width
2, violation

out[6:0] = in1[5:0] + 5'b1010; //RHS Width 6, Violation

out[4:0] = 15 + 3'b111; //RHS width 4, Violation

out[4:0] = in1[3:0] - in1[1:0];//RHS Width 4, Violation

out[4:0] = in1[3:0] - 4'b1010; //RHS Width 4, Violation

out[4:0] = in1[2:0] * in1[1:0];//RHS Width 3, Violation

out[7:0] = in1[3:0] * 4'b10; //RHS Width 4, Violation

out[2:0] = in1[1:0]/in1[2:0]; //RHS Width 3, No
violation
out[3:0] = 4/in1[3:0]; //RHS Width 4, No
violation

For Shift Operator

For the right shift, if left operand width is matching the LHS width
then no violation is reported. Consider the following example:

out[3:0] = in1[3:0] >> in ; //RHS Width 4, No
violation

out[5:0] = in1[4:0] >> 2 ; //RHS Width 5,
Violation

out[31:0] = 4 >> in ; //RHS Width 32, No
289
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
violation

out[4:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5, No
violation

out[5:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5,
violation

For left shift, if shifted or left operand width is matching LHS width
then no violation is reported. Consider the following example:

out[5:0] = 4'b0001 << in ; //RHS Width 4, Violation
out[31:0] = 4 << in ; //RHS Width 32, No
violation
out[5:0] = in1[4:0] << 1 ; //RHS Width 6, No
violation
out[6:0] = in1[4:0] << 2 ; //RHS Width 7, No
violation
out[4:0] = in1[4:0] << 2 ; //RHS Width 5, No
violation
out[7:0] = in1[4:0] << in2[2:0] ; //RHS Width 5,
Violation

When parameter nocheckoverflow is set to yes then width of left
operand is considered for both left shift and right shift operations.

For Self-Determined Expression

For self-determined expressions, the width is calculated as per the
LRM:

wire a,b,c;

assign a = {b+c}; //LHS: 1, RHS: 1, No violation

assign out[2:0] = {1'b1,b+c}; //LHS: 3, RHS: 2,
Violation

Behavior of the rule remains the same when the nocheckoverflow
parameter is set to yes

 For Conditional Operator
 The width of conditional operator is calculated as follows:

A violation is reported if there is a width mismatch either in left
expression or in right expression. Consider the following example:
290
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
out[2:0] = in1[2] ? in2[0] : in3[2:0] ; //RHS Width 1,
Violation

out[2:0] = in1[2] ? in2[2:0] : in3[1:0];//RHS Width 2,
Violation

out[0] = in1[2] ? in2[0] : in3[2] ; //RHS Width 1, No
violation

Behavior remains same when the nocheckoverflow parameter is set to
yes.

For Power Operator
The width of power operator is calculated as follows:

If the RHS expression of the power operator is static, then the width
of the expression is calculated as per the following formula:

Expression width = LHS expression width * RHS expression
value

 Consider the following example:

out[23:0] = in1[1:0] ** 12; //RHS Width 24, No
violation

If the RHS expression of power operator is non static then the LHS
expression width is reported. Consider the following example:

out[1:0] = in1[1:0] ** in2[3:0]; //RHS Width 2, No
violation

When the nocheckoverflow parameter is set to yes, the LHS
expression width is reported. Consider the following example:

out[23:0] = in1[1:0] ** 12; //RHS Width 2, violation

out[1:0] = in1[1:0] ** in2[3:0]; //RHS width 2, No
violation

For Unbased Unsized Constants

No violation is reported if the RHS is unbased unsized constant:

assign out[3:0] = 3; //No-Violation
assign out[2:0] = 2'd3; //RHS Width 2, Violation
291
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Behavior remains same when the nocheckoverflow parameter is set to
yes.

For concatenation operator, when the RHS expression is concatenated
with zero bits:

No violation is reported when the width of the LHS expression lies
between the original width of the RHS expression and the width after
adding zero concatenated bits. Here, the original width is the width
without considering the zero concatenation.
When the nocheckoverflow parameter is set to yes, a violation is
reported when LHS width is greater than the RHS width after adding
zero concatenated bits.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where the width <widthl>
of LHS of an assignment is greater than the width <widthr> of the RHS:

LHS width '<widthl>' is greater than RHS width '<widthr>'
[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Rule Severity
Warning

Suggested Fix
It is more readable to explicitly extend as necessary, rather than relying on
default behavior. In case of counters specified as integers with range, fix
may not be required as you may have put the check to avoid overflow. This
is the normal practice to use integer range for counters.
292
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W257
Synthesis tools ignore delays

Language
Verilog, VHDL

Rule Description
The W257 rule flags delay/after clauses in the design.

For Verilog designs, the W257 rule reports a maximum of 500 rule
messages per design and a maximum of 20 rule messages per module. Set
the allviol rule parameter to yes or <rule-name> to report all violation
messages.

As delays are ignored by synthesis tools, the pre- and post-synthesis
simulations of designs with delays may not match.

NOTE: The W257 rule also grouped under the Synthesis Rules group.

Message Details
Verilog
The following message appears at the location where a delay statement
is encountered:

Delays will be ignored in synthesis

VHDL
The following message appears at the location where an after clause is
encountered:

AFTER clause will be ignored in synthesis

Severity
Warning

Suggested Fix
If possible, avoid using delays. Test the detailed timing in post-synthesis
timing analysis, and not in simulation. Where essential to avoid race
conditions, use only unit delays. Restrict the use of non-unit delays to
293
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
testbenches only.
294
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W280
A delay has been specified in a nonblocking assignment

Language
Verilog

Rule Description
The W280 rule flags intra-assignment delays specified with nonblocking
assignments.

Such description is unlikely to correspond to the physical implementation.
However, such description may be required to use a unit delay to avoid
race conditions in simulation.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameters
report_inter_nba: Default value is no. In this case, the W280 rule does not
report inter-nonblocking assignment delay. Set the value of the parameter
to yes to report such cases.

Message Details
The following message appears at the location where a nonblocking
assignment is used to describe an intra-assignment delay:

Intra-assignment delay used in a nonblocking assignment

Rule Severity
Warning

Examples
Consider the following example, where an intra-assignment delay in a
nonblocking assignment mimics a gate delay:
295
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
a <= #10 b;
296
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W306
Converting integer to real

Language
Verilog

Rule Description
The W306 rule flags integer type to real type conversions.

Type conversion may indicate an unintended error. Such type of
conversions may lead to loss in accuracy.

Message Details
The following message appears at the location where an integer type is
being converted to a real type:

Converting integer to real

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
297
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W307
Converting unsigned (reg type) to real

Language
Verilog

Rule Description
The W307 rule flags unsigned type (reg type) to real type conversions.

Any type conversion may indicate an unintended error. Such type of
conversions may lead to loss in accuracy. Since a reg is effectively an
unsigned integer, you may unexpectedly get a negative integer where you
expected a positive value.

Message Details
The following message appears at the location where a reg type is being
converted to a real type:

Converting reg to real

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
298
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W308
Converting real to integer

Language
Verilog

Rule Description
The W308 rule flags real type to integer type conversions.

Any type conversion may indicate an unintended error. In this case there
may be a loss of significant data (the fractional part of the float).

Message Details
The following message appears at the location where a real type is being
converted to an integer type:

Converting real to integer

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
299
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W309
Converting unsigned (reg type) to integer

Language
Verilog

Rule Description
The W309 rule flags unsigned type (reg type) to integer type
conversions.

Type conversion may indicate an unintended error. Since a reg is
effectively an unsigned integer, you may unexpectedly get a negative
integer where you expected a positive value. There could also be a loss of
significant data if the reg type is wider than the integer type (32 bits).

Message Details
The following message appears at the location where a reg type is being
converted to an integer type:

Converting reg to integer

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
300
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W310
Converting integer to unsigned (reg type)

Language
Verilog

Rule Description
The W310 rule flags integer type to unsigned type (reg type)
conversions.

Type conversion may indicate an unintended error. Since a reg is
effectively an unsigned integer, what may have been a signed value will
become unsigned. This would in turn affect the outcome of arithmetic
operations (For example, a negative number becomes bigger than a
positive number).

Message Details
The following message appears at the location where an integer type is
being converted to an unsigned type (reg type):

Converting integer to reg

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
301
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W311
Converting real to unsigned (reg type)

Language
Verilog

Rule Description
The W311 rule flags real type to unsigned type (reg type) conversions.

Type conversion may indicate an unintended error. In this case, there may
be a loss of significant data (the fractional part of the float).

Message Details
The following message appears at the location where a real type is being
converted to an unsigned type (reg type):

Converting real to reg

Rule Severity
Warning

Suggested Fix
Check to see if the conversion was intended. If yes, waive messages on
those cases.
302
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W312
Converting real to single bit

Language
Verilog

Rule Description
The W312 rule flags violation when a real type node is assigned to single-
bit node.

For example, consider the following scenario:

reg data;
real realval;
data = realval;

Any type conversion may indicate an unintended error, which may cause
loss of significant data.

Message Details
The following message appears at the location where a real type is being
converted in to a single-bit type:

Converting real to single bit

Rule Severity
Warning

Suggested Fix
Check to see whether the conversion was intended. Waive
violations on such cases.
303
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W314
Converting multi-bit reg type to single bit

Language
Verilog

Rule Description
The W314 rule flags violation when multi-bit reg type node is assigned to
a single-bit. For example, consider the following scenario:

output out1;
reg [3:0] count;
out1 = count

Any type conversion may indicate an unintended error. In this case, there
may be loss of significant data.

By default, the W314 rule reports only one violation for every violating line,
even if a module is instantiated more than once with different parameter
values. Set the value of the allviol parameter to yes or <rule-name> to
report different violations for every violating line resulting from a module,
which is instantiated more than once with different parameter values.

NOTE: The W314 rule supports generate-if, generate-for, and generate-case blocks.

Message Details
The following message appears at the location where a multi-bit reg type
is being converted in to a single-bit type:

Converting multi-bit reg type to single bit [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical path.

Rule Severity
Warning

Suggested Fix
Check to see whether the conversion was intended. Waive violations on
such cases.
304
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W317
Reports assignment to a supply net

When to Use
Use this rule to identify assignment to a supply net.

Rule Description
The W317 rule reports assignments to supply nets.

Language
Verilog

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a supply net is being
assigned.

[WARNING] Assigning to a supply net is an error

Potential Issues
Violation may arise when an assignment to a supply net is encountered in
the design.

Consequences of Not Fixing

Assigning to a supply net, such as supply0 and supply1, nets is an
error as supply nets cannot be driven.

How to Debug and Fix
Select the message that you want to debug.

In the HDL window, it takes you to the line where assignment to a supply
net is made.

To fix the violation, remove the assignment.
305
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Example Code and/or Schematic
Consider the following example:

module W317_top1(i1, i2, o1);
input i1, i2;
output o1;
reg o1;

supply1 vdd;

assign vdd = i2;

endmodule

In the above example, the rule reports a violation for a supply net, vdd.

Default Severity Label
Warning

Rule Group
Assign

Reports and Related Files
None
306
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W336
Blocking assignment should not be used in a sequential block (may
lead to shoot through)

When to Use
Use this rule to identify blocking assignment in a sequential block.

Description
The W336 rule reports a blocking assignment used in sequential always
constructs. Hence, it is best to review these violations during RTL creation
phase.

Apart from Verilog style blocking assignments, rule also reports violation
for SystemVerilog style of blocking assignments.

Rule Exceptions
The W336 rule fails to run if you set the value of the fast parameter to yes
and the SpyGlass lint product is run, simultaneously.

Language
Verilog

Parameters
treat_latch_as_combinational: Default value is no. This indicates the W336
rule treats combinational block inferring latch as a sequential block. Set
this parameter to yes to treat combinational block inferring latch as a
combinational block.

check_temporary_flop: Default value is no and the W336 rule does not
report violation for temporary flip-flops. Set the value of this parameter
to yes to report violation for temporary flip-flops.

ignore_local_variables: Default value is no and the W336 rule reports
violations for variables (left hand side of the assignment) defined inside
the sequential block. Set the value of this parameter to yes to ignore
violations for such cases.
ignoreCellName: Default value is not set. Set this parameter to a comma
separated list of PERL regular expressions containing the module names
that should be ignored by the W336 rule.
307
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Constraints
None

Messages and Suggested Fix
[WARNING] Blocking assignment '<assignment>' used inside a
<Latch|FlipFlop> inferred sequential block.

Potential Issues
Violation may arise when a blocking assignment is used inside a sequential
block.

Consequences of Not Fixing
When a blocking assignment is used in a sequential block, inherent
sequence of operation is implied in simulation. However, the synthesized
hardware may behave in a concurrent fashion. Therefore, there is no
assurance that the gate-level simulations match RTL level simulations.
Also, the intent of the designer may not be fully captured in RTL.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the blocking assignment is used to infer flip-flop or latch in a
sequential always block.

View the violation message to check the type of the sequential cell (flip-
flop or latch) inferred from the block.

Use only nonblocking assignments in sequential blocks.

Example Code and/or Schematic
Example 1
Consider the following example:

module test3(clk, reset, d, q);
input clk, reset, d;
output q;
reg q;

always @(posedge clk or negedge reset)
begin
308
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
if (!reset)
q = 1'b0;

else
q = d;

end

endmodule

In the above example, the W336 rule reports a violation as a blocking
assignment is used inside a flip-flop inferred sequential block.

Example 2
Consider the following example of SystemVerilog style blocking
assignments:

always @ (posedge clk)
sig++;

always @ (posedge clk)
sig2 += 1;

In the above example, the rule reports a violation as the flip-flop is inferred
in the design.

Example 3
Consider the following example:

module mod(in1, in2, clk, sel, out1);
input [2:0] in1, in2;
input clk, sel;
output [2:0] out1;
reg [2:0] out1;

always @(posedge clk)
if(sel)

out1 = in1;
else

out1 = in2;

endmodule

In the above example, the W336 rule reports a violation as blocking
309
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
assignments are used in the design.

Example 4
Consider the following example:

module test(in1,en,out1);
input in1;
input en;
output out1;
reg out1;

always begin
@(en)

begin
if(en)

out1 = in1;
end

end
endmodule

In the above example, the W336 rule does not report a violation when the
value of the treat_latch_as_combinational parameter is set to yes.

Default Severity Label
Warning

Rule Group
Assign

Reports and Related Files
None
310
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W397
Destination of an assignment is an IN port

Language
VHDL

Rule Description
The W397 statement flags signal assignments to input ports.

As you cannot drive an input, such assignments are design errors. An input
bit should be driven only by an input port.

Message Details
The following message appears at the location where an input port
<port-name> is assigned a value:

Cannot assign to IN port '<port-name>'

Severity
Fatal

Suggested Fix
Remove the assignment to the input port. If an OR or WIRE-OR function is
necessary, create that function explicitly.
311
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W414
Reports nonblocking assignment in a combinational block

When to Use
Use this rule to identify nonblocking assignments in a combinational block.

Description
The W414 rule reports violations:

When a nonblocking assignment is followed by a blocking assignment in
a combinational block
When a nonblocking assignment (signal used on LSH of assignment) is
used in a clock path, unless the block is a latch

For combinational blocks, the rule reports violations only for the following
cases:

A nonblocking assignment is followed by the blocking assignments. For
example, consider the following cases:
Case 1
out1 <= in1 & in2;
out2 = in3 & in4;

Case 2
out1 <= in1 & in2;
out2 < = in3 & in4;

Case 3

out1 = in1 & in2;
out2 <= in1 & in2;

Signal that is assigned using the nonblocking assignments is used in the
clock path of a flip-flop. For example, consider the following case:
Case 1

always @(in1 or in2)
clk <= in1;

always @(posedge clk) //used as a clock
out1 <= in1 & in2;
312
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
When the parameter fast is set to yes, the RTL version of the W414 rule is
run.

The RTL version of the W114 rule reports violation for those non-blocking
assignments that are followed by a blocking assignment in a combinational
block. For example, consider the following cases:

Case 1

out1 <= in1 & in2;

out2 = in3 & in4;

Case 2
out1 <= in1 & in2;

out2 <= in3 & in4;

Case 3

out1 = in1 & in2;

out2 <= in1 & in2;

Language
Verilog

Parameters
treat_latch_as_combinational: This indicates that the W414 rule treats
combinational block inferring latch as a sequential block. Set this
parameter to yes to treat the combinational block inferring latch as a
combinational block. When the RTL version of the rule is run, all the
latches are combinational except always_latch. Set the
treat_latch_as_combinational parameter to yes to treat always_latch
as a combinational block for the RTL version.

fast: The default value is no. Set the value of the parameter to yes to
run the RTL version of the W414 rule.

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a nonblocking
313
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
assignment is used in a combinational always construct:

[WARNING] nonblocking assignment should not be used in a
combinational block

Potential Issues
Violation may arise when a nonblocking assignment is used in a
combinational block.

Consequences of Not Fixing
Not fixing the violation may result in unexpected code behavior.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the nonblocking assignment is used for the specific signal. This
assignment is specified inside a combinatorial always block.

You can confirm whether the always block is combinatorial using one of
the following ways:

Visual inspection of the block

Scrolling up the HDL Viewer window till you reach the always block

If the always block is a long block, view the HDL in an editor, and
search backward for the nearest always keyword

If the always block is not combinational and is a latch, set the value of
the treat_latch_as_combinational parameter as yes.

To fix this problem, use only blocking assignments in combinational blocks.

Example Code and/or Schematic
Consider the following example:

module test3(set, reset, p, q);
input set, reset;
output p, q;
reg p, q;

always @ (posedge p)
q <= set;

always @(set or reset)
begin
314
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
p <= set & reset;
q <= set | reset;

end

endmodule

In the above example, the W414 rule reports a violation as a nonblocking
assignment is used in a combinational always block, when the fast
parameter is not set.

Default Severity Label
Warning

Rule Group
Assign

Reports and Related Files
None
315
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W446
Output port signal is being read (within the module)

Language
Verilog

Rule Description
The W446 rule flags output ports that are read in the module where they
are set.

Such models could lead to an unintended feedback path from the
instantiating module in the post-synthesis simulation while this issue is not
apparent in the pre-synthesis simulation. Such models are also not
recommended for some test tools that need to handle inout ports specially
(by attaching bus-holders, for example).

NOTE: Inside the nested for loops, signals of user-defined type like structures,
interfaces, etc. are considered fully set if used on the left-hand side of an
expression and fully read if used on the right-hand side of an expression.

By default, this rule does not process large arrays. Set the handle_large_bus
parameter to yes to process large arrays (greater than 50,000) and report
violation if not used correctly.

The rule reports violation for all the scenarios by default. Set the value of
the flag_only_instance_ports parameter to yes to report scenarios where
output port is connected to the input instance pin.

Message Details
The following message appears at the location where an output port
<port-name> is declared in a module when the port is being both set
and read in the module:

Output port '<port-name>' is being read inside module.
[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the hierarchical path of the containing scope.

Rule Severity
Warning
316
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Suggested Fix
If the port really should be an inout port, change the declaration to inout.
Otherwise, buffer the signal before the port to guard against possible
feedback.

Examples
Consider the following example:

module top (out,feedback,in1, in2);
input in1,in2;
output reg out;
output reg feedback;

assign out=in1 & in2 ;
assign feedback=out | in2;

endmodule

In the above example, the W446 rule reports a violation because the
output out is read in the design instead of setting it. The following
message is reported by this example:

Output port 'out' is being read inside module.[Hierarchy:
':top']
317
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W474
Variable assigned but not deassigned

Language
Verilog

Rule Description
The W474 rule flags variables that are assigned but not deassigned.

This rule flags an assign statement for register data types inside an
always block, for which a deassign statement does not exist.

The procedural continuous assignment statement allows an expression to
be driven continuously on registers or nets. It overrides the previous
procedural assignments to a register.

The deassign statement ends a procedural assignment to register.

The value of register remains the same until the register is assigned a new
value.

NOTE: The W474 rule is switched off by default. You can enable this rule either by
specifying the set_goal_option addrules W474 command or by setting
the verilint_compat rule parameter to yes.

Message Details
The following message appears when the W474 rule encounters a variable
<var-name> that is assigned but not deassigned:

Variable '<var-name>' assigned but not deassigned

Severity
Warning

Suggested Fix
Use deassign statement for the variable assigned.

Examples
Consider the following example where the variable 'q' is assigned but not
318
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
deassigned:

module test5(inp,outp);
input inp;
output outp;
reg outp;
reg q;
always
begin
if(inp)
deassign outp;

else if (!inp)
assign outp = 0;

else
assign outp = 1;

end

always
begin
if(outp)

assign q = 1;
end

endmodule

For this example, SpyGlass generates the following message:

Variable 'q' assigned but not deassigned
319
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W475
Variable deassigned but not assigned

Language
Verilog

Rule Description
The W475 rule flags the deassignment statement for a variable that does
not have a corresponding assign statement.

If a variable is deassigned, it should have a corresponding assign in the
always block.

The W475 rule reports message for registers which are not assigned
through procedural continuous assignment statement but are deassigned.

NOTE: The W475 rule is switched off by default. You can enable this rule either by
specifying the set_goal_option addrules W475 command or by setting
the verilint_compat rule parameter to yes.

Message Details
The following message appears when a variable <var-name> is
encountered that is deassigned without being assigned:

Variable '<var-name>' deassigned but not assigned

Severity
Warning

Suggested Fix
Use assign statement for the variable deassigned.
320
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W476
Variable forced but not released

Language
Verilog

Rule Description
The W476 rule flags variables that are forced but are not released.

The force construct is a form of procedural continuous assignment like
assign. It applies to registers, nets, a constant bit-select of a vector, a
part select of a vector net, or a concatenation. It does not apply on a
memory word (arrays) or a bit select or part select of a vector register.

NOTE: The W476 rule is switched off by default. You can enable this rule either by
specifying the set_goal_option addrules W476 command or by setting
the verilint_compat rule parameter to yes.

Message Details
The following message appears when a variable <var-name> that is
forced but not released, is encountered:

Variable '<var-name>' forced but not released

Severity
Warning

Suggested Fix
Use release statement for all the variables that are forced.

Examples

Consider the following examples, where

module test(a,b);
input [3:0] a;
output [3:0] b;
reg [3:0] b;
321
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
wire out1, out2 ,out3;

always @(a or b)
if(a)
force {out1, out2, out3} = {1'b1,1'b0,1'b1};

else
release out1;

endmodule
322
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W477
Variable released but not forced

Language
Verilog

Rule Description
The W477 rule flags the release statement for variables for which there
is no corresponding force statement.

The W477 rule flags registers or nets that are not forced through
procedural continuous assignment statement but are released.

NOTE: The W477 rule is switched off by default. You can enable this rule either by
specifying the set_goal_option addrules W477 command or by setting
the verilint_compat rule parameter to yes.

Message Details
The following message appears at a location where a variable
<var-name> is encountered that is released without being forced:

Variable '<var-name>' released but not forced

Severity
Warning

Suggested Fix
Use force statement for all the variables that are released.
323
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W484
Possible loss of carry or borrow due to addition or subtraction

Language
Verilog

Rule Description
The W484 rule reports possible loss of carry or borrow bits for assignments
that are using addition and subtraction arithmetic operators.

The rule reports assignments where the result of an addition or subtraction
operation is being assigned to a bus of the same width as the operands of
the addition or subtraction operation. In such cases, the carry or borrow bit
may be lost.

By default, the rule executes the new width related changes. Set the
new_flow_width parameter to no to calculate the width of expressions by
using the width calculation algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to New Width Flow Application Note.

By default, the rule reports a violation for disabled code in loops and
conditional (if condition, ternary operator) statements. Set the
disable_rtl_deadcode parameter to yes to disable violations for disabled
code in loops and conditional (if condition, ternary operator) statements.

Consider the following example:

if(0)
a[3:0] = b[3:0] + c[3:0];

In the above example, the W484 rule does not report a violation when the
disable_rtl_deadcode parameter is set to yes, because the if statement
in the above example is a disabled conditional statement.

By default, the rule does not report a violation for the following cases:
Where same variable is assigned to itself:
reg [2:0] a;
a = a + 1;
Where bit-width of RHS is less than or equal to the width of the LHS:
reg [2:0] a;
reg [2:0] b;
324
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
reg [1:0] c;
a = b + 1;
a = c + 1;

Set the strict parameter to report a violation for such cases.

By default, rule checking is disabled for RHS expressions that are static or
for RHS expressions that are non-static but contain a static part.

Consider the following example:

 wire [2:0] a, b, c;
 assign a = 3'b101 + 3'b110; //RHS is static
 assign a = b + c + 1; //RHS is non-static with static part
 assign a = b + 5; //RHS is non-static with static part

To report violations in the above example, use the check_static_value
parameter as follows:

Set this parameter to only_const to enable rule checking for RHS
expression, which is static.

Set this parameter to only_expr to enable rule checking for RHS
expression, which is a non-static expression that contains a static part.

Set this parameter to yes to enable rule checking for static expression
and non-static expression that contains a static part.

NOTE: Cases of the type, a = b + c + 1, are considered as complex counters. Set either
the strict or check_static_value parameter to report violations for such cases.

By default, violations are not reported for the counter type of cases. Set
the strict parameter to report violations for such cases. Consider the
following example:

 wire [2:0] a, b, c;
 assign b = c + 1; //Will flag with strict set to yes
 assign a = b + c + 5; //Not a counter, will not be flagged
 //with strict set to yes

For static expressions, the rule reports a violation if carry or borrow bit is
lost. For example:

wire [1:0] out;
assign out = 2'b10 + 1'b1;
assign out = 2'b10 + 2'b11;

The same logic is also applicable for static expressions inside
325
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
concatenation. For example:

wire [2:0] out1;
wire c;
assign out1 = {2'b10+2'b01,c};
assign out1 = {2'b10+2'b10,c};

When a static value is added or subtracted from a non-static value,
SpyGlass adds the maximum non-static value to the static value, and
based on this value, SpyGlass calculates the width of the expression.

For example, consider the following code snippet:

wire [11:0] b;
wire [3:0] c;

assign b = 12'hFF0 + c;
assign b = 12'hFF1 + c;

In the above example, the maximum value of the first expression is 4095
and there is no overflow. Therefore, the rule does not report a violation for
the first expression. In addition, the maximum value of the second
expression is 4096 and there is an overflow. Therefore, the rule reports a
violation for the second expression.
326
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
By default, the rule does not report any violation inside concat operator, if
guard bit is added to carry bit to accommodate overflow. For example, no
violation is reported in the following case:

wire [2:0] b,c;
wire [3:0] result;
wire [5:0] out

assign result = {b[0],b} + {c[0],c};
// LSB added to carry

assign result = {b[2],b} + {c[2],c};
// MSB added to carry

assign out = {{2{b[2]}},b[2],b} + {{2{c[2]}},c[2],c};
// MSB added to carry

assign out = {{3{b[2]}},b[2],b[2:1]} + {{3{c[2]}},c[2],c[2:1]};
// MSB added to carry

Set the strict parameter to report such cases.

Consider a case in which RHS contains an addition operator with at least
one concatenation expression. The rule does not report a violation if the
number of continued zeros at the end of concatenation expression is
greater than or equal to the width of other operand. For example, no
violation is reported in the following case:

wire [6:0] a;
wire [3:0] b;
wire [2:0] c;
assign a = {b, 3'b0} + c;
assign a = {3'b111} + {b, 3'b0};

NOTE: The W484 rule supports the generate-if, generate-for, and generate-case blocks.

By default, if the RHS expression is a binary expression and each term is a
concatenation expression padded with zero bits, the rule checks for
overflow while considering zero padded bits. That is, violation is not
reported if the actual width of the expression can be accommodated in zero
padded bits.

When the handle_large_expr parameter is set to yes, the rule limits this
checking for expressions containing up to 25 terms and for larger
327
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
expressions, the LRM width is considered. For example:

module top();
wire [5:0] a1;
reg a,b,c,d,e,f,g,h,i,j;
assign a1[4:0] = {4'b0,a} + ({4'b0, b} + ({4'b0, c} +
({4'b0, d} + ({4'b0, e} + ({4'b0, f} + ({4'b0, g} + {4'b0,
h})))))) ; //8 terms, no violation
assign a1[4:0] = {4'b0,a} + ({4'b0, b} + ({4'b0, c} +
({4'b0, d} + ({4'b0, e} + ({4'b0, f} + ({4'b0, g} + {4'b0,
h})))))) + {4'b0,a} + ({4'b0, b} + ({4'b0, c} + ({4'b0, d} +
({4'b0, e} + ({4'b0, f} + ({4'b0, g} + {4'b0, h})))))) +
{4'b0,a} + ({4'b0, b} + ({4'b0, c} + ({4'b0, d} + ({4'b0, e}
+ ({4'b0, f} + ({4'b0, g} + {4'b0, h})))))) + {4'b0, b};
// 25 terms, no violation
assign a1[4:0] = {4'b0,a} + ({4'b0, b} + ({4'b0, c} +
({4'b0, d} + ({4'b0, e} + ({4'b0, f} + ({4'b0, g} + {4'b0,
h})))))) + {4'b0,a} + ({4'b0, b} + ({4'b0, c} + ({4'b0, d}
+({4'b0, e} + ({4'b0, f} + ({4'b0, g} + {4'b0, h})))))) +
{4'b0,a} + ({4'b0, b} + ({4'b0, c} + ({4'b0, d} + ({4'b0,
e} + ({4'b0, f} + ({4'b0, g} + {4'b0, h})))))) + {4'b0, b}
+ {4'b0, b}; //26 terms, no violation by default,
violation is reported when parameter handle_large_expr is
set

endmodule

In the above example, by default the rule will not report violation for any of
the assignment.
When the handle_large_expr parameter is set then the rule will report
violation for the last statement as LRM width is considered for this because
it has more than 25 terms.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where the width <widthl>
of LHS expression <lexpr> is not wider than the width <widthr> of the
328
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
RHS expression <rexpr>:

Possible assignment overflow: lhs width <widthl> (Expr:
'<lexpr>') should be greater than rhs width <widthr> (Expr:
'<rexpr>') to accommodate carry/borrow bit [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical path.

Rule Severity
Warning

Suggested Fix
Make sure you intend to discard the carry or borrow bit.
329
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
W505
Ensure that the signals or variables have consistent value.

When to Use
Use this rule to identify the signals or variables that are assigned values
using both blocking and nonblocking assignments

Description
Verilog
The W505 rule flags signals or variables that are assigned values using
both blocking and nonblocking assignments.

VHDL
The W505 rule flags signals or variables that are assigned values both with
and without after clause (or with inconsistent after clauses).

Rule Exceptions
For VHDL, the W505 rule does not report signal assignments in
asynchronous reset block.

Language
Verilog, VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a signal or variable
<name> is being assigned in a block (nonblocking) mode when it has
330
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
already been assigned in a nonblocking (blocking) mode:

[WARNING] Variable/Signal '<name>' is being assigned in both
blocking and nonblocking manner

Potential Issues
A violation is reported arise when a variable or a signal is assigned in both
blocking and nonblocking manner.

Consequences of Not Fixing
Synthesis semantics require that the same variable or signal should not be
assigned in both blocking mode and nonblocking mode. Otherwise, the
pre- and post-synthesis simulation behavior of the RTL and gate-level
design may differ.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line, where a signal or a variable is again assigned a value again using the
blocking/nonblocking assignment and the previous assignment to that
signal was done through nonblocking/blocking assignment.

To fix the violation, ensure that all assignments to the same signal or
variable are made in a consistent manner.

VHDL
Message 1
The following message appears at the location where a signal
<sig-name> is assigned value using an AFTER clause when the same
signal has already been assigned value at line <line-num> without using
an AFTER clause:

[WARNING] Signal '<sig-name>' is used with 'after clause' while
at <line-num> it was used without 'after clause'

Potential Issues
A violation is reported when a signal is first used without an AFTER clause
and is subsequently assigned a value using the AFTER clause.

Consequences of Not Fixing
Assigning a value to the same signal/variable both with and without AFTER
clauses (or with inconsistent AFTER clauses) is not synthesizable. As delays
are ignored during synthesis, the pre- and post-synthesis simulation
331
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
of the design containing AFTER constructs may differ.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 2
The following message appears at the location where a signal
<sig-name> is assigned value without using an AFTER clause when the
same signal has already been assigned value at line <line-num> using
an AFTER clause:

[WARNING] Signal '<sig-name>' is used without 'after clause'
while at <line-num> it was used with 'after clause'

Potential Issues
A violation is reported when a signal is first used with an AFTER clause and
is subsequently assigned a value without using the AFTER clause.

Consequences of Not Fixing
Assigning a value to the same signal/variable both with and without AFTER
clauses (or with inconsistent AFTER clauses) is not synthesizable. As delays
are ignored during synthesis, the pre- and post-synthesis simulation

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line, where a signal is assigned a value again without the after clause and
the previous assignment to that signal was done with the AFTER clause.

To fix the violation, ensure that all assignments to the same signal or
variable are made in a consistent manner.

Example Code and/or Schematic
Example 1 (Verilog)
Consider the following example:

reg [3:0] reg_a;
reg_a <= 1 ;
reg_a = 2 ;

In the above example, reg_a is assigned using both blocking and
nonblocking assignments. Hence, a violation is reported in this case.
332
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Example 2 (VHDL)
Consider the following example:

signal z : std_logic;
signal a : std_logic;
signal b : std_logic;
signal c : std_logic;
z <= a or b;
z <= b and c after 10 ns;

In the above example, z is assigned with and without after clause.
Hence, a violation is reported in this case.

Example 3
Consider the following example:

entity ent_test1 is
port(a: in bit;

b: in bit;
c: in bit;
z: out bit

);
end ent_test1;

architecture behav of ent_test1 is
begin
process(a, b, c)
begin
z <= a or b;
z <= b and c after 10 ns;

end process;
end behav;

In the above example, the W505 rule reports a violation as the signal, z, is
used first with after clause and then without AFTER clause.

Default Severity Label
Warning
333
Synopsys, Inc.

Assign Rules

Rules in SpyGlass lint
Rule Group
Synthesis, Assign

Reports and Related Files
No related reports or files.
334
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Function-Task Rules
The SpyGlass lint product provides the following function and task related
rules:

Rule Flags...
W190 Tasks or procedures that are declared but not used in the design
W191 Functions that are declared but not used in the design
W243 Recursive task calls
W345 Presence of an event control in a task or procedure body may not be

synthesizable
W346 Task descriptions with multiple event control statements
W372 User-defined PLI functions that are not registered in the Verilog Lint

ruledeck file
W373 User-defined PLI tasks that are not registered in the Verilog Lint

ruledeck file
W424 Functions that set global variables
W425 Functions that read global variables
W426 Tasks that set global variables
W427 Tasks that read global signals
W428 Task calls in combinational always constructs

W429 Task calls in sequential always constructs

W489 Functions where the last statement in the function description is not
assigning to the function return value

W499 Functions where all bits of the function return value are not assigned in
the function description
335
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W190
Task or procedure declared but not used

Language
Verilog, VHDL

Rule Description
The W190 rule flags tasks or procedures that are declared but not called in
the design.

While describing unused tasks is allowed, the W190 rule helps you clean up
your design of unused tasks, thus reducing clutter in the design description
or possibly preventing a potential name confusion error.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location where a task <task-
name> is declared that is not called anywhere:

Task '<task-name>' declared but not used

VHDL
The following message appears at the location of a procedure declaration
<proc-name> that is not used in the design:

The procedure '<proc-name>' is not used

Rule Severity
Warning

Suggested Fix
If the task or procedure is confirmed to be redundant, remove it if possible.
This will reduce clutter in the design and also reduce warning messages
from SpyGlass.
336
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
337
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W191
Function declared but not used

Language
Verilog, VHDL

Rule Description
The W191 rule flags functions that are declared but not used in the design.

While unused functions are allowed, the W191 rule helps you clean up your
design of unused functions, thus reducing clutter in the design description
or possibly preventing a potential name confusion error.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location of a function declaration
<func-name> that is not used in the design:

Verilog
Function '<func-name>' declared but not used

VHDL
The function '<func-name>' is not used

Rule Severity
Warning

Suggested Fix
If the function is confirmed to be redundant, remove it if possible. This will
reduce clutter in the design and also reduce warning messages from
SpyGlass.
338
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W242
This rule has been deprecated (Verilog)
A function is calling itself; that is, it is recursive (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The W242 rule has been deprecated. The recursive functions are now
synthesizable. In addition, a synthesis error SYNTH_5369 is flagged if a
function is unrollable.

VHDL
The W242 rule flags recursive functions.

Recursive functions have no physical equivalent and may not be
synthesized.

Message Details
VHDL
The following message appears at the location of a function declaration
<func-name> that is recursive:

The function '<func-name>' is recursive thus may not be
synthesizable;

Rule Severity
Warning (VHDL)

Suggested Fix
Find some other way to implement the function. In general, whatever can
be written recursively can be replaced by a loop.
339
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W243
Recursive task enable

Language
Verilog

Rule Description
The W243 rule flags the task statement block, which has a call to task with
the same name.

The W243 rule also reports a message, if a task call is recursive through
more than one task. For example, if 'task_a' calls task 'task_b' and
'task_b' calls 'task_a' then this will be reported as recursive call.

Message Details
The following message appears when a task block having calls to task(s)
<task-name-list> with the same name or having recursive task calls
is encountered:

Recursive task calls in the design:Order of task Calls: <task-
name-list>

Where <task-name-list> is the list of tasks, separated by dot, in the
order of invocation.

Severity
Warning

Suggested Fix
In case of recursive task enable, there is always a chance that two tasks
call each other infinitely. Avoid such situation by using loop constructs or
some alternate method of writing the code.

Examples
Consider the following example where a task t1 calls task t1:

module taskloop (in1, in2, out1);
input in1, in2;
340
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
output out1;
input in1, in2;
output out1;
reg out1;

always @(in1 or in2)
begin
t1 (out1, in1, in2);

end

task t1;
output o2;
input i1;
input i2;

begin
t1 (o2, i1 , i2);

end
endtask

endmodule

For this example, SpyGlass generates the following message:

Recursive task calls in the design:Order of task Calls: t1.t1
341
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W345
Presence of an event control in a task or procedure body may not
be synthesizable

Language
Verilog, VHDL

Rule Description
The W345 rule detects presence of an event control in a task or a
procedure body. The rule reports violation at the first event control
statement in a task. It also reports the total number of event control
statements present in the task.

The presence of an event control within a task or procedure is
unsynthesizable by some synthesis tools.

Message Details
Verilog
The following message appears at the first event control statement in a
task:

Event control statement should not be used in task body, total
event usage '<num>' in task '<task_name>'

Where,

<num> is the total number of event control statements present in a
task.

<task_name> is the name of the violating task.

VHDL
The following message appears at the location where a clock edge is used
in a sub-program:

Clock in sub-program body may not be synthesizable

Rule Severity
Warning
342
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Suggested Fix
No fix required if this occurs in a testbench. If this is targeted for synthesis,
rewrite the task or procedure to avoid the event control.
343
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W346
Task may be unsynthesizable because it contains multiple event
controls

Language
Verilog

Rule Description
The W346 rule flags task descriptions with multiple event control
statements.

Task descriptions with multiple event control statements are not
synthesizable.

Message Details
The following message appears at the first line of a task description that
has multiple event control statements:

Task containing multiple event controls may be unsynthesizable

Rule Severity
Warning
344
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W372
A PLI function ($something) not recognized

Language
Verilog

Rule Description
The W372 rule flags user-defined PLI functions that are not registered in
the Verilog Lint ruledeck file.

Besides the standard set of PLI functions that ships with each Verilog
simulator, you can define your own PLI functions. Then, you need to
register each user-defined PLI function to the Verilog Lint ruledeck by
adding a line like the following sample in the PERL ruledeck file:

$dummyPLIfunc = "" if !defined $dummyPLIfunc;

Also, the W372 rule specifically reports for '$cast' PLI tasks or functions if
the report_cast parameter is set to yes

Message Details
The following message appears at the location where an unregistered user-
defined PLI function <func-name> is encountered:

PLI function (<func-name>) not recognized

The following message is displayed when the report_cast parameter is set to
yes:

Non-synthesizable system function "<$cast>" is ignored, a 0
return value is assumed. The signal <signal-name> is unassigned

Rule Severity
Warning

Suggested Fix
Ensure that all the PLI functions to be used are registered in SpyGlass (this
is locally configurable). If they are, check to make sure you have not mis-
typed the name.
345
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W373
A PLI task ($something) is used but not recognized

Language
Verilog

Rule Description
The W373 rule flags user-defined PLI tasks that are not registered in the
Verilog Lint ruledeck file.

Besides the standard set of PLI tasks that ships with each Verilog simulator,
you can define your own PLI tasks. Then, you need to register each user-
defined PLI task to the Verilog Lint ruledeck by adding a line like the
following sample in the PERL ruledeck file:

$dummyPLItask = "" if !defined $dummyPLItask;

Message Details
The following message appears at the location where an unregistered user-
defined PLI task <task-name> is encountered:

PLI Task (<task-name>) not recognized

Rule Severity
Warning

Suggested Fix
Ensure that all the PLI tasks to be used are registered in SpyGlass (this is
locally configurable). If they are, check to make sure you have not
mistyped the name.
346
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W424
Ensure that a function or a sub-program does not sets a global
signal/variable

When to Use
Use this rule to identify a function or a sub-program, which is writing to a
signal/variable outside its scope.

Description
The W424 rule reports violation for signals or variables that are not passed
as parameters to a sub-program but are modified in the sub-program. The
rule reports a violation only once for each global variable in a function or a
sub-program.

Rule Exceptions
In VHDL, using global signal/variable inside a pure function is not allowed.
SpyGlass generates syntax error, STX_472, in such cases.

Default Weight
5

Language
Verilog, VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a variable <var-
name> that is not passed as a parameter, is modified in the function:

[WARNING] Function should not set a global variable: <var-name>
347
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Potential Issues
Violation may arise when a function sets a global variable.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a global variable is set inside the function body. This means this
variable is not a function argument and is defined outside the function
body, but it is set inside the function.

To fix the violation, it is advisable to only read from and write to internal
variables.

VHDL
Message 1
The following message appears at the location where a signal
<sig-name> that is not passed as a parameter, is modified in the sub-
program <subp_name>:

[WARNING] Signal '<sig-name>' being modified in sub-program
'<subp-name>' is outside its scope

Potential Issues
Violation may arise when a signal modified in a sub-program is outside the
scope of the sub-program.

Consequences of Not Fixing
A global signal can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.

How to Debug and Fix
Double-click the violation message. The HDL window, highlights the
location of the declaration of the signal (global signal), which is modified
inside the violating sub-program.
348
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
To fix the violation, it is advisable to only read from and write to internal
variables.

Message 2
The following message appears at the location where a variable <var-
name> that is not passed as a parameter, is modified in the sub-program
<subp_name>:

[WARNING] Variable '<var-name>' being modified in sub-program
'<subp-name>' is outside its scope

Potential Issues
Violation may arise when a variable modified in a sub-program is outside
the scope of the sub-program.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.

How to Debug and Fix
Double-click the violation message. The HDL window, highlights the
location of the declaration of the variable (global variable), which is
modified inside the function specified in the violation message.

To fix the violation, it is advisable to only read from and write to internal
variables.

Example Code and/or Schematic
Consider the following example where the function factorial sets the
values of a global variable g1:

module func(in1, out1, out2, rst, clk);
input clk, rst;
input [3:0] in1;
output [31:0] out1, out2;

reg [31:0] out1, out2;
integer g1;
349
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
always @(in1 or rst)
if (rst)
out1 = 1;

else
out1 = factorial(in1);

always @(posedge clk)
out2 <= out1;

function [31:0] factorial;
input [3:0] operand;
reg [4:0] index;
begin
factorial = operand ? 1 : 0;
g1 = 1;
for (index=2; index<=15; index=index+1)
begin
if (index <= operand)
factorial = index * factorial;

end
end

endfunction
endmodule

For this example, SpyGlass generates the following violation message:

Function should not set a global variable: g1

Default Severity Label
Warning

Rule Group
Function-task

Reports and Related Files
No related reports or files.
350
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W425
Ensure that a function or a sub-program does not uses a global
signal/variable

When to Use
Use this rule to identify a function or a subprogram, which is reading from
a signal/variable outside its scope.

Description
The W425 rule reports violation for signals or variable that are not passed
as parameters to a function or sub-program but are read in the functions or
sub-programs. The rule reports a violation only once for each global
variable in a function or a sub-program.

Rule Exceptions
In VHDL, using global signal/variable inside a pure function is not allowed.
SpyGlass generates syntax error, STX_472, in such cases.

Default Weight
5

Language
Verilog, VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a variable <var-
name> that is not passed as a parameter to a function, is read in the
function:

[WARNING] Function uses a global variable: <var-name>
351
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Potential Issues
Violation may arise when a function uses a global variable.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.

Also, usage of such functions under always @* creates
simulation-synthesis mismatch because always @* is not sensitive to
global variables used inside function.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a global variable is read inside the function body. This means this
variable is not a function argument and is defined outside the function
body, but read inside the function.

To fix the violation, it is advisable to read only from the internal variables
and task arguments.

VHDL
The following message appears at the location where a global variable
named <name> that is not passed as a parameter to function <func-
name>, is read in the sub-program:

[WARNING] Global shared variable '<name>' is read in function
'<func-name>'

Potential Issues
Violation may arise when a global shared variable is read in a function.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a global variable is read inside the function body. This means this
variable is not a function argument and is defined outside the function
352
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
body, but read inside the function.

To fix the violation, it is advisable to only read from and write to internal
variables.

Example Code and/or Schematic
In the following example, function func1 directly reads signal in1:

module test (clk1, in1, in2, cntr, out1);
input clk1, in1, in2;
input [1:0] cntr;
output out1;

assign out1 = func1(cntr, in2, clk1);

function func1;
input clk, in_f;
input [1:0] cntr_f;

if (clk == 1'b0)
func1 = in1 + cntr_f[1];

else
func1 = cntr_f[0];

endfunction
endmodule

For this example, SpyGlass generates the following message:

Function should not use a global variable: in1

Default Severity Label
Warning

Rule Group
Function-task

Reports and Related Files
No related reports or files.
353
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W426
Ensure that the task does not sets a global variable

When to Use
Use this rule to identify the task, which is writing to a variable outside its
scope.

Description
The W426 rule reports violation for tasks that set global variables.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a variable <var-
name> that is not passed as a parameter, is set in the task:

[WARNING] Global variable '<var-name>' should not be 'set' in
task

Potential Issues
Violation may arise when a global variable is set in a task.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.
354
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a global variable is set inside the task. This means this variable is
not a task argument and is defined outside the task, but it is set inside the
task.

To fix the violation, it is advisable to only read from and write to internal
variables.

Example Code and/or Schematic
In the following example, the global signal b is set in task proc_a:

module test(in, out, clk);
input [3:0] in;
input clk;
output [3:0] out;

reg [3:0] out, a, b, c;

always @(posedge clk)
begin
a = in - 1;
proc_a(a, c);
out = a;

end

task proc_a;
input [3:0] a;
output [3:0] c;
reg [3:0] c;

begin
b = a + 1;
if (a==0)
disable proc_a;

c = b + 2;
end

endtask
endmodule
355
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
For this example, SpyGlass generates the following message:

Global variable 'b' should not be 'set' in task

Default Severity Label
Warning

Rule Group
Function-task

Reports and Related Files
No related reports or files.
356
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W427
Ensure that a task does not uses a global variable

When to Use
Use this rule to identify a task, which is reading a variable outside its
scope.

Description
The W427 rule reports violation for those variables that are not passed as
parameters to a task but are read in the task.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a variable <var-
name> that is not passed as a parameter to a task, is read in the task:

[WARNING] Global variable '<var-name>' should not be 'read' in
task

Potential Issues
Violation may arise when a global variable is read in a task.

Consequences of Not Fixing
A global variable can potentially be modified from any part of the design.
Therefore, it has unlimited potential for creating mutual dependencies,
which increases complexity. This can lead to unexpected design behavior
when the code is changed.
357
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Also, usage of such tasks under always @* create
simulation-synthesis mismatch because always @* is not sensitive to
global variables used inside tasks.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a global variable is read inside the task. This means this variable is
not an argument to the task and is defined outside the task, but it is read
inside the task.

To fix the violation, it is advisable to only read from and write to internal
variables.

Example Code and/or Schematic
In the following example, the global signal b is read in task proc_a:

module test(in, out, clk);
input [3:0] in;
input clk;
output [3:0] out;

reg [3:0] out, a, b, c;

always @(posedge clk)
begin
a = in - 1;
proc_a(a, c);
out = a;

end

task proc_a;
input [3:0] a;
output [3:0] c;
reg [3:0] c;

begin
b = a + 1;
if (a==0)
disable proc_a;
358
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
c = b + 2;
end

endtask
endmodule

For this example, SpyGlass generates the following message:

Global variable 'b' should not be 'read' in task

Default Severity Label
Warning

Rule Group
Function-task

Reports and Related Files
No related reports or files.
359
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W428
Ensure that a task is not called inside a combinational block

When to Use
Use this rule to identify the tasks that are called inside a combinational
block.

Rule Description
The W428 rule reports violation for task calls in combinational always
constructs unless the construct describes a latch.

As tasks may contain event controls, calling a task inside a combinational
block may turn that block, unexpectedly, into a sequential block. Ensure
that the correct behavior is being modeled.

When the parameter fast is set to yes, the RTL version of the rule W428 is
run. The always block inferring latch is considered as combinational block.
The RTL version of this rule reports inside the latch inferred always block,
except always_latch.

Rule Exceptions
You can enable the W428 rule either by specifying the
set_goal_option addrules W428 command.

Language
Verilog, VHDL

Default Weight
5

Parameter(s)
fast: The default value is no. Set the value of the parameter to yes to
suppress synthesis of the source RTL description.

Constraint(s)
None
360
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
Messages and Suggested Fix
The following message appears at the location where a task call is
encountered in a combinational always construct:

[WARNING] Task called in a combinational block

Potential Issues
Violation may arise when a task is called in a combinational block.

Consequences of Not Fixing
Since tasks may contain event controls, a task called inside a
combinational always construct may turn that construct, unexpectedly,
into a sequential always construct.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where a task call has been made inside a combinational always construct.
User can check the nature of the always block using one of the following
ways:

Slightly scrolling up the HDL window, till he reaches the always block.

If the always block is a very long block, user might view the HDL in an
editor, and, search backwards for the nearest always block.

To fix the violation, it is advisable to use functions, rather than tasks,
inside combinational blocks.

Example Code and/or Schematic
Consider the following example:

module test(in, out, clk, reset);
input in;
input clk, reset;
output out;
reg out;

always@(posedge clk)
begin

proc_d(in);// No Violation,Task called from sequential
block
361
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
end

always@(clk)
begin

proc_d(in); // Violation, Task called from
combinational block

end

task proc_d;
input in;
begin
end
endtask

endmodule

In the above example, the W428 rule reports a violation as a task is called
from a combinational always block, when the fast parameter is not set.

Default Severity Label
Warning

Reports and Related Files
No related reports or files.
362
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W429
Task called in a sequential block

Language
Verilog

Rule Description
The W429 rule flags task calls in sequential always constructs.

Since tasks may contain event controls, a task called inside a sequential
always construct may unexpectedly create an implicit state machine
(which may not be synthesizable if the task uses different edges or clocks
from the block in which it is instanced). Therefore while it is not an error to
call a task inside a sequential always block, it should be handled with an
extra caution.

Message Details
The following message appears at the location where a task call is
encountered in a sequential always construct:

Task called in a sequential block

Rule Severity
Warning

Suggested Fix
Nothing to fix if this is done right, but does suggest need for careful review.

Examples
Consider the following example where a sequential always construct has
a task call proc_a:

module test(in, out, clk);
input [3:0] in;
input clk;
output [3:0] out;
363
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
reg [3:0] out;

reg [3:0] r1, r2, r3;

always @(posedge clk)
begin
r1 = in - 1;
proc_a(r1, r3);
out = r3;

end

task proc_a;
// <task-body>
endtask

endmodule

For this example, SpyGlass generates the W429 rule message.
364
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W489
The last statement in a function does not assign to the function
(Verilog)
The last statement in a function does not assign to the function
(VHDL)

Language
Verilog, VHDL

Rule Description
The W489 rule flags functions where the last statement in the function
description is not assigning to the function return value.

Statements after the last function return value assignment are effectively
redundant. Hence, any functionality described after the last function return
value assignment is lost.

The W489 rule does not report a violation if there is statement following
the return value assignment inside the following constructs:

if-else
while loop

for loop

repeat
case
assign
Other looping statements

NOTE: Use the W499 rule to check if all bits of a function are set inside that function.

Message Details
Verilog
The following message appears at the location of the last function return
value assignment statement in a function description when other
statements exist after this last assignment to the function return value:

The last statement in a function does not assign a return value
365
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
VHDL
The following message appears at the location of a function <func-
name> that can return without executing a return statement:

The function <func-name> may return without executing a return
statement

Rule Severity
Guideline (Verilog) / Warning (VHDL)

Suggested Fix
Check the function logic again. You should either remove the statements
after the last assignment to the function value, or determine what function
value should be assigned after those statements.
366
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
W499
Ensure that all bits of a function are set.

When to Use
Use this rule to identify the undefined bits of a function.

Rule Description
The W499 rule reports violation for functions returning a multi-bit value
where all bits of the function return value are not assigned in the function
description.

Language
Verilog

Default Weight
5

Parameter(s)
ignore_auto_function_return: The default value is no. Set the value of the
parameter to yes to ignore name of automatic functions to be set in all
branches of function body.

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the first line of a function description
where all bit of the function return value are not assigned in the function
description:

[WARNING] Not all bits of the function '<function_name>' value
are set in the function body or in all branches of the function
[Hierarchy: '<hier_path>']

Potential Issues
The W499 rule reports a violation when different bits in different parts of
the function are not set or some bits in the conditional branch are not set.

Consequences of Not Fixing
367
Synopsys, Inc.

Function-Task Rules

Rules in SpyGlass lint
This can be very error prone if not fixed. A user of the function will expect
all bits of a function to be set.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the
function, where, not all bits of the function are set.

Review the code and confirm the reason for not setting all bits of the
function.

To fix the violation, make sure you define all bits in all possible branches in
the function.

Default Severity Label
Warning

Rule Group
Function-task

Reports and Related Files
No related reports or files.
368
Synopsys, Inc.

Function-Subprogram Rules

Rules in SpyGlass lint
Function-Subprogram Rules
The following function-subprogram rules have been deprecated:

The SpyGlass lint product provides the following function and subprogram
rules:

W242 (Verilog)

Rule Flags...
W190 Tasks or procedures that are declared but not used in the design
W191 Functions that are declared but not used in the design
W242 (Verilog) This rule has been deprecated.

(VHDL) A function is calling itself, that is, it is recursive.
W345 Presence of an event control in a task or procedure body may not be

synthesizable
W416 Functions where the range of the return type is not same as the

function return value
W424 Functions that set global variables
W425 Functions that read global variables
W489 Functions where the last statement in the function description is not

assigning to the function return value
369
Synopsys, Inc.

Function-Subprogram Rules

Rules in SpyGlass lint
W416
Reports functions in which the range of the return type and return
value of a function are not same

When to Use
Use this rule to identify the functions in which the range of the return type
and return value of a function is not the same.

Description
The W416 rule reports functions in which the range of the return type is
not same as the function return value. This rule reports violation for the
following cases:

The left values and right values of the ranges of the return type and
return value are different even if the widths are same.

The range types of the return type and return value are different (to in
one range and downto in the other).

Language
VHDL

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location of the return statement of a
function <func-name> where the range of the return type (<rettype-
range>) is different from the range of the return value (<retvalue-
range>):

[WARNING] Range Mismatch between return type (<rettype-range>)
and return value (<retvalue-range>) in function '<func-name>'

Where <rettype-range> and <retvalue-range> are range
specifications in <num> to <num> format or <num> downto <num>
370
Synopsys, Inc.

Function-Subprogram Rules

Rules in SpyGlass lint
format.

Potential Issues
Violation may arise when there is a range mismatch between return type
and return value in a function.

Consequences of Not Fixing
The range mismatch between expected return value of a function and the
actual return value of a function can lead to two different interpretations
during verification and test development.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the return statement of a function where there is mismatch in range of
return type of the function and the range of return value of the function.

To fix the violation, it is recommended to follow consistent range
declarations throughout the design. To fix this problem, match the range of
return value with that of return type of the function.

Example Code and/or Schematic
Example 1
Consider the following example:

...
subtype S1 is MH (0 to 7);
subtype S2 is MH (1 to 8);
...
function foo (a: S1) return S1 is
variable EN: S2;
...
return EN;
...

In the above example, left values and right values of the range of the
return type S1 (0,7) are different from those of the range of the return value
S2 (1,8) while the actual width is same (8 bits). Therefore, the W416 rule
reports a violation.

Example 2
Consider the following example:
371
Synopsys, Inc.

Function-Subprogram Rules

Rules in SpyGlass lint
...
subtype S1 is MH (0 to 7);
subtype S2 is MH (7 downto 0);
...
function foo (a: S1) return S1 is
variable EN: S2;
...
return EN;
...

In the above example, the W416 rule reports a violation as the range types
of the return type and return value are different (to in one range and
downto in the other).

Default Severity Label
Warning

Rule Group
Function-Subprogram

Reports and Related Files
None
372
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
Delay Rules
The SpyGlass lint product provides the following delay related rules:

Rule Flags...
W126 Non-integer delay values
W127 Delay values containing X or Z
W128 Negative delays
W129 Non-constant delay values
373
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
W126
Do not use non-integer delays

Language
Verilog

Rule Description
The W126 rule flags non-integer delay values.

It is recommended to control delay precision using the 'timescale
directive.

A floating-point delay value will at best be truncated to the current
timescale and will not track changes in timescale values.

NOTE: The W126 rule does not flag negative integer delay values. See the W128 rule to
catch negative delay values.

Message Details
The following message appears at the location where a non-integer delay
value is encountered:

Do not use non-integer delay value <value>

where, <value> is a delay expression.

Rule Severity
Warning

Suggested Fix
Change all delay values to integer values and use 'timescale to control
delay accuracy.
374
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
W127
Delay values should not contain X (unknown value) or Z (high-
impedance state)

Language
Verilog

Rule Description
The W127 rule flags delay values containing X (unknown value) or Z (high-
impedance state).

Though not a syntax error, such descriptions are meaningless as they
describe delay for an indeterminate period of time.

Message Details
The following message appears at the location where a delay value
containing X (unknown value) or Z (high-impedance state) is encountered:

Delay value <value> should not contain X or Z

where, <value> is a delay expression.

Rule Severity
Warning

Suggested Fix:
Change delay value to an integer value.

Examples:
Consider the following example:

out1 = # (8'h1x) in1;
out2 = # 5 in2;
out3 = #(4'b10z1) in3;

In the above example, the W127 rule reports two violations because the
delay values contain X (unknown value) or Z (high-impedance state).

The following messages are reported by this example:
375
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
Delay value '8'h1x' should not contain X or Z

Delay value '4'b10z1' should not contain X or Z
376
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
W128
Avoid using negative delays

Language
Verilog, VHDL

Rule Description
The W128 rule flags negative delay values.

A negative delay involves a step backward in time which is at least
confusing (and therefore error-prone) and may cause efficiency problems
in some simulators. At most, negative delays should be used only to model
special behavior in cell libraries.

Message Details
The following message appears at the location where a negative delay
value is encountered:

Negative delay <value> specified

where, <value> is a delay expression.

Rule Severity
Warning

Suggested Fix
Try to re-code the logic and use either zero or positive delays only.
377
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
W129
Variable delay values should be avoided

Language
Verilog

Rule Description
The W129 rule flags non-constant delay values.

While it is not a fundamental restriction, debugging in the presence of
variable delays dramatically increases complexity and the opportunity for
error.

Message Details
The following message appears at the location where a non-constant delay
value is encountered:

Variable delay values <value> should be avoided

where, <value> is a delay expression.

Rule Severity
Warning

Suggested Fix
If possible, avoid using variable delay values.

Examples
Consider the following example:

module top (out,in);
input in;
output reg out;
integer i=0;
always @(in)

begin
out = #i in;

end
378
Synopsys, Inc.

Delay Rules

Rules in SpyGlass lint
endmodule

In the above example, the W129 rule reports a violation because the delay
value i is not a constant. The following message is reported by this
example:

Variable delay value 'i' should be avoided
379
Synopsys, Inc.

Lint_Latch Rules

Rules in SpyGlass lint
Lint_Latch Rules
The SpyGlass lint product provides the following latch related rules:

Rule Flags...
W18 Latches inferred in the design
380
Synopsys, Inc.

Lint_Latch Rules

Rules in SpyGlass lint
W18
Do not infer latches

Language
Verilog, VHDL

Rule Description
The W18 rule flags latches in the design.

Except where explicitly intended, latch inference is usually caused by an
oversight — for example, failure to define a default value for a variable
defined in a conditional statement — and may lead to incorrect behavior.
Further, inferred latches in a register-based design cause problem for
SpyGlass DFT tools.

By default, the W18 rule does not report latches inferred from both .sglib
and .lib libraries. Set the reportLibLatch parameter to yes to report library
latches.

NOTE: You can enable the W18 rule by specifying the
set_goal_option addrules W18 command. However, this rule will not
run, if you set the fast rule parameter to yes and SpyGlass lint product is run.

Message Details
The following message appears at the location where a latch is inferred for
signal <sig-name>:

Latch inferred for signal '<sig-name>'

Severity
Info

Suggested Fix
Check the inference to make sure it is what you intended. If not, prevent
latch inferences by providing an explicit else clause at the end of the if
statement, or default clause at the end of the case statement, to prevent
inferring the latch.
381
Synopsys, Inc.

Lint_Latch Rules

Rules in SpyGlass lint
Examples
In the following example, a latch is inferred for signal q:

process (reset, d)
begin
if (reset = '1') then

q <= d;
end if;

end process;

For this example, SpyGlass generates the following message:

Latch inferred for signal 'q'
382
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Instance Rules
The SpyGlass lint product provides the following module instance related
rules:

Rule Flags...
W107 Bus connections to primitive gates
W110 Width mismatch between a module port and the net connected to the

port in a module instance
W110a Use same port index bounds in component instantiation and entity

declaration.
W146 Module instances where the port association is by position
W156 Reverse connected buses
W210 Module/Interface instances with unconnected ports
W287a Module instances where nets connected to input ports are not driven
W287b Module instances where the output ports are not connected
W287c Module instances where the inout ports are not connected or

connected net is hanging
W504 Port expression that uses integers
383
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W107
Do not make bus connections to primitive gates (and, or, xor, nand,
nor, xnor)

Language
Verilog

Rule Description
The W107 rule flags bus connections to primitive gates.

Verilog does not provide a method to check that a connection made to the
inputs of a primitive gate (and, or, etc.) is of an appropriate width.

If a wider bus is attached, the function simply expands to include the
additional bits. This expansion can lead to unexpected behavior if the bus
width changes as the design evolves. Thus it is safer to explicitly connect,
bit-by-bit, those bits, which should be gated.

Message Details
The following message appears at the location where connection of a bus
<net-name> to a primitive gate is encountered:

Do not make multibit bus (<net-name>) connections to gate
ports. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Rule Severity
Warning

Suggested Fix
Make connections bit-by-bit. For example, use
and(b[0],b[1],b[2]..) rather than and(b[0:3]).

Examples
Consider the following example that has multi-bit ports connected to
primitive gates:
384
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
module test(in1, in2, in3, in4, in5, in6,
out1, out2, out3);

input [3:0] in1, in2, in3, in4, in5, in6;
output [3:0] out1, out2, out3;

and(out1, in1, in2);
or(out2, in3, in4);
xor(out3, in5, in6);

endmodule

SpyGlass generates the W107 rule message for each multi-bit connection
(input and output) to primitive gates. Thus, nine messages are generated
for the above example.
385
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W110
Identifies a module instance port connection that has incompatible
width as compared to the port definition

When to Use
Use this rule to identify the width mismatch between a module port and the
net connected to the port of that module instance.

Description
The W110 rule reports violations for the width mismatch between a module
port and the net connected to the port of that module instance.

NOTE: The W110 rule supports generate-if, generate-for, and generate-case blocks.

Calculation of width
The W110 rule calculates the width of port expressions on the basis of the
following conditions:

When the nocheckoverflow parameter is set to yes or W110, the width is
calculated as per LRM. For the constants, natural width is considered.

When the nocheckoverflow parameter is set to no, the width is
calculated according to following methods:

 For the plus or the minus operator, the value based width is
considered.
 For the multiplication operator, the width is calculated as the sum of
operand widths.
 For the division operator, the LHS width is considered.

 For the concat operator, the width is calculated as the sum of all
operands.

Language
Verilog

Default Weight
10
386
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Parameter(s)
new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to the New Width Flow Application Note.

nocheckoverflow: Default value is no. Set this parameter to yes or rule
name to check the bit-width as per LRM. Other possible value is the rule
name.

report_blackbox_inst: Default value is no. In this case, the rule does not
report violation for port width mismatch for black box instances. Set the
value of the parameter to yes to report violation for port width
mismatch for black box instances.

use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

handle_shift_op: Default value is no. In this case, no violation is reported
if the shifted or non-shifted width of a shift expression (at the port
connection of a module instance) matches the width of the
corresponding module port definition. But the rule does not calculate the
shifted width, if the RHS of the shift expression is non-static. Set this
parameter to shift_left, shift_right, shift_both,
no_shift, or comma separated list of rule names, to compare shifted
or non shifted widths for left and right shift expressions.

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the <inst-name> module
instance when there is a bit-width mismatch between a net of <width2>
bits, which is connected to the <port-name> port of <width1> bits:

[WARNING] Incompatible width for port '<port-name>'(width
<width1>) on instance '<inst-name>'(actual width <width2>)
[Hierarchy: ‘<hier-path>’]
387
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Where, <hier-path> is the complete hierarchical path of the containing
process.

Potential Issues
Width mismatch between module port and net connected to port or when
the wrong signal is connected to the terminal.

Consequences of Not Fixing
A mismatched width connection causes the following results:

Connection of a bus which is wider than the port: Excess bits are
ignored for the input bus and floated for the output bus.
Connection of a bus which is narrower than the port: Missing bits are
driven unknown for the input bus and ignored for the output bus.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the module or the interface instance where a port connection has
incompatible width as compared to the port definition.

The violation message shows the following information:
Name of the port which has incompatible width in its port connection

Name of the Module/Interface

Name of the Module/Interface Instance

Width of the port in the Module/Interface definition

Width of the Connected port expression

To resolve the violation, ensure the connection of the correct number of
bits across the hierarchy boundary, then explicitly ignore the bits that are
not needed.

Example Code and/or Schematic
Example 1
Consider the following example:

inst IN1 (.in1(a[2:0]+b[2:0]));

// Width of expression, a[2:0]+b[2:0], will be 4 (7+7=14, 4
bits wide)
388
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Example 2
Consider the following example:

inst IN1 (.in1(a[2:0]*b[2:0]));
// Width of expression, a[2:0]*b[2:0], will be 6
inst IN2 (.in1(a1[2:0]*b1[2]));
// Width of expression, a[2:0]*b1[2], will be 3

Example 3
Consider the following example:

inst IN1 (.in1(a[2:0]/b[2]));
// Width of expression, a[2:0]/b[2], will be 3

Example 4
Consider the following example:

inst IN1 (.in1({1'b0,a[2:0]}));
// Width is 3 bits (leading 0 ignored)

inst IN2 (.in1({1'b1,a[2:0]}));
// Width is 4 bits (1+3 bits)

Example 5
Consider the following example code:

module top(in1, in2, out1, out2, out3);
input in1, in2;
output out1, out2;
output [1:0] out3;

lower L1 (.i1(in1),.i2(in2),.o1(out1),.o2(out2));
OR2 rtlc_I4 (.Z(out3), .A(in1), .B(in2));

endmodule

module lower(i1, i2, o1, o2);
input [2:0] i1, i2;
output o1, o2;

reg o1, o2;
389
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
always@(i1 or i2)
begin
o1 <= ~i1;
o2 <= &i2;

end
endmodule

In the instance L1 of module lower, there is a bit-width mismatch
between ports i1, i2 (3 bits wide) and the connected nets in1, in2
(single-bit). Therefore, SpyGlass generates the following messages:

Incompatible width for port 'i1'(width 3) on instance
'top.L1'(actual width 1) [Hierarchy: ‘top’]

Incompatible width for port 'i2'(width 3) on instance
'top.L1'(actual width 1)[Hierarchy: ‘top’]

In addition, in the instance rtlc_14 of ASIC cell OR2, there is a
bit-width mismatch between port Z (2-bits) and the connected net out3
(single-bit). Therefore, SpyGlass generates the following message:

Incompatible width for port 'Z'(width 1) on instance
'top.rtlc_I4'(actual width 2)[Hierarchy: ‘top’]

Default Severity Label
Warning

Rule Group
Instance

Reports and Related Files
None
390
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W110a
Use same port index bounds in component instantiation and entity
declaration.

Language
VHDL

Rule Description
The W110a rule checks the mismatch, if any, in between the port index
bound of component instantiation and entity declaration.

In VHDL, if there is any port width mismatch during component
instantiation, it is a syntax error.

However, if a port is declared with the integer range and the range is
configured through generic, it is not a syntax error. In such a case, there
are chances that port range may overflow or underflow. Therefore, the
purpose of this rule is to identify situations where the port index during
component instantiation does not match with the entity declaration.

The rule also supports the following cases:
Typed/sub-typed and aliased port.

Positive and natural range data type, apart from integer ports.

Message Details
The W110a rule reports the following violation message at component
instantiation:

Incompatible index for port '<port_name>'(Range:'<port_range>')
in component instantiation '<instance_name>' port
'<en_port_name>' (Range:'<en_port_range>')[Hierarchy: ‘<hier-
path>’]

Arguments
Component instance port name, <port_name>

Component instance port range, <port_range>

Component instance name, <instance_name>

Entity port name, <en_port_name>
391
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Entity port range, <en_port_range>

Hierarchical path of the design unit where the component is
instantiated, <hier_path>

Rule Severity
Warning

Examples
Syntax Errors
The following examples describes the cases in which there is a port width
mismatch during component instantiation and the W110a rule considers
this as syntax error:

Example 1
Consider the following example:

ain1 : in std_logic_vector (0 to 2)
ain : in std_logic_vector (0 to 7)

Example 2
Consider the following example:

ain1 : in integer range (-16) to (15)
ain : in integer range (-8) to (7)

In both the Example 1 and Example 2, component instantiation signal in
is assigned with ain. Since there is a port width mismatch for the above
examples and the range is not configured through generic, the rule
considers this as a syntax error. However, if the range is configured
through generic, the rule reports a warning message in this case.
392
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Violating Cases
The following examples describe the cases where the rule reports a
warning message because there is a port width mismatch and the range
is configured through generic:

Example 1
Consider the following example:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity mult is
 generic (
 A: integer :=-1;
 B: integer :=1
);
 port (ain : in integer range (A) to (B);
 z: out integer range (A) to (B)
);
end mult;

architecture rtl of mult is
 begin
 process(ain) begin
 z <= ain ;
 end process;
 end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity top is
 port (ain1 : in integer range (-16) to (15);
 cout1: out integer range -(16) to (15)
);
end top;
393
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
architecture structure of top is
 component mult
 generic (
 A: integer :=-1;
 B: integer :=1
);
 port (ain : in integer range (A) to (B);
 z: out integer range (A) to (B)
);
 end component;
-- begin
 begin
 u1: mult
 generic map(
 A=> -8,
 B=> 7
)
 port map(ain=>ain1,z=>cout1);
 end structure;

Example 2
Consider the following example:

ain1 : in integer range (-8) to (7)
ain : in integer range (-16) to (15)

In the above example, the component instantiation signal in is assigned
with ain.

Example 3
Consider the following example:

ain1 : in integer range (2) downto (0)
ain : in integer range (15) downto (13)

In the above example, the component instantiation signal in is assigned
with ain.
394
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Non-Violating Cases
The following examples describe the cases where the rule does not report
any violation because there is no port width mismatch:

Example 1
Consider the following example:

ain1 : in integer range (0) to (4)
ain : in integer range (4) downto (0)

Example 2
Consider the following example:

ain1 : in std_logic_vector (4 downto 0)
ain : in std_logic_vector (0 to 4)

Example 3
Consider the following example:

ain1 : in integer range (2) downto (0)
ain : in integer range (3) downto (1)

In Example 1, Example 2, and Example 3, the component instantiation
signal in is assigned with ain.
395
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W146
Use named-association rather than positional association to
connect to an instance

Language
Verilog, VHDL

Rule Description
The W146 rule flags module or component instantiations where the port
association is by position.

Using positional association significantly increases the possibility of mis-
connects, some of which may prove very subtle and difficult to find. Using
named association completely eliminates this possibility. Also, other users
do not have to cross-reference to the definition of the master of an
instance to understand signal connections.

By default, the W146 rule does not report violation for parameters in
instantiation, which are positional association. Set the value of the
check_param_association parameter to yes to check for parameters in
instantiation.

Message Details
Verilog
The following message appears at the location of a module instantiation
where the port association is by position:

Explicit named association is recommended in instance
references

VHDL
The following message appears at the location of a component instantiation
where the port association is by position:

Explicit named association is recommended in instance port/
generic map

Rule Severity
Guideline
396
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Suggested Fix
In Verilog designs, if this is a top-level testbench, there is nothing to fix.
Otherwise you can only read to and write from this design unit through
global variables, which is unsynthesizable. May sometimes be OK for
simulation monitors (though would still be considered by many to be poor
coding style).

For VHDL designs, rewrite all instances using named-association
connections.
397
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W156
Do not connect buses in reverse order

Language
Verilog, VHDL

Rule Description
Verilog
The W156 rule flags reverse connected buses.

Making reversed connections (for example, 15:0 connected to 0:15) is
legal but bad design practice and may represent an error.

One exception (which can be handled with a waiver) is in making a big-
endian/little-endian choice in connecting to a processor bus port.

VHDL
The W156 rule flags reverse connected buses.

Making reversed connections (for example, 15 downto 0 connected to 0 to
15) is legal but bad design practice and may represent an error.

One exception (which can be handled with a waiver) is in making a big-
endian/little-endian choice in connecting to a processor bus port.

For a constant declaration that has its subtype indication as an
unconstrained array, the direction of the index constraint is the same
direction of the index subtype definition used in the declaration of the
unconstrained array. For example,

type MYBIT_VEC is array (natural range <>) of BIT;
...
constant myconst : MYBIT_VEC := "1011";

Here, the direction of myconst is same as that of natural that is to.

By default, the W156 rule does not report the reverse connections
involving static expressions. Set the strict rule parameter to report such
reverse connections also.

NOTE: The W156 rule is also grouped under the Miscellaneous Rules group.
398
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Message Details
Verilog
The following message appears at the location of a module instantiation
where the port association of bus <sig-name> is in reverse order:

Bus net '<sig-name>' is connected in reverse. [Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

VHDL
The following message appears at the location where the port association
of bus <sig-name> is in reverse order:

<sig-name> contains bus connection in reverse order

Rule Severity
Warning

Suggested Fix
Where possible, connect in the same order as defined. In what should be
localized big-endian/little-endian hookup cases, use a waiver.

Examples (Verilog)
In the following example, the module instance lower1 has the bit-slice
sel[0:1] is connected in reverse order than the port definition in the
parent module lower:

module test(i1, i2, o1, o2);
input [3:0] i1, i2;
output [0:3] o1, o2;

wire [0:5] sel;

lower lower1(i1, i2, sel[0:1], o1, o2);
endmodule
399
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
module lower(in1, in2, sel, out1, out2);
input [3:0] in1, in2;
inout [1:0] sel;
output [0:3] out1, out2;

reg [0:3] out1, out2;

always@(sel)
case(sel)
2'b00: out1 <= in1;
2'b01: out1 <= in2;
2'b10: out2 <= in1;
2'b11: out2 <= in2;

endcase
endmodule

For this example, SpyGlass generates the following message:

Bus net 'sel' is connected in reverse. [Hierarchy: ‘:test’]
400
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W210
Number of connections made to an instance does not match
number of ports on master

Language
Verilog, VHDL

Rule Description
The W210 rule flags a violation for module or interface instances with
unconnected ports.

The W210 rule flags message only when number of terminals are less than
the number of ports. The W210 rule ignores ports that are intentionally
kept open (by passing extra comma [Verilog] or by connecting them to open
[VHDL]).

If any of the unconnected ports are inputs or inouts, this is an error. It may
or may not be an error if the unconnected ports are outputs.

NOTE: The W201 rule does not report violations for constructs in the dead-code segments
of a generate block.

Parameters
set_message_severity: The default value is no and the W210 rule reports
all unconnected ports with severity as Warning. Set this parameter to
yes to report unconnected input or inout ports with messages severity
as Error.

ignore_inout: Default value is no. Set the value of this parameter to yes
to not report any violation for inout port.

Message Details
Verilog
The following message appears at the location of instance <inst-name>
of master module <master-du-name> where the port, <port-name>,
is not connected:

[WARNING] Instance <inst-name>(master: <master-du-name>) has
too few ports - <port-type> port '<port-name>' not connected
401
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
where, <port-type> can be input or inout.

NOTE: If the set_message_severity parameter is set to yes, the severity of this message
will be Error.

VHDL
The following message appears at the location of a component instantiation
<inst-name>, of master module <master-du-name>, which has no
port corresponding to the formal port <port-name>:

[WARNING] Port Map has no actual corresponding to formal <port-
type> '<port-name>' (or some of its bits) in instance
'<inst-name>' (master: <master-du-name>)

where, <port-type> can be input or inout.

NOTE: If the set_message_severity parameter is set to yes, the severity of this message
will be Error.

Examples
Consider the following example code:

module top(input in, mis, output q);
 test u2(mis);
endmodule
module test(input in1, input in2);
endmodule

For the above example, the default violation message is:

[WARNING] Instance u2(Master: test) has too few ports - Input
port 'in2' not connected

When the set_message_severity parameter is set to yes, the same message
is generated with the message severity as Error.

[ERROR] Instance u2(Master: test) has too few ports - Input
port 'in2' not connected

Rule Severity
Warning/Error

Suggested Fix
Make sure that all inputs and inouts are connected (at least tied off
402
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
appropriately if they are don’t care and that all outputs you expect to be
used are connected.
403
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W287a
Some inputs to instance are not driven or unconnected

Language
Verilog, VHDL

Rule Description
The W287a rule flags module or gate instances where nets connected to
input ports are not driven and the instance input which are not connected.

The W287a rule (Verilog) also checks pins/ports driven by inout pins/ports.

For Verilog designs, the W287a rule does not flag instance input ports
where the connected net is coming out of a black box instance unless the
strict rule parameter is set.

It is an error in CMOS to let an input float, unless that input has a pull-up
or pull-down.

In case, a bit-select or a part-select of a multi-bit signal is connected to an
input of a module or gate instance, the W287a rule requires that all
connected bits must be driven and other bits need not be driven.

NOTE: For VHDL, you can enable the W287a rule by specifying the
set_goal_option addrules W287a command. However, this rule will not
run, if you set the fast rule parameter to yes and SpyGlass lint product is run.

Turbo Mode Support
The Turbo mode support is available for this rule. In this mode, rule will not
report violation for dead codes. For more information, see the SpyGlass
Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location of a module instance where
a signal <sig-name> of instance <instance-name> connected to an
input port is never driven:

[WARNING] Input '<sig-name>' of instance '<instance-name>' is
undriven. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
404
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
scope excluding subprograms.

Similarly, the following message appears where a signal <sig-name> of
instance <instance-name> is not connected to an input port:

[WARNING] Input '<sig-name>' of instance'<instance-name>' is
unconnected. [Hierarchy: ‘<hier-path>’]

VHDL
The following message appears at the location of a component instantiation
where bits <bit-list> of signal <sig-name> of instance
<instance-name> connected to an input port are never driven:

[WARNING] Input Signal '<sig-name>' of instance '<instance-
name>' not driven. [Elaborated Module Name: <module-name>]

Where, <module-name> is the module name.

Rule Severity
Warning

Suggested Fix
If you don’t care about the input value, tie it high or low, but do not let it
float.

Examples
Consider the following example where wire w2 connected to second input
port of instance a1 of AND gate cell is not driven:

module test(in1, in2, clk, out1);
input in1, in2, clk;
output out1;

wire w1, w2;

assign w1 = in1 & in2;

and a1(out1, w1, w2);
endmodule

For this example, SpyGlass generates the following message:
405
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Undriven instance input 'w2'. [Hierarchy: ‘:test’]
406
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W287b
Output port to an instance is not connected

Language
Verilog, VHDL

Rule Description
The W287b flags module or gate instances where the output ports are not
connected.

While such descriptions are allowed, they are generally design mistakes.
NOTE: For VHDL, you can enable the W287b rule by specifying the

set_goal_option addrules W287b command. However, this rule will not
run, if you set the fast rule parameter to yes and SpyGlass lint product is run.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location of a module instance where
the output port <port-name> is not connected:

Instance output port'<port-name>' is not connected

VHDL
The following message appears at the location of a component instantiation
where the signal <sig-name> connected to an output port of the
component is never used in the design:

Instance output '<sig-name>' not used. [Elaborated Module Name:
<module-name>]

Where, <module-name> is the name of the module.

Rule Severity
Warning
407
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Suggested Fix
Check carefully to make sure that you intended to ignore this output.

Example
Consider the following example:

entity low1 is
 port(
 in1: in bit_vector(1 downto 0);
 out1: out bit
);
end low1;

architecture behav of low1 is
begin
 process(in1)
 begin
 out1 <= in1(1) and in1(0);
 end process;
end behav;

entity low2 is
 port(
 in2: in bit_vector(1 downto 0);
 out2: out bit
);
end low2;

architecture behav of low2 is
begin
 process(in2)
 begin
 out2 <= in2(0) or in2(1);
 end process;
end behav;

entity top is
 port(
408
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
 inp1 : in bit_vector(1 downto 0);
 inp2 : in bit_vector(1 downto 0);
 outp : out bit_vector(1 downto 0)
);
end top;

architecture struct of top is
component low1 is
 port(
 in1: in bit_vector(1 downto 0);
 out1: out bit
);
end component;

component low2 is port(
 in2: in bit_vector(1 downto 0);
 out2: out bit
);
end component;
signal sig1, sig2 : bit;
begin
 par_and : low1 port map (in1 => inp1, out1 => sig1);
 par_or : low2 port map (in2 => inp2, out2 => sig2);

end struct;
409
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W287c
Inout port of an instance is not connected or connected net is
hanging

Language
Verilog, VHDL

Rule Description
The W287c flags module or gate instances where inout ports are not
connected or connected net is not used anywhere in the module.

While such descriptions are allowed, they are generally design mistakes.
When in the input mode, an unconnected inout port is equivalent to an
undriven input which is a design error in CMOS unless it is a pull-up or pull-
down.

Message Details
Verilog
The following message appears at the location of a module instance where
the inout port, <port-name>, is not connected:

Unconnected instance inout '<port-name>'[Hierarchy: ‘<hier-
path>’]

The following message appears at the location of the module instance
where the net connected to the port <port-name> is hanging:

Net connected to instance inout '<port-name>' is hanging
[Hierarchy: ‘<hier-path>’]

VHDL
The following message appears at the location of component instantiation
where port, <port-name>, is not connected:

Unconnected instance inout '<port-name>'[Elaborated Module
Name: <module-name>]

The following message appears at the location of component instantiation
where a net connected to the port, <port-name>, is hanging:

Net connected to instance inout '<port-name>' is hanging
[Elaborated Module Name: <module-name>]
410
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
where, <module-name> is the name of the module.

Rule Severity
Warning

Suggested Fix
Tie the input high or low if it will not be used.
411
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
W504
Integer is used in port expression

Language
Verilog

Rule Description
The W504 rule reports the port expression that uses integers.

The rule reports a violation if during instantiating a module, a variable of
type integer or a constant integer is connected to the module’s port.

By default, the rule does not report violation for integers used in
expressions containing scalar values, such as, 4'h4-2, 4'h4-i, where i is an
integer variable.

Set the value of the strict parameter to yes to report such violations.

The W504 rule does not report violation if integer is used in module
instantiation inside SystemVerilog module because integer ports are
synthesizable in SystemVerilog.

You can run this rule by specifying the following option in the project file:

set_goal_option rules W504

If you set the report_only_overflow parameter to yes, the W504 rule reports
violations only for integers or constant integers where the width of port
expression is greater than the width of port. By default, this parameter is
set to no.

Message Details
The following message appears when the integer <num> is encountered in
the port expression of the port <port-name>:

Integer <num> is used in port expression of port <port-name>

Severity
Warning
412
Synopsys, Inc.

Instance Rules

Rules in SpyGlass lint
Suggested Fix
Do not use integers in port expression. Pass integer to lower level module
by parameters.

Examples
Example 1
In the following example, the W504 rule reports violations because integer
variable i and constant integer 2 are used in the expression of port a:

module m;
 integer i;
 mm1 u1(.a(i));
 mm1 u2(.a(2));
endmodule

module mm1(input a);
endmodule

Example 2
In the following example, the W504 rule reports violations, under the strict
parameter, for integers used in expressions containing scalar values:

module top(output O);
integer i;

test ins1 (.A(4'h4-2),.Q(O)); //Violation under strict
test ins2 (.A(4'h3),.Q(O)); //No violation
test ins4 (.A(4'h4-i),.Q(O)); //Violation under strict

endmodule

module test (input A,Q);
endmodule
413
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Synthesis Rules
The SpyGlass lint product provides the following synthesis related rules:

Rule Flags...
AllocExpr Allocator expressions
ArrayEnumIndex Arrays with enumeration type as index
No related reports
or files.AssertStmt

ASSERT constructs

badimplicitSM1 Sequential descriptions where the clock and reset cannot
be inferred

badimplicitSM2 Sequential descriptions where the states are updated on
different clock edges

badimplicitSM4 Sequential descriptions where event control expressions
use with more than one clock edge

BlockHeader Port or generics used in the block header statements
bothedges Multiple edges of a variable used in the control list
BothPhase Processes that are driven by both edge of a clock
ClockStyle Un-synthesizable clocking styles
DisconnSpec Disconnection specification constructs
EntityStmt Statements in entity description
ExponOp Non-static left operands of the exponentiation operator
ForLoopWait WAIT statements used in FOR-LOOP constructs
IncompleteType Incomplete Types
infiniteloop while or forever loops without event control to break

the loop
InitPorts Default initial value settings for output and inout ports
IntGeneric Non-integer types used in generic declarations
LinkagePort Ports of type LINKAGE
LoopBound LOOP constructs with locally non-static bounds
mixedsenselist (Verilog) Mixed edge and non-edge conditions in sensitivity

list of an always construct
(VHDL) Edge and level conditions specified together in if
statement
414
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
MultiDimArr Multi-dimensional arrays
MultipleWait Multiple WAIT constructs of the same clock expression
NoTimeOut Timeouts in WAIT constructs
PhysicalTypes declarations of un-synthesizable physical constructs
PortType Ports of unconstrained types
PreDefAttr Un-synthesizable pre-defined attributes
readclock Sequential descriptions where the clock signal is read

inside the always construct
ResFunction Resolutions functions
ResetSynthCheck All synthesis issues related to reset
SigVarInit Initial value assignment to signals and variables
SynthIfStmt IF, IF-ELSIF, and IF-ELSIF-ELSE constructs that have un-

synthesizable constructs
UserDefAttr User-defined attributes
W43 wait statements used in the design

W182c time variable declarations

W182g tri0 declarations

W182h tri1 declarations

W182k trireg declarations

W182n Switches (pmos, nmos, and cmos)

W213 PLI functions
W218 Event expressions that check for edge on a multi-bit signal
W239 Hierarchical name references
W250 disable statements

W257 Delays
W293 Functions that return real values
W294 Un-synthesizable constructs
W295 event variables

W339 Runs W339a rule.
W339a Identity operators — identity equal (===) and identity not

equal (!==) operators

Rule Flags...
415
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W430 initial constructs

W442 Runs W442a, W442b, W442c, and W442f rules
W442a Un-synthesizable asynchronous reset sequences
W442b Complex reset sequences
W442c Reset sequences where the reset signal is being modified

by operators other than logical inverse (!) and bit-wise
inverse (~) operators

W442f Reset sequences where reset signal is being compared
using an operator other than the binary equal (==)
operator

W464 Unsupported synthesis directives
W496a Comparisons to tristate signals in control expressions
W496b Comparisons to tristate signals in case construct control

expressions
W503 event variables that are never triggered

W505 Signals or variables that are being assigned values using
both blocking and nonblocking assignments

WhileInSubProg WHILE constructs used in sub-program descriptions

Rule Flags...
416
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
AllocExpr
Identifies the allocator expressions which are not synthesizable

When to Use
Use this rule to identify the allocator expressions which are not
synthesizable by some synthesis tools.

Description
The AllocExpr rule reports violation for the allocator expressions which are
not properly synthesizable by some synthesis tools.

Default Weight
5

Language
VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for an allocator expression which is not
synthesizable by a synthesis tool:

[Warning] Allocator expression may not be synthesizable
Potential Issues
A violation is reported when an unsynthesizable allocator expression is
encountered in a design.

Consequences of Not Fixing
Using the unsynthesizable allocator expression could lead to
unsynthesizable code.

How to Debug and Fix
417
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Double-click the violation message. The HDL window highlights the location
where the violating allocator expression is used. This expression is un-
synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. However, avoid this
style in the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

begin

process
variable MOD1PTR,MOD2PTR:PTR;

begin
MOD1PTR := new MODULE;

MOD2PTR := new MODULE'(25, 10 ns, 4, 9);
end process;

In the above example, the AllocExpr rule reports a violation as MOD1PTR
and MOD2PTR are allocator expressions.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
418
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ArrayEnumIndex
When to Use

Use this rule to identify the arrays which are not synthesizable by some
synthesis tools.

Description
The ArrayEnumIndex rule reports violations for the arrays defined using
enumeration type as index.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed where an array is declared with
enumeration type as its index as it is not synthesizable by a synthesis tool:

[WARNING] Array defined using enumeration type as index may not
be synthesizable

Potential Issues
Violation may arise when an array is declared with enumeration type as its
index.

Consequences of Not Fixing
Arrays defined using enumeration type as index are not synthesizable by
some synthesis tools
419
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL window highlights the line
where an array is declared with an enumeration type as its index. This is
un-synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. However, avoid this
style in the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

architecture arc of ent is
type my_type is(low1,mid1,high1);
type my_array is array(my_type(low1) to my_type(high1)) of bit;

In the above example, the ArrayEnumIndex rule reports a violation as the
array, my_array, is declared using enumeration type as index.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
420
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
No related reports or files.AssertStmt
Assertion statements have no significance in synthesis

Language
VHDL

Rule Description
The AssertStmt rule flags assert statements.

Assertions are for functional verification and have no meaning in synthesis.
The assert statements are ignored by some synthesis tools.

NOTE: Synopsys recommends use of translate_off and translate_on
directives against synthesis_off and synthesis_on directives. If
synthesis_off and synthesis_on directives are used within an
expression, they have the potential to create incorrect logic by synopsys tools.

Message Details
The following message appears at the location where an ASSERT statement
is encountered:

Assertion statement may be ignored by synthesis tools

Severity
Warning

Suggested Fix
To avoid messages, enclose these statements in synthesis_off and
synthesis_on pragmas.
421
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
badimplicitSM1
Identifies the sequential logic in a non-synthesizable modelling
style where clock and reset cannot be inferred

When to Use
Use this rule to identify the sequential descriptions in a
module which are not synthesizable by some synthesis tools.

Description
The badimplicitSM1 rule reports violation for the sequential descriptions in
a module where clock and reset cannot be distinguished and the module is
not synthesizable by some synthesis tools.

Default Weight
5

Language
Verilog

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed at the last line of a module which
violates the rule:

[ERROR] The 'if-else if' statement chain conditional expression
should check for all the asynchronous
reset/set signals first

Potential Issues
Violation may arise when uncommon sequential logic is used, which is
unsynthesizable.

Consequences of Not Fixing
422
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
The module is not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
start of the if-else-if block. Scroll down the HDL Viewer window to
search for the always block. To confirm the non-synthesizable modeling
style for a sequential logic, perform one of the following steps:

Inspect the block visually

Scroll up the HDL Viewer window to search for the always construct

Search the HDL for the if-else block inside the always construct

Browse through the assignments and conditions used in the
if-else block

Since the implicit modeling style is uncommon, it is most likely you made a
mistake in modeling a conventional synchronous block. For a standard
synchronous logic, it is neither required nor a good practice to use signals
other than those present in the sensitivity list to set/reset the circuit.

Example Code and/or Schematic
In the following example code, SpyGlass generates a violation as it cannot
distinguish between the clock and the reset signals:

module bism1(set,reset,in1,in2,out1);

input in1,in2,reset,set;
output out1;
reg clk,out1;
always @(posedge clk or negedge set)

if(reset)
out1 = 0;

else if(!set)
out1 = 1;

else if(in2)
out1 = in2;

else
out1 = in1;

endmodule
423
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
424
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
badimplicitSM2
Identifies the implicit sequential logic in a non-synthesizable
modeling style where states are not updated on the same clock
phase

When to Use
Use this rule to identify the implicit sequential descriptions in a
non-synthesizable module which are not synthesizable by some synthesis
tools.

Description
The badimplicitSM2 rule reports violations for the sequential descriptions in
a module whose states are updated on different clock edges and it is not
synthesizable by some synthesis tools.

The implicit sequential logics are synthesizable only if all transitions within
a block switch on the same edge of the same clock. Finite-state Machines
(FSMs) are not synthesizable if you attempt to switch on both edges of the
same clock or same edges of different clocks.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the implicit sequential logic which is
not synthesizable by a synthesis tool :

[ERROR] Unsynthesizable implicit sequential logic: states can
only be updated on same clock phase
425
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Potential Issues
A register which is updated on both edges of a clock in a given sequential
block leads to ambiguous synthesis results.

Consequences of Not Fixing
Following are the consequences of not fixing the violation:

The synthesis tool can get confused about which edge to use for
updating the register.
RTL and gate-level simulation results may not match.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line where switching on the second edge of the same clock is
done. To confirm the implicit sequential logic using both clock phases,
perform one of the following steps:

Inspect the block visually

Scroll up the HDL Viewer window to search for the always construct

Search the HDL for the edge of clock used in the if statement

To resolve the violation, break the sequential logic into multiple sequential
logic blocks, each of which can independently meet the requirement. If the
register depends on both edges of the clock, describe the sequential nature
separately and use the combinational logic to generate the final output.

Example Code and/or Schematic
In the following example code, SpyGlass generates a violation as the state
depends on more than one edge of the clk clock:

module test(out1,out2);
output out1,out2;
reg out1,out2,a,c,clk;
always
begin
@(posedge clk) out1 <= c;
@(negedge clk) out2 <= a;

end
endmodule
426
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
427
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
badimplicitSM4
Identifies the non-synthesizable implicit sequential logic where
event control expressions have multiple edges

When to Use
Use this rule to identify the sequential descriptions which are not
synthesizable by some synthesis tools.

Description
The badimplicitSM4 rule reports violations for sequential descriptions
where event control expressions use more than one edge. These
descriptions are not synthesizable by some synthesis tools.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for an event control expression which
uses another edge:

[ERROR] Unsynthesizable implicit sequential logic: event
control expression may not have more than one edge

Potential Issues
A violation is reported A register which is updated on both edges of a clock
in a given sequential block leads to ambiguous synthesis results.

Consequences of Not Fixing
Following are the consequences of not fixing the violation:
428
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
The synthesis tool can get confused about which edge to use for
updating the register.
RTL and gate-level simulation results may not match.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which multiple event control expressions are used in a
condition. Scroll down the HDL Viewer window to search for the always
block. To confirm the implicit sequential logic where control expressions do
not have more than one edge, perform one of the following steps:

Inspect the block visually

Scroll up the HDL Viewer window to search for the always construct

Search the HDL for the edges of clock used in the if statement

To resolve the violation, break the sequential logic into multiple sequential
logic blocks, each of which can independently meet the requirement.

Example Code and/or Schematic
In the following example code, SpyGlass reports a violation as the event
control expressions use multiple edges:

always
begin
@(posedge a or negedge a) out1 <= in1;
@(negedge a) out2 <= in1;

end
endmodule

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
429
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
BlockHeader
Identifies ports and generics in the block statement header which
are not synthesizable

When to Use
Use this rule to identify ports and generics in the block statement header
which are not synthesizable by some synthesis tools.

Description
The BlockHeader rule reports violations for ports and generics used in the
block header statements.

Default Weight
10

Language
VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a port or a generic in a block
statement which is not synthesizable by a synthesis tool:

[WARNING] PORT/GENERIC in the block statement header may be
unsynthesizable

Potential Issues
A violation is reported when ports or generics are used in the block
statement.

Consequences of Not Fixing
Ports and generics used in a block statement are not synthesizable by
some synthesis tools.
430
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the beginning of the block in which a port, a generic, or both are
defined. The block contains the definition of the port, the generic, or both.
If the block is too long, view the HDL in an editor and search forward for
the port or generic definition.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis. If the register depends on both edges of
the clock, describe the sequential nature separately and use the
combinational logic to generate the final output.

Example Code and/or Schematic
In the following example code, the rule reports a violation for the
non-synthesizable port used in a block statement:

entity entBlockHeader1 is
port(in1 : in bit;
in2 : in bit;
pcarry : in bit;
sum : out bit;
scarry : out bit);

end entBlockHeader1;
architecture behavioral of entBlockHeader1 is
begin

b1 : block \\port may be unsynthesizable
port (a, b, c : in bit;
d, e : out bit
);

port map (a=>in1, b=>in2, c=>pcarry, d=>sum, e=>scarry);
begin
d <= (a xor b xor c) ;
e <= ((a and b) or (a and c) or (b and c));

end block;
process (in1, in2)
begin
sum <= in1 ;
sum <= in2 ;

end process ;
431
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
end behavioral;

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
432
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
bothedges
Identifies the variable whose both the edges are used in an event
control list

When to Use
Use this rule to identify the variable which is not synthesizable by some
synthesis tools.

Description
The bothedges rule reports a violation for a variable whose both the edges
are used in a sensitivity list, hence making the variable not synthesizable
by some synthesis tools.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for an event control list that contains
both the edges of the <var-name> variable:

[ERROR] Both edges of the same variable (<var-name>) are not
allowed in the event control list

Potential Issues
A violation is reported when both edges of the same variable are used in an
event control list.

Consequences of Not Fixing
Synthesis tools do not allow both edges of the same variable in an event
433
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
control list.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the sensitivity list of the always block. Check the sensitivity
list. It displays both the posedge and the negedge edges of the signal
mentioned in the message.

To resolve the violation, replicate the block, one switching on the positive
edge and the other on the negative edge.

Example Code and/or Schematic
In the following example code, SpyGlass generates a violation as both
edges of the same variable are being used in a control list, hence making
the variable non-synthesizable:

module test(q);

output q;
reg q,d,reset;

always @(posedge reset or negedge reset)
begin
if (reset != 0)
q = d;

end

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
434
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
BothPhase
Identifies the processes that are driven by both the edges of a
clock

When to Use
Use this rule to identify the processes that are driven by both the edges of
a clock.

Description
The BothPhase rule reports violations for processes that are driven by both
the edges of a clock.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed at the first line of the
<process-name> process that is driven by both the edges of the
<clk-name> clock:

[WARNING] Clock '<clk-name>' driving a process ('<process-
name>') on two different edges may not be synthesizable

Potential Issues
A violation is reported when a process is driven by both the edges of a
clock.

Consequences of Not Fixing
The processes that are driven by both the edges of a clock are not
435
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
synthesizable by some synthesis tools.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the process, which is driven by both the edges of a clock.

No fix is required in testbenches or simulation models. In the code targeted
for synthesis, split it into two processes, one driven on the positive edge
and the other on the negative edge.

Example Code and/or Schematic
The rule checks for the following type of clock declarations which use both
the edges:

Sample Code 1

if(clk'event and clk = '1') then --positive edge
q1 <= data;

end if;
if(clk'event and clk = '0') then --negative edge
q2 <= data;

end if;

Sample Code 2

if(not clk'stable and clk='1') then --positive edge
q1 <= data;

end if;
if(not clk'stable and clk='0') then --negative edge
q2 <= data;

end if;

Sample Code 3

wait until clk='1'; --positive edge
q1 <= data;
wait until clk='0'; --negative edge
q2 <= data;

Sample Code 4
436
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
wait until clk'event and clk='1'; --positive edge
q1 <= data;
wait until clk'event and clk='0'; --negative edge
q2 <= data;

Sample Code 5
wait until rising_edge(clk); --positive edge
q1 <= data;
wait until falling_edge(clk); --negative edge
q2 <= data;

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
437
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ClockStyle
A clocking style is used which may not be synthesizable

Language
VHDL

Rule Description
The ClockStyle rule flags un-synthesizable clocking styles used in the
design.

The following table lists the clocking styles may not be synthesizable by
some synthesis tools:

TABLE 1 Un-synthesizable Clocking Styles

if (clk'event) then
elsif(clk'event) then

if(not clk'stable) then
elsif(not clk'stable) then

if (clk'stable) then
elsif(clk'stable) then

if (clk'stable and clk = '1') then
elsif(clk'stable and clk = '1') then

if (clk'stable and clk = '0') then
elsif(clk'stable and clk = '0') then

wait until clk'event;

wait until not clk'stable;

wait until clk'stable;

wait until clk'stable and clk = '1';

wait until clk'stable and clk = '0';

if (not clk'event and clk = '0') then

if (clk'event and not clk'stable) then

if (clk'event and clk'stable)
438
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
The ClockStyle rule checks for clocking styles based on IF, ELSIF, and
WAIT constructs only.

NOTE: Gate between clock expression and other conditions should not be other than the
'and'.

Such descriptions may not be synthesizable by some synthesis tools.

Message Details
The following message appears at the location where an un-synthesizable
clocking style is encountered:

This clocking style may not be synthesizable

Severity
Warning

Suggested Fix
No fix is required in testbenches or simulation models. In code targeted for
synthesis, recode to meet synthesizability guidelines.

wait until not clk'event and clk = '0';

wait until clk'event and not clk'stable;

wait until ((clk'event and clk = '1') xor (cond = 1))

if ((clk'event and clk'stable) and clk= '0') then

If clock is being used as multi-bit signal. For example:
if (clk'event and clk = "00") then)

TABLE 1 Un-synthesizable Clocking Styles (Continued)
439
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
DisconnSpec
Identifies the disconnection specification constructs which are not
synthesizable

When to Use
Use this rule to identify the disconnection specification constructs which
are not synthesizable by some synthesis tools.

Description
The DisconnSpec rule reports violations for the disconnection specification
constructs which are not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a disconnection specification
construct which is not synthesizable by a synthesis tool:

[Warning] Disconnection specification may not be synthesizable

Potential Issues
A violation is reported when a disconnection specification construct is used
in the design.

Consequences of Not Fixing
The disconnect specification is used to model the disable time for a signal
driver in a guarded assignment. Hence, it is ignored during synthesis.

How to Debug and Fix
440
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
To debug the violation, double-click the message. The HDL Viewer window
highlights the disconnection specification construct used in the design.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

--library IEEE;
--use ieee.std_logic_1164.all;
--entity e is
--end e;

architecture arc of e is
 signal a : std_logic register;
 signal b : std_logic bus;
 disconnect a :std_logic after 50 ns;
 disconnect b :std_logic after 20 ns;
--begin
--process
--begin
-- if(b = '0') then
-- a <= '1' after 8 ns;
-- else
-- a <= null after 10 ns;
-- end if;
-- wait on b;
--end process;
--end arc;

In the above example, the DisconnSpec rule reports a violation as the
disconnection specification constructs are used in the design.

Default Severity Label
Warning

Rule Group
Synthesis
441
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Reports and Related Files
None
442
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
EntityStmt
Statements in entity block may be ignored by some synthesis tools

Language
VHDL

Rule Description
The EntityStmt rule flags statements in entity declarations.

Statement part of entity declarations is ignored by some synthesis tools.

NOTE: Synopsys recommends use of translate_off and translate_on
directives against synthesis_off and synthesis_on directives. If
synthesis_off and synthesis_on directives are used within an
expression, they have the potential to create incorrect logic by synopsys tools.

Message Details
The following message appears at the location where a statement is
encountered in an entity declaration:

Statement inside an entity may be ignored by some synthesis
tools

Severity
Warning

Suggested Fix
Avoid this style in synthesizable code or enclose these statements in
synthesis_off and synthesis_on pragmas.
443
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ExponOp
This rule has been deprecated.

This rule is now removed. Built-In rules SYNTH_5338 and SYNTH_5240 can
be used instead.

There is no need to add SYNTH_5338 and SYNTH_5240 in run script as
these run by-default.
444
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ForLoopWait
Identifies the WAIT statements used in FOR-loop constructs which
are not synthesizable

When to Use
Use this rule to identify the WAIT statements which are not synthesizable
by some synthesis tools.

Description
The ForLoopWait rule reports violations for the WAIT statements used in
FOR-loop constructs.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a WAIT statement in a
FOR-loop construct which is not synthesizable by a synthesis tool:

[WARNING] WAIT statement inside a FOR-loop statement may be
unsynthesizable

Potential Issues
A violation is reported when WAIT statement is used inside a FOR-loop
construct.

Consequences of Not Fixing
The WAIT statements that are used inside a FOR-loop are not synthesizable
by some synthesis tools.
445
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the for loop which has offending wait statement inside the for loop.

If the for loop is small, you can scroll down to see the usage of the wait
statement. If the for loop is too long you might view the HDL in an editor
and search forward for wait statement inside the for loop to find the actual
location of the wait statement. This is un-synthesizable by several
commercially available synthesis tools.

No fix is required in testbenches or simulation models. Put event control
outside loops in the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

--entity test is
--end test;

--architecture test of test is
-- signal sig1 : bit;
--begin

 p1: process
 begin
 for i in 0 to 10 loop
 wait on sig1;
 end loop;
 end process p1;

--end test;

In the above example, the ForLoopWait rule reports a violation as a wait
statement is used inside the for loop.

Default Severity Label
Warning
446
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Rule Group
Synthesis

Reports and Related Files
None
447
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
IncompleteType
Identifies the incomplete type declarations which are not
synthesizable

When to Use
Use this rule to identify the incomplete type declarations which are not
synthesizable by some synthesis tools.

Description
The IncompleteType rule reports violations for the incomplete type
declarations which are not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for an incomplete type declaration
which is not synthesizable by a synthesis tool:

[WARNING] Incomplete type declaration may not be synthesizable

Potential Issues
A violation is reported when an incomplete type declaration is used in a
design.

Consequences of Not Fixing
Incomplete type declarations are not synthesizable by some synthesis
tools.
448
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending incomplete type is declared. This is un-synthesizable
by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

--entity e is
--end e;

architecture arc of e is
type COMP;
type NET;

--type COMP_PTR is access COMP;
--type NET_PTR is access NET;

--constant MODMAX:integer:= 100;
--constant NETMAX: integer := 2500;

--type COMP_LIST is array(1 to MODMAX) of COMP_PTR;
--type NET_LIST is array(1 to NETMAX) of NET_PTR;

--type COMPLIST_PTR is access COMP_LIST;
--type NETLIST_PTR is access NET_LIST;

--type COMP is
-- record|
-- COMP_NAME : STRING(1 to 10);
-- NETS : NETLIST_PTR;
-- end record;

--type NET is
-- record
-- NET_NAME : STRING(1 to 10);
449
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
-- COMPONENTS : COMPLIST_PTR;
-- end record;

--begin
--end arc;

In the above example, the IncompleteType rule reports a violation as an
incomplete type declaration is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
450
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
infiniteloop
While/forever loop has no break control

Language
Verilog

Rule Description
The inifiniteloop rule flags while or forever loops without event control
to break the loop.

Such descriptions may not be synthesizable by some synthesis tools.
NOTE: The offending construct is now synthesizable by almost all standard synthesis tools.

Therefore, the infiniteloop rule has been switched off and will be removed in the
next release of SpyGlass.

NOTE: The infiniteloop rule is switched off and will be removed in a future release. Use the
SpyGlass SYNTH_5230 Built-In rule that reports the while unrolling loops.

Message Details
The following message appears at the location of a while or forever
loop’s terminating condition when the condition has no event control to
break the loop:

while/forever loop has no event control to break loop

Rule Severity
Error

Suggested Fix
Fix may not be necessary if this is expected to be free-running, but you
should check each such case.

Examples
In the following example, the terminating condition of the while loop is
always false, resulting in an infinite loop:

`define cond 1'b1
451
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
module test(in1, in2, sel, out1);
input in1, in2, sel;
output out1;
reg out1;

always@(sel or in1)
while(`cond)
case(sel)
1'b0: out1 <= in1;
1'b1: out1 <= in2;

endcase
endmodule

For this example, SpyGlass generates the infiniteloop rule message.
452
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
InitPorts
Default initial value of in/out/inout port may be ignored by some
synthesis tools

Language
VHDL

Rule Description
The InitPorts rule flags default initial value settings for input, output, and
inout ports.

Such descriptions may not be synthesizable by some synthesis tools.

NOTE: Synopsys recommends use of translate_off/translate_on directives
against synthesis_off/synthesis_on directives. If
synthesis_off/synthesis_on directives are used within an expression,
they have the potential to create incorrect logic by synopsys tools.

Message Details
The following message appears at the location where an input, output, or
inout port <port-name> is declared with default initial value:

Default initial value of in/out/inout port '<port-name>' may be
ignored by some synthesis tools

Severity
Warning

Suggested Fix:
If you want to set initial state of ports, use reset connections. If you need
initial values for simulation, enclose those statements in the
synthesis_off/synthesis_on pragmas. Ideally, try to avoid using
such statements in synthesizable code since they may lead you to believe
that the logic is functioning correctly when it actually does not reset
correctly in the implementation.
453
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
IntGeneric
Identifies the non-integer type used in the declaration of a generic
which is not synthesizable

When to Use
Use this rule to identify the non-integer types used in generic declarations
which are not synthesizable by some synthesis tools.

Description
The IntGeneric rule reports violations for the non-integer types used in
generic declarations which are not synthesizable by some synthesis tools.

Rule Exceptions
Enumeration type generics are not reported by the rule as the synthesis
process supports them.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the <type-name>
non-integer type, which is used in the declaration of the <gen-name>
generic and is not synthesizable by a synthesis tool:

[WARNING] Non-integer type '<type-name>' used in declaration of
generic '<gen-name>' may be unsynthesizable

Potential Issues
A violation is reported when a non-integer type is used in a generic
454
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
declaration.

Consequences of Not Fixing
Non-integer types used in a generic declaration may not be synthesizable
by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window takes you to the
location where the offending non-integer generic is declared. This is un-
synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Use only integer
generics in the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

entity test is
generic
gen1 : real := 10.0);

end test;

In the above example, the IntGeneric rule reports a violation for gen1 as it
is a non-integer generic declaration.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
455
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
LinkagePort
Identifies the linkage ports which are not synthesizable

When to Use
Use this rule to identify the linkage ports which are not synthesizable by
some synthesis tools.

Description
The LinkagePort rule reports violations for ports which are of the linkage
type and not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a port of the linkage type which
is not synthesizable by a synthesis tool:

[WARNING] Linkage port may not be synthesizable

Potential Issues

A violation is reported when a port of linkage type is used in the design.

Consequences of Not Fixing

Ports of linkage type are not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending port of type linkage is declared. This is un-
456
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

entity e is
port(

a: linkage bit;
b : out bit

);
end e;

In the above example, the LinkagePort rule reports a violation for the port
a, as it is of type linkage.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
457
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
LoopBound
Identifies the for loop range bounds that are not locally or globally
static

When to Use
Use this rule to identify the For loop constructs which are not synthesizable
by some synthesis tools.

Description
The LoopBound rule reports violations for the for loop constructs that
have locally or globally non-static bounds and are therefore not
synthesizable by some synthesis tools.

Language
VHDL

Default Weight
10

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed at the first line of a FOR-loop construct
that has a locally or a globally non-static range bound:

[WARNING] For loop range bounds should either be locally static
or globally static

Potential Issues
A violation is reported when a for loop construct has locally or globally non-
static bounds.

Consequences of Not Fixing
The synthesis process cannot be deterministic and can possibly hang if the
458
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
loop bounds are not static. In such cases, there is also a possibility of
hanging of the simulation.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
for construct, which has locally or globally non-static bounds.

To resolve the violation, use a static lower and a static upper bound. If this
is not possible, implement the loop as a multi-cycle logic.

To avoid hanging of the simulation, check the for loops at the RTL coding
stage.

Example Code and/or Schematic
Example 1
In the following example code, SpyGlass reports a violation as dataIn is
non-static:

signal dataIn : integer ;
for i in 1 to dataIn loop
temp <= temp * i ;

end loop ;

Example 2
In the following example code, no violation is reported by SpyGlass:

for i in 1 to 3 loop
temp <= temp * i ;

end loop ;

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
459
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
mixedsenselist
Mixed conditions in sensitivity list may not be synthesizable
(Verilog)
Edge and level conditions are mixed in if statement (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The mixedsenselist rule flags mixed edge and non-edge conditions in the
sensitivity list of an always construct.

Such conditions in sensitivity list may not be synthesizable by some
synthesis tools.

VHDL
The mixedsenselist rule flags if edge and level conditions are specified
together in an if statement.

Message Details
Verilog
The following message appears at the location of an always construct
where mixed edge or non-edge condition is used in the sensitivity list:

Mixed conditions in sensitivity list may not be synthesizable

VHDL
The following message appears if edge and level conditions are specified
together in an if statement:

Edge and level conditions are mixed in 'if' statement

Rule Severity
Error (Verilog) / Warning (VHDL)
460
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Suggested Fix
Decide if you really want to trigger the block on any change in the mixed
signal. Check if your requirement can be met by mapping to either a
positive-edge change or a negative-edge change. If both are required,
consider duplicating the block, one triggering on each edge.

Examples (Verilog)
In the following example, the always construct has both an edge
specification and a non-edge specification:

always @(posedge clock or reset)
q = d;

For this example, SpyGlass generates the mixedsenselist rule message.

Examples (VHDL)
In the following example, both edge and level conditions are specified
together in the if statement:

elsif ((clk'event and clk='1')and (d1='1') and
(d2='0')) then

Here, clock edge clk is mixed with d1 and d2 level checking. Hence,
SpyGlass generates the mixedsenselist rule message.
461
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
MultiDimArr
This rule has been deprecated.

Since multi-dimensional arrays are supported by SpyGlass and are
synthesizable, this rule is no longer valid and is removed.
462
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
MultipleWait
Identifies multiple wait statements having the same clock
expression which are not synthesizable

When to Use
Use this rule to identify multiple wait constructs which are not
synthesizable by some synthesis tools.

Description
The MultipleWait rule reports violations for multiple wait constructs
having the same clock expression which are not synthesizable by some
synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a wait construct at the <num> line
when another wait construct is found for the same clock expression:

[WARNING] Multiple wait statements (first one found at line no.
<num>) having same clock expression may not be synthesizable

Potential Issues

A violation is reported when multiple wait statements have the same
clock expression.

Consequences of Not Fixing
463
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Some synthesis tools support multiple wait statements in a process
though it is not a generally accepted synthesizability practice. But even
then, your formal verification tool may not support the coding style.

How to Debug and Fix
Double-click the violation message. The HDL window, highlights the
location of the wait statement which has same clock expression as the
previously declared wait statement (line number of the wait statement is
also mentioned in the violation) inside the process block. This is un-
synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Ensure that your
synthesis flow supports this style in the code targeted for synthesis. Also,
use a waiver to avoid the violation if your downstream tool supports the
coding style.

Example Code and/or Schematic
Consider the following example:

begin
latch_behavior: process is
begin
wait until clk='1';
q1<=d ;

wait until clk='1'; --VIOLATION
q2<=d ;

wait until clk='1';
q3<=d ;

end process latch_behavior;

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
464
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
NoTimeOut
Identifies the timeout expression in a wait statement, which is not
synthesizable

When to Use
Use this rule to identify the timeout expressions which are not
synthesizable by some synthesis tools.

Description
The NoTimeOut rule reports violations for the timeout expression in a wait
construct, which is not synthesizable by some synthesis tools.

The rule reports wait constructs which are in the following format:

WAIT for <time-expression>;

where <time-expression> is the wait time.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a timeout expression in a wait
construct, which is not synthesizable by a synthesis tool:

[WARNING] Timeout expression in wait statement may not be
synthesizable

Potential Issues

A violation is reported when a timeout expression is used in a wait
465
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
statement.

Consequences of Not Fixing
The timeout expressions in a wait construct are not synthesizable by some
synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
location where the offending timeout expression in wait statement is used.
This is un-synthesizable by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

entity test is
end test;

architecture test of test is
signal sig1, sig2 : bit;

begin -- test

p1: process
begin -- process p1
sig1 <= sig2;
wait for 10 ns;

end process p1;

end test;

In the above example, the NoTimeOut rule reports a violation as a timeout
expression is used inside a wait statement.

Default Severity Label
Warning

Rule Group
Synthesis
466
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Reports and Related Files
None
467
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
PhysicalTypes
Identifies the physical constructs which are not synthesizable

When to Use
Use this rule to identify the physical constructs which are not synthesizable
by some synthesis tools.

Description
The PhysicalTypes rule reports violations for declaration of the Physical,
Floating Point, File, or Access type physical constructs which are not
synthesizable by some synthesis tools.

Language
VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed where an un-synthesizable physical
construct <construct-name> is declared:

[Warning] <construct-name> declaration may be ignored by some
synthesis tools

Potential Issues
A violation is reported when a physical construct is used in a design.

Consequences of Not Fixing
The Physical Type, Floating Point Type, File Type, and Access Type
constructs are not synthesizable by most of the synthesis tools.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line where a Physical, Floating, File, or Access type object is
468
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
declared. The message specifies the type of the offending object.

No fix is required in testbenches or simulation models. Enclose these
statements in the synthesis_off, synthesis_on pragmas in the
code targeted for synthesis.

To create correct logic, Synopsys recommends to using the
translate_off or the translate_on directive instead of the
synthesis_off or the synthesis_on directive.

Example Code and/or Schematic
In the following example code, SpyGlass reports a violation for the physical
and the access type physical constructs which are non-synthesizable:

end ent;
architecture arc of ent is
type current is range 0 to 1E9
units
nA;

end units; \\physical type declaration
type MODULE is
record
SIZE : integer range 20 to 200;
i : current;

end record;
type PTR is access MODULE;\\access type declaration

begin
process
variable MOD1PTR,MOD2PTR:PTR;

begin
MOD1PTR := new MODULE;
MOD2PTR := new MODULE'(25, 10 nA);

end process;
end arc;

Default Severity Label
Warning
469
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Rule Group
Synthesis

Reports and Related Files
None
470
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
PortType
Identifies ports of unconstrained types which are not synthesizable

When to Use
Use this rule to identify ports which are not synthesizable by some
synthesis tools.

Description
The PortType rule reports violations for ports of unconstrained types.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed where the <port-name> port of the
unconstrained type, which is not synthesizable by a synthesis tool, is
declared:

[WARNING] Port <port-name> of unconstrained type may not be
synthesizable

Potential Issues
A violation is reported when a port of unconstrained type is used in the
design.

Consequences of Not Fixing
Ports of unconstrained types are not synthesizable by some synthesis tools

How to Debug and Fix
471
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Double-click the violation message. The HDL window highlights the location
where unconstrained port is used. This is un-synthesizable by several
commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

package testpack is
type unconsIntArr is array (integer range <>) of integer;

end testpack;

use work.testpack.all;
entity test is
port (
p1 : in unconsIntArr);

end test;

In the above example, the PortType rule reports a violation for the port,
p1, as it is of unconstrained type.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
472
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
PreDefAttr
Identifies the pre-defined attributes which are not synthesizable

When to Use
Use this rule to identify the pre-defined attributes which are not
synthesizable by some synthesis tools.

Description
The PreDefAttr rule reports violation for the following pre-defined
attributes:

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a pre-defined attribute
<attr-name> which is not synthesizable by a synthesis tool:

[WARNING] Use of pre-defined attribute '<attr-name>' may not be
synthesizable

Potential Issues
A violation is reported when one of the above mentioned pre-defined

VAL SUCC PRED LEFTOF

RIGHTOF DELAYED QUIET TRANSACTION

ACTIVE LAST_EVENT LAST_ACTIVE
473
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
attribute is used in the design.

Consequences of Not Fixing
The above mentioned pre-defined attributes are not synthesizable by some
synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending pre-defined attribute is used. This is un-synthesizable
by several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid these
attributes in the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

entity test is
end test;

architecture test of test is
signal sig1 : integer;

begin -- test

sig1 <= integer'VAL(0);

end test;

In the above example, the PreDefAttr rule reports a violation as the
predefined attribute, VAL, is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
474
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
readclock
Unsynthesizable implicit sequential logic: clock read inside always
block.

Language
Verilog

Rule Description
The readclock rule flags sequential descriptions where the clock signal is
read inside the always construct.

Message Details
The following message appears at the location where the clock signal
<clk-name> is read in an always construct:

Unsynthesizable implicit sequential logic: cannot read clock
'<clk-name>' inside always block

Rule Severity
Warning

Suggested Fix
First determine if you really need to test the value. The fact that the block
has already triggered on positive edge implies the clock value, unless you
are looking for simulation X states. In that case, consider putting the clock
test inside translate_off and translate_on pragmas so the
construct will be ignored in synthesis.

Examples
In the following example, the clock signal clk is read inside the always
construct:

always@ (posedge clk)
if(clk == 1'b1)
out1 <= in1 & in2;

For this example, SpyGlass generates the readclock rule message.
475
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ResFunction
Identifies the resolution functions which are not synthesizable

When to Use
Use this rule to identify the resolution functions which are not
synthesizable by some synthesis tools.

Description
The ResFunction rule reports violations for the resolution functions which
are not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the <func-name> resolution
function which is not synthesizable by a synthesis tool:

[WARNING] Resolution function <func-name> may not be
synthesizable

Potential Issues
A violation is reported when a resolution function is used in the design.

Consequences of Not Fixing
Resolution functions are not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
476
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
location where the offending resolution function is used. This is un-
synthesizable by several commercially available synthesis tools.

To resolve the violation, use the std_logic type instead of a resolution
function.

Example Code and/or Schematic
Consider the following example:

entity test is
end test;

architecture test of test is

function res_func (
inputs : bit_vector)
return bit is

begin
return '0';

end res_func;

signal sig1 : res_func bit;
begin
end test;

In the above example, the ResFunction rule reports a violation as the
resolution function is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
477
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
ResetSynthCheck
This rule group checks all synthesis issues related to reset

Rule Description
The ResetSynthCheck rule group checks all synthesis issues related to
reset. This rule runs W442, badimplicitSM1, badimplicitSM2, and badimplicitSM4
rules.
478
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
SigVarInit
Identifies the initial values of signals and variables which are not
synthesizable

When to Use
Use this rule to identify the initial values which are not synthesizable by
some synthesis tools.

Description
The SigVarInit rule reports violations for the assignment of initial values to
signals and variables, which are not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the <name> signal or the <name>
variable whose initial value is not synthesizable by a synthesis tool:

[WARNING] Default initial value of '<name>' may be ignored by
some synthesis tools

Potential Issues
A violation is reported when the initial value is assigned to a signal or
variable.

Consequences of Not Fixing
Assignment of initial values to signals and variables is not synthesizable by
some synthesis tools.
479
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the signals or variables have been declared with some initial values.
This is un-synthesizable by several commercially available synthesis tools.

If you want to set an initial state, setup the reset connections. If you need
initial values for the simulation, enclose such initial value statements in the
synthesis_off/synthesis_on pragmas. Try to avoid the statements
in the synthesizable code since they make you feel that the logic is
functioning correctly, whereas in the implementation the logic does not
function correctly.

Use the following SpyGlass commands to interpret the VHDL design code
enclosed within the translate_off/translate_on and the
synthesis_off/synthesis_on pragmas:

set_option hdlin_translate_off_skip_text yes

For details on the usage, refer to the VHDL-specific Options section in
the Atrenta Console Reference Guide.

set_option hdlin_synthesis_off_skip_text yes

For details on the usage, refer to the VHDL-specific Options section in
the Atrenta Console Reference Guide.

Example Code and/or Schematic
Consider the following example:

architecture test of test is
signal sig1 : integer;

begin

p1: process (sig1)
variable var1 : integer := 0; --VIOLATION

begin
end process p1;

end test;

In the above example, the SigVarInt rule reports a violation as the
variable, var1, is assigned an initial value.
480
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
Atrenta Console User Guide: For details on how SpyGlass reads and
interprets the Synopsys translate_off/translate_on and
synthesis_off/synthesis_on synthesis pragmas.

Atrenta Console Reference Guide: For details on the display of the
inactive code.
481
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
SynthIfStmt
Identifies the IF statements which are not synthesizable

When to Use
Use this rule to identify the IF statements which are not synthesizable by
some synthesis tools.

Description
The SynthIfStmt rule reports violations for the if, if-elsif, or if-
elsif-else constructs which are not synthesizable by some synthesis
tools.

The rule reports the following constructs, where:

the if statement uses one of the following non-synthesizable
attributes:

an asynchronous or synchronous process is followed by an else or an
elsif statement

Language
VHDL

Default Weight
5

Parameter(s)
None

ASCENDING IMAGE VALUE

POS SUCC PRED

LEFTOF RIGHTOF DELAYED

QUIET TRANSACTION LAST_EVENT

LAST_ACTIVE LAST_VALUE DRIVING

DRIVING_VALUE SIMPLE_NAME INSTANCE_NAME

PATH_NAME
482
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Constraint(s)
None

Messages and Suggested Fix
The following message is displayed at the first line of an if, if-elsif, or
if-elsif-else construct which is not synthesizable by a synthesis tool:

[WARNING] The IF-statement does not conform with any
synthesizable description style

Potential Issues
A violation is reported when an IF statement does not confirm with any
synthesizable description style.

Consequences of Not Fixing

Such If and If-else-If statements are not synthesizable by some
synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending if, if-elsif or if-elsif-else constructs are
used. This is un-synthesizable by several commercially available synthesis
tools.

No fix is required in testbenches or simulation models. Recode the code
targeted for synthesis to meet the synthesizability guidelines.

Example Code and/or Schematic
Example 1
Consider the following example:

PROC_1: PROCESS(clk, rst)
begin
if(rst = '0') then q <= '0';
if(clk'event and clk = '1') then q <= d;
else q <= '1';

end if;
end process;

In the above example, SpyGlass reports a violation as the process is
483
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
followed by the else statement.

Example 2
Consider the following example:

PROC_2: PROCESS(clk, rst)
begin
if(clk'event and clk = '1') then
if(rst = '0') then q <= '0';
else q <= d;
end if;

else q <= '1';
end if;

end process;

In the above example, SpyGlass reports a violation as the process is
followed by the else statement.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
484
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
UserDefAttr
Identifies the user-defined attributes which are not synthesizable

When to Use
Use this rule to identify the user-defined attributes which are not
synthesizable by some synthesis tools.

Description
The UserDefAttr rule reports violation for the user-defined attributes which
are not synthesizable by some synthesis tools.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a user-defined attribute:

[WARNING] Use of user-defined attribute may not be
synthesizable

Potential Issues
A violation is reported when a user-defined attribute is used in the design.

Consequences of Not Fixing
User-defined attributes are not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where offending user-defined attribute is used. This is un-synthesizable by
485
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
several commercially available synthesis tools.

No fix is required in testbenches or simulation models. Avoid this style in
the code targeted for synthesis.

Example Code and/or Schematic
Consider the following example:

architecture arc of nand_gate is
component nand_comp
port(in1,in2: in bit; out1 : out bit);

end component;

type DOUBLE_INT is
record
X,Y : INTEGER;
end record;

attribute PLACEMENT: DOUBLE_INT;
attribute SIZE:DOUBLE_INT;
attribute PLACEMENT of N1: label is (50,45);
attribute SIZE of N1:label is (2,4);
signal PERIMETER:INTEGER;
signal A,B,Z:bit;
begin
N1: NAND_COMP port map(A,B,Z);
PERIMETER <= 2 * (N1'SIZE.X + N1'SIZE.Y);

end arc;

In the above example, the UserDefAttr rule reports a violation as a user-
defined attribute, PERIMETER, is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis
486
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Reports and Related Files
None
487
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W43
Reports unsynthesizable wait statements

When to Use
Use this rule to identify the wait statements that are not synthesizable.

Description
The W43 rule reports violation for wait statements used in the design.

Following forms of wait statement may not be synthesizable by some
synthesis tools:

wait;
wait on <sensitivity list>;
wait for <time-expression>;

The wait statement of the form, wait until
<Boolean-expression>, can be used to infer a clock and hence, it is
synthesizable.

The W43 rule checks only for unsynthesizable wait statements.

Language
VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a wait statement is
encountered:

[WARNING] <stmt> statement may not be synthesizable
488
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Where, <stmt> refers to a form of wait statement. It can have values such
as Timeout expression in wait or Sensitivity list in
wait.

Potential Issues

Violation may arise when an unsynthesizable wait statement is
encountered in the design.

Consequences of Not Fixing
Some synthesis tools may not be capable of translating wait statements into
efficient logic.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the wait statement is used.

No fix is required in testbenches or simulation models. In code targeted for
synthesis, recode to meet synthesizability guidelines.

Example Code and/or Schematic
Consider the following example in which a wait statement is used in a while
loop:

library IEEE;
use IEEE.std_logic_1164.all;

entity test2 is
port(
in1: in std_logic_vector(2 downto 0);
out1: out std_logic_vector(2 downto 0)
);

end test2;

architecture behav of test2 is
signal sig1: std_logic_vector(2 downto 0);
begin
process
begin
while(sig1 = "111") loop
out1 <= in1;
489
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
sig1 <= "10X";
wait on in1;

end loop;
end process;

end behav;

SpyGlass flags the following violation for the above case:

Sensitivity list in wait statement may not be synthesizable

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
490
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W182c
Identifies the time declarations which are not synthesizable

When to Use
Use this rule to identify the time declarations which are not synthesizable
by some synthesis tools.

Description
The W182c rule reports the ''time'' variable declarations which are not
synthesizable by some synthesis tools.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for the time declarations which are not
synthesizable by a synthesis tool:

[ERROR] 'time' declaration are not synthesizable

Potential Issues
A violation is reported when a time variable is declared.

Consequences of Not Fixing

The time declarations have no physical equivalent. Therefore, such
declarations are not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
491
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
where the offending time data type is used. This is un-synthesizable by
several commercially available synthesis tools.

To resolve the violation, remove the time declarations from the logic
intended for synthesis. Use these in testbenches only.

Example Code and/or Schematic
Consider the following example:

module test(in1, in2);
input in1, in2;
time t;
endmodule

In the above example, the W182c rule reports a violation as a time data
type is used.

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
492
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W182g
Identifies the tri0 net declarations which are not synthesizable

When to Use
Use this rule to identify the tri0 net declarations which are not
synthesizable by some synthesis tools.

Description
The W182g rule reports violations for the tri0 net declarations used in
the design.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message is displayed for a tri0 declaration which is not
synthesizable by a synthesis tool:

[Error] 'tri0' net types may not be synthesizable
Potential Issues
A violation is reported when a tri0 net is used in the design.

Consequences of Not Fixing

The tri0 and tri1 net declarations represent connections with resistive
pull-down or pull-up. These nets are useful in developing simulation
models, but they do not have an unambiguous physical counterpart
because mapping depends upon the target technology. For example, some
493
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
technologies may not support tristate operations.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending "tri0" is declared. This is un-synthesizable by several
commercially available synthesis tools.

To resolve the violation, replace the tri declarations with the standard
signal declarations and instantiate pull-up or pull-down cells from the
target technology library, as required.

Example Code and/or Schematic
Consider the following example:

module test (y,s0,d1,d0);
input s0, d1, d0;
output y;

tri0 y;

assign y = s0 ? d0 : d1;
endmodule

In the above example, the W182g rule reports a violation as a tri0 net is
used in the design.

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
494
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W182h
Reports tri1 net declarations that are not synthesizable

When to Use
Use this rule to detect tri1 net declarations that are not synthesizable

Description
The W182h rule reports the tri1 net declarations even if the net is not
used in the design.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a tri1 declaration is
encountered.

[ERROR] 'tri1' net types may not be synthesizable
Potential Issues

A violation is reported when a tri1 net is used in the design.

Consequences of Not Fixing

The tri0 and tri1 declarations represent connections with resistive pull-
down or pull-up. These nets may not be synthesizable by some synthesis
tools and are useful only in developing simulation models. They do not
have an unambiguous physical counterpart because mapping depends
upon the target technology. For example, some technologies may not
495
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
support tristate operations.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending "tri1" has been declared. This is un-synthesizable by
several commercially available synthesis tools

Replace the tri declarations with standard signal declarations and
instantiate pull-up or pull-down cells from the target technology library, as
required.

Example Code and/or Schematic
Consider the following example:

module test(y,s0,d1,d0);
input s0, d1, d0;
output y;
tri1 y;

assign y = s0 ? d0 : d1;
endmodule

In the above example, the W182h rule reports a violation as the tri1 net
is used.

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
496
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W182k
Reports trireg declarations that are not synthesizable

When to Use
Detect trireg declarations that are not synthesizable.

Description
The W182k rule reports trireg register declarations.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a trireg
declaration is encountered.

[ERROR] 'trireg' net types are not synthesizable

Potential Issues

A violation is reported when a trireg net is used in the design.

Consequences of Not Fixing

The trireg declarations represent charge storage that does not have a
clear physical interpretation in synthesis. Such descriptions are useful only
in developing simulation models.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending trireg is declared. This is un-synthesizable by
497
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
several commercially available synthesis tools.

Do not try to infer charge storage elements. Use library memory models if
appropriate.

Example Code and/or Schematic
Consider the following example:

module test(y,s0,d1,d0);
input s0, d1, d0;
output y;

trireg y;

assign y = s0 ? d0 : d1;
endmodule

In the above example, the W182k rule reports a violation as a trireg
net, y, is used in the design.

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
498
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W182n
Reports MOS switches, such as cmos, pmos, and nmos, that are not
synthesizable

When to Use
Detects MOS switches that are not synthesizable.

Description
The W182n rule reports MOS switches, such as CMOS, PMOS, NMOS, used
in the design. These switches should be used for modeling only and are not
synthesizable by most synthesis tools.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a switch declaration
<switch-name> is encountered.

[ERROR] Switch '<switch-name>' is not synthesizable

Potential Issues
A violation is reported when a MOS switch is used in the design.

Consequences of Not Fixing
Except for custom or analog design, transistor-level design is generally
discouraged because behavior and timing are difficult to predict under all
possible circumstances.

How to Debug and Fix
499
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Double-click the violation message. The HDL window highlights the location
where the offending switches (CMOS/PMOS/NMOS) are declared. This is
un-synthesizable by several commercially available synthesis tools.

Do not try to infer switch elements. Use predefined and characterized
library cells that have well-defined characteristics and are silicon-proven.

Example Code and/or Schematic
Consider the following example:

module test(out, in1, in2);
input in1,in2;
output out;
wire out1,out2;
wire n;
cmos (out,in1,in2,n);
pmos (out1,in1,in2);
nmos (out2,in1,in2);
endmodule

In the above example, the W182n rule reports a violation as MOS switches
are used in the design.

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
500
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W213
Reports PLI tasks or functions that are not synthesizable

When to Use
Use this rule to identify PLI tasks and functions used in the design.

Description
The W213 rule reports PLI tasks and functions used in the design.

Language
Verilog

Default Weight
5

Parameter(s)
ignore_pli_tasks_and_functions: By default, the
ignore_pli_tasks_and_functions parameter is not set. Set this
parameter to a comma-separated list of PLI tasks or functions that should
be ignored by the W213 rule.

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a PLI task or a
function <name> is encountered.

[WARNING] PLI Task/Function '<name>' is not synthesizable

Potential Issues
A violation is reported when a PLI task or function is used in the design.

Consequences of Not Fixing

The PLI tasks or functions, such as $display, have no physical meaning
and therefore are not synthesizable.

How to Debug and Fix
501
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Double-click the violation message. The HDL window highlights the location
where the offending PLI Task/Function is used. This is un-synthesizable by
several commercially available synthesis tools.

No fix is required if these functions appear in testbenches or simulation
models. If you need to include these functions in RTL for debug purposes,
surround them with the translate_off and translate_on pragmas
for your target synthesis tool.

Example Code and/or Schematic
Consider the following example:

module test (in1, clk);

input in1, clk;
always @ (clk)

$display ("Value of in1 %b\n", in1);

endmodule

In the above example, the W213 rule reports a violation as the PLI task,
$display, is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
502
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W218
Reports multi-bit signals used in sensitivity list

When to Use
Use this rule to identify multi-bit signals used in the sensitivity list.

Description
The W218 rule reports event expressions that check for an edge on a
multi-bit signal.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where an edge specification
on a multi-bit signal is encountered.

[WARNING] Edge specification should not be used for a multibit
expression: '<multi-bit-expressions>'

Potential Issues
A violation is reported when an edge specification is used on a multi-bit
expression.

Consequences of Not Fixing
Edge specifications for multi-bit expression is semantically incorrect. In
such cases, only the changes on least significant bit are important. Also the
direction of an edge on a multi-bit signal is not uniquely defined.

How to Debug and Fix
503
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Double-click the violation message. The HDL Viewer window shows the
sensitivity list, where the multi-bit signal is used. The sensitivity list
confirms that more than one bit of the signal is participating.

To fix the violation, use the edge expression on the appropriate bit of the
multi-bit signal.

Example Code and/or Schematic
Consider the following example:

module test1(in1,clk,out1);
input [2:0] in1, clk;
output [2:0] out1;

reg [2:0] out1;

always @(posedge clk)
out1 = in1;

endmodule

In the above example, the W218 rule reports a violation as the event
expression checks for the edge on a multi-bit signal.

Default Severity Label
Warning

Rule Group
Synthesis, Event

Reports and Related Files
None
504
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W239
Reports hierarchical references that are not synthesizable

When to Use
Use this rule to identify hierarchical references used in the design.

Rule Description
The W239 rule reports hierarchical references. Hierarchical references,
such as top.abx.clk , are a useful way to probe design behavior during
debug.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a hierarchical
reference is encountered.

[WARNING] Hierarchical references may not be synthesizable

Potential Issues
A violation is reported when a hierarchical reference is used in the design.

Consequences of Not Fixing
Synthesis tools, in general, do not create connections corresponding to
these references.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the
505
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
hierarchical references used in the design.

If you are using the reference for simulation, enclose it in code that can be
disabled. This enables you to verify that functional behavior of the
synthesis logic does not depend on this reference.

If you actually need to make connections in the synthesis logic, do so
through the conventional approach, that is, add ports to lower level
modules and make connections through those ports.

Example Code and/or Schematic
Consider the following example:

module top(output [3:0] w2);
assign w2 = temp.w1;

endmodule
module temp();
wire [3:0] w1;
endmodule

In the above example, the W239 rule reports a violation as a hierarchical
reference, temp.w1, is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
506
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W250
Reports disable statements that are not synthesizable

When to Use
Use this rule to identify disable statements used in the design.

Description
The W250 rule reports the disable statements.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a disable
statement is encountered.

[WARNING] Disable statement may not be synthesizable

Potential Issues

A violation is reported when a disable statement is used in the design.

Consequences of Not Fixing

The disable statements are useful in behavioral modeling but have no
physical counterpart because they represent an arbitrary jump out of loop.
Therefore, such descriptions are not synthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
507
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
where the offending disable statement is used. This is un-synthesizable
by several commercially available synthesis tools.

No fix required if this is in a simulation mode or testbench. If this is
intended to be synthesizable, you should rewrite the code to avoid the
disable statement.

Example Code and/or Schematic
Consider the following example:

module case_250 (clk1,in,cntr,out);

input clk1,in;
input [1:0] cntr;
output out;

initial begin
f_190;
end

initial begin
#10 disable f_190;
end

task f_190;
reg clk, f_191;
reg[1:0] cntr_f;
if (clk == 1'b0) f_191 = cntr_f[1];
else f_191 = cntr_f[0];

endtask

endmodule

In the above example, the rule reports a violation as a disable statement is
used in the design.

Default Severity Label
Warning
508
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Rule Group
Synthesis

Reports and Related Files
None
509
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W293
Reports functions that return real values

When to Use
Use this rule to identify functions that return real values.

Description
The W293 rule reports functions that return real values.

Language
Verilog, VHDL

Parameters
None

Constraints
None

Messages and Suggested Fix
Verilog
The following message appears at the start of a function description that
returns a real value.

[WARNING] Function returns a real value which is not
synthesizable

Potential Issues
Violation may arise when a function returns a real value.

Consequences of Not Fixing
Objects with real values have no physical equivalent and therefore are not
synthesizable.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line of function definition, which returns a real value.
510
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
VHDL
The following message appears at the start of a subprogram
<subp-name> description that returns a real value:

[WARNING] The <subp-name> returns a real value which may not be
synthesizable

Where <subp-name> can be function or procedure.

Potential Issues
Violation may arise when a subprogram returns a real value.

Consequences of Not Fixing
Objects with real values have no physical equivalent and therefore are not
synthesizable.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line of function definition, which returns a real value.

No fix required if this occurs in a testbench. If this is targeted for
synthesizable RTL, you will need to explicitly implement floating point logic.

Example Code and/or Schematic
Consider the following example:

entity ent is
port (

in1 : in real;
out1: out real

);
end ent;

architecture arc of ent is
function myFunc (number: real) return real is
begin

return number * 3.142857;
end myFunc;
begin
process
begin
511
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
out1 <= myFunc(in1);
end process;
end arc;

In the above example, the W293 rule reports a violation as the function,
myFunc, returns a real value, which is unsynthesizable.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
512
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W294
Reports real variables that are unsynthesizable

When to Use
Use this rule to identify real variables, which are unsynthesizable.

Rule Description
The W294 rule reports real variables used in the design.

Language
Verilog

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a variable
<var-name> of type real is encountered.

[WARNING] Real variable '<var-name>' is not synthesizable

Potential Issues
Violation may arise when a design has a real variable.

Consequences of Not Fixing
Objects with real values have no physical equivalent and therefore may not
be synthesizable by some synthesis tools. Real variables should only be
used in testbenches and simulation models.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending real variable is declared. This is un-synthesizable by
several commercially available synthesis tools.

If targeting synthesizable logic, use integer or reg variables to fix the
513
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
violation.

Example Code and/or Schematic
Consider the following example:

module test(in1, in2, z);
input in1;
input in2;
output z;
real r = 0.025; //VIOLATION
assign z = r + in1 + in2;
endmodule

In the above example, the W294 rule reports a violation as a real variable,
r, is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
None
514
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W295
Reports event variables that are not synthesizable

When to Use
Use this rule to identify event variables used in the design.

Rule Description
The W295 rule reports event variables.

Language
Verilog

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location where an event variable is
declared.

[ERROR] Event variable may not be synthesizable

Potential Issues
Violation may arise when an event variable is encountered in a design.

Consequences of Not Fixing
Event variables have no physical equivalent and therefore are not be
synthesizable by some synthesis tools. However, event constructs may
appear in testbenches or system-level models.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line of event signal declaration.

If you intend to make the code synthesizable, trigger on signals.
515
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Example Code and/or Schematic
Example of Event Variable Declared and Used
In the following example, an event variable test is declared and used.

module test (clk1, in, cntr, out);
input clk1, in;
input [1:0] cntr;
output out;

event test;
reg a_1, a_2;

always @(clk1 or test)
a_2 = in;

always @(test)
a_1 <= in;

assign out = a_1 + a_2;
endmodule

Example of Event Variable Declared But Not Used
In the following example, an event variable in2 is declared but is not
used.

module test(in1, out1);
input in1;
event in2;
output out1;

reg out1;

always @(in1)
begin
#10 out1 = in1;

end
endmodule
516
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Example of Event Variable Declared and Triggered
In the following example, an event variable in2 is declared and
triggered.

module test(in1, out1);
input in1;
event in2;
output out1;

reg out1;

always @(in1)
begin
#10 out1 = in1;
->in2;

end
endmodule

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
None
517
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W339
Identity operators and non-constant divisors are not synthesizable.

Language
Verilog

Rule Description
The W339 rule runs the W339a rule.
518
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W339a
Case equal operator (===) and case not equal (!==) operators
may not be synthesizable

Language
Verilog

Rule Description
The W339a rule flags case equality operators — case equal (===) and case
not equal (!==) operators.

The case equality operators compare non-physical values (X) as well as
real values, and are frequently used in simulation to check for unknown
states. However, they have no physical equivalent. Some synthesis tools
may be able to handle these operators but reduce them to their non-case
equivalents (for example === gets changed to ==). This may lead to
mismatches between pre and post synthesis behavior.

Message Details
The following message appears at the location where a case equality
operator is encountered:

Operator '<operator-name>' should be avoided in synthesis logic

Rule Severity
Warning

Suggested Fix
First, make sure that your synthesis logic does not depend on the
simulation checks. Then, bracket the simulation checks inside
translate_off / translate_on pragmas so that they are ignored in
synthesis.

Examples
Example of Case Equal Operator
Consider the following example that uses case equal (===) operator:
519
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
module MEM(clk, address, enable, data);
input [7:0] data;
input enable, clk;
output [7:0] address;

reg [7:0] address;

always @(posedge clk)
begin
if (enable === 1)
address <= data;

else
address <= 8'h00;

end
endmodule

SpyGlass generates the W339a rule message for every use of case equality
operators.

Example of Case Not Equal Operator
In the following example, the case not equal operator (!==) is used:

module test(in1, in2, clk, out1);
input [1:0] in1, in2;
input clk;
output [1:0]out1;

reg [1:0]out1;

wire [1:0] count;

assign count = (in1 !== 1'b1)? 2'b10 : 2'b01;

always @(posedge clk)
begin
out1 <= (in2 !== count) ? in1 : in2;

end
endmodule

SpyGlass generates the W339a rule message for every use of case equality
520
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
operators.
521
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W430
The "initial" statement is not synthesizable

When to Use
Use this rule to identify the unsynthesizable initial statements.

Description
The W430 rule reports violation for initial constructs used in the
design.

Default Weight
5

Language
Verilog

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where an initial
construct is encountered:

[WARNING] Initial statement is not synthesizable

Potential Issues

Violation may arise when an initial construct is used in the design.

Consequences of Not Fixing

The initial constructs have no physical equivalent. Therefore, such
constructs are unsynthesizable by some synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where offending initial construct are used. This is un-synthesizable by
522
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
several commercially available synthesis tools.

No fix required if the statement is used inside a testbench. In general you
should not use initial blocks in code targeted for synthesis. Use physically
realizable reset logic to initialize code instead. If you must include an initial
block in synthesizable code, bracket it in translate_off and
translate_on pragmas to disable the code in synthesis.

Example Code and/or Schematic
Consider the following example:

module W430_mod1(in1,clk,out1,out2);
input in1,clk;
output reg out1,out2;

initial
begin
out1 = 1'b0;
out2 = 1'b0;

end

endmodule

In the above example, the W430 rule reports a violation as an initial
statement is used in the design.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
523
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W442
This rule group checks all synthesis issues related to reset

Rule Description
The W442 rule group checks all synthesis issues related to reset. This rule
runs W442a, W442b, W442c, and W442f rules.
524
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W442a
Ensure that for unsynthesizable reset sequence, first statement in
the block must be an if statement

When to Use
Use this rule to identify the asynchronous reset sequence where the first
statement is not an if statement.

Description
The W442a rule reports violation for asynchronous reset sequences where
the first statement is not an if statement.

The first statement after the sensitivity list on the always construct must
be an if statement using the reset signal.

Rule Exceptions
This is not a requirement inside testbenches or other simulation only code.

Default Weight
5

Language
Verilog

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location of an always construct
where the first statement is not an if statement using a reset signal:

[ERROR] Asynchronous reset/set always block has missing 'if'
statement at the top level

Potential Issues
525
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Violation may arise when an asynchronous reset/set always block has
missing if statement at the top level.

Consequences of Not Fixing
In general, synthesis tools expect that the first statement inside an
asynchronously reset block is an if statement. Else, the RTL may become
unsynthesizable. Therefore, if code is meant for synthesis, this style should
not be used.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
start line of the always block in which the first statement is not an if
statement.
To fix the violation, reorganize the block into one or more blocks, such that
any asynchronous reset block meets the requirement.

Example Code and/or Schematic
Consider the following example where the first statement in the always
construct describing an asynchronous reset sequence, is not an if
statement:

module DFF(D, clk, R, Q);
output Q;
input D, clk, R;
reg Q;

reg d1, d2;
always@(posedge clk or posedge R)

begin
d2 = d1;
if(R) Q = 0;
else Q = D;

end
endmodule

In the above example, the W442a rule reports a violation as the
asynchronously reset/set always block has a missing if statement.
526
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
527
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W442b
Ensure that for unsynthesizable reset sequence, reset condition is
not too complex

When to Use
Use this rule to identify unsynthesizable and complex reset sequence.

Description
The W442b rule reports violation for complex reset sequences.

The rule also reports violation for reset signal when it is compared either
with any other signal or variable.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a complex reset
sequence is encountered:

[ERROR] In asynchronous reset/set always block, comparison is
being made to non-constant expression (<expr>) in reset/set
condition

Potential Issues
Violation may arise when a reset signal is compared with any other signal
or variable or a non-constant expression.

Consequences of Not Fixing
Only certain forms of asynchronous reset descriptions are recognized by
528
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
the synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the asynchronous reset signal is compared with a non-constant
expression.

Scroll through the HDL to search for the value of the signal used in
comparison of the asynchronous reset signal.

To fix the violation, precompute the reset condition and then use that value
as the actual reset.

Example Code and/or Schematic
Example 1
Consider the following example:

module mod(in1, clk, reset, set, out1);
input [1:0] in1;
input clk, reset, set;
output [1:0] out1;
reg [1:0] out1;

always @(posedge clk or posedge reset)
begin
if(reset == !set)

out1 <= 2'b00;
else
out1 <= in1;

end
endmodule

In the above example, the W442b rule reports a violation as an
asynchronous reset signal is compared to a non-constant expression,
!set, in an always block.‘

Example 2
Consider the following example:

always @(posedge reset or negedge clk)
begin
529
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
if (reset != b)
q = 1'b0;

else
q = d;

end

In the above example, the W442b rule report violations as the
asynchronous reset signal is compared with the other signal b.

To fix the violation, precompute the reset condition and then use the
resultant value as the actual reset as shown below:

assign actual_reset = (reset != b);
always @(posedge actual_reset or negedge clk)
begin
if (actual_reset)
q = 1'b0;

else
q = d;

end

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
530
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W442c
Ensure that the unsynthesizable reset sequence are modified only
by ! or ~ in the if condition

When to Use
Use this rule to identify the unsynthesizable reset sequence that are
modified by anything other than ! or ~ in the if condition.

Description
The W442c rule reports violation for reset sequences that are modified by
operators other than logical inverse (!) and bit-wise inverse (~) operators.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a reset signal is being
modified by an operator other than logical inverse (!) and bit-wise inverse
(~) operators:

[ERROR] Asynchronous reset/set always block may have the reset/
set condition only as a simple identifier or its negation (! or
~)

Potential Issues
Violation may arise when a reset signal is being modified by an operator
other than logical inverse (!) and bit-wise inverse (~) operators.

Consequences of Not Fixing
531
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
You can modify the reset signals using only logical inverse (!) and bit-wise
inverse (~) operators in the if statement in the reset sequences.
Modification by all other types of operators is not synthesizable.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the asynchronous reset signal is modified by anything other
than ! or ~. Scroll through the HDL for the usage of asynchronous reset
signal.

To fix the violation, precompute the value you want to use in the condition
before using it.

Example Code and/or Schematic
Consider the following example:

module test(reset,q);
output q;
input reset;
reg q,clk,d;

always @(posedge reset or negedge clk)
begin

if (&reset)
q = 1’b0;

else
q = d;

end
endmodule

In the above example, the W442c rule reports a violation as an
asynchronous reset/set always block may have the reset/set
condition only as a simple identifier or its negation (! or ~).

To fix the above violation, precompute the value you want to use in the
condition and then use that value as shown below

...
assign actual_reset = &reset;
always @(posedge actual_reset or negedge clk)
begin
532
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
if (actual_reset)
q = 1’b0;

else
q = d;

end
...

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports and files.
533
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W442f
Ensure that the unsynthesizable reset sequence is compared using
only == and != binary operator in the if condition

When to Use
Use this rule to identify the reset sequences where reset signal is being
compared using an operator other than the binary equal (==) and not
equals (!=) operator.

Description
The W442f rule reports violation for reset sequences where reset signal is
being compared using an operator other than the binary equal (==) and
not equals (!=) operator.

Language
Verilog

Default Weight
5

Rule Exceptions
The W442f rule does not report a violation for "===" or "!==" used
inside if condition, because these operators are treated as "==" or "!=",
respectively.

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a reset sequence
uses an operator other than the binary equal (==) or not equals (!=)
operator in the if statement:

[ERROR] Only '==' and '!=' binary operators are allowed in
534
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
validation of the asynchronous reset/set condition

Potential Issues
Violation may arise when a reset sequence uses an operator other than the
binary equal (==) or not equals (!=) operator in the if statement.

Consequences of Not Fixing
Reset signal that are compared using an operator other than the binary
equal (==) and not equals (!=) operator are not synthesizable by some
synthesis tools.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the binary operator other than == or != is used in the
asynchronous reset signal expression. Scroll through the HDL for the type
of binary expression used inside the asynchronous reset expression.
To fix the violation, either precompute the reset condition and use the
resultant value as the actual reset or use a nested if condition.

Example Code and/or Schematic
Consider the following example:

module test(q,reset,set);
input reset,set;
output q;
reg q,clk;
always @(posedge clk or negedge reset)
begin

if (reset & set)
q = 0;

end
endmodule

In the above example, the W442f rule reports a violation as only '==' and
'!=' binary operators are allowed in validation of the asynchronous reset/
set condition.
To fix the violation, you can use any one of the following methods:

Precompute the reset condition and use that value as the actual reset.
For example:
535
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
assign actual_reset = reset & set;
always @(posedge actual_reset or negedge clk)
begin
if (actual_reset)
q = 1’b0;

else
q = d;

end

Use a nested if condition. For example:

always @(posedge reset or negedge clk)
begin

if (reset)
if (set)

q = 1’b0;
else

q = d;
else

q = d;
end

Default Severity Label
Error

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
536
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W464
Ensure that the unrecognized synthesis directive is not used in the
design

When to Use
Use this rule to identify the unsupported pragma or synthesis directives
used in the design.

Rule Description
Verilog
For Verilog designs, the W464 rule reports all pragma directives of
specified prefix in the design.

By default, SpyGlass flags pragma directives of prefix type synthesis if
the value synthesis is also passed using the SpyGlass
set_option pragma <values> command while invoking SpyGlass.
Thus, the following pragma directives are flagged:

//synthesis atrenta
//synthesis translate_off
//synthesis synthesis_on

To specify a different prefix type, first replace the default prefix value
(synthesis) given in the W464 rule registration of the Lint-Verilog
ruledeck file (verilint.pl) with your prefix type:

“prefix notmatch synthesis”

For example, to flag all pragma directives of prefix type synopsys,
modify the value as follows:

“prefix notmatch synopsys”

Then, specify the SpyGlass set_option pragma <values> command
with the same value (synopsys) while invoking SpyGlass.

VHDL
For VHDL designs, all Synopsys synthesis directives except the following
are reported:
537
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Rule Exceptions
The W464 rule does not report a violation, if you do not specify the
set_option pragma <values> command with the same value that
exists in the Lint-Verilog ruledeck file.

Language
Verilog, VHDL

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a pragma directive
<directive> of the specified prefix type is encountered:

[WARNING] Synthesis directive '<directive>' is not recognized

Potential Issues
Violation may arise when a pragma directive of the specified prefix type is
encountered.

Consequences of Not Fixing

dc_script_begin dc_script_end translate_off
translate_on synthesis_off synthesis_on
resolution_method built_in map_to_entity
return_port_name label label_applies_to
map_to_operator infer_mux coverage_off
coverage_on
538
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
If synthesis_off and synthesis_on directives are used within an
expression, they have the potential to create incorrect logic by the
Synopsys tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending unrecognized synthesis directive are used.

To fix the violation, Synopsys recommends use of translate_off and
translate_on directives against synthesis_off and
synthesis_on directives.

VHDL
The following message appears at the location where an unsupported
synthesis directive is encountered:

[WARNING] Synthesis directive '<directive>' is not recognized

Potential Issues
Violation may arise when an unsupported synthesis directive is
encountered.

Consequences of Not Fixing

If synthesis_off and synthesis_on directives are used within an
expression, they have the potential to create incorrect logic by the
Synopsys tools.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
where the offending unrecognized synthesis directive is used.

To fix the violation, Synopsys recommends use of translate_off and
translate_on directives against synthesis_off and
synthesis_on directives.

Example Code and/or Schematic
Verilog
Consider the following example:

module W464_mod1(inp, outp, sel);
input [3:0] inp;
539
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
input [1:0] sel;
output outp;
reg outp;

always @(sel)
begin
//synthesis translate on //VIOLATION
case(sel)
2'b00 : outp = inp[0];
2'b01 : outp = inp[1];
2'b10 : outp = inp[2];
2'b11 : outp = inp[3];

endcase
end

endmodule

In the above example, when you specify set_option pragma
synthesis in the project file, the W464 rule reports the following
violation because an unrecognized synthesis directive is present in the
design.

Synthesis directive 'synthesis' is not recognized

VHDL
Consider the following example:

library ieee;
use IEEE.std_logic_1164.all;

entity test1 is
port (i : in std_logic;
 o : out std_logic);
end;

-- synopsys synth_off
ARCHITECTURE arc_test1 OF test1 IS
BEGIN
 o <= i;
END arc_test1;
540
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
The W464 rule reports the following violation message for the above
example:

Synthesis directive 'synopsys synth_off' is not recognized

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports and files.
541
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W496a
Reports comparison to a tristate in a condition expression

When to Use
Use this rule to identify the comparisons to a tristate value in the condition
expressions.

Description
The W496a rule reports violation for comparisons to tristate signals in if
statement conditions and conditional statements.

NOTE: The W496a rule supports generate-if, generate-for, and generate-case blocks.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a comparison (using
operator <op-name>) with tristate value <value> is encountered in a
control expression:

[WARNING] Comparison (<op-name>) to tristate value (<value>) is
treated as false in synthesis

Potential Issues
Violation may arise when a tristate value is compared in a conditional
expression.

Consequences of Not Fixing
Comparison to a tristate value does not have a physical equivalent in
542
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
synthesis and always defaults to a false value.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where a comparison with a tristate value is encountered.

To fix the violation, avoid making such comparisons in synthesizable code.
If the check is being made for simulation reasons, bracket it in
translate_off and translate_on statements.

Example Code and/or Schematic
Example 1
Consider the following example of an if Statement Condition:

always @ (en1 or in1 or in2)
if (en1 == 2'b1z)
out <= in1;

else
out <= in2;

In the above example, the signal, en1, is being compared with a tristate
value, 2'b1z, in the if statement condition. Also, the W496a rule reports
the following violation message for this example:

Comparison (==) to tristate value (1z) is treated as false in
synthesis

Example 2
Consider the following example of a conditional statement.

always @ (en1 or in1 or in2)
out <= (en1 == 1'bz) ? in1 : in2;

In the above example, the conditional statement condition, en1, is being
compared with a tristate value, 1'bz. Also, the W496a rule reports the
following violation message for this example:

Comparison (==) to tristate value (z) is treated as false in
synthesis

Example 3
Consider the following example:
543
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
module test(out);
output out;
reg en1,out;
always @ (en1)
if (en1 == 2'b1z)
out = 2'b10;
else
out = 2'b11;
endmodule

In the above example, the W496a rule reports a violation message as the
comparison to tristate value, 1z, is treated as false in synthesis.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
544
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W496b
Reports comparison to a tristate in a case statement

When to Use
Use this rule to identify the comparisons to a tristate value in a case
statement.

Description
The W496b rule reports violation for comparisons to tristate signals in case
construct control expressions.

NOTE: The W496b rule supports generate-case block.

Rule Exceptions
The W496b rule ignores casex and casez constructs.

Language
Verilog, VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a comparison with
tristate value <value> is encountered in a case construct control
expression <expr>:

[WARNING] Case comparison of expression: "<expr>" to tristate
value: '<value>' is treated as false in synthesis

Potential Issues
Comparison to a tristate value does not have a physical equivalent in
545
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
synthesis and always defaults to a false value.

Consequences of Not Fixing
Comparison to a tristate value does not have a physical equivalent in
synthesis. Synthesis tools typically default the result of the comparison to
a false value.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where a tristate value is used in a case label.

To fix the violation, avoid making such comparisons in synthesizable code.
If the check is being made for simulation reasons, bracket it in
translate_off and translate_on statements.

Example Code and/or Schematic
Example 1
In the following example, case construct selector sel is being compared
with a tristate value 2'bzz:

case(sel)
2'b00 : outp = inp[0];
2'b01 : outp = inp[1];
2'bzz : outp = inp[2];

default : outp = inp[3];
endcase

For this example, SpyGlass generates the following message:

Case comparison of expression: "sel" to tristate value: 'zz' is
treated as false in synthesis

Example 2
Consider the following example:

module top(out,in1,in2);
output out;
reg out,sel;
input in1,in2;

always @(sel)
case (sel)
546
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
1'b0 : out = in1;
1'bz : out = in2;
endcase

endmodule

In the above example, the W496b rule reports a violation message as the
case comparison of expression to tristate value, z, is treated as false in
synthesis.

Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
547
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
W503
An event variable is never triggered

Language
Verilog

Rule Description
The W503 rule flags event variables that are never triggered.

Event declarations that are never triggered are redundant.
NOTE: The W503 rule also grouped under the Event Rules group.

Message Details
The following message appears at the location of an event declaration
<event-name> that is never triggered:

event '<event-name>' is declared but not used

Rule Severity
Warning

Suggested Fix
This may be a left-over from earlier debug. Suggest you delete the
declaration to reduce the number of spurious errors in rule-checking.
548
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
WhileInSubProg
Reports unsynthesizable While statements used inside
subprograms

When to Use
Use this rule to identify the unsynthesizable while statements used in
subprograms

Description
The WhileInSubProg rule flags the while constructs used in sub-program
descriptions.

Default Weight
5

Language
VHDL

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a while statement
<construct-name> is encountered in a sub-program description:

[WARNING] <construct-name> statement inside a subprogram body
may be unsynthesizable

Potential Issues
A violation is reported when a while statement is used inside a sub-
program.

Consequences of Not Fixing
Such descriptions are not synthesizable by some synthesis tools.
549
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
How to Debug and Fix

Double-click the violation message. The HDL window highlights the location
where the offending while statement has been used inside subprogram.

No fix is required in testbenches or simulation models. In code targeted for
synthesis, use for-loops if possible.

Synopsys recommends use of translate_off/translate_on
directives against synthesis_off/synthesis_on directives. If
synthesis_off/synthesis_on directives are used within an
expression, they have the potential to create

Example Code and/or Schematic
Consider the following example:

entity e is
end e;
architecture arc of e is
function func (signal k : integer) return integer is

variable v1,v2,v3 : integer:=7;
begin

while v2 < 7 loop
while v1 < 10 loop

v1 := v1 + 1;
v2 := k + 1;

end loop;
end loop;

return v2;
end func;
signal s1,s2 : integer;
begin
s1 <= func(s2);

end arc;

In the above example, the WhileInSubProg rule reports a violation as a while
statement is used inside a subprog.
550
Synopsys, Inc.

Synthesis Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Synthesis

Reports and Related Files
No related reports or files.
551
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Expression Rules
The SpyGlass lint product provides the following expression related rules:

Rule Flags...
W116 (Verilog) Unequal length operands in bitwise logical/ arithmetic/

ternary operator
(VHDL) Unequal length operands in bitwise logical/ arithmetic/
relational operator

W159 Control expressions that evaluate to a constant
W180 Constant value specifications where the specified constant value is

narrower than the specified width
W224 Multi-bit expressions found where single-bit expressions were expected
W289 real operands used in logical comparisons

W292 Logical comparison operations on real type operands
W341 Assignments to constants where the size of the assigned value is

narrower than the constant and the high-order bit/byte are zero
W342 Assignments to constants where the size of the assigned value is

narrower than the constant and the high-order bit/byte are X
W343 Assignments to constants where the size of the assigned value is

narrower than the constant and the high-order bit/byte are Z
W362 Unequal widths in arithmetic comparison operations
W443 Based numbers that contain the unknown character (X)

W444 All occurrences of the high impedance character (Z) or ? in the design
W467 Based numbers that contain the don’t care character (?)
W486 Shift operation overflows
W490 Constant control expressions or sub-expressions
W491 case clause condition constants that are ?-extended

W561 Zero-width based numbers
W563 Unary reduction operations on single-bit expressions
W575 Logical not operators used on vector signals

W576 Logical operations performed on vector signals
552
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W116
Identifies the unequal length operands in the bit-wise logical,
arithmetic, and ternary operators

When to Use
Use this rule to identify bit-width mismatch between operands of the bit-
wise logical, arithmetic, and ternary operators.

Description
Verilog
The W116 rule flags bit-width mismatch between operands of bit-wise
logical, arithmetic, or ternary operators.

Following is the list of operators covered under the W116 rule:

NOTE: If the count of operators is more than 500 in an expression, then the expression is
ignored for rule checking.

Width Calculation for Verilog

If you set the value of the nocheckoverflow parameter to yes or W116, the
W116 rule checks the bit-width as per the LRM, as shown in the following
table:

Arithmetic Operators
Subtraction (-) Addition (+)
Multiplication (*) Division (/)
Modulus (%)
Bit-wise Operators
bit-wise xor (^) bit-wise negation (~)
bit-wise and (&) bit-wis e or (|)
Ternary Operator (? :)

Operator LRM width Normal width
+, - Max (LHS width, RHS width) Max (LHS width, RHS width)
* Max (LHS width, RHS width) LHS width + RHS width
553
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
For constants, the natural width is considered.
NOTE: For new width related changes, refer to the New Width Flow Application Note.

NOTE: The W116 rule does not check for expressions in signal or variable indexes, such as
bit-select expression.

NOTE: This rule does not report a violation for integer variable expressions.

VHDL
The W116 rule flags bit-width mismatch between LHS and RHS expressions
of bit-wise logical, arithmetic, or relational operations.

The W116 rule also checks the range in case of range-constrained integers,
instead of calculating the bit-width.

Following is the list of operators covered under the W116 rule:

When using integer constants, width of the constant is the natural width of
the initial value, not the default width (VHDL LRM states it to be 32 bits).
For example,

constant c1 : integer := 9;

/ Max (LHS width, RHS width) LHS width
% Max (LHS width, RHS width) RHS width

Arithmetic Operators
Subtraction (-) Addition (+)
Multiplication (*) Division (/)
Modulo (mod) Remainder (rem)
Logical Operators
logical and (and) logical or (or)
logical nand (nand) logical nor (nor)
logical xor (xor) logical xnor (xnor)
Relational Operators
Equals (=) Not Equals (/=)
Greater than (>) Greater than or equal to (>=)
Less than (<) Less than or equal to (<=)

Operator LRM width Normal width
554
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Here, the width of the constant will be log2(9) + 1 = 4, not 32.

For VHDL constant arrays, such as Array = {1,0,3,6,0,2,3}, when non-
static index is passed for constant arrays like Array[x], it’s width is
considered to be the maximum width among all elements of the array. For
example, here the width of the Array[x] is 3, which is the width of the
largest element (6).

NOTE: For new width related changes, refer to New Width Flow Application Note.

Width Calculation for VHDL

If you set the value of the nocheckoverflow parameter to yes or W116, the
W116 rule calculates the width according to the LRM (numeric_std lib) as
shown in the following examples.

For addition and subtraction, width is calculated based on the following
rules:

 If both the operands are variables, then max width is considered.

 If one operand is a variable and other static, then the variable width
is considered.

For multiplication, width is calculated based on the following rules:

 If both the operands are variable, then the RHS width is the sum of
both the variables.
 If one operand is a variable and other static, then the RHS width is
2*(Variable width).

For Division width is calculated based on the following rules:

 If both operands are variable, then the left operand width is
considered as the expression width.
 If one operand is a variable and the other static then the width of the
expression is considered.

Customizing Violation Messages
You can customize the violation messages by using the SpyGlass’s
overload feature. Following message handles are available for Verilog and
VHDL:

Verilog: For logical and ternary operators, use the LINT_W116_ERR
message handle to overload the messages. For rest of the operators,
use LINT_W116_WRN.
555
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
VHDL: For logical and relational operators, use the LINT_W116_ERR
message handle to overload the message. For rest of the operators, use
LINT_W116_WRN.

To overload the rule, create a lint-policy-overload.pl file and modify the
message details as needed. For example, to overload the message severity
for logical and ternary operators, in the rule, add the following line to the
lint-policy-overload .pl file:

spyOverload(''LANGUAGE'' => ''Verilog'', ''RULE'' => ''W116'', ''SEVERITY''
=> ''ERROR'', ''MESSAGELABEL'' => ''LINT_W116_ERR'')
To know more about the rule overloading feature, refer to SpyGlass Policy
Customization Guide.

Rule Exceptions
For Verilog, the rule does not report violations for expressions where the
width of a constant expression, a constant integer, or a base number is less
than the width of the other operand.

For VHDL, following are the exceptions to the W116 rule:
The W116 rule does not check in the function and procedure body as
size of the arguments may depend on the actual passed in the function
or procedure call.
The W116 rule does not report violation for expressions where the width
of decimal literal or character literal or based literal is less than the
width of the other operand.
The W116 rule does not report violation for relational operators when
one side of relational operator is incremental or decremental and the
size of its object is equal to size of object on other side of relation.

Language
Verilog, VHDL

Default Weight
10

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.
556
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Parameter(s)
new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to the New Width Flow Application Note.

check_static_value: Default value is no. Set the value of the parameter to
yes or <rule_list> to report violation for cases with width
mismatch, involving static expressions and non-static expressions
having a static part. Other possible values are only_const and
only_expr. For an expression having one operand constant and other
non constant, a violation is reported only when the width of the constant
operand is greater.
disable_rtl_deadcode: The default value is no. Set the value of the
parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.
reportconstassign: The default value is no. Set the value of the parameter
to yes to enable the W116 rule to check for constants whose width is
less than the operand.
sign_extend_func_names: The default value is ''EXTEND''. Set the value of
the parameter comma-separated list of function names to enable the
W116 rule to recognize VHDL sign extension functions and calculate
width of extend functions as per the const extension argument specified
in the argument list.

strict: Default value is no. Therefore, the rule behavior is as follows:

Ignores addition (+) and multiplication (*) operations

Reports violation on subtraction (-), division (/), or modulus (%)
operations only if the width of the right operand is greater than the
width of the left operand.

Set this parameter to yes to check for the addition and multiplication
operations and to report subtraction, division, or modulus operations
when there is a width mismatch between operands (both A > B and B
> A for operations A-B, A/B, and A%B). You can also set this
parameter to check for ternary operators
557
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits. The rule
does not check the bit-width as per LRM by default.

nocheckoverflow: Default value is no. Set the value of the parameter to
yes or rule name to calculate the width as per the LRM. See Width
Calculation for Verilog and Width Calculation for VHDL to know more about
calculating width.

checkOperatorOverload: The default value is yes. Set the value of this
parameter to no to report inconsistent bit-width mismatch for the
overloaded operators from non-IEEE packages. This parameter is
applicable for VHDL only.

use_carry_bit: Default value is no and the width is taken as maximum of
the two operands for a binary expression having plus and minus
operators. Set this parameter to yes or <rule-name> to get width
after considering the carry bit of addition. No violation is reported, even
using this parameter, for sub-expressions of a binary expression if all
terms have the same width and all operators are either plus or minus.
This parameter is applicable for Verilog only. Also, refer to the Example
10.

check_genvar: Default value is no and the rule does not report violation
when the operands are genvar. When this parameter is set to yes, the
W116 rule reports a violation for unequal length operands in the bit-wise
logical, arithmetic, and ternary operators, although operands are
genvar. This parameter is applicable for Verilog only.

ignore_forloop_indexes: Default value is no. Set the value of this
parameter to yes to ignore the for expressions that contain index
variables of for loops.

check_counter_assignment: Default value is no. Set this parameter to
yes to report a violation for the counter type of assignments. You can
also set the value of the parameter to turbo.

Constraint(s)
None
558
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Messages and Suggested Fix
Verilog
The following message appears at the location of an operation of operator
<opr-name> where there is a bit-width mismatch between left expression
<exprl> of bit-width <bit-widthl> and right expression <exprr> of
bit-width <bit-widthr>:

[WARNING] For operator (<opr-name>), left expression: "<exprl>"
width <bit-widthl> should match right expression: "<exprr>"
width <bit-widthr>. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.

Potential Issues
A violation is reported when there is a bit-width mismatch between the left
expression of bit-width and right-expression of bit-width.

Consequences of Not Fixing
While working with expressions of different bit-widths may be the intended
behavior, it is also a potentially error-prone design practice. For example,
the addition of two words of unequal widths may indicate that you forgot to
update the width of one of the buses.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line,
where, width mismatch in operators is detected.

To resolve the violation, check each case for potential messages, especially
in the bitwise operators. Review the RTL code mentioned in message, this
code may cause some unintended behavior. Make all arguments in such
comparisons of equal width such as by explicitly extending narrower
operators in a concatenation, to see cases where upper bits are zeroed.

VHDL
The following message appears at the location of a statement where there
is a bit-width mismatch between left expression <exprl> of bit-width
<bit-widthl> and right expression <exprr> of bit-width <bit-
widthr>:

[WARNING] Left expression: '<exprl>' (width <bit-widthl>) does
not match right expression: '<exprr>' (width <bit-widthr>)
559
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.

Potential Issues
Violation can arise when there is a bit-width mismatch between operands
of the bit-wise logical, arithmetic, and ternary operators.

Consequences of Not Fixing
While working with expressions of different bit-widths may be the intended
behavior, it is also a potentially error-prone design practice. For example,
the addition of two words of unequal widths may indicate that you forgot to
update the width of one of the buses.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line,
where, width mismatch in operators is detected.

To resolve the violation, check each case for potential messages, especially
in the bitwise operators. Review the RTL code mentioned in message, this
code may cause some unintended behavior. Make all arguments in such
comparisons of equal width such as by explicitly extending narrower
operators in a concatenation, to see cases where upper bits are zeroed.

Examples Code and/or Schematic
Example 1
Consider the following example:

signal a: unsigned(2 downto 0);
signal b: unsigned(2 downto 0);

if((a + b) /= b) then
output <= input;

end if;

In the above example, since both the operands are variables, max width is
considered. Also, the W116 rule does not flag a violation, if the value of the
nocheckoverflow parameter is set to yes.

Example 2
Consider the following example:
560
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
if(a /= b + 2) then
output <= input;

end if;

In the above example, since one operand is a variable and other is static,
the variable width is considered. Also, the W116 rule does not flag a
violation in this case, if the value of the nocheckoverflow parameter is set to
yes.

Example 3
Consider the following example:

signal a: unsigned(2 downto 0);
signal b: unsigned(3 downto 0);

if((a * b) /= b) then
b <= a*b;

end if;

In the above example, since both the operands are variables, the RHS
width is the sum of both the variables. Also, the W116 rule flags a violation
in this case as the width of (a*b)is 7 and the width of b is 4.

Example 4
Consider the following example:

if(a*2 /= b) then
output <= input;

end if;

In the above example, since one operand is a variable and other static, the
RHS width is 2*(Variable width). Also, the W116 rule flags a
violation in this case as the width of (a*2) is 6 and the width of b is 4.

Example 5
Consider the following example:

signal a: unsigned(2 downto 0);
signal b: unsigned(4 downto 0);

if((a / b) /= b) then
output <= input;

end if;

In the above example, since both the operands are variables, the left
561
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
operand width is considered as the expression width. Also, the W116 rule
flags two violations for the If condition.

Example 6
Consider the following example:

if(a /= b/5) then
output <= input;

if(a /= 5/b) then
output <= input;]

In the above example, since one operand is a variable and the other static,
the width of the expression is considered as the variable width. Also, the
W116 rule flags a violation as the width of a is 3 and ((b/5) is 5.

Example 7
Consider the following example:

assign out = base [4:0] - (1023>>6);
assign out = base [4:0] - 10 ;
assign out = base [4:0] - 1023;
In the above example, when the check_static_value parameter is
set, the rule reports violation only for the third expression. No violations
are reported for the first two expressions because the width of a constant
expression, a constant integer, or a base number is less than the width of
the other operand.

Example 8
Consider the following example:

if(a = b + 1)

In the above example, the W116 rule does not report violation, if size of a
is equal to size of b, or size of a is equal to size of (b + 1).

Example 9
(Verilog)

Consider the following example code in which the arithmetic operation
involves operands of different bit-widths — register a (4 bits) and register
data (16 bits):

module test(in, out, clk);
input [3:0] in;
562
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
input clk;
output [3:0] out;

reg [3:0] out, a, b;
reg [15:0] data;

always @(a)
begin
b = a + data;

end

always @(posedge clk)
begin
out <= b + 2;

end
endmodule

Here, SpyGlass generates the following violation:

For operator (+), left expression: "a" width 4 should match right
expression: "data" width 16.

Example 10
(Verilog)

Consider the following example code:

module test (a, b, c, o1);
input a,b,c;
output o1;
wire d, e, f, g, h, i;

assign o1 = a & (b + c); //Violation, when parameter
 use_carry_bit is set

assign o1 = a+b+c-d-e+f; //No violation
endmodule

For the above example, SpyGlass reports the following violation when the
use_carry_bit parameter is set:

For operator (&), left expression: "a" width 1 should match
right expression: "(b + c)" width 2. [Hierarchy: ':test']
563
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
No related reports or files.
564
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W159
Condition contains a constant expression

Language
Verilog

Rule Description
The W159 rule flags control expressions that evaluate to a constant.

The W159 rule flags constant control expressions used in if statement
conditions, loop conditions, and conditional statements.

NOTE: The W159 rule is switched off by default. You can enable this rule by either
specifying the set_goal_option addrules W159 command or by setting
the verilint_compat rule parameter to yes.

Constant control expression or sub-expression may result in an always ON
or always OFF logic inference. A condition with a constant expression is
usually a mistake, except where the condition represents a hard-wire
configuration parameter.

By default, the value of the ignore_cond_having_identifier is set to no and
this rule considers constants defined by parameters, localparams or
constant integers, for rule checking. Set the value of this parameter to yes
to not report violation for such constants.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where the control
expression <expr> evaluates to a constant:

Constant expression <expr> in condition [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.
565
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
There may not need to be a fix as long as you are aware that portion of
your logic may be permanently disabled/optimized out as a result

Examples
Following examples show constant control expressions where SpyGlass
generates the W159 rule message:

if(1'b1)
...

`define cond 1'b1
...
while(`cond)
...
out1 <= 1'b0 ? in1: in2;
566
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W180
Zero extension of extra bits

Language
Verilog

Rule Description
The W180 rule flags constant value specifications where the specified
constant value is narrower than the specified width.

When the specified constant value has fewer bits in value specification as
compared to size specification, it requires value extension by logic 0.

NOTE: The W180 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W180 command.

NOTE: The W180 rule has been deprecated. The functionality of this rule is covered by the
W341 rule.

Message Details
The following message appears at the location where the constant value
<value> is zero-extended to match its size specification:

Constant value <value> will be '0'-extended to match size
specification

Rule Severity
Warning

Suggested Fix
Generally nothing to fix, unless you find a case where zero-extension is not
acceptable.

Examples
In the following examples, constants need 0-extension:

wire cnst = 2'b1;

reg [7:0] reg1;
567
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
reg1 <= 8'b0x;

`define cnst 2'b1
568
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W224
Multi-bit expression found when one-bit expression expected

Language
Verilog

Rule Description
The W224 rule flags multi-bit expressions where single-bit expressions
were expected.

A condition expression should evaluate to a single-bit value. While the
method for evaluating a multi-bit value as a truth value is well defined, this
form is generally less readable and is known to lead to errors of
interpretation.

In case of complex expressions, the W224 rule will report violation only if
the final value evaluated (for a condition expr) is not a single-bit value.
For example, this rule will report violation for the following expression

...
input C;
reg [3:0] H;
...
H = (H - C) ? 4'd14 : 4'd2;
...

Parameters
use_natural_width: Use this parameter to calculate the width using natural
width.

Message Details
The following message appears at the location of use of a multi-bit
expression <expr> where a single-bit expression was expected:

Multi-bit expression '<expr>' found when one-bit expression
expected [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.
569
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
Select the appropriate bit and test that bit only.

Examples
In the following example, the constant a_def is of 16 bits (being an
integer) and is used in the if statement that expects a scalar signal:

`define a_def 1
...
always @(posedge clk)
if (`a_def)
q <= d;

For this example, SpyGlass generates the following message:

Multi-bit expression '1' found when one-bit is expected
570
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W289
Reports real operands that are used in logical comparisons

When to Use
Use this rule to identify cases where a real operand is used in a logical
comparison.

Rule Description
The W289 rule reports real operands used in logical comparisons.

NOTE: The W289 rule supports generate-if, generate-for, and generate-case blocks.

Language
Verilog

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a real operand
<oprd-name> is used with a logical comparison operator <op-name>.

[WARNING] A real operand: '<oprd-name>' should not be used with
logical comparison operator '<op-name>'

Potential Issues
Violation may arise when a real operand is used with a logical comparison
operator.

Consequences of Not Fixing

It is unlikely that conditions, such as RealValue == 1, would ever be
true, given rounding errors in floating point values.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
logical comparison statement where a real variable is used as one of the
571
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
operand.

You should allow some margin for rounding. For example,
RealValue > 0.99 && RealValue < 1.01

Example Code and/or Schematic
Consider the following example:

module mod(i1, i2, clk, res, o1);
input i1, i2;
input clk, res;
output o1;
reg o1;

real a, b;

always @(posedge clk or negedge res)
if (a!=b)
o1 <= a + b;

else
o1 = a-b;

endmodule

In the above example, the W289 rule reports a violation as the real
operand, a, is used with logical comparison operator, '!='.

Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
None
572
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W292
Reports the comparison of real operands

When to Use
Use this rule to identify logical comparison operations on real type
operands.

Description
The W292 rule reports logical comparison operations on real type
operands.

Language
VHDL

Parameters
None

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a logical comparison
of real operands is encountered.

[WARNING] Logical Comparison of Real operands is not
recommended

Potential Issues
Violation may arise when real operands are used in logical comparisons.

Consequences of Not Fixing

It is unlikely that conditions, such as RealValue == 1, would ever be
true, given rounding errors in floating point values.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where real signals are used in comparison.

You should allow some margin for rounding. For example, RealValue >
573
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
0.99 and RealValue < 1.01

Example Code and/or Schematic
Consider the following example:

entity test1 is
port(

in1, in2 : in bit;
out1, out2 : out bit
);

end test1;

architecture behav of test1 is
signal b1, b2, b3: real;
signal sig1: bit;
begin
process(in1)
begin

if(b1 = 1.0) then
out1 <= in1;

else
out1 <= not in1;

end if;
end process;
process(in2)
begin

if(b2 = b3) then
out2 <= in2;

else
out2 <= not in2;

end if;
end process;

end behav;

In the above example, the W292 rule reports a violation as the logical
comparison of real operands is not recommended.
574
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
None
575
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W341
Constant will be 0-extended

Language
Verilog

Rule Description
The W341 rule flags constant assignments where the size specification of
the assigned value is wider than the value specification and the high-order
bit/byte is zero. As a result, the constants will be 0-extended.

No rule checking is done for unused macro definitions and unused
parameters.

NOTE: The W341 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W341 command.

Message Details
The following message appears at the location of the constant assignment
where the constant <const-name> is extended by zeros to match the
size specification:

Constant <const-name> is extended by 0; value has fewer bits
than size specification

Rule Severity
Warning

Suggested Fix
It is best to use the correct width and value specification, rather than
depending on default extension.

Examples
Consider the following examples:
576
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Specified Value Is Equivalent to... Whether Message
8'b0x 8'b0000000x Yes as the value is 0-extended
9'h0x 9'b00000xxxx Yes as the value is 0-extended
8'h0x 8'b0000xxxx No as the value is not 0-extended
577
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W342
Reports constant assignments that are X-extended

When to Use
Use this rule to identify constant assignments that are X-extended.

Description
The W342 rule reports constant assignments where the size specification of
the assigned value is wider than the value specification and the high-order
bit/byte is X (unknown). As a result, the constant would be X-extended.

Prerequisites
The W342 rule is switched off by default. You can enable this rule by
specifying the set_goal_option addrules W342 command.

Rule Exceptions
Rule checking is not done for unused macro definitions and unused
parameters.

Language
Verilog

Parameters
strict: The default value of this parameter is no. Set the value of this
parameter to yes to switch on the rule and report constant assignments
that are X-extended. You can also specify a comma-separated list of
rules as an input to this parameter.

Constraints
None

Messages and Suggested Fix
The following message appears at the location of constant assignment
where a constant <const-name> is extended by Xs to match the size
specification.

[WARNING] Constant <const-name> will be X-extended, value has
fewer bits than size specification
578
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Potential Issues
Violation may arise when the constant value has fewer bits than size
specification.

Consequences of Not Fixing
If the constant value has fewer bits than the size specification, then the
constant is X-extended.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line
where the constant that is X-extended.

To fix the violation, it is best to use the correct width and value
specification, rather than depending on default extension.

Example Code and/or Schematic
Consider the following examples:

Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
None

Specified Value Is Equivalent to... Whether Message
8'bx0 8'bxxxxxxx0 Yes as the value is X-extended
9'hx0 9'bxxxxx0000 Yes as the value is X-extended
8'hx0 8'bxxxx0000 No as the value is not X-extended
579
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W343
Reports constant assignments that are Z-extended

When to Use
Use this rule to identify constant assignments that are Z-extended.

Description
The W343 rule reports constant assignments where the size specification of
the assigned value is wider than the value specification and the high-order
bit/byte is Z. As a result, the constant will be Z-extended.

Prerequisites
The W343 rule is switched off by default. You can enable this rule by
specifying the set_goal_option addrules W343 command.

Rule Exceptions
Rule checking is not done for unused macro definitions and unused
parameters.

Language
Verilog

Parameters
strict: The default value of this parameter is no. Set the value of this
parameter to yes to switch on the rule and report constant assignments
that are Z-extended. You can also specify a comma-separated list of
rules as an input to this parameter.

Constraints
None

Messages and Suggested Fix
The following message appears at the location of constant assignment
where a constant <const-name> is extended by Zs to match the size
specification.

[WARNING] Constant <const-name> will be Z-extended, value has
fewer bits than size specification
580
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Potential Issues
Violation may arise when the size specification of the assigned value is
wider than the value specification and the high-order bit/byte is Z.

Consequences of Not Fixing
Not fixing the violation can make the constant Z-extended.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the offending constant that is Z-extended.

To fix the violation, it is best to use the correct width and value
specification, rather than depending on default extension.

Example Code and/or Schematic
Consider the following examples:

Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
None

Specified Value Is Equivalent to... Whether Message
8'bz0 8'bzzzzzzz0 Yes as the value is Z-extended
9'hz0 9'bzzzzz0000 Yes as the value is Z-extended
8'hz0 8'bzzzz0000 No as the value is not Z-extended
581
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W362
Reports an arithmetic comparison operator with unequal length

When to Use
Use this rule to identify arithmetic comparison operator with unequal
length.

Description
The W362 rule reports arithmetic comparison operations with operands of
unequal widths. Following is the list of operators covered under this rule:

NOTE: If the count of operators is more than 500 in an expression, then the expression is
ignored for rule checking.

NOTE: The W362 rule does not report violation for counter cases, for example, data ==
data+1.

If the nocheckoverflow parameter is set to yes or W362, the width of the
expression is calculated as per the LRM. However, for constants, normal
width is considered.

Handling of Unary Negation:
In case of unary negation, the width is calculated as follows:

Relational Operators
Greater than (>) Greater than or equal to (>=)
Less than (<) Less than or equal to (<=)
Equality Operators
logical Equality(==) logical inequality(!=)
case equality(===) case inequality(!==)

Operator LRM Width Normal Width
+, - Max (lhswidth, rhswidth) Max (lhswidth, rhswidth) + 1
* Max (, rhswidth) lhswidth + rhswidth
/ Max (lhswidth, rhswidth) lhswidth
% Max (lhswidth, rhswidth) rhswidth
582
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Variable and based numbers: If an operand is a variable or a based
number, the width is incremented by one. For example, width of -
a[3:0] is 5, and width of -3'b101 is 4, etc. This is applicable only
when the nocheckoverflow parameter is set to no.

Constant and unsized based number: In case of constants, the
natural width is calculated first and is then incremented by one. For
example, width of-9 is 5. An unsized based number is treated similarly.
For example, width of -'b101 is 4. However, if you set the
use_lrm_width parameter to yes, the width is considered as 32 bit.

Rule Exceptions
The W362 rule does not report a violation if any one operand is of integer
data type. See the Example 5 for details.

Language
Verilog

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameters
new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to the New Width Flow Application Note.

check_sign_extend: Default value is no. Set the value of the parameter to
yes to check for width mismatch due to sign extension in signed
comparisons.
handle_zero_padding: Default value is no. Set the value of the parameter
to yes to perform leading zero expansion and truncation of RHS of an
assignment. This is performed only if the RHS of the assignment is
static.

disable_rtl_deadcode: The default value is no. Set the value of the
parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.
583
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
use_lrm_width: Default value is no. This indicates the W362 rule
considers the natural width of integer constants. Set this parameter to
yes to consider the LRM width, which is 32 bits.

nocheckoverflow: Default value is no. This indicates the W362 rule does
not check the bit-width as per LRM. Set this parameter to yes or rule
name to check the bit-width as per LRM.
handle_zero_padding: Default value is no. Set the value of the parameter
to yes or rule name to perform leading zero expansion and truncation of
RHS of an assignment. This is performed only if the RHS of the
assignment is static.
check_static_value and strict: By default, the W362 rule does not report
violation when the right or left expression is a constant, including
parameter, sized or unsized based number, and unsized integer. Setting
the check_static_value parameter to yes changes this behavior,
and setting the strict parameter in addition further alters the behavior.
The following table summarizes these variations in behavior:

See the Example 6 for details.
Also, when set to yes, the check_static_value parameter checks
for width mismatch involving static expressions and non-static
expressions that contain a static part. Refer to the check_static_value

Type of left or
right
expression

check_staic_value
set to no

check_staic_value set to yes

strict set to no strict set to
yes

Parameter Does not report Reports if the
width of constant
is larger

Reports any
width mismatch

Sized based
number (8’h15)

Does not report Reports if the
width of constant
is larger

Reports any
width mismatch

Unsized based
number (’h15)

Does not report Reports if the
width of constant
is larger

Reports if the
width of constant
is larger

Unsized integer
(18)

Does not report Does not report Reports if the
width of constant
is larger
584
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
section for more details.
NOTE: When the strict parameter is set, the W362 rule does not report violation for width

mismatch in the for loop condition.

Constraints
None

Messages and Suggested Fix
The following message appears at the location where a width <widthl>
of a left expression <exprl> does not match a width <widthr> of a
right expression <exprr> in an operation of an arithmetic operator <op-
name>.

[WARNING] For operator (<op-name>), left expression: "<exprl>"
width <widthl> should match right expression: "<exprr>" width
<widthr> [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

Potential Issues
A violation is reported when an arithmetic operation has operands of
unequal length.

Consequences of Not Fixing
For some range of values of the wider operand in arithmetic comparison
operations, the comparison operation evaluates to a constant, independent
of the value of the narrower operand. This may result in an unexpected
behavior.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the width mismatch is found for comparison operator.

This is not a major issue. However, you can avoid possible problems by
explicitly comparing sub-expressions of equal width. This also enhances
the code readability.

Example Code and/or Schematic
Example 1
Consider the following example:
585
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
module top(q,clk, d,reset);
input clk,d,reset;
output q;
reg q;
reg [3:0] a;
reg [7:0] b;
reg [1:0]data;

always @(posedge clk)
begin
if (data == reset) //violation

a <=17;
else

b = 8'hbb;
end
endmodule

For the above example, the W362 rule reports the following violation
message:

For operator (==), left expression: "data" width 2 should match
right expression: "reset" width 1 [Hierarchy: ':top']

Example 2
Consider the following example in which the if statement condition
expression is an arithmetic comparison operation involving expressions of
unequal bit-width.

module test (clk);
input clk;

reg [3:0] a;
reg [7:0] b;
reg [2:0] data;

always @(posedge clk)
begin
if (data <= (a[1] + b[2]))
a <= 17;

else
586
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
b <= 8'hbb;
end

endmodule

Example 3
In the following example, the check_sign_extend parameter is set to yes.

reg signed [9:0] data;
always@(*)
if (data == 'sh300) ;

In this example, SpyGlass reports the following violation message because
the width of the left expression does not match the width of the right
expression:

For operator (==), left expression: "data" width 10 should
match right expression: "'sh300" width 32 [Hierarchy: ':top ']

Example 4
Consider the following example:

module top(input clk);
reg [6:0]a;
reg [2:0] data;
always @(posedge clk)
begin

for(data =1;data <= 8'hAA; data++)
a <= 17;

end
endmodule

For the above example, when the strict parameter is set to yes, the
W362 rule does not report violation for width mismatch in the for loop
condition. Whereas, by default, the rule reports violation for such cases.

Example 5
Consider the following example:

module top(input clk);
reg [3:0] a, b, data;
integer i1;
int i2;
587
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
always @(posedge clk)
begin
if (data == i1)
 a <= 17;
else if(data == i2)
 b = 8'hbb;
end

endmodule

In the above example, the W362 rule does not report violations because
operands i1 and i2 are of integer/int data type.

Example 6
Consider the following example:

module top(input clk);
reg [3:0] a, b, data;
integer i1;
int i2;
parameter P1 = 119;
parameter P2 = 2;

always @(posedge clk)
begin
if (data == P1) //violation with check_static_value

a <= 17;
else if(data == P2) //violation with check_static_value and strict

b = 8'hbb;
if (data == 10'd119) //violation with check_static_value

a <= 17;
else if(data == 2'b10)//violation with check_static_value and strict

b = 8'hbb;
if (data == 'd119) //violation with check_static_value

a <= 17;
else if(data == 'b10)

b = 8'hbb;
if (data == 119) //violation with check_static_value and strict

a <= 17;
588
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
else if(data == 2)
b = 8'hbb;

end

endmodule

In the above example, violations are reported for different cases
(mentioned above in red) when the check_static_value and/or strict
parameters are set.

Default Severity Label
Warning

Rule Group
Expression, Lint_Elab_Rules

Reports and Related Files
None
589
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W443
'X' value used

Language
Verilog, VHDL

Rule Description
The W443 rule flags based numbers that contain the unknown value
character (X).

The unknown value character (X) has no physical counterpart and may
lead to a mismatch between pre- and post-synthesis simulation.

By default, the W443 rule does not check the presence of X value in the
default statement of the case construct in Verilog designs. Use the strict
rule parameter to check in the default statement also.

For Verilog, no rule checking is done for unused macro definitions and
unused parameters.

NOTE: The W443 rule ignores case select item value within case constructs.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location where an unknown value
character (X) is encountered in a based number <num>:

Based number <num> contains an X - has no meaning in synthesis

VHDL
The following message appears at the location where a forcing unknown
character (X) is encountered in a bit string:

'X' state used - has no meaning in synthesis
590
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
Use of X states is often valuable in functional debug, so the best way to
handle these cases is to bracket them in translate_off,
translate_on pragmas, making them visible in simulation but invisible
in synthesis. You should check carefully to ensure that implemented
behavior is implicitly dependent on X behavior.

Examples
Verilog
Consider the following example:

module top(out, en1);
input en1;
output reg [1:0] out;

always @ (en1)begin
if (en1)

out<=2'bxx;
else

out<=2'b01;
end

endmodule

In the above example, the W443 rule reports a violation because the based
numbers that contain the unknown value character (X) are assigned to
out in the module. The following message is reported by this example:

Based number 2'bxx contains an X - has no meaning in synthesis

VHDL
Consider the following example:

entity top is
591
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
port(
en1: in std_logic;
out1: out std_logic_vector(1 downto 0)
);

end top;

architecture behav of top is begin
 process (en1) begin

if (en1 = '1') then
out1<="XX";

else
out1<="01";

end if;
end process;

end behav;

In the above example, the W443 rule reports a violation because the based
numbers that contain the unknown value character (X) are assigned to
out1 in the architecture behave of the entity top. The following message
is reported by this example:

'X' state used - has no meaning in synthesis
592
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W444
'Z' or '?' value used

Language
Verilog, VHDL

Rule Description
The W444 rule flags all occurrences of the high impedance character ('Z')
in the design.

Using 'Z' in the design creates several issues, such as:

If 'Z' is used in an assignment statement, tristates are inferred

If 'Z' is used in a comparison expression, the condition is always
considered false in synthesis and may lead to a mismatch between pre-
and post-synthesis simulation

The W444 rule also flags the usage of '?', which is Verilog HDL alternative
for the z character.

By default, the W444 rule does not check for the presence of 'Z' value in
the default statement of the case construct in Verilog designs. Use the
strict rule parameter to check the default statement also.

For Verilog, no rule checking is done for unused macro definitions and
unused parameters.

NOTE: The W444 rule ignores case select item value within case constructs.

Message Details
Verilog
The following message appears at the location where a high impedance
character ('Z') or '?' is encountered in a tristate value <value>:

Tristate value <value> specified

VHDL
The following message appears at the location where a high impedance
character ('Z') is encountered in a bit string:

Tristate value specified
593
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Rule Severity
Warning

Suggested Fix
For assignments, confirm that you intended to infer a tristate. Avoid using
'Z' values in comparisons, except for simulations tests, which you should
bracket in translate_off, translate_on pragmas to avoid inferring
spurious logic.

Examples
Verilog
Consider the following example:

module top(out, in1, en1);
input in1;
input [1:0] en1;
output out;
reg out;

always @ (en1 or in1)
begin

if (en1 == 2'b1z)
out <= in1;

else
out <= 1'b?;

end

endmodule

In the above example, the W444 rule reports two violations because of the
high impedance characters ('Z') and (‘?’) in the design.

The following messages are reported by this example:

Tristate value '2'b1z' specified

Tristate value '1'b?' specified
594
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
VHDL
Consider the following example:

entity test1 is
port(

clk: in std_logic;
out1: out std_logic_vector(2 downto 0)
);

end test1;

architecture behav of test1 is
begin

process(clk)
begin

if (clk'event and clk = '1') then
out1 <= "10Z";

end if;
end process;

end behav;

In the above example, the W444 rule reports a violation because of the
high impedance character ('Z') in the design. The following message is
reported by this example:

Tristate value specified
595
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W467
Use of don’t-care except in case labels may lead to simulation/
synthesis mismatch

When to Use
Use this rule to identify the usage of don’t care character in the design.

Description
The W467 rule reports violation for based numbers that contain the don’t care
character.

Rule Exceptions
The W467 rule does not flag a violation for a parameter, generic, or
constants that are assigned a don’t-care value and are used only as case-
label.

Also, for Verilog, no rule checking is done for unused macro definitions.

Language
Verilog, VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where a don’t care character
(?) is encountered in a based number <num>:

[WARNING] Based number <num> contains a don’t care (?) - might
lead to simulation/synthesis mismatch

Potential Issues
596
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Violation may arise when a based number contains a don’t care value.

Consequences of Not Fixing
There is no physical counterpart for the don't-care value. In simulation, these
values are typically mapped to 'Z' which causes a tristate to be inferred.
However, this behavior should be avoided as it may result in inferring
spurious logic.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix

VHDL
The following message appears at the location where a don’t care character
(-) is encountered in a bit string:

[WARNING] Don’t-care (-) used - might lead to simulation/
synthesis mismatch

Potential Issues

Violation may arise when a don’t care character (-) is encountered in a
bit string.

Consequences of Not Fixing
There is no physical counterpart for the don't-care value. In simulation, these
values are typically mapped to 'Z' which causes a tristate to be inferred.
However, this behavior should be avoided as it may result in inferring
spurious logic.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the don't care value, ?, is used in the design other than in the
case label.

To fix the violation, test both 0 and 1 values in a comparison. Also, in an
assignment, choose either 0 or 1.

Example Code and/or Schematic
Consider the following example:

library IEEE;
use IEEE.std_logic_1164.all;
597
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
entity test1 is
port(

in1: in std_logic_vector(2 downto 0);
out1: out std_logic_vector(2 downto 0)
);

end test1;

architecture behav of test1 is
signal sig1: std_logic_vector(2 downto 0);
begin
process(in1)
begin

sig1 <= "-0-";
out1 <= sig1 and in1;

end process;
end behav;

In the above example, the W467 rule reports a violation as a don’t-
care character (-) is used in signal assignment.

Default Severity Label
Warning

Rule Group
Expression Rules

Reports and Related Files
No related reports or files.
598
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W486
Reports shift overflow operations

When to Use
Use this rule to identify shift overflow operations.

Description
The W486 rule reports violation for shift overflow operations.

Width Calculation
The W486 rule calculates the width of left operand of shift operator on the
basis of the following conditions:

If the nocheckoverflow rule parameter is set to yes or W486, width is
calculated as per LRM. However, for constants, natural width is
considered.

If the nocheckoverflow is set to no, width is calculated according to the
following methods:

 For plus/minus operator, value based width is considered. For
example:

a[2:0]+b[2:0])>>1
// Width of expression, a[2:0]+b[2:0], will be 4
(7+7=14, 4 bits wide)

 For multiplication operator, width will be sum of operand widths. For
example:

(a[2:0]*b[2:0])<<1;
// Width of expression, a[2:0]*b[2:0], will be 6
(a1[2:0]*b1[2])<<2;
// Width of expression, a1[2:0]*b1[2], will be 3

 For division operator, LHS width will be considered. For example:

(a[2:0]/b[2])<<2;
// Width of expression, a[2:0]/b[2], will be 3

 For concat operator, width will be calculated as sum of all the
operands. For example:

1'b0,a[2:0]}<<1;
599
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
// Width concat exp=3 bits (leading 0 ignored)

 {1'b1,a[2:0]}<<2;
 // Width concat exp=4 bits (1+3 bits)

NOTE: For new width related changes, refer to New Width Flow Application Note.

NOTE: The W486 rule supports generate-if, generate-for, and generate-case blocks.

Language
Verilog

Default Weight
5

Parameter(s)
disable_rtl_deadcode: The default value is no. Set the value of the
parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.

new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to the New Width Flow Application Note.

nocheckoverflow: The default value is no. Set the value of the parameter
to yes or rule name to check the bit-width as per the LRM.

use_lrm_width: The default value is no. Set the value of the parameter to
yes to consider the LRM width of integer constants, which is 32 bits.

check_shifted_width: The default value is no. Set the value of the
parameter to yes to consider the natural width of the left operand for a
left shift expression, if left operand is constant integer and right
operand is non static.

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location of a left-shift operation
600
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
where the width <widthr> of RHS expression <rexpr> is greater than
the width <widthl> of the LHS expression <lexpr>:

[WARNING] Rhs width '<widthr>' with shift (Expr: '<rexpr>') is
more than lhs width '<widthl>' (Expr: '<lexpr>'), this may
cause overflow [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

Potential Issues
Violation may arise when the width of the RHS expression is greater than
the width of the LHS expression in a left-shift operation.

Consequences of Not Fixing
When an expression containing a left-shift is assigned to a bus with a width
less than required to hold some of the most-significant shifted bits, such
bits are truncated and this can lead to arithmetic functional error.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the width mismatch due to shift overflow is found.

To fix the violation, make sure you intend to discard the overflow bits.

Example Code and/or Schematic
Example 1
Consider the following example:

wire [2:0] net1, net2;
assign net1 = net2 << 1;

In the above example, the W486 rule reports a violation as the expression
containing a left-shift is assigned to a bus with a width less than required
to hold some of the most-significant shifted bits.

Example 2
Consider the following examples for based numbers for which the W486
rule does not report a violation:

wire [4:0] w1;
assign w1 = 5'b1 << 2;
assign w1 = 3'b1 << 2;
601
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Example 3
Consider the following example:

module mod(in1, clk, sel, out1);
input [2:0] in1;
input clk, sel;
output [2:0] out1;
reg [2:0] out1;

always @(posedge clk)
if(sel)
out1 = in1;

else
out1 = in1 << 1; //violation(Rhs width (Expr: '(in1

<< 1)') is more than lhs Lhs width (Expr: 'out1'), this may
cause overflow)

endmodule

In the above example, the W486 rule reports a violation as the RHS width
of the expression, (in1 << 1), is more than the LHS width of the
expression, (out1). This condition may cause an overflow.

Example 4
Consider the following example:

module top ();

wire [4:0]a;
reg [1:0] b;
assign a[3:0] = 1 << b; //Violation by default
assign a[3:0] = 'b11 << b; //Violation by default
assign a[3:0] = 'd13 << b; //Violation by default

endmodule

In the above example, for all three assignments by default, the width is
considered as 32 bits for the RHS and a violation is reported.

When the check_shifted_width parameter is set to yes, the natural width of
left operand of the RHS expression is considered and no violation is
602
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
reported for any of the assignments.

Default Severity Label
Warning

Rule Group
Expression, Lint_Elab_Rules

Reports and Related Files
No related reports or files.
603
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W490
A control expression/sub-expression is a constant

Language
Verilog, VHDL

Rule Description
The W490 rule flags constant control expressions or sub-expressions.

Constant control expressions or sub-expressions may result in an always
ON or an always OFF logic inference. Such descriptions are not
recommended.

Constant control expressions or sub-expressions should only occur in hard-
wired configuration settings. Use this rule to find and check all such cases.

By default, the W490 rule does not flag such constructs in subprogram
descriptions. For VHDL designs, set the strict parameter to check for
constant control expressions inside subprogram descriptions also.

NOTE: The W490 rule supports generate-for block.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location of a constant control
expression or sub-expression <expr>:

Control expression/sub-expression '<expr>' is a constant

Rule Severity
Warning

Suggested Fix
Fix may not be required as long as you are aware that portion of your logic
may be permanently disabled/optimized out as a result.
604
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
Examples
Consider the following example:

module test (in, in1, out, out1, out2, clk);
input [3:0] in,in1;
input clk;
output out, out1, out2;

reg out, out1, out2;
wire data, node;
parameter par = 4'b1010;

assign data = 2 ? in : in1;
 assign data = par ? in : in1;

always @(clk)
begin
if(3)
out = node ? in1 : in;

else
out = in1;

while (par < 3)
out1 = in1 & in;

while (par[2])
out2 = in1 & in;

end
endmodule

In the first conditional assignment statement, the select condition (2) is a
constant. Thus, SpyGlass generates the following message:

Control expression/sub-expression '2' is a constant

In the second conditional assignment statement, the select condition
(par) is a parameter. Thus, SpyGlass generates the following message:

Control expression/sub-expression 'par' is a constant

In the first always construct, the if statement condition (3) is a
constant. Thus, SpyGlass generates the following message:

Control expression/sub-expression '3' is a constant
605
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
In the always construct, the first while statement condition (par < 3)
evaluates to a constant. Thus, SpyGlass generates the following message:

Control expression/sub-expression '(par < 3)' is a constant

In the always construct, the second while statement condition
(par[2]) is a constant. Thus, SpyGlass generates the following message:

Control expression/sub-expression 'par[2]' is a constant
606
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W491
Reports case expression with a width greater than the specified
value

When to Use
Use this rule to identify case expression that have a width greater than the
specified value and have a don't care (?) value in the high order bit/byte.

Rule Description
The W491 rule reports violation for case clause condition constants where
the size specification of the constant is wider than the value specification
and the high-order bit/byte is don’t care (?). As a result, the constant is ?-
extended.

Rule Exceptions
No rule checking is done for unused macro definitions and unused
parameters.

Default Weight
5

Language
Verilog

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where the case clause
expression constant <constant> is ?-extended:

[WARNING] Constant <constant> will be ?-extended

Potential Issues
Double-click the violation message. The HDL window highlights the line
607
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
where constant is ?-extended. Review the code, use the correct width and
value specification rather than depending on the auto extension by
simulator.

Consequences of Not Fixing
Due to extension, more cases may match the expression than intended.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the
location of the offending constant that is ?-extended.
To fix the violation, it is best to use the correct width and value
specification, rather than depending on default extension. This is
particularly important here because the implication of extension is that
more cases may match than you intended.

Example Code and/or Schematic
Consider the following examples:

Default Severity Label
Warning

Rule Group
Expression

Reports and Related Files
No related reports or files.

Specified Value Equivalent Value Violation Reported
8'b?0 8'b???????0 Yes as the value is ?-extended
9'h?0 9'b?????0000 Yes as the value is ?-extended
8'h?0 8'b????0000 No as the value is not ?-extended
608
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W561
A zero-width-based number may be evaluated as 32-bit number

Language
Verilog

Rule Description
The W561 rule flags zero-width based numbers.

A zero-width based-number (like 0'd0) is treated as a zero and hence,
may result in unwanted results.

It is possible to create a zero width-based number either by omitting the
width or by using a zero-value macro to specify the width. Consider the
following example in which a zero-value macro is used to specify the width:

‘define X 0
... a = ‘X’h3

In the above example, the based number will be evaluated as
32 bit number, which may not be what you intended.

Message Details
The following message appears at the location where a zero-width based
number <num> is encountered:

Zero-width based number '<num>' may be evaluated as 32 bit
number

Rule Severity
Warning

Suggested Fix
Check each such case to make sure that the behavior is what you intended.
609
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W563
Reduction of a single-bit expression is redundant

Language
Verilog

Rule Description
The W563 rule flags unary reduction operations on single-bit expressions.

Unary reduction operators (unary and reduction operator (&), unary or
reduction operator (|), and unary xor reduction operator (^)) reduce a
vector to a single-bit. However, using the unary reduction operators on
single-bit expressions is redundant.

NOTE: The W563 rule supports generate-if, generate-for, and generate-case blocks.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a unary reduction
operator <op-name> is used on a single-bit expression <expr>:

Use of unary reduction operator "<op-name>" on a 1-bit
expression "<expr>" is unnecessary.[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

Rule Severity
Warning

Suggested Fix
Examine the logic to make sure behavior is what you intended.
610
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W575
Logical NOT operating on a vector

Language
Verilog

Rule Description
The W575 rule flags logical NOT operators used on vector signals.

Logical NOT evaluates its operand as a Boolean (zero = false, non-
zero = true) and returns the logical inverse.

If you intent to perform a bit-wise inversion, use the bit-wise inverse (~)
operator.

NOTE: The W575 rule supports generate-if, generate-for, and generate-case blocks.

Message Details
The following message appears at the location where a logical NOT
operation is used on a multi-bit signal <sig-name> of width <num>:

Logical NOT(!) operator used on a multibit(<num>) value: <sig-
name>

Rule Severity
Warning

Suggested Fix
Examine the logic to make sure behavior is what you intended.
611
Synopsys, Inc.

Expression Rules

Rules in SpyGlass lint
W576
Logical operation on a vector

Language
Verilog

Rule Description
The W576 rule flags logical operations performed on vector signals.

It is particularly easy to confuse with the usage of operators, & and &&.
The operations using these two operators (for example a & b and a &&
b) will in general return very different results. The operation using the &
operator is a bit-wise and of two vectors which could evaluate to a vector
with the number of bits set. However, the operation using the && operator
evaluates its arguments as Boolean (zero = false, non-zero =
true) and returns the logical and, which will always be 1 or 0.

NOTE: The W576 rule supports generate-if, generate-for, and generate-case blocks.

Message Details
The following message appears at the location where a logical operator
<operator-name> is used on a multi-bit signal <sig-name> of width
<num>:

Logical operator (<operator-name>) used on a multibit (<num>)
value: <sig-name>

Rule Severity
Warning

Suggested Fix
You should examine each of these cases to make sure you are using the
correct operator.
612
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
MultipleDriver Rules
The SpyGlass lint product provides the following multiple driver related
rules:

Rule Flags...
W259 Signals that have multiple drivers but no associated resolution function
W323 Non-tristate inout nets that are driven in more than one always

construct or module instance
W415 Non-tristate nets that are driven in more than one always construct

or module instance
W415a Signals that are multiply assigned in the same always construct

W552 Flip-flop outputs whose different bit-selects are driven in different
sequential always constructs

W553 Nets whose different bit-selects are driven in different combinational
always constructs
613
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W259
 Signal has multiple drivers

Language
VHDL

Rule Description
The W259 rule flags signals that have multiple drivers but no associated
resolution function.

A signal is to be said to be driven by multiple drivers, if more than one
concurrent statements (process, instance, conditional, and selected signal
assignment statements etc.) contain signal transform for the same signal.

By default, only simple types like std_logic and std_logic vector
have defined resolution functions. Signals with multiple drivers but no
resolution function are driven to tristate or to value x.

The W259 rule currently does not handle multi-dimensional arrays,
aggregate types, and record types.

NOTE: The W259 rule supports generate-if and generate-for blocks.

NOTE: The W415 rule flags those data type that have built-in resolution function (for
example, std_logic). However, if the data type has no built-in resolution
function, then the W259 rule is applicable to check for multiple drivers.

Message Details
The following message appears at the location where a signal
<sig-name> with multiple drivers but no resolution function is used:

Non-resolved signal '<sig-name>' has multiple drivers
[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

Rule Severity
Warning

Suggested Fix
Determine first if you really intended a WIRE-OR. If so, provide a
614
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
resolution function to resolve the connection.
615
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W323
Multiply driven inout net

Language
Verilog

Rule Description
The W323 rule flags non-tristate inout nets that are driven by multiple
drivers.

The W323 rule considers a net to be tristate if all the drivers in its
immediate fan-in are tristate elements.

The W323 rule ignores nets driven from black boxes.

By default, the W323 rule ignores bus-holders unless the strict rule
parameter is set.

NOTE: You can enable the W323 rule by specifying the set_goal_option
addrules W323 command. However, this rule will not run if you set the fast
rule parameter to yes and SpyGlass lint product is run.

Message Details
The following message appears at the location where a non-tristate inout
net <net-name> is found to be driven in more than one module instance:

Inout '<net-name>' is written in more than one place

Rule Severity
Warning

Suggested Fix
Most probably, there is an error in your logic. Ensure that only one driver
drives the net, unless you actually intended a tristate net.
616
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W415
Reports variable/signals that do not infer a tristate and have
multiple simultaneous drivers

When to Use
Use this rule to identify variable/signals that do not infer a tristate and
have multiple simultaneous drivers.

Rule Description
The W415 rule reports variables/signals that do not infer tristate nets and
have multiple simultaneous drivers.

The W415 rule does not report violation for tristate nets whose immediate
fan-in drivers are tristate elements. However, the rule reports a violation
when an enable signal for two tristate elements is same as both the
elements get enabled at the same point of time.

This rule reports variables/signals that are driven in more than one
sequential always/process constructs, instances, and/or concurrent
statements. Such cases are errors unless the variable infers a tristate net.

Rule Exceptions
Following are the expectations to the W415 rule:

The W415 rule fails to run if you set the fast rule parameter to yes and
SpyGlass lint product is run.
By default, this rule does not report any violation if the multiple driven
signals/variables are not loaded or they have hanging driver input.
In VHDL, the W415 rule reports those data types that have built-in
resolution function, such as std_logic. However, if the data type has
no built-in resolution function, the W259 rule is applicable to check for
multiple drivers.

Language
Verilog, VHDL

Parameters
strict: By default, the W415 rule ignores instances, bus-holders and top-
level inout ports as drivers. Set this parameter to consider instances,
617
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
bus-holders and top-level inout ports as drivers. For all other modules,
inout ports are always checked for rule violation irrespective of the value
of this parameter.

NOTE: A violation is reported even without the strict parameter, if two or more out-
put terminals are connected together with an inout port. No violation is
reported (even if the strict parameter is set), if an inout port is connected
with the non-enabled tristate (disabled or the tristate having unknown value)
driver.

assume_driver_load: Default value is no. This indicates the W415 rule
does not flag any violation, if the multiple driven signal/variable is not
loaded or have hanging driver input. Set the value of the parameter to
yes to report violations for such cases.

checkconstassign: Default value is no. This indicates the W415 rule
ignores nets that are driven multiple times by the same constant value.
Set this parameter to yes to report such cases.

check_bbox_driver: Default value is no. Set this parameter to yes to
consider the black-box as a valid driver.
ignore_equivalent_drivers: Default value is yes. Set the value of the
parameter to no to report violations for a net, which is driven by two
identical instances of basic two input gates of type OR/NOR/AND/NAND
and both instances are driven by same input signals.

ignore_greybox_drivers: Default value is no. Set the value of the
parameter to yes to consider greybox as a valid driver, if this parameter
is set to 'yes' then rule will not consider greybox as a valid driver.
handle_equivalent_drivers: The default value is no. Set the value of the
parameter to yes to report violations when a net is simultaneously
driven by two identical instances of two input gates of type BUFF, NOT,
OR, NOR, AND, or, NAND and both instances are driven by same input
signals.

Constraints
None

Tcl Attributes
is_multiple_driver: This Tcl attribute returns the nets that have
multiple drivers.
618
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
For example:

sg_shell> set_pref dq_design_view_type flat
sg_shell> set net_iter [get_nets * -filter
"is_multiple_driver == true"]

For more details, refer to the is_multiple_driver attribute in the
Base Attributes section of the SpyGlass Tcl Shell Interface User Guide.

Messages and Suggested Fix
The following message appears at the location where a signal
<sig-name> is found to be driven by more than one sequential always/
process construct, instances, and/or concurrent statements:

[WARNING]Signal '<sig-name>' has multiple simultaneous drivers

Potential Issues
Violation may arise when a signal has multiple simultaneous drivers.

Consequences of Not Fixing
A net that is not a tristate net should have a unique driver. If such nets are
driven by more than one net, there is a possibility of an electrical conflict.
For example, consider a net driven by outputs of two different AND gates.
If one output is 0 and other output is 1, the driven net is in a non-digital
state. Such cases lead to excessive current flows from one AND gate to
another AND gate causing chip electrical failures, causing chip malfunction.
The effect of a non-digital net can also propagate to its fan-out points. For
such fan-out points, the net behaves as if it was floating resulting in further
chip electrical and functional failures.
619
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
How to Debug and Fix
View the Incremental Schematic for the violation message. The
Incremental Schematic shows the multiple driven net and a corresponding
load for that net.

Most probably, there is an error in your logic. To fix the violation, ensure
that variable/signal does not have multiple drivers, unless you actually
intended tristate logic.

Example Code and/or Schematic
Example 1
Consider the following example:

library ieee;
use ieee.std_logic_1164.all;
entity test is
port(
in1,in2 : in std_logic;
output : out std_logic
);
end test;
architecture rtl of test is
begin
output <= in1 ;
output <= in2 ;
end rtl;

In the above example, the W415 rule reports a violation as the signal,
output, has multiple simultaneous drivers, in1 and in2.

Default Severity Label
Warning

Rule Group
MultipleDriver

Reports and Related Files
None
620
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W415a
Signal may be multiply assigned (beside initialization) in the same
scope

Language
Verilog

Rule Description
The W415a rule reports signals that are assigned multiple times within the
same block.

The rule reports a violation when an assignment overrides previous
assignment other than the initialization statement within the same block.

If a signal is multiply assigned in parallel conditional blocks and if those
conditions can be true simultaneously, the second assignment may
override the first. The rule reports such assignments.

NOTE: The rule supports the multi-line functionality.

By default, the rule checks for all kinds of multiple assignments (both
blocking and nonblocking) within the same scope. Use the checknonblocking
rule parameter to restrict rule checking to nonblocking assignment
statements. Use the checkblocking rule parameter to restrict rule checking
to blocking assignment statements.

The rule only reports for assignments at the RTL description level
irrespective of the logic inferred after synthesis.

By default, the ignore_reinitialization parameter not set and the W415a rule
reports violations for re-initialization when the check_initialization_assignment
parameter is set to yes. Set the ignore_reinitialization
parameter to yes to ignore violations for re-initialization assignments
inside the for loops.

By default, the rule reports a violation for the following cases:
when an entire vector is initialized with an initialization value and a
subset of the vector is overwritten.
when an entire packed struct is initialized with an initialization value and
a subset of the struct is overwritten.

Set the value of the check_initialization_assignment parameter to yes to
disable the violations for the above cases.
621
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
However, at this parameter value (yes), the rule reports a violation when:

a vector is initialized with an initialization value and the entire vector is
assigned again with another value.
a violation when a packed struct is initialized with an initialization value
and the entire packed struct is assigned again with another value.

Example 1
In the following example, the check_initialization_assignment parameter is set
to yes:

reg [3:0] b;
 always @(*)
 begin
 if(inp)
 begin
 b = a;
 b[2] = 1'b0;
 end
 end

In this case, the vector b is initialized with an initialization value and a
subset of the vector is overwritten. Therefore, the W415a rule does not
report a violation in this case.

Example 2
In the following example, the check_initialization_assignment parameter is set
to yes:

reg [3:0] b;
 always @(*)
 begin
 if(inp)
 begin
 b = a;
 b[3:2] = 1'b0;
 end
 end

In this case, the vector b is initialized with an initialization value and a
subset of the vector is overwritten. Therefore, the W415a rule does not
622
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
report a violation in this case.

Example 3
In the following example, the check_initialization_assignment parameter is set
to yes:

reg [3:0] b;
 always @(*)
 begin
 if(inp)
 begin
 b = a;
 b = 1'b0;
 end
 end

In this case, the vector b is initialized with an initialization value, and the
entire vector is assigned again with another value. Therefore, the W415a
rule reports a violation in this case.

Example 4
In the following example, the check_initialization_assignment parameter is set
to yes:

reg [3:0] b;
 always @(*)
 begin
 if(inp)
 begin
 b = a;
 b[3:0] = 1'b0;
 end
 end

In this case, the vector b is initialized with an initialization value, and the
entire vector is assigned again with another value. Therefore, the W415a
rule reports a violation in this case.

By default, the rule reports assignment to a variable inside a conditional
construct if the variable is also being assigned non-static value in a
nonblocking manner before the conditional construct as in the following
examples:
623
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
Example 1
Consider the following example:

always @ (clk)
begin
if (clk)
begin

out1<= in1; //Assignment of non-static value
if(en)

out1<= in2; // Violation
end

end

Example 2
Consider the following example:

always @ (clk)
begin
out1<= in1; //Assignment of non-static value
if (clk)
begin

out1<= in1; //Violation
end

end

In the above example, the rule reports a violation as the variable is
assigned a non-static value.

The W415a rule does not report assignment to a variable inside a
conditional construct if the variable is also being assigned static value in a
nonblocking manner before the conditional construct as in the following
examples:

Example 1
always @ (clk)
begin
if (clk)
begin

out1<= 1'b0; //Assignment of static value
if(en)

out1<= in2; // No Violation
624
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
end
end

Example 2
always @ (clk)
begin
out1<= 1'b0; //Assignment of static value
if (clk)
begin

out1<= in1; // No Violation
end

end

If you set the ignore_nonBlockCondition parameter to yes, then no violation
is reported for case mentioned above. For example,

...
a <= b;
if (C1)
begin

a <= b1; // ignore_nonBlockCondition set to yes
end

...

The W415a rule does not report violation if two if conditions are mutually
exclusive as only one path will be executed. For example:

if(sel)
out = in1;

if(!sel)
out = in2; //Only one condition will be true in above //case

if(sel[1])
out = in1;

if(!sel[1])
out = in2;

if(sel==0)
out=in1;

if(sel==1)
out=in2;
625
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
If the conditions contain binary expression then simple conditions are
checked. Otherwise, no checking is done. For example:

if(sel==2)
out=in1;

if(sel>1)
out=in2; //The conditions can be true simultaneously

If the left expression of binary expressions is complex or right expression
of binary expression is not constant, no checking is done. For example:

if(sel==0)
out = in1;

if(sel>a)
out = in2; //No Condition checking as right

//expression is not constant
if(sel+sel1>a)
out = in3; //No Condition checking as left expression

//is not simple expression

By default, the W415a rule does not report violation if the RHS value in an
assignment is same as the RHS value in the previous assignment. Set the
reportsimilarassgn rule parameter to yes to flag such cases. For example,
the W415a rule will not report violation in the following case with the
reportsimilarassgn rule parameter is set to no:

if(sel)
q =a+b;

if(sel0)
q = b+a;

if(sel1)
q = 1;

if(sel2)
q = 1;

NOTE: Only simple expressions are checked for checking similar assignments. Complex
expressions such as a+b+c and a+c+b are not checked.

By default, the W415a rule reports violation for a signal assigned multiple
times on the same line inside a for-loop irrespective of the expression on
626
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
RHS of the assignment. Set the ignore_multi_assign_in_forloop parameter to
Yes to skip rule checking inside a for-loop for multiple assignments on the
same line.

In the following examples, the W415a rule reports violations for signal a.
When the ignore_multi_assign_in_forloop parameter is set to Yes, no
violations are reported.

Example 1
reg a, b, c;
for(i = 0; i < 2; i = i + 1)
begin
a = a + 1;
end

Example 2
reg a, b, c;
for(i = 0; i < 2; i = i + 1)
begin
a = b + c;
end

By default the waiver_compat parameter is set to no. If you set the value of
this parameter to yes or <rule-name>, it ensures that the rule does not
generate the line number information in the first run itself. Thus waivers
work correctly even if the line numbers of the RTL gets changed in the
subsequent runs.

By default the value of ignore_bitwiseor_assignment parameter is set to no
and the rule reports a violation for a bitwise or assignment inside the for
loop that is assigned multiple times on the same line. Set the value of the
parameter to yes to not to report violation for such cases.

For example:

reg a, b, c;
for(i = 0; i < 2; i = i + 1)
begin
 a |= a + 1;
end

In the above snippet, by default the W145a rule reports violation for signal
627
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
a assigned inside the for loop. But when the ignore_bitwiseor_assignment
parameter is set to yes, no violation is reported for the bitwise or
assignment inside the for loop.

The W415a rule checks a vector when it is initialized with an initialization
value and the vector is assigned again with another value within a "for"
loop.

For example, consider the following snippet:

module test (a, b, clk, y);
input [3:0] a, b;
input clk;
output [3:0] y;
reg [3:0] y;
integer i;

always @(clk) begin
 y <= 3'b000;
 for (i=0; i<=3; i=i+1)
 y[i] <= a[i] & b[i]; // warning
end
endmodule

For the above example, the rule reports the following violation message:

Signal y[0:3] is being assigned multiple times (previous
assignment at line 9) in same always block [Hierarchy:
':test']

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Message 1
The following message appears at the location where a signal <sig-
name> is assigned another value after it has already been assigned a value
at line number <line-num> in the same always construct:

Signal <sig-name> is being assigned multiple times (previous
628
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
assignment at line "<line-num>") in same always block
[Hierarchy: '<hier-path>']

Message 2
The following message appears at the location where a signal <sig-
name> is assigned multiple values in the same for-loop and in the same
always construct:

Signal <sig-name> is being assigned multiple times (assignment
within same for-loop) in same always block [Hierarchy: '<hier-
path>']

Rule Severity
Warning

Suggested Fix
Aside from overwriting an initial value, multiple overwrites of a value within
a block is at least confusing. In some cases, it may indicate an error.
Therefore, it is recommended to rewrite the code to remove multiple
overwrites.

Examples
Consider the following examples where signal out is being assigned
multiple times in the same always construct:

Example of Simple Multiple Assignments
Consider the following example:

always @(in1 or in2)
begin
out = in1;
out = in2;

end

Here, the previous assignment to signal out is overwritten by the second
assignment. For this example, SpyGlass generates the following message:

Signal 'out' is being assigned multiple times in same always
block
629
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
Example of Conditional Multiple Assignments
Consider the following example:

always @(in1 or in2 or a or b)
begin
if (a)
out = in1;

if (b)
out = in2;

end

Here, the previous assignment to signal out is overwritten by the second
assignment. Also, there is potential case of overwriting to signal out. For
this example, SpyGlass generates the following message:

Signal 'out' is being assigned multiple times in same always
block

Example of Multiple Assignments at Different Level
Consider the following example:

...
a = b;
if (C1)
begin

a = b1; //first assignment
if (C12)

a = b12; //second assignment
end

...

Since the assignments are at different level in nested conditional blocks,
SpyGlass does not flag a violation.

Example of Multiple Assignments in Different Branches of case
Construct
Consider the following example:

always @(in1 or in2)
begin
case (sel)
1'b0 : out = in1;
630
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
1'b1 : out = in2;
default : out = 1'b0;

end

Since, there is no overwriting to signal out, SpyGlass does not flag a
violation.

Example of Multiple Assignments in Different Branches of If Statement
Consider the following example:

always @(in1 or in2 or c)
begin
if (c)
out = in1;

else
out = in1;

end

Since, there is no overwriting to signal out, SpyGlass does not flag a
violation.

Example of Multiple Assignments in Same For-Loop and Same Always
construct
Consider the following example:

reg [0:5] out2;
always @(in1)
begin
for(i = 0; i < 2; i = i + 1)
begin

out2[3:4] <= in1[i];
end

end

In the above example, the W415a rule reports a violation for the signal,
out2[3:4], because it is assigned multiple times within the same for loop
and same always construct.
631
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W552
Different bits of a bus are driven in different sequential blocks

Language
Verilog

Rule Description
The W552 rule flags bus outputs whose different bit-selects are driven in
different sequential always constructs.

While such descriptions are allowed, they can be confusing and could lead
to non-uniform handling of the bus in some conditions. Such descriptions
also create a possibility of (simulation) race conditions on the bus.

For multidimensional arrays, the W552 rule flags if different bits of packed
dimensions are driven in different sequential always constructs. For
example, the W552 reports a violation in the following case:

reg [1:0][3:0]out;
always@(posedge clk1)
out[1][1] = in1[1];

always@(negedge clk1)
out[1][0] = in1[0];

always@(negedge clk2)
out[0] = in1;

NOTE: The W552 rule supports generate-if, generate-for, and generate-case blocks.

NOTE: The W552 rule does not check for unpacked arrays.

NOTE: The rule supports the multi-line functionality.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a bus output <bus-
name> is declared whose different bit-selects are driven in different
sequential always constructs:
632
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
Bus '<bus-name>' is driven inside more than one sequential
block. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Rule Severity
Warning

Suggested Fix
Wherever possible, drive all bits of a bus from the same block.
633
Synopsys, Inc.

MultipleDriver Rules

Rules in SpyGlass lint
W553
Different bits of a bus are driven in different combinational blocks

Language
Verilog

Rule Description
The W553 rule flags bus whose different bit-selects are driven in different
combinational always constructs.

While such descriptions are allowed, they can be confusing and could lead
to non-uniform handling of the bus in some conditions. Such descriptions
also create a possibility of (simulation) race conditions on the bus.

NOTE: The W553 rule supports generate-if, generate-for, and generate-case blocks.

NOTE: The rule supports the multi-line functionality.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
The following message appears at the location where a bus <bus-name>
is first assigned whose different bit-selects are driven in different
combinational always constructs:

net/bus '<bus-name>' is driven inside more than one
combinational block. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical name of the containing
scope excluding subprograms.

Rule Severity
Warning

Suggested Fix
Wherever possible, drive all bits of a bus from the same block.
634
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
Simulation Rules
The SpyGlass lint product provides the following simulation related rules:

Rule Flags...
W17 Arrays in sensitivity lists that are not completely specified
W122 Signal that is read in a combinational process/ always block, but is not

included in the sensitivity list
W167 Modules that do not have any port interface
W456 Signals that are in the sensitivity list of a combinational always

construct but are not completely read in the construct
W456a Signals that are in the sensitivity list of a combinational process block

but are not read in the process block
W488 Bus signals that are in the sensitivity list of an always construct but

are not completely read in the construct
W502 variable that is present in the sensitivity list and is modified in the

always block
W526 IF-ELSE constructs that should be changed to case constructs to

improve performance
635
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W122
A signal is read inside a combinational always block but is not
included in the sensitivity list (Verilog)
A signal is read inside a combinational process but is not included
in the sensitivity list (VHDL)

When to Use
Use this rule to identify the signals that are read inside a combinational
always block or combinational process but are not included in the
sensitivity list.

Description
Verilog
The W122 rule reports violations for the signals that are read in a
combinational always construct but are not present in the sensitivity list of
the construct.

Refer to the Determining Signals Required in the Sensitivity List section for
details on how SpyGlass determines the signals required in the sensitivity
list.

The rule does not check the for loop indices because they do not represent
real signals.

The rule reports violations for global signals or variables that are read in
the tasks or functions called from the always blocks that have wildcard (@*)
sensitivity list. The wildcard infers sensitivity to only those signals that are
directly referenced in the always block. It does not infer sensitivity to signals
that are externally referenced in a function or a task that is called from the
always block. Therefore, the wildcard is sensitive only to those signals that
are passed to a function or a task.

NOTE: The rule supports the multi-line functionality, generate-if block, and generate-for
block.

VHDL
The W122 rule reports violations for the signals, which are read in a
combinational process but are not present in the sensitivity list of the
process.

NOTE: The rule supports the multi-line functionality.
636
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
Rule Exceptions
The rule does not report violations for signals which are assigned
constant values outside the always block using continuous assignment
statement and are missing from the sensitivity list. The rule also does
not report violations for the variables which are assigned values in tasks
and then are read in the same always construct. These variables are
connected to the output of a task.
The rule will not report any violation for delay variable used inside the
always blocks, which are not read inside the sensitivity list.

Language
Verilog, VHDL

Default Weight
10

Parameter(s)
Verilog

allow_clk_in_condition: Default value is no. If you set this parameter to
yes, the rule does not traverse a combinational block present inside a
sequential block and does not report a violation in such cases.

simplesense: Default value is no. Set the value of this parameter to yes
to enable the rule to report the signals that are read in an always
construct and being set in blocking assignment statement but are not
present in the sensitivity list.

strict: Default value is no. Set this parameter to yes (in the Atrenta
Console) or 1 (in the batch mode) to report memories and delay
variables that are read in the always construct but are not present in
the sensitivity list.

report_all_messages: Default value is no. Set this parameter to yes or
rule name(s) to report the bit information in the violation messages.

VHDL
considerInoutAsOutput: Default value is no. Set the value of the
parameter to yes to consider the inout port as output port.
637
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
strict: Default value is no. This indicates the W122 rule reports a
violation for a signal that is read in the process block and initialized to
a value outside the process block but is not completely present in the
sensitivity list. If you set this parameter to yes, the W122 rule does not
report a violation in such cases.

NOTE: The W122 rule does not report a violation for a signal that is assigned a value
outside the process block by using the concurrent assignment statement.

ignoreSeqProcess: Default value is no. Set this parameter to yes to
ignore rule checking inside the sequential process blocks.

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message is displayed for the <name> signal or the <name>
variable which is read in the always construct but is not present in the
sensitivity list:

[WARNING] The signal/variable '<name>' (or some of its bits)
read in the block is not in the sensitivity list [Hierarchy:
‘<hier-path>’]

If the report_all_messages parameter is set, then the violation message is
modified, as follows:

[WARNING] Signal/variable '<name>', that is read in this block,
is not present in sensitivity list[Hier: <hier-path>]

Where, <hier-path> is the complete hierarchical path of the signal.

Potential Issues
A violation is reported for a signal or a variable, which is read in the
always block but is not present in the sensitivity list.

Consequences of Not Fixing
Signals missing from the sensitivity list can lead to a mismatch between
the pre- and post-synthesis simulations. The simulation only evaluates the
changes in the combinational logic when the signals in the sensitivity list
638
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
change before synthesis. The synthesis process generates a logic which
reads all the required values, whether they are present in the sensitivity
list or not. Effectively, the missing signals are added to the sensitivity list.
Therefore, the post-synthesis simulation results are different from the pre-
synthesis simulation results.

How to Debug and Fix
To debug the violation, double-click the message. The HDL Viewer window
highlights the line in which the specified signal or variable is read in the
denominational always block. This signal is missing in the sensitivity list
of the denominational always block. Confirm the same in one of the
following ways:

Scroll up the HDL window till you reach the always block and then
check the sensitivity list.

When the always block is very long, view the HDL in an editor and
search backwards for the nearest always block, and then check the
sensitivity list.
To ensure that the pre-synthesis simulation results match the
post-synthesis simulation results, add the missing signals to the
sensitivity list of the combinational always construct.

VHDL
The following message is displayed for the <construct-name>
construct of the <construct-type> type which is read in the process
block but is not present in the sensitivity list:

[WARNING] The <construct-type> '<construct-name>' (or some of
its bits) read in the process is not in the process sensitivity
list. [Hierarchy: ‘<hier-path>’]

Where, <construct-type> is a port, signal, or variable and
<hier-path> is the complete hierarchical path of the containing process.

Potential Issues
A violation is reported for a construct, which is read in the process block
but is not present in the sensitivity list.

Consequences of Not Fixing
Signals missing from the sensitivity list can lead to a mismatch between
the pre- and post-synthesis simulations. The simulation only evaluates the
639
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
changes in the combinational logic when the signals in the sensitivity list
change before synthesis. The synthesis process generates a logic which
reads all the required values, whether they are present in the sensitivity
list or not. Effectively, the missing signals are added to the sensitivity list.
Therefore, the post-synthesis simulation results are different from the pre-
synthesis simulation results.

How to Debug and Fix
To debug the violation, double-click the violation message. The HDL Viewer
window highlights the line, where, the specified signal is read in the
denominational process block. This signal is missing in the sensitivity list
of the denominational process block. You can confirm the same in any
one of the following ways:

Scroll up the HDL window till you reach the process and check the
sensitivity list.

If the process block is a very long block, view the HDL in an editor,
and, search backwards for the nearest process block and then check
the sensitivity list.

To resolve the violation, add the reported signals to the sensitivity list.

Example Code and/or Schematic
Verilog
Example 1
Consider the following example:

module mod_NotInSensOM_Test1 (in1, in2, out1);
input in1, in2;
output out1;
reg out1;

always @(in1)
begin

out1 = in1&in2;
end

endmodule

The W122 rule reports a violation for the above example because the in2
640
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
variable, which is read in the combinational always block, is not present
in the sensitivity list.

Example 2
Consider the following example:

module chip (input wire [7:0] a, b,
input wire [15:0] max_prod,
input wire [8:0] max_sum,
input wire error,
output logic [8:0] sum_out,
output logic [15:0] mult_out);

function [8:0] mult (input [7:0] m, n);
mult = 0;
if (!error) // error is an external signal
mult = m * n;
if (mult > max_prod)
//max_prod is an external signal
mult = max_prod;

endfunction
task sum (input [7:0] p, q, output [8:0] sum_out);
sum_out = 0;
if (!error) // error is an external signal
sum_out = p + q;
if (sum_out > max_sum)
// max_sum is an external signal
sum_out = max_sum;

endtask

always @* begin
// @* will only be sensitive to a and b
sum(a, b, sum_out);
// @* will not be sensitive to max_prod,
// max_sum or error
mult_out = mult(a, b);

end
endmodule
641
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
In the above example, the W122 rule reports a violation because the global
signals or variables, which are read in the tasks or functions called from
the always blocks, have wildcard (@*) sensitivity list.

Example 3
Consider the following example:

module test (clk,in,in1,out);
input clk,in,in1;
output out;
reg out;

always@(posedge clk)
begin
if (clk)
 out = in ^ in1;
end
endmodule

In the above example, the W122 rule, by default, reports violations for
signals in and in1. If you set the allow_clk_in_condition parameter to yes,
the rule does not report any violation.

VHDL
Example 1

Consider the following example where the signal rst is read in the process
block test (in architecture arc of entity ent) but is not present in the
sensitivity list of the process block:

test: process(clk)
begin
if (rst = '0') then

out1 <= "0000";
elsif (clk'event and clk = '1') then

out1 <= in1;
end if;

end process test;

For this example, SpyGlass generates the following message:

The in port 'rst' (or some of its bits) read in the process is
642
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
not in the process sensitivity list. [Hierarchy:
‘:ent(arc):test:’]

To resolve the violation, rewrite the design to include the signal rst in the
sensitivity list as follows:

test: process(rst, clk)

Example 2
Consider the following example:

entity test is
port (d1 : in std_logic_vector (2 downto 0);
 d2 : in std_logic;
 o1 : out std_logic_vector (2 downto 0));
end test;
architecture behav of test is
begin
 process(d1(2),d2)
 begin
 for i in 1 to 1 loop
 o1(1) <= d1(i+1) and d2;
 end loop;
 end process;
end behav;

In the above example, the signal d1 is read in the process block and is also
present in the sensitivity list. However, note that the W122 rule evaluates
only single-level binary operations, such as (d1(i+1)). Any level more
than one for binary operations are not evaluated (for example,
d1(1+i+1)).

Example 3

In the following example, the W122 rule reports a violation for the SIG1
signal because it is initialized to a value outside the process block:

entity ent24 is

 port(A : in BIT_VECTOR(0 to 3); Z : out BIT_VECTOR(0 to 3));
end ent24;
architecture arch24 of ent24 is
 signal SIG : BIT_VECTOR(0 to 3);
643
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
 signal C : BIT_VECTOR(0 to 3);
 signal SIG1 : BIT_VECTOR(0 to 3) := "0010";
 begin
 SIG <= (OTHERS => '0');
 process (A(0 to 1),SIG(0 to 1),SIG1(0 to 1))
 begin
 for NUM in 0 to 3 loop
 C(NUM) <= SIG(NUM);
 Z(NUM) <= SIG1(NUM);
 end loop;
 end process;
end arch24;

The W122 rule does not report a violation for the SIG signal because it is
assigned a value outside the process block by using the concurrent
assignment statement.

Default Severity Label
Warning

Rule Group
Simulation

Reports and Related Files
No related reports or files.
644
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W167
Module has no input or output ports

Language
Verilog, VHDL

Rule Description
The W167 flags modules that do not have any port interface (no input or
output ports).

Message Details
Verilog
The following message appears at the location where a module <module-
name> is defined without any inputs or outputs:

Module <module-name> has no ports

VHDL
The following message appears at the location where a design unit is
defined without any inputs or outputs:

Module has no input/output ports

Severity
Warning

Suggested Fix
If this is a top-level testbench, there is nothing to fix. Otherwise you can
only read to and write from this design unit through global variables, which
is unsynthesizable. It may sometimes be OK for simulation monitors
(though would still be considered by many to be poor coding style).
645
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W456
A signal is included in the sensitivity list of a combinational always
block but not all of its bits are read in that block (Verilog)
A signal is included in the sensitivity list of a process but not all of
its bits are read in that block (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The W456 rule flags signals that are in the sensitivity list of a
combinational always construct but are not completely read in the construct.

See Determining Signals Required in the Sensitivity List for details of how
SpyGlass determines which signals are required in the sensitivity list.

While such signals do not affect the functionality, they slow down the
design simulation. Also, the logic related to a signal in the sensitivity list
may have been accidentally removed or not added, which results in wrong
functionality. Many simulators re-evaluate the always construct on each
change in a redundant signal, even though the evaluation itself is
redundant.

By default, the W456 rule does not report messages for constants present
in sensitivity lists. Set the strict rule parameter to flag constants also.

By default, the W456 rule does not report bit information with the
messages. Set the report_all_messages parameter to yes or rule name(s) to
report the bit information in the violation messages.

NOTE: The W456 rule supports generate-if and generate-for block.

VHDL
The W456 rule flags signals that are in the sensitivity list of a process
construct but are not completely read in the construct.

While such signals do not affect the functionality, they slow down the
design simulation. Also, the logic related to a signal in the sensitivity list
may have been accidentally removed or not added, which results in wrong
functionality. Many simulators re-evaluate the process construct on each
change in a redundant signal, even though the evaluation itself is
redundant.
646
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
In combinational process constructs, any signal (as a whole or some of its
bits) that is not read in the process construct but included in the sensitivity
list, is flagged.

In sequential process constructs, signals other than the clock and the reset
signals are not required in the sensitivity list even if they are read in that
process construct and hence, are flagged.

Message Details
Verilog
The following message appears at the location of the sensitivity list of a
combinational always construct where signal/variable <name> is present in
the sensitivity list of the always construct but is not completely read in the
always construct:

[WARNING] Either all or some of the bits of the signal/variable
'<name>' are not required in sensitivity list, since they are
not read in always block [Hierarchy: ‘<hier-path>’]

If the report_all_messages parameter is set, then the violation message is
modified, as follows:

[WARNING] signal/variable '<name>' is not required in
sensitivity list, since it is not read in always block
[Hierarchy: '<hier-path>']

Where, <hier-path> is the complete hierarchical path of the containing
scope.

VHDL
The following message appears at the location of the sensitivity list of a
combinational process construct where a signal or input port <name> is
present in the sensitivity list of the process construct but is not completely
read in the process construct:

[WARNING] The <type> '<name>' may not be required in
sensitivity list as not all of its bits are read in process
[Hierarchy: ‘<hier-path>’]

Where, <type> can be signal or inport and <hier-path> is the
complete hierarchical path of the containing scope.
647
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
The following message appears at the location of the sensitivity list of a
sequential process construct where a signal or input port <name> is present
but is not required in the sensitivity list of the process construct:

The <type> '<name>' is not required in sensitivity list of the
sequential process [Hierarchy: ‘<hier-path>’]

Where, <type> can be signal or in port and <hier-path> is the
complete hierarchical path of the containing scope.

Rule Severity
Warning

VHDL Examples
Consider the following example of a sequential process construct:

test: process(clk, rst, in1)
begin
if (rst = '0') then

out1 <= "0000";
elsif (clk'event and clk = '1') then

out1 <= in1;
end if;

end process test;

While signal in1 is being read in the sequential process construct, it is not
the clock signal or the reset signal and hence, is not required in the
sensitivity list.

Suggested Fix
Verilog
This is partly a question of taste. If you specify the whole bus and some
bits are not read in the block, you may get a warning that the sensitivity
list is over-specified. In these cases, it is not possible to satisfy both
requirements simultaneously, so you must decide which requirement you
want to ignore. From an implementation point of view, it is safest to ignore
this rule.

VHDL
Remove variables from the sensitivity list if they are not required. This will
648
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
help improve simulation performance. It will have no effect on synthesis
behavior.
649
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W456a
A signal is included in the sensitivity list of a combinational always
block but none of its bits are read in that block (Verilog)
A signal is included in the sensitivity list of a combinational process
block but none of its bits are read in that block (VHDL)

Language
Verilog, VHDL

Rule Description
Verilog
The W456a rule flags signals that are in the sensitivity list of a
combinational always construct but are never read in the construct.

See Determining Signals Required in the Sensitivity List for details of how
SpyGlass determines which signals are required in the sensitivity list.

NOTE: The W456a rule is compatible with Design Compiler behavior. Therefore, this rule
will report violation only when none of the bits of signal are read in a combinational
always block.

While such signals do not affect the functionality, they slow down the
design simulation as simulators will re-evaluate the block on each change
in the variable. Also, the logic related to a signal in the sensitivity list may
have been accidentally removed or not added, which results in wrong
functionality.

By default, the W456a rule does not report messages for constants present
in sensitivity list. Set the strict rule parameter to flag constants also.

By default, the rule checking is performed for all branches of if-elseif-else
statement irrespective of the evaluated condition. Set the
disable_rtl_deadcode parameter to yes to stop rule checking for disabled if-
elseif-else branch.

NOTE: The W456a rule supports generate-if and generate-for block.

VHDL
The W456a rule flags signals that are in the sensitivity list of a process
construct but are never read in the construct.

While such signals do not affect the functionality, they slow down the
design simulation as simulators will re-evaluate the block on each change
650
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
in the variable. Also, the logic related to a signal in the sensitivity list may
have been accidentally removed or not added, which results in wrong
functionality.

NOTE: The W456a rule is compatible with Design Compiler behavior. Therefore, this rule
will report violation only when the whole bus is present in the sensitivity list of a
process and none of its bits are read in that process.

For sequential process constructs, signals other than the clock and the reset
signals are not required in the sensitivity list even if they are read in that
process construct and hence, are flagged.

By default, the W456a reports violations for all the records present in the
process sensitivity list and whose elements are not read in the process
block. Set the checkfullrecord parameter to yes to not to report violation for
a record if any of its element bits is read.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Message Details
Verilog
The following message appears at the location of the sensitivity list of a
combinational always construct where the signal or variable <name> is
present in the sensitivity list of the always construct but is never read in that
always construct:

The signal/variable '<name>' is not required in sensitivity
list as none of its bits is read in always block [Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.

VHDL
The following message appears at the location of the sensitivity list of a
combinational process construct where an object <name> of type <type> is
present in the sensitivity list of the process construct but is never read in
that process construct:

The <type> '<name>' is not required in sensitivity list as none
of its bits is read in process [Hierarchy: ‘<hier-path>’]
651
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
Where, <type> can be in port or signal and <hier-path> is the
complete hierarchical path of the containing process.

The following message appears at the location of the sensitivity list of a
sequential process construct where a signal or input port <name> is present
but is not required in the sensitivity list of the process construct:

The <type> '<name>' is not required in sensitivity list of the
sequential process [Hierarchy: ‘<hier-path>’]

Where, <type> can be signal or in port and <hier-path> is the
complete hierarchical path of the containing scope.

Rule Severity
Warning

Suggested Fix
Remove these signals from the sensitivity list.

Examples
Verilog
Consider the following example:

module top(in1, in2, out1);
input in1, in2;
output out1;
reg out1;

always @(in1 or in2)
begin

out1 = ~ in2;
end

endmodule

In the above example, the W456a rule reports a violation because the in1
is included in the sensitivity list of the combinational always block but
none of it’s bits are read in that block. The following message is reported
by this example:
652
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
Either all or some of the bits of signal/variable 'in1' are not
required in sensitivity list, since they are not read in always
block [Hierarchy: ':top:']

VHDL
Consider the following example:

entity top is
port(in1: in bit;

in2: in bit;
out1: out bit
);

end top;

architecture behav of top is
begin

process(in1, in2)

begin
out1 <= not in2;

end process;

end behav;

In the above example, the W456a rule reports a violation because the in1
is included in the sensitivity list of the combinational process block but
none of it’s bits are read in that block. The following message is reported
by this example:

The in port 'in1' may not be required in sensitivity list as
not all of its bits are read in process [Hierarchy:
':top(behav)::']
653
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W502
Ensure that a variable in the sensitivity list is not modified inside
the always block

When to Use
Use this rule to identify the signals in the sensitivity list that are modified
inside the same always block.

Description
The W502 rule reports violation for the signal/variable that is present in the
sensitivity list and is modified in the same always block.

NOTE: The W502 rule supports generate-if and generate-for block.

Language
Verilog

Default Weight
5

Parameter(s)
check_implicit_senselist: The default value is no. Set the value of the
parameter to yes to report violation for always @* and always_comb.

report_all_messages: Default value is no. Set this parameter to yes or
rule name(s) to report the bit information in the violation messages.

Constraint(s)
None

Messages and Suggested Fix
The following message appears when a signal/variable <var-name> is
encountered that is present in the sensitivity list and is being modified in
that same the always block:

[WARNING] The signal/variable '<var-name>' is modified inside
always block [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
654
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
scope.

Potential Issues
Violation may arise when a variable in the sensitivity list is modified inside
the always block.

Consequences of Not Fixing
Updating a signal from sensitivity in the same always block may result in
erroneous simulation results.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
statement where the signal mentioned in the violation message is modified
(set) inside the always block. The same signal is also present in the
sensitivity list of the same always block, which can be verified using one of
the following ways:

Scroll up the HDL window, till you reach the always block. Verify the
presence of the signal in the sensitivity list of this always block.

If the always block is a long block, view the HDL in an editor, and,
search backwards for the nearest always block. Verify the presence of
the signal in the sensitivity list of this always block.

To fix the violation, ensure that the signal is not present in the sensitivity
list, or the signal is not set in the always block.

Example Code and/or Schematic
Consider the following example:

module test(out1,inp1);
output out1;
input inp1;
reg out1;

always@(inp1 or out1)
begin
out1 <= inp1;

end

In the above example, signal out1 read in the sensitivity list is getting
modified inside the same always block.
655
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Simulation, Lint_Elab_Rules

Reports and Related Files
No related reports or files.
656
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
W526
Use case statements rather than if/else, where feasible, if
performance is important

Language
Verilog, VHDL

Rule Description
Verilog
The W526 rule flags those if-else constructs that should be changed to case
constructs to improve simulation performance.

The W526 rule assumes the following:
If the condition expressions of a nested if-else construct test the same
signal n times, the nesting level of the construct is assumed to be n.

A signal is assumed to be tested if the signal and only the signal appears
on the LHS of a comparison operation (==, <=, >=, != etc.).

The W526 rule flags an if-else construct only if the nesting level is more than
3, and the same value is being tested in each branch. You can change the
nesting level (default limit of 3) to any required value by changing the rule
definition given in the PERL ruledeck file.

A chain of if-else statements on the same test signal is inferred as a priority
encoder. The same logic build using case statement is inferred as a
multiplexer, which is likely to simulate faster than a priority encoder.

Using a case construct instead of if-else construct is meaningful only if the
same value is being tested in each branch of the if-else construct.

VHDL
The W526 rule flags those if-then-else constructs that should be changed to
case constructs to improve simulation performance.

A chain of if-then-else statements on the same test signal is inferred as a
priority encoder. The same logic build using case statement is inferred as a
multiplexer, which is likely to simulate faster than a priority encoder.

Using a case construct instead of if-then-else construct is meaningful only if the
same value is being tested in each branch of the if-then-else construct.

The W526 rule flags an if-then-else construct only if the nesting level is more
657
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
than 3, and the same value is being tested in each branch.

Message Details
Verilog
The following message appears at the first line of a rule-violating if-else
construct:

Case statement is recommended over deeply nested 'if'statement

VHDL
The following message appears at the first line of an if-then-else construct for
condition clause <name> if the number of branches is more than 3:

Deeply nested if statement (condition '<name>') could be
rewritten as a case statement

Rule Severity
Guideline

Suggested Fix
Generally it is best to recode deeply nested if statements as case statements
unless you actually need a priority encoder or the logic is not in a
performance-critical part of the circuit.

Examples (Verilog)
Consider the following if-else construct that has four levels of nesting as the
same signal sel is being compared four times in the conditional
expressions:

if (sel == 4'h0)
out = (in1 + int1) - P1;

else if (sel == 4'h1)
out = in2 + (int2 - P2);

else if (sel == 4'h2)
out = ((in3 + int1) - `M1) + (in2 + (int2 - P2));

else if (sel == 4'h3)
out = (data1 + (int2 - `M2));

else
out = int2;
658
Synopsys, Inc.

Simulation Rules

Rules in SpyGlass lint
For this example, SpyGlass generates the W526 rule message.

Examples (VHDL)
Consider the following example if-then-else construct that has more than 3
branches and the same value (x) is being tested in each branch:

if (x = "000") then y <= a and b;
elsif (x = "001") then y <= a or b;
elsif (x = "010") then y <= a nand b;
elsif (x = "011") then y <= a xor b;
else y <= '0';
end if;

For this example, SpyGlass generates the following message:

Deeply nested if statement (condition 'x') could be rewritten
as a case statement

To fix this violation, you can rewrite the above example using the case
construct as follows:

case (x) is
when "000" => y <= a and b;
when "001" => y <= a or b;
when "010" => y <= a nand b;
when "011" => y <= a xor b;
default => y <= '0';

end case;
659
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
Event Rules
The SpyGlass lint product provides the following event related rules:

Rule Flags...
W218 Event expressions that check for edge on a multi-bit signal
W238 always construct where both blocking assignments and nonblocking

assignments are used
W245 Reduction OR operator (|) or logical OR operator (||) used in the

sensitivity list of an always construct

W253 Data event variables specified with an edge in a timing check system
task call

W254 Reference event variables specified without an edge in a timing check
system task call

W256 Notifiers that are not single-bit registers
W326 event variables used with edges

W421 always constructs that have neither a sensitivity list nor an event
control statement

W503 event variables that are never triggered
660
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W238
Mixing combinational and sequential styles

Language
Verilog

Rule Description
The W238 rule flags always construct where both blocking assignments and
nonblocking assignments are used.

In general, you should use blocking assignments in combinational always
constructs and non-blocking assignments in sequential always constructs.
Mixing the two assignment types in the same always construct can lead to
mismatches between pre- and post-synthesis simulation results. The task
calls are considered as blocking assignments, so the violations are reported
accordingly.

Message Details
The following message appears at the location where a blocking (non-
blocking) assignment is encountered in an always construct after a non-
blocking (blocking) assignment has already been found:

Mixing combinational and sequential styles

For a non-blocking or blocking assignment, the previous respective
blocking or non-blocking assignment is also highlighted.

Rule Severity
Warning

Suggested Fix
Change all non-blocking assignments (<=) in combinational blocks to
blocking (=) assignments. Change all blocking assignments in sequential
blocks to non-blocking assignments.

Examples
In the following example, the task calls are considered as blocking
assignments, so the violations are reported:
661
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
module top(in, in2, in3, en, out, clk);

output out;

 input in, en, clk, in2, in3;

 reg out;

 wire a, b;

always_ff @ (posedge clk)

begin

out <= a; //non blocking

convert(a, out); //blocking

out <= a; //non blocking

convert(a, out); //blocking

end

task convert;

input temp_in1;

output temp_out1;

begin

 temp_out1 <= temp_in1;

end

endtask

endmodule
662
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W245
Probably intended "or", not "|" or "||" in sensitivity list

Language
Verilog

Rule Description
The W245 rule flags bit-wise or operator (|) or logical or operator (||)
used in the sensitivity list of an always construct.

As the sensitivity list of an always construct should be sensitive to the events
in the control signals, it is recommended to use the or operator.

The expression @(a || b) is generally not equivalent to @(a or b).
The first expression evaluates to the value a||b and triggers the event
when that value changes. This is generally not the design intent. The
second expression triggers when either signal a or signal b changes which
is generally the design intent.

NOTE: The W245 rule supports generate-if, generate-for, and generate-case blocks.

Message Details
The following messages appear at the location of the sensitivity list of an
always construct where the bit-wise or operator (|) is used:

Probably intended "or" instead of "|" in sensitivity list

The following message appears at the location of the sensitivity list of an
always construct where the logical or operator (||) is used:

Probably intended "or" instead of "||" in sensitivity list

Rule Severity
Warning

Suggested Fix
If you meant the first case, precompute a || b, then use that value in
the sensitivity list. Only use or in the sensitivity list.
663
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
Examples
Consider the following example:

always @(clk)
begin
...
end

always @(clk | clk1)

begin
...
end

In the above snippet, the W245 rule reports a violation because the bit-
wise or operator (|) or logical or operator (||) is used in the sensitivity list
of the always construct that is highlighted in red.

Probably intended "or" instead of "||" in sensitivity list
664
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W253
Data event has an edge

Language
Verilog

Rule Description
The W253 rule flags data event variables that have been specified with an
edge in a timing check system task call.

For example, the $setup task data variable should not be an edge.

Message Details
The following message appears at the location where the data event
variable <var-name> is used with an edge specification in a timing check
system task call:

Timing check data event: '<var-name>' should not use edge
specification

Rule Severity
Warning

Suggested Fix
Replace the edge specification with a legal data variable.

Example
The following example of timing check system task call violates the W253
rule as the data variable (out1) has been specified with an edge
specification:

$setup(posedge out1, posedge clk, 5, notifier);
665
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W254
Reference event does not have an edge

Language
Verilog

Rule Description
The W254 rule flags reference event variables that have been specified
without an edge in a timing check system task call.

For example, the $setup task reference variable must be an edge.

Message Details
The following message appears at the location where the reference event
variable <var-name> is used without an edge specification in a timing
check system task call:

Timing check reference event: '<var-name>' should use edge
specification

Rule Severity
Warning

Suggested Fix
Replace the reference specification with a legal edge variable.

Examples
The following example of timing check system task call violates the W254
rule as the reference event (clk) does not use an edge specification:

$setup(out2, clk, 2, notifier);
666
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W256
A notifier must be a one-bit register

Language
Verilog

Rule Description
The W256 rule flags notifiers that are not single-bit registers.

A notifier is the last argument in a timing check system task ($setup,
$hold, etc.) and must be a single-bit register.

NOTE: By default, the W256 rule is switched off. The functionality of this rule will now be
covered by STX_VE_1366 rule. For more details on the STX_VE_1366 rule, refer to
SpyGlass® Built-In Rules Reference Guide.

Message Details
The following message appears at the location where a notifier <noti-
name> that is not a single-bit register, is used:

notifier '<noti-name>' must be a single-bit register

Rule Severity
Warning

Suggested Fix
Replace the notifier specification with a legal single-bit register.

Examples
The following example of timing check system task call violates the W256
rule as the notifier is not a single-bit register:

...
wire [1:0]notifier = 2'b10;
...
$setup(out2, clk, 2, notifier);
667
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W326
Event variable appearing in a posedge/negedge expression

Language
Verilog

Rule Description
The W326 rule flags event variables used with edges.

Events do not have edges and therefore, should not appear in edge-based
expressions.

NOTE: The W326 rule is switched off by default. You can enable this rule by either
specifying the set_goal_option addrules W326 command or by setting
the verilint_compat rule parameter to yes.

Message Details
The following message appears at the location where an event variable is
used in an edge-based expression (posedge or negedge expressions):

Event variable should not appear in posedge/negedge expressions

Rule Severity
Fatal

Suggested Fix
If you intend to make the code synthesizable, trigger on edges of signals.

Examples
Consider the following example where an event variable is used with an
edge-based expression:

module test (clk1, in, cntr, out);
input clk1, in;
input [1:0] cntr;
output out;
668
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
event test;
reg a_1, a_2;

always @(clk1 or test)
a_2 = in;

always @(posedge test)
a_1 <= in;

assign out = a_1 + a_2 ;
endmodule

For this example, SpyGlass generates the following message:

Event variable should not appear in posedge/negedge expressions
669
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
W421
Reports “always” or “process” constructs that do not have an
event control

When to Use
Use this rule to identify always or process constructs that do not have
an event control.

Description
Verilog
The W421 rule reports always constructs that neither have a sensitivity list
nor an event control statement.

VHDL
The W421 rule reports process constructs that neither have a sensitivity list
nor a wait statement.

Language
Verilog, VHDL

Parameters
None

Constraints
None

Messages and Suggested Fix
Verilog
The following message appears for an always construct that has neither a
sensitivity list nor an event control statement.

[WARNING] No event control (@) in always block

Potential Issues
Violation may arise when an always block does not have an event control.

Consequences of Not Fixing
670
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
With no associated event statement, an always block remains active and no
other block can start execution. This can result in the simulator hanging on
the design.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the always block with no event control is declared.

Unless the always block is the very top process in the analysis and you
are depending on an internal task or procedure to terminate simulation,
specify an event control statement for the corresponding violating always
block.

VHDL
The following message appears for a process construct that has neither a
sensitivity list nor a wait statement.

[WARNING] No wait statement or sensitivity list in process

Potential Issues

Violation may arise when a process construct does not have a wait
statement.

Consequences of Not Fixing
With no associated event/wait statement, a process construct is always active
and no other block can start execution. This can result in the simulator
hanging on the design.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the line where the
process block with no event control is declared.

Unless the process block is the very top process in the analysis and you
are depending on an internal task or procedure to terminate simulation,
specify a wait statement for corresponding violating process construct.

Example Code and/or Schematic
Consider the following example:

entity ent_test is
port(a: in bit;

b: in bit;
671
Synopsys, Inc.

Event Rules

Rules in SpyGlass lint
z: out bit
);

end ent_test;

architecture behav of ent_test is
begin
process
begin

z <= a or b;
end process;

end behav;

In the above example, the W421 rule reports a violation as the process
statement is declared without an event control.

Default Severity Label
Warning

Rule Group
Event

Reports and Related Files
None
672
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Loop Rules
The following loop rules have been deprecated:

The SpyGlass lint product provides the following loop rules:

W478

Rule Flags...
W66 repeat constructs with non-static control expressions

W352 for constructs with condition expression that evaluate to a constant

W478 This rule has been deprecated
W479 for constructs where the control expression does not set the value of

the variable used in the step expression or always sets it to a constant
value

W480 for constructs where the loop index variable evaluates to a non-
integer

W481a for constructs where the variable used in the step expression is not
used in the condition expression

W481b for constructs where the variable used in the initialization expression
is not same as the variable used in the step expression
673
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W66
Ensure that a repeat construct has a static control expression

When to Use
Use this rule to identify repeat constructs with non-static control
expressions.

Rule Description
The W66 rule reports violation for repeat constructs with non-static
control expressions.

NOTE: The W66 rule supports generate-if, generate-for, and generate-case blocks.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a non-static repeat
construct control expression is encountered:

[WARNING] Unsynthesizable repeat loop because repeat expression
is not constant.[Hierarchy: ‘<hier-path>’]

Potential Issues

The number of times a repeat construct is executed should be a static
constant value.

Consequences of Not Fixing

A variable value for repeat construct execution is not synthesizable using
674
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
simple logic.

If a variable is used in the control part of a loop, the synthesis tool will not
have a deterministic way to synthesize the logic. Hence, this will not assure
gate level integrity, though RTL may simulate as expected.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
repeat statement whose condition part is not constant.

Verify the variable/signal causing this non-static repeat construct control
expression.

To fix the violation, you may need to recode this as multi-cycle logic. This
is because there is no easy way to implement a variable bound loop in
synthesizable logic.

Example Code and/or Schematic
Consider the following example:

module mod(i1, en, o1);
input i1, en;
output o1;
reg o1;

always@(en or i1)
repeat(en)

o1 = i1;

endmodule

In the above example, the W66 rule reports a violation as the repeat
expression is not constant, which causes an unsynthesizable repeat loop.

Default Severity Label
Warning

Rule Group
Loop
675
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Reports and Related Files
No related reports or files.
676
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W352
Reports “for” constructs with condition expression

When to Use
Use this rule to identify for constructs with condition expression.

Description
The W352 rule reports for constructs with condition expression that
evaluates to a constant.

NOTE: The W352 rule supports generate-for block.

Language
Verilog

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location where a for construct with
constant control expression is encountered.

[WARNING] The 'for' condition is constant - the loop will
either never execute or never terminate

Potential Issues

Violation may arise when a for construct is used in a condition expression
that evaluates to a constant.

Consequences of Not Fixing

When the for construct has a constant condition expression, the construct
either exits immediately without doing anything or never exits.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
677
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
line where a for loop with a constant control expression is specified.

To fix the violation, rewrite the condition.

Example Code and/or Schematic
Example 1
Consider the following example;

module mod(out, in, clk, reset);

output [3:0] out;
input [3:0] in;
input clk;
input reset;
reg [3:0] out;
integer i;

always @ (posedge clk or negedge reset)
for (i = 0; 4; i = i + 1)
if (!reset)
out[i] = 1'b0;

else
out[i] = in[i];

endmodule

In the above example, the W352 rule reports a violation as the for
condition is constant. The for loop will either never execute or never
terminate.

The conditional expression of the following for loop is a constant:

for (i=0 ; 2; i=2)
...

Example 2
Consider the following example:

`define ITER 5
module W352_mod1(in1, in2, out1, out2, out3, out4);
678
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
input [5 : 0] in1, in2;
output [5 : 0] out1, out2, out3, out4;
reg [5 : 0] out1, out2, out3, out4;
parameter COND = 5;
integer i;

always@(in1 or in2)
for(i = 0 ; `ITER; i = i + 1)
out1[i] = in1[i] | in2[i];

always@(in1 or in2)
for(i = 0 ; COND; i = i + 1)
out2[i] = in1[i] | in2[i];

always@(in1 or in2)
for(i = 0 ; 5; i = i + 1)
out3[i] = in1[i] | in2[i];

always@(in1 or in2)

for(i = 0 ; i <= 5; i = i + 1)
out4[i] = in1[i] | in2[i];

endmodule

In the above example, the W352 rule reports violation for the first three
for loops as the conditional expression for all of them is constant. These
for loop will either never execute or never terminate.

However, the W352 rule does not flag a violation for the last for loop as
the condition expression does not evaluate to a constant.

Default Severity Label
Warning

Rule Group
Loop
679
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Reports and Related Files
None
680
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W478
This rule has been deprecated

The W478 rule has been deprecated. The functionality of this rule is
covered by the SYNTH_5233 Built-In rule.
681
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W479
Checks if loop step statement variables are not properly
incremented or decremented

Language
Verilog

Rule Description
The W479 rule reports a violation message if the step variable is not
incremented or decremented in the step part of the for statement.

For example, in the following case the rule reports violation:

for (i = 0 ; i < 10 ; i = 1)

By default, the W479 rule does not report a violation if the step variable is
not present in the initialization or condition part. Set the strict parameter to
yes to report violation in such a case.

For example, in the following case the rule reports violation when the
strict parameter is set:

for (i = 0 ; i < 10 ; k = 1)

Message Details
The following message appears at the location of a for construct where
the variable <var-name> used in the step expression is not incremented
or decremented:

step variable '<var-name>' not assigned properly

Rule Severity
Warning

Suggested Fix
Correct the for loop.

Examples
The following example violates the W479 rule as the step expression (i=2)
682
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
does not increment or decrement the value of step variable:

for (i = 0 ; i < 10 ; i = 2)
...
683
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W480
Ensure that the loop index is of integer type

When to Use
Use this rule identify the for constructs in which the loop index is not of
integer type.

Description
The W480 rule reports violation for those for constructs in which the loop
index variable evaluates to a non-integer.

Language
Verilog

Default Weight
5

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
The following message appears at the location of a for construct where
the loop index variable <var-name> evaluates to a non-integer value:

[wARNING] Loop index '<var-name>' is not of type integer

Potential Issues

Violation may arise for a for construct where the loop index variable
evaluates to a non-integer value.

Consequences of Not Fixing

You can also use reg as a loop index. However, using reg may cause logic
to be inferred for that value, which is wasted if the value is required only as
a loop index. This may or may not be an issue, depending on whether your
684
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
synthesis tools can trim the unused logic.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line,
where non integer signal is used as for loop index. Review the loop to see if
really an integer value is required.

To fix the violation, prefer using an integer index wherever possible.

Example Code and/or Schematic
Example 1
Consider the following example:

time i1;
realtime i2;
integer i3;
for(i1=0 ; i1<5 ; i1 = i1+1)
for(i2=0 ; i2<5 ; i2 = i2+1)
for(i3=0 ; i3<5 ; i3 = i3+1)

In the above example, the W480 rule flags those for constructs in which
the loop index is of type time and realtime.

Example 2
Consider the following example:

reg [2:0] q;
...
for (q=0 ; q<10; q=q+1)

In the above example, the W480 rule reports a violation as the loop index
variable, q, is not an integer.

Default Severity Label
Warning

Rule Group
Loop
685
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Reports and Related Files
No related reports or files.
686
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W481a
Ensure that a for loop uses the same step variable as used in the
condition

When to Use
Use this rule to identify the for constructs where the variable used in the
step expression is not used in the condition expression.

Description
The W481a rule reports violation for the for constructs where the variable
used in the step expression is not used in the condition expression.

For example, it is meaningless to define a for construct as follows:

for (i = 0; j < 4; i = i + 1)

Here, the variable i used in the step expression is not used in the condition
expression (j < 4).

Default Weight
5

Language
Verilog

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Parameter(s)
strict: The default value is no. In this case, the rule reports violation only if
none of the step variable is present in the condition statement. Set the
value of the parameter to yes to report violation for all the step variables
that are not present in the condition statement.

Constraint(s)
None
687
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Messages and Suggested Fix
The following message appears at the location of a for construct where
the variable <var-name> used in the step expression is not used in the
condition expression:

[WARNING] Possibly unsynthesizable loop: step variable '<var-
name>' is not used in condition

Potential Issues

Violation may arise when a variable used in the step expression in a for
construct is not used in the condition expression

Consequences of Not Fixing
Synthesis tools may not unroll loops where different variables are used in
step and condition expressions as the upper bound is not in general
determinable. Also this is arguably poor coding even in logic not intended
for simulation.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the "for loop" in which step variable is not same as that of the variable
used in the condition.

To fix the violation, correct the for loop.

Example Code and/or Schematic
Example 1
Consider the following example:

for (a=0,b=0; a<10 && b<10 ; a++,b++)

In the above example, the W481a rule does not report any violation, even
if the value of the strict parameter is set to yes. This is because the
variables, a and b, are used in step as well as condition expressions.

Example 2
Consider the following example:

for (a=0,b=0; a<10; a++,b++)

In the above example, by default, the W481a rule does not report any
violation.
688
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
However, if you set the value of the strict parameter to yes, the W481a rule
reports violation for variable b, as it is used in the expression variable but
is not used in the condition expression.
689
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Example 3
Consider the following example:

for (a=0,b=0,c=0,d=0; a<10; b++,c++,d++)

In the above example, the W481a rule reports a violation for variables b, c,
and d, by default as well as when the strict parameter is set to yes. This is
because the variables, b, c, and d, are used in the step expression but not
in the condition expression.

Default Severity Label
Warning

Rule Group
Loop

Reports and Related Files
No related reports or files
690
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
W481b
Ensure that a for loop uses the same initialization variable as used
in the condition

When to Use
Use this rule to identify the for constructs where the variable used in the
initialization expression is not used in the condition expression

Description
The W481b rule reports violation for the for constructs where the variable
used in the initialization expression is not same as the variable used in the
step expression.

For example, it is meaningless to describe a for construct as follows:

for (i = 0; k < 10; k = k+1)

Here, the variable i used in the initialization expression is not same as the
variable k used in the step expression.

In SystemVerilog, there can be multiple initialization/step expressions
inside a single for construct. In such types of for constructs, violation
will be reported if a variable used in any of the step expression is not
present in any of the initialization expression.

Language
Verilog

Default Weight
5

Messages and Suggested Fix
The following message appears at the location of a for construct where
the variable <var1-name> used in the initialization expression is not
same as the variable <var2-name> used in the step expression:

[WARNING] Unsynthesizable loop: Init variable '<var1-name>' is
not same as step variable '<var2-name>'

Potential Issues
691
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Violation may arise when a variable used in the initialization expression in a
for construct is not same as the variable used in the step expression

Consequences of Not Fixing
Synthesis tools cannot unroll loops where different variables are used in
initialization and condition expressions as the upper bound is not in general
determinable. Also this is arguably poor coding even in logic not intended
for simulation.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the location
of the for loop in which initialization expression is not same as that of the
variable used in the step expression.

To fix the violation, correct the for loop.

Example Code and/or Schematic
Example 1
Consider the following example:

for (i = 0,j=0; j < 4; k++,l++)

In the above example, the W481b rule reports a violation for k and l as
both the variables are used in the step expression but are not used in the
initialization expression.

Example 2
Consider the following example:

for (i = 0,j=0; j < 4; k++,i++)

In the above examples, the W481b rule reports a violation for k as it is
used in the step expression but is not used in the initialization expression.

Example 3
Consider the following example:

Consider the following example where the W481a rule does not report any
violation:
for (i = 0,k=0; j < 4; k++,i++)

In the above example, the W481b rule does not report any as the
variables, i and k, are used in both initialization and step expressions.
692
Synopsys, Inc.

Loop Rules

Rules in SpyGlass lint
Default Severity Label
Warning

Rule Group
Loop

Reports and Related Files
No related reports or files.
693
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Lint_Elab_Rules
The SpyGlass lint product provides the following function and subprogram
rules:

Rule Flags...
W17 Arrays in sensitivity lists that are not completely specified
W69 case constructs that do not have all possible clauses described and also

do not have the default clause
W71 case constructs that do not contain a default clause
W86 Arrays where all elements are not set
W88 Memories where all their elements are not set in the design
W107 Bus connections to primitive gates
W110 Width mismatch between a module port and the net connected to the

port in a module instance
W110a Use same port index bounds in component instantiation and entity

declaration
W111 Arrays where all elements are not read in the process
W116 (Verilog) Unequal length operands in bitwise logical/ arithmetic/

ternary operator
(VHDL) Unequal length operands in bitwise logical/ arithmetic/
relational operator

W120 Variables that are declared but not used
W122 Signal that is read in a combinational process/ always block, but is not

included in the sensitivity list
W123 Signal/ variable that has been read out but is never set
W156 Reverse connected buses
W162 Constant integer assignments to signals when the width of the signal is

wider than the width of the constant integer
W163 Cases where a constant integer value is assigned to a vector of smaller

size
W164a Assignments in which the LHS width is less than the (implied) width of

the RHS expression
W164b Assignments in which the LHS width is greater than the (implied) width

of the RHS expression
694
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W164c Assignments in which the LHS width is greater than the (implied) width
of the RHS expression

W240 Input ports that are never read
W241 Output ports that are not completely set
W259 Signals that have multiple drivers but no associated resolution function
W263 Case clause labels whose widths do not match the width of the

corresponding case construct selector
W287a Module instances where nets connected to input ports are not driven
W316 Integer conversions where the left expression is wider than the right

expression
W328 Constant conversions where the left expression is narrower than the

right expression but the extra bits in the right expressions are all zeros
W362 Unequal widths in arithmetic comparison operations
W423 Ports that are re-declared with a different range in the same module
W446 Output ports that are read in the module where they are set
W453 Case constructs with large selector bit-width and more number of case

clauses
W456 Signals that are in the sensitivity list of a combinational always

construct but are not completely read in the construct
W456a Signals that are in the sensitivity list of a combinational process block

but are not read in the process block
W468 Variables used as array index that are narrower than the array width
W484 Possible loss of carry or borrow bits during assignments using addition

and subtraction arithmetic operators
W486 Shift operation overflows
W488 (Verilog) Bus signals that are in the sensitivity list of an always

construct but are not completely read in the construct
(VHDL) Arrays that appear in the sensitivity list but all elements of the
arrays are not read in the process

W494 Inout ports that are never used
W495 Inout ports that are read but never set
W497 Bus signals that are not completely set in the design
W498 Bus signals that are not completely read in the design
W502 Variable that is present in the sensitivity list and is modified in the

always block

Rule Flags...
695
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W504 Port expression that uses integers
W528 Signals or variables that are set but never read
W552 Flip-flop outputs whose different bit-selects are driven in different

sequential always constructs
W553 Flip-flop outputs whose different bit-selects are driven in different

sequential always constructs

Rule Flags...
696
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W162
Extension of bits in constant integer conversion

Language
Verilog

Rule Description
The W162 rule flags constant integer assignments to signals when the
width of the signal is wider than the width of the constant integer.

When assigning a constant integer value to a LHS operand, the width
specification for RHS should match LHS operand width. If the signal is
wider than the constant integer, the extra bits are padded with zeros. If the
signal is narrower than the constant integer, the extra high-order non-zero
bits are discarded.

The W162 rule also checks for those non-constant assignments where
extension is due to the constant present in the expression.

reg [4:0] a;
reg [1:0] b;
a = 10 + b;

NOTE: The W162 rule supports generate-if, generate-for, and generate-case blocks.

NOTE: The W162 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W162 command.

Message Details
The following message appears at the location where a constant integer is
assigned to a signal that is wider than the constant integer:

Extension of bits in constant integer conversion is erroneous
[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Rule Severity
Warning
697
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Suggested Fix
No fix is required in general, as long as your are OK with zero-extension.
698
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W163
Truncation of bits in constant integer conversion

Language
Verilog

Rule Description
The W163 rule flags constant integer assignments to signals when the
width of the signal is narrower than the width of the constant integer.

When assigning a constant integer value to a LHS operand, the width
specification for RHS should match LHS operand width. If the signal is
wider than the constant integer, the extra bits are padded with zeros. If the
signal is narrower than the constant integer, the extra high-order non-zero
bits are discarded.

NOTE: The W163 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W163 command.

Message Details
The following message appears at the location where a constant integer
(width <widthr>) is assigned to a signal (width <widthl>) that is
narrower than the constant integer:

Significant bits of constant will be truncated (lhs width
<widthl>, rhs width <widthr>)[Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Rule Severity
Warning

Suggested Fix
Adjust the constant so you assign a smaller constant which will not be
truncated.
699
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W164a
Identifies assignments in which the LHS width is less than the RHS
width

When to Use
Use this rule to identify assignments in which the LHS width is less than the
RHS width.

Description
Verilog
The rule reports violations for assignments in which the width of LHS is less
than the (implied) width of the RHS expression.

If there is a signal that used in control path and datapath, the should
consider such a signals as datapath, not control path. That is, if a signal is
not a control signal, then it is considered as a datapath.

Updated the W164a rule to consider all signals as a datapath signal except
if the signal is used in a non-control construct of a RHS part of an
assignment in the module. For this purpose, a non-control construct is a
construct such as, exclude condition of a conditional operation, operands of
comparison operator etc. The W164a rule considers all other signals as a
datapath signal.

The rule determines the assignment type of a binary expression as per the
following table:

Width Calculation for Verilog
By default, the width is calculated considering the best fit width of an
expression. That is the width in which maximum value of an expression can
be accommodated. When you set the value of the nocheckoverflow

Condition Assignment Type of a Binary Expression
LHS < RHS Expression type of RHS
LHS > RHS Expression type of LHS
LHS = RHS The expression type is same as that of the LHS or the RHS type,

which can be one of the following:
reg, wire, real, realtime, time, integer, static, constant integer,
Boolean
700
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
parameter to yes then the width is calculated according to the LRM and
natural width is considered for constants.

The behavior of the rule is explained by the following cases.
For Constant Expressions (with the value of the nocheckoverflow
parameter set to no):

For Constant integer expressions, the width is calculated based on
the value of the expression:

out[3:0] = 2 + 15 ; //RHS Width = 5 (Value = 17)
out[6:0] = 100 << 4 ; //RHS Width = 11
out[4:0] = 100 >> 2 ; //RHS Width = 5

If constant is not a part of the sub-expression then the specified
width is considered:
out[11:0] = 12'b0 ; //RHS Width = 12
If the width of a based number is not specified then the natural width
is considered:

out[8:0] = 'h344; //RHS Width = 10

For above cases, behavior of the rule remains the same when
nocheckoverflow parameter is set to yes.

For Arithmetic Operators

The width addition operator (with the value of the nocheckoverflow
parameter set to no), is calculated as a width where maximum value
of an expression is accommodated. Consider the following example:

out[1:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS
Width 4
Max value RHS 3 + 3 + 3 = 9
RHS Width = 4

out[2:0] = in1[1:0] + (3/3) ; //RHS Width 3
Max Value RHS = 3 + 1 = 4
RHS Width = 3

out[5:0] = in1[5:0] + 5'b1010; //RHS Width 7
out[4:0] = 15 + 3'b111; //RHS width 5
701
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
For the subtraction operator (with the value of the nocheckoverflow
parameter set to no), the width is calculated in a similar way as it is
done for addition:

out[3:0] = in1[3:0] - in1[1:0]; //RHS Width 5
out[4:0] = in1[3:0] - 4'b1010; //RHS Width 5

For the multiplication operator (with the value of the nocheckoverflow
parameter set to no), the width is calculated as follows:
When both operands are variable, then the RHS width is the sum of
the width of both operands:
out[6:0] = in1[1:0] * in2[1:0] * in3[1:0]; //RHS Width 6

out[2:0] = in1[2:0] * in1[1:0]; //RHS Width 5

When one operand is static and other is variable, then the RHS width
is calculated considering maximum value of the expression:

out[3:0] = in1[3:0] * 4'b1; //RHS Width 4, Max value = 15*1 = 15
out[3:0] = in1[3:0] * 4'b10; //RHS Width 5, Max
value = 15*2 = 30
out[7:0] = in1[3:0] * 4'b1010; //RHS Width 8, Max value = 15*10 =
150
out[3:0] = in1[3:0] * 4; //RHS Width 6, Max
value = 15*4 = 60

For the division operator (with the value of the nocheckoverflow
parameter set to no), the width of the RHS is assumed as the width
of left operand:
out[2:0] = in1[2:0]/in1[1:0]; //RHS Width 3
out[1:0] = in1[1:0]/in1[2:0]; //RHS Width 2
out[3:0] = in1[3:0]/4'b10; //RHS Width 4
out[2:0] = 4/in1[3:0]; //RHS Width 3

When the nocheckoverflow parameter is set to yes, the width is
assumed to be the same as the width of term having maximum
width. Consider the following example:
out[1:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS Width = 2
out[5:0] = in1[5:0] + 5'b1010; //RHS Width 6

out[2:0] = 15 + 3'b111; //RHS width 4

out[3:0] = in1[3:0] - in1[1:0]; //RHS Width 4
702
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
out[2:0] = in1[3:0] - 4'b1010; //RHS Width 4

out[2:0] = in1[2:0] * in1[1:0]; //RHS Width 3
out[3:0] = in1[3:0] * 4'b10; //RHS Width 4
out[1:0] = in1[1:0]/in1[2:0]; //RHS Width 3

out[2:0] = 4/in1[3:0]; //RHS Width 4

For Shift Operators

For the right shift (with the value of the nocheckoverflow parameter set
to no), if left operand width is matching the LHS width then no
violation is reported. Consider the following example:
out[3:0] = in1[3:0] >> in ; //RHS Width 4

out[2:0] = in1[4:0] >> 2 ; //RHS Width 5

out[31:0] = 4 >> in ; //RHS Width 32
out[4:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5

out[3:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5

For the left shift (with the value of the nocheckoverflow parameter set
to no), if shifted or left operand width is matching the LHS width, no
violation is reported. Consider the following example:

out[2:0] = 4'b0001 << in ; //RHS Width 4
out[2:0] = 4 << in ; //RHS Width 32
out[4:0] = in1[3:0] << 1 ; //RHS Width 5
out[6:0] = in1[4:0] << 2 ; //RHS Width 7
out[3:0] = in1[4:0] << in2[2:0] ; //RHS Width 5

When the nocheckoverflow parameter is set to yes, the width of the
left operand is considered for both left shift and right shift operations.

For Self-Determined Expressions

The width of a self-determined expression (with the value of the
nocheckoverflow parameter set to no), is calculated according to the
LRM. Consider the following example:

wire a,b,c;
assign a = {b+c}; //LHS: 1, RHS: 1
assign b = {1'b1,b+c}; //LHS: 1, RHS: 2

The behavior of the rule remains the same when nocheckoverflow
parameter is set to yes.
703
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
For Conditional Operators
The width of a conditional operator (with the value of the nocheckoverflow
parameter set to no), is calculated as follows:

A violation is reported if there is width mismatch either in the left
expression or in the right expression. Consider the following
example:

out[0] = in1[2] ? in2[0] : in3[2:0] ; //RHS Width 3

out[1:0] = in1[2] ? in2[2:0] : in3[1:0];//RHS Width 3

out[0] = in1[2] ? in2[0] : in3[2] ; //RHS Width 1
The behavior of the rule remains same when nocheckoverflow
parameter is set to yes.

For Power Operators
The width of a power operator (with the value of the nocheckoverflow
parameter set to no), is calculated as follows:

If the RHS expression of the power operator is static, then the width
of the expression is calculated as per the following formula:

Expression width = LHS expression width * RHS expression
value

 Consider the following example:

out[1:0] = in1[1:0] ** 12; //RHS Width 24

If the RHS expression of a power operator is non-static then the LHS
expression width is reported:
out[1:0] = in1[1:0] ** in2[3:0]; //RHS Width 2

When the nocheckoverflow parameter is set to yes then the LHS
expression width is reported:
out[1:0] = in1[1:0] ** 12; //RHS Width 2
out[1:0] = in1[1:0] ** in2[3:0]; //RHS width 2

For concatenation operator (with the value of the nocheckoverflow
parameter set to no), when the RHS expression is concatenated with
zero bits:

No violation is reported when the width of the LHS expression lies
between the original width of the RHS expression and the width after
704
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
adding zero concatenated bits. Here, the original width is the width
without considering the zero concatenation.
When the nocheckoverflow parameter is set to yes, a violation is
reported when the LHS width is less than the RHS width after adding
zero concatenated bits.

NOTE: The rule does not report violation if the RHS is numeric constant zero or any
expression multiplied by a numeric constant zero or a based number zero. For
example, violation will not be reported if the RHS is either of 0, 4 * 0, 4 * 1’b0,
w1 * 4’b0, or (w1+w2) * 0.

While comparing width of assign statements inside the for loops, width of
the for loop variable is limited to the minimum width, which is enough to
occupy values of the for loops range (from initial value to condition
value). This limiting happens when only the following conditions are true,
otherwise the actual loop variable width is considered for comparisons:

Loop initial value and condition value should be static expressions

Loop variable condition should be a simple one with one comparison
operator

i >= <static expr>

<static_expr> < j

This does not work for the following examples:

(i < <static expr>) && (j < <static expr>)

(i < <static expr>) || (j < <static expr>)

Same loop variable/variable expression with same bit selection as used
in for-loop condition should be present in RHS of assignment statement

Example 1

for (integer j=31; j>=0; j=j-1)

wr_domain_sel[4:0] = j; // No violation because width
(width sufficient to occupy loop range) of loop variable
j is 5

Example 2

reg j [31:0] j;

for (j[15:0]=31; j[15:0]>=0; j[15:0]=j[15:0]-1)
705
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
wr_domain_sel[4:0] = j[15:0]; // No Violation because
width (width sufficient to occupy loop range) of loop
variable j[15:0] is 5

Will not work for following examples

 reg [31:0]

 for (j[7:0]=31; j[7:0]>=0; j[7:0]=j[7:0]-1)

 wr_domain_sel[4:0] = j[15:0]; // Violation because
j[15:0] is not a loop variable and so its width (actual
width) is 16

VHDL
The W164a rule reports violations for assignments in which the width of
LHS is less than the (implied) width of the RHS expression.

For VHDL designs, the rule does not check the function or procedure bodies
as the size of the arguments depends on the actual values passed.

In case of all integer types where ranges are specified, the rule works in a
different manner. Consider the following example:

signal A1 : integer range -100 to 100 ;
signal A2 : integer range -100 to 100 ;
signal A3 : integer range -199 to 199 ;
signal A4 : integer range -200 to 200 ;
A3 <= A1 + A2 ; -- violation

A4 <= A1 + A2 ; -- No violation

In the first assignment, the range of the RHS expression A1+A2 is from
-200 to 200 but the range of the LHS expression A3 is from -199 to
199, which is less than the range of the RHS expression. Hence, the rule
reports a violation.

In the second assignment, the range of the RHS expression A1+A2 is from
-200 to 200, which is equal to the range of the LHS expression A4.
Hence, the rule does not report a violation.

NOTE: If any operand in the RHS has a non-integer type of range, then the
bit-width is compared as per the package, not the range.

Assignment Types
706
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
The rule handles the different assignment types as follows:

<Integer_range> <= <Integer_range> OP
<Integer_range>
The RHS range is evaluated and then compared with the LHS range.

<Non_integer_range> <= <Non_integer_range> OP
<Non_integer_range>
The bit-width for the RHS and the LHS is calculated as per the package.

<Non_integer_range> <= <Integer_range> OP
<Integer_range>
The RHS range is evaluated and converted to bit-width, which is then
compared with the bit-width of the LHS.

<Integer_range> <= <Non_integer_range> OP
<Non_integer_range>

<Non_integer_range> <= <Integer_range> OP
<Non_integer_range>

<Integer_range> <= <Integer_range> OP
<Non_integer_range>
The bit-width of the RHS is calculated from the package and then
compared with the bit-width of the LHS.

An integer type without the range specified is treated as
<Non_integer_range> and bit-width is calculated instead of range.

Width Calculation for VHDL
Set the nocheckoverflow parameter to yes or W164a to calculate the width
according to the LRM (numeric_std lib) as per the following cases:

For the addition and subtraction operators, the width is calculated based
on the following rules:

 If both the operands are variables, then the max width is taken.

 If one operand is a variable and the other is a static, then the width
of the variable is taken.

For the multiplication operator, the width is calculated based on the
following rules:
707
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
 If both the operands are variables, then the RHS width is the sum of
both the variables.
 If one operand is a variable and the other is a static, then the RHS
width is 2*(Variable width).

For the division operator, the width is calculated based on the following
rules:

 If both the operands are variables, then the RHS width is the width
of the left operand.
 If one operand is a variable and the other is a static, then the RHS
width is the width of the variable.

For concatenation operator, no violation is reported when the RHS
expression is concatenated with zero bits and the width of the LHS
expression lies between original width of the RHS expression and width
after adding zero concatenated bits. Here, original width is the width
without considering the zero concatenation.

NOTE: For constant arrays, the declared width is considered when the nocheckoverflow
parameter is set to yes. Whereas by default, the maximum width among the
initialized elements is considered. For more, refer to the VHDL Example 11.

NOTE: For new width related changes, refer to New Width Flow Application Note.

NOTE: The W164a rule supports generate-if and generate-for blocks.

Language
Verilog, VHDL

Parameter(s)
new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to New Width Flow Application Note.

check_lrm_and_natural_width: Default value is no. Set the value of the
parameter to yes to check for both LRM and natural widths before
reporting violations.
check_static_value: Default value is no. Set the value of the parameter to
yes or <rule_list> to report violation for all cases with width
mismatch, involving static expressions and non-static expressions
708
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
having a static part. You can also set the value of the parameter to
only_static to ignore violations for expressions, which do not have
a static part. Other possible values are only_const and only_expr.

check_static_natural_width: Default value is no. Set the value of the
parameter to yes to enable the specified rule to check for natural width
of a static expression even when the value of the nocheckoverflow
parameter is set to yes.
disable_rtl_deadcode: The default value is no. Set the value of the
parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.
sign_extend_func_names: The default value is ''EXTEND''. Set the value of
the parameter comma-separated list of function names to enable the
W164a rule to recognize VHDL sign extension functions and calculate
width of extend functions as per the const extension argument
specified in the argument list.

strict: Default value is no.
For Verilog, by default, the rule reports violation if the RHS expression
contains wire or reg.Set this parameter to yes to report all
assignments. Also, the rule reports integer port signals in the RHS
expression, in this case.

For VHDL, set the value of the parameter to yes to report violation for
addition and subtraction expression, if any one operand is a constant
and its width is lesser.

use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

nocheckoverflow: Default value is no. Set this parameter to yes or rule
name to check the bit-width as per LRM. Other possible value is the rule
name.

checkOperatorOverload: Default value is yes. Set this parameter to no to
evaluate width of the expression without considering overloaded
operators. This parameter is applicable for VHDL only.

check_counter_assignment: Default value is no. Set this parameter to
yes to report a violation for the counter type of assignments. You can
also set the value of this parameter to turbo. This parameter is
applicable for both Verilog and VHDL in the W164a rule. Note that when
709
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
check_counter_assignment is set to turbo, counters defined by the
same option are not reported by the W164a rule.

NOTE: For details about the cases that are considered as counter cases in Verilog,
see the check_counter_assignment parameter section.

NOTE:

check_unsign_overflow: Default value is no. This indicates the rule
suppresses the overflow when sign extension is used for unsigned
signals in addition or subtraction operation. If you set this parameter to
yes or W164a, the rule does not suppress the overflow and reports a
violation when sign extension is used for unsigned signals in addition or
subtraction operation.

check_concat_max_width: Default value is no. In this case, no violation is
reported when the width of the LHS expression is present between the
width of the RHS expression without considering zero concatenated bits
and the width of the RHS after adding zero concatenated bits.
If you set this parameter to yes, the RHS width is considered as the
width after adding zero concatenated bits. That is, the violation is
reported if the LHS width does not match the RHS width after adding
zero concatenated bits. This parameter is applicable for Verilog only.
concat_width_nf: Default value is no. Set the value of the parameter to
yes to specify if the W164a rule should use new algorithm to calculate
the width of concatenations ignoring the self-determined nature of
concatenation items.

handle_shift_op: Default value is no. In this case, no violation is reported
if the shifted or non-shifted width of a shift expression matches the LHS
width of an assignment. But the rule does not calculate the shifted
width, if the RHS of the shift expression is non-static. Set this parameter
to shift_left, shift_right, shift_both, no_shift,
no_shift_forced, or comma-separated list of rule names, to
compare shifted or non shifted widths for left and right shift
expressions.

datapath_or_control: Default value is no. In this case, and the rule
reports violations for all type of signals. Set this parameter to
datapath, control, or all to specify the type of signals to be
checked.
710
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
force_handle_shift_op: Default value is no. Set this parameter to yes to
enable the rule to honor handle_shift_op parameter value even if the
nocheckoverflow parameter is set to yes.

control_sig_detection_nf: Default value is no. If you set this parameter to
yes, the rule treats a signal to be a control signal only if it is used in a
conditional operator or control binary operator within the scope of
currently processing statement. The rule does not consider the signal to
be a control signal even if it is used as a control signal in other places of
the module (that is, the statements other than the current statement).

handle_lrm_param_in_shift: Default value is no. Set this parameter to
yes to enable the W164a rule to honor the use_lrm_width parameter in
the width calculations of shift expressions.
handle_zero_padding: Default value is no. Set the value of the parameter
to yes or rule name to perform leading zero expansion and truncation of
RHS of an assignment. This is performed only if the RHS of the
assignment is static.
process_complete_condop: Default value is no. Set the value of the
parameter to yes to enable the rule checking on both operands of the
condop assignment.
treat_concat_assign_separately: Default value is no. Set the value of the
parameter to yes to use this parameter to report violation for each
bucket assignment in unpacked array separately. For a packed array, a
violation is reported for the whole array.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information, see
the SpyGlass Lint Turbo Structural User Guide.

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message is displayed for the <lexpr> LHS expression of an
assignment of width <widthl>, which is less than the <rexpr> RHS
expression of width <widthr>:
711
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
[WARNING] LHS: '<lexpr>' width <widthl> is less than RHS:
<rexpr> width <widthr> in assignment [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

If the datapath_or_control parameter is set datapath, control, or all,
the following message is reported:

[WARNING] LHS <control | datapath> signal: '<LHS-
expression>' width <LHS-width> is less than RHS: '<RHS-
expression>' width <RHS-width> in assignment [Hierarchy:
'<hier-path>']

Potential Issues
A violation is reported when the LHS width is less than the RHS width.

Consequences of Not Fixing
For more information on consequences of not fixing the violation, click
Consequences of Not Fixing.

How to Debug and Fix
For more information on how to debug and fix the violation, click How to
Debug and Fix.

VHDL
Message 1
The following message is displayed for the <lexpr> LHS expression of an
assignment of width <widthl>, which is less than the <rexpr> RHS
expression of width <widthr>:

[WARNING] LHS: '<exprl>' (width <widthl>) is less than RHS:
'<exprr>' (width <widthr>) in assignment [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Potential Issues
A violation is reported when the LHS width is less than the RHS width in an
assignment.

Consequences of Not Fixing
For more information on consequences of not fixing the violation, click
Consequences of Not Fixing.
712
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
How to Debug and Fix
For more information on how to debug and fix the violation, click How to
Debug and Fix.

Message 2
The following message is displayed for the <rrange> range of the
<exprr> RHS expression, which is not within the <lrange> range of
LHS expression <exprl>:

[WARNING] Range of RHS '<exprr>' (<rrange>) is not within the
range of LHS '<exprl' (<lrange>)]

Potential Issues
A violation is reported when the range of the RHS expression is less than
the range of the LHS expression.

Consequences of Not Fixing
This may result in overflow and loss of data.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line
where the width mismatch is detected.

To resolve the violation, explicitly truncate as necessary since it is more
readable, instead of relying on the default behavior. Examine the logic to
ensure that the truncation does not affect the behavior of the design.

In case of counters specified as integers with range, a fix is not required
since the user puts the check for avoiding overflow. It is considered a
normal practice to use integer ranges for counters.

Example Code and/or Schematic
Verilog
Example 1
Consider the following example code in which the strict parameter reports a
violation:

wire a,b;
assign a = b + 4 ; //Violation reported with strict

Example 2
713
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Consider the following example in which no violation is reported:
A [12:0] = { 3’b000, b[9:0] } ;

In this case, the LHS width is 13. This LHS width lies between original RHS
width 10, which is calculated without considering leading zeros and RHS
width 13, which is calculated after considering leading zeros. Therefore, no
violation is reported.

Example 3
Consider another example, in which no violation is reported:
A [11:0] = { 3’b000, b[9:0] } ;

In this case, the LHS width is 12. This LHS width lies between original RHS
width 10, which is calculated without considering leading zeros and RHS
width 13, which is calculated after considering leading zeros. Therefore, no
violation is reported.

Example 4
Consider another example, in which a violation is reported:

A [7:0] = { 3’b000,b[9:0] };

In this case, the LHS width is 8. This LHS width does not lie between
original RHS width 10, which is calculated without considering leading
zeros and RHS width 13, which is calculated after considering leading
zeros. Therefore, a violation is reported.

Example 5
Consider the following example, in which violations are reported for a
concatenation operator:

module test3(d,clk,rst,q1, q2, q3, q4, q5);
input d,clk,rst;
output reg [4:0]q1;
output reg [9:0]q2;
output reg [7:0]q3;
output reg [12:0]q4;
output reg [4:0]q5;
wire [4:0]datain;

always @(posedge clk)
begin
 if(rst)
714
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
 begin
 q1 = {5'b00000, datain};
 q2 = {5'b00000, datain};
 q3 = {5'b00000, datain};
 q4 = {5'b00000, datain};
 q5 = {5'b00100, datain};

 q2 = {5'b00000, 3'b000, datain};
 q3 = {5'b00000, 3'b000, datain};

 q2 = {5'b00010, 3'b000, datain};
 q2 = {5'b00000, 3'b010, datain};
 end
end
endmodule

The W164a rule reports the following violations for the above example:

LHS: 'q5' width 5 is less than RHS: '{5'b00100, datain}'
width 10 in assignment [Hierarchy: ':test3']

LHS: 'q2' width 10 is less than RHS: '{5'b00010, 3'b000,
datain}' width 13 in assignment [Hierarchy: ':test3']

Example 6
Consider the following example:

assign out2 [8:0] = {3'b001,in1,8'b00001111};

In the above example, the rule preserves all leading zeros in case of out2
assignment, which is 3'b001. Therefore, the width of the assignment is
calculated as 12 bits.

Example 7
Consider the following example:

a[3:0] <= b[5:2] + 1; //violation because RHS variable 'b'
does not match with LHS variable 'a'
a[3:0] <= a[3:0] + 1; // no violation

Example 8
715
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
The following example demonstrates width calculation for the W164a rule
when the handle_shift_op parameter is set to shift_both:

wire [3:0] w1, w2, w3, w4;
assign w1[2:0] = w2 << w3; //RHS Width is 19
assign w1 = 3'b110 << w2; //RHS Width is 18
assign w1[2:0] = w2 << (w3 + w4); //RHS Width is 19
assign w1[2:0] = w2 << (w3 + w4 + 5'd0); //RHS Width is
34
assign w1[2:0] = w2 << (w3 - w4); //RHS Width is 19
assign w1[2:0] = w2 << {w3[0],w4[0]}; //RHS Width is 7
assign w1[2:0] = w2 << {w3[0],1'b0}; //RHS Width is 6
assign w1 = 10'h001 << w3[1:0]; //RHS Width is 10
assign w1 = {1'b0, w2[2:0]} << w3[0]; //RHS Width is 4

Example 9
The following example demonstrates width calculation for the W164a rule
when the handle_shift_op parameter is set to shift_both:

module m1();
wire [40:0]a, b, c;

assign a[3:0] = b[3:0] << 1; //RHS width = 5
assign a[3:0] = b[3:0] << c[1]; //RHS width = 5
assign a[3:0] = 11 << c[0]; //RHS width = 5
assign a[31:0] = 11 << c[0]; //RHS width = 5

assign a[3:0] = b[3:0] >> 1; //RHS width = 3
assign a[2:0] = b[3:0] >> c[1]; //RHS width = 4
assign a[2:0] = 11 >> c[1]; //RHS width = 4
endmodule

Example 10
The following command reports the counter type of assignments for the
W164a rule when the check_static_value and check_counter_assignment
parameters are set to yes:

assign w1[3:0] = w1[3:0] + 1;

Example 11
Consider the following example in which the check_unsign_overflow
716
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
parameter is set to yes:

wire [5:0] a,b;
wire [6:0] c;
assign c = {a[5],a} + {b[5],b};

The W164a rule reports a violation for the unsigned expression.

Example 12
Consider the following example in which the W164a rule reports violations
for all three assignments when the check_static_value parameter is set to
yes:

wire [4:0] AAA, BBB, CCC;
assign CCC = 6'b100111;
assign CCC = 120;
assign CCC = (AAA + 1) - BBB;

VHDL
Example 1

Consider the following example code in which the strict parameter
reports a violation:

a (3 downto 0) <= b (3 downto 0) + 4;

a (3 downto 0) <= 4 + b (3 downto 0);

Example 2
Consider the following example:

In the above example, since both the operands are variables, then the max
width is taken. Also, the W164a rule does not report a violation in this case
as the LHS width is equal to the RHS width, which is 4.

signal SIG1, SIG3 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
signal SIG4 :Unsigned (4 downto 0)

SIG3 < =SIG1+SIG2 //no violation (left width 4
 right shift 4)
717
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Example 3
Consider the following example:

ibrary ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity test is
port (
sig1 : unsigned(3 downto 0);
sig4 : unsigned(4 downto 0);
sig3 : out unsigned(3 downto 0)

);
end test;

architecture test_arc of test is
begin
 sig3 <= sig1 + 17; --No violation if parameter
nocheckoverflow is set then width(left4,right4)
 sig3 <= sig4 + 17; --Violation if parameter
nocheckoverflow is set then width(left4,right5)

end test_arc;

Example 4
Consider the following example:

In the above example, the rule reports violation for the expression as there
is a mismatch between LHS and RHS since LHS is 4 and RHS is 5.

Example 5

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
signal SIG3 :Unsigned (1 downto 0)
SIG1 < =SIG2*SIG3 //violation (left width 4
 right width 5)
718
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Consider the following example:

In the above example, since both the operands are variables, the RHS
width is the sum of both the variables. Therefore, the LHS width is 4 and
RHS width is 5. As a result, the rule reports a violation in this case.

Example 6
Consider the following example:

In the above example, one operand is a variable and the other variable is
static. Therefore, the RHS width is 2*(Variable width), that is, LHS width is
4 and the RHS width is 6. As a result, the rule reports a violation in this
case.

Example 7
Consider the following example:

In the above example, both the operands are variables. Therefore, the RHS
width is the left operand width, that is, the width of both LHS and RHS is 4.
As a result, the rule does not report a violation in this case.

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
signal SIG3 :Unsigned (1 downto 0)
SIG1 < =SIG2*SIG3 //violation (left width 4
 right width 5)

SIG1 <= SIG3 * 17 //no violation (width is 4 on
 both sides)
SIG1 <= SIG2 * 17 //violation (left 4, right 6)

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (3 downto 0)
signal SIG3 :Unsigned (1 downto 0)
signal SIG4 :Unsigned (4 downto 0)

SIG1 < =SIG2/SIG3 //No violation (left width 4
 right width 4)
719
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Example 8
Consider the following example:

In the above example, one operand is a variable and the other variable is
static. Therefore, the RHS width is variable width. The rule reports a
violation for the second expression as LHS width is 4 and the RHS width is
5. Also, the rule does not report a violation for first and third expression as
the LHS and RHS width for both the expressions is 4.

Example 9
Consider the following example:
a(3 downto 0) <= b(5 downto 2) + 1;

In the above example, the W164a rule does not report a violation as it is a
case of counter, where addition is with 1.

Example 10
The following command reports the counter type of assignments for the
W164a rule when the check_counter_assignment and strict parameters are
set to yes:

w1(3 downto 0) <= w2(3 downto 0) + 1;

Example 11
Consider the following example:

architecture rtl of rgx_pbe_gammacmp_lut is
 type aa_type is array(3 downto 0) of std_logic_vector(11
 downto 0);
 constant const_gamma_table : aa_type := (
 X"1ff",
 X"ff",
 X"2ff",
 X"00f"
);

SIG1 <= SIG2 / 17 //no violation (width is 4 on
 both sides)
SIG1 <= SIG4 / 17 //violation (left 4, right 5)
SIG1 <=17 / SIG2 //no violation (left 4, right 4)
720
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
signal t : std_logic_vector(9 downto 0);
signal a : std_logic_vector(13 downto 0);
begin
 t <= const_gamma_table(to_integer(unsigned(a)));
end rtl;

In the above example, by default, no violation is reported because the
width of RHS and LHS is the same (10), as for RHS, maximum width
among the initialized elements of the array (that is the width of x”2ff”)
is considered. When the nocheckoverflow parameter is set to yes, for RHS,
the declared width of an element of array is considered (12), hence a
violation is reported.

Default Severity Label
Warning

Rule Group
Lint_Elab_Rules

Reports and Related Files
None
721
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W164b
Identifies assignments in which the LHS width is greater than the
RHS width

When to Use
Use this rule to identify assignments in which the LHS width is greater than
the RHS width.

Description
Verilog
The W164b rule flags assignments in which the LHS width is greater than
the (implied) width of the RHS expression.

The rule determines the assignment type of a binary expression as per the
following table:

Width Calculation for Verilog
By default, the width is calculated considering the best fit width of an
expression. That is the width in which maximum value of an expression can
be accommodated.

When you set the value of the nocheckoverflow parameter to yes then width
is calculated according to the LRM and the natural width is considered for
constants.

The behavior of the rule is explained by the cases below.
For Constant Expressions

For constant integer expressions, the width is calculated based on the
value of expression:

Condition Assignment Type of a Binary Expression
LHS < RHS Expression type of RHS
LHS > RHS Expression type of LHS
LHS = RHS The expression type is same as that of the LHS or the RHS type.

The assignment type is determined from the following types in the
left to right order:
reg, wire, real, realtime, time, integer, static, constant integer,
Boolean
722
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
out[5:0] = 2 + 15 ; //RHS Width = 5 (Value = 17)

out[10:0] = 100 << 4 ; //RHS Width = 11

out[6:0] = 100 >> 2 ; //RHS Width = 5

If constant is not a part of sub-expression then the specified width is
considered:
out[11:0] = 12'b0 ; //RHS Width = 12
If the width of a based number is not specified then the natural width
is considered:

out[11:0] = 'h344; //RHS Width = 10

For above cases, behavior of rule remains same when the
nocheckoverflow parameter is set to yes.

For Arithmetic Operators

For addition operator, the width is calculated as the width in which
maximum value of expression is accommodated. Consider the
following example:

out[3:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS Width 4
Max value RHS 3 + 3 + 3 = 9
RHS Width = 4

out[2:0] = in1[1:0] + (3/3) ; //RHS Width 3
Max Value RHS = 3 + 1 = 4
RHS Width = 3

out[6:0] = in1[5:0] + 5'b1010; //RHS Width 7
out[4:0] = 15 + 3'b111; //RHS width 5

For the subtraction operator, the width is calculated in a similar way
as it is done for addition:
out[4:0] = in1[3:0] - in1[1:0]; //RHS Width 5
out[4:0] = in1[3:0] - 4'b1010; //RHS Width 5
For the multiplication operator, the width is calculated as follows:
When both operands are variable, then the RHS width is the sum of
the width of both operands:
out[5:0] = in1[1:0] * in2[1:0] * in3[1:0]; //RHS Width 6
out[4:0] = in1[2:0] * in1[1:0]; //RHS Width 5
723
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
When one operand is static and other is variable, then the RHS width
is calculated considering maximum value of the expression:

out[7:0] = in1[3:0] * 4'b1; //RHS Width 4, Max
value = 15*1 = 15
out[7:0] = in1[3:0] * 4'b10; //RHS Width 5, Max
value = 15*2 = 30
out[7:0] = in1[3:0] * 4'b1010; //RHS Width 8, Max value = 15*10 =
150
out[6:0] = in1[3:0] * 4; //RHS Width 6, Max
value = 15*4 = 60

For the division operator, the width of the RHS is assumed as the
width of left operand:
out[2:0] = in1[2:0]/in1[1:0]; //RHS Width 3

out[2:0] = in1[1:0]/in1[2:0]; //RHS Width 2

out[3:0] = in1[3:0]/4'b10; //RHS Width 4

out[3:0] = 4/in1[3:0]; //RHS Width 3

When the nocheckoverflow parameter is set to yes, the width is
assumed to be the same as the width of term having maximum
width. Consider the following example:

out[3:0] = in1[1:0] + in2[1:0] + in3[1:0]; //RHS
Width 2

out[6:0] = in1[5:0] + 5'b1010; //RHS Width 6

out[4:0] = 15 + 3'b111; //RHS width 4

out[4:0] = in1[3:0] - in1[1:0]; //RHS Width 4

out[4:0] = in1[3:0] - 4'b1010; //RHS Width 4

out[4:0] = in1[2:0] * in1[1:0]; //RHS Width 3

out[7:0] = in1[3:0] * 4'b10; //RHS Width 4

out[2:0] = in1[1:0]/in1[2:0]; //RHS Width 3
out[3:0] = 4/in1[3:0]; //RHS Width 4

For Shift Operator

For the right shift, if left operand width is matching the LHS width
then no violation is reported. Consider the following example:
724
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
out[3:0] = in1[3:0] >> in ; //RHS Width 4

out[5:0] = in1[4:0] >> 2 ; //RHS Width 5

out[31:0] = 4 >> in ; //RHS Width 32
out[4:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5

out[5:0] = in1[4:0] >> in2[1:0] ; //RHS Width 5

For left shift, if shifted or left operand width is matching LHS width
then no violation is reported. Consider the following example:

out[5:0] = 4'b0001 << in ; //RHS Width 4
out[31:0] = 4 << in ; //RHS Width 32
out[5:0] = in1[4:0] << 1 ; //RHS Width 6
out[6:0] = in1[4:0] << 2 ; //RHS Width 7
out[4:0] = in1[4:0] << 2 ; //RHS Width 5
out[7:0] = in1[4:0] << in2[2:0] ; //RHS Width 5

When parameter nocheckoverflow is set to yes then width of left
operand is considered for both left shift and right shift operations.

For Self-Determined Expression

For self-determined expressions, the width is calculated as per the
LRM:

wire a,b,c;

assign a = {b+c}; //LHS: 1, RHS: 1

assign out[2:0] = {1'b1,b+c}; //LHS: 3, RHS: 2

Behavior of the rule remains the same when the nocheckoverflow
parameter is set to yes

 For Conditional Operator
 The width of conditional operator is calculated as follows:

A violation is reported if there is a width mismatch either in left
expression or in right expression. Consider the following example:

out[2:0] = in1[2] ? in2[0] : in3[2:0] ; //RHS Width 1

out[2:0] = in1[2] ? in2[2:0] : in3[1:0];//RHS Width 2

out[0] = in1[2] ? in2[0] : in3[2] ; //RHS Width 1
725
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Behavior remains same when the nocheckoverflow parameter is set to
yes.

For Power Operator
The width of power operator is calculated as follows:

If the RHS expression of the power operator is static, then the width
of the expression is calculated as per the following formula:

Expression width = LHS expression width * RHS expression
value

 Consider the following example:
 out[23:0] = in1[1:0] ** 12; //RHS Width 24
If the RHS expression of power operator is non static then the LHS
expression width is reported. Consider the following example:
out[1:0] = in1[1:0] ** in2[3:0]; //RHS Width 2

When the nocheckoverflow parameter is set to yes, the LHS
expression width is reported. Consider the following example:

out[23:0] = in1[1:0] ** 12; //RHS Width 2

out[1:0] = in1[1:0] ** in2[3:0]; //RHS width 2
For concatenation operator, when the RHS expression is concatenated
with zero bits:

No violation is reported when the width of the LHS expression lies
between the original width of the RHS expression and the width after
adding zero concatenated bits. Here, the original width is the width
without considering the zero concatenation.
When the nocheckoverflow parameter is set to yes, a violation is
reported when LHS width is greater than the RHS width after adding
zero concatenated bits.

NOTE: The rule does not report violation if the RHS is numeric constant zero or any
expression multiplied by a numeric constant zero or a based number zero. For
example, violation will not be reported if the RHS is either of 0, 4 * 0, 4 * 1’b0,
w1 * 4’b0, or (w1+w2) * 0.

VHDL
The W164b rule flags assignments in which the LHS width is greater than
the (implied) width of the RHS expression.
726
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
For VHDL designs, the W164b rule does not check function or procedure
bodies as the size of the arguments may depend on the actual passed in
the function or procedure call.

In case of all integer types with range specified, the W164b rule checking is
in different manner. Consider the following example:

signal A1 : integer range -100 to 100 ;
signal A2 : integer range -100 to 100 ;
signal A3 : integer range -201 to 201 ;
signal A4 : integer range -200 to 200 ;
A3 <= A1 + A2 ;
A4 <= A1 + A2;

In the first assignment, RHS expression A1+A2 can have values from
-200 to 200 but range of the LHS expression A3 is -201 to 201 which is
greater than the range of RHS expression. Hence, the W164b rule flags a
message.

However, in the second assignment, range of LHS expression A4 is -200
to 200, which is equal to range of RHS expression A1+A2. Hence, the
W164b rule does not flag this assignment.

NOTE: If any operand of RHS has non-integer range type, bit-width will be compared as
per the package, not the range.

Assignment Types
The W164b rule handles different assignment types as follows:

<int-range> <= <int-range> OP <int-range>
Range will be evaluated for RHS and then compared with the range of
LHS.

<non-int-range> <= <non-int-range> OP
<non-int-range>
The bit-width for RHS and LHS will be calculated as per the package.

<non-int-range> <= <int-range> OP <int-range>
The range will be evaluated for RHS, which will then be converted in bit-
width and the bit-width will then be compared with bit-width of LHS.

<int-range> <= <non-int-range> OP <non-int-range>
727
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
<non-int-range> <= <int-range> OP <non-int-range>

<int-range> <= <int-range> OP <non-int-range>
The bit-width of RHS will be calculated from package and then compared
with the bit-width of LHS.

An integer type without the range specified will be treated as
<non-int-range> and bit-width will be calculated instead of range.

Width Calculation for VHDL

Set the nocheckoverflow parameter to yes or W164b to calculate the width
according to the LRM (numeric_std lib) as per the following cases:

For the addition and subtraction operators, the width is calculated based
on the following rules:

 If both the operands are variables, then the max width is taken.

 If one operand is a variable and the other is a static, then the width
of the variable is taken.

For the multiplication operator, the width is calculated based on the
following rules:

 If both the operands are variables, then the RHS width is the sum of
both the variables.
 If one operand is a variable and the other is a static, then the RHS
width is 2*(Variable width).

For the division operator, the width is calculated based on the following
rules:

 If both the operands are variables, then the RHS width is the width
of the left operand.
 If one operand is a variable and the other is a static, then the RHS
width is the width of the variable.

For concatenation operator, no violation is reported when the RHS
expression is concatenated with zero bits and the width of the LHS
expression lies between original width of the RHS expression and width
after adding zero concatenated bits. Here, original width is the width
without considering the zero concatenation.

NOTE: For constant arrays, the declared width is considered when the nocheckoverflow
parameter is set to yes. Whereas by default, the maximum width among the
initialized elements is considered. For more, refer to the VHDL Example 9.
728
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
NOTE: The W164b rule supports generate-if and generate-for blocks.

Language
Verilog, VHDL

Default Weight
10

Parameter(s)
new_flow_width: Default value is yes. This indicates the rule, by default,
executes the new width related changes. Set this parameter to no to
calculate the width of expressions by using the width calculation
algorithm of the SpyGlass 4.4.1 release.

NOTE: For new width related changes, refer to New Width Flow Application Note.

check_lrm_and_natural_width: Default value is no. Set the value of the
parameter to yes to check for both LRM and natural widths before
reporting violations.
check_static_value: Default value is no. Set the value of the parameter to
yes or <rule_list> to report violation for all cases with width
mismatch, involving static expressions and non-static expressions
having a static part. Other possible values are only_const and
only_expr.

disable_rtl_deadcode: The default value is no. Set the value of the
parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.
sign_extend_func_names: The default value is ''EXTEND''. Set the value of
the parameter comma-separated list of function names to enable the
W164b rule to recognize VHDL sign extension functions and calculate
width of extend functions as per the const extension argument specified
in the argument list.

strict: Default value is no.
For Verilog, by default, the rule reports violation if the RHS expression
contains wire or reg.Set this parameter to yes to report all
assignments. Also, the rule reports integer port signals in the RHS
expression, in this case.

For VHDL, set the value of the parameter to yes to report violation for
729
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
addition and subtraction expression, if any one operand is a constant
and its width is lesser.

use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

nocheckoverflow: Default value is no. Set this parameter to yes or rule
name to check the bit-width as per LRM. Other possible value is the rule
name.

checkOperatorOverload: Default value is yes. Set this parameter to no to
evaluate width of the expression without considering overloaded
operators. This parameter is applicable for VHDL only.

check_unsign_overflow: Default value is no. This indicates the rule
suppresses the overflow when sign extension is used for unsigned
signals in addition or subtraction operation. If you set this parameter to
yes or W164b, the rule does not suppress the overflow and does not
report a violation when sign extension is used for unsigned signals in
addition or subtraction operation.

check_concat_max_width: Default value is no. In this case, no violation is
reported when the width of the LHS expression is present between the
width of the RHS expression without considering zero concatenated bits
and the width of the RHS after adding zero concatenated bits.
If you set this parameter to yes, the RHS width is considered as the
width after adding zero concatenated bits. That is, the violation is
reported if the LHS width does not match the RHS width after adding
zero concatenated bits. This parameter is applicable for Verilog only.

handle_shift_op: Default value is no. In this case, no violation is reported
if the shifted or non-shifted width of a shift expression matches the LHS
width of an assignment. But the rule does not calculate the shifted
width, if the RHS of the shift expression is non-static. Set this parameter
to shift_left, shift_right, shift_both, no_shift, or
comma separated list of rule names, to compare shifted or non shifted
widths for left and right shift expressions.
handle_zero_padding: Default value is no. Set the value of the parameter
to yes or rule name to perform leading zero expansion and truncation of
RHS of an assignment. This is performed only if the RHS of the
assignment is static.
730
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
check_counter_assignment: Default value is no. In this case, no violation
is reported for counter cases. Set this parameter to yes to report
violations for counter cases. You can also set the value of the parameter
to turbo. In the W164b rule, this parameter is applicable for VHDL only.
process_complete_condop: Default value is no. Set the value of the
parameter to yes to enable the rule checking on both operands of the
condop assignment.
treat_concat_assign_separately: Default value is no. Set the value of the
parameter to yes to use this parameter to report violation for each
bucket assignment in unpacked array separately. For a packed array, a
violation is reported for the whole array.

Turbo Mode Support
The Turbo mode support is available for this rule. For more information,
see the SpyGlass Lint Turbo Structural User Guide.

Constraint(s)
None

Messages and Suggested Fix
Verilog
The following message appears at the location where the LHS expression
<lexpr> of width <widthl> of an assignment is greater than the RHS
expression <rexpr> of width <widthr>:

[WARNING] LHS: '<lexpr>' width <widthl> is greater than RHS:
<rexpr> width <widthr> in assignment [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Potential Issues
A violation is reported when the LHS width is greater than the RHS width.

Consequences of Not Fixing
For more information on consequences of not fixing the violation, click
Consequences of Not Fixing.

How to Debug and Fix
For more information on how to debug and fix the violation, click How to
731
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Debug and Fix.

VHDL
Message 1
The following message appears at the location where the width <widthl>
of LHS expression <exprl> of an assignment is greater than the width
<widthr> of the RHS expression <exprr>:

[WARNING] LHS: '<exprl>' (width <widthl>) is greater than RHS:
'<exprr>' (width <widthr>) in assignment [Hierarchy: ‘<hier-
path>’]

Where, <hier-path> is the complete hierarchical path of the signal.

Potential Issues
A violation is reported when the LHS width is greater than the RHS width in
an assignment.

Consequences of Not Fixing
For more information on consequences of not fixing the violation, click
Consequences of Not Fixing.

How to Debug and Fix
For more information on how to debug and fix the violation, click How to
Debug and Fix.

Message 2
The following message appears at the location where the range of LHS
expression <exprl> is wider than the range of RHS expression
<exprr> :

[WARNING] Range of LHS '<exprl>' (<lrange>) is wider than the
range of RHS '<exprr>' (<rrange>)

Where, <rrange> and <lrange> refer to the range of RHS and LHS
expressions, respectively.

Potential Issues
A violation is reported when the range of the LHS expression is wider than
the range of the RHS expression.

Consequences of Not Fixing
Bit-width mismatch between the LHS and RHS of a signal assignment is
732
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
allowed but may lead to inadvertent errors.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line
where the width mismatch is detected.

To resolve the violation, explicitly extend as necessary since it is more
readable, instead of relying on the default behavior. Examine the logic to
ensure that the truncation does not affect the behavior of the design.

In case of counters specified as integers with range, fix may not be
required as user may have put the check to avoid overflow this is the
normal practice to use integer range for counters.

Example Code and/or Schematic
Verilog
Example 1
Consider the following example code in which the strict parameter reports a
violation:

wire a,b;
assign a = b + 4 ; //Violation reported with strict

Example 2
Consider the following example, in which no violation is reported:
A [12:0] = { 3’b000, b[9:0] } ;

In this case, the LHS width is 13. This LHS width lies between original RHS
width 10, which is calculated without considering leading zeros and RHS
width 13, which is calculated after considering leading zeros. Therefore, no
violation is reported.

Example 3
Consider another example, in which no violation is reported:
A [11:0] = { 3’b000, b[9:0] } ;

In this case, the LHS width is 12. This LHS width lies between original RHS
width 10, which is calculated without considering leading zeros and RHS
width 13, which is calculated after considering leading zeros. Therefore, no
violation is reported.

Example 4
733
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Consider another example, in which a violation is reported:

A [14:0] = { 3’b000,b[9:0] } ;

In this case, the LHS width is 15. This LHS width does not lie between
original RHS width 10, which is calculated without considering leading
zeros and RHS width 13, which is calculated after considering leading
zeros. Therefore, a violation is reported.

Example 5
Consider the following example, in which violations are reported for a
concatenation operator:

module test3(d,clk,rst,q1, q2, q3, q4, q5);
input d,clk,rst;
output reg [4:0]q1;
output reg [9:0]q2;
output reg [7:0]q3;
output reg [12:0]q4;
output reg [4:0]q5;
wire [4:0]datain;

always @(posedge clk)
begin
 if(rst)
 begin
 q1 = {5'b00000, datain};
 q2 = {5'b00000, datain};
 q3 = {5'b00000, datain};
 q4 = {5'b00000, datain};
 q5 = {5'b00100, datain};

 q2 = {5'b00000, 3'b000, datain};
 q3 = {5'b00000, 3'b000, datain};

 q2 = {5'b00010, 3'b000, datain};
 q2 = {5'b00000, 3'b010, datain};
 end
end
endmodule
734
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
The W164b rule reports the following violations for the above example:

LHS: 'q4' width 13 is greater than RHS: '{5'b00000,
datain}' width 5 in assignment [Hierarchy: ':test3']

Example 6
Consider the following example:

assign out2 [8:0] = {3'b001,in1,8'b00001111};

In the above example, the rule preserves all leading zeros in case of out2
assignment, which is 3'b001. Therefore, the width of the assignment is
calculated as 12 bits.

Example 7
The following example demonstrates width calculation for the W164b rule
when the handle_shift_op parameter is set to shift_both:

wire [7:0] w1;
wire [1:0] w2, w3, w4;
assign w1 = w2 << w3; //RHS Width is 5
assign w1 = 3'b110 << w2; //RHS Width is 6
assign w1 = w2 << (w3 + w4); //RHS Width is 5
assign w1 = w2[0] << (w3 + w4 + 5'd0); //RHS Width is 7
assign w1 = w2 << (w3 - w4); //RHS Width is 5
assign w1 = w2 << {w3[0],w4[0]}; //RHS Width is 5
assign w1 = w2 << {w3[0],1'b0}; //RHS Width is 4
assign w1 = 3'h001 << w3; //RHS Width is 4
assign w1 = {1'b0, w2[0]} << w3[0]; //RHS Width is 2

Example 8
The following example demonstrates width calculation for the W164b rule
when the handle_shift_op parameter is set to shift_both:

module m1();
wire [40:0]a, b, c;

assign a[3:0] = b[3:0] << 1; //RHS width = 5
assign a[3:0] = b[3:0] << c[1]; //RHS width = 5
assign a[3:0] = 11 << c[0]; //RHS width = 5
assign a[31:0] = 11 << c[0]; //RHS width = 5
735
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
assign a[3:0] = b[3:0] >> 1; //RHS width = 3
assign a[2:0] = b[3:0] >> c[1]; //RHS width = 4
assign a[2:0] = 11 >> c[1]; //RHS width = 4
endmodule

Example 9
Consider the following example in which the check_unsign_overflow
parameter is set to yes:

wire [5:0] a,b;
wire [8:0] d;
assign d = {{2{a[5]}},a} + {{2{b[5]}},b};

The W164b rule does not report a violation for the unsigned expression.

Example 10
Consider the following example in which the W164b rule reports violations
for all three assignments when the check_static_value parameter is set to
yes:

wire [4:0] AAA, BBB;
wire [7:0] CCC;
assign CCC = 6'b100111;
assign CCC = 120;
assign CCC = (AAA + 1) - BBB;

VHDL
Example 1
Consider the following example code in which the strict parameter
reports a violation:

a (5 downto 0) <= b (2 downto 0) + 4;

a (5 downto 0) <= 4 + b (2 downto 0);

Example 2
Consider the following example:

signal SIG1, SIG3 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
736
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
In the above example, since both the operands are variables, then the max
width is taken. Also, the W164b rule does not report a violation in this case
as the LHS width is equal to the RHS width, which is 4.

Example 3
Consider the following example:

In the above example , the rule reports violation for the second expression
as LHS is 4 and the RHS is 5.

Example 4
Consider the following example:

In the above example, the rule does not report violation. Also, as both the
operands are variables, the RHS width is the sum of both the variables.

Example 5
Consider the following example:

signal SIG4 :Unsigned (4 downto 0)

SIG3 < =SIG1+SIG2 //no violation (left width 4
 right shift 4)

SIG3 <= SIG1 + 17 //no violation (width is 4 on
 both sides)
SIG3 <= SIG4 - 17 //violation (left 4, right 5)

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
signal SIG3 :Unsigned (1 downto 0)
signal SIG4 :Unsigned (4 downto 0)
signal SIG5 :Unsigned (9 downto 0)

SIG4 < =SIG2*SIG3 //no violation (left width 5
 right width 5)
737
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
In the above example, since both the operands are variables, the RHS
width is the sum of both the variables. Therefore, the LHS width is 4 and
RHS width is 5. As a result, the rule reports a violation in this case.

Example 6
Consider the following example:

In the above example, one operand is a variable and the other variable is
static. Therefore, the RHS width is 2*(Variable width).

Example 7
Consider the following example:

In the above example, both the operands are variables. Therefore, the RHS
width is the left operand width, that is, the width of both LHS and RHS is 4.
As a result, the rule does not report a violation in this case.

Example 8
Consider the following example:

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (2 downto 0)
signal SIG3 :Unsigned (1 downto 0)
SIG1 < =SIG2*SIG3 //violation (left width 4
 right width 5)

SIG1 <= SIG3 * 17 //violation (left 5, right 4)
SIG5 <= SIG2 * SIG3//violation (left 10, right 5)

signal SIG1 :Unsigned (3 downto 0)
signal SIG2 :Unsigned (3 downto 0)
signal SIG3 :Unsigned (1 downto 0)
signal SIG4 :Unsigned (4 downto 0)

SIG1 < =SIG2/SIG3 //No violation (left width 4
 right width 4)
738
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
In the above example, one operand is a variable and the other variable is
static. Therefore, the RHS width is variable width. The rule reports a
violation for the second expression as LHS width is 4 and the RHS width is
5. Also, the rule does not report a violation for first and third expression as
the LHS and RHS width for both the expressions is 4.

Example 9
Consider the following example:

architecture rtl of rgx_pbe_gammacmp_lut is
 type aa_type is array(3 downto 0) of std_logic_vector(11
 downto 0);
 constant const_gamma_table : aa_type := (
 X"1ff",
 X"ff",
 X"2ff",
 X"00f"
);

 signal t : std_logic_vector(11 downto 0);
 signal a : std_logic_vector(13 downto 0);
begin
 t <= const_gamma_table(to_integer(unsigned(a)));
end rtl;

In the above example, by default, a violation is reported because the LHS
width is 12 and RHS width is 10, which is maximum width among the
initialized elements of the array (that is the width of x”2ff”). When the
nocheckoverflow parameter is set to yes, for RHS, the declared width of an
element of array is considered (12), hence no violation is reported.

Default Severity Label
Warning

SIG1 <= SIG2 / 17 //no violation (width is 4 on
 both sides)
SIG1 <= SIG4 / 17 //violation (left 4, right 5)
SIG1 <=17 / SIG2 //no violation (left 4, right 4)
739
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Rule Group
Lint_Elab_Rules

Reports and Related Files
None
740
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W316
Reports extension of extra bits in integer conversion

When to Use
Use this rule to identify extension of extra bits in integer conversion.

Description
The W316 rule reports integer conversions where the left expression is
wider than the right expression. When assigning a value to an integer
variable, if the width of the value is less than the width of an integer (32
bits), the value is extended. Constant expressions are also checked.

This rule reports the following types of assignments assuming that n is an
integer variable, basedNum is a constant, and m and k are variables. All of
these have bit-widths less than 32 bits:

n = basedNum;
n = basedNum + basedNum;
n = basedNum + m;
n = m;
n = m + k;

When an integer variable (left expression) is assigned a value (right
expression), such value should be an integer or integer equivalent (that is,
32 bits).

NOTE: The W316 rule supports generate-if, generate-for, and generate-case blocks.

Prerequisites
The W316 rule is switched off by default. You can enable this rule by
specifying the set_goal_option addrules W316 command.

Language
Verilog

Parameters
verilint_compat: Default value is no. This indicates the W316 rule is
switched off. Set this parameter to yes to run this rule.
741
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
Constraints
None

Messages and Suggested Fix
The following message appears at the location where a width <widthl>
of left expression is more than a width <widthr> of right expression in an
integer conversion expression.

[WARNING] LHS expression width: <widthl> is greater than RHS
expression width: <widthr> [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

Potential Issues
Violation may arise when the LHS expression width is greater than the RHS
expression width.

Consequences of Not Fixing
<what are the consequences of not fixing the violation>

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the integer conversions have the left expression wider than the
right expression. View the violation message to check the width of the RHS
of the assignment statement.

In simple integer arithmetic in a testbench, this message can be waived or
ignored. In synthesizable logic, it is best to assign a value explicitly sized to
32 bits to avoid confusion.

Example Code and/or Schematic
Consider the following example:

module test(in1,in2,out);
input [7:0] in1;
input [7:0] in2;
output [7:0] out;
reg [7:0] out;

integer n,m,l;
742
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
always @(in1 or in2)
begin
out = in1 & in2;
n = m[31:16] + l[15:0];
end

endmodule

In the above example, the W316 rule reports a violation as the LHS
expression width is greater than the RHS expression width.

Default Severity Label
Warning

Rule Group
Verilint_Compat, Lint_Elab_Rules

Reports and Related Files
None
743
Synopsys, Inc.

Lint_Elab_Rules

Rules in SpyGlass lint
W328
Truncation in constant conversion, without loss of data

Language
Verilog

Rule Description
The W328 rule flags constant assignments where the left expression is
narrower than the right expression but the extra bits in the right
expressions are all zeros.

The W328 rule flags cases where a value with defined width is being
assigned to a vector with smaller width. However the truncated bits are all
zeros and no data is lost. While these cases are not directly error
conditions, they can become error conditions if the constant changes.

NOTE: The W328 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W328 command.

Message Details
The following message appears at the location of constant assignment
where the left expression width <widthl> is narrower than the right
expression width <widthr> but the truncated bits are all zeros:

Non-significant bits of constant are truncated during
assignment (lhs width <widthl>, rhs width <widthr>)[Hierarchy:
‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.

Rule Severity
Warning

Suggested Fix
Consider adjusting the constant so truncation will not occur.
744
Synopsys, Inc.

Verilint_Compat Rules

Rules in SpyGlass lint
Verilint_Compat Rules
The SpyGlass lint product provides the following verilint compatible rules:

Rule Flags...
W162 Constant integer assignments to signals when the width of the signal is

wider than the width of the constant integer
W163 Constant integer assignments to signals when the width of the signal is

narrower than the width of the constant integer
W313 integer type to single-bit type conversions
W316 Integer conversions where the left expression is wider than the right

expression
W326 event variables used with edges
W328 Constant conversions where the left expression is narrower than the

right expression but the extra bits in the right expressions are all zeros
W348 Concatenation expressions where the width of an integer expression is

unspecified
W474 Variables that are assigned but not deassigned
W475 Variables that are deassigned without being assigned
W476 Variables that are forced but are not released
W477 Variables that are released without being forced
W488 (Verilog) Bus signals that are in the sensitivity list of an always

construct but are not completely read in the construct
(VHDL) Arrays that appear in the sensitivity list but all elements of the
arrays are not read in the process

W493 Use of shared variables with global scope
W546 Duplicate design unit previously declared in a file at a specified line

number
745
Synopsys, Inc.

Verilint_Compat Rules

Rules in SpyGlass lint
W313
Converting integer to single bit

Language
Verilog

Rule Description
The W313 rule flags violation on assignment statements where an
integer type node is assigned to a single-bit node.

For example, consider the following scenario:

reg data;
integer intval;
data = intval; //violation

Any type conversion may indicate an unintended error. In this case there
may be a loss of significant data.

NOTE: The W313 rule is switched off by default. You can enable this rule by specifying the
set_goal_option addrules W313 command.

Message Details
The following message appears at the location where an integer type is
being converted in to a single-bit type:

Converting integer to single bit

Rule Severity
Warning

Suggested Fix
Check to see whether the conversion was intended. Waive violations on
such cases.
746
Synopsys, Inc.

Verilint_Compat Rules

Rules in SpyGlass lint
W348
Unspecified width for integer expression in a concatenation

Language
Verilog

Rule Description
The W348 rule flags concatenation expressions where the width of an
integer expression is unspecified.

Concatenations define objects of a specific width. Therefore, each item
within the concatenation list must have a defined width. An integer value
by default has a width of 32 bits that may probably be larger than you
intended and therefore triggers a violation.

The W348 rule does not report violation for unsized based number used in
concatenation. Since, such type of error is a syntax error, it is reported by
SpyGlass STX_VE_384 rule.

Message Details
The following message appears at the location of a concatenation
expression where one of the integer expression <int-expr> in the
concatenation list does not have a specified width:

Undefined width for integer expression '<int-expr>' in
concatenation

Rule Severity
Warning

Suggested Fix
Provide an explicit width for constant values, making it clear what width is
intended.

For example,{sig1, sig2, 3, sig3} triggers a violation by the
W348 rule. To avoid this violation, replace it with {sig1, sig2,
2'b11, sig3}.

If you are using an expression like 3+x in concatenation, precompute the
747
Synopsys, Inc.

Verilint_Compat Rules

Rules in SpyGlass lint
expression and then use as many bits as required in the concatenation.
Consider the following example that uses the expression, 3+x, in
concatenation:

...{sig1, sig2, 3+x, sig3}...

The above code can be replaced with the following:

tmp = 3+x;
...{sig1, sig2, tmp[1:0], sig3}...

Examples
The following concatenation example is an error because item 17 (being an
integer) is considered not to have a defined width:

out1 = {in1, in2, 17, in3}
748
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Miscellaneous Rules
The SpyGlass lint product provides the following Miscellaneous rules:

Rule Flags...
W156 Reverse connected buses in instance port maps, signal or

variable assignments, and block port maps
W189 Nested translate_off comments

W192 Empty BEGIN-END blocks
W193 Empty statements (isolated semicolons)
W208 Nested translate_on comments

W350 Control characters found in strings
W351 Control characters found in comment lines
W433 Multiple top-level modules
W527 Dangling ELSE statements
W546 Duplicate design unit
W701 Included files that are not required for analysis
LINT_abstract01 Generates relevant base policy constraints for block

abstractions
LINT_blksgdc01 Migrates relevant top-level lint constraints to block

boundaries
LINT_sca_validat
ion

Reports unconstrained port of abstracted block driven by a
constant value from top-level
749
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W189
Nested Synopsys translate_off comments

Language
Verilog

Rule Description
The W189 rule flags nested translate_off comments.

At the beginning of a Verilog file, translation is enabled for synthesizable
code. If required, later in the file a block can be treated as non translatable
by placing a translate_off comment at the beginning of the block and
a translate_on comment at the end of the block. Hence a nested
translate_off comment may indicate a possible missing of
corresponding translate_on comment.

Message Details
The following message appears when a nested translate_off
comment is encountered:

For a translate_off, a translate_on should appear, before next
translate_off

This rule also highlights the previous nested translate_off comment.

Severity
Warning

Suggested Fix
Make sure that for every translate_off, a translate_on appears,
before the next translate_off.

Examples
Consider the following example:

module test1(outp);
output reg outp;
750
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
reg [3:0] inp;
reg [1:0] sel;

//synopsys translate_off
initial inp=3'b000;

//synopsys translate_off
initial begin
sel=2'b00;

end
//synopsys translate_on
 always @(sel,inp)

case(sel)
2'b00 :outp = inp[0];
2'b01 :outp = inp[1];
2'b10 :outp = inp[2];
2'b11 :outp = inp[3];
default:

outp = 1;
endcase

endmodule

In the above example, the W189 rule reports a violation because the
second synopsys translate_off appears before synopsys
translate_on. The following message is reported by this example:

For a translate_off, a translate_on should appear, before next
translate_off
751
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W192
Empty block

Language
Verilog

Rule Description
The W192 rule flags empty begin-end blocks.

A begin-end block containing no logic may create clutter and reduce
readability. It may also represent an unintended edit.

Message Details
The following message appears at the start of an empty begin-end block:

Block does not contain any statement

Rule Severity
Warning

Suggested Fix
Check to make sure you really intend the block to be empty.
752
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W193
Empty statement

Language
Verilog

Rule Description
The W193 rule flags empty statements (isolated semicolons).

An empty statement may create clutter and reduce readability. It may also
represent an unintended edit or an unintended comment.

You can set the value of the report_if_blocks_only parameter to yes to
report violations only when a semicolon is used with the if, else, and
else-if statements.

Message Details
Message 1
The following message appears at the location where an isolated semicolon
is encountered:

Empty statement

Message 2
The following message appears for an extra semicolon used, if the
report_semicolon parameter is set to yes:

Extra semicolon used

Rule Severity
Warning

Suggested Fix
Check to make sure you really intend the statement to be empty.
753
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W208
Nested Synopsys translate_on comments

Language
Verilog

Rule Description
The W208 rule flags the nested translate_on comments.

At the beginning of Verilog file , translation is enabled for synthesizable
code. If required, later in the file a block can be treated as non translatable
by placing a translate_off comment at the beginning of the block and
a translate_on comment at the end of the block. Hence a nested
translate_on comment may indicate a possible missing of
corresponding translate_off comment.

Message Details
The following message appears when a nested translate_on comment
is encountered:

No associated translate_off found

Severity
Warning

Suggested Fix
Make sure that no translate_on comment is followed by a next
translate_on, unless a translate_off appears before this next
translate_on.
754
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W350
A control character appears inside a string

Language
Verilog

Rule Description
The W350 rule flags control characters found in strings.

Some EDA tools may not be able to handle control characters in strings.

Message Details
The following message appears at the line where a control character is
encountered in a string <string> after substring <substring>:

Control character found after substring <substring> in the
string <string>

Rule Severity
Warning

Suggested Fix
If your editor has a method to display control characters, use that to locate
the problem. Otherwise, delete and re-enter the string.
755
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W351
A control character appears inside a comment

Language
Verilog, VHDL

Rule Description
The W351 rule flags control characters found in comment lines.

Some EDA tools may not be able to handle control characters in comment
line.

Message Details
The following message appears at the line where a control character is
encountered in a comment line:

Control character in comment

Rule Severity
Warning

Suggested Fix
If your editor has a method to display control characters, use that to locate
the problem. Otherwise, delete and re-enter the string.
756
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W433
More than one top-level design unit

Language
Verilog

Rule Description
The W433 rule flags multiple top-level modules in the design.

Designs containing more than one top-level module may be a mistake. This
can occur due to the following reasons:

The design is being analyzed together with library elements which are
referenced directly (rather than through
set_option y <directory-path> or
set_option v <file-name> commands), and all the library
elements are not used in the design. As a result, all the unused
elements become top-level units.
The design is missing some intermediate-level components, due to
which the lower-level components in the hierarchy do not get linked. As
a result, the lower level components become top-level units.
The design contains certain modules that are specified as stop-levels
but no top-level is specified. As a result, units appearing under those
stop modules and not elsewhere in the design become top-level units.

Message Details
The following message appears at the first line of the first top-level module
of a design that has more than one top-level module:

Design contains more than one top level module

Rule Severity
Info

Suggested Fix
Make reference to libraries through the
set_option y <directory-path> or
757
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
set_option v <file-name> commands options wherever possible.
This will ensure only needed library elements will be included in the
analysis. If you still see multiple top-level units, use the
set_option top <name> command to select the one you want to
analyze and exclude others.
758
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W527
Dangling else in sequence of if conditions. Make sure nesting is
correct

Language
Verilog

Rule Description
The W527 rule flags dangling else statements (that is, else statements
following a sequence of if statements).

It is recommended to use begin-end blocks to force the correct order of
evaluation.

Message Details
The following message appears at the location of an if statement that is
inferred not to have a corresponding else statement:

Potential dangling 'else' statement of 'if' statement
(<condition expression>) - check your logic

Rule Severity
Warning

Suggested Fix
Use begin..end to force the correct evaluation. This removes any
ambiguity.

Examples
Consider the following example:

if (x)
if (y) do_B

else do_C

Looking at the structure of the construct, it may appear that do_C block
will be executed only if x is false irrespective of the value of y.
759
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
However, the Verilog semantics associate the else statement with the
immediately preceding if statement rather than the outermost if
statement. Thus, the above construct will be evaluated as follows:

if (x)
if (y) do_B
else do_C

The do_C block is evaluated only if x is true and y is false.
760
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W546
Duplicate design unit

Language
Verilog

Rule Description
The W546 rule flags duplicate modules.

This error may occur as a result of including more files than required in the
analysis when you have multiple revisions of a design within one directory.

NOTE: The W546 rule is switched off by default. You can enable this rule by either
specifying the set_goal_option addrules W546 command or by setting
the verilint_compat rule parameter to yes.

Parameters
waiver_compat: Default value is no. If you set the value of this parameter to
yes or <rule-name>, it ensures that the rule does not generate the line
number information in the first run itself. Thus waivers work correctly even
if the line numbers of the RTL gets changed in the subsequent runs.

Message Details
The following message appears at the location where a duplicate module
name <module-name> is encountered when a module with the same
name has been encountered in file <file-name> at line <num>:

Duplicate design unit '<module-name>', previously declared in
file '<file-name>' at line no '<num>'

Rule Severity
Fatal

Suggested Fix
Determine which source file contains the correct module description and
exclude any other such files from the analysis.
761
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
W701
Included file is not used

Language
Verilog

Rule Description
The W701 rule flags included files that are not required for analysis.

The W701 rule checks for the presence of the following constructs only in
the included file:

Macros

Parameters

Task declarations

Function declarations

Module definitions

User-defined primitives (UDPs)

Timescale directive

Interface definitions

Signal definitions

It is recommended to remove include statements for unwanted files
from the design to save the time wasted in analyzing such files.

Message Details
The following message appears at the location where an unused file
<file-name> is included:

File: <file-name> is 'included but not used

Rule Severity
Warning

Suggested Fix
Consider removing the include statement
762
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
LINT_abstract01
Generates relevant base policy constraints for block abstraction

When to Use
Use this rule to generate an abstracted model of a block.

For information on using the SoC abstraction flow, refer to the SpyGlass
SoC Methodology Guide.

Rule Description
This rule generates an abstracted model of a block, which is used during
SoC-level validation and verification.

Prerequisite
To enable this rule, run the block_abstract goal.

If you are running this rule using -rules option in a goal file, specify the
following command in the project file:

set_option block_abstract yes

Language
Verilog, VHDL

Default Weight
2

Parameter(s)
None

Constraint(s)
None

Messages and Suggested Fix
[INFO] Abstract view for design <du-name> successfully created

Where, <du-name> is the design unit name.
763
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Potential Issues
Not Applicable

Consequences of Not Fixing
Not Applicable

How to Debug and Fix
Not Applicable

Example Code and/or Schematic
Consider the following block RTL specified for generating an Abstract View:

module top (output op1, op2, input in1,

 reg ff1, ff2, ff3;
 wire d1, clkn;
 assign clkn = !clk;
 assign d1 = in1 & in2;
 always @(posedge clk or posedge rst) begin
 if (rst) begin
 ff1 <= 1'b0;
 ff2 <= 1'b0;
 end
 else begin
 ff1 <= d1;
 ff2 <= ff1;
 end
 end
 always @(posedge clkn or posedge rst) begin
 if (rst) begin
 ff3 <= 1'b0;
 end
 else begin
 ff3 <= !(tm & in2);
 end
 end
 assign op1 = ff2 & ff3;
 assign op2 = ff3 & in3;
endmodule

// Block RTL

 in2, in3, rst, clk, tm);

// Block SGDC (blockA.sgdc)
current_design top
set_case_analysis -name tm -value 1
764
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Following is the schematic of the above design:

FIGURE 4. Incremental schematic

When you specify the block RTL and block SGDC files to SpyGlass and run
the lint_abstract goal, the following SGDC file is generated
representing the Abstract View:

current_design "blockA"

abstract_port -ports "op1" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "Q" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base

abstract_port -ports "op2" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "Q" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base

abstract_port -ports "in1" -connected_inst "\blockA.ff1_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base
765
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
abstract_port -ports "in2" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity inv -mode set_case_analysis -scope base

abstract_port -ports "in2" -connected_inst "\blockA.ff1_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base

abstract_port -ports "in3" -related_ports "op2" -path_logic
combo -path_polarity buf -mode set_case_analysis -scope base

abstract_port -ports "rst" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "CLR" -path_logic buf
-path_polarity buf -mode set_case_analysis -scope base

abstract_port -ports "clk" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "CP" -path_logic inv
-path_polarity inv -mode set_case_analysis -scope base

abstract_port -ports "clk" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "CP" -path_logic buf
-path_polarity buf -mode set_case_analysis -scope base

For detailed explanation, refer to Example - Generating an Abstract View in
SpyGlass lint section of the SpyGlass SoC Methodology Guide.

Default Severity Label
Info

Rule Group
Miscellaneous rules

Reports and Related Files
The LINT_abstract01 generates the <block-name>_abstract.sgdc
file in the spyglass_reports/abstract_view/lint/ directory. This file contains
766
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
specifications of the abstract_port and set_case_analysis constraints
generated for a block.
767
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
LINT_blksgdc01
Migrates relevant top-level lint constraints to block boundaries

When to Use
Use this rule to generate a block-level SGDC file from top level
set_case_analysis constraint or due to supply net.

Rule Description
The LINT_blksgdc01 rule generates block-level set_case_analysis
constraints by migrating top-level constraints to block boundary.

The rule generates block-level constraints based on the following:

If any set_case_analysis constraint is specified on the top-level
port.
If input of a block that you want to abstract is connected to a supply net.

Prerequisite
Top-level SGDC file

Language
Verilog, VHDL

Default Weight
2

Parameter(s)
None

Constraint(s)
set_case_analysis

Messages and Suggested Fix
The following information message is reported when an SGDC file is
generated using the top-level constraint migration:

[INFO] SGDC file generated for instance '<inst-name>' (block:
'<block-name>') using top level constraints migration
768
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Potential Issues
None

Consequences of Not Fixing
None

How to Debug and Fix
None

Example Code and/or Schematic
In the schematic below, block BLK is instantiated inside the TOP. From the
top-level SGDC, the set_case_analysis constraint is set on the port in to 0.

The block BLK should be abstracted with the following
set_case_analysis constraints:

set_case_analysis -name in -value 1
set_case_analysis -name in1 -value 0
set_case_analysis -name in2 -value 0

In the top-down flow, the block-level SGDC having above
set_case_analysis constraints is created itself.

FIGURE 5. Incremental schematic

The following are the steps of the top-down flow for the above example:
1. Create the top.sgdc constraint file and specify the

set_case_anlysis constraint on the top-level port, if required.
2. In the top.sgdc file, specify the block that you want to abstract, as

follows:
769
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
 sgdc -export blk

3. The LINT_blksgdc01 rule creates the block-level SGDC, having
set_case_analysis constraints mentioned above.

4. This block-level SGDC is passed to the block abstraction.

Default Severity Label
Info

Rule Group
Miscellaneous rules

Reports and Related Files
None
770
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
LINT_sca_validation
Reports unconstrained port of abstracted block driven by a
constant value from top-level

When to Use
Use this rule to check the top-level design for propagation of constant
value to block port.

Rule Description
This rule reports a violation for the following cases:

If constant value is propagated to the block port from top-level and no
set_case_analysis is specified on the block port.
If set_case_analysis constraint is specified on block port but constant
value is not propagated from the top-level.
If there is any value mismatch between top-level port and block level
port.

Prerequisites
Following are the prerequisites of running this rule:

Specify the following command in the project file:

set_option sgdc_validate yes

Specify the set_case_analysis constraint.

Language
Verilog, VHDL

Default Weight
5

Parameter(s)
None

Constraint(s)
set_case_analysis: Specifies the case analysis conditions.
771
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Messages and Suggested Fix
Message 1
[WARNING] Simulated value '<value>' reaches to port '<port>' of
block instance '<inst_name>' (block: '<block_name>') however no
set_case_analysis is specified in block level constraint file

Arguments
Simulated value, <value>

Port name, <port>

Instance name, <inst_name>

Block name, <block_name>

Potential Issues
A violation message appears, if a constant value propagates from the top-
level, but the abstracted block port is not constrained with the
set_case_analysis constraint.

Consequences of Not Fixing
If you do not fix this violation, the design may not operate in the desired
mode.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Analyze the top-level design for propagation of a constant value to the

block port.
2. Specify the set_case_analysis constraint on the block port.

Message 2
[WARNING] Simulated value does not reach to port '<port>' of
block instance '<inst_name>' (block: '<block_name>') where as
set_case_analysis defined in block-level constraint file

Arguments
Simulated value, <value>

Port name, <port>

Instance name, <inst_name>

Block name, <block_name>
772
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Potential Issues
This violation appears, if a block port is constrained with the
set_case_analysis constraint, but no constant value propagates from the
top-level.

Consequences of Not Fixing
If you do not fix this violation, the reported ports can block or enable
propagation of unexpected signals across the abstracted block.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Analyze the top-level design for propagation of a constant value to the

block port.
2. Specify the set_case_analysis constraint, if a valid constant value

does not reach the block port.

Message 3
[WARNING] Simulated value at port '<port>' of instance
'<inst_name>' (block: '<block_name>') is '<sim_value>' but
specified value in block level constraint file is '<value>'

Arguments
Port name, <port>

Instance name, <inst_name>

Block name, <block_name>

Simulated value, <sim_value>

Value in constraint file, <value>

Potential Issues
This violation appears if block-level ports are constrained to values that do
not match with constant values propagated from the top-level.

Consequences of Not Fixing
If you do not fix this violation, the following issues may arise depending
upon different situations:

If the specified value at the block-level port is incorrect, block-level lint
verification is inaccurate.
773
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
If the specified value at the block-level port is correct but constant
propagation at the top-level is incorrect, it indicates a logical issue at
the top-level because of which incorrect value is propagated at the
block-level.

How to Debug and Fix
To fix this violation, perform the following steps:
1. Check the value specification of the set_case_analysis constraint on a

block port.
2. Analyze the top-level design for propagation of a constant value to the

block port.

Example Code and/or Schematic
Example 1
Consider the following schematic of a violation reported by this rule:

FIGURE 6. Incremental schematic

In the top-level SGDC file, the set_case_analysis constraint is not defined for
the test_en signal.

In this case, the LINT_sca_validation rule reports a violation because at the
top-level, no constant value propagates at the net connected to the
blk_test_en block pin, whereas the constant value is specified in the
block-level SGDC file.

current_design block
set_case_analysis -name block.blk_test_en -value 0

// SGDC file for the block module
774
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Example 2
Consider the following schematic of a violation reported by this rule:

FIGURE 7. Incremental schematic

In the above example, the LINT_sca_validation rule reports a violation
because at the top-level, the constant value 1 is propagated at the net
connected to the blk_test_en block pin, whereas in the block-level
SGDC file, the value specified is 0.

To fix this violation, modify the set_case_analysis constraint specification of
the block-level SGDC file to the following:

set_case_analysis -name block.blk_test_en -value 1

Default Severity Label
Warning

current_design top
set_case_analysis -name top.test_en -value 0

// Block-level SGDC file

current_design block
set_case_analysis -name block.blk_test_en -value 0

// Top-level SGDC file
775
Synopsys, Inc.

Miscellaneous Rules

Rules in SpyGlass lint
Rule Group
Miscellaneous rules

Reports and Related Files
No related reports or files.
776
Synopsys, Inc.

Appendix:
SGDC Constraints
SpyGlass Design Constraints (SGDC) provides additional design
information that is not apparent in an RTL.

In addition, you can restrict SpyGlass analysis to certain objects in a design
by specifying these objects by using SGDC commands.

The following table lists the SGDC commands used by SpyGlass lint
product:

Lint
abstract_port assume_path set_case_analysis
777
Synopsys, Inc.

Appendix: SGDC Constraints
778
Synopsys, Inc.

List of Topics

About This Book ... 19
allow_clk_in_condition .. 24
allviol ... 25
Array Rules ... 117
Assign Rules .. 279
assume_driver_load.. 27
Case Rules .. 128
casesize .. 27
check_bbox_driver ... 30
checkblocking .. 28
check_case_type.. 30
check_complete_design .. 31
check_concat_max_width.. 32
checkconstassign ... 32
check_const_selector .. 33
check_counter_assignment.. 34
check_counter_assignment_turbo... 36
checkDriverInModule .. 36
checkfullbus .. 28
checkfullrecord... 29
check_genvar .. 37
check_implicit_senselist .. 38
check_initialization_assignment.. 38
check_latch ... 39
check_lrm_and_natural_width.. 39
checknonblocking ... 36
checkOperatorOverload ... 40
check_param_association .. 42
check_sequential.. 47
check_shifted_only ... 42
check_shifted_width ... 43
check_sign_extend ... 43
check_static_natural_width.. 44
check_static_value ... 44
checksyncreset .. 47
check_temporary_flop... 48
779
Synopsys, Inc.

check_unsign_overflow ... 48
concat_width_nf ... 49
considerInoutAsOutput .. 49
Contents of This Book ... 20
control_sig_detection_nf.. 50
datapath_or_control ... 51
Delay Rules ... 373
Determining Signals Required in the Sensitivity List... 109
disable_rtl_deadcode .. 52
disable_signal_usage_report .. 53
do_not_run_W71.. 52
dump_array_bits .. 53
Event Rules ... 660
Expression Rules .. 552
fast .. 54
flag_only_instance_ports ... 55
force_handle_shift_op ... 55
Function-Subprogram Rules ... 369
Function-Task Rules.. 335
handle_case_select... 56
handle_equivalent_drivers ... 56
handle_large_bus ... 57
handle_large_expr.. 58
handle_lrm_param_in_shift ... 58
handle_shift_op.. 59
handle_static_caselabels ... 61
handle_zero_padding .. 61
ignore_auto_function_return .. 62
ignore_bitwiseor_assignment ... 62
ignoreCellName.. 63
ignore_cond_having_identifier.. 64
ignore_equivalent_drivers.. 64
ignore_forloop_indexes ... 65
ignore_generatefor_index .. 66
ignore_genvar.. 65
ignore_greybox_drivers... 66
ignore_hier_scope_var .. 67
ignore_inout .. 68
ignore_in_ports .. 67
ignore_integer_constant_labels .. 68
ignore_local_variables... 69
780
Synopsys, Inc.

ignore_macro_to_nonmacro .. 70
ignoreModuleInstance ... 69
ignore_multi_assign_in_forloop .. 71
ignore_nonBlockCondition ... 70
ignore_pli_tasks_and_functions.. 72
ignore_reinitialization.. 72
ignore_scope_names .. 73
ignoreSeqProcess ... 73
Instance Rules ... 383
limit_task_function_scope ... 74
Lint_Clock Rules... 190
Lint_Elab_Rules.. 694
Lint_Latch Rules... 380
Lint_Reset Rules .. 166
Lint_Tristate Rules.. 274
Loop Rules .. 673
Miscellaneous Rules .. 749
MultipleDriver Rules.. 613
new_flow_width ... 74
nocheckoverflow .. 83
not_used_signal ... 84
process_complete_condop ... 85
report_all_messages... 85
report_blackbox_inst .. 86
report_cast.. 86
reportconstassign ... 89
report_if_blocks_only.. 87
Reporting Hierarchical Paths .. 108
report_inter_nba .. 87
reportLibLatch.. 88
report_only_overflow .. 89
report_semicolon ... 90
reportsimilarassgn.. 91
report_struct_name_only .. 91
Rule Severity Classes.. 111
Same or Similar Rules in Other SpyGlass Products .. 112
set_message_severity... 92
SignalUsageReport ... 104
sign_extend_func_names .. 92
simplesense... 93
Simulation Rules .. 635
781
Synopsys, Inc.

SpyGlass lint Product Reports... 104
SpyGlass lint Rule Parameters .. 24
strict... 93
Synthesis Rules .. 414
traverse_function ... 98
treat_concat_assign_separately.. 98
treat_latch_as_combinational... 99
Typographical Conventions .. 21
Usage Rules... 204
use_carry_bit... 99
use_lrm_width ... 100
use_natural_width .. 101
verilint Pragmas for SpyGlass lint Product .. 107
Verilint_Compat Rules ... 745
verilint_compat .. 101
W448_Report... 106
waiver_compat... 102
782
Synopsys, Inc.

	SpyGlass® lint Rules Reference Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Using the Rules in the SpyGlass lint Product
	SpyGlass lint Rule Parameters
	allow_clk_in_condition
	allviol
	casesize
	checkblocking
	checkfullbus
	checkfullrecord
	check_bbox_driver
	check_case_type
	check_complete_design
	check_concat_max_width
	checkconstassign
	check_const_selector
	check_counter_assignment
	check_counter_assignment_turbo
	checkDriverInModule
	checknonblocking
	check_genvar
	check_implicit_senselist
	check_initialization_assignment
	check_latch
	check_lrm_and_natural_width
	checkOperatorOverload
	check_param_association
	check_shifted_only
	check_shifted_width
	check_sign_extend
	check_static_natural_width
	check_static_value
	checksyncreset
	check_sequential
	check_temporary_flop
	check_unsign_overflow
	concat_width_nf
	considerInoutAsOutput
	control_sig_detection_nf
	datapath_or_control
	do_not_run_W71
	disable_rtl_deadcode
	disable_signal_usage_report
	dump_array_bits
	fast
	force_handle_shift_op
	flag_only_instance_ports
	handle_case_select
	handle_equivalent_drivers
	handle_large_bus
	handle_large_expr
	handle_lrm_param_in_shift
	handle_shift_op
	handle_static_caselabels
	handle_zero_padding
	ignore_auto_function_return
	ignore_bitwiseor_assignment
	ignoreCellName
	ignore_cond_having_identifier
	ignore_equivalent_drivers
	ignore_forloop_indexes
	ignore_genvar
	ignore_generatefor_index
	ignore_greybox_drivers
	ignore_hier_scope_var
	ignore_in_ports
	ignore_inout
	ignore_integer_constant_labels
	ignore_local_variables
	ignoreModuleInstance
	ignore_nonBlockCondition
	ignore_macro_to_nonmacro
	ignore_multi_assign_in_forloop
	ignore_pli_tasks_and_functions
	ignore_reinitialization
	ignore_scope_names
	ignoreSeqProcess
	limit_task_function_scope
	new_flow_width
	nocheckoverflow
	not_used_signal
	process_complete_condop
	report_all_messages
	report_blackbox_inst
	report_cast
	report_if_blocks_only
	report_inter_nba
	reportLibLatch
	reportconstassign
	report_only_overflow
	report_semicolon
	report_struct_name_only
	reportsimilarassgn
	set_message_severity
	sign_extend_func_names
	simplesense
	strict
	traverse_function
	treat_concat_assign_separately
	treat_latch_as_combinational
	use_carry_bit
	use_lrm_width
	use_natural_width
	verilint_compat
	waiver_compat

	SpyGlass lint Product Reports
	SignalUsageReport
	W448_Report

	verilint Pragmas for SpyGlass lint Product
	Reporting Hierarchical Paths
	Determining Signals Required in the Sensitivity List
	Rule Severity Classes
	Same or Similar Rules in Other SpyGlass Products

	Rules in SpyGlass lint
	Array Rules
	W17
	W86
	W111
	W488

	Case Rules
	W69
	W71
	W171
	W187
	W226
	W263
	W332
	W337
	W398
	W453
	W551

	Lint_Reset Rules
	W392
	W395
	W396
	W402
	W402a
	W402b
	W448
	W501

	Lint_Clock Rules
	W391
	W401
	W422
	W500

	Usage Rules
	W34
	W88
	W120
	W121
	W123
	W143
	W154
	W175
	W188
	W215
	W216
	W240
	W241
	W333
	W423
	W468
	W493
	W494
	W494a
	W494b
	W495
	W497
	W498
	W528
	W529
	W557
	W557a
	W557b
	W558

	Lint_Tristate Rules
	W438
	W541

	Assign Rules
	W19
	W164
	W164c
	W257
	W280
	W306
	W307
	W308
	W309
	W310
	W311
	W312
	W314
	W317
	W336
	W397
	W414
	W446
	W474
	W475
	W476
	W477
	W484
	W505

	Function-Task Rules
	W190
	W191
	W242
	W243
	W345
	W346
	W372
	W373
	W424
	W425
	W426
	W427
	W428
	W429
	W489
	W499

	Function-Subprogram Rules
	W416

	Delay Rules
	W126
	W127
	W128
	W129

	Lint_Latch Rules
	W18

	Instance Rules
	W107
	W110
	W110a
	W146
	W156
	W210
	W287a
	W287b
	W287c
	W504

	Synthesis Rules
	AllocExpr
	ArrayEnumIndex
	No related reports or files.AssertStmt
	badimplicitSM1
	badimplicitSM2
	badimplicitSM4
	BlockHeader
	bothedges
	BothPhase
	ClockStyle
	DisconnSpec
	EntityStmt
	ExponOp
	ForLoopWait
	IncompleteType
	infiniteloop
	InitPorts
	IntGeneric
	LinkagePort
	LoopBound
	mixedsenselist
	MultiDimArr
	MultipleWait
	NoTimeOut
	PhysicalTypes
	PortType
	PreDefAttr
	readclock
	ResFunction
	ResetSynthCheck
	SigVarInit
	SynthIfStmt
	UserDefAttr
	W43
	W182c
	W182g
	W182h
	W182k
	W182n
	W213
	W218
	W239
	W250
	W293
	W294
	W295
	W339
	W339a
	W430
	W442
	W442a
	W442b
	W442c
	W442f
	W464
	W496a
	W496b
	W503
	WhileInSubProg

	Expression Rules
	W116
	W159
	W180
	W224
	W289
	W292
	W341
	W342
	W343
	W362
	W443
	W444
	W467
	W486
	W490
	W491
	W561
	W563
	W575
	W576

	MultipleDriver Rules
	W259
	W323
	W415
	W415a
	W552
	W553

	Simulation Rules
	W122
	W167
	W456
	W456a
	W502
	W526

	Event Rules
	W238
	W245
	W253
	W254
	W256
	W326
	W421

	Loop Rules
	W66
	W352
	W478
	W479
	W480
	W481a
	W481b

	Lint_Elab_Rules
	W162
	W163
	W164a
	W164b
	W316
	W328

	Verilint_Compat Rules
	W313
	W348

	Miscellaneous Rules
	W189
	W192
	W193
	W208
	W350
	W351
	W433
	W527
	W546
	W701
	LINT_abstract01
	LINT_blksgdc01
	LINT_sca_validation

	Appendix: SGDC Constraints

