
SpyGlass® Design Read-In
Methodology

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Reading a Design ..11
The Design Read Process .. 12

Design Language...12
Design Components ...13

Predefined and Characterized Cell Library Elements..............................13
DesignWare® Components ...14
Special Cells ...14
RAMS and ROMS ...14

Design Representation ...14
Design Constraints...15
Design Size...15
Starting ...15

Verilog Specific Options .. 17
Design-Read with Precompilation ... 20

Step 1-Precompile the Lowest-level Library ...23
Step2-Using Compiled Libraries at a Higher Level.....................................25

Precompiled Library Mapping...26
Various Start Points ...28

Design-Read with Single-Step Compilation ... 32
Dealing with DesignWare® Components ... 37
Dealing with Syntax Errors.. 40

Pragma Handling within SpyGlass ..40
Dealing with Black Boxes .. 41
Dealing with Unsynthesized Modules .. 43
Dealing with Multiple Top Modules.. 44
SGLIB Creation.. 45
Dealing with Out of Memory Situations ... 47
SpyGlass Debugging.. 48
v
Synopsys, Inc.

Design Read .. 51
Further Help .. 52
Where to Look for More Information ... 53

Appendix - Single Step Compilation ..55
vi
Synopsys, Inc.

Preface
About This Book
The SpyGlass® Design Read-In methodology guide describes the flow for
using the Design Read-In methodology.
7
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass Design Read-In methodology guide has the following
sections:

Section Description
Reading a Design How to read-in your design in SpyGlass Tool

Suite
Appendix - Single Step Compilation How to perform single-step precompilation
8
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.

Typographical Conventions

Preface
10
Synopsys, Inc.

Reading a Design
SpyGlass supports various options in terms of analyzing a design. These
options are in several dimensions, namely:
 Language: Verilog, VHDL, Mixed

 Language Variations: V2K, VHDL87, VHDL93 etc.

 Completeness of design information: Analysis can continue even in the
presence of black boxes etc.

 Library information can be made available in the form of UDPs,
synthesizable HDLs, .libs, ILMs etc.

This document provides a step-by-step approach for a user to construct the
right commands and/or take the right steps to read in his design into the
software. Since, this is a generic document, covering all possible scenarios
of designs (black boxes, analog cells, RTL, netlists etc.) you would not need
to go through the entire document to read-in your design easily into
SpyGlass. Depending on the contents/style of your designs, you might
want to skip sections that are not relevant to your current design. The
document is based on SpyGlass 5.5.1.
11
Synopsys, Inc.

The Design Read Process

Reading a Design
The Design Read Process
Reading a new design into SpyGlass can be a multi-dimensional problem.
The following diagram illustrates many of the important aspects of the
read-in process:

NOTE: Starting Point and Mode are decoupled from the intrinsic nature of the design. All
other circles are attributes of the design.

Starting Point and Mode are dependent on design group, design
methodology, and culture of the design team or history. Therefore different
colors have been used in the diagram.

A design can have many different combinations of the aspects illustrated
above. Detailed steps of handling these aspects are described later in this
document.

Design Language
12
Synopsys, Inc.

The Design Read Process

Reading a Design
Today’s SoCs typically use Verilog, VHDL, or a mixture of the two
languages. SystemVerilog may proliferate in the coming years. There are
variations of these languages where conformance to LRM may or may not
exist in some cases. Popular simulator vendors (like MTI, Synopsys/VCS
etc) have supported many features outside LRM. On the contrary, there are
certain features in LRM that are not supported by some of these
simulators. This aspect does have some implications in the design-read-in
process.

Support of pragmas in the language also has wide variations. In the
process of design-read, these language features need to be considered
appropriately (described in later chapters). Synthesizable subsets have in
general remained to be a common denominator.

Design Components

In today’s SoC designs, the levels of integration and complexity have
forced the extensive re-use paradigm. Many diverse design teams and
suppliers contribute to a single complex SoC. Thus a design would have
many different components, such as IP, PLL, RAM, ROM, DW, cell libraries.

The design-read-in process needs to resolve these components to establish
a coherent connectivity representation of the design. In later chapters this
document describes detailed steps required to handle these components
coherently and correctly for all the policies, rules, and checks performed by
the SpyGlass suite of products.

Predefined and Characterized Cell Library Elements

The elements could be as simple as primitive gates or as complex as
processor cores like an MPU or GPU. There are multiple variations of the
description of these library elements. Some of them might have
synthesizable model description. Sometimes only a behavioral model may
be available. Sometimes none of this is available (leading to black boxes).
Design read in process needs to understand and interpret these elements
appropriately for advanced checks. The key idea is to capture the design
intent of these elements for the best design analysis.

Typically primitive cell libraries are designed at a particular technology
node. Most common format for synthesis library description is the Liberty
format. In many cases the cell library simulation models are based on
13
Synopsys, Inc.

The Design Read Process

Reading a Design
UDPs. SpyGlass has options to interpret each of these cell primitive
formats.

DesignWare® Components

Some vendors like Synopsys provide DesignWare® suite. A logic designer
might instantiate some of these components explicitly in a design.
DesignWare® components allow the designer to design at higher level of
abstraction. Designers use these components to enforce a particular micro-
architecture (ex. Ripple adder vs. CS adder).

Special Cells

SoC design may also contain special cells like Analog D/ACs, PLLs, and
special I/O cells. These cells may not be part of the standard cell library, or
may originate from different suppliers. Design-read-in process needs to
handle these components coherently.

RAMS and ROMS

While RAMs and ROMs may fall in the “Special Cell” category, the type of
model available for these cells may have a significant impact on run time
as well as the results of some of the advanced policies. Based on the
available model, deciding how to treat RAMs during analysis is an
important decision.

The key idea again is to communicate the connectivity of any design unit
ports in the design to SpyGlass.

Design Representation

Users of SpyGlass are encouraged to run SpyGlass tool suite at RTL stage.
However SpyGlass is also used by many back-end groups. These groups
predominantly deal with structural netlist (usually synthesized and scan
inserted). Design read in process needs to ensure that both structural and
RTL level design descriptions are handled correctly.
14
Synopsys, Inc.

The Design Read Process

Reading a Design
Design Constraints

Constraint files such as the SDC files for Design Compiler help define the
design's intent. Just like SDC constraints control how synthesis optimizes a
design, SpyGlass has its own constraint files (.sgdc file) to control how
SpyGlass analyzes a design. SpyGlass has some rules that help generate
SGDC constraints. In addition, SpyGlass may be able to convert SDC into
some sgdc constraints. Each advanced policies may require different sgdc
constraints.

Design Size

With growing complexity of the designs, the design sizes in general are
growing. All the attributes of the chip are growing (die size, gate count,
memory count, I/Os, special cells etc). Design read-in needs to ensure that
a large design with above illustrated aspects is read-in successfully.

Starting

Design-read-in scripts may be available for other tools such as:
 Simulation

 Logic Synthesis

 Formal Verification (RTL-to-gates or gates-to-gates)

 Static Timing Analysis

 SpyGlass DFT

Many times, scripts for some/all of above are a good place to start for a list
of files, libraries, rams, special cells etc. Design read-in needs to
incorporate many/all of above starting points in a design environment.

SpyGlass Console needs a project file. The main contents of the project file
are the sources needed to describe your design, and, additional options
specific to the run/design description.

Put all of your HDL source-files into a file: sources.f

And, put into your Project file:

read_file –type sourcelist sources.f
15
Synopsys, Inc.

The Design Read Process

Reading a Design
Subsequent sections below describe the additional options that need to be
included in the project file.

For adding any option into the project file, use the following command:

set_option <option> <value>

OR

set_option <option> {space separated multiple values}

Unless otherwise mentioned, all options explained in the rest of the
document are to be added in the project file and will follow the above style.

Once the project file is completed, the SpyGlass Console can be invoked
through the command: spyglass –project <project file>
16
Synopsys, Inc.

Verilog Specific Options

Reading a Design
Verilog Specific Options
17
Synopsys, Inc.

Verilog Specific Options

Reading a Design
NOTES

1. If a macro is referenced in the design before (or without) being
declared, you will get STX_VE_533 as:

STX_VE_533 Syntax …. Used macro (…..) has not been
defined.

2. If set_option incdir is not specified correctly, you will get STX_VE_485
as

STX_VE_485 Syntax …. Include file (…) could not be
found or opened in read mode from current working directory
(…..) or other include directory paths (if any)

If “included” file name is also included in the sources.f, you might get
errors/warnings related to duplicate definitions (depending on what was
there in the included file)

3. If the design is traditional Verilog (Verilog95) code, but, uses certain
identifiers (which later on became keywords in V2K), the tool would give
syntax errors (unless, it is explicitly specified that the design is a
Verilog95 design).

4. If the design has SystemVerilog constructs, you will get the
STX_VE_479 violation.
Please add command “set_option enableSV yes” to the project file.
18
Synopsys, Inc.

Verilog Specific Options

Reading a Design
5. If library files/directories are not specified, you will get black boxes
corresponding to the instances of for the library cells in the design. If
library files are specified as part of sources.f, some rules might be
flagged on files/cells where they should not be flagged and you might
get multiple-top warning messages as DetectTopDesignUnits.
19
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
Design-Read with Precompilation
NOTE: VHDL/Mixed designs are typically read/developed using precompile concept, hence

has been described separately in detail in next section. VHDL by definition supports
the concept of Precompilation. However, lately most tools have started supporting
the concept of precompilation for Verilog also. Hence, SpyGlass also allows
precompilation of Verilog also.

Precompilation refers to compilation strategy, wherein the design is read-in
(compiled) in multiple steps.

A user could (pre)compile a lower level design-unit/VHDL package etc.
which is to be used in the higher level design-unit/VHDL package etc.

Now, while, compiling the higher level design-unit/VHDL package, the user
need not worry about the source code for the lower-level design-units and
simply access the precompiled units.

This allows a user to:
 build up the design in smaller steps for some big designs

 send only the precompiled form to somebody else, while, still not
sharing the actual source code

 ensure sanctity of data, by making sure that the lower level design unit/
package is never more updated than a higher level design-unit/package

First, let’s understand a few basic concepts involved in precompilation.

There is a concept of Logical name of a library. All library names mentioned
in the source code refer to Logical Names.

The command has to map the logical name to a physical path.

So, command: set_option lib L1 <path> in the project file
indicates that anytime the source code should refer to L1, the
corresponding search should be made in <path>.

The logical library WORK is mapped to physical location: ./WORK/ (unless
specified otherwise)

Similarly, set_option work <lib name> option specifies the name
of the logical library, where, the output of the current compilation step
needs to be dumped. By default, the logical library WORK is specified as
the work library. However, one can modify this specification.

In most situations, the user wants to compile the design in multiple steps.
Hence, the user should create a file: libmap.f – which contains the entire
20
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
library mapping. This helps the user in following ways:
 A lower level library mapping which has been specified once – need not

be specified again and again during higher levels of compilation.
 There is no chance of typos etc. while providing the mapping multiple

times – resulting in inconsistency.
NOTE: Libmap.f file can be incrementally changed for different levels of precompilation.

Let’s say, we want to compile design units specified in files F1, F2 into a
logical library L1.

So, the corresponding project file <project>.prj would be:

read_file –type sourcelist L1_sources.f

read_file –type sourcelist libmap.f

Where, libmap.f contains:

 -lib L1 < L1_path> ## for providing logical to physical mapping

 -work L1 ## identifies the work library

 and, L1_sources.f contains the design files

………………………….

F1

F2

………………………...

This reads the design units described in F1 and F2, and creates the
compiled binaries in <pathL1>.

NOTE: Make sure that the lower level precompile libraries are syntactically clean and error-
free before using them at higher level.

Now, design description in files F3 and F4 make use of these design units
(compiled in L1).

So, the project file would be:

read_file –type sourcelist L2_sources.f

read_file –type sourcelist libmap.f

where, libmap.f contains

-lib L1 <pathL1>

-lib L2 <pathL2>
21
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
-work L2

and, L2_sources.f contains the design files

………………………

 F3

 F4

……………………….

This reads the design units described in F3, F4. Wherever needed,
appropriate descriptions are picked from <pathL1>. The compiled binaries
are dumped in <pathL2> (i.e. logical library WORK)

It is also allowed to have same physical path for multiple Logical libraries,
however, same Logical library cannot be mapped to different physical
paths.

The SpyGlass VHDL environment comes with the following precompiled
logical libraries:
 IEEE

 STD

 SYNOPSYS

These libraries are visible by default to SpyGlass. Hence, there is no need
to provide the mapping for the above mentioned 3 libraries.

Libraries compiled on any 32 bit platform are reusable on any other 32 bit
platform; similarly, libraries compiled on any 64 bit platform are reusable
on any other 64 bit platform.

In general, for Precompiled steps, it’s best to go with the Mixed Flow,
because it’s highly possible that at some stage in the precompilation steps,
some interleaving of Verilog with VHDL might take place.

With this basic background, we are ready to do a design read – using
precompiled steps.

The relevant sources are put into sources.f file

The library mapping information is put into libmap.f file

To compile a VHDL/verilog library in the SpyGlass environment, you must
tell SpyGlass:
22
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
 the name of the working directory into which the library is to be
compiled (using the work command in the libmap.f file, or, using:
set_option work in the project file)

 the physical location of this library (using the lib command to set the
logical to physical mapping in the libmap.f file, or, using set_option lib
<path> in the project file),

 the names of the VHDL files to be compiled in sources.f file (using:
read_file –type sourcelist sources.f in the project file)
If the “work” specification at the compilation stage is not given correctly,
then there won’t be any warning or error flagged at this stage. E.g. if
something was supposed to be compiled into L1, but work was specified
as “L2”, no message would be reported at this stage. However, at a later
stage, when a higher level compilation tries to locate the item in L1, it
will not be found.

Now, that your sources.f and the libmap.f is complete, you might need to
add additional commands in your project file, as per the flow chart below.

Step 1-Precompile the Lowest-level Library
23
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
24
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
NOTES

1. If you are not interested in elaboration during precompilation stages,
use “set_option noelab yes” command in the project file in order to save
elaboration time. However, there is a risk that at the top level an
elaboration fails, because of some issues which could have been caught
and corrected at the lower level itself. If you are not elaborating the
design, it is advisable not to provide sglib. Providing these libraries only
increases the overall processing time (because of processing time
required for these libraries), even though these libraries will not be used
(if elaboration is not being performed).

2. All VHDL files need to be ordered as all the design-entity that is being
referenced should have been defined before being referenced.
If files are not in order, you would encounter various STX_Errors,
Warnings – depending on the exact content of the files and the order in
which they are specified.
If in doubt, feel free to add option for sort.

3. Using VHDL87 constructs without the set_option 87 command may
result in STX/WRN, such as:

WRN_499 WRN_499 LangWarning … Using 1076-1987
syntax for file declaration

If the libraries are needed to be created for 64-bit platform on a 32 bit
machine, “set_option dump_all_modes yes” command as precompile
libraries are not shared between different platforms.
This might be needed, because the lower level design units being small
enough can be compiled on a 32 bit machine itself. However, the top
level design being large enough might need to be run on a 64 bit
machine.

Step2-Using Compiled Libraries at a Higher Level

Create your sources.f and the libmap.f as explained above.

Incorrectly specifying precompiled library paths may result in any of the
following messages (please refer to Precompiled Library Mapping section):
 STX_11: Use of un-declared identifier

 STX_464: Design unit denotes neither a component nor a procedure.
25
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
 WRN_384: Design unit does not denote a library or package.

 ErrorAnalyzeBbox: Instance has no definition; black box behavior
assumed.

Now, add additional commands in the project file, as per the flowchart
below.

NOTE: The option “hdllibdu” does the rule-checking at the lower level of precompilation
also. This option is useful if you are not sure that the lower level precompiled
libraries are already clean with respect to rules/checks of your interest.

Precompiled Library Mapping

As mentioned earlier, if library mapping is not specified properly during
compilation stage, the user will not get any error/warning/indication at this
stage. However, when the user tries to use this precompiled library at the
next stage, he might get errors/warnings etc.

Inability to compile the files in the right place is the most common cause
for people having difficulty in Design Read (for VHDL/Mixed involving
multiple steps of compilation).
26
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
Let’s take an example.

Intent was:

Compile F1.vhd into a logical library L1

Compile F2.vhd. This file has something called:

LIBRARY L1;

The command should be:

>%spyglass -project <project file> -designread

where, project file contains:

……………………………………..

read_file –type sourcelist sources.f

read_file –type sourcelist libmap.f

……………………………………..

and, libmap.f contains

……………………………………..

-lib L1 <pathL1>

- work L1

……………………………………..

Suppose, during the first stage, the user does not give L1 to the work
command, this stage would still go through.

There is no indication in file F1.vhd to say that this needs to be compiled
into library L1.

The problem will be faced during the next stage, when the user tries to
compile the files in L2_sources.f

Design units will be searched in <pathL1>, while, in the first stage, they
were not dumped there (because, the user forgot to specify work L1)

This just adds to the complexity.

So, a quick cheat-sheet kind of mechanism could be:

Map all logical libraries to the same physical path: ./WORK

So, the entry for the above example in the libmap.f file would be modified
as:
27
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
- lib L1 ./WORK

The only situation where it might not work is:

When there are multiple design-units having different descriptions, but, the
same name, contained in different logical libraries; if their physical path
becomes same, it’s not possible to maintain the distinction between them.

NOTE: For an example of how to apply precompile and Check Methodology, please see
Appendix - Single Step Compilation.

Various Start Points

One can depend on existing simulation scripts etc. to decide which files to
compile into which library.
1. VerilogXL/VCS users: If the Design input to the SpyGlass is

compatible to tools like VerilogXL/VCS, then the project file can be
created as follows

read_file –type sourcelist src.f

set_option y ../mylib

set_option libext <extensions>

set_option define <defines>

set_option incdir <include directories>

2. MTI scripts: If the Design-Input is from MTI users:
Translate your modelsim.ini file into libmap.f file as follows:
The library mapping is specified using the following style, under:
[LIBRARY] section
L1 = ./L1_path -> -lib L1 ./L1_path
Translate your modelsim script file as follows:
vmap L2 = L2_path -> Put: -lib L2 ./L2_path into libmap.f file
vcom -work LIB1 b.vhd c.vhd d.vhd ->

Put all source files < b.vhd c.vhd d.vhd> into sources.f
Put: –work LIB1 into libmap.f
28
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
TABLE 1 TRANSLATION TABLE:

3. NCsim scripts: If the Design-Input is from NCSim Users
Translate each of the following commands from your cds.lib/hdl.var into
libmap.f file as follows:
DEFINE foo <path> -> -lib foo <path> Add to file libmap.f
Now, translate your NCsim script commands as follows:
ncvhdl -WORK <lib> ..vhdl files.. ->

Put all .vhdl files into sources.f
Put –work <lib> into libmap.f

ncvlog -WORK <lib> ...verilog files ->
Put all verilog files into sources.f
Put –work <lib> into libmap.f
Put set_option enable_precompile_vlog yes into project file

Last ncvlog/ncvhdl -> Collect all additional arguments into put into the

MTI Options Equivalent SpyGlass commands in project file
Vlog set_option enable_precompile_vlog yes
-f <path> read_file –type sourcelist <path>
-sv set_option enableSV yes
-work <path> set_option work WORK set_option lib WORK <path>

[in libmap.f file]
+libext+<suffix> set_option libext <suffix>
+define+<macro[=val
ue]>+

set_option define <macro[=value]>

+incdir+<dir> set_option incdir <dir>
-v <file> set_option v <file>
-y <directory> set_option y <directory>
Vcom (No Action)
-93 (No Action) as 93 is default in SpyGlass
-87 set_option 87 yes
vmap <llib>
<plib>

set_option lib <llib> <plib> [in libmap.f file]
29
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
project file, through set_option

For NCSim, default is VHDL87 while for SpyGlass, it is VHDL93, hence:

ncvhdl invocation without any language flavor ->
Put set_option 87 yes into project file

ncvhdl invocation with -93 flavor -> No extra step, because of “V93"

TABLE 2 TRANSLATION TABLE:

NCsim Options Equivalent SpyGlass commands in project
file

Ncverilog set_option enable_precompile_vlog yes
+nc64bit or -64BIT Append -64bit on the command line
-f <file> or –FILE <arg> read_file –type sourcelist <file> or <arg>
+work+<arg> or WORK
<arg>

set_option work <arg> in libmap.f or
set_option work in project file

+sv or –SV set_option enableSV yes
+hdlvar+<arg> or HDLVAR
<arg>

set_option work <work_dir> in libmap.f

+define+<macro> set_option define <macro>
+incdir+<dirs> set_option incdir <dirs>
+libext+<ext> set_option libext <ext>
+cdslib+<arg> or –CDSLIB
<arg>

parse the file to extract logical/physical lib
mappings and add to libmap.f with-lib option.

+nclibdirname+<name> set_option projectwdir <name>
ncvlog set_option enable_precompile_vlog yes
-V1995 or –V95 set_option disablev2k yes
-LOGFILE <arg> or +LOGFILE
<arg>

The logfile location is determined by
projectwdir specification. Cannot be specified
independently.

Ncvhdl set_option 87 yes
-RELAX+<name> set_option relax_hdl_parsing yes
-V93 “remove” set_option 87 yes // if present
Ncelab set_option 87 yes; also ensure that the option

noelab is not set to yes.
30
Synopsys, Inc.

Design-Read with Precompilation

Reading a Design
4. DC scripts
The following commands in DC scripts (initial setup files for DC) needs
to be translated into a libmap.f file as follows:
define_design_lib L1 -path ./L1_path -> -lib L1 ./L1_path
Now, the synthesis script needs to be translated as follows:
analyze -format vhdl -work L1 a.vhd ->

Put –work L1 into libmap.f
Put a.vhd into sources.f

analyze -format verilog -work L2 b.vhd ->
Put –work L2 into libmap.f
Put b.vhd into sources.f

LIB.ENTITY(ARCH) set_option top ENTITY.ARCH
LIB.ENTITY set_option top ENTITY
31
Synopsys, Inc.

Design-Read with Single-Step Compilation

Reading a Design
Design-Read with Single-Step Compilation
The primary intent of single-step compilation is to precompile all libraries in
a single SpyGlass run, so that there is no longer a need for lengthy scripts,
which run multiple times during SpyGlass analysis to individually compile
each precompile library.

There are various benefits of single-step compilation, as listed below:
 It eliminates the need for multiple precompilation steps. So, the user

can combine all the different precompilation steps in a single SpyGlass
run, which would reduce the overall precompilation time.

 There are approaches like “Makefile” based compilation etc. that try to
reduce the precompilation time by having only impacted libraries
compiled again. The need for such environments would reduce because
single-step precompilation would anyway ensure that only impacted
libraries are compiled in subsequent runs.

 If there is some common option that needs to be passed in each
precompile step, then currently it needs to be added at all SpyGlass
invocation. However, with single-step compilation, user needs to add it
only once, and it would apply uniformly to all libraries.

For example, let us assume that we have 3 logical libraries L1, L2, and L3,
and, the corresponding specification in sources.f is as follows:

set_option libhdlfiles L1 "foo1.v foo1.vhd"

set_option libhdlfiles L1 "foo2.v foo2.vhd"
L1 specified again, this file would be separately compiled.
Now L1 will have definition of foo1.v foo1.vhd, foo2.v and
foo2.vhd.

set_option libhdlfiles L2 "foo3.v pack.vhd"

set_option libhdlfiles L3 "ip1.v ip2.v"

set_option libhdlfiles L1 "foo4.vhd"
L1 specified again, this file would be separately compiled.
Again, L1 gets appended with foo4.vhd

These files would be precompiled in the libraries L1, L1, L2, L3 and L1
respectively. Each libhdlfiles command would be taken as separate
unit of compilation, and will not be combined with any other
32
Synopsys, Inc.

Design-Read with Single-Step Compilation

Reading a Design
libhdlfiles for same or different logical library. If we combine various
libhdlfiles for same logical library, then it can yield different
precompilation results (due to say compiler directives like celldefine,
macros etc.) compared to if these are compiled separately. User should
create one libhdlfiles command each for each individual compilation
run.

It normally happens that various libraries have dependency on each other,
hence this order of libhdlfiles is important to ensure that various
libraries are precompiled in the correct order and “sort” option is not
used with libhdlfiles for sorting.

It is assumed that RTL files specified with a given libhdlfiles can have
backward dependency only on earlier libhdlfiles specification, but no
forward dependency on subsequent libhdlfiles specification. Please
note that in case various libhdlfiles specification have cyclic
dependency, then compilation of one of the libraries would FAIL with STX,
as it won’t find a design unit which is going to be compiled after it.

If there are any FATAL issues found during precompilation of a given
library, run would abort, and any subsequent libraries won’t be compiled.

In order to run SpyGlass console:

Put (see: Note 1 below the following flowchart):
all the design files in sources.f ;
all library mapping into libmap.f;
all libhdlfile mapping (of logical library and the files that need to be
compiled in it) into libhdl.f and
create the corresponding project file, using: read_file –type.

Now, modify your project file, based on the flowchart given below
33
Synopsys, Inc.

Design-Read with Single-Step Compilation

Reading a Design
34
Synopsys, Inc.

Design-Read with Single-Step Compilation

Reading a Design
FIGURE 1. Library Compilation In Single Step

1. The complete path of RTL source file that would be precompiled in given
logical library needs to be specified. This RTL file can be a Verilog or
VHDL file(s) containing any of the valid constructs allowed by the
respective language. There can be multiple files specified here, where
some could be Verilog and others VHDL. If multiple files are specified
then these should be enclosed in single/double quote (for software to
identify the end of list).
<Sources.f> - This file contains the RTL files and the libhdlfiles
specification.
Please note that if a library is found out-of-date due to say its HDL files
being updated etc., then it would be re-compiled. Further, all the
libraries that are dependent on it, would also be re-compiled even if
their HDL files haven’t been updated. Also, if any of the design options
are changed like define, pragma etc. from one compilation to another,
then all libraries would be marked out-of-date and re-compiled. For
example,

set_option libhdlfiles L1 "a1.v a2.v"

set_option libhdlfiles L2 "a3.vhd"

set_option libhdlfiles L3 "a4.v a5.vhd"

In this case, if say a3.vhd has been changed, then we will re-compile
L2. If L3, which is defined after L2, is using L2, then L3 would also be
re-compiled. Further, if any of the design options, such as pragma have
been changed, then we will re-compile all libraries L1 to L3 again, just
as if it is a fresh run.
35
Synopsys, Inc.

Design-Read with Single-Step Compilation

Reading a Design
2. All VHDL files need to be ordered as all the design-entities that are
being referenced should have been defined before being referenced.
If files are not in order, you would encounter various STX_Errors,
Warnings – depending on the exact content of the files and the order in
which they are specified.
If in doubt, feel free to add: set_option sort yes.

3. Using VHDL87 constructs without –setting the “87” option may result in
STX/WRN, such as:

WRN_499 WRN_499 LangWarning … Using 1076-1987
syntax for file declaration

4. The option hdllibdu does the rule-checking at the lower level of
precompilation also. This option is useful if you are not sure that the
lower level precompiled libraries are already clean with respect to rules/
checks of your interest.
36
Synopsys, Inc.

Dealing with DesignWare® Components

Reading a Design
Dealing with DesignWare® Components

Introduction

SpyGlass supports usage of DesignWare (DW) components in the RTL
design. (If there are instantiations of modules with name DW_* then it
indicates that the design contains DesignWare® components.)

To enable the DW flow, add the option: set_option dw yes.

SpyGlass provides the option of generating the DW module descriptions
either through Design Compiler or through the internal SpyGlass module
37
Synopsys, Inc.

Dealing with DesignWare® Components

Reading a Design
generator.

DC is picked up from the path set through the environment variable
SPYGLASS_DC_PATH. In some cases we find situations where there is a
customized environment for invoking Design Compiler (i.e. dc_shell
command is actually a user script, which in turn will call up the real
dc_shell of Synopsys). Generally, this user script decides the version of the
Synopsys tool, queues up the synthesis job in LSF etc. In such a situation,
the user need not set the environment variable SPYGLASS_DC_PATH as
the wrapper script (dc_shell) automatically sources its path. It needs to be
ensured that the wrapper “dc_shell” is visible in the “path” settings.

The DW flow in SpyGlass is currently (since 4.6.0) as follows:

1. Enable DW flow with the set_option dw yes command, else all DW
instantiations will be treated as black boxes.

2. From 4.6.0, you only need to specify set_option dw yes in the
project file. The SpyGlass DW module generation capability is enabled
by default (only from 4.6.0).

3. SpyGlass makes a list of all the DW instantiations in the design. For the
ones which are supported internally (not all DW components are
supported internally, but mostly is), SpyGlass generates the DW module
descriptions.

4. For the ones that are not supported internally, SpyGlass generates the
descriptions using Design Compiler. If Design Compiler license is not
available, then these instantiations are treated as Black-Boxes, and a
warning is flagged for each of these un-synthesized DW modules.

5. In case user wants all the DW components to be generated through
Design Compiler, then he can choose to disable SpyGlass module
generation by setting the option ‘disable_amg’.

6. The internally generated descriptions are mapped to the SpyGlass
Primitive Library cells whereas the Design Compiler generated
descriptions are mapped to GTECH cells by default.

Debug Options

1. For the DW module descriptions that are generated using Design
Compiler, the user can generate debug information by specifying the
project file command set_option DEBUG dw. SpyGlass will dump
information on spyglass.out regarding its success/ failure of Design
Compiler run.
38
Synopsys, Inc.

Dealing with DesignWare® Components

Reading a Design
2. SpyGlass dumps the RTL description of the internally generated module
in the area: <$wdir>/spyglass_spysch/dw/SPY_DW_WORK/
.cache_dir_amg/DW01_binenc_0_area.v. So you may want to check if
the dumping of the module description is indeed happening in the
customer flow
39
Synopsys, Inc.

Dealing with Syntax Errors

Reading a Design
Dealing with Syntax Errors
Check the language variations used (e.g. V2K, SystemVerilog, VHDL 87,
VHDL93 etc.) –vs. - language variation specified. Default variants in
SpyGlass = VHDL93, Verilog 2001. If the variation being used is different,
please specify the appropriate variation.

If the issue is still not resolved, check the exact syntax error being
reported, and, try to correct that.

Check if this has to do with presence of Pragmas: translate_off/on;
synthesis_off/on (see: Note on Pragma handling within SpyGlass
mentioned at the end of this section)

If the issue is still not resolved, add “set_option stop
<corresponding_module>”. It is also required to add the option top along
with stop in order to avoid multiple top scenarios.

Pragma Handling within SpyGlass

For Verilog, SpyGlass supports the translate_off/on pragma. The code
within this pragma is simply ignored for compilation, syntax checks etc.

For VHDL, SpyGlass supports the translate_off/on and synthesis_off/on
pragmas. The code within these pragmas are compiled, checked for syntax
etc.

To prevent syntax checks/compilation within the code bounded by
translate_off/on, specify the following command:

set_option hdlin_translate_off_skip_text yes

Similarly, to prevent syntax checks/compilation within the code bounded
by synthesis_off/on, specify the following command:

set_option hdlin_synthesis_off_skip_text yes
40
Synopsys, Inc.

Dealing with Black Boxes

Reading a Design
Dealing with Black Boxes
41
Synopsys, Inc.

Dealing with Black Boxes

Reading a Design
NOTE: You can stop the synthesis of modules like analog IP, PLLs, memory blocks, and
behavioral models by using “stop” option. It is also required to add top option along
with stop in order to avoid multiple top scenarios.
42
Synopsys, Inc.

Dealing with Unsynthesized Modules

Reading a Design
Dealing with Unsynthesized Modules

NOTES

1. These would be reported as: “ErrorAnalyzeBbox”.
2. Some of the causes for modules not being synthesized:

High number of memory-bits: Use set_option handlememory yes. See
the section: “DEALING WITH ‘OUT OF MEMORY’ SITUATIONS”.
Encountered some constructs which are not synthesizable: Correct the
module description to get around this issue

3. Depending on the type of analysis, you might want to use some
alternative modeling style. Alternative modeling style can be used by
different SpyGlass policies. Once SpyGlass Console is invoked, the
“setup” stage takes you through a guided flow on creating alternative
description for black-boxes, which are not yet resolved so far, using DW,
sglib etc.
43
Synopsys, Inc.

Dealing with Multiple Top Modules

Reading a Design
Dealing with Multiple Top Modules

NOTES

Multiple messages flagged by the multiple messages from the rule
DetectTopDesignUnits.

The following could be some of the possible causes for having encountered
multiple tops:
 Incomplete elaboration: Check if there are some ELAB errors. Due to

these ELAB errors, the hierarchy tree has not been created correctly,
causing an underlying module to become independent top. Correct the
ELAB error.

 Some library files have been specified without the right option. Thus,
unused design units are also becoming independent design units. Either
use the right library option for the library, or, specify the top project file
command.

 Some modules were stopped. So, some underlying module has become
independent top. Set the option: top

 Actually, multiple designs have been specified. Set the option: top

 If you really want to do SpyGlass rule checking for each of the tops (e.g.
various library cells to be run in one go) – you will need to check the
“Allow Multiple Tops” button in Console GUI.
44
Synopsys, Inc.

SGLIB Creation

Reading a Design
SGLIB Creation

FIGURE 2. For technology cells, Memories, PLLs etc. for which no synthesizable
models are available

NOTES

1. Creating synthesizable models may not be practical for many models
such as analog components or RF components. In most cases where a
.lib model does not have a function statement, creating a synthesizable
45
Synopsys, Inc.

SGLIB Creation

Reading a Design
Verilog or vhdl model will not be practical, and only interfaces can be
inferred for these models.

2. If some of the library cells are not synthesizable or sglib file is not
created then user can review the message details and .log file. SpyGlass
reports the corresponding messages for the issues in sglib creation. If
there is some problem in parsing then user might get LIBWARN_*,
these all warnings are related to un-parsed library cells.

3. Now, that your .sglib is read, add command: read_file –type sglib <sglib
files> to <project>.prj – in order to make it visible for your SpyGlass
analysis.
46
Synopsys, Inc.

Dealing with Out of Memory Situations

Reading a Design
Dealing with Out of Memory Situations

NOTES

1. If the design goes out of memory, SpyGlass exits with a error message
at the screen output as:

>% ERROR[100] Memory Allocation Failed. Exiting …

2. If the handlememory option is set, then the memory-based rule-checks
like FIFO checks etc may produce unreliable results. For further details
on use of this option, please refer to section “The Memory reduction
Feature” in Console User Guide.

3. It should be noted that on a 64 bit machine, since the pointer size is
double (that of the pointers on a 32 bit machine), hence, by default
memory foot-print on a 64 bit machine would be double that of the foot-
print on a 32 bit machine. So, if your design went out of memory on a 4
GB 32-bit machine, when its rerun on a 64 bit m/c, this 64 bit m/c
needs to have more than 8 GB of memory in order to proceed further.
47
Synopsys, Inc.

SpyGlass Debugging

Reading a Design
SpyGlass Debugging

FIGURE 3. Console GUI Flow
48
Synopsys, Inc.

SpyGlass Debugging

Reading a Design
FIGURE 4. Batch mode flow
49
Synopsys, Inc.

SpyGlass Debugging

Reading a Design
NOTES

1. SpyGlass Exit Code can be checked in “Session Log” window. Exit Code
‘0’ implies that the SpyGlass set up is clean. For Batch mode flow, look
for ‘spyglass.log’ for details.
There could be many causes for the Fatal Errors due to design set-ups.
For Example: If the macros are not defined in SpyGlass, then it results
in the following error message:
a. STX_533 Syntax …. Used macro (…..) has not been defined.

Another Example: Incorrectly specifying the precompiled library
paths results in any of the following messages (Refer to the
Precompiled Library Mapping section for details):

b. STX_11 …………. Use of un-declared identifier
c. STX_464 ……….. Design unit denotes neither a component nor a

procedure.
2. There could be many causes for the “Errors” in the design. For example,

if some modules are not synthesized, you’ll get “SYNTH_*” errors. If
there is some black-box existing in the design, you will get
“ErrorAnalyzeBBox” errors.

3. Warnings are the design issues and it can be product dependent also.
With each run, SpyGlass performs some rule-checks and warning
messages are the violation of those rule-checks.
For Example: In SpyGlass CDC product, Ac_unsync01/Ac_unsync02
message provided the information about “unsynchronized crossing, and
in the SpyGlass Lint product, W337 gives information about illegal
values being used etc.

4. “Info” messages are the design data that might be useful to the user for
the design analysis. It provides with design data like clock, timing, area
etc info. This is also product dependent. For example, Clock_Info01
provides data for all the probable clocks in the design.
50
Synopsys, Inc.

Design Read

Reading a Design
Design Read
Once your project file and other files that it refers to are ready, you can
invoke SpyGlass Console as:

spyglass –project <project file>

In the Console GUI, now, start with Design Read. At this stage, you can
decide to include “synthesis” step also (through a check-button provided) –
as part of the design read.

This process:
1. Checks whether the design is syntactically correct and complete

including checking for missing macros, inconsistent or undefined
parameter/generic values, missing include files etc.

2. Reports the information of all the potential top-level design units in the
design.

3. Reports all the black box design units. If you get some black boxes
warning, refer to section “Dealing with Black Boxes” for more details. If
you have not included synthesis as part of the design read step, it’s
possible that besides whatever black boxes are reported at this stage,
additional items might also become black boxes subsequently, due to
some synthesis errors
51
Synopsys, Inc.

Further Help

Reading a Design
Further Help
Sometimes, you might encounter a situation, wherein a design which can
be read by other tools gives an error in SpyGlass. If you encounter such
situations, please contact SpyGlass support.

Save-Restore

SpyGlass provides the feature of Design Save-Restore that allows you to
perform different kinds of analysis, without having to re-synthesize the
design multiple times. Thus, the feature may significantly improve runtime
on repeated SpyGlass analysis runs when the HDL source is unchanged.
This feature is particularly more helpful when the designer is handling very
big designs, so that the design is synthesized once and can be restored
several times for doing the analysis. With the Design Save-Restore feature
enabled, SpyGlass saves the synthesized view of the design during the first
analysis run. All subsequent analysis runs skip the design parsing step
and/or design synthesis step provided the source design has not changed
and the analysis options are same as those specified during design saves.

Under Design Save-Restore feature, during “save” you specify the required
policies and during “restore”, run any sub-set of these policies. Optionally,
you can also specify additional policies to be saved during the design save
so that while these policies are not run during the design save but can be
run during the design restore. All base policies are always saved together
when you specify to save one or more base policies.

A “restore” run can be made using a ‘saved” design database, if:
 you have modified the .sgdc. You can use this to perform various what-

if analysis with changing values of case-analysis/test_mode/any other
constraint

 you want to modify the rule-sets, as long as these rule-sets are from the
same policies, which were used to “save”. You can use this to perform
SpyGlass analysis, based on a methodology, which recommends you to
run smaller sets of rules, but, in steps.

Sometimes, depending on the selected rules’ characteristics, SpyGlass may
not be able to work with saved design view and hence unchanged design’s
re-parsing and/or re-synthesis may be required.

This feature is ON by default in console. It has been explained here, so that
it is easy for you to understand why the second and subsequent runs
appear to be faster.
52
Synopsys, Inc.

Where to Look for More Information

Reading a Design
Where to Look for More Information
Refer to SpyGlass Console User Guide for details.

For further queries, mail to spyglass_support@synopsys.com.
53
Synopsys, Inc.

mailto:spyglass_support@synopsys.com

Where to Look for More Information

Reading a Design
54
Synopsys, Inc.

Appendix - Single Step
Compilation
Let us assume a design, say MY_TOP, where SpyGlass is to be run using
precompile and Check Methodology:

The design MY_TOP is structured with the following design components:
 Cell Library: lib1.lib

 VHDL Design Unit: lib2.vhd

 Verilog Design Unit: lib3.v

Along with precompilation of .lib, both VHDL and Verilog DUs need to be
precompiled.

Now, suppose that the user wants to perform SpyGlass CDC checks using
SpyGlass on MY_TOP. Then the user has to first create a SpyGlass
constraints file, say clocks.sgdc, to define all of the design clocks and
resets signals. The user can also depend on Console’s Setup Wizard to
generate the clocks.sgdc file. The Setup Wizard is a step-by-step approach
to generate the information.

Similarly, if the user is interested in the constraints (SDC) analysis, then a
corresponding SpyGlass constraint file say constraints.sgdc is to be created
to include the actual SDC file(s) with requisite design information.

Once the SpyGlass constraint files (.sgdc) are ready, then MY_TOP can be
analyzed by selecting appropriate templates as needed. For example,
select SpyGlass CDC related templates for SpyGlass CDC checking or
55
Synopsys, Inc.

Appendix - Single Step Compilation
constraints related templates for the SDC constraints analysis.

Here is the illustration of actual flow to carry out the above mentioned
analysis using SpyGlass based “precompile and Check Methodology”:

STEP1: Precompilation Methodology

>% Compile the gateslib lib1.lib into .sglib

>% Compile lib2.vhd into “lib2”

>% spyglass lib3.v into “lib3”

The possible sets of options that can be used in the precompilation process
are as follows:

 precompile_lib.map: This file can be used when to specify all
library mapping

 noelab: This option is used to save elaboration time. Sometimes user
might not be interested in elaboration at the precompiled libraries

 hdlin_synthesis_off_skip_text: This switch is used to
prevent syntax checks/compilation within the code bounded by
synthesis_off/on.

 enable_precompile_vlog: This switch is used to enable
precompilation of Verilog libraries.

The above mentioned file ‘precompile_lib.map’ would look as follows:

set_option lib lib2 /path/to/lib2 // to use VHDL
precompile libraries at the top level

set_option lib lib3 /path/to/lib3 // to use Verilog
precompile library at the top level

STEP2: Check Methodology

Select the Methodology of interest through Console’s second
tab: Select Methodology and Goals

Some of the possible set of top-level commands that can be used during
checking at the top level, which are as follows:

 top_lib.map: This file can be used to specify all the libraries

 hdllibdu: To enable RTLDU rule-checks on precompile libraries

Now, further the above mentioned file ‘top_lib.map’ would look as follows:
56
Synopsys, Inc.

Appendix - Single Step Compilation
read_file -type sglib /path/to/lib1/lib1.sglib // to
use the precompiled library cell instances at top-
level

read_file -type sourcelist precompile_lib.map //
where, the library mapping specified earlier can be
reused

In this example, none of the rule-checking/sanity checking was performed
at lower level of precompilation, hence appropriate options are added to
carry out the same on the used precompiled libraries at the top level
checking.

NOTE: The options hdlin_synthesis_off_skip_text and hdllibdu, are optional and some
users may choose not to use these. Please refer to Atrenta Console User Guide to
know details about these commands.

STEP 1: Single-Step Compilation Methodology

Run 1 >% Compile and run SpyGlass on the top level

Remember, to specify top and set hdllibdu

The possible set of commands that can be used in the single-step-
compilation process, which are as follows:

 set_option libmaphdlfiles L1 “<verilog_files>”: This
option can be used when all the verilog libraries are put in the logical
library L1.

 set_option libmaphdlfiles L2 “<vhdl_files>”: This
option is used to compile all the vhdl libraries in the logical library L2

 set_option lib L1 /path/to/L1 to use verilog precompile
libraries at the top level.

 set_option lib L2 /path/to/L2 to use VHDL precompile
libraries at the top level.

Run1 – This step will compile all the verilog libraries in L1 and vhdl
libraries in L2 and run the top design mymod and perform the rule-checks
provided in the template T1.

NOTE: Precompilation will take place in Run2 if there is any change in the RTL files or
precompilation dump is out of date.
57
Synopsys, Inc.

Appendix - Single Step Compilation
58
Synopsys, Inc.

	SpyGlass® Design Read-In Methodology
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Reading a Design
	The Design Read Process
	Design Language
	Design Components
	Predefined and Characterized Cell Library Elements
	DesignWare® Components
	Special Cells
	RAMS and ROMS

	Design Representation
	Design Constraints
	Design Size
	Starting

	Verilog Specific Options
	Design-Read with Precompilation
	Step 1-Precompile the Lowest-level Library
	Step2-Using Compiled Libraries at a Higher Level
	Precompiled Library Mapping

	Various Start Points

	Design-Read with Single-Step Compilation
	Dealing with DesignWare® Components
	Dealing with Syntax Errors
	Pragma Handling within SpyGlass

	Dealing with Black Boxes
	Dealing with Unsynthesized Modules
	Dealing with Multiple Top Modules
	SGLIB Creation
	Dealing with Out of Memory Situations
	SpyGlass Debugging
	Design Read
	Further Help
	Where to Look for More Information

	Appendix - Single Step Compilation

