SpyGlass® Constraints
Submethodology (for GuideWare
2017.12)

Version N-2017.12-SP2, June 2018

SYNOPSYS

Copyright Notice and Proprietary Information

©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.

690 E. Middlefield Road
Mountain View, CA 94043
WWW.SYyNnopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on

this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

o = T = 7
N o T 1 | N =T = e Yo 7
Contents Of ThisS BOOK ... et 8
Typographical CONVENTIONS ..ot e eeaeeenn 9

Constraints-Optimized DeSIigNcooviiiiiiiiii e 11
[o gt Yo [o3 o T] o 1SS 12

Tool and Methodology VEersSioN ... 12
ST (=] =1 o == 13

JLC=2 0.0 1180 o T 13
The Constraints Problem ... e e e 14
Typical Problems within a Constraints Filecccoiiiiiiiiiiii e 14
Typical Problems with Constraints in a Design FIow..........coooiviiiiiiiiina.. 15
Optimizing and Cleaning the Design ConstraintS...............coooivvvviiiiin.. 18
SpYGlass CoNStrainNtsS OVeIrVIEW.ttt ettt e eeeeaeaaaaeeas 18
GOoals TOr BIOCK/IP ... e et ettt e eaeaaaans 20

Goals for SOC RTL and Netlist.....oooiiiii e e 21
Constraints Validation using SPYGIasS......cvviieiiiiiiiiiiiiiiic e eeeeaaees 22
Step-by-Step SOIULION ... e 25
RS2 5] o 25
Record Design INtent ... e 25
Analyze the FIavor Of SDC.......oi i 26
Gather Design Datacoiiiii e 27
Configure SpyGlass Design Constraint (SGDC) Filecoiiiiiiiiiiiiniia.. 27

Run Sanity Checks 0N INPUES......ooii e e 29
Check the Coverage of the Constraintsc..ooiiiiiiiiiiiiiiiiiiciie s 30
(CT=] o [T = LI @] 1S o =V | 31

SDC Generation in Batch MOAEe ..o e 45
Block/IP Methodology FIOW ... e 47
SpyGlass Constraints Block/IP Quick Start..........ccooiiiiiiiiiiiiiiiiiiiiiiiiaes 48
Block/IP Detailed ProCedure ... et eeeeeeanaas 48

SOC Methodology FIOW ... e 53
SpyGlass Constraints SOC Quick Startc.oviiiiiiiiiiiii i iieeeeas 54

SOC Detailed ProCeUIeooniii ettt eaeas 54

v
Synopsys, Inc.

SoC Methodology using AbStraCtioncovviiiiiii i e 58

Using the Methodology for SpyGlass Constraints Solution...................... 58

Generating an Abstract View in SpyGlass Constraints............................ 58

Validating Block Assumptions in SpyGlass Constraints.............ccccceve...... 62

Using the Abstract View in SpyGlass Constraintsooiiiiiiiiiinnnn... 65

ANAlYZING RESUITS. ettt et e e eeeaaaaaas 66

[T=T o 18 Lo [o T T T =Y 10 g 66

RV L= VAV [T Y 1T 7= T [68

(70T g Lo [E= [0 o 1 69
Appendix A: SpyGlass Constraints Design Data Checklist............ 71
Appendix B: Example Project File...... .o 73

Vi
Synopsys, Inc.

~ Preface

About This Book

The SpyGlass® Constraints methodology guide describes the flow for using
the Constraints methodology.

7
Synopsys, Inc. .

Preface

Contents of This Book

Contents of This Book

The SpyGlass Constraints methodology guide has the following sections.

Section Description

Constraints-Optimized Design The need for constraints-optimized design

n Synopsys, Inc.

Preface

Typographical Conventions

Typographical Conventions

This document uses the following typographical conventions:

To indicate

Convention Used

Program code

OUT <= IN;

Object names

ouT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name=>' must end
with _X.

Message location OUT <= IN;

Reworked example OUT_X <=IN;

with message removed

Important Information

NOTE: This rule...

The following table describes the syntax used in this document:

Syntax

Description

[1 (Square brackets)

An optional entry

{ } (Curly braces)

An entry that can be specified once or multiple
times

| (Vertical bar)

A list of choices out of which you can choose
one

... (Horizontal
ellipsis)

Other options that you can specify

Synopsys, Inc. -

Preface

10

Typographical Conventions

Synopsys, Inc.

- Constraints-Optimized
Design

Read the following sections to understand how to make your design
constraints-optimized using the SpyGlass® Constraints solution:

B Introduction

The Constraints Problem

|
B Optimizing and Cleaning the Design Constraints
B Step-by-Step Solution

|

Conclusion

Synopsys, Inc.

Constraints-Optimized Design

Introduction

Introduction

Validating constraints throughout the design flow requires a methodology
that guides designers through each step in the flow, specifying how to
clean up and optimize the design constraints. This not only improves the
QoR, but reduces expensive respins and iterations. This document
introduces a methodology to make your design constraints-optimized using
SpyGlass Constraints.

This section contains the following subsections:
M Tool and Methodology Version

B References

B Terminology

In the next section, The Constraints Problem, the designer is introduced to
the concept of constraints, constraints-related problems typically faced in a
design, and the overall impact.

The Optimizing and Cleaning the Design Constraints section describes in general
how these problems can be fixed to avoid iterations and respins and
achieve faster timing closure. This is followed by detailed instructions in
the Step-by-Step Solution section prescribing a methodology.

This document is intended for use by both novices and advanced users of
the SpyGlass Constraints solution. It is not a replacement for the SpyGlass
Constraints rules reference guide or training materials. The reader is
expected to be familiar with SpyGlass, the features, and data flow before
using this document. Advanced users can go directly to the relevant
sections, such as the SpyGlass Constraints Block/IP Quick Start, SpyGlass
Constraints SoC Quick Start, and Analyzing Results.

While this methodology relates to specifically to timing constraints,
GuideWare provides a start for design groups with SpyGlass goals readily
usable at various phases of the IC design flow, such as Block/IP and SoC
Integration. You can configure GuideWare to map to a specific design style
and hand-off requirements.

Tool and Methodology Version

B SpyGlass Version: N-2017.12-SP2

Synopsys, Inc.

Constraints-Optimized Design

Introduction

B SDC Version: 2.0 or prior
B GuideWare Version: 2017.12

References

B SpyGlass Constraints Rules Reference Guide
B SpyGlass TXV Rules Reference Guide
B SpyGlass CDC Rules Reference Guide
B SpyGlass DFT Rules Reference Guide

Terminology

B Design: A design is a composed group of logic at any level. Therefore,
the only level considered not to be a design, as it is used in the context
of this document, is a primitive from a library. A design could be at
RTL-level, Gate-level (netlist), or mixed.

B SpyGlass Constraints: Additional information about the design, which
is not captured in the RTL description. Constraints in SpyGlass are
typically captured in a <design>.sgdc file and include clock definitions,
case or mode specifications, and signal dependencies.

B Timing Constraints: Additional information about the timing
requirements for the design, such as clock definition, 1/0 delays, and
timing exceptions, that are passed to synthesis, STA, or implementation
tools. These are typically captured in an SDC and/or a Tcl file.

B Parameters: These SpyGlass options enable you to control behavior of
rules during the analysis of constraints.

13
Synopsys, Inc.

Constraints-Optimized Design

The Constraints Problem

The Constraints Problem

This section describes typical problems within a constraints file and a
design flow.

Typical Problems within a Constraints File

Typical Problems with Constraints in a Design Flow

Typical Problems within a Constraints File

A typical constraints file pertaining to a block may have many issues
related to:

Clock Definitions: Clock issues lead to excessive iterations among
block synthesis, STA, and P&R. This includes inconsistencies in the
specification of clocks, generated clocks, and all related clock data, such
as latency, uncertainty, and buffering.

Input and Output Delays: Inconsistencies in input and output delay
specification can lead to incorrect or suboptimal synthesis results. Over-
constraining may result in longer synthesis run times and extra
buffering on tight paths. Under-constraining will result in not meeting
chip-level timing goals.

Exceptions: Exception validation is needed because:

O Incorrect timing exceptions, especially the ones on timing critical
paths, may lead to silicon failing to meet timing because the timing
path violations are masked until silicon.

0 Too many exceptions overwhelm the implementation tools.
Therefore, if there are exceptions on invalid paths, paths blocked by
constant propagation, or functionally incorrect exceptions, it is better
to identify them in advance and remove them from the constraints
before implementation.

O Verifying exceptions manually is a time-consuming and error-prone
process.

O Typical exception issues include false paths set on paths that are not
structurally connected, false paths specified on true paths, or
incorrect cycle counts specified for multicycle paths.

Synopsys, Inc.

Constraints-Optimized Design

The Constraints Problem

B The level of support on various commands/options for constraints varies
from one tool to another. Therefore, maintaining a flow involving
multiple vendors requires a tool that can intelligently indicate if the
constraint is supported by a specific tool.

B Constraints issues are not limited to a single constraint file for a block,
but can also occur in the hierarchical context involving multiple
constraint files for several blocks and the chip-level design.

Here are some typical problems in a constraint file:

#INPUT DELAYS

set_input_delay 2.0 -clock Vck_iwd_clk 1 [get ports pm_cpustal |

E}m_-: pustal

EXCEPTIONS
set_false _path ~from {F1/clk} -to {F2/d}

Input delay associated with

o~

False path set on

CLOCKS

create_generated _clock
-nante clk_atr_gen
=sonrce [get_ports clk_if
-divide_by 2 [get pins
clk_atr_gen_reg/Q]

wrong clock i disconnected path
e D [L~
F2
>

=

D o ’
clk_at > Ly
e
J==7 Generated clock

not in fanout of source clock]
D 0 D]

Incorrect set_case_analysis

B

(S}
L

—

24 T

Load on output inconsistent
with target leilmolog}'

 S— N

#SET CASE ANALYSIS
sef_case_analysis 1 [get _ports Se]

A

#LOAD
set_load 3 [get_ports pm_ic_gate_o]

FIGURE 1. Typical constraints issues in a design

Typical Problems with Constraints in a Design Flow

15

Synopsys, Inc.

Constraints-Optimized Design

The Constraints Problem

Constraints definitions evolve during each stage of the implementation of a
chip. Figure 2 illustrates the need for a constraints-checking solution in a
typical design flow from RTL to layout.

RTL
wmam
Post-
Pp=-
Bwout
F LR PLA KK |G
Parirtian Partrtfce
Leayo ut
=tmps

FIGURE 2. Constraints in a design flow

In each stage, the constraints-checking solution should address the
following:

RTL Stage

B Incorrect, inconsistent, and incomplete constraints for an RTL design
can cause longer implementation (synthesis, timing) cycles.

B First-pass constraints creation is typically a manual, error-prone, and
drawn-out process. For large designs, creating clock definitions and
input/output delays is often a tedious task.

B Incorrect exceptions lead to silicon failure or at a minimum cause
suboptimal design performance. This is typically a time-consuming
process.

Synopsys, Inc.

Constraints-Optimized Design

The Constraints Problem

Post-synthesis Stage

B Incorrect, inconsistent, and incomplete constraints for the netlist can
cause longer implementation (synthesis, timing) cycles.

B Incorrect hook-up of test-logic and clock gating can introduce additional
paths that tools unnecessarily attempt to optimize.

B Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

Pre-layout Stage

B Chip-level timing closure takes longer if constraints are inconsistent
across the hierarchy. Typically, block-level constraints are designed
independent of chip-level constraints, and conflicts can occur between
constraints at the two levels.

B Propagating block-level constraints to the chip level is a manual and
error-prone task.

B Verify timing exceptions is an error-prone and time-consuming process.

B Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

Layout Stage

B Incorrect, inconsistent and incomplete constraints for the netlist can
cause longer implementation (synthesis, timing) cycles.

B Need to ensure that the physical partition budgets are correct.

B Missing out correct exceptions, especially on paths that have failed
timing prolongs timing closure. This is typically a manual, time-
consuming, and iterative process.

B Since different tools in the design flow require variations of SDC,
managing multiple versions of constraints in a consistent and co-related
way is required.

17
Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

Optimizing and Cleaning the Design
Constraints

This section contains the following sub-sections:

B SpyGlass Constraints Overview

B Constraints Validation using SpyGlass

SpyGlass Constraints Overview

The SpyGlass Constraints solution provides the following capabilities to the
SpyGlass environment:

B SpyGlass Constraints Creation

O Generates SDC template from RTL

B SpyGlass Constraint Validation

O Pinpoint syntax, consistency, and methodology issues
O Vvalidates intrablock, interblock, blocks-versus-chip constraints

In relation to a typical design flow from RTL to layout, as shown in Figure 2,
the SpyGlass Constraints solution performs the following:

RTL Stage

Validates the RTL design constraints for correctness, consistency, and
completeness to facilitate synthesis.

Generates an SDC template.

Netlist Handoff

Validates constraints for consistency and completeness to facilitate STA.
Validates correct hook up of test-logic.
Validates that clock gating constraints are set correctly.

Validates hierarchical constraints consistency and reports the
inconsistencies.

Ensures consistent and complete constraints for layout and reports
issues.

Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

Layout Stage

B Validates that constraints are consistent and complete for P&R and
reports issues.

B Reports hierarchical inconsistencies after physical partition budgets are
created.

Timing Exception Verification and Exception generation for timing critical
paths from STA reports is a capability of the SpyGlass TXV solution.

The GuideWare Reference Methodology describes two fields of use:

B Block Development: In this field of use, it is assumed that the RTL
being developed is mostly new. No assumptions are made about
existing behavior or stability. The key concerns are the feasibility and
performance of the design. It is assumed that the design intent is
mostly known to the engineers and they can specify it to SpyGlass.
Checks and goals are organized to align with the evolution and maturity
of the new RTL block.

This field of use contains the following stages: Initial RTL Development,
RTL Handoff, and Netlist Handoff.

B SOC for RTL and Netlist: The SoC integration phase includes stitching
of the new RTL blocks or IPs. This field of use contains the following
stages: SoC Integration (of RTL Blocks), SoC Netlist handoff, and SoC
Layout handoff

The following sections show how the GuideWare fields of use correspond to
the SpyGlass Constraints goals.

B Goals for Block/IP
B Goals for SoC RTL and Netlist

19
Synopsys, Inc.

Constraints-Optimized Design

Goals for Block/IP

Optimizing and Cleaning the Design Constraints

The following table lists goals you should run in each design stage for
Block/IP. The table uses the following legend:

B M denotes mandatory goals for the design stage

B O denotes optional goals for the design stage

B NA denotes goals that are not applicable for the design stage

Goals Design Stages
initial_ rtl rtl_handoff netlist_handoff
n

sdc_ge . o o NA
Creates SDC templates from RTL or netlist.
sdc_audit
Computes design coverage and reports uncovered M M M
design objects.
sdc_check
Detects inconsistencies in specification of clocks, M M M
generated clocks, and perform basic checks.
sdc_exception_struct
Checks that timing exceptions specified in a constraints NA M M
file are on paths that are structurally connected.
sdc_redundancy
Remove any redundancy in the constraints and NA M M
performs checks that might facilitate better retargeting.

r
sdc_abstract NA o o

Generates the abstract port for a design.

20

Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

Goals for SoC RTL and Netlist

The following table the you should run in each design stage for Block/IP.
The table uses the following legend: M denotes mandatory goals for the
design stage, O denotes optional goals for the design stage, and NA
denotes goals that are not applicable for the design stage.

Goal

Design Stages

SoC RTL

SoC Netlist

initial_ rtl rtl_handoff

netlist_handoff layout_handoff

sdc_gen
Creates SDC templates from RTL or netlist.

(0]

(0]

NA NA

sdc_audit

Computes design coverage and reports
uncovered design objects.

sdc_abstract _validate
Validates the abstract port for a design.

sdc_check

Detects inconsistencies in specification of
clocks,

generated clocks, and perform basic checks.

sdc_exception_struct

Checks that timing exceptions specified in a
constraints file are on paths that are
structurally connected.

NA

sdc_redundancy

Removes any redundancy in the constraints
and performs checks that might facilitate
better retargeting.

NA

sdc_abstract
Generates the abstract port for a design.

NA

21

Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

Constraints Validation using SpyGlass

When analyzing the SDC of a design, the design can be categorized as:
B Block: Lowest module-level in a design.

B IP: External IP or completed or legacy block for which a library model is
available. Legacy blocks that have design information available can be

treated as a Block.

B Chip/Subchip: The Chip corresponds to the top-level of a design.
Subchip corresponds to a higher-level block, which has Blocks and/or
IPs instantiated. SDCs for the lower-level (instantiated) blocks may be
available, but this is not mandatory.

SUB-CHIP

CHIP
SUB-CHIFP

Please refer to Goals for Block/IP and Goals for SoC RTL and Netlist to see which
goal, therefore the corresponding methodology step described in this
document, applies to block, subchip or chip levels.

The following diagram illustrates the recommended steps for constraints
validation using SpyGlass. The following sections of this document details

each step of this flow.

Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

5

E-CHIP /BLOCK LEVEL ANALYSIS

| Satup Design/SGOC

11_

I -

Create Initid
Constraints for RTL

Check 54 -up

“alidae RTL Constraint=s

| “alidate Exceptions Formally I- - -

| Syrthesis 11—
¥
| Fowver Gaing | Update
- - RTL
alidge 5TA Constraints I— ————— -t r
| ST " Update

sOC

Timing

Errors?

| Scan Insertion

alidate Test Constraints

|._____

To Chip Lewel
And ysis

Requires SpyGlassT W
solution and & separate License

Requires
Constraints Managerment

23

Synopsys, Inc.

Constraints-Optimized Design

Optimizing and Cleaning the Design Constraints

CHIP LEVEL ANALYSI|S

| Setup Design/SGOC |1—

Create Chip Constraints f
Merge Block Constraints

Check St -up -
| “alidate Fre -Layout Constraints |-- - Updste
RTL
| vaidate Exceptions Formally |-_ _———
: Update
Chip Lewel STA
[Gmis= I 5o

F 3

| “weidate Constraints Hand -off I__ N —

| Create Floomplan

| waidate Bxceptions Formally I-— -

| F & R Physica Fartitions] |,._ Up date

‘wdidate Post-Layout Constraints

Requires SpyGlass T ¥ salution
and separae License

End Requires
Constraints Managemert solution

24

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Step-by-Step Solution

This section contains the following subsections:
Setup

SDC Generation in Batch Mode

Block/IP Methodology Flow

Block/IP Detailed Procedure

SoC Methodology Flow

SoC Methodology using Abstraction

Analyzing Results

Setup

The following list displays the steps for setup:
Record Design Intent
Analyze the Flavor of SDC
Gather Design Data

|
|
|
B Configure SpyGlass Design Constraint (SGDC) File
B Run Sanity Checks on Inputs

B Check the Coverage of the Constraints

|

Generate Constraints

Record Design Intent

This is a manual step to gather and record as much design intent
information as possible.

We recommend you first run the solution at the Block level, and then
move to Chip/Subchip level. Use a bottom-up approach and then as you
make progress, start integrating the blocks sequentially and progressively
move up the hierarchy until you reach the top level of the device.

25
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Analyze the Flavor of SDC

There is a difference between an SDC that is read by DC or PT. Before
analyzing the constraints, ascertain the flavor of SDC that is being
supplied. There may not be information inside the SDC to indicate, if it is
compliant to PT or DC or any other tool. In such cases, it is better to clarify
this with the designer. The SpyGlass Constraints solution, by default,
assumes the SDC to be PT compatible.

The SpyGlass Constraints can read in pure SDC format or may use the
standard Tcl syntax. Here are the various components of a Tcl-based SDC
file:

1. Pure Tcl constructs: These include native Tcl construct, such as for
each, while, and if-else. These are sent to Tcl interpreter, and are
handled completely by SpyGlass.

2. Control type commands: These include commands, which are
extensions (in DC/PT shell) to Tcl. Since these are not part of standard
Tcl, but are extensions to Tcl provided in the DC/PT shell, SpyGlass
might not be able to read all of them. SpyGlass has support for the most
commonly used items.

3. Actual SDC commands: These include commands, such as
create clock and set _input delay, which are part of the SDC
syntax as defined by Synopsys. SpyGlass currently supports SDC 2.0.

4. Options to SDC commands: For certain SDC commands, DC/PT shells
might support additional options, while these options are not part of
SDC.

5. Non-SDC Commands: DC/PT shells might support certain commands
to apply constraints, but these commands are not part of SDC. SpyGlass
has a limited support for these commands.

The workaround is often possible for non-SDC commands rejected by the
SDC parser. If the constraints are specified using some commands of the
shell (of another tool), read these commands in the native tool (for which
these commands were written) and write out the SDC from that tool (for
example, the write sdc command for DC) and use that for analysis.
Usually, most synthesis/STA tools provide a way to write out the
commands in equivalent SDC format.

Alternatively, you can make the SDC parser ignore the commands by
specifying them in a file and defining the filename through the
-tc_ignored commands parameter. You can do this in the Console GUI

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

or Tcl by using the following command:
set_parameter tc_ignored_commands “<file-name>"

After tool compatibility is ascertained, check the SDC to remove any
reference to the .db file. If the SDC was generated for DC/PT, it may
contain such references. If there are references to .db, obtain .lib and
compile to .sglib through the SpyGlass Library Compiler.

For more details on creating .sglib using the SpyGlass Library Compiler,
refer to the SpyGlass Explorer User Guide and the LC Parser User Guide.

Gather Design Data

This step ensures that the tool is provided the proper inputs. This step
consists of gathering all required design files, library files and design
constraints file, which may be combination of Tcl and SDC.

After the design category has been established, ascertain if the design is at
RTL-level or at Gate-level. It is important to ensure that for an RTL design,
you have provided a constraints file that references only the design object
in the RTL. Typically designers use the terminology “constraints” for the
RTL stage, since these are typically a combination of native Tcl and SDC
constructs.

For the netlist stage, designers refer to this as “SDC”, because they are
generated from within the tool. These are typically pure SDC files with no
Tcl constructs.

NOTE: This is a general norm and not a mandatory practice. These terms may get used
interchangeably.

Refer to Appendix A: SpyGlass Constraints Design Data Checklist for a list of
data required for the SpyGlass Constraints run.

Configure SpyGlass Design Constraint (SGDC) File

After you have gathered all the required input files, specify information
that is not available in the RTL (or Netlist). For example, the location of the
SDC file. You can do this by a constraints file known as the SpyGlass
Design Constraint (SGDC) file. The Clock/Reset information is needed only
for the step when you are creating the SDC file for the first time. For the
rest of the goals, clock information is already available from the SDC file.

27
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Before performing the constraints analysis, make sure that the SGDC file is
configured correctly. If the file is not configured correctly, you may see
more warnings than expected, and a majority of these warnings could be
false. Given below is an example of an SGDC file.

current_design top
sdc_data —file top_rtl.sdc

SGDC File Specification for Constraints Analysis

If the block under analysis includes multiple SDC files, set up the SGDC file
as:

current_design top
sdc_data —File top_rtll.sdc top rtl2.sdc top rtl3.sdc

This scheme is required only when the design requires separate SDC files.
If the top-level SDC file sources other files as part of the Tcl script, you
need to define the top-level SDC file. Then, SpyGlass extracts the other
files/information as defined.

If checks require the SDC file for CHIP, SUBCHIP, and BLOCK level to be
analyzed simultaneously, set up the SGDC file as:

current_design top
sdc_data -file <top-design-SDC-file-list> ...
block -name blockA sub-chipB

current_design blockA
sdc_data -file <blockA-SDC-File-list> ...

current_design sub-chipB
sdc_data -file <sub-chipB-SDC-file-list> ...
block -name blockC

current_design blockC
sdc_data -file <blockC-SDC-File-list> ...

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

The SpyGlass Constraints solution requires you to specify the clock nets in
the design if you are planning to create constraints using the solution. This
can be generated automatically using the SpyGlass CDC solution or created
manually. Given below is an example of an SGDC file.

current_design top
clock -name "top.clka'"™ -domain domainl
clock -name "top.clkb'™ -domain domain2

After setting up the constraint file, proceed with constraint analysis and/or
creation.

Run Sanity Checks on Inputs

After you have collected design data and created the SGDC file needed to
run the SpyGlass Constraints solution, load the design in SpyGlass to
sanitize any errors or discrepancies in the design.

Before starting any analysis of the SDC file, ensure that RTL or netlist is
“lint” clean using Connectivity, Structure, Synthesis, Simulation, and
Clocks goals in the GuideWare installation. However, if you have
customized these into different local goals, ensure that all goals taken
together include these goals.

Errors in the SDC file relate mainly to syntactic correctness and compliance
to the associated design. Syntax problems are typically fixed manually.
Inconsistency between SDC and design may be because of many reasons:

B Either the design is incomplete. For example, objects referred in the
SDC file are missing in the design.

B The library models do not have all the information.

B Many modules are black boxed.

B Design is not available because the module is an external IP.
The module may be black boxed for several reasons:

B It may not have any kind of definition.

B It may only have a .lib file definition without any functionality and/or
timing arcs specified in it.

B |t may be not be synthesizable.

Since it is not possible to perform structural analysis on modules that are

29
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

not synthesizable, checks may fail to detect combinational loops and clock
domain crossings. The relationship between inputs and outputs of a black
box can be specified in the SGDC file, if they cannot be inferred from the
lib file. This is done using the assume_path command. You will have to
provide more design information or get a more complete SDC to remove
the inconsistencies.

A . BE
assume_path —name BB —input A —output B E‘“‘x

Refer to SpyGlass Explorer User Guide for detailed steps on how to read a
design using SpyGlass. In some cases, where module is an external IP, you
may have to waive these messages. Refer to section on Waiving Messages.

NOTE: Use Save/Restore to prevent reread/resynthesis during multiple runs. This helps the

run time especially if the design is large.

Check the Coverage of the Constraints

After you have run the sanity check, it is a good idea to see the coverage
the SDC file provides on your design. This is a good way to quantify the
portions of the design that are not constrained. This generates a report of
unconstrained ports and registers and the reason for detecting them as
unconstrained. The report can help you to perform a more detailed analysis
using the methodology steps detailed below.

To generate this report, run the sdc_audit goal.

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

EQAtrenta Console - Project-5.prj *
Eile Edit Bun Tools Help

i = | 5 1 % |

Design Setup

M Go to 'Setup Design' and setup Blackboxes, Select a design goal for analysis, and add setup information (design intent data). #, Search | g In [Session Log ﬂ Go »

[T Coarsep GRS KmabieResls g

Select Goal | Setup Design | Setup Goal |
{3 Run Selected Goal(s): 1/111 Select Goal(s): Al, Mone _I Run in Group Mode]
hethodology: Methodology All SpyGlass Sub-Methodologies b4 Select Methodology...
Goal || Setup Status | Run Staws H Prereq. 4 | | » Help
a-rtl Selected Go
s Constraints/rtlifsdec_guick_check
— W sde_quick_check tup Recommenc Mot Run et
-1 sdc_coverage wp Recommenc Not Run et This template checks for syntax errars in given SDC file. This is useful to run when a
- user is new to the world of constraints, and, has written an SDC. The template wil
- gen_sde tup Recommenc Mot Run et riifsdc_g help the User check the syntax, without bothering with the design-objects being
I clock_consis tup Recommenc Mot Run Yet rtlsdc_ mentioned,
- : The usefulness of this template lies in the fact that since its not checking for the
. io_delay tup Recommenc Mot Run Yet riiclock, design-objects themselves, the checks are made very fast.
= o de For more details about this goal, please refer to the
1] comoRgaitrEehien e Recamienc: NethunYet = SpyGlass-Constraints-Methodology pdf fille in the doc subdirectory of your SpyGlass
— 1 structural_exception tup Recommenc Mot Run vet rilicomb installation.
— 1 sdc_equiv tup Recommenc Mot Run Yet rilfsdc_g
1 sdc_equiv_dual_design setup Mandator Mot Run vet ril’sdc_g
— I hierarchical_check tup Recommenc Mot Run Yet rilfstruct
— i redundancy_check tup Recommenc Mot Run Yet rihikarl__ -
tithierarchical_check
B- pre_layout
I sdc_guick_check tup Recommenc Mot Run Yet
I sdc_coverage tup Recommenc Mot Run Yet
I clock_consis tup Recommenc Mot Run Yet pre_layg
|_mnde_mismatrh - Qatin Mntinnal - Nt Run Var —azn_ o) £
- al o
A Session Log

Language Mode: VerHugJ

Generate Constraints

Objective

This step is recommended only for RTL designs. Even though you can
create a template for a netlist, it is not a recommended practice. It can
result in extremely long run times. In addition, a netlist created with an
incorrect or missing SDC at the RTL-level may be incorrect to begin with.

In the prior step where the SGDC file is populated to associate SDC files
with the appropriate block. However, if there are blocks for which the
constraints file is missing, this step is used to automatically generate an
SDC template from the RTL. This template can be created incrementally
and include the following SDC statements:

31

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Clocks with periods and waveforms as placeholders
Generated clocks with an appropriate clock source
Inputs/outputs tied to correct clocks or virtual clocks

Clock constraints, such as latency, uncertainty, and transition
Input transition and loads

Minimum and Maximum delay for feed-through paths

Set case analysis on the select pin reaching the multiplexer of a clock
fan-in

False paths to asynchronous clock domains

At each incremental step, you can specify a seed SDC file, which can
contain constraints generated in an earlier step or a legacy file. From this
seed file, you can inherit constraints. This approach gives you the flexibility
to have a check and balance on constraints after each step. For example,
you can first constrain all clocks and make sure the design needs are met.
Then, you can incrementally add the 1/0 delays. After all ports are
constrained, you can add additional constraints, such as exceptions.

User controlled generation of the following constructs through a side file

specified using the gen_sdc_constraints_ file parameter. You
can do this in the Console GUI or Tcl by using the following command:

set_parameter gen_sdc_constraints_file "<file-name>"

You can list the constraints that have to be generated in this file. The
default file (gensdcConstraintsFile.txt) for this parameter is located at
$SPYGLASS_HOME/policies/constraints. The following commands are
currently supported:

O create_clock

O create_generated_clock
3 virtual_clock

O set_case_analysis

O set_input_delay

O set_output_delay

O set_clock_latency

O set_propagated_clock

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

O set_clock_uncertainty
set_clock_transition
set_input_transition
set_driving_cell
set_drive

set_load
set_min_delay
set_max_delay

aaaoaaaaq

set_false path (for clock domain crossings only)

Prerequisites

This requires the correct identification of all clocks in the SGDC file prior to
running the rule. This can be done using the cdc_setup goal in the
SpyGlass CDC solution. The SGDC file should look as follows

current_design <design_name>
clock -name "<design_name>.<clockl_name>" -domain domainl
clock -name "<design_name>.<clock2_name>" -domain domain2

The clock period can be specified in the SGDC file and this is imported
directly into the generated template.

current_design <design_name>

clock -name *<design_name>.<clkl name>" -domain domainl —
period 10

If the user specifies set case analysis constraints in the SGDC file,

these constraints are used to define the set _case_analysis in the
SDC template.

SDC Generation in the Console GUI

1. Choose the sdc_gen goal in the Goal Selection window and perform
the steps in the Goal Setup.

33
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

'Console - Proje
Eile Edit Bun Tools Help
(T b Rea g
M Go to "Setup Design’ and setup Blackboxes. Select a design goal for analysis, and add setup information (design intent data). 8 Search | ﬁ In iSesswon Log ﬂ Go x
Select Goal | Setup Design | Setup Goal |
) Run Selected Goal(s): 1/111 Select Goal(s): All, None _I Run in Group hode nary.
IWethodology: Methodology: All SpyGlass Sub-Methodologies K Select Methodology...
Goal | setup status | Run stats | Prereq. Goals] A S Help
BaseSpyGlass
Clock-reset Constraints/rtl/gen_sdc
@ Constraints Selected Go . . ‘ -
- Selected Go This template gives designers the ability to create SDC
Bl templates from RTL or netlist. This requires the users to
— .1 sdc_guick_check Setup Recommended Mot Run Yet identify correct clock sources (in the sgdc file)
|d . Setun R ded Not Run Vet This template is useful if you have an RTL, but, don't have
=] | 36050 RIR0R SUHLBRCINTIENCEE, DALLLN e the associated SDC. The template will help create a
—® gen_sdc Setup Recommended Mot Run Wet rifsdc_guick_check bare-bone structure, where, the actual numbers can be filed
: isd P— up later by the user.
- clock_consis Setup Recommended Mot Run Yet rtfsdc_guick_chec | | | For more details about this goal, please refer to the
1 io_delay Selup Recommended Mot Run Vet riifclock_consis SpyGlass-Constraints-Methodology pdf file in the doc
- . subdirectory of your SpyGlass installation.
— 1 combo_path_check Setup Recommended Mot Run Vet rifio_delay
— 1 structural_exception Setup Recommended Mot Run Vet rifcombo_path_check
=1 stc_equiv Setup Recommended Mot RunYet rtfsdc_guick_check
— 1 stc_equiv_dual_design Setup Mandatory Mot Run Yet ri/sdc_guick_check
— I hierarchical_check Setup Recommended Mot Run Yet ri/structural_exception
R P R 4
=
¥ Session Log
A
SpyGlass Exit Code 0 (Rule-checking completed with errors) =
£
Language Iode: Verilog]

2. The setup guides you through all the steps. After the introduction, the
first step is to resolve all the black boxes.

34

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

CdAtrenta Console - Project-a
File Edit Run Tools Help
oal Setup
W Goto 'Setup Design’ and setup Blackboxes. Select a design goal for analysis, and add setup Infarmation {design intent data). #, search | g In |Session Log g Go %
Select Goal | Setup Design | Setup Goal
Before You Start
Instructions;
« i Setup Steps |
In the next step you wolld be required to review all the clocks that have been inferred in the design (choose "Yes", for the
[|Before You Start | question below). Remove any erroneous clocks and save the file. The clocks are created in the file awtoctocks sgde. If you
[IResolve Blackboxes already have a file with clocks defined, you can choose not to create them and just select the appropriate SGDC file
(choose "Na", for the question below)
[[1Design Clocks
[]Choose Constraints =1
[[JGenerate S0OC fle I
[1Cheose More Constraints I
N CREATE SDC ADD TIMING
[[JGenerate SDC incrementally GITH ELORIE I ADaIIG
Setup Status ——————————————— I
’7 Show Summary Page ‘ ADD 10 DELAYS I /
& ¢ Back | B Next | v Close
—
¥ Session Log
SpyGlass Exit Code 0 (Rule-checking completed with errors) =
£
ethodology Language Mode: Verilog

35

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

EdAtrenta Console - Project 3.prj ™ SEIE

File Edit Run Tools Help

W Go to Setup Design’ and setup Blackboxes. Select a design goal for analysis, and add setup information (design intent data). #) Search | g In [Session Lag ﬁ Go %

Select Goal | Setup Design | Setup Goal

) Run Setup Process @+ Show HDL Viewer

[Reports > ‘iew: |Blackhox view g » Help |
= AZ Set sort order ¢ Clear Filters 38 Configure Columns otal Blackboxe? Waived: 0
: || 8. No.[Module Type Cause |

The Bladkbox viewer lists blackboxes in the design, it's cause
and potential remedies. Clicking on the Blackbox name will

1 bhox Undefined Design Unit 'bhox’ has no definition; black-b| | |show the HDL source where the Bladkbox is tincompletely)
= jzc_master fop Undefined Design Unit 'izc_master_top’ has no definitit| | [defined or its instantiation. Use the rightmouse-button to
1 select a Blackbox to access additional functions to resolve or
waive the blackhox. Waiving a blackbox only affects the
detection for future runs.
&
=] =
= :
Q) Restart ¢ Back | B Next v Close
-
¥ Session Log
A
SpyGlass Exit Code O (Rule-checking completed with errors) =
4

hethodology: Methodology Language hode: Verilog

3. After the black boxes have been resolved the next step is to identify all
the clocks in the design. You can choose whether you want to infer the
clocks automatically or want to specify an SGDC file with clocks defined.
When you run this set up process, SGDC files are created based on
clocks traced back from clock pins. Remove any erroneous clocks due to
top-level gates in the generated SGDC file and save it.

36

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

EdAirenta Console - Project-3.pri *
Eile Edit Bun Tools Help

T — L —

W Go to "Setup Design’ and setup Blackboxes. Select a design goal for analysis, and add setup information (design intent data), #, Search | g In iSess\on Log g Go »

Select Goal | Setup Design | Setup Goal

« [Setup Steps |
M forefouiStert Provide existing SGDC files or enable auto-detection of clocks

[HResolve Blackhoxes

[_|Design Clocks i
[]Choose Constraints - Provide SGDC files.
Provide existing SGDC file(s) with clocks, resets and other relevant constraints, if you have any. Note that you can use

[[]Generate SDC file consiraints created for other SpyGlass products.

[JChoose Kore Constraints - Provide GO schema files to import constraints from S0C files

[[Generate SDC incrementally Provide existing SGDC file(s) with sdcschema and other relevant constraints to import constraints from SDC files. An
example of providing the sdcschema constraint in an sgdc Me is given below /
Do you have any SGDC files? ~ Yes # No
~ Yes # No

Do you want to import constraints from SDC files?

Setup Status ————————————————
Progress|HEN =8 Identify potential clocks used in the design? ¥ Yes + No
Show Summary Page

Step 3.1 of 16.1.1 ?@ Restart 4 Back | & Next ¥ Close
—

Session Log

SpyGlass Exit Gode O (Rule-checking completed with errors)

hethodology: Methodolegy Language tode: Verilog

37

Synopsys, Inc.

Constraints-Optimized Design

(% Atrenta Console oje
FEile Edit Bun Tools Help

Step-by-Step Solution

W™ Go to ‘Setup Design' and setup Blackboxes. Select a design goal for analysis, and add setup information [design intent data).

#, Search |

3 Go =

g In |Session Log

Select Goal | Setup Design | Setup Goal

« B Setup Steps |

[Before You Start

[Resolve Blackboxes

[|Design Clocks |
[]Choose Constraints
[]Generate SOC file

Analyze Clock Trees

[1Choose More Constraints

File Felp:

P BN B

[[1Generate 5DC incrementally

Gk Swaves

[

|| DFY b

7 Ak
v Ml
v Ak

Setup Status

Do Porwot | coce Ty | k. Gomes | ko et | e | S
: oy :

Aivary

bricery. €2

i

= A

28%

Show Summary Page

(

Here, you can analyze clock trees and tune clock definitions. Make sure to remove improper clocks, add missing clocks, put
synchronous clocks into the same domain, set the correct frequencies, mark tesiclocks, and save the final clock information
in the SGDC file. You can specify missing constraints in clock path as shown below:

or black box clocks, set
assums_path and

zignal_in_domain
con®raints

Set the case analysis
settings for MUXes in

the clock path

Show clock trees and finalize clock definition interactively (will run Spyglass)?

J

Yes Skip

?4) Restartl « Backl @ e | v C\osel |

—

Session Log

SpySlass Exit Code 0 (Rule-checking completed with scrocs)

7]

38

Ivlethodology: Methodology Language Mode: Verilog

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

v Afrenta Gonsole — Project3.prj =
Eile Edit Bun Tools Help

W Go to 'Setup Design' and setup Blackboxes. Select a design goal for analysis, and add setup information (design intent data). #, Search | ﬁ In [Session Log g Go

Select Goal | Setup Design I Setup Goal

« B Setup Steps | *n Add clock(s) (=] Generate SGD(? [Modular Schematic B4 Incremental Schematic
Generate SGDC File Clock S
[MBefore You Start ek Sourees
[Resolve Blackboxes ” Clock u Domain ﬂ Period u Edge” Clock Typeu Clock Cunesu Mux Seleclsﬂ L:m:A
T | N SOCRATES.GLEN SOCRATES.GLE 10 Primary 10 z Botr
Cich i] M SOCRATES.CLEI SOCRATES I 1 Primary 10 Z Both
oose Constraints
] MSCOCRATESPCI CLK SOCRATE Bl 10 Primary 1 i) Flop
G te SDC fi
LlGeneeae SR e i MSOCRATESUSB PHY CLK S0CH Primary 1 i Flop
[l Ghioo5e Niare Conisiralnts W/l N SOCRATESclk_atr SOCRATES clk_a i Primary 3 1 Flop
Elienerate S0c erementslly NSOCRATESME CLK Ch v i Primary 1 0 Flon |/
I [P
Clock Cones
Clock Cone u Instance Cnunl“ Source [:Im:ks” Mux Selects || | A
SOCRATES RefDesCoreawb_s3_irdamir_rxbr detrtle N40 L:2 2 2
SOCRATES.clkED FiB 2 0
SOCRATES.clk33 F:5 2 0
SOCRATES.clk2S FiE 2 0
SOCRATES.clk1z 5 F:5 2 0
Setup Status SOCRATES.clk atr Fi1 J i}
e reSSlllI— e SOCRATES.clk_tlc Fe X)
= - SOCRATES.ush nhv clk pad i F:1521 1 0 /
S Eae i Clocks:10, Cones:z0

Q‘} Restartl « Backl B Next

v Close |

2 Session Log

hethodology: hethodology Language hode: VerilugJ

4. Specify the constraint that you want to generate. The setup will provide
you with the default file, gensdcConstraintsFile.txt, for specifying the
constraints. Edit the gensdcConstraintsFile.txt file to specify the constraints
that you want to generate in the first run.

39

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

hdAtrenta Console - Project-3.prj
Eile Edit Bun Tools Help

I

W Go to 'Setup Design' and setup Blackboxes. Select a design goal for analysis, and add setup information (design intent data). #, Search | g In|Session Log él Go =
Select Goal | Setup Design | Setup Goal
« i Setup Steps I » Help
E] IR Edit File: fu/sridharTestcases/Atrenta’Examples/DACZ008/30C_Generatelncr/Project-2/SCOCR. K
[Before You Start |=| save =
[HResolve Blackboxes 5] Save As Specifving the
X = Print [EEESEEE SRS SRS SRS IEESETSAS SIS L L LA L S0 L L SRS R R EEE SR T) I b Y = g
[EDesign Clocks — This file contains the list of all SDC constructs that ar constratints to
2 Cut the rule SDC_GenerateIner. To generate a particular const
["IChoose Constraints | %C;py the line by removing the '#' symbol in front of it. be generated
#
[[Generate SDC flle @ Paste [+ This file should be given as argument to the 'gen sde con
f policy parameter to gensrate parameters for the constrain
[IChoose iMore Constraints SDG Conevatalndr suls
Gi te SOC ttall ! i i
- Iiaenerare EEEMENTEly By default only set_case_analysis, create_clock and creat tgigﬁ?;?s?ﬁgﬁgtz?”em
are created.

FhEdht bbb R R R R R R R R e SDC constructs that ~
set_case analysis should be generated.
create_clock Edit the
cre zt &_ge Ee crlai ad_clock gensdocConstraintshie

ges_tnpub_de ay file to include constraints

set_output_delay I

virtual clock you are interested in

set_clock latency generating, This default
#set_propagated clock file containg all the
#set clock uncertainty constraints that can be

set_cleock_transition generated, with clock,

set_input_transition
Set—logd = generated clocks, and
Setup Status —————————— set_drive set_case_analysis
= t_driving cell commands bein
Progress | ENEI 2% e ien = g
g isetfmlnfie}ﬂy / uncommented, To /
Show Summary Page SRR RS Tl s e s
T N | = 7 I

?49 Restart « Backl B Next | v Close |

73 Session Log

Methodology: Methodology Language Mode: VarilngJ

5. The setup then prompts you for creating a parameterized SDC.
Depending on your response, a different kind of SDC would be created.
If you click "Yes", all placeholders are replaced by Tcl parameters and
you only need to set the values to the parameters. For example, the
SDC file will look like the following:

set _clka_cc_p 10
set clka_cc_wv {0 5}

create_clock -name clka_cc -period $clka_cc_p -waveform
$clka_cc_wv [get_ports {clka}]

If you choose "No", the SDC file will look like:

create_clock -name clka_cc -period 10 -waveform {0 5}
[get_ports {clka}]

This step will complete the setup for SDC Generation. When you click

40

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

the Next button, the constraints are generated.

Eile Edit Yiew Run Tools Help

Atrenta Console - Project-1,prj *

B Before You Start
[H]Resolve Elackhoxes
W Cesign Clocks

[l Choose Constraints

[Generate SDC file

[]Choose More Constraints
[“]Generate SDC incrementally
[[]Setup Closure

Setup Status

P Goto 'Central Setup’ and setup Blackhoxes. Select a design goal for analysis, and add setup information (design inte... #, search | _ij In |Session Lag ﬂ Go %
Select Goal | Central Setup | Setup Goal |
« [Setup Steps |]

Generating SDC Template

When you hit the next hutton, it will run the step to generate the SDC template based on the set up done in previous step.
An intermediate CSY template is generated containing seed constraints and new constraints. It is a template, since it has
place holders for values, like clock period, divide by factor etc. which the user needs to fill.

The option below gives you the ability to generate a parametrized S0C file.
If you choose "Ma", the SDC file will look like following:
create_clock -name clka_cc -period 10 -waveform {0 5} [get_ports {clka}]

Ifyou choose "Yes', all place holders are replaced by tcl parameters and the user only need to set the values to the
parameters. e.g. the SDC file will look like the following:

setclka cc p 10

set clka_cc_ww {0 5}

create_clack -name clka_cc -period $clka_cc_p -waveform Sclka_cc_ww [get_ports {clka}]

The rules for defining parameter names are called SPNC conventions. The SPNC, for constraints, is written in a file and
specified via policy parameter ‘'gen_sdc_param_file’. The SPMNC may be edited as per user's needs, as follows:

Use following SPHC for generating parameter for 'min rise’ option of input delay constraints, such that the name refers to
ohject and clock and Is unigue for 'min rise’ option:

set_input_delay %objectlist.0.objname_%clock.objname_id_mnr -min -rise

“sobjectlist.0.objname’ refers to the ohject in the input delay constraint and '%clack_ohjname' refers to the clock. To make it
unigue, 'mnr' mnemenic is added to represent 'min rise’.

Similar SPNC constraint can be given for 'max fall' option, as follows:

set_input_delay %objectlist.0.objname_%clock.objname_id_mxf -max -fall

For generating parameter such that a single parameter is generated for all options, min rise, min fall etc. of an input delay,
use following SPNC:

7]

Progress | [N 50%

Show Summary Page

Do you create parametrizable SDC? (Default is Mo)

|
o o]

@ Restart @ Back | B Hed | v Close |

Session Log

New_RTL | Mised |

After the generation is complete, look for the SDC_GenerateIncr rulein
the INFO category. This is the rule that was run to create the SDC
template. Double-click the message with a spreadsheet icon. The
Spreadsheet Editor appears. You can use this editor to modify the clock

crossing file, if generated, and the placeholders in the generated template.

The clock crossing file is generated if there are unclassified interacting
clock pairs in the design. Before you can go ahead with the population of
the template, review all clock crossing information to indicate the
relationships between clock pairs. This information is used to generate
false paths or interclock uncertainty or clock groups between clock pairs.

41

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

You cannot edit the template SDC file before classifying the clock crossing

file.
¥ Atrenta Console - Project-1.prj * CHENES
File Edit ¥iew Run TIools Help
:
" Go to 'Central Setup’ and setup Blackhoxes. Select a design goal for analysis, and add setup infarmation (design inte... % Search | ﬂ In iSessmn Log ﬂ Go »
Select Goal | Central Setup I Setup Goal
ﬁ Run Setup Process =it Hide HDL Viewer
» | 4| toposy | constraints sgdc | ®
= z
s|all 3 P
o [=}
= (I 4 #simple_clock_uwncertainty, objectlist, value =
o i E simple_clock_uncertainty, [get_clocks {Clkl}], g
=l |55 £ sinple clock uncertainty, [get_clocks {ClkZ2
£ B T simple_clock uncertainty, [get_clocks - Spreadsheet Viewer _
= 8 simple_clock_uncertainty, [get_clocks — —
[] 0 ecimnla elock wmeartsintn (net clocke [File View Update Tools Help
—a EEEEET TSI TEET " & v af
B3| view, |Msg Tree ﬁ | Group By: [Severity top-crossings.csv | top.csv | top.sdc |
E'_ﬁ =] E‘| Message Tree { Total: 7, Waived: 0) I ﬂvalue:l
5 B— INFO 7] - . i B g | &1
b —Ifl DetectTopDesignUnits [1] ddentify th 5 WFor each clock pair| replace ‘7" with mnemonic to | generate constraints
pini E—1 ElabSummary [1] :Generates Elabor
gg fﬁ InfoSyliby ersionSummary [1] :Repo 2 fRefer table below to| know mnemonic associated ith the constraint
éfﬂm SDC_Generatelncr [4] dncrementy
E #Caonstraint Mame |Mnemonic
=] T Value far parameter -gen_sdc_|
5 Froject-1/tapfinitial_rlfconstrai
g II i B #sel false_path F
o 5 Crossings file containing uncol
Project-1/topfinitial_ril/constrai
F SV i forinporiing i S <o clock groups. |G
Project-1/topdinitial_rilicon E
L i Reading inftial constramis from| ° ’:fe‘—cmk—“"ce”a'”u
T # After Saving open the main csv to generate| sdc constraints
i} Clk1 Ik 7
H 9 ClkZ wClkl B8
10 Clkz wClke U
11 GCLE_1 wClk1 7
12 GCLE_1 wClke 7
h e s g i
Mew_RTL | Mixed |
As you can see, the clock crossing file contains ? (question mark)
character. This character signifies that the clock pair is unclassified. To
classify the clock pairs, replace the ? character for each pair as described in
the following table.
Replace ? Character | To Generate... Relationship
with...
F set_false_path Not applicable
U set_clock_uncertainty Not applicable
42

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

GA

set_clock_groups

asynchronous

GL

set_clock_groups

logically_exclusive

GP

set_clock_groups

physically _exclusive

After making changes for all clock pairs, save the changes. The Console
GUI displays the status of the crossing pairs classification. The CSV file

contains an updated list of set_false path,

set clock uncertainty,
and/or set _clock groups constraints specified.

After you have completed the clock crossing file classification, click the
Update button to save the file. You cannot update the crossing file after
you have saved it. Now, enter all the timing values in the template SDC file
and generate the output SDC by clicking the Generate SDC option in the
File menu of the Spreadsheet Editor.

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

bl Atrenta Console - Project-1.prj * =8
Hle Edit Fun Tools Help -
s Spreadsheet Viewer - SOCRATES.csv =B *
i File Options Help
1
1 “ Select 2 design goal for analysiz, and add setup information (design intent |Q@IEI£I | EI I &I I QI | MJ ;»"Il
1
¥ fx=
1 Select Geal | Setup Goal | A=
| & | B B o} A
Click an rur to procesd with setup checks n reet_case_analysis hesign object list value
12 et _case_analysis [et_ping {RefDesCorefwbl?
3 13 et_case_analysis [get_pins {FefDes Corefwk ? J
4 0 Fun Setup Process (=4 Hide HDL Miewer 14 W END CASE ANALTEE
' 15
4 » | 4 7 Edit File SOCRATES.caw | autoclocks sgec 18 (¥ BEGIN PRIMARY CLOT
1 = ; Print File T 17 W create_clock ame =] esign object list erioc
: — 2 # Created by SpyGlass SDC_Geq 18 reate_clock SOCRATES_CLKI [oet_ports {CLEIY 10
A &7 Prew Probe e i reate_clock SOCRATES_ETH_RsCLE I[geljurls {ETH_RA®CLE}10
i = 4 20 teate_clock SOCRATES_ETH_TRLCLK [zt _ports EETH_TRCLK[T
. 5 # BEGIN SET 21 foreate_clock SOCRATES_GLEN [get_ports {GLEN] 10
= 6 #set,parameter name, paramet: 1
% B hest linadl T set,cp_name, CP 22 reate_clock SOCRATES_GPIO_CLK |[geuaorts {GFIO_CLEKY [0
E iy 8 # END SET 23 [oreale_clock SOCRATES MC_CLK [gel_ports MC_CLRA 10
= E Prey Load 9 24 reate_clock SOCRATES_PCI_CLE |[getJaorts {FCI_CLE} (10
3 et 0 10 A TEOTN CASE MNALESTS ¢ il (oRrests ok SOCRATES_USE_FHY_| loet_perts {USE_PHY_C[10
i i i SBLECASELANALY 1S, 0RS1O D e wazta cloel SNCRATES rlle adr (et et folle ahell in /
u Frev Dri. N = | -
e =
E Feports » | wiew: iMSg Tree ﬂ I Group By: | Severity ﬂ CﬁAdvanced Search... 3 Help |
= e ConstraintsFle tt, 0 o - Y
% acld Tag gensde ConstraintsFile txt,
Y Crossings file containing unconstrained Clock Pairs generated for desighublock SOCRATES, BDC-Generatefiicy
. K Delete Tag HEE] nu2ssridhar/DAC2008/SDC_GeneratelncriPralect-1/30CRATES/ConstraintsfRTLIGen_Canstraints Description
S @ Modify Tag spyglaffs_repurts.fcunstramlsfsDCHATES-crUsslngs.csv, o Incrementally generate a termplate constraints file for
4 = CSV file for importing timing numbers generated for desiqn/block SOCRATES ablock Mate...
e B | /u2/5ridharDAC2008/5DC_Generatelncr/Project-1/SOCRATES/Constraints/RTL/Gen_Cons! B
aints spyglass reports/constraints/SOCRATES csv, 0 Severity
Tarinte et aite fla merretorl for Aasrminel GO R ATES || re
I~ [lExtemal Links 4
?@ Festart | ﬁ Back | é Hext v Close
= Session Log
Methodology: Methodalogy
6. The SDC generated in the previous step will act as the seed SDC for
incremental addition of more SDC constraints. Modify the SGDC file to
include this SDC as the seed file.
44

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

v Eirenta Console ~ Projecta.prj -
File Edit Run Tools Help

M Go to 'Setup Design’ and setup Blackboxes, Select a design goal for analysis, and add setup information {design Intent data). #, Search | g In |Session Log ﬂ Go x
Select Goal | Setup Design I Setup Goal
« B Setup Steps | 4 Add SGDC File(s).. »” Delete File Edit File: cdc_setup_clocks.sgde » Help
1 New File [ourrent_design *sncRateEs” Al By
W Before You Start File ﬂ Status E save clock -riame "SOCRATES. MC_CLE" -domain "SOCRATES.MC_CLE'
Dan rem— Enabled f = clock -name "SOCRATES.PCI CLK" -domain "SOCRATES.PGI CLE"
[MResolve Blackboxes elftoreseisagae nabled for | (5] Save AS |clock -name "S0CRATES. ETH TRCLK" —domain "SOCRATES. ETH THCLK"
D cd i e - | . Print clock -name "SOCRATES. GPI0 CLK' -domain "SOCRATES.GPIO CLK"
WDesign Clocks cdc_setup_clocks.sgde [Enabled for Gc - Cind}: _hame "SOCRATES CLET™ _dnmlg SOCRATES. CLEI"
i clock -name "SOCRATES ETH RECLK" -domain "SOCRATES. ETH RHCLK"
B Choose Constraints D auto_case_analysis.sgde Enabled for & Cut clack -name "SOCRATES GLEN” -domain "SOCRATES GLEN"
©Co clock -name "SOCRATES. USB_PHY CLK" -domain "SOCEATES. USE_PHY CLK" -~
mG te SDC i P¥ lclock -name "SOCRATES. cll tlc” -demain "SOGRATES. clk_tLc™
ENETE e [Paste |clock -name "SOCRATES.clk atr' -domain "SOCRATES.clk atr®

[_IChoose More Constraints i sdcschema -File SOCRATES. sdc -mode ssed

[IGenerate SDT incrementally

| =

Recommended Constraints
sdocschema Help

Setup Status

Progress |HNNNEEE 71% o
Show Summary Page L

Step 13 of 16.1.1 Q} Restart < Backl B Next | v Close |

H
v+~S—pteSoOES—ao>

53 Session Log

Methodology: iethedology Language hode: Veri\ugj

7. The next step is exactly same as step 4. You can choose additional
constraints add incrementally to the seed SDC file. After the constraints
have been added, populate the template using the Spreadsheet Editor.

Exit Criteria

A clean run with a generated SDC template is the exit criteria for this step.

SDC Generation in Batch Mode

The following figure illustrates the steps for running sdc_gen rule in batch
mode.

45

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

INPUT OUTPUT

STEP1

Specify Constraints
File Specifications

STEP3

STEP1 STEP 2

RBun 5DC_Generatelncr Files

(Constraint-Specific
Rule Behavior)

[{ ustomize Generated l
Specifying

Design

STEP4

STEP1

Review Generated
SDC File

Specify a Seed
File

STEPS

Re-run the rule with new constraints
and generate other constraints

For the first run, initial constraints are provided through a seed SDC file or
when you do not have a seed SDC file, you can create clock specification in
SGDC and then run the sdc_gen goal

spyglass -project design.prj -goal initial_rtl/constraints/
sdc_gen -batch

After running the goal, the project can be loaded in the Console GUI, and
the SDC file can be generated through the rule interface. The generated file
can be used as the seed file to generate more constraints.

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

M Atrenta Console - Project-1.prj * =8
3 Hle Edit Fun Tools Help I
e Spreadsheet Viewer - SOCRATES.csv =B *
i SIEN setup E File Options Help
1 n‘ Select a desigh goal for analysis, and add setup information {design intent gl EI EI il I ﬂﬂ I %I | El n ;,,HI
¥ fx=
Select Goal | Setup Goal | I o=
| : A ! c o E =
Click an run to proceed with setup checks n paet_case_analysis esign ohject list value
12 et_case_analysis [et_ping {RefDesCoreivk?
1 3 13 el_case_analysis [get_pins {RefDesCorefwk J
4 @ Fur Setup Process (=14 Hide HDL Wiswer 14 G END CASE ANALVEIS
' 15
4 # | 4 Edit Al SOCRATES.caw | autoclocks sl 16 ¢ BEGIN PRIMARY CLOT
1 == ; Print File i 1 17 }'c_na_at_efcluck ame: add lesign okject list eriod
1 — 2 # Created by SpyGlass SDC_Ger 18 reate_clock SOCRATES_CLEI [get_ports {CLEIY] |1D
g 7 Prew Prokbe e 19 reate_clock SOCRATES_ETH_RACLE |met_ports {ETH_RRCLK10
[=] s g 20 reate_clock SOCRATES_ETH_TRCLK [zet_perts {ETH_TRCLEHID
P s 5 # BEGIN SET 21 i g—
= reate_clock SOCRATES_GLEM |[met_ports {GLEM}] no
= £ #seb,parameter name, parametq S
2 B et o0 7 ‘iet,op raiie; 0 22 [create_clock SOCRATES_GFIO_CLK [zet_parts {GFIO_CLKY iD
E Sy 8 # END SET 23 [oreate_clock SOCRATES_MC_CLK [t _ports {MC_CLK] |10
= E Prey Load 9 24 reate_clock SOCRATES_PCI_CLE |[getJaDrts {PCI_CLEY 110
3 et D ﬂ ﬁ BEGIN GASE ?N&Ysgls ¢ o reate_ciock SOCRATES_USE_PHY | [[a=t_ports {USE_PHY_C[10
W fe S8LCAsELANA Y S1S, 0eS LT 0D oy raata el SNCRATFE el abr [laat ot folle ahell in /
u Prey Dri.. N = | -
P —
Feparts > | Aew: M3y Tree ﬂ | Grous By: ;geverlty ﬂ) Advanced Search.. » Help |
e e Constraints Fle i, 0 . = Y
3 gensccConstraintsFile txt,
K:) Al Tagy SDC_Generatelncr
Crossings file contaihing unconstrained Clock Pairs generated for designlock SOCRATES,
., [DeleteTag HEE] 2fsrichar/DAC2008/5 DC_GeneratelncriPraiect-1/30 CRATES/ConstraintsfRTLGen_Canstraints Description
S @ Modify Tay spyglass_reportsiconstraints/3 0 CRATE S-crossings csv, O Incrementally generate a template constraints file for
i = CSV file for importing timing numbers generated for design/block SOCRATES = block hare...
Lhe; B u2/sridharDAC2008/5DC_GeneratelncrProject-1/SOCRATES/Constraints/RTL/Gen Cons! .
aints/spyqlass reports/constraintsSOCRATES.csv, 0 Severity
Tirinte soetvame Fla renar storl Tor Aasn el SOCBATES 7] |
I = lExtemal Links #
P@ Festart | é Back | é Mext | v Close
&3 Session Log
| Methodology: Methodology

Block/IP Methodology Flow

This stage involves the development of a new RTL. The process of the
development of a new RTL goes through progressive RTL refinement
starting with simpler goals that meet the basic timing requirements, such
as clean clocks and 1/0 delays. As the RTL code and design constraints
mature, the design goals evolve to include exceptions, constraints
redundancy and constraints equivalence to ensure that design intent is
preserved.

Refer to the Goals for Block/IP section for details of all the goals for the
Initial RTL Development, RTL Handoff, and Netlist Handoff goals.

47

Synopsys, Inc.

Constraints-Optimized Design

SpyGlass Constraints Block/IP Quick Start

Step-by-Step Solution

No. Step Prerequisite Goal More
Information

1 Check Design Since domains are extracted sdc_audit Step 1 — Check
Coverage and based on set_false_path, Design Coverage
Extract Domain set_clock_group, and and Extract
Information set_clock_uncertainty Domain

constraints, violation messages Information
from previous steps for these

constraints need to be cleaned

up before executing the step.

2 Basic Consistency, All design files must have passed sdc_check Step 2 — Check
Clean Clock the tests performed in the setup Consistency,
Definition, and phase. Clean Clock
Delay Constraints Definition. and

Delay
Constraints

3 Check Timing It is recommended that timing sdc_exception st Step 3 — Check
Exceptions constraints are cleaned up before ruct Timing
Structurally you clean up exceptions. Exceptions

Structurally

4 Remove All mandatory steps are sdc_redundancy Step 4 —

Redundancy and completed and cleaned. Remove

Achieve Better
Retargeting

Redundancy and
Achieve Better
Retargeting

Block/IP Detailed Procedure

48

Perform the following steps for this flow:

B Step 1 — Check Design Coverage and Extract Domain Information

Step 2 — Check Consistency, Clean Clock Definition, and Delay Constraints

Step 3 — Check Timing Exceptions Structurally

|
|
B Step 4 — Remove Redundancy and Achieve Better Retargeting
|

Step 5 - Generate Abstract View of the Block

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Step 1 — Check Design Coverage and Extract Domain Information
Objective

This step enables you to compute the design coverage and identify
uncovered design objects, such as ports and registers that have not been
constrained. In addition, domain information is extracted from the SDC
commands. The extracted information is checked for consistency with the
SGDC domain information. You can identify conflicting clock domain
classifications in the SDC file.

An SGDC file is generated containing the clock group information
inferred from the SDC constraints, which can be used for further analysis.
The generated clocks corresponding to source clocks are reported in a
tabular format.

Prerequisites

Since domains are extracted based on set false path,
set clock group, and set _clock uncertainty constraints,

violation messages from previous steps for these constraints need to be
cleaned up before executing the step.

Executing the Step

Run the sdc_audit goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_audit

Step 2 — Check Consistency, Clean Clock Definition, and Delay Constraints
Objective

The objective of this step is to detect the inconsistencies in the
specification of clocks and generated clocks and to perform basic checks on
overwritten and conflicting constraints. Without clean clock definition,
other constraint validation and exception verification is ineffective.
Overwritten and conflicting constraints may capture the design intent
incorrectly.

This step also detects the inconsistencies in specification of input/output
delays, clock latency, and clock uncertainty. Such inconsistencies not only
produce incorrect synthesis or static timing analysis results, they can
potentially allow these tools to assume a greater slack than available. This

49
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

translates to insufficient or incomplete optimization by synthesis, which
directly affects the QoR.

Finally, this step checks that all combinational paths are constrained
correctly. If a combination path is unconstrained or incorrectly constrained,
implementation tools do not perform timing checks on these paths. As a
result, the operation of a device at any specified speed cannot be
guaranteed.

Pre-requisites

At this stage, all the design files must have passed the tests performed in
the setup phase. For details, refer to the Run Sanity Checks on Inputs section.

Executing the Step

Run the sdc_check goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_check

Exit Criteria

1. All conflicting constraints should be cleaned up.

2. All overwritten constraints should be reconciled or justified.

3. All clock definition issues should be cleaned up. There should be no
undefined clocks or clocks with incorrect sources or clocks with
inappropriate characteristics.

All delay values must be positive numbers.

All input and output delays must be associated with the correct clocks.
Input/Output delays must meet the slack requirement.

All combinational paths must be constrained.

The delay numbers must be valid and meet the slack requirements.

A N A

After cleaning up reported issues, the step should be rerun to ensure
that all rules in this step exit with zero violations.
Step 3 — Check Timing Exceptions Structurally

Objective

The objective of this step is to check that timing exceptions specified in a
constraints file as are on paths which are structurally connected. This step

50
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

is a prerequisite before the paths can be verified formally to be correct.
Exceptions set on paths that are not structurally connected are redundant
and increase the run time of implementation tools.

Prerequisites

Even though this step can be run right after the sanity checks, it is
recommended that timing constraints are cleaned up before you clean up
exceptions.

Executing the Step

Run the sdc_exception struct goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal design.prj -goal
rtl_handoff/constraints/sdc_exception_struct

Exit Criteria

1. All exceptions must be on physically connected paths.

2. Exceptions should not overlap.

3. The step must exit with zero violations for the selected rules.

Step 4 — Remove Redundancy and Achieve Better Retargeting

Objective

The objective of this step is to remove any redundancy in the constraints
and perform checks that might facilitate better retargeting.

Prerequisites
This step requires that all mandatory steps are completed and cleaned.
Executing the Step

Run the sdc_redundancy goal in the Console GUI by entering the
following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_redundancy

Step 5 - Generate Abstract View of the Block

Objective
The objective of this optional step is to generate an abstract view of the

51
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

block. An abstract view is a representative model of a block that contains
relevant block information required during SoC-level verification.

For example, it contains block information, such as combinational path
details, boundary registers and related clock/reset information, domain
information, and boundary constraints used to analyze the block.

An abstract view contains such information in the form of SGDC
constraints. SpyGlass provides a way to generate and consumes these
abstract view. For more details, please refer to section on SoC Methodology
using Abstraction.

Prerequisites

Since the abstract view is a representation of the block, the block must be
fully clean before this view is generated, otherwise it can result in false
positive and false negative violation messages during the SoC analysis.

Executing the Step

Run sdc_abstract goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_abstract

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

SoC Methodology Flow

SoC RTL

SoC Netlist

During the SoC or subsystem integration, the design architect needs to
stitch the block IPs. These block IPs may have been developed internally or
selected from a third-party vendor. Depending on the extent of reuse of
these IPs, some of them may not have gone through the process of SDC
cleaning. This is typically seen in legacy IPs that have existed in prior
versions of the design. This creates new challenges during the integration
phase.

This stage involves the verification of an SoC design or a subset of design
(subsystem) that has been integrated by using various blocks. This field of
use involves checks related to interblock/inter-I1P issues and consistency
across blocks. In addition, it ensures that block constraints are consistent
with SoC constraints.

There are two stages in this category
Netlist Handoff

The Netlist Handoff goals check whether a design is ready for
floor-planning, layout, and back-end implementation.

Layout Handoff

The Layout Handoff goals check whether a design has gone through
specific activities, such as floor-planning and layout, in preparation for tape
out.

Refer to Goals for SoC RTL and Netlist for the application of the goals in this
field of use.

53
Synopsys, Inc.

Constraints-Optimized Design

SpyGlass Constraints SoC Quick Start

Step-by-Step Solution

No. Step Prerequisite Goal More Information
1 Check Design Since domains are extracted sdc_audit Step 1 — Check
Coverage and based on set_false_path, Design Coverage
Extract Domain set_clock_group, and and Extract Domain
Information set_clock_uncertainty Information
constraints, violation
messages from previous
steps for these constraints
need to be cleaned up before
executing the step.
2 Validate Abstract Block-level abstract view has sdc_abstract_val Step 2 — Validate
Views been created. idate Abstract Views
3 Check Consistency, All design files must have sdc_check Step 3 — Check
Clean Clock passed the tests performed Consistency, Clean
Definition, and in the setup phase. Clock Definition, and
Delay Constraints Delay Constraints
4 Check Timing It is recommended that sdc_exception st Step 4 — Check
Exceptions timing constraints are ruct Timing Exceptions
Structurally cleaned up before you clean Structurally
up exceptions.
5 Removeredundancy All mandatory steps are sdc_redundancy Step 5 — Remove

and Achieve Better
Retargeting
(Optional)

completed and cleaned.

Redundancy and
Achieve Better
Retargeting
(Optional)

SoC Detailed Procedure

54

Perform the following steps for this flow:

B Step 1 — Check Design Coverage and Extract Domain Information

Step 2 — Validate Abstract Views

Step 4 — Check Timing Exceptions Structurally

Step 3 — Check Consistency, Clean Clock Definition, and Delay Constraints

Step 5 — Remove Redundancy and Achieve Better Retargeting (Optional)

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Step 1 — Check Design Coverage and Extract Domain Information
Objective

This step enables you to compute the design coverage and identify
uncovered design objects, such as ports and registers that have not been
constrained. In addition, domain information is extracted from the SDC
commands. The extracted information is checked for consistency with the
SGDC domain information. You can identify conflicting clock domain
classifications in the SDC file.

An SGDC file is generated containing the clock group information
inferred from the SDC constraints, which can be used for further analysis.
The generated clocks corresponding to source clocks are reported in a
tabular format.

Prerequisites

Since domains are extracted based on set false path,
set clock group, and set _clock uncertainty constraints,

violation messages from previous steps for these constraints need to be
cleaned up before executing the step.

Executing the Step

Run the sdc_audit goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_audit

Step 2 — Validate Abstract Views
Objective

During the SoC integration the integrator may choose to use the complete
block definition or use the abstract view generated during block-level runs.
If an abstract view of the block is used, this step must be run to ensure
that the block-level assumption for constraints used during abstract
creation match the SoC-level constraints. For example, for the clock
frequency, the case analysis assumed during the block-level run must
match the chip-level requirements.

Prerequisites

Block-level abstract view has been created.

Synopsys, Inc. H

Constraints-Optimized Design

Step-by-Step Solution

Executing the Step

Run the sdc_abstract validate goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_abstract_validate

Exit Criteria

1. There should be no inconsistency between top-level and block-level
constraints.

2. If inconsistencies are identified, the block may have to be rerun to
create a new abstract. Alternatively, the abstract view may have to
discarded and the flow must be run with the RTL view of the block.

Step 3 — Check Consistency, Clean Clock Definition, and Delay Constraints

Objective

The objective of this step is to detect the inconsistencies in the
specification of clocks and generated clocks and to perform basic checks on
overwritten and conflicting constraints. Without clean clock definition,
other constraint validation and exception verification is ineffective.
Overwritten and conflicting constraints may capture the design intent
incorrectly.

This step also detects the inconsistencies in specification of input/output
delays, clock latency, and clock uncertainty. Such inconsistencies not only
produce incorrect synthesis or static timing analysis results, they can
potentially allow these tools to assume a greater slack than available. This
translates to insufficient or incomplete optimization by synthesis, which
directly affects the QoR.

Finally, this step checks that all combinational paths are constrained
correctly. If a combination path is unconstrained or incorrectly constrained,
implementation tools do not perform timing checks on these paths. As a
result, the operation of a device at any specified speed cannot be
guaranteed.

Prerequisites

At this stage, all the design files must have passed the tests performed in
the setup phase. For details, refer to the Run Sanity Checks on Inputs section.

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Executing the Step

Run the sdc_check goal in the Console GUI by entering the following
command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_check

Exit Criteria
1. All conflicting constraints should be cleaned up.
2. All overwritten constraints should be reconciled or justified.

3. All clock definition issues should be cleaned up. There should be no
undefined clocks or clocks with incorrect sources or clocks with
inappropriate characteristics.

All delay values must be positive numbers.

All input and output delays must be associated with the correct clocks.
Input/Output delays must meet the slack requirement.

All combinational paths must be constrained.

The delay numbers must be valid and meet the slack requirements.

A e B

After cleaning up reported issues, the step should be rerun to ensure
that all rules in this step exit with zero violations.
Step 4 — Check Timing Exceptions Structurally

This step is same as Step 3 — Check Timing Exceptions Structurally in the RTL
stage.

Executing the Step

Run the sdc_exception struct goal in the Console GUI by entering
the following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_exception_struct
Step 5 — Remove Redundancy and Achieve Better Retargeting (Optional)

This step is same as Step 4 — Remove Redundancy and Achieve Better
Retargeting in the RTL stage.

57
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Executing the Step

Use the sdc_redundancy goal in the Console GUI by entering the
following command:

spyglass -project design.prj -goal rtl_handoff/constraints/
sdc_redundancy

SoC Methodology using Abstraction

Using the Methodology for SpyGlass Constraints Solution

In SoC, you are concerned whether the top-level SoC constraints are
matching with the block-level assumptions and SDC constraints.
Constraints catering to the internals of a block do not matter in an SoC.
These constraints do not impact the SoC-level timing. However, constraints
at the block boundary do have an impact at the SoC level.

At the SoC level, the top-level SDC constraints should match the boundary
conditions of the block. For example, suppose there is a clock applied with
a period of 10 at the SoC level. This clock is connected to a block port, Port
A. At the SoC level, it is important to ensure that there is a similar clock
with a period of 10 defined in the block level SDC.

This section describes generating and validating an abstract view while
using SpyGlass Constraints Solution.

NOTE: This methodology is valid only for structural SpyGlass Constraints checks, such as

SDC checks, equivalence, and mode coverage. However, it is not valid for false
path and MCP verification.

Generating an Abstract View in SpyGlass Constraints

To generate an abstract view while using SpyGlass Constraints solution,
run the sdc_abstract goal.

The following figure shows the process of generating an abstract view in
SpyGlass Constraints solution:

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

Block RTL ﬁ

Block SGDC | pp sdc_abstract goal — - Abstract View (.sgdc)

Block SDC

FIGURE 3.

Example - Generating Abstract View in SpyGlass Constraints

Consider the following design, SGDC file, and SDC file as the input for
generating an abstract view:

59
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

// test.v (block RTL) //block.sdc
fi create_clock -name clkl
5 a -period 10 [get_ports clkl]
create_clock -name clk2
ekl [> » [>CP QM= -period 10 [get_ports clk2]
inl[_»———+n F1
//block.sgdc
f2 current_design block
T D a sdc_data -file block.sdc
" >|:P o] | 1 -mode reference
FO1 _‘||I_
2
—0 a
>CP ONj=
FO1
4 E
) —=i a
ﬁ,ll 7
ez D—[}c—l [5CP ONjm
M FD1
f5
D a
» | >CP m:_lﬂ
FOl
&
O Q
>I2F O o
FOl

FIGURE 4.

After specifying the above inputs to SpyGlass, run the sdc_abstract
goal.

n Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

When the goal run is complete, SpyGlass generates the following SGDC file
that represents the abstract view of the block:

abstract_port -ports in -connected_inst "\top.fl " -inst_pin
D -inst_master RTL_FD -path_logic buf -scope const -mode
reference

abstract_port -ports In -connected_inst "\top.f4 " -inst _pin
D -inst_master RTL_FD -path_logic buf -scope const -mode
reference

abstract_port -ports outl -connected_inst "\top.fl "
—-inst_pin Q -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports outl -connected_inst '"\top.f4 "
—-inst_pin Q -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clkl -connected inst "“\top.fl "

—-inst_pin CP -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clk2 -connected_inst "\top.f4 "
—-inst_pin CP -inst_master RTL_FD -path_logic inv -scope const
-mode reference

In the abstract view above, the sdc_abstract goal generates two

abstract port constraints for each input port (in) and output port
(outl) because the design is serving the following two types of flip-flops:

B Flip-flops driven by the c1k1 clock. These flip-flops are £1, £2, and £3.
B Flip-flops driven by the c1k2 clock. These flip-flops are £4, £5, and £6.

In addition, sdc_abstract goal generates two abstract port
constraints for the clk1l and clk2 port. The abstract_ port for clkl
is generated with the -path logic option as buf, represents buffer,

type because there is no path inversion between the source object and
destination clock pin, f1/CP. RTL_FD is the name of master module inside

instance £1 and -inst pin is representing the pin of the master
module, RTL_FD, which is connected with block ports, such as in and

61
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

clkl.

Validating Block Assumptions in SpyGlass Constraints
To validate assumptions on an abstract view while using the SpyGlass
Constraints solution, run the sdc_abstract validate goal.

The following figure shows the process of validation in SpyGlass
Constraints solution:

Block interface
or block RTL

Block abstract
view (.sgdc)

SoC RTL

sdc_abstract_validate goal

SoC SDC Block SDC

Run the goal

Y

- Clock checks
- Case-analysis checks
- 10-delay checks

FIGURE 5.

During the goal run, constraints-specific validation is performed pertaining
to clocks, set _case analysis, and 10 delay. These checks are

62
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

described below:
B Clock Checks

O Clock defined at the top-level reaching to the block boundary and no
clock is present in block.sdc. Refer to the Example below for more
information on this check.

O Clock is present in both top.sdc as well as block.sdc but clock
characteristics are not same.

B Case Analysis Checks

O set_case_analysis is given at top level reaching to the block
boundary and no set_case_analysis is mentioned in block.sdc

O set_case_analysis is present in both top.sdc and block.sdc but they
are not same.

B 10 Delay Checks

O set_input_delay/set_output_delay is mentioned at a point in
block.sdc but no delay value is reaching from top level or vice versa.

O set_input_delay at block level is less than set_input_delay reaching
from top level.

O set_output_delay at block level is less than set_output_delay
reaching from top level.

Example - Validating Block Assumptions in SpyGlass Constraints

The following example illustrates a clock check by validating the imported
SGDC file, blockl abstract.sgdc, with the specified top SDC file, top.sdc.

//test_ v

module top(inl, clkl, clk2, outl, out2);
input inl;

input clkl, clk2;

output outl, out2;

wire w;

blockl b(.in(inl), .clk(clkl), .out(outl));
endmodule

module blockl(in, clk, out);

input in, clk;
63
Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

output out;
FD1 f1(.D(in), .CP(clk), -QCout));
endmodule

//test.sgdc

current_design top

sdc_data -file top.sdc -mode reference
sgdc -import blockl blockl abstract.sgdc
block -name blockl

current_design blockl
sdc_data -Ffile block.sdc -mode reference

Here, the sgdc -import constraint for the current design top specifies
to import the abstract view of blockl in the current design top.

Suppose the abstract port constraints specified in the
blockl_abstract.sgdc file are as follows:

// blockl_abstract.sgdc
current_design blockl

abstract_port -ports in -connected_inst ""\blockl.fl "
—-inst_pin D -inst_master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports out -connected_inst '""\blockl.fl "
—-inst_pin Q -inst _master RTL_FD -path_logic buf -scope const
-mode reference

abstract_port -ports clk -connected_inst ""\blockl.fl1 "

—-inst_pin CP -inst_master RTL_FD -path_logic buf -scope const
-mode reference

Clock is specified for "top" only as:

//top.sdc
create_clock -name clkl -period 10 [get ports clkl]

H Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

To validate, run the sdc_abstract validate goal.

After the sdc_abstract validate goal is run, a Warning message is
reported because the clock constraint is defined for top only. However,
you should also define this constraint for the c1k port of the block.

Using the Abstract View in SpyGlass Constraints

The following figure shows the process of using an abstract view during
SoC-level verification:

Block interface
SoC SDC or block RTL

Constraint-specific
goals

Block abstract

SoC RTL view (.sgdc)

Fixing SoC-related
violations

FIGURE 6.

For details on the steps during this stage, refer to the Using the Abstract
View during SoC-Level Verification section in the SoC User Guide.

Example - Using the Abstract View in SpyGlass Constraints

The abstract view for the block is specified in the SGDC file through the
sgdc -import command, as shown below.

//test_sgdc
current_design top
sdc_data -file top.sdc -mode reference

Synopsys, Inc. E

Constraints-Optimized Design

Step-by-Step Solution

sgdc -import blockl blockl abstract.sgdc
block -name blockl

current_design blockl
sdc_data -Ffile block.sdc -mode reference

Analyzing Results

This section contains the following sub-sections:
B Debugging Reports

B Waiving Messages

Debugging Reports

-tcdecompile

Setting the -tcdecompile parameter generates a file called
TCdecompiledinfo that contains the expanded interpretation of the
constraints as applied by the SpyGlass Constraints solution. This is very
useful in debugging situations when you need to determine how constraints
are being expanded. You can set this parameter in the Console GUI or Tcl
by using the following command:

set_parameter tcdecompile “yes®

The generated file is also useful to understand where the constraints file
had a problem and if the SDC file is not read in successfully. The
TCdecompiledinfo file shows exactly how each of the Tcl variables was
defined or how they were interpreted. You can view this file from the
following location:

spyglass_reports/constraints/TCdecompiledinfo

An excerpt of the TcdecompilediInfo file is as follows:
#ideal .sdc@@280@

sg_set_ideal_network port pin_list {Al/inl}
#i1deal .sdc@@290@

n Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

sg_set_ideal _network port pin_list {Al/rtlc_12/Z Al/rtic_12/
inl Al/rtlc_12/in2}

-tc_ignored_commands

The -tc_ignored commands parameter specifies the file containing
the list of SDC commands to be ignored by the SDCPARSE rule. The file
contains one command per line, which should be ignored. You should only
specify the SDC commands that are currently not supported by SpyGlass
so that there are no invalid command errors while parsing the SDC files.
You can set this parameter in the Console GUI or Tcl by using the following
command:

set_parameter tc_ignored_commands “<file-name>"

During the parsing, all other constraints that are ignored are written to a
file called tc_unparsed_command in the $CWD/ <vdb-name>_reports/constraints
directory. The corresponding report file named tc_unparsed_commands.rpt is

created in the current working directory and can also be accessed from the
Report Menu of the Console GUI.

Show_Case_Analysis

The Show Case Analysis rule should always be run the the Console
GUL. This rule shows, as a schematic, how set case analysis

propagates in the design. This is very useful when several case analysis
settings result in blocking certain timing paths.

Gicis

1 Case_Analysis

Synopsys, Inc.

Constraints-Optimized Design

Step-by-Step Solution

NOTE: This rule has no value in batch mode as it shows only schematic.

Waiving Messages

Waivers provide a means of reducing the number of violations being
reported. Use them:

B If you are aware of an intentional violation of a specific check in the
design/constraints.

B A specific module/file is already known to be clean and you do not want
to look into anything inside it.

B A specific module/file is used for the sake of completeness of the design,
for more accurate analysis, but you are not interested in analyzing the
results for that module/file.

Use waivers in two ways, either during preprocessing or during post
processing:

B Applying waivers during preprocessing: When you do not want to
view the constraints issues reported in a block that you do not want to
analyze, apply a waiver on the block before analysis.

B Applying waivers during post-processing: As you analyze the
reported violation and you perform proper analysis on it, apply a waiver
on it.

You can ‘waive’ rules/messages during analysis:
B In a file or design unit, by using waivers
waive —File src/top.v —rule Clk_GenO1
B Waive an instance of a message by using waivers

waive —File src/top.v -msg “Clock “clk” doesn’t have a
clock constraint”

B Waiving a group of messages through regular expression (‘regexp’)
waive -du "top" -regexp -msg '".* is not driven by a
register”

Waivers are useful, when there are methodology-based violations in the
SDC that may not be applicable. As a practice, we do not recommend the
use of waivers.

E Synopsys, Inc.

Constraints-Optimized Design

Conclusion

Conclusion

As chip complexity increases, the issues related to constraints become
critical to success because the issues can increase the risk associated with
silicon respin risk and poorer chip quality in terms of area, power, and
timing. The iterations in the implementation are already bad enough with
the design issues, throwing an additional curve ball with constraints issues
makes iterations worse. Moreover, resolving the constraints issues is a
time-consuming task.

The SpyGlass Constraints solution is a part of the SpyGlass family that
works at the RTL and netlist stage that:

B Checks the constraints for consistency and completeness against
design, at the block level, chip level, and in the hierarchical context

B Provides debugging environment to quickly pinpoint root cause of the
issues

B Creates constraint templates
B Verifies timing exceptions

B Creates timing critical exceptions for quick timing closure from STA
report

Having a solution is the first step, without a proper methodology that suits
the customer design flow, it is not effective. You do not know which rules to
apply at what stage. Too many rules applied to a stage leads to too many
violation messages; only a few of which are really critical. This creates a
barrier in adoption.

In this document we have laid out a recommended step-by-step
methodology that applies to generic design flow. We have created goals for
each of the steps.

Synopsys, Inc. E

Constraints-Optimized Design

70

Conclusion

Synopsys, Inc.

~ Appendix A: SpyGlass

Constraints Design Data

Checklist

TABLE 1 Library

Information Required/ Reason for Data Customer Contact
Optional Profile
1.1 .lib for standard Must have To identify valid paths in One of the following:

cells, 1/0 pads, IP’s
and memories

a cell, so checks like case
analysis propagation and
associated clocks can be
performed

Library Group

Whoever runs DC or
PT

BE designer
CAD (in some cases)

Synopsys, Inc.

Appendix A: SpyGlass Constraints Design Data Checklist

TABLE 2 Design

Information Required/ Reason for Data Customer Contact
Optional Profile
2.1 RTL or Netlist Must have Read Design information. For RTL:
(Verilog or VHDL or For RTL, it is required for RTL designer
mixed) internal synthesis Whoever runs DC
For Netlist:
Whoever runs PT
Physical designers
TABLE 3 SpyGlass Constraints
Information Required/ Reason for Data Customer Contact
Optional Profile
3.1 SDC with Clock Must have For constraint validation Front-end designer or
definitions, Input whoever runs DC
and Output
constraints,
set_case_analysis,
Timing Exceptions
3.2 SGDC Clocks listand Must have if Needed for generation If customer has
clock domains list you want to of SDC template. SpyGlass, an AE can
(can be created by create generate.
SpyGlass CDC constraint Front-end Designer’s
solution) help would be needed
to clean up/sanitize the
list of clocks generated
by SpyGlass
3.3 Additional Optional but For selecting the right Design Manager/
information Multi- recommende set of rules and to show Architect
mode SDC, block or d value of Validation.
top level SDC, RTL or
Prelayout or Layout
SDC
72

Synopsys, Inc.

Appendix B: Example Project File

Appendix B: Example
Project File

The following code is an example of a project file. Read the comments in
the code to understand the code.

##Data Import Section

read_file -type verilog top.v
read_file -type sglib lib_sglib

##Common Options Section

set_option language_mode mixed

set_option projectwdir .

set_option projectcwd .

set_option active_methodology $SPYGLASS HOME/Methodology
set_option top top

##Goal Setup Section
current_methodology $SPYGLASS_ HOME/Methodology

current_goal Constraints/rtl/hierarchical_check -top top

read_file -type sgdc Project-1/top/Constraints/rtl/
hierarchical_check/constraints.sgdc

73
Synopsys, Inc.

Appendix B: Example Project File

74

Synopsys, Inc.

	SpyGlass® Constraints Submethodology (for GuideWare 2017.12)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Constraints-Optimized Design
	Introduction
	Tool and Methodology Version
	References
	Terminology

	The Constraints Problem
	Typical Problems within a Constraints File
	Typical Problems with Constraints in a Design Flow

	Optimizing and Cleaning the Design Constraints
	SpyGlass Constraints Overview
	Goals for Block/IP
	Goals for SoC RTL and Netlist

	Constraints Validation using SpyGlass

	Step-by-Step Solution
	Setup
	Record Design Intent
	Analyze the Flavor of SDC
	Gather Design Data
	Configure SpyGlass Design Constraint (SGDC) File
	Run Sanity Checks on Inputs
	Check the Coverage of the Constraints
	Generate Constraints
	SDC Generation in Batch Mode

	Block/IP Methodology Flow
	SpyGlass Constraints Block/IP Quick Start
	Block/IP Detailed Procedure

	SoC Methodology Flow
	SpyGlass Constraints SoC Quick Start
	SoC Detailed Procedure

	SoC Methodology using Abstraction
	Using the Methodology for SpyGlass Constraints Solution
	Generating an Abstract View in SpyGlass Constraints
	Validating Block Assumptions in SpyGlass Constraints
	Using the Abstract View in SpyGlass Constraints

	Analyzing Results
	Debugging Reports
	Waiving Messages

	Conclusion

	Appendix A: SpyGlass Constraints Design Data Checklist
	Appendix B: Example Project File

