
Atrenta Console
User Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..17
About This Book .. 17
Contents of This Book ... 18
Typographical Conventions ... 19

Introducing Atrenta Console ...21
Overview... 21

Introducing Goals ..21
Introducing Methodologies ..22

Methodology Used by Atrenta Console ..22
Before You Begin .. 23

Specifying Optional Environment Variables ..23
Invoking Atrenta Console Graphical User Interface 24

Starting a New Session ..24
Loading the Previous Session ..24
Invoking Atrenta Console on a 64-bit Machine ...25

GUI Details.. 26
Atrenta Console Flow .. 28

Design Setup Stage ...28
Goal Setup and Run Stage ..28
Analyze Results Stage ..29

Files/Directories Created in Atrenta Console .. 30
Project File ...30

Project Working Directory ...30
Project Current Working Directory..31

File Generated in GUI...32
Files/Directories Generated by Default..32
Files Generated to Support Special Features..33

Using Atrenta Console Graphical User Interface..........................35
Overview... 35
Stage 1: Setting up the Design (Design Setup) 36

Adding Design Files..36
v
Synopsys, Inc.

Adding Files in GUI ..36
Specifying Functionality Information of Gate Cells42
Specifying a List of .sglib Files ...44
Specifying Compressed Verilog Designs ..44
Mapping File Extensions..45
Rearranging HDL Files ..46
Performing Version Control..46
Editing Files ..47
Setting Stop Files...50
Ignoring Files from SpyGlass Analysis...50
Waiving Messages by File..51
Viewing Include Files ..51
Configuring Columns ..51

Viewing and Changing Design Read Options ..52
Using Verilog Constructs ...54

Running Design Read ...55
Running Design Read in GUI..55
Running Design Read in Batch ...58
Checks Performed During the Design Read Process...............................58
Viewing Messages after Running Design Read59
Identifying Common Syntax Errors and Issues59
Tips for Debugging Syntax Errors...60
Viewing Reports...60
Viewing Source Files ..62
Searching Instances...62

Stage 2: Selecting a Goal (Goal Setup & Run) 64
Selecting a Goal ..65

Modifying a Goal..67
Running Custom Goals ...72
Running Goals in Parallel...72
Viewing Directories Created After Goal Run ...81

Setting up the Goal ..93
Determining Parameter Precedence ..93
Setting Parameters and Constraints for Selected Goal93
Performing Sanity Checks for Parameters ..101
Using the Dual Design Read (DDR) Flow..101
Incremental Mode Analysis..108
Setting Up the Goal in Batch Mode ...109

The Methodology Configuration System ..109
Running Prerequisite Goals..109
Working with Scenarios ..111
vi
Synopsys, Inc.

Creating Scenarios... 112
Modifying and/or Deleting Scenarios... 114
Running Scenarios ... 114
Directory Structure Created After Running a Scenario......................... 115

Stage 3: Analyzing a Design (Analyze Results)116
Editing Source Files ... 117
Viewing Goal Summary .. 117
Comparing Results of Multiple SpyGlass Runs .. 118

Introducing the Incremental Mode Feature .. 118
Using the Incremental Mode Feature .. 119
Comparison Reported in Batch... 120

Viewing Different Type of Results ... 120
Design Results .. 121
SpyGlass CDC Solution Results .. 122
SpyGlass Constraints Solution Results .. 122
SpyGlass TXV Solution Results .. 122
SpyGlass DFT Solution Results .. 124
Power Results ... 125

Viewing Results of Different Scenarios and Goals 126
Cross-probing from the Msg Tree Page.. 126

Working with Input Design and Libraries..................................129
Overview..129
Working with Precompiled Libraries ..130

Advantages of Using Precompiling Libraries ... 130
Specifying Modes in Which Libraries Should be Compiled......................... 130
Compiling HDL Files into a Library.. 131

Defining a Logical Library.. 131
Including HDL Files in the Logical Library .. 133
Generating a Precompiled Library .. 135

Automatically Compiling Gate Libraries ... 136
Using the GUI to Automatically Compile Libraries 137
Using the enable_gateslib_autocompile Option 138
Using the force_gateslib_autocompile Option..................................... 138
Using the AUTOENABLE_GATESLIB_AUTOCOMPILE Key....................... 138
Specifying a Cache Directory... 139
Conditions for Auto-Compilation of Gate Libraries............................... 139
Built-in VHDL Libraries That Do Not Require Any Mapping.................... 140

Precompiling Verilog Libraries.. 140
Naming and Mapping Verilog Libraries .. 141
vii
Synopsys, Inc.

Structure of Precompiled Verilog Libraries ...142
Library Searching Mechanism ..142
Working with Precompiled Verilog Libraries in Mixed Language Mode.....143
Specifying Verilog Libraries by Using the 'uselib Statement146

Compiling Libraries in Mixed-Language Designs......................................146
VHDL Library Design Units Instantiated in Verilog Modules...................147
Verilog Modules Instantiated in VHDL Design Units147
Searching Master Instance in Mixed-Language Mode...........................147

Debugging Issues in Gate Libraries...148
Specifying Precompiled Libraries for SpyGlass Analysis............................149

Specifying Multiple Technology Libraries of the Same Name150
Using Intermediate Logical Library Name Support in VHDL151
Working with Compressed Gate Library Files..153
Working with Encrypted Compiled Libraries ...154

Creating Encrypted Library Dump...154
Using Encrypted Library Dump...155

Viewing Built-In Messages for Precompiled Libraries156
Impact of the addrules Option While Using Pre-compiled Dump............159
Impact of the ignorerules Option While Using Pre-compiled Dump159

Mapping a File Extension with a Compilation Language160
Inferring Language from File Extension During Compilation161
Specifying Compilation Options in a Source File..................................165
Specifying Files in the Order of Their Dependencies166

Compiling Verilog Files Containing SystemVerilog Keywords167
Compiling the Set of Verilog and SystemVerilog Files Separately...........167
Using File Extension Based Compilation Flow168

Working with Encrypted Design Files .. 170
Introducing the Use Model for IP Encryption in SpyGlass170
Encrypting IPs by Using the spyencrypt Utility171

Arguments of the spyencrypt Utility..172
Encrypting IPs Spread Across a Hierarchical Directory Structure175

Viewing Encryption Summary in a Report ..176
Specifying Encrypted Files for SpyGlass Analysis177

Specifying Encrypted Files through GUI...177
Specifying Encrypted Files through a Project File180

Working with Mixed-Language Designs... 182
Instantiating Verilog Modules in VHDL Architectures182

Instantiating as Component Instance..182
Instantiating as Entity Instance ...184

Instantiating VHDL Design Units In Verilog Modules................................186
Examples of Instantiating VHDL Design Units in Verilog Modules187
viii
Synopsys, Inc.

Mapping Data Types... 189
Mapping between VHDL Generics and Verilog Parameters.................... 189

Current Limitation with Mixed-language Designs in SpyGlass 190
Working with DesignWare® Modules ...192

Prerequisites for Enabling DesignWare Flow... 192
Specifying Path of DesignCompiler Installation....................................... 192
Enabling the DesignWare Flow... 193
Reusing Netlist of DesignWare Modules during SpyGlass Analysis 194
List of DesignWare Modules Supported in SpyGlass 195
Using DesignWare Functions ... 198

Specifying Pragmas in HDL Code..199
Supported Pragmas for Verilog .. 199
Supported Pragmas for VHDL .. 199

Working with Black Boxes..200
Inferring Black Boxes ... 200

Understanding the Black Box Inference Feature 201
Using the Black Box Inference Feature.. 202
Checking the Inferred Information ... 202
Using the Corrected Inferred Information.. 204

Stopping Black Box Analysis.. 204
Handling Out of Memory Situations..205
Reporting Messages at Module Boundary ...206

Identifying Modules ... 206
Enabling the Feature .. 207
Impact of the Feature .. 207

Controlling the RTL Synthesis Engine...208
Limiting Analysis of Memories.. 208
Preserving all instances and nets in a design ... 209
Interpreting Synthesis Pragmas... 209

Interpreting Synthesis Pragmas ... 210
Managing the Design Hierarchy..212

Specifying a Top-level Design Unit ... 212
Advantage of Specifying a Top-Level Design Unit................................ 212
Setting a Top-Level Design Unit ... 213
Multiple Top-Level Design Units ... 214
Language-Specific Behavior While Specifying a Top-Level Module 215

Stopping Design Units .. 216
Implications After Stopping Design Units... 217
Checks Performed on Stopped Design Units....................................... 218

Using the Top and Stop Features Together... 218
ix
Synopsys, Inc.

Ignoring Files and Design Units From SpyGlass Analysis..........................220
Difference between Ignored and Stopped Design Units........................221
Ignoring Files Containing Design Units ..221
Ignoring Individual Design Units ..222

Analyzing Selective Design Hierarchy..225
Working with 'celldefine Modules.. 226

Performing Rule-Checking on 'celldefine Modules....................................226
Performing Hierarchical Rule-Checking in 'celldefine Modules227

Working with Methodologies...229
Overview... 229

Goal Files ...230
Naming Convention of a Goal File...230
Details Present in a Goal File ...231
Selection of Goal Files based on Language Mode232

GuideWare Reference Methodology... 234
Structure of the GuideWare Reference Methodology................................234

Specifying an Active Methodology ... 238
Specifying a Current Methodology... 242
Configuring a Methodology.. 244

Creating a Methodology ..246
Modifying a Methodology ..248

Creating and Modifying a Sub-methodology...249
Creating a Sub-Methodology ...249
Modifying a Sub-Methodology..251

Creating Goals...251
Displaying the New Goals Dialog ..253
Specifying Details in the New Goal Dialog..253

Importing Goals...255
Deleting Goals...256
Copying Goals ...256
Modifying Goals ...256

Modifying Goal Properties..257
Enabling/Disabling a Goal ...259
Updating Rules of a Goal...259
Adding Rules in a Goal..261
Modifying Parameters of a Goal..263

Dragging and Dropping Sub-Methodologies and Goals.............................264
Creating Custom Methodologies .. 269
x
Synopsys, Inc.

Customizing Goals ... 269
Including and Inheriting GuideWare Goals... 269

Including/Inheriting Goals in a Goal File.. 270
Including/Inheriting Goals in the MCS Window................................... 277
Viewing and Adding Options for an Included or Inherited Goal 278
Viewing Rules and Parameters of Included/Inherited Goals 279
Enabling/Disabling Rules of a Parent Goal ... 280

Selecting a Custom Methodology..281
Comparing Methodologies..284

Merging the Differences.. 286
Copying and Inheriting Methodologies...287

Copying a Methodology .. 287
Inheriting a Methodology .. 288

Specifying a Reference Environment Variable..................................... 289
Specifying an Additional Path .. 289

Migrating Custom Goals ...291
Comparing Goals ... 291

Viewing the HTML Report for Comparison.. 296
Migrating Goals ... 297

Order File ...298
Viewing Order of Goals Defined in an Order File 299
Format of an Order File .. 299

Map File ...302

Working with SpyGlass Design Constraints303
Overview..303
Specifying SGDC Files to SpyGlass ...305
Creating an SGDC File ..306

Adding Comments in an SGDC File... 306
SGDC Convention for Packed Arrays ... 309
Specifying Multiple current_design Specifications for a Design Unit 309
Specifying Configuration Name with current_design Command............. 310

Specifying Multiple Values for a Constraint Argument.............................. 311
Handling Interdependencies between Different Arguments 311
Including an SGDC File in Another SGDC File... 312
Specifying Signal Names... 313

Specifying Signal Names based on Signal Types................................. 313
Specifying Signal Names based on Design Hierarchy........................... 313

Defining and Using Variables ... 315
xi
Synopsys, Inc.

Defining Variables ..315
Using Variables..315

Handling Duplicate Constraint Specifications 318
Handling Nets Declared in a Sequential Block 319
Conditionally Specifying SGDC Constraints.. 320

Using the SG_OPERATING_MODE Variable...321
Example of Using the SG_OPERATING_MODE Variable322

Processing of SGDC Files ... 327
Parsing SGDC Files...327
Performing Syntax Checking in SGDC Files ..327

Processing SpyGlass Design and Waiver Pragmas............................... 328
Recognizing Clocks.. 330
Converting SDC Attributes into SGDC Commands 331

Enabling the SDC-to-SGDC Translation Feature331
Changing the Default Hierarchy Separator of the SDC2SGDC Constraints...332
Specifying the Mode of Domain Inference..333
Inferring cdc_false_path for Clocks in Different Domains334
Capturing Domain Inferring Results..335
Handling of Generated Clocks ..336
Handling Mutually Exclusive Clocks...339
Handling Directional Clocks ...339
Translating set_clock_sense command..340
Translating set_disable_timing command ..340
Translating set_mode command...341
Saving the Generated SGDC Commands in a File341
Specifying the Mode of an SDC File ..341
Understanding Different Flows for Using This Feature..............................342

Generating SGDC Commands as a Part of Goal Run342
Generating SGDC Commands as a Part of Design Read342

Support for Virtual Clocks in sdc2sgdc Flow ...343
Virtual to Real Clock Mapping ..344

Limitations..344
Importing Block-Level SGDC Commands to Chip-Level........................ 346

Creating a Migration File ...346
Constraints Migrated From Block-Level to Chip-Level347
Generated Hierarchical SGDC File(s)...348

Validating the Generated Hierarchical SGDC File.....................................349
Implementing Scoping in SGDC Commands... 351

Wildcard Support at Top-Level ...353
xii
Synopsys, Inc.

Conflict Resolution at Top-Level ... 353
Scoping When Design is at the Block-Level.. 354

Wildcard Support at Block-Level .. 355
Conflict Resolution at Block-Level... 355

Handling SystemVerilog Objects in SGDC...357
Handling SystemVerilog Interface Port/Terminal 357
Handling SystemVerilog Interface Containing a Modport.......................... 357
Handling SV Structure or Union ... 358
Handling for-generate Constructs... 359

Working with SpyGlass Messages ...363
Overview..363
Working with Multiple Messages ..365

Effects of Selected Messages in the Schematic....................................... 365
Selecting Static Auxiliary Messages .. 366
Selecting Non-Static Auxiliary Messages ... 366

Selecting Auxiliary Messages without Selecting a Main Message 367
Messages Affecting Multiple Source Lines/Files....................................... 367

Multiple Lines Affected in the Same Source File.................................. 368
Multiple Lines Affected in Different Source Files 368
Multiple Messages Selected ... 368

Limiting the Number of Messages Generated369
Limiting the Number of Messages Reported for a Rule............................. 369

Waiving Messages..371
Waiver File ... 372

Creating a Waiver File .. 372
Creating Goal-Based Waiver .. 372
Setting Default Waiver File.. 373
Handling Unsaved Changes in Waiver Files .. 374
Including a Waiver File in Another Waiver File 375

Effects of Waiving Messages.. 375
Auto-Migration of Waivers... 376
Waiving Messages through GUI ... 377

Using the Waiver Editor Window .. 377
Using the Results Pane to Waive Messages .. 379

Waiving Messages through a Project File ... 381
Waiving Messages by Using the waive Constraint 381

Syntax of the waive Constraint .. 382
Argument Details of the waive Constraint.. 382
xiii
Synopsys, Inc.

Details of the waive Constraint ..386
Examples of Using the waive Constraint ..389
Using Regular Expressions and Wildcard Characters............................390
Support for Hierarchical Waivers ..400

Waiving Messages by Using SpyGlass Pragmas402
Waiving Rule Messages for a Block of Code..404
Waiving Rule Messages for a Single Line of Code................................406
Ignoring the SpyGlass Waiver Pragmas ...411
Waiving Messages in Waiver/SGDC Files..411
Existing Waiver Support in SpyGlass...412

Tagging Messages ... 413
Adding a Tag ...413
Modifying a Tag ...414
Deleting a Tag ...415

Handling SpyGlass Built-In Messages.. 416
Handling Syntax Error Messages ..416
Handling Language Warning Messages..416
Handling Synthesis Warning Messages ..416
Handling Synthesis Error Messages ..417
Handling Internal Messages...417

Working with Aggregated Reports ..419
Overview... 419

Searching for Input Files...420
Generating Aggregated Project Results... 422
Project Summary Report ... 426

Generating the Project Summary Report ...426
Generating the Report through GUI ..426
Generating the Report through a Project File427

Viewing the Project Summary Report..427
Viewing the HTML Report ..427
Viewing CSV Reports ..432

The DataSheet Report ... 433
Generating the DataSheet Report in GUI ...435

Creating a Configuration File ...437
Changing the Name of the Report ..439
Adding a Logo in the Report Header ...440
Tcl Format Support in the Configuration File.......................................440

Generating the DataSheet Report in Batch ..443
xiv
Synopsys, Inc.

Generating the Datasheet Report through a Project File 444
Recommended Goals for Generating DataSheet Report 446
Details of the DataSheet Report... 449

IO Definitions.. 451
Clock Trees ... 452
Reset Trees... 453
Power .. 454
Power Clocks .. 455
Constraints ... 456
Testability... 457
Design Statistics.. 458
Black Boxes .. 459
Timing ... 459
Congestion ... 460

The DashBoard Report ...462
Licensing Requirements.. 464
Browser Compatibility .. 464
Generating Dashboard Report ... 464

Generating the DashBoard Report through Project File 465
Generating the DashBoard Report in Batch.. 465
Generating Dashboard Report in GUI.. 467
Creating a Configuration File ... 469
Tcl Format Support in the Configuration File 471
Creating the Success Criteria File... 473

Viewing the DashBoard Report .. 492
Details of the DashBoard Report .. 493

SoC Dashboard ... 493
Module Dashboard ... 500

Customizing Report.. 504
Including Product-Specific Data in the Report 505
Customizing the Report Header ... 507

Managing Reports.. 509
Archiving and Managing Data Generated After Running Goals 509
Generating the HTML Goal Summary Page .. 511

Switching to the Old Dashboard Report... 515
Goal Summary..516
Managing Datasheet and Dashboard Reports518

Appendix...519
Supported HDL Directives ..519
xv
Synopsys, Inc.

Re-using Simulation Scripts .. 521
Project File Details .. 523

Creating a Project File ..523
Structure of a Project File ...523

Data Import Section...524
Common Options Section..525
Goal Setup Section ..529
Example of a Tcl-based Project File...534

Supported Library Cells ... 536
Combinational Cell Support ...536
Sequential Cell Support ..536

Precompiling Multiple Libraries in a Single SpyGlass Run.................... 539
Features of Single Step Precompilation ...540
Makefile Based Support in Step Precompilation541
Combining Single-Step Precompilation and Top-level Run542

Goals That Do Not Use Default Parameter Value 544
Sample Order File.. 555
xvi
Synopsys, Inc.

Preface
About This Book
The Atrenta® Console User Guide describes how to use the Atrenta
Console for rule-checking HDL designs.
17
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The Atrenta Console User Guide has the following chapters:

Section Description
Introducing Atrenta Console About Atrenta Console
Using Atrenta Console Graphical User
Interface

The Atrenta Console Basic Operating Principles

Working with Input Design and Libraries Describes all aspects of reading a design in Atrenta
Console.

Working with Methodologies The Atrenta Console Methodology Configuration
System (MCS)

Working with SpyGlass Design Constraints SpyGlass Design Constraints Feature
Working with SpyGlass Messages Features to control SpyGlass Messages
Working with Aggregated Reports The Atrenta Console Reports
Appendix Details of various other features in Atrenta Console
18
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
19
Synopsys, Inc.

Typographical Conventions

Preface
20
Synopsys, Inc.

Introducing Atrenta
Console
Overview
Atrenta® Console is used to solve various design issues in the early stages
of the design development process.

To solve design issues early in the design development cycle, Atrenta
Console provides you a pre-packaged set of goals and methodologies
called GuideWare™.

Introducing Goals

A goal is a pre-packaged set of rules that detects specific types of design
issues. For example, the connectivity goal contains rules that checks
for basic connectivity issues in a design. Similarly, the simulation goal
contains rules that checks for basic simulation issues in a design.

When you run a goal after specifying design files in Atrenta Console all
rules of that goal are run. Once the goal run is complete, appropriate
violation messages are reported to indicate design issues.

Details of goals are specified in Goal Files (.spq files).
21
Synopsys, Inc.

Overview

Introducing Atrenta Console
Introducing Methodologies

A methodology is a collection of sub-methodologies or a collection of goals.
Each sub-methodology may further contain sub-methodologies or a set of
goals.

You can load the required methodology or sub-methodology that contains
the required goals. For details on loading a methodology, see Specifying an
Active Methodology.

Methodology Used by Atrenta Console

By default, Atrenta Console uses the GuideWare Reference Methodology for
design analysis.

GuideWare reference methodology provides guidance to designers to
address various design issues by running a set of goals that are fine-tuned
for high-quality results and low noise. These goals are used during various
phases of SoC design development flow (RTL, IP, and chip integration
design phases).

You can also configure GuideWare reference methodology to map to your
specific design style and hand-off requirements. For details, see Working
with Methodologies.
22
Synopsys, Inc.

Before You Begin

Introducing Atrenta Console
Before You Begin
Before using Atrenta Console, set the ATRENTA_LICENSE_FILE variable
to a license server or a copy of the license file on a client machine.

NOTE: It is recommended to set the ATRENTA_LICENSE_FILE variable in the port@server
format rather than file name format.

A standard licensing software from Acresso, which must be set in order to
run SpyGlass®, controls SpyGlass.

By default, SpyGlass creates license jobs for the license files/servers
specified using both the LM_LICENSE_FILE and
ATRENTA_LICENSE_FILE variables. However, you can stop creation of
license jobs for the license files/servers, specified with
LM_LICENSE_FILE, specify the following option in the
.spyglass.setup file.

IGNORE_LM_LICENSE_FILE = yes

Specifying Optional Environment Variables

You can set the following optional environment variables to customize
SpyGlass GUI operations:

Environment Variable Indicates... Default Value
SPYGLASS_HOME SpyGlass Home directory <your-inst-dir>/SPYGLASS_HOME

ATRENTA_LICENSE_FILE SpyGlass license server <port-number>@<hostname>
23
Synopsys, Inc.

Invoking Atrenta Console Graphical User Interface

Introducing Atrenta Console
Invoking Atrenta Console Graphical User
Interface

You can either start a new session or load a previous session while invoking
Atrenta Console GUI.

Starting a New Session

To start a new session, use any of the following commands:

 %>spyglass

 %>spyglass -gui

Once you specify any of the above commands, Atrenta Console GUI opens
with a default project, as shown in Figure 2.

Before exiting the session, you should save the project. A project is saved
in a project file (.prj).

The project file contains details of the current GUI session so that this
session can be restarted later with all the saved data. For more details on a
project file, see Project File.

Loading the Previous Session

To load a previous session, load a project created in that session.

When you load a project, Atrenta Console loads the session from the stage
at which you earlier closed that session in the specified project.

You can load a project in either of the following ways:

 Specify the name of a project file by using the -project command
while invoking SpyGlass.

%>spyglass -project <your_project_file>.prj

 Invoke SpyGlass, and then select a project by using the File -> Open
Project menu option.

Analyzes a design with the specified settings after invoking SpyGlass GUI.

You can also use the -run command-line option when you want to work in
24
Synopsys, Inc.

Invoking Atrenta Console Graphical User Interface

Introducing Atrenta Console
the SpyGlass GUI and want the design to be immediately analyzed after
invoking the SpyGlass GUI.

You must provide all essential SpyGlass command-line options with the
-run command-line option. Otherwise, the design will not be analyzed.

Invoking Atrenta Console on a 64-bit Machine

If you open a project file that uses libraries that were precompiled on 32-
bit machine while invoking Atrenta Console on a 64-bit machine, Atrenta
Console displays a dialog indicating that 32-bit file is being loaded on a 64-
bit machine or vice-versa.

This dialog also lists the names of libraries that are not compatible on the
current version (32-bit or 64-bit), as shown in the following figure:

FIGURE 1. Warning Message

You can either abort the current session or continue the session by clicking
the Abort or Continue buttons, respectively.
25
Synopsys, Inc.

GUI Details

Introducing Atrenta Console
GUI Details
When you start a new session, the following page appears:

I

FIGURE 2. Atrenta Console GUI

Atrenta Console GUI contains the following elements:

Ribbon bar

Menu bar

HDL files section

HDL libraries
section

Tech libraries
section

SGDC files
section

Status bar
Session log
26
Synopsys, Inc.

GUI Details

Introducing Atrenta Console
 Menu bar that displays Atrenta Console menu options.
NOTE: The menu bar is context sensitive and only displays the options that are rele-

vant to the stage the design is in.

 Ribbon bar that contains tab for the three stages (Design Setup, Goal
Setup & Run, and Analyze Results) that enable you to analyze your design.
Once you complete a particular stage or specify the mandatory
information in a particular stage, the tab for the successive stage gets
enabled automatically. For example, once you specify design file(s) in
the design setup stage, the Goal Setup & Run tab gets enabled
automatically.

 HDL Files section that displays all the HDL files.

 HDL Libraries section that contains the HDL libraries and their
corresponding RTL files and source file lists.

 SGDC Files section that displays all the SGDC files.

 Tech Libraries section that displays all the technology libraries.

 Session Log section that displays the GUI and runtime log.

 Status bar that displays the project state and summarizes the results.
27
Synopsys, Inc.

Atrenta Console Flow

Introducing Atrenta Console
Atrenta Console Flow
Atrenta Console flow is divided into the following three stages:
1. Design Setup Stage

2. Goal Setup and Run Stage

3. Analyze Results Stage

Design Setup Stage

This is the first stage in which you can:
 Add design files, SGDC files, precompiled files, and technology files. For

details, refer to the Adding Design Files topic.
 Specify various design-read options that affect SpyGlass run. For

example, you can specify top-level modules in your design, change the
language, specify macros, etc.
For details, refer to the Viewing and Changing Design Read Options topic.

 Run the design-read process to perform first level of HDL analysis. For
details, refer to the Running Design Read topic.
You must resolve FATAL errors, if any, reported during this stage before
proceeding to the next stage.
You can skip the task of running the design-read process.

Goal Setup and Run Stage

During this stage, you select and run goal(s). A goal is a collection of rules.

During this stage, you can:
 Select and run goal(s). For details, refer to the Selecting a Goal topic.

You can also specify the order in which goals should run. You can specify
this order in an order file. For details, refer to the Order File topic.

 Provide additional design intent information, such as black boxes,
clocks, and resets in your design. For details, refer to the Central Design
Setup topic.
28
Synopsys, Inc.

Atrenta Console Flow

Introducing Atrenta Console
 Set the recommended parameters and required constraints for the
selected goal. For details, refer to the Setting up the Goal topic.

Analyze Results Stage

This stage enables you to analyze the results of a goal run.

During this stage, you can:
 View violation messages to identify the design issues. For details, refer

to the Working with SpyGlass Messages chapter.
 Debug the reported issues by referring to schematics, reports, rule help,

etc.
 Waive some violation messages if they do not indicate potential design

issues. For details, refer to the Waiving Messages topic.

Add specific tags on some messages to debug such messages later.
29
Synopsys, Inc.

Files/Directories Created in Atrenta Console

Introducing Atrenta Console
Files/Directories Created in Atrenta Console
Atrenta Console generates different files to log runtime information, such
as reports and log files.

Some files/directories, such as spyglass.log, spyglass_reports, spyglass_spysch, and
spyglass.vdb are generated every time you run Atrenta Console.

Some files, however, are generated only when you use some special
features. These files include spyglass.db, WORK, and spyglass_cmdline_debug.log.

Project File

A project file (.prj) contains the following data about a particular Atrenta
Console session:
 Input HDL files and language settings

 Run options

 State of project (design read, goal setup, goal run, or results analysis)

 Constraint files and parameter settings for goals

 Status of goal setup and analysis

For details on creating a project file, see Creating a Project File.

When you load a project file in Atrenta Console GUI, the stage at which you
last closed the session gets loaded with all the saved data. For more details
on a project file, see Structure of a Project File.

By default, a project file is saved in the current working directory. You can
specify a different directory by using the File > Save Project As menu option.

NOTE: You can also create a project file using a Tcl (Tool Command Language) scripting
interface. This enables you to configure an Atrenta Console batch session without
using the Atrenta Console GUI.

Project Working Directory

A project working directory is the output directory of a project file.

Use the following command in a project file to specify a project working
directory:
30
Synopsys, Inc.

Files/Directories Created in Atrenta Console

Introducing Atrenta Console
set_option projectwdir <dir-name>

NOTE: You must have write permission in the directory specified when using this option.

If the project file name is test.prj, Atrenta Console creates a sub-directory,
test, in the directory specified by this option. All run results are then stored
inside this directory.

By default, the project working directory is the same directory in which the
project file itself is stored.

Sub-Directories in a Project Working Directory

The project directory contains the following sub-directories:

 Design_Read
This directory stores the results of SpyGlass run. It contains files, such
as .vdb file, .log file, .out file, and SpyGlass reports.

 Run _Summary
This directory contains information about the project, the goal run, and
message information, such as message severity.

 <module-name>
This directory contains all the results for a module, which is specified as
a top-level block. There can be multiple module directories as a project
file supports runs with different top-level blocks. The directory structure
beneath the module name contains the same hierarchy structure of the
methodology used for analysis. If no module has been specified as the
top-level block, the name of the methodology will be used instead.

 WORK
This directory contains the precompiled VHDL design units.

Project Current Working Directory

A project current working directory is the directory where a project was
initially created.

This directory serves as an input directory from which various files, such as
design files are picked. Any relative path inside a project file is assumed to
be relative to this directory.

You may or may not have write permission for this directory.
31
Synopsys, Inc.

Files/Directories Created in Atrenta Console

Introducing Atrenta Console
Use the following command in a project file to specify this directory:

set_option projectcwd <directory-name>

While loading a project, if the current working directory is not same as the
directory specified by this option, Atrenta Console reports a warning and
allows you to internally switch to the working directory specified by this
option.

NOTE: If you are working on sg_shell, errors are reported for such cases and the tool
prompts you to change the directory to <projectcwd> and reopen the project.

You can change the project current working directory if you want to move
or copy a project to a new location and it is intended that the new project
should pick up the design files relative to the new location.

File Generated in GUI

When you run Atrenta Console GUI, spyglass.out is generated.

This file is the screen-out file of Atrenta Console in which runtime
information (output) and rule-checking information is saved.

By default, the screen-out file name is spyglass.out and is saved in the
current working directory along with spyglass.log. During runtime, however,
if spyglass.log name or location is changed, the screen-out file is also
changed accordingly.

Files/Directories Generated by Default

By default, Atrenta Console creates the following files/directories:

 spyglass.log
This file contains SpyGlass run details. These details include general
information about SpyGlass run, such as SpyGlass version and the
arguments passed for a particular run. This file is saved in the current
working directory.

 spyglass_reports
This directory is created in the current working directory. Various
standard reports, such as simple.rpt, moresimple.rpt, inline.rpt, count.rpt, and
sign-off.rpt are saved in this directory. This directory also contains
32
Synopsys, Inc.

Files/Directories Created in Atrenta Console

Introducing Atrenta Console
product-specific reports.

 spyglass_spysch
This directory contains internally generated files that are used for
internal SpyGlass processing or to support GUI features. This directory
is saved in the current working directory.

 spyglass.vdb
This file stores all the violations generated during SpyGlass run.

Files Generated to Support Special Features

When you run Atrenta Console with some special features, the following
additional files/directories are generated to save data related to those
features:

 spyglass.db
This file is generated when design save-restore feature is used. It
contains the synthesized view of the design during the first analysis run.

 WORK
This directory is generated when you specify precompiled libraries
during SpyGlass run. This directory contains the precompiled libraries.
You can change the name of this directory by using the following
command:

set_option work <value>

 spyglass_cmdline_debug.log
This file is generated in the current working directory when you specify
the set_option enable_cmdline_debug yes command in the
project file.
Details of this file are summarized below:
 It contains a command-line trace log that enables you to understand

how SpyGlass arrives at the final set of command-line options using
the initial option set provided by you.

 It enables you to trace some GUI operations, such as parameter
changes, goal selection, etc.
33
Synopsys, Inc.

Files/Directories Created in Atrenta Console

Introducing Atrenta Console
 It contains batch-mode command-line processing details. This file
logs tracing of internal processing of command-line options;
expansion of command files and goals; internal aliasing of certain
command-line options; default options set by SpyGlass;
configuration keys settings; and wildcard expansions of profile files,
design files, paths specified by the
set_option I {space-separated list of directory name }
command, SGDC file, and waivers.

 When used with spyglass.log file, this file helps to understand the
processing of various options.

Atrenta Console generates a new file for each new run. However, if Atrenta
Console is run incrementally from the same invocation, the tracing data of
subsequent runs is appended to the already existing file.

The trace done in GUI and batch mode is logged in different sections of the
file, marked by START and END blocks.
34
Synopsys, Inc.

Using Atrenta Console
Graphical User Interface
Overview
This chapter discusses the following stages of Atrenta Console:
 Stage 1: Setting up the Design (Design Setup)

 Stage 2: Selecting a Goal (Goal Setup & Run)

 Stage 3: Analyzing a Design (Analyze Results)
35
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Stage 1: Setting up the Design (Design Setup)
This is the first stage when you start a new session in Atrenta Console.

During this stage, you create the basic design setup by specifying
information, such as design files and design options. In addition, you check
for some basic design issues before proceeding to the next stage.

To complete this stage, perform the following tasks:
1. Adding Design Files

2. Viewing and Changing Design Read Options

3. Running Design Read

Adding Design Files

Select the Add Design Files tab to add design files for SpyGlass analysis. You
can use this tab to perform the following tasks:
 Adding Files in GUI

 Mapping File Extensions

 Rearranging HDL Files

 Performing Version Control

 Editing Files

 Setting Stop Files

 Ignoring Files from SpyGlass Analysis

 Waiving Messages by File

 Viewing Include Files

 Configuring Columns

Adding Files in GUI

In the Add Design Files tab, you can add various types of files, as described
in the following table:
36
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
TABLE 1 File Types Under the Add Design Files Tab

File Description Tcl Shell Usage

HDL files These files include Verilog (.v,
.verilog, and .sv) files, VHDL
(.vhdl and .vhd) files, Design
Exchange Format (.def) files, and
Library Exchange Format (.lef)
files.
NOTE: If you specify a file of an
unknown type, it appears in red
color. You cannot proceed to the
next step unless you specify the
correct file type.

read_file [-type
<verilog|vhdl|hdl>]
<filename>
Note: read_file
<filename> is equivalent
to read_file -type hdl
<filename>
Example:
read_file -type verilog
test.v

SGDC files The files are .sgdc files that
contain SpyGlass design
constraints. These design
constraints are used to provide
additional design information that
is not apparent in the RTL.

read_file -type sgdc
<filename>
Example:
read_file -type sgdc
constraints.sgdc

HDL
libraries

Contain precompiled VHDL or
Verilog files.

set_option lib
<logical_name>
<physical_path>
Example:
set_option lib MyLib
/a/b/mylib_path

Technology
libraries

Include Synopsys .lib, .sglib, .plib,
and .gateslib files that are
required for structured netlists
using those library cells.

read_file -type
<gateslib | sglib |
plib> <lib name>
Example:
read_file -type sglib
library.sglib

Source list
files

Include files with a .spp or .f
extension. These files contain the
design files, design options, or a
combination of both.

read_file -type
sourcelist <file>
Example:
read_file -type
sourcelist sources.f
37
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Steps for Adding Files

To add a file, perform the following steps:
1. Click the Add File(s) link under the Add Design Files tab.

Alternatively, right-click in the HDL Files, SGDC Files, HDL Libraries, or Tech
Libraries sections and select the Add HDL File(s), Add Constraint File(s), Add
HDL Lib File(s), or Add Tech Lib File(s) options, respectively, from the
shortcut menu.

This displays the Add File(s) dialog, as shown in the following figure:

FIGURE 1. Add File(s) Dialog Box

2. Click the File(s) option to add the HDL files or the HDL Lib(s) option to add
HDL libraries.

3. Click the Look In drop-down list to select a directory containing the
required files.

4. For HDL files, select the file type from the Filter drop-down list.
For HDL library files, select the directory containing the files and specify
a logical library name in the Logical Library Name text field.

NOTE: The Logical Library Name text field appears only when you click the HDL Lib(s)
option.

5. Select the required file, and click the Add button to add that file.
38
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
With HDL files, you can add all files present in the directory by clicking
the Add All button.

NOTE: If you are adding HDL library files, you can add the directory that contains the
HDL files.

6. Click the OK button to close the dialog.

NOTE: If you want to remove a file that you have added in the Add File(s) dialog, select
that file and click the Delete button. To remove all the added files, click the Delete
All button.

After performing the above steps, the specified files appear under
appropriate sections, such as HDL Files, SGDC Files, HDL Libraries, and Tech
Libraries, depending upon the type of the file selected.

The following figure shows various sections containing different files:
39
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 2. Atrenta Console

Placing the mouse pointer over a file in any of these sections displays a
tool-tip showing the path, size, and last modified date of that file.

Adding Source Files

It is recommended that you specify a list of all HDL files in a single source
file (.spp or .f), and then add that source file in Atrenta Console.

Use the following command in a project file to add a source file:

read_file -type sourcelist <file>

When you add a source file, design files specified in that source file appear
in the HDL Files, SGDC Files, HDL Libraries, and Tech Libraries sections
40
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
depending upon the file type. You cannot edit files that are grayed out.

A source file should contain HDL files and HDL-related directives. For
example, you can specify a Verilog library directory by using the -y
<path> command.

Atrenta Console accepts many of the same HDL directives as some popular
simulation tools in the source file, and HDL code directly supports some
directives. For a list of supported HDL directives, see Supported HDL
Directives. For HDL directives that differ by tool, see Re-using Simulation
Scripts for the conversion to Atrenta Console project format.

NOTE: If an option (design file or other design option) added through a source file is
already present in a project file, the option added through the source file gets
higher precedence. This means that the option specified through the source file
overrides the option present in the project file.

Changing the Status of SGDC Files

By default, constraint files appearing under the SGDC Files section are
Globally Enabled. This means that these files are enabled for all goals and all
such files are passed in the design read run.

You can change this status by selecting the Globally Disabled option from the
drop-down list appearing adjacent to a constraint file name.

if in a project file, specify the following command after selecting a goal
using the current_goal command:

read_file -type sgdc

This command makes the specified SGDC file specific to that goal only.
However, if you have changed the status of the SGDC file before selecting
any goal, then it becomes a global SGDC file and is applied to all the goals
of that project.

Excluding Files from SpyGlass Analysis

To exclude a file from SpyGlass analysis, perform any of the following
actions:

 Right-click on the file, and select the Delete option from the shortcut
menu.

 Select the file, and click the Delete File(s) link.

 Select the file, and press the <Delete> key on the keyboard.
41
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
 If you want to remove the file from a project file, delete the
corresponding read_file command that you specified to add this file.

 If you are working in sg_shell and the file is already added, then use the
remove_file command. For example, the following command would
remove all HDL files:

remove_file -type hdl

You cannot remove a single HDL file in the sg_shell mode.

To remove a source file, right-click on the file name and select the Delete
Source List File shortcut menu option.

To remove multiple files from the HDL Files, HDL Libraries, and Tech Libraries
sections, perform the following steps:
1. Press and hold the <Ctrl> key on the keyboard and select the files that

you want to delete.
2. Click the Delete File(s) link or press the <Delete> key on the keyboard.

Importing sourcelist files

Instead of adding a sourcelist file to the project, you can import the file.
When importing, all the files added through the sourcelist file would
become a part of the project.

The subsequent changes to the imported file will not get reflected in the
project. Therefore, you must import the sourcelist file again, if you want to
override any setting in the current sourcelist file.

Specifying Functionality Information of Gate Cells

If your design contains instantiated gates (cells), you should tell SpyGlass
how to interpret these cells so that SpyGlass can analyze them.

By default, SpyGlass treats such cells as black boxes and does not analyze
them.

To enable SpyGlass analyze such cells, specify the functionality information
including structure and parametric data of these cells in any of the
following ways:
 Specifying Functionality Information through .lib Files

 Specifying Functionality Information through Verilog design or Library File
42
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
 Specifying Functionality Information through a VHDL File

NOTE: The actual interpretation of gate cells may be limited or incorrect for complex cells.
Also, the SpyGlass Logic Evaluator engine (mainly used by the SpyGlass DFT
solution) does not work for libraries specified with the gateslib command.

Specifying Functionality Information through .lib Files

In this case, perform the following steps:
1. Specify the .lib file by using the gateslib option, as shown below:

read_file -type gateslib <lib-file>

2. Specify the following command in a project file:

set_option enable_gateslib_autocompile yes

When you specify the above command, SpyGlass compiles the specified
.lib file into its corresponding .sglib file. From this .sglib file, SpyGlass
extracts the functionality information of the gate cells.
If you do not perform this step, SpyGlass is unable to extract
information from the specified .lib file. As a result, SpyGlass treats the
gate cells as black boxes.

Specifying Functionality Information through Verilog design or Library File

If the functionality information of gate cells is present in a Verilog design
file or a Verilog library file, perform the following steps:
1. Specify the files by using the following commands:
 For Verilog library file:

set_option v <file-name> command

 For Verilog design file:

read_file -type verilog <file-name>

2. Specify the following command in a project file:

set_option enable_precompile_vlog yes

NOTE: If you also specify a .lib file by using the read_file -type gateslib <lib-file>
command, SpyGlass ignores that .lib file and picks functionality information of gate
cells from the specified Verilog library file or Verilog design file.
43
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Specifying Functionality Information through a VHDL File

If the functionality information of gate cells is present in a VHDL file,
specify that file by using the following command:

read_file -type vhdl <file-name>

NOTE: If you also specify a .lib file by using the gateslib command, SpyGlass ignores that
.lib file and picks functionality information of gate cells from the specified VHDL file.

Specifying a List of .sglib Files

Use the following command in a project file to specify a list of .sglib files:

read_file -type sourcelist <file-name>.f

Where, <file-name>.f contains a list of .sglib files, as shown in the following
example:

-sglib path/to/sglibs/k1.sglib
-sglib path/to/sglibs/k2.sglib
-sglib path/to/sglibs/k3.sglib
-sglib path/to/sglibs/k4.sglib

Specifying Compressed Verilog Designs

You can directly specify compressed Verilog netlist/RTL files (.gz files) to
Atrenta Console. This avoids the task of uncompressing netlist/RTL files
that are typically huge in size, thereby occupying large disk space.

To specify a compressed netlist/RTL file in Atrenta Console, perform any of
the following actions:
 Click the Add Files option under the Add Design Files tab, and select the

required compressed file.
 Specify the compressed file by using the following project file command:

read_file -type <verilog | vhdl | hdl> <compressed-file-
name>
44
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
 Specify the name of the compressed file in a source file (.f file), and
specify that source file in Atrenta Console by using the following project
file command:

read_file -type sourcelist <source-file-name>

Mapping File Extensions

If you add an HDL file with an extension that is not recognized by
SpyGlass, that file appears in red.

To enable SpyGlass to recognize such extensions, perform the following
steps:
1. Click the More Actions link.
2. Select the Edit File Extension Map option from the drop-down menu.

The File Extension Mapping dialog appears as shown in the following
figure:

FIGURE 3. File Extension Mapping
45
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
3. In the above dialog, click the file type in the Extension(s) column.

The selected cell in the Extension(s) column becomes editable.
4. Now enter the required extension name in that cell in the Extension(s)

column.
NOTE: Specify extension names as a space-separated list.

Rearranging HDL Files

To rearrange the order in which HDL files should appear in the HDL File(s)
section, perform the following steps:
1. Select the desired file name.
2. Keeping the left mouse button pressed, drag the file up or down to the

desired location.
3. Release the mouse button when you move the cursor to the desired

location.

As you move the file, the cursor changes to indicate the drag/drop
operation. As you move the file up and down, the target file appears in
blue. The selected file always appears under the target file.

This feature is especially useful for arranging VHDL files where the order of
processing is important.

In sg_shell, remove all files and add them back in the correct order.
NOTE: You cannot rearrange the design files specified through source list files (.spp or .f).

Performing Version Control

Performing version control provides the following benefits:
 Ensures that you are working on the latest HDL files

 Ensures that the changes you make in a file are not lost while modifying
a design

To enable version control, configure a version control tool in SpyGlass by
specifying appropriate details in the Version Control section of the Preferences
dialog.

Once version control is enabled, the following options are displayed when
46
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
you right-click on a file in the File View page.

 Check In
Use this option to place the file that you have edited in the version
control tool.

 Check Out
Use this option to get a file from the version control tool.

 Get Latest
Use this option to get the latest version of a file from the version control
tool.

NOTE: The above-mentioned commands are related to CVS, which is the default version
control tool used by SpyGlass. However, you can add or modify the existing
commands based on your requirements. In addition, you can also integrate your
own version control tool with SpyGlass.

Editing Files

You can edit files, such as HDL files, libraries, and source files.

Editing HDL Files/Technology Libraries

To edit a file in the HDL Files or Tech Libraries section, perform the following
steps:
1. Right-click on the file, and select the Edit File option from the shortcut

menu or press the E button on the keyboard
The selected file appears in a text editor.

2. Make the required modifications in the file.
3. Save the file.
4. Close the text editor.

Editing HDL Libraries

To edit an HDL library, perform the following steps:
1. Select the library in the HDL Libraries section.

Alternatively, you can select the Edit Precompile Map link from the More
Actions drop-down list.
47
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
2. Specify the new alias of the file in the Library Name column.
3. Click () to browse to the directory that contains the new library file.
4. Select the file
5. Click the OK button.

You must specify both the logical name and the path of the library. The
logical name is the name of the library as you used it when creating a
precompiled Verilog library or in your VHDL description. The physical
library name is the complete path name of the library file.

If you change an entry in the HDL Libraries section, SpyGlass performs the
following sanity checks:
 Filename existence check

If you have not specified any RTL file for a particular precompile
mapping, the corresponding library appears in red and the following
message appears in a tool-tip:
No filename specified

 Empty file check
SpyGlass checks the size of the RTL file being used. If the file size of all
the specified RTL files is zero, the corresponding library appears in red
and the following message appears in a tool-tip.
All files are of Zero size

 Read permission check
If an RTL file being used is read-only, the corresponding library appears
in red and the following message appears in a tool-tip.
Following files are not readable:
- <file-name>

Where, <file-name> is the name of the RTL file(s).

Modifying Source List Files

To modify a source list file, perform the following steps:
1. Right-click on the file, and select the Edit Source List File option from the

shortcut menu.
The source list file opens in a text editor (set by you) as shown in the
following figure:
48
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 4. Source List File

2. Make the required changes in the file.
3. Save the source list file.

You can reload a source list file in Atrenta Console by right-clicking a
source file and selecting the Reload Source List File shortcut menu option.
Atrenta Console then re-reads the included source list files and updates the
design settings based on the changes made.

Importing Options in a Project File

You cannot edit the options (design files and other options) mentioned in
the source list files. You can, however, import these options in the project
file.

To import the options in a project file, right-click on the source file and
select the Import From Source List Files option from the shortcut menu. After
performing this action:
 Reference of these files to the source list file is broken.

 Atrenta Console considers the file as a normal imported design file
(Added using the Import Sources... option) and adds all its options to the
project file.
49
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Setting Stop Files

SpyGlass does not perform rule-checking on design units specified in the
files marked as stopped.

To set a file as a stop file, right-click on the file in the HDL Files section and
select the Stop file option from the shortcut menu. The icon appears
before the file name to indicate that file as a stopped file.

To remove a file from the files list that is stopped, right-click on that file
and select the Remove Stop File option from the shortcut menu.

Usage in sg_shell or the project file

 To specify a stop file.When working in sg_shell or project file, specify the
following command:

set_option stopfile <file>

 To remove the specified stopfile, specify the following command:

remove_option stopfile

 To ignore a file from processing, specify the following command:

set_option ignorefile <file>

 To remove the file marked as ignored, specify the following command:

remove_option ignorefile

Ignoring Files from SpyGlass Analysis

Ignoring a file means ignoring all design units specified in that file from
SpyGlass analysis. SpyGlass considers such design units as black boxes
during analysis.

To ignore a file, right-click on the file name in the HDL Files section and
select the Ignore File option from the shortcut menu. The icon appears
before the file name to indicate that this file will be ignored during
SpyGlass analysis.

If you later want to consider such a file for SpyGlass analysis, right-click on
that file name and select the Remove Ignore File option from the shortcut
menu.
50
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Waiving Messages by File

To waive messages by file name, right-click on the file name and select the
Waive Messages by File Name option from the shortcut menu. This displays
the Waivers dialog in which the selected file appears in a separate row.

For details, see Tools > Waiver Editor section in the Atrenta Console Reference
Guide.

Viewing Include Files

Some files displayed in the HDL Files section may contain include files. To
identify files included in a file appearing in the HDL Files section, select the
file name and click the Show Include File(s) option in the Add Design Files tab.

This displays the Showing Include file(s) dialog, as shown in the following
figure:

FIGURE 5. Include File(s)

Configuring Columns

To display or hide columns appearing in the HDL Files, SGDC Files, and Tech
Libraries sections, perform the following steps:
1. Right-click on any section, and select the Configure Columns option from

the shortcut menu.
51
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
The Configure Columns dialog appears as shown below.

FIGURE 6. Configure Columns

2. Select the column name in the Hidden Columns or Visible Columns section.
3. Click or to show or hide the selected column.
4. You can also rearrange the column order in the Visible Columns section by

clicking or buttons.

Viewing and Changing Design Read Options

Click the Set Read Options tab to specify the design-related options that
affects the SpyGlass run. When you click this tab, the read options appear,
as shown in the following figure:
52
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 7. Design Read Options

By default, Atrenta Console displays only the commonly-used read options.
To view all the options, deselect the Show Common Options Only check box.

When you select an option, the help related to that option appears in the
Option Help section.

Refer to Atrenta Console Reference Guide for details on all of the design
read options.

NOTE: The design read option that is specified using a source file (.spp or .f) appears as
grayed out. You can edit this option by double-clicking the option. However, editing
a design read option that is specified through the source file breaks its reference to
the source file and is treated as a normal design option. A warning dialog is also
displayed, as shown below.
53
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 8. Warning Message

Using Verilog Constructs

By default, Atrenta Console assumes that you are using the Verilog 1364-
2001 constructs.

Atrenta Console provides synthesis support for the following Verilog 2001
constructs:

TABLE 2 Verilog 2001 Constructs

Combined port and
data type declarations

ANSI C style module
declaration

Module port parameter
list

ANSI C style UDP
declarations

Variable initial value at
declaration (Initial value
is ignored)

ANSI C style task/
function declaration

Constant functions Comma-separated
sensitivity list

Combinational logic
sensitivity lists

Implicit nets for
continuous
assignments

Disabling implicit net
declarations

Variable vector part
selects

Multidimensional arrays Array bit and part selects Signed-up, net and port
declarations

Signed based integer
numbers

Signed functions Sign conversion system
functions

Arithmetic shift
operators

Assignment width
extension past 32 bits

Power operators
54
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
If you are using Verilog 1364-1995 constructs, specify the following
command in the project file:

set_option disablev2k yes

Using SystemVerilog Constructs

If you want to analyze a design containing SystemVerilog language
constructs, specify the following command in the project file:

set_option enableSV yes

NOTE: You can find the details of supported SV constructs in the xls sheet, SpyGlass
SystemVerilog Support, located in the $SPYGLASS_HOME/doc directory.

Running Design Read

Running design read performs the first level of HDL analysis.

Running Design Read in GUI

To run the design read process in GUI, perform the following steps:
1. Click the Run Design Read tab.

The following page appears:

Sized parameter
constants

Explicit in-line parameter
definition

Fixed local parameters

Enhanced conditional
compilation

Source file and line
compiler directive

Generate blocks

TABLE 2 Verilog 2001 Constructs
55
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 9. Run Design Read Tab

2. If you want to perform analysis only up to elaboration, click the Run
Design Read link.

However, if you also want to perform synthesis, select the Synthesize
Netlist option and then click the Run Design Read link. In this case, you
can specify the type of synthesis you wish to perform by setting the
Design Read Synthesis Flavor option to an appropriate value under the Set
Read Options tab.

NOTE: If you do not save the project file before running the design read process, Atrenta
Console prompts you to save the file.

When the HDL analysis is complete, Atrenta Console displays the message
information in the Message Window as shown in the following figure:
56
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
FIGURE 10. Run Design Read-Messages Window

When SpyGlass analysis is complete, The Help section displays the
additional steps that you need to perform to clean the design.

The following figure shows the Help section:
57
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface

FIGURE 11. Run Design Read-Help Section

Running Design Read in Batch

Once you have specified the required commands in the project file, run the
design-read process by specifying the following command:

spyglass -project <file.prj> -batch -designread

Checks Performed During the Design Read Process

Atrenta Console performs the following actions during design read:
 Checks whether the design is syntactically correct and complete,

including checking for missing macros, inconsistent or undefined
parameter/generic values, missing include files and so on.

 Reports basic data for the design, including the number of design units,
number of source files, design hierarchy, and configuration parameter
settings by using top and stop options.

 Reports all potential top-level design units in the design.

 Creates a black box model for it and reports a warning or error
message, when Atrenta Console cannot find a model for a design unit.
For details on black box handling and resolving issues, refer to the
Working with Black Boxes section.

NOTE: Syntax errors must be resolved to continue. All other errors should be resolved to

Help section
58
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
avoid problems during later analysis steps.

For a more complete example of a project file, refer to the Project File Details
section.

Viewing Messages after Running Design Read

After the design read process, Atrenta Console reports various violation
messages categorized by severity. The following table describes each type
of severity:

While reviewing the output of design read, check the bottom of the run log,
spyglass.log, for a summary of messages by severity. Each run contains the
moresimple.rpt report that contains details of each message.

Identifying Common Syntax Errors and Issues

Atrenta Console reports syntax errors in the following cases:
 If a macro is referenced in a design before (or without) being declared,

Atrenta Console reports the STX_VE_533 syntax error.

 If you do not correctly specify a Verilog include directory, Atrenta
Console reports the STX_VE_485 syntax error.

Severity Description
FATAL Indicates a critical problem preventing further processing.

You must fix such violations before proceeding to the next stage.
ERROR Indicates a serious problem affecting design quality or analysis and

should be resolved.
It is highly recommended to resolve or reconcile all such
messages.

WARNING Indicates a problem that might be serious.
It is highly recommended to review all such messages to check for
possible problems.

INFO Indicates an informational message about the design.
Such messages can provide further design and analysis
information that helps in the debugging of various errors and
warnings.
59
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
 If you specify an incorrect language standard
By default, the Verilog standard is Verilog (IEEE Std 2000) and the VHDL
standard is VHDL (IEEE Std 1993).

In addition, Atrenta Console checks for various other issues described
below:
 If you do not specify library files/directories, you get black boxes

corresponding to the instances of the library cells in the design.

 If you specify library files without the set_option v command, the
DetectTopDesignUnits rule may report multiple top modules.

 You must sort VHDL files according to the way they are referenced in the
design HDL. If you do not sort them, Atrenta Console may report errors
or warnings. Unless you know that the order is correct, it is
recommended you use the set_option sortmethod <du |
lexical> project file command.

Tips for Debugging Syntax Errors

Design read primarily reports issues related to design HDL syntax.
Following are the recommended steps to debug syntax errors:
1. Review the syntax error reported and resolve the error if possible.
2. Specify a valid language.
3. Specify a top-level module.
4. Check if synthesis pragmas are used adjacent to the code where the

syntax error is reported.

If the issue is still not resolved, you can temporarily avoid that issue by
stopping that design unit by specifying the following command:

set_option stop <design-unit>

Viewing Reports

SpyGlass provides several predefined report formats to display violation
messages or redirect reports to files for later review.

You can view these reports in any of the following ways:
 By selecting the required report from the Tools -> Report menu option.
60
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
 By selecting the required report from the Reports option in the Results
pane.

Results Summary of SpyGlass Run

SpyGlass also generates a results summary in the Session Log pane at the
end of the analysis. The following figure shows the results summary of a
SpyGlass run:

FIGURE 12. Results Summary

The results summary displays the number of error messages found in the
design.

Certain error messages in the results summary are prefixed with two
asterisks (* *). It is recommended that these errors are fixed before
proceeding further.

To fix the issues in the design, load the source files in the Source section as
explained in the Viewing Source Files section.
61
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
Viewing Source Files

When you double-click on a message on the Msg Tree page or click the
message on the Message List window of the Msg Summary page, the source
file appears in the source section and the design unit instances appear on
the Instance View Page and the Module View Page. In addition, the code
corresponding to the message appears in the source section.

The following figure shows the contents of the source file, blocking1.v:

FIGURE 13. View Source Files

In the above page, double-click on the required file (source file or include
file) from the File View page to load the contents of that file in the Source
section.

You can edit a file by clicking the Edit File link on the navigation bar located
at the left of the Source window.

After you have cleaned the design from any fatal errors, re-run design
read.

Searching Instances

To search an instance in the Instances View page, perform the following
steps:
62
Synopsys, Inc.

Stage 1: Setting up the Design (Design Setup)

Using Atrenta Console Graphical User Interface
1. In the Search section parallel to the menu bar, select the Instance View
option from the pull-down list, as shown in the following figure:

FIGURE 14. Search

2. Click to specify the required search option(s). For details,
refer to the Specifying Search Options topic.

3. Specify the search text in the Search textbox.
4. Click the Go link.

After performing the above steps, the first module/instance whose name
contains the search string appears in the Instance View page. Continue
clicking the Go link to find more module/instances names containing the
search string.

Specifying Search Options

When you click , various search options appear, as shown in the
following figure:

\Se

FIGURE 15. Search Options

You can select appropriate option(s) from the above list to qualify your
search.

NOTE: When you select the Search in Hierarchical Path option, only Search Backwards
option is enabled.
63
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Stage 2: Selecting a Goal (Goal Setup & Run)
After completing the Design Setup stage successfully, click the Goal Setup &
Run tab to proceed to the next stage.

When you select the Goal Setup & Run tab, the following page appears:

FIGURE 16. Goal Setup and Run

NOTE: Specify a top-level module in Stage 1: Setting up the Design (Design Setup) before
proceeding to the Goal Setup & Run stage.

In this tab, you can perform various actions, such as selecting goals and
specifying parameters and constraints for the selected goals. Finally, run
the selected goals before proceeding to the next stage, Stage 3: Analyzing a
Design (Analyze Results).
64
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
This stage is divided into the following steps:
1. Selecting a Goal

2. Central Design Setup

3. Setting up the Goal

Selecting a Goal

To select a goal, click the Select Goal tab.

Under this tab, various goals appear in the order based on the selected
methodology, as shown in the following figure:

FIGURE 17. Goal Selection

NOTE: The default methodology is GuideWare New_RTL.

NOTE: When you click on a sub-methodology/goal, the help related to that
sub-methodology/goal appears in the Help window.

The Select Goal tab also displays additional information in various fields, as
described in the following table:
65
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
TABLE 3

Under the Select Goal tab, you can perform the following actions:

 Select goal(s) from the available list.

 Select the All option to select all the goals of the current methodology.

 Select the None option to deselect all the goals of the current
methodology.

After selecting the required goal(s), click the Run Selected Goal(s) option to
run the selected goal(s).

The Atrenta Console displays the Sequential Mode dialog, if you have
selected multiple goals.

When you select goals for analysis and place the cursor on the Run Selected
Goal(s) link, a tool-tip appears displaying the total number of selected
goals, name of goals, and the methodology/sub-methodology from which

Field Name Description
Setup Status Displays whether you need to set up the parameters and

constraints for the selected goal. If the setup status of a goal
is Setup Optional, you may or may not set the parameters for
that goal. However, if the setup status of a goal is Setup
Recommended, this means that the goal requires some
additional steps. SpyGlass enables you to perform these
steps through a setup wizard (see Setting up the Goal
section for details).

Run Status Displays whether the selected goal was run. When you click
the Run Selected Goal(s) link, the status of the selected goal
changes to Running. However, when the run is completed,
then the run status changes to Completed. In addition, the
run status displays the total violation count based on
severity.
The Run Status for the sub-methodology displays the goals
selected for the methodology
NOTE: The run status also appears on the status bar.

Prereq. Goals Displays the goal that should run before the selected goal
runs.
66
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
you selected the goals.

If multiple goals of different products are run together, the behavior of the
run depends on their respective rule’s synthesis modes. For more
information, refer to the design-read Synthesis Flavor section of the Atrenta
Console Reference Guide.

Selecting a Goal in Batch Mode

You can run a goal in batch mode by specifying the following command:

spyglass -batch -project <project_file> -goal <goal_name>

You can also run multiple goals by specifying the following command:

spyglass -batch -project <project_file>
-goal <goal_name1>, <goal_name2>

Modifying a Goal

You can modify a goal by:
 Enabling or Disabling Rules of a Goal

 Adding Rules in a Goal

 Editing Parameter Values of a Goal

Enabling or Disabling Rules of a Goal

To enable or disable rules of a goal, right-click on a goal appearing under
the Select Goal tab, and select the Enable/Disable Rules option from the
shortcut menu. This displays the Edit Rules dialog containing all rules
(enabled and disabled) for the selected goal.

The following figure shows the Edit Rules dialog for the connectivity
goal:
67
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 18. Edit Rules for Connectivity

In the above dialog, you can:

 Enable a goal by clicking adjacent to a goal name. This enables the
goal and appears adjacent to the goal name.

 Disable a goal by clicking adjacent to a goal name. This disables the
goal and appears adjacent to the goal name.

Adding Rules in a Goal

To add rules in a goal, right-click on the goal and select the Add Rule(s)
option from the shortcut menu. This displays the Edit Rules dialog for the
goal.
68
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
The following figure shows the Edit Rules dialog for the connectivity
goal:

FIGURE 19. Edit Rules for Connectivity-Search

In the above dialog, the right-most section displays rules for the selected
goal and the left-most section is the Search section used for searching rules
to be added in a goal.

To add rules in a goal, perform the following steps:
1. Search for a rule that you want to add in a goal in the Search section.

This step is similar to searching rules in the MCS window. For details,
see Searching Rules.

Search section
69
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Depending upon the specified search criteria, rules appear in the Search
section, as shown in the following figure:

FIGURE 20. Search Results

2. Select the required rules from the Search section.
You can select multiple rules by pressing the <Ctrl> key and clicking the
required rules.

3. Right-click on the selected rules, and select the Add Rule(s) to Goal option
from the shortcut menu.

Alternatively, you can select the Add Rule(s) to Goal option in the Search
section.

After performing the above steps, the specified rules appear in the selected
goal.

Editing Parameter Values of a Goal

To edit parameter values for various rules of a goal, right-click on that goal
and select the Edit Parameter(s) option from the shortcut menu. This displays
the Edit Parameter(s) dialog for that goal.

The following figure shows the Edit Parameter(s) dialog for the
connectivity goal:
70
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 21. Edit Parameters for Connectivity

The above dialog displays parameters and their values for the current goal.

Viewing Different Types of Parameters List

The above dialog contains the Show drop-down list from which you can
select any of the following options:

In addition to the above options, the Show drop-down list also contains rule
names that are enabled for the selected goal. You can select the required
rule to view all parameters applicable for that rule.

Editing Parameter Values

Modify a value for a parameter in the Value column adjacent to a
parameter.

Option name Purpose
Common Parameters (Default) Select this option to view commonly used

parameters of the selected goal.
Other Parameters Select this option to view parameters that are not

commonly used for the selected goal.
All Parameters Select this option to view all parameters (common and

un-common) of the selected goal.
71
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
If you want to assign all the parameters to their respective default values,
click the Restore Defaults option.

Running Custom Goals

Custom goals are user-defined goals that you can create by using the
define_goal command in a project file.

Custom goals appear under the Select Goal tab parallel to the existing goals
list.

For example, consider that you specify the following command in a project
file:

define_goal CUSTOM_GOAL_1 -policy { lint } {
set_parameter abc def

}

When you load this project file, the CUSTOM_GOAL_1 goal appears under
the Select Goal tab as shown in the following figure:

FIGURE 22. Select Goal

Running Goals in Parallel

You can run multiple goals in parallel on different machines.

To enable parallel execution of goals, perform the following actions:
72
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 Set the value of ENABLE_PARALLEL_RUN key to goal in the
.spyglass.setup file:

ENABLE_PARALLEL_RUN = goal

By default, this key is set to none and parallel execution of goals is
disabled.

 Specify a host configuration file by using the -host_config_file
command-line option. For details on this option, refer to Atrenta Console
Reference Guide.

You can specify this file by using the HOST_CONFIG_FILE key in
.spyglass.setup file:

HOST_CONFIG_FILE = <path-of-config-file>

Alternatively, you can specify or edit this file in the Specify host_config_file
field in the Miscellaneous page of the Preferences dialog.

When you set the ENABLE_PARALLEL_RUN key to goal, the Run in
Parallel option appears under the Select Goal tab, as shown in the following
figure:

FIGURE 23. Run Selected Goal(s)

To run the selected goals in parallel, select the Run in Parallel option and
click the Run Selected Goal(s) option.
73
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Please note the following points:

 If the login type in the specified host configuration file is lsf, do not
specify the -I option of bsub command in the LSF_CMD keyword.

 Parallel goal run is not supported in the DEF mode.

When you run goals in parallel, following project files are created:
 <project_name>_modified.prj: This is the modified project file,

using which you can run the goals in parallel. This file contains all the
user settings and data required for all the goals.

 <project_name>_temp.prj: This file contains the default settings.
Initially, the default settings are saved and goals are run with the new
(modified) project <project_name>_modified.prj. Once the parallel run
is complete, the settings specified in the <project_name>_temp.prj file
are used for the subsequent runs.

Peak Memory Reduction During Parallel Goal Run

Normally, during parallel goal run, design read happens during first goal
run. You can use the parallel_run_options option to specify the
mode in which parallel run design read is performed. Currently, the
separate_design_read value is supported for this option.

Consider the following example:

sg_shell> set_option parallel_run_options
separate_design_read

When you set the value of this option to separate_design_read, a
separate design read is performed and NOM DB is saved, during design
read. This can help in reducing the PEAK memory requirement.

Goals are then run in parallel in NOM restore mode.
NOTE: Currently, separate design read is done for goals that use the classic view of

synthesis and is not available for the goals that need techmapped or optimized
synthesis.

Running Goals in Parallel in Batch

To run goals in parallel, perform the following actions:

 Set the ENABLE_PARALLEL_RUN configuration key to goal in
.spyglass.setup.
74
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 Specify the -parallel_run command-line option and a list of goals
to run in parallel in the batch mode.
In addition, specify a host configuration file in batch by using the
-host_config_file command-line option if the file is not specified
by using the HOST_CONFIG_FILE key in .spyglass.setup.

Please note the following points:
 Parallel goal run in batch is enabled only if you have specified the

-parallel_run command-line option as well as set the
ENABLE_PARALLEL_RUN key to goal in .spyglass.setup.

 If you specify the -host_config_file option but do not specify the
-parallel_run option, the -host_config_file option is ignored
and parallel goal run is not enabled. In addition, a warning appears in a
tool-tip.

 SpyGlass run aborts if you do not specify a host configuration file either
by using the -host_config_file option in batch or setting the
HOST_CONFIG_FILE key in .spyglass.setup.

 Atrenta Console ignores the HOST_CONFIG_FILE key if the
ENABLE_PARALLEL_RUN key is set to none.

Format of Configuration File Containing Parallel Goal Run Settings

The format of the configuration file containing parallel goal run settings in
is same as that of the configuration file used to perform distributed runs of
advanced SpyGlass CDC solution rules on several machines.

This configuration file is an ASCII text file that contains specific lines for
different methods, as discussed below:
 For LSF method

The LSF method contains the following lines:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
LSF_CMD: <bsub-command>

Syntax Rules

 You must add a space after LOGIN_TYPE: and MAX_PROCESSES
75
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 The # and // symbols are supported as comments in the config file

NOTE: Currently, only the qsub command is supported for LSF protocol. To use the
qsub command, see Using the qsub Command During Parallel Goal Run
through LSF.
Following table contains details of various arguments of the above lines:

Following is an example of the LSF method:

LOGIN_TYPE: lsf
//LOGIN_TYPE: rsh
MAX_PROCESSES: 5
LSF_CMD: bsub -q "normal | priority"
//LSF_CMD: bsub -q bsub

In the above example, the -q option is used to specify the queue as
normal or priority.

 For RSH and SSH methods
The RSH and SSH methods contain the following lines:

LOGIN_TYPE: rsh | ssh
MAX_PROCESSES: <num>
MACHINES:
<machine1-name>[:<num-processes>]
<machine2-name>[:<num-processes>]
...

Syntax Rules

 You must add a space after LOGIN_TYPE: and MAX_PROCESSES

 The # and // symbols are supported as comments in the config file.
The following table contains details of various arguments of the above
lines:

Argument Description
<num> Specifies the maximum number of processes to be

spawned. This is a mandatory argument.
<bsub-command> Specifies the LSF invocation command.

By default, the value of this argument is bsub.
76
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
NOTE: If the login type is SSH, the SSH_ID_FILE file contains login details for the SSH
login so that login does not require user name and password. Check the man
page for the ssh login on how to generate this file.
Following is an example of the SSH method:

LOGIN_TYPE: ssh
#LOGIN_TYPE: rsh
MAX_PROCESSES: 5
MACHINES:
engr1: 1
#engr2: 1
ae3: 1
condor1: 4

Using the qsub Command During Parallel Goal Run through LSF

The qsub command is not inherently supported while running goals in
parallel through LSF protocol. You can still, however, use qsub by writing a
wrapper script (say qsub_wrapper) over qsub and specifying it as an
LSF command in the parallel run configuration file. This wrapper script
would dissect the inputs sent to it by SpyGlass and create a command line
suited to qsub.

Parallel run configuration file appears as the following:

LOGIN_TYPE: lsf
MAX_PROCESSES: <num>
LSF_CMD: qsub_wrapper

Argument Description
<num> Specifies the maximum number of processes to be

spawned. This is a mandatory argument.
<machine1-name>,
<machine2-name>

Specifies machine names
If you want to run goals on the current machine itself,
do not specify the MACHINES keyword and machine
names.
In this case, Atrenta Console ignores the LOGIN_TYPE
keyword.

<num-processes> Specifies the number of processes to be spawned on
the specified machine
By default, the value of this argument is 1.
77
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Ensure that the directory containing qsub_wrapper script is present in
your path variable.

The qsub_wrapper script appears as follows:

#!/bin/sh
script=/tmp/my_script$$
outputfile=
spyglass_cmd=
while [$# -gt 0];
do
 case $1 in
 -o)
 shift;
 outputfile=$1
 ;;
 -K) ;;
 *)
 if ["X${spyglass_cmd}" != "X"]; then
 spyglass_cmd="${spyglass_cmd} $1"
 else
 spyglass_cmd=$1
 fi
 esac
 shift;
done
\rm -f ${script}
echo "#!/bin/sh" > ${script}
echo "#PBS -o ${outputfile}" >> ${script}
echo "${spyglass_cmd}" >> ${script}
qsub -V ${script}
\rm -f ${script}

The above qsub_wrapper script generates the /tmp/my_script<process_id>
file, which is used as an input to the qsub LSF command. This file appears
like the following:

#!/bin/sh
78
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
#PBS -o output.txt
$SPYGLASS_HOME/bin/sg_shell -32bit -tcl test.tcl

Enabling Parallel or Sequential Goal Run

Specifying the -parallel_run command-line option enables parallel
goal run flow. However, depending upon whether you specify a parallel
configuration file and set the ENABLE_PARALLEL_RUN configuration key,
SpyGlass may report errors or run goals serially or in parallel based on the
following situations:

 If you set the ENABLE_PARALLEL_RUN configuration key to none,
the specified goals are run sequentially on the current machine.

 If you set the ENABLE_PARALLEL_RUN key to goal, SpyGlass
reports an error message and prompts you to specify a parallel run
configuration file, if not specified.

In this case, use the -host_config_file command-line option to
specify a parallel run configuration file.

 If you set the ENABLE_PARALLEL_RUN key to none, SpyGlass runs
goals sequentially on the current machine after prompting that the
-host_config_file command is ignored.

Sanity Checks Performed During Parallel Goal Run

Atrenta Console performs certain checks during parallel goal run and
reports a violation in the following cases:
 If parse errors are found in the parallel run configuration file.

 If an invalid login type is specified in the LOGIN_TYPE keyword.

 If LSF run is unsuccessful with the specified command.

 If process count is not a positive integer value.

 If none of the machines specified in the RSH/ SSH protocol is accessible.

 If certain machines are not accessible.

 If the LOGIN_TYPE keyword is not specified in the parallel file.

 If an error occurs while executing the LSF bsub command.
79
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 If no goal list is specified in the run_goal command, but the
HOST_CONFIG_FILE key is set, Atrenta Console ignores the
-host_config_file command, as parallel goal run is not enabled. In
addition, Atrenta Console runs the currently selected goal on the current
machine.

 If the ENABLE_PARALLEL_RUN key is set to none and a goal list is
specified in the run_goal command, but the HOST_CONFIG_FILE
key is set.

In this case, Atrenta Console ignores the -host_config_file
command as parallel goal run is not enabled. In addition, Atrenta
Console runs the goals sequentially on the current machine.

 If the ENABLE_PARALLEL_RUN key is set to none, but goal list is
specified in the run_goal command.
In this case, parallel run is not enabled and goals are run sequentially on
the current machine.

 If the ENABLE_PARALLEL_RUN key is set to goal, but neither the
host configuration file is supplied in the run_goal command nor the
HOST_CONFIG_FILE key is set.
In this case, Atrenta Console aborts the parallel goal run because
parallel run settings are not specified.
To fix this issue, you must specify parallel run settings by using the
-host_config_file command or the HOST_CONFIG_FILE
configuration key.

 If the run_goal command fails because goals pertaining to different
synthesis modes cannot be run together.

 If all goals pertain to the same synthesis mode, they may contain design
options or goal options that can cause NOMDB or netlist object model
database to be saved again. Such mixing of goals is not allowed.

Run-Time Advantage from a Parallel Goal Run

Parallel goal run should give significant time improvement over running the
goals sequentially. In an ideal scenario, if all goals are run in parallel, we
should see the overall parallel run time equal to the runtime of the goal
that takes maximum time when run individually.
80
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
However, in actual parallel run environment, the runtime is more than the
ideal situation because of the following factors:
 Parallel goal run is limited by the number of available machines, and

also by the number of processes allowed to be run on a given machine.
If you want to reduce the parallel runtime further, increase the machine
pool available for parallel goal run, and update your parallel run
configuration file accordingly.

 There may be some interdependencies among the goals specified for
parallel run, which could delay running of a goal until its dependent
goals have been run.

 Parallel goal run requires some initial setup stage where goals are
checked for their synthesis view requirement and any disk write
operations, such as design precompilation and design save, are
performed. Such setup activities are critical to ensure there are no disk
read/write operations at the same time from different goals when these
are running in parallel.

In parallel goal run, each goal loads policies/design independently. The
time spent in parallel run setup (described in the last point above) plus the
time taken by policies/design load for each parallel goal, should get offset
in parallel goal run if rule-checking time is significant, because rules are
running in parallel.

Viewing Directories Created After Goal Run

Once the goal run is complete, Atrenta Console creates the following
directories:
 A directory by the name of the selected methodology under the

<project-name> directory.

 A sub-directory by the name of the selected goal.

 Equal number of directories by goal names if you have selected multiple
goals.
81
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Central Design Setup
Most types of analysis in SpyGlass require additional design intent
information to that provided by the design HDL and technology libraries.
You can provide such information by using the setup wizard under the
Central Setup tab.

The setup wizard provides you step-by-step guidance to supply additional
design intent information. Most of this information is present in the form of
SpyGlass design constraints saved in .sgdc files. Using this wizard, you can:

 Specify black boxes, clocks, and resets information that can be later
used with the goal runs.

 Specify technology-specific design intent information by using various
goal-specific wizards.

Follow the steps in the setup wizard as completely as possible. If a step
requires information that is not readily available, you can skip that step
initially. Such steps appear later in the goal-specific setup wizards, when
required.
82
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
When you click on the Central Setup tab, the initial page of the setup wizard
appears, as shown in the following figure:

FIGURE 24. Central Design Setup - Introduction

In the above figure, the left pane displays an index of steps of the Central
Setup wizard, and the right pane displays the description or instructions for
that step. You can navigate through this wizard either by clicking on the
steps directly or by clicking the Back/Next buttons.

NOTE: Some steps have prerequisite steps, and the wizard warns you if you do not follow
those prerequisite steps.

Following is an overview of the steps of this setup wizard:
1. Resolve Blackboxes step

SpyGlass allows undefined modules to be left as black boxes. In many
cases, however, the analysis remains incomplete if there are any
unintentional black boxes in the design. Therefore, it is important to
confirm that all black boxes are expected. To avoid unintentional black
83
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
boxes, this step finds all the black boxes through design synthesis and
provides guidance on how a real model can be provided.

Click the Next button to run SpyGlass, and find all the black boxes in the
design. If you have run SpyGlass earlier:

 Click the Yes button to run SpyGlass again or

 Click the Show Last Results button to view black boxes detected in the
last run.

After this, SpyGlass lists all the black boxes in a spreadsheet view, as
shown in the following figure:

FIGURE 25. List of Blackboxes

In the above spreadsheet, black boxes information appear with type,
cause, and potential remedy, in addition to other details.
To resolve or waive a black box, right-click on the black box name
appearing in the Module field, and select the appropriate option from the
shortcut menu.

2. Blackbox Connectivity step
This step models how black boxes are logically connected with the rest
of the design.
The following figure shows the page appearing during this step:
84
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 26. Central Design Setup - Blackbox Connectivity

In the above page, you can create two types of constraints,
assume_path and mapped_pin_map, for each black box. You can
refer to the HTML Help window that guides you in generating these
constraints for black boxes.

This page also contains the SGDC Editor dialog in which you can write the
constraint specifications for a black box. In addition, you can display an
existing SGDC file in this dialog by clicking the button to select an
SGDC file in the Append to SGDC File section. Once the required SGDC file
is loaded in the SGDC Editor, you can make the required modifications in
that file.

NOTE: You can use the SGDC files generated in this step for other goal setup steps.

3. Design Clocks step
This step enables you to provide SGDC files or enable auto detection of
clocks. Atrenta Console displays the following screen during this step:
85
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 27. Central Design Setup - Design Clocks

In the above page, you can perform the following:
 Provide SGDC files with clocks, resets, and other relevant constraints,

if you have any.

To provide SGDC files, select the Yes option corresponding to the Do
you have any SGDC files label.

NOTE: You can use constraints created for other SpyGlass products.

 Provide sdc_data constraint to import SDC files

To provide existing SDC files, select the Yes option corresponding to
the Do you want to import constraints from SDC files label.

The following example provides the sdc_data constraint in an
SGDC file:

sdc_data -file "sdcfile.sdc"
86
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
NOTE: SDC file specified in the sdc_data constraint must exist.

 Identify potential clocks in the design

To find all the clocks in the design, select the Yes option
corresponding to the Identify potential clocks used in the design label.
However, if you have already provided a constraint file and do not
want SpyGlass to find more clocks, select the No option.

After selecting the required options, click the Next button. If you have
selected the Yes option corresponding to the Do you have any SGDC files
and/or Do you want to import constraints from SDC files labels, Atrenta
Console displays the following screen:

FIGURE 28. Central Design Setup - Importing Constraints

Here, Atrenta Console displays a list of the SGDC files that you have
added during the Design Setup stage. You can append more SGDC files to
this list by clicking the Add SGDC File(s) link.
When you select any SGDC file in this list, Atrenta Console displays the
contents of that SGDC file in the Edit File section. You can then make the
required modifications for that SGDC file, and save the changes. Atrenta
87
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Console provides various options (such as New File, Save, Save As, etc.)
on the left side of the Edit File section, in which you can perform various
actions.

Once you have specified the SGDC files, click the Next button. This
displays a screen in which you can analyze the clock trees, and tune the
clock definitions. You can skip this step by clicking the Skip button.
However, to proceed with this step, click the Yes button. When you click
the Yes button, Atrenta Console displays the results, as shown in the
following figure:

FIGURE 29. Central Design Setup - Analyzing Clocks

In the above setup page, click on a clock in the Clock Sources section to
view all its cones in the Clock Cones section. You can also click on a cone
in the Clock Cones section to view all its clock drivers in the Clock Sources
section.

NOTE: Clock cone is the net in the path that is driving clock pin of sequential ele-
ment(s).
88
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
In the Instance Count field under the Clock Cones section, the following
convention is used to denote different types of objects:

Ensure that you remove improper clocks, add missing clocks, put
synchronous clocks into the same domain, set the correct frequencies,
mark test clocks, and save the final clock information in the SGDC file.
You can specify missing constraints in clock path.

4. Design Resets step
This step enables you to set up asynchronous resets in the design.

You can skip this step by clicking the Skip button. However, to proceed
with this step, click the Yes button. When you click the Yes button,
Atrenta Console displays the following screen:

FIGURE 30. Central Design Setup - Design Resets

F Flip-flops
B Black boxes
L Latches
C Sequential cells in the clock cone path
89
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
SpyGlass extracts asynchronous resets of the design in the
autoresets.sgdc file. Here, you can review, edit, and finalize the reset
constraints.

5. Blackbox Clocking step
This step enables you to model clock domains for black boxes that have
more than one clock pins. The following page appears during this step:

FIGURE 31. Central Design Setup - Blackbox Clocking

Modeling a black box is necessary for advanced clocking and Clock
Domain Crossing (CDC) analysis. Run this setup step only if test
analysis will run. Otherwise, you may skip this step.

In this step, you can refer to the Help section to see the steps to model
black boxes.

6. Blackbox Power step
This step enables you to specify the constraints for black box power.
90
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
This step is similar to the previous step in which you can select the
required constraint from the Select Constraint drop-down list, and then
specify the values for various arguments of the selected constraint.
The following page appears during this step:

FIGURE 32. Central Design Setup - Blackbox Power

After specifying the required constraints for black box power, click the
Next button.

7. Blackbox Test step
This step enables you to model a black box for test analysis. Run this
setup step only if test analysis will run. Otherwise, you may skip this
step.
The following page appears during this step:
91
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 33. Central Design Setup- Blackbox Test

Modeling a black box for test analysis involves categorizing the following
black box types:
 Clock generators

 Clock gating cells

 Resistive cells

 Other black boxes
Each of the above black box type requires different type of constraints.
Since these types are mutually exclusive, they appear in four different
screens.

You can refer to the help in the Help section to see the steps for
modeling each type of black box.

8. Setup Closure step
This step enables you to run a sanity check to check if you have
specified constraints properly. You can skip this step by clicking the No
92
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
button. However, if you want to proceed with this step, click the Yes
button.

After successfully completing the setup closure step, click the Finish
button to close this wizard.
Now, the design has been setup for black boxes, and you can now
review the SGDC files and go to the Select Goal step to setup or run the
other goal(s).

Setting up the Goal

Setting up a goal includes setting up the recommended parameters and
specifying the required constraints for a goal.

Determining Parameter Precedence

A particular parameter may be assigned a different value in the goal file,
project file, and while setting up a goal. In such cases, Atrenta Console
gives precedence to parameter value in the following order (starting from
the highest priority)
 Parameter value set during the goal setup stage

 Parameter value specified in the project file

 Parameter value specified in the goal file (.spq)

Setting Parameters and Constraints for Selected Goal

To set the parameters and constraints for the selected goal(s), click the
Setup Goal tab.

NOTE: The Setup Goal tab is enabled only when the anchor (the blue bar) is on a goal.

Atrenta Console provides guidance in the steps for setting up goals for
which the status appears as Setup Recommended. The setup is done through
the <goal-name>_setup.sgs file. This file is present in the same directory as
that of the goal in the methodology directory hierarchy. It is recommended
that whenever you copy methodologies, either from Methodology
Configuration System window or manually, you should also copy .sgs files for
93
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
the goal setup steps to run.

To use the wizard to set up a goal, perform the following steps:
1. Select a goal that requires additional setup steps and click the Setup Goal

tab.
The following setup wizard appears:

FIGURE 34. Setup Goals

NOTE: You can click the Edit Settings Directly button to skip the wizard.

2. Click Run Setup Wizard button to run the wizard. The Setup Summary
page appears, as shown below.
94
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 35. Setup Wizard - Setup Summary

The Setup Summary page is divided into the following three sections:
 The left section displays a sample SGDC file and the recommended

constraints for the selected goals appear under the Recommended
Constraints. When you left-click, the help link located next to a
constraint the help related to the constraint appears in the right
section of the Constraints page.

You can enable or disable a constraint by selecting the Enabled for Goal
or Disabled for Goal option, respectively, from the drop-down list in the
Status field. You can also toggle goal status of the SGDC file by right-
clicking the file name and selecting the Globally Enable File or Globally
Disable File option from the shortcut menu.
To add a constraints file, perform the following steps:

a. Click the Add SGDC File(s) link.

The Add File(s) dialog appears, as shown in the following figure:
95
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 36. Setup Wizard - Add File(s)

b. Browse to the directory that contains the SGDC files and select the
required SGDC file.

c. Click the Add button.

To add all SGDC files, click the Add All button. The selected SGDC files
are appear in the Setup Summary page.
Alternatively, right-click on the Setup Summary page and select the
Add Constraint File(s) option from the shortcut menu to add a
constraints file.

NOTE: Whenever a new constraint file is added during the goal setup stage, that file
is considered as local, that is, enabled for the current goal only. To change
the status of this file to global, right-click the file name and select the Glob-
ally Enable File option from the shortcut menu.

To delete a constraints file, select the constraints file and click Delete
File link. Alternatively, right-click on the constraints file and select the
Delete shortcut menu option or click the <Delete> key on the keyboard.

The leftmost pane also contains a sub section, Other Goal Command
Line Options. In this section, you can provide the goal specific options
that are applicable to the scope of a specific goal.
96
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 The middle section displays the source of the .sgdc file. You can edit
the file and click Save to save the file.

To create a constraints file, right-click the New File link. The Open New
File dialog appears, in which you can specify the name of the file.
After specifying the required details, click the Open button. The new
file appears in the left section of the Constraints window. Next, you can
enter the code for the new constraints file and click Save to save the
file. You can also click the Save As link to save the file to a different
location.

You can also use the Cut, Copy, and Paste links to copy the text in the
Constraints to any text editor.

 The right section displays the help related to the constraint displayed
under Recommended Constraints.

3. After adding the constraints file, click Finish. To move back to the
previous screen of the Setup wizard, click Back. You can also click the
Restart button to go back the first step of the Setup wizard.

When you click the Restart button, Atrenta Console displays a dialog that
prompts you to confirm whether you want to reset the settings for the
current goal. In this dialog, click the Yes button to clear the settings for
the selected goal and go back to the first step. Click the No button to go
back to the first step with the current settings.

NOTE: You can click the Close button at any step to proceed directly to the Constraints
Summary page.

When you set a goal by using the Setup Wizard (or click Edit Settings
Directly button), the Constraints Summary page appears, as shown in the
following figure.
97
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 37. Setup Wizard - Constraints Summary

The Constraints Summary page displays the SGDC files that you have
included for analyzing your designs for the selected goal.

Like the Setup Summary page, the Constraints Summary page is divided
into three sections as follows:
 The left section displays the selected constraints. If you have not used

the Setup wizard to specify the constraints, you can add the constraints
in this section by clicking the Add SGDC File(s) link or by right-clicking
anywhere on the section and selecting the Add Constraint File(s)... shortcut
menu option.

 The middle section displays the parameters that you need to set for the
selected goal. By default, this section displays the recommended
parameters that you need to set for the selected goal. You can, however,
view the common parameter list by clicking the Show drop-down list and
selecting the Common Parameters option. In addition, you can view the
complete list of parameters that can be set for the selected goal by
selecting the All parameters option from the Show drop-down menu.

NOTE: The Recommended Parameters option is not available for goals that do not
require additional setup steps.

 When you select a parameter, the right section displays the help related
to that parameter.

You can click the Restore Goal settings button to deselect the constraints,
98
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
restore the parameters to their default values, and restore all the settings
of the current goal.

For a goal that requires additional setup, you can copy the settings
(constraints, parameters, and other settings) from another goal that has a
similar setup so that the settings can be reused. To do this, click the Import
Goal Settings button. Then the Select the goal whose setting you wish to import
dialog appears as shown in the following figure:

FIGURE 38. Setup Wizard - Import Goal Settings

Select the required goal whose setting you want to import and click Import.

You can click the Return to Setup Wizard button to navigate to the first step of
the Setup Wizard.

NOTE: This button is visible only if you have set the constraints using the Setup Wizard.

During the Goal Setup closure step, you can select the SGDC files created in
the previous steps, and pass them to the current goal run, or you can
create a top-level SGDC file to be used in some other project. You can do
this by using the following screen of the setup closure step:
99
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 39. Setup Wizard - Add SGDC File(s)

In the above screen, the Filename section displays a list of SGDC files. If
you click the Next button, the selected SGDC files in this section are
globally enabled.

Now, to specify an SGDC file in which you can add the contents of the
selected SGDC files appearing in the Filename section, select either of the
following options:
 Select an existing top-level SGDC file from other location

Select this option to load an existing top-level SGDC file.

 Create a new toplevel SGDC File option.
Select this option to create a new top-level SGDC file.

Once you have specified an SGDC file, you can select the following options:

 Copy content in top level SHDC File instead of including the file link
Select this option to copy the contents of the selected SGDC files,
appearing in the Filename section, in the specified SGDC file.

 Overwrite existing content in the file
Select this option to overwrite the contents of the specified SGDC file
with the contents of the selected SGDC files appearing in the Filename
section.

If you do not select any of the above options, Atrenta Console adds a link
100
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
of the selected SGDC files in the specified file.

Performing Sanity Checks for Parameters

Atrenta Console performs sanity checks on parameter values to indicate an
invalid parameter value. If you enter a wrong value for a parameter, the
color of that parameter changes to red. Placing the mouse pointer over
that parameter displays a balloon help window that contains a brief
description about the valid values that can be entered for the rule
parameter. These checks are applicable only for rule parameters that do
not take design related inputs, such as integers, floating values,
alphanumeric strings, and so on.

NOTE: Currently, only the SpyGlass Base products, SpyGlass CDC solution, and the
SpyGlass DFT solution have implemented this check. The parameter sanity
checking will be available for other products in a future SpyGlass release.

Using the Dual Design Read (DDR) Flow

The DDR flow is a capability of reading two designs simultaneously in a
single SpyGlass run, and perform a variety of comparative analysis on
these designs.

The first design is called the reference design as it is the golden input, and
the second design is called the implementation design as it is the design
under analysis.

This flow is used by the following features in SpyGlass:
 SDC Equivalence Analysis

It is used to compare two different SDC files for pre-layout and post-
layout design snapshots.

 Sequential Equivalence Checking (SEC)
It is used to sequentially compare the original design and its
corresponding power-optimized design to ensure that both the designs
are functionally equivalent.

You can implement the DDR by using the setup wizard under the Setup Goal
tab. This setup assumes that you have already read in the implement
design during design read. In this setup, you can set up the SGDC file for
the implement design, and then specify the reference design against which
101
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
the equivalence needs to be done.

When you click the Setup Goal tab, the following screen appears:

FIGURE 40. Setup Wizard - Goal Setup for Analysis Run

In the above screen, click the Run Setup Wizard button. This displays the
first screen of the setup wizard that provides a brief overview of SDC
Equivalence Dual Design. Click the Next button to proceed to the next step.
The details of the subsequent steps of this setup wizard are discussed
below:
1. Configure SpyGlass Design Constraint File step

This step enables you to configure your SGDC file correctly. During this
step, the following screen appears:
102
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 41. Setup Wizard - Configure SGDC File

If you want to specify SDC and/or SGDC file, select the Yes option
corresponding to the labels, Do you have SDC file and/or Do you have a
SGDC file, respectively. After selecting the Yes option, click the Next
button. This displays a screen containing a textbox in which you can
specify the required file. Once you have specified the required file, click
the Next button. You can also skip this step without specifying any file by
directly clicking the Next button.
103
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
When you click the Next button, the following screen appears:

FIGURE 42. Setup Wizard - Setting the Constraints

In the above screen, you will set the SGDC constraints. Here, a list of
SGDC files appear that were specified during the design read step. You
can add more SGDC files to this list by clicking the Add SGDC File(s) link.
By default, each SGDC file is enabled for the goal. You can disable an
SGDC file for the goal by selecting the Disable for Goal option from the
drop-down list appearing in the Status field.
When you select an SGDC file in this screen, contents of that file are
displayed in the Edit file section. In this section, you can perform the
required modifications in the SGDC file. On the left side of this section,
Atrenta Console displays various links to perform different actions.

After performing the required actions, click the Next button to proceed to
the next step.

2. Set Reference Design step
In this step, you provide the source file list of your reference design
along with all the associated SGDC files. The first screen of this step
displays an HTML help providing a brief introduction of this step. Click
the Next button to proceed to the next screen, as shown in the following
figure:
104
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 43. Setup Wizard - Set Reference Design

Here, click the Add File(s) link to add a reference design source list.
To modify a reference design source list, click on that source list file.
This displays the content of the file in the Edit file section. In this section,
you can perform the required updates.
If the reference design was previously analyzed in Atrenta Console and
the HDL files are listed explicitly, that project file can be added instead
of the source list file. It is recommended to run the reference design
through the design read process before being used with SDC
Equivalence analysis. This will help ensure that the reference design
itself is complete and lint-clean.

After specifying the reference design, click the Next button to proceed to
the next step.

3. Set Parameters step
This step is used to generate the design equivalence file. This file maps
ports, registers, and any intermediate design object used in the SDC
files of one design to another. At the end of the run, you can review the
generated file.
The following screen appears during this step:
105
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 44. Setup Wizard - Set Parameters

If you already have a design equivalence file that you want to use,
select the No button in the above screen, and specify the file in the next
step. However, if you want to generate the design equivalence file, click
the Yes button.
After generating the design equivalence file, SpyGlass displays the
results in the Results section, as shown in the following figure:

FIGURE 45. Setup Wizard - Generating Design Equivalence File
106
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
In the above figure, note the two extra links, Reference Modular Sch and
Reference Incremental Sch. Click on these links to display the Reference
Schematic and Reference Modular Schematic windows, respectively. These
schematic windows enable you to compare the two given designs
(implementation design and reference design). In addition, the Tools
menu is changed to display the schematic options, Implement Modular
Schematic, Implement Incremental Schematic, Reference Modular Schematic,
and Reference Incremental Schematic.

Click the Next button to display a list of equivalent objects that are
inherited from equivalence file and a list of equivalent objects that are
found based on names, as shown in the following figure:

FIGURE 46. Setup Wizard - List of Equivalent Objects

Now, click the Next button.
4. Setup Closure step

In this step, click the Finish button to close the setup wizard.
107
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Incremental Mode Analysis

The Incremental Mode Analysis is useful if you want to compare the results
of two goal runs.

In some situations, you may want to compare the results that are
generated before and after some changes were made to the design. For
example, after making certain changes to the design, you may want to
check if these changes cause some new violation message to appear, which
were not present before the changes.

When the Incremental Mode option is set, Atrenta Console compares the
results of the current goals run against the results of a previously run goals
(which could be a previous run in the current session of Atrenta Console or
an isolated run previously saved in some other area by same/different
user).

To perform Incremental Mode Analysis, select the Incremental Mode button
on the left section of the Setup Summary page.

After the analysis is performed (in the Analyze Results stage) with the
Incremental Mode option set, the violation messages in the Message Tree
are categorized into the following categories:
 New Messages

These are the additional violation messages that were not reported in
the previous run but have been reported in the current run.

 PreExisting Messages
These are the violation messages that were reported in the previous run
as well as the current run.

NOTE: You can disable the grouping of messages after analysis (in the Analyze Results
stage) by deselecting the Incremental Mode button. Then, the messages will no
longer appear as grouped in the above two categories.

To specify a previous version of the reference VDB file that is present in its

respective run directory, click () and browse to the location containing
both VDB file and corresponding spysch directory.

If you do not specify a reference VDB file with the incremental mode and
the goal has any previously run VDB file, that file will be used as the
reference VDB file. If the VDB file does not exist and you run a goal in the
Analyze Results stage, a warning message appears indicating that the
incremental mode does not apply and the Incremental Mode button is
108
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
automatically turned off.
NOTE: The Incremental Mode button is also available in the Analyze Results stage.

Setting Up the Goal in Batch Mode

You can setup a goal in the project file by specifying the following
commands on the command-line:

current_goal <goal_name> [-top<top_name>]
set_parameter <parameter> <value>
set_goal_option <option> <value>

Following example explains setting up a goal for SpyGlass CDC product:

current_goal cdc/cdc_verify_struct -top myTop
set_parameter use_inferred_clocks yes
set_goal_option addrule W110

The Methodology Configuration System

Atrenta Console provides the Methodology Configuration System (MCS)
feature that enables you to modify the existing methodologies and create
your own custom methodologies. For more information on MCS, see
Working with Methodologies.

Running Prerequisite Goals

A goal may have one or more prerequisite goals that should run first,
before executing the selected goal.

You can enforce the execution of prerequisite goals to ensure that all the
prerequisite goals are run first, before the selected goal.

To enforce the execution of prerequisite goals, perform the following steps:
1. Select Tools -> Preferences menu option.

This step displays the Preferences dialog.
2. In the Preferences dialog, select the Miscellaneous option.

This displays a list of miscellaneous options, as shown in the following
figure:
109
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 47. Methodology Configuration System - Preferences

3. Select the Enforce Execution of Prerequisite Goals option appearing under
the General category.

4. Click the OK button.

After performing the above steps, if you try running a goal without first
running its prerequisite goal(s), Atrenta Console displays a Warning dialog.
This dialog lists the prerequisite goal(s) that have not yet been run for the
current run.

In this dialog, you can select any of the following options, based on your
requirement:

 Select all required prerequisite goal(s) option to select all the prerequisite
goals.
110
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
 Do not unfree the execution of prerequisite goals option if you do not want to
run prerequisite goal(s).

Working with Scenarios

A scenario is a goal that contains modified settings of a goal. You can
create multiple scenarios for a goal where each scenario represents
different settings for that goal.

For example, you create the scenario, Scenario1, for the
connectivity goal in which you change values of some parameters.
Similarly, you can create another scenario, Scenario2, for the same
connectivity goal in which you can specify certain files, such as VCD
or SGDC files. You can run these scenarios like any other goal.

The advantage of using scenarios is that you can save different settings (in
the form of scenarios) made for a particular goal.

All scenarios for a goal are displayed under the Select Goal tab, as shown in
the following figure:
111
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 48. Run Selected Goal(s)

To work with scenarios, you must first enable scenario support by selecting
the Enable Scenario Support option in the Miscellaneous page of the Preferences
dialog.

Creating Scenarios

To create a scenario for a goal, perform the following steps:
1. Right-click on a goal displayed under the Select Goal tab.
2. Select the Create New Scenario option from the shortcut menu.

The page under the Setup Goal tab appears, as shown in the following
figure:

Default
scenario

Newly created
scenarios
112
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
FIGURE 49. Creating Scenarios

3. Specify the required settings in the above page. For example, you can
change parameter values or add/remove certain files.

4. Click the Create Scenario button.

The Create Scenario dialog appears, as shown in the following figure:

FIGURE 50. Create Scenario - New Scenario
113
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
5. In the above dialog, specify the name of the new scenario to be created.
NOTE: Scenario names can contain only alphanumeric characters, underscore, minus.

6. Click the OK button to close the above dialog.
After performing the above steps, the name of the newly created
scenario appears in the Scenario drop-down list under the Setup Goal tab.

Modifying and/or Deleting Scenarios

You can modify scenario details, updating parameter values and adding/
deleting files. In addition, you can delete the required scenarios.

Modifying a Scenario

To modify a scenario, perform the following steps:
1. Right-click on a scenario appearing under the Select Goal tab.
2. Select the Edit Scenario option from the shortcut menu.

The page under the Setup Goal tab appears. In this page, the name of
the scenario being modified appears in the Scenarios drop-down list.

3. Change the settings for the scenario as per your requirement under the
Setup Goal tab.

After performing the above steps, the selected scenario is updated.

If you want to modify another scenario, select the scenario name from the
Scenarios drop-down list. The settings related to that scenario get loaded.
You can then modify these settings as per your requirement.

Deleting a Scenario

To delete a scenario, right-click on that scenario appearing under the Select
Goal tab and select the Delete Scenario option from the shortcut menu.

Running Scenarios

You can run scenarios in both GUI and batch.
114
Synopsys, Inc.

Stage 2: Selecting a Goal (Goal Setup & Run)

Using Atrenta Console Graphical User Interface
Running Scenarios In GUI

To run a scenario in GUI, select that scenario appearing under the Select
Goal tab, and click the Run Selected Goal(s) option. You can also select
multiple scenarios.

Please note the following points:
 If you only want to run a goal from which all its scenarios have been

created, select the Default Scenario option appearing adjacent to that
goal.

 If you want to run a goal as well as all its scenarios, select the goal
instead of the Default Scenario option of that goal.

Running Scenarios in Batch

To run a scenario in batch, specify the following command:

spyglass -project <project-name>.prj -goal
<goal-name>@<scenario-name> -batch

For example, to run the scenario, s1, of the connectivity goal, specify
the following command in batch:

-project Project-1.prj -goal initial_rtl/lint/
connectivity@s1 -batch

Directory Structure Created After Running a Scenario

The following directory structure is created to store results of a particular
scenario run:

<project-name>/<top-module-name>/<goal-name>/
<scenario-name>
115
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Stage 3: Analyzing a Design (Analyze Results)
This stage enables you to analyze results of a goal run. To view the results,
click the Analyze Results tab. The following figure shows the page under
this tab:

FIGURE 51. Analyze Results Tab

The above page shows information, such as reported messages related to a
particular goal run. If you have run multiple goals, select a goal (whose run
results you want to view) from the drop-down list adjacent to the Run Goal
link in the above page.
116
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Based on the reported messages, perform different actions, such as fixing
violations, waiving a message, or tagging a message. For details, see
Working with SpyGlass Messages.

Editing Source Files

To edit a source file for which a message is reported, perform the following
steps:
1. Double-click on the message.

After this step:
 The source file containing violation reported by that message appears

in the HDL Viewer pane.
 The violating line is highlighted in the source file.

2. Click the in the Navigation bar.
The file appears in an editor window.

3. Edit the file to fix the violation.

Viewing Goal Summary

Atrenta Console displays a high-level goal summary of selected goals,
as shown in the following figure:

You can view the result information in the following formats:
 Balloon View: This view provides the complete design-related

information in a balloon window.
 Detailed View: This view provides a detailed explanation of the

information displayed in the balloon view.
117
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Returning Back to the Goal Setup & Run Stage

After analyzing results, you go back to the Goal Setup & Run stage to
select a different set of goals and run them to see different analysis
results.

Comparing Results of Multiple SpyGlass Runs

Comparing results of two SpyGlass runs enables you to:
 View violations reported in the first run and not reported in the second

run.
This may happen if you have made necessary fixes in the source code or
waived unwanted messages before the second run.

 View new violations that were not reported in the first run but are
reported in the second run.
This may happen if the fixes that you made have errors or you have run
another set of goals.

Use the incremental mode feature to compare results of two SpyGlass
runs.

Introducing the Incremental Mode Feature

Under this feature, Atrenta Console compares messages of the current
goal(s) run against a set of messages (in the specified .vdb file) of an
earlier goal(s) run.

Based on the comparison, messages are displayed under any of the
following categories:

 PreExisting Messages: Messages that exist in both .vdb files.

 New Messages: Messages that exist in the .vdb file of the current run only.

 Fixed/Missing Messages: Messages that exist in the .vdb file of the previous
run only. Such messages are considered as fixed.
118
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Using the Incremental Mode Feature

To use the incremental mode feature, perform the following steps:
1. Run the required goals.
2. Based on the reported violations, perform appropriate actions, such as

modify source files or waive unwanted messages.
This step is optional.

3. Under the Analyze Results tab, select the Incremental Mode option.
4. Click to specify the reference VDB file with which you want to

compare results. For details, see Using the vdb File.
5. Select and run the required goals.

You may re-run the previous goals and/or new goals.

After performing the above steps, SpyGlass reports violations under
appropriate categories. An example is shown in the following figure:

FIGURE 52. SpyGlass Violations

Using the vdb File

Atrenta Console picks the required vdb file in the following ways:
 If you specify a vdb file, that file is considered for comparing results.

 If you do not specify a reference vdb file with incremental mode and the
goal has any previously run vdb file, that file is used as the reference
vdb file.
119
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Atrenta Console automatically disables the incremental mode features in
the following cases:

 If the vdb file does not exist and you run a goal in the Analyze Results
stage, a warning message appears indicating that the incremental mode
does not apply and the Incremental Mode option is automatically disabled.

 If no vdb file of the same name is available in the current working
directory, the incremental mode is automatically disabled.

Comparison Reported in Batch

The comparison reported in batch mode is shown in the following
examples:

Summary of Original Run (Without Incremental Mode)

 Total Number of Generated Messages : 93

 Number of Waived Messages : 11

 Number of Reported Messages : 82

Summary for Second Run (With Incremental Mode Set)

Total Number of Generated Messages : 161

 Number of Waived Messages : 16

 Number of Reported Messages (New) : 63

 Number of Reported Messages (PreExisting): 82

In the above example, the original run generated 93 messages, out of
which 11 messages had been waived. The second run (with incremental
mode set and run with an extra product) generated 161 messages, out of
which 16 messages had been waived and among the reported messages,
82 messages were the same as those reported in the previous run and 63
new messages were reported because of the extra goal being run.

Viewing Different Type of Results

Based on the goal run, Atrenta Console displays appropriate options to
view different results, such as Design Results, SpyGlass CDC Solution Results,
120
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
SpyGlass Constraints Solution Results, SpyGlass TXV Solution Results, SpyGlass
DFT Solution Results, and Power Results.

Design Results

When you point the mouse on the Design option, a tool-tip appears
displaying the following information:
 Total number of black boxes in the design

 Total number of latches in the design

 Total number of flip-flops in the design

When you click the Design option, the Design Information dialog appears as
shown in the following figure:

FIGURE 53. Design Information

In the above dialog, you can perform the following actions:

 Click the Registers tab to view the information about the modules,
latches, and flip-flops present in the design.

 Double-click on a module under the Registers tab to highlight that
module in the Module View Page.

 Click the BlackBoxes tab to view the black box information.

Refer to the Viewing Blackbox Information topic in Atrenta Console
Reference Guide for details on viewing black box information.
121
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
SpyGlass CDC Solution Results

When you point the mouse on the Clock-Reset option, a tool-tip appears
displaying the total number of unsynchronized clocks, resets, and clock
domains.

When you click the Clock-Reset option, the Clock-Reset Information dialog
appears as shown below:

FIGURE 54. Clock-Reset Information

SpyGlass Constraints Solution Results

When you point the mouse on the Constraints option, a tool-tip appears
displaying the total number SDC and SGDC files.

The detailed view is not available for the Constraints option.

SpyGlass TXV Solution Results

When you point the mouse on the TXV option, a tool-tip appears displaying
the following information in a tabular format:
 False paths and multi-cycle paths declared as passed

 False paths and multi-cycle paths declared as failed

 False paths and multi-cycle paths declared as incomplete

 False paths and multi-cycle paths declared as inconclusive

When you click the TXV option, false paths and multi-cycle paths appear in
122
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
a tree format. The tree format has the following parent nodes:
 Node for false paths

 Node for the multi-cycle paths
123
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
The following figure shows the node for false paths:

FIGURE 55. False Path Nodes

The False Path and Multi-cycle Path nodes are further categorized into
Passed, Failed, Incomplete, and Inconclusive sub-nodes that contain the
violation messages.

SpyGlass DFT Solution Results

When you point the mouse on the DFT option, a tool-tip appears displaying
the test coverage and fault coverage for the top modules.

When you click the DFT option, the DFT Information dialog appears, as shown
in the following figure:
124
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface

FIGURE 56. DFT Information

The information in the DFT Information dialog is categorized into the
following columns:

 Instances: Displays instances from the Instance View Page.

 Module: Displays modules present in the design.

 Fault Coverage: Displays fault-coverage data.

 Test Coverage: Displays the test coverage data.

Power Results

When you point the mouse on the Power option, a tool-tip appears
displaying the leakage, internal, switching, and total power of the top-level
design unit.

When you click the Power option, the Power Browser option appears. Click
this option to open the SpyGlass Power Browser window that displays
results related to estimating power.

Refer to the Viewing Power Estimation Results section of SpyGlass Power
Product Family Rules Reference User Guide for more details.
125
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
Viewing Results of Different Scenarios and Goals

To view results of a scenario or a particular goal, select the required
scenario or goal from the drop-down list, as shown in the following figure:

FIGURE 57. Analyze Results - Run Goal

After selecting the required option from the list, click the Run Goal option.
This step runs SpyGlass analysis again and results are loaded under the
Analyze Results tab.

Cross-probing from the Msg Tree Page

The messages listed in Msg Tree page can be cross-probed to other Atrenta
Console windows. To do so, double-click a message in the Msg Tree and the
following cross-probes are created:
 The source file in which the message is reported is highlighted in the

Module View page.

 The source code of the file in which the message is reported is
highlighted in the Source Window.

 The corresponding schematic information (if available, indicated by the
schematic icon) is highlighted in the Modular Schematic Window and the
Incremental Schematic Window.
126
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
NOTE: For more information, refer to the Atrenta Console Reference Guide.

NOTE: Atrenta Console does not allow you to cross-probe to the RTL of encrypted design
units. If you try to cross-probe to RTL of such design units, SpyGlass displays a
message in the RTL viewer specifying that the file is encrypted.
127
Synopsys, Inc.

Stage 3: Analyzing a Design (Analyze Results)

Using Atrenta Console Graphical User Interface
128
Synopsys, Inc.

Working with Input
Design and Libraries
Overview
This chapter describes all aspects of reading a design in Atrenta Console.
This includes reading in design HDL and technology libraries,
understanding and debugging results, and dealing with special HDL
aspects, such as pragmas.
129
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Working with Precompiled Libraries
SpyGlass provides the feature of precompiling Synopsys Liberty™ files (.lib
files) to SpyGlass-compatible format library files (.sglib files) that you can
use as an input for SpyGlass analysis.

The .sglib files contain cell information, including functional view for library
cells. Precompiling .lib files to .sglib files enables you to check and fix errors
in libraries before using them.

NOTE: SpyGlass-compatible format library files (.sglib files) are specific to a SpyGlass
release. You must recompile libraries for each version. SpyGlass provides a feature
of automatically compiling libraries at the time of analysis itself. For details, see
Automatically Compiling Gate Libraries.

Advantages of Using Precompiling Libraries

Precompiling libraries provide the following benefits:
 By compiling sub-blocks, you can find syntax issues and fix them more

quickly than running the entire design together.
 You can share HDL blocks and code with other blocks without involving

the actual source code.
 If multiple SpyGlass licenses are available, precompilation can reduce

the overall runtime of SpyGlass by parallelizing the design-read.

When you precompile an HDL file into a library, Atrenta Console creates a
library directory of design blocks. Higher-level blocks can later refer to
these design blocks.

Specifying Modes in Which Libraries Should be Compiled

You must compile each version on a supported platform of a corresponding
architecture and use them on all supported platforms of the same
architecture. For example, you can compile your VHDL libraries on 64-bit
Solaris platform and use them on 64-bit Solaris or Linux platforms.

By default, SpyGlass compiles libraries and runs in 64-bit mode.
130
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Compiling HDL Files into a Library

The process of compiling HDL files into a library consists of the following
tasks:
1. Defining a Logical Library

2. Including HDL Files in the Logical Library

3. Generating a Precompiled Library

Defining a Logical Library

To define a logical library, perform the following steps:
1. Right-click in the HDL Libraries section under the Add Design Files tab,

and select the Add HDL Lib File(s) option from the shortcut menu.
The Add File(s) dialog appears, as shown in the following figure:

FIGURE 1. Add File(s)

2. Specify the logical library name in the Logical Library Name textbox.
This step is equivalent to specifying the following command in the
project file:

set_option work <value>
131
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
By default, the <current-working-dir>/WORK directory is the working
directory.
The 32-bit or 64-bit version of user-compiled libraries is created in
sub-directories, 32 or 64, respectively, under the specified working
directory.

3. Click to browse to the physical working directory corresponding to
the specified logical library name.

4. Select the required physical working directory.
5. Click the Add button.

A mapping between a logical library to a physical working directory
appears in the right-most section, as shown in the following figure:

FIGURE 2. Add File(s)

6. Click the OK button.
The HDL Libraries section now appears, as shown in the following figure:
132
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
FIGURE 3. HDL Libraries

This task is equivalent to specifying the following command in the project
file:

set_option lib <library-name> <working-directory>

Please note the following points:
 The logical library is a library used while creating a precompiled library

and a physical library refers to the complete path.
 You must create a library mapping correctly. The most common issues

with library compilation are related to mapping, and typically these are
detected at a later stage when the libraries are used.

 You can specify the same physical path for multiple logical libraries. You
cannot, however, map a logical library to multiple physical paths.

 You can map multiple logical libraries to a single intermediate library,
which can then allow you to change library bindings at runtime. For
details, refer to the Compiling Libraries in Mixed-Language Designs topic.

Including HDL Files in the Logical Library

To include HDL files in the logical library, perform the following steps:
1. Click the Click to add Pre-Compile Map link in the HDL Libraries section.

The Precompile File Mapping dialog appears.
NOTE: To include source files in a library, click the Click to add Pre-Compile Source

Map link. For details, see Including Source Files in a Library.
133
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
2. In the Precompile File Mapping dialog, click the Add button.
A new row appears in this dialog, as shown in the following figure:

FIGURE 4. Precompile File Mapping

3. Click to select the required logical library name in the Logical Library
column.

NOTE: You can only select the library name from the list of available library names.
Therefore, it is recommended to define the library mapping and then precompile
file mapping.

4. Click to select the RTL file to be included in the library.
Repeat this step to specify multiple RTL files.
You can specify wildcard and regular expressions that are automatically
expanded when the selection is changed.

5. Click the OK button.
The HDL files are now included in the library.

This task is equivalent to specifying the following command in the project
file:

set_option libhdlfiles <library-name> {space-separated file
list}
134
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
NOTE: Please note the following points:

 Ensure that you define libraries in the order they are used. Undefined
dependencies or cyclic dependencies result in errors. For example, if a design
unit is instantiated by another design unit, you must first define the lower-level
design unit.

 The VHDL sort function does not affect the order of precompiled files.

Including Source Files in a Library

To add a source file list in a library, click the Click to add precompile Source
Map link in the HDL Libraries section. This displays the Precompile Filelist
Mapping dialog. The rest of the steps are similar to adding HDL files. For
details, see Including HDL Files in the Logical Library.

Alternatively, you can add source files in a library by specifying the
following command in the project file:

set_option libhdlf <library-name> {space-separated source
file list}

Enabling Elaboration

If you want to enable elaboration during the precompilation process,
specify the following command in the project file:

set_option elab_precompile yes

Generating a Precompiled Library

To generate a precompiled library, perform the following steps:
1. Click the Run Design Read tab.
2. Click the Run Design Read option.

Once the analysis is complete, the precompiled files are stored in the
directory mentioned in the HDL Libraries section.
135
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
If the precompiled libraries contain errors, the following dialog appears:

FIGURE 5. Error(s) in Precompile Filelist Mapping

In the above dialog, click the Cancel button and go to the Precompile Map
dialog to correct the directory. See Debugging Issues in Gate Libraries.

Alternatively, you can generate a precompiled library through a project file
by specifying the following command while invoking Atrenta Console:

spyglass -project mylib.prj -batch -designread

By default, SpyGlass writes the compiled library into a default directory,
WORK, in the current working directory.

NOTE: Please note the following points:

 Ensure that the lower-level precompiled libraries are syntactically clean and
error-free before using them at higher level.

 Fatal issues found during precompilation of a library aborts the run, and
subsequent libraries are not compiled.

Automatically Compiling Gate Libraries

A compiled library format is specific to a particular SpyGlass release.
Therefore, you must compile libraries in every release.

You can automatically compile libraries (.lib files) to SpyGlass-compatible
136
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
format (.sglib files) in any of the following ways:
 Using the GUI to Automatically Compile Libraries

 Using the enable_gateslib_autocompile Option

 Using the force_gateslib_autocompile Option

 Using the AUTOENABLE_GATESLIB_AUTOCOMPILE Key

When you perform automatic compilation, SpyGlass compiles .lib files into
.sglib files unless there is an up-to-date copy in the cache directory. For
details on specifying a cache directory, see Specifying a Cache Directory.

You can also forcefully compile libraries so that SpyGlass always compiles
the .lib files and overwrite the existing .sglib files present in the cache
directory. For details, see Using the force_gateslib_autocompile Option.

Using the GUI to Automatically Compile Libraries

To automatically compile gate libraries through GUI, perform the following
steps:
1. Click the Set Read Options tab under the Design Setup tab.
2. Set the Enable auto-compilation of gateslib into sglib option to Yes.
3. Click the Run Design Read tab.
4. Click the Run Design Read option to run the design read process.

Every such run generates the following:

 A SpyGlass-compatible format library file, <libfile-name>.sglib

For example, the R123.lib library file is converted into R123.sglib.
Similarly, the a45.slflib library file is converted into a45.sglib.

 Following SpyGlass output files:

 The spyglass_lc_<libfile>.log file and the name spyglass_lc_<libfile>.vdb file

 Standard SpyGlass automatic report (moresimple report)

Fixing Violations After Running Design Read

After the design read process, if SpyGlass reports violations for a library,
fix the violations by:
 Checking the automatic report.
137
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
 Referring to the log file.

However, if the library compiles without errors, use the generated .sglib file
for SpyGlass analysis. For details, see Specifying Precompiled Libraries for
SpyGlass Analysis.

Using the enable_gateslib_autocompile Option

Specify the following command in the project file to compile gate libraries
automatically:

set_option enable_gateslib_autocompile yes

Along with the above command, you can also specify gate libraries (.lib
files) and .sglib files by using the gateslib and sglib options, respectively, of
the read_file project file command.

However, if you do not set the enable_gateslib_autocompile
command to yes but specify .lib files and .sglib files together, SpyGlass
reports an error message. In this case, perform any of the following
actions:
 Compile the .lib file to .sglib file by using the spyglass_lc utility and then

specify the generated .sglib file by using the following project file
command:

read_file -type sglib <sglib-file>

 Specify the following project file command:

set_option enable_gateslib_autocompile yes.

Using the force_gateslib_autocompile Option

To compile gate libraries forcefully, specify the following command in the
project file:

set_option force_gateslib_autocompile yes

Using the AUTOENABLE_GATESLIB_AUTOCOMPILE Key

You can set the value of the AUTOENABLE_GATESLIB_AUTOCOMPILE
138
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
configuration key to yes or yes_forced.

Setting the value of this key to yes is equivalent to specifying the
enable_gateslib_autocompile option. Similarly, setting the value
of this key to yes_forced is equivalent to specifying the
force_gateslib_autocompile option.

Specifying a Cache Directory

By default, Atrenta Console compiles gate library in the spyglass_cache
directory. You can specify a different directory by specifying the following
command in the project file:

set_option cachedir <directory-name>

If the specified cache directory does not exist, Atrenta Console creates that
directory (only the leaf most directory). The cache directory allows you to
reuse the results of any previous .lib compilation done in the same
SpyGlass run. It holds only single .sglib file corresponding to the .lib files
used in the last SpyGlass run.

Conditions for Auto-Compilation of Gate Libraries

It is possible that in subsequent Atrenta Console runs, you use the
enable_gateslib_autocompile option to compile gate libraries that
you had already compiled earlier by using this option.

In this case, auto-compilation of such gate libraries occurs only if any of
the following conditions hold true:
 md5sum of any of the specified .lib file has changed.

 Order of .lib file specification on command-line has changed.
Atrenta Console performs this check only when the specified libraries
contain duplicate cells across different libraries.

NOTE: Atrenta Console ignores duplicate cells within the same library. However, such
cells are retained across different libraries and the checkDupCells rule flags a
violation for such cases.

 SpyGlass version has changed

If all the above conditions are false, the already compiled .sglib files are
139
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
considered to be up to date in the cache directory. Therefore, no
recompilation occurs in such case and the existing .sglib libraries are picked
from the cache directory.

If you forcefully compile gate libraries (discussed in the next topic),
SpyGlass does not evaluate the specified conditions. In this case, the .lib
files are always compiled irrespective of what is present in the cache
directory.

If automatic compilation of technology libraries is successful, the
AutoGenerateSglib rule reports an appropriate message. The severity of
this message is “Error,” if there are errors in the library compilation run.
Otherwise, its severity is “Info.” You can also view the moresimple.rpt report
of the library compiler run in GUI by clicking the AutoGenerateSglib rule
message.

NOTE: The AutoGenerateSglib rule does not report a violation when the cache directory of
auto compilation is reused or auto compilation has failed due to fatal violations in
the library compiler run.

Built-in VHDL Libraries That Do Not Require Any Mapping

SpyGlass VHDL environment comes with the following precompiled logical
libraries:
 IEEE

 STD

 SYNOPSYS

There is no need to provide mapping for the above-mentioned libraries.

Precompiling Verilog Libraries

To precompile Verilog library files, perform the following steps:
1. Specify Verilog files by using the read_file command in the project

file, as shown in the following example:

read_file -type verilog RTL/top.v

2. Specify the following command in the project file:

set_option enable_precompile_vlog yes
140
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
3. Specify a logical working directory in which Atrenta Console should
generate the precompiled library by using the following command in a
project file:

set_option work <directory-name>

4. Specify a mapping of logical library name to the physical library path by
using the following command in a project file:

set_option lib <logical-name> <physical-path>

5. Run the design-read process. For details, see Running Design Read.
NOTE: Please note the following points:

 When you precompile a Verilog module that contains gates instances, Atrenta
Console does not compile those gate instances. You should compile gates library
separately into a SpyGlass-format gates library (.sglib file).

 Modules in the library files specified by using the v and y options of the
set_option command are compiled along with the design modules.

 Verilog modules compiled with one version of SpyGlass may not be compatible
with another version of SpyGlass and may require recompilation with the other
version.

Naming and Mapping Verilog Libraries

Modules or User-Defined Primitives (UDPs) missing in your Verilog source
code are normally present in a single library file or in files stored in a
library directory.

You must specify where to find the library by providing either of the
following:
 Verilog library file names by specifying the following command in the

project file:

set_option v {space-separated list of lib names}

 Directory containing libraries by specifying the following command in
the project file:

set_option y { space-separated path names of directories }

Atrenta Console first checks the current directory for the specified libraries.
If the specified libraries are not present in the current directory, Atrenta
Console searches in the specified path.
141
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Like all standard Verilog EDA tools, Atrenta Console requires you to specify
the file extension for files located in library directories specified by using
the v or y options. You can specify library file extension by specifying the
following command in the project file:

set_option libext {space-separated list of extensions}

Structure of Precompiled Verilog Libraries

The following points describe the structure of a precompiled Verilog library:
 For each precompiled Verilog module, Atrenta Console creates a

sub-directory, <module-name>.mod.
 Each such sub-directory has the corresponding <module-name>.dmp

file, which is a binary dump of the module.
 The module sub-directory also has a <module-name>.dep file, which

has dependency information.
 If you choose to encrypt the Verilog modules, an additional file,

.encrypt, is also created in the module’s sub-directory.
NOTE: UDPs are also precompiled and used by SpyGlass.

NOTE: Do not mix encrypted and un-encrypted modules in the same library.

Library Searching Mechanism

To search for a library, Atrenta Console performs a case-sensitive search in
the following order:
1. Library defined by the 'uselib directives
2. All Verilog libraries specified by using the v/y option of the

set_option command
3. Work library
4. Libraries listed by using the lib option of the set_option command.

Atrenta Console searches libraries in the order specified by this
command
142
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Working with Precompiled Verilog Libraries in Mixed Language Mode

Consider the following mixed-language design:

//top.v
module top;
middle m1();

endmodule

--middle.vhd
entity middle is
end middle;

architecture mid of middle is
begin
M1: entity work.bottom(module);

end mid;

//bottom.v
module bottom;
endmodule

In this example, Verilog module top instantiates VHDL DU middle that, in
turn, instantiates Verilog module bottom.

To perform a multiple step compilation, perform the following steps:
1. Compile bottom.v.

set_option work mylib1
set_option lib mylib1 ./MYLIB1
set_option libhdlfiles mylib1 {bottom.v}
set_option elab_precompile yes

2. Compile middle.vhd.

set_option work mylib1
set_option lib mylib1 ./MYLIB1
set_option libhdlfiles mylib1 {middle.vhd}

3. Invoke SpyGlass on top.v.

set_option work mylib1
set_option lib mylib1 ./MYLIB1
143
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
set_option libhdlfiles mylib1 {top.v}
set_option elab_precompile yes

Different instantiations in this example are resolved as follows:

 Search the design unit named middle in the source file, top.v.

 Search in the WORK library (and any other libraries specified by the lib
option) among Verilog DUs, as the design unit middle does not exist in
top.v.

 Search VHDL DUs in the WORK library, as the design unit named
middle does not exist in Verilog DUs in the specified libraries.

 The design unit named middle is found in the VHDL DUs and is
resolved.

 Search among VHDL source files, as the VHDL design unit named
middle contains an instantiation of DU named bottom.
If not found, search VHDL DUs in the WORK library (and any other
libraries specified with the lib option of the set_option command).

 Search Verilog source files, as the design unit named bottom does not
exist in VHDL DUs in the specified libraries.
If not found, search the Verilog DUs in the WORK library (and any other
libraries specified with the lib option of the set_option command).

The design unit named bottom is found in the Verilog DUs and is
resolved.

Please note the following:

 You do not need to compile the bottom.v file (Step 1 above). Just supply
it using the v option as follows:

set_option work mylib1
set_option lib mylib1 ./MYLIB1
set_option libhdlfiles mylib1 {top.v}
set_option elab_precompile yes
set_option v bottom.v

Then, the bottom.v file is also searched in addition to the Verilog DUs in
the WORK library (and any other libraries specified with the lib option of
the set_option command). Thus, the DU named bottom is found
and resolved. Once the bottom.v file is analyzed, the DUs in the file are
144
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
also compiled and stored in the WORK library for future use.
 You can also compile and store all the DUs of the above example in a

single command as follows:

set_option work mylib1
set_option lib mylib1 ./MYLIB1
set_option libhdlfiles mylib1 {top.v middle.vhd}
set_option elab_precompile yes
set_option v bottom.v

Then, all DUs are compiled and stored in the mylib1 directory.

Now, suppose you have used the precompiled module named top in
another design file named mytop.v. You can compile the complete
hierarchy as follows:

set_option work mylib2
set_option lib mylib1 ./MYLIB1
set_option lib mylib2 ./mylib2
set_option libhdlfiles mylib1 {mytop.v}
set_option elab_precompile yes

The above command would use the set_option lib mylib1 ./mylib1 part
to find and bind the instantiation of the DU named top.

 It is not required to specify the lib command for various parts of the
sub-hierarchy. Instantiation information is picked from the .dep file for
each compiled DU.

Support for Foreign Attributes

SpyGlass supports foreign attributes in the following syntax:

ATTRIBUTE FOREIGN OF <architecture-name> :
ARCHITECTURE IS "VERILOG : <module-name>

-lib <library-name>";

The architecture containing a foreign attribute is not a part of the design
hierarchy. Therefore, the tool does not elaborate and synthesize the
architecture if search for Verilog master is successful.

If you have not specified any Verilog library name, then SpyGlass searches
for Verilog master in current Verilog source files only.
145
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Specifying Verilog Libraries by Using the 'uselib Statement

The 'uselib statement is used to specify a Verilog source library file or a
directory in which SpyGlass should search for definitions of modules or
UDPs instantiated in a design.

You can use the 'uselib statement in the following ways:
1. Specify the source library file directly using the following syntax:

'uselib file=<file-name>

Where <file-name> is the name of the source file containing the
module/UDP description.

2. Specify the directory containing the source library file (and the file
extension) using the following syntax:

'uselib dir=<dir-name> libext=<ext-list>

Where <dir-name> is the name of the directory containing the source
library files and <ext-list> is the plus character-separated list of file
extensions (including the dot[.] character).

'uselib dir=/usr/john/myvlibs libext=.v+.vlog+.vlg

3. Specify a precompiled library using the following syntax:

'uselib lib=<lib-name>

Where <lib-name> is the logical name of the precompiled Verilog library
containing the module/UDP description.

NOTE: In this case, you also need to specify the precompiled Verilog library to SpyGlass
as described in the Precompiling Verilog Libraries topic.

Compiling Libraries in Mixed-Language Designs

Your design may contain VHDL design units instantiated in Verilog modules
or Verilog modules instantiated in VHDL design units. The following topics
describe steps to compile libraries in such cases:
 VHDL Library Design Units Instantiated in Verilog Modules

 Verilog Modules Instantiated in VHDL Design Units
146
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
VHDL Library Design Units Instantiated in Verilog Modules

To analyze mixed-language designs with VHDL design units instantiated in
Verilog modules, perform the following steps:
1. Specify the Language Mode as mixed under the Set Read Options tab.
2. Precompile VHDL design units into a library as described in the Compiling

HDL Files into a Library topic.
3. Specify Verilog source files and VHDL library compiled earlier under the

Add Design Files tab.
4. Run the design read process.

Verilog Modules Instantiated in VHDL Design Units

To analyze mixed-language designs with Verilog modules instantiated in
VHDL design units, perform the following steps:
1. Specify the Language Mode as mixed under the Set Read Options tab.
2. Precompile Verilog libraries as described in the Precompiling Verilog

Libraries topic.
3. Specify VHDL source files and Verilog library under the Add Design Files

tab.
4. Run the design read process.

Searching Master Instance in Mixed-Language Mode

While working in the mixed-language mode with precompiled gate
libraries, SpyGlass searches for the master of an instance in the following
order:
1. First searches in the parent domain.

For example, if the instance is in the Verilog source file, SpyGlass
searches for a master in the Verilog domain (source files and
precompiled Verilog libraries, if any).

2. Next, SpyGlass searches in the domain of the other language.
In the above example, SpyGlass searches in the VHDL domain.

3. Next, SpyGlass searches in the SpyGlass-compatible format library files.
147
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
If the master is still not found, the instance is considered as a black box.

However, if cell definition is present in both in sglib and HDL, SpyGlass
ignores the cell definition present in sglib. In addition, SpyGlass reports the
IgnoredLibCells warning message that points to a report containing the
source sglib name and HDL back-reference information of all the ignored
library cells.

If you want to give higher preference to technology library definition
present in .lib/.sglib over user-specified definition present in source HDL
files, precompiled libraries, and simulation models while searching for the
master of an instance, use the set_option prefer_tech_lib yes
command in the project file.

NOTE: When you specify the prefer_tech_lib option, then irrespective of whether a
functional view exists for a .lib cell definition or not, higher priority is given to
technology library definitions. If you intend to overwrite or provide functional view
of the cell from HDL and use other properties of that cell from sglib, ensure that you
pass HDL descriptions of that cell during library compilation stage, that is, during
sglib creation.

Debugging Issues in Gate Libraries

If it is necessary to debug a problem related to a precompiled gate library,
perform any of the following actions:
 Set the enable_sglib_debug option in the Other Command Line

Options(s) field to Yes under the Set Read Options tab.
 Specify the following command in the project file:

set_option enable_sglib_debug yes

This creates the debug_sglib report that contains the following information:

 Inferred functionality for each gate that was successfully synthesized by
SpyGlass library compiler.

 Details of cells that could not be synthesized along with the reason of
failure.

If you are using .sglib files in your SpyGlass run, SpyGlass generates the
additional report, sglib_version_summary.rpt, which lists sglib names,
SpyGlass Library Compiler version with which they were compiled, and
their status. The report also lists enhancements made in the subsequent
148
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
SpyGlass library compiler releases starting from the oldest version of
library files used in the current SpyGlass run.

The report is generated whenever any .sglib file is present in the current
SpyGlass run. But this report is not generated if you have specified the
set_option enable_gateslib_autocompile yes command in
the project file.

However, if you specify the set_option enable_sglib_debug yes
command, it overrides the above specified commands and the report is
generated. In addition, if you are using library files that are compiled with
a library compiler version that is higher than the version of SpyGlass that
you are using, SpyGlass reports a fatal violation and generates the
sglib_version_summary.rpt report.

Specifying Precompiled Libraries for SpyGlass Analysis

To use a precompiled library for a higher-level block or design, perform the
following steps:
1. Select the Add Design Files tab under the Design Setup tab.
2. Right-click in the area under the Tech Libraries section.
3. Select the Add Tech Lib File(s) option from the shortcut menu.

The Add File(s) dialog appears, as shown in the following figure:

FIGURE 6. Specifying Precompiled Libraries
149
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
4. Select the required .sglib files from the Add File(s) dialog.
NOTE: In this step, you can also specify .plib and/or .lef files.

5. Click the Add button.
6. Click the OK button.

The selected .sglib files appear under the Tech Libraries section.

Alternatively, use the following command in the project file to use the
precompiled libraries in SpyGlass run:

read_file -type sglib <filename.sglib>

After specifying precompiled libraries during SpyGlass analysis, click the
Set Read Options tab and perform the following actions:
 Specify a top-level module in the Top Level Design Unit field under this

tab.
Alternatively, you can specify the following command in the project file:

set_option top <top-module>

It is highly recommended to specify a top-level module to avoid
analyzing modules in the library that are not used in the design.

 Set the value of the Enable RTL Checking of precompiled HDL Libraries
field to Yes to enable the analysis of precompiled libraries.
Alternatively, specify the following command in the project file:

set_option hdllibdu yes

NOTE: Specifying precompiled library paths incorrectly may result in built-in messages,
such as STX_11, STX_464, WRN_384, and DetectBlackBoxes.

Specifying Multiple Technology Libraries of the Same Name

If you specify multiple technology libraries of the same name, SpyGlass
considers the first occurrence of the library and ignores the rest. In such a
scenario, if you are compiling technology libraries with SpyGlass library
compiler, SpyGlass reports the LIBERROR_313 violation. However, if you
are using such libraries during SpyGlass run, SpyGlass reports the
ReportDuplicateLibrary violation.
150
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Using Intermediate Logical Library Name Support in VHDL

As discussed in the Compiling HDL Files into a Library topic, to use a user-
defined VHDL library, you need to provide a logical to physical mapping by
using the lib command, as shown below:

set_option lib <logical_name> <physical_path>

However, the above use model has a limitation in cases where two different
blocks of a hierarchical design are using the same package name from a
library and they are brought together to the top-level. In such cases, you
can use only one library with that logical name in the top-level.

For example, consider two hierarchical blocks, IP1 and IP2, which use the
same package, PKG, as shown below:

The top-level design, TOP, has instances of IP1 and IP2. Now if you want to
specify logical to physical mapping for the L1 library, you can specify only
one mapping (that is, either L1 to dir1 or L1 to dir2), as shown below:

set_option lib L1 ./dir1

In the above case, SpyGlass picks up only one package, that is, PKG from
IP1. However, the second PKG package is not available for IP2 in this case.

NOTE: Because the contents of both the packages are different, the design is incomplete.

Using Intermediate Library Support

You can solve the above problem (without modifying library or package

IP1:
library L1;
use L1.PKG.all;

IP2:
library L1;
use L1.PKG.all;

For IP1, the PKG package
is compiled into the physical location,

set_option lib L1 ./dir1

dir1, by using logical to physical
mapping, as shown below:

For IP2, the PKG package that has

into the physical location, dir2,

totally different contents than the
PKG package of IP1 is compiled

by using logical to physical
mapping, as shown below:

set_option lib L1 ./dir2
151
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
names by using intermediate library support.

Intermediate library support enables you to map multiple logical libraries to
a single intermediate library by using the libmap option of the
set_option command. This intermediate library is then mapped to a
physical location by using the lib option of the set_option command.

set_option libmap <logical-name> <intermediate-logical-name>

set_option lib <intermediate-logical-name> <physical-name>

By using the libmap option, both the IP1 and IP2 can refer to their own
packages, as shown below:

Now in the TOP design, IP1 and IP2 are picked from the T1 and T2 libraries,
as shown below:

Library T1;
Use T1.all;
Library T2;
Use T2.all;

In the above case, there is no reference to L1. Therefore, correct packages
are picked from IP1 and IP2 intermediate libraries, as shown below:

set_option libmap T1 IP1
set_option lib IP1 ../dir1
set_option libmap T2 IP2
set_option lib IP2 ../dir2

NOTE: Please note the following points for the intermediate library support:

 Do not specify intermediate library name in the libhdlfiles/libhdlf option,
as shown in the following example:

set_option libmap L1 IP1

IP1:
Library L1;
Use L1.PKG.all;

set_option libmap L1 IP1
set_option lib IP1 ./dir1

IP2:
Library L1;
Use L1.PKG.all;

set_option libmap L1 IP2
set_option lib IP2 ./dir2
152
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
set_option lib IP1 ./P1
set_option libhdlfiles IP1 {case1.vhd case2.v}

In the above example, an intermediate library name, IP1, is specified in
the libhdlfiles option. As a result, SpyGlass reports a FATAL violation.

 Do not specify logical library name in the lib command, as shown in the
following example:

set_option libmap L1 IP1
set_option lib L1 ./P1

In the above example, logical library name, L1, is specified in the lib
option. As a result, SpyGlass reports a FATAL violation.

 Do not specify logical library name in the work option, as shown in the
following example:

set_option libmap L1 IP1
set_option lib IP1 ./P1
set_option work L1

In the above example, logical library name, L1, is specified in the work
option. As a result, SpyGlass reports a FATAL violation.

Working with Compressed Gate Library Files

The SpyGlass library compiler can accept files compressed by using the
UNIX gzip utility.

NOTE: Currently, only those compressed library files that have been generated using the
gzip utility and have .lib.gz extension are supported.

Please note the following:

 The gzip-compressed file should have the .gz extension.

 You can specify both un-compressed and compressed library files
together.

 You cannot specify a concatenated compressed library file, because
SpyGlass does not support concatenation of compressed files.

 SpyGlass Library Compiler exits with a FATAL message if there are
problems with the specified compressed library file.
153
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
 SpyGlass format library files (.sglib files) generated from compressed
library files are already compressed files. Thus, you do not need to
compress them again.

 SpyGlass reports messages related to library files contained in the
compressed library file with the compressed library file name and the
un-compressed library file line number.
Atrenta Console un-compresses and shows the un-compressed library
files contained in the specified compressed library file, so you can check
the reported problems easily.

 Specify file-based waivers with the name of the compressed library file
only.

Just like gate cells in un-compressed library files, you cannot cross-probe
from the instances of compressed library gate cells in the RTL to the
schematic windows.

Working with Encrypted Compiled Libraries

Atrenta Console enables you to encrypt VHDL/Verilog libraries during
compilation. You can then use the created encrypted precompiled dump in
the same way as the normal precompile dump.

Creating Encrypted Library Dump

You can create encrypted precompiled libraries by setting the value of the
Enable HDL Encryption option to yes under the Set Read Options tab. The
dump so created is in traditional SpyGlass precompiled dump format with
some additional information embedded into it that specifies that the dump
is encrypted.

Please note the following points while creating encrypted library dump:
 Library compiled with one version of SpyGlass may not be compatible

with another version of SpyGlass. Therefore, you should create
encrypted dump with the appropriate SpyGlass release so that it can be
used with the SpyGlass version used by the IP user.

 While compiling VHDL files, specify the files in a proper order to take
care of any dependencies. Alternatively, set the value of the
154
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Automatically Sort VHDL File(s) option to yes under the Set Read
Options tab.

You may set the value of the dump_all_modes option of the set_option
command to yes in the project file when the Enable HDL Encryption option
is already set to yes. In such cases, when you create encrypted library
dump, Atrenta Console creates a precompile dump on both 32-bit and 64-
bit platforms, irrespective of the platform on which you run SpyGlass.

Using Encrypted Library Dump

Use the encrypted precompiled dump in the same way as the normal
precompile dump. You can use the normal precompile dump by specifying
a logical library to the physical path mapping of dump by using the lib
option of the set_option command in the project file.

Please note the following points while using encrypted libraries:
 It is recommended you to keep the encrypted IPs in their respective

logical libraries and not merge them in a single precompiled library.
 Encrypted libraries and their design units should be referred in an

encrypted IP user's design like any other normal precompiled library
with appropriate VHDL/Verilog constructs, as shown in the following
example:

--VHDL
library L1;
use L1.all;

//Verilog
uselib lib=L1

For more information about using precompiled libraries in a design, refer
to the following bullets:

 If two or more encrypted libraries have the same design unit, use the
fully qualified name or appropriate VHDL/Verilog constructs (as
mentioned above) in the instantiation to pick the design unit from a
specific library. Otherwise, Atrenta Console would consider it based on
the order specified by using the lib option of the set_option
155
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
command. Please note that usage of encrypted design units follows the
same paradigm as for a normal precompiled library

 Rule-checking behavior for encrypted libraries
When you use the encrypted precompiled Verilog/VHDL modules with
SpyGlass, all rule-checking on these modules is enabled by default. Any
highlighting information inside such modules is shown on the module
boundary only. Please note that all the messages are reported on the
original file and line of encrypted IP.
You can disable RTL rule-checking on these modules by setting the value
of the Disable Encrypted HDL Checks option to yes under the Set Read
Options tab. If you specify this option, SpyGlass disables RTL rule-
checking on encrypted modules. In addition, SpyGlass internally
removes any messages from that point inside an encrypted IP.

 SpyGlass behavior on specifying the waive -ip command on encrypted
IPs
When you specify the waive -ip <IP-name> command, SpyGlass waives
any violation coming on the file and line of an encrypted IP or any
design unit instantiated inside encrypted IP.

NOTE: The hdllibdu option of the set_option command does not have any effect on the
above rule-checking behavior for encrypted modules. In addition, SpyGlass
treats all design units instantiated under an encrypted design unit as encrypted
even if they are not encrypted.

NOTE: The LEXICAL type rules do not run on encrypted RTL files.

Viewing Built-In Messages for Precompiled Libraries

While parsing RTL files to generate a precompiled RTL dump, SpyGlass
performs various checks, such as:
 Parsing-related checks performed by Verilog and VHDL analyzers

 Synthesis-related checks that are performed before hand during RTL
parsing itself

By default, SpyGlass displays violations of the above checks in the
following stages as the Dump BuiltIn Rules in Precompile Flow option
(under Set Read Options tab) is set to Yes by default (that is, set_option
dump_precompile_builtin yes):
 During RTL parsing in the precompilation step
156
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
You can fix the parsing and synthesis-related issues in the
precompilation step itself before using the precompiled dump in the
top-level run.

 During usage of the precompiled dump
If you do not fix the parsing and synthesis-related issues in the
precompilation step, you can view these messages while using the
precompiled dump in the top-level run by setting the Dump BuiltIn
Rules in Precompile Flow option (under Set Read Options tab) to Yes
(that is, set_option hdllibdu yes).
These messages are stored as a part of that RTL dump and are restored
while using the precompiled dump.

Example

Consider the following VHDL code (mixed.vhd) that result in the WRN_405
violations:

-- pragma synthesis_off
-- synopsys translate_off

-- some VHDL code
-- synopsys translate_on
-- pragma synthesis_on

The following scenarios explain the usage of the
dump_precompile_builtin and hdllibdu options:
157
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
NOTE: Please note the following points:

 As built-in messages may change across releases, you must precompile
your libraries for each release in which you want to use the precompiled
dump. This is because SpyGlass restores built-in messages of
precompiled units compiled in the current version.

 If you want some product-specific built-in checks to be reported on the
usage of precompiled design units, then during the RTL precompilation
step, you must set the value of the

Creating a precompiled dump:

Using the precompiled dump:

Scenario 1

Scenario 2 Creating a precompiled dump:

set_option lib L1 P1

The WRN_405 violations are reported
during the usage of the precompiled
dump as the
dump_precomile_builtin option
is set to yes during the creation of the
precompiled dump, and the hdllibdu
option is specified during the usage of
the precompiled dump.

The WRN_405 violations are not reported
during the usage of the precompiled dump
 as the
to no during the creation of that

dump_precomile_builtin option is set

precompiled dump.

Using the precompiled dump:

set_option noelab yes

set_option work L1

set_option top top
set_option lib L1 P1

read_file -type vhdl test.vhd
set_option dump_precompile_builtin yes

read_file -type vhdl test.vhd

set_option noelab yes
set_option lib L1 P1
set_option work L1

set_option top top
set_option hdllibdu yes
set_option lib L1 P1

set_option dump_precompile_builtin no

set_option hdllibdu yes
158
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
AUTOENABLE_BUILTIN_CHECKS_FOR_POLICY configuration key to an
appropriate product name in the .spyglass.setup file.

 SpyGlass restores the built-in messages for only those precompiled
design units that are being checked in the current run. For example, if a
precompiled design unit was stopped, the corresponding built-in
messages are not restored.

 By default, SpyGlass performs rule-checking on encrypted precompiled
design units (design units picked from a precompile dump created with
the set_option enable_hdl_encryption yes command) even
if you do not specify the set_option hdllibdu yes command. To
disable rule-checking on such design units, set the Disable Encrypted
HDL Checks field (under Set Read Options tab) to Yes.

This option works independent of the set_option hdllibdu yes
command. In conformance with this behavior, in case a design is
precompiled with the set_option dump_precompile_builtin
yes command, built-in messages on design units picked from such an
encrypted precompiled dump would be reported by default unless the
set_option disable_encrypted_hdl_checks yes command
is specified.

Impact of the addrules Option While Using Pre-compiled Dump

While using precompiled RTL dump, if you enable a built-in rule by using
the set_goal_option addrules <rule-name> command, but that
rule was disabled while generating that precompiled dump, the
corresponding built-in message is not reported during the precompiled
dump usage even if you specify the set_option hdllibdu yes
command.

In such cases, precompile that RTL again with set_goal_option
addrules <rule-name> command. Only then that built-in message
would appear during the precompiled RTL usage.

Impact of the ignorerules Option While Using Pre-compiled Dump

While using precompiled RTL dump, if you disable a built-in rule by using
the set_option ignorerules { rule-names } command, but that
159
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
rule was enabled while generating that precompiled dump, the
corresponding built-in messages for the rule are not reported during the
precompiled dump usage if you specify the set_option hdllibdu yes
command.

Mapping a File Extension with a Compilation Language

The set_option libhdlfile and set_option libhdlf specifications may contain
files of different extensions. For example, consider the following set_option
libhdlfiles specifications containing files of different extensions:

set_option libhdlfiles LL1 {f1.vhd f2.vhd f3.vhd}
set_option libhdlfiles LL2 {g1.vh93 g2.vh87 g3.vhd}
set_option libhdlfiles LL3 {h1.v h2.v h3.v}
set_option libhdlfiles LL4 {k1.sv k2.sv k3.sv k4.v k4.v2k}

By default, SpyGlass compiles these files in some standard language, such
as VHDL or Verilog.

However, you may want to compile these files into some specific
languages, such as VHDL87, VHDL93, or Verilog2001. For example,
compile the .vhd93 extension files in the VHDL93 language and the .v2k
extension files in the Verilog 2000 language.

You can specify a compilation language for a particular file extension in
either of the following ways:
 Specify a default mapping between a file extension and the

corresponding compilation language by using the LIBHDL_EXTMAP and
LIBHDL_LANG_INFERENCE keys in .spyglass.setup.
For details, see Inferring Language from File Extension During Compilation.

 Specify compilation options directly in the .f file of the set_option libhdlf
specification.
For details, see Specifying Compilation Options in a Source File.

SpyGlass infers a compilation language for a file extension in the
above-specified order. That is, a default mapping specified by configuration
keys has the first priority to determine a compilation language for a file
extension. If you have not specified any mapping, compilation options in
the .f file of the set_option libhdlf specification are considered.
160
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
Inferring Language from File Extension During Compilation

You can enable SpyGlass to infer a compilation language automatically for
a specific file extension by providing a default mapping between the file
extension and its compilation language.

To infer a compilation language automatically from a file extension, specify
the following information in the .spyglass.setup file:

 Specify a mapping between file extensions to their corresponding
languages.
To specify this mapping, use the LIBHDL_EXTMAP configuration key in
the following manner:
LIBHDL_EXTMAP = <file-extension> <file-type>
Following are the examples of using the LIBHDL_EXTMAP key to specify
a mapping between different file extensions and their corresponding
languages:

LIBHDL_EXTMAP = .v verilog
LIBHDL_EXTMAP = .v2K verilog2000
LIBHDL_EXTMAP = .sv systemverilog
LIBHDL_EXTMAP = .vh87 vhdl87
LIBHDL_EXTMAP = .vh93 vhdl93
LIBHDL_EXTMAP = .vhd vhdl93

 Enable the automatic inference feature of determining a language type
from a file extension.
To enable this feature, set the LIBHDL_LANG_INFERENCE configuration
key to YES in .spyglass.setup, as shown in the following example:
LIBHDL_LANG_INFERENCE = YES
By default, this key is set to NO.

NOTE: To specify the mapping in a project file, use the libhdl_extmap project file
command. For more information on the libhdl_extmap command, refer to the
libhdl_extmap section in the Atrenta Console Reference Guide.

Example

Say you want to compile the following source files in the same SpyGlass
run:
161
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
In the above case, to enable SpyGlass to infer a compilation language
automatically for the files specified in the above source files, set the
LIBHDL_EXTMAP and LIBHDL_LANG_INFERENCE environment variables in
.spyglass.setup, as shown below:

LIBHDL_EXTMAP = .v verilog2000
LIBHDL_EXTMAP = .vh87 vhdl87
LIBHDL_EXTMAP = .vh93 vhdl93

LIBHDL_LANG_INFERENCE = YES

Now, you can compile a set of source files in the same SpyGlass run by
specifying the following commands in a project file:

set_option lib L1 PL1
set_option lib L2 PL2
set_option lib L3 PL3
set_option libhdlf L1 L1.f
set_option libhdlf L2 L2.f
set_option libhdlf L3 L3.f

Atrenta Console then automatically infers a language of files from their file
extensions during compilation process. Therefore, L1.f is compiled in the
VHDL 87 language, L2.f is compiled in the VHDL 93 language, and L3.f is
compiled in the Verilog language.

NOTE: To perform compilation process correctly, you should specify file names in a source
file (.f) in the order of their dependency.

Viewing Compilation Language for Different File Extensions

To view compilation language for various file extensions set in the
.spyglass.setup file, perform the following steps:

L1.f

f1.vhd87
f2.vhd87
f3.vhd87

L2.f

g1.vhd93
g2.vhd93
g3.vhd93

L3.f

h1.v
h2.v
h3.v
162
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
1. Click the Design Setup tab.
2. Click the Add Design Files tab.
3. Click the More Actions option. A list appears.
4. Select the Show HDL Library files Extension Mapping option from the

list.
The HDL Library files Extension Mapping dialog appears that shows the
extension mapping set by using the LIBHDL_EXTMAP variable in
.spyglass.setup.
The following figure shows the HDL Library files Extension Mapping
dialog:

FIGURE 7. HDL Library File Extension Mapping

Overriding the Default Compilation Language

For some file extensions, you may want to specify a different compilation
language other than the default language inferred from the default
mapping.

To specify a different compilation language, perform the following actions:
1. Specify the -disable_libhdl_lang_inference command in the source file

(.f) of the set_option libhdlf specification.
163
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
2. Specify an appropriate language switch, such as -disablev2k, -enableSV,
-93 and -87 to specify a different compilation language.
Alternatively, you can specify the command on command-line along with
the commands for performing compilation.

Example

Consider the following libhdlfiles specifications:

set_option libhdlfiles L1 {f1.v2k f2.v2k f3.v2k}
set_option libhdlfiles LL2 {g1.vh87 g2.vh87 g3.vhd}

Also, consider the following default mapping specified in the .spyglass.setup
file:

LIBHDL_EXTMAP = .v2K verilog2000
LIBHDL_EXTMAP = .vh87 vhdl87

LIBHDL_LANG_INFERENCE = YES

In this case, SpyGlass will compile the.v2k files in Verilog2000 language
and the .vhd87 files in the VHDL87 language.

Now, if you want to override the default mapping for f1.v2k and f2.v2k files
to specify the compilation language as SV instead of Verilog2000, perform
the following steps:
1. Specify such .v2k files in a separate .f file (say f4.f), as shown below:

f4.f

f1.v2k
f2.v2k

2. Specify the -disable_libhdl_lang_inference option in the f4.f file, as
shown below:

f4.f

f1.v2k
f2.v2k
-disable_libhdl_lang_inference

3. Specify the -enableSV option in the f4.f file, as shown below:

f4.f

f1.v2k
164
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
f2.v2k
-disable_libhdl_lang_inference
-enableSV

Alternatively, you can specify the -enableSV option on command-line
while specifying commands for compilation.

Specifying Compilation Options in a Source File

Modify the source file by specifying the following commands that can affect
the compilation process:

 Language standard directive options, such as disablev2k,
enableSV, and 87:

 Other options, such as:

After specifying the above commands in a source file, specify that source
file by using the following command:

set_option libhdlf <logical-library-name> "<source-files>

For example, you can specify a language applicable for a set of files in the
.f file by using appropriate command-line options, as shown below:

-hdlin_translate_off_skip_text -pragma -top
-allow_module_override -nodefparam -sort
-allow_celldefine_as_top +define +resetall
-enable_hdl_encryption +incdir -param
-hdlin_synthesis_off_skip_text -sfcu -macro_synthesis_off
-relax_hdl_parsing
165
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
In the above example:
 The files specified in the L1.f file are considered as VHDL 87 source files.

 The files specified in the L2.f file are considered as VHDL 93 source files.

 The files specified in the L3.f file are considered as Verilog source files
and are encrypted into a binary format.

You can then compile these files in the same SpyGlass run by specifying
the following commands in a project file:

set_option lib L1 PL1
set_option lib L2 PL2
set_option lib L3 PL3
set_option libhdlf L1 L1.f
set_option libhdlf L2 L2.f
set_option libhdlf L3 L3.f

Specifying Files in the Order of Their Dependencies

Modules of different source file types may have dependencies among them.
Therefore, you should define them in the order of their dependencies in the
file specified by the libhdlf command.

For example, consider the following L1.f file:

L1.f
top1.vhd
top2.vhd
mid1.v
mid2.v
low1.vhd

L1.f

f1.vhd
f2.vhd
f3.vhd
-87

L2.f

g1.vhd
g2.vhd
g3.vhd
-93

L3.f

h1.v
h2.v
h3.v
-verilog

-sort -enable_hdl_encryption
166
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
low2.vhd

In the above example, files in L1.f are compiled by forming the following
three groups internally to maintain dependencies and language standards
to be used during compilation process:

Compiling Verilog Files Containing SystemVerilog
Keywords

It may happen that some Verilog files being compiled contain
SystemVerilog keywords. During compilation of these files, if you specify
the set_option enableSV yes command, SpyGlass reports a fatal
violation.

To handle such cases, perform the compilation process by using any of the
following approaches:
 Compiling the Set of Verilog and SystemVerilog Files Separately

 Using File Extension Based Compilation Flow

Compiling the Set of Verilog and SystemVerilog Files Separately

In this approach, perform the following steps:

L1.f

top1.vhd
top2.vhd

mid1.v
mid2.v

low1.vhd
low2.vhd

Group1
(to be considered as VHDL 93 source files)

Group2
(to be considered as Verilog2000 source files)

Group3
(to be considered as VHDL93 source files)

167
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
1. Divide the file list (say verilog.v, verilog1.v, system.v, and system1.v) under
the following sets:
 SystemVerilog files (SystemVerilog mode list)

Let this list be sv_file_list.f containing system.v, and system1.v.

 Remaining Verilog files (Verilog mode list)

Let this list be verilog_file_list.f containing verilog.v, and verilog1.v.
2. Compile the files of the SystemVerilog mode list by specifying the

following commands in a project file (say project1.prj):

read_file -type sourcelist sv_file_list.f
set_option lib sver_lib phy_path2
set_option work sver_lib
set_option enable_precompile_vlog yes
set_option enableSV yes

3. Compile the files of the Verilog mode list by specifying the following
commands in a project file (say project2.prj):

read_file -type sourcelist verilog_file_list.f
set_option lib ver_lib phy_path1
set_option work ver_lib
set_option enable_precompile_vlog yes

4. Specify the top-level module and specify the logical to physical mapping
for libraries by specifying the following commands in a project file (say
project3.prj):

set_option lib ver_lib phy_path1
set_option lib sver_lib phy_path2
set_option top top_module_name

After performing the above steps, SpyGlass compiles all the specified files.

Using File Extension Based Compilation Flow

In this approach, perform the following steps:
1. Change the extension of the SystemVerilog file containing

SystemVerilog constructs to .sv, as shown in the following example:

system.v => system.sv
168
Synopsys, Inc.

Working with Precompiled Libraries

Working with Input Design and Libraries
system1.v => system1.sv

2. Map the .sv extension with the SystemVerilog language by setting the
following keys in the .spyglass.setup file:

LIBHDL_EXTMAP = .sv systemverilog
LIBHDL_LANG_INFERENCE = yes

For details, see Inferring Language from File Extension During Compilation.
3. Compile all the source files in a single file list by specifying the following

commands in a project file:

set_option lib ver_lib phy_path1
set_option libhdlf ver_lib verilog_file_list.f
set_option top top_module_name

Where file_list.f contains verilog.v, verilog1.v, system.sv, and
system1.sv files.

After performing the above steps, SpyGlass compiles all the specified files
in one go.
169
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
Working with Encrypted Design Files
IP vendors spend huge amounts of time, effort, and money to develop
design files for IPs. This raises the need to secure these design files from
infringement problems. One way to protect design files from such problems
is to encrypt these files.

You can specify encrypted files for SpyGlass analysis in the same way as
you specify un-encrypted Verilog/VHDL design files. For example, you can
specify encrypted files through GUI, project file, or console batch
commands, such as -v/-y.

This section discusses the use model of IP encryption in SpyGlass and
details of the encryption flow.

Introducing the Use Model for IP Encryption in SpyGlass

You can encrypt design files (IPs) by using the SpyGlass encryption engine
spyencrypt. After encryption, pass the encrypted files for SpyGlass
analysis. During analysis, SpyGlass internally decrypts such files.

The following figure shows the use model of IP encryption in SpyGlass:
170
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
FIGURE 8. IP Encryption Use Model in SpyGlass

Encrypting IPs by Using the spyencrypt Utility

To encrypt design files, specify RTL files of IPs to the spyencrypt utility.

The syntax of the spyencrypt utility is as follows:

spyencrypt <RTL-Files>
-outdir <output-directory>
[-encrypt_ext "<extension-string>"]
[-no_encrypt_ext]
[-help]

Once you run the spyencrypt utility to encrypt design files, SpyGlass
generates the spyencrypt_summary.rpt report containing the status of
encryption. For details on this report, see Viewing Encryption Summary in a
Report.

NOTE: Cross-probing to RTL is not supported for encrypted design files.

RTL Design

spyencrypt

RTL Design
Encrypted

Encrypted File

SpyGlass
171
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
NOTE: Schematic of design units specified through encrypted files is not visible.

Arguments of the spyencrypt Utility

Details of the arguments of the spyencrypt utility are discussed below:

<RTL-Files>

This argument specifies a space-separated list of design files to be
encrypted. For example, the following command encrypts the top.v and
mid.vhdl files:

spyencrypt top.v mid.vhdl -outdir enc_dir

After running the above command, the top.v.sge and mid.vhdl.sge encrypted
files are created in the ./enc_dir directory.

By default, SpyGlass appends the .sge extension to the name of an
encrypted design file. To change this default extension, use the -encrypt_ext
"<extension-string>" argument.

NOTE: You can use wildcard characters to encrypt all files in a particular directory. For
example, you can specify dir/*.v or dir/*.vhdl specification to encrypt all
Verilog or VHDL files of the dir directory.

NOTE: Before specifying RTL files for encryption, update the `include and `uselib compiler
directives appropriately to reflect the encrypted file names. This step is not required
if you use the -no_encrypt_ext argument.

-outdir <output-directory>

This argument specifies the directory in which encrypted files should be
saved.

For example, consider the following command:

spyencrypt top.v mid.vhdl lib/bottom.v -outdir enc_dir

When you run the above command, SpyGlass generates the following
encrypted files:

 enc_dir/top.v.sge
172
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
 enc_dir/mid.vhdl.sge

 enc_dir/bottom.v.sge

If you specify the name of a non-existent directory to the -outdir
argument, spyencrypt creates that directory. However, if you specify a
hierarchical path of a non-existent directory, spyencrypt creates that
directory under that path only if that path exists.

For example, consider that the enc/outdir/ path exists and you specify enc/
outdir/dir to the -outdir argument. In this case, spyencrypt creates
the dir directory under enc/outdir/. However, if the enc/outdir/ path does not
exist, spyencrypt does not create the dir directory and reports an error
message.

-encrypt_ext "<extension-string>"

(Optional) This argument specifies an extension string to be appended to
the names of the encrypted design files.

NOTE: Do not include a period (.) while specifying an extension string.

Consider the following command:

spyencrypt top.v mid.vhdl -outdir enc_dir -encrypt_ext "en"

When you run the above command, SpyGlass generates the following
encrypted RTL files with the .en extension:

 enc_dir/top.v.en

 enc_dir/mid.vhdl.en

-no_encrypt_ext

(Optional) This argument disables appending of any extension to the name
of encrypted design files.

Specify this argument if you do not want any extra extension to appear in
the name of an encrypted design file.

For example, consider the following command:

spyencrypt top.v mid.vhdl -outdir enc_dir -no_encrypt_ext

When you run the above command, SpyGlass generates the following
173
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
encrypted design files:

 enc_dir/top.v

 enc_dir/mid.vhdl

NOTE: If you specify the -encrypt_ext and -no_encrypt_ext commands
together, SpyGlass ignores the -encrypt_ext command. Therefore, names of
the encrypted files do not contain the extension specified by the -encrypt_ext
command.

For example, consider the following command:

spyencrypt test.v test1.vhdl lib/vlib.v -outdir enc_dir
-encrypt_ext "ev" -no_encrypt_ext

The above command generates the following files:

 enc_dir/test.v

 enc_dir/test1.vhdl

 enc_dir/vlib.v

-help

(Optional) This argument lists the names of spyencrypt arguments and
their usage.
174
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
Encrypting IPs Spread Across a Hierarchical Directory Structure

Design files to be encrypted may be present in a hierarchical directory
structure.

For example, consider the following directory structure containing design
files to be encrypted:

FIGURE 9. Directory Structure - Design Files to be Encrypted

To encrypt all design files present in the above directory structure, perform
the following steps:
1. Move to the root directory (SRC).
2. Encrypt all files present under this directory.

This is shown in the following example:

spyencrypt top_A.v top_B.v -outdir SRC_encr

NOTE: Ensure that the path of the directory created by the -outdir argument is such
that a parallel directory structure is created similar to the existing hierarchical
directory structure. This is shown in Figure 10.

3. Move to the next directory in the hierarchy.
4. Repeat Step 2 until you encrypt all design files present in the entire

hierarchy.

After performing the above steps, a directory structure (containing
encrypted design files) is created parallel to the existing hierarchical
directory structure, as shown in the following figure:

SRC

IP1 IP2

IP11 IP12 IP21 IP22

(top_A.v, top_B.v)

(mid_A.v, midB_.v) (mid_C.v)

(bottom_A.v (bottom_B.v) (bottom_C.v (bottom_D.v)
175
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
FIGURE 10. Directory Structure - Encrypted Design Files

NOTE: Please note the following points:

 If multiple design files with the same name are encrypted in the same directory,
only the last file passed to the spyencrypt utility is encrypted.

 If a module present in the middle of a design hierarchy is encrypted by using
spyencrypt, SpyGlass considers the entire hierarchy below that module as
encrypted, even though modules in that hierarchy may not be explicitly
encrypted.
For example, consider the design hierarchy top.mid.bottom.leaf,
where each module is defined in a separate RTL file, top.v, mid.v, bottom.v, and
leaf.v.

In this case, if any module (say mid.v) is encrypted by using spyencrypt,
SpyGlass considers the entire hierarchy below that module as encrypted (in this
case, bottom.v and leaf.v), even though bottom.v and leaf.v are not encrypted
using spyencrypt.

Viewing Encryption Summary in a Report

When you encrypt design files by using the spyencrypt utility, SpyGlass
generates the spyencrypt_summary.rpt report containing the status of
encryption.

SRC

IP1 IP2

IP11 IP12 IP21 IP22

SRC_encr

IP1_encr

IP2_encrIP11_encr IP12_encr

IP21_encr IP22_encr

Existing Directory Structure
Containing IPs

Parallel Directory Structure Containing
Encrypted IPs
176
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
Following is a sample of the spyencrypt_summary.rpt report:

Original File Encrypted File Status Reason
--
enc/top.v.sge N.A FAIL Encrypted File

 can't be encrypted

src/mid.v.gz N.A FAIL GZ File can't be
 encrypted

src/bottom.v enc/bottom.v.sge PASSED N.A

NOTE: Please note the following points:

 SpyGlass does not support nested/double encryption. The encryption status in
the spyencrypt_summary report appears as FAILED for such cases with the
following message:

GZ File can't be encrypted

 SpyGlass does not encrypt a compressed file. The encryption status in the
spyencrypt_summary report appears as FAILED for such cases with the
following message:

Encrypted File can't be encrypted

Specifying Encrypted Files for SpyGlass Analysis

Specify encrypted files for SpyGlass analysis in any of the following ways:
 Specifying Encrypted Files through GUI

 Specifying Encrypted Files through a Project File

NOTE: SpyGlass reports syntax errors if you pass encrypted files that are compressed.

Specifying Encrypted Files through GUI

To specify encrypted files for SpyGlass analysis through GUI, perform the
following steps:
1. Click the Add Design Files tab under the Design Setup tab.
177
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
2. Click the Add File(s) link.
The Add File(s) dialog appears. The following figure shows this dialog:

FIGURE 11. Specifying Encrypted Files

3. In the above dialog, select the encrypted file name (in this case,
test.v.sge).

4. Click the Add button.
The selected file now appears in the right-most pane of the above
dialog, as shown in the following figure:
178
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
FIGURE 12. Specifying Encrypted Files - Add File(s)

5. In the above dialog, click on the Unknown text under the Type column.
A drop-down list appears, as shown below:
179
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
FIGURE 13. SpyGlass Add File(s)

6. Select an appropriate option (in this case Verilog) from the drop-down
list.

7. Click the OK button to close the Add File(s) dialog.

After performing the above steps, the selected encrypted file appears
under the Add File(s) tab.

Specifying Encrypted Files through a Project File

To specify encrypted IPs for SpyGlass analysis through a project file,
perform the following steps:
1. Use the read_file command in a project file to specify an encrypted

file. This is shown in the following example:

read_file -type verilog ./ATRENTA/top.v.sge

NOTE: Change the incdir project file command to reflect the correct include path. In
addition, if you change the default extension by using the -encrypt_ext
command, make changes in the libext and v/y command specifications
180
Synopsys, Inc.

Working with Encrypted Design Files

Working with Input Design and Libraries
accordingly.

2. Specify the project file for SpyGlass analysis, as shown in the following
example:

spyglass -project test.prj
181
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
Working with Mixed-Language Designs
To analyze lower-level blocks described in a different HDL language, you
must precompile the lower-level blocks into a library.

Instantiating Verilog Modules in VHDL Architectures

A Verilog module can be instantiated inside VHDL architecture either as an
entity instance or as a component instance.

Instantiating as Component Instance

In this case, you should first create a component declaration. In addition,
you must ensure the following:
 For default binding, that is, when binding is not done through

component configuration, component name, port names, and generic
names should be same as the corresponding Verilog identifiers for
module name, port names, and parameter names.

 Number of ports or generics and their bit-width in VHDL component
declaration must be same as those of ports or parameters in Verilog
module definition.

The following example instantiates a Verilog module in a VHDL design unit
as a component instance by using default binding:

//test.v

module comp (a, b);
input a;
output b;
...
endmodule

--test.vhd

entity ent is
port (entIn : in std_logic;
entOut : out std_logic);
182
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
end ent;

architecture Behave of ent is
component comp
port (a : in std_logic; b : out std_logic);
end component ;
begin
Inst1 : comp port map (a => entIn, b => entOut);
...
end Behave;

Configuration Specification Based Binding

For configuration specification-based binding, the component name, port
names, and generic names can be same or different from the
corresponding Verilog identifiers for module name, port names, and
parameter names. However, the number of ports or generics and their bit-
width in the VHDL component declaration must be the same as those of
ports or parameters in the Verilog module definition.

Following is an example of instantiating a Verilog module in a VHDL design
unit as a component instance by using configuration specification based
binding:

//test.v

module comp (A1, B1);
input A1;
output B1;
...
endmodule

-- test.vhd

entity top is
port (in1 : in std_logic; out1 : out std_logic);
end top;
architecture arch_top of top is
component my_comp1
port (C1 : in std_logic; D1 : out std_logic);
end component;
for inst1 : my_comp1 use entity work.comp
183
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
port map (A1 => C1, B1 => D1);
begin
inst1 : my_comp1 port map (C1 => in1, D1 => out1);
...
end arch_top;

Instantiating as Entity Instance

In this case, no additional declaration is required. You can directly
instantiate a Verilog module using the VHDL syntax for instantiation of an
entity.

Following is an example of instantiating a Verilog module in a VHDL design
unit as an entity instance:

//test.v

module comp (a,b);
input a;
output b;
...
endmodule
--test.vhd
entity ent is
port (entIn : in std_logic;
entOut : out std_logic);
end ent;
architecture Behave of ent is
begin|
Inst1 : entity comp port map
(a => entIn, b => entOut);
...

end Behave;

A configuration declaration can reference Verilog modules wherever an
entity reference is intended. However, it must not extend beyond the
module interface and the instantiations within Verilog module description
will not be accessible to the configuration.

Following is an example of instantiating a Verilog module in a VHDL design
unit as a configuration declaration:
184
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
//test.v

module comp (a,b);
input a;
output b;
...
endmodule

--test.vhd

entity ent is
port (entIn : in std_logic;
entOut : out std_logic);
end ent;
architecture Behave of ent is
component mod
port (a : in std_logic; b : out std_logic);
end component ;
begin
Inst1 : mod port map (a => entIn, b => entOut);
...
end Behave;
configuration config of ent is
for Behave
for Inst1 : mod
use entity work.comp(<identifier>);
end for;
|end for;
end configuration;

NOTE: <identifier> is tool-specific. For SpyGlass, <identifier> is Verilog or module.

Searching Master of an Instance

In a given design, SpyGlass searches for the master of an instance in VHDL
architecture as per the following order:
 VHDL source files

 precompiled VHDL libraries

 Verilog source files

 Verilog libraries specified using the set_option v or set_option y
commands in the project file
185
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
 precompiled Verilog libraries

 SpyGlass compatible Synopsys Liberty™ file

Restrictions

Mixed-language semantics impose the following restrictions on the use of
any of the above instantiations:
 Design unit being instantiated should be a Verilog module. A Verilog

built-in gate or UDP cannot be instantiated.
 All ports in Verilog module should be named port. SpyGlass does not

supports unnamed ports.

Instantiating VHDL Design Units In Verilog Modules

A VHDL design unit can be instantiated in Verilog modules just like any
Verilog module instantiation. As Verilog does not have the concept of
architecture or libraries, the escaped identifier is used to describe the
instantiation from a specific library.

The following table describes the allowed format and their interpretations:

Searching for Master of an Instance

In a given design, SpyGlass searches for the master of an instance in the
Verilog module as per the following order:

Format Description
\myLibrary.myEntity(myArch) Architecture myArch of entity myEntity from

logical library myLibrary
\myEntity(myArch) Architecture myArch of entity myEntity from

logical library work
\myLibrary.myEntity MRA Architecture of entity myEntity from

logical library myLibrary
\myLibrary.myConfigDecl Configuration declaration myConfigDecl from

logical library myLibrary
myName Either configuration declaration or entity

myName from logical library work
186
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
 Verilog source files

 Verilog libraries specified using the set_option v and set option y
commands in the project file

 precompiled Verilog libraries

 VHDL source files

 precompiled VHDL libraries

 SpyGlass compatible Synopsys Liberty™ files

Examples of Instantiating VHDL Design Units in Verilog
Modules

Example 1

Instantiating Architecture myArch of entity myEntity from logical library
myLibrary (\myLibrary.myEntity(myArch))

--test.vhd

entity ent is
port (entIn : in std_logic;
entOut : out std_logic);
end ent;
architecture Behave of ent is
begin
...
end Behave;

//test.v

module mod (a,b);
input a;
output b;
\mylib.ent(Behave) inst1(a,b);
...
endmodule
187
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
Example 2

Instantiating Configuration Declaration myConfigDecl from logical library
myLibrary (\myLibrary.myConfigDecl)

--test.vhd

entity ent is
port (entIn : in std_logic;
entOut : out std_logic);
end ent;
architecture Behave of ent is
begin
...
end Behave;
configuration config of ent is
for Behave
end for;
end configuration;

//test.v

module mod (a,b);
input a;
output b;
\mylib.config inst1(a,b);
...
endmodule

Example 3

How to reference VHDL Records across language boundaries:

//test.v

module e1 (in1, in2, out1);
input in1, in2;
output out1;
...
endmodule

--test.vhd
188
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
entity top is
...
end top;
architecture top of top is
type X is record
f1 : bit;
f2 : bit;
f3 : bit;
end record;
signal sig : X ;
component e1
port (in1, in2 : bit; out1 : out bit);
end component;
begin

inst : e1 port map(
in1 => sig.f1,
in2 => sig.f2,
out1 => sig.f3);
...
end top;

Mapping Data Types

Instantiation of a design unit described in one HDL inside another design
unit implemented in the other HDL requires certain adaptations and data
type conversions at port and generic/parameter interface. For example,
VHDL instantiation of a Verilog module can associate VHDL signals and
values with Verilog ports and parameters. Similarly, Verilog instantiation of
a VHDL design unit can associate Verilog nets and value with VHDL ports
and generics.

Mapping between VHDL Generics and Verilog Parameters

An instance of VHDL design unit in a Verilog module can override default
generic values through appropriate parameter mapping. Similarly, an
instance of a Verilog module inside a VHDL design unit can override default
parameter values through appropriate generic mapping.
189
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
Mixed-language support in SpyGlass supports VHDL Port Mapping to Verilog
Ports.

Mixed-Language support in SpyGlass supports the following data-mapping:

VHDL Port Mapping to Verilog Ports

Verilog ports are based on language-defined data type that supports both
logic simulations at logic 0/1/X/Z level as well as signal-strength modeling
for transistor circuit simulation.

For mixed-language support, Atrenta Console only supports Verilog
logic-level based on 0/1/X/Z logic and it is mapped to the following data
types in VHDL:
 VHDL Generic Type Verilog Parameter Type

 VHDL integer Verilog integer

 VHDL real Verilog real

 VHDL time Verilog integer or real (multiplied with appropriate timescale
directive)

 VHDL string Verilog string

 VHDL enumeration Verilog integer based on 'VAL() attribute in VHDL

 bit or std_logic

 bit_vector or std_logic_vector

Current Limitation with Mixed-language Designs in
SpyGlass

VHDL Generic Type Verilog Parameter Type
VHDL integer Verilog integer
VHDL real Verilog real
VHDL time Verilog integer or real (multiplied with appropriate

timescale directive)
VHDL string Verilog string
VHDL enumeration Verilog integer based on ‘VAL() attribute in VHDL
190
Synopsys, Inc.

Working with Mixed-Language Designs

Working with Input Design and Libraries
 VHDL design units instantiated in a Verilog module cannot have
unconnected terminals in the port mapping.

 Port mapping across language boundaries is case-sensitive.

 In some designs, there can be multiple reporting of the same SYNTH
and Elaboration errors.

 Syntax errors are suppressed during synthesis of a Mixed-Language
design with 'define macro declaration of the following type:

'define macro(A,B,C) A|B|C
191
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
Working with DesignWare® Modules
SpyGlass can expand DesignWare® modules and generate logic for these
modules during SpyGlass analysis.

Prerequisites for Enabling DesignWare Flow

If a design contains instances of DesignWare modules, perform the
following actions before running SpyGlass analysis:
 Specify the DesignCompiler license to generate Verilog netlist for

DesignWare modules.
 Specify the path for DesignCompiler installation. For details, see

Specifying Path of DesignCompiler Installation.
NOTE: SpyGlass uses your license and installation of the DesignWare tool set

(DesignCompiler, DesignWare-Basic, and DesignWare-Foundation) to generate the
GTECH mapped netlists. SpyGlass internally generates the required wrapper files,
scripts, etc.

Specifying Path of DesignCompiler Installation

Specify the path of the DesignCompiler installation in your work
environment by setting the SPYGLASS_DC_PATH environment variable to
a valid DesignCompiler installation, as shown in the following example:

setenv SPYGLASS_DC_PATH /net/DC2003/linux
setenv SPYGLASS_DC_PATH /net/DC2003

The SPYGLASS_DC_PATH key can be set to either of the above directory
settings.

Alternatively, you can specify the above path in the .spyglass.setup file. In
this file, you need to define the setup key, SPYGLASS_DC_PATH, and set its
value to the DesignCompiler installation area path.

NOTE: Please note the following points:

 If you have set the SPYGLASS_DC_PATH environment variable and
defined the SPYGLASS_DC_PATH setup key, then SpyGlass gives
preference to the setting specified in the environment variable.
192
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
 The previous DC_PATH environment variable has been replaced by the
SPYGLASS_DC_PATH environment variable.

 If you choose to set SPYGLASS_DC_PATH to some dc_shell script (and
not the installation area) so that the DesignWare files (packages/dware)
and library path (dw/) from dw01 to dw06 are not deducible from
SPYGLASS_DC_PATH, set the SPYGLASS_DC_DWARE_FILES_PATH and
SPYGLASS_DC_DW_FILES_PATH variables in the .spyglass.setup file, as
shown below, so that SpyGlass gets the required files:

SPYGLASS_DC_DWARE_FILES_PATH = <dc-installation>/packages/
dware/

SPYGLASS_DC_DW_FILES_PATH = <dc-installation>/dw/

NOTE: You can not set the keywords SPYGLASS_DC_DWARE_FILES_PATH and
SPYGLASS_DC_DW_FILES_PATH as environment variables.

The license for DesignCompiler must be available prior to running
SpyGlass.

Your license setups should also include your DesignCompiler licenses. To
ensure that DesignCompiler is not run again during subsequent runs,
SpyGlass stores the netlists that are generated once. During subsequent
runs, SpyGlass checks whether netlists already exist for the instantiated
DesignWare components before invoking DesignCompiler. If these netlists
already exist (generated during earlier runs), DesignCompiler is not
invoked for those DesignWare components. However, DesignCompiler is
invoked for any instance of DesignWare component that does not have a
netlist already visible to SpyGlass. This allows you to change the
instantiation of a DesignWare component (if required) without any loss of
analysis and without causing unnecessary run of DesignCompiler (unless
actually required).

Enabling the DesignWare Flow

To enable the DesignWare flow, specify the following command in a project
file:

set_option dw yes

This option results in the following:
193
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
 SpyGlass looks at the design description to identify instances of the
DesignWare components and the parameter/generic values used with
these instantiations.

 SpyGlass invokes Synopsys® DesignCompiler to generate netlists (in
terms of GTECH cells) corresponding to these instances of DW
components.

 SpyGlass uses this DesignCompiler-generated netlists (of DesignWare
components) for analysis of the design. This causes SpyGlass to
perform a more accurate analysis on the design.

If your design contains instances of DesignWare modules listed in Table 1,
SpyGlass requires the DesignCompiler license to generate netlist for these
modules.

Table 2 lists DesignWare modules for which the DesignCompiler license is
not required.

Reusing Netlist of DesignWare Modules during SpyGlass
Analysis

To use DesignWare modules in SpyGlass, specify the location of netlists
generated by DesignCompiler by specifying the following command in the
project file:

set_option lib SPY_DW_WORK <dir-name>

When you specify the above command, SpyGlass stores the generated
netlists and picks them from the <dir-name> directory.

Changing the netlist location may be useful if you want to reuse the netlists
generated on one design during subsequent runs on other designs. During
subsequent runs of SpyGlass, if the desired netlist is found in the specified
location, SpyGlass picks that netlist. Otherwise, DesignCompiler generates
the netlist and stores it at the specified location for subsequent usage.

NOTE: Refer to the SpyGlass Design Read-In Methodology for details on customizing this
feature for your specific design/site requirements.

Notes

 If you have not defined VHDL component declaration of the DesignWare
components correctly, Atrenta Console may report built-in errors, such
STX_VH_11, STX_VH_464, and WRN_384.
194
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
 In case of save-restore in DesignWare, if the you changes the lib
SPY_DW_WORK mapping (set_option lib <logical-lib-name> <physical-path>) to
some other area in the restore run, restore is unsuccessful.

 Verilog-95 standard is not compatible with DesignWare compilation.

List of DesignWare Modules Supported in SpyGlass

The following table lists DesignWare modules that require the
DesignCompiler license for Verilog netlist generation:

TABLE 1 DesignWare Modules that Require Design Compiler License

DW02_cos DW02_rem DW02_sin

DW02_sincos DW02_sqrt DW03_cntr_gray

DW03_reg_s_pl DW04_crc32 DW04_shad_reg

DW04_sync DW_8b10b_dec DW_8b10b_enc

DW_8b10b_unbal DW_arb_2t DW_arb_dp

DW_arb_fcfs DW_arb_sp DW_arbiter_2t

DW_arbiter_dp DW_arbiter_fcfs DW_arbiter_sp

DW_asymfifo_s1_df DW_asymfifo_s1_sf DW_asymfifo_s2_sf

DW_asymfifoctl_s1_df DW_asymfifoctl_s1_sf DW_asymfifoctl_s2_sf

DW_bc_1 DW_bc_2 DW_bc_3

DW_bc_4 DW_bc_5 DW_bc_7

DW_crc_p DW_crc_s DW_data_sync_1c

DW_data_sync_na DW_data_sync DW_div_seq

DW_dpll_sd DW_ecc DW_fifo_s1_df

DW_fifo_s1_sf DW_fifo_s2_sf DW_fifoctl_s1_df

DW_fifoctl_s1_sf DW_fifoctl_s2_sf DW_fifoctl_s2dr_sf

DW_fir_seq DW_fir DW_fp_add

DW_fp_addsub DW_fp_cmp DW_fp_div
195
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
DW_fp_flt2i DW_fp_i2flt DW_fp_mult

DW_fp_sub DW_fp_sum3 DW_fp_sum4

DW_gray_sync DW_iir_dc DW_iir_sc

DW_inv_sqrt DW_llfifocntl_s1_df DW_mult_seq

DW_pipe_mgr DW_piped_mac DW_pulse_sync

DW_pulseack_sync DW_ram_2r_w_a_dff DW_ram_2r_w_a_lat

DW_ram_2r_w_s_dff DW_ram_2r_w_s_lat DW_ram_r_w_a_dff

DW_ram_r_w_a_lat DW_ram_r_w_s_dff DW_ram_r_w_s_lat

DW_ram_rw_a_dff DW_ram_rw_a_lat DW_ram_rw_s_dff

DW_ram_rw_s_lat DW_reset_sync DW_sla

DW_sqrt_seq DW_sra DW_stack

DW_stackctl DW_stream_sync DW_sync

DW_tap_uc DW_tap DW_wc_d1_s

DW_wc_s1_s DW_fp_dp2 DW_fp_dp3

DW_pricod DW_fifoctl_2c_df DW_log2

DW_exp2 DW_fp_div_seq DW_thermdec

DW_data_qsync_lh DW_dct_2d DW_fifo_2c_df

DW_asymfifoctl_2c_df DW_decode_en DW_fp_add_DG

DW_fp_addsub_DG DW_fp_cmp_DG DW_fp_dp4

DW_fp_sub_DG DW_fp_mac_DG DW_fp_mult_DG

DW_fp_exp DW_fp_exp2 DW_fp_ifp_conv

DW_fp_invsqrt DW_fp_ln DW_fp_log2

DW_fp_mac DW_fp_recip DW_fp_sincos

DW_fp_sqrt DW_fp_square DW_FP_ALIGN

DW_arb_rr DW_ifp_addsub DW_ifp_fp_conv

DW_ifp_mult DW_ln DW_sincos

TABLE 1 DesignWare Modules that Require Design Compiler License
196
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
The following table lists DesignWare modules that do not require the
Design Compiler license, because Verilog netlist is available for such
modules:

DW_sqrt_rem DW_lp_piped_fp_mult DW_lp_piped_fp_recip

DW_lp_piped_fp_sum3 DW_lp_piped_mult DW_lp_piped_sqrt

DW_lp_piped_prod_sum DW_lp_pipe_mgr DW_lp_piped_div

DW_lp_piped_ecc DW_lp_piped_fp_add DW_lp_piped_fp_div

DW_lp_fifoctl_1c_df DW_lp_fifo_1c_df DW_asymdata_inbuf

DW_asymdata_outbuf DW_data_qsync_hl DW_ram_r_w_2c_dff

TABLE 2 DesignWare Modules not Requiring Design Compiler License

DW01_absval DW01_add DW01_addsub

DW01_ash DW01_binenc DW01_bsh

DW01_cmp2 DW01_cmp6 DW01_csa

DW01_dec DW01_decode DW01_incdec

DW01_mux_any DW01_prienc DW01_satrnd

DW01_sub DW02_mac DW02_multp

DW02_mult_2_stage DW02_mult_3_stage DW02_mult_4_stage

DW02_mult_5_stage DW02_mult_6_stage DW02_mult

DW02_prod_sum DW02_sum DW02_tree

DW03_bictr_dcnto DW03_bictr_decode DW03_bictr_scnto

DW03_lfsr_dcnto DW03_lfsr_load DW03_lfsr_scnto

DW03_lfsr_updn DW03_pipe_reg DW03_shftreg

DW03_updn_ctr DW04_par_gen DW_addsub_dx

DW_bin2gray DW_cntr_gray DW_div_pipe

DW_div DW_gray2bin DW_inc_gray

TABLE 1 DesignWare Modules that Require Design Compiler License
197
Synopsys, Inc.

Working with DesignWare® Modules

Working with Input Design and Libraries
Using DesignWare Functions

SpyGlass currently supports only the following DesignWare functions:
 DWF_bin2gray

 DWF_gray2bin

 DWF_inc_gray

If you invoke any of these functions in an RTL, SpyGlass handles them
during synthesis.

DW_lbsh DW_lod DW_lsd

DW_lzd DW_minmax DW_mult_dx

DW_mult_pipe DW_norm_rnd DW_norm

DW_prod_sum_pipe DW_rash DW_sqrt_pipe

DW_rbsh DW_shifter DW_square

DW_squarep DW_sqrt DW_pl_reg

DW_lza DW02_prod_sum1

TABLE 2 DesignWare Modules not Requiring Design Compiler License
198
Synopsys, Inc.

Specifying Pragmas in HDL Code

Working with Input Design and Libraries
Specifying Pragmas in HDL Code
You can specify certain pragmas in your code. Atrenta Console supports
different types of pragmas for Verilog and VHDL code.

Supported Pragmas for Verilog

Atrenta Console supports translate_off/translate_on pragmas for Verilog.
Within these pragmas, Atrenta Console ignores the code for compilation,
syntax checks, etc.

Supported Pragmas for VHDL

Atrenta Console supports translate_off/translate_on and synthesis_off/
synthesis_on pragmas for VHDL.

For more information see Synopsys translate_off/on Pragmas.
199
Synopsys, Inc.

Working with Black Boxes

Working with Input Design and Libraries
Working with Black Boxes
SpyGlass infers black boxes whenever it cannot find a model for a design
unit. Often, these are inadvertent and should be resolved by supplying the
models for them. The table below describes various sources in which black
boxes are not expected:

You should replace models for un-synthesizable design units with
synthesizable models. The ReportUnsynthesizedDU reports the
un-synthesizable design units.

Inferring Black Boxes

When SpyGlass analyzes a design containing ASIC cell instances or
instances of modules not defined in the source files, SpyGlass checks for
the corresponding cell or module definition in the associated Synopsys
library (.lib file). Instances for which the corresponding cell or module
definition is found, SpyGlass inserts the correct port interface. For all other
instances, SpyGlass assumes them as black boxes with a port interface
containing all input/inout ports. However, this assumption may result in
problems such as feedback loops around the inout ports after synthesis.

To address this problem, SpyGlass provides the black box inference

Sources of unexpected black boxes Resolution
Design HDL Check that the HDL files are supplied

correctly and are synthesizable. Refer
to section “Basic Design-read” for
details.

precompiled library Check that the HDL library was
compiled correctly. Refer to section
“Precompiling HDL into a library” for
details.

DesignWare Components Enable the DesignWare compilation
feature. Refer to section “Dealing with
DesignWare Components” for details.

Technology library Provide the .lib or .sglib technology
file. Refer to the “Compiling technology
libraries” section for details.
200
Synopsys, Inc.

Working with Black Boxes

Working with Input Design and Libraries
feature. SpyGlass use this feature to heuristically determine black box
module wrappers (port names, port sizes, port directions, port order, and
the module parameters) for each black box type by analyzing black box
instances.

This feature improves SpyGlass performance for designs with instances of
real black boxes (that is, modules whose definition is not available at that
time). Ideally, designs should not have any black boxes.

For Verilog black box instances in mixed-language mode, SpyGlass infers
similar information as in the Verilog-only mode. SpyGlass, however, skips
processing of black box instances that appear in both Verilog and VHDL
design units.

NOTE: SpyGlass understands module interface definition in Synopsys LibertyTM files (.lib
files), and hence, the black box inference feature is required for real black boxes
only.

NOTE: The black box inference feature is restricted to Verilog design flows only as VHDL
designs strictly require component declarations before use and hence do not
require such preparatory steps.

Understanding the Black Box Inference Feature

The black box inference feature works at the following two levels:
 After RTL analysis

SpyGlass heuristically determines the port information as follows:

Port Attribute Inferring Method
Number of ports From instance port map
Port names For named port connections in the black box instance,

the port names are the same as those specified in the
design.
For positional port mapping, SpyGlass uses an
internally defined naming method.

Port directions All ports are assumed to be of type input.
Port sizes Same as the width of the widest (vector) signal

connected to the port when checked across all instances
of the same black box. Then, the right hand bit of the
port width range is always 0, and the left hand bit is one
less than the size of the widest connected vector.
201
Synopsys, Inc.

Working with Black Boxes

Working with Input Design and Libraries
When SpyGlass Verilog analyzer encounters the first instance of a black
box, it creates a master module for it, with port/parameter interface
matching the current instantiation. As it encounters more instances of
the same black box, it enhances the port/parameter interface of the
master module as required.

 After synthesis and flattening
SpyGlass heuristically determines the port directions after flattening
based on the connectivity of the net connected to the black box port:

Using the Black Box Inference Feature

To use the black box inference feature, specify the following command in
the project file:

set_option inferblackbox yes

You must specify all available Verilog source files and the .lib files during
design-read. Atrenta Console processes only those modules for black box
inference that are not defined in any of these files.

Atrenta Console creates inferred black box wrapper modules in a file
named sgBlackbox.v (created in the spyglass_sch directory in the current
working directory) that has the port directions inferred at flattened netlist-
level and uses it for rule-checking.

In this case, the RTL description-level rules may flag false messages or
may not flag messages around the black box instances as all black box
ports are assumed to be input type ports.

Checking the Inferred Information

If the port/parameter information inferred by this feature appears to be

Net connected to the port is Port Direction is inferred as
A hanging net or is also connected to an inout
port of a synthesizable module

inout

Set at least once and may or may not be read input
Never set and is read at least once output
202
Synopsys, Inc.

Working with Black Boxes

Working with Input Design and Libraries
different from what you expected, review the sgBlackbox.v file or the
sgBlackbox.v file (created in the spyglass_sch directory in the current working
directory) that has the inferred black box wrapper module descriptions.

NOTE: You must copy the sgBlackbox.v file from the spyglass_sch directory to another
directory (to the current working directory, for example) as the spyglass_sch
directory is overwritten after each SpyGlass run.

Now check the sgBlackbox.v file for the following information:

 Number of black box wrappers modules
If this number is very large, it indicates that a significant fraction of
design is based on structural instances for which no information is
supplied. Therefore, the result of SpyGlass analysis is potentially
incomplete or inaccurate since a large number of such modules
increases the macro-level uncertainty about interaction of these black
box instances with other parts of the design. One possibility is that you
have not supplied all the design files. In any case, you should ensure
that all black box module wrappers are only those for which no
information is actually available at the time of running SpyGlass.

 Black box wrapper module port interface
For each (actual) black box wrapper module, you should inspect all port
information — port names, port sizes, port directions, and order of
ports. The inferred definition lists all instances based on which way the
wrapper was inferred. Because all instances together may still not have
certain information that you know otherwise, however, you should
modify the inferred module wrapper for any of the port attributes. You
can also add any ports that are never used in instances within that
design.

 Black box wrapper module parameter interface
For each (actual) black box wrapper module, you should also inspect
parameter inferred because at least that many parameters have been
used for parameter value override at the time of instantiation. However,
almost all-existing SpyGlass functionality does not depend on the use of
these black box instance parameter overrides. Hence, you can
specifically look at the parameter interface only if the parameters
actually affect the port size of some of the black box module ports.

NOTE: If you find that certain port directions inferred for black boxes are not suitable for
your design, use the following command in the project file to infer port directions:
203
Synopsys, Inc.

Working with Black Boxes

Working with Input Design and Libraries
set_option inferblackbox_iterations <int-value>

Where <int-value> refers to the number of iterations (effort) spent by
SpyGlass to converge on an estimate of port direction.

Using the Corrected Inferred Information

You can use the corrected inferred information for SpyGlass analysis run by
running Atrenta Console with all available Verilog source files, .lib files, the
corrected sgBlackbox.v file and other required options.

Stopping Black Box Analysis

You can leave design units that do not have models as black boxes during
design-read.

For advanced analysis, additional modeling information may be required
that you can supply by using constraints. For example, a PLL will not have
a synthesizable model, but you may need to model clock-paths through
them depending on what is being analyzed.

To stop analysis forcefully when SpyGlass finds a black box, specify the
following command in the project file:

set_option nobb yes
204
Synopsys, Inc.

Handling Out of Memory Situations

Working with Input Design and Libraries
Handling Out of Memory Situations
You can overcome an out of memory failure by running Atrenta Console on
a machine configured with more physical RAM and swap space. By default,
Atrenta Console runs in 64-bit mode. If you are using 32-bit mode, you
must switch to 64-bit mode so more memory is available.

If there are large synthesizable memory blocks in the design, you can
greatly reduce the required amount of memory by specifying the following
command in the project file:

set_option handlememory yes

The above command reduces the depth of memory and allows most types
of analysis to continue unaffected.

There are cases where full memory model is required and specifying the
above command will alter the analysis. For example, analyzing FIFO
structure may require the full depth of the memory core used. The memory
cores used in these types of structures are generally small and not affected
by the command above. To control the minimum size for memories
affected by the large memory-handling feature, specify the following
command in the project file:

set_option mthresh <value>

The default value is 4096.
NOTE: If Atrenta Console runs out of memory during analysis, it will exit with the following

error message:

>% ERROR[100] Memory Allocation Failed. Exiting …

Setting options to reduce memory size affects some analysis results. For
details, refer to the Memory Reduction Feature section of Atrenta Console
Reference Guide.
205
Synopsys, Inc.

Reporting Messages at Module Boundary

Working with Input Design and Libraries
Reporting Messages at Module Boundary
SpyGlass allows you to report flat-level rule messages up to the instance
boundaries of specified module types (Verilog 'celldefine modules, Library
modules, and user-specified modules).

Flat-level rule-checking in SpyGlass assumes only leaf-level instances in
the flat netlist. These instances can be SpyGlass synthesis tool primitives/
macros instances, .lib instances, or black box instances.

However, you may at times want to treat specified module definition as a
single unit for flat-level rule-checking, meaning that analysis should work
as if there are only instances of these modules in the flattened netlist.

A typical case in which you would prefer this behavior is for Interface Logic
Model (ILM) models of black boxes. Here, you provide the basic interface
details of black box modules that are sufficient for rule-checking and want
SpyGlass to use whatever it needs from inside the module definition (in
terms of connectivity of input to output, etc.) but should not report any
messages for nodes inside it.

NOTE: This feature is not applicable for built-in messages. It is only applicable for
messages of product rules that have been enhanced for this feature.

SpyGlass refers to such module definitions as BBOX_MODEL type modules
as these are effectively black boxes from the point-of-view of SpyGlass
reporting and SpyGlass does not report anything inside these modules.

Identifying Modules

The current implementation understands the following type of modules as
BBOX_MODEL type modules:
1. Black box ILM model

SpyGlass identifies a design unit (Verilog/VHDL) as a BBOX_MODEL type
module if its definition contains the following SpyGlass bbox_model
pragma:

// spyglass bbox_model (For Verilog)

-- spyglass bbox_model (For VHDL)

The BBOX_MODEL type module definition contains basic interface-level
details with some logic around the interface so that the details are
206
Synopsys, Inc.

Reporting Messages at Module Boundary

Working with Input Design and Libraries
sufficient for SpyGlass rule-checking.
2. Verilog 'celldefine Modules

The Verilog 'celldefine modules can be identified as possible
BBOX_MODEL type modules as SpyGlass can uniquely recognize them
based on the corresponding 'celldefine directive.

3. SpyGlass-compiled Gates Library Modules
SpyGlass identifies all gates in a SpyGlass-compiled gate library as
BBOX_MODEL type modules.

Enabling the Feature

The DEFAULT_BBOX_MODEL configuration key in the SpyGlass
Configuration file (the .spyglass.setup file) allows you to define
BBOX_MODEL types to be recognized for SpyGlass rule-checking.

NOTE: For details about designing and using the SpyGlass Configuration file, refer to
Atrenta Console Reference Guide.

NOTE: The override order for the DEFAULT_BBOX_MODEL configuration key values is
$CWD (highest) > $HOME > $SPYGLASS_HOME (lowest).

Impact of the Feature

When you enable the BBOX_MODEL type module recognition feature and
provide the required valid details, the impact on the SpyGlass rule-
message reporting is as follows:
1. SpyGlass ignores design units identified as BBOX_MODEL type modules

for RTL description-level rules and hierarchical netlist-level rules.
2. If the rule-violation involves “internal” nodes of the BBOX_MODEL type

modules, then the rule message reports at the boundary of the
BBOX_MODEL type module instantiation.

3. The schematic windows in Atrenta Console show the BBOX_MODEL type
module instants as black boxes. You cannot traverse inside these
modules.

4. The rule-violation highlighting is always at the boundary of the
BBOX_MODEL type module instantiation when a rule message involving
the “internal” nodes is viewed.
207
Synopsys, Inc.

Controlling the RTL Synthesis Engine

Working with Input Design and Libraries
Controlling the RTL Synthesis Engine
As explained earlier, once SpyGlass completes its pre-processing, it
analyzes your RTL design in one, two or three steps, depending on the rule
checks you request.
1. SpyGlass checks standard style and SpyGlass lint solution rules and

then logs messages in the Violation Database. If you request no other
checks, SpyGlass Analysis ends at this point.

2. If you request rule checks that require inferred logic, SpyGlass accesses
its internal RTL synthesis engine. The engine creates a design using
generic gates. It then uses this design to detect inferred elements such
as latches, flip-flops, and counters. Each element contains references
back to your RTL HDL description, letting SpyGlass relate message
reports directly to your source code. The design coming out of the
synthesis engine in this second step is hierarchical.
Definitions of the generic gates used by the SpyGlass synthesis engine
are available in the <your-inst-dir>/SpyGlass-x.y.z/SPYGLASS_HOME/
auxi/target_libs/generic/rtlc.prim.v and <your-inst-dir>/SpyGlass-x.y.z/
SPYGLASS_HOME/auxi/target_libs/generic/rtlc.prim.vhdl for Verilog and VHDL
cells respectively.

NOTE: If SpyGlass detects HDL syntax messages in your RTL design, it will not synthe-
size your code and will not proceed to the second and third steps.

3. Synthesis converts your high-level circuit description into a hierarchical
netlist of generic gates.
If you still want to perform rule-checking that are best performed on a
flat netlist (such as synchronization logic, combinational loops, and
reset rules), SpyGlass runs a flattener on the hierarchical netlist. Checks
in this final step can include any form of netlist checking.
During the flat netlist rule-checking, SpyGlass ignores empty top-level
design units because it serves no purpose to perform netlist-level rule
checking on empty design units.

Limiting Analysis of Memories

If you include memories (two-dimensional register arrays) in your Verilog/
VHDL design, you can have SpyGlass analyze them for connectivity
messages after the synthesis step. SpyGlass can generate a register and
208
Synopsys, Inc.

Controlling the RTL Synthesis Engine

Working with Input Design and Libraries
associated connections for each bit of memory it compiles.

As the size of memory arrays increases, however, the real memory and
runtime requirements for the analysis increase dramatically. At some point,
you are better off compiling small arrays into registers and treating larger
arrays as black boxes. Use the following project file option to set an upper
limit on the size of the memory arrays compiled into registers:

set_option mthresh <value>

The SpyGlass default size for compiling memories is 4096 (4K) bits. It is
not recommended to set the threshold to a very large number because of
hardware memory requirements and runtime degradation.

NOTE: SpyGlass reports how many bits of memory it finds in each module as part of its
standard runtime dialog. You can decide on a reasonable memory limit after
running one pass without using this feature.

We recommend that you define large memories in a separate module. This
allows SpyGlass to continue checking your design in detail, since if it
encounters a large memory it black boxes that module and has no impact
on any other part of the design. This also makes it easier to replace the
RTL definition of a memory with an explicit array if you are using one for a
particular ASIC.

Preserving all instances and nets in a design

The SpyGlass RTL synthesis engine normally retains hanging nets
(open-ended interconnections among logic gates) and hanging/
unconnected instances. If you want to remove these instances and nets in
your design so that the result matches that of your main synthesis engine,
you can do so by supplying the set_option nopreserve yes
command in the project file. Preserving all instances and nets makes it
easier for you to relate inferred logic back to your source code.

Interpreting Synthesis Pragmas

SpyGlass reads most synthesis pragmas that affect RTL description and
some synthesis pragmas that effect the generation of netlist.

Built-in VHDL Synthesis Pragmas

SpyGlass interprets all Built-in VHDL synthesis pragmas except
209
Synopsys, Inc.

Controlling the RTL Synthesis Engine

Working with Input Design and Libraries
SYN_INTEGER_TO_BIT_VECTOR and SYN_X_EQL pragmas.

Optimization-Related Synthesis Pragmas

SpyGlass ignores optimization-related synthesis pragmas.

Analysis-Related Synthesis Pragmas

SpyGlass reads and interprets the following analysis-related synthesis
pragmas:

Interpreting Synthesis Pragmas

SpyGlass interprets different types of synthesis pragmas, as discussed in
the following examples.

Synopsys translate_off/on Pragmas

Use this design-read option to ignore VHDL code within the pragma block,
Synopsys translate_off/translate_on.

Setting this field is equivalent to specifying the following command in the
Atrenta Console project file:

set_option hdlin_translate_off_skip_text yes

Synthesis Pragma Applicable for... Whether
interpreted?Verilog VHDL

translate_off/translate_on Yes Yes Yes
synthesis_off/synthesis_on Yes Yes Yes
analysis_off/analysis_on No Yes No
force_off/force_on No Yes No
dc_script_begin/dc_script_end Yes Yes No
full_case, parallel_case Yes NA Yes
state_vector Yes No No
enum Yes No Yes
goal Yes No No
map_to_module Yes No No
return_port_name Yes No No
resource Yes No No
210
Synopsys, Inc.

Controlling the RTL Synthesis Engine

Working with Input Design and Libraries
By default, this option is enabled. To disable this option, set the value of
the disable_hdlin_translate_off_skip_text command to yes.

For more details on disable_hdlin_translate_off_skip_text command, refer
to disable_hdlin_translate_off_skip_text section in the Atrenta Console
Reference Guide.

Interpreting Synopsys synthesis_off/on Pragmas

By default, SpyGlass ignores the VHDL design code block between
Synopsys synthesis_off/synthesis_on pragmas for synthesis but not for
analysis. Therefore, SpyGlass runs syntax-checking and RTL description-
level rules on the design code block.

Now consider that you specify the following command in the project file:

set_option hdlin_synthesis_off_skip_text yes

When you specify the above command, SpyGlass considers the design code
block lines as comment lines and does not perform syntax-checking and
RTL description-level rule-checking.

The hdlin_synthesis_off_skip_text option has no effect on the
interpretation of Synopsys translate_off/translate_on pragmas.
211
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Managing the Design Hierarchy
Managing design hierarchy enables you to perform bottom-up debug by
defining a lower hierarchy, analyzing it, moving to a higher point in the
design hierarchy, and running analysis from that point down.

You can black box lower-level blocks (for example, it is being worked on by
another member of the project, or it is a hard macro, or if the block has
previously been analyzed).

You can manage your design hierarchy in the following ways:
 By specifying design files that should be analyzed individually.

 By specifying design files that should be analyzed as a complete
hierarchy that contains a top module followed by various child modules.

Specifying a Top-level Design Unit

A top-level design unit is a module interpreted on a design hierarchy in
such a way that all design units instantiated directly or indirectly under the
specified top-level design unit is included in the scope of SpyGlass analysis.

All the remaining designs units in specified source file(s) that are not
instantiated in top-level design unit are excluded from the scope of
SpyGlass analysis.

NOTE: The DetectTopDesignUnits rule reports top-level design units.

NOTE: For VHDL designs, Atrenta Console can automatically determine the top of a
hierarchy if you have specified the sort option in the set_option command.

Advantage of Specifying a Top-Level Design Unit

Setting a top-level design unit improves CPU time and memory
requirements to a significant extent due to the following reasons:
 You can restrict SpyGlass analysis to a design hierarchy starting from a

top-level design unit.
 You can ignore design units that are not relevant for current analysis.
212
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Setting a Top-Level Design Unit

To set a top-level design unit, use the following command in the project
file:

set_option top <top>

Alternatively, specify the name of the top-level module in the Top Level
Design Unit field under the Set Read Options tab.

NOTE: If the stop option was used on a design unit with a hierarchy, any modules that are
unused by other design units would be inferred as top design units.

It is highly recommended that you set a top-level design unit during Stage
1: Setting up the Design (Design Setup) in all SpyGlass runs, except while
precompiling HDL libraries.

If you do not set a top-level module during the Design Setup stage and
directly proceed to the next stage, Atrenta Console performs appropriate
actions as discussed below:
 If you proceed to the next stage after running the design read process,

and if there are multiple top-level modules in your design but none of
the modules are set as a top-level module, the following Warning dialog
appears:

FIGURE 14. Warning: Multiple Top Modules

In the above dialog, click and select the required module from the
drop-down list.
If you want to set all the modules displayed in that list as top-level
modules, click the Allow Multiple Tops button.

 If you proceed directly to the next stage without running the design
read process, the following Warning dialog appears:
213
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
FIGURE 15. Warning: Top Module Not Set

In the above dialog, specify the name of the top-level module.
If you want to run SpyGlass analysis without any top-level module, click
the Continue Without Top button.

 If your design has a single top-level module that you have not set as a
top-level module during the Design Setup stage, Atrenta Console
automatically infers that module as a top-level module based on the
structure of the design. In this case, no Warning dialog appears.

Multiple Top-Level Design Units

When you run the design read process, SpyGlass may encounter multiple
top-level design units due to the following reasons:
 Incomplete elaboration

Check if there are some ELAB errors. SpyGlass cannot create a
hierarchy tree correctly because of these ELAB errors. As a result, an
underlying module becomes an independent top-level module.

 HDL libraries specified incorrectly
In this case, SpyGlass treats unused design units as independent design
units, that is, top-level design units.

Atrenta Console allows you to specify multiple top-level design units for lint
type analysis. However, a single top-level design unit is generally expected
for more advanced analysis.
214
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Language-Specific Behavior While Specifying a Top-Level Module

Specifying top-level module(s) affect the use-model and flow of SpyGlass
at various stages of design reading, analysis, synthesis and rule-checking.
Due to differences in semantics of Verilog and VHDL design descriptions,
there are certain unavoidable differences in functionality of the top-level
feature. Please be aware of such cases.

The following table describes language-specific behavior while specifying
top-level modules:

SpyGlass
Processing

Verilog design VHDL design

Design Input The whole design should not contain any syntax errors. Although
SpyGlass may try to skip syntax error in design units outside the
specified top-level design unit hierarchy, such behavior cannot be
guaranteed and is discouraged.

Design Analysis SpyGlass reports syntax errors
and warnings in a design
hierarchy within the specified
top design units only.
Such semantics are compatible
with use of the +top-module
option in other Verilog tools.

SpyGlass performs analysis of
all VHDL design units, and
therefore, reports VHDL syntax
errors for all design units.
The reason for such behavior is
that SpyGlass processes the
top-level feature in VHDL
design during elaboration stage
and, therefore, requires
analysis of full VHDL design.

Design Elaboration - SpyGlass completes VHDL the
design elaboration starting at
design unit specified with the
Top-Level feature.
This step determines the exact
design hierarchy under the
specified “top” design unit, and
takes care of binding as per the
VHDL language requirements.
215
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
NOTE: Functionality of the Stop feature is closely linked with the Top-Level feature in
guiding a design hierarchy to be checked. In contrast to the Top-Level feature,
there are no syntax/semantic errors or warning messages (except for elaboration
errors and AnalyzeBBox messages) reported on design units specified by the Stop
feature.

Stopping Design Units

You may need to stop some design units in the following cases:
 If some design units are currently placeholders for some information to

be added later. For example, a pre-designed code or intellectual
property is yet to be provided.

 If a particular design unit is still under development.

To prevent analysis of such design units, use the following command in the
project file:

set_option stop <design-unit>

Alternatively, specify the name of such design units in the Stop Design
Unit(s) field under the Set Read Options tab.

Design Unit list of
RTL rule-checking

SpyGlass computes this list
based on Verilog Object Model
created after use of the Top-
Level feature at Verilog analysis
time.
All SpyGlass rules (excluding
Verilog language syntax error)
are checked on this list.

SpyGlass computes this list
from VHDL elaboration of the
specified design unit.
SpyGlass performs all the rules
checks on this list, excluding
VHDL language syntax error
and semantic error or warnings.

Design units for
hierarchical and flat
netlist rule checks

SpyGlass performs design synthesis for design units under the
specified (Top-Level) design units only. Therefore, SpyGlass
performs netlist rules checking on such design units only.

Lexical Rules SpyGlass performs lexical rules checking on input Verilog or VHDL
design source. The list of RTL modules falling within the specified
design hierarchy is passed to lexical rules. Hence, rule-check
within design unit (or module) boundary is restricted to specified
design units only. However, for HDL code not within any design
unit, the rule-checking shall depend on the nature of lexical rule.

SpyGlass
Processing

Verilog design VHDL design
216
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
NOTE: You can specify the stop command with the stopdir and the stopfile
commands.

Implications After Stopping Design Units

Stopping design unit(s) has the following implications:
 To ensure successful parsing of the whole design, the stopped design

unit can not have any syntax error. Presence of a syntax error in a
stopped design unit may interfere in identifying the boundary of such
design unit itself, and therefore interfere in parsing of the remaining
design units that may exist later in the design source file(s).

 No rule-checking occurs on stopped design units for rules that work at a
design unit level, such as RTL, ELAB, LEXICAL, and VSDU.
For rules, such as VSTOPDU or FLAT rules that work on a complete
design, a stopped design unit is considered as a black box during
traversal.
SpyGlass does not report any built-in messages for stopped design units
except for elaboration errors and AnalyzeBBox messages. Atrenta
Console reports elaboration errors to guide you about a design hierarchy
that is being checked, whereas the AnalyzeBBox rule messages reports
about design units that have been stopped and whether that matches
your expectation.

 No rule-checking occurs for all the design units instantiated within a
stopped design unit.
However, if SpyGlass analysis is for the whole design, the underlying
hierarchy below such stopped design units can be treated as
independent top modules, and rule-checking can then be done for such
modules. In either of these cases, the generic or parameter value
expected to be passed from top design hierarchy cannot be passed to
design hierarchy below the stopped design unit.
217
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Checks Performed on Stopped Design Units

Atrenta Console performs the following checks on design units marked as
stopped:
 Lexical checks (Line length, use of tab, indents)

 Name checks (both unique and reserved names)

 Checks disallowing use of specified synthesis pragmas

 Checks on the use of sufficient numbers of parentheses in expressions

 Checks on the use of hard constants

 Checks that should not disable out of a loop

 Checks on the use of multi-line comments

Using the Top and Stop Features Together

Consider the design hierarchy, as shown in the following figure:

FIGURE 16. Design Hierarchy for Use of Top-Level and Stop Features

A*

B

C

D

218
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
In above figure:

 A denotes the higher-level design hierarchy described by shaded area
A*, in which the design unit A is the top-level design unit.

 B denotes the design unit to be excluded by specifying the following
command in the Atrenta Console project file:

set_option stop <design_unit>

 C denotes the design units that were instantiated in the design unit B.
Therefore, all these design units were a part of the design hierarchy
under A if the design unit B was not stopped. However, as
implementation inside B is hidden for SpyGlass analysis, rule-checking
may or may not occur for design units under C depending on usage of
other related options. See Table: Using Top-Level and Stop Features
Together for examples that illustrate control of design hierarchy for rule-
checking by use of various options.

 D denotes another design hierarchy independent from A, B, or C.

The following table describes use of above two options, when applied to the
design hierarchy illustrated in Figure :

As seen from the above examples, whenever you stop a design from
SpyGlass analysis, you must also specify a top-level design unit to declare
the scope correctly and unambiguously.

TABLE 3 Using Top-Level and Stop Features Together

Options used Design units rule-checked

Default (no features used) A, B, C, and D

Stop B A, C, and D

Top A and Stop B A

Top A A, B, and C

Top D D

Top D and Stop B D (B is not in hierarchy of D and, hence, the Stop
feature has no effect)
219
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
SpyGlass does not report any parsing message except for elaboration
errors on design units in C when you specify A as top and B as stopped.

Notes

Please note the following points regarding the use of any of the above
features:
 The options for hierarchical inclusion/exclusion of design units are the

top-level and stop features. You cannot use these options
simultaneously with an equivalent design unit feature, which is for
immediate analysis of the specified design units.

 You cannot completely control syntax errors in a design source by using
these options. The design is expected to be free from syntax and
elaboration errors. Judicious use of the Top-Level and Stop features can
help avoid design units that have known elaboration errors.

 The argument value specified with these options should carefully follow
the syntax for representing design unit names in Verilog and VHDL.

Ignoring Files and Design Units From SpyGlass Analysis

An ignored file or a design unit is skipped from SpyGlass analysis at the
design read (or parsing) stage.

You might need to ignore a file or a design unit from SpyGlass analysis
because of the following reasons:
 When multiple designers work on different blocks of the same design.

In such a scenario, different design blocks are in different states of
maturity. So you might want to run SpyGlass analysis on design blocks
for which development is complete, and ignore the rest.

 When some design blocks have some known fatal issues.
In such cases, you can ignore such design blocks from SpyGlass
analysis and test other design blocks.

 If a design unit contains a genuine black box, you can ignore such
design units so that SpyGlass reports InfoAnalyzeBBox message instead
of ErrorAnalyzeBBox message.
220
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Difference between Ignored and Stopped Design Units

There is a subtle difference between ignored design units and stopped
design units (that is, design units specified by the set_option stop <du-
name> command).

When a design unit is stopped, SpyGlass only ignores the logic (or
functionality) of that stopped design unit from rule-checking. However,
SpyGlass performs checking on the interface of that design unit. Therefore,
if the interface has any issues, SpyGlass reports appropriate violation
messages.

However, when a design unit is ignored, SpyGlass skips the body as well as
the interface of that design unit from compilation. Therefore, no violations
are reported for an ignored design unit.

Ignoring Files Containing Design Units

When you ignore a file from SpyGlass analysis, SpyGlass treats the design
units instantiated in a design of that file as black boxes.

Ignoring Files through GUI

To ignore a file, right-click on that file appearing in the HDL Files section
under the Add Design Files tab and select the Ignore File option from the
shortcut menu.

The ignored file is indicated with the icon prefixed to the design file
name.

You can also ignore a file after the design read stage. To do so, right-click
on that file appearing in the File View page and select the Ignore File option
from the shortcut menu.

Ignoring Files through a Project File

To ignore a file, use the following command in the project file:

set_option ignorefile <file-name>

The following example ignores the design file myaddlfile.v:

set_option ignorefile myaddlfile.v

NOTE: You can specify a relative or absolute path of a file in the above command.
221
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
Support for Wildcard and Regular Expressions

You can use wildcard and regular expressions while specifying file names in
the above command. The following table shows some examples of using
various expressions in this command:

If a file name includes wildcard characters, such as * or ?, enclose such
names in single quotes, and ensure that the wildcard characters appearing
in the file name are preceded by a backslash (\). For example, if the name
of the file to be ignored is 'abc*d', specify the file name as 'abc*d'
in the ignorefile command.

However, if you want to ignore to two files, such as abc1d and abc2d,
specify them as "abc*d" in ignorefile command.

NOTE: You can specify the ignorefile command with the ignoredu command.

Ignoring Individual Design Units

You can ignore a specific VHDL design unit or Verilog module at the design
read (parsing) stage.

Ignoring Design Units through GUI

To ignore a VHDL design unit or a Verilog module, perform the following
steps:
1. Display the Module View page by selecting the under the Analyze

Results tab.

Example Description
set_option ignorefile {a*} Ignores all files (in the current directory)

whose names match the wildcard a*
expression. For example, a1, aa1, and
abc.

set_option ignorefile {dir1/*} Ignores all files in the dir1 directory
set_option ignorefile {dir?/*} Ignores all files in directories that match

the wildcard expression dir?. For
example, dir1, dir2, and dir3.
222
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
2. Right-click on a design unit or a module in the Module View page and
select the Set Module Ignore option from the shortcut menu.
The Set Module Ignore dialog appears showing the name of the selected
design unit or module:

S

FIGURE 17. Set Module Ignore

3. Click the OK button in the above dialog.

After performing the above steps, the selected design unit or module is
ignored and the icon appears before the name of that design unit or
module.

Ignoring Design Units through a Project File

To ignore a design unit from SpyGlass analysis, use the following command
in the project file:

set_option ignoredu <design-unit-name>

You can specify a design unit in any of the following formats:

Format Description
For VHDL
<entity-name> Ignores the specified entity and all its

architectures in all logical libraries
<entity-name>.<arch-name> Ignores the specified architecture of the

specified entity in all logical libraries
<lib-name>.<entity-name> Ignores the specified entity and all its

architectures for the specified logical library
<lib-name>.<entity-
name>.<arch.name>

Ignores the specified architecture of the
specified entity in the specified logical library

<lib-name> Ignores the specified logical library
223
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
The following example ignores the Verilog module block1:

set_option ignore block1

The following example ignores the Verilog modules block1 and block2:

set_option ignoredu {block1 block2}

Support for Wildcard and Regular Expressions

You can use wildcard and regular expressions while specifying design unit
names in the above command. The following table shows some examples
of using various expressions in this command:

It is mandatory that escape wildcard characters are present in an escaped
name. This is important to ensure that any unexpected matches do not
occur. For example, you must specify \a123* as "\a123*".

In addition, please note that the following examples have different
meanings:

 set_option ignoredu {a1*}

This example matches a11, a12, and a13.

 set_option ignoredu {\a1*}

ALL.<arch-name> Ignores all architectures of the name <arch-
name> in all logical libraries

For Verilog
<module-udp-name> Ignores the specified module or UDP
<lib-name>.<module-udp-
name>

Ignores the specified module or UDP from
the specified logical library

Example Description
set_option ignoredu {lib1.*} Ignores all design units picked from the lib1

logical library
set_option ignoredu {e.*} Ignores all architectures of the e entity

set_option ignoredu {*.e} Ignores all entities named e from any library

Format Description
224
Synopsys, Inc.

Managing the Design Hierarchy

Working with Input Design and Libraries
This example matches \a1*.

Analyzing Selective Design Hierarchy

You can perform selective synthesis and rule-checking on your design by
specifying:
 Design units on which rule-checking should be done.

You can specify such design units in the Check IP field under the Set
Read Options tab.

 Design hierarchy (level) for which synthesis and rule-checking should be
done.
You can specify the design hierarchy in the Check DU field under the Set
Read Options tab.
225
Synopsys, Inc.

Working with 'celldefine Modules

Working with Input Design and Libraries
Working with 'celldefine Modules
By default, SpyGlass processes Verilog modules enclosed in the 'celldefine
and 'endcelldefine compiler directives as normal source modules if the
'celldefine modules are described in a source file and processes them as
normal library modules if the 'celldefine modules are described in a library
file.

SpyGlass expects that the instances of such 'celldefine modules are given
instance names. If you do not specify instance names, SpyGlass reports a
warning and automatically names such unnamed instances as _SpyInst_0,
_SpyInst_1, and so on.

Performing Rule-Checking on 'celldefine Modules

Use the check_celldefine option of the set_option command to perform
rule-checking on the 'celldefine modules.

The following is the syntax of using this option:

set_option check_celldefine yes

The following table describes the effect of the absence of the
check_celldefine option for different type of rules:

Rule Type Without check_celldefine option
HDL File Parsing Rules Language syntax errors checking and reporting
HDL Semantics Rules No checking or reporting.
RTL description Rules No checking or reporting.
Hierarchical netlist-level
Rules

No checking or reporting.
No messages are reported on `celldefine modules.
However, SpyGlass reads and uses functional model
of these cells.

FLAT netlist-level Rules In full-design FLAT netlist view, no messages are
reported on `celldefine modules. However, the
functional model of these cells are read and used by
SpyGlass.

Lexical Text source Rules No checking or reporting.
226
Synopsys, Inc.

Working with 'celldefine Modules

Working with Input Design and Libraries
Performing Hierarchical Rule-Checking in 'celldefine
Modules

By default, SpyGlass ignores the top that is inside a 'celldefine module for
rule-checking. To enable rule-checking on 'celldefine module top's
hierarchy, specify the following command in the project file:

set_option allow_celldefine_as_top yes
227
Synopsys, Inc.

Working with 'celldefine Modules

Working with Input Design and Libraries
228
Synopsys, Inc.

Working with
Methodologies
Overview
A methodology is a collection of sub-methodologies or a collection of goals.
Each sub-methodology may further contain sub-methodologies or a set of
goals where each goal is a collection of rules.
229
Synopsys, Inc.

Overview

Working with Methodologies
The following figure illustrates the sample structure of a methodology:

FIGURE 1. Sample Methodology Structure

NOTE: Each methodology should contain an Order File that contains entries of goal files
paths related to a methodology directory.

Goal Files

Details of each goal are present in a goal file (.spq file).

You add a goal file in a methodology by importing that goal file in the
methodology. For details, see Importing Goals.

Naming Convention of a Goal File

The name of a goal file has the following naming convention:

<goal-name>-<language>.spq

Methodology 1

Methodology

Methodology 2

Methodology A Methodology B

Order file

G1-mixed.spq
G1-verilog.spq
G1-vhdl.spq

G2-mixed.spq
G2-verilog.spq
G2-vhdl.spq

Order file

Methodology C Methodology D

G3-mixed.spq
G3-verilog.spq
G3-vhdl.spq

G5-mixed.spq
G5-verilog.spq
G5-vhdl.spq

Order file

G4-mixed.spq
G4-verilog.spq
G4-vhdl.spq

G1.spq G2.spq

G3.spq

G4.spq

G5.spq
230
Synopsys, Inc.

Overview

Working with Methodologies
In the above naming convention, the <name> argument should have
alphanumeric characters.

The <language> argument is optional. Use this argument to create goals
files for different languages, such as Verilog, VHDL, and mixed. For
example, you can create goal files with the names info_data-mixed.spq,
info_data-verilog.spq, and info_data-vhdl.spq. Therefore, depending upon the
language in your design, the tool automatically picks an appropriate goal
file. For details, see Selection of Goal Files based on Language Mode.

NOTE: It is not necessary to create goal files for each language.

Details Present in a Goal File

In each goal file, you can specify details, such as goal name, language
applicable, short help of the goal, detailed description of the goal, rules of
the goal, and parameter settings for that goal.

The following is a sample goal file, info_data:

=template++++++
info_data mixed //goal name and language
*
Informational data //short help
*
This goal is used to report informational data related to a
design. //detailed description
=cut+++++++++++

//--
// Policy Registration
//--

-policies=Audits,area,clock-reset,erc,lint

//--
// General Setup commands
//--
231
Synopsys, Inc.

Overview

Working with Methodologies
-mixed //Allow mixed language

//--
// Policy Specific Parameter Setting
//--

-enable_handshake=yes
-enable_fifo=strict
-distributed_fifo=yes

//--
// Rule Registration
//--

-rules Audit2ID
-rules Audit2Stats
-rules Clock_info03
-rules Clock_info05
-rules W438
-rules LogicDepth
-ignorerule CMD_define_severity02

//--
// End of Rule Registration
//--

Selection of Goal Files based on Language Mode

A goal can have multiple goal files. For example, the goal myGoal can
have the following files:

 myGoal.spq

 myGoal-mixed.spq

 myGoal-verilog.spq

 myGoal-vhdl.spq

When you run a goal, SpyGlass picks one goal file based on whether you
232
Synopsys, Inc.

Overview

Working with Methodologies
have specified a language mode or not.

Selection of a Goal File when the Language Mode is none or mixed

In such cases, the following preference is used (starting from high priority)
to pick a goal file:

1. <goal-name>.spq

2. <goal-name>-mixed.spq

Selection of a Goal File when the Language Mode is Verilog or VHDL

In such cases, the following preference is used (starting from high priority)
to pick a goal file:

1. <goal-name>-<verilog | vhdl>.spq

1. <goal-name>.spq

2. <goal-name>-mixed.spq
233
Synopsys, Inc.

GuideWare Reference Methodology

Working with Methodologies
GuideWare Reference Methodology
GuideWare reference methodology is the default methodology used by
Atrenta Console.

This methodology provides guidance to chip designers to address various
design issues by running a set of goals that are fine-tuned for high-quality
results and low noise. These goals are organized in a specific manner in
three fields of use that GuideWare supports for an SoC design development
flow.

Structure of the GuideWare Reference Methodology

The following figure illustrates the structure of the GuideWare
methodology:
234
Synopsys, Inc.

GuideWare Reference Methodology

Working with Methodologies
FIGURE 2. GuideWare Methodology Structure

The following table contains details of various components of the above
structure:

Field of Use 1

GuideWare Methodology

Field of Use 2 Field of Use 3

Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4Stage1 Stage2

task1 task2 task3

goal2

goal3goa1

rule1
rule2

rule3
rule4

rule5
235
Synopsys, Inc.

GuideWare Reference Methodology

Working with Methodologies
For example, the following figure illustrates the alignment of goals in the
New_RTL field of use:

Component Description
GuideWare Reference
Methodology

Contains a set of methodologies that are aligned
with the chip development process. These
methodologies provide guidance to designers to
address design issues throughout the SoC
development flow. The guidance is provided in
the form of goals that are fine-tuned for high
quality results and low noise.

Field of Use (methodology) Refers to a phase in an SoC flow.
NOTE: Refer to SpyGlass GuideWare User Guide
for details on various fields of use and available
goals.

Stage (milestone) Refers to a sub-methodology, known as a design
stage in a particular field of use.

Task Refers to a sub-methodology that contains a set
of goals.

Goal Refers to a collection of rules.
Rule Refers to a check to detect a specific type of

design issue.
236
Synopsys, Inc.

GuideWare Reference Methodology

Working with Methodologies
FIGURE 3. Goal Alignment in New_RTL Field of Use

Goals

Stages

Tasks
237
Synopsys, Inc.

Specifying an Active Methodology

Working with Methodologies
Specifying an Active Methodology
An active methodology refers to a default methodology that gets loaded
when you start Atrenta Console.

To specify an active methodology, perform the following steps:
1. Click the Select Methodology link under the Goal Setup & Run tab.

The Select Methodology dialog appears, as shown in the following figure:

FIGURE 4. Select Methodology
238
Synopsys, Inc.

Specifying an Active Methodology

Working with Methodologies
In the above dialog, you can select any option described in the following
table:

Option Description
New RTL block development (Default) Select this option to load GuideWare

goals for the New_RTL methodology, installed at:
<your-inst-dir>/SPYGLASS_HOME/GuideWare/
New_RTL directory

IP (RTL) Select this option to load GuideWare goals for
the IP_RTL methodology, installed at: <your-
inst-dir>/SPYGLASS_HOME/GuideWare/IP_RTL
directory

IP (Netlist) Select this option to load GuideWare goals for
the IP_Netlist methodology, installed at: <your-
inst-dir>/SPYGLASS_HOME/GuideWare/
IP_Netlist directory

Soc Integration &
implementation

Select this option to load GuideWare goals for
the SoC methodology, installed at: <your-inst-
dir>/SPYGLASS_HOME/GuideWare/SoC directory

Guideware 2.0 Reference
Methodology

Select one of the following options to use
Guideware 2.0:
• Block
• SoC

SpyGlass Sub-Methodology Select this option to load SpyGlass goals,
installed at: <your-inst-directory>/
SPYGLASS_HOME/Methodology directory
239
Synopsys, Inc.

Specifying an Active Methodology

Working with Methodologies
2. Click the OK button in the Select Methodology dialog.

After performing the above steps:
 The selected methodology becomes the active methodology.

 The following command is generated in the project file:

set_option active_methodology <methodology-name>

The Next time you load the same project file, Atrenta Console loads the
methodology specified by the active_methodology option.

 The active methodology is loaded under the Select Goal tab.

 The active methodology gets loaded whenever you open the Methodology
Configuration System (MCS) window.

User Specified Methodology Select this option to specify your own custom
methodology.
After selecting this option, click the button
and select a custom methodology from the drop-
down list.
Values in this drop-down list are picked from the
methodologies specified in the
METHODOLOGY_SEARCH_PATH variable in
the .spyglass.setup file.
The advantage of using this option over the
Custom option is that you do not need to browse
to the path of a custom methodology every time
you open the Select Methodology dialog.

Custom Select this option to specify a directory
containing your own custom methodologies/
goals as an absolute path or a path relative to
the current directory.
After selecting this option, click the Browse
button to browse to the required directory.
240
Synopsys, Inc.

Specifying an Active Methodology

Working with Methodologies
Using the active_methodology Option

The active_methodology option tracks the last methodology that you
selected before closing a project, and restores it back when the same
project is loaded again.

If the active_methodology option is missing in the project file,
Atrenta Console considers the methodology for which any setup is present
(as specified by current_methodology scope). However, if multiple
methodology setups are present in the project file, Atrenta Console
considers the last specified methodology as the active methodology.

It is possible that both the active_methodology option and
methodology setups are missing in the project file. In such cases, Atrenta
Console considers the default methodology as specified in the SpyGlass
configuration file.
241
Synopsys, Inc.

Specifying a Current Methodology

Working with Methodologies
Specifying a Current Methodology
A current methodology defines a scope of each methodology selected in a
particular session.

Defining the scope of each methodology allows goal setups for multiple
methodologies to co-exist in a single project file without any name
conflicts.

You can define a scope for each methodology by using the
current_methodology command in a project file, as shown in the
following example:

FIGURE 5. Define Methodology Scope

For more information on the Tcl-based usage of the current_methodology
command, refer to the current_methodology section of the SpyGlass Tcl
Shell Interface User Guide.

Each current_methodology specification contains different commands
corresponding to goal settings made within the scope of that methodology.

Therefore, within the scope of the selected methodology, you may run
various goals and perform different goal settings, such as updating goal

current_methodology /GuideWare/New_RTL
current_goal initial_rtl/lint/connectivity -alltop

set_parameter checkRTLCInst no
set_parameter enable_fifo strict

current_goal initial_rtl/lint/simulation -alltop
set_parameter fast yes

current_methodology /GuideWare/IP_RTL
current_goal ip_exploration/lint/ip_rtl -alltop

set_parameter allviol yes
set_parameter check_sequential yes

current_goal initial_rtl/lint/simulation -alltop
set_parameter fast yes

Scope of
methodology
New_RTL

Scope of
methodology
IP_RTL

Scope of goal
connectivity

Scope of goal
simulation

Scope of goal
ip_rtl

Scope of goal
simulation

set_option active_methodology /GuideWare/New_RTL/
242
Synopsys, Inc.

Specifying a Current Methodology

Working with Methodologies
options and parameters. After saving the changes, you may select another
methodology, run another set of goals, and specify goal settings within the
scope of that methodology.

If no current_methodology is present for a current_goal
specification, Atrenta Console considers the current_methodology
specification present in the configuration file.
243
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Configuring a Methodology
To configure an existing methodology, open the Methodology Configuration
System window by performing any of the following actions:

 Click the Click here link in the Select Methodology dialog.

 Select the Tools-> Methodology Configuration System menu option.

The following figure shows the Methodology Configuration System window:

FIGURE 6. Methodology Configuration System

NOTE: By default, the MCS window works in the mixed language mode. If you try to open
the MCS window when the language mode is other than mixed, Atrenta Console
displays a Warning dialog. In this dialog, you can change the language mode by
selecting the required language from the drop-down list.

The Methodology Configuration Window is divided into various sections, as
244
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
described in the following table:

NOTE: The MCS window enables you to modify only the currently loaded methodology.
Therefore, if you select a different methodology from the Select Methodology dialog,
the goals displayed in the MCS window are not affected.

Section Description
Menu bar section Provides various options that enable you to perform

different functions, such as adding/saving
methodologies, adding sub-methodologies, adding/
importing goals, and comparing methodologies.
For details, refer to The Methodology Configuration
System Menu Bar section of Atrenta Console Reference
Guide.

Toolbar section Add/import/delete goals, select/deselect rules, etc.
Goals section Lists sub-methodologies/goals that are available within a

methodology.
Rules section Lists the rules related to the selected goal in a

spreadsheet format. The columns display the status of
the rule (enabled/disabled), rule name, rule group, the
product to which the rule belongs and the severity of the
rule.
You can show/hide the columns based on your
requirement. To do so, right-click on the Rules List
section, and select the Configure Columns shortcut menu
option. Refer to the Configuring Columns for details on
how to show/hide a rule.

Parameter section Lists parameters associated with the selected goal
Search section Enables you to search for rules in the rule list of all

products or in the current methodology.
Help section Displays the help for a sub-methodology, goal, rule, or

parameter, based on the selection
245
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Creating and Modifying a Methodology
You can create or modify a methodology and specify details, such as goals,
rules, and parameters for that methodology.

Creating a Methodology

To create a methodology, perform the following steps:
1. Select the New Methodology option from the File menu in the Methodology

Configuration System window. Alternatively, use the <Ctrl> + <N> key
combination from the keyboard.

The Save Methodology dialog appears to enable you to save the currently
loaded methodology as shown in the following figure:

FIGURE 7. Save Methodology

2. In the above dialog, you can perform the following actions:

 Click the Save button to save the current methodology.

 Select the Create back-up of old files option if you want to create a
backup of files of the currently loaded methodology. The backup files
are saved in the <Methodology-dir>/Methodology_Backup/
directory.

 Click the Proceed button if you do not want to save the currently
loaded methodology.

After performing the required actions in the Save Methodology dialog, the
New Methodology dialog appears, as shown in the following figure:
246
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
FIGURE 8.

3. Specify the required details in the appropriate fields of the New
Methodology dialog.
The following table describes the various fields of this dialog:

4. Click the OK button.

After performing the above steps, the newly created methodology appears
in the MCS window.

This methodology does not contain any goal unless specified. You can
either create new goals or import existing goals for that methodology. For
details, refer to Creating Goals and Importing Goals.

Field Description
Methodology Name Specifies the name of the new methodology
Methodology Path Specifies the path where the new methodology should be

saved.
Short Help Specifies the short description of the new methodology

being created. This description is displayed next to the
methodology name in the Goal Selection section

Long Help Specifies a detailed description of the new methodology
being created. This description is saved in the order file.
247
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Modifying a Methodology

To modify an existing methodology, select the Methodology Properties option
from the File menu. This displays Methodology Properties dialog, as shown in
the following figure:

FIGURE 9. Methodology Properties

In the above dialog, update the required details, such as methodology
name, path, and description, in the appropriate fields, and click the OK
button to save changes.

If you change the name of the methodology, the order file and goals move
to a new directory of the specified methodology name and the same
methodology directory.

If you change the directory where the methodology is located, Atrenta
Console creates a copy of the existing methodology in the new directory.

You can also customize a methodology by modifying goals contained in that
methodology. For example, you can activate/deactivate, add, or delete a
goal based on your requirements (see Modifying Goals for more details).

NOTE: If you make any changes in a methodology in the MCS window, an asterisk (*) is
248
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
appended to the methodology name in the title bar of the MCS window indicating
that the selected methodology contains unsaved changes.

Creating and Modifying a Sub-methodology

You can add a sub-methodology under an already existing methodology
and later add goals to that sub-methodology.

Creating a Sub-Methodology

To add a sub-methodology, perform the following steps:
1. Right-click on the methodology for which you want to add a

sub-methodology, and select the Add Sub-Methodology option from the
shortcut menu.

The New Sub-Methodology dialog appears, as shown in the following
figure:

FIGURE 10. New Sub Methodology - Text Format

2. Specify the name of the new sub-methodology in the Sub-Methodology
text box.

3. Select a help format (Text Format or HTML Format) from the Help Format
drop-down list.

4. If you selected the Text Format option, type the help for the
sub-methodology in the Help Description text field.
249
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
However, if you selected the HTML Format option, the New
Sub-Methodology dialog changes, as shown in the following figure:

FIGURE 11. New Sub Methodology - HTML Format

In the above dialog, perform the following steps:

a. Click the Import/Update HTML Description button to add an HTML file
that contains the help for the sub-methodology.

The Open File dialog appears.

b. In the Open File dialog, select the required HTML file.

c. Click the Open button in the Open File dialog.

This closes the Open File dialog, and contents of the selected HTML file
appear in the Help Description text field.

NOTE: If an HTML file containing images is present at C:\HTML\help.htm, save the
images used in that file at C:\HTML\help_files\. The HTML file should refer to
these files with the relative path (for example, <img src = "help_files/
img1.jpg">).

5. Click the OK button in the Sub-Methodology dialog.

After performing the above steps, the new sub-methodology appears in the
tree structure of the Goals section in the Methodology Configuration System
window and the goal selection window (see Selecting a Goal).

In addition, when you select that sub-methodology, help of that
sub-methodology appears in the Help window.
250
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
NOTE: To delete a sub-methodology, right-click on the methodology and select the Delete
Sub-Methodology option from the shortcut menu.

Modifying a Sub-Methodology

To modify a sub-methodology, perform the following steps:
1. Right-click on the sub-methodology, and select the Sub-Methodology

Properties option from the shortcut menu.

This displays the Sub-Methodology Properties dialog, as shown in the
following figure:

FIGURE 12. Sub-Methodology Properties

2. Specify the required details in the appropriate fields of the above dialog.
3. Click the OK button,

After performing the above steps, the specified changes appear in the MCS
window. For example, if you have changed the help of a sub-methodology,
the old help description is replaced with the new help description in the
Help window.

Creating Goals

To create a goal for a methodology (or a sub-methodology), perform the
following steps:
1. Open the New Goal dialog. For details, see Displaying the New Goals Dialog.
251
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
The following figure shows the New Goal dialog:

FIGURE 13. New Goal

2. Specify the required details for the new goal in the appropriate fields of
the New Goal dialog. For details, see Specifying Details in the New Goal
Dialog.

3. Click the OK button.

After performing the above steps, the new goal appears under the selected
252
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
methodology in the tree structure in the Goals section of the Methodology
Configuration System window and the goal selection window.

After adding a goal for a methodology, you can add rules for that goal. See
Adding Rules in a Goal for details.

Displaying the New Goals Dialog

To display the New Goals dialog, perform any of the following actions:

 Right-click on the methodology, and select the Add New Goal option from
the shortcut menu.

 Select the Add New Goal option from the Edit menu.

 Click the Add New Goal option on the MCS window toolbar.

 Use the <Ctrl> + <G> key combination on the keyboard.

Specifying Details in the New Goal Dialog

The New Goal dialog contains various fields, as described in the following
table:

Field Description
Goal (Mandatory) Specifies the name of the goal

NOTE: The name of each goal should be unique.
Inherit Goal Specifies a goal to be inherited in the new goal being

created. For details on inherited goal, see Including and
Inheriting GuideWare Goals.
To inherit a goal, select the Select/Modify button. The Inherit
Goal dialog appears in which you can select the required
goal.
Select or deselect the corresponding check box to enable or
disable the inherited goal.
To delete the inherited goal from the goal being created, click
the Delete button.
253
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Include Goal(s) Specifies a goal to be included in the new goal being created.
For details on included goal, see Including and Inheriting
GuideWare Goals.
To include a goal, select the Select/Modify button. The
Include Goal(s) dialog appears in which you can select the
required goals.
Select or deselect the corresponding checkbox to enable or
disable the included goals.
To delete the included goals from the goal being created,
click the Delete button.

Prerequisite
Goals

Specifies the name of the prerequisite goal(s) for the
currently selected goal. You can either enter goal names in
this field, or select the goals that you want to consider as
prerequisite goals for the new goal being created. To select
goals, click the button adjacent to the Prerequisite Goals
field, and select the required goal(s) from this list.
The prerequisite goals appear in the Prereq Goals column of
the goal selection window (see Selecting a Goal).

Debug Help Type Specifies the format (text or HTML) in which the goal debug
help should be visible.

Debug Help Specifies the debug information that helps you debug issues
reported by this goal.
This help is visible during the Analyze Results stage when you
select the Goal Debug Help option in the Help section of the
Results pane.

Short Help Specifies the short description of the goal.
Long Help Specifies the detailed description of the goal.

The long help is visible in the Help window under the
Methodology Configuration System and the Select Goal tab
when modified methodology is loaded.

Other Options Specifies additional command-line options.

Field Description
254
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
In addition, this dialog contains the following options:

Importing Goals

To import goals in a methodology, perform the following steps:
1. Open the Import Goal(s) dialog by performing any of the following actions

in the MCS window:

 Right-click on a methodology, and select the Import Goal(s) option from
the shortcut menu.

 Select the Import Goal(s) option from the Edit menu.

 Click the Import Goal(s) link.

The following figure shows the Import Goal(s) dialog:

FIGURE 14. Import Goal(s)

2. In the Look In text field of the above dialog, specify the path of the
directory where goals are present.

3. Select a goal or directory containing the required goals.

Option Description
Set as Dual Design Read Goal Select this option to make the goal as

DDR-specific goal.
Optional Goal Select this option to make the goal as

optional.
255
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
You can also select multiple goals and directories.
4. Click the Add button to add the selected goal or directory to the

methodology.

To add all goals present in the specified directory, click the Add All
button. You can also import .sgs files along with the goal(s) by selecting
the Import sgs file(s) option.

5. Click the OK button.

After performing the above steps, the specified goals appear in the
selected methodology.

Deleting Goals

To delete a goal from a methodology, right-click on that goal and select the
Delete option from the shortcut menu.

Copying Goals

You can copy a goal and paste it anywhere in the current methodology.

To copy a goal, right-click on that goal and select the Copy Goal option from
the shortcut menu.

To paste this goal, right-click at the desired location in the current
methodology and select the Paste Goal option from the shortcut menu.

Modifying Goals

You can modify a goal of a methodology by:
 Modifying Goal Properties

 Enabling/Disabling a Goal

 Updating Rules of a Goal

 Adding Rules in a Goal

 Modifying Parameters of a Goal
256
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Modifying Goal Properties

To modify goal properties, perform the following steps:
1. Right-click on a goal name in the MCS window, and select the Goal

Properties option from the shortcut menu.

This displays the Goal Properties dialog, as shown in the following figure:
257
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
FIGURE 15. Modify Goal Properties

2. In the above dialog, specify the required details in appropriate fields.
3. Click the OK button.

After performing the above steps, the specified changes appear in the
258
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
selected goal. For example, when you modify the description of a goal in
the Long Help field, the modified help replaces the old help of that goal in
the Help window.

Enabling/Disabling a Goal

An enabled goal appears in the Goals section of the MCS window. The name
of such goals is preceded by the symbol.

If you do not want a goal to be part of your analysis run, disable that goal
by clicking the symbol adjacent to that goal. The symbol appears
preceding that goal name indicating that the goal is disabled. Such goals
do not appear in the list of goals available in the goal selection window.

To enable a disabled goal, click the symbol adjacent to the goal name.

Updating Rules of a Goal

When you click on a goal in the Goals section of the MCS window, Atrenta
Console displays rules related to that goal in the Rules List section of the MCS
window. From this rule list, you can select the required rule(s) and perform
the required actions such as Overloading a Rule, Enabling/Disabling a Rule,
Deleting a Rule, or Ignoring a Rule.

Overloading a Rule

To overload a rule displayed in the Goals section, perform the following
steps:
1. Right-click on that rule and select the Overload Rule option from the

shortcut menu.
259
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
This displays the Overload Rule dialog, as shown in the following figure:

FIGURE 16. Overload Rule

2. In the above dialog, specify the details, such as severity and weight in
appropriate fields.

3. Click the OK button to save the changes.

After performing the above steps, the changes appear in goal files at the
time of saving the methodology.

By default, the Rules List section displays rules that are recommended for
an enabled goal. The rest of the rules are disabled. However, you can
enable such rules based on your requirements.

Enabling/Disabling a Rule

You can enable or disable a rule in the same manner as you enable or
disable a goal in the Goals section of the MCS window.

Alternatively, right-click on the rule and select the Disable Rule (if the rule is
enabled) or Enable Rule (if the rule is disabled) option from the shortcut
menu.

Deleting a Rule

To remove a rule from a goal, right-click on the rule and select the Delete
Rule option from the shortcut menu. Alternatively, select the rule and click
the Delete Rule(s) option in the MCS toolbar.

Ignoring a Rule

If you do not want a rule to run for a particular goal, you can ignore that
rule.

To ignore a rule, right-click on the rule name, and select the Ignore Rule(s)
260
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
option from the shortcut menu. You can also select multiple rules to be
ignored. This menu option is disabled for a rule that is already ignored.

An ignored rule appears as (ignored)<rule-name> in the rule list of
the selected goal.

If you want to run a rule that is ignored, right-click on the rule name and
select the Add Rule(s) option from the shortcut menu. You can also select
multiple rules. This menu option does not appear for a rule that is already
added either by using the -rule or -addrule option in a goal file.

Adding Rules in a Goal

To add rules in a goal, perform the following steps:
1. Search the required rules that you want to add in a goal in the Search

section of the MCS window. For details on searching rules, see Searching
Rules.

2. Select the required rules to be added in a goal from the filtered rule list
obtained after the search operation. You can select multiple rules by
pressing the <Ctrl> key and clicking the required rules.

3. Right-click on the selected rules, and select the Add Rule(s) to Goal option
from the shortcut menu. Alternatively, select the Add Rule(s) to Goal
option in the Search section.

Once the above steps have been performed, Atrenta Console displays the
selected rules for that goal in the Rule List section of the MCS window.
261
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Searching Rules

You can search rules in the Search section of the MCS window, as shown in
the following figure:

FIGURE 17. Search Rules

In the above section, specify the search text in the Search textbox and click
the Go link. Once you click the Go link, Atrenta Console displays all the
rules matching the specified search criteria in a spreadsheet format.

By default, Atrenta Console searches all SpyGlass rules. To confine your
search among rules of the selected methodology only, select the Current
Methodology option from the In drop-down list.

You can specify multiple search criteria by clicking the Add Search Criteria
link multiple times. Each time you click this link, Atrenta Console adds
additional fields, as shown in the following figure:

FIGURE 18. Search Fields
262
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
You can click the Delete link corresponding to the search criteria that you
want to remove.

Modifying Parameters of a Goal

When you select a goal, parameters related to that goal appear in the
Parameter(s) section of the MCS window.

The following figure shows the Parameter(s) section:

FIGURE 19. Parameters List

For each parameter, the corresponding value appears in the Value column.
You can modify this value as per your requirement. If you want to assign all
parameters their respective default values, click the Restore Defaults link.

NOTE: Some goals do not use default parameter values. For details on such goals, see
Goals That Do Not Use Default Parameter Value.

The Parameter(s) section also contains the Show drop-down menu. The
following table describes various options of this menu:
263
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
Dragging and Dropping Sub-Methodologies and Goals

You can drag and drop sub-methodologies and goals in the required
hierarchy in the MCS window.

For example, consider the following MCS window:

FIGURE 20. MCS Window

Option name Purpose
Common Parameters Displays commonly used parameters of the selected

goal. This option is selected by default when you open
the MCS window.

Other Parameters Displays the parameters that are not commonly used for
the selected goal

All Parameters Displays all the parameters (common and un-common)
of the selected goal

Rule Parameters Displays the parameters of the selected rule
264
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
In the above window, if you want to move the audit sub-methodology inside
the lint sub-methodology, perform the following steps:
1. Select the audit sub-methodology.
2. Drag the audit sub-methodology to the lint sub-methodology.

When you release the mouse button, the following menu appears:

FIGURE 21. Drag and Drop Methodologies - Right-Click Menu

3. From the above menu, select the Insert Inside lint option.

The audit sub-methodology now appears under the lint sub-methodology,
as shown in the following figure:
265
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
FIGURE 22. MCS Window - Methodology/Goal List

NOTE: The sub-methodology being moved appears as the first folder under the tree of the
destination sub-methodology.

Similarly, you can drag and drop goals across different sub-methodologies
or within the same sub-methodology.

For example, to move the synthesis goal from the lint sub-methodology to
the clock_reset_integrity sub-methodology, perform the following steps:
1. Select the synthesis goal.
2. Drag the synthesis goal to the clock_reset_integrity sub-methodology.

When you release the mouse button, the following menu appears:
266
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
FIGURE 23. Drag and Drop Goals - Right-Click Menu

3. From the above menu, select the Insert Inside clock_reset_integrity option.

The synthesis goal now appears as the first goal under the
clock_reset_integrity sub-methodology, as shown in the following figure:

FIGURE 24. MCS Window - Goal List

You can also move goals at specific positions under a sub-methodology. For
example, if you want to move the simulation goal of the lint sub-methodology
after the power_gated_clock goal under the clock_reset_integrity sub-
methodology, perform the following steps:
1. Expand the clock_reset_integrity sub-methodology.
2. Select the simulation goal.
267
Synopsys, Inc.

Configuring a Methodology

Working with Methodologies
3. Drag the simulation goal on the power_gated_clock goal.
When you release the mouse button, the following menu appears:

FIGURE 25. Right-Click Menu

4. From the above menu, select the Insert After power_gated_clock option.

After performing the above steps, the simulation goal appears after the
power_gated_clock goal under the clock_reset_integrity sub-methodology.
268
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
Creating Custom Methodologies
Apart from using existing GuideWare methodologies, you can create your
own custom methodologies that contain customized goals within goal files
(.spq).

Customizing Goals

You can customize a goal in the following ways:
 By adding and/or removing rule(s) from a goal.

 By updating parameter value of rules.

 By defining your own rule severity by using the define_severity
option.

 By deriving existing GuideWare goals in the goal file.

Including and Inheriting GuideWare Goals

You can derive existing GuideWare goals in another goal by including or
inheriting a goal within another goal. You can include and/or inherit a goal
in a goal file or by using the MCS window.

The included and inherited goals appear as separate nodes below the
parent goal in the MCS window. The following figure shows a goal tree
containing an included and inherited goal:
269
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
FIGURE 26. Goal Tree

In the above figure, the intialNestedTemplate goal inherits the
connectivity goal and includes the simulation goal.

Including/Inheriting Goals in a Goal File

Within a goal file, you can derive existing GuideWare goals in the following
ways:
 By including existing goal file in the parent goal file

Including a goal means copying all the options specified in included goal
to the parent goal without inheriting its help (from.help files) or setup
(from.sgs file).
To include a goal in your parent goal, specify the following command in
the goal file:

-include_goal <goal-path>

 By inheriting existing goal file in the parent goal file
Inheriting a goal means copying all the options specified in the inherited
goal to the parent goal as well as inheriting its help (from .help files) and
setup (from .sgs file). If the parent goal has its own help and setup
created, Atrenta Console ignores the help/setup from the inherited goal.
To inherit a goal in your parent goal, specify the following command in
270
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
the goal file:

-inherit_goal <goal-path>

The <goal-path> argument refers to the path of the goal file to be
included or inherited in the parent goal. You can refer to
$SPYGLASS_HOME to specify this path.

If you specify a relative path, Atrenta Console resolves that path with
respect to the current working directory. You can also refer to any other
environment variable, if defined, while specifying the goal path. If that
environment variable is not found, Atrenta Console reports the appropriate
error message.

Atrenta Console reads the included or inherited goals in the same order as
they are specified in parent goals.

Using Environment Variables in Included/Inherited Paths

Setting absolute paths for included or inherited goals works fine but has
certain limitations, as discussed below:
 A methodology can be used by another user only if the network path

location, as seen by that user, is the same as what you have.
 Moving a methodology to another directory location renders it unusable

until you correct the absolute paths.

For these reasons, it is recommended that you use environment variables
while specifying paths. The following examples explain this in detail.

Example 1

Consider a corporate-level methodology M1 and you want to create a local
customized methodology M2 by including/inheriting one or more goals
from M1 and share with other users.

In this case, it is recommended that you use a standard environment
variable in paths specified in the M2 methodology. For example, following is
the sample line in one of the M2 methodology goal inheriting the a/b/c/
goal1 goal from corporate-level methodology M1:

#Inside M2 methodology, goal 'x/y/z/goal11'
-inherit_goal $MY_CORPORATE_METHODOLOGY_DIR/a/b/c/
goal1
271
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
To use the M2 methodology, set the
MY_CORPORATE_METHODOLOGY_DIR environment variable to point to
the M1 directory before invoking SpyGlass, as shown below:

setenv MY_CORPORATE_METHODOLOGY_DIR <M1 path>

Example 2

Consider that you have a methodology M1 and within this methodology,
you want to create additional goals by referring one or more goals of the
same methodology.

In this case, it is recommended that you use SpyGlass internally defined
variable METHODOLOGY_HOME in a hierarchical goal. For example,
following is the sample line in one of the new goal referring another goal
from the same methodology:

-inherit_goal $METHODOLOGY_HOME/a/b/c/goal1

The METHODOLOGY_HOME variable is set by SpyGlass automatically when
a methodology loaded. Do not define this variable. If it is set, Atrenta
Console ignores it.

Please note that SpyGlass also provides the SPYGLASS_HOME
environment variable. Using this variable in inherited/included goal paths
implies that the goals are picked from the actual release that is run. As a
goal setup is subject to change across releases, it may lead to different
sets of messages and possibly other issues. If you want to maintain the
goal setup, you can define your own environment variable (as explained in
Example 1) to point to a specific release location or a copy of a methodology
from a specific release.

NOTE: Do not edit a methodology created with environment variables using the MCS
window as paths expand to absolute paths while saving. This issue will be fixed in a
future release.

Specifications Provided in the Included/Inherited Goal

SpyGlass performs different actions based on the specifications provided in
the included/inherited goal file.

The following are the various specifications that you can provide in an
included/inherited file:
 -rule/-addrule/-ignorerule(s) Specification
272
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
 Parameter Specification

 define_severity Specification

 overloadrule Specification

-rule/-addrule/-ignorerule(s) Specification

SpyGlass ignores the -ignorerule specification for a particular rule in
the included/inherited goal file if you specify the -rule/-addrule
specification for the same rule in the parent, included, and/or inherited
goal file. In addition, SpyGlass reports an appropriate warning message in
such cases.

Consider a parent goal file that contains the following specifications:

-policies=lint
...
-include_goal included-mixed.spq
-addrule W18
...

In addition, consider the included-mixed.spq goal file (given in the
parent goal) that contains the following specifications:

-policies=clock-reset,lint
-addrule W391
-ignorerule W18
-ignorerule W391
....

Now when the parent goal runs, SpyGlass ignores the W18 and W391 rules
and reports the following warning for these rules:

WARNING [342] Rule/Group 'W18' specified at File: parent-
mixed.spq, Line: 6 has been ignored due to the following -
ignorerule(s) specifications -

-ignorerule W18(File: included-mixed.spq, Line: 6)

Parameter Specification

If you specify a rule parameter more than once in an included/inherited
goal or the parent goal, SpyGlass considers the last parameter
specification.
273
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
Consider a parent goal file that contains the following specifications:

...
-use_inferred_clocks=no
-include_goal included-mixed.spq
...

In addition, consider the included-mixed.spq included goal file (given
in parent goal) that contains the following specification:

...
-use_inferred_clocks=yes
...

In this example, SpyGlass considers the -use_inferred_clocks=yes
specification and reports the following warning:

WARNING [341] Parameter 'use_inferred_clocks' specified
multiple times at following locations -

-use_inferred_clocks=no (File: parent-mixed.spq, Line: 22)

-use_inferred_clocks=yes (File: included-mixed.spq,Line: 6)

All specifications except the last would be ignored.

define_severity Specification

If you specify the define_severity specification for a rule in the
parent, included, and/or inherited goal more than once, SpyGlass decides
the define_severity specification to be considered in the following
manner:

 The first define_severity specification, if present in the parent
goal, is considered.

 Otherwise, the first define_severity specification present in the
included/inherited goals is considered.

Consider a parent goal file that contains the following specifications:

...
-include_goal included-mixed.spq
...
-define_severity Audits+Audit3run+Warning
...

In addition, consider the included-mixed.spq included goal file (given
274
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
in the parent goal) that contains the following specifications:

...
-define_severity Audits+Audit3run+ERROR
...

In this example, SpyGlass reports the following warnings:

WARNING [345] Severity for 'Audit3run' defined multiple
times for policy 'Audits' in included/inherited goal and parent
goal (parent-mixed.spq) at following places -

ERROR (File: included-mixed.spq,Line: 5)

Warning (File: parent-mixed.spq,Line: 50)

First definition in parent goal (severity class 'Warning')
would be honored and rest would be ignored.

Consider another example in which no define_severity specification
is present in the parent goal file, but the following define_severity
specifications are present in the included goal file:

...
-define_severity Audits+Audit_Info+Warning
...
-define_severity Audits+Audit_Info+INFO
...

In this example, SpyGlass reports the following warning:

WARNING [346] Severity for 'Audit_Info' defined multiple
times for policy 'Audits' in included/inherited goal (inside
parent goal parent-mixed.spq) at following places -

Warning (File: included-mixed.spq,Line: 3)

INFO (File: included-mixed.spq,Line: 6)

All except the very first specification would be ignored.

overloadrule Specification

If multiple overloadrule specifications are present for a particular rule
in the goal file, Atrenta Console overrides and merges the specified
overload specifications with subsequent specifications.

If you specify different severity labels in these specifications, Atrenta
Console considers the last severity label and reports a warning message.
275
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
Consider a parent goal file that contains the following specifications:

...
-overloadrules=Ac_sanity05+severity=Warning
-overloadrules=W226+severity=Info+verilog
...

Also, consider the included-mixed.spq included goal file (given in the
parent goal) that contains the following specifications:

...
-overloadrules=Ac_sanity05+severity=Error+verilog+vhdl
-overloadrules=W226+severity=Error+vhdl
...

The W226 rule of the SpyGlass lint solution is registered in both Verilog and
VHDL. Therefore, in the above example, SpyGlass applies severity label for
both Verilog and VHDL versions of the W226 rule and does not report any
warning. SpyGlass, however, reports the following warning for the
Ac_sanity05 rule:

WARNING [347] Multiple severity overload specifications
found for rule 'Ac_sanity05' (registered in language
'Verilog+VHDL') in included/inherited goal and parent goal
(parent-mixed.spq) at following places -

Warning (Language: Undefined) (File: parent-mixed.spq, Line:4)

Error (Language: Verilog+VHDL) (File: included-mixed.spq,
Line:7)

Only last severity class would be used.

Checks Performed on the Goal File

Atrenta Console performs various checks on the goal file, and reports
errors in the following cases:
 If the language of the inherited or included goal is not same as the

current language mode.

 If the include_goal and/or inherit_goal command is
encountered within an already included or inherited goal.

 If the parent goal inherits more than one goal. In such cases, SpyGlass
considers the first inherited goal, and ignores the rest of the inherited
goals.
276
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
 If recursive/duplicate include/inherit goal specifications are present in
the same parent goal.

NOTE: To suppress warning messages reported on include_goal/inherit_goal
goal specification inside parent goal, specify the
-suppress_nested_template_msgs option in the parent goal file.

Including/Inheriting Goals in the MCS Window

To include or inherit a goal in the MCS window, perform the following steps:
1. Right-click on a goal.
2. Select the Inherit Goal or Include Goal(s) option from the shortcut menu.

The Inherit Goal or Include Goal(s) dialog appears depending upon the
selection.

3. Select the goal to be inherited. If you have selected the Include Goal(s)
option, you can select multiple goals.

4. Click the Add button.
5. Click the OK button.

The inherited or included goal appears under the selected goal in the MCS
window.

The following figure shows an example of the synthesis goal inherited by the
connectivity goal:
277
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
FIGURE 27. Goal Inheritance

Viewing and Adding Options for an Included or Inherited Goal

Within the hierarchy of each included or inherited goal, a separate node,
Goal Other Options, is present. Select this node to view various options set
for a goal. Such options do not appear in the Rule List or Parameter List for
that goal.

When you select the Goal Other Options node, the Goal Other Options List
section appears in place of the Rule List section to display various options
set for a goal. The following figure shows a list of options for a goal:

FIGURE 28. Goal Other Option List for Connectivity
278
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
In the above page, you can add more options by clicking Add Option.

Viewing Rules and Parameters of Included/Inherited Goals

Click on an included or inherited goal to load its rules and parameters into
respective rules and parameters section of the MCS window.

When you click on a parent goal that contains included and inherited goals,
the rule list appearing in the rules section is a consolidated list of all rules
of the included, inherited, and parent goal. You can view this list in any of
the following formats:

 Expanded View: This is a flat list of all rules of a nested goal and its
included and inherited goal. Select the Expanded View option from the
drop-down list for this view.
The following figure shows an expanded view of rules:

FIGURE 29. Expanded View

 Hierarchical View: This is a hierarchical list that shows rules for included
and inherited goals under separate nodes. Rules of the parent node
appear at the root-level.

Select the Hierarchical View option from the drop-down list for this view.
The following figure shows a hierarchical view of rules:
279
Synopsys, Inc.

Creating Custom Methodologies

Working with Methodologies
FIGURE 30. Hierarchical View

Enabling/Disabling Rules of a Parent Goal

To disable a rule of a parent goal, click the symbol preceding the rule
name. This disables that rule and the symbol appears preceding the rule
name.

Similarly, to enable a rule of a parent goal, click the symbol preceding
the rule name. This enables that rule and the symbol appears preceding
the rule name.

You cannot enable/disable rules of an included or inherited goal as these
goals cannot be modified from a parent goal.
280
Synopsys, Inc.

Selecting a Custom Methodology

Working with Methodologies
Selecting a Custom Methodology
To use goals of a custom methodology, perform the following steps:
1. Click the Select Methodology link under the Select Goal tab.

The Select Methodology dialog appears.
2. In the Select Methodology dialog, select the Custom option.
3. Select the Browse button to select the required custom methodology.

The Select Directory dialog appears.
4. In the Select Directory dialog, select the required directory of your custom

methodology.
5. Click the OK button to close the Select Directory dialog.
6. Click the OK button to close the Select Methodology dialog.

After performing the above steps, Atrenta Console displays goals of the
specified custom methodology under the Select Goal tab, as shown in the
following figure:
281
Synopsys, Inc.

Selecting a Custom Methodology

Working with Methodologies
FIGURE 31. Goal List for Custom Methodology

In the above figure, goals highlighted in red indicate some error(s) in such
goals. When you open the Methodology Configuration System window, Atrenta
Console first displays the error details of all such goals in the Error dialog,
as shown in the following figure:
282
Synopsys, Inc.

Selecting a Custom Methodology

Working with Methodologies
FIGURE 32. Error Dialog for Goals

After viewing the error details in the above dialog, click the OK button to
display the Methodology Configuration System window.

In the Methodology Configuration System window, when you select a goal
containing error(s), an Error dialog appears displaying the error details of
only the selected goal.
283
Synopsys, Inc.

Comparing Methodologies

Working with Methodologies
Comparing Methodologies
You can compare two methodologies in the MCS window to view differences
between them.

To compare methodologies, perform the following steps:
1. Select the Tools -> Compare -> Methodologies menu option in the MCS

window.

The Methodology Comparison dialog appears, as shown in the following
figure:

FIGURE 33. Specify Methodologies for Comparison

2. In the above dialog, specify the required methodologies to be compared
in the Select Methodology1 and Select Methodology2 fields.
By default, the main methodology of the current session appears in the
Select Methodology1 field.

3. Click the Compare button.

The Methodology Comparison dialog appears showing differences between
the two specified methodologies.

The following figure shows an example of methodology comparison in the
Methodology Comparison dialog:
284
Synopsys, Inc.

Comparing Methodologies

Working with Methodologies
FIGURE 34. Methodology Comparison Results

Red entries in this dialog indicate a difference. For example, in the above
dialog, there is a difference between the clock_reset_integrity goals of the two
methodologies. You can expand these goals to view the difference.

If some information present in one methodology is missing in another
methodology, the Not available text appears in the latter methodology. For
example, in the above dialog, the structural_exception goal under the
constraint hierarchy is present in Methodology 1 but is missing in the
constraint hierarchy of Methodology 2. Therefore, the text Not available text
285
Synopsys, Inc.

Comparing Methodologies

Working with Methodologies
appears in Methodology 2.

Merging the Differences

Click the Merge link in the right-most section to merge the corresponding
data in the main methodology of the current session.

For example, in the above figure, click Merge adjacent to the
clock_reset_integrity goal in the right-most section to overwrite the
corresponding settings from the right-most methodology in the left-most
methodology.
286
Synopsys, Inc.

Copying and Inheriting Methodologies

Working with Methodologies
Copying and Inheriting Methodologies
To copy or inherit a methodology, select the Tools -> Copy Methodology menu
option in the MCS window. This displays the Copy Methodology dialog, as
shown in the following figure:

FIGURE 35. Copy Methodology

In the above dialog, select the Copy Files or Inherit Files option to copy or
inherit a methodology, respectively. For details, see Copying a Methodology
and Inheriting a Methodology.

Copying a Methodology

Copying a methodology creates an exact copy of the specified methodology
in the specified output directory. All the copied goal files contain details of
rules and parameters.

To copy a methodology by using the Copy Methodology dialog, perform the
following steps:
1. Specify a methodology to be copied in the Source Methodology text box.

Alternatively, click to browse to the methodology to be copied.
2. Select the Copy Files option.
3. Specify the name of the methodology that should contain the copied

files in the Copy Methodology Name text box.
287
Synopsys, Inc.

Copying and Inheriting Methodologies

Working with Methodologies
4. Specify the directory in which the methodology should be copied in the
Output Directory text box.

5. Click the Copy button.

After performing the above steps, all files of the specified methodology are
copied in the specified output directory.

Inheriting a Methodology

Inheriting a methodology creates an exact structure of the specified
methodology in the specified output directory.

However, unlike copying a methodology, goal files in this case do not
contain details of rules and parameters. Instead, the goal files only contain
the -inherit_goal command, as shown in the following example:

-inherit_goal $SPYGLASS_HOME/GuideWare/New_RTL/initial_rtl/
lint/structure-verilog.spq

To inherit a methodology by using the Copy Methodology dialog, perform the
following steps:
1. Specify a methodology to be inherited in the Source Methodology text box.

Alternatively, click to browse to the methodology to be inherited.
2. Select the Inherit Files option.
3. Specify a reference environment variable in the Reference ENV Variable

text box.
For details, see Specifying a Reference Environment Variable.

4. Specify an additional path after the reference environment variable path
in the Additional Path text box.
For details, see Specifying an Additional Path.

5. Specify the name of the methodology that should contain the inherited
files in the Copy Methodology Name text box.

6. Specify the directory in which the methodology should be inherited in
the Output Directory text box.

7. Click the Copy button.

After performing the above steps, all files of the specified methodology are
inherited in the specified output directory.
288
Synopsys, Inc.

Copying and Inheriting Methodologies

Working with Methodologies
Specifying a Reference Environment Variable

A reference environment variable is a variable that is used to set a
reference point after which the path of the specified methodology exists.

For example, you may specify the reference environment variable as
SPYGLASS_HOME that is internally set to the following path:

RELEASE/SpyGlass-<version>/SPYGLASS_HOME/

When the tool encounters this reference environment variable, it
automatically expands it to the path this variable is internally set. For
example, consider the following inherit_goal specification of an
inherited goal file:

-inherit_goal $SPYGLASS_HOME//ip_audit/lint/ip_netlist-
mixed.spq

In the above example, the $SPYGLASS_HOME reference environment
variable internally expands to its complete path, as shown below:

-inherit_goal RELEASE/SpyGlass-<version>/SPYGLASS_HOME//
ip_audit/lint/ip_netlist-mixed.spq

Specifying an Additional Path

An additional path is a path that exists in continuation to the path set by a
reference environment variable.

Atrenta Console appends this path to the path set by a reference
environment variable. For example, after specifying the
$SPYGLASS_HOME reference environment variable, if you specify the
additional path as ABC, the tool appends this path to $SPYGLASS_HOME
reference environment variable, as shown below:

$SPYGLASS_HOME/ABC/

Now consider the following inherit_goal specification of an inherited
goal file:

-inherit_goal $SPYGLASS_HOME/ABC//ip_audit/lint/ip_netlist-
mixed.spq

In the above case, the highlighted path internally expands in the following
manner:
289
Synopsys, Inc.

Copying and Inheriting Methodologies

Working with Methodologies
-inherit_goal RELEASE/SpyGlass-<version>/SPYGLASS_HOME/
ABC//ip_audit/lint/ip_netlist-mixed.spq
290
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
Migrating Custom Goals
A methodology, such as GuideWare is designed to use goals during
different stages of RTL development. You can modify these goals to create
your own custom goals depending upon your requirement.

However, to ensure a structured flow for design analysis, it is
recommended to migrate your custom goals along with goals of existing
methodologies.

Migrating goals creates a new methodology that contains rules from
custom goals as well as goals from existing methodologies specified by the
user.

Migrating custom goals requires you to perform the following tasks:
1. Comparing Goals

2. Migrating Goals

Comparing Goals

You can compare custom goals with an existing methodology, such as
GuideWare goals and analyze differences between these goals.

For example, you can compare rules that are common in custom goals and
goals in an existing methodology. Similarly, you can compare rules that are
present in custom goals but missing in goals of the specified methodology.

To compare goals, perform the following steps:
1. Select the Tools -> Compare -> Goals with Methodology menu option.

The Compare custom goals dialog appears, as shown in the following
figure:
291
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
FIGURE 36. Compare Custom Goals

2. In the above dialog, click the Add Goal button.

The Select File(s) dialog appears, from which you can select the required
custom goals.

3. Click the Add button.

The Select Directory dialog appears, from which you can select directories
for standard GuideWare goals.

For example, the following figure shows the Select Directory dialog, from
which you can select the required GuideWare stages:
292
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
FIGURE 37. Select Directory

4. Click the Compare button.

The Goal Comparison Summary dialog appears, as shown in the following
figure:
293
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
FIGURE 38. Goal Comparison Summary

The above dialog displays a brief comparison summary between rules of
the specified custom goals and goals of the specified methodology.

These rules are described in the following categories:
294
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
You can view a detailed comparison summary of rules in a separate
browser by clicking the Show HTML report button. For details, see Viewing the
HTML Report for Comparison.

Category Description
Common Number of common rules between custom goals and

GuideWare.
These are GuideWare non-optional (mandatory) rules.

Common_GWOpt Number of common rules that are specified as 'optional' in
GuideWare

GW_Only Number of GuideWare rules included in the migration
result output flow.
They do not appear in custom goals.

GW_Opt_Only Number of GuideWare 'optional' rules included in the
migration result output flow.
They do not appear in custom goals.
(Note: These rules are not mandatory but can be
considered by user if interested).

Cust_Only Number of custom included only rules
(not part of GuideWare)

Total Rules Total rule count found in GuideWare and custom goals
Total GW Total GuideWare non-optional rules
Total GW Opt Total GuideWare optional rules
Total Customer Total rules in custom goals
295
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
Viewing the HTML Report for Comparison

The following figure shows a sample HTML report displaying a detailed
comparison summary:

FIGURE 39. Detailed Goal Comparison Summary
296
Synopsys, Inc.

Migrating Custom Goals

Working with Methodologies
Migrating Goals

Migrating goals is a process in which user-specified custom goals are
merged with the specified methodology. After migration, Atrenta Console
creates a new methodology that contains rules from custom goals as well
as rules from the specified methodology. You can specify the name for this
methodology in the Output Directory field of the Goal Comparison Summary
dialog.

For example, you may want to migrate some custom goals with
initial_rtl and rtl_handoff stages of the GuideWare/New_RTL
methodology. In this case, custom goals are compared with the goals of
the initial_rtl and rtl_handoff stages and a new methodology is
created that contains rules from the initial_rtl and rtl_handoff
stages as well as rules that were specified in the custom goals but were not
present in any of these stages.

Before migrating goals, you can:

 Select the Separate style rules option to separate coding style-specific
rules from custom goals to a single style_checks goal.

 Select the Use Parameter Values Set In Custom Goals option to overwrite
parameter values of the specified methodology with parameter values
set in custom goals.

 Select the Load created methodology in MCS after migration option to load the
newly created methodology containing migration results in the MCS
window.

After selecting the required options, click the Migrate Goals button in the
Goal Comparison Summary dialog. This creates a new methodology of the
specified name that contains a combined set of rules present in custom
goals and specified methodologies.
297
Synopsys, Inc.

Order File

Working with Methodologies
Order File
An order file contains path of goal files relative to a methodology directory.
This path is used to specify the order in which goals are arranged in a
methodology.

Each methodology contains one order file that defines the order of all its
goals.

For example, consider the following sample structure:

FIGURE 40. Sample Directory Structure

For the above example, the order file under the New_RTL methodology
should contain the following entries:

initial_rtl
initial_rtl/lint/connectivity*
initial_rtl/lint/synthesis*
initial_rtl/lint/structure*

initial_rtl sub-methodology

New_RTL methodology

lint sub-methodology audit sub-methodology

Order file

connectivity-mixed.spq
connectivity-verilog.spq
connectivity-vhdl.spq

block_profile-mixed.spq
block_profile-verilog.spq
block_profile-vhdl.spq

Order file

synthesis-mixed.spq
synthesis-verilog.spq
synthesis-vhdl.spq

structure-mixed.spq
structure-verilog.spq
structure-vhdl.spq

rtl_audit-mixed.spq
rtl_audit-verilog.spq
rtl_audit-vhdl.spq

structure_audit-mixed.spq
structure_audit-verilog.spq
structure_audit-vhdl.spq

connectivity.spq

synthesis.spq

structure.spq

block_profile.spq

rtl_audit.spq

structure_audit.spq
298
Synopsys, Inc.

Order File

Working with Methodologies
initial_rtl/audit/block_profile*
initial_rtl/audit/rtl_audit*
initial_rtl/audit/structure_audit*

Similarly, the order file under the initial_rtl methodology should
contain the following entries:

lint/connectivity*
lint/synthesis*
lint/structure*
audit/block_profile*
audit/rtl_audit*
audit/structure_audit*

Each line in an order file specifies one goal-path entry.

NOTE: The goal name should not contain -<language>.spq in an order file. It should
contain an asterisk (*) after the name.

Viewing Order of Goals Defined in an Order File

You can view the order of goals defined in the order file in either of the
following ways:

 In GUI, display the Methodology Configuration Window or select the Select
Goal tab of the Goal Setup & Run stage.

 In batch, specify the -showgoals option.

NOTE: If the order file of a methodology does not contain entry for a particular goal of that
methodology, Atrenta Console does not display such goal in GUI or batch.

Format of an Order File

An order file is divided into the following two sections:
 Commented Section

 Goal Description and Attributes Area
299
Synopsys, Inc.

Order File

Working with Methodologies
Commented Section

This section provides the description of the methodology. This section is
present between =methodology and =cut, and is present at the top of
the order file.

You can view the description provided by this section under the Select Goal
tab or in the Methodology Configuration System window.

NOTE: Each order file contains only one comment.

The commented section contains the following details in the specified
order:

 The first line starts with the =methodology string to indicate the
beginning of a comment.

 Next line specifies the methodology name for which the order file is
present.

 (Optional) Next line specifies the name of the parent methodology, if
present, for the current methodology in the following format:

OLDMETH: <methodology-name>

 Next line contains * to indicate the beginning of the short help of the
methodology.

 Next line specifies a one-liner short help of the methodology.

 (Optional) Next line specifies the short help of the parent methodology,
if present, for the current methodology in the following format:

OLDDESC: <short-help>

 Next line contains * to indicate the end of the short help of the
methodology.

 Next line contains the beginning of the long help of the methodology.
If the current methodology has a parent methodology, the long help of
the parent methodology is in the following format:

OLDDESC: <long-help>

 Last line contains =cut to indicate the end of commented area.

A sample order file is given in the Sample Order File section.

Goal Description and Attributes Area

This section contains name and relative-path of each goal of the
300
Synopsys, Inc.

Order File

Working with Methodologies
methodology and attributes of each goal.

The order in which goals appear in Atrenta Console GUI (Select Goal tab and
Methodology Configuration System window) is based on the order of goals
specified in this section.

Following are the details of this section:
 The name of the methodology directory is displayed first, followed by

the path of all goals under that methodology, as shown in the following
example:

initial_rtl
initial_rtl/lint/connectivity*
initial_rtl/lint/simulation*
initial_rtl/lint/synthesis*
initial_rtl/lint/structure*

 Each goal name is appended with * or %, to indicate whether they are
.spq or .spc files, respectively.

 The PREREQ: tag specifies the path of prerequisite goal(s) for a
particular goal.
This tag is present in the same line where the goal path is present. This
tag is followed by the path of prerequisite goal, as shown in the
following example:

rtl_handoff/constraint_generation/gen_sdc* PREREQ:
rtl_handoff/constraint/sdc_quick_check

In case of multiple prerequisite goals, specify a comma-separated list of
paths of prerequisite goals.
The prerequisite goal path(s) must be relative to the methodology
directory.

 The !HIDE tag appearing before the goal name indicates that the
corresponding goal will be hidden in Atrenta Console window. Such
goals are, however, visible in the Methodology Configuration System window.

 The DDR_GOAL tag is used for DDR specific goals. Setups of such goals
are mandatory.
301
Synopsys, Inc.

Map File

Working with Methodologies
Map File
Map file is used to trace back the reference of the new goal, which is
present in a methodology, to the original goal, which is present in another
methodology.

You can specify a map file along with an order file in a methodology to
mark the mappings between the goals in different methodologies.

For example, following describes mapping between GuideWare 1.0 and
GuideWare 2.0 goals:

initial_rtl/lint/connectivity,initial_rtl/lint/
simulation,initial_rtl/lint/synthesis,initial_rtl/lint/
structure::lint/lint_rt

In the above example, the lint_rtl goal in GuideWare 2.0 represents
following four goals in GuideWare 1.0:
 connectivity

 simulation

 synthesis

 structure
302
Synopsys, Inc.

Working with SpyGlass
Design Constraints
Overview
SpyGlass Design Constraints (SGDC) are used to:
 Provide additional design information that is not apparent in the RTL

description.
 Restrict SpyGlass analysis to a set of objects.

Consider a scenario in which you want to specify the names of clock nets to
be checked. While SpyGlass can infer clocks in the design, you may want to
restrict the analysis to only a handful of clocks or specify other clocks that
could not be inferred. In this case, you can specify the required clock
information by using the appropriate constraint.

NOTE: The design constraint files can have any extension. However, it is recommended to
use the .sgdc extension to facilitate better recognition and handling.

NOTE: The previous method of supplying design constraints using embedded design
pragmas is still supported for backward compatibility. However, it is strongly
recommended that you use the design constraints file method that is superior. If
both the design constraints file and embedded design pragmas are specified,
SpyGlass uses the design constraints file only and ignores the embedded design
pragmas. Similarly, if you have not specified a design constraints file but have
embedded design pragmas in the source code, SpyGlass reads these pragmas and
creates a design constraints file, pragma2constraints.sgdc, located in the goal result
303
Synopsys, Inc.

Overview

Working with SpyGlass Design Constraints
directory under spyglass_spysch. For example, <project_name>/<top_name>/
<full_goal_name_and_path/spyglass_spysch/constraints/
pragma2constraints.sgdc.
304
Synopsys, Inc.

Specifying SGDC Files to SpyGlass

Working with SpyGlass Design Constraints
Specifying SGDC Files to SpyGlass
Specify SGDC files in either of the following ways:

 By using the read_file -type sgdc <SGDC-file-name>
command in a project file

 By using the Add Files option under the Add Design Files tab in Atrenta
Console GUI
305
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
Creating an SGDC File
You can write different constraint specifications in an SGDC file. An SGDC
file can be a text file of any extension. However, it is recommended to save
such files with the .sgdc extension.

For details on any constraint, refer to the SpyGlass Consolidated
Constraints Application Note.

Adding Comments in an SGDC File

To add comments in an SGDC file, use # or // before the comment, as
shown in the following example:

comment1

//comment2

The # comment identifier must be the first character in a code line or must
have only whitespace before it. All the text after the comment identifier till
the end of the line is considered as a comment.

The // comment identifier can be specified anywhere in a code line. All the
text after the comment identifier till the end of the line is considered as a
comment.
306
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
Defining a Scope for Constraints
A scope defines the design unit in which the specified constraints are
applicable.

To define a scope, use the current_design <design-unit>
command before writing SGDC commands, where <design-unit> can
be any of the following:

The following example defines scopes for different constraint
specifications:

For more information on the Tcl-based usage of the current_design
command, refer to the current_design section of the SpyGlass Tcl Shell
Interface User Guide.

If you specify constraints without defining a scope for them, such
constraints are applicable to the entire design. In the following example,
the waive constraint is applicable for the whole design because no
current_design command is specified before the waive constraint:

waive -file *. -rules ALL

For Verilog: <module-name>
For VHDL: <entity-name> <entity-name>.<archname>

<configuration-name> <libname>.<configuration-name>

current_design B1
clock -testclock -name tclk1 -value rtz
testmode -name tm1 -value 1

current_design B2
clock -testclock -name tclk2 -value rto
testmode -name tm2 -value 0

current_design B3
clock -testclock -name tclk3 -value rto

Scope for design
unit B1

Scope for design
unit B2

Scope for design
unit B3
307
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
NOTE: SpyGlass checks the design unit name in case-insensitive manner. Therefore, if
your Verilog design has two modules named FOO and foo, specifying a
current_design keyword line with FOO or any of its case variants as its
argument will result in the same set of constraints on both FOO and foo modules.

Please note that some products, such as SpyGlass DFT solution, work only
on flattened netlists. Therefore, the current_design command must
specify only top-level design units for these products. However, if there are
multiple top-level design units in a design, specify the current_design
command for each top-level design unit; and all the constraints related to
that top-level design unit must follow the corresponding
current_design line.

For a parametrized design unit, the -def_param switch of the current
design is used to define scope specific to its default parameter. The param
parameter is used for user-specified values. The -param switch of the
current design accepts list of non-default parameters in the following
format:

<param>=<value>

For example consider a design unit having instances of parametrized
design unit B4, one instantiated with default parameter value and other
with overridden parameter value '8'. Following specification defines the
scope for default and non-default parametrized design unit B4:

current_design B4 -def_param
set_case_analysis -name in1[3]
-value 0

current_design B4 -param { SIZE=8 }
set_case_analysis -name in1[7]
-value 1

Scope for design
unit B4 with default parameter

Scope for design
unit B4 with non-default parameter
308
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
SGDC Convention for Packed Arrays

Packed array elements are referred in an RTL using the dot separator (".").
However, while referring to such elements in an SGDC file, use square
brackets ([]).

Consider the following example:

typedef struct packed {
rx_g rx;
ctrl_g ctrl;
lo_g lo;
} AD;
module test(input c1, c2, d1, d2, input AD AD_IN, output
[1:0] o1, o2, o3);
flop f1 (AD_IN.lo , c2, o3);
endmodule

In the above example, the dot separator is used for AD_IN.lo. However, in
an SGDC file, this element is specified as AD_IN[lo], as shown below:

input -name AD_IN[lo] -clock c2

Specifying Multiple current_design Specifications for a Design Unit

You can specify multiple current_design specifications for a particular
design unit, as shown in the following example:

current_design B1
clock -testclock -name tclk1 -value rtz
testmode -name tm1 -value 1

current_design B2
clock -testclock -name tclk2 -value rto
testmode -name tm2 -value 0

current_design B1
clock -testclock -name tclk3 -value rto

In the above example, there are two current_design lines for design
309
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
unit B1 that specify two clocks (tclk1 and tclk3) and one testmode
(tm1).

Consider the following example:

current_design B3
testmode -name tm1 -value 1

current_design B3 -def_param
clock -testclock -name tclk1 -value rto
testmode -name tm2 -value 0

current_design B3 -param { SIZE=8 }
clock -testclock -name tclk2 -value rto

In the above example, the current_design specification without -
def_param and -param switches is applicable for all the design versions
of design unit B3. When B3 is instantiated with default parameter values,
clock (tclk1) and testmodes (tm1, tm2) are visible. Similarly, when B3
is instantiated with parameter SIZE=8, a clock (tclk2) and a testmode
(tm1) are visible.

Specifying Configuration Name with current_design Command

If you specify a configuration name with the current_design
command, ensure that the specified configuration is not present in multiple
precompiled libraries.

If a configuration name is present in multiple precompiled libraries, avoid
using the configuration name. Instead, use
<entity-name>.<architecture-name> for which the intended
configuration is defined.

For multiple architecture VHDL designs, use the
<entity-name>.<arch-name> format to specify the current_design
command only while analyzing the design with the hdllibdu project file
command.
310
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
Specifying Multiple Values for a Constraint Argument

If a constraint argument accepts multiple values, specify values in either of
the following ways:
 Specify a list of names in a single constraint specification, as shown in

the following example:

voltagedomain -isosig top.isig1 top.isig2

 Specify each value in a separate constraint specification, as shown in
the following example:

voltagedomain -isosig top.isig1
voltagedomain -isosig top.isig2

Handling Interdependencies between Different Arguments

When two arguments of the same constraint have interdependency, you
must specify the exact matching number of values with each argument. For
example, the -isosig argument and the -isoval arguments of the
voltagedomain constraint are interdependent.

You can handle these interdependencies in any of the following ways:

The style used in one argument can be different than the style used in the
other interdependent argument.

Method 1

voltagedomain
 ...
 -isosig top.isig1 top.isig2
 -isoval 0 1
 ...

Method 2

voltagedomain
...
-isosig top.isig1 -isosig top.isig2
-isoval 0 -isoval 1
...

Method 3

voltagedomain
...
-isosig top.isig1 -isosig top.isig2
-isoval 0 1
...
311
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
NOTE: The purpose and function of each design constraint keyword is product-specific and
is described in the product rules reference document of the respective product
where the design constraint can be used. For example, the SpyGlass CDC solution
uses the clock and reset design constraint keywords (besides many other
design constraint keywords), and the SpyGlass CDC Rules Reference describes how
these design constraints are used for the product. In addition, a product can have
its own product-specific design constraint keywords.

NOTE: Application of a design constraint keyword may be different in different products.
For example, the -domain argument of the clock design constraint keyword is
important when used with the SpyGlass CDC solution but is ignored when used with
SpyGlass DFT solution. Similarly, the -testclock argument is important in the
SpyGlass DFT solution but is ignored by the SpyGlass CDC solution.

Including an SGDC File in Another SGDC File

Use the include directive to include an SGDC file in another SGDC. The
include directive is used in the following format:

include <file-name>

In the following example, the constraint_include.sgdc file is included in the
constraint.sgdc:

In the above case, when you specify the constraint.sgdc file during SpyGlass
analysis, SpyGlass expands the contents of this file to the following:

current_design test
test_mode -name test.w1 -value "1"

current_design and_new
test_mode -name in1 -value "1"

include constraint_include.sgdc

current_design and_new
test_mode -name in1 -value 1

// Contents of constraint.sgdc // Contents of constraint_include.sgdc

current_design test
test_mode -name test.w1 -value 1
312
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
Specifying Signal Names

Certain constraint arguments accept names of signals, such as clock
signals and low-power signals.

Based on the design hierarchy in which such signals are present or the type
of signals, such as scalar or vector signals, you must specify signal names
in a correct format so that SpyGlass can identify them correctly.

Specifying Signal Names based on Signal Types

Signal name specification varies based on signal type, such as a scalar
signal (for example, clk1), a bit-select of a vector signal (for example,
CLK[2]), or a part-select of a vector signal (for example, CLK2[0:2]).

Note the following points:
 You can directly specify a multi-dimensional array bit-select and part-

select with SpyGlass design constraints. SpyGlass performs some sanity
checking after synthesis.

 You can also specify array of instances (Verilog) in escaped format with
SpyGlass design constraints. For example, consider the following
specification:

M1 U1[0:2](a,b);

For the above specification, you can specify instances as '\U1[0] ',
'\U1[1] ', or '\U1[2] ' (quotes not required).

However, range specification is not supported. Therefore, '\U1[0:2] '
is not supported.

Specifying Signal Names based on Design Hierarchy

Signal name specification varies based on design hierarchy, as described
below:
 Simple signal
313
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
For example, signal specification clk1 means that this signal is in the
design unit identified by the current_design specification.

 Module signal name

For example, signal specification top.CK1, where the prefix specified
before the period (.) hierarchy separator is same as the name of the
design unit in the current_design specification. In this case, the
description is equivalent to simple name specification as above.

 Hierarchical signal name

For example, the signal specification top.U1.U2.CK1, where multiple
values specified with the dot (.) hierarchy separator identifies the
design hierarchy within the current_design specification. This
detailed specification may begin with either the name of the design unit
in the current_design specification or the instance name within the
design unit in the current_design specification.

NOTE: It is not required to specify the top-level design unit name (which is specified
with current_design) in a hierarchical name. Thus, both
top.U1.U2.CK1 and U1.U2.CK1 are acceptable (and are the same)
under current_design top.

In all of the above cases, Atrenta Console first searches the reported signal
as PORT signal, and then as NET signal.

NOTE: You can specify escaped names by enclosing them in double quotes as in
“\myvlogsig1”, “\myvhdlsig#11\”. You only need to escape the
double quote character in an escaped name as in “\myvlogsig\”23\””,
“myvhdlsig\”5\””.

NOTE: You can also use Synopsys-style escaped names by specifying the following
command in Atrenta Console project file:

set_option support_sdc_style_escaped_name yes

By default, SpyGlass supports the dot (.) character (main; always
supported) and the forward slash (/) character (additional; set in the
default SpyGlass Configuration file) as the hierarchy separator. Use the
command named set_hsep to specify your own additional hierarchy
character. Thus, you can use any Synopsys-style hierarchy separator in
SpyGlass Design Constraints files.
314
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
The following example specifies the @ character as the additional hierarchy
character:

...
set_hsep @
current_design top
clock -name top@clk1 ...

...

Defining and Using Variables

Variables are used to store values that can be used as argument values of
constraints.

Once you define a variable and assign a value to it, you can use that
variable name as the value of a constraint argument. SpyGlass internally
expands that variable name to its value for that argument.

Defining Variables

To define a variable in an SGDC file, use the following command:

setvar <variable-name> <variable-value>

For example, the following command defines the variable myvar1 and
assigns the value clk to this variable:

setvar myvar1 clk

Using Variables

You can use a variable in any of the following formats:

 $<variable-name>

 ${<variable-name>}.

For example, in the following clock constraint specification, the variable
myvar1 is used as the value of the -name argument:

clock -name $myvar1
315
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
For the above command, SpyGlass internally assigns the value clk to the
-name argument of the clock constraint.

NOTE: Non-variable strings that start with $ should be escaped with a backslash to avoid
confusion.

Note the following points:
 You can define only one variable per line.

 A variable definition can span over multiple lines using the backslash
continuation character.

 There is no = or := between the variable name and its value, to keep it
consistent with Tcl format.

 Variable names must start with a letter and can contain letters,
numerals, and underscore characters.

 Variable names are case-sensitive. Thus, xyz and XYZ are different
variables.

 The variable value can be any string consisting of one or more words.
You must enclose multi-word values within double quotes.

 Double quotes used in variable names are a part of the variable name
itself.

 A variable remains visible within the scope of its containing SpyGlass
constraints file. Thus, it is also visible in the included SpyGlass
constraints files, if any.

 A variable becomes visible immediately from the next line after its
definition and remains visible till the end of the file.

 You can define a variable multiple times in a file. In such cases, every
definition overrides the previous definition and the current definition is
applicable for subsequent commands.

 You can refer a variable in its definition as well. This allows you to
redefine the variable with additional values in the same SpyGlass
constraints file.
For example, following are the allowed definitions:

...
setvar var1 b/c
...
setvar var1 $var1/d
316
Synopsys, Inc.

Creating an SGDC File

Working with SpyGlass Design Constraints
...

Starting with the first definition, the value of variable var1 is b/c till it
is redefined again. Then, the value of the variable var1 becomes b/c/
d.

 A variable definition can refer other variables that are already defined as
in the following example:

...
setvar var1 a/b/c
...
setvar var2 $var1/d
...

 You can also use the operating system-level environment variables in
the SGDC files. In such cases, the name of a local variable should not be
the same as that of an existing operating system-level environment
variable.
317
Synopsys, Inc.

Handling Duplicate Constraint Specifications

Working with SpyGlass Design Constraints
Handling Duplicate Constraint Specifications
If you specify multiple specifications for a constraint that can be applied
only once on a design object, the following actions occur:
 SpyGlass considers only the last specification of that constraint.

 SpyGlass reports the SGDCWRN_115 warning and ignores the rest of
the specifications of that constraint.

Consider the following example:

current_design top

set_case_analysis -name in -value 0
set_case_analysis -name in -value 1

For the above example, SpyGlass considers only the last
set_case_analysis constraint specification and ignores the first
constraint specification that sets the value of the in pin to 0.
318
Synopsys, Inc.

Handling Nets Declared in a Sequential Block

Working with SpyGlass Design Constraints
Handling Nets Declared in a Sequential Block
Consider the following example:

module TOP (in, temp, clk1, clk2);
input in, temp, clk1, clk2;
BASIC U_BASIC (in, temp, clk1, clk2);

endmodule

module BASIC (in, temp, clk1, clk2);
input in, temp, clk1, clk2;
reg outb, outc, outd;
generate
begin:GENBLOCK
always @ (posedge clk2)
begin:BLOCK1
reg abc;
abc <= outc;
outc <= abc & temp;
end
end

endgenerate
endmodule

In the above example, if you want to use abc, specify the following
notation in the SGDC file:

current_design TOP

clock -name clk1 -domain clk1
clock -name clk2 -domain clk2

cdc_false_path -from TOP.U_BASIC.in -to
"TOP.U_BASIC.\GENBLOCK.BLOCK1.abc "
319
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
Conditionally Specifying SGDC Constraints
To use the same SGDC file for different functional and testing analysis
modes, compile different commands from the same SGDC file based on
different conditions. These conditions are in the form of expressions made
by using SGDC variables and a given set of common logical operators.

Use the if-else statement to implement conditional compilation of
SGDC commands. Following is the syntax of the if-else statement:

if {<condition>} [then] {
sgdc commands)
...
...

} elseif {<condition>} [then] {
(sgdc commands)
...
...

} else {
(sgdc commands)
...
...

}

The following operators are supported in the conditional expression:

&&, ||, !, ==, !=, >, >=, <, <=, in, ni

The following is the order of precedence (from highest to lowest) of these
operators:

!, >=, <=, ==, !=, in, ni, &&, ||

Following are some examples:

setvar a 2
if {$a == 1} {
constraint xyz

} elseif {$a == 2} {
constraint abc

}
setvar a abcd
320
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
if {$a == "abcd"} {
constraint xyz

} else {
constraint abc

}

Using the SG_OPERATING_MODE Variable

SpyGlass enables you to set the value of the special variable
SG_OPERATING_MODE from the command-line as well, through the
set_option operating_mode <value> command in the project file.

Please note that other SGDC variables can be set from within an SGDC file
(using setvar) or from the environment only.

The following is the order of precedence (from highest to lowest) for
resolving multiple definitions of the SG_OPERATING_MODE variable:
1. SG_OPERATING_MODE variable set through the operating_mode

option
2. SG_OPERATING_MODE variable set through a local variable inside an

SGDC file
3. SG_OPERATING_MODE variable set through an environment variable

Note the following points:

 If the condition given in the if statement is an invalid expression then
neither the then part nor the else part is interpreted.

 After providing the condition following the if keyword, you may or may
not give the then keyword. However, you must begin the then block
with { on the same line.

 Always enclose then and else blocks within curly brackets ({}).

 Always give the else keyword before the beginning of an else block.

 The list operators (in and ni) can be used only when the RHS is a list
variable.
Atrenta Console automatically constructs a list variables when their
values are given as a space-separated list. In this case, specify the
321
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
entire list in quotes to the setvar command, as shown in the following
example:

setvar b "x y z x1 x2"
if {"y" in $b} then {
constraint abc

} else {
constraint xyz

}

Example of Using the SG_OPERATING_MODE Variable

This section provides some examples of using the SG_OPERATING_MODE
variable.

Example 1

This example demonstrates the precedence of SG_OPERATING_MODE
setting done inside an SGDC file over its environment variable value.

In the first if-elseif block of this example, the opmode environment
variable setting is used. In the second if-elseif block, the sysmode
local setting, as done by the setvar command, is applicable.

On shell

setenv SG_OPERATING_MODE opmode

Commands Specified in the test.sgdc File

current_design dummy
if {$SG_OPERATING_MODE == "sysmode"} {
clock -name a -value rto

} elseif {$SG_OPERATING_MODE == "opmode"} {
clock -name b -value rtz

}

#local setting inside the SGDC file, it has precedence over
322
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
environment variable setting
setvar SG_OPERATING_MODE sysmode

if {$SG_OPERATING_MODE == "sysmode"} {
clock -name c -value rto

} elseif {$SG_OPERATING_MODE =="opmode"} {
clock -name d -value rtz

}

Commands Populated Inside SGDC Object Model (OM)

The following is populated inside SGDC OM:

current_design dummy
 clock -name b -value rtz
 clock -name c -value rto

Example 2

This example is the same as Example 1 above, except that instead of setting
the environment variable, the operating_mode option is set inside the
project file.

In this example, the first and second if-elseif blocks use the opmode
value of the operating_mode option in the project file. The local setting
made through setvar in the SGDC file is ignored because it has lower
precedence over the operating_mode option setting.

Command Specified in a Project File

set_option operating_mode opmode

Commands Specified In the test.sgdc File

current_design dummy
if {$SG_OPERATING_MODE == "sysmode"} {
clock -name a -value rto

} elseif {$SG_OPERATING_MODE == "opmode"} {
323
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
clock -name b -value rtz
}

#local setting inside the SGDC file, it has lower precedence
over "operating_mode" option setting in the project file
setvar SG_OPERATING_MODE sysmode

if {$SG_OPERATING_MODE == "sysmode"} {
clock -name c -value rto

} elseif {$SG_OPERATING_MODE == "opmode"} {
clock -name d -value rtz

}

Commands Populated Inside SGDC Object Model (OM)

The following is populated inside SGDC OM:

current_design dummy
 clock -name b -value rtz

clock -name d -value rtz

Example 3

Consider two scenarios S1 and S2 for the lint SoC goal, and a single
SGDC file, soc_lint.sgdc, capturing constraints for these two scenarios.

NOTE: For details on scenarios, see Working with Scenarios.

In this example, you can use the operating_mode option to configure
contents of the given SGDC file as per the scenario requirement.

In this case, the setup for these scenarios can be as follows:

read_file -type sgdc soc_lint.sgdc
current_methodology $SPYGLASS_HOME/GuideWare/SoC
current_goal soc_rtl/lint/soc_rtl -top top -scenario S1
set_goal_option operating_mode S1
current_goal soc_rtl/lint/soc_rtl -top top -scenario S2
set_goal_option operating_mode S2
324
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
Where soc_lint.sgdc have constraints defined based on the
operating_mode value, as shown below:

current_design top
if {$SG_OPERATING_MODE == "S1"} { #setup for S1 scenario
 set_case_analysis -name top.N1 -value 1
 clock -name clk1 -value rtz
} elseif {$SG_OPERATING_MODE == "S2"} { #setup S2 scenario
 set_case_analysis -name top.N1 -value 0
 clock -name clk2 -value rtz
}

Example 4

In this example, different scenarios are defined for a goal of the SpyGlass
Power family. In this case, the SGDC file has activity information defined as
per power estimation modes, such as pessimistic, standby, and
nominal.

Activity info for Power estimation (condition modal
analysis - pessimistic and nominal)
goal scenarios defined in the wb_subsystem.prj file define
the SG_OPERATION_MODEs
the SG_OPERATING_MODE is set in the .prj file using the
set_goal_option operating_mode {<mode_value>}

if { $SG_OPERATING_MODE == "PESSIMISTIC_POWER" } {
pessimistic activity - result in higher average power
activity -instname "wb_subsystem" -activity 1.10 -prob
0.80 -all_primary_input -all_register_output

} elseif { $SG_OPERATING_MODE == "STANDBY_POWER" } {
standby power activity - result in higher average power
activity -instname "wb_subsystem" -activity 0.05 -prob
0.5 -all_primary_input -all_register_output

} elseif { $SG_OPERATING_MODE == "NOMINAL_POWER" } {
nominal activity - result in more nominal average power
325
Synopsys, Inc.

Conditionally Specifying SGDC Constraints

Working with SpyGlass Design Constraints
activity -instname "wb_subsystem" -activity 0.56 -prob
0.45 -all_primary_input -all_register_output

} else {
default case
activity -instname "wb_subsystem" -activity 0.56 -prob
0.45 -all_primary_input -all_register_output

}

326
Synopsys, Inc.

Processing of SGDC Files

Working with SpyGlass Design Constraints
Processing of SGDC Files
SpyGlass processes SGDC files by:
 Parsing SGDC Files

 Performing Syntax Checking in SGDC Files

Parsing SGDC Files

During an analysis run, SpyGlass first parses SGDC files before processing
source files, etc.

If any problem is present in the SGDC files, SpyGlass reports appropriate
messages. Based on the severity of these messages, SpyGlass performs
appropriate actions as discussed below:
 Aborts further processing if any syntax errors are reported.

 Continues with source file processing if only warning or informational
messages are reported.

Design constraint file parsing messages are named as
SGDCSTX_<number>, SGDCWRN_<number>, and
SGDCINFO_<number> for error, warning, and informational messages,
respectively.

Performing Syntax Checking in SGDC Files

SpyGlass provides SGDC file-checking rules, such as
SGDC_<command_name><number>, that check the semantics of SGDC
command specifications.

For example, the SGDC_clock01, SGDC_clock02, and SGDC_clock03 rules
check the semantics of values specified for the -name, -value, and -
freq arguments, respectively, of the clock constraint.
327
Synopsys, Inc.

Processing SpyGlass Design and Waiver Pragmas

Working with SpyGlass Design Constraints
Processing SpyGlass Design and Waiver
Pragmas

If you have not specified an SGDC file, but the source code contains
embedded SpyGlass design and/or waiver pragmas, SpyGlass reads these
pragmas and creates either pragma2constraint.sgdc SGDC file and/or
pragma2waiver.swl waiver file containing equivalent constraints or waivers.

Consider the following sample RTL file with design & waiver pragmas:

module test1(in1, in2, in3, out);
//spyglass testmode in2 1
input in1, in2, in3;
output out;
wire clk, and_out;
reg out;
//spyglass disable_block STARC05-3.1.4.2
and A1(and_out, 1'b0, in1);
assign clk = in3 ? and_out : in2;
//spyglass enable_block STARC05-3.1.4.2

always @(posedge clk)
out <= in1;
endmodule

For the above design, the pragma2constraints.sgdc file generated contains
the following lines:

//Path: <project_name>/<top_name>/<full_goal_name>/
//spyglass_spysch/constraints/pragma2constraint.sgdc
current_design test1

test_mode -name test1.in2 -value 1

For the above design, the pragma2waiver.swl file generated contains the
following lines:

//Path:<project_name>/<top_name>/<full_goal_name>/
//spyglass_spysch/waivers/pragma2waiver.swl
##Waive commands corresponding to HDL pragmas

waive -file_lineblock "test.v" 7 10 -rule "STARC05-
328
Synopsys, Inc.

Processing SpyGlass Design and Waiver Pragmas

Working with SpyGlass Design Constraints
3.1.4.2" -comment"RTL_PRAGMA: Waiver pragma in HDL source"

While creating an SGDC or waiver pragmas equivalent file, SpyGlass
reports appropriate messages if there are problems in SpyGlass pragma
specifications.

The embedded pragma parsing messages are also named as
SGDCSTX_<number>, SGDCWRN_<number>, and
SGDCINFO_<number> for error, warning, and informational messages,
respectively. For details about these messages, refer to the SpyGlass Built-
in Rules Reference Guide.

The generated SGDC file is parsed in a similar way as described in
Processing of SGDC Files and appropriate messages are reported in case of
any issues.
329
Synopsys, Inc.

Recognizing Clocks

Working with SpyGlass Design Constraints
Recognizing Clocks
Different Atrenta standard products process clock information based on
their specific rule-checking requirements. Refer to the respective product
rules reference document for details.

The following table summarizes how different Atrenta standard products
process clock information:

Task SpyGlass lint
Solution

SpyGlass
STARC
Solution

SpyGlass CDC
Solution

SpyGlass DFT
Solution

Clocks Used
For Analysis

Automatic
Detection

User-specified
(for only two
rules)

User-specified
clocks and their
domains

User-specified

Identification
of Clocksa

a. Clocks are identified by traversing backwards from each flip-flop's clock pin. The identified clocks might
be used for all clock-related rules (as in SpyGlass lint Solution), or may just be informative for the users
(as in SpyGlass CDC Solution).

Stops at
combinational
gates

Stops at
combinational
gates

Goes beyond
combinational
gates

Stops at
combinational
gates

Specification
of Clocks

Not possible Allowed (for
only two rules)

Allowed,
including
internal nodes
as clocks

Allowed, but
only external
pins/ports can
be specified

Clock Domain Same as clock
source

Same as clock
source

User-specified
domain for
each clock

Same as clock
source

Simple
Divider

Divided clock
treated as a
different
domain from
the Master
clock

Divided clock
treated as a
different
domain from
the Master
clock

Divided clock
treated as a
different but
related domain
from the
Master clock

Divided clock
treated as a
different source
and thus
domain from
the Master
clock

Design
Constraints

Not supported Not supported Supported from
3.2.0

Always
supported
330
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
Converting SDC Attributes into SGDC
Commands

Various design attributes, such as clock definitions and input-output
constraints defined in an SDC file, are typically used for timing analysis of
designs. However, these attributes are also vital for other engines, such as
SpyGlass DFT solution and SpyGlass CDC solution. SpyGlass requires you
to specify these attributes as SGDC files.

To specify such attributes as SGDC files, you can use the SDC-to-SGDC
feature that automatically translates SDC format design attributes into
corresponding SGDC commands.

SpyGlass translates the following SDC commands to SGDC commands:
 create_clock

 create_generated_clock
This command is not commented out in the generated SGDC file only if
the following conditions hold true:
 If generated clocks have domains different than the domains of their

source clocks
 If generated clocks are specified on black boxes

 set_case_analysis

 set_clock_group

 set_clock_sense

 set_disable_timing

 set_false_path

 set_input_delay

 set_mode

 set_multicycle_path

 set_output_delay

Enabling the SDC-to-SGDC Translation Feature

To enable this feature, set the value of the Enable SDC-to-SGDC translation field in
331
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
the Set Read Options tab to Yes.

Alternatively, specify the following command in the project file:

set_option sdc2sgdc yes

NOTE: By default, the sdc2sgdc generated constraint files are retained in the subsequent
SpyGlass run. Set the retain_old_sgdc parameter to no to remove the SGDC file
generated in the previous SpyGlass runs.

You must specify an SDC file name (containing SDC commands to be
translated) in an SGDC file by using the sdc_data constraint, as shown in
the following example:

current_design <design-name>
sdc_data –file <sdc-file-name>

You can specify the SGDC file containing the above command in the design
read stage.

NOTE: You can also specify a compressed SDC file generated by using the gzip utility.

Changing the Default Hierarchy Separator of the SDC2SGDC
Constraints

Use the use_hier_sep_slash parameter to change the default
hierarchy separator of the SGDC constraints.

By default, the hierarchy separator used in SGDC constraint’s name field is
'.'

Example

Consider the following create_clock command in SDC.

create_clock -name "CLK" -add -period 10.0
-waveform {0.0 5.0} [get_pins buf_cts/clkout]

The above command is converted into following SGDC clock using the
332
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
default hierarchy separator, '.', as shown below:

clock -name "test_top.buf_cts.clkout" -domain CLK
-edge { 0.000000 5.000000} -period 12 -tag CLK

When the value of the use_hier_sep_slash parameter is set to yes,
the same clock is converted to the following SGDC clock:

clock -name "test_top/buf_cts/clkout" -domain CLK
-edge { 0.000000 5.000000} -period 12 -tag CLK

Specifying the Mode of Domain Inference

You can use the sdc_domain_mode parameter to specify the mode of
domain inference. By default, the domain inference mode is
sta_compliant. In this mode, the clock domains are extracted as per
the following guidelines:
 A path verified by STA implies that the source and destination have the

same domain and therefore the clocks in such a path will be assigned
the same domain. SpyGlass CDC therefore does not verify such paths.

 A path not verified by STA implies that the source and destination have
different domains and therefore the clocks in such a path will be
assigned different domains. SpyGlass CDC therefore verifies such paths.

NOTE: If none of the set_clock_group, set_clock_uncertainty,
set_false_path constraints is specified for a clock pair, they are considered
synchronous.

The following table lists the additional details about the
sdc_domain_mode parameter:

Used by sdc2sgdc flow
Options sta_compliant, pessimistic, strict, async, sta_scg,

strict_sta
Default value sta_compliant
Example
333
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
When the mode is set to strict, you must provide all clock relationships
in a single set_clock_groups command. SpyGlass reports a FATAL
error if domain is not inferred.

When the mode is set to pessimistic, the behavior is similar to that of
sta_compliant with the exception that if none of the set_clock_group,
set_clock_uncertainty, or set_false_path constraint is
specified for a clock pair, they are considered asynchronous.

NOTE: The values, strict and pessimistic, will be deprecated in a future release.

When the mode is set to async, then no domain inference from sdc
constraints is done and clocks are considered asynchronous to each other.

When the mode is set to sta_scg or strict_sta, only the user-
specified set_clock_group command would be considered and all the other
commands related to domain computation are ignored. Also, a spreadsheet
(.csv) file showing clock relationship is generated.

NOTE: The value, strict_sta, for the sdc_domain_mode parameter is deprecated and will be
removed in a future release.

Inferring cdc_false_path for Clocks in Different Domains

Use the sdc_generate_cfp option to infer cdc_false_path in case we have
different domains that were assigned to the clocks but no asynchronous
relationship was specified between these clocks.

Console/Tcl-based usage set_parameter sdc_domain_mode strict

Usage in goal/source
files

-sdc_domain_mode=strict

Used by SDC2SGDCPARSE
Options yes, no
Default value no
Example
Console/Tcl-based usage set_option sdc_generate_cfp yes

Usage in goal/source
files

-sdc_generate_cfp=yes
334
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
For example, consider the following SDC declaration:

create_clock -name Clk1 -period 10.00 in1
create_clock -name Clk2 -period 10.00 in2
create_clock -name Clk3 -period 10.00 in3
create_clock -name Clk4 -period 10.00 in4

set_clock_group -asynchronous -group { Clk1 } -group { Clk3 }

Following corresponding SGDC commands are generated when you set the
value of the sdc_generate_cfp option to yes:

cdc_false_path -from Clk1 -to Clk2
cdc_false_path -from Clk1 -to Clk4
cdc_false_path -from Clk2 -to Clk1
cdc_false_path -from Clk2 -to Clk3
cdc_false_path -from Clk3 -to Clk2
cdc_false_path -from Clk3 -to Clk4
cdc_false_path -from Clk4 -to Clk1
cdc_false_path -from Clk4 -to Clk3

Capturing Domain Inferring Results

The following rules capture the domain inferring results:
 Domain_Missing01: Reports clocks for which no domain relationship could

be inferred from SDC commands. The domain assigned to these clocks
depends on the mode specified in the sdc_domain_mode parameter.
The severity of this rule is Error by default. In case of "strict" mode,
it reports a FATAL violation.

 Domain_Conflict01: Reports conflicts found during domain inference. The
severity of this rule is Error by default. In case of "strict" mode, it
reports a FATAL violation.

 Domain_Matrix01: Generates spreadsheet to show clock relationships and
the inferred domain depending upon the mode specified in the
sdc_domain_mode parameter. It is an informational rule. For
example, consider the following input in the sdc file:
335
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
create_clock -name C1 -period 10 { clk1 }
create_clock -name C2 -period 10 { clk2 }
create_clock -name C3 -period 10 { clk3 }
set_clock_group -asynchronous -group { C1 } -group { C2 }

For the above input, the spreadsheet generated by the
Domain_Matrix01 rule when the sdc_domain_mode parameter is
set to sta_compliant and the sdc_generate_cfp parameter is
set to yes, is shown in the following figure.

FIGURE 1. Domain_Matrix01 Spreadsheet

NOTE: If you generate the cdc_false_path constraint through the sdc_generate_cfp
command, SpyGlass CDC ignores the asynchronous crossings for the paths
specified in the cdc_false_path constraints.

Handling of Generated Clocks

Use the enable_generated_clocks or sdc_generated_clocks
parameter to dump the generated clocks having same domain in an
uncommented form in the sgdc file.

If the enable_generated_clocks parameter is specified, then generated
clocks are dumped in the sgdc file in the form of the generated_clock
constraint.

If the sdc_generated_clocks parameter is specified, then generated clocks
are dumped in the sgdc file in the form of the clock constraint.

By default, the generated clocks having the same domain, if not given on
black box, are dumped in a commented form in the sgdc file.

Set the value of the enable_generated_clocks or sdc_generated_clocks
parameter to yes to dump all the generated clocks in an uncommented
form in the sgdc file.
336
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
\

Used by sdc2sgdc flow
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter enable_generated_clocks yes

Usage in goal/source
files

-enable_generated_clocks =yes

Used by sdc2sgdc flow
Options yes, no
Default value no
Example
Console/Tcl-based usage set_parameter sdc_generated_clocks yes

Usage in goal/source
files

-sdc_generated_clocks=yes
337
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
Handling False Paths
The false_path constraint is generated in the sgdc file when the following
commands are specified:
 set_false_path

Consider the following SDC commands:

set_false_path -from [get_pins f1/q] -through [get_pins
A2/out] -to [get_pins f2/in]
set_false_path -from [get_pins f1/q] -through [get_pins
A2/out] -to [get_pins f2/in]

The following false_path constraints are generated corresponding to the
above SDC commands:

false_path -from f1/q -to f2/in -through A2/out -type sfp
false_path -from f1/q -to f2/in -through A2/out -type sfp

 set_clock_group
Consider the following SDC commands:

set_clock_group -logically_exclusive
set_clock_group - physically_exclusive
set_clock_group - asynchronous

The following false_path constraints are generated corresponding to the
above SDC commands:

false_path -scg_logically_exclusive
false_path -scg_physically_exclusive
false_path -scg_asynchronous
338
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
Handling Multi-cycle Paths
The sg_multicycle_path constraint is generated in the sgdc file when the
set_multicycle_path command is given.

Consider the following SDC commands:

set_multicycle_path -from [get_pins f1/q] -through [get_pins
A2/out] -to [get_pins f2/in] 2

The following sg_multicycle_path constraint is generated corresponding to
the above SDC commands:

sg_multicycle_path -from f1/q -to f2/in -through A2/out
-path_multiplier 2

Handling Mutually Exclusive Clocks

The cdc_false_path constraint is generated in the sgdc file when the
-logically_exclusive option is given with the set_clock_groups command.

Consider the following SDC commands:

create_clock -name Clk1 -period 10.00 in1
create_clock -name Clk2 -period 15.00 in2
set_clock_group -logically_exclusive
-group{ Clk1 } -group { Clk2 }

The following cdc_false_path constraints are generated corresponding to
the above SDC commands:

cdc_false_path -from Clk1 -to Clk2
cdc_false_path -from Clk2 -to Clk1

Handling Directional Clocks

The cdc_false_path constraint is generated in the sgdc file when the
set_clock_uncertainity command is used but the clock is inferred as
asynchronous.

Consider the following SDC commands:

create_clock -name Clk1 -period 10.00 in1
339
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
create_clock -name Clk2 -period 15.00 in2
set_clock_groups -asynchronous
-group { Clk1 } -group { Clk2 }
set_clock_uncertainty -from Clk1 -to Clk2

The following cdc_false_path constraint is generated corresponding to the
above SDC commands:

cdc_false_path -from Clk1 -to Clk2

Translating set_clock_sense command

The sdc set_clock_sense SDC command is converted to the clock_sense
SGDC command during the sdc2sgdc flow.

Currently, the set_clock_sense command is translated only when you
specify the -stop_propagation option.

For example, consider the following SDC command:

set_clock_sense -stop_propagation -clocks Clk2 [get_pins
orinst1/Z]

Following is the converted SGDC command:

clock_sense -pins "top.orinst1.Z" -tag Clk2

Translating set_disable_timing command

The set_disable_timing SDC command is converted to the disable_timing
SGDC command when:
 Values for the -from and -to fields of the command is specified

 Object list in the command is a lib cell module or lib cell instance

For example, consider the following SDC command:

set_disable_timing -from A -to Z [get_lib_cells lsi_10k/OR2
]

Following is the converted SGDC constraint:

- disable_timing -name OR2 -from A -to Z
340
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
Translating set_mode command

The set_mode SDC command in translated into the set_lib_timing_mode
SGDC command, when the type of set_mode is cell.

For example, consider the following SDC command:

set_mode -type cell mode1 U1

Following is the converted SGDC constraint:

set_lib_timing_mode -modes mode1 -instances U1

Saving the Generated SGDC Commands in a File

By default, the generated SGDC commands are saved in the
sdc2sgdc_<mode>.sgdc.<processID> file under the <project>/
<top>/DesignRead/spyglass_reports/sdc2sgdc directory.

To save the generated SGDC commands in a different file, specify the file
name in the Specify the file to save output of SDC-to-SGDC translation field in the Set Read
Options tab.

Alternatively, use the following command in the project file:

set_option sdc2sgdcfile <file-name>

If the specified file already exists, Atrenta Console overwrites the existing
file.

Specifying the Mode of an SDC File

You can specify the mode of an SDC file that you want to translate into
SGDC in the Specify the mode of the SDC file to be translated to SGDC field in the Set Read
Options tab.

Alternatively, use the following command in the project file:

set_option sdc2sgdc_mode <mode-name>

Consider the following example in which you specify two different modes in
an SGDC file:

sdc_data -file one.sdc -mode A
341
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
sdc_data -file two.sdc -mode B

If you only want to translate one.sdc file into SGDC, specify the mode as
A.

Understanding Different Flows for Using This Feature

You can use this feature in either of the following ways:
 Generating SGDC Commands as a Part of Goal Run

 Generating SGDC Commands as a Part of Design Read

Generating SGDC Commands as a Part of Goal Run

Use this flow if you want to generate SGDC commands on-the-fly as part of
a goal run.

For example, you can generate SGDC commands on-the-fly as part of
running SpyGlass CDC solution analysis with limited information, such as
missing reset information and any other tool-specific constraints.

Consider an example in which you want to generate SGDC on the fly while
running the clock-reset/verif_base/cdc_verif_base goal. In this case, specify the
following commands in the project file:

read_file -type verilog test.v
read_file -type sgdc sample.sgdc

set_option top test
current_methodology $SPYGLASS_HOME/GuideWare/New_RTL
current_goal initial_rtl/cdc_prelim/cdc_verif_base

set_goal_option sdc2sgdcfile test.sgdc
set_goal_option sdc2sgdc yes

Generating SGDC Commands as a Part of Design Read

Use this flow if you want to generate SGDC during design read process.
342
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
The following is an example of a project file used to implement this flow:

read_file -type verilog test.v
read_file -type sgdc sample.sgdc

set_option top test
set_option designread_enable_synthesis
set_option sdc2sgdcfile test.sgdc
set_option sdc2sgdc yes

Support for Virtual Clocks in sdc2sgdc Flow

Usage of virtual clocks affects the following parameters:
 create_clock

 set_input_delay

 set_output_delay

create_clock

The clock constraint dumped in the SGDC file has the -name option
whose value is the name of the object serving as a clock source.

However, in case of virtual clock where the source object is empty,
SpyGlass populates this field with:
 A real clock found in a design that matches the virtual clock.

 Actual name of the clock (that is, the field specified with the -name
option in the SDC file) if a real clock-mapping to virtual clock is not
found.

set_input_delay

If set_input_delay has a virtual clock as its clock source, Atrenta
Console stores it in an un-commented form.

If this virtual clock is mapped to some real clock, the input constraint
uses the corresponding real clock. Otherwise, it refers to the virtual clock
name only.
343
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
set_output_delay

If set_output_delay has a virtual clock as its clock source, Atrenta
Console updates the SGDC file in following manner:

 If this virtual clock is mapped to some real clock, the output constraint
uses the corresponding real clock and it is stored in an uncommented
form in the SGDC file.

 Otherwise, virtual clock name itself is used and the output constraint
is stored in a commented form in the SGDC file.

Virtual to Real Clock Mapping

The virtual to real clock mapping occurs in either of the following ways:
 By traversal and matching characteristics and then the name

 By name-matching alone

You need to decide the manner by using the mapVirtualClkByName
and either of the mapSuffixList or mapPrefixList options.

Limitations

The SDC-to-SGDC functionality has the following limitations:

 If you have specified more than one -corner option for a single mode,
Atrenta Console translates SDC files corresponding to only the first
-corner option.
For example, consider the following case:

sdc_data –file file1.sdc –mode func –corner Best
sdc_data –file file2.sdc –mode func –corner Worst
sdc_data –file file3.sdc –mode func –corner Best

Here, more than one -corner option is specified for the same mode
func. Therefore, the SDC files (file1.sdc and file3.sdc) corresponding to
the first -corner option (Best) are translated by the set_option
sdc2sgdc yes command.
344
Synopsys, Inc.

Converting SDC Attributes into SGDC Commands

Working with SpyGlass Design Constraints
 If multiple clocks are defined on the same source object in an SDC file
by using the -add option, SpyGlass reports an error message. However,
if you do not specify the -add option, translation occurs only for the
last clock definition and a Warning message appears.
You can change the severity from Error to Fatal by using the
overloadrules option of the set_option command in the project
file. The following is an example of using the overloadrules option:

set_option overloadrules SDC2SGDC_STX01+severity=FATAL

 If you specify multiple set_input_delay parameters on the same
object for different clocks by using the -add_delay option, translation
for delays happen in the order as defined in the SDC file.

 If you define the clock and set_case_analysis commands on the
same object in the SDC file, the SpyGlass DFT solution reports a FATAL
violation to indicate the conflict.

 All commands specified on the port/pin objects are translated on the
connected net in the SGDC file.
345
Synopsys, Inc.

Importing Block-Level SGDC Commands to Chip-Level

Working with SpyGlass Design Constraints
Importing Block-Level SGDC Commands to
Chip-Level

While integrating various design blocks at chip-level, SpyGlass provides a
capability for migrating SGDC files of blocks to the chip-level for
performing chip-level analysis.

To migrate from block-level SGDC files to chip-level, perform the following
tasks:
1. Create a migration file that contains -import command(s) for

importing the specified block-level SGDC file(s) to the chip-level.
For details, see Creating a Migration File.

2. Generate hierarchical SGDC files from block-level SGDC files that you
can use for subsequent chip analysis.
For details, see Generating Hierarchical SGDC File.

3. Validate the generated hierarchical SGDC file(s).
For details, see Validating the Generated Hierarchical SGDC File.

Creating a Migration File

A migration file is an SGDC file that contains -import command
specifications for importing block-level SGDC files to the chip-level.

For each block-level SGDC file to be imported at the chip-level, use the
following import command:

current_design <module-name>
sgdc -import <block-name> <block-level-SGDC-file>

The details of the above specification are as follows:
 The above specification imports the specified block-level SGDC file with

respect to the specified module, <module-name>.

 Atrenta Console applies the block-level SGDC file to design units
matching any of the above specifications.

 The <block-name> argument can be specified in any of the following
formats:
346
Synopsys, Inc.

Importing Block-Level SGDC Commands to Chip-Level

Working with SpyGlass Design Constraints
NOTE: You should choose the same specification used in the current_design
command in the block-level SGDC file.

 You can provide the above specification multiple times for different
blocks in the same chip-level SGDC file.

 You can specify an absolute or a relative path for the block-level SGDC
file. If you specify a relative path, ensure that it is accessible from the
current run directory.

Constraints Migrated From Block-Level to Chip-Level

While migrating block-level SGDC files to chip-level, the following
constraints are migrated:

NOTE: Block-level cdc_false_path constraint is migrated to chip-level only if you
specify clocks in the arguments of the block-level cdc_false_path constraint.

module entity entity.architecture

activity always_on_buffer always_on_cell
always_on_pin aon_buffered_signals antenna_cell
assertion_signal cell_hookup cell_pin_info
cell_tie_class cdc_false_path clock
domain_outputs domain_inputs domain_signal
ignore_crossing input_isocell levelshifter
multivt_lib non_pd_inputcells pg_pins_naming
pin_voltage power_down power_down_sequence
power_state power_switch ram_instance
ram_switch retention_cell retention_instance
special_cell supply switchoff_wrapper_instance
qualifier voltage_domain
347
Synopsys, Inc.

Importing Block-Level SGDC Commands to Chip-Level

Working with SpyGlass Design Constraints
Generating Hierarchical SGDC File
This task generates hierarchical SGDC file(s) that contain block-level SGDC
commands with respect to the chip-level. You can use these files during
subsequent chip analysis.

To generate hierarchical SGDC file(s), perform the following steps:
1. Click the Add Design Files tab.
2. Specify the design files.
3. Specify the migration file containing commands for importing block-level

SGDC file(s) to chip-level.
For details, see Creating a Migration File.

4. Click the Set Read Options tab.
5. Set the value of the Hierarchical SGDC Modes option to Generation Mode.
6. Click the Run Design Read tab.
7. Click .

The above step generates SGDC file(s) containing the imported SGDC
commands. For details, see Generated Hierarchical SGDC File(s).

Alternatively, you can specify the following command in the project file to
generate hierarchical SGDC file(s):

set_option gen_hiersgdc yes

Generated Hierarchical SGDC File(s)

Atrenta Console stores the generated hierarchical SGDC files in the
gen_hiersgdc/spyglass_reports/imported_sgdc directory. The name of each
generated file is in the following format:

<module-name>_<block-name>_<block-level-SGDC-file>

The generated output file contains two sections, as discussed below:
 The first section displays successfully imported commands.

 The second section contains commands that need user input or review.
Generally, port names specified in the block command require user
input.
348
Synopsys, Inc.

Importing Block-Level SGDC Commands to Chip-Level

Working with SpyGlass Design Constraints
Top-Level SGDC File

Atrenta Console also generates a top-level SGDC file that contains:
 All the migrated block-level SGDC files.

 Migrated clock commands that are common in two or more block-level
SGDC output files.
These commands are in the commented form in the corresponding
block-level SGDC output files. The name of the output file is
<module-name>. sgdc. In subsequent chip-level analysis, you should
specify the generated top-level SGDC file instead of migrated block-level
SGDC files.

NOTE: Atrenta Console ignores any other SGDC command in the chip-level SGDC file in
this generation step. However, the tool does not ignore the
set_case_analysis and assume_path SGDC commands, if specified at
the chip-level, and uses them during migration of block-level SGDC commands.

Validating the Generated Hierarchical SGDC File

To validate the generated hierarchical SGDC file(s), perform the following
steps:
1. Click the Set Read Options tab.
2. Set the value of the Hierarchical SGDC Modes option to Validation Mode.
3. Click the Run Design Read tab.
4. Click .

After performing the above steps:
1. SpyGlass first checks for the migrated SGDC files after Generating

Hierarchical SGDC File in the gen_hiersgdc/spyglass_reports/ imported_sgdc
directory.

2. SpyGlass then validates the migrated SGDC files with respect to the
input block-level SGDC files.
To validate the generated SGDC file, you do not have to specify the
migrated SGDC files generated in the Generating Hierarchical SGDC File
step.

You can perform this task by specifying the following command in the
project file:
349
Synopsys, Inc.

Importing Block-Level SGDC Commands to Chip-Level

Working with SpyGlass Design Constraints
set_option validate_hiersgdc yes

Currently, SpyGlass performs the following checks in the validation mode:
 Clock validation: Checks whether the top-level clocks reach the block

clock ports
 Clock domain validation: Checks whether the top-level clocks connected

to the block clock ports comply with the block-level domain
specifications

In case of any discrepancy present in the above mentioned checks,
SpyGlass reports appropriate violations. You then need to perform the
following steps:
1. Correct the chip-level specifications for clock.
2. Re-run the validation task with the new specifications.
3. If no violation is reported, use the final SGDC file in the subsequent

chip-level analysis.

NOTE: The sgdc -import command should be used only in the generation mode
(set_option gen_hiersgdc yes), validation mode (set_option
validate_hiersgdc yes), and SpyGlass CDC abstraction flow.
350
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
Implementing Scoping in SGDC Commands
Atrenta Console allows a scoping mechanism in SGDC commands by
default. The scoping mechanism is implemented by using the :: operator.

Consider the following example:

current_design <du-name>
my_command -name M::i1.i2.net -value 0

In the above example, M:: specifies the scoping mechanism, which means
to find all instances of module M in:

 All instances of design unit, <du-name>, if that design unit is not a top-
level design unit.

 Design unit, <du-name>, if it is a top-level design unit.

Then, the value 0 is applied on net i1.i2.net in all these instances.

In the above example, scoping within M:: notation is known as local
scoping, and scoping in the non top current_design is called global
scoping.

Note the following points:

 M can be in m, e, and e.a format, where m, e, and a refer to module,
entity, and architecture name, respectively.

 Path followed by :: should be relative to M and should not have M
preceded to it.

 The resultant value after translation should be a valid value for the
concerned field. For example, M::port specification will change to
hierarchical terminal. A fatal violation is reported if the concerned field
does not take hierarchical terminal as a valid value.

 Scoping specifications is not supported in -noenv constraints. A fatal
violation is reported for such specifications.
351
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
Scoping When Design is at Top-Level
Consider the following command:

current_design <du-name>
my_command -name M::i1.i2.net -value 0

If the design is a top-level design unit, Atrenta Console searches all
instances of M in that design unit and replaces them with M::i1.i2.net
specification. For example, consider a case in which there are two
instances of M, namely top.mi1 and top.I1.mi2. Then,
M::i1.i2.net is replaced by top.mi1.i1.i2.net and
top.I1.mi2.i1.i2.net.

However, if any of the resultant design objects do not exist in the design,
Atrenta Console reports a fatal violation. This fatal violation is reported
after synthesis because these checks run on NOM.

Depending upon the type of the -name field, the following two cases may
arise:

 If the -name field is a key/scalar field
In this case, the command is split into two commands, as given below:

current_design top
my_command -name top.mi1.i1.i2.net -value 0
my_command -name top.I1.mi2.i1.i2.net -value 0

Here, if any one of the two paths does not exist, the corresponding
SGDC command is deleted. In this case, if the port, M::in1, of M is
referred, it is converted to hierarchical terminal i.e., top.mi1.in1 and
top.I1.mi2.in1.

 If the -name field is a list type of field
In this case, the two paths are added to the same command, as shown
below:

my_command -name top.mi1.i1.i2.net top.I1.mi2.i1.i2.net -
value 0

However, there will also be an option to have multiple commands
created, one for each instance in case of list type field as well.
352
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
Wildcard Support at Top-Level

Consider the wildcard specification, as shown in the following example:

my_command -name "M*::i1.net" -value 0

In the above example, M* is first matched with all modules in the hierarchy
under <du-name>. Consider that it matches with two module names, M1
(Verilog module) and m2 (VHDL module). Then, -name "M*::i1.net"
specification will get changed to -name "M1::i1.net m2::i1.net"
specification. Further processing continues based on the cases discussed
above (depending upon whether the -name is key/scalar field or list type
of field).

Consider another wildcard specification, as given below:

my_command -name "M::*.net" -value 0

In the above specification, consider that there are two instances of M,
namely top.mi1 and top.I1.mi2. Then, the wildcard specification will
first expand to -name "top.mi1.*.net top.I1.mi2.*.net". Now,
the following cases may arise:

 If -name is registered with --wildcard or
--wildcard_inline_expand, then '*' will match to one level of
hierarchy. For example, it will match to top.mi1.L3I1.net and
top.I1.mi2.L4I1.net and NOT to top.mi1.L3I1.L4I1.net.

 If -name is registered with --wildcard_support or
--wildcard_support_full, the wildcard expression is left as it is
for the product to handle it.

NOTE: The options, --wildcard_support and
--wildcard_support_full mean that '*' is expected to match multi-
ple levels of hierarchy (i.e., it should also match
top.mi1.L3I1.L4I1.net.) Kernel does not provide this support and,
therefore, such specifications are currently handled by the products themselves.

Conflict Resolution at Top-Level

If a value generated due to scoping conflicts with an explicit value specified
by the user, the value generated by scoping is deleted. This provides you
353
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
the flexibility to override one or more specifications generated through
scoping. Consider the following example:

current_design top
set_case_analysis M::in -value 0
set_case_analysis top.mi1.in -value 1

Here, consider that the module, M, is instantiated ten times in top (i.e.,
top.mi1, top.mi2, …, top.mi10). In this case, the
set_case_analysis constraint will not allow duplicate specifications in
the -name field. Therefore, one of the ten generated commands (one for
top.mi1.in) is deleted. However, if two values, each generated by
scoping, are duplicates then SpyGlass flags a fatal violation.

However, SpyGlass will report the following two specifications as duplicate
specifications:

current_design top
set_case_analysis -name M::in -value 0
set_case_analysis -name M::in -value 1

Scoping When Design is at the Block-Level

Scoping specifications at block-level undergo through hierarchical
translations. The difference between scoping specifications at top-level and
scoping specifications at block-level is that only those instances of scoped
module are considered that are instantiated in the instances of the block
module. For example:

current_design block
set_case_analysis -name M::in -value 0

In the above example, consider that the block is instantiated twice in top,
(i.e., top.bi1 and top.bi2). Also consider that module, M, is
instantiated thrice in the block (i.e., block.mi1, block.mi2, and
block.mi3). Then, the above specification will generate six commands
(2*3) at the top-level, as shown below:

current_design top
set_case_analysis -name top.bi1.mi1.in -value 0
354
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
set_case_analysis -name top.bi1.mi2.in -value 0
set_case_analysis -name top.bi1.mi3.in -value 0
set_case_analysis -name top.bi2.mi1.in -value 0
set_case_analysis -name top.bi2.mi2.in -value 0
set_case_analysis -name top.bi2.mi3.in -value 0

However, if M is instantiated in the top module (that is, outside the block),
that instance will not be considered. Further, if any of the design objects in
these generated commands do not exist, SpyGlass flags a fatal violation.

Wildcard Support at Block-Level

Consider the wildcard specification, as given below:

current_design block
set_case_analysis -name M*::in -value 0

Here, M* is first replaced by its respective matches from within the
module, block. These scoping specifications then undergo through
hierarchical translations.

Conflict Resolution at Block-Level

Conflict resolution at block-level is implemented depending upon the
following cases:
 Consider the following example:

current_design block
set_case_analysis -name M::in -value 0
set_case_analysis -name block.mi1.in -value 1

Here, the second command will take precedence over the command
generated through scoping.

 Consider the following example:

current_design block
set_case_analysis -name M::in -value 0
set_case_analysis -name block.mi1.in -value 1
current_design top
set_case_analysis -name top.bi1.mi1.in -value 0
355
Synopsys, Inc.

Implementing Scoping in SGDC Commands

Working with SpyGlass Design Constraints
Here, the top-level specification takes precedence, and no error is
reported for duplicate specification.

 Consider the following example:

current_design block
set_case_analysis -name M::in -value 0
set_case_analysis -name block.mi1.in -value 1
current_design top
set_case_analysis -name block::mi1.in -value 1
set_case_analysis -name top.bi1.mi1.in -value 0

Here, all the block-level commands are ignored. For example, mi1 of M
inside block is ignored.
356
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
Handling SystemVerilog Objects in SGDC
Atrenta Console handles different SystemVerilog objects in different ways.

Handling SystemVerilog Interface Port/Terminal

Consider the following example:

interface intf (output z_intf, input a_intf);
endinterface

module topper(output z,input a);
intf i1(z,a);
top T1(i1);

endmodule

module top(intf inst);
mid M2(inst.z_intf,inst.a_intf);

endmodule

In the above example, if the z_intf or a_intf port of the top module
is to be referred in SGDC, it should be as follows:

current_design topper
test_mode -name "topper.T1.inst_z_intf" -value 1
test_mode -name "topper.T1.inst_a_intf" -value 1

Here, the interface port is named as
"<interface-instance-name>_<interface-port-name>"

Handling SystemVerilog Interface Containing a Modport

Consider the following example, in which a SystemVerilog interface
referred in SGDC contains a modport:

interface intf;
wire z_intf,a_intf;
357
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
modport M1 (output z_intf, input a_intf);
modport M2 (output a_intf, input z_intf);

endinterface

module top;
intf i1();
intf i2();
top_low T1(i1.M1,i2.M2);

endmodule

module top_low(intf.M1 inst1, intf.M2 inst2);
wire inst1_z_intf, inst2_a_intf;
assign inst1_z_intf = inst2_a_intf;
mid M1(inst1.z_intf,inst1.a_intf);
mid M2(inst2.a_intf,inst2.z_intf);

endmodule

module mid(output z, input a);
assign z = ~a;

endmodule

In the above example, if module top_low, ports z_intf (of modport
M1) and a_intf (of modport M2) are to be referred in SGDC, it should be
as follows:

current_design top
test_mode -name "top.T1.inst1_z_intf" -value 1
test_mode -name "top.T1.inst2_a_intf" -value 0

Here, the modport interface port is named as "<interface-instance-
name>_<interface-port-name>".

Handling SV Structure or Union

For an SV structure or union, or for cases in which a port or a net is
declared with these complex types, you should specify SGDC constraints as
shown in the following example:
358
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
typedef struct packed {
logic [2:0] opcode;
logic [1:0] rtid;
} hc_cmdlane_t;

module top(input hc_cmdlane_t in1,in2,input [1:0] in3
[1:0], input clk1, clk2, output out1, out2);
FD2 a_fd2_1(in2.opcode[0], clk1, , t);
//FD2 a_fd2_2(in1.opcode[1], clk1, , out1);
FD2 a_fd2_3(in2.opcode[2], clk1, , out1);
FD2 a_fd2_5(in2.rtid[0], clk1, , out1);
FD2 a_fd2_6(in2.rtid[1], clk1, , out1);
FD2 a_fde_6(in3[0][0], clk1, , out1);
FD2 a_fde_7(in3[0][1], clk1, , out1);
FD2 a_fde_8(in3[1][0], clk1, , out1);
FD2 a_fde_9(in3[1][1], clk1, , out1);

endmodule

current_design top
abstract_port -module top -ports q%\in2.rtid [1:0]% -clock
clk1 abstract_port -module top -ports q%\in2.rtid % -clock
clk1 abstract_port -module top -ports q%\in2.opcode [0]%
-clock clk1

In the above example, a struct port or a net is named as per the following
naming convention:

"\<struct-instance-name>.<struct_port_name> "

Handling for-generate Constructs

Consider the following example:

module test(output z,input a);
parameter p1 = 3, p2 = 4;
generate
genvar c,i;
for(c =0;c <2;c++)
359
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
begin
wire w1;
for(i = 0;i<2;i++)
begin
mid m1(z,a,w1);

end
end

endgenerate
endmodule
module mid(output z, input a,input w1);
assign z = ~a;

endmodule

In the above example, specify SGDC constraints for the m1 instance and
w1 wire inside for-generate, as given below:

current_design test
test_mode -name "\genblk1[0].genblk1[0].m1 .a"
-value 1

test_mode -name "\genblk1[0].genblk1[1].m1 .a"
-value 1

test_mode -name "\genblk1[1].genblk1[0].m1 .a"
-value 1

test_mode -name "\genblk1[1].genblk1[1].m1 .a"
-value 1

test_mode -name "\genblk1[0].w1 " -value 1

You can specify any SGDC constraint by using naming conventions for
objects, as shown in the above example for the testmode constraint.

Consider another example in which the set_case_analysis constraint
is used on the SystemVerilog design containing named for-generate
block:

module test(clk,enable,in1,out1);
input clk,enable;
input [3:0]in1;
360
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
output[3:0]out1;
generate genvar i;
for (i=0; i<4; i=i+1) begin:extend
mod1
ins(.CLK(clk),.E(enable),.IN1(in1[i]),.OUT1(out1[i]));

end
endgenerate

endmodule

module mod1(CLK,E,IN1,OUT1);
input CLK,E;
input IN1;
output OUT1;
reg OUT1;
always @(posedge CLK)
if(E) OUT1 <= IN1;

endmodule

For the above example, the generated netlist contains instances with the
following names:

mod1 \extend[0].ins (.CLK(clk), .E(enable), .IN1(in1[0]),
.OUT1(out1[0]));

mod1 \extend[1].ins (.CLK(clk), .E(enable), .IN1(in1[1]),
.OUT1(out1[1]));

mod1 \extend[2].ins (.CLK(clk), .E(enable), .IN1(in1[2]),
.OUT1(out1[2]));

mod1 \extend[3].ins (.CLK(clk), .E(enable), .IN1(in1[3]),
.OUT1(out1[3]));

You can refer the above names in the set_case_analysis constraint
(or any other SGDC constraint), as shown below:

set_case_analysis -name "test.\extend[1].ins .E" -value 0
361
Synopsys, Inc.

Handling SystemVerilog Objects in SGDC

Working with SpyGlass Design Constraints
Basically, you can refer an object (say <obj>) as part of the generate
block by using the following convention:

"\<generate_block1_label>[block1_index].<generate_block2_lab
el>[block2_index]...<generate_blockN_label>[blockN_index].
<obj> "

If the blockX is unnamed, <generate_blockX_label> is considered
as genblk<block_number>. You can refer to the schematic for the
complete name given to the unnamed block including <block_number>.

Further, for any of the SystemVerilog scenarios mentioned above or
otherwise, you can always check design object names appearing in the
schematic and refer those names in the SGDC constraints.
362
Synopsys, Inc.

Working with SpyGlass
Messages
Overview
Atrenta Console displays all violation messages of the currently loaded goal
in the Results pane, as shown in the following figure:

FIGURE 1. Violation Messages for Currently Loaded Goals
363
Synopsys, Inc.

Overview

Working with SpyGlass Messages
To view the violation messages of another goal, load that goal by selecting
it from the drop-down list in the Analyze Results tab, as shown in the
following figure:

FIGURE 2. Run Goal

Based on the format in which you want to view messages, click the View
drop-down list and select the required format, such as Msg Tree, Msg Summary,
Module Hierarchy, and Waiver Tree. For details on these formats, refer to Atrenta
Console Reference Guide.

When you double-click on a violation message, the following actions occur:
 A source file containing the corresponding issue appears in a separate

tab in the Source section. Then name of this tab is the same as the name
of the source file.

 The violating line appears in a different color in the code present in that
source file.

 The corresponding violating portion is highlighted in the schematic.

Next time, when you select a different message, all existing selections and
probes are removed.
364
Synopsys, Inc.

Working with Multiple Messages

Working with SpyGlass Messages
Working with Multiple Messages
The first selected message is known as the main message. All subsequently
selected messages are considered as auxiliary messages.

After selecting a main message, select auxiliary messages by double-
clicking them, keeping the <Ctrl> key pressed.

Effects of Selected Messages in the Schematic

When you double-click on a message and open the Incremental Schematic
window, the schematic shows the portions of the design resulting in a
violation.

When you select auxiliary messages, the schematic changes based on the
type of auxiliary message selected (static or non-static).
365
Synopsys, Inc.

Working with Multiple Messages

Working with SpyGlass Messages
Selecting Static Auxiliary Messages

Such messages load design attributes on the already loaded objects in
the schematic, as shown in the following figure:

FIGURE 3. Static Auxiliary Messages

Selecting Non-Static Auxiliary Messages

Such messages load the violating portions of a design over the already
loaded design in the schematic, as shown in the following figure:

Portions of a design

Attributes loaded on the
already loaded design

auxiliary message
is double-clicked.

loaded by double-clicking
a main message.

objects when a static
366
Synopsys, Inc.

Working with Multiple Messages

Working with SpyGlass Messages
FIGURE 4. Non-Static Auxiliary Messages

Selecting Auxiliary Messages without Selecting a Main
Message

To select one or more auxiliary messages without first selecting the main
message, double-click the messages with the <Ctrl> key pressed.

You can select up to 32 auxiliary messages. If you select more than 32
messages, Atrenta Console displays the Warning dialog that prompts you to
deselect some of the selected messages.

Messages Affecting Multiple Source Lines/Files

If an issue reported by the selected message is related with multiple lines
in a source code and these lines are in multiple source files, Atrenta

Violating design portions
reported by an
auxiliary message loaded
over the design already
 loaded design.

Portions of a design
loaded by double-clicking
a main message.
367
Synopsys, Inc.

Working with Multiple Messages

Working with SpyGlass Messages
Console displays each source file in a separate tab in the Source section.

Each tab name in the Source section indicates the name of the source file.

Multiple Lines Affected in the Same Source File

In this case, the tab name displays the source file name and the number of
affected lines in the source file. For example, test.v (3).

Initially, the first affected line appears. Use the <Shift>+<N> (next line)
and <Shift>+<P> (previous line) key combinations to move among the
affected source lines.

Multiple Lines Affected in Different Source Files

In this case, one tab appears for each affected source file. The tab name
displays the source file name and the number of affected lines in the
source file.

Initially, the first affected line appears. In this case, you can do the
following:
 Use the <Shift>+<N> and <Shift>+<P> key combinations to move

among the affected source lines in the same source file.
 Use the F6 and F7 keys to move between the tabs.

Multiple Messages Selected

If you have selected a main message that highlights only a single source
line, no new tab appears. However, if you select an auxiliary message
(<Ctrl>+double-click), a new tab is displayed for the main message and
another tab is displayed for the auxiliary message in the Source section even
if both messages are in the same source file. Use the F6 and F7 keys to
move between the tabs.

If you select multiple messages, a separate tab appears for each auxiliary
message in the Source section. You can view the source file of the selected
message (out of multiple selected messages) in the Source section tab using
the Jump To Focus button in the Legend window. You can also go to the related
auxiliary Source Window tab for that message by pressing <Ctrl>+<G>.
368
Synopsys, Inc.

Limiting the Number of Messages Generated

Working with SpyGlass Messages
Limiting the Number of Messages Generated
You may want to limit messages generated during SpyGlass analysis for
the following reasons:
 A rule may report a large number of messages of the same type

because of which the total count of reported messages is huge.
In such cases, you can limit the number of reported messages saved in
the violation database for each rule. For details, see Limiting the Number
of Messages Reported for a Rule.

 A particular rule may not indicate a serious problem.
In such cases, you can waive that message so that it does not appear in
the list of reported messages in the Results pane. For details, see Waiving
Messages.

The following types of messages are not added in the message count of the
SpyGlass results summary report:
 Messages that exceed the specified limit for one or more rules

 Waived messages

Atrenta Console indicates the number of such messages by reporting the
following message:

Suppressed 20 messages (5 waived)

In the above example, 20 messages are suppressed due to waiver or rule
over limit settings. Out of these suppressed messages, 5 messages were
suppressed due to waiver.

Limiting the Number of Messages Reported for a Rule

To limit the total number of messages for a rule, perform any of the
following actions:
 Specify an upper limit of messages per rule by using the following

command in the project file:

set_option lvpr <value>

 Specify the maximum number of messages to be reported per rule in
the Maximum Messages Per Rule field under the Design Read Options tab.

Limiting the number of messages for a rule is useful when errors are
369
Synopsys, Inc.

Limiting the Number of Messages Generated

Working with SpyGlass Messages
difficult to identify because one or more rules may produce multiple
messages of the same type.
370
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Waiving Messages
If a particular message does not indicate a serious problem, you can waive
that message.

Waiving messages suppresses the display of messages based on your
requirements at different stages of design analysis. Such messages are
removed from the reported message list.

You can waive a message in any of the following ways:
 Through the Waiver Editor window.

For details, see Using the Waiver Editor Window.
 Through the Results pane.

For details, see Using the Results Pane to Waive Messages.
 Through a project file.

For details, see Waiving Messages through a Project File.

 Through the waive constraint in a Waiver File (.swl file).
For details, see Waiving Messages by Using the waive Constraint.

 Through SpyGlass pragmas in source code.
For details, see Waiving Messages by Using SpyGlass Pragmas.

Using the waive constraint is the preferred method because this approach
does not affect the source files. The waivers are written in a separate file
and can be used with modified source files as long as the modifications do
not invalidate the design constraints. However, you should use embedded
SpyGlass waiver pragmas if you need to waive messages at any level below
the design unit level in the source file.
371
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Waiver File

A waiver file (.swl file) is used to waive messages reported after SpyGlass
runs.

It is an SGDC-format file that contains specifications of the waive
constraint that is used to waive specific types of messages. For information
on the this constraint, see Waiving Messages by Using the waive Constraint.

You can specify waiver files to SpyGlass through GUI, project file, or batch.
This is described in the next sections.

Creating a Waiver File

You can create a waiver file in any of the following ways:
 By using an editor program

Create a file in an editor, write waive constraint specifications in that
file, and save that file as a waiver file (.swl file).

 By using the Waiver Editor window
Specify details in the appropriate fields in the Waiver Editor window.
Based on the details specified, Atrenta Console generates corresponding
waive constraints in a waiver file.
You can use this window to create or modify waiver files.
For details on this window, refer to the Waiver Editor topic of Atrenta
Console Reference Guide.

Creating Goal-Based Waiver

Goal-based waivers enables you to waive goal-specific messages. You can
create different waiver files for different goals as per the requirement. You
can also extend the goal-specific waivers to support scenarios.

You can control the scope of waiver files by individually selecting the waiver
files and make them applicable globally or specific to a goal.

For example, consider the following commands:

new_project test
372
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
read_file -type waiver project.swl

current_goal G1 -alltop

read_file -type waiver goal.swl

In the above example, the waiver file project.swl has the project scope,
Therefore, it is applicable to both project and the G1 goal . While the file
gaol.swl is applicable to only the G1 goal

Setting Default Waiver File

Use set_option command to create default waiver file at the project level.

Use set_goal_option command to create default waiver file at the goal
level.

Consider the following example:

new_project new
set_option default_waiver_file project.swl
waive -rule r1

current_goal G1 -alltop

waive -rule r2
set_goal_option default_waiver_file goal.swl

waive -rule r3

save_project

$ cat project.swl
waive -rule { {r1} }
waive -rule { {r2} }

$ cat goal.swl
waive -rule { {r3} }

In the above example, default waive file - project.swl is created at project -
level and default waiver file - goal.swl is created at the goal level.
373
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Handling Unsaved Changes in Waiver Files

After editing a waiver file in the Waiver Editor window, if you close this
window without saving the changes and run goals again, the following
dialog appears:

FIGURE 5. Unsaved Files

SpyGlass determines the unsaved status of a waiver file in either of the
following ways:
 By comparing contents of the current Object Model (OM) with the latest

file copy on the disk
 By checking if the waiver file has changed after loading in the Waiver

Editor window. SpyGlass checks this by referring to the timestamp of
the waiver file along with the unsaved status (denoted by the + sign)
appearing adjacent to that waiver file in the Waiver Editor window.

In this case:
 Click the Reload button to reload the Waiver File from the disk in the

Waiver Editor window and continue SpyGlass analysis.
374
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
 Click the Continue button to:

 Apply waivers present in the Waiver File on the disk (applicable in
batch mode).

 Apply waivers present in the Waiver Editor window (applicable in GUI
mode).

 Click the Save button to save the Waiver File to the disk and continue
SpyGlass analysis.

Including a Waiver File in Another Waiver File

Use the include directive to include a waiver file in another waiver file. The
include directive is used in the following format:

include <file-name>

In the following example, the waiver_include.swl file is included in the
waiver.swl:

// Contents of waiver.swl // Contents of
waiver_include.swl
include waiver_include.swl waive -rule "XYZ"
waive -rule "ABC"

In the above case, when you specify the waiver.swl file during SpyGlass
analysis, SpyGlass expands the contents of this file to the following:

waive -rule "XYZ"
waive -rule "ABC"

Effects of Waiving Messages

Waiving message(s) affect the following:
 SpyGlass results summary that is generated at the end of a SpyGlass

analysis run
Count of waived messages is not added in message counts in the
SpyGlass results summary. Instead, the following message appears to
indicate the number of such messages:

Suppressed 20 messages (5 waived)
375
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
In the above example, 20 messages are suppressed due to message
waiver or rule message over limit settings. Out of these suppressed
messages, 5 messages were suppressed due to message waiver.

 Violation database
Atrenta Console modifies the rule severity of waived messages to
waiver[original-severity] in the violation database. For
example, consider the following violation message:

W127@@@@Warning@@rules_w127_1.v@@31@@1@@5@@Delay value
should not contain X or Z

If you waive the above message, and the issue reported by the
corresponding rule message is present in a design, the following
message is written in the violation database:

W127@@@@Waiver[Warning]@@rules_w127_1.v@@31@@1@@5@@Delay
value should not contain X or Z

Atrenta Console shows the severity of the waived message as
waiver[original-severity].

 Waiver report
The Waiver report lists all waived messages. You can view this report from
the Reports menu option.

Auto-Migration of Waivers

When rule messages change between SpyGlass releases, waiver files of
previous release may become incompatible for use in the current release.
To ensure compatibility, SpyGlass automatically upgrades the old message
to the new rule message in the same run.

To avoid migration of waivers, use the set_option
disable_auto_migrate_waiver command. If this option is
provided, then the waiver messages are not migrated to the current
release. You can use this option, if the waivers have been already migrated
using -gen_compat_waiver flow, and are up-to-date with respect to the
current release.

NOTE: You can also migrate the waivers separately to new version using option
-gen_compat_waiver.
376
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Waiving Messages through GUI

In GUI, you can waive messages in either of the following ways:
 By invoking the Waiver Editor window.

See Using the Waiver Editor Window.
 By using right-click options in the Results pane.

See Using the Results Pane to Waive Messages.

Using the Waiver Editor Window

The Waiver Editor window enables you to specify waiver expressions to
waive different types of violation messages for the currently loaded goal.
These waiver expressions are in the form of waive constraints that are
saved in a Waiver File (.swl). These waiver files appear in the left-most
section of the Waiver Editor window.

The following figure shows the Waiver Editor window:
377
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
FIGURE 6. Waiver Editor Window

In the above window, you can add new or existing waiver files for the
currently loaded goal. For details on adding new or existing waiver files,
refer to the description of the Add File and New File options in the Right-
Click Options of Tree-View Section topic of Atrenta Console Reference
Guide.

To open the above window, perform any of the following actions:
 Select the Tools -> Waiver Editor menu option.

 Select the Waiver option (or icon) from the Results pane.

 Right-click on the rule header in the Msg Tree page, and select the
Waive All Messages of Select Rule(s) option from the shortcut
menu.

Currently loaded goal
378
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
For details on the above window, refer to the Waiver Editor Window section
of Atrenta Console Reference Guide.

Using the Results Pane to Waive Messages

To waive violations through the Results pane, right-click on a message or a
node displaying a rule title and select the appropriate options from the
shortcut menu.

You can also select multiple messages by selecting the required messages
with the <Shift> key pressed.

When you select an option from the shortcut menu, the following actions
occur in the tool:
 The Waivers Editor window appears, in which new rows are added for

the selected messages. These rows contain waiver expressions in the
form of waive constraints that are saved in a Waiver File.

 Waived messages appear in the Waiver Tree page in the Results pane.
For details on this page, refer to Atrenta Console Reference Guide.

Waiving Selected Messages

Right-click on a message, and select the Waive Selected Messages option
from the shortcut menu.

NOTE: This option appears only if the Enable advanced waiver creation preference option is
not set in the Preferences dialog.

Waiving Specific Type of Messages

Right-click on a message, and select the Waive option from the shortcut
menu. A sub-menu appears displaying the following options:

Option in the Sub-Menu Description
Selected Message(s) Select this option to waive all the selected

messages.
This Exact Message Select this option to waive the first selected

message.
All Messages in This File Select this option to waive all messages of

the file corresponding to the selected
message.
379
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
NOTE: This option appears only if the Enable advanced waiver creation preference option is
set in the Preferences dialog.

Waiving All Messages of a Rule

Right-click on the node displaying the rule title (that is the node under
which messages of a particular rule are reported), and select the Waive All
Messages Of Selected Rule(s) option from the shortcut menu.

Setting a Default Waiver File

Right-click on a message and select the Select Default Waiver File option
from the shortcut menu. A sub-menu appears that lists all the current
waiver files. Select the required Waiver File from this list.

However, if you want to create a new Waiver File that you want to set as the
default waiver file, select the Create New Waiver File option from the
sub-menu. The Create new waiver file dialog, as shown in the following
figure:

All Messages Of This Module Select this option to waive all messages of
the module corresponding to the selected
message.

All Messages with This Severity Select this option to waive all messages of
the severity of the selected message.

Custom Generates waiver command using fields set
through Set custom waiver options and
displays the Waiver Editor window.

Set custom waiver options Enables you to set the fields which should be
added, if available, while generating waiver
through Custom waiver menu item.

Set custom regexp sub-fields Enables you to select the fields to be used
for regex matching.

Option in the Sub-Menu Description
380
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
FIGURE 7. Create New Waiver File

In the above dialog, specify the name of the file and select the Set as
default waiver file option.

Waiving Messages through a Project File

Use the following command in a project file to specify a Waiver File to waive
messages:

read_file -type waiver <waiver-file-name>

Waiving Messages by Using the waive Constraint

The waive constraint enables you to waive messages by various
categories, such as by source files, by design units, by rules, etc.

You can specify this constraint in a file that is of the same format as an
SGDC file. For details on creating and using an SGDC file, see the Working
with SpyGlass Design Constraints chapter. Then, you can supply the file
containing waive constraint specifications using the -waiver command
in a waiver file.
381
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Syntax of the waive Constraint

The following is the syntax for specifying the waive constraint:

waive [-ignore] [-regexp] [-disable]
[-file <file-list>]
[-file_line <file-line>]
[-file_lineblock <file-sline-eline>]
[-du <du-list> | <logical-lib-name>]
[-ip <ip-list> | <logical-lib-name>]
[-rule | -rules <rule-list> | <keyword>]
[-except <rule-list> | <keyword>]
[-msg <message>]
[-severity <label>]
[-weight <weight>]
[-weight_range <weight-value> <weight-value>]
[-import <block_name> <block-waive-file>]
[-comment <comment>]

<keyword> ::=
ALL | ALL_INFO | ALL_WRN | ALL_ELAB

| ALL_SYNTHERR | ALL_SYNTHWRN

For more information on the Tcl-based usage of the waive command, refer
to the waive section of the SpyGlass Tcl Shell Interface User Guide.

Argument Details of the waive Constraint

The following table contains the details of various arguments of the waive
constraint:
382
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Argument Description
-file_lineblock Use this argument to waive messages for a block of lines in a

source file.
<file-sline-eline> is a space-separated tuple of source file
name, start line number, and end line number in the following
format:
<file-name> <line1> <line2>
This means that a message reported in the file <file-name>
between the line numbers <line1> and <line2> is considered
for the waive constraint. It is required that <line2> is greater
than or equal to <line1>.
Note: Use multiple -file_line/-file_lineblock arguments, each
with one argument.
This method is not recommended if the source code is
expected to change. In such cases, use either pragma-based
waivers (see Waiving Messages by Using SpyGlass Pragmas)
or other waiver arguments described later in this table.

-file_line Use this argument to waive rule messages for a particular line
of a source file.
<file-line> is a space-separated pair of source file name and
line number in the following format:
<file-name> <line-num>
Note: Use multiple -file_line/-file_lineblock arguments, each
with one argument.
This method is not recommended if the source code is
expected to change. In such cases, use either pragma-based
waivers (see Waiving Messages by Using SpyGlass Pragmas)
or other waiver arguments described later in this table.

-file Use this argument to waive all messages for the specified files.
You can specify a space-separated list of source file names
(<file-list>) in this argument.
383
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
-du and -ip Use the -du argument to waive the rule messages for the
specified design units or all design units in the specified library.
This argument is particularly useful for RTL coding style checks
where the reported message is clearly localized within a design
unit.
Use the -ip argument to waive rule messages for the specified
design units (IP blocks), including the ones that are below its
hierarchy or all design units in the specified IP library.
<du-list> refers to a space-separated list of logical library
name <logical-lib-name> of a precompiled Verilog/VHDL
library or design unit names, such as:
• Module names <module-name> for Verilog
• Entity names in the format <entity-name> for entity and all

its architectures
• <entity-name>.<arch-name> for the entity and the

specified architecture
• Package names <pkg-name>
• Configuration names <config-name> (for VHDL)
NOTE: By default, only the waived message count is reported
in the IP/Legacy Waiver Report section of the Waiver report
when the -ip argument of the waive constraint has been
specified. Use the -report_ip_waiver option to have the actual
waived messages also printed.
Note the following points:
• You are required to specify the -du or -ip arguments if no

other argument of the waive constraint is specified.
• If you want SpyGlass to consider the schematic highlight

information of a violation to waive violations on design
units, use the following command:
set_option use_du_sch_hier yes

• If a module is instantiated in multiple IPs but you do not
provide the waive -ip specification for each of these IPs,
SpyGlass does not waive violations on such module
instances when you specify the following command:
set_option use_du_sch_hier yes
By default, SpyGlass waives violations on only those module
instances that are present in the IPs specified by the waive
-ip specification.

-rule/-rules Use these arguments to waive messages of the specified rules,
rule groups, or products or by rule type keywords.
<rule-list> refers to a space-separated list of rule names, rule
group names, or product mnemonics.
This argument is case-sensitive.

Argument Description
384
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
-except Use this argument to exclude the specified rules, rule groups,
or products or by rule type keywords from the scope of the
waive constraint.
<rule-list> refers to a space-separated list of rule names, rule
group names, or product mnemonics.
NOTE: If you specify the same rule to the -rule/-rules and
-except arguments, preference is given to the -except
argument.

-msg Use this argument specify a message to be waived.
-severity Use this argument to waive messages of the specified severity

class or severity label.
<label> refers to the actual severity-label or a SpyGlass
severity class.
If a rule is overloaded (customized), overloaded values are
considered by this argument.

-weight Use this argument to waive the messages of the rules with the
specified weight.
<weight> refers to the actual rule weight value.

-weight_range Use this argument to waive the messages of the rules with the
weight within the specified range (both range values inclusive).
<weight-value> refers to a positive integer number.

-comment Use this argument to add waive constraint comment as a
single line text string enclosed in double quotes. This comment
appears in the Waiver report and the sign_off report.
<comment> refers to a valid string.

-import Use this argument to enable importing the waiver file (.swl)
specified at the block-level to be used at the chip-level. For
more details, see Support for Hierarchical Waivers.
<block_name> refers to the name of the block in the top-level
chip, and <block-waive-file> refers to the name of the waiver
file applied to the specified block <block_name>.

-ignore This argument causes SpyGlass to list only the waived
message count in the Adjustments Waiver Report section of
the Waiver report and not the actual waived message(s). Use
the -report_adjustment_waiver option to override the -ignore
argument so that the actual waived messages are also printed.

Argument Description
385
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Details of the waive Constraint

The details of the waive constraint are described below:

 You should specify the current_design keyword with the waive
constraint.

 Files specified by using the -file, -file_line, or -file_lineblock arguments are
searched by using both the specified file base-name and the specified
path.

 You must use at least one of the arguments from one of the following
argument groups:

Group 1: -file/-file_line/-file_lineblock, -du, -ip

Group 2: -rule/-rules, -msg, -severity, -except

 When you use more than one argument from Group 1, a message is
waived if any one of the argument conditions is met. When you supply
more than one argument from Group 2, a message is waived only if all
argument conditions are met. If you supply arguments from both
Group 1 and Group 2, a message is waived only if any one of the
Group 1 argument conditions is met and all Group 2 argument
conditions are met.

 The -file argument is ignored if the file specified by this argument is also
specified in the -file_line or -file_lineblock argument.

 If you specify a design unit name by using the -du argument, the scope
of the waive constraint is the specified design unit and does not include
the design units instantiated in the specified design unit.

 If you specify a design unit name by using the -ip argument, the scope
of the waive constraint is the specified design unit and its complete
hierarchy.

-regexp Use this argument to allow use of regular expressions in many
arguments. For more details, see Using Regular Expressions
and Wildcard Characters.

 -disable Use this argument to disable the waive constraint.

Argument Description
386
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
 If you specify the -except argument but do not specify the -rule/-rules
argument, it is assumed that the -rule/-rules argument has been
specified with the ALL keyword.

 Specify the SpyGlass severity classes as uppercase names and the
severity labels as mixed-case or lowercase names with the -severity
argument.

 To waive SpyGlass built-in error, warning, and info messages, use the
following keywords:

NOTE: You can waive all types of built-in rules except the built-in STX error rules
because these rules are mandatory checks.

NOTE: If you specify the ALL keyword, then all (built-in and rule) messages will be
waived for files and/or design units for which it is specified.

NOTE: You cannot waive product rules of severity class FATAL.
Please note that all keywords are case-sensitive. You can also provide a
combination of these keywords to waive messages of more than one
type.

 For waive constraint, all the occurrences of multiple consecutive
spaces (spaces or tabs) between message words are reduced to just
one space. Therefore, do not adopt such messaging. In addition, Atrenta
Console does not waive messages that extend to two or more lines.

 While using the waive constraint to waive messages, you must enclose
the exact message in double quotes, q/.../, or m/.../ depending
on whether you want the string to be interpreted as a wildcard, literally,
or as a regular expression respectively.

 To get the exact message string for the -msg argument of the waive
constraint, run SpyGlass Analysis that will generate that message. Then,

Use To waive
ALL_INFO All the analyzer (language) info messages
ALL_WRN All the analyzer (language) warning messages
ALL_ELAB All elaboration messages
ALL_SYNTHERR All synthesis error messages
ALL_SYNTHWRN All synthesis warning messages
ALL All of the above plus all rule messages
387
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
open the Violation Database file in any ASCII text editor and copy the
exact message string. Specify the whole message string, including
leading and trailing spaces, in q/<message string>/ where / is the
start-end delimiter and should not be present in the message string.
If / is part of the message string, then it is suggested to use some other
delimiter as explained in the Handling Special Names section.

 You can also use double quotes to specify the exact message string for
the -msg argument of the waive constraint. However, following three
characters have a special meaning inside double quotes:
 \ (escape character, used in escaped name)

 $ (used for variable expansion)

 " (double quote character)
If any of the above characters appear in your message string, either use
q/<message string>/ or escape these characters to treat them as literal
characters inside the double quotes. In rest of the cases, it is equivalent
whether we put the exact message string in q/.../ or double quotes.

 The additional difference between the usage of q/…/ and double quotes
is the handling of wildcard characters. Anything specified inside q/../ is
treated literally, including any wildcard characters such as, *, and ?. If
you want to specify a wildcard pattern for your message string in the
-msg argument of the waive constraint, then use double quotes to
specify it.

 The q/…/ specification is also used when -regexp option is used in the
waive constraint. To turn off regular expression matching in fields of the
waive constraints, enclose the field values in the q/…/ specification. The
field values are then treated as a literal string. For details, see Selective
Use of Regular Expressions section.

 The waive constraint is not applied, if any of the source files, HDL files,
SDC files, and library files, have syntax errors during parsing.

 If the variable part of the message changes for a SpyGlass version, the
waiver applied on that message won’t be applicable for the next
SpyGlass version.

NOTE: The waive constraint with the -du argument does not work on design units in
VHDL libraries.
388
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Examples of Using the waive Constraint

Here are some examples of using the waive constraint:

 The following command waives the messages of the W146 and W336
rules for the test.vhd file:

waive -file test.vhd -rules W146 W336

 The following command waives all messages for the test.v file:

waive -file test.v -rules ALL

 The following command waives all analyzer (language) warning
messages for the test.vhd file:

waive -file test.vhd -rules ALL_WRN

 The following command waives the rule messages of W154 and W146
for the module named upper:

waive -du upper -rules W154 W146

 The following command waives all messages for the architectures
named rtl1 and rtl2 of entity flop:

waive -du flop.rtl1 flop.rtl2 -rules ALL

 The following command waives all synthesis warning messages for the
module named upper:

waive -du upper -rules ALL_SYNTHWRN

 The following command waives the specified message for the test1.v and
test2.v files:

waive -file test1.v test2.v -msg “Blocking \
assignment used inside a sequential block”

 The following waive constraint directive waives the specified message
for the design unit named upper:

waive -du upper -msg “Explicit named association \
is recommended in instance references”

 The following waive constraint directive waives messages of all rules
with severity label Warning for the test.vhd file:
389
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
waive -file test.vhd -severity Warning

 The following waive constraint directive waives messages of all rules
with severity label Info for the architecture named RTL for entity
named a123:

waive -du a123.rtl -severity Info

 The following waive constraint directive waives messages of all rules
with severity label Warning for the test.v file and design unit named
upper:

waive -file test.v -du upper -severity Warning

Using Regular Expressions and Wildcard Characters

The waive constraint supports both regular expressions and wildcard
characters.

These regular expressions are similar to the C-type regular expressions. A
C-type regular expression is a pattern that you specify in the pattern
matching tools, such as Lex and Flex. These patterns are identical to the
pattern specified in the UNIX commands, such as egrep.

A regular expression or a wildcard character can occur in the values of all
arguments of the waive constraint except rules names specified with the
-rule/-rules argument and -except argument, severity labels
specified with the -severity argument, the line numbers specified in the
-file_line and the -file_lineblock arguments, and the strings
specified with the -comment argument.

Understanding Regular Expressions

A regular expression is a way of writing code based on a well-defined
pattern that is widely used in the software industry.

NOTE: You can use regular expressions only for the waive constraint.

Using regular expressions in the waive constraint is suitable for tasks,
such as waiving similar types of messages.

To use regular expressions in the waive constraint, specify the -regexp
argument of this constraint. If you do not specify this argument, any value
390
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
within quotes is expanded in the wildcard mode.
NOTE: For information on the wildcard mode, refer to the Wildcard Mode topic of Atrenta

Console Reference Guide.

Processing Regular Expressions

SpyGlass uses the regcomp and regexec commands (C/C++) of your
operating system to process regular expressions. By using these
commands, SpyGlass first compiles a regular expression as an extended
regular expression. If no match occurs, it compiles the regular expression
as a basic regular expression. Refer to the regexec man page for details
of regular expression support. You can also refer to the regrep man page
for more details.

Regular expression support is compliant to the support offered by Perl and
Tcl.

Character Class in Regular Expressions

In regular expressions, a character class is a set of characters that meets
certain criteria. It is defined by using square brackets, as shown in the
following example.

[A-Z0-9]

In the above example, the character class represents all uppercase letters
and numbers from 0 to 9.

Specifying the -rule/-except Argument

SpyGlass does not support regular expressions with the -rule/-rules and -
except arguments of the waive constraint because regular expressions are
not required for these arguments. You can specify a list of rule names as
well as rule group names with the -rule/-except argument. If you
want to specify a collection of rules with similar names, just specify the
name of the rule group to which these rules belong.

Understanding Wildcard Characters

Asterisk (*) and question mark (?) are the supported wildcard characters,
where * matches any string and ? matches any one character.

Use wildcard characters more often than regular expressions because
wildcard characters are easy to use and operate.
391
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Using Regular Expressions or Wildcard Characters in the -msg Argument of
the waive Constraint

While using regular expression or wildcard characters in the -msg
argument, use a complete message string with regular expressions or
wildcard characters for the part that is changing across messages.

Consider an example in which you want to waive the following messages:

Incompatible width for port 'srout'(width 9 in module 'sr') on
instance 'd8'(terminal width 1), [Hierarchy:srtop]

Incompatible width for port 'srout'(width 9 in module 'sr') on
instance 'd16_1'(terminal width 1), [Hierarchy:srtop]

Incompatible width for port 'srout'(width 9 in module 'sr') on
instance 'd16_2'(terminal width 1), [Hierarchy:srtop]

You can waive the above messages by specifying the following command:

waive –msg “Incompatible width for port 'srout'(width 9 in
module 'sr') on instance '.*’” –regexp

However, the recommended way is to specify a complete message string
with regular expressions and wildcard characters in the -msg argument, as
shown in the following command:

waive –msg “Incompatible width for port 'srout'(width 9 in
module 'sr') on instance '.*’(terminal width 1),
\[Hierarchy:srtop\]” –regexp

Using Special Characters in Regular Expressions

Regular expressions consist of eleven basic symbols, called meta
characters, which have a defined meaning and purpose, as described in the
following table.

TABLE 1 Meta characters used in regular expressions

Meta character Symbol Description

Minus sign - Specifies a range of characters when used inside
a character class (enclosed in square brackets,
such as [a-z])

Asterisk * Matches zero or more occurrences of the literal
character or meta character it follows.
392
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
NOTE: When inside a character class (square brackets), you do not need to escape out the
*, ?, and $ characters.

Using Literal Characters in Regular Expressions

In addition to the special meta characters, regular expressions contain
literal characters, which are regular characters, such as letters, numbers,
and symbols. These characters are not interpreted as special characters.

If you want a literal value of a special character, precede it with a backslash
(\). For example, to use a dollar sign as a literal character, specify \$. You
can also enclose the symbol in brackets to indicate that it should be treated
as a literal. For example, [$].

SpyGlass interprets meta characters and literal characters differently.

Question mark ? Matches zero or one occurrence of the literal
character or meta character it follows.

Square brackets [] Indicates a character class.

Period . Represents one instance of a class of characters
that includes all characters.

Caret ^ Forces the matched text to begin at the first
character in the text being searched. Also
negates a character or character class when
used after an opening bracket in a character
class.

Dollar sign $ Forces the expression to match text through the
very last character of the text being searched.

OR bar | Acts as a Boolean OR, which allows the
combination of two expressions or alternatives
in a single expression.

Backslash \ Escapes out certain meta characters so that they
are treated as literal values.

Round brackets () Specifies open parenthesis, that is, (, and close
parenthesis, that is,), which are used to group
(or bind) parts of search expression together.

TABLE 1 Meta characters used in regular expressions
393
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
When it encounters a meta character in a waive constraint, SpyGlass
assumes the meta character to be a syntax component of the regular
expression and evaluates the regular expression accordingly. When it
encounters a backslash, SpyGlass treats the subsequent character as text
rather than a syntactic component.

The following table shows how to use literal characters in regular
expressions.

Characters Description Example
A-Z
a-z

Alpha characters
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Alpha characters abcdefghijklmnopqrstuvwxyz

0-9 Numeric characters 0123456789
- To use a literal minus sign within a regular

expression, the symbol must be escaped with a
backslash character or contained inside brackets
alone.
If a literal minus sign occurs in a character class
with other characters, it must be escaped with a
backslash.

\- or [-] or
[A-Z\-]

* To use a literal asterisk within a regular expression,
the asterisk symbol must be escaped with a
backslash character or contained inside brackets.

* or [*]

? To use a literal question mark within a regular
expression, the question mark symbol must be
escaped with a backslash character or contained
inside brackets.

\? or [?]

[] To use a literal left square bracket or right square
bracket within a regular expression, the square
bracket symbol must be escaped with a backslash
character.

\[and \]

^ To use a literal caret symbol within a regular
expression, the caret symbol must be escaped with
a backslash character or contained inside brackets.

\^ or [^]

$ To use a literal dollar sign within a regular
expression, the dollar sign symbol must be escaped
with a backslash character or contained inside
brackets.

\$ or [$]
394
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Selective Use of Regular Expressions

When you specify the -regexp argument with the waive constraint,
SpyGlass processes values specified with all applicable arguments as
regular expressions.

You can also specify values of a selected set of arguments that should be
processed as regular expressions. To specify such values, use the m/.../
(process as regular expression) format and q/.../ (process as literal
string) format. Then, you do not need to specify the -regexp argument.

Conversely, you may want to process the values of some arguments as
normal values even when the -regexp argument is specified. In such
cases, use the q/.../ (process as literal string) format for values of such

| To use a literal vertical bar symbol within a regular
expression, the vertical bar symbol must be
escaped with a backslash character or contained
inside brackets.

\| or [|]

. To use a literal period punctuation mark within a
regular expression, the period punctuation mark
must be escaped with a backslash character or
contained inside brackets.

\. or [.]

\ To use a literal backslash symbol within a regular
expression, the backslash symbol must be escaped
with a backslash character or contained inside
brackets.

\\ or [\]

~`!@#%&_
={};:' ",<>

The remaining symbol characters are treated as
literal characters and do not need to be escaped
within regular expressions.

(space) In regular expressions, the space character is
ignored except when it appears inside a character
class or is preceded by a backslash.

[] or \

{} To use a literal left or right curly bracket within a
regular expression, the curly bracket symbol must
be contained inside brackets.

[{] [}]

() To use a literal left round bracket or right round
bracket within a regular expression, the round
bracket symbol must be escaped or contained
inside square brackets.

\(and \)
or [(] and
[)]
395
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
arguments.

The following table summarizes the effect of using the m/.../ and q/
.../ formats with or without the -regexp argument:

Example 1 - Using the m/.../ Format

Consider the following command:

waive -file m/test/ -severity Info

The above command waives all messages of the Info severity in all files
whose names contain string test (test.v, test.vhd, mytest.v, etc.).

Please note that value test does not have any regular expression
character. Since it is matched using the substring matching method (m/
.../), all file names containing test are matched.

Example 2 - Using the q/.../ Format

Consider the following command:

waive -regexp -file q/test.v/ -msg ".*[' \"]clk[' \"].*"

The above command waives messages that match the regular expression
specified by the -msg argument for the test.v file only. This match occurs
only if test.v is a valid file name. If the file name is invalid, all file names
ending with test.v are matched.

Note that if you had not used the q/.../ format in the value of the -file
argument, the scope would have been all files whose names contain the

-regexp option m/.../ specified q/.../ specified both m/.../ and
q/.../ not
specified

Specified Redundant
(process all
applicable as
regular
expression)

Process as literal
string

Process all
applicable as
regular expression

Not specified Process as regular
expression

Process as literal
string

Wildcard
396
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
string test<char>v where <char> is any one character. For example, it
would have matched test.v, test.vhdl, test@v, test#vhdl, and so on.

Example 3 - Specifying Absolute or Relative File Names

Now, you may want to refer to a file using its absolute or relative path
name. In this case, the value of the -file argument will contain the slash (/)
character and you will not be able to use the slash (/) character as a
delimiter. In this case, use another supported delimiter, as shown in the
following example:

waive -file m@^\.\./src/.*test@ -severity Info

The above specification waives all messages of the Info severity in all
files whose names contain the string test (test.v, test.vhd, mytest.v, my.test,
etc.) that are located in the ../src directory with respect to the current
working directory.

You must escape the dot characters in the path name. This is because the
dot character is also a regular expression character.

However, note the following points:
 If you are only using wildcard characters, do not specify the -regexp

argument because it will unnecessarily search for a match in all the
mentioned arguments as a part of the waiver.

 If you want to apply a regular expression on a specific argument, such
as -msg), use m/.../ instead of the -regexp argument (due to the same
reason mentioned in above point).

Handling Special Names

You cannot use the m/.../ and q/.../ formats with values that contain
a forward slash (/) because it is used as a delimiter by these formats.

In this case, use one of the following delimiters:

For example, use the m@...@ format or q>...> format provided the
same delimiter is used as the starting delimiter and the ending delimiter
(that is, m<...> is not allowed.) and the delimiter is not present in the

! @ % ^ & * ; ~ ? < > + = |
397
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
value being enclosed (that is, q@name@top@ is not allowed). The m
format and q format can use different delimiters.

Examples of Using Regular Expressions in the waive Constraint

Here are some examples:
 Regular Expressions with -file and -du arguments

 Regular Expressions with the -severity argument

 Regular Expressions with the -msg argument

Regular Expressions with -file and -du arguments

Here are some examples:
 Specify the following command to waive messages for all files or all

design units:

waive -regexp -file “.*” ...

or

waive -regexp -du “.*” ...

 Specify the following command to waive messages in all files whose
names start with lib:

waive -regexp -file “^lib.*” ...

 Specify the following command to waive messages in all design units
whose names end with vwe:

waive -regexp -du “.*vwe$” ...

Do not use absolute paths while specifying file names because there may
be problems in porting the Waiver File when project files are moved.

NOTE: Verilog is case-sensitive while VHDL is case-insensitive. Therefore, be careful while
specifying design unit names.

Regular Expressions with the -severity argument

You cannot use regular expressions with the -severity argument of the
waive constraint. This is to ensure that no unintended message is waived
as it often happens that very similar severity labels are registered in
398
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
different products.

However, you can use regular expressions with other arguments and also
specify the -severity argument. The most trivial case of using this argument
is to waive all non-error messages. For example, the following specification
waives all Warning and Info type messages in all files:

waive -regexp -file “.*” -severity Info
waive -regexp -file “.*” -severity Warning

Use the -severity argument with one of the -file arguments or the -du and -ip
argument to waive non-essential messages, especially in the first run of a
design through SpyGlass.

Regular Expressions with the -msg argument

Here are some examples:

 The following command waives all messages containing the clk string:

waive -regexp -file “.*” -msg “.*[' \”]clk[' \”].*”

The above command waives all messages containing the clk string in
any of the following ways

 clk with leading and trailing spaces

 'clk'

 “clk”

 The following command waives all messages for the test design unit
that contain any combination of the clk1 and clk2 clocks:

waive -regexp -file ".*" -msg ".*test\.clk1.*test\.clk2.*"
waive -regexp -file ".*" -msg ".*test\.clk2.*test\.clk1.*"

The above command waives all messages containing test.clk1 and
test.clk2 in any order including the following message:

Unsynchronized crossing: destination flop test.q1, clocked by
test.clk2, source flop test.d1, clocked by test.clk1

If you specify the whole message in the -msg argument (and actual file/du
names), you do not need to specify the -regexp argument. Just supply
all actual values and place the entire message in the q/.../ format. If
you are placing a message in quotes, SpyGlass does not consider wildcard
399
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
characters (* and ?), double quote character, dollar, and escape characters
as literals. In such case, you must escape them.

Support for Hierarchical Waivers

SpyGlass provides the capability to chip-level designers to use all the
waivers specified by a block-level designer on the block, during chip-level
analysis. To support this feature, you can use the waive -import
command, which enables you to import waivers specified in the block-level
design into the chip-level design.

You may specify waivers to individual blocks separately in the top-level
chip. The general syntax of the waive constraint for importing a waiver
file for the specified block is as follows:

waive –import <block_name> <block-waive-file1>
waive –import <block_name> <block-waive-file2>

The <block_name> can be module name or entity name. It is not
recommended to precede/append library name or architecture name,
module or entity name.

Atrenta Console applies the block waiver file to design units matching any
of the above specifications.

You can specify the path of the waiver file <block-waive-file> as a
relative or absolute path. If the path specification is relative, it should be
accessible from the current run directory.

Consider the following example, where B1 and B2 are two blocks inside the
top-level chip, and B1.swl and B2.swl are the waiver files applied to these
two blocks, respectively:

waive –import B1 B1.swl
waive –import B2 B2.swl

You can specify multiple waiver files for a given block by specifying multiple
waive -import constraints. You may also specify the same waiver file to
two different blocks. In such a case, the block waivers are applied
independently to the respective blocks.

NOTE: The commands specified in the waiver file to be imported are applicable only to the
hierarchy of the module specified with the waive -import constraint.
400
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
The generated output file contains two sections. Section I displays
successfully migrated waive commands. Section II is generated only if
there are non/incompletely migrated commands. This section displays non/
incompletely migrated commands, with inline reason of the migration
failure.

If you specify two files for the same block, two new waiver files are
generated corresponding to each (specified file). If you specify one waiver
file for two different blocks, Atrenta Console generates two files (one file
for each block).

You can view the generated file to see if all waiver constraint commands
have been migrated as intended. If not, you can modify this waiver file as
per the requirements and use it in subsequent runs.

To specify block-level waiver file in the SWL format (block.swl), perform the
following steps:
1. Read the top file using the following command:

read_file -type swl top.swl

2. Inside the top.swl file, specify the following waiver command:

waive -import block block.swl

Alternatively, to specify the block-level waiver file in the AWL format
(block.awl), perform the following steps:
1. Read the top file using the following command:

read_file -type awl top.awl

2. Specify the following command on the interactive sg_shell

waive -import {block block.awl}

NOTE: A block-level waiver file specified in the AWL format does not work when specified in
a top-level SWL file.

Additional Information

Please note the following about the waive -import constraint:

 SpyGlass also supports nested imports of waiver files, that is, one
import command can be specified inside another import command,
as shown below:

top.swl: waive -import b1 b1.swl
401
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
b1.swl: waive -import b2 b2.swl
b2.swl: waive -file test.v

NOTE: All the waiver files to be imported (b1.swl and b2.swl, in the above example)
should be accessible from the current working directory.

 The -disable argument is also supported with the waive -import
constraint, as shown below:

waive -import b1 b1.swl -disable

The above specification will disable the waive -import command.

NOTE: Only the -disable and -comment arguments are supported with waive
-import constraint. No other argument is supported with waive -
import constraint.

 File names in the imported waive -file/file_line/
file_lineblock commands are converted to file names matching
under the hierarchy of the block being imported. This is to ensure that
migration occurs for, and according to, the block being imported.

 If the -ip/-du fields are regular expressions in the waive command
to be imported, then the regular expressions are converted to names
matching under the block hierarchy only. This is to ensure that the
regular expressions do not match any name outside the block hierarchy.

 It may happen that a block-level waiver file is written in an older version
of SpyGlass release, and the top-level designer importing this block-
level waiver file is working in a later version of SpyGlass release in
which few rule messages have been changed with respect to the
previous release. In this case, SpyGlass automatically upgrades the old
message in the block-level waiver files to the new rule message.
However, this does not work if the old message in the waive command
is a substring of its complete message of that release.

Waiving Messages by Using SpyGlass Pragmas

To waive rule messages using the SpyGlass Waiver pragmas, embed the
SpyGlass Waiver pragma directives at appropriate places in your design
source code.

Then, the specified rules or rules of the specified rule groups are still
402
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
checked for the source code block related to the SpyGlass Waiver pragmas
and the corresponding rule messages are written to the Violation
Database. However, these rule messages are not reported in the SpyGlass
Message Reports.
403
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Waiving Rule Messages for a Block of Code

To waive messages of one or more rules for a block of source code, use the
disable_block and enable_block pragmas as follows:

for Verilog:

...
//spyglass disable_block <rule-list> | ALL | $VAR
...
//spyglass enable_block <rule-list> | ALL | $VAR
...

(See Verilog Example of Using Waiver Pragmas for a Block of Code)

for VHDL:

...
--spyglass disable_block <rule-list> | ALL | $VAR
...
--spyglass enable_block <rule-list> | ALL | $VAR
...

(See VHDL Example of Using Waiver Pragmas for a Block of Code)

Where <rule-list> is a space-separated list of rule names or rule
group names for which the messages should be waived. Using the ALL
keyword waives all messages of all rules for the block of source code.

Verilog Example of Using Waiver Pragmas for a Block of Code

Consider the following example, containing the usage of the
disable_block and enable_block pragmas:

module test10 (q,clk, d,reset);
input clk,d,reset;
output q;
reg q;
reg [3:0] a;
reg [7:0] b;
reg [2:0]data;
//spyglass disable_block W362
always @(posedge clk)
404
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
begin
if (data <= (a[1] + b[2])) //violation will be

//waived off
a <=17;

else
//spyglass enable_block W362
b = 8'hbb;

end
endmodule

VHDL Example of Using Waiver Pragmas for a Block of Code

Consider the following example, containing the usage of the
disable_block and enable_block pragmas:

library IEEE;
use ieee.std_logic_1164.all;
entity top is
end top;
architecture rtl of top is
signal s1 : bit_vector(2 downto 0);
signal s2 : bit_vector(3 downto 0);
signal s3 : boolean;
signal t1, t2 : integer;
begin
--spyglass disable_block W116
process
begin
case s1 <= s2 is -- violation will be waived off
when TRUE => s3 <= (s2 = s1); -- violation will be

-- waived off
when others => null;
end case;

end process;
--spyglass enable_block W116
t1 <= t2 when s1 >= s2; -- violation will not be

-- waived off
end rtl;
405
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Waiving Rule Messages for a Single Line of Code

To waive messages of one or more rules for a single line of source code,
use the disable pragma as follows:

for Verilog:

<design-line> //spyglass disable <rule-list> | ALL

(See Verilog Example of Using Waiver Pragmas for Single Line of Code)

for VHDL:

<design-line> --spyglass disable <rule-list> | ALL

(See VHDL Example of Using Waiver Pragmas for Single Line of Code)

Where <rule-list> is a space-separated list of rule names or rule
group names for which the messages are to be waived for the single line of
source code. Using the ALL keyword waives all messages of all rules for
the single line of source code.

Specifying SpyGlass Waiver Pragmas

Please note the following while using the SpyGlass Waiver pragmas:

 All keywords (spyglass, disable, disable_block,
enable_block, and ALL) are case-sensitive.

 Only spaces are allowed between keywords. You cannot use other white
space characters, such as the tab character.

 There may or may not be any spaces between // (in case of Verilog) or
--(in case of VHDL) and the keyword spyglass.

 You can also insert comments in the pragma line as follows:
for Verilog:

//waiver pragma --comment

Example:

if (data <= (a[1] + b[2])) //spyglass disable W362 --This
is comment

for VHDL:
406
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
--waiver pragma //comment

Example:

case s1 <= s2 is --spyglass disable W116 //This is a
comment

 You can also write multiple pragmas with comments on a single line as
follows:

//waiver pragma1 --comment //waiver pragma --comment

Atrenta Console considers the above specification as two different
pragmas. However, if the starting directive is a comment or a non-
waiver pragma, Atrenta Console treats the whole line as a comment. For
example, the following line in the design file will not result in any valid
waiver pragma:

//non-waiver pragma //spyglass disable rulename

 If there is no corresponding enable_block pragma for a
disable_block pragma, then the scope of the disable_block
pragma extends till the end of the source file in which it is specified.

 The scope of SpyGlass Waiver pragmas is limited to the source file in
which they are specified. Writing a pragma in one source file and
including this source file in another source file will not imply that the
pragma is effective in the second file.
Consider the following example:

// test.v
module test (input in1, output out1);
//spyglass disable_block ALL
`include "lib.v"
complex_INPUT_WIDTH_struct_t i_data;
…
//spyglass enable_block ALL
…
endmodule

In the above example, SpyGlass does not report any violation on the
test.v file between the disable_block and enable_block
407
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
pragmas. Though lib.v is included in test.v after the disable_block
pragma, the waiver pragma will not be applicable to the included file. It
will only be applicable to the design file in which it is specified.

NOTE: The SpyGlass Waiver pragmas do not work on design units in VHDL libraries.

Nested SpyGlass Waiver Pragmas

The disable_block and enable_block pragmas can be nested.
However, the scope of the pragmas depends on the way they have been
specified.

For example, consider the following specification:

Thus, in case of complete pairs of nested waiver pragmas of the same
rule(s), the scope is the source code block between the outermost
disable_block and enable_block pragma pair.

Now consider the following specification:

Thus, in case of incomplete pairs of nested waiver pragmas of the same
rule(s) with missing disable_block pragmas, the scope is the source
code block between the innermost disable_block and

...
//spyglass disable_block rule1
...
//spyglass disable_block rule1
...
//spyglass enable_block rule1
...
//spyglass enable_block rule1
...

rule1 waived

rule1 still waived

rule1 still waived

rule1 active

rule1 active

...
//spyglass disable_block rule1
...
//spyglass enable_block rule1
...
//spyglass enable_block rule1
...

rule1 waived

rule1 active

rule1 still active

rule1 active
408
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
enable_block pragma pair.

In case of incomplete pairs of nested waiver pragmas of the same rule(s)
with missing enable_block pragmas, the scope is the source code block
between the outermost disable_block and enable_block pragma
pair as in the following example specification:

Switching Off Waiver for Selective Rules of a Group

You can also selectively waive or activate a rule from a set of rules as
shown in the following example specification:

Similarly, if you have waived for a rule group, you can selectively activate
the rules in the rule group in the same manner.

NOTE: You cannot selectively activate a rule for a source code block that you have waived
by using the ALL keyword.

Verilog Example of Using Waiver Pragmas for Single Line of Code

The following example contains the usage of waiver pragma for single line
of code:

module test10 (q,clk, d,reset);
input clk,d,reset;

...
//spyglass disable_block rule1
...
//spyglass disable_block rule1
...
//spyglass enable_block rule1
...

rule1 waived

rule1 waived

rule1 active

rule1 active

...
//spyglass disable_block rule1 rule2 rule3
...
//spyglass enable_block rule1
...
//spyglass enable_block rule2 rule3
...

rule1, rule2, rule3 waived

rule1 active;
rule2, rule3 waived

rule1, rule2, rule3 active

rule1, rule2, rule3 active
409
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
output q;
reg q;
reg [3:0] a;
reg [7:0] b;
reg [2:0]data;

always @(posedge clk)
begin
if (data <= (a[1] + b[2])) //spyglass disable W362
 a <=17;
else
 b = 8'hbb;
end
endmodule

VHDL Example of Using Waiver Pragmas for Single Line of Code

The following example contains the usage of waiver pragma for single line
of code:

library IEEE;
use ieee.std_logic_1164.all;

entity top is
end top;

architecture rtl of top is
signal s1 : bit_vector(2 downto 0);
signal s2 : bit_vector(3 downto 0);
signal s3 : boolean;
begin
process
begin
case s1 <= s2 is --spyglass disable W116
when TRUE => s3 <= (s2 = s1);
when others => null;
end case;

end process;
end rtl;
410
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
Ignoring the SpyGlass Waiver Pragmas

By default, pragma-based waivers (inside design source files) are always
effective. You can disable them by specifying the following command in the
Atrenta Console project file:

set_option ignorewaivers yes

Waiving Messages in Waiver/SGDC Files

You can waive messages in the Waiver File/SGDC file by embedding
SpyGlass waiver pragma directives at appropriate places.

Then, the specified rules or rules of the specified rule group, which are
waived, are not reported in the SpyGlass message reports and the
corresponding rule messages are not written to the violation database.

Use the disable_block and enable_block pragmas to disable and
enable rules, as shown in the following example:

//spyglass disable_block R1
...
...<cmd>
...
//spyglass enable_block R1

In the above example, SpyGlass disables rule-checking for the R1 rule in
the lines after //spyglass disable_block R1. However, SpyGlass
resumes rule-checking for the R1 rule in the lines after
//spyglass enable_block R1 is specified. Here, <cmd> will
continue to work, if specified correctly, irrespective of the pragmas.

You can also use # instead of // while specifying the disable_block
and enable_block pragmas. For example:

#spyglass disable_block R1
...
...
#spyglass enable_block R1

The disable_block and enable_block pragmas can be nested.
However, the scope of the pragmas depends upon the way they have been
411
Synopsys, Inc.

Waiving Messages

Working with SpyGlass Messages
specified. For example:

You can also specify a comma-separated list of rule names or the name of
the rule group, as shown in the following examples:

 //spyglass disable_block R1,R2

Where, R1 and R2 are the rules to be waived

 //spyglass disable_block R1,G1

Where, G1 is the rule group name. In this case, all the rules belonging
to this group are waived.

You can use the ALL keyword to waive messages of all the rules. After
specifying ALL keyword in the disable_block pragma, you cannot
explicitly enable a particular rule by specifying that rule name in the
enable_block pragma. For example:

//spyglass disable_block ALL
...
//spyglass enable_block R1
...

Here, rule-checking for R1 remains off. In this case, you need to use //
spyglass enable_block ALL to enable rule-checking of all the rules.

Existing Waiver Support in SpyGlass

Currently, SpyGlass supports spyok and verilint (for SpyGlass lint
solution) waivers. Support of spyok waivers will continue in SpyGlass for
backward compatibility.

...
//spyglass disable_block rule1
...
//spyglass disable_block rule1
...
//spyglass enable_block rule1
...
//spyglass enable_block rule1
...

rule1 waived

rule1 still waived

rule1 still waived

rule1 active

rule1 active
412
Synopsys, Inc.

Tagging Messages

Working with SpyGlass Messages
Tagging Messages
Adding a tag on a violation message enables you to keep track of that
message, which you may want to fix later or which you already fixed/
verified.

Based on your requirement, you can tag messages either with certain
predefined identifiers, such as Investigate, Fixed, ToFix, and VerifiedFixed,
or with your own custom tags.

Adding a Tag

To add a tag to a message, perform the following steps:
1. Select the message.
2. Select the Add Tag option in the right-most bar in the Results pane.

Alternatively, right-click on the message and select the Tag -> Add Custom
option from the shortcut menu.
The Add Message Tag dialog appears, as shown below:

FIGURE 8. Add Message Tag

3. In the above dialog, specify your own tag in the textbox.
Alternatively, you can select any predefined tag from the adjacent drop-
down list.

4. Click the Ok button.

After performing the above steps, the specified tag appears (indicated by a
tag icon) for the message. In addition, that tag also appears in the Tag >
Add User-Defined shortcut menu option list.

You can also add a tag from a set of visual tags (identified by
corresponding graphical icons) available through the Tag > Add Flag shortcut
413
Synopsys, Inc.

Tagging Messages

Working with SpyGlass Messages
menu option. When you apply any of these visual tags to a message, the
corresponding graphical icon is prefixed to the message.

Modifying a Tag

To modify the tag for a rule message, perform the following steps:
1. Select the message appearing in the Results pane.
2. Select the Modify Tag option in the right-most bar in the Results pane.

Alternatively, right-click on the message and select the Tag -> Modify option
from the shortcut menu.
The Modify Message Tag dialog appears with the selected message and its
tag, as shown below:

FIGURE 9. Modify Message Tag

3. In the above dialog, select the tag name in the Tag field.
A drop-down list appears containing all the available tags.

4. Select the required tag from the drop-down list or specify your own tag
in the Tag textbox.

5. Click the OK button to apply the modified tag to the selected message.
414
Synopsys, Inc.

Tagging Messages

Working with SpyGlass Messages
NOTE: The Tag -> Modify shortcut menu option is enabled only if you have added a tag to
a rule message.

NOTE: You can also add/delete/modify tags for more than one message at a time by
selecting multiple messages (either by dragging the mouse pointer across the
messages or by individually clicking the messages while holding down the <Ctrl>
key on the keyboard) and applying the tag settings as described above.

Deleting a Tag

To delete a tag from a message, perform the following steps:
1. Select the message appearing in the Results pane.
2. Select the Delete Tag option in the right-most bar in the Results pane.

Alternatively, right-click the message and select the Tag -> Delete option
from the shortcut menu.

After performing the above steps, the tag applied to the message is
deleted.

NOTE: The Tag -> Delete shortcut menu option is enabled only if you have added a tag to
a rule message.
415
Synopsys, Inc.

Handling SpyGlass Built-In Messages

Working with SpyGlass Messages
Handling SpyGlass Built-In Messages
Based on the severity of the built-in messages, you can fix the reported
violation accordingly.

Handling Syntax Error Messages

If you encounter a syntax error message after design analysis, you must
fix that error before SpyGlass can process the design any further. Most rule
checks do not run if the design contains syntax errors.

Handling Language Warning Messages

If you encounter a language warning message, you should check that the
potential problem indicated is expected and not a concern. SpyGlass will
continue processing if language warnings are reported, although the nature
of the analysis may be affected. For example, if you see a warning that the
size of an expression does not match the size of the object to which it is
assigned, you may decide that this is known but not important. On the
other hand, you may realize that due to this problem, a value may be
truncated or extended where no such modification was expected.

NOTE: You can limit the number of WRN messages logged in the Violation Database as
described in Waiving Messages.

Handling Synthesis Warning Messages

A synthesis warning message appears in any of the following cases:
 The specified construct is not synthesizable and therefore, SpyGlass

cannot synthesize the design unit containing that construct.
 In some cases, the construct is ignored during synthesis.

These messages are useful if you want to check a design for
synthesizability, but it is also important to understand that SpyGlass runs
most complex connectivity and functionality checks on a design by
(automatically) synthesizing the design internally.

Design units that cannot be synthesized are skipped in this process and,
therefore, are ignored in analysis of those connectivity and functionality
416
Synopsys, Inc.

Handling SpyGlass Built-In Messages

Working with SpyGlass Messages
rules.

SpyGlass reports the design units that have been skipped for this reason,
but you should be aware that analysis of those design units will necessarily
be incomplete.

Handling Synthesis Error Messages

A synthesis error message indicates the following:
 SpyGlass could not synthesize a design unit because of an

un-synthesizable construct.
 SpyGlass replaces such design units by a black box in the resulting

netlist.

The presence of such design units affects the flattening stage as well and
the resulting rule-checking is inaccurate.

Handling Internal Messages

If a rule reports an internal message, SpyGlass displays the name of such
rules as SpyGlassInternalFatal, SpyGlassInternalError, or
SpyGlassInternalWarning, depending upon the rule severity.

Report such messages to Atrenta Support.
417
Synopsys, Inc.

Handling SpyGlass Built-In Messages

Working with SpyGlass Messages
418
Synopsys, Inc.

Working with Aggregated
Reports
Overview
This chapter describes the following reports generated in Atrenta Console:
 Project Summary Report

 The DataSheet Report

 The DashBoard Report

 Goal Summary

If the working directory of your project contains a different set of goals that
are run from different methodologies, the above reports show results only
from the goals that are run from the current active methodology, which is
saved in the project file.

If you get any unexpected results in such a scenario, clean the project
working directory and re-run the goals of the active methodology.

An active methodology is specified by the following command in the project
file:

set_option active_methodology <methodology-path>
419
Synopsys, Inc.

Overview

Working with Aggregated Reports
Searching for Input Files

While generating the above reports, Atrenta Console searches for input
files present at a relative path under the directory specified by the
set_option projectcwd <dir> command. However, if you do not
specify this command in a project file, Atrenta Console searches for input
files under the directory containing the project file and then in the user
current working directory.

For example, consider the project file /usr/test-cases/design1/sample.prj with
the following contents:

sample.prj
This option sets project current working directory
set_option projectcwd /usr/test-cases/test1

This file contains list of source files
read_file -type sourcelist "sources.f"

This file contains library settings
source "./lib_precompile.f"
…

While generating reports, Atrenta Console searches for the specified input
files in the project’s current working directory.

In the above example, the input files, sources.f and lib_precompile.f,
specified through the read_file and source commands are looked under
the /usr/test-cases/test1 directory.

However, if the projectcwd option is not specified in this project file,
Atrenta Console searches for these files under the /usr/test-cases/design1
directory (the directory where project file resides) and then in the current
working directory.
420
Synopsys, Inc.

Overview

Working with Aggregated Reports
Default Paths of Aggregated Reports
The default path of aggregated reports varies depending on the mode in
which these reports are generated. This is described in the following
points:

 If you generate a report by using the set_option
aggregate_report {<report-list>} command in a project file,
the report is generated at the following path:

<projectwdir>/<prj-name>/<top-name>/html_reports/

 If you generate a report by using the -gen_aggregate_report
command-line option or through GUI, the report is generated at the
following path in the current working directory:

./html_reports/
421
Synopsys, Inc.

Generating Aggregated Project Results

Working with Aggregated Reports
Generating Aggregated Project Results
You can generate aggregated project results that contain combined results
from multiple single-user projects. You can view these results from Atrenta
Console GUI without opening a project file.

NOTE: This report is deprecated and will be removed in a future release.

To generate aggregated project results, click the Tools > Aggregated Project
Results menu option. This displays the Aggregated Project Results dialog, as
shown in the following figure:

FIGURE 1. Aggregated Project Results

If a configuration file already exists, enter the name of the file in the
Configuration file text field. Alternatively, click () and browse to the
location where the configuration file is saved. Then the list of projects
saved in the project file is displayed in the Project List section of the
Aggregated Project Results dialog. You can add a project in the
configuration file and save the file. In addition, you can also save the
configuration file with a different name by clicking the Save As button.

You can also specify the report output directory in the Output Directory
textbox. If the specified directory does not exist, Atrenta Console creates
422
Synopsys, Inc.

Generating Aggregated Project Results

Working with Aggregated Reports
it. If you do not specify any directory, the report is saved at a default path.
For details, see Default Paths of Aggregated Reports.

If you are generating the aggregated results for the first time, follow these
steps:
1. Click () and browse to the location where the project files

are located.
2. Select the project (.prj) file for which you want to generate the results.

NOTE: You can select multiple project files by pressing and holding the <Ctrl> key and
then selecting the required files. You can delete a project by clicking the Delete
Project button.

3. Click Save & Continue. The Specify the configuration file dialog appears, as
shown in the following figure:

FIGURE 2. Specify the Configuration File

By default, Atrenta Console names the configuration file as
SG_AGG_PROJECT_RESULTS_CONFIG_FILE. However, you can specify a
different file name.

4. Type the name of the configuration file in the File name text field and
click Save. The Aggregated Project Results dialog appears displaying the
location where the results are saved, as shown in the following figure:
423
Synopsys, Inc.

Generating Aggregated Project Results

Working with Aggregated Reports
FIGURE 3. Aggregated Project Results Dialog Box

The aggregated project results are generated in the following formats:
 HTML

The HTML report is generated in the html_reports/project_summary/html
directory and can be opened in the HTML browser (specified using the
Specify HTML Browser Program option in the Miscellaneous Page of the Tools >
Preferences window).

NOTE: Refer to the Atrenta Console Reference Guide for details about the menu options.

 CSV

The .csv report is generated in the html_reports/project_summary/csv
directory and can be opened using any external tool, such as Microsoft
Excel.

To view the aggregated project reports in the HTML format, click Yes in the
Aggregated Project Results dialog. Then, the aggregated project results are
displayed in the browser window as shown below:
424
Synopsys, Inc.

Generating Aggregated Project Results

Working with Aggregated Reports
FIGURE 4. Aggregated Project Results Report

Like the Project Summary Report, the HTML browser displays similar
information for Aggregated Project Reports. Additionally, the browser also
displays the configuration file name and the list of projects that were saved
in the configuration file. Refer to the Project Summary Report section for
more details on various reports.

NOTE: You can also specify the path of the configuration file in the .spyglass.setup
configuration file by using the AGG_PROJECT_RESULTS_CONFIG_FILE
environment variable as follows:
SDE_CONFIG_OPTIONS=AGG_PROJECT_RESULTS_CONFIG_FILE=<
path>
425
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
Project Summary Report
The Project Summary report contains the result of all the blocks and goals
runs.

Generating the Project Summary Report

You can generate the Project Summary report through GUI or through a
project file.

Generating the Report through GUI

To generate the Project Summary report through GUI, click the Project
Summary option on the goal selection window. When you click this option,
the Project Summary dialog appears, as shown in the following figure:

FIGURE 5. Project Summary Dialog Box

The above dialog displays the location where the generated CSV and HTML
reports are located.

NOTE: You can right-click on a path and select the Copy shortcut menu option to copy the
path for reference.

NOTE: When you click the Project Summary option, Atrenta Console also creates a
<project-name>/user_reports_backup directory that contains a backup of the
426
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
reports located in the <project-name>/user_reports directory.

Generating the Report through a Project File

To generate the Project Summary report through a project file, specify the
following command in the project file:

set_option aggregate_report project_summary

To specify the directory in which you want to generate the project
summary report, specify the following command in the project file:

set_option aggregate_reportdir <report-directory-path>

NOTE: If you do not specify the above command for a project-specific DashBoard report,
the reports are generated in the <projectwdir>/<project>/<top>/html_reports
directory by default.

Viewing the Project Summary Report

Atrenta Console generates the Project Summary report in the following
formats:

 HTML: The HTML report is generated in the <project-name>/
user_reports/html directory and can be opened in an HTML browser
(specified using the Specify HTML Browser Program option in the
Miscellaneous Page of the Tools > Preferences window).

NOTE: Refer to the Atrenta Console Reference Guide for details about the menu options.

 CSV: The .csv report is generated in the <project-name>/user_reports/
csv directory and can be opened using any external tool, such as
Microsoft Excel.

Viewing the HTML Report

To view the HTML report, click Yes in the Project Summary dialog. Then, the
project summary report is displayed in the HTML browser, as shown in the
following figure:
427
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
FIGURE 6. Project Summary Report

The HTML browser is divided into two sections. The left section of the
browser displays information, such as the project name, the Atrenta
Console version, the date when the report was created, and the name of
the person who created the report. In addition, the following options are
provided in the left section of the browser window.

Current Results for all blocks

The current results for all blocks (specified by using the Top Level Design
Unit(s) design-read option the Set Read Options tab) displays the latest result
summary files created on a timestamp basis. For example, if a block B1 is
run on July 31, and then on August 03, the current result for block B1 will
display the data generated on August 03. In addition, if block B1 is run
428
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
twice on August 03, once at 11:00 AM, and then at 5:00 PM, then the
current result will display the data generated at 5:00 PM.

When you, click the Current Results for all blocks link, the right section of the
browser window displays the following:
 Current unresolved violations for all blocks:

The unresolved violations chart displays the violation count (FATAL,
ERROR, WARNING, and INFO messages) for the individual blocks and
the goal run on the block in the Y axis and the block names in the X
axis.

FIGURE 7. Unresolved Violations Chart

 Current waived violations for all blocks
The current waived violations for all blocks chart displays the count of
the violation messages (ERROR, WARNING, and INFO) that were waived
for each block and the goal run on the block.
429
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
FIGURE 8. Current Waived Violations for All Blocks Chart

 Summary table of all current unresolved and waived violations for all
blocks
The current result for all blocks also displays a summary table that
shows the count of all the violation messages (unresolved and waived)
as shown below:

FIGURE 9. All Current Unresolved And Waived Violations Summary Table

The summary table contains the following columns:
 Block - displays the name of the block

 Goal Name - displays the name of goal run for a block
430
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
 Unresolved Violations: Displays the count of the unresolved violations
(based on severity)

 Waived Violations: Displays the count of the waived violations (based
on severity)

Historic Results by block

Use this option to view the violation count for a block/all blocks based on
time. You can view the violation count for an individual block or for all
blocks.

To view the historic result for an individual block, click the block name on
the left section of the browser window. Then, the block trend for
unresolved violations is displayed on the right section of the browser
window as shown below:

FIGURE 10. Block Trend for Unresolved Violations

The Y axis displays the violation count for the block and the X axis displays
the date when the block was run.

NOTE: When you click the All blocks link, the violation count for all blocks is displayed with
the data of each block separated by a line.

Similarly, you can view the violation count of the waived violations for a
block or all blocks.

In addition, you can view the summary table displaying the violation
messages (unresolved and waived) for a block or all blocks based on time.
431
Synopsys, Inc.

Project Summary Report

Working with Aggregated Reports
Current Results for all Goals

The current results for all goals displays the latest result summary files
created on a timestamp basis for the goals run.

The chart generated for the goals is similar to the Current Results for all
blocks.

The goal names in the summary table that displays the violation messages
(unresolved and waived) for a goal are truncated if the number of
characters in the goal name exceeds a particular length. You can view the
complete name of the goal by placing the cursor over the goal name.

Historic Results by goals

Use this option to view the violation count for a goal/all goals on a time
basis. The chart generated for the historic results by goal is similar to the
Historic Results by block.

Viewing CSV Reports

To view the CSV reports, browse to the <project-name>/user_reports/csv
directory where the report is located. Open the .csv file using your favorite
text editor (specified using the Specified Text Program option in the
Miscellaneous tab of the Tools > Preferences window).

NOTE: Refer to the Atrenta Console Reference Guide for details about the menu options.

A sample CSV report is shown below:

FIGURE 11. Sample CSV Report
432
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
The DataSheet Report
The DataSheet report highlights design characteristic and qualities of an IP.
It provides summarized information for an IP such as IO details, clock
trees, reset trees, power and test characteristics of an IP, black box
characteristics, gate count estimates, and so on.

By default, SpyGlass automatically generates the Datasheet report for the
current project. You can disable report generation for the Datasheet report
using the following command:

set_option disable_html_report {datasheet}
433
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
The following figure displays a sample DataSheet report:

FIGURE 12. The DataSheet Report

You can view the DataSheet report to review design characteristics during
design review or as a way of communicating design characteristics during
design handoff and IP sharing.
434
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Licensing Requirements

SpyGlass DataSheet is a licensed capability and requires the license feature,
datasheet. Please contact Atrenta Support
(spyglass_support@synopsys.com) if you need this license.

Generating the DataSheet Report in GUI

You can generate the DataSheet report containing data for the current
project or the data for multiple projects and/or batch run dump directories.
Based on your requirement, select any of the following menu options:

 Tools -> Datasheet Report -> Project Report

Select this menu option to generate the DataSheet report for the current
project.

 Tools -> Datasheet Report -> Aggregated Report

Select this menu option to generate the DataSheet report containing data
for multiple projects.
When you select this menu option, Atrenta Console displays the
Datasheet Report dialog, as shown in the following figure:
435
Synopsys, Inc.

mailto:spyglass_support@synopsys.com

The DataSheet Report

Working with Aggregated Reports
FIGURE 13. Configuring DataSheet Report

In the above dialog, you can specify the following details:
 Specify a configuration file.

Click the button to select the required configuration file.
Alternatively, you can also create a new configuration file. For details,
refer to the Creating a Configuration File topic. For more details about
configuration file, refer to the Details of a Configuration File topic.
436
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
 Specify an output directory

Specify the report output directory in the Output Directory textbox. If the
specified directory does not exist, Atrenta Console creates it.
If you do not specify any directory, the report is saved at a default path.
For details, see Default Paths of Aggregated Reports.

Creating a Configuration File

You can also create a new configuration file and add the required project
files and/or SpyGlass batch run directories in the configuration file. To
create a new configuration file, perform the following steps:
1. Specify the name of the configuration file in the Configuration File textbox.
2. Click the Add Project button, and select the required project file to be

included in the configuration file.
Repeat this step to add more project files.

3. Click the Add Directory button, and select the required SpyGlass batch run
directory to be included in the configuration file.
Repeat this step to add more batch run directories.

4. Specify report title in the Report Title textbox.
Report title can be used to specify the top-level report name. For
example, you can specify your company name as the report title.
When you specify the report title, the following command is generated
in the configuration file:

REPORT_TITLE_DATASHEET <title>

5. Specify report label in the Report Label textbox.
Report label refers to an additional description of the report. For
example, you may specify the report label as Regression report created by
the XYZ group.
When you specify the report label, the following command is generated
in the configuration file:

REPORT_LABEL_DATASHEET <label>

6. Click the Save As button. This displays the Save new configuration file as
dialog.
437
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
7. Specify the required details in the Save new configuration file as dialog, and
click the Save button.

After specifying the configuration file (new or existing), click the Continue
button. This displays the following dialog:

FIGURE 14. DataSheet Report - Dialog Box

In the above dialog, click the Yes button to view the HTML report in the
browser window.

If the manually created configuration file contains attributes, such as
REPORT_TITLE and REPORT_LABEL, without report specific extension, for
example, _DATASHEET at the end, SpyGlass batch process applies the
same values to all the required reports that are generated using the same
configuration file. However, if the configuration file contains both
attributes, such as , REPORT_TITLE and REPORT_TITLE_DATASHEET, then
the report specific value will take the precedence.

This means that following options are applied to all reports:
 REPORT_TITLE <value>

 REPORT_LABEL <value>

 REPORT_FILE_NAME <value>

 CUSTOM_LOGO <value>

Also, following options are applied to the Datasheet report only:
 REPORT_TITLE_DATASHEET <value>

 REPORT_LABEL_DATASHEET <value>
438
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
 REPORT_FILE_NAME_DATASHEET <value>

 CUSTOM_LOGO_DATASHEET <value>

Details of a Configuration File

A configuration file contains the path of project files and/or SpyGlass batch
run dump directories whose data you want to include in the DataSheet
report.

A sample configuration file is given below:

Aggregated Report Configuration File
Created By: sam using Atrenta Console version 5.0
Last Modification On 04-05-2012 04:08:17
--

Project-1.prj
Project-2.prj
Project-3.prj

../Socrates/Project-7.prj
/dev09/case9-new/Project-5.prj
./run1/

REPORT_TITLE_DATASHEET "My Title"
REPORT_LABEL_DATASHEET 'My report label'
CUSTOM_LOGO_DATASHEET http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo
REPORT_FILE_NAME_DATASHEET "My_DataSheet"

Changing the Name of the Report

By default, the name of the report is datasheet, that is, datasheet.html and
datasheet.csv.

You can change this name in either of the following ways:

 By specifying a file name in the Report File Name text box of the Datasheet
Report dialog.
439
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
 By specifying a file name to the REPORT_FILE_NAME_DATASHEET
variable in a configuration file, as shown below:

REPORT_FILE_NAME_DATASHEET <name>

Adding a Logo in the Report Header

You can add a logo in the report header by specifying the following
information in appropriate fields in the Datasheet Report dialog:

 URL of the logo in the Custom Logo:(URL) textbox

 Width (in pixels) of the logo in the Width(px) textbox

 Height (in pixels) of the logo in the Height(px) textbox

 An alternate text to be displayed if the logo fails to load from the
specified URL in the Label textbox

Based on the above information, the logo details are stored in the
configuration file in the following format:

CUSTOM_LOGO_DATASHEET
<URL>@@<Width>@@<Height>@@<Label>

Tcl Format Support in the Configuration File

SpyGlass provides you with a Tcl format to edit the configuration file. You
can use the same configuration file for both the DataSheet and DashBoard
reports for different projects. This makes easy to setup/create SoC
configuration file.

NOTE: You can specify the configuration file in <key>-<value> based text file format or in
the below explained TCL format. However, you can not use the same file for both
the formats.

Following Tcl commands are used in the configuration file:
 aggregate_projects

 set_config_option

aggregate_projects

This command specifies list of projects and work directories that you want
440
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
to include in the specified report. Following is the syntax of the
aggregate_projects command:

aggregate_projects -project {<project_list>} -dir
{<directory_list>} [-report {<report_list>}]

Here, -report is an optional argument and you can set specific reports
for different projects, while aggregation. That is, if you set the -report
{dashboard} option, then the project is added for the DashBoard report
and skips if the same configuration file is used for the DataSheet report.

Now, assume that you want to include Project1.prj and Project2.prj for
both the Datasheet and Dashboard reports. Also, assume that you to
include Project3.prj only for the DashBoard report. To do so, specify the
following commands:

aggregate_projects -project {Project1.prj Project2.prj}

aggregate_projects -project {Project3.prj} -report
{dashboard}

If you set -report {dashboard}, then the project is added for the
DashBoard report and skips if the same configuration file is used for the
DataSheet report.

Following is the sample usage of this command:

foreach module $env(MODULE_LIST) {
 set ::env(MODULE) $module
 foreach variant $env(HARDWARE_LIST) {
 set ::env(HARDWARE) $variant
 //Add project that may typically uses MODULE & HARDWARE
inside the project file
 aggregate_projects -project {project.prj} -report
{dashboard}
 }
}

set_config_option

This command supports different -<key> <values> combinations that are
required for configuring the reports. Following is the syntax of this
command:

set_config_option -<key> <value> [-report {<report_list>}]
441
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
You can specify one of the following values to the <key> option:
 report_title: Specifies the report title

 report_label: Specifies the report label

 custom_logo: Specifies the custom logo on the report

 report_file_name: Specifies the output file name

The -report option is optional and you can set specific reports to use these
config options.

Following is the sample usage of this command:

set_config_option -report_title "My report title" -report
{dashboard}

set_config_option -report_label "My report label" -report
{dashboard}

set_config_option -custom_logo "http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo"

set_config_option -report_file_name "My_DashBoard"
442
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Sample Configuration File

Following is a sample configuration file to configure the Datasheet report
using the above explained commands:

#Add input project files
aggregate_projects -project {/proj/path/module1.prj /proj/
path/module2.prj}

#Add config options
set_config_option -report_title "My report title" -report
{datasheet}
set_config_option -report_label "My report label" -report
{datasheet}
set_config_option -custom_logo "http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo"
set_config_option -report_file_name "My_Datasheet"

Generating the DataSheet Report in Batch

You can generate the DataSheet report in the batch mode by using the
gen_aggregate_report command-line option, as shown below.

spyglass -gen_aggregate_report datasheet -config_file <cfg-
file> | -project <prj-file> [-reportdir <dir>] [-DEBUG]
[-LICENSEDEBUG]

The details of various options are given in the following table:
443
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
The following example generates the DataSheet report for the project file,
CUSB2_WRAP.prj:

spyglass -gen_aggregate_report datasheet -project
CUSB2_WRAP.prj -batch

Generating the Datasheet Report through a Project File

To generate the DataSheet report through a project file, use the following
command in the project file:

set_option aggregate_report datasheet

To specify the directory in which you want to generate the DataSheet report,
use the following command in the project file:

set_option aggregate_reportdir <report-directory-path>

Option Name Description
-config_file Specifies the name of the configuration file that contains a

list of projects and run directories generated by batch
console or GUI.

-project Specifies the name of a project file.
Atrenta Console considers this option only if you have NOT
specified the -config_file option.
If you specify both the -config_file and
-project options, Atrenta Console ignores the
-project option and considers the -config_file
option.

-reportdir (Optional) Specifies the directory in which the result files
will be created.
By default, Console considers the value of this option as
the current working directory.

-DEBUG (Optional) Prints useful debug messages on STDOUT.
This information includes various details such as the
current project accessing, time stamps at various stages,
etc.
Information printed on STDOUT is also dumped in the log
file, datasheet.log.
444
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
NOTE: If you do not specify the above command for a project-specific DashBoard report,
the reports are generated in the <projectwdir>/<project>/<top>/html_reports
directory by default.

To specify a configuration file that contains a list of projects and run
directories generated by batch console or GUI, use the following command
in a project file:

set_option aggregate_report_config_file <config-file-path>
445
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Viewing the DataSheet Report

Report files, such as datasheet.html, datasheet.csv, and IP-XACT files (both 1.2
and 1.4 versions) are generated in the html_reports directory.

Recommended Goals for Generating DataSheet Report

The DataSheet report is primarily intended for the developer of an IP, which
is in the GuideWare2.0 block/rtl_handoff or GuideWare New_RTL/
rtl_handoff stage to verify completeness of RTL.

In addition, the DataSheet report can also be used to communicate design
characteristics and quality to an IP consumer. The IP consumer can use the
GuideWare2.0 soc/rtl_handoff or GuideWare IP_RTL goals to verify or
confirm the incoming IP.

NOTE: The DataSheet report is primarily designed to be used with RTL IP. It is not
specifically designed for use with netlists or full chip designs.

The following GuideWare-based goals are required to populate the
DataSheet report:

GuideWare2.0 "block/rtl_handoff" (or) "soc/rtl_handoff"

lint/design_audit
cdc/cdc_verify
constraints/sdc_gen
constraints/sdc_audit
txv_verification/fp_verification
txv_verification/mcp_verification
power/power_est_average
dft/dft_scan_ready
dft/dft_dsm_best_practice

GuideWare New_RTL/rtl_handoff Goals
rtl_handoff/audit/datasheet_io_audit
rtl_handoff/audit/block_profile
rtl_handoff/cdc_verif/cdc_verif_base (or
rtl_handoff/cdc_verif/cdc_verif)
rtl_handoff/constraint/sdc_coverage
446
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
rtl_handoff/txv_verification/fp_mcp_verification
rtl_handoff/txv_verification/mcp_verification
rtl_handoff/power/power_est_average
rtl_handoff/dft_readiness/dft_scan_ready
rtl_handoff/dft_readiness
/dft_dsm_transition_coverage

GuideWare IP_RTL Goals
ip_exploration/audit/datasheet_io_audit
ip_exploration/audit/ip_rtl_profile
ip_exploration/cdc_verif/cdc_verif_base
ip_exploration/constraint/sdc_coverage
ip_exploration/txv_verification/fp_verification
ip_exploration/txv_verification/mcp_verification
ip_adaptation/power/power_est_average
ip_adaptation/dft_readiness/dft_scan_ready
ip_adaptation/dft_readiness
/dft_dsm_transition_coverage

NOTE: If you are using the constraint/sdc_coverage goal in the GuideWare methodology,
ensure to add the SDC_DataSheet rule to the goal run to fulfill IO delays in the IO
Definitions table.

The above list of GuideWare goals is only for reference purpose. You can
use similar goal names for other design stages. Refer to the GuideWare
and advance product documentation for more information on running the
complete flow.

For timing, congestion, and more accurate design statistics, run the
SpyGlass Physical methodology. For details, refer to the SpyGlass Physical
Methodology and its rule documentation.

Generating the DataSheet Report by Using Non-GuideWare Flows

For non-GuideWare based flows, you can use the following list of SpyGlass
rules to generate the DataSheet report.
447
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Section in the
DataSheet Report

Rule Name Product

IO Definitions RegInputOutput-ML SpyGlass moreLint
Solution

ReportPortInfo-ML SpyGlass moreLint
Solution

PragmaComments-ML SpyGlass moreLint
Solution

Ac_sync_group rules,
that is:
• Ac_sync01
• Ac_sync02
• Ac_unsync01
• Ac_unsync02

SpyGlass CDC Solution

SDC_GenerateIncr SpyGlass Constraints
Solution

SDC_DataSheet SpyGlass Constraints
Solution

Clock and Reset Tree Clock_info15 SpyGlass CDC Solution
Ac_sync_group rules,
that is:
• Ac_sync01
• Ac_sync02
• Ac_unsync01
• Ac_unsync02

SpyGlass CDC Solution

Note: To populate this section in the Datasheet
report, you must run either the Ac_sync_group
rules or the other specified SpyGlass CDC solution
rules mentioned above. If you run both these types
of rules, preference is given to the Ac_sync_group
rules and results of these rules are shown in the
Datasheet report.

Power and Power Clocks PEPWR02 SpyGlass Power Estimate
Constraints SDC_Coverage SpyGlass Constraints

Solution
FP_Pass_Verif01 SpyGlass TXV Solution
Txv_MCP_Warn05 SpyGlass TXV Solution
448
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Do not run the above rules from a single goal or a goal; run these rules as
a part of their respective methodologies.

Details of the DataSheet Report

The following figure illustrates a sample DataSheet report:

Testability Info_coverage SpyGlass DFT Solution
Info_transitionCoverag
e

SpyGlass DFT DSM
Solution

Design Statistics and Black
Boxes

PHY_GateCount SpyGlass Physical
Solution

PHY_GateArea SpyGlass Physical
Solution

PHY_PhysicalSummary
(or)
Audit4Dump

SpyGlass Physical
Solution
(or)
SpyGlass audits Solution

Timing PHY_ClockDetail SpyGlass Physical
Solution

Congestion PHY_CongModules SpyGlass Physical
Solution

Section in the
DataSheet Report

Rule Name Product
449
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
FIGURE 15. Sample DataSheet Report

The DataSheet report contains different sections that provide different types
of information in a tabular format.

To view the details of a particular section, expand that section by clicking
the Expand option adjacent to that section. The Expand option expands a
section by one level. If you want to view the entire section, click the Full
Expand option.
450
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
You can also expand all the sections at once by clicking the Expand All >>
button.

The DataSheet report contains the following sections:

Data in different sections of the DataSheet report is generated only when
some specific goals are run. If you do not run the required goals or if the
goal run does not generate any analysis data, the corresponding sections
of the report are left blank.

IO Definitions

A sample of the IO Definition section is shown in the following figure:

FIGURE 16. DataSheet Report - IO Definition

The details of each field in this table are described below:

IO Definitions Clock Trees Reset Trees Power
Power Clocks Constraints Testability Design Statistics
Black Boxes Timing Congestion

Field Name Description
Basic IO data which is populated by the GuideWare Audit flow goals including the
optional goal, datasheet_io_audit
Pin Specifies the name of the pin
Dir Specifies the direction of the pin
451
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Clock Trees

A sample of the Clock Trees section is shown in the following figure:

FIGURE 17. DataSheet Report - Clock Trees

Atrenta Console populates this section if you run the GuideWare goals of
SpyGlass CDC solution.

The details of each field in this table are described below:

Range Specifies the range of the pin. For example, 3:1.
Reg Specifies whether the port is registered at boundary or not
Desc Specifies the in-line comment that is extracted from the

module/entity declaration or definition for Verilog and VHDL,
respectively

Clock port information, which is populated by SpyGlass CDC Solution flow goals
of GuideWare
Type Indicates inferred clock, reset, or other pins
Ref clock Specifies the reference clock of the pin
Synch Specifies whether the signal is internally synchronized or not
Columns displaying IO delay and mode information. This information is
populated by SpyGlass Constraints solution flow goals by GuideWare.
IO Delay Specifies port input/output delay in the 'Min Rise: Min Fall :

Max Rise : Max Fall' format. If the IO is a clock, it shows the
'clock period'.

Mode Specifies if there are any modes set in SDC corresponding to
IO delays
452
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Reset Trees

A sample of the Reset Trees section is shown in the following figure:

Field Name Description
Clock Specifies the name of the clock
Mode Specifies the type of clock, that is, sys-clock, test-clock, or

at-speed-test-clock
Freq Specifies the clock frequency
Domain Specifies the clock domain name
Domain
Crossing

Specifies the number of domain crossings

Posedge Reg: Specifies the number of flip-flops fed by clock as a
positive edge
Latch: Specifies the number of latches fed by clock as a
posedge
Lib cell: Specifies the number of sequential library cells fed by
clock as a posedge
Black Box: Specifies the number of black boxes fed by clock
as a posedge
Total: Specifies the total posedge count

Negedge Reg: Specifies the number of flip-flops fed by clock as a
negative edge
Latch: Specifies the number of latches fed by clock as a
negedge
Lib cell: Specifies the number of sequential library cells fed by
clock as a negedge
Black Box: Specifies the number of black boxes fed by clock
as a negedge
Total: Specifies the total negedge count
453
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
FIGURE 18. DataSheet Report - Reset Trees

Atrenta Console populates this section if you run the GuideWare goals of
SpyGlass CDC Solution.

The details of each field in this table are described below:

Power

A sample of the Power section is shown in the following figure:

Field Name Description
Reset Specifies the name of the reset
Reset Type Specifies the reset type as preset or clear
Synchronous Active High: Specifies the number of flip-flops that use it as

an active high synchronous reset
Active Low: Specifies the number of flip-flops that use it as
an active low synchronous reset

Asynchronous Active High: Specifies the number of flip-flops that use it as
an active high asynchronous reset
Active Low: Specifies the number of flip-flops that use it as
an active low asynchronous reset
454
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
FIGURE 19. DataSheet Report - Power

Atrenta Console populates this section if you run the GuideWare Power flow
goals of all the stages (initial_rtl, detailed_rtl, and
rtl_handoff) of the New_RTL methodology.

The details of each field in this table are described below:

Power Clocks

A sample of the Power Clocks section is shown in the following figure:

Field Name Description
Technology Specifies the name of the technology used
Register bit width
threshold for clock gating

Specifies the register bit width threshold for clock
gating

Registers enabled with
clock gating

Specifies the registers enabled with clock gating

Leakage Power Specifies the leakage power
Internal Power Specifies the internal power
Switching Power Specifies the switching power
Total Power Specifies the total power
455
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
FIGURE 20. DataSheet Report - Power Clocks

Atrenta Console populates this section if you run the GuideWare Power flow
goals of all the stages (initial_rtl, detailed_rtl, and
rtl_handoff) of the New_RTL methodology.

The details of each field in this table are described below:

Constraints

The sample of the Constraints section is shown in the following figure:

FIGURE 21. DataSheet Report - Constraints

Atrenta Console populates this section if you run the goals of SpyGlass
Constraints Solution and SpyGlass TXV Solution.

The details of each field in this table are described below:

Field Name Description
Clock Specifies the name of the clock
Frequency Specifies the frequency of the clock
456
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Testability

The sample Testability section is shown in the following figure:

FIGURE 22. DataSheet Report - Testability

Atrenta Console populates this section if you run the goals of SpyGlass DFT
solution.

The details of each field in this table is described below:

Field Name Description
Percentage of ports
constrained

Specifies the percentage of ports constrained

Percentage of registers
constrained

Specifies the percentage of registers constrained

Exception Type
False Paths (FP) Specifies the number of false paths
Multi Cycle Paths (MCP) Specifies the number of multi-cycle paths

Field Name Description
Percentage of scannable
flip-flops

Specifies the percentage of flip-flops that can be
scanned

Testability Contains a row for Stuck-at Test and
Transition Fault

Fault coverage Specifies Stuck-at Test and Transition
Fault values for fault coverage

Test Coverage Specifies Stuck-at Test and Transition
Fault values for test coverage
457
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Design Statistics

A sample Design Statistics section is shown in the following figure:

FIGURE 23. DataSheet Report - Design Statistics

The above section displays a table showing different types of statistic data
and their counts.

In this table, the first two statistics data are populated from the SpyGlass
Physical flow, if it exists. Otherwise, the corresponding cells appear blank.

The rest of the three statistics are populated from the SpyGlass Physical
flow, if it exists. Otherwise, as a second priority, the Audit flow data is
populated and displayed, if it exists.

The details of each design statistics in this table are described below:

Statistic Description
Synthesizable
gates (NAND2
equivalent)

Specifies the size of synthesizable RTL logic measured in terms
of the NAND2 equivalent gates. This metric does not include
hard IPs and memories.

Total Area Specifies the total size of the design including all design
entities, such as synthesizable RTL logic, hard IPs, memories,
and black boxes.
For RTL logic, standard cell utilization specified in SpyGlass
Physical goal is used (default is 60%).

Registers Specifies the total number of flip-flop instances in the design.
458
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Black Boxes

This section displays the number of ports for each black box. The details of
each field of this table are described below:

Timing

This section displays the timing data populated from the SpyGlass Physical
flow.

A sample Timing section is shown in the following figure:

FIGURE 24. DataSheet Report- Timing

The details of each field of this table are described below:

Latches Specifies the total number of latch instances in the design.
Tristates Specifies the total number of tristate instances in the design.

These are the instances for which an output port can be set to
drive a high-impedance signal.

Field Name Description
Black Box Name Specifies the name of the black box
Number of Ports Specifies the number of ports

Field Description
Clock Specifies all primary and derived clocks defined in an

SDC file.
Period Specifies a clock period.
459
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Congestion

This section displays the congestion data populated from the SpyGlass
Physical flow.

A sample Congestion section is shown in the following figure:

FIGURE 25. DataSheet Report - Congestion

The details of each field of this table are described below:

Number of Failing Paths Specifies the total number of gross failing path
groups, when grouped by a common source bus and
a common destination bus for the specified clock.
It means multiple paths from different bits in a
source bus to different bits in a destination bus are
counted as 1.
The threshold for gross failing paths is based on the
PHY_ClockDetail parameter. When no valid timing
paths exist for a given clock, "-" appears in the
corresponding cell.

Maximum Logic Levels Specifies the maximum number of standard cell
instances as analyzed across all timing paths of the
specified clock.
When no valid timing paths exist for a given clock, "-
" appears in the corresponding cell.

Field Description
Module Name Specifies the RTL module name of a grossly

congested module instance.
460
Synopsys, Inc.

The DataSheet Report

Working with Aggregated Reports
Hierarchical Instance
Name

Specifies the full hierarchical instance name of a
grossly congested RTL module instance.
In the table, only leaf-level name appears. Place the
cursor over this name to see the complete path in a
tool-tip.

Standard Cell Count Specifies the number of standard cell instances in a
congested RTL module instance.

Internal Congestion
Score

Specifies the SpyGlass Physical internal congestion
score of the RTL module on a scale of 0-10.
The following are some scores and their meanings:
• 8-10: Specifies a grossly congested module that

requires very low utilization during place and
route.

• 7-8: Specifies a congested module that requires
low utilization during place and route.

• 0-7: Specifies a non-congested module.
Peripheral Congestion Specifies a SpyGlass Physical grade for external

connectivity of the specified module relative to its
size.
A module with a high or a very high grade may
contribute to congestion in the parent module.
461
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
The DashBoard Report
The DashBoard report enables you to review the productivity and efficiency
of different blocks of your design periodically.

By default, SpyGlass automatically generates the Dashboard report for the
current project. You can disable report generation for the Dashboard report
using the following command:

set_option disable_html_report {dashboard}

A sample Full Chip SoC DashBoard report is shown in the following figure:

FIGURE 26. The DashBoard Report

The above report enables you to evaluate present risks involved in different
design objectives, such as clocks and power-related objectives of various
blocks and view trend variations over a period of time. For details, see
Details of the DashBoard Report.
462
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
A sample individual module DashBoard report is shown in the following
figure:

FIGURE 27. Sample Dashboard Report

NOTE: While including multiple projects, you must compile data for all different top-level
design units before including such projects in the report.

This section explains the following topics:
 Licensing Requirements

 Browser Compatibility

 Generating Dashboard Report

 Viewing the DashBoard Report

 Details of the DashBoard Report
463
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
 Customizing Report

 Managing Reports

 Switching to the Old Dashboard Report

Licensing Requirements

SpyGlass DashBoard report is a licensed capability and requires the license
feature, dashboard. Please contact Atrenta Support
(spyglass_support@synopsys.com), if you need this license.

Browser Compatibility

The Atrenta DashBoard is compatible with the following Web browsers:
 Firefox 2.0.0.20 (UNIX or Windows) or higher

 IE 8, 9, 10, and 11 on Windows 7

Setup Instructions for Google Chrome
1. Right-click the Google Chrome shortcut and click Properties from the

shortcut menu.
The Google Chrome Properties dialog box is displayed.

2. Specify following in the Target Box field:

C:\Users\USERNAME\AppData\Local\Google\Chrome\Application\
chrome.exe --allow-file-access-from-files

3. Press Apply/OK.
4. Run the DashBoard Report.

Generating Dashboard Report

You can generate the Dashboard report in one of the following ways:
 Generating the DashBoard Report through Project File

 Generating the DashBoard Report in Batch

 Generating Dashboard Report in GUI
464
Synopsys, Inc.

mailto:spyglass_support@synopsys.com

The DashBoard Report

Working with Aggregated Reports
 Creating a Configuration File

 Creating the Success Criteria File

Generating the DashBoard Report through Project File

To generate the DashBoard report through a project file, use the following
command in the project file:

set_option aggregate_report dashboard

To specify the directory in which you want to generate the DashBoard
report, use the following command in the project file:

set_option aggregate_reportdir <report-directory-path>

NOTE: If you do not specify the above command for a project-specific DashBoard report,
the reports are generated in the <projectwdir>/<project>/<top>/html_reports
directory by default.

To specify a configuration file that contains a list of projects and run
directories generated by batch console or GUI, use the following command
in a project file:

set_option aggregate_report_config_file <config-file-path>

Generating the DashBoard Report in Batch

You can generate the DashBoard report in the batch mode by using the
gen_aggregate_report command-line option, as shown below:

spyglass -gen_aggregate_report dashboard -config_file
<cfgfile> | -project <prj-file> [-reportdir <dir>] [-DEBUG]
[-LICENSEDEBUG]

The details of various options are given in the following table:
465
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
The following example generates the DashBoard report for the project file,
CUSB2_WRAP.prj:

spyglass -gen_aggregate_report dashboard -project
CUSB2_WRAP.prj -batch

Option Name Description
-config_file Specifies the name of the configuration file that contains a

list of projects and run directories generated by batch
console or GUI.

-project Specifies the name of a project file.
Atrenta Console considers this option only if you have NOT
specified the -config_file option.
If you specify both the -config_file and
-project options, Atrenta Console ignores the
-project option and considers the -config_file
option.

-reportdir (Optional) Specifies the directory in which the result files
will be created.
By default, Console considers the value of this option as
the current working directory.

-DEBUG (Optional) Prints useful debug messages on STDOUT.
This information includes various details such as the
current project accessing, time stamps at various stages,
etc.
Information printed on STDOUT is also dumped in the log
file, dashboard.log.
466
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Generating Dashboard Report in GUI

To generate the DashBoard report, perform the following steps:
1. Select Tools -> Dashboard Report menu option.

The Dashboard Report dialog appears, as shown in the following figure:

FIGURE 28. Configuring Dashboard Report
467
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
2. In the Dashboard Report dialog, click the () button to select the
required configuration file.
Alternatively, you can create a new configuration file, and add the
required details in it, such as project files and run directories. For
details, see Creating a Configuration File.

3. Specify a Success Criteria File by clicking on the () button next to the
Success Criteria File option. For details, see Creating the Success Criteria
File.

4. Specify the details, such as report title, report label, custom logo, and
link report.

5. Specify the report output directory in the Output Directory textbox.
If the specified directory does not exist, Atrenta Console creates it.
If you do not specify any directory, the report is saved at a default path.
For details, see Default Paths of Aggregated Reports.

6. Click the Save & Continue button.

This step generates the DashBoard report, and the following dialog
appears:

FIGURE 29. Dashboard Report - Dialog Box

7. In the above dialog, select the Yes button if you want to view the HTML
report in the browser window. Otherwise, click the No button.
468
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Creating a Configuration File

To create a configuration file, perform the following steps:
1. Enter the name of the configuration file in the Configuration File textbox.
2. Click the Add Project button to add a project file in the configuration file

being created.

The Select File(s) dialog appears.
3. In the Select File(s) dialog, select the ‘required project file and click the

OK button.

The selected project file appears in the Project List section of the
Dashboard Report dialog.

4. Repeat steps 2 and 3 to add more project files.
5. Click the Add Directory button if you want to add individual run directories

in the configuration file being created.

The Select Directory dialog appears.
6. In the Select Directory dialog, select the required directory and click the

OK button.

The selected directory gets added in the Individual Run Directory List
section of the Dashboard Report dialog.

7. Repeat steps 5 and 6 to add more directories.
8. Specify the success criteria file in the Success Criteria File textbox.

This file contains the success criteria data set by a design expert. For
details on this file, refer to the Creating the Success Criteria File topic.

9. Specify report title in the Report Title textbox.
Report title can be used to specify the top-level report name. For
example, you can specify your company name as the report title.
When you specify a report title, the following command is generated in
the configuration file:

REPORT_TITLE_DASHBOARD <title>

10.Specify report label in the Report Label textbox.
Report label refers to an additional description of the report. For
example, you may specify the report label as Regression report created by
the XYZ group.
469
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
When you specify the report label, the following command is generated
in the configuration file:

REPORT_LABEL_DASBHBOARD <label>

11.Click the Save & Continue button.

This step generates the DashBoard report.

Alternatively, you can create a new configuration file by clicking the
button.

Sample Configuration File

A sample configuration file is shown below:

##
Dashboard Configuration File
##

list of modules to include in the report
/proj/path/to/moduleA.prj

additional modules prj files can be listed here. This will
result in a report showing multiple modules. Multi-module
reports are ideas for full chip project reports.
/proj/path/to/moduleB.prj
Specify the file which contains the dashboard success
(pass/fail) criteria
SUCCESS_CRITERIA_FILE_PATH /proj/path/to/
success_criteria.cfg

Customize the report title and label
REPORT_TITLE_DASHBOARD "Project A Nightly Regression Report"
REPORT_LABEL_DASHBOARD "Today's Date - Regression Directory:
"CUSTOM_LOGO_DASHBOARD http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo
REPORT_FILE_NAME_DASHBOARD "My_DashBoard"
470
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Tcl Format Support in the Configuration File

SpyGlass provides you with a Tcl format to edit the configuration file. You
can use the same configuration file for both the DataSheet and DashBoard
reports for different projects. This makes easy to setup/create SoC
configuration file.

NOTE: You can specify the configuration file in <key>-<value> based text file format or in
the below explained TCL format. However, you can not use the same file for both
the formats.

Following Tcl commands are used in the configuration file:
 aggregate_projects

 set_config_option

 set_success_criteria_file

aggregate_projects

This command specifies list of projects and work directories that you want
to include in the specified report. Following is the syntax of the
aggregate_projects command:

aggregate_projects -project {<project_list>} -dir
{<directory_list>} [-report {<report_list>}]

Here, -report is an optional argument and you can set specific reports
for different projects, while aggregation. That is, if you set the -report
{dashboard} option, then the project is added for the DashBoard report
and skips if the same configuration file is used for the DataSheet report.

Now, assume that you want to include Project1.prj and Project2.prj for
both the Datasheet and Dashboard reports. Also, assume that you to
include Project3.prj only for the DashBoard report. To do so, specify the
following commands:

aggregate_projects -project {Project1.prj Project2.prj}

aggregate_projects -project {Project3.prj} -report
{dashboard}

If you set -report {dashboard}, then the project is added for the
DashBoard report and skips if the same configuration file is used for the
DataSheet report.

Following is the sample usage of this command:
471
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
foreach module $env(MODULE_LIST) {
 set ::env(MODULE) $module
 foreach variant $env(HARDWARE_LIST) {
 set ::env(HARDWARE) $variant
 //Add project that may typically uses MODULE & HARDWARE
inside the project file
 aggregate_projects -project {project.prj} -report
{dashboard}
 }
}

set_config_option

This command supports different -<key> <values> combinations that are
required for configuring the reports. Following is the syntax of this
command:

set_config_option -<key> <value> [-report {<report_list>}]

You can specify one of the following values to the <key> option:
 report_title: Specifies the report title

 report_label: Specifies the report label

 custom_logo: Specifies the custom logo on the report

 report_file_name: Specifies the output file name

The -report option is optional and you can set specific reports to use these
config options.

Following is the sample usage of this command:

set_config_option -report_title "My report title" -report
{dashboard}

set_config_option -report_label "My report label" -report
{dashboard}

set_config_option -custom_logo "http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo"

set_config_option -report_file_name "My_DashBoard"
472
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
set_success_criteria_file

This command is specific to DashBoard and it sets success criteria file path
for DashBoard generation. The syntax of this command is given below:

set_success_criteria_file <file_path>

Following is the sample usage of this command:

Sample usage of this command:

set_success_criteria_file /proj/path/to/
success_criteria.cfg

Sample Configuration File

Following is a sample configuration file to configure the Dashboard report
using the above explained commands:

#Add input project files
aggregate_projects -project {/proj/path/module1.prj /proj/
path/module2.prj}

#Add config options
set_config_option -report_title "My report title" -report
{dashboard}
set_config_option -report_label "My report label" -report
{dashboard}
set_config_option -custom_logo "http://myorg.com/img/
logo.gif@@75@@45@@My Custom Logo"
set_config_option -report_file_name "My_DashBoard"

#Add Success criteria options
set_success_criteria_file /<path>/success_criteria.tcl

Creating the Success Criteria File

The success criteria file determines whether a particular design objective,
such as clocks and power-related objectives, meet the specified criteria.

NOTE: You can copy the sample success criteria file from the following path:
473
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
$SPYGLASS_HOME/auxi/dashboard_criteria_template

Based on your requirement, you can modify this file instead of writing it
from scratch.

You can configure the Dashboard report to track and measure design
requirements using the Success Criteria file. For example, at the beginning
of a design project, running detailed CDC, DFT, and Power checks is not
required. Therefore, you can specify only the goals required at this stage of
development, such as, lint goals in the Success Criteria File. You can also
configure the report for less strict success criteria, such as, fixing only the
FATAL and ERRORS type violations for instances. As the design progresses,
you can include additional goals and increase the success criteria,
accordingly. Figure x and Figure y illustrate sample success criteria files for
early design and advanced design scenarios.

Based on the degree to which a particular design objective meets the
success criteria, the Pass/Fail Status column is populated with appropriate
values: Pass, Fail, or Unknown.
474
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Following figure illustrates a sample success criteria file for an early design
stage:

###
Sample SpyGlass Dashboard Success criteria file
###
#--
Specify list of expected goals to report
#--
This option ensures that goals which are expected, but are not run,
will show up in the report as NOT_RUN. If a list of goals is not
specified, then only the goals which have been run will be reported.
NOTE: The dashboard report will only display the data from the goals
which are included in this list of goal (if specified). If no
set_report_option is not specified, the report data from all the goals
found in the results directory.

set_report_option -goals {lint/lint_rtl,cdc/clock_reset_integrety}
#--
Quality Objectives
#--
set_quality_criteria -severity {Error=0}
hide Info and Waived Info columns from quality section
set_report_option -hide_severity Info,Waived-Info
#--
Disable Specific Metrics
#--
hide_design_objective CDC
hide_design_objective DFT
hide_design_objective Power
hide_design_objective Constraints
hide_design_objective Physical
#--
Design Objectives
#--
None Specified at this EARLY stage of the project
475
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Tcl Commands Used in the Success Criteria File

You can specify the following Tcl commands in the success criteria file:
 set_design_objective

 hide_design_objective

 set_quality_criteria

 set_report_option

set_design_objective

This command specifies the design objective on which success criteria is
being applied. The syntax of this command is given below:

set_design_objective
<CDC|Power|DFT|Constraints|advance_lint>
-criteria {<criteria1>,<criteria2>,…}
[-block {<block-name1>,<block-name2>,…}]
[-goal {<goal1>,<goal2>,…}]

The following table describes the details of various arguments of this
command:
476
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Argument Description
-criteria Specifies the success criteria.

For example, you can specify the following criteria for the Power
design objective:
-criteria {switching_power<50uW,
total_power<80uW,leakage_powe<20nW}
For information on other supported items, see Variables Used in
the Success Criteria File.
Following operators are accepted in the mathematical
expressions:
<=, >= , >, <, !=, =
The criteria that are mentioned as coverage/Percentage are
percentage (%) numbers and the rest are product identified
numeric values.
While validating the items that are represented in units, such as,
power, frequency, and timing, unit conversion is considered, if
the user-specified criteria and the product reported are in
different units. However, if the specified unit does not match,
numeric value is considered.
Following units are supported in unit conversion:
• Power: W (watt), dW (deciwatt), cW (centiwatt), mW

(milliwatt), uW (microwatt), nW (nanowatt), pW (picowatt)
• Frequency: Hz (Hertz), kHz or KHz (kilo hertz), MHz (Mega

hertz), GHz (Giga hertz), THz (Tera hertz)
• Time: ps (pico second), ns (nano second)
If you do not want to compare the value produced by SpyGlass
analysis for certain objectives, but just want to show them in the
report, specify the success criteria value as display_only,
as shown in the following example:
set_design_objective Power -criteria
{switching_power=display_only,total_power=display_only
,leakage_power=display_only}
477
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
hide_design_objective

This command removes the specified design objective, such as CDC,
Power, DFT, and Constraints from the DashBoard report.

The following is the syntax of using this command:

hide_design_objective <objectives> [-item {<item-list>}]
[-top {<top-list>}]

Where:

 <objectives> refers to a comma-separated list of design objectives
to be removed.

 <item-list> refers to the items to be hidden for a design objective.
Use this argument if within a design objective, you want to hide items
that are inappropriate for all/some blocks.

 <top-list> refers to a list of design unit names.

The following command hides the CDC and Power design objectives:

hide_design_objective CDC,Power

The following command hides the switching_power and
internal_power items of the Power design objective for all top design
units:

-block Specifies a comma-separated list of blocks on which the specified
criteria is applicable.
If you do not specify this argument, Atrenta Console applies the
specified criteria on all the blocks in the design.

-goal Specifies a comma-separated list of goals or scenarios from
which data of the specified design objective criteria should be
picked. For details, see Setting Success Criteria Values to
Different Goals and Scenarios.

However, if you do not run the goals specified by this argument
or if there are any goals explicitly set for the report by using
set_report_option command but these goals are not subset of
that explicit list, Atrenta Console does not include results of such
goals in the design objective trend.

Argument Description
478
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
hide_design_objective Power -item
{switching_power,internal_power}

The following command hides the switching_power and
internal_power items of the Power design objective for the top1
design unit:

hide_design_objective Power -item
{switching_power,internal_power} -top top1

NOTE: If you hide all the design objectives, the Design Objectives table does not appear in
the report. In this case, the report only displays the Quality Goals table.

set_quality_criteria

This command sets criteria to qualify for the Pass status. The syntax of
this command is given below:

set_quality_criteria
-severity {<criteria1>,<criteria2>,…}
[-goal {<goal1>,<goal2>,…}]
[-top {<block1>,<block2>,…}]

The following table describes the details of various arguments of this
command:
479
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
set_report_option

The following points describe the details of this command.

 This command specifies options to filter results in the DashBoard report.
The syntax of this command is given below:

set_report_option

Argument Description
-severity Specifies the criteria to qualify for the Pass status, as shown in

the following example:
-severity {Fatal=0,Error=0,
Warning<1000,Waived-Error=0}
Valid severities accepted in this category are based on SpyGlass
reported severity class messages that can be waived.
SpyGlass accepts following case-insensitive labels:
• Fatal, Error, Warning, Info (SpyGlass reported severity

classes)
• Waived-Error, Waived-Warning, Waived-Info (severity class

messages that can be waived)
In the mathematical expressions, following operators are
accepted:
<=, >= , >, <, !=, =
The values set in these expressions are number of SpyGlass
reported (or) waived severity message counts.

-goal (Optional) Specifies a comma-separated list of goals on which
the specified criteria should be applied.
If you do not specify this argument, Atrenta Console applies the
specified criteria on all goals.
The following example shows the usage of this argument:
set_quality_criteria -severity
{Error<5,Warning<1000,Waived-Error=0} -goal
{goal1,goal2}

-top (Optional) Specifies a comma-separated list of blocks on which
the specified criteria for specified goals should be applied.
If you do not specify this argument, Atrenta Console applies the
specified criteria on all blocks.
The following example shows the usage of this argument:
set_quality_criteria -severity
{Error<5,Warning<1000,Waived-Error=0} -goal
{goal1,goal2} -top {block1,block2}
480
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
[–goals {<goal1>,<goal2>,…}]
[-top {<block_name1>,<block_name2>,…}]

The following table describes the details of various arguments of this
command:

 This command specifies scenarios to be considered in the DashBoard
report.
If you create multiple scenarios for a goal, results of all these scenarios
are displayed in the DashBoard report by default.
However, you can specify scenarios that you want to consider in the
report by using the -goals argument of the set_report_option
command.

For example, if you want to include results of the test1 and test2
scenarios of the G1 goal, specify the following command in the success
criteria file:

set_report_option -goals { G1@test1,G1@test2 }

In this case, results for only test1 and test2 scenarios are displayed
as two entries in the quality section of the DashBoard report even if there
are other scenario results present for the G1 goal.
Now consider that you specify the following command in the success
criteria file:

set_report_option -goals { G1 }

In this case, all results from different scenario runs, including the
default scenario run, if present, are displayed for the G1 goal.

Argument Description
-goals Specifies a comma-separated list of goals for which results

should be displayed in the report.
By default, the report contains result of all the goals from
respective projects.

-top (Optional) Specifies a comma-separated list of blocks.
If you do not specify this argument, all the blocks are
considered.
481
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
 This command hides the specified severity column in the report.
Following is the syntax for hiding the specified severity column:

set_report_option
–hide_severity <Warning|Info|Waivers|Waived-Error|Waived-
Warning|Waived-Info>

You can specify a comma-separated list of severities in the
-hide_severity option to hide the columns of those severities from
the report.
For example, you can hide columns for Warning and Info severities by
specifying the following command:

set_report_option -hide_severity Warning,Info

To the column of Info severity only, specify the following command:

set_report_option -hide_severity Info

 This command shows the specified severity column in the report. The
following is the syntax for showing the specified severity column:

set_report_option
–show_severity <Warning|Info|Waivers|Waived-Error|Waived-
Warning|Waived-Info>

For example, you can show columns for the Info severity by specifying
the following command:

set_report_option -show_severity Info

 This command specifies whether results of a goal from multiple
methodology stages should be accumulated as one entry point in the
Dashboard report.
The following is the syntax to accumulate results of multiple runs of the
same goal as one entry in the Dashboard report:

set_report_option -combine_stages 1

For example, you can accumulate results of the initial_rtl/lint/connectivity
and detailed_rtl/lint/connectivity goal as one entry in the Dashboard report
by specifying the above command in the success criteria file.

By default, the value of the -combine_stages argument is 0.
482
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
 This command specifies whether the severity counts displayed in the
Quality Goals tab should create links to display details of the rule
messages on selection.
Following is the syntax to create links to the severity counts.

set_report_option -link_goal_messages 1

Sourcing a Success Criteria File in another File

You can source a success criteria file in another success criteria file.

For example, if you want to specify some settings in a single success
criteria file but want to keep all global settings, which work for all design
blocks in another file, you can source that global file in the local file. This is
shown in the following example:

#Local criteria file local.tcl

source global.tcl

<commands-in-local-file>

Now if you set the local.tcl file as the success criteria file in the report
configuration file, this local file will include all global settings from the
global.tcl file. In addition, settings specified in the local.tcl file would
overwrite similar settings specified in the global.tcl file.

Default Success Criteria File

SpyGlass sets some technology variables to factory default criteria values
in the $SPYGLASS_HOME/auxi/dashboard_default_criteria file.

These values are used while populating the DashBoard report when you
run a technology but do not specify any success criteria information.

Variables Used in the Success Criteria File

You can specify a success criteria by setting appropriate values for different
design objective variables in the success criteria file.

The following table displays the variables that you can specify in the
success criteria file:
483
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Design
Objective

Variable Name Description Default/
Optional

CDC synchronization_coverage Synchronization
coverage

Default

cdc_failed_properties Failed properties Default
cdc_partial_proven_properti
es

Partially-proven
properties

Optional

cdc_average_depth Average depth of
partially-proven
properties

Optional

cdc_minimum_depth Minimum depth of
partially-proven
properties

Optional

Power switching_power Switching Power Default
internal_power Internal Power Default
leakage_power Leakage Power Default
total_power Total Power Default

DFT stuck_at_fault Stuck at fault
coverage

Default

stuck_at_test Stuck at test
coverage

Default

transition_fault Transition fault
coverage

Default

transition_test Transition test
coverage

Default

scannable_flops Percentage of
scannable flops

Default

Constraints unverified_fp Number of
unverified FP

Default

unverified_mcp Number of
unverified MCP

Default

ports_constrained Percentage of
ports constrained

Default

registers_constrained Percentage of
registers
constrained

Default
484
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Advanced_Lint advanced_lint_failed_proper
ties

Failed properties Default

advanced_lint_partial_prove
n_properties

Partially proven
properties

Optional

advanced_lint_average_dep
th

Average depth of
partially proven
properties

Optional

advanced_lint_minimum_de
pth

Minimum depth of
partially proven
properties

Optional

maximum_cyclomatic_comp
lexity

Maximum
cyclomatic
complexity

Default

Design
Objective

Variable Name Description Default/
Optional
485
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
If you run a technology (data available), the default items appear in the
report even if you did not set a success criteria or chose explicitly to hide
an item. However, for optional items, you must explicitly set a criterion to
make them visible.

Physical Latches Latches Optional
Registers Registers Default
Synthesizable_gates_(NAND
2_equivalent)

Synthesizable
gates (NAND2
equivalent)

Default

Total_area Total area Default
Tristates Tristates Optional
Number_of_congested_mod
ule_instances

Number of
congested module
instances

Default

Top_module_congestion Top module
congestion

Optional

Maximum_logic_levels_in_c
ore

Maximum logic
levels in core

Optional

Maximum_logic_levels_on_
periphery

Maximum logic
levels on periphery

Optional

Number_of_timing_paths_f
ailing_in_core

Number of timing
paths failing in
core

Default

Number_of_timing_paths_f
ailing_on_periphery

Number of timing
paths failing on
periphery

Default

Timing_slack_in_core Timing slack in
core

Optional

Timing_slack_on_periphery Timing slack on
periphery

Optional

Floorplan_timing_slack_in_c
ore

Floorplan timing
slack in core

Optional

Floorplan_timing_slack_on_
periphery

Floorplan timing
slack on periphery

Optional

Design
Objective

Variable Name Description Default/
Optional
486
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
The following table explains the variable display mechanism when a
technology is run or not run and a success criteria is set or not set.

The following example sets the success criteria as pass if the
synchronization coverage is above 90%:

set_design_objective CDC -criteria
synchronization_coverage>90%

For a particular design objective, you can also specify more than one
criterion within {}, as shown in the following example:

set_design_objective power -criteria
{switching_power<0,total_power<5uW,leakage_power<0}

Handling Waivers

Data corresponding to a few design objectives may be affected by waivers.
If you apply waivers as a part of the original analysis, they are considered
during data computation.

For example, the synchronization_coverage, cdc_failed_properties, and
cdc_partial_proven_properties variables are influenced by waivers, and the
report generator computes the final statistics by considering the applied
waivers.

NOTE: Any waivers created and applied in the GUI after original analysis are not
considered until next analysis.

Setting Success Criteria Values to Different Goals and Scenarios

The following command sets success criteria values to the
power_est_average goal:

set_design_objective Power -criteria

User success criteria set User success criteria not set
Default
display item

Optional
display item

Default
display item

Optional
display item

Technology
run

Yes Yes Yes No

Technology
not run

Yes Yes No No
487
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
{switching_power<50mW,total_power<55mW,leakage_power<50uW,in
ternal_power<10mW} -goal {Power/power_est_average} -top
mc_top

You can also set success criteria values to scenarios created for goals. For
example, the following commands set success criteria values for the cg4
and cg8 scenarios created from the power_est_average goal:

set_design_objective Power -criteria
{switching_power<25mW,total_power<35mW,leakage_power<10uW,in
ternal_power<25mW} -goal {Power/power_est_average@cg4} -top
mc_top

set_design_objective Power -criteria
{switching_power<15mW,total_power<25mW,leakage_power<10uW,in
ternal_power<20mW} -goal {Power/power_est_average@cg8} -top
mc_top

For details on scenarios, see Working with Scenarios.

Use Model for the Success Criteria File

You can configure the Dashboard report to track and measure design
requirements using the Success Criteria file. For example, at the beginning
of a design project, running detailed CDC, DFT, and Power checks is not
required. Therefore, you can specify only the goals required at this stage of
development, such as, lint goals in the Success Criteria File. You can also
configure the report for less strict success criteria, such as, fixing only the
FATAL and ERRORS type violations for instances.
488
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Following figure illustrates a sample criteria file for an early design stage.

###
Sample SpyGlass Dashboard Success criteria file
###
#--
Specify list of expected goals to report
#--
This option ensures that goals which are expected, but are not run,
will show up in the report as NOT_RUN. If a list of goals is not
specified, then only the goals which have been run will be reported.
NOTE: The dashboard report will only display the data from the goals
which are included in this list of goal (if specified). If no
set_report_option is not specified, the report data from all the goals
found in the results directory.

set_report_option -goals {lint/lint_rtl,cdc/clock_reset_integrety}
#--
Quality Objectives
#--
set_quality_criteria -severity {Error=0}
hide Info and Waived Info columns from quality section
set_report_option -hide_severity Info,Waived-Info
#--
Disable Specific Metrics
#--
hide_design_objective CDC
hide_design_objective DFT
hide_design_objective Power
hide_design_objective Constraints
hide_design_objective Physical
#--
Design Objectives
#--
None Specified at this EARLY stage of the project
489
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
As the design progresses, you can include additional goals and increase the
success criteria, accordingly. For example, after the design reaches Design
Review#1 (Feature Complete), CDC and Power Analysis begin. The CDC
and Power results are also reported, in addition to the existing lint goals.
Also, all Lint warning messages should be resolved.

Following figure illustrates a sample criteria file for an advanced design
stage:

##
Sample SpyGlass Dashboard Success criteria file
##
#--
Specify list of expected goals to report
#--
This option ensures that goals which are expected, but are not run,
will show up # in the report as NOT_RUN. If a list of goals is not
specified, then only the goals which have been run will be reported.
NOTE: The dashboard report will only display the data from the goals
which are included in this list of goal (if specified). If no
set_report_option is not specified, the report data from all the goals
found in the results directory.
set_report_option -goals { lint/lint_rtl,
 cdc/clock_reset_integrety,
 lint/design_audit,
 constraints/sdc_check,
 cdc/cdc_verify,
 dft/dft_scan_ready,
 dft/dft_dsm_best_practice,
 power/power_est_average,
 } -top {$top}

#--
Quality Objectives
#--
strict quality checks for lint and CDC analysis
set_quality_criteria -severity {Error=0, Warnings=0, Waived-Error=0}
 -goal {lint/lint_rtl}
490
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
set_quality_criteria -severity {Error=0, Warnings=0}
 -goal {cdc/cdc_verify}
success criteria for all other goals
set_quality_criteria -severity {Error=0}

hide Info and Waived Info columns from quality section
set_report_option -hide_severity Info,Waived-Info
#--

Disable Specific Metrics
#--
Report all design metrics during the late stages of design.

#--
Design Objectives
#--
DFT objectives
set_design_objective DFT -criteria {stuck_at_fault>95,
 stuck_at_test>95,
 transition_fault>80,
 transition_test>80,
 scannable_flops>95}
CDC objectives
set_design_objective CDC -criteria {unsync_crossings=0,
 synchronization_coverage=100}
Constraints objectives might be module specific - so they are not set
here.
set_design_objective Constraints -criteria {ports_constrained=100,
 registers_constrained>90}
NOTE: excluding the criteria value, will display the value, but will
not provide a pass/fail icon. In other words - display the values only
- don't judge a success pass/fail.
set_design_objective Power -criteria {switching_power=display_only,
 internal_power=display_only,
 leakage_power=display_only,
 total_power=display_only}
491
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Viewing the DashBoard Report

Atrenta Console generates the Dashboard report files, such as
dashboard.html and dashboard.csv in the html_reports directory.

If you create an SoC Dashboard that contains more than one top module
results, the report displays following high-level summary information in the
following three tabs:
 Summary (default tab)

 Quality Goals

 Design Objectives

You can view the individual Module Dash Board report by selecting the
module links provided in the Quality Goals and Design Objectives tabs.

However, if the DashBoard was created for single 'top', the report directly
opens the 'Module DashBoard' without above summary tab pages.

The order of data present in this report is as follows:

SoC DashBoard

 Summary tab

 Left side bar chart shows quality followed by SpyGlass products in
the order of CDC, Advanced_Lint, DFT, Constraints, Power, Physical
and other custom design objectives. Except Quality section, rest of
the products will display as per data availability and user's
configuration in success criteria settings.

 Right side details chart shows list of goals executed across all
modules when Quality item was enabled. When product items are
enabled using the left mouse click on left side vertical bars, it
displays the relevant product variables as per the success criteria
settings.

 Quality Goals/ Design Objectives tab

 The table lists all modules as per the order of projects listed in the
configuration file.

 Rest of the columns displays each applicable goal or product variable
in the same order as displayed in the Summary tab.
492
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Module Dashboard

 Design objectives and respective variables
This information is listed in the same order as the success criteria set in
the success criteria file.

 Goals
By default, this information is arranged as per the order in the
methodology order file. However, if you specify explicit list of goals to be
displayed in the report by using the set_report_option -goals
{<goal-list>} command, the order is as per the <goal-list>.

Details of the DashBoard Report

This section provides information on the details of the following
dashboards:
 SoC Dashboard

 Module Dashboard

SoC Dashboard

The SoC DashBoard contains following views to present composite status
of SoC with respect to overall executed quality goals and different product
specific objectives:
 Summary tab

 Quality Goals tab

 Design Objectives tab

NOTE: You can not close the above listed default tabs. However, you can close the other
dynamically added tabs.

Summary tab

The left side chart in the Summary tab illustrates the consolidated status of
quality for all goals and applicable product metrics for products such as
DFT, CDC, and Power. The status in this view is categorized into Pass, Fail
and In-process, which are displayed in green, red and yellow colors,
respectively. Following figure illustrates the left-side chart:
493
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 30. Composite Status-Summary Tab

Following table lists different status and their respective description:

To view the overall status in percentage, hover the mouse on a vertical bar.
For example, if you hover the mouse on the green portion of the Quality
section, a pop-up displays the following message:

Quality, 56%

This means that 56% of overall executed goals are passed as per the set
success criteria.

Similarly, if you hover the mouse on to the red portion of the CDC section,
a pop-up displays the following message:

CDC, 66%

Pass Design objective or quality goal was passed as per success criteria
Fail Design objective or quality goal was failed as per success criteria
In-process Design objective or quality goal execution yet to complete
494
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
This means that 66% of overall CDC objectives failed on the consolidated
list of modules.

The right side chart, by default, shows sub-items of the Quality section,
that is, different goals. However, when you select any other item on left
side composite status chart, the right side chart is updated accordingly
displaying sub-items of the selected item. For example, if you select DFT
on left side chart, the right side chart is updated to display the individual
items from DFT as shown in the following figure:

FIGURE 31. Product Specific Chart-Summary Tab

When you click on the bars, a new tab displays the details of the selected
design objective status for all applicable modules. For example, if we select
Stuck-at fault coverage bar of the DFT category, it opens a new tab
displaying the details of Stuck-at fault coverage objective for all applicable
modules as shown in the following figure:
495
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 32. Design Objective Data

You can filter the results based on Pass/Fail status using the links located
on the top-right corner of the table. Also, clicking on any module displays
the Module Dashboard for that module in a new tab.

Quality Goals tab

This tab depicts overall goal status for all modules as shown in the
following figure:

FIGURE 33. Quality Goals Tab

The above table shows applicable Pass/Fail goal status for the listed
modules with respect to the success criteria set on the module. Clicking the
module name displays the respective module dashboard.
496
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Hovering the mouse over the table cells displays the status and the Last
updated time stamp in a pop-up.

Clicking the goal name in the header of the Quality Goals tab displays the
goal-specific information in a new tab, which displays selected goal status
and statistic details for all modules. Following figure shows a sample goal-
specific page:

FIGURE 34. Goal-Specific Data

You can perform the following actions in this view:
 Click on the module name links in this view to load the respective

module dashboard for the selected module.
 Click on a goal to view respective reports, if attached, for the selected

module and goal.
 Click on Status column with respect to a row to open the respective

trend chart for the selected module and goal.

Selecting the table cells (on displayed status) in the Quality Goals tab
displays the trend chart with respect to the module and goal that shows
trend variation on different severity message counts over time. Following
figure illustrates a sample trend chart for the lint/lint_rtl goal:
497
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 35. Trend Chart for a Goal

You can filter the displayed data based on the legend, that is, severity
name. You can also select a region in the trend chart to view the detailed
view of the message count for the selected dates.

To switch back to the original view, click the Reset Zoom link.
498
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Design Objectives tab

This tab depicts status for all product-specific objectives for all the modules
as shown in the following figure:

FIGURE 36. Design Objectives Tab

Above table shows all applicable modules, which you can select to view the
respective Module DashBoard pages. Rest of the columns shows all
products and product-specific objectives. The headers of the table display
design objective names and are truncated to best-fit to the view. When you
hover the mouse over the design objective name, the full objective name is
displayed in a pop-up.

The rest of the table displays the Pass/Fail/Data/No Data status of the
design objective with respect to the success criteria set on the module.

Following table classifies the available status and their description:

Hovering the mouse over the table cells displays the status and the Last
updated time stamp in a pop-up.

Pass Design objective passed as per success criteria
Fail Design objective failed as per success criteria
No Data Data expected from run results but not yet

available
Data Success criteria was set to this item as

'display_only' and data is available
499
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Selecting the design objective name in the table header displays a new tab
listing variable-specific data for all applicable modules. See Figure 32 for
details.

Clicking on the displayed status in a table cell displays the trend chart with
respect to the module and design objective that shows trend variation over
time. Following figure illustrates a sample trend chart for a module with
respect to the selected design objective:

FIGURE 37. Trend Chart for Module/Design Objective

In the above figure, the solid line represents success criteria and the thin
line with dots represents the actual data. If multiple goals or scenarios in
the above trend chart provide the same variable data, multiple line pairs
are displayed in the chart. You can turn on/off some of them from the
provided legend in the chart area.

Module Dashboard

Module Dashboard is displayed in the following scenarios:
 A dashboard is created for a single module

 Module-specific links is displayed in the SoC DashBoard

By default, the module dashboard page displays summary of Quality Goals
and Design Objectives as shown in the following figure:
500
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 38. Module Dashboard (Collapsed View)

You can expand both the tables by selecting 'Show All' link provided on top
right corner of the module dashboard page. Alternatively, you can select
the +/- icon provided at the left side of the tables, to expand/collapse the
table view.

Module Dashboard-Quality Goals

Following figure displays the expanded view of the Quality Goals table in
the Module Dashboard page:
501
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 39. Module Dashboard-Quality Goals

This section contains the following columns:
 Run Status

Specifies the current run status of a goal.
 Unresolved Issues

Displays the count of unresolved fatal, error, and warning, messages.
 Waived issues

Displays the count of waived fatal, error, warning, and info messages.
 Success criteria

Specifies the success criteria.
 Status

Specifies the status whether a particular design objective has met the
given success. Click on any of the Status cell to display the variations
from previous runs in a graphical format. See Figure 37 for details of this
trend graph.
502
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Module Dashboard-Design Objectives

Following figure displays the expanded view of the Design Objectives table
in the Module Dashboard page:

FIGURE 40. Module Dashboard - Design Objectives

The above section shows the data for the DFT, CDC, Constraints, and
Power design objectives. Following columns are displayed when you
expand the Design Objectives table:

Category Design Objectives Success Criteria
Status
503
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Category

Specifies the name of the design objective, such as CDC, Power, DFT, or
Constraints.

Design Objectives

Specifies the values generated by individual goals or scenario runs.
SpyGlass compares these values with the Success Criteria to determine
the overall task result.

Success Criteria

Specifies the success criteria defined for a particular design objective. If
no success criterion is defined, this column reads not set. For such design
objectives, the corresponding cell in the Pass/Fail Status column reads
Unknown and that cell appears in yellow.

Status

Displays status (Pass, Fail, or No Data) based on the comparison between
the specified Success Criteria and the actual Design Objectives value
extracted by analysis.

The No Data status appears if the data was not extracted by analysis.
Click on any of the Status cell to display the variations from previous
runs in a graphical format. See Figure 37 for details of this trend graph.

Customizing Report

SpyGlass enables you to customize your Dashboard report in following
ways:
 Including Product-Specific Data in the Report

 Displaying Pre-Existing Product Data

 Displaying Custom Product/Rule Data

 Customizing the Report Header
504
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Including Product-Specific Data in the Report

Depending upon the goal run, some product-specific data is generated at
the end of the goal run and saved in separate files. You can extend the
DashBoard report to include product-specific data from these files.

Displaying Pre-Existing Product Data

To enable Atrenta Console to include product-specific data from the
generated files automatically as a part of SpyGlass analysis, perform the
following steps:
1. Set the INCLUDE_DASHBOARD_SOURCES environment variable to a

comma-separated list of files, as shown in the following example:

setenv INCLUDE_DASHBOARD_SOURCES file1,file2,file3

You can specify an absolute path of the files with this variable.

The file format should be the same as the existing DataSheet internal
files generated by all products. For example, a file should contain one
column header line starting with SCHEMA and different column headers
should be separated by @@, as shown in the following example:

SCHEMA@@FaultCoverage (%)@@TestCoverage
(%)@@ScannableFlop(%)(%) VALUE@@17.1@@17.8@@0.0

Each column header maps to a design objective that is used in the
success criteria file.

2. Specify design objective details in the success criteria file.

For example, the following line in the success criteria file adds the Total
number of registers column in the Power section of the DashBoard report:

set_design_objective Power
-criteria Total_number_of_registers <20

Now the Total number of registers column appears in the Power section of
the DashBoard report.

Example

Consider an example in which you want to show the following columns in
the Power section of the DashBoard report (these items are not shown by
default):
505
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
 Average Clock Frequency

 Average Registers Frequency

 Total Registers

To include the above information, perform the following actions:
1. Before running a goal containing the PEPWR02 rule, set the following

environment variable to enable SpyGlass to include an additional data
file:

setenv INCLUDE_DASHBOARD_SOURCES spyglass_spysch/
power_est/PowerFrequencyData

2. In the success criteria file, set the following additional items for the
Power section to determine the pass or fail status:

set_design_objective Power -criteria
{Average_Clock_Frequency>120MHz,
Average_Registers_Frequency>5MHz,Total_Registers>10}

Displaying Custom Product/Rule Data

Perform the following steps to generate the dashboard report for custom
product or custom rules:
1. Ensure that the custom product or rule generates a data file in the

following format as part of the analysis:

SCHEMA@@<variable name list separated by @@>
VALUE@@<variable values separated by @@>

For example, a rule generates the file, /<work directory>/<project name>/<top
name>/<goal path>/spyglass_spysch/MyProduct/MyDashBoardData with the
following content:

SCHEMA@@MyProduct_Var1@@MyProduct_Var2@@MyProduct_Var3
VALUE@@17.1@@17.8@@10.0

In the above example, the variable names are provided using the
SCHEMA keyword and the variable values are provided using the VALUE
keyword. Therefore, SpyGlass saves following values for DashBoard
reporting purpose:

MyProduct_Var1 = 17.1
MyProduct_Var2 = 17.8
MyProduct_Var3 = 10.0
506
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
2. Prior to running a goal or a rule, set below variable to enable SpyGlass
to check for the data file generated by the custom rule or product and
save the data for trend reporting:

setenv INCLUDE_DASHBOARD_SOURCES spyglass_spysch/
MyProduct/MyDashBoardData

You can specify multiple files by providing a comma-separated file list.
Ensure that the file path is relative to a goal output directory (typically
the directory where we see spyglass.log file) or is an absolute path.

3. Before creating DashBoard, include new metrics, for example,
MyProduct_Var1, MyProduct_Var2, and MyProduct_Var3 in the success
criteria file.
However, if you want to list the new variables under a new product
category, specify the following in the success criteria file:

set_design_objective MyProduct -criteria {
MyProduct_Var1<20, MyProduct_Var2<25, MyProduct_Var3>5}

Alternatively, if you want to list the new variables under existing
products, such as CDC, specify the following in the success criteria file:

set_design_objective CDC -criteria
{synchronization_coverage=100%,cdc_failed_properties=0%,
MyProduct_Var1<20, MyProduct_Var2<25, MyProduct_Var3>5}

Customizing the Report Header

Atrenta Console allows you to configure the Dashboard report header by
Changing the Name of the Report, Adding a Logo in the Report Header, or
Configuring Report Title and Label.

Changing the Name of the Report

By default, the name of the report is dashboard, that is, dashboard.html and
dashboard.csv.

You can overwrite this name in any of the following ways:

 By specifying a file name in the Report File Name text box of the Dashboard
Report dialog.
507
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
 By specifying a file name to the REPORT_FILE_NAME variable in a
configuration file, as shown below:

REPORT_FILE_NAME <name>

Adding a Logo in the Report Header

You can add a logo in the report header by specifying the following
information in the appropriate fields in the Dashboard Report dialog:

 URL of the logo in the Custom Logo:(URL) textbox

 Width (in pixels) of the logo in the Width(px) textbox

 Height (in pixels) of the logo in the Height(px) textbox

 An alternate text to be displayed if the logo fails to load from the
specified URL in the Label textbox

Based on the above information, the logo details are stored in the
configuration file in the following format:

CUSTOM_LOGO <URL>@@<Width>@@<Height>@@<Label>

Configuring Report Title and Label

Report title contains static information, such as, project, purpose, and so
on.

Report label contains dynamic information, such as, build type regression,
release, milestone, and path to regression results.

You can change the report title of the Dashboard report using the
REPORT_TITLE and REPORT_LABEL variable in the Dashboard
Configuration file.

The following sample Dashboard Configuration file shows the
REPORT_TITLE and REPORT_LABEL variables:

report title and labels
#(note HTML can be used in both the REPORT_TITLE and REPORT_LABEL)
REPORT_TITLE "SpyGlass Quality Report Title"
REPORT_LABEL "$MODULE Nightly Regression Build
$PROJECT_DIR"

You can specify HTML tags in the REPORT TITLE and REPORT_LABEL
variable to link to other reports or web content:
508
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Following sample Dashboard Configuration file shows the usage of HTML
tags in the REPORT_LABEL variable:
report title and labels
(note HTML can be used in both the REPORT_TITLE and REPORT_LABEL)
REPORT_TITLE "Project A - Release Build Report (Release 1A)"
REPORT_LABEL "For additional build information:
Project Info</
a>"

Managing Reports

You can perform following tasks to manage the generated Dashboard
Report:
 Archiving and Managing Data Generated After Running Goals

 Generating the HTML Goal Summary Page

Archiving and Managing Data Generated After Running Goals

After execution of selected goals, data files are generated in the
Run_Summary directory of the current project. These data files contain
results of goal run.

You can archive such data files to a common storage area so that you can
analyze them later. Archiving data at a common storage area enables you
to clean-up a local run without losing run history.

You can remove or edit the collected data later.

Archiving Data

To archive data files, set the ARCHIVE_RUN_SUMMARY_FILES
environment variable to an area where the data files can be archived for
future use.

While generating the DashBoard report, if this environment variable set and
if there are any archived files, the report generator considers data from the
archived files present at a path specified by this environment variable.
509
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Managing Archived Data

To manage the archived data, perform the following steps:
1. Select the Tools -> Dashboard report menu option.

The Dashboard Report dialog appears.
2. Click the Manage Data button in the Dashboard Report dialog.

The Manage archived goal run results dialog appears, as shown in the
following figure:

FIGURE 41. Manage Archived Goal Run Results

This dialog displays data for each goal run based on the information
present in a configuration file.

Removing Archived Data from the Common Storage Area

You can select data from the Manage archived goal run results dialog and
remove it from the common storage area.

To remove the required data displayed in a particular row in this dialog,
perform the following steps:
510
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
1. Select in the row that you want to delete.
You can also choose all rows displayed in the above dialog by selecting

 button in the column header.
2. Click the Remove button.

After performing the above steps, data of that row is moved to a separate
folder, Removed_files. In addition, the row is removed from the Manage
archived goal run results dialog.

Generating the HTML Goal Summary Page

SpyGlass automatically links the DashBoard Goal names in Quality table
and Design objective names to appropriate goal summary HTML pages, if
available, that shows all available reports for further navigation.

For example, if running the power_est_average goal generates the
power_est_average goal HTML summary page, the link appears as
power_est_average, as shown in the following figure:

FIGURE 42. Creating Links to Reports

Link to Goal
Summary Pages
511
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
When you click the power_est_average link in the above report, the
following goal summary page is displayed:

FIGURE 43. power_est_average Goal HTML summary page

The goal summary page has following sections:
 Results Summary

 Standard Reports

 Technology Reports

 Goal Violation Summary

 Technology Summary
512
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
Results Summary

This section provides the following information:
 Goal Run: The name of the goal that was run

 Top Module: Top module name

 Report Directory: The standard reports directory that contains the
text report files.

 Log File: The SpyGlass log file that is generated when a goal is run. The
path of the log file appears as a hyperlink and selecting the link opens
the log file in a separate window.

Standard Reports

This section shows all default text reports that are generated as part of the
goal run. The report names appear as hyperlinks and clicking on the link
open the reports.

Technology Reports

This section shows all the product-specific reports. You can click on a report
link to open the report in a separate window.

Following figure illustrates a user-selected technology report content when
the pe_summary report link is selected.
513
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
FIGURE 44. The pe_summary Report

Goal Violation Summary

This section presents the waived and reported violation statistics of the
goal.

Technology Summary

If the products specify to present some summary corresponding to the
goal, it will be shown here with hyper links to the appropriate reports that
514
Synopsys, Inc.

The DashBoard Report

Working with Aggregated Reports
elaborates more details. If there is no data available to show, this section
would show empty.

Switching to the Old Dashboard Report

To switch back to the previous version of the DashBoard report, set the
SPYGLASS_GEN_OLD_DASHBOARD environment variable prior to creating
the DashBoard report:

setenv SPYGLASS_GEN_OLD_DASHBOARD YES

or

setenv SPYGLASS_GEN_OLD_DASHBOARD 1
515
Synopsys, Inc.

Goal Summary

Working with Aggregated Reports
Goal Summary
Goal Summary provides information on all the executed goal summaries
for the current Project.

By default, SpyGlass prepares necessary individual goal summary data as
part of each goal run and after completing all goal execution in the project,
SpyGlass consolidates data and generates the goal summary.

The Goal Summary, by default, displays the first goal result as shown in
the following figure:

FIGURE 45. Sample Goal Summary

You can chose other goals using the Change Goal drop-down list available
on the top-right corner of the report to open the respective goal summary
pages in new tabs.

For more information on sections of the Goal Summary, see Generating the
HTML Goal Summary Page.

To create the Goal Summary, SpyGlass uses the dashboard license. If the
516
Synopsys, Inc.

Goal Summary

Working with Aggregated Reports
license is not available an empty report is displayed. You can also disable
goal summary generation using the following command:

set_option disable_html_report {html}

The Goal Summary is generated, by default, at the following location after
the project analysis:

<project work directory>/html_reports/goals_summary.html

You can also launch the report by selecting the Analyze Results stage and
selecting the Reports-> HTML Report option in the main menu of
SpyGlass Atrenta Console as shown in the following figure:

FIGURE 46. Goal Summary Menu
517
Synopsys, Inc.

Managing Datasheet and Dashboard Reports

Working with Aggregated Reports
Managing Datasheet and Dashboard Reports
The SpyGlass Datasheet and Dashboard reports are generated in a
common directory. This directory contains all the additional reports and
graphs, which are linked to the main report.

You can leverage SpyGlass reports to:
 Increase Project Metrics Visibility: You can copy or move the

reports or files to a newer location. For example, you can copy the files
to a location where an internal project Web Server can access the files.
This enables increased SpyGlass project metrics visibility at all levels of
management.

 Access Reports Easily: Moving the files to a web server enables you to
access files independently of the Operating System and from other
geographical locations within the organization. You can also archive
reports or files for accessing them later, such as, when the actual
SpyGlass work area is removed.

 Share Metrics: You can zip the files and E-mail them to other project
stakeholders thereby providing timely access to design metrics. You can
also include the dashboard and datasheet reports along with the
delivered IP as a way of communicating the status of design quality.
518
Synopsys, Inc.

Appendix
Supported HDL Directives
Command-line directives and equivalent project commands:

Verilog User-Defined Primitives
SpyGlass translates User-Defined Primitives (UDPs) to an equivalent
Verilog module description for further processing. UDP definitions that
cannot be translated are treated as black boxes.

In some cases, while translating a UDP with both edge and level
sensitiveness, SpyGlass is not able to determine whether that UDP
definition should be converted into a flip-flop or a latch. In such cases,
SpyGlass infers such UDP definitions as flip-flops by default. To infer them

Directives Corresponding command
Text macros used (+define) set_option define <macro>
Include files (+incdir) set_option incdir <paths>
Verilog library files (-v) set_option v {files}
Verilog library directories (-y) set_option y {dirs}
Verilog library extension
(+libext)

set_option libext {exts}
519
Synopsys, Inc.

Supported HDL Directives

Appendix
as latches, specify the following command in the project file:

set_option convert_udp_to_latch yes

Supported Verilog HDL directives are:
 'uselib

 'define
NOTE: You can include the 'define directives in Verilog source files. You must first analyze

these files in Atrenta Console before analyzing other design files.

 'include
NOTE: Atrenta Console ignores duplicate file names.

 'celldefine and 'endcelldefine
NOTE: Any module enclosed in 'celldefine and 'endcelldefine directives is interpreted

differently depending on how the associated file is read into SpyGlass. If you
specify the file without any options, SpyGlass treats the related module as a regular
RTL module. However, if you specify the file by using the set_option v or
set_option y option, SpyGlass treats the module as a library cell.
520
Synopsys, Inc.

Re-using Simulation Scripts

Appendix
Re-using Simulation Scripts
The following instructions show you how to re-use existing files and scripts
from simulation for design-read in Atrenta Console.
1. VerilogXL/VCS

SpyGlass supports most design-read related options. It is recommended
that you copy all options to a file and add as a source list file to the
project as described earlier.

2. MTI
Translate the library mapping information into Atrenta Console project
commands.

From the modelsim.ini file under: [LIBRARY] section:

L1 = ./L1_path 'define_library_map L1 ./L1_path

From a modelsim run script:

vmap L2 = L2_path 'define_library_map L2 ./L2_path

You can specify options from both the VHDL and Verilog compilation
commands into a source list file and then specify that file in a project
file. The following are some examples:

vcom -work LIB1 b.vhd c.vhd d.vhd

vlog -work LIB2 b.v c.v d.v

Translation for MTI option exceptions:

3. NCSim scripts: If the Design-Input is from NCSim Users
Translate the library mapping information into Atrenta Console project
commands:

DEFINE foo <path> ' define_library_map foo <path>

You can specify most options from both the VHDL and Verilog
compilation commands in a source list file and then specify that file in a

MTI Command/
options

Equivalent Project Commands

-sv set_option enableSV yes
-93 (NULL) as 93 is default in SpyGlass
521
Synopsys, Inc.

Re-using Simulation Scripts

Appendix
project file.
For NCSim, the default is VHDL (IEEE Std 1987) while for SpyGlass it is
VHDL (IEEE Std 1993). To avoid ambiguity, set the appropriate language
standard explicitly:

set_option 87 yes

or

set_option 87 no

Translation for NCSim option exceptions:

4. DC scripts
The following commands in DC scripts (initial setup files for DC) should
be translated into an Atrenta Console project command:

define_design_lib L1 -path ./L1_path ' define_library_map
L1 ./L1_path

NCSim Options Equivalent Project Commands
+nc64bit or -64BIT (do not need to set)
+work+<arg> or WORK <arg> set_option work <arg>
+sv or –SV set_option enableSV yes
+hdlvar+<arg> or HDLVAR <arg> set_option work <arg>
+cdslib+<arg> or –CDSLIB <arg> set_option lib <library_name>

<library_path>
-V1995 or –V95 set_option enableSV no
-RELAX+<name> set_option relax_hdl_parsing yes
LIB.ENTITY(ARCH) set_option top ENTITY.ARCH
LIB.ENTITY set_option top ENTITY
522
Synopsys, Inc.

Project File Details

Appendix
Project File Details
A project file is a Tcl format file that enables easy reading and editing of
this file outside the Atrenta Console GUI.

NOTE: In Atrenta Console, Tcl format is supported only in a project file. However, this
format is not supported in Atrenta Console GUI and the .spyglass.setup file.
Therefore, for GUI and the .spyglass.setup file, you should specify commands in
batch console format and not Tcl format.

Creating a Project File

A project file contains files, option settings, and parameter settings. The
easiest way to create this file is to invoke the Atrenta Console GUI, and
save the settings into a project file.

Atrenta Console saves the status information in a separate file. This file is
not meant for user editing and is modified exclusively by the Atrenta
Console GUI.

A project file can be created and edited outside the Atrenta Console GUI
and can be loaded by using a normal text editor.

Atrenta Console processes all the Tcl commands. However, while re-saving,
it only retains the project-specific commands that are printed in a
predetermined order. The built-in Tcl commands and structures are not
stored for later saving.

A command can be used more than once. However, in case of conflicting
values, only the last command issued is retained.

Structure of a Project File

A project file contains a header that displays the file type, version,
copyright information, and date. In addition, the project file is organized
into different sections, each having a group of commands.

A Tcl-based project file is divided into the following sections:
 Data Import Section

 Common Options Section

 Goal Setup Section
523
Synopsys, Inc.

Project File Details

Appendix
NOTE: For using environment variables in the project file, standard Tcl syntax is supported.
For example, use $env(DIR) to access a environment variable named DIR.

Data Import Section

The Data Import Section includes commands that are used to add source
files, HDL files, HDL libraries, and technology libraries. The following is the
structure of the data import section:

##Data Import Section

read_file -type <type> <file-name>

set_option lib <logical-lib-name> <directory-path>

set_option libhdlfiles <logical-lib-name> { file-list }

The read_file command is used to add the source files. The
read_file command takes the following arguments:

<type>

Specifies the type of source file. The type can be any of the following:

<file-name>

Name of the source file.

Value Description
sourcelist Specifies the source files in .spp or .f format
verilog Specifies the Verilog (.v) files
vhdl Specifies the VHDL (.vhdl/.vhd) files
def Specifies the design exchange format (.def) files
sglib Specifies the SpyGlass library (.sglib) files
gateslib Specifies the gates library (.gateslib) files
lef Specifies the library exchange format (.lef) files
plib Specifies the power library (.plib) files
sgdc Specifies the SpyGlass Design Constraints (.sgdc) files
waiver Specifies the waiver files
524
Synopsys, Inc.

Project File Details

Appendix
The set_option lib command is used to specify the HDL libraries.

NOTE: Refer to the Adding Files in GUI section for details on how to specify the HDL
libraries using the Atrenta Console GUI.

The set_option lib command accepts the following values:

<logical-lib-name>

Specifies the logical name of the library.

<directory-path>

Specifies the path to the directory where the library is located.

The set_option libhdlfiles command is used to specify a mapping
between the logical library and its HDL files. This option needs to be
specified in the order of dependency of the libraries being compiled.

The set_option libhdlfiles command accepts the following
values:

<logical-lib-name>

Specifies the logical name of the library.

<file-list>

Specifies the list of HDL files.

Common Options Section

The Common Option Section is used to set additional important options for design
analysis that are not associated with any goal.

By default, the Tcl-based project file contains entries of only the modified
design read options. However, if you select the Write unmodified options in Project File
check box in the Properties dialog (see File > Project Properties in the Atrenta
Console Reference Guide), the design read options that you have not
modified are also written in the project file.

NOTE: Arguments using $ or other meta characters that are meant to be passed directly to
SpyGlass should be enclosed in curly brackets to prevent evaluation by the Tcl
interpreter.

For more details on common options, refer to the Atrenta Console
525
Synopsys, Inc.

Project File Details

Appendix
Reference Guide.

Specifying a Report

You can specify reports and their formats by using various options of the
set_option command, as discussed below:

 The following command specifies the name of the report to be
generated:

set_option report <name>

NOTE: This option is applicable for all goals that you specify in the Goal Setup Section. So
if any goal specified in the Goal Setup Section does not generate the report
specified by the set_option report <name> command, SpyGlass reports a fatal
violation. In such cases, use the set_goal_option report <name> command in the
Goal Setup Section to specify the name of goal-specific reports.

 The following command specifies the name and location of the report
file:

set_option reportfile <file-name>

 The following command specifies the maximum number of messages for
sorted reports (simple, moresimple, and waiver reports):

set_option report_max_size <value>

 The following command specifies the report style:

set_option report_style <style-name>

Here, the <style-name> argument can accept any of the following
values:

Value Description
flat Displays the report in an ungrouped format.
grouped Groups the content of the report (for example, by goals).
display_msgid Enables the display of the message index column in the

reports.
hide_msgid Hides the message index column in the reports
display_rulegroup Allows grouping of rule messages in the reports by rule

group.
526
Synopsys, Inc.

Project File Details

Appendix
Sorting Messages in Reports

SpyGlass generates the following reports sorted for better usability:

By default, SpyGlass sorts messages in these reports by the following
criteria (provided the criterion is applicable to the report):
 Severity Class (decreasing from FATAL, Error, Warning, and Info)

 Rule Name (alphabetical)

 Source HDL Filename (alphabetical)

 Line number (ascending)

You can modify the above sorting order by using the sortrule option of
the set_option command, as shown below:

set_option sortrule <value>

Where, <value> can be specified in the following format:

<language>+<rule-name>+<sort-order>

Please note that there are no spaces between any of the values in the
above format.

Details of different values of this format are given in the following table:

display_sdcgroup Groups messages of the sdc_data based rules in the
SpyGlass Constraints solution based on the sdc_data
specified in the SGDC file.

hide_rulegroup Disallows grouping of rule messages by rule group in the
report.

display_taggroup Groups messages of the Ac_sync_group rules of SpyGlass
CDC solution based on instance names or user-specified
names.

count moresimple simple summary waiver

Value Description
527
Synopsys, Inc.

Project File Details

Appendix
Consider the following example:

set_option sortrule Verilog+R1+2sa+1nd+3e/val1/val2/val3

The above specification indicates that it defines the message sorting order
of the R1 rule in the Verilog mode. Further, the message sorting order is as

Value Description
<language> Refers to the rule language, which can be Verilog,

VHDL, or Mixed. The rule for which message sorting
order is being defined must be registered for the specified
language. If the rule is specified for both languages, you
can optionally specify only one of the languages if you
want to specify the message sorting order for only that
language.

<rule-name> Refers to the rule name
<sort-order> Refers to the user-defined sort order. This value is specified

in the following format:
<arg-number><arg-type><arg-sort-
order>

Details of the <sort-order> value
<arg-number> Refers to the argument number

To get the argument number, refer the rule message goal
in the product ruledeck file. For example, the LPFSM16 rule
of the SpyGlass Power Verify solution has the following
message goal:

Attribute '%1' found on
enumerated type '%2' used for
encoding FSM states

Therefore, the first argument is the attribute name and is
specified as 1. The second argument is the state variable
name and is specified as 2.
Refer to the corresponding rules reference document for
an explanation of the rule message arguments.

<arg-type> Refers to the argument type
Argument types can be string (specified as s), numerals
(specified as n), and enumerated types (specified as e).

<arg-sort-order> Refers to the argument value sorting order as ascending
(specified as a) or descending (specified as d)
528
Synopsys, Inc.

Project File Details

Appendix
follows:
1. First, sort the messages by 2sa, that is, sort by the value of the second

argument (2) which is a string argument (s) in ascending order (a).
2. For messages with the same second argument value, sort by 1nd, that

is, sort by the first argument (1) which is a numeral argument (n) in
descending order (d).

3. For messages with the same first argument value, sort by 3e/val1/
val2/val3, that is, sort by the third argument (3) which is an
enumerated type argument (e) based argument values val1, val2,
and val3 in that order.

In addition to the argument-based sorting orders described above, you can
specify message sorting order by file (specified as f) and by line number
(specified as l), both in either ascending order (specified as a) or
descending order (specified as d). Thus, fd means to sort the messages by
file name in descending order. And la means to sort by line number in
ascending order.

Consider the sortrule specification in the above example with addition
values as follows:

set_option sortrule Verilog+R1+2sa+1nd+3e/val1/val2/
val3+fd+la

This specification means that any sorting after the argument-based sorting
will be done first by file names in descending order and then by line
numbers in ascending order.

By default, the argument values are sorted in a case-sensitive manner.
Specify i (for ignore case) to indicate that the argument values are to be
sorted in a case-insensitive manner. Consider the following example:

set_option sortrule Verilog+R1+2sai+1nd+3e/val1/val2/
val3+fdi+la

The above specification indicates that argument-based sorting indicated by
2sa and file-based sorting indicated by fd should be performed in a case-
insensitive manner.

Goal Setup Section

The Goal Setup Section is used to add the setup information for goals
529
Synopsys, Inc.

Project File Details

Appendix
(including rules and parameters), SGDC files, and reports.

Before you use any of the related commands, you must declare the goal
scope. For details, refer to the Specifying the Goal Scope topic. If you specify
a command without specifying the scope of a goal, a warning message is
displayed in the session log that all such commands will be ignored.

The scope of each goal is confined within the scope of a current
methodology. For details, refer to the Specifying a Current Methodology topic.

Specifying the Goal Scope

To specify the goal scope, use the current_goal command as shown below:

current_goal <goal_path_and_name> [-top <module_name> | -
alltop]

Where:

<goal_path_and_name>

(Mandatory) The relative path of the location where the goal is located.

-top <module_name>

(Optional) Name of the top-module. The <module-name> option defines
the goal settings for the given top module only.

-alltop

(Optional) Use this option to define goal settings for cases in which no top-
level design unit is specified, and goals are run for all top-level design units
found in a design.

NOTE: If you do not specify any of the -top or -alltop option in batch, goal settings
are defined for a top module specified by the set_option top command in
the project file. However, if the set_option top command is also missing in
the project file, Atrenta Console considers the behavior of -alltop option, that
is, goal settings are defined for all the top modules.
While saving a project file, the current_goal command is always written with
either -top <top> or -alltop in the project file so that the settings remain a
part of the current top, even if the user changes a top-level design unit for the
project file.

For more information on the Tcl-based usage of the current_goal
530
Synopsys, Inc.

Project File Details

Appendix
command, refer to the current_goal section of the SpyGlass Tcl Shell
Interface User Guide.

Selecting a Goal Setting From a Project File

For a goal, a project file may contain multiple settings corresponding to
different top-level modules. When you specify a goal to be executed in
batch with the current_goal command, only one of the goal settings
specified in the project file is selected for that goal depending upon a top-
level module specified in a project file.

The following points discuss different settings that are selected when the
following command is specified in batch mode:

spyglass -batch project Project-1.prj -goal G1

 The following goal setting (highlighted in blue) is selected as a top-level
module, T1, is specified by using the set_option top command
and this module is the same as the top-level module specified with the
-top command for the G1 goal in the below highlighted setting:

//Project-1.prj

set_option top T1

current_goal G1 -top T1
set_parameter fa_modulelist {M1 M2}

current_goal G1 -top T2
set_parameter fa_modulelist {M3 M4}

current_goal G1 -alltop
set_parameter fa_modulelist {M1 M2 M3 M4}

 The following goal setting (highlighted in blue) is selected for the G1
goal in the following case:

//Project-1.prj

current_goal G1 -top T1
531
Synopsys, Inc.

Project File Details

Appendix
set_parameter fa_modulelist {M1 M2}

current_goal G1 -top T2
set_parameter fa_modulelist {M3 M4}

current_goal G1 -alltop
set_parameter fa_modulelist {M1 M2 M3 M4}

 Consider the following case in which both the set_option top and -
alltop commands are specified:

//Project-1.prj

set_option top T1
current_goal G1 -alltop
set_parameter fa_modulelist {M1 M2 M3 M4}

In this case, there is no goal for which T1 is specified as
a top-level module. Therefore, the G1 goal will be
executed with default settings, and -alltop will not be
considered in this case.

Specifying Goal Specific Options

You can specify goal specific options that are applicable to the scope of the
specified goal. To specify goal specific options, use the
set_goal_option command. The syntax of this command is as follows:

set_goal_option <option> [<value>]

Where:

<option>

(Mandatory) Specifies the name of the option, such as report,
sdc2sgdcfile, sdc2sgdc, etc.

<value>

Specifies the value of the option.
532
Synopsys, Inc.

Project File Details

Appendix
Specifying a Parameter

The command to setup a parameter is as follows:

set_parameter <param-name> <value>

Where:

<param-name>

Name of the parameter

<value>

Value of the parameter
NOTE: The names of the parameter and their values are as they exist currently. Sanity

check is not performed on parameter arguments.

Enabling/Disabling an SGDC File for a Goal

You can enable or disable an SGDC file that has been added for a goal in
the Data Import Section using the read_file command as follows:

 Enabling an SGDC file:

To enable an SGDC file for a goal, use the read_file command as
follows:

read_file -type sgdc <file-name>

Where:

<file-name> is the name of the SGDC file.

NOTE: If you are not specifying the read_file command in a particular goal scope,
the specified SGDC file is considered as a global SGDC file and is enabled for all
the goals (unless explicitly disabled for a particular goal).

 Disabling an SGDC file:

To disable the global SGDC file for a goal, use the remove_file
command as follows:

remove_file -type sgdc <file-name>

Defining Custom Goals

To define a custom goal, use the define_goal command, as shown below:
533
Synopsys, Inc.

Project File Details

Appendix
define_goal <goal_name> [-policy <product_list>]
{<goal_settings>}

Where:

<goal_name>

(Mandatory) Specifies the name of the custom goal.

-policy <product_list>

(Optional) Specifies a list of products that should be a part of the custom
goal.

<goal_settings>

Specifies goal-specific settings or options, such as rules, parameters,
overload-rule, reports, and so on. The settings must be specified within
brackets.

The following is an example of using this command:

define_goal CUSTOM_GOAL_1 -policy { lint } {set_parameter abc
def}

For more information on the Tcl-based usage of the define_goal command,
refer to the define_goal section of the SpyGlass Tcl Shell Interface User
Guide.

Example of a Tcl-based Project File

The following is an example of a Tcl-based project file:

#!SPYGLASS_PROJECT_FILE
#!VERSION 3.0

Copyright Atrenta, Inc 2009
Last Updated By: Atrenta Console 4.3.0
Last Updated On Tue Aug 4 19:11:48 2009
#
--
534
Synopsys, Inc.

Project File Details

Appendix
##Data Import Section

read_file -type sgdc netlist/constraints_netlist.sgdc
read_file -type verilog netlist/test_netlist.v
read_file -type gateslib lsi_10k.lib

##Common Options Section

set_option language_mode mixed
set_option projectwdir JUNK1
set_option projectcwd /delsoft/testcases
/DDR/case100
set_option enable_gateslib_autocompile yes

##Goal Setup Section

current_methodology /delsoft/spyint/integration/4.3.0/
RELEASE/SpyGlass-4.3.0/SPYGLASS_HOME/GuideWare/New_RTL
current_goal DDR_Flow/SDC_Equivalence_Dual_Design
set_goal_option reference_design_sgdc { rtl
/constraints_rtl.sgdc }
set_goal_option reference_design_projectfile Project-1.prj
set_parameter equiv_sdc_design_equivalence_file
equiv_file.txt

current_methodology /case100/New_RTL

current_goal DDR_Flow/SDC_Equivalence_Dual_Design

set_goal_option reference_design_projectfile /delsoft/
testcases/DDR/case100/Project-1.prj

set_goal_option reference_design_sgdc { /delsoft
/testcases/DDR/case100/rtl/constraints_rtl.sgdc }

set_parameter equiv_sdc_design_equivalence_file /
delsoft/testcases/DDR/case100/equiv_file.txt
535
Synopsys, Inc.

Supported Library Cells

Appendix
Supported Library Cells

Combinational Cell Support

All types of Combinational cells (those described using the Boolean
equation representation by the Liberty function or xfunction
attributes) are supported.

Combinational Cells not Compiled

Combinational cells without at least one output Liberty function or
xfunction attribute are not compiled.

Sequential Cell Support

Only limited types of sequential cells are supported as described below:

Cell Type Support Description
Flip-flops (cells
described using
Liberty ff method)

Only single-clock flip-flops are processed for translation.
There can be different clocks for master and slave
latches as determined by the clocked_on_also
attribute in the cell library. Such cells are discarded.
If any output function does not involve next_state
functional node (inverting or non-inverting internal
node), the cell is discarded.

Latches (cells
described using
Liberty latch
method)

Only single enable latches are processed. Dual-enable
latch cells are designated by the enable_also
attribute and are discarded.
If any cell output function does not involve the
data_in functional node, then the cell is discarded.
536
Synopsys, Inc.

Supported Library Cells

Appendix
NOTE: The three_state and x_function attributes are supported for sequential
cells.

You are expected to supply the synthesizable RTL description from other
sources (including manual creation) for these problem cells while analyzing
the design with SpyGlass.

Sequential Cells not Compiled

The following types of sequential cells are not compiled:
 Sequential memory cells

 Sequential black box cells

 Sequential cells with the clocked_on_also attribute

 Sequential cells with the enable_also attribute

 Flip-flop or FlopBank cells without clocked_on and next_state
attributes

 Sequential cells with bus/bundle attribute on control signals

 Sequential cells with both bus and bundle attribute on a pin

 Latch or LatchBank cells where data and enable pins are not specified
together

 Sequential cells without at least one of clear, preset, or data pins

 Sequential cells without at least one primary output

State-table Cells not Compiled

 Cells with multiple clocks are not compiled. However, state-table cells
representing multiple flip-flops, multiple latches, or a combination of
flip-flops and latches driven by independent clocks are compiled.

Flopbanks and
Latchbanks (cells
described using
Liberty ff_bank
and latch_bank
methods)

A flopbank/latchbank describes a cell that is a collection
of parallel, single-bit sequential parts. The sequential
elements are described by means of buses or/and
bundles.
Cells with only buses or only bundles are processed.
Cells with a combination of both buses and bundles are
discarded.

Memory Cells Currently, memory cells are ignored for compilation.

Cell Type Support Description
537
Synopsys, Inc.

Supported Library Cells

Appendix
 Cells with input_map attributes on multiple pins are not translated.
However, if the input_map attribute is present only on a single pin and
its values matches completely with the names of the internal nodes of
the state-table, then such cells are compiled.

 The input names of the columns of the state-table should match with at
least one input pin. Also the internal node names of the next_state
output column of the state-table should match with at least one output
or internal pin. If either of the two conditions is not met, then the cell is
not compiled.

 If there is not even a single output pin in the cell with the function,
state_function, or internal_node attribute, then the cell is not
compiled.

 Cells where functionality represented by the state table cannot be
inferred are not compiled.
538
Synopsys, Inc.

Precompiling Multiple Libraries in a Single SpyGlass Run

Appendix
Precompiling Multiple Libraries in a Single
SpyGlass Run

To compile multiple HDL libraries in a single SpyGlass run, use the mapfile
flow by specifying any of the following options of the set_option
command:

 The libhdlfiles option
Use this option to specify a mapping between the logical library and its
HDL files.

 The libhdlf option
Use this option to specify a mapping between the logical library and HDL
files that are specified through a source list file (.f).

You must specify these options in the order of dependency of the libraries
being compiled.

In single step precompilation, elaboration is disabled by default. To enable
elaboration, you need to use the elab_precompile option of the
set_option command. This option is equivalent to the following
commands, each of which needs to be run to achieve precompilation of L1,
L2, and L3:
1. Precompile L1:

read_file -type verilog {rtl_1.v rtl_2.v}
set_option enable_precompile_vlog yes
set_option lib L1 lib1
set_option work L1

2. Precompile L2:

read_file -type hdl {rtl_3.vhd rtl_4.v}
set_option enable_precompile_vlog yes
set_option lib L1 lib2
set_option work L2

3. Precompile L3:

read_file -type hdl rtl_dir/*
539
Synopsys, Inc.

Precompiling Multiple Libraries in a Single SpyGlass Run

Appendix
set_option enable_precompile_vlog yes
set_option lib L3 lib3
set_option work L3

The above set of commands is now executed in a single SpyGlass run by
using the single step precompilation feature.

Using the libhdlf option

If there are a large number of HDL files to be precompiled, specifying each
file in the libhdlfiles option can be time-consuming and prone to
error. Further, if there are a large number of design files and/or design files
with long absolute paths, SpyGlass command-line might exceed the
command-line limit set on the UNIX systems. In such cases, you can use
the libhdlf option in which you can specify the library name and the
name of the source list file (.f) that contain the references of all the HDL
files corresponding to that library.

Following are some of the examples of using the libhdlf option:

Example 1

set_option libhdlf L1 file1.f

In the above example, the RTL files corresponding to the L1 library can be
found in file1.f.

Example 2

set_option libhdlf L1 {file1.f file2.f}

In the above example, design files are picked from file1.f and
file2.f.

Example 3

set_option libhdlf L1 {file1*.f file2.f}

In the above example, SpyGlass expands file1*.f to find matching
entries (say file11.f and file12.f) and picks the design files from
file11.f, file12.f and file2.f.

Features of Single Step Precompilation
540
Synopsys, Inc.

Precompiling Multiple Libraries in a Single SpyGlass Run

Appendix
Single step precompilation provides the following features:

 The use of libhdlfiles option automatically enables the
enable_precompile_vlog option for you.

 You can specify multiple HDL files for a given logical library as a wildcard
or a regular expression (same as it is supported for design files).

 This feature provides you with a fast way to precompile your libraries as
compared to precompiling multiple libraries in separate SpyGlass runs.
In addition, the overall script/makefile required for precompiling
multiple libraries is also simplified.

 Various options used to parse the design are uniformly applied to all the
libraries compiled in the current run. If the value for design options is
different for different libraries (e.g., +define+USB for one library and
+define+DSP for another library), such library compilations should be
split in separate libhdlfiles runs, with each library set having the
same value for all the design options.

Makefile Based Support in Step Precompilation

When you compile the RTL libraries by using single step precompilation,
SpyGlass incrementally compiles these libraries. However, it may happen
that the libraries, which have already been compiled earlier are again
specified for compilation through the libhdlfiles option. In such
cases, the makefile based support in SpyGlass would enable a re-
compilation of the library only if any of the following conditions hold true:
 If any of the dependent libraries have changed

The list of dependent libraries are recorded at the time of library
compilation.

 If the file set in the current compilation is different from the one
contained inside the existing precompile dump
Recompilation occurs if you add a file from the current set.

 If the checksum of the current file is different from its corresponding file
precompiled earlier

NOTE: Makefile based support works for precompilation runs that are performed by using
the libhdlfile option only and not for precompilation runs performed by using
the work option of the set_option command.
541
Synopsys, Inc.

Precompiling Multiple Libraries in a Single SpyGlass Run

Appendix
If you have compiled certain design files at a particular physical location by
using the work option, you should not compile the design files at the same
physical path by using the libhdlfile option. This is required to ensure
that precompile runs performed with the work switch are separate from
precompile runs performed with the libhdlfile option. This would
make work compilation free from the criteria of deciding whether a
recompilation should be performed. However, if you mix these two modes
of precompilation, then SpyGlass might generate an error (Out of date
error) in the libhdlfile run. To avoid this error, you can switch off the
makefile support by specifying the force_compile option of the
set_option command.

NOTE: Makefile support does not work if you specify the elab_precompile option.

Combining Single-Step Precompilation and Top-level Run

SpyGlass can compile HDL libraries and also use the precompiled libraries
in a single run. This means that the following two commands:

set_option libhdlfiles L1 {a.v b.v}
set_option lib L1 Lib1

set_option hdllibdu yes
set_option top mymod
set_option lib L1 Lib1

can now be combined into the following single command:

set_option libhdlfiles L1 {a.v b.v}
set_option top mymod
set_option hdllibdu
set_option lib L1 Lib1

Violations flagged in such a combined run will be mostly the same as a run
with the same commands but source files specified. Some extra messages
will appear in the combined (compile+use) run, which will be analyzer
violations from the design units that are not part of the design hierarchy. In
the combined run, parsing messages are reported on all design units being
compiled. This is contrary to the normal run where built-in messages are
also reported on the design units that are part of the analyzed top-level
hierarchies.
542
Synopsys, Inc.

Precompiling Multiple Libraries in a Single SpyGlass Run

Appendix
For example, consider that there are four design files, namely f1.v, f2.vhd,
f3.v and top.vhd that are being analyzed as follows:

read_file -hdl f1.v f2.vhd f3.v top.vhd
<other-options>

Further assume that f1.v has design units mid1 and mid2, where mid2 is not
part of the top-level hierarchy. In this case, any parsing-related message
will also not be reported on mid2.

Now, in single-step precompilation and use flow, if we precompile these
files in two libraries L1 and L2 as follows, then the parsing messages would
be reported on mid2 also, even if it is not part of the top-level hierarchy.

set_option libhdlfiles L1 {f1.v f2.vhd}
set_option libhdlfiles L2 {f3.v top.vhd}
set_option top top
<other-options>

NOTE: Parsing messages are reported on complete input RTL files being precompiled,
because that is the behavior when you precompile it through separate SpyGlass
precompilation run for each library, that is, not using the single-step precompilation
feature.
543
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goals That Do Not Use Default Parameter
Value

The following table specifies goals that do not use default parameter value:

Parameter Default
Value

Modified Value

Goal Name: initial_rtl/lint/connectivity
checkInHierarchy no yes
ignoreModuleInstance no yes
checkRTLCInst no yes

Goal Name: initial_rtl/lint/simulation
strict no W342,W343
verilint_compat no yes
treat_latch_as_combinational no yes
assume_driver_load no yes
checkconstassign no yes

Goal Name: initial_rtl/lint/synthesis
do_not_run_W71 no yes

Goal Name: initial_rtl/lint/structure
report_inferred_cell no yes

Goal Name: initial_rtl/audit/
block_profile
rptallmodulegatecount no yes

Goal Name: initial_rtl/audit/
structure_audit
rptallmodulegatecount no yes
544
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goal Name: initial_rtl/audit/
datasheet_io_audit
chkTopModule no yes

Goal Name: initial_rtl/cdc_verif/
cdc_verif_base
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: initial_rtl/cdc_verif/
cdc_verif
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: initial_rtl/cdc_exhaustive/
cdc_verif_base_strict
enable_fifo no strict
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes

Goal Name: initial_rtl/cdc_exhaustive/
cdc_verif_strict
enable_fifo no strict

Parameter Default
Value

Modified Value
545
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes
all_convergence_paths no yes
report_conv_type sync sync, unsync

Goal Name: initial_rtl/power/
power_pre_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: initial_rtl/power/
power_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: initial_rtl/dft_readiness/
dft_best_practice
flopInFaninCount 30 150

Goal Name: initial_rtl/dft_readiness/
dft_dsm_best_practice

Goal Name: detailed_rtl/lint/
connectivity
checkInHierarchy no yes
ignoreModuleInstance no yes
checkRTLCInst no yes

Parameter Default
Value

Modified Value
546
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goal Name: detailed_rtl/lint/simulation
strict no W342,W343
verilint_compat no yes
treat_latch_as_combinational no yes
checkconstassign no yes
assume_driver_load no yes

Goal Name: detailed_rtl/lint/synthesis
do_not_run_W71 no yes

Goal Name: detailed_rtl/lint/structure
report_inferred_cell no yes

Goal Name: detailed_rtl/audit/
block_profile
rptallmodulegatecount no yes

Goal Name: detailed_rtl/audit/rtl_audit

Goal Name: detailed_rtl/audit/
structure_audit
rptallmodulegatecount no yes

Goal Name: detailed_rtl/audit/
datasheet_io_audit
chkTopModule no yes

Goal Name: detailed_rtl/cdc_verif/
cdc_verif_base
enable_fifo no strict
distributed_fifo no yes

Parameter Default
Value

Modified Value
547
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
enable_handshake no yes

Goal Name: detailed_rtl/cdc_verif/
cdc_verif
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: detailed_rtl/
cdc_exhaustive/cdc_verif_base_strict
enable_fifo no strict
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes

Goal Name: detailed_rtl/
cdc_exhaustive/cdc_verif_strict
enable_fifo no strict
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no

Parameter Default
Value

Modified Value
548
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
enable_handshake no yes
all_convergence_paths no yes
report_conv_type sync sync, unsync

Goal Name: detailed_rtl/power/
power_pre_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: detailed_rtl/power/
power_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: detailed_rtl/dft_readiness/
dft_best_practice
flopInFaninCount 30 150

Goal Name: rtl_handoff/lint/
connectivity
checkInHierarchy no yes
ignoreModuleInstance no yes
checkRTLCInst no yes

Goal Name: rtl_handoff/lint/simulation
strict no W342,W343
verilint_compat no yes
treat_latch_as_combinational no yes
checkconstassign no yes
assume_driver_load no yes

Goal Name: rtl_handoff/lint/synthesis
do_not_run_W71 no yes

Parameter Default
Value

Modified Value
549
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goal Name: rtl_handoff/lint/structure
report_inferred_cell no yes

Goal Name: rtl_handoff/audit/
block_profile
rptallmodulegatecount no yes

Goal Name: rtl_handoff/audit/rtl_audit

Goal Name: rtl_handoff/audit/
structure_audit
rptallmodulegatecount no yes

Goal Name: rtl_handoff/audit/
datasheet_io_audit
chkTopModule no yes

Goal Name: rtl_handoff/cdc_verif/
cdc_verif_base
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: rtl_handoff/cdc_verif/
cdc_verif
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: rtl_handoff/
cdc_exhaustive/cdc_verif_base_strict
enable_fifo no strict

Parameter Default
Value

Modified Value
550
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes

Goal Name: rtl_handoff/
cdc_exhaustive/cdc_verif_strict
enable_fifo no strict
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes
all_convergence_paths no yes
report_conv_type sync sync, unsync

Goal Name: rtl_handoff/power/
power_pre_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: rtl_handoff/power/
power_reduction
sgsyn_clock_gating_threshold -1 0

Parameter Default
Value

Modified Value
551
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goal Name: rtl_handoff/dft_readiness/
dft_best_practice
flopInFaninCount 30 150

Goal Name: ip_handoff/lint/
connectivity
checkInHierarchy no yes
ignoreModuleInstance no yes
checkRTLCInst no yes

Goal Name: ip_handoff/lint/simulation
strict no W342,W343
verilint_compat no yes
treat_latch_as_combinational no yes
checkconstassign no yes
assume_driver_load no yes

Goal Name: ip_handoff/lint/synthesis
do_not_run_W71 no yes

Goal Name: ip_handoff/lint/structure
report_inferred_cell no yes

Goal Name: ip_handoff/audit/
block_profile
rptallmodulegatecount no yes

Goal Name: ip_handoff/audit/
structure_audit
rptallmodulegatecount no yes

Parameter Default
Value

Modified Value
552
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
Goal Name: ip_handoff/audit/
datasheet_io_audit
chkTopModule no yes

Goal Name: ip_handoff/cdc_verif/
cdc_verif_base
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: ip_handoff/cdc_verif/
cdc_verif
enable_fifo no strict
distributed_fifo no yes
enable_handshake no yes

Goal Name: ip_handoff/
cdc_exhaustive/cdc_verif_base_strict
enable_fifo no strict
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes

Goal Name: ip_handoff/
cdc_exhaustive/cdc_verif_strict
enable_fifo no strict

Parameter Default
Value

Modified Value
553
Synopsys, Inc.

Goals That Do Not Use Default Parameter Value

Appendix
clock_reduce_pessimism latch_en all
distributed_fifo no yes
cdc_reduce_pessimism mbit_macro,

no_converge
nce_at_sync
reset,no_con
vergence_at
_enable

mbit_macro

one_cross_per_dest yes no
enable_handshake no yes
all_convergence_paths no yes
report_conv_type sync sync, unsync

Goal Name: ip_handoff/power/
power_pre_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: ip_handoff/power/
power_reduction
sgsyn_clock_gating_threshold -1 0

Goal Name: ip_handoff/dft_readiness/
dft_best_practice
flopInFaninCount 30 150

Parameter Default
Value

Modified Value
554
Synopsys, Inc.

Sample Order File

Appendix
Sample Order File
A sample order file is shown below:

=methodology++
NEW_RTL
*
GuideWare Reference Methodology for New RTL Block development
*

This methodology recommends goals to be used during the
entire RTL development cycle for new RTL blocks. In order to
further refine application of right goal at right maturity
level of RTL code, this development time has been divided
into 3 phases as below:
a) initial_rtl: When RTL is being actively coded, and RTL
developer’s concern is mostly about correctness of code,
simulation readiness, synthesizability, and basic clock/
reset integrity. Some designers may also have a very
preliminary constraints and power plan.

b) detailed_rtl: When RTL has been mostly verified for
functional correctness, and RTL developers should ideally be
looking at design performance aspects. These include clock
synchronization, constraints, power, and test issues.

c) rtl_handoff: When RTL is almost ready and final handoff
checks are being performed. At this time, the majority of
GuideWare New_RTL methodology should be run after every ECO.

In addition to commonly applicable goals at each of the above
stages, this methodology also includes a set of Optional
goals at each stage. Design teams should inspect these goals
for applicability to their design.

GuideWare Methodology Guide provides detailed descriptions of
the above goals, as well as what factors should be reviewed
when selecting optional goals.

=cut++
initial_rtl
initial_rtl/lint/connectivity*
555
Synopsys, Inc.

Sample Order File

Appendix
initial_rtl/lint/simulation*
initial_rtl/lint/synthesis*
initial_rtl/lint/structure*
initial_rtl/audit/block_profile*
!HIDE initial_rtl/audit/rtl_audit*
!HIDE initial_rtl/audit/structure_audit*
!HIDE initial_rtl/audit/datasheet_io_audit*
!HIDE initial_rtl/clock_reset_integrity/power_gated_clock*
initial_rtl/clock_reset_integrity/clock_reset_integrity*
initial_rtl/constraint/sdc_quick_check*
initial_rtl/constraint/sdc_coverage*
initial_rtl/constraint/clock_consis* PREREQ: initial_rtl/
constraint/sdc_quick_check
!HIDE initial_rtl/constraint/io_delay* PREREQ: initial_rtl/
constraint/clock_consis
!HIDE initial_rtl/constraint/combo_path_check* PREREQ:
initial_rtl/constraint/io_delay
!HIDE initial_rtl/constraint_generation/gen_sdc* PREREQ:
initial_rtl/constraint/sdc_quick_check
!HIDE initial_rtl/power/activity_check*
initial_rtl/power/power_pre_reduction*
556
Synopsys, Inc.

List of Topics

About This Book ... 17
Adding a Logo in the Report Header .. 440
Adding a Tag ... 413
Adding Comments in an SGDC File.. 306
Adding Design Files .. 36
Adding Files in GUI ... 36
Adding Rules in a Goal .. 261
Advantage of Specifying a Top-Level Design Unit .. 212
Advantages of Using Precompiling Libraries.. 130
Analyze Results Stage... 29
Analyzing Selective Design Hierarchy .. 225
Archiving and Managing Data Generated After Running Goals 509
Argument Details of the waive Constraint .. 382
Arguments of the spyencrypt Utility .. 172
Atrenta Console Flow .. 28
Automatically Compiling Gate Libraries.. 136
Auto-Migration of Waivers ... 376
Before You Begin.. 23
Black Boxes... 459
Browser Compatibility ... 464
Built-in VHDL Libraries That Do Not Require Any Mapping 140
Capturing Domain Inferring Results .. 335
Central Design Setup .. 82
Changing the Default Hierarchy Separator of the SDC2SGDC Constraints 332
Changing the Name of the Report ... 439
Checking the Inferred Information .. 202
Checks Performed During the Design Read Process ... 58
Checks Performed on Stopped Design Units ... 218
Clock Trees ... 452
Combinational Cell Support.. 536
Combining Single-Step Precompilation and Top-level Run 542
Common Options Section .. 525
Comparing Goals.. 291
Comparing Methodologies.. 284
Comparing Results of Multiple SpyGlass Runs... 118
Comparison Reported in Batch ... 120
557
Synopsys, Inc.

Compiling HDL Files into a Library... 131
Compiling Libraries in Mixed-Language Designs .. 146
Compiling the Set of Verilog and SystemVerilog Files Separately 167
Compiling Verilog Files Containing SystemVerilog Keywords 167
Conditionally Specifying SGDC Constraints ... 320
Conditions for Auto-Compilation of Gate Libraries.. 139
Configuring a Methodology... 244
Configuring Columns... 51
Conflict Resolution at Block-Level.. 355
Conflict Resolution at Top-Level.. 353
Congestion .. 460
Constraints Migrated From Block-Level to Chip-Level 347
Constraints .. 456
Contents of This Book ... 18
Controlling the RTL Synthesis Engine... 208
Converting SDC Attributes into SGDC Commands.. 331
Copying a Methodology ... 287
Copying and Inheriting Methodologies ... 287
Copying Goals .. 256
Creating a Configuration File .. 437
Creating a Configuration File .. 469
Creating a Methodology... 246
Creating a Migration File .. 346
Creating a Project File ... 523
Creating a Sub-Methodology .. 249
Creating a Waiver File ... 372
Creating an SGDC File ... 306
Creating and Modifying a Methodology... 246
Creating and Modifying a Sub-methodology.. 249
Creating Custom Methodologies.. 269
Creating Encrypted Library Dump ... 154
Creating Goal-Based Waiver... 372
Creating Goals ... 251
Creating Scenarios.. 112
Creating the Success Criteria File.. 473
Cross-probing from the Msg Tree Page .. 126
Current Limitation with Mixed-language Designs in SpyGlass 190
Customizing Goals .. 269
Customizing Report... 504
Customizing the Report Header .. 507
Data Import Section.. 524
558
Synopsys, Inc.

Debugging Issues in Gate Libraries ... 148
Default Paths of Aggregated Reports ... 421
Defining a Logical Library .. 131
Defining a Scope for Constraints... 307
Defining and Using Variables.. 315
Defining Variables .. 315
Deleting a Tag ... 415
Deleting Goals ... 256
Design Results ... 121
Design Setup Stage .. 28
Design Statistics .. 458
Details of the DashBoard Report... 493
Details of the DataSheet Report ... 449
Details of the waive Constraint ... 386
Details Present in a Goal File.. 231
Determining Parameter Precedence .. 93
Difference between Ignored and Stopped Design Units 221
Directory Structure Created After Running a Scenario...................................... 115
Displaying the New Goals Dialog... 253
Dragging and Dropping Sub-Methodologies and Goals 264
Editing Files... 47
Editing Source Files .. 117
Effects of Selected Messages in the Schematic ... 365
Effects of Waiving Messages .. 375
Enabling the DesignWare Flow ... 193
Enabling the Feature... 207
Enabling the SDC-to-SGDC Translation Feature .. 331
Enabling/Disabling a Goal .. 259
Enabling/Disabling Rules of a Parent Goal .. 280
Encrypting IPs by Using the spyencrypt Utility .. 171
Encrypting IPs Spread Across a Hierarchical Directory Structure 175
Example of a Tcl-based Project File ... 534
Example of Using the SG_OPERATING_MODE Variable..................................... 322
Examples of Instantiating VHDL Design Units in Verilog Modules 187
Examples of Using the waive Constraint .. 389
Existing Waiver Support in SpyGlass ... 412
Features of Single Step Precompilation .. 540
File Generated in GUI.. 32
Files Generated to Support Special Features... 33
Files/Directories Created in Atrenta Console ... 30
Files/Directories Generated by Default... 32
559
Synopsys, Inc.

Format of an Order File ... 299
Generated Hierarchical SGDC File(s) ... 348
Generating a Precompiled Library ... 135
Generating Aggregated Project Results .. 422
Generating Dashboard Report in GUI... 467
Generating Dashboard Report .. 464
Generating Hierarchical SGDC File... 348
Generating SGDC Commands as a Part of Design Read.................................... 342
Generating SGDC Commands as a Part of Goal Run... 342
Generating the DashBoard Report in Batch... 465
Generating the DashBoard Report through Project File..................................... 465
Generating the DataSheet Report in Batch ... 443
Generating the DataSheet Report in GUI.. 435
Generating the Datasheet Report through a Project File 444
Generating the HTML Goal Summary Page ... 511
Generating the Project Summary Report .. 426
Generating the Report through a Project File .. 427
Generating the Report through GUI... 426
Goal Files .. 230
Goal Setup and Run Stage ... 28
Goal Setup Section ... 529
Goal Summary ... 516
Goals That Do Not Use Default Parameter Value ... 544
GUI Details .. 26
GuideWare Reference Methodology ... 234
Handling Directional Clocks .. 339
Handling Duplicate Constraint Specifications... 318
Handling False Paths ... 338
Handling for-generate Constructs.. 359
Handling Interdependencies between Different Arguments 311
Handling Internal Messages ... 417
Handling Language Warning Messages .. 416
Handling Multi-cycle Paths ... 339
Handling Mutually Exclusive Clocks ... 339
Handling Nets Declared in a Sequential Block ... 319
Handling of Generated Clocks... 336
Handling Out of Memory Situations ... 205
Handling SpyGlass Built-In Messages .. 416
Handling SV Structure or Union .. 358
Handling Syntax Error Messages... 416
Handling Synthesis Error Messages ... 417
560
Synopsys, Inc.

Handling Synthesis Warning Messages .. 416
Handling SystemVerilog Interface Containing a Modport 357
Handling SystemVerilog Interface Port/Terminal ... 357
Handling SystemVerilog Objects in SGDC... 357
Handling Unsaved Changes in Waiver Files... 374
Identifying Common Syntax Errors and Issues ... 59
Identifying Modules .. 206
Ignoring Files and Design Units From SpyGlass Analysis 220
Ignoring Files Containing Design Units... 221
Ignoring Files from SpyGlass Analysis ... 50
Ignoring Individual Design Units ... 222
Ignoring the SpyGlass Waiver Pragmas ... 411
Impact of the addrules Option While Using Pre-compiled Dump 159
Impact of the Feature ... 207
Impact of the ignorerules Option While Using Pre-compiled Dump..................... 159
Implementing Scoping in SGDC Commands ... 351
Implications After Stopping Design Units ... 217
Importing Block-Level SGDC Commands to Chip-Level 346
Importing Goals ... 255
Including a Waiver File in Another Waiver File .. 375
Including an SGDC File in Another SGDC File.. 312
Including and Inheriting GuideWare Goals ... 269
Including HDL Files in the Logical Library ... 133
Including Product-Specific Data in the Report ... 505
Including/Inheriting Goals in a Goal File .. 270
Including/Inheriting Goals in the MCS Window.. 277
Incremental Mode Analysis .. 108
Inferring Black Boxes.. 200
Inferring cdc_false_path for Clocks in Different Domains.................................. 334
Inferring Language from File Extension During Compilation 161
Inheriting a Methodology... 288
Instantiating as Component Instance .. 182
Instantiating as Entity Instance .. 184
Instantiating Verilog Modules in VHDL Architectures .. 182
Instantiating VHDL Design Units In Verilog Modules .. 186
Interpreting Synthesis Pragmas.. 209
Interpreting Synthesis Pragmas.. 210
Introducing Goals ... 21
Introducing Methodologies... 22
Introducing the Incremental Mode Feature... 118
Introducing the Use Model for IP Encryption in SpyGlass.................................. 170
561
Synopsys, Inc.

Invoking Atrenta Console Graphical User Interface .. 24
Invoking Atrenta Console on a 64-bit Machine .. 25
IO Definitions... 451
Language-Specific Behavior While Specifying a Top-Level Module...................... 215
Library Searching Mechanism ... 142
Licensing Requirements... 464
Limitations... 344
Limiting Analysis of Memories... 208
Limiting the Number of Messages Generated .. 369
Limiting the Number of Messages Reported for a Rule...................................... 369
List of DesignWare Modules Supported in SpyGlass ... 195
Loading the Previous Session ... 24
Makefile Based Support in Step Precompilation ... 541
Managing Datasheet and Dashboard Reports .. 518
Managing Reports... 509
Managing the Design Hierarchy .. 212
Map File .. 302
Mapping a File Extension with a Compilation Language 160
Mapping between VHDL Generics and Verilog Parameters................................. 189
Mapping Data Types ... 189
Mapping File Extensions... 45
Merging the Differences... 286
Messages Affecting Multiple Source Lines/Files.. 367
Methodology Used by Atrenta Console ... 22
Migrating Custom Goals... 291
Migrating Goals .. 297
Modifying a Goal... 67
Modifying a Methodology ... 248
Modifying a Sub-Methodology... 251
Modifying a Tag.. 414
Modifying and/or Deleting Scenarios.. 114
Modifying Goal Properties .. 257
Modifying Goals.. 256
Modifying Parameters of a Goal .. 263
Module Dashboard .. 500
Multiple Lines Affected in Different Source Files .. 368
Multiple Lines Affected in the Same Source File... 368
Multiple Messages Selected .. 368
Multiple Top-Level Design Units .. 214
Naming and Mapping Verilog Libraries ... 141
Naming Convention of a Goal File ... 230
562
Synopsys, Inc.

Order File .. 298
Overview... 129
Overview... 21
Overview... 229
Overview... 303
Overview... 35
Overview... 363
Overview... 419
Parsing SGDC Files ... 327
Performing Hierarchical Rule-Checking in 'celldefine Modules 227
Performing Rule-Checking on 'celldefine Modules .. 226
Performing Sanity Checks for Parameters .. 101
Performing Syntax Checking in SGDC Files... 327
Performing Version Control .. 46
Power Clocks ... 455
Power Results .. 125
Power ... 454
Precompiling Multiple Libraries in a Single SpyGlass Run.................................. 539
Precompiling Verilog Libraries .. 140
Prerequisites for Enabling DesignWare Flow ... 192
Preserving all instances and nets in a design .. 209
Processing of SGDC Files ... 327
Processing SpyGlass Design and Waiver Pragmas ... 328
Project Current Working Directory .. 31
Project File Details.. 523
Project File .. 30
Project Summary Report ... 426
Project Working Directory.. 30
Rearranging HDL Files... 46
Recognizing Clocks ... 330
Recommended Goals for Generating DataSheet Report.................................... 446
Reporting Messages at Module Boundary ... 206
Reset Trees ... 453
Returning Back to the Goal Setup & Run Stage... 118
Reusing Netlist of DesignWare Modules during SpyGlass Analysis...................... 194
Re-using Simulation Scripts ... 521
Running Custom Goals .. 72
Running Design Read in Batch.. 58
Running Design Read in GUI .. 55
Running Design Read.. 55
Running Goals in Parallel ... 72
563
Synopsys, Inc.

Running Prerequisite Goals .. 109
Running Scenarios .. 114
Sample Order File... 555
Saving the Generated SGDC Commands in a File .. 341
Scoping When Design is at the Block-Level... 354
Scoping When Design is at Top-Level .. 352
Searching for Input Files.. 420
Searching Instances.. 62
Searching Master Instance in Mixed-Language Mode 147
Selecting a Custom Methodology .. 281
Selecting a Goal ... 65
Selecting Auxiliary Messages without Selecting a Main Message 367
Selecting Non-Static Auxiliary Messages .. 366
Selecting Static Auxiliary Messages ... 366
Selection of Goal Files based on Language Mode ... 232
Sequential Cell Support ... 536
Setting a Top-Level Design Unit.. 213
Setting Default Waiver File... 373
Setting Parameters and Constraints for Selected Goal.. 93
Setting Stop Files ... 50
Setting Up the Goal in Batch Mode .. 109
Setting up the Goal... 93
SGDC Convention for Packed Arrays.. 309
SoC Dashboard .. 493
Specifying a Cache Directory.. 139
Specifying a Current Methodology... 242
Specifying a List of .sglib Files .. 44
Specifying a Reference Environment Variable ... 289
Specifying a Top-level Design Unit .. 212
Specifying an Active Methodology ... 238
Specifying an Additional Path ... 289
Specifying Compilation Options in a Source File .. 165
Specifying Compressed Verilog Designs ... 44
Specifying Configuration Name with current_design Command 310
Specifying Details in the New Goal Dialog .. 253
Specifying Encrypted Files for SpyGlass Analysis ... 177
Specifying Encrypted Files through a Project File... 180
Specifying Encrypted Files through GUI ... 177
Specifying Files in the Order of Their Dependencies ... 166
Specifying Functionality Information of Gate Cells ... 42
Specifying Modes in Which Libraries Should be Compiled.................................. 130
564
Synopsys, Inc.

Specifying Multiple current_design Specifications for a Design Unit.................... 309
Specifying Multiple Technology Libraries of the Same Name 150
Specifying Multiple Values for a Constraint Argument 311
Specifying Optional Environment Variables... 23
Specifying Path of DesignCompiler Installation ... 192
Specifying Pragmas in HDL Code .. 199
Specifying Precompiled Libraries for SpyGlass Analysis 149
Specifying SGDC Files to SpyGlass.. 305
Specifying Signal Names based on Design Hierarchy 313
Specifying Signal Names based on Signal Types ... 313
Specifying Signal Names ... 313
Specifying the Mode of an SDC File ... 341
Specifying the Mode of Domain Inference .. 333
Specifying Verilog Libraries by Using the 'uselib Statement 146
SpyGlass CDC Solution Results... 122
SpyGlass Constraints Solution Results ... 122
SpyGlass DFT Solution Results ... 124
SpyGlass TXV Solution Results ... 122
Stage 1: Setting up the Design (Design Setup)... 36
Stage 2: Selecting a Goal (Goal Setup & Run) .. 64
Stage 3: Analyzing a Design (Analyze Results) ... 116
Starting a New Session ... 24
Stopping Black Box Analysis .. 204
Stopping Design Units... 216
Structure of a Project File .. 523
Structure of Precompiled Verilog Libraries.. 142
Structure of the GuideWare Reference Methodology .. 234
Support for Hierarchical Waivers... 400
Support for Virtual Clocks in sdc2sgdc Flow.. 343
Supported HDL Directives.. 519
Supported Library Cells ... 536
Supported Pragmas for Verilog ... 199
Supported Pragmas for VHDL... 199
Switching to the Old Dashboard Report ... 515
Syntax of the waive Constraint... 382
Tagging Messages .. 413
Tcl Format Support in the Configuration File... 440
Tcl Format Support in the Configuration File... 471
Testability ... 457
The DashBoard Report .. 462
The DataSheet Report... 433
565
Synopsys, Inc.

The Methodology Configuration System ... 109
Timing .. 459
Tips for Debugging Syntax Errors.. 60
Translating set_clock_sense command .. 340
Translating set_disable_timing command... 340
Translating set_mode command ... 341
Typographical Conventions .. 19
Understanding Different Flows for Using This Feature 342
Understanding the Black Box Inference Feature .. 201
Updating Rules of a Goal ... 259
Using DesignWare Functions .. 198
Using Encrypted Library Dump ... 155
Using File Extension Based Compilation Flow .. 168
Using Intermediate Logical Library Name Support in VHDL 151
Using Regular Expressions and Wildcard Characters .. 390
Using the active_methodology Option.. 241
Using the AUTOENABLE_GATESLIB_AUTOCOMPILE Key 138
Using the Black Box Inference Feature... 202
Using the Corrected Inferred Information... 204
Using the Dual Design Read (DDR) Flow .. 101
Using the enable_gateslib_autocompile Option ... 138
Using the force_gateslib_autocompile Option.. 138
Using the GUI to Automatically Compile Libraries .. 137
Using the Incremental Mode Feature ... 119
Using the Results Pane to Waive Messages... 379
Using the SG_OPERATING_MODE Variable ... 321
Using the Top and Stop Features Together ... 218
Using the Waiver Editor Window ... 377
Using Variables .. 315
Using Verilog Constructs.. 54
Validating the Generated Hierarchical SGDC File ... 349
Verilog Modules Instantiated in VHDL Design Units.. 147
VHDL Library Design Units Instantiated in Verilog Modules 147
Viewing and Adding Options for an Included or Inherited Goal 278
Viewing and Changing Design Read Options ... 52
Viewing Built-In Messages for Precompiled Libraries .. 156
Viewing CSV Reports... 432
Viewing Different Type of Results.. 120
Viewing Directories Created After Goal Run .. 81
Viewing Encryption Summary in a Report... 176
Viewing Goal Summary ... 117
566
Synopsys, Inc.

Viewing Include Files .. 51
Viewing Messages after Running Design Read .. 59
Viewing Order of Goals Defined in an Order File .. 299
Viewing Reports ... 60
Viewing Results of Different Scenarios and Goals .. 126
Viewing Rules and Parameters of Included/Inherited Goals............................... 279
Viewing Source Files ... 62
Viewing the DashBoard Report ... 492
Viewing the DataSheet Report.. 446
Viewing the HTML Report for Comparison .. 296
Viewing the HTML Report... 427
Viewing the Project Summary Report .. 427
Virtual to Real Clock Mapping... 344
Waiver File .. 372
Waiving Messages by File .. 51
Waiving Messages by Using SpyGlass Pragmas... 402
Waiving Messages by Using the waive Constraint .. 381
Waiving Messages in Waiver/SGDC Files .. 411
Waiving Messages through a Project File.. 381
Waiving Messages through GUI .. 377
Waiving Messages .. 371
Waiving Rule Messages for a Block of Code .. 404
Waiving Rule Messages for a Single Line of Code .. 406
Wildcard Support at Block-Level ... 355
Wildcard Support at Top-Level ... 353
Working with 'celldefine Modules .. 226
Working with Black Boxes.. 200
Working with Compressed Gate Library Files .. 153
Working with DesignWare® Modules... 192
Working with Encrypted Compiled Libraries .. 154
Working with Encrypted Design Files ... 170
Working with Mixed-Language Designs.. 182
Working with Multiple Messages ... 365
Working with Precompiled Libraries... 130
Working with Precompiled Verilog Libraries in Mixed Language Mode 143
Working with Scenarios ... 111
567
Synopsys, Inc.

568
Synopsys, Inc.

	Atrenta Console User Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Introducing Atrenta Console
	Overview
	Introducing Goals
	Introducing Methodologies
	Methodology Used by Atrenta Console

	Before You Begin
	Specifying Optional Environment Variables

	Invoking Atrenta Console Graphical User Interface
	Starting a New Session
	Loading the Previous Session
	Invoking Atrenta Console on a 64-bit Machine

	GUI Details
	Atrenta Console Flow
	Design Setup Stage
	Goal Setup and Run Stage
	Analyze Results Stage

	Files/Directories Created in Atrenta Console
	Project File
	Project Working Directory
	Project Current Working Directory

	File Generated in GUI
	Files/Directories Generated by Default
	Files Generated to Support Special Features

	Using Atrenta Console Graphical User Interface
	Overview
	Stage 1: Setting up the Design (Design Setup)
	Adding Design Files
	Adding Files in GUI
	Specifying Functionality Information of Gate Cells
	Specifying a List of .sglib Files
	Specifying Compressed Verilog Designs
	Mapping File Extensions
	Rearranging HDL Files
	Performing Version Control
	Editing Files
	Setting Stop Files
	Ignoring Files from SpyGlass Analysis
	Waiving Messages by File
	Viewing Include Files
	Configuring Columns

	Viewing and Changing Design Read Options
	Using Verilog Constructs

	Running Design Read
	Running Design Read in GUI
	Running Design Read in Batch
	Checks Performed During the Design Read Process
	Viewing Messages after Running Design Read
	Identifying Common Syntax Errors and Issues
	Tips for Debugging Syntax Errors
	Viewing Reports
	Viewing Source Files
	Searching Instances

	Stage 2: Selecting a Goal (Goal Setup & Run)
	Selecting a Goal
	Modifying a Goal
	Running Custom Goals
	Running Goals in Parallel
	Viewing Directories Created After Goal Run

	Setting up the Goal
	Determining Parameter Precedence
	Setting Parameters and Constraints for Selected Goal
	Performing Sanity Checks for Parameters
	Using the Dual Design Read (DDR) Flow
	Incremental Mode Analysis
	Setting Up the Goal in Batch Mode

	The Methodology Configuration System
	Running Prerequisite Goals
	Working with Scenarios
	Creating Scenarios
	Modifying and/or Deleting Scenarios
	Running Scenarios
	Directory Structure Created After Running a Scenario

	Stage 3: Analyzing a Design (Analyze Results)
	Editing Source Files
	Viewing Goal Summary
	Comparing Results of Multiple SpyGlass Runs
	Introducing the Incremental Mode Feature
	Using the Incremental Mode Feature
	Comparison Reported in Batch

	Viewing Different Type of Results
	Design Results
	SpyGlass CDC Solution Results
	SpyGlass Constraints Solution Results
	SpyGlass TXV Solution Results
	SpyGlass DFT Solution Results
	Power Results

	Viewing Results of Different Scenarios and Goals
	Cross-probing from the Msg Tree Page

	Working with Input Design and Libraries
	Overview
	Working with Precompiled Libraries
	Advantages of Using Precompiling Libraries
	Specifying Modes in Which Libraries Should be Compiled
	Compiling HDL Files into a Library
	Defining a Logical Library
	Including HDL Files in the Logical Library
	Generating a Precompiled Library

	Automatically Compiling Gate Libraries
	Using the GUI to Automatically Compile Libraries
	Using the enable_gateslib_autocompile Option
	Using the force_gateslib_autocompile Option
	Using the AUTOENABLE_GATESLIB_AUTOCOMPILE Key
	Specifying a Cache Directory
	Conditions for Auto-Compilation of Gate Libraries
	Built-in VHDL Libraries That Do Not Require Any Mapping

	Precompiling Verilog Libraries
	Naming and Mapping Verilog Libraries
	Structure of Precompiled Verilog Libraries
	Library Searching Mechanism
	Working with Precompiled Verilog Libraries in Mixed Language Mode
	Specifying Verilog Libraries by Using the 'uselib Statement

	Compiling Libraries in Mixed-Language Designs
	VHDL Library Design Units Instantiated in Verilog Modules
	Verilog Modules Instantiated in VHDL Design Units
	Searching Master Instance in Mixed-Language Mode

	Debugging Issues in Gate Libraries
	Specifying Precompiled Libraries for SpyGlass Analysis
	Specifying Multiple Technology Libraries of the Same Name

	Using Intermediate Logical Library Name Support in VHDL
	Working with Compressed Gate Library Files
	Working with Encrypted Compiled Libraries
	Creating Encrypted Library Dump
	Using Encrypted Library Dump

	Viewing Built-In Messages for Precompiled Libraries
	Impact of the addrules Option While Using Pre-compiled Dump
	Impact of the ignorerules Option While Using Pre-compiled Dump

	Mapping a File Extension with a Compilation Language
	Inferring Language from File Extension During Compilation
	Specifying Compilation Options in a Source File
	Specifying Files in the Order of Their Dependencies

	Compiling Verilog Files Containing SystemVerilog Keywords
	Compiling the Set of Verilog and SystemVerilog Files Separately
	Using File Extension Based Compilation Flow

	Working with Encrypted Design Files
	Introducing the Use Model for IP Encryption in SpyGlass
	Encrypting IPs by Using the spyencrypt Utility
	Arguments of the spyencrypt Utility
	Encrypting IPs Spread Across a Hierarchical Directory Structure

	Viewing Encryption Summary in a Report
	Specifying Encrypted Files for SpyGlass Analysis
	Specifying Encrypted Files through GUI
	Specifying Encrypted Files through a Project File

	Working with Mixed-Language Designs
	Instantiating Verilog Modules in VHDL Architectures
	Instantiating as Component Instance
	Instantiating as Entity Instance

	Instantiating VHDL Design Units In Verilog Modules
	Examples of Instantiating VHDL Design Units in Verilog Modules
	Mapping Data Types
	Mapping between VHDL Generics and Verilog Parameters

	Current Limitation with Mixed-language Designs in SpyGlass

	Working with DesignWare® Modules
	Prerequisites for Enabling DesignWare Flow
	Specifying Path of DesignCompiler Installation
	Enabling the DesignWare Flow
	Reusing Netlist of DesignWare Modules during SpyGlass Analysis
	List of DesignWare Modules Supported in SpyGlass
	Using DesignWare Functions

	Specifying Pragmas in HDL Code
	Supported Pragmas for Verilog
	Supported Pragmas for VHDL

	Working with Black Boxes
	Inferring Black Boxes
	Understanding the Black Box Inference Feature
	Using the Black Box Inference Feature
	Checking the Inferred Information
	Using the Corrected Inferred Information

	Stopping Black Box Analysis

	Handling Out of Memory Situations
	Reporting Messages at Module Boundary
	Identifying Modules
	Enabling the Feature
	Impact of the Feature

	Controlling the RTL Synthesis Engine
	Limiting Analysis of Memories
	Preserving all instances and nets in a design
	Interpreting Synthesis Pragmas
	Interpreting Synthesis Pragmas

	Managing the Design Hierarchy
	Specifying a Top-level Design Unit
	Advantage of Specifying a Top-Level Design Unit
	Setting a Top-Level Design Unit
	Multiple Top-Level Design Units
	Language-Specific Behavior While Specifying a Top-Level Module

	Stopping Design Units
	Implications After Stopping Design Units
	Checks Performed on Stopped Design Units

	Using the Top and Stop Features Together
	Ignoring Files and Design Units From SpyGlass Analysis
	Difference between Ignored and Stopped Design Units
	Ignoring Files Containing Design Units
	Ignoring Individual Design Units

	Analyzing Selective Design Hierarchy

	Working with 'celldefine Modules
	Performing Rule-Checking on 'celldefine Modules
	Performing Hierarchical Rule-Checking in 'celldefine Modules

	Working with Methodologies
	Overview
	Goal Files
	Naming Convention of a Goal File
	Details Present in a Goal File
	Selection of Goal Files based on Language Mode

	GuideWare Reference Methodology
	Structure of the GuideWare Reference Methodology

	Specifying an Active Methodology
	Specifying a Current Methodology
	Configuring a Methodology
	Creating a Methodology
	Modifying a Methodology
	Creating and Modifying a Sub-methodology
	Creating a Sub-Methodology
	Modifying a Sub-Methodology

	Creating Goals
	Displaying the New Goals Dialog
	Specifying Details in the New Goal Dialog

	Importing Goals
	Deleting Goals
	Copying Goals
	Modifying Goals
	Modifying Goal Properties
	Enabling/Disabling a Goal
	Updating Rules of a Goal
	Adding Rules in a Goal
	Modifying Parameters of a Goal

	Dragging and Dropping Sub-Methodologies and Goals

	Creating Custom Methodologies
	Customizing Goals
	Including and Inheriting GuideWare Goals
	Including/Inheriting Goals in a Goal File
	Including/Inheriting Goals in the MCS Window
	Viewing and Adding Options for an Included or Inherited Goal
	Viewing Rules and Parameters of Included/Inherited Goals
	Enabling/Disabling Rules of a Parent Goal

	Selecting a Custom Methodology
	Comparing Methodologies
	Merging the Differences

	Copying and Inheriting Methodologies
	Copying a Methodology
	Inheriting a Methodology
	Specifying a Reference Environment Variable
	Specifying an Additional Path

	Migrating Custom Goals
	Comparing Goals
	Viewing the HTML Report for Comparison

	Migrating Goals

	Order File
	Viewing Order of Goals Defined in an Order File
	Format of an Order File

	Map File

	Working with SpyGlass Design Constraints
	Overview
	Specifying SGDC Files to SpyGlass
	Creating an SGDC File
	Adding Comments in an SGDC File
	SGDC Convention for Packed Arrays
	Specifying Multiple current_design Specifications for a Design Unit
	Specifying Configuration Name with current_design Command

	Specifying Multiple Values for a Constraint Argument
	Handling Interdependencies between Different Arguments
	Including an SGDC File in Another SGDC File
	Specifying Signal Names
	Specifying Signal Names based on Signal Types
	Specifying Signal Names based on Design Hierarchy

	Defining and Using Variables
	Defining Variables
	Using Variables

	Handling Duplicate Constraint Specifications
	Handling Nets Declared in a Sequential Block
	Conditionally Specifying SGDC Constraints
	Using the SG_OPERATING_MODE Variable
	Example of Using the SG_OPERATING_MODE Variable

	Processing of SGDC Files
	Parsing SGDC Files
	Performing Syntax Checking in SGDC Files

	Processing SpyGlass Design and Waiver Pragmas
	Recognizing Clocks
	Converting SDC Attributes into SGDC Commands
	Enabling the SDC-to-SGDC Translation Feature
	Changing the Default Hierarchy Separator of the SDC2SGDC Constraints
	Specifying the Mode of Domain Inference
	Inferring cdc_false_path for Clocks in Different Domains
	Capturing Domain Inferring Results
	Handling of Generated Clocks
	Handling Mutually Exclusive Clocks
	Handling Directional Clocks
	Translating set_clock_sense command
	Translating set_disable_timing command
	Translating set_mode command
	Saving the Generated SGDC Commands in a File
	Specifying the Mode of an SDC File
	Understanding Different Flows for Using This Feature
	Generating SGDC Commands as a Part of Goal Run
	Generating SGDC Commands as a Part of Design Read

	Support for Virtual Clocks in sdc2sgdc Flow
	Virtual to Real Clock Mapping

	Limitations

	Importing Block-Level SGDC Commands to Chip-Level
	Creating a Migration File
	Constraints Migrated From Block-Level to Chip-Level
	Generated Hierarchical SGDC File(s)

	Validating the Generated Hierarchical SGDC File

	Implementing Scoping in SGDC Commands
	Wildcard Support at Top-Level
	Conflict Resolution at Top-Level
	Scoping When Design is at the Block-Level
	Wildcard Support at Block-Level
	Conflict Resolution at Block-Level

	Handling SystemVerilog Objects in SGDC
	Handling SystemVerilog Interface Port/Terminal
	Handling SystemVerilog Interface Containing a Modport
	Handling SV Structure or Union
	Handling for-generate Constructs

	Working with SpyGlass Messages
	Overview
	Working with Multiple Messages
	Effects of Selected Messages in the Schematic
	Selecting Static Auxiliary Messages
	Selecting Non-Static Auxiliary Messages

	Selecting Auxiliary Messages without Selecting a Main Message
	Messages Affecting Multiple Source Lines/Files
	Multiple Lines Affected in the Same Source File
	Multiple Lines Affected in Different Source Files
	Multiple Messages Selected

	Limiting the Number of Messages Generated
	Limiting the Number of Messages Reported for a Rule

	Waiving Messages
	Waiver File
	Creating a Waiver File
	Creating Goal-Based Waiver
	Setting Default Waiver File
	Handling Unsaved Changes in Waiver Files
	Including a Waiver File in Another Waiver File

	Effects of Waiving Messages
	Auto-Migration of Waivers
	Waiving Messages through GUI
	Using the Waiver Editor Window
	Using the Results Pane to Waive Messages

	Waiving Messages through a Project File
	Waiving Messages by Using the waive Constraint
	Syntax of the waive Constraint
	Argument Details of the waive Constraint
	Details of the waive Constraint
	Examples of Using the waive Constraint
	Using Regular Expressions and Wildcard Characters
	Support for Hierarchical Waivers

	Waiving Messages by Using SpyGlass Pragmas
	Waiving Rule Messages for a Block of Code
	Waiving Rule Messages for a Single Line of Code
	Ignoring the SpyGlass Waiver Pragmas
	Waiving Messages in Waiver/SGDC Files
	Existing Waiver Support in SpyGlass

	Tagging Messages
	Adding a Tag
	Modifying a Tag
	Deleting a Tag

	Handling SpyGlass Built-In Messages
	Handling Syntax Error Messages
	Handling Language Warning Messages
	Handling Synthesis Warning Messages
	Handling Synthesis Error Messages
	Handling Internal Messages

	Working with Aggregated Reports
	Overview
	Searching for Input Files

	Generating Aggregated Project Results
	Project Summary Report
	Generating the Project Summary Report
	Generating the Report through GUI
	Generating the Report through a Project File

	Viewing the Project Summary Report
	Viewing the HTML Report
	Viewing CSV Reports

	The DataSheet Report
	Generating the DataSheet Report in GUI
	Creating a Configuration File
	Changing the Name of the Report
	Adding a Logo in the Report Header
	Tcl Format Support in the Configuration File

	Generating the DataSheet Report in Batch
	Generating the Datasheet Report through a Project File
	Recommended Goals for Generating DataSheet Report
	Details of the DataSheet Report
	IO Definitions
	Clock Trees
	Reset Trees
	Power
	Power Clocks
	Constraints
	Testability
	Design Statistics
	Black Boxes
	Timing
	Congestion

	The DashBoard Report
	Licensing Requirements
	Browser Compatibility
	Generating Dashboard Report
	Generating the DashBoard Report through Project File
	Generating the DashBoard Report in Batch
	Generating Dashboard Report in GUI
	Creating a Configuration File
	Tcl Format Support in the Configuration File
	Creating the Success Criteria File

	Viewing the DashBoard Report
	Details of the DashBoard Report
	SoC Dashboard
	Module Dashboard

	Customizing Report
	Including Product-Specific Data in the Report
	Customizing the Report Header

	Managing Reports
	Archiving and Managing Data Generated After Running Goals
	Generating the HTML Goal Summary Page

	Switching to the Old Dashboard Report

	Goal Summary
	Managing Datasheet and Dashboard Reports

	Appendix
	Supported HDL Directives
	Re-using Simulation Scripts
	Project File Details
	Creating a Project File
	Structure of a Project File
	Data Import Section
	Common Options Section
	Goal Setup Section
	Example of a Tcl-based Project File

	Supported Library Cells
	Combinational Cell Support
	Sequential Cell Support

	Precompiling Multiple Libraries in a Single SpyGlass Run
	Features of Single Step Precompilation
	Makefile Based Support in Step Precompilation
	Combining Single-Step Precompilation and Top-level Run

	Goals That Do Not Use Default Parameter Value
	Sample Order File

