
SpyGlass® Lint Turbo Structural
User Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

SpyGlass Lint Turbo Structural..7
Using the Turbo Flow .. 8
Turbo Initiatives ... 9
Rule-wise Initiatives ... 11

erc ..12
latch ..16
lint ..16
miscellaneous ...27
morelint ...29
openmore...40
simulation ..43
starc..43
starc2002...47
starc2005...49
timing..52

Turbo Parameter Settings ... 53
Smart Rule Execution.. 56

Waiving Primary Messages in the Turbo Mode ..56
Defining the Preferred Waiver Behavior...57

 The moresimple_turbo Report.. 59
Known Problems ... 62

SpyGlass Functional Lint ...65
Prerequisites for Using Turbo Functional Rules..................................... 66
Turbo Capabilities ... 67
Functional Lint to Lint Rule Mapping ... 67
Generating Waivers for Structural Rules ... 68
The SpyGlass Functional Lint Rules ... 72

Av_width_mismatch_assign : LHS width is less than RHS width of
assignment (Truncation)...73

Av_width_mismatch_case : A case expression width does not match case
select expression width...79

Av_width_mismatch_port : An instance port connection has different
v
Synopsys, Inc.

width compared to the port definition83
Av_width_mismatch_function : Bit-width of function call arguments

must match bit-width of the corresponding function definition
arguments ..89

Av_signed_unsigned_mismatch : Mixed signed and unsigned types...93
Av_width_mismatch_expr : Bit-width of operands of a logical operator do

not match ...98
Av_width_mismatch_expr02 : Av_width_mismatch_expr03 :

Reports an arithmetic comparison operator with unequal length..............................109
Av_case_default_redundant : Ensure that a case statement marked

full_case or a priority/unique case statement does not have a
default clause..116

Av_case_default_missing : Ensure that a case statement or a selected
signal assignment has a default clause..............................120

Av_dontcare_mismatch : Use of don’t-care except in case labels may lead
to simulation/synthesis mismatch.....................................124

SpyGlass Lint Abstraction Flow ...129
Overview... 129

Generating an Abstract View in SpyGlass Lint ..129
Validating Assumptions on Abstract View in SpyGlass Lint135
Using the Abstract View in SpyGlass Lint...137
Using the Automatic SoC Flow in SpyGlass Lint138
vi
Synopsys, Inc.

SpyGlass Lint Turbo
Structural
The SpyGlass Lint Turbo Structural solution enables you to consolidate and
better manage the violations reported by the SpyGlass Lint rules.

Prerequisite:

Make sure you have the turbo_struct license, to run this solution.

This user guide covers the following topics:
 Using the Turbo Flow

 Turbo Initiatives

 Rule-wise Initiatives

 Turbo Parameter Settings

 Smart Rule Execution

 The moresimple_turbo Report

 Known Problems
7
Synopsys, Inc.

Using the Turbo Flow

SpyGlass Lint Turbo Structural
Using the Turbo Flow
To use the turbo mode, set the following parameter:

set_option turbo yes

When the turbo option is set, the violations are classified into Primary and
Secondary violations. If you click on a Primary violation, a spreadsheet is
opened. This spreadsheet contains secondary violations for each primary
violation. You can apply the desired waivers for the violations present in
the spreadsheet. You can also use the old waivers. Waivers created in turbo
mode are waived in non-turbo mode.
8
Synopsys, Inc.

Turbo Initiatives

SpyGlass Lint Turbo Structural
Turbo Initiatives
The following table provide details about various initiatives/enhancements
introduced in the rules that lead to consolidation and better management
of the violations by classifying them into primary and secondary violations.

Initiative Performs
TURBO_BUS_MERGE Enables bus merging.

TURBO_CONSOLIDATE_DESIGN_SCOPE Consolidates and reports violations,
in a spreadsheet, based on block
(always/ process)/task/ function/
assignment/ signed‐variable/expr/
package/macro/ typdef/`define/per
case statement/port/signal/
variable declaration.

TURBO_CONSOLIDATE_IO_PAIR Consolidates and reports violations,
in a spreadsheet, for connections
between the same set of input and
output ports of a module.

TURBO_CONSOLIDATE_MODULE Consolidates and reports violations,
in a spreadsheet, based on module
name.

TURBO_CONSOLIDATE_MODULE_CON
FIGURATION

Consolidates and reports violations,
in a spreadsheet, from different
configurations of a module.

TURBO_CONSOLIDATE_PER_SOURCE Consolidates and reports violations,
in a spreadsheet, based on the
source (clock, reset, and signal
name, etc.).

TURBO_CONSOLIDATE_PORT Consolidates and reports violations,
in a spreadsheet, based on the
module instance offending port.

TURBO_DISABLE_ON_RTL Disables a rule on RTL stage of
design.
9
Synopsys, Inc.

Turbo Initiatives

SpyGlass Lint Turbo Structural
TURBO_GROUP_MESSAGE This is a global initiative that
modifies messages and indicates
the count of violating signals. All
violations are reported in a
spreadsheet.

TURBO_IGNORE_INTERNAL_OBJECTS Disables reporting violations if any
cells/nets/instances (combo/
multiplexes/tristate) are generated
internally.

TURBO_IGNORE_PADDING Disables reporting violations for
extensions of bits or constant
integers (like 32'h45).

TURBO_IGNORE_PARTIAL_BUS Disables reporting violations if any
bit of vector/multi‐bit is set/read/
used.

TURBO_IGNORE_REDUNDANT_RULE Enables the smart rule execution.
See the Smart Rule Execution
section for more details.

TURBO_IGNORE_STATIC_CONSTANTS Disables reporting violations on
expressions which contain a static/
constant operand, for example,
based numbers, parameters,
unsized based numbers, and
initialization.

TURBO_REMOVE_DUP_MSG Removes the duplicate messages.

TURBO_SET_RECOMMENDED_PARAM
ETER

Sets a parameter to the best fit
value. See the Turbo Parameter
Settings section for details.

Initiative Performs
10
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
Rule-wise Initiatives
The following tables present the list of rules in each product where
message-consolidation initiatives are available:
 erc

 latch

 lint

 miscellaneous

 morelint

 openmore

 simulation

 starc

 starc2002

 starc2005

 timing
11
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
erc

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

checkMultipleDrivers Verilog
+
VHDL

Only tristate
pins may be
WORed
(multiple
drivers only
allowed, if all
driving pins
are of type
tristate)

 Not applicable TURBO_IGNORE_RE
DUNDANT_RULE

checkPinConnectedT
oSupply

Verilog
+
VHDL

IO-ports or
Output ports
of cells/
modules may
not be
connected to
supply signals

Pin of <count> cell
<cell-name>
(instance <instance-
name>) of module
<module-name>
connected to supply
signals. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_GROUP_MES
SAGE

DisabledAnd Verilog
+
VHDL

And/Nand
gate is
disabled

Input pin of <count>
(comb-and/comb-
nand) gates
(instance <instance-
name>) of module
<module-name>
tiedlow.

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)
12
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
DisabledOr Verilog
+
VHDL

Or/Nor gate is
disabled

Input pin of <count>
(comb-or/comb-nor)
gates (instance
<instance-name>)
of module <module-
name> tiedlow.

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

FlopClockConstant Verilog
+
VHDL

Flip-flop clock
pin driven by
a constant
value

Clock pin of '10' flop
(instance '<inst-
name'> of module
'<module-name>'
tie to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

FlopDataConstant Verilog
+
VHDL

Flip-flop data
pin driven by
a constant
value

Data pin of <count>
Flops (instance
<instance-name>)
of module <module-
name> tie to
constant.

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
13
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
FlopEConst Verilog
+
VHDL

Flip-flop
enable pin is
permanently
disabled or
enabled

Enable pin of
'<count>' flop
(instance '<inst-
name'> of module
'<module-name>'
tie to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

FlopSRConst Verilog
+
VHDL

Flip-flop set
or reset pin is
permanently
enabled

Set or reset pin of
<count> Flops
(instance <instance-
name>) of module
<module-name> tie
to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

LatchDataConstant Verilog
+
VHDL

Latch data pin
driven by a
constant
value

Data pin of <count>
Latches (instance
<instance-name>)
of module <module-
name> tie to
constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
14
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
LatchEnableConstant Verilog
+
VHDL

Latch enable
pin driven by
a constant
value

Enable pin of
<count> Latches
(instance <instance-
name>) of module
<module-name> tie
to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

MuxSelConst Verilog
+
VHDL

Mux select is
constant.

Select pin of
<count> Mux
(instance <instance-
name>) of module
<module-name> tie
to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_PER_SOURCE
(applicable to
spreadsheet only)

NoContAssign Verilog Continuous
assignment
statement
present in
technology-
mapped
netlist

 Not applicable TURBO_DISABLE_O
N_RTL

TristateConst Verilog
+
VHDL

Tristate gate
enable is
constant

Enable pin of
<count> Tristate
(instance <instance-
name>) of module
<module-name> tie
to constant

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
15
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
latch

lint

3

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

W336L Verilog Blocking
assignment to
latch output
should be
avoided

Signal '<signal-
name>' is assigned
using blocking
assignment. For
'<count>' similar
case(s), please refer
to the spreadsheet
for details

TURBO_GROUP_MES
SAGE

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

LatchGatedClock Verilog
+
VHDL

Do not use
gated/
internally
generated
clock to drive
latches

<count> latch(es)
(output variable
'<variable-name>')
with gated or
internally generated
clock. Please refer to
the spreadsheet for
details

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_BUS_MERGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

W111 Verilog Not all
elements of an
array are read

Not all element of array
'<array-name>' are
read. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_REMOVE_DUP_
MSG

W111 VHDL Not all
elements of an
array are read

Not all element of array
'<array-name>' are
read. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_REMOVE_DUP_
MSG
16
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W116 Verilog Unequal
length
operands in
bitwise
logical/
arithmetic/
ternary
operator

 Not applicable TURBO_REMOVE_DUP_
MSG

W116 VHDL Unequal
length
operands in
bit wise
logical/
arithmetic/
relational
operator

 Not applicable TURBO_REMOVE_DUP_
MSG

W120 Verilog A signal/
variable has
been declared
but is not used

Variable '<variable-
name>' declared but not
used. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details.

TURBO_IGNORE_PARTIA
L_BUS

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_REMOVE_DUP_
MSG

W120 VHDL A signal/
variable has
been declared
but is not used

Variable '<variable-
name>' declared but not
used. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details.

TURBO_IGNORE_PARTIA
L_BUS

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_REMOVE_DUP_
MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
17
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W121 Verilog A variable
names collides
with and may
shadow
another
variable

Name '<variable-
name>' is not unique at
<count> places and
may shadow another
variable. Please refer to
the spreadsheet for
details

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

W123 Verilog A variable has
been read but
is not set

 Not applicable TURBO_REMOVE_DUP_
MSG

W123 VHDL A signal or
variable has
been read but
is not set

 Not applicable TURBO_REMOVE_DUP_
MSG

W154 Verilog Do not declare
nets implicitly

<count> more implicit
declaration(s) of the net
detected in the design.
Please refer to the
spreadsheet for details

TURBO_GROUP_MESSA
GE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

W159 Verilog Condition
contains a
constant
expression

Constant expression
'<expression>' in
condition. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_GROUP_MESSA
GE

W164a Verilog LHS width is
less than RHS
width of
assignment
(Truncation)

 '<count>' occurrences
of width mismatch on
assignment
'<assignment-node>'

TURBO_GROUP_MESSA
GE

W164a VHDL LHS width is
less than RHS
width of
assignment
(Truncation)

 Not applicable TURBO_REMOVE_DUP_
MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
18
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W164b Verilog LHS width is
greater than
RHS width of
assignment
(Extension)

'<count>' occurrences
of width mismatch on
assignment
'<assignment-node>'

TURBO_GROUP_MESSA
GE

W164b VHDL LHS width is
greater than
RHS width of
assignment
(Extension)

 Not applicable TURBO_REMOVE_DUP_
MSG

W164c Verilog LHS width is
greater than
RHS width of
assignment
(Extension)

LHS width '<widthl>' is
greater than RHS width
'<widthl>' [Hierarchy:
'<hier-path>'], <count>
occurrences of width
mismatch on same
assignment. Please refer
to the spreadsheet for
details.

TURBO_GROUP_MESSA
GE

W171 Verilog Case label is
not constant

<count> non constant
Case-labels in a case
statement. Please refer
to the spreadsheet for
details.

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_GROUP_MESSA
GE

W175 Verilog A parameter/
generic has
been defined
but is not used

Module '<module-
name>' has '<count>'
unused Parameter.
Please refer to the
spreadsheet for details.

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
19
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W175 VHDL A parameter/
generic has
been defined
but is not used

Entity '<entity-name>'
has '<count>' unused
generic. Please refer to
the spreadsheet for
details.

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

W190 Verilog Task or
procedure
declared but
not used

 Not applicable TURBO_CONSOLIDATE_
DESIGN_SCOPE

W190 VHDL Task or
procedure
declared but
not used

 Not applicable TURBO_CONSOLIDATE_
DESIGN_SCOPE

W240 Verilog An input has
been declared
but is not read

Input '<input-port-
name>' declared but not
read. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details.

TURBO_IGNORE_PARTIA
L_BUS

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_REMOVE_DUP_
MSG

W240 VHDL An input has
been declared
but is not read

Input '<input-port-
name>' declared but not
read. For <count>
similar occurrence(s),
please refer to the
spreadsheet for details

TURBO_IGNORE_PARTIA
L_BUS

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_REMOVE_DUP_
MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
20
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W263 Verilog A case
expression
width does not
match case
select
expression
width

'<count>' case label
width does not match
case selector width of
module '<module-
name>' at line '<line-
number>'

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_REMOVE_DUP_
MSG

W280 Verilog A delay has
been specified
in a non-
blocking
assignment

<block-type> has
<count> non-blocking
assignment(s) where
intra-assignment delay
is used. Please refer to
the spreadsheet for
details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

W287b Verilog Output port of
an instance is
not connected

Instance output port
'<output-port-name>' is
not connected. For
similar '<count>'
violations of module
'<module-name>',
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

W287b VHDL Output port of
an instance is
not connected

Instance output
'<instance-name>' not
used. [Elaborated
Module Name:
<module-name>], for
the similar '<count>'
violation(s) of the
elaborated module,
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
PORT

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON TURBO_BUS_MERGE

W362 Verilog Unequal
length in
arithmetic
comparison
operator

 Not applicable TURBO_REMOVE_DUP_
MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
21
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W401 Verilog
+
VHDL

Clock signal is
not an input to
the design
unit

Clock '<clock-name>' is
not an input to design
unit '<design-unit-
name>'. For similar
'<count>' violation(s),
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
PER_SOURCE

TURBO_GROUP_MESSA
GE

W402b Verilog Asynchronous
set/reset
signal is not
an input to the
module

'signal-name' to flop
'<flip-flop-name>' is
gated or internally
generated. For similar
'<count>' violation(s),
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
PER_SOURCE

TURBO_GROUP_MESSA
GE

W415a Verilog Signal may be
multiply
assigned
(beside
initialization)
in the same
scope.

Signal <signal-name> is
being assigned <count>
times inside module
'<module-name>'.
Please refer to the
spreadsheet for details

TURBO_SET_RECOMMEN
DED_PARAMETER

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_CONSOLIDATE_
PER_SOURCE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

W443 Verilog 'X' value used '<count>' occurrence of
'X' state used in '<block-
name>' block of module
'<module-name>' at
line '<line-number>'

TURBO_IGNORE_STATIC
_CONSTANTS

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_GROUP_MESSA
GE

W443 VHDL 'X' value used '<count>' occurrence of
'X' state used in '<block-
name>' block of module
'<module-name>' at
line '<line-number>'

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
22
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W456a Verilog A signal is
included in the
sensitivity list
of a
combinational
always block
but none of its
bits is read in
that block

 '<count>' signals/
variables are not
required in sensitivity
list of module '<module-
name'> at line <'line-
number'>

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_REMOVE_DUP_
MSG

W456a VHDL A signal is
included in the
sensitivity list
of a
combinational
process block
but none of its
bits is read in
that block

 Not applicable TURBO_REMOVE_DUP_
MSG

W464 Verilog Unrecognized
synthesis
directive used
in the design

<count> more
unrecognized synthesis
directive(s) used in the
design. Please refer to
the spreadsheet for
details

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

W464 VHDL Unrecognized
synthesis
directive used
in the design

<count> more
unrecognized synthesis
directive(s) used in the
design. Please refer to
the spreadsheet for
details

TURBO_SET_RECOMMEN
DED_PARAMETER

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

W481a Verilog Possibly
unsynthesizab
le loop: step
variable
differs from
variable used
in condition

Not applicable TURBO_REMOVE_DUP_
MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
23
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W484 Verilog Possible loss
of carry or
borrow due to
addition/
subtraction

Possible assignment
overflow: lhs width
<widthl> (Expr:
'<lexpr>') should be
greater than rhs width
<widthr> (Expr:
'<rexpr>') to
accommodate carry/
borrow bit, [Hierarchy:
'<hierpath>'], <count>
occurrences of
assignment overflow on
same assignment.
Please refer to the
spreadsheet for details

TURBO_GROUP_MESSA
GE

W528 Verilog A signal or
variable is set
but never read

 Not applicable TURBO_IGNORE_PARTIA
L_BUS

TURBO_REMOVE_DUP_
MSG

W528 VHDL A signal or
variable is set
but never read

 Not applicable TURBO_IGNORE_PARTIA
L_BUS

TURBO_REMOVE_DUP_
MSG

W553 Verilog Different bits
of a bus are
driven in
different
combinational
blocks

net/bus '<signal-
name>' is driven
'<count>' times inside
more than one
combinational block.
Please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
24
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W563 Verilog Reduction of a
single-bit
expression is
redundant

Unary reduction
operator used <count>
times on single bit
usage of variable
'<variable-name>'.
Please refer to the
spreadsheet for details

TURBO_GROUP_MESSA
GE

TURBO_REMOVE_DUP_
MSG

W71 Verilog A case
statement (or
selected signal
assignment)
does not have
a default or
OTHERS
clause

 Not applicable TURBO_REMOVE_DUP_
MSG

W287a Verilog Some inputs
to instance
are not driven
or
unconnected

Input '<input-name>' of
instance '<instance-
name>' is unconnected
or Undriven.[Hierarchy:
'<hier-path>']. For
similar <count>
violation(s) of module
<module-name>,
please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_GROUP_MESSA
GE

W287a VHDL Some inputs
to instance
are not driven
or
unconnected

Input Signal '<input-
name>' of instance
'<instance-name>' not
driven. [Elaborated
Module Name: <hier-
name>], for the similar
'<count>' violation(s) of
the corresponding
master, please refer to
the spreadsheet for
details

TURBO_CONSOLIDATE_
PORT

TURBO_CONSOLIDATE_
MODULE_CONFIGURATI
ON

TURBO_BUS_MERGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
25
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
W191 Verilog Function
declared but
not used

NA TURBO_REMOVE_DUP_
MSG

W191 VHDL Function
declared but
not used

NA TURBO_REMOVE_DUP_
MSG

W490 Verilog A control
expression/
sub-
expression is a
constant

NA TURBO_IGNORE_STATIC
_CONSTANTS

W552 Verilog Different bits
of a bus are
driven in
different
sequential
blocks

Bus '<signal-name>' is
driven '<count>' times
inside more than one
sequential block. Please
refer to the spreadsheet
for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_GROUP_MESSA
GE

W494a VHDL Input port is
not used

<count> input port(s) of
same entity not used.
Please refer to the
spreadsheet for details

TURBO_CONSOLIDATE_
DESIGN_SCOPE

TURBO_GROUP_MESSA
GE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
26
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
miscellaneous

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

ConstSig Verilog+
VHDL

Signal has a
constant
value or can
only switch
to a constant
value

Signal '<signal-name>'
has a constant value or
can only switch to a
constant value. For
'<count>' similar
occurrence(s), please
refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE
27
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
DeadCode Verilog+
VHDL

Code does
not
contribute to
functionality
of the design

1. The net '<net-
name>' does not
drive anything, for
the similar <count>
occurrence(s),
please refer to the
spreadsheet for
details

2. The net '<net-
name>' is not driven
by anything, for the
similar <count>
occurrence(s),
please refer to the
spreadsheet for
details

3. Change on net
'<net-name>' has
no effect on any of
the outputs, for the
similar <count>
occurrence(s),
please refer to the
spreadsheet for
details

4. None of the inputs
have any effect on
net '<net-name>',
for the similar
<count>
occurrence(s),
please refer to the
spreadsheet for
details

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

TURBO_BUS_MERGE

Mux01 Verilog+
VHDL

Connected
muxes
should not
have a
common
select.

Some inputs of mux
'<mux1-name>' do not
propagate to connected
mux '<mux2-name>',
due to common select.
For '<count>' similar
occurrence(s), please
refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_PER_SOURCE

TURBO_IGNORE_IN
TERNAL_OBJECTS

TURBO_REMOVE_DU
P_MSG

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
28
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
morelint

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

AsgnToOneBit-ML Verilog Assigning a 0
or 1(32-bits)
to a 1 bit is
not allowed

1-bit is assigned a 0
or 1 (32 bits) in
module '<module-
name>' at '<count>'
place(s). Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

BitOrder-ML Verilog Bit order
specification
should follow
recommended
convention

Bit order
specification(s) at
<count> more
places do not follow
the recommended
convention. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

ChkUndefMacro-ML Verilog Macro is not
defined
before
undefining it

<count>
occurrence(s) of
improper usage of
'undef' for macro
detected in the file
'<file-name>'.
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

ConstDrivenNet-ML Verilog All internal
nets of
module
should not be
assigned a
constant
value

Please refer to the
'ConstDrivenNet-
ML_Ve_001.csv' for
rest <count>
violations of Verilog
cases

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE
29
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
ConstDrivenNet-ML VHDL All internal
nets of
module
should not be
assigned a
constant
value

Please refer to the
'ConstDrivenNet-
ML_Vh_001.csv' for
rest <count>
violations of Verilog
cases

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

DisallowCaseZ-ML Verilog Design should
not use casez
constructs

 Not applicable TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

HangingInstOutput-
ML

Verilog
+
VHDL

Net connected
to output port
of instance is
unconnected

Net '<net-name>'
connected to output
port of instance is
unconnected. For
similar <count>
occurrence(s) for
same module
'<module-name>',
please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDATE
_MODULE

NoArithOp-ML Verilog Arithmetic
Operators
should be
avoided.

Expression '<expr-
name>' containing
'<operator>'
operator. For similar
<count>
occurrence(s) for the
same '<scope-
name>' scope,
please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
30
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
NoArithOp-ML VHDL Arithmetic
Operators
should be
avoided.

Expression '<expr-
name>' containing
'<operator>'
operator. For similar
<count>
occurrence(s) for the
same '<scope-
name>' scope,
please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

NoAssignX-ML Verilog RHS of the
assignment
contains 'X

'RHS of the
assignment contains
'X' <reason> at
'<count>' place(s) in
always block. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

NoBusPartClock-ML Verilog
+
VHDL

Bus bits or
slices should
not be used
as clocks

'<count>' times Bus
bits or slices used as
clocks. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_PER_SOURCE

TURBO_BUS_MERGE
NoExprInPort-ML VHDL Port

connections in
instances
should not
contain
expressions

Instantiation of
module
'<modulename>'
has '<count>' similar
occurrence(s).Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
31
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
NoFeedThrus-ML Verilog
+
VHDL

Block should
not contain
feed-throughs

There is feed-
through from input
'<input-name>' to
output '<output-
name>', for <count>
occurrence(s) of the
similar feed-through
paths, please refer to
the spreadsheet for
details

TURBO_BUS_MERGE
TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_CONSOLIDAT
E_IO_PAIR

NoParamMultConcat
-ML

Verilog Do not use
parameter as
left operand
in multiple
concatenation
expression

Parameter
'<parameter-name>'
used '<count>' times
in the multiple
concatenation
expression. Please
refer to the
spreadsheet for the
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

NoSigCaseX-ML Verilog Design should
not use
signals in
casex and
casez
constructs

'<count>' signals
used in '<casex |
casesz> (<select-
line-signal)' item at
line '<line-number>'

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

NoXInCase-ML VHDL Case
expression
and case
choices
should not
have 'X'

'<count>' case
expressions of case
construct at line
'<line-number>' of
arch '<architecture-
name>' contains X

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
32
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
ParamOverrideMism
atch-ML

Verilog Mismatch in
the number of
parameter
over-rides
and number
of parameters
in the
instantiated
module

Module '<module-
name>' has
'<count>'
instantiation for
mismatch in number
of parameter over-
rides and number of
parameters in the
instantiated module.
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

PartConnPort-ML Verilog Port is
unconnected
or partially
connected

Port '<port-name>'
is unconnected or
partially connected in
instance '<instance-
name>'[Hierarchy:
'<hier-path>'].
Module '<module-
name>' has
'<count>' similar
occurrence(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

ReEntrantOutput-ML Verilog
+
VHDL

The re-
entrant
outputs
should be
avoided

Output port
'<output-port-
name>' is driving the
input port '<input-
port-name>' of the
same instance. For
'<count>' similar
occurrence(s),
please refer to the
spreadsheet for
details

TURBO_BUS_MERGE
TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_CONSOLIDAT
E_MODULE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
33
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
ResetFlop-ML Verilog
+
VHDL

All the flip-
flops should
have either
asynchronous
set/reset or
synchronouss
et/reset

Flip-flop '<flip-flop-
name>' has no set or
reset.[Hierarchy:
'<hier-path>'], for
the similar <count>
occurrence(s) of flip-
flops, please refer to
the spreadsheet for
details

TURBO_REMOVE_DUP
_MSG

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

TURBO_BUS_MERGE
SignedUnsignedExpr
-ML

Verilog Do not mix
signed &
unsigned
variables/
constants in
expressions,
assignment
statements or
in
comparisons.

Unsigned expression
used with Signed
expression <count>
times within same
statement. Please
refer to the
spreadsheet for
details

TURBO_IGNORE_STA
TIC_CONSTANTS

TURBO_GROUP_MESS
AGE

TURBO_SET_RECOMM
ENDED_PARAMETER

UndrivenInTerm-ML Verilog
+
VHDL

Undriven but
loaded input
terminal of an
instance
detected

'<count>' input
terminal(s) of
module '<module-
name>' are undriven

TURBO_CONSOLIDA
TE_PORT

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
34
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
UndrivenNUnloaded-
ML

Verilog
+
VHDL

Undriven and
Unloaded
nets/
terminals
detected in
the design

Detected undriven
and
unloaded(unconnect
ed) <terminal-
name>. For similar
<count>
occurrence(s) of
same module
'<module-name>',
please refer to the
spreadsheet for
details

TURBO_CONSOLIDA
TE_PORT

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

UndrivenOutPort-ML Verilog
+
VHDL

Undriven but
loaded output
port of a
module
detected

'<count>' output
port of module
'<module-name>'
are undriven

TURBO_CONSOLIDA
TE_PORT

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

UndrivenOutTermNL
oaded-ML

Verilog
+
VHDL

Undriven
output pins
connected to
instance input

'<count>' input
terminals of module
'<module-name>'
are connected to
undriven output
terminal

TURBO_CONSOLIDAT
E_PORT

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

UnloadedInPort-ML Verilog
+
VHDL

Unloaded but
driven input
port of a
module
detected

Detected '<count>'
unloaded(unconnect
ed) (input port type
<port-type>) of
module '<module-
name>'

TURBO_CONSOLIDAT
E_PORT

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
35
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
UnloadedNet-ML Verilog
+
VHDL

Unloaded but
driven net
detected in
the design

Detected '<count>'
unloaded(unconnect
ed) (net type <net-
type>) of module
'<module-name>'

TURBO_BUS_MERGE
TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

UnloadedOutTerm-
ML

Verilog
+
VHDL

Unloaded but
driven output
terminal of an
instance
detected

Detected '<count>'
unloaded(unconnect
ed) (output terminal
type <terminal-
name><connected
to a floating net>
(<net-name>)) of
module '<module-
name>'

TURBO_CONSOLIDAT
E_PORT

TURBO_GROUP_MESS
AGE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

NoWidthInBasedNu
m-ML

Verilog Width should
be specified
for all based
numbers

Width specification
missing for <count>
based number(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

TURBO_IGNORE_PAD
DING

ParamWidthMismatc
h-ML

Verilog Parameter
width does
not match
with the value
assigned

or <count>
occurrence(s) of
parameter width
mismatch in module
<module-name>,
please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
36
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
NestedCaseStmt-ML Verilog Nesting depth
of case
construct
exceeds
specified
depth

Nested case
construct found.
Depth exceeding
specified limit
$casedepth at
'<count>' place(s) in
source '<source-file-
name>'. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

NestedCaseStmt-ML VHDL Nesting depth
of case
construct
exceeds
specified
depth

Nested case
construct found.
Depth exceeding
specified limit
$casedepth at
'<count>' place(s) in
source '<source-file-
name>'. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

UnrecSynthDir-ML Verilog Synthesis
directive is
not
recognized

<count> more
unrecognized
synthesis directive(s)
for pragmas used in
the design. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

UnrecSynthDir-ML VHDL Synthesis
directive is
not
recognized

<count> more
unrecognized
synthesis directive(s)
for pragmas used in
the design. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
37
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
RedundantLogicalOp
-ML

Verilog Logical
operation
result is same
as one of the
operands or is
a constant

Redundant logical
operation is
performed at
<count> more
places. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

RedundantLogicalOp
-ML

VHDL Logical
operation
result is same
as one of the
operands or is
a constant

Redundant logical
operation is being
performed on a
constant at <count>
more places. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_GROUP_MESS
AGE

SynchReset-ML Verilog Do not use
synchronous
reset in the
design

Synchronous reset
used at '<count>'
place(s) inside
module '<module-
name>'. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

SynchReset-ML Verilog
+
VHDL

Do not use
synchronous
reset in the
design

Synchronous reset
used at '<count>'
place(s) inside
module '<module-
name>'. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDAT
E_DESIGN_SCOPE

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
38
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
HangingInstInput-
ML

Verilog
+
VHDL

Net connected
to input port
of instance is
undriven

'<count>' input port
of master '<master-
mod-name>' are
'<undriven>'

TURBO_CONSOLIDAT
E_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

UndrivenNet-ML Verilog
+
VHDL

Undriven but
loaded net is
detected in
the design

Detected undriven
net <net-name>. For
similar <count>
occurrence(s) of
same module
'<module-name>',
please refer to the
spreadsheet for
details

TURBO_CONSOLIDAT
E_MODULE_CONFIGU
RATION

TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
39
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
openmore

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

ArrayIndex Verilog Bus signals
are declared
with low-order
bit first

<count> arrays not
declared in
recommended format
of [MSB:LSB]. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_GROUP_MES
SAGE

ArrayIndex VHDL Bus signals
are declared
with low-order
bit first

Not applicable TURBO_REMOVE_DU
P_MSG

InferLatch Verilog
+
VHDL

Latch inferred '<count>' latche(s)
inferred for signal
'<signal-name> in
module '<module-
name>'

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_BUS_MERGE
TURBO_SET_RECOM
MENDED_PARAMETE
R

IntClock Verilog
+
VHDL

Internally
generated
clock detected

Internally generated
Clock '<clock-
name>'(flop: <flip-
flop-name>)
detected, for the
similar <count>
occurrence(s), please
refer to the
spreadsheet for
details

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_BUS_MERGE
40
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
IntReset Verilog
+
VHDL

Internally
generated
reset detected

<count>
occurrence(s) of
Internally generated
asynchronous set/
reset '<signal-
name>'. Please refer
to the spreadsheet
for details

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_BUS_MERGE

ConsCase Verilog Name not
used
consistently
with same
case

Module <module-
name> has <count>
names which are not
used with consistent
case. Please refer to
the spreadsheet for
details.

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_GROUP_MES
SAGE

ConsCase VHDL Name not
used
consistently
with same
case

Name '<identifier-
name>' not used
with consistent case.
For <count> similar
occurrence(s) ,
please refer to the
spreadsheet for
details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_GROUP_MES
SAGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
41
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
NOTE: In the turbo mode, irrespective of the parameter setting, the InferLatch rule will not
report violation for those latches whose input 'D' is tied to constant.

ActLowName Verilog Active-low
signal name
does not
follow the
naming
convention

Active Low signal
'<signal-name>'
does not follow
naming convention.
For <count> similar
occurrence(s) of
module <module-
name>, please refer
to the spreadsheet
for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_CONSOLIDA
TE_MODULE_CONFI
GURATION

TURBO_GROUP_MES
SAGE

ActLowName VHDL Active-low
signal name
does not
follow the
naming
convention

Active Low signal
'<signal-name>'
does not follow
naming convention.
For <count> similar
occurrence(s) of
module <module-
name>, please refer
to the spreadsheet
for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

TURBO_GROUP_MES
SAGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
42
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
simulation

starc

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

sim_race01 Verilog Assignment
and use of
signal in same
simulation
cycle (Read-
Write Race)

'<count>' occurrences
of Read-Write Race for
signal '<signal-name>'
w.r.t. always block at
line '<line-number>'.
Please refer to the
spreadsheet for details

TURBO_IGNORE_PA
RTIAL_BUS
TURBO_CONSOLIDA
TE_DESIGN_SCOPE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

STARC-1.4.3.4 Verilog
+
VHDL

Flip-flop clock
signals must
not be used as
non-clock
signals

Clock signal '<signal-
name>' used as a
non-clock (Used with
name '<non-clock-
name>'). For similar
<count> cases,
please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_PER_SOURCE

STARC-1.6.6.3 Verilog Do not
instantiate
library cells in
the design

Library cell '<cell-
name>' instantiated.
For similar '<count>'
violations for module
'<module-name>',
please refer to the
spreadsheet for
details

TURBO_GROUP_MESS
AGE
43
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC-1.6.6.3 VHDL Do not directly
instantiate
cells in the
design

Library cell '<cell-
name>' instantiated.
For similar '<count>'
violations for module
'<module-name>,
please refer to the
spreadsheet for
details

TURBO_GROUP_MESS
AGE

STARC-2.1.6.1 Verilog Array
specification
should follow
recommended
convention.

<count> arrays not
declared in
recommended format
of [MSB:LSB]. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE
TURBO_REMOVE_DUP
_MSG

STARC-2.1.6.1 VHDL Specification
of one-
dimensional
array should
be downto

<count> arrays not
declared in
recommended format
of [MSB:LSB]. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

STARC-2.10.3.5 Verilog Base should
be specified
for constant
value used.

Missing base type
specification in
constant value at
<count> place(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_CONSOLIDATE
_MODULE_CONFIGUR
ATION

STARC-2.10.6.1 Verilog Possible loss
of carry or
borrow in
addition/
subtraction

<count> occurrences
of assignment
overflow on same
assignment. Please
refer to the
spreadsheet for
details

TURBO_GROUP_MESS
AGE
TURBO_IGNORE_RED
UNDANT_RULE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
44
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC-2.2.2.2 Verilog A variable
specified in
the sensitivity
list must be
read in the
contained
block

<variable-name>
signal/variable(s) not
read in <block-type>
is/are not required in
sensitivity list. Please
refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_IGNORE_STAT
IC_CONSTANTS
TURBO_REMOVE_DUP
_MSG

STARC-2.2.2.2 VHDL A signal
should not be
included in
sensitivity list
of a process if
it is not read
in that process

 Not applicable TURBO_REMOVE_DUP
_MSG

STARC-3.2.2.7 Verilog Constants
should be
defined using
parameters
only.

Use parameter
instead of macro at
<count> place(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
45
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC-3.3.2.2a Verilog
+
VHDL

Internal clocks
must be
controllable
from external
pins

Internal clock
'<clock-name>'
(flop: '<flip-flop-
name>') not
controllable from
external pins, for the
similar <count>
occurrence(s), please
refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_MODULE_CONFIGUR
ATION
TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_BUS_MERGE

STARC-1.3.1.3 Verilog
+
VHDL

Asynchronous
reset/preset
signals must
not be used as
non-reset/
preset or
synchronous
reset/preset
signals

Asynchronous
<type> signal
'<signal-name>'
(<flop | latch>:
'<flip-flop-name |
latch-name>') used
as non-<type>/
synchronous-<type>
at instance
'<instance-name>'
(File Name: '<file-
name>' ,Line no.:
'<line-number>').
For similar '<count>'
case(s), please refer
to the spreadsheet
for details

TURBO_CONSOLIDATE
_PER_SOURCE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
46
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
starc2002

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

STARC02-1.4.3.4 Verilog
+
VHDL

Connected net
name of a
module
instance must
be same as or
based on the
master
module output
port name.

Clock signal '<signal-
name>1' used as a
non-clock (Used with
name '<non-clock-
name>'). For similar
<count> cases, please
refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_PER_SOURCE

STARC02-2.1.6.1 Verilog Array
specification
should follow
recommended
convention.

<count> arrays not
declared in
recommended format
of [MSB:LSB]. Please
refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE
TURBO_GROUP_MES
SAGE
TURBO_REMOVE_DU
P_MSG

STARC02-2.1.6.1 VHDL Specification
of one-
dimensional
array should
be downto

<count> arrays not
declared in
recommended format
of [MSB:LSB]. Please
refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE
TURBO_GROUP_MES
SAGE

STARC02-2.10.3.5 Verilog A function
description
must assign
return values
to all possible
states of the
function.

Missing base type
specification in
constant value at
<count> place(s).
Please refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE

STARC02-2.10.3.7 Verilog Match the bit
width with the
base number
part

Mismatch in actual
width and specified
width for <count>
based number(s).
Please refer to the
spreadsheet for details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE
TURBO_IGNORE_PA
DDING
47
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC02-2.10.6.1 Verilog Possible loss
of carry or
borrow in
addition/
subtraction

Possible assignment
overflow: lhs width
<widthl> (Expr:
'<lexpr>') should be
greater than rhs width
<widthr> (Expr:
'<rexpr>') to
accommodate carry/
borrow bit, [Hierarchy:
'<hier-path>'],
<count> occurrences
of assignment overflow
on same assignment.
Please refer to the
spreadsheet for details.

TURBO_GROUP_MES
SAGE
TURBO_IGNORE_RE
DUNDANT_RULE

STARC02-3.2.2.7 Verilog Constants
should be
defined using
parameters
only.

Use parameter instead
of macro at <count>
place(s). Please refer
to the spreadsheet for
details

TURBO_CONSOLIDA
TE_DESIGN_SCOPE
TURBO_GROUP_MES
SAGE

STARC02-1.3.1.3 Verilog
+
VHDL

Do not use
case variants
of names in
the same
scope.

Asynchronous <type>
signal '<signal-name>'
(<flop | latch>: '<flip-
flop-name | latch-
name>') used as non-
<type>/synchronous-
<type> at instance
'<instance-name>'
(File Name: '<file-
name>' ,Line no.:
'<line-number>'). For
similar '<count>'
case(s), please refer to
the spreadsheet for
details

TURBO_CONSOLIDA
TE_PER_SOURCE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
48
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
starc2005

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

STARC05-1.4.3.4 Verilog
+
VHDL

Flip-flop clock
signals must
not be used as
non-clock
signals

'<count>' Non-clock
signal '<non-clock-
signal-name>' infer
from same RTL used
as clock signal

TURBO_CONSOLIDATE
_PER_SOURCE

STARC05-2.1.3.1 Verilog Bit-width of
function
arguments
must match
bit-width of
the
corresponding
function
inputs

<count> occurrences
of width mismatch on
same function call
argument
'<argument-name>'.
Please refer to the
spreadsheet for
details

TURBO_GROUP_MESS
AGE TURBO
TURBO_IGNORE_PAD
DING

STARC05-2.10.3.5 Verilog Base should
be specified
for constant
value used

Missing base type
specification in
constant value at
<count> place(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE

STARC05-2.10.3.7 Verilog Match the bit
width with the
base number
part

Mismatch in actual
width and specified
width for <count>
based number(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_IGNORE_PAD
DING
49
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC05-2.10.6.1 Verilog Possible loss
of carry or
borrow in
addition/
subtraction

Possible assignment
overflow: lhs width
<widthl> (Expr:
'<lexpr>') should be
greater than rhs
width <widthr>
(Expr: '<rexpr>') to
accommodate carry/
borrow bit,
[Hierarchy: '<hier-
path>'], <count>
occurrences of
assignment overflow
on same assignment.
Please refer to the
spreadsheet for
details

TURBO_GROUP_MESS
AGE
TURBO_IGNORE_RED
UNDANT_RULE

STARC05-3.2.2.7 Verilog Constants
should be
defined using
parameters
only

Use parameter
instead of macro at
<count> place(s).
Please refer to the
spreadsheet for
details

TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_GROUP_MESS
AGE

STARC05-3.3.1.1 Verilog
+
VHDL

Internal clocks
must be
controllable
from external
pins

Internal clock
'<clock-name>'
(flop: '<flip-flop-
name>') not
controllable from
external pins, for the
similar <count>
occurrence(s),
please refer to the

TURBO_CONSOLIDATE
_MODULE_CONFIGUR
ATION
TURBO_CONSOLIDATE
_DESIGN_SCOPE
TURBO_BUS_MERGE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
50
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
STARC05-3.3.1.4b Verilog
+
VHDL

A flip-flop
should have
an
asynchronous
set or an
asynchronous
reset

Flip-flop '<flip-flop-
name>' has neither
asynchronous set nor
asynchronous reset.
[Hierarchy: '<hier-
path>'], for the
similar '<count>'
occurrence(s),

TURBO_CONSOLIDATE
_MODULE_CONFIGUR
ATION
TURBO_GROUP_MESS
AGE
TURBO_BUS_MERGE

STARC05-1.3.1.3 Verilog
+
VHDL

Asynchronous
reset/preset
signals must
not be used as
non-reset/
preset or
synchronous
reset/preset
signals

Asynchronous
<type> signal
'<signal-name>'
(<flop | latch>:
'<flip-flop-name |
latch-name>') used
as non-<type>/
synchronous-<type>
at instance
'<instance-name>'
(File Name: '<file-
name>' ,Line no.:
'<line-number>').
For similar '<count>'
case(s), please refer
to the spreadsheet
for details

TURBO_CONSOLIDATE
_PER_SOURCE

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives
51
Synopsys, Inc.

Rule-wise Initiatives

SpyGlass Lint Turbo Structural
timing

Rule Lang. Rule
Title

Parent
Message

Turbo
Initiatives

LogicDepth Verilog
+
VHDL

Logic depth exceeds
specified number of
levels (using
parameter delaymax/
delaymax_memtoflop
/
delaymax_floptomem
/
delaymax_memtome
m/delaymax_err/
delaymax_inputtoflop
/
delaymax_floptoflop/
delaymax_inputtoout
put/
delaymax_floptooutp
ut)

 Not
applicable

TURBO_SET_RECOMM
ENDED_PARAMETER

LogNMux Verilog
+
VHDL

LogN mux with large
number of inputs
detected - potential
performance problem

Not applicable TURBO_SET_RECOMM
ENDED_PARAMETER
52
Synopsys, Inc.

Turbo Parameter Settings

SpyGlass Lint Turbo Structural
Turbo Parameter Settings
The default value of the following rule parameters is changed when the
turbo mode is enabled:

However, to retain the default value of the above parameters in the turbo
mode, specify the following command:

set_option disable_turbo_param yes

By default, the strict parameter is always enabled for the InferLatch rule.
In order to disable it, use the disable_turbo_param option.

Parameter Rules
checkfullrecord W456a, W528, W123, W120, W240
checkfullbus W240, W528, W120,

UnUsedFunctionInput-ML,
UndrivenInTerm-ML

min_based_width is set to 1 NoWidthInBasedNum-ML
delaymax is set to 500 LogicDepth
logmux_max is set to 5 LogNMux
check_initialization_assignment,
ignore_multi_assign_in_forloop,
ignore_bitwiseor_assignment

W415a

ignoreforindex SignedUnsignedExpr-ML
checkInHierarchy HangingInstInput-ML, UndrivenOutPort-

ML, UndrivenInTerm-ML, UndrivenNet-
ML, UnloadedInPort-ML,
UnloadedOutTerm-ML, UnloadedNet-ML,
UndrivenNUnloaded-ML,
UndrivenOutTermNLoaded-ML

checkRTLCInst UndrivenInTerm-ML
checkalldimension ArrayIndex
ignoreModuleInstance W123
ignore_chain_cell DisabledAnd, DisabledOr
nocheckoverflow STARC05-

2.1.3.1,W116,W164a,W164b,W263,W11
0,W486,W362

strict W342, W343
53
Synopsys, Inc.

Turbo Parameter Settings

SpyGlass Lint Turbo Structural
NOTE: In the turbo mode, the default value of the parameters will be synchronized with
GuideWare 2015.12 setting.

base_turbo_limit_viol

This parameter specifies the limit of violation messages to be reported in
the message tree, while remaining messages are reported in the
spreadsheet.

By default, this parameter is set to 2.

Set the base_turbo_limit_viol parameter to a positive integer
value to limit the number of violation messages to be reported in message
tree. You can also specify different values for different rules using the
comma-separated (no spaces) <rulename>=<value> pairs. See the
examples below for more clarity.

NOTE: There should be no spaces between the rule name and its limit value before and
after the = symbol, that is, <rule-name>=<value>.

NOTE: If you specify a value that is less than 1, the rule considers the default value only,
which is 2.

Examples:

 set_parameter base_turbo_limit_viol 10,SynchReset-
ML=15,ConsCase=4

In this case, for the rules other than SynchReset-ML and ConsCase
value of this parameter will be set to 10, while for the SynchReset-ML
and ConsCase rules, it will be set to 15 and 4 respectively.

 set_parameter base_turbo_limit_viol SynchReset-
ML=15,ConsCase=4

In this case, for the rules other than SynchReset-ML and ConsCase, the
value of this parameter will be set to 2 (default value).

 If the base_turbo_limit_viol rules is not set, then the default
value, which is 2, is considered for all the rules.

NOTE: The parameter is valid only when the 'set_option turbo yes' is
specified.
54
Synopsys, Inc.

Turbo Parameter Settings

SpyGlass Lint Turbo Structural
The base_turbo_limit_viol parameter is supported by the following
rules:

Rule name Product Language
ArrayIndex openmore Verilog
ConstDrivenNet-ML morelint Verilog
ConstDrivenNet-ML morelint VHDL
ConsCase openmore Verilog
NestedCaseStmt-ML morelint Verilog
ParamWidthMismatch-ML morelint Verilog
SynchReset-ML morelint Verilog
ActLowName openmore Verilog
ConsCase openmore VHDL
NestedCaseStmt-ML morelint VHDL
W494a lint VHDL
SynchReset-ML morelint VHDL
UnrecSynthDir-ML morelint VHDL
55
Synopsys, Inc.

Smart Rule Execution

SpyGlass Lint Turbo Structural
Smart Rule Execution
SpyGlass Lint Turbo Structural enables the smart execution of rules. When
a superset rule is run, in that case subset rule will not run. So, you can use
a superset rule to perform the tasks of specified subset rules.

The smart rule execution works in the Turbo mode only.

For the smart rule execution to perform, the following should be set:

 set_option turbo yes

 set_option smart_rule_execution yes

The following table lists the rules that are part of smart rule execution:

NOTE: Smart rule execution is also applicable for the Starc, Starc2002 and Starc2005
rules. The Starc2005 rules are superset of Starc2002 and Starc rules. The
Starc2002 rules are superset of Starc rules.

NOTE: If the smart_rule_execution option is set to yes and the turbo_struct license is not
found, then the smart rule execution feature is disabled.

Waiving Primary Messages in the Turbo Mode

In the turbo mode, you can waive primary messages along with the
respective secondary messages.

When you click on the waive option, a confirmation box is displayed with
the following options, as shown in the figure:
 Yes: Primary messages are waived along with all the secondary

messages.

Superset Rule Subset Rule(s)
W484 STARC-2.10.6.1, STARC05-2.10.6.1,

STARC02-2.10.6.1
STARC05-2.10.6.1 STARC-2.10.6.1, STARC02-2.10.6.1
STARC02-2.10.6.1 STARC-2.10.6.1
W415 checkMultipleDrivers
56
Synopsys, Inc.

Smart Rule Execution

SpyGlass Lint Turbo Structural
 No: Primary messages are waived. However, if you select multiple
messages (primary along with secondary messages of the same or
different rules), only secondary messages are waived.

 Cancel: No violations are waived.

FIGURE 1. Primary message waiver confirmation

Defining the Preferred Waiver Behavior

You can define the preferred waiver behavior by using the Waiving
primary messages set of options in the Tools > Preferences > Waiver
menu of SpyGlass Console.
57
Synopsys, Inc.

Smart Rule Execution

SpyGlass Lint Turbo Structural
FIGURE 2. Defining the primary messages waiver behavior

The following options are available:
 Allow with warning: This option is selected by default. In case of any

primary message in the selected message list, the warning/confirmation
box is displayed.

 Allow without warning: Primary messages are waived without any
warning and the warning/confirmation box is not displayed.

 Disallow waiving: Primary messages are not waived and the warning/
confirmation box is also not displayed. This changes the right-click menu
behavior as follows:
 Right-click when both primary and non-primary violations selected:

 Options for waiving messages are displayed in the right-click
menu. However only non-primary messages are waived on
selecting it.

 Right-click when only the primary messages are selected:

 Options for waiving messages are not displayed in the right-click
menu.
58
Synopsys, Inc.

The moresimple_turbo Report

SpyGlass Lint Turbo Structural
 The moresimple_turbo Report
In the turbo mode, the moresimple_turbo.rpt report is also
generated by default.
This report contains all the violation messages from the message tree and
spreadsheet.

The following is a sample of this report:

###

#

This file has been generated by SpyGlass:

Report Name : moresimple_turbo

Report Created by: nadunig

Report Created on: Tue Mar 15 18:24:08 2016

Working Directory: /remote/atr_sl_user/nadunig/Test/560/98424/
case3

SpyGlass Version : 5.6.1-FCS-C2

Policy Name : SpyGlass(5.6.1)

erc(5.6.1)

lint(5.6.1)

morelint(5.6.1)

#

Total Number of Generated Primary Messages : 10

Total Number of Generated Secondary Messages : 2

Number of Waived Primary Messages : 0

Number of Waived Secondary Messages : 0

Number of Reported Primary Messages : 10

Number of Reported Secondary Messages : 2

Number of Overlimit Messages : 0

#

59
Synopsys, Inc.

The moresimple_turbo Report

SpyGlass Lint Turbo Structural
#

###

+++

MORESIMPLE_TURBO REPORT:

############### BuiltIn -> RuleGroup=Design Read ###############

+++

ID ParentID Rule Alias Severity
File
Line Wt

Message

===

[3] N.A DetectTopDesignUnits DetectTopDesignUnits Info
checkPinConnectedToSupply.v
10 2

Module top is a top level design unit

[0] N.A AutoGenerateSglib AutoGenerateSglib Info
Work/Linux4/test/spyglass_cache/autogenerated_sglib/lc/
spyglass_lc_aggregate_reports/moresimple.rpt 0 2

Sglib 'Work/Linux4/test/spyglass_cache/autogenerated_sglib/
aggregate.sglib' has been auto-generated successfully

[2] N.A ElabSummary ElabSummary Info
Work/Linux4/test/test_goal/spyglass_reports/SpyGlass/elab_summary.rpt
0 2

Please refer file 'Work/Linux4/test/test_goal/spyglass_reports/SpyGlass/
elab_summary.rpt' for elab summary report

[1] N.A TurboModeStatus TurboModeStatus Info
N.A.
0 10

Turbo-Mode is enabled in the current run as turbo_struct license feature
60
Synopsys, Inc.

The moresimple_turbo Report

SpyGlass Lint Turbo Structural
successfully checked out

+++

############### Non-BuiltIn -> Goal=test_goal ###############

+++

ID ParentID Rule Alias Severity File
Line Wt Message

===

[4] N.A RegInputOutput-ML Warning
checkPinConnectedToSupply.v 5 10 Port 'a' is not registered
[Hierarchy: 'top']

[5] N.A RegInputOutput-ML Warning
checkPinConnectedToSupply.v 5 10 Port 'b' is not registered
[Hierarchy: 'top']

[6] N.A RegInputOutput-ML Warning
checkPinConnectedToSupply.v 6 10 Port 'c' is not registered
[Hierarchy: 'top']

[7] N.A RegInputOutput-ML Warning
checkPinConnectedToSupply.v 13 10 Port 'd' is not registered
[Hierarchy: 'top']

[8] N.A RegInputOutput-ML Warning
checkPinConnectedToSupply.v 14 10 Port 'e' is not registered
[Hierarchy: 'top']

[B] N.A checkPinConnectedToSupply Warning
checkPinConnectedToSupply.v 5 2 Pin of 2 cell LAN2 (instance
top.U1.I1) of module mod connected to supply signals. Please refer to the
spreadsheet for details

[9] [B] checkPinConnectedToSupply Warning
checkPinConnectedToSupply.v 5 2 pin Z for instance top.U2.I1
(Cell LAN2) connected to supply signals

[A] [B] checkPinConnectedToSupply Warning
checkPinConnectedToSupply.v 5 2 pin Z for instance top.U1.I1
(Cell LAN2) connected to supply signals
+++
61
Synopsys, Inc.

Known Problems

SpyGlass Lint Turbo Structural
Known Problems
The following are the current known issues in the Turbo mode:
 Performance (run-time) issue in GUI while applying waivers in

spreadsheet.
 Assume if there are two parents messages, P1 and P2, and each parent

message is having two child messages, ‘C1’ and ‘C2’ corresponding to
the parent message ‘P1’ and child messages ‘C3’ and ‘C4’ corresponding
to the parent message ‘P2’ (child message is a static message, that is,
no variable argument in it). In this case if a waiver is applied to the child
message ‘C1’ of parent message ‘P1’ then waiver will be applied to all
the child messages, but parent message ‘P1’ will be waived and there
will be no impact on the parent message ‘P2,’ whereas the child
message of parent message ‘P2’ also gets waived.

 When you open spreadsheet tab to apply waiver, after applying waivers
if we press cancel button on waiver window, the waivers are still applied.

 For a message having same argument but different line/file, if you apply
waiver, it is set on all messages. But if you unwaive one message then it
will be applicable to only that one. So there is inconsistency.

 For rules which are spyCreateruleByCopy, the CSV file directory is
created inside the parent rules->policy directory structure of
spyglass_reports/<policy_name>.

 Parent violations have been made transient, and waivers are not saved
for parent, for subsequent runs. This may lead to difference with respect
to parent message if you load the GUI (after running the design in the
batch run).

 Peak memory and the runtime may increase slightly. As multiple
callbacks DS is getting invoked.

 If a parent message is not added into the vdb by the sgHandleMessage
call (violStatus from sgHandleMessage is: SG_VIOL_STATUS_ERROR),
then all of its child messages will be lost. Currently no non-error child
message we are made as parent violations.

 As parent messages can be added as a child messages, assume a parent
message has a flip-flop I1.q1[0] and it has four child messages, that is,
I1.q1[0], I1.q1[1], I1.q1[2] and I1.q1[3]. If the child q1[0] is internally
waived by the tool, then parent is reported as I1.q1[0] with three child
messages (except the child I1.q1[0]). Ideally I1.q1[1] or I1.q1[2] or
62
Synopsys, Inc.

Known Problems

SpyGlass Lint Turbo Structural
I1.q1[3] should be reported as a parent argument, which mean the
parent arguments are not changed, so the count in the parent message
is being adjusted.

 Child count in the parent message can be one due to various reasons.

 Few child messages are internally waived [other than user waivers]

 Child messages are getting bus-merged

 If child messages are part of enable_dup_msg_removal, then
the parent with single child will be dumped

 For some violations of the LatchGatedClock rule, gated/internally
generated clock source terminal and latch instance will only be
highlighted instead of the complete path.

 If the message label changes, in that case there may be a case of break
in waiver with respect to the old release.

 If parameterized module is instantiated in multiple places and all are
having the same message then in few rules user may see one duplicate
violation out of the spreadsheet in message tree. This will happen to a
rule having a the -enable_dup_msg_removal support

 If one parent message is waived (through user waiver or msg-tree),
then infrastructure should waive all its child messages.

 Internal waivers may get applied on parent message, so all its child
messages will be lost.

 Waive –du field is not applied on spreadsheet violation, while its
applicable for normal message tree violations.

 Overload severity through external command will not be applicable for
new parent messages (as their label will be different).

 In the Turbo mode, bus-merging may break in a few cases. This is due
to enable_smdb_reports, which populates the reports in the Turbo
mode.
63
Synopsys, Inc.

Known Problems

SpyGlass Lint Turbo Structural
64
Synopsys, Inc.

SpyGlass Functional Lint
Recent advancements in the industry have put emphasis to couple static
lint checker with formal verification to augment current verification flows.

The existing SpyGlass Lint rules adopt structural analysis techniques.
Some of these rules report many false violations because of the lack of
design intent information.

SpyGlass supports Functional Lint rules that use formal verification
strategies resulting in less noise and accurate results.

This section describes the following topics:
 Prerequisites for Using Turbo Functional Rules

 Turbo Capabilities

 Functional Lint to Lint Rule Mapping

 Generating Waivers for Structural Rules

 The SpyGlass Functional Lint Rules

For information on lint concepts and debug, refer to the SpyGlass Lint and
SpyGlass Auto Verify Rules Reference Guides.
65
Synopsys, Inc.

Prerequisites for Using Turbo Functional Rules

SpyGlass Functional Lint
Prerequisites for Using Turbo Functional Rules
Specify the following:

 The lint_func licenses

 Clocks and resets in an SGDC file (recommended approach)
If you do not specify clocks and resets in an SGDC file, set the
use_inferred_clocks and use_inferred_resets parameter
to yes to enable SpyGlass to automatically infer clocks and resets.

 Single top-level design

 If the turbo_struct license is successfully checked out, then the
noise reduction for the structural rule will be ported to the formal rule.

 By default, waveform viewer is disabled. You can enable it using the
Edit -> Preferences option in SpyGlass Explorer.
66
Synopsys, Inc.

Turbo Capabilities

SpyGlass Functional Lint
Turbo Capabilities
The SpyGlass Functional Lint product supports noise reduction capability,
similar to the SpyGlass Turbo Lint (structural) product.

Functional Lint to Lint Rule Mapping
The following table lists the rules in the SpyGlass Functional Lint product
and the corresponding rule in SpyGlass Lint product:

TABLE 1 Rule Mapping

Functional Lint Rule Lint Rule

Av_width_mismatch_assign W164a

Av_width_mismatch_case W263

Av_width_mismatch_port W110

Av_width_mismatch_function STARC-2.1.3.1

Av_signed_unsigned_mismatch SignedUnsignedExpr-ML

Av_width_mismatch_expr STAR-2.10.3.2a

Av_width_mismatch_expr02 W116

Av_width_mismatch_expr03 W362

Av_case_default_redundant W551

Av_case_default_missing W71

Av_dontcare_mismatch W467
67
Synopsys, Inc.

Generating Waivers for Structural Rules

SpyGlass Functional Lint
Generating Waivers for Structural Rules
SpyGlass Functional Lint allows you to filter false violations generated by
the SpyGlass Lint rules. SpyGlass Functional Lint generates an SGDC file,
which when used with the subsequent SpyGlass Lint run waives the false
violations filtered by Formal-Lint. This SGDC file is generated at the
following location:

<run_directory>/spyglass_reports/auto-verify/
structural_rule_waiver.sgdc

Example

Consider the following example:

module top(input clk, rst);
parameter p = 1'b1;
wire [1:0] a;
wire [1:0] b;
reg [1:0] k;

function bit myfunction1;
 input a, b ;
 case ({a,b})
 1'b1 : myfunction1 = a;
 default: myfunction1 = b;
 endcase
endfunction

function void myvoidfunction;
input a, b ;
output c;
c = a + myfunction1({a,a},{b,b}) + p +
myfunction1({a,a},{b,b});
endfunction

function bit myfunction;
input a, b ;
case ({a,b})
 1'b1 : begin
68
Synopsys, Inc.

Generating Waivers for Structural Rules

SpyGlass Functional Lint
 myfunction = a+b +p;
 myvoidfunction({a,a},{b,b},k[1]);
 end
 default: myfunction = a+b +p;
endcase
endfunction
wire d = myfunction({a,a},{b,b});
endmodule

For the above example, the Av_width_mismatch_function rule reports the
following violation messages:

FIGURE 1. Av_width_mismatch_function Messages
69
Synopsys, Inc.

Generating Waivers for Structural Rules

SpyGlass Functional Lint
For the Av_width_mismatch_function rule, the following
structural_rule_waiver.sgdc file is used, which will filter the false violations
reported by t he SpyGlass Lint rule:

waive -rule W263 -msg q%Case label (1'b1) width (1) does not
match selector ({a ,b}) width (2).[Hierarchy: 'all-
hierarchy']%

waive -rule STARC-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC02-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC05-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC02-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC05-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

waive -rule STARC02-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%
70
Synopsys, Inc.

Generating Waivers for Structural Rules

SpyGlass Functional Lint
waive -rule STARC05-2.1.3.1 -msg q%Bit-width mismatch between
function call argument '{a ,a}' ('2' bits) and function input
'a' ('1' bits).[Hierarchy: 'all-hierarchy']%

As shown in Figure 1, SpyGlass functional lint rule,
Av_width_mismatch_function, filters three false violations reported by the
SpyGlass Lint rules, STARC-2.1.3.1, STARC02-2.1.3.1, and STARC05-
2.1.3.1.
71
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
The SpyGlass Functional Lint Rules
The SpyGlass Functional Lint has the following rules:
 Av_width_mismatch_assign

 Av_width_mismatch_case

 Av_width_mismatch_port

 Av_width_mismatch_function

 Av_signed_unsigned_mismatch

 Av_width_mismatch_expr

 Av_width_mismatch_expr02

 Av_width_mismatch_expr03

 Av_case_default_redundant

 Av_case_default_missing

 Av_dontcare_mismatch
72
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_assign
LHS width is less than RHS width of assignment (Truncation)

When to Use

Use this rule to identify assignments in which the LHS width is less than the
RHS width.

Description

The Av_width_mismatch_assign rule reports assignments in which the LHS
width is less than the (implied) width of the RHS expression.

NOTE: The Av_width_mismatch_assign rule supports the TURBO_GROUP_MESSAGE noise
reduction initiative. For details of this initiative, refer to the SpyGlass Turbo Lint
Application Note.

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to y es.

 check_unsign_overflow: Default value is no. Set this parameter
to yes to not suppress overflow in unsigned expressions when the
sign extension is used, as shown in the following example:

 wire [5:0] a,b;
 wire [6:0] c;
 wire [8:0] d;
 assign c = {a[5],a} + {b[5],b};

 strict: Default value is no. In the default behavior, only the
assignments in which the RHS expression contains wires or reg are
checked. Set this parameter to yes to perform strict checking for all the
assignments.

 check_static_value: Default value is no. Set this parameter to
yes to report violations for static expressions and the non static
expressions containing static expressions.
73
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 check_counter_assignment: Default value is no. Set this
parameter to yes to report violations for counter type of assignments,
as shown in the following example:

assign w1[3:0] = w1[3:0] + 1;

NOTE: Ensure that the value of the check_static_value and check_counter_assignment
parameters is set to yes.

 check_counter_assignment_turbo: Default value is no. Set this
parameter to yes or comma-separated list of rules to consider an
assignment statement as counter type assignment in the following
conditions:
 Any constant (including based numbers or parameters) is added to or

subtracted from a variable/signal on the RHS of the assignment.
 The variable on RHS matches the variable on the LHS expression,

that is, the same variable is used on both sides, LHS and RHS, of
assignment with same bit-width.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 disable_rtl_deadcode: Default value is no. Set this parameter to
yes to not make assertions for the disabled code (evaluated statically)
using loops and conditional statements, such as if condition and ternary
operator.

 use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

 check_concat_max_width: Default value is no. In this case, no
violation is reported when the width of the LHS expression is present
between the width of the RHS expression without considering zero
concatenated bits and the width of the RHS after adding zero
concatenated bits.

If you set this parameter to yes, the RHS width is considered as the
width after adding zero concatenated bits. That is, the violation is
reported if the LHS width does not match the RHS width after adding
zero concatenated bits. This parameter is applicable for Verilog only.

 handle_shift_op: Default value is no. In this case, no violation is
reported if the shifted or non-shifted width of a shift expression (at the
port connection of a module instance) matches the width of the
74
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
corresponding module port definition. But the rule does not calculate the
shifted width, if the RHS of the shift expression is non-static. Set this
parameter to shift_left, shift_right, shift_both,
no_shift, or comma separated list of rule names, to compare shifted
or non shifted widths for left and right shift expressions.

 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.

 set_case_analysis: Use this constraint to specify case analysis
conditions.

 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:

ip_block -name <module-name>

Messages and Suggested Fix

The following message appears to specify the width mismatch between
LHS and RHS expressions:

[WARNING] LHS: '<lhs-expr>' width <lhs-width> is less than RHS:
'<rhs-expr>' width <rhs-width> in assignment [Hierarchy:
'<hier-path>']

This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
This violation appears when the LHS width is less than the RHS width.
75
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Consequences of Not Fixing
If you do not fix this violation, SpyGlass truncates some bits in the
assignment.

How to Debug and Fix
Refer to the auto_verify.rpt report for details on this violation.

To debug this violation, trace the waveform viewer and check the values of
the signals present in the RHS of the assignment, which are causing the
width of RHS to be more than the width of LHS.

Example Code and/or Schematic

Consider the following example:

`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11

module top(input clk, rst,
 input [4:0]a1,
 input [4:0]a2,
 input [2:0]a3,
 output reg [3:0] out1,
 output reg [3:0] out2,
 output reg [2:0] out3
);

 reg [1:0] state1;
 reg [1:0] state2;
 reg [1:0] state3;
 reg [1:0] state4;

 always @(posedge clk or posedge rst) begin
 if(rst) begin
 state1 <= `S0;
 out3 <= 3'b000;
 end
 else begin
76
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 priority case(state1)
 `S0: state1 <= `S1;
 `S1: state1 <= `S2;
 `S2: state1 <= `S0;
 default: begin
 state3 <= `S3;
 out3 = 3'b11?;
 end
 endcase
 if(state1 >= a3) begin
 out3 <= a1[1:0] + a3; //filtered violations
 if(a1 > out1)
 out2 <= a2; //violations not filtered
 end
 end
 end
endmodule

For the above example, the Av_width_mismatch_assign rule reports
following violation messages:

FIGURE 2. Av_width_mismatch_assign Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_assign, filters one violation reported by the SpyGlass
77
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Lint rule, W164a.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Reports and Related Files

No report or related file
78
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_case
A case expression width does not match case select expression
width

When to Use

Use this rule to identify assignments in which a case expression width does
not match with the select expression width.

Description

The Av_width_mismatch_case rule reports a violation when the case
expression width does not match the select expression width.

NOTE: The Av_width_mismatch_case rule supports the
TURBO_CONSOLIDATE_DESIGN_SCOPE and TURBO_REMOVE_DUP_MSG noise
reduction initiatives. For details of these initiatives, refer to the SpyGlass Turbo Lint
Application Note.

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to yes.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.

 set_case_analysis: Use this constraint to specify case analysis
conditions.
79
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:

ip_block -name <module-name>

Messages and Suggested Fix

The following message appears to specify the mismatch between the width
of a case expression and a select expression:

[WARNING] Case label (<case-label>) width (<case-width>) does
not match selector (<select-label>) width
(<select-width>).[Hierarchy: '<hier-path>].

This violation can be formally failed, partially-proved, or not analyzed by
the formal engine. The not-analyzed violations appear when the width
mismatch between the signed and unsigned expressions is not passed to
the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues.

This violation appears when the case expression width does not match the
select expression width.

Consequences of Not Fixing

If you do not fix this violation, it may lead to unwanted target in case
expressions during selection.

How to Debug and Fix
To debug this violation, trace the waveform viewer and check the values of
the signals present in the case label or case select expression (whose
width is more than the other).

To fix this violation, perform the following steps:
1. Double-click on the violation message.
80
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
This step highlights the line of case label in the HDL Viewer pane.
2. Scroll up in the HDL Viewer pane to view the case selector and the

width mismatch.
3. Modify the case expression to match with the select expression in all

bits.
This makes the behavior of the RTL code easier to understand and does
not rely on undefined behavior in handling unmatched bits.

Example Code and/or Schematic

Consider the following example:

module top(input actclk);
 wire clk;
 wire d1; reg q; reg [2:0]e;

 always @ (actclk or clk or d1)
 case (actclk)
 2'b00 : e <= d1;
 2'b01 : e <= d1 + 1;
 2'b11 : e <= d1 + 2;
 endcase

endmodule

module supertop(wire actclk, d, input [2:0]in_1, in_2, output
reg q);
 top inst1(actclk);
endmodule

For the above example, the Av_width_mismatch_case rule reports the
following violation messages:
81
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
FIGURE 3. Av_width_mismatch_case Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_case, filters one violation reported by the SpyGlass
Lint rule, W253.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Reports and Related Files

No report or related file
82
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_port
An instance port connection has different width compared to the
port definition

When to Use

Use this rule to identify the width mismatch between the bus width and
instance port width while connecting a bus to an instance port.

Description

The Av_width_mismatch_port rule reports a violation if you try connecting
a bus to an instance port but there is a mismatch between the bus width
and the instance port width.

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to yes.

 report_blackbox_inst: Default value is no. Set this parameter to
yes to report violations for port width mismatch for black box
instances.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

 handle_shift_op: Default value is no. In this case, no violation is
reported if the shifted or non-shifted width of a shift expression (at the
port connection of a module instance) matches the width of the
corresponding module port definition. But the rule does not calculate the
shifted width, if the RHS of the shift expression is non-static. Set this
parameter to shift_left, shift_right, shift_both,
no_shift, or comma separated list of rule names, to compare shifted
or non shifted widths for left and right shift expressions.

 report_blackbox_inst: Default value is no. Set this parameter to
yes to report violations for port width mismatch for black box instances.
83
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.

 set_case_analysis: Use this constraint to specify case analysis
conditions.

 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:

ip_block -name <module-name>

Messages and Suggested Fix

The following message appears if there is a mismatch between the bus
width and instance port width:

[WARNING] Incompatible width for port '<port-name>'(width
<port-width> in module '<module-name>') on instance '<instance-
name>'(terminal width <instance-term-width>) [Hierarchy:
'<hier-path>'].

This violation can be formally failed, partially-proved, or not analyzed by
the formal engine. The not-analyzed violations appear when the width
mismatch between the signed and unsigned expressions is not passed to
the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues.
This violation appears when there is a width mismatch between the bus
width and instance port width during connection of a bus to an instance
port.
84
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Consequences of Not Fixing
The excess bits on the bus are ignored if the bus is too wide to be
connected to an input or the bus is too small to be connected to an output

How to Debug and Fix
To debug this violation, trace the waveform viewer to check the values of
the signals present in the port connection.

To fix this violation, perform the following steps:
1. Double-click on the violation message.

The HDL Viewer window highlights the module instance where a port
connection has more width as compared to the port definition.

2. Specify correct number of bits across the hierarchy boundary, and then
explicitly ignore the bits that are not required.

Example Code and/or Schematic

Consider the following message:

module top(input clk);
 wire [3:0] sel;
 wire signed [4:0] a = -8;
 wire unsigned [4:0]a1;
 wire [4:0] b;
 wire [5:0] c;
 parameter p1 = 1;
 parameter p2 = 1;
 parameter p = 1;
 slave inst(.a(a) , .aa(a1[p1:0]) , .b(b[p2:0]) ,

.c(c[p:0]));
endmodule
module slave (input [3:0]a , input [3:0]aa , input [3:0]b ,
input [3:0]c);
endmodule
module supertop(input clk);
 top #(3,4,3) inst1(clk);
 top #(4,3,3) inst2(clk);
endmodule
85
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
For the above example, the Av_width_mismatch_port rule reports four
violations, Violation 1, Violation 2, and Two Violations Not Analyzed By the Formal
Engine.

However, no Av_width_mismatch_port rule violation is reported for the
port connection c[3:0] through the supertop.inst1 or
supertop.inst2 hierarchy.

Violation 1

Incompatible width for port 'aa'(width 4 in module 'slave') on
instance 'inst'(terminal width 5) [Hierarchy:
'supertop.inst2'].

In this case, the values of the signal present in the port connection may
attain 10 (hex value) corresponding to the a1[4:0] signal for the
supertop.inst2 hierarchy whose width is more than the width of the
aa port.

The following figure shows the waveform viewer of this violation:

FIGURE 4. Waveform Viewer of the Av_width_mismatch_port Rule Violation -
Example 1

Violation 2

Incompatible width for port 'b'(width 4 in module 'slave') on
instance 'inst'(terminal width 5) [Hierarchy:
'supertop.inst1'].

In this case, the values of the signals present in the port connection can be
86
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
16 corresponding to the b[4:0] signal for the supertop.inst1
hierarchy whose width is more than the width of the b port in the slave
module.

The following figure shows the waveform viewer of this violation:

FIGURE 5. Waveform Viewer of the Av_width_mismatch_port Rule Violation -
Example 2

Two Violations Not Analyzed By the Formal Engine

The following two violations are not analyzed by the formal engine:

Incompatible width for port 'a'(width 4 in module 'slave') on
instance 'inst'(terminal width 5) [Hierarchy:
':supertop:inst1@top']

Incompatible width for port 'a'(width 4 in module 'slave') on
instance 'inst'(terminal width 5) [Hierarchy:
':supertop:inst2@top']

The above violations appear because the width mismatch between the
signed and unsigned expressions is not passed to the formal engine.
Therefore, they are not analyzed by the formal engine.

Default Severity Label

Warning

Rule Group

Implicit-Properties
87
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Reports and Related Files

No report or related file
88
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_function
Bit-width of function call arguments must match bit-width of the
corresponding function definition arguments

When to Use

Use this rule to detect bit-width mismatches between the function input
and the corresponding function call argument.

Description

The Av_width_mismatch_function rule reports bit-width mismatch between
the function input and the corresponding function call argument.

NOTE: The Av_width_mismatch_function rule supports the TURBO_GROUP_MESSAGE
TURBO and TURBO_IGNORE_PADDING noise reduction initiatives. For details of
these initiatives, refer to the SpyGlass Turbo Lint Application Note.

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to yes.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 check_pad_concat: The default value is no so that this rule ignores
leading zeros in concat/multi-concat operator while width calculation.
Set the value of the parameter to yes or <rule-name> to consider
leading zeros in concatenation/multi-concatenation operator while width
calculation.

 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.
89
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 set_case_analysis: Use this constraint to specify case analysis
conditions.

 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:

ip_block -name <module-name>

Messages and Suggested Fix

The following message appears if there is a bit-width mismatch between
the function input and the corresponding function call argument:

[WARNING] Bit-width mismatch between function call argument
'<func-call-arg>' ('<func-bits>' bits) and function input
'<func-input>' ('<input-bits>' bits).[Hierarchy: '<hier>']

This violation can be formally failed, partially-proved, or not analyzed by
the formal engine. The not-analyzed violations appear when the width
mismatch between the signed and unsigned expressions is not passed to
the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
This violation appears if the bit-width of the function call arguments do not
match with the bit-width of the corresponding function definition
arguments.

Consequences of Not Fixing
If the function input is narrower than the function call argument, the value
of the function call argument is left truncated and the function is evaluated
on the truncated value.

How to Debug and Fix
Modify the code such that the bit-width of the function call arguments
match with the bit-width of the corresponding function definition
arguments.
90
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Example Code and/or Schematic

Consider the following example:

module top(input clk, rst);
parameter p = 1'b1;
wire [1:0] a;
wire [1:0] b;
reg [1:0] k;

function bit myfunction1;
 input a, b ;
 case ({a,b})
 1'b1 : myfunction1 = a;
 default: myfunction1 = b;
 endcase
endfunction

function void myvoidfunction;
input a, b ;
output c;
c = a + myfunction1({a,a},{b,b}) + p +
myfunction1({a,a},{b,b});
endfunction

function bit myfunction;
input a, b ;
case ({a,b})
 1'b1 : begin
 myfunction = a+b +p;
 myvoidfunction({a,a},{b,b},k[1]);
 end
 default: myfunction = a+b +p;
endcase
endfunction
wire d = myfunction({a,a},{b,b});
endmodule

For the above example, the Av_width_mismatch_function rule reports the
91
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
following violation messages:

FIGURE 6. Av_width_mismatch_function Messages

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_function, filters three false violations reported by the
SpyGlass Lint rule, STARC-2.1.3.1.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Reports and Related Files

No report or related file
92
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_signed_unsigned_mismatch
Mixed signed and unsigned types

When to Use

Use this rule to detect the cases in which signed and unsigned types are
mixed.

Description

The Av_signed_unsigned_mismatch rule reports a violation if signals of the
signed and unsigned types are mixed to form a single expression or there
is a sign conversion in an assignment or a comparison statement.

NOTE: The Av_signed_unsigned_mismatch rule supports the
TURBO_IGNORE_STATIC_CONSTSANTS, TURBO_GROUP_MESSAGE, and
TURBO_SET_RECOMMENDED_PARAMETER noise reduction initiatives. For details of
these initiatives, refer to the SpyGlass Turbo Lint Application Note.

The rule details are covered under the following topics:
 Cases when the Type Conversions are Checked by this Rule

 Rule Assumptions to Avoid Spurious Violations

 Operators Ignored from Rule Checking

 Considering Integer Constants as Signed

 Ignoring Violations for the for-loop and while-loop Indexes

Cases when the Type Conversions are Checked by this Rule

This rule checks for the type conversions, such as signed to unsigned or
unsigned to signed, in the following cases:
 Sign conversion in an assignment (only if strict is set)

 Sign conversion during comparison in constructs, such as case and if.

 Sign conversion during binary operations in an
expression/sub-expression

Rule Assumptions to Avoid Spurious Violations

This rule considers an unsized integer constant, such as 4 as both signed
and unsigned.
93
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Operators Ignored from Rule Checking

This rule does not report for the following operators:
 Right shift operators both logical and arithmetic i.e. ">>" & ">>>"

 Left shift operators both logical and arithmetic i.e. "<<" & "<<<"

 Power operator "**"

Considering Integer Constants as Signed

Set the dccompat parameter to yes to consider unsized integer constants
as signed.

Ignoring Violations for the for-loop and while-loop Indexes

Set the ignoreforindex parameter to yes to ignore violations for the
for-loop and while-loop indexes.

When a bit select or a part select is used as a loop index, violations for the
entire array are ignored. The following code snippet shows such array:

integer j[3];
 for(j[0] = 1; j[0] < 3; j[0]++)
 j[1] = j[1] + 3'b111;

In the above example, no Av_signed_unsigned_mismatch violation
appears for all the array bits in j, because j is marked as for/while loop
index.

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to yes.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 dccompat: Default value is no. Set this parameter to yes to follow
Design Compiler (DC) conventions for rule checking.
94
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 ignoreforindex: Default value is no. Set this parameter to yes to
ignore violations for the for-loop and while-loop indexes. For details, see
Ignoring Violations for the for-loop and while-loop Indexes.

 strict: Default value is no. Set this parameter to yes to check all the
assignments in addition to wire and reg in RHS.

 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.

 set_case_analysis: Use this constraint to specify case analysis
conditions.

 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:

ip_block -name <module-name>

Messages and Suggested Fix

This rule reports the following message:

[WARNING] Unsigned expression '<expr1>' used with signed
expression '<expr2>'<stmt>

Where, <stmt> can be in assignment or in comparison depending upon
whether the type (signed or unsigned) conversion has occurred in an
assignment statement or in a comparison statement.

This violation can be formally failed, partially-proved, or not analyzed by
the formal engine. The not-analyzed violations appear when the width
mismatch between the signed and unsigned expressions is not passed to
the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.
95
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Potential Issues
This violation appears when an unsigned expression is used with a signed
expression.

How to Debug and Fix
Either use signed or unsigned types in an expression. Do not mix the
signals of the signed and unsigned types to form a single expression.

Example Code and/or Schematic

Consider the following example:

module top(input clk, rst,
 input a1,
 output reg b1
);

 //Av_signed_unsigned_mismatch
 test_sub test_sub_instance(a1,b1);

endmodule

module test_sub(d, q);
 input d;
 output q;
 reg q;
 reg r, clk;
 integer i, j;
 wire wireVar;
 wire a = i + wireVar + j;
 always @(posedge clk)
 begin
 if(r)
 q = d<<j;
 end
endmodule
96
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
For the above example, the Av_signed_unsigned_mismatch rule reports
the following violation messages:

FIGURE 7. Av_signed_unsigned_mismatch Messages

As shown in the above figure, SpyGlass functional lint rule,
Av_signed_unsigned_mismatch, filters one false violation reported by the
SpyGlass Lint rule, SignedUnsignedExpr-ML.

Default Severity Label

Warning

Rule Group

Implicit-Properties

Reports and Related Files

No report or related file
97
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_expr
Bit-width of operands of a logical operator do not match

When to Use

Use this rule to detect bit-width mismatch between the operands of logical
operators.

Description

The Av_width_mismatch_expr rule reports bit-width mismatches between
the operand expressions of logical operations.

Width Calculation Approach

Set the nocheckoverflow parameter to yes to calculate width according to
LRM.

The width-calculation approach is as follows:

Operator LRM Width Normal Width
+,- Max (lhswidth,rhswidth) Max (lhswidth,rhswidth) + 1
* Max (lhswidth,rhswidth) lhswidth+rhswidth
/ Max (lhswidth,rhswidth) lhswidth
% Max (lhswidth,rhswidth) rhswidth

Example:

In the following expression, this rule reports a violation when the
nocheckoverflow parameter is set to no:

(in1[3:2] + in1[1]) && in2[3:2]

To suppress violation for the above example, set the nocheckoverflow
parameter to yes.

Rule Exceptions

 If an integer constant is used in one of the operands, this rule does not
report a violation if the width of that constant is less than or equal to the
width of the other operand.
98
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 This rule does not report violations for the expressions where the width
of the constant expression, constant integer, or base number is less
than the width of the other operand.

 Example:
assign out = base [4:0] && (1023>>6) ; //No Violation

assign out1 = base1 [4:0] || 10 ; //No Violation

assign out2 = base2 [4:0] || 1023; //Violation

Parameter(s)

 nocheckoverflow: Default value is no. Set this parameter to yes to
calculate the width of expressions as per LRM. Other possible value is
the list of rules for which you want to set this parameter to yes.

 scope: Default value is block. Set this parameter to chip to
consider the complete fan-in cone of an assertion.

 disable_rtl_deadcode: Default value is no. Set this parameter to
yes to not make assertions for the disabled code (evaluated statically)
using loops and conditional statements, such as if condition and ternary
operator.

 use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits.

 av_seqdepth: Specifies a sequential depth so that the input cone of
properties can be abstracted by cutting the logic behind the specified
depth in that cone (as specified by av_seqdepth) or till the module
boundary (that is, scope=block), whichever is reached earlier.

Constraint(s)

 clock: Use this constraint to specify clock signals in a design.

 reset: Use this constraint to specify reset signals in a design.

 set_case_analysis: Use this constraint to specify case analysis
conditions.

 ip_block: Use this constraint to specify module names so that no
formal checking is done for the constructs inside those modules.

The syntax of using the ip_block constraint is as follows:
99
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
ip_block -name <module-name>

Messages and Suggested Fix

This rule reports the following message:

[ERROR] Operand bit-width mismatch for operator '<op-name>':
'<op1-exp>'('<op1-width>' bits) and '<op2-exp>'('<op2-width>'
bits). [Hierarchy: <hier-path>]

This violation can be formally failed, partially-proved, or not analyzed by
the formal engine. The not-analyzed violations appear when the width
mismatch between the signed and unsigned expressions is not passed to
the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
This violation appears if there are bit-width mismatches between the
operand expressions of logical operations.

Consequences of Not Fixing
Bit-width mismatch between operands of a logical operation may lead to
incorrect results.

How to Debug and Fix
Review the code and correct the reported mismatch.

Example Code and/or Schematic

Consider the following example:

module top();
wire [2:0]c;
wire [2:0]d;
wire [3:0]e;

function bit myfunction1;
 input [2:0]a; input [3:0] b ;
 case ({a,b})
 1'b1 : myfunction1 = a || b;
100
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 default: myfunction1 = b || {a,a};
 endcase
endfunction
assign c = { myfunction1(d,e) , myfunction1(d,e) ,
myfunction1(d,e)};
endmodule

For the above example, the Av_width_mismatch_expr rule reports the
following violation messages:

FIGURE 8. Av_width_mismatch_expr Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_expr, filters one false violation reported by the
SpyGlass Lint rule, STARC-2.10.3.2a.

Default Severity Label

Error

Rule Group

Implicit-Properties

Reports and Related Files

No report or related file
101
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_expr02
Identifies the unequal length operands in the bit-wise logical, arithmetic,
and ternary operators

When to Use

Use this rule to identify bit-width mismatch between operands of the bit-
wise logical, arithmetic, and ternary operators.

Description

The Av_width_mismatch_expr02 rule flags bit-width mismatch between
operands of bit-wise logical, arithmetic, or ternary operators.

Following is the list of operators covered under the
Av_width_mismatch_expr02 rule:

NOTE: If the count of operators is more than 500 in an expression, then the expression is
ignored for rule checking.

Width Calculation

If you set the value of the nocheckoverflow parameter to yes or
Av_width_mismatch_expr02, the Av_width_mismatch_expr02 rule checks
the bit-width as per the LRM, as shown in the following table:

Arithmetic Operators
Subtraction (-) Addition (+)
Multiplication (*) Division (/)
Modulus (%)
Bit-wise Operators
bit-wise xor (^) bit-wise negation (~)
bit-wise and (&) bit-wis e or (|)
Ternary Operator (? :)

Operator LRM width Normal width
+, - Max (LHS width, RHS width) Max (LHS width, RHS width)
* Max (LHS width, RHS width) LHS width + RHS width
102
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
For constants, the natural width is considered.
NOTE: The Av_width_mismatch_expr02 rule does not check for expressions in signal or

variable indexes, such as bit-select expression.

NOTE: This rule does not report a violation for integer variable expressions.

Rule Exceptions

The Av_width_mismatch_expr02 rule does not report violations for
expressions where the width of a constant expression, a constant integer,
or a base number is less than the width of the other operand.

Language

Verilog

Default Weight

10

Parameter(s)

 check_static_value: Default value is no. Set the value of the
parameter to yes or <rule_list> to report violation for cases with
width mismatch, involving static expressions and non-static expressions
having a static part. Other possible values are only_const and
only_expr. For an expression having one operand constant and other
non constant, a violation is reported only when the width of the constant
operand is greater.

 disable_rtl_deadcode: The default value is no. Set the value of
the parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.

 reportconstassign: The default value is no. Set the value of the
parameter to yes to enable the Av_width_mismatch_expr02 rule to
check for constants whose width is less than the operand.

 strict: Default value is no. Therefore, the rule behavior is as follows:

 Ignores addition (+) and multiplication (*) operations

/ Max (LHS width, RHS width) LHS width
% Max (LHS width, RHS width) RHS width

Operator LRM width Normal width
103
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 Reports violation on subtraction (-), division (/), or modulus (%)
operations only if the width of the right operand is greater than the
width of the left operand.

Set this parameter to yes to check for the addition and multiplication
operations and to report subtraction, division, or modulus operations
when there is a width mismatch between operands (both A > B and B
> A for operations A-B, A/B, and A%B). You can also set this
parameter to check for ternary operators

 use_lrm_width: Default value is no. Set this parameter to yes to
consider the LRM width of integer constants, which is 32 bits. The rule
does not check the bit-width as per LRM by default.

 nocheckoverflow: Default value is no. Set the value of the
parameter to yes or rule name to calculate the width as per the LRM.
See Width Calculation to know more about calculating width.

 use_carry_bit: Default value is no and the width is taken as
maximum of the two operands for a binary expression having plus and
minus operators. Set this parameter to yes or <rule-name> to get
width after considering the carry bit of addition. No violation is reported,
even using this parameter, for sub-expressions of a binary expression if
all terms have the same width and all operators are either plus or
minus. Also, refer to Examples Code and/or Schematic.

Constraint(s)

None

Messages and Suggested Fix

The following message appears at the location of an operation of operator
<opr-name> where there is a bit-width mismatch between left expression
<exprl> of bit-width <bit-widthl> and right expression <exprr> of
bit-width <bit-widthr>:

[WARNING] For operator (<opr-name>), left expression: "<exprl>"
width <bit-widthl> should match right expression: "<exprr>"
width <bit-widthr>. [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path of the containing
scope.
104
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
A violation is reported when there is a bit-width mismatch between the left
expression of bit-width and right-expression of bit-width.

Consequences of Not Fixing
While working with expressions of different bit-widths may be the intended
behavior, it is also a potentially error-prone design practice. For example,
the addition of two words of unequal widths may indicate that you forgot to
update the width of one of the buses.

How to Debug and Fix
Double-click the violation message. The HDL window highlights the line,
where, width mismatch in operators is detected.

To resolve the violation, check each case for potential messages, especially
in the bit-wise operators. Review the RTL code mentioned in message, this
code may cause some unintended behavior. Make all arguments in such
comparisons of equal width such as by explicitly extending narrower
operators in a concatenation, to see cases where upper bits are zeroed.

Examples Code and/or Schematic

Consider the following example:

`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11

module top(input clk, rst,
 input [4:0]a1,
 input [4:0]a2,
 input [2:0]dib,
105
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 output reg [2:0] out1,
 output reg [2:0] out2,
 output reg [2:0] out3
);

 reg [1:0] state1;
 reg [1:0] state2;
 reg [1:0] state3;
 reg [1:0] state4;

 always @(posedge clk or posedge rst) begin
 if(rst) begin
 state1 <= `S0;
 out1 <= 3'b000;
 end
 else begin
 priority case(state1)
 `S0: state1 <= `S1;
 `S1: state1 <= `S2;
 `S2: state1 <= `S0;
 endcase
 if(state1 >= dib) begin
 out1 <= a1[1:0] + dib;
 end
 end
 end

 always @(posedge clk or posedge rst) begin
 if(rst) begin
 state2 <= `S0;
 end
 else if (a2[2]) begin
 case (state2)
 `S0: state2 <= `S1;
 `S1: state2 <= `S2;
 `S2: state2 <= `S3;
 endcase
 end else if (state2 >= a2[2:0])begin
106
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 out2 <= a1[1:0] - dib;
 end
 end
endmodule

Now, consider the value of the strict parameter is set to yes.

The Av_width_mismatch_expr02 rule generates the following violation
messages:

FIGURE 9. The Av_width_mismatch_expr02 Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_expr02, filters one false violation reported by the
SpyGlass Lint rule, W116.

Default Severity Label

Warning

Rule Group

Implicit-properties
107
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Reports and Related Files

No related reports or files.
108
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_width_mismatch_expr03
Reports an arithmetic comparison operator with unequal length

When to Use

Use this rule to identify arithmetic comparison operator with unequal
length.

Description

The Av_width_mismatch_expr03 rule reports arithmetic comparison
operations with operands of unequal widths. Following is the list of
operators covered under this rule:

NOTE: If the count of operators is more than 500 in an expression, then the expression is
ignored for rule checking.

If the nocheckoverflow parameter is set to yes or
Av_width_mismatch_expr03, the width of the expression is calculated as
per the LRM. However, for constants, normal width is considered.

Handling of Unary Negation:
In case of unary negation, the width is calculated as follows:

Relational Operators
Greater than (>) Greater than or equal to (>=)
Less than (<) Less than or equal to (<=)
Equality Operators
logical Equality(==) logical inequality(!=)
case equality(===) case inequality(!==)

Operator LRM Width Normal Width
+, - Max (lhswidth, rhswidth) Max (lhswidth, rhswidth) + 1
* Max (, rhswidth) lhswidth + rhswidth
/ Max (lhswidth, rhswidth) lhswidth
% Max (lhswidth, rhswidth) rhswidth
109
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 Variable and based numbers: If an operand is a variable or a based
number, the width is incremented by one. For example, width of
-a[3:0] is 5, and width of -3'b101 is 4, etc. This is applicable only
when the nocheckoverflow parameter is set to no.

 Constant and unsized based number: In case of constants, the
natural width is calculated first and is then incremented by one. For
example, width of-9 is 5. An unsized based number is treated similarly.
For example, width of -'b101 is 4. However, if you set the
use_lrm_width parameter to yes, the width is considered as 32 bit.

Rule Exceptions

The Av_width_mismatch_expr03 rule does not report violation for the
following cases:
 counter cases, for example, data == data+1.

 If any one operand is of integer data type. See Example Code and/or
Schematic for details.

Language

Verilog

Parameters

 check_sign_extend: Default value is no. Set the value of the
parameter to yes to check for width mismatch due to sign extension in
signed comparisons.

 disable_rtl_deadcode: The default value is no. Set the value of
the parameter to yes to disable violations for disabled code in loops and
conditional (if condition, ternary operator) statements.

 use_lrm_width: Default value is no. This indicates the
Av_width_mismatch_expr03 rule considers the natural width of integer
constants. Set this parameter to yes to consider the LRM width, which
is 32 bits.

 nocheckoverflow: Default value is no. This indicates the
Av_width_mismatch_expr03 rule does not check the bit-width as per
LRM. Set this parameter to yes or rule name to check the bit-width as
per LRM.
110
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 check_static_value and strict: By default, the
Av_width_mismatch_expr03 rule does not report violation when the
right or left expression is a constant, including parameter, sized or
unsized based number, and unsized integer. Setting the
check_static_value parameter to yes changes this behavior, and
setting the strict parameter in addition further alters the behavior.
The following table summarizes these variations in behavior:

See Example Code and/or Schematic for details. Also, when set to yes, the
check_static_value parameter checks for width mismatch
involving static expressions and non-static expressions that contain a
static part. Refer to the check_static_value section for more
details.

NOTE: When the strict parameter is set, the Av_width_mismatch_expr03 rule does not
report violation for width mismatch in the for loop condition.

Constraints

None

Type of left or
right
expression

check_static_value
set to no

check_static_value set to yes
strict set to
no

strict set to
yes

Parameter Does not report Reports if the
width of
constant is
larger

Reports any
width mismatch

Sized based
number (8’h15)

Does not report Reports if the
width of
constant is
larger

Reports any
width mismatch

Unsized based
number (’h15)

Does not report Reports if the
width of
constant is
larger

Reports if the
width of
constant is
larger

Unsized integer
(18)

Does not report Does not report Reports if the
width of
constant is
larger
111
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Messages and Suggested Fix

The following message appears at the location where a width <widthl>
of a left expression <exprl> does not match a width <widthr> of a
right expression <exprr> in an operation of an arithmetic operator <op-
name>.

[WARNING] For operator (<op-name>), left expression: "<exprl>"
width <widthl> should match right expression: "<exprr>" width
<widthr> [Hierarchy: ‘<hier-path>’]

Where, <hier-path> is the complete hierarchical path.

This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
A violation is reported when an arithmetic operation has operands of
unequal length.

Consequences of Not Fixing
For some range of values of the wider operand in arithmetic comparison
operations, the comparison operation evaluates to a constant, independent
of the value of the narrower operand. This may result in an unexpected
behavior.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the width mismatch is found for comparison operator.

This is not a major issue. However, you can avoid possible problems by
explicitly comparing sub-expressions of equal width. This also enhances
the code readability.

Example Code and/or Schematic

Consider the following example:
112
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11
module top(input clk, rst,

input [4:0]a1,
input [4:0]a2,
input [2:0]dib,
output reg [2:0] out1,
output reg [2:0] out2,
output reg [2:0] out3

);
reg [1:0] state1;
reg [1:0] state2;
reg [1:0] state3;
reg [1:0] state4;

always @(posedge clk or posedge rst) begin
if(rst) begin

state1 <= `S0;
out1 <= 3'b000;

end
else begin

 priority case(state1)
 `S0: state1 <= `S1;
 `S1: state1 <= `S2;
 `S2: state1 <= `S0;
 endcase
 if(state1 >= dib) begin
 out1 <= a1[1:0] + dib;
 end
 end
 end
 always @(posedge clk or posedge rst) begin
 if(rst) begin
 state2 <= `S0;
 end
 else if (a2[2]) begin
 case (state2)
113
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 `S0: state2 <= `S1;
 `S1: state2 <= `S2;
 `S2: state2 <= `S3;
 endcase
 end else if (state2 >= a2[2:0])begin
 out2 <= a1[1:0] - dib;
 end
 endendmodule

For the above example, the Av_width_mismatch_expr03 rule reports the
following violation messages:

FIGURE 10. Av_width_mismatch_expr03 Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_width_mismatch_expr03, filters one false violation reported by the
SpyGlass Lint rule, W362.

Default Severity Label

Warning

Rule Group

Implicit-properties
114
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Reports and Related Files

None
115
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_case_default_redundant
Ensure that a case statement marked full_case or a priority/unique
case statement does not have a default clause.

When to Use

Use this rule to identify the case statements that are marked either
full_case or priority/unique_case and have a default clause.

Description

The Av_case_default_redundant rule reports violation for the following
constructs with a default clause:
 case constructs with full_case pragma

 priority/unique case constructs

The Av_case_default_redundant rule checks for priority cases inside always
blocks, initial blocks, tasks and functions in all scopes like generate block,
packages, global scope, and interfaces.

The rule reports violation when a priority modifier is used with case,
casex, or casez statements with default clause as one of its case
selection item.

Language

Verilog

Default Weight

5

Parameter(s)

check_case_type: Default value is all. Therefore, the
Av_case_default_redundant rule checks for priority, unique, and full_case
cases. Set the value of the parameter to either priority or unique or
full_case to check for priority, unique and full_case cases, respectively. You
can also specify multiple values for the parameter so as to check for the
specified cases.

Constraint(s)

None
116
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Messages and Suggested Fix

The following message appears at the first line of a case construct with the
default clause and full_case pragma or priority/unique case construct with a
default clause:

[WARNING] Case statement marked <type> has a default clause

Where, <type> can be full_case or priority_case or
unique_case.

This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues
The Av_case_default_redundant rule may report a violation because of the
following reasons:
 Full_case pragma or the default clause is redundant.

 In case of priority/unique case the default clause is redundant.

Consequences of Not Fixing
This rule points to the need of intent review. If the designer meant to
specify full_case then there should not be a reason for a default clause. A
review at the RTL coding stage can help you uncover subtle design issues.

How to Debug and Fix
Use either the full_case pragma directive or the default clause in a case
construct. For priority/unique case constructs, default clause is redundant.

To fix the violation, remove either the full_case pragma or the default clause.

Example Code and/or Schematic

Consider the following example:

module top(input clk, rst,
 input [4:0]a1,
 input [4:0]a6p,
117
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 input [4:0]a7p,
 output reg [3:0]b6p,
 output reg [3:0]b7p);
 always @ (a1 or a6p or a7p)
 case (a1) //synopsys full_case
 2'b00 : b6p <= a6p;
 2'b01 : b7p <= a7p;
 2'b11 : b7p <= a6p + a7p;
 2'b10 : b7p <= a7p - a6p;
 default: b7p <= 2'b11;
 endcase

 always @ (a1 or a6p or a7p)
 casez (a1[1]) //synopsys full_case
 1'b0 : b6p <= a6p;
 1'b1 : b7p <= a6p + a7p;
 default: b7p <= 2'b11;
 endcase
endmodule

In the above example, the Av_case_default_redundant rule reports
following violation messages:

FIGURE 11. Av_case_default_redundant Messages

In the above example, violations filtered by SpyGlass Functional Lint are
118
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_case_default_redundant, filters one false violation reported by the
SpyGlass Lint rule, W551.

Default Severity Label

Warning

Rule Group

Implicit-properties

Reports and Related Files

No related reports or files.
119
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_case_default_missing
Ensure that a case statement or a selected signal assignment has a
default clause

When to Use

Use this rule to identify case constructs without the default clause.

Description

The Av_case_default_missing rule reports violation for case constructs
without the default clause and case constructs and selected signal statements.

A default clause should always be specified in a case construct to handle
unexpected situations even if the construct covers all potential situations.

NOTE: The Av_case_default_missing rule supports generate-if and generate-for block.

Rule Exceptions

The Av_case_default_missing rule does not report for missing default clause
in the following cases:
 If the target signals in the case construct are assigned using a blocking

or non-blocking assignment statement before the case statement
 Case constructs that are inside always construct that infer a flip-flop (Set

check_sequential rule parameter to report such cases).

 Case constructs with associated full_case pragma and unique / priority
cases.

 Fully-specified case constructs.

 Case statements with static case select (including generate case).

Language

Verilog

Default Weight

5

Parameter(s)

 strict: The default value is no. Set the value of the parameter to yes
to report fully-specified case constructs without the default clause.
120
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 check_sequential: The default value is no. Set the value of the
parameter to yes to enable rule checking in sequential block.

Constraint(s)

None

Messages and Suggested Fix

The following message appears at the location where a case construct is
defined without a default clause:

[WARNING] Case statement does not have a default clause and is
not preceded by assignment of target signal <block-type>
[Hierarchy: ‘<hier-path>’]

Where, <block-type> can be either a sequential or a combinational
block and the <hier-path> is the complete hierarchical name of the
containing scope excluding subprograms.

This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues

A violation is reported when a case construct is defined without a
default clause.

Consequences of Not Fixing
If all possible cases of the case construct selector are covered, this is not
directly an error. However, if the case construct selector has an undefined
value (X or Z) and there is no default clause, then the design simulation may
produce unexpected results.

If the width of the case construct selector changes as the design evolves,
then what had once been a fully covered case construct may become only
partially covered and can lead to inferred latches. Hence, it is
recommended to always describe a default clause even if all possible cases of
121
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
the case construct selector are described.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window is displayed.
The HDL Viewer window highlights the line where the case statement with
missing default is declared.

To fix the violation, add a default clause to specify default behavior. If you are
specifying simulation X behavior, bracket this behavior in
translate_off and translate_on pragmas.

Example Code and/or Schematic

Consider the following example:

module top(input clk, rst,
 input [4:0]a1,
 input [4:0]a6p,
 input [4:0]a7p,
 output reg [3:0]b6p,
 output reg [3:0]b7p);

 always @ (a1 or a6p or a7p)
 case (a1)
 2'b00 : b6p <= a6p;
 2'b01 : b7p <= a7p;
 2'b11 : b7p <= a6p + a7p;
 endcase

 always @ (a1 or a6p or a7p)
 case (a1[0])
 1'b0 : b6p <= a6p;
 1'b1 : b7p <= a6p + a7p;
 endcase
endmodule

Now, consider that the value of the strict parameter is set to yes.

For this example, the Av_case_default_missing generates the following
violation messages:
122
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
FIGURE 12. Av_case_default_missing Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_case_default_missing, filters one false violation reported by the
SpyGlass Lint rule, W71.

Default Severity Label

Warning

Rule Group

Implicit-properties

Reports and Related Files

No related reports or files.
123
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
Av_dontcare_mismatch
Use of don’t-care except in case labels may lead to simulation/
synthesis mismatch

When to Use

Use this rule to identify the usage of don’t care character in the design.

Description

The Av_dontcare_mismatch rule reports violation for based numbers that
contain the don’t care character.

Rule Exceptions

The Av_dontcare_mismatch rule does not flag a violation for a parameter,
generic, or constants that are assigned a don’t-care value and are used only as
case-label.

Also, no rule checking is done for unused macro definitions.

Language

Verilog, VHDL

Default Weight

5

Parameter(s)

None

Constraint(s)

None

Messages and Suggested Fix

The following message appears at the location where a don’t care character
(?) is encountered in a based number <num>:

[WARNING] Based number <num> contains a don’t care (?) - might
lead to simulation/synthesis mismatch

This violation can be formally failed, partially-proved, not analyzed, or
other by the formal engine. The not-analyzed violations appear when the
124
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
width mismatch between the signed and unsigned expressions is not
passed to the formal engine.

For more information on the property status reported during the functional
analysis, see SpyGlass Auto Verify Rules Reference Guide.

Potential Issues

Violation may arise when a based number contains a don’t care value.

Consequences of Not Fixing
There is no physical counterpart for the don't-care value. In simulation, these
values are typically mapped to 'Z' which causes a tristate to be inferred.
However, this behavior should be avoided as it may result in inferring
spurious logic.

How to Debug and Fix
Double-click the violation message. The HDL Viewer window highlights the
line where the don't care value, ?, is used in the design other than in the
case label.

To fix the violation, test both 0 and 1 values in a comparison. Also, in an
assignment, choose either 0 or 1.

Example Code and/or Schematic

Consider the following example:

`define S0 2'b00
`define S1 2'b01
`define S2 2'b10
`define S3 2'b11

module top(input clk, rst,
 output reg [3:0] out0,
 output reg [2:0] out1
);

 reg [1:0] state1;
 reg [1:0] state2;
 reg [1:0] state3;
125
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
 reg [1:0] state4;

 always @ (out0)
 begin
 out0 <= 4'b110?;
 end

 always @(posedge clk or posedge rst) begin
 if(rst) begin
 state3 <= `S0;
 end
 else begin
 priority case (state3)
 `S0: state3 <= `S1;
 `S1: state3 <= `S2;
 `S2: state3 <= `S0;
 default: begin
 state3 <= `S3;
 out1 = 3'b11?;
 end
 endcase
 end
 end
endmodule

In the above example, the Av_dontcare_mismatch rule reports following
violation messages:
126
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
FIGURE 13. Av_dontcare_mismatch Messages

In the above example, violations filtered by SpyGlass Functional Lint are
highlighted in green. However, violations not filtered by SpyGlass
Functional Lint are highlighted in red.

As shown in the above figure, SpyGlass functional lint rule,
Av_dontcare_mismatch, filters one false violation reported by the SpyGlass
Lint rule, W467.

Default Severity Label

Warning

Rule Group

Expression Rules

Reports and Related Files

No related reports or files.
127
Synopsys, Inc.

The SpyGlass Functional Lint Rules

SpyGlass Functional Lint
128
Synopsys, Inc.

SpyGlass Lint
Abstraction Flow
Overview
Based on the goal run while generating an abstract view of a block and
validating assumptions on an abstract view, SpyGlass generates and
validates product-specific details.

This section describes the different type of information generated and
validated during the SoC methodology flow.
 Generating an Abstract View in SpyGlass Lint

 Validating Assumptions on Abstract View in SpyGlass Lint

 Using the Abstract View in SpyGlass Lint

 Using the Automatic SoC Flow in SpyGlass Lint

In the SpyGlass 5.6 release, the Invoking the Automatic SoC Flow has been
enhanced.

Generating an Abstract View in SpyGlass Lint

To generate an abstract view while using SpyGlass Lint solution, run the
lint_abstract goal.
129
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
The following figure shows the process of generating an abstract view in
the SpyGlass Lint solution:

FIGURE 1.

To generate Abstract View for clock-reset integrity checks,
Advanced_CDC license is required.

NOTE: For generating the abstract view, you can capture the block interface information by
using the include_block_interface project file option. Alternatively, you can
manually specify the block interface information in the form of SGDC constraints for
the abstract model.

Example - Generating an Abstract View in SpyGlass Lint

This section describes an example of generating an abstract view of the
blockA block in the SpyGlass Lint solution.

It covers the following topics:
 Reading the blockA.v and blockA.sgdc Files in SpyGlass

 Generating an Abstract View of blockA

 Understanding the Generated Abstract View of blockA

Reading the blockA.v and blockA.sgdc Files in SpyGlass

Consider the following files (RTL and SGDC for blockA) specified for
generating an abstract view:

Block RTL

lint_abstract goal Abstract View (.sgdc)

Block SGDC
130
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Following is the schematic of the above design:

module blockA (output op1, op2, input in1,

 reg ff1, ff2, ff3;
 wire d1, clkn;
 assign clkn = !clk;
 assign d1 = in1 & in2;
 always @(posedge clk or posedge rst) begin
 if (rst) begin
 ff1 <= 1'b0;
 ff2 <= 1'b0;
 end
 else begin
 ff1 <= d1;
 ff2 <= ff1;
 end
 end
 always @(posedge clkn or posedge rst) begin
 if (rst) begin
 ff3 <= 1'b0;
 end
 else begin
 ff3 <= !(tm & in2);
 end
 end
 assign op1 = ff2 & ff3;
 assign op2 = ff3 & in3;
endmodule

// Block RTL (blockA.v)

 in2, in3, rst, clk, tm);

// Block SGDC (blockA.sgdc)

current_design blockA

set_case_analysis -name tm -value 1
131
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
FIGURE 2.

To read in the above design and its SGDC file, use the following project file:

File: blockA.prj

##Data Import Section
read_file -type verilog blockA.v
read_file -type sgdc blockA.sgdc

##Common Options Section
set_option language_mode mixed
set_option projectwdir .
set_option current_methodology $SPYGLASS_HOME/GuideWare/
2015.12/soc/rtl_handoff/
set_option top blockA
132
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Generating an Abstract View of blockA

Specify the following command to generate the abstract view for the
design read in the Reading the blockA.v and blockA.sgdc Files in SpyGlass step:

spyglass -project blockA.prj -batch -goal lint/lint_abstract

NOTE: For generating the abstract view, you can capture the block interface information by
using the include_block_interface project file option. Alternatively, you can
manually specify the block interface information in the form of SGDC constraints for
the abstract model.

Understanding the Generated Abstract View of blockA

After Reading the blockA.v and blockA.sgdc Files in SpyGlass and Generating an
Abstract View of blockA, the following SGDC file is generated representing the
abstract view:

current_design "blockA" -def_param

abstract_port -ports "op1" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "Q" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_PORT_WITH_COMBO_CLOUD"

abstract_port -ports "op2" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "Q" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_PORT_WITH_COMBO_CLOUD"

abstract_port -ports "in1" -connected_inst "\blockA.ff1_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_PORT_WITH_COMBO_CLOUD"

abstract_port -ports "in2" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity inv -mode set_case_analysis -scope base
-data "REGISTERED_PORT_WITH_COMBO_CLOUD"

abstract_port -ports "in2" -connected_inst "\blockA.ff1_reg
" -inst_master "RTL_FDC" -inst_pin "D" -path_logic combo
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_PORT_WITH_COMBO_CLOUD"
133
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
abstract_port -ports "in3" -related_ports "op2" -path_logic
combo -path_polarity buf -mode set_case_analysis -scope base
-data "PORT_WITH_RELATED_PORT"

abstract_port -ports "rst" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "CLR" -path_logic buf
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_RST_PORT"

abstract_port -ports "clk" -connected_inst "\blockA.ff3_reg
" -inst_master "RTL_FDC" -inst_pin "CP" -path_logic inv
-path_polarity inv -mode set_case_analysis -scope base
-data "REGISTERED_CLK_PORT"

abstract_port -ports "clk" -connected_inst "\blockA.ff2_reg
" -inst_master "RTL_FDC" -inst_pin "CP" -path_logic buf
-path_polarity buf -mode set_case_analysis -scope base
-data "REGISTERED_CLK_PORT"

abstract_port -ports "tm" -scope base -data
"REGISTERED_PORT_WITH_COMBO_CLOUD"

In the above abstract view, the lint_abstract goal generates the
following information:

 The abstract_port constraint for only one unique path of each port.
For example, if an input pin of a block is connected to the data-pin of 10
flip-flops without any combinational or inverter logic, only one entry is
generated in the abstract view (SGDC file).
However, if there are paths that have some combinational logic or an
inverter, a separate entry is generated for each for buffer, inverter, and
combinational path. For example, the in2 port reaches the ff1_reg
and ff3_reg flip-flops with different polarity. Therefore, there will be
two entries in the generated SGDC file.

 The abstract_port constraints for the op1 and op2 output ports
with the -path_logic combo argument and the -path_polarity
buf argument.

Here, combo represents a combinatorial path from the source object to
134
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
the destination out-pin. Similarly, buf represents a buffer type as there
is no path inversion between the source object and the destination out
pin Q of the ff2_reg and ff3_reg flip-flop.

 RTL_FDC is the name of master module of the ff2_reg and
ff3_reg flip-flops and the -inst_pin argument represents the pin
of the master module RTL_FDC, which is connected to the block ports,
such as op1 and op2.

 Similarly, the abstract_port constraint is also generated for the
blockA input port, which hits flip-flops. For example, the in1 and in2
ports are connected to the ff1_reg and ff3_reg flip-flops,
respectively.

 If any input reaches the output port having only combination logic,
SpyGlass generates the output port as related_port
<output-port-name> in the SGDC file. For example, the in3 port
reaches the op2 output port, which has combinational logic only.

Validating Assumptions on Abstract View in SpyGlass Lint

At this stage, read in the abstract views of lower level blocks and their port
interfaces and validate them to check if top-level constraints are matching
with the block-level constraints under which abstraction occurred.

The following figure shows the process of validation in SpyGlass Lint
solution. If you have an enhanced abstract model, specify the
use_block_interface project file option.
135
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
FIGURE 3.

Importing Abstract View

Create an SoC-level SGDC file to read (import) abstract view created in the
Example - Generating an Abstract View in SpyGlass Lint step.

// File: top.sgdc

current_design top
sgdc -import blockA blockA/blockA_abstract.sgdc

NOTE: You must also import the port interface information of the block for which you have
imported the abstract view. The port interface information is imported in the
Creating a Project File Used during Validation step.

Creating a Project File Used during Validation

Create the following project file in which you read the abstract view of
blockA and its port interface information in the form of its RTL:

File: top.prj

##Data Import Section
read_file -type verilog top.v

Import the 'abstract view' of the blocks
read_file -type sgdc top.sgdc

Block interface
or block RTL

Abstract view
of a block

SoC-level
constraintsSoC RTL lint_abstract_validate goal

Fix violations
136
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Read the port interface of the abstract blocks
read_file -type verilog ./blockA/blockA_port_interface.v

##Common Options Section
set_option language_mode mixed
set_option projectwdir .
set_option current_methodology $SPYGLASS_HOME/GuideWare/
2015.12/soc/rtl_handoff/
set_option top top

Performing Validation

Run the lint_abstract_validate goal to validate the sanity of the
abstract view with respect to the top-level test environment.

spyglass -project top.prj -batch -goal lint/
lint_abstract_validate

Viewing Validation-Related Messages

Look for the violation messages of the LINT_sca_validation rule in the GUI
or the moresimple.rpt report.

The LINT_sca_validation rule reports a violation if the simulated value
reaches the top-level net connected to a block-level port but no
set_case_analysis constraint is specified on the block-level port, or
vice-versa. This indicates that the abstract view is not suitable to be used
at top-level.

Fix such violations, and regenerate the abstract view and validate it again.

Using the Abstract View in SpyGlass Lint

Once validation is successfully performed (block versus top-level
constraints), you can perform SpyGlass Lint analysis at the top-level.

The following figure shows the process of validation in SpyGlass Lint. If you
have an enhanced abstract model, specify the use_block_interface
project file option.
137
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
FIGURE 4.

For details on the steps during this stage, see the Using the Abstract View
during SoC-Level Verification section in the SoC Methodology Guide.

Using the Automatic SoC Flow in SpyGlass Lint

Performing SoC verification involves multiple steps, such as verifying each
block in SoC, generating an abstract view for each block, validating
abstract views with SoC and performing SoC verification using the
validated abstract views. This process requires complex file handling. In
case of multiple instances of a block, input files for each instance should be
tracked.

To simply the above process, SpyGlass Lint provides The Automatic SoC Flow
(also known as the single push button flow). In this flow, you provide
necessary inputs once and then SpyGlass automatically performs the
following steps of SoC verification:
1. Generate block-level SGDC files by performing top-down constraint

migration of blocks.
2. Verify each block by using the generated block-level SGDC.
3. Generate abstract views of the verified blocks.

SpyGlass Lint
goals

Fixing SoC-related
violations

Block interface
or block RTL SoC SGDC

SoC RTL
Block abstract
view (.sgdc)
138
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
4. Verify the generated abstract views at the SoC level.

This section covers the following topics:
 Invoking the Automatic SoC Flow

 Configuration File for the Automatic SoC Flow

 Incremental Run of the Automatic SoC Flow

 Output of the Automatic SoC Flow

Invoking the Automatic SoC Flow

Prerequisite

You must first load a design in sg_shell by using the open_project Tcl
command.

Invoke the Automatic Flow

You can invoke the Automatic Flow the following ways in sg_shell:
 Method 1: Configuration File

 Method 2: Non-Configuration File

Method 1: Configuration File

By specifying the following command, you can provide the configuration
file. In this method, the mode is top_down by default.

sg_shell> auto_soc -configfile <configuration-file>

For details on the -configfile argument of the above command, see
Configuration File for the Automatic SoC Flow.

Method 2: Non-Configuration File

When you do not have a configuration file, by default, all the blocks
instantiated directly in top are abstracted. In this method, you have the
option of:

 Changing the mode to bottom up by using the mode argument

 Specifying a parallel file by using the parallelfile argument.
139
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Example 1
By specifying the following command, you can provide the output directory
and the parallel file. In this method, the mode is top_down by default.

sg_shell> auto_soc -outdir <output-directory> -parallelfile
<lsf-file> -current_product lint

Where, <lsf-file> should have the following format:

LOGIN_TYPE: lsf
MAX_PROCESSES: 2
LSF_CMD: /delsoft/software/lsf/7.0/linux2.6-glibc2.3-x86_64
/bin/bsub -I -q normal -R "rusage[mem=4000]"

Here, LOGIN_TYPE accepts only the lsf value.

Example 2

In this example, the mode is explicitly set to bottom_up and a parallel
file is not provided. By default, the mode is top_down.

sg_shell> auto_soc -outdir <output-directory>
-mode bottom_up -current_product lint

Example 3
By specifying the following command, you can provide the output directory,
the parallel file, and the mode. In this example, the mode is explicitly set
to bottom_up. By default, the mode is top_down.

sg_shell> auto_soc -outdir <output-directory> -parallelfile
<lsf-file> -mode bottom_up -current_product lint

The Automatic SoC Flow

The following figure shows the automatic SoC Flow:
140
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
FIGURE 5. The Automatic SoC Flow

Configuration File for the Automatic SoC Flow

The configuration file provides the following information:
 Block-level and top-level goals to run

 Block-level setup information, such as parameters, input SGDC, and
block abstract views

 Block-level project files

 Mode of run, that is bottom-up or top-down

 Location of output

To create a configuration file, use the -config_file option of the
auto_soc Tcl command.

User Input
Configuration File for the Automatic SoC Flow

Automatic SoC Flow
b1 b2 b3 bn

......

SoC (top)

Top-down constraints migration

b1_constr b2_constr b3_constr bn_constr

Blocks verification and abstraction

b1_abstr b2_abstr b3_abstr bn_abstr
......

SoC validation and verification using abstract views
141
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Sections in a Configuration File

The configuration file is divided into three top-level sections defining the
following scopes:
 Product Scope

 Top-Level Scope

 Block-Level Scopes

Each of the above scope is defined by using a particular command. Within a
scope, you can specify different specifications as described in the following
table:
142
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
TABLE 1 Commands of a Configuration File

Specification Corresponding Command
Define a verification
methodology and/or goal to
run.

soc_arg current_methodology <name>
soc_arg current_goal <goal-name>

Define product-specific
parameters and options.

soc_arg set_parameter <name> <value>

Define block-level project file. soc_arg set_project_file <prj-file>

Top-down constraints migration and project file
generation is not done for the block specified
with this command.

Define block-level SDC and/or
SGDC file

soc_arg sgdcfile <sgdc-file>

Define a run mode soc_arg mode bottom_up
OR
soc_arg mode top_down (default)

If you specify top_down, top-level constraints
are migrated to the block (top-down
constraints migration).

If you specify bottom_up, you must specify
SGDC file for the block. In this case, SpyGlass
performs block verification directly without
performing top-down constraints migration.

Disable specific steps • soc_arg disable top_down
Disables the top-down constraints
migration. In this case, you should specify
block-level SGDC files.

• soc_arg disable verif
Disables block or top-level verification.

Define the location of the
output of SoC verification

soc_arg outdir <directory-path>
143
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
See Configuration File Format.

Product Scope

This section defines the product under which The Automatic SoC Flow should
be done.

Use the following command to define SpyGlass Lint scope:

current_product Lint

Use different Commands of a Configuration File to specify settings under this
scope.

Top-Level Scope

This section defines the top-level block (SoC) for which The Automatic SoC
Flow should be done:

Use the following command to define the top-level scope:

Enable the parallel run of
block-level modules

soc_arg num_parallel_runs <number-of-
block-level-modules>

For example, if you specify the value 4 to this
command, The Automatic SoC Flow is run for
any four blocks in parallel.
If you do not specify this command, The
Automatic SoC Flow of blocks occur serially.

Enable the LSF mode for
parallel blocks run

soc_arg parallelfile <lsf-file>

Where <lsf-file> is the LSF file containing the
following format:
LOGIN_TYPE: lsf
MAX_PROCESSES: 2
LSF_CMD: /delsoft/software/lsf/7.0/
linux2.6-glibc2.3-x86_64/bin/bsub -I -q
normal -R "rusage[mem=4000]"

LOGIN_TYPE is static and it only accepts the lsf
value.

Specification Corresponding Command
144
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
soc_top <top-name>

Use different Commands of a Configuration File to specify settings under this
scope.

Block-Level Scopes

This section defines settings, such as parameters and SGDC files for a
particular block. Repeat this section for each block.

Use the following command to define a block-level scope:

soc_block <block-name> [<inst-name>]

Use different Commands of a Configuration File to specify settings under this
scope.

Configuration File Format

Following is the sample configuration file:

current_product Lint

soc_arg outdir run_soc_dir
#soc_arg mode bottom_up

soc_top <TOP-NAME>

soc_arg current_methodology <METHODOLOGY-NAME>

soc_arg current_goal <GOAL-NAME>

soc_block <BLOCK1-NAME> <INSTANCE-NAME>

soc_arg current_methodology <METHODOLOGY-NAME>

soc_arg current_goal <GOAL-NAME>

soc_arg sgdcfile <block.sgdc>

soc_block <BLOCK2-NAME> <INSTANCE-NAME>

soc_arg current_methodology <METHODOLOGY-NAME>
145
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
soc_arg current_goal <GOAL-NAME>

Configuration File Without soc_block

If you do not specify soc_block in a configuration file, The Automatic SoC
Flow performs top-down constraints migration for all the blocks at the
top-level module.

For example, consider the following configuration file:

current_product lint
soc_arg outdir ./Work/Linux4
soc_arg parallelfile lsf
soc_top top
soc_arg current_goal lint/lint_rtl
soc_arg current_methodology $::env(SPYGLASS_HOME)
/GuideWare2.0/soc/rtl_handoff

In the above file, soc_block is missing. Therefore, all the top-level
blocks are picked for top-down constraints migration. In addition, during
block abstraction, all the goals available for soc_top are run.

Incremental Run of the Automatic SoC Flow

Incremental run of The Automatic SoC Flow enables you to incrementally
analyze specific blocks as and when they are modified.

To incrementally analyze specific blocks, use the following command:

auto_soc -configfile <Tcl-file> -incremental “<space-
separated-block-list>”

The following example shows the usage of the above command:

auto_soc -configfile cfg.tcl -incremental “b1 b2 b3 b4”

Running The Automatic SoC Flow incrementally is required in the following
cases:
 You make updates in the top-level RTL, project file, or SGDC file.

Performing incremental run in this case invokes The Automatic SoC Flow
146
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
again including top-down constraints migration.
 You update the project file of a specific block or the RTL/SGDC of

specific blocks.

Output of the Automatic SoC Flow

This section covers the following topics:
 Directories Created in the Automatic SoC Flow

 Run Results in the GUI in the Automatic SoC Flow

 The HTML Report Generated in the Automatic SoC Flow

Directories Created in the Automatic SoC Flow

The following table summarizes the directories created in The Automatic SoC
Flow:

Lint/block_run <block-name>_<instance-name> abstract_view Contains the
abstract view of
the block

project_files Contains
project-file
related
information of
the block

top_down_gen_files Contains the
SGDC file
generated for
the block in the
top-down flow
147
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
Run Results in the GUI in the Automatic SoC Flow

SpyGlass generates the run results of different blocks in the GUI under the
Hierarchical Flow tab that appears after The Automatic SoC Flow is complete.

The Hierarchical Flow tab is shown in the following figure:

Lint/soc_run/ <top-level-module-name> top_down Contains files,
such as project
files and SGDC
files used in the
top-down flow

verif Contains
top-level
verification files,
such as project
files and SGDC
files

<top>_lint_VERI
F/<top>/
html_reports/

dashboard.html Shows consolidated run results of the
top-down flow

Lint/
_spyglass_intern
al

error.log Shows SpyGlass fatal and run errors

Lint/
_spyglass_intern
al

run.log Shows information of the steps
executed.
148
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
FIGURE 6. The Hierarchical Flow menu

The Hierarchical Flow menu enables you to load the verification run
results of the top-level and the block.

The HTML Report Generated in the Automatic SoC Flow

SpyGlass generates the dashboard.html report in the
<top>_lint_VERIF/<top>/html_reports/ directory after The Automatic SoC Flow is
complete. This report shows the consolidated run results of the top-down
flow.

The following figure shows this part of the report:

FIGURE 7. The dashboard.html Report
149
Synopsys, Inc.

Overview

SpyGlass Lint Abstraction Flow
For more details, you can view the detailed results in the GUI. To launch
the GUI, click the Open link in the View Results column. The GUI
launches automatically, enabling you to use the debugging capabilities of
the GUI.
150
Synopsys, Inc.

	SpyGlass® Lint Turbo Structural User Guide
	SpyGlass Lint Turbo Structural
	Using the Turbo Flow
	Turbo Initiatives
	Rule-wise Initiatives
	erc
	latch
	lint

	miscellaneous
	morelint
	openmore
	simulation
	starc

	starc2002
	starc2005
	timing
	Turbo Parameter Settings
	Smart Rule Execution
	Waiving Primary Messages in the Turbo Mode
	Defining the Preferred Waiver Behavior

	The moresimple_turbo Report
	Known Problems

	SpyGlass Functional Lint
	Prerequisites for Using Turbo Functional Rules
	Turbo Capabilities
	Functional Lint to Lint Rule Mapping
	Generating Waivers for Structural Rules
	The SpyGlass Functional Lint Rules
	Av_width_mismatch_assign
	Av_width_mismatch_case
	Av_width_mismatch_port
	Av_width_mismatch_function
	Av_signed_unsigned_mismatch
	Av_width_mismatch_expr
	Av_width_mismatch_expr02
	Av_width_mismatch_expr03
	Av_case_default_redundant
	Av_case_default_missing
	Av_dontcare_mismatch

	SpyGlass Lint Abstraction Flow
	Overview
	Generating an Abstract View in SpyGlass Lint
	Validating Assumptions on Abstract View in SpyGlass Lint
	Using the Abstract View in SpyGlass Lint
	Using the Automatic SoC Flow in SpyGlass Lint

