
SpyGlass® Constraints
Submethodology (for GuideWare
2017.12)

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Constraints-Optimized Design ..11
Introduction.. 12

Tool and Methodology Version ...12
References ...13
Terminology ...13

The Constraints Problem... 14
Typical Problems within a Constraints File ...14
Typical Problems with Constraints in a Design Flow...................................15

Optimizing and Cleaning the Design Constraints 18
SpyGlass Constraints Overview..18

Goals for Block/IP..20
Goals for SoC RTL and Netlist ..21

Constraints Validation using SpyGlass...22
Step-by-Step Solution ... 25

Setup...25
Record Design Intent ...25
Analyze the Flavor of SDC...26
Gather Design Data ...27
Configure SpyGlass Design Constraint (SGDC) File27
Run Sanity Checks on Inputs...29
Check the Coverage of the Constraints ...30
Generate Constraints ...31
SDC Generation in Batch Mode ..45

Block/IP Methodology Flow ...47
SpyGlass Constraints Block/IP Quick Start...48
Block/IP Detailed Procedure ..48

SoC Methodology Flow ...53
SpyGlass Constraints SoC Quick Start ..54
SoC Detailed Procedure ..54
v
Synopsys, Inc.

SoC Methodology using Abstraction ..58
Using the Methodology for SpyGlass Constraints Solution58
Generating an Abstract View in SpyGlass Constraints............................58
Validating Block Assumptions in SpyGlass Constraints...........................62
Using the Abstract View in SpyGlass Constraints65

Analyzing Results...66
Debugging Reports ..66
Waiving Messages..68

Conclusion... 69

Appendix A: SpyGlass Constraints Design Data Checklist............71

Appendix B: Example Project File..73
vi
Synopsys, Inc.

Preface
About This Book
The SpyGlass® Constraints methodology guide describes the flow for using
the Constraints methodology.
7
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass Constraints methodology guide has the following sections.

Section Description
Constraints-Optimized Design The need for constraints-optimized design
8
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.

Typographical Conventions

Preface
10
Synopsys, Inc.

Constraints-Optimized
Design
Read the following sections to understand how to make your design
constraints-optimized using the SpyGlass® Constraints solution:
 Introduction

 The Constraints Problem

 Optimizing and Cleaning the Design Constraints

 Step-by-Step Solution

 Conclusion
11
Synopsys, Inc.

Introduction

Constraints-Optimized Design
Introduction
Validating constraints throughout the design flow requires a methodology
that guides designers through each step in the flow, specifying how to
clean up and optimize the design constraints. This not only improves the
QoR, but reduces expensive respins and iterations. This document
introduces a methodology to make your design constraints-optimized using
SpyGlass Constraints.

This section contains the following subsections:
 Tool and Methodology Version

 References

 Terminology

In the next section, The Constraints Problem, the designer is introduced to
the concept of constraints, constraints-related problems typically faced in a
design, and the overall impact.

The Optimizing and Cleaning the Design Constraints section describes in general
how these problems can be fixed to avoid iterations and respins and
achieve faster timing closure. This is followed by detailed instructions in
the Step-by-Step Solution section prescribing a methodology.

This document is intended for use by both novices and advanced users of
the SpyGlass Constraints solution. It is not a replacement for the SpyGlass
Constraints rules reference guide or training materials. The reader is
expected to be familiar with SpyGlass, the features, and data flow before
using this document. Advanced users can go directly to the relevant
sections, such as the SpyGlass Constraints Block/IP Quick Start, SpyGlass
Constraints SoC Quick Start, and Analyzing Results.

While this methodology relates to specifically to timing constraints,
GuideWare provides a start for design groups with SpyGlass goals readily
usable at various phases of the IC design flow, such as Block/IP and SoC
Integration. You can configure GuideWare to map to a specific design style
and hand-off requirements.

Tool and Methodology Version

 SpyGlass Version: N-2017.12-SP2
12
Synopsys, Inc.

Introduction

Constraints-Optimized Design
 SDC Version: 2.0 or prior

 GuideWare Version: 2017.12

References

 SpyGlass Constraints Rules Reference Guide

 SpyGlass TXV Rules Reference Guide

 SpyGlass CDC Rules Reference Guide

 SpyGlass DFT Rules Reference Guide

Terminology

 Design: A design is a composed group of logic at any level. Therefore,
the only level considered not to be a design, as it is used in the context
of this document, is a primitive from a library. A design could be at
RTL-level, Gate-level (netlist), or mixed.

 SpyGlass Constraints: Additional information about the design, which
is not captured in the RTL description. Constraints in SpyGlass are
typically captured in a <design>.sgdc file and include clock definitions,
case or mode specifications, and signal dependencies.

 Timing Constraints: Additional information about the timing
requirements for the design, such as clock definition, I/O delays, and
timing exceptions, that are passed to synthesis, STA, or implementation
tools. These are typically captured in an SDC and/or a Tcl file.

 Parameters: These SpyGlass options enable you to control behavior of
rules during the analysis of constraints.
13
Synopsys, Inc.

The Constraints Problem

Constraints-Optimized Design
The Constraints Problem
This section describes typical problems within a constraints file and a
design flow.
 Typical Problems within a Constraints File

 Typical Problems with Constraints in a Design Flow

Typical Problems within a Constraints File

A typical constraints file pertaining to a block may have many issues
related to:
 Clock Definitions: Clock issues lead to excessive iterations among

block synthesis, STA, and P&R. This includes inconsistencies in the
specification of clocks, generated clocks, and all related clock data, such
as latency, uncertainty, and buffering.

 Input and Output Delays: Inconsistencies in input and output delay
specification can lead to incorrect or suboptimal synthesis results. Over-
constraining may result in longer synthesis run times and extra
buffering on tight paths. Under-constraining will result in not meeting
chip-level timing goals.

 Exceptions: Exception validation is needed because:

 Incorrect timing exceptions, especially the ones on timing critical
paths, may lead to silicon failing to meet timing because the timing
path violations are masked until silicon.

 Too many exceptions overwhelm the implementation tools.
Therefore, if there are exceptions on invalid paths, paths blocked by
constant propagation, or functionally incorrect exceptions, it is better
to identify them in advance and remove them from the constraints
before implementation.

 Verifying exceptions manually is a time-consuming and error-prone
process.

 Typical exception issues include false paths set on paths that are not
structurally connected, false paths specified on true paths, or
incorrect cycle counts specified for multicycle paths.
14
Synopsys, Inc.

The Constraints Problem

Constraints-Optimized Design
 The level of support on various commands/options for constraints varies
from one tool to another. Therefore, maintaining a flow involving
multiple vendors requires a tool that can intelligently indicate if the
constraint is supported by a specific tool.

 Constraints issues are not limited to a single constraint file for a block,
but can also occur in the hierarchical context involving multiple
constraint files for several blocks and the chip-level design.

Here are some typical problems in a constraint file:

FIGURE 1. Typical constraints issues in a design

Typical Problems with Constraints in a Design Flow
15
Synopsys, Inc.

The Constraints Problem

Constraints-Optimized Design
Constraints definitions evolve during each stage of the implementation of a
chip. Figure 2 illustrates the need for a constraints-checking solution in a
typical design flow from RTL to layout.

FIGURE 2. Constraints in a design flow

In each stage, the constraints-checking solution should address the
following:

RTL Stage

 Incorrect, inconsistent, and incomplete constraints for an RTL design
can cause longer implementation (synthesis, timing) cycles.

 First-pass constraints creation is typically a manual, error-prone, and
drawn-out process. For large designs, creating clock definitions and
input/output delays is often a tedious task.

 Incorrect exceptions lead to silicon failure or at a minimum cause
suboptimal design performance. This is typically a time-consuming
process.
16
Synopsys, Inc.

The Constraints Problem

Constraints-Optimized Design
Post-synthesis Stage

 Incorrect, inconsistent, and incomplete constraints for the netlist can
cause longer implementation (synthesis, timing) cycles.

 Incorrect hook-up of test-logic and clock gating can introduce additional
paths that tools unnecessarily attempt to optimize.

 Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

Pre-layout Stage

 Chip-level timing closure takes longer if constraints are inconsistent
across the hierarchy. Typically, block-level constraints are designed
independent of chip-level constraints, and conflicts can occur between
constraints at the two levels.

 Propagating block-level constraints to the chip level is a manual and
error-prone task.

 Verify timing exceptions is an error-prone and time-consuming process.

 Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

Layout Stage

 Incorrect, inconsistent and incomplete constraints for the netlist can
cause longer implementation (synthesis, timing) cycles.

 Need to ensure that the physical partition budgets are correct.

 Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

 Since different tools in the design flow require variations of SDC,
managing multiple versions of constraints in a consistent and co-related
way is required.
17
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
Optimizing and Cleaning the Design
Constraints

This section contains the following sub-sections:
 SpyGlass Constraints Overview

 Constraints Validation using SpyGlass

SpyGlass Constraints Overview

The SpyGlass Constraints solution provides the following capabilities to the
SpyGlass environment:
 SpyGlass Constraints Creation
 Generates SDC template from RTL

 SpyGlass Constraint Validation

 Pinpoint syntax, consistency, and methodology issues

 Validates intrablock, interblock, blocks-versus-chip constraints

In relation to a typical design flow from RTL to layout, as shown in Figure 2,
the SpyGlass Constraints solution performs the following:

RTL Stage

 Validates the RTL design constraints for correctness, consistency, and
completeness to facilitate synthesis.

 Generates an SDC template.

Netlist Handoff

 Validates constraints for consistency and completeness to facilitate STA.

 Validates correct hook up of test-logic.

 Validates that clock gating constraints are set correctly.

 Validates hierarchical constraints consistency and reports the
inconsistencies.

 Ensures consistent and complete constraints for layout and reports
issues.
18
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
Layout Stage

 Validates that constraints are consistent and complete for P&R and
reports issues.

 Reports hierarchical inconsistencies after physical partition budgets are
created.

Timing Exception Verification and Exception generation for timing critical
paths from STA reports is a capability of the SpyGlass TXV solution.

The GuideWare Reference Methodology describes two fields of use:
 Block Development: In this field of use, it is assumed that the RTL

being developed is mostly new. No assumptions are made about
existing behavior or stability. The key concerns are the feasibility and
performance of the design. It is assumed that the design intent is
mostly known to the engineers and they can specify it to SpyGlass.
Checks and goals are organized to align with the evolution and maturity
of the new RTL block.
This field of use contains the following stages: Initial RTL Development,
RTL Handoff, and Netlist Handoff.

 SOC for RTL and Netlist: The SoC integration phase includes stitching
of the new RTL blocks or IPs. This field of use contains the following
stages: SoC Integration (of RTL Blocks), SoC Netlist handoff, and SoC
Layout handoff

The following sections show how the GuideWare fields of use correspond to
the SpyGlass Constraints goals.
 Goals for Block/IP

 Goals for SoC RTL and Netlist
19
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
Goals for Block/IP

The following table lists goals you should run in each design stage for
Block/IP. The table uses the following legend:
 M denotes mandatory goals for the design stage

 O denotes optional goals for the design stage

 NA denotes goals that are not applicable for the design stage

Goals Design Stages

initial_ rtl rtl_handoff netlist_handoff

sdc_gen
Creates SDC templates from RTL or netlist.

O O NA

sdc_audit
Computes design coverage and reports uncovered
design objects.

M M M

sdc_check
Detects inconsistencies in specification of clocks,
generated clocks, and perform basic checks.

M M M

sdc_exception_struct
Checks that timing exceptions specified in a constraints
file are on paths that are structurally connected.

NA M M

sdc_redundancy
Remove any redundancy in the constraints and
performs checks that might facilitate better retargeting.

NA M M

sdc_abstract
Generates the abstract port for a design.

NA O O
20
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
Goals for SoC RTL and Netlist

The following table the you should run in each design stage for Block/IP.
The table uses the following legend: M denotes mandatory goals for the
design stage, O denotes optional goals for the design stage, and NA
denotes goals that are not applicable for the design stage.

Goal Design Stages
 SoC RTL SoC Netlist
initial_ rtl rtl_handoff netlist_handoff layout_handoff

sdc_gen
Creates SDC templates from RTL or netlist.

O O NA NA

sdc_audit
Computes design coverage and reports
uncovered design objects.

M M O O

sdc_abstract_validate
Validates the abstract port for a design.

M M M M

sdc_check
Detects inconsistencies in specification of
clocks,
generated clocks, and perform basic checks.

M M M M

sdc_exception_struct
Checks that timing exceptions specified in a
constraints file are on paths that are
structurally connected.

NA M M M

sdc_redundancy
Removes any redundancy in the constraints
and performs checks that might facilitate
better retargeting.

NA M M M

sdc_abstract
Generates the abstract port for a design.

NA O O NA
21
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
Constraints Validation using SpyGlass

When analyzing the SDC of a design, the design can be categorized as:
 Block: Lowest module-level in a design.

 IP: External IP or completed or legacy block for which a library model is
available. Legacy blocks that have design information available can be
treated as a Block.

 Chip/Subchip: The Chip corresponds to the top-level of a design.
Subchip corresponds to a higher-level block, which has Blocks and/or
IPs instantiated. SDCs for the lower-level (instantiated) blocks may be
available, but this is not mandatory.

Please refer to Goals for Block/IP and Goals for SoC RTL and Netlist to see which
goal, therefore the corresponding methodology step described in this
document, applies to block, subchip or chip levels.

The following diagram illustrates the recommended steps for constraints
validation using SpyGlass. The following sections of this document details
each step of this flow.
22
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
23
Synopsys, Inc.

Optimizing and Cleaning the Design Constraints

Constraints-Optimized Design
24
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Step-by-Step Solution
This section contains the following subsections:
 Setup

 SDC Generation in Batch Mode

 Block/IP Methodology Flow

 Block/IP Detailed Procedure

 SoC Methodology Flow

 SoC Methodology using Abstraction

 Analyzing Results

Setup

The following list displays the steps for setup:
 Record Design Intent

 Analyze the Flavor of SDC

 Gather Design Data

 Configure SpyGlass Design Constraint (SGDC) File

 Run Sanity Checks on Inputs

 Check the Coverage of the Constraints

 Generate Constraints

Record Design Intent

This is a manual step to gather and record as much design intent
information as possible.

We recommend you first run the solution at the Block level, and then
move to Chip/Subchip level. Use a bottom-up approach and then as you
make progress, start integrating the blocks sequentially and progressively
move up the hierarchy until you reach the top level of the device.
25
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Analyze the Flavor of SDC

There is a difference between an SDC that is read by DC or PT. Before
analyzing the constraints, ascertain the flavor of SDC that is being
supplied. There may not be information inside the SDC to indicate, if it is
compliant to PT or DC or any other tool. In such cases, it is better to clarify
this with the designer. The SpyGlass Constraints solution, by default,
assumes the SDC to be PT compatible.

The SpyGlass Constraints can read in pure SDC format or may use the
standard Tcl syntax. Here are the various components of a Tcl-based SDC
file:
1. Pure Tcl constructs: These include native Tcl construct, such as for
each, while, and if-else. These are sent to Tcl interpreter, and are
handled completely by SpyGlass.

2. Control type commands: These include commands, which are
extensions (in DC/PT shell) to Tcl. Since these are not part of standard
Tcl, but are extensions to Tcl provided in the DC/PT shell, SpyGlass
might not be able to read all of them. SpyGlass has support for the most
commonly used items.

3. Actual SDC commands: These include commands, such as
create_clock and set_input_delay, which are part of the SDC
syntax as defined by Synopsys. SpyGlass currently supports SDC 2.0.

4. Options to SDC commands: For certain SDC commands, DC/PT shells
might support additional options, while these options are not part of
SDC.

5. Non-SDC Commands: DC/PT shells might support certain commands
to apply constraints, but these commands are not part of SDC. SpyGlass
has a limited support for these commands.

The workaround is often possible for non-SDC commands rejected by the
SDC parser. If the constraints are specified using some commands of the
shell (of another tool), read these commands in the native tool (for which
these commands were written) and write out the SDC from that tool (for
example, the write_sdc command for DC) and use that for analysis.
Usually, most synthesis/STA tools provide a way to write out the
commands in equivalent SDC format.

Alternatively, you can make the SDC parser ignore the commands by
specifying them in a file and defining the filename through the
–tc_ignored_commands parameter. You can do this in the Console GUI
26
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
or Tcl by using the following command:

set_parameter tc_ignored_commands '<file-name>'

After tool compatibility is ascertained, check the SDC to remove any
reference to the .db file. If the SDC was generated for DC/PT, it may
contain such references. If there are references to .db, obtain .lib and
compile to .sglib through the SpyGlass Library Compiler.

For more details on creating .sglib using the SpyGlass Library Compiler,
refer to the SpyGlass Explorer User Guide and the LC Parser User Guide.

Gather Design Data

This step ensures that the tool is provided the proper inputs. This step
consists of gathering all required design files, library files and design
constraints file, which may be combination of Tcl and SDC.

After the design category has been established, ascertain if the design is at
RTL-level or at Gate-level. It is important to ensure that for an RTL design,
you have provided a constraints file that references only the design object
in the RTL. Typically designers use the terminology “constraints” for the
RTL stage, since these are typically a combination of native Tcl and SDC
constructs.

For the netlist stage, designers refer to this as “SDC”, because they are
generated from within the tool. These are typically pure SDC files with no
Tcl constructs.

NOTE: This is a general norm and not a mandatory practice. These terms may get used
interchangeably.

Refer to Appendix A: SpyGlass Constraints Design Data Checklist for a list of
data required for the SpyGlass Constraints run.

Configure SpyGlass Design Constraint (SGDC) File

After you have gathered all the required input files, specify information
that is not available in the RTL (or Netlist). For example, the location of the
SDC file. You can do this by a constraints file known as the SpyGlass
Design Constraint (SGDC) file. The Clock/Reset information is needed only
for the step when you are creating the SDC file for the first time. For the
rest of the goals, clock information is already available from the SDC file.
27
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Before performing the constraints analysis, make sure that the SGDC file is
configured correctly. If the file is not configured correctly, you may see
more warnings than expected, and a majority of these warnings could be
false. Given below is an example of an SGDC file.

current_design top

sdc_data –file top_rtl.sdc

SGDC File Specification for Constraints Analysis

If the block under analysis includes multiple SDC files, set up the SGDC file
as:

current_design top

sdc_data –file top_rtl1.sdc top_rtl2.sdc top_rtl3.sdc

This scheme is required only when the design requires separate SDC files.
If the top-level SDC file sources other files as part of the Tcl script, you
need to define the top-level SDC file. Then, SpyGlass extracts the other
files/information as defined.

If checks require the SDC file for CHIP, SUBCHIP, and BLOCK level to be
analyzed simultaneously, set up the SGDC file as:

current_design top

sdc_data -file <top-design-SDC-file-list> ...

block -name blockA sub-chipB

current_design blockA

sdc_data -file <blockA-SDC-file-list> ...

current_design sub-chipB

sdc_data -file <sub-chipB-SDC-file-list> ...

block -name blockC

current_design blockC

sdc_data -file <blockC-SDC-file-list> ...
28
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
The SpyGlass Constraints solution requires you to specify the clock nets in
the design if you are planning to create constraints using the solution. This
can be generated automatically using the SpyGlass CDC solution or created
manually. Given below is an example of an SGDC file.

current_design top

clock -name "top.clka" -domain domain1

clock -name "top.clkb" -domain domain2

After setting up the constraint file, proceed with constraint analysis and/or
creation.

Run Sanity Checks on Inputs

After you have collected design data and created the SGDC file needed to
run the SpyGlass Constraints solution, load the design in SpyGlass to
sanitize any errors or discrepancies in the design.

Before starting any analysis of the SDC file, ensure that RTL or netlist is
“lint” clean using Connectivity, Structure, Synthesis, Simulation, and
Clocks goals in the GuideWare installation. However, if you have
customized these into different local goals, ensure that all goals taken
together include these goals.

Errors in the SDC file relate mainly to syntactic correctness and compliance
to the associated design. Syntax problems are typically fixed manually.
Inconsistency between SDC and design may be because of many reasons:
 Either the design is incomplete. For example, objects referred in the

SDC file are missing in the design.
 The library models do not have all the information.

 Many modules are black boxed.

 Design is not available because the module is an external IP.

The module may be black boxed for several reasons:
 It may not have any kind of definition.

 It may only have a .lib file definition without any functionality and/or
timing arcs specified in it.

 It may be not be synthesizable.

Since it is not possible to perform structural analysis on modules that are
29
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
not synthesizable, checks may fail to detect combinational loops and clock
domain crossings. The relationship between inputs and outputs of a black
box can be specified in the SGDC file, if they cannot be inferred from the
.lib file. This is done using the assume_path command. You will have to
provide more design information or get a more complete SDC to remove
the inconsistencies.

Refer to SpyGlass Explorer User Guide for detailed steps on how to read a
design using SpyGlass. In some cases, where module is an external IP, you
may have to waive these messages. Refer to section on Waiving Messages.

NOTE: Use Save/Restore to prevent reread/resynthesis during multiple runs. This helps the
run time especially if the design is large.

Check the Coverage of the Constraints

After you have run the sanity check, it is a good idea to see the coverage
the SDC file provides on your design. This is a good way to quantify the
portions of the design that are not constrained. This generates a report of
unconstrained ports and registers and the reason for detecting them as
unconstrained. The report can help you to perform a more detailed analysis
using the methodology steps detailed below.

To generate this report, run the sdc_audit goal.

assume_path –name BB –input A –output B
30
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Generate Constraints

This step is recommended only for RTL designs. Even though you can
create a template for a netlist, it is not a recommended practice. It can
result in extremely long run times. In addition, a netlist created with an
incorrect or missing SDC at the RTL-level may be incorrect to begin with.

Objective

In the prior step where the SGDC file is populated to associate SDC files
with the appropriate block. However, if there are blocks for which the
constraints file is missing, this step is used to automatically generate an
SDC template from the RTL. This template can be created incrementally
and include the following SDC statements:
31
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
 Clocks with periods and waveforms as placeholders

 Generated clocks with an appropriate clock source

 Inputs/outputs tied to correct clocks or virtual clocks

 Clock constraints, such as latency, uncertainty, and transition

 Input transition and loads

 Minimum and Maximum delay for feed-through paths

 Set case analysis on the select pin reaching the multiplexer of a clock
fan-in

 False paths to asynchronous clock domains

At each incremental step, you can specify a seed SDC file, which can
contain constraints generated in an earlier step or a legacy file. From this
seed file, you can inherit constraints. This approach gives you the flexibility
to have a check and balance on constraints after each step. For example,
you can first constrain all clocks and make sure the design needs are met.
Then, you can incrementally add the I/O delays. After all ports are
constrained, you can add additional constraints, such as exceptions.
 User controlled generation of the following constructs through a side file

specified using the gen_sdc_constraints_file parameter. You
can do this in the Console GUI or Tcl by using the following command:

set_parameter gen_sdc_constraints_file '<file-name>'

You can list the constraints that have to be generated in this file. The
default file (gensdcConstraintsFile.txt) for this parameter is located at
$SPYGLASS_HOME/policies/constraints. The following commands are
currently supported:
 create_clock

 create_generated_clock

 virtual_clock

 set_case_analysis

 set_input_delay

 set_output_delay

 set_clock_latency

 set_propagated_clock
32
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
 set_clock_uncertainty

 set_clock_transition

 set_input_transition

 set_driving_cell

 set_drive

 set_load

 set_min_delay

 set_max_delay

 set_false_path (for clock domain crossings only)

Prerequisites

This requires the correct identification of all clocks in the SGDC file prior to
running the rule. This can be done using the cdc_setup goal in the
SpyGlass CDC solution. The SGDC file should look as follows

current_design <design_name>

clock -name "<design_name>.<clock1_name>" -domain domain1

clock -name "<design_name>.<clock2_name>" -domain domain2

The clock period can be specified in the SGDC file and this is imported
directly into the generated template.

current_design <design_name>

clock -name "<design_name>.<clk1_name>" -domain domain1 –
period 10

If the user specifies set_case_analysis constraints in the SGDC file,
these constraints are used to define the set_case_analysis in the
SDC template.

SDC Generation in the Console GUI

1. Choose the sdc_gen goal in the Goal Selection window and perform
the steps in the Goal Setup.
33
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
2. The setup guides you through all the steps. After the introduction, the
first step is to resolve all the black boxes.
34
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
35
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
3. After the black boxes have been resolved the next step is to identify all
the clocks in the design. You can choose whether you want to infer the
clocks automatically or want to specify an SGDC file with clocks defined.
When you run this set up process, SGDC files are created based on
clocks traced back from clock pins. Remove any erroneous clocks due to
top-level gates in the generated SGDC file and save it.
36
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
37
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
38
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
4. Specify the constraint that you want to generate. The setup will provide
you with the default file, gensdcConstraintsFile.txt, for specifying the
constraints. Edit the gensdcConstraintsFile.txt file to specify the constraints
that you want to generate in the first run.
39
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
5. The setup then prompts you for creating a parameterized SDC.
Depending on your response, a different kind of SDC would be created.
If you click "Yes", all placeholders are replaced by Tcl parameters and
you only need to set the values to the parameters. For example, the
SDC file will look like the following:

set_clka_cc_p 10

set clka_cc_wv {0 5}

create_clock -name clka_cc -period $clka_cc_p -waveform
$clka_cc_wv [get_ports {clka}]

If you choose "No", the SDC file will look like:

create_clock -name clka_cc -period 10 -waveform {0 5}
[get_ports {clka}]

This step will complete the setup for SDC Generation. When you click
40
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
the Next button, the constraints are generated.

After the generation is complete, look for the SDC_GenerateIncr rule in
the INFO category. This is the rule that was run to create the SDC
template. Double-click the message with a spreadsheet icon. The
Spreadsheet Editor appears. You can use this editor to modify the clock
crossing file, if generated, and the placeholders in the generated template.

The clock crossing file is generated if there are unclassified interacting
clock pairs in the design. Before you can go ahead with the population of
the template, review all clock crossing information to indicate the
relationships between clock pairs. This information is used to generate
false paths or interclock uncertainty or clock groups between clock pairs.
41
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
You cannot edit the template SDC file before classifying the clock crossing
file.

As you can see, the clock crossing file contains ? (question mark)
character. This character signifies that the clock pair is unclassified. To
classify the clock pairs, replace the ? character for each pair as described in
the following table.

Replace ? Character
with...

To Generate... Relationship

F set_false_path Not applicable
U set_clock_uncertainty Not applicable
42
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
After making changes for all clock pairs, save the changes. The Console
GUI displays the status of the crossing pairs classification. The CSV file
contains an updated list of set_false_path,
set_clock_uncertainty,
and/or set_clock_groups constraints specified.

After you have completed the clock crossing file classification, click the
Update button to save the file. You cannot update the crossing file after
you have saved it. Now, enter all the timing values in the template SDC file
and generate the output SDC by clicking the Generate SDC option in the
File menu of the Spreadsheet Editor.

GA set_clock_groups asynchronous
GL set_clock_groups logically_exclusive
GP set_clock_groups physically_exclusive
43
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
6. The SDC generated in the previous step will act as the seed SDC for
incremental addition of more SDC constraints. Modify the SGDC file to
include this SDC as the seed file.
44
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
7. The next step is exactly same as step 4. You can choose additional
constraints add incrementally to the seed SDC file. After the constraints
have been added, populate the template using the Spreadsheet Editor.

Exit Criteria

A clean run with a generated SDC template is the exit criteria for this step.

SDC Generation in Batch Mode

The following figure illustrates the steps for running sdc_gen rule in batch
mode.
45
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
For the first run, initial constraints are provided through a seed SDC file or
when you do not have a seed SDC file, you can create clock specification in
SGDC and then run the sdc_gen goal

spyglass -project design.prj -goal initial_rtl/constraints/
sdc_gen -batch

After running the goal, the project can be loaded in the Console GUI, and
the SDC file can be generated through the rule interface. The generated file
can be used as the seed file to generate more constraints.
46
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Block/IP Methodology Flow

This stage involves the development of a new RTL. The process of the
development of a new RTL goes through progressive RTL refinement
starting with simpler goals that meet the basic timing requirements, such
as clean clocks and I/O delays. As the RTL code and design constraints
mature, the design goals evolve to include exceptions, constraints
redundancy and constraints equivalence to ensure that design intent is
preserved.

Refer to the Goals for Block/IP section for details of all the goals for the
Initial RTL Development, RTL Handoff, and Netlist Handoff goals.
47
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
SpyGlass Constraints Block/IP Quick Start

Block/IP Detailed Procedure

Perform the following steps for this flow:
 Step 1 – Check Design Coverage and Extract Domain Information

 Step 2 – Check Consistency, Clean Clock Definition, and Delay Constraints

 Step 3 – Check Timing Exceptions Structurally

 Step 4 – Remove Redundancy and Achieve Better Retargeting

 Step 5 - Generate Abstract View of the Block

No. Step Prerequisite Goal More
Information

1 Check Design
Coverage and
Extract Domain
Information

Since domains are extracted
based on set_false_path,
set_clock_group, and
set_clock_uncertainty
constraints, violation messages
from previous steps for these
constraints need to be cleaned
up before executing the step.

sdc_audit Step 1 – Check
Design Coverage
and Extract
Domain
Information

2 Basic Consistency,
Clean Clock
Definition, and
Delay Constraints

All design files must have passed
the tests performed in the setup
phase.

sdc_check Step 2 – Check
Consistency,
Clean Clock
Definition, and
Delay
Constraints

3 Check Timing
Exceptions
Structurally

It is recommended that timing
constraints are cleaned up before
you clean up exceptions.

sdc_exception_st
ruct

Step 3 – Check
Timing
Exceptions
Structurally

4 Remove
Redundancy and
Achieve Better
Retargeting

All mandatory steps are
completed and cleaned.

sdc_redundancy Step 4 –
Remove
Redundancy and
Achieve Better
Retargeting
48
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Step 1 – Check Design Coverage and Extract Domain Information

Objective

This step enables you to compute the design coverage and identify
uncovered design objects, such as ports and registers that have not been
constrained. In addition, domain information is extracted from the SDC
commands. The extracted information is checked for consistency with the
SGDC domain information. You can identify conflicting clock domain
classifications in the SDC file.

An SGDC file is generated containing the clock_group information
inferred from the SDC constraints, which can be used for further analysis.
The generated clocks corresponding to source clocks are reported in a
tabular format.

Prerequisites

Since domains are extracted based on set_false_path,
set_clock_group, and set_clock_uncertainty constraints,
violation messages from previous steps for these constraints need to be
cleaned up before executing the step.

Executing the Step

Run the sdc_audit goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_audit

Step 2 – Check Consistency, Clean Clock Definition, and Delay Constraints

Objective

The objective of this step is to detect the inconsistencies in the
specification of clocks and generated clocks and to perform basic checks on
overwritten and conflicting constraints. Without clean clock definition,
other constraint validation and exception verification is ineffective.
Overwritten and conflicting constraints may capture the design intent
incorrectly.

This step also detects the inconsistencies in specification of input/output
delays, clock latency, and clock uncertainty. Such inconsistencies not only
produce incorrect synthesis or static timing analysis results, they can
potentially allow these tools to assume a greater slack than available. This
49
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
translates to insufficient or incomplete optimization by synthesis, which
directly affects the QoR.

Finally, this step checks that all combinational paths are constrained
correctly. If a combination path is unconstrained or incorrectly constrained,
implementation tools do not perform timing checks on these paths. As a
result, the operation of a device at any specified speed cannot be
guaranteed.

Pre-requisites

At this stage, all the design files must have passed the tests performed in
the setup phase. For details, refer to the Run Sanity Checks on Inputs section.

Executing the Step

Run the sdc_check goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_check

Exit Criteria

1. All conflicting constraints should be cleaned up.
2. All overwritten constraints should be reconciled or justified.
3. All clock definition issues should be cleaned up. There should be no

undefined clocks or clocks with incorrect sources or clocks with
inappropriate characteristics.

4. All delay values must be positive numbers.
5. All input and output delays must be associated with the correct clocks.
6. Input/Output delays must meet the slack requirement.
7. All combinational paths must be constrained.
8. The delay numbers must be valid and meet the slack requirements.
9. After cleaning up reported issues, the step should be rerun to ensure

that all rules in this step exit with zero violations.

Step 3 – Check Timing Exceptions Structurally

Objective

The objective of this step is to check that timing exceptions specified in a
constraints file as are on paths which are structurally connected. This step
50
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
is a prerequisite before the paths can be verified formally to be correct.
Exceptions set on paths that are not structurally connected are redundant
and increase the run time of implementation tools.

Prerequisites

Even though this step can be run right after the sanity checks, it is
recommended that timing constraints are cleaned up before you clean up
exceptions.

Executing the Step

Run the sdc_exception_struct goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal design.prj -goal
rtl_handoff/constraints/sdc_exception_struct

Exit Criteria

1. All exceptions must be on physically connected paths.
2. Exceptions should not overlap.
3. The step must exit with zero violations for the selected rules.

Step 4 – Remove Redundancy and Achieve Better Retargeting

Objective

The objective of this step is to remove any redundancy in the constraints
and perform checks that might facilitate better retargeting.

Prerequisites

This step requires that all mandatory steps are completed and cleaned.

Executing the Step

Run the sdc_redundancy goal in the Console GUI by entering the
following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_redundancy

Step 5 - Generate Abstract View of the Block

Objective

The objective of this optional step is to generate an abstract view of the
51
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
block. An abstract view is a representative model of a block that contains
relevant block information required during SoC-level verification.

For example, it contains block information, such as combinational path
details, boundary registers and related clock/reset information, domain
information, and boundary constraints used to analyze the block.

An abstract view contains such information in the form of SGDC
constraints. SpyGlass provides a way to generate and consumes these
abstract view. For more details, please refer to section on SoC Methodology
using Abstraction.

Prerequisites

Since the abstract view is a representation of the block, the block must be
fully clean before this view is generated, otherwise it can result in false
positive and false negative violation messages during the SoC analysis.

Executing the Step

Run sdc_abstract goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_abstract
52
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
SoC Methodology Flow

During the SoC or subsystem integration, the design architect needs to
stitch the block IPs. These block IPs may have been developed internally or
selected from a third-party vendor. Depending on the extent of reuse of
these IPs, some of them may not have gone through the process of SDC
cleaning. This is typically seen in legacy IPs that have existed in prior
versions of the design. This creates new challenges during the integration
phase.

SoC RTL

This stage involves the verification of an SoC design or a subset of design
(subsystem) that has been integrated by using various blocks. This field of
use involves checks related to interblock/inter-IP issues and consistency
across blocks. In addition, it ensures that block constraints are consistent
with SoC constraints.

SoC Netlist

There are two stages in this category

Netlist Handoff

The Netlist Handoff goals check whether a design is ready for
floor-planning, layout, and back-end implementation.

Layout Handoff

The Layout Handoff goals check whether a design has gone through
specific activities, such as floor-planning and layout, in preparation for tape
out.

Refer to Goals for SoC RTL and Netlist for the application of the goals in this
field of use.
53
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
SpyGlass Constraints SoC Quick Start

SoC Detailed Procedure

Perform the following steps for this flow:
 Step 1 – Check Design Coverage and Extract Domain Information

 Step 2 – Validate Abstract Views

 Step 3 – Check Consistency, Clean Clock Definition, and Delay Constraints

 Step 4 – Check Timing Exceptions Structurally

 Step 5 – Remove Redundancy and Achieve Better Retargeting (Optional)

No. Step Prerequisite Goal More Information
1 Check Design

Coverage and
Extract Domain
Information

Since domains are extracted
based on set_false_path,
set_clock_group, and
set_clock_uncertainty
constraints, violation
messages from previous
steps for these constraints
need to be cleaned up before
executing the step.

sdc_audit Step 1 – Check
Design Coverage
and Extract Domain
Information

2 Validate Abstract
Views

Block-level abstract view has
been created.

sdc_abstract_val
idate

Step 2 – Validate
Abstract Views

3 Check Consistency,
Clean Clock
Definition, and
Delay Constraints

All design files must have
passed the tests performed
in the setup phase.

sdc_check Step 3 – Check
Consistency, Clean
Clock Definition, and
Delay Constraints

4 Check Timing
Exceptions
Structurally

It is recommended that
timing constraints are
cleaned up before you clean
up exceptions.

sdc_exception_st
ruct

Step 4 – Check
Timing Exceptions
Structurally

5 Remove redundancy
and Achieve Better
Retargeting
(Optional)

All mandatory steps are
completed and cleaned.

sdc_redundancy Step 5 – Remove
Redundancy and
Achieve Better
Retargeting
(Optional)
54
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Step 1 – Check Design Coverage and Extract Domain Information

Objective

This step enables you to compute the design coverage and identify
uncovered design objects, such as ports and registers that have not been
constrained. In addition, domain information is extracted from the SDC
commands. The extracted information is checked for consistency with the
SGDC domain information. You can identify conflicting clock domain
classifications in the SDC file.

An SGDC file is generated containing the clock_group information
inferred from the SDC constraints, which can be used for further analysis.
The generated clocks corresponding to source clocks are reported in a
tabular format.

Prerequisites

Since domains are extracted based on set_false_path,
set_clock_group, and set_clock_uncertainty constraints,
violation messages from previous steps for these constraints need to be
cleaned up before executing the step.

Executing the Step

Run the sdc_audit goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_audit

Step 2 – Validate Abstract Views

Objective

During the SoC integration the integrator may choose to use the complete
block definition or use the abstract view generated during block-level runs.
If an abstract view of the block is used, this step must be run to ensure
that the block-level assumption for constraints used during abstract
creation match the SoC-level constraints. For example, for the clock
frequency, the case analysis assumed during the block-level run must
match the chip-level requirements.

Prerequisites

Block-level abstract view has been created.
55
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Executing the Step

Run the sdc_abstract_validate goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_abstract_validate

Exit Criteria

1. There should be no inconsistency between top-level and block-level
constraints.

2. If inconsistencies are identified, the block may have to be rerun to
create a new abstract. Alternatively, the abstract view may have to
discarded and the flow must be run with the RTL view of the block.

Step 3 – Check Consistency, Clean Clock Definition, and Delay Constraints

Objective

The objective of this step is to detect the inconsistencies in the
specification of clocks and generated clocks and to perform basic checks on
overwritten and conflicting constraints. Without clean clock definition,
other constraint validation and exception verification is ineffective.
Overwritten and conflicting constraints may capture the design intent
incorrectly.

This step also detects the inconsistencies in specification of input/output
delays, clock latency, and clock uncertainty. Such inconsistencies not only
produce incorrect synthesis or static timing analysis results, they can
potentially allow these tools to assume a greater slack than available. This
translates to insufficient or incomplete optimization by synthesis, which
directly affects the QoR.

Finally, this step checks that all combinational paths are constrained
correctly. If a combination path is unconstrained or incorrectly constrained,
implementation tools do not perform timing checks on these paths. As a
result, the operation of a device at any specified speed cannot be
guaranteed.

Prerequisites

At this stage, all the design files must have passed the tests performed in
the setup phase. For details, refer to the Run Sanity Checks on Inputs section.
56
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Executing the Step

Run the sdc_check goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_check

Exit Criteria

1. All conflicting constraints should be cleaned up.
2. All overwritten constraints should be reconciled or justified.
3. All clock definition issues should be cleaned up. There should be no

undefined clocks or clocks with incorrect sources or clocks with
inappropriate characteristics.

4. All delay values must be positive numbers.
5. All input and output delays must be associated with the correct clocks.
6. Input/Output delays must meet the slack requirement.
7. All combinational paths must be constrained.
8. The delay numbers must be valid and meet the slack requirements.
9. After cleaning up reported issues, the step should be rerun to ensure

that all rules in this step exit with zero violations.

Step 4 – Check Timing Exceptions Structurally

This step is same as Step 3 – Check Timing Exceptions Structurally in the RTL
stage.

Executing the Step

Run the sdc_exception_struct goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_exception_struct

Step 5 – Remove Redundancy and Achieve Better Retargeting (Optional)

This step is same as Step 4 – Remove Redundancy and Achieve Better
Retargeting in the RTL stage.
57
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
Executing the Step

Use the sdc_redundancy goal in the Console GUI by entering the
following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_redundancy

SoC Methodology using Abstraction

Using the Methodology for SpyGlass Constraints Solution

In SoC, you are concerned whether the top-level SoC constraints are
matching with the block-level assumptions and SDC constraints.
Constraints catering to the internals of a block do not matter in an SoC.
These constraints do not impact the SoC-level timing. However, constraints
at the block boundary do have an impact at the SoC level.

At the SoC level, the top-level SDC constraints should match the boundary
conditions of the block. For example, suppose there is a clock applied with
a period of 10 at the SoC level. This clock is connected to a block port, Port
A. At the SoC level, it is important to ensure that there is a similar clock
with a period of 10 defined in the block level SDC.

This section describes generating and validating an abstract view while
using SpyGlass Constraints Solution.

NOTE: This methodology is valid only for structural SpyGlass Constraints checks, such as
SDC checks, equivalence, and mode coverage. However, it is not valid for false
path and MCP verification.

Generating an Abstract View in SpyGlass Constraints

To generate an abstract view while using SpyGlass Constraints solution,
run the sdc_abstract goal.

The following figure shows the process of generating an abstract view in
SpyGlass Constraints solution:
58
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
FIGURE 3.

Example - Generating Abstract View in SpyGlass Constraints

Consider the following design, SGDC file, and SDC file as the input for
generating an abstract view:

Block RTL

sdc_abstract goal Abstract View (.sgdc)

Block SDC

Block SGDC
59
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
FIGURE 4.

After specifying the above inputs to SpyGlass, run the sdc_abstract
goal.

//block.sdc
create_clock -name clk1

create_clock -name clk2

//block.sgdc
current_design block

sdc_data -file block.sdc

// test.v (block RTL)

-period 10 [get_ports clk1]

-period 10 [get_ports clk2]

-mode reference
60
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
When the goal run is complete, SpyGlass generates the following SGDC file
that represents the abstract view of the block:

abstract_port -ports in -connected_inst "\top.f1 " -inst_pin
D -inst_master RTL_FD -path_logic buf -scope const -mode
reference

abstract_port -ports in -connected_inst "\top.f4 " -inst_pin
D -inst_master RTL_FD -path_logic buf -scope const -mode
reference

abstract_port -ports out1 -connected_inst "\top.f1 "
-inst_pin Q -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports out1 -connected_inst "\top.f4 "
-inst_pin Q -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clk1 -connected_inst "\top.f1 "
-inst_pin CP -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clk2 -connected_inst "\top.f4 "
-inst_pin CP -inst_master RTL_FD -path_logic inv -scope const
-mode reference

In the abstract view above, the sdc_abstract goal generates two
abstract_port constraints for each input port (in) and output port
(out1) because the design is serving the following two types of flip-flops:

 Flip-flops driven by the clk1 clock. These flip-flops are f1, f2, and f3.

 Flip-flops driven by the clk2 clock. These flip-flops are f4, f5, and f6.

In addition, sdc_abstract goal generates two abstract_port
constraints for the clk1 and clk2 port. The abstract_port for clk1
is generated with the -path_logic option as buf, represents buffer,
type because there is no path inversion between the source object and
destination clock pin, f1/CP. RTL_FD is the name of master module inside
instance f1 and -inst_pin is representing the pin of the master
module, RTL_FD, which is connected with block ports, such as in and
61
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
clk1.

Validating Block Assumptions in SpyGlass Constraints

To validate assumptions on an abstract view while using the SpyGlass
Constraints solution, run the sdc_abstract_validate goal.

The following figure shows the process of validation in SpyGlass
Constraints solution:

FIGURE 5.

During the goal run, constraints-specific validation is performed pertaining
to clocks, set_case_analysis, and IO delay. These checks are

Block interface
or block RTL

Block abstract
SoC RTL

sdc_abstract_validate goal

SoC SDC

view (.sgdc)

Block SDC

Run the goal

- Clock checks
- Case-analysis checks
- IO-delay checks
62
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
described below:
 Clock Checks
 Clock defined at the top-level reaching to the block boundary and no

clock is present in block.sdc. Refer to the Example below for more
information on this check.

 Clock is present in both top.sdc as well as block.sdc but clock
characteristics are not same.

 Case Analysis Checks
 set_case_analysis is given at top level reaching to the block

boundary and no set_case_analysis is mentioned in block.sdc
 set_case_analysis is present in both top.sdc and block.sdc but they

are not same.
 IO Delay Checks
 set_input_delay/set_output_delay is mentioned at a point in

block.sdc but no delay value is reaching from top level or vice versa.
 set_input_delay at block level is less than set_input_delay reaching

from top level.
 set_output_delay at block level is less than set_output_delay

reaching from top level.

Example - Validating Block Assumptions in SpyGlass Constraints

The following example illustrates a clock check by validating the imported
SGDC file, block1_abstract.sgdc, with the specified top SDC file, top.sdc.

//test.v
module top(in1, clk1, clk2, out1, out2);
input in1;
input clk1, clk2;
output out1, out2;
wire w;
block1 b(.in(in1), .clk(clk1), .out(out1));
endmodule

module block1(in, clk, out);
input in, clk;
63
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
output out;
FD1 f1(.D(in), .CP(clk), .Q(out));
endmodule

//test.sgdc
current_design top
sdc_data -file top.sdc -mode reference
sgdc -import block1 block1_abstract.sgdc
block -name block1

current_design block1
sdc_data -file block.sdc -mode reference

Here, the sgdc -import constraint for the current design top specifies
to import the abstract view of block1 in the current design top.

Suppose the abstract_port constraints specified in the
block1_abstract.sgdc file are as follows:

// block1_abstract.sgdc

current_design block1

abstract_port -ports in -connected_inst "\block1.f1 "
-inst_pin D -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports out -connected_inst "\block1.f1 "
-inst_pin Q -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clk -connected_inst "\block1.f1 "
-inst_pin CP -inst_master RTL_FD -path_logic buf -scope const
-mode reference

Clock is specified for "top" only as:

//top.sdc
create_clock -name clk1 -period 10 [get_ports clk1]
64
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
To validate, run the sdc_abstract_validate goal.

After the sdc_abstract_validate goal is run, a Warning message is
reported because the clock constraint is defined for top only. However,
you should also define this constraint for the clk port of the block.

Using the Abstract View in SpyGlass Constraints

The following figure shows the process of using an abstract view during
SoC-level verification:

FIGURE 6.

For details on the steps during this stage, refer to the Using the Abstract
View during SoC-Level Verification section in the SoC User Guide.

Example - Using the Abstract View in SpyGlass Constraints

The abstract view for the block is specified in the SGDC file through the
sgdc -import command, as shown below.

//test.sgdc
current_design top
sdc_data -file top.sdc -mode reference

Constraint-specific
goals

Fixing SoC-related
violations

Block interface
or block RTL SoC SDC

SoC RTL
Block abstract
view (.sgdc)
65
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
sgdc -import block1 block1_abstract.sgdc
block -name block1

current_design block1
sdc_data -file block.sdc -mode reference

Analyzing Results

This section contains the following sub-sections:
 Debugging Reports

 Waiving Messages

Debugging Reports

-tcdecompile

Setting the -tcdecompile parameter generates a file called
TCdecompiledInfo that contains the expanded interpretation of the
constraints as applied by the SpyGlass Constraints solution. This is very
useful in debugging situations when you need to determine how constraints
are being expanded. You can set this parameter in the Console GUI or Tcl
by using the following command:

set_parameter tcdecompile 'yes'

The generated file is also useful to understand where the constraints file
had a problem and if the SDC file is not read in successfully. The
TCdecompiledInfo file shows exactly how each of the Tcl variables was
defined or how they were interpreted. You can view this file from the
following location:

spyglass_reports/constraints/TCdecompiledInfo

An excerpt of the TcdecompiledInfo file is as follows:

#ideal.sdc@@28@@

sg_set_ideal_network port_pin_list {A1/in1}

#ideal.sdc@@29@@
66
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
sg_set_ideal_network port_pin_list {A1/rtlc_I2/Z A1/rtlc_I2/
in1 A1/rtlc_I2/in2}

-tc_ignored_commands

The -tc_ignored_commands parameter specifies the file containing
the list of SDC commands to be ignored by the SDCPARSE rule. The file
contains one command per line, which should be ignored. You should only
specify the SDC commands that are currently not supported by SpyGlass
so that there are no invalid command errors while parsing the SDC files.
You can set this parameter in the Console GUI or Tcl by using the following
command:

set_parameter tc_ignored_commands '<file-name>'

During the parsing, all other constraints that are ignored are written to a
file called tc_unparsed_command in the $CWD/ <vdb-name>_reports/constraints
directory. The corresponding report file named tc_unparsed_commands.rpt is
created in the current working directory and can also be accessed from the
Report Menu of the Console GUI.

Show_Case_Analysis

The Show_Case_Analysis rule should always be run the the Console
GUI. This rule shows, as a schematic, how set_case_analysis
propagates in the design. This is very useful when several case analysis
settings result in blocking certain timing paths.
67
Synopsys, Inc.

Step-by-Step Solution

Constraints-Optimized Design
NOTE: This rule has no value in batch mode as it shows only schematic.

Waiving Messages

Waivers provide a means of reducing the number of violations being
reported. Use them:
 If you are aware of an intentional violation of a specific check in the

design/constraints.
 A specific module/file is already known to be clean and you do not want

to look into anything inside it.
 A specific module/file is used for the sake of completeness of the design,

for more accurate analysis, but you are not interested in analyzing the
results for that module/file.

Use waivers in two ways, either during preprocessing or during post
processing:
 Applying waivers during preprocessing: When you do not want to

view the constraints issues reported in a block that you do not want to
analyze, apply a waiver on the block before analysis.

 Applying waivers during post-processing: As you analyze the
reported violation and you perform proper analysis on it, apply a waiver
on it.

You can ‘waive’ rules/messages during analysis:
 In a file or design unit, by using waivers

waive –file src/top.v –rule Clk_Gen01

 Waive an instance of a message by using waivers

waive –file src/top.v -msg “Clock ‘clk’ doesn’t have a
clock constraint”

 Waiving a group of messages through regular expression (‘regexp’)

waive -du "top" -regexp -msg ".* is not driven by a
register"

Waivers are useful, when there are methodology-based violations in the
SDC that may not be applicable. As a practice, we do not recommend the
use of waivers.
68
Synopsys, Inc.

Conclusion

Constraints-Optimized Design
Conclusion
As chip complexity increases, the issues related to constraints become
critical to success because the issues can increase the risk associated with
silicon respin risk and poorer chip quality in terms of area, power, and
timing. The iterations in the implementation are already bad enough with
the design issues, throwing an additional curve ball with constraints issues
makes iterations worse. Moreover, resolving the constraints issues is a
time-consuming task.

The SpyGlass Constraints solution is a part of the SpyGlass family that
works at the RTL and netlist stage that:
 Checks the constraints for consistency and completeness against

design, at the block level, chip level, and in the hierarchical context
 Provides debugging environment to quickly pinpoint root cause of the

issues
 Creates constraint templates

 Verifies timing exceptions

 Creates timing critical exceptions for quick timing closure from STA
report

Having a solution is the first step, without a proper methodology that suits
the customer design flow, it is not effective. You do not know which rules to
apply at what stage. Too many rules applied to a stage leads to too many
violation messages; only a few of which are really critical. This creates a
barrier in adoption.

In this document we have laid out a recommended step-by-step
methodology that applies to generic design flow. We have created goals for
each of the steps.
69
Synopsys, Inc.

Conclusion

Constraints-Optimized Design
70
Synopsys, Inc.

Appendix A: SpyGlass
Constraints Design Data
Checklist
TABLE 1 Library

Information Required/
Optional

Reason for Data Customer Contact
Profile

1.1 .lib for standard
cells, I/O pads, IP’s
and memories

Must have To identify valid paths in
a cell, so checks like case
analysis propagation and
associated clocks can be
performed

One of the following:
• Library Group
• Whoever runs DC or

PT
• BE designer
• CAD (in some cases)
71
Synopsys, Inc.

Appendix A: SpyGlass Constraints Design Data Checklist
TABLE 2 Design

TABLE 3 SpyGlass Constraints

Information Required/
Optional

Reason for Data Customer Contact
Profile

2.1 RTL or Netlist
(Verilog or VHDL or
mixed)

Must have Read Design information.
For RTL, it is required for
internal synthesis

For RTL:
RTL designer
Whoever runs DC

For Netlist:
Whoever runs PT
Physical designers

Information Required/
Optional

Reason for Data Customer Contact
Profile

3.1 SDC with Clock
definitions, Input
and Output
constraints,
set_case_analysis,
Timing Exceptions

Must have For constraint validation Front-end designer or
whoever runs DC

3.2 SGDC Clocks list and
clock domains list
(can be created by
SpyGlass CDC
solution)

Must have if
you want to
create
constraint

Needed for generation
of SDC template.

If customer has
SpyGlass, an AE can
generate.
Front-end Designer’s
help would be needed
to clean up/sanitize the
list of clocks generated
by SpyGlass

3.3 Additional
information Multi-
mode SDC, block or
top level SDC, RTL or
Prelayout or Layout
SDC

Optional but
recommende
d

For selecting the right
set of rules and to show
value of Validation.

Design Manager/
Architect
72
Synopsys, Inc.

Appendix B: Example Project File
Appendix B: Example
Project File
The following code is an example of a project file. Read the comments in
the code to understand the code.

##Data Import Section

read_file -type verilog top.v

read_file -type sglib lib.sglib

##Common Options Section

set_option language_mode mixed

set_option projectwdir .

set_option projectcwd .

set_option active_methodology $SPYGLASS_HOME/Methodology

set_option top top

##Goal Setup Section

current_methodology $SPYGLASS_HOME/Methodology

current_goal Constraints/rtl/hierarchical_check -top top

read_file -type sgdc Project-1/top/Constraints/rtl/
hierarchical_check/constraints.sgdc
73
Synopsys, Inc.

Appendix B: Example Project File
74
Synopsys, Inc.

	SpyGlass® Constraints Submethodology (for GuideWare 2017.12)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Constraints-Optimized Design
	Introduction
	Tool and Methodology Version
	References
	Terminology

	The Constraints Problem
	Typical Problems within a Constraints File
	Typical Problems with Constraints in a Design Flow

	Optimizing and Cleaning the Design Constraints
	SpyGlass Constraints Overview
	Goals for Block/IP
	Goals for SoC RTL and Netlist

	Constraints Validation using SpyGlass

	Step-by-Step Solution
	Setup
	Record Design Intent
	Analyze the Flavor of SDC
	Gather Design Data
	Configure SpyGlass Design Constraint (SGDC) File
	Run Sanity Checks on Inputs
	Check the Coverage of the Constraints
	Generate Constraints
	SDC Generation in Batch Mode

	Block/IP Methodology Flow
	SpyGlass Constraints Block/IP Quick Start
	Block/IP Detailed Procedure

	SoC Methodology Flow
	SpyGlass Constraints SoC Quick Start
	SoC Detailed Procedure

	SoC Methodology using Abstraction
	Using the Methodology for SpyGlass Constraints Solution
	Generating an Abstract View in SpyGlass Constraints
	Validating Block Assumptions in SpyGlass Constraints
	Using the Abstract View in SpyGlass Constraints

	Analyzing Results
	Debugging Reports
	Waiving Messages

	Conclusion

	Appendix A: SpyGlass Constraints Design Data Checklist
	Appendix B: Example Project File

