
SpyGlass® Connectivity Verify
Rules Reference Guide

Version N-2017.12-SP2, June 2018

Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on
this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com

Contents

Preface..7
About This Book .. 7
Contents of This Book ... 8
Typographical Conventions ... 9

Using the Rules in the SpyGlass Connectivity Verify Product.......11
Overview... 12

Features of SpyGlass Connectivity Verify product12
Types of Connectivity Verification Checks ..13

Require Value Checks ...13
Connectivity Checks...14
Conditional Connectivity Checks ..15

Licensing Requirements .. 17
Goals in the SpyGlass Connectivity Verify Product 18
SpyGlass Connectivity Verify Rule Parameters 19

dftAllowNonXValueAtStartOfSensitizedPathInSoc_02.................................20
dft_allow_path_from_enable_to_cgc_clkout ..20
dft_conn_check_allow_non_x_value_on_sensitizable_path........................20
dft_conn_check_allow_trace ...21
dft_conn_check_handle_rtl_negedge..21
dft_infer_clock_gating_cell ...22
dft_max_files_in_a_directory ..23
dft_require_path_fail_limit..23
dft_require_path_invalid_limit ...24
dft_require_path_pass_limit..24
dft_require_path_stop_check_on_pass_count..24
dft_soc_unstable_value_sources..25
dftShowForcedValues ...25
dftShowWaveForm...26
dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks
27
dftUseOffStateOfClockInClockPropagation ...27
showPowerGroundValue ...28

Reports in SpyGlass Connectivity Verify Product................................... 30
v
Synopsys, Inc.

dft_connectivity_check_summary ..31

Rules in SpyGlass Connectivity Verify ...35
Overview... 35

Soc_01 : Ensure that the expected node value is achieved37
Soc_02 : Ensure that the paths between user-specified nodes exist42
Soc_04 : Show system state for a given tag.52
Soc_07 : Checks the structure between the user-specified nodes55
Soc_08 : Checks the path between the user-specified nodes.................61
Soc_09 : Path between user-specified nodes should not exist68
Soc_01_Info : Displays information for node whose expected node value is

achieved...74
Soc_02_Info : Displays information for the connected user-specified

nodes...79
Soc_07_Info : Reports the existence of structure between user-specified

nodes...86
Soc_10 : Reports nets with illegal node values....................................90
Soc_11 : Node must satisfy the specified constraint message tag expression

99
Soc_12 : Node must not have the specified constraint message tag

expression ..104
Soc_14 : Ensure that specified nets are having stable values under specified

condition ..109
Atspeed_21 : Check required pulse pattern at specified node.111
Info_Atspeed_21 : Expected pulse pattern at the specified node achieved.

115
Diagnose_testmode : Display instances that block the testmode

propagation. ...117
Info_testmode : Display testmode simulation results........................120

Appendix:
SGDC Constraints..125

SGDC Concepts .. 125
SpyGlass Design Constraints ... 126
vi
Synopsys, Inc.

Preface
About This Book
The SpyGlass® Connectivity Rules Reference describes the SpyGlass rules
that check the designs for point to point connectivity and required values
on signals with enabling conditions and different modes of operation.
7
Synopsys, Inc.

Contents of This Book

Preface
Contents of This Book
The SpyGlass® Connectivity Rules Reference consists of the following
sections:

Section Description
Using the Rules in the SpyGlass Connectivity
Verify Product

How to use the rules in the SpyGlass
Connectivity Verify product.

Rules in SpyGlass Connectivity Verify Detailed description of the rules in the SpyGlass
Connectivity Verify product.

Appendix: SGDC Constraints Tabular list of Constraints required for rules in
the SpyGlass Connectivity Verify product.
8
Synopsys, Inc.

Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end
with _X.

Message location OUT <= IN;

Reworked example
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple

times
| (Vertical bar) A list of choices out of which you can choose

one

... (Horizontal
ellipsis)

Other options that you can specify
9
Synopsys, Inc.

Typographical Conventions

Preface
10
Synopsys, Inc.

Using the Rules in the
SpyGlass Connectivity
Verify Product
The SpyGlass Connectivity Verify product contains a variety of
connectivity-related rules. The rules in SpyGlass Connectivity Verify
product assist in verifying required connections, logic values, frequencies,
and structures.

This guide covers guidelines, parameter, and rule descriptions for using the
Connectivity Verify Product effectively. Please refer to the SpyGlass
Explorer User Guide for details on using the SpyGlass GUI.

This section explains the following topics:
 Overview

 Types of Connectivity Verification Checks

 Licensing Requirements

 Goals in the SpyGlass Connectivity Verify Product

 SpyGlass Connectivity Verify Rule Parameters

 Reports in SpyGlass Connectivity Verify Product
11
Synopsys, Inc.

Overview

Using the Rules in the SpyGlass Connectivity Verify Product
Overview
Assembling large structures from existing sub-blocks is a fundamental
aspect of contemporary Soc designs. This requires large number of
connections from top-level blocks to lower-level blocks. This includes
connections between control signals, clock signals, and test logic.

The large amount of connections involved poses challenges in connectivity
verification.

In such cases, the SpyGlass Connectivity Verify product enables you to
verify:
 Connections between sub-blocks as well as connections from upper-

level blocks to lower-level blocks
 Confirmation that logic values on particular pins can be achieved with

the proper setup of values on connecting pins
 Verification that values defined on the sgdc files for sub-blocks are

achieved when sgdc files for the Soc are applied
 Verification that different frequencies can be achieved at required pins

This section explains the following topics:
 Features of SpyGlass Connectivity Verify product

 Types of Connectivity Verification Checks

Features of SpyGlass Connectivity Verify product

The SpyGlass Connectivity Verify product provides following features:
 Easy capture of connectivity-intent across IP/SoC: The product allows

you to:
 use compact & portable constraints

 verify one-to-one, one-to-many, many-to-one connections

 Check for illegal conditions

 Verify conditional connectivity-checks

 Validate design methodology consistency across blocks and reuse at
SoC level

 Static Checks Supplements Simulation Based Verification:
12
Synopsys, Inc.

Overview

Using the Rules in the SpyGlass Connectivity Verify Prod-
 Fast performance to quickly find basic connectivity bugs

 Supports regression use model

 Violations clearly state the failure root-cause

 GUI based design analysis

Types of Connectivity Verification Checks

The connectivity verification checks can be classified under the following
categories:
 Require Value Checks

 Connectivity Checks

 Conditional Connectivity Checks

Require Value Checks

The require values checks enables you to verify logic values at different
design locations.

Figure 1 illustrates require value checks under different enabling conditions:
13
Synopsys, Inc.

Overview

Using the Rules in the SpyGlass Connectivity Verify Product
FIGURE 1. Require Value Checks

In the above example, the SpyGlass Connectivity Verify product enables
you to verify:
 PLL resets are at inactive value

 Clock gating cell (CGC) test enable pins are not tied off

Connectivity Checks

The connectivity checks enables you to verify that a path exists for
specified setup conditions.

Figure 2 illustrates point to point connectivity checks:
14
Synopsys, Inc.

Overview

Using the Rules in the SpyGlass Connectivity Verify Prod-
FIGURE 2. Connectivity Checks

In the above example, the connectivity checks ensure:
 Connectivity from point A to point B across hierarchies

 All Functional clocks are driven from the clock shaper Output

 Core clocks are driven by Clock Gating Cells (CGCs)

Conditional Connectivity Checks

Conditional connectivity checks enables you to verify complex connections.

Figure 3 illustrates conditional connectivity checks:
15
Synopsys, Inc.

Overview

Using the Rules in the SpyGlass Connectivity Verify Product
FIGURE 3. Conditional Connectivity Checks

In the above example, the conditional checks validate that the memory
sleep enables are controlled by:
 SLP_EN pin at IP-level

 Configuration register in the functional mode at the SoC level
16
Synopsys, Inc.

Licensing Requirements

Using the Rules in the SpyGlass Connectivity Verify Prod-
Licensing Requirements
The SpyGlass Connectivity Verify product requires soc_conn_adv license.
17
Synopsys, Inc.

Goals in the SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Product
Goals in the SpyGlass Connectivity Verify
Product

The SpyGlass Connectivity Verify product uses the
connectivity_verification goal. The
connectivity_verification goal enables easy capture of
connectivity intent across IPs/SoCs and performs static checks to
supplement simulation-based verification.

For details, refer to the GuideWare User Guide.
18
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
SpyGlass Connectivity Verify Rule Parameters
This section provides explains all the parameters that are used by the rules
of the SpyGlass Connectivity Verify product.

You can set these parameters by using the following command in SpyGlass
Explorer and Tcl Shell Interface:

set_parameter <parameter_name> <parameter_value>

For more information on setting the parameters, refer to the SpyGlass Tcl
Interface User Guide and SpyGlass Explorer User Guide.
19
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Product
dftAllowNonXValueAtStartOfSensitizedPathInSoc_02
The dftAllowNonXValueAtStartOfSensitizedPathInSoc_02 parameter is
deprecated.

The non-x nodes are now always allowed as start point for the sensitized
require_path check. Therefore, the
dftAllowNonXValueAtStartOfSensitizedPathInSoc_02 parameter is ignored.

dft_allow_path_from_enable_to_cgc_clkout

Use this parameter to allow a connectivity path from enable (data and test)
to CGC clock-out pin.

dft_conn_check_allow_non_x_value_on_sensitizable_path

Allows non-x value (0 or 1) on a sensitizable path.

By default, the value of the parameter is on. Therefore, the Soc_02 and
Soc_02_Info rules allow non-x value on the path while performing checks on
the sensitizable paths.

Set the value of the parameter to off to ignore non-X value on the path
while performing checks on the sensitizable paths.

Used by Soc_02, Soc_02_Info, Soc_08, Soc_09
Options on, off
Default value off
Example
Console/Tcl-based usage set_parameter

dft_allow_path_from_enable_to_cgc_clkout on

Usage in goal/source
files

-dft_allow_path_from_enable_to_cgc_clkout=on

Used by Soc_02, Soc_02_Info
Options on, off
Default value on
Example
20
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
dft_conn_check_allow_trace

Use this parameter to allow combinational traversal through the
asynchronous pins of a flip-flop while performing the checks for require
path (require_path constraint) or illegal path (illegal_path constraint).

dft_conn_check_handle_rtl_negedge

Considers the input to the inverter, in front of the CP/CLR/PRE pin, as the
start/end point of the connectivity check.

By default the value of the parameter is off. In this case, the CP/CLR/PRE
pin of the flip-flop remains the start/end point of the connectivity check.

Set the value of the parameter to yes to consider the input to the inverter,
in front of the CP/CLR/PRE pin, as the start/end point of the connectivity
check.

Console/Tcl-based
usage

set_parameter
dft_conn_check_allow_non_x_value_on_sensitizab
le_path off

Usage in goal/source
files

-
dft_conn_check_allow_non_x_value_on_sensitizab
le_path=off

Used By Conn_02, Soc_02, Soc_02_Info, Conn_08,
Conn_09, Soc_08, Soc_09

Options on, off
Default Value off
Example
Console/Tcl-
based Usage

set_parameter
dft_conn_check_allow_trace_through_async on

Usage in goal/
source files

-dft_conn_check_allow_trace_through_async=on
21
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Product
dft_infer_clock_gating_cell

Selects the behavior of automatic clock gating cell (CGC) inference.

By default, the value of this parameter is set to on and the cells similar to
Clock Gating Cells (CGCs) are treated as CGCs.

Set the value of the parameter to off to turn off CGC inference.

See Identifying Clock Gating Cells section for more information on the ways
to infer CGCs.

For more information on identifying CGCs, refer to the Identifying Clock
Gating Cells section of the SpyGlass DFT Rules Reference Guide.

Used by DFT: Conn_01, Conn_02, Conn_08, Conn_09,
Conn_10
Connectivity Verify:Soc_01, Soc_01_Info, Soc_02,
Soc_02_Info, Soc_08, Soc_09, Soc_10

Options on, off
Default value off
Example
Console/Tcl-based
usage

set_parameter
dft_conn_check_handle_rtl_negedge off

Usage in goal/source
files

-dft_conn_check_handle_rtl_negedge = off

Used by All SpyGlass Connectivity Verify Rules
Options on, off
Default value on
Example
Console/Tcl-based usage set_parameter dft_infer_clock_gating_cell

off

Usage in goal/source
files

-dft_infer_clock_gating_cell=off
22
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
dft_max_files_in_a_directory
Specifies maximum number of csv files in a single directory.

dft_require_path_fail_limit

Selects the number of violations reported by the Soc_02 and Soc_08 rules
for the require_path and require_strict_path constraints failure when either
the -from_one_of or -to_one_of arguments of the constraints are not
specified.

Used by All SpyGlass Connectivity Verify Rules
Options <any natural number>
Default value 2000
Example
Console/Tcl-based usage set_parameter dft_max_files_in_a_directory

5000

Usage in goal/source
files

-dft_max_files_in_a_directory=5000

Used by Soc_02, Soc_08
Options <any natural number>

Default Value 10

Example
Console/Tcl-
based usage

set_parameter dft_require_path_fail_limit -1

Usage in
goal/source
files

-dft_require_path_fail_limit=-1
23
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Product
dft_require_path_invalid_limit
Limits the number of invalid path violations reported by the Soc_08 rule for
the require_strict_path constraint failure.

dft_require_path_pass_limit

Limits the number of violations reported by the Soc_02_Info and Soc_08
rules for the require_path and require_strict_path constraints success when
either the -from_one_of or -to_one_of arguments of the constraints
are specified.

dft_require_path_stop_check_on_pass_count

Limits the number of violations reported by the Soc_02_Info rule when both
the conditions are true:

Used by Soc_08
Options <any natural number>

Default Value 10

Example
Console/Tcl-
based usage

set_parameter dft_require_path_invalid_limit -1

Usage in
goal/source
files

--dft_require_path_invalid_limit=-1

Used by Soc_02_Info, Soc_08
Options <any natural number>

Default Value -1

Example
Console/Tcl-
based usage

set_parameter dft_require_path_pass_limit 1

Usage in
goal/source
files

-dft_require_path_pass_limit=1
24
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
 Either the -from_one_of or -to_one_of arguments for the
require_path constraint is specified

 The require_path constraint check is successful

dft_soc_unstable_value_sources

Specifies unstable value sources, other than scannable flip-flops and
latches, that needs to be reported by the Soc_14 rule.

dftShowForcedValues

Use the dftShowForcedValues rule parameter to differentiate
between the values enforced by the user and values that have been
propagated automatically by the rule.

The dftShowForcedValues rule parameter controls the display of

Used by Soc_02_Info
Options <any natural number>

Default Value -1

Example
Console/Tcl-
based usage

set_parameter
dft_require_path_stop_check_on_pass_count 1

Usage in
goal/source
files

-dft_require_path_stop_check_on_pass_count=1

Used by Soc_14

Options none, all, blackbox, hanging_net, port

Default Value none

Example
Console/Tcl-
based usage

set_parameter dft_soc_unstable_value_sources none

Usage in
goal/source
files

-dft_soc_unstable_value_sources=none
25
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Product
signals in the schematic view. When the dftShowForcedValues is set,
signals forced onto specific nodes by the test_mode constraints appear as
0(F) or 1(F). Signals that result or are implied from these forced signals
appear as 0 or 1 (without the (F) suffix).

This provides clear differentiation between causal signals and result
signals. For example, in a design where the output of an AND gate is set to
1 by a test_mode constraint and where other constraints on nodes in the
fan-in cone for AND cause a 0 on one of the AND gate inputs, the output of
the AND will retain its forced value. Therefore, the inconsistency of a 0 on
an AND input and a 1 on the AND output may be resolved.

When the dftShowForcedValues is not set, the (F) suffix does not
appear.

dftShowWaveForm

Use this parameter to select whether or not to display the waveform
information for the Info_testmode rule.

Used by Info_testmode
Options off, on
Default value on
Example
Console/Tcl-based usage set_parameter dftShowForcedValues off

Usage in goal/source
files

-dftShowForcedValues=off

Used by Info_testmode
Options on, off
Default value off
Example
Console/Tcl-based usage set_parameter dftShowWaveForm on

Usage in goal/source
files

-dftShowWaveForm=on
26
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
dft_treat_latches_with_X_on_enable_as_combinational_fo
r_soc_path_checks

Defines the treatment of latches, that is, whether to consider them as
combinational or sequential, where enable pin does not get either 0 or 1,
when running Soc path check rules.

dftUseOffStateOfClockInClockPropagation

Specifies the treatment of the off state of the clocks during shift, capture,
or atspeed mode.

By default, the dftUseOffStateOfClockInClockPropagation
parameter is set to on to simulate the off state of the test clock, that is, 0
for rtz and 1 for rto. It also keeps functional clocks to unknown state during
the shift mode.

Set this parameter to off to keep all clocks, including functional and test
clocks to unknown state. See the table below to view the list of other
possible values.

The following table lists the clock state and the corresponding event
applied on it during scanshift mode simulation:

Used by Soc_02, Soc_02_Info, Soc_08, Soc_09

Options on, off
Default value off
Example
Console/Tcl-based usage set_parameter

dft_treat_latches_with_X_on_enable_as_combin
ational_for_soc_path_checks on

Usage in goal/source
files

-
dft_treat_latches_with_X_on_enable_as_combin
ational_for_soc_path_checks = on

Clock State Event Applied
Unknown No event is applied
27
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Product
An 'X' is always simulated at the end is that clock line is free during clock
propagation. You can use this parameter when ICGs are used to drive
constant value.

showPowerGroundValue

Use this parameter to control the schematic display for power/ground
simulation.

When the value of the parameter is set to on, the simulation value of a net
due to power/ground is displayed. To hide the power/ground simulation
values of a net, set this switch to 'off'.

off 0X (rtz) or 1X (rto)
free running 0X1X

Used by All rules in the SpyGlass Connectivity Verify product
Options off, on, fclk_unknown_n_tclk_unknown,

fclk_unknown_n_tclk_off_state,
fclk_unknown_n_tclk_free_running,
fclk_off_state_n_tclk_off_state,
fclk_off_state_n_tclk_free_running,
fclk_free_running_n_tclk_off_state,
fclk_free_running_n_tclk_free_running

Default value on
Example
Console/Tcl-based usage set_parameter

dftUseOffStateOfClockInClockPropagation off

Usage in goal/source
files

-dftUseOffStateOfClockInClockPropagation=
fclk_free_running_n_tclk_off_state

Used by Info_testmode
Options on, off
Default value on
Example

Clock State Event Applied
28
Synopsys, Inc.

SpyGlass Connectivity Verify Rule Parameters

Using the Rules in the SpyGlass Connectivity Verify Prod-
Console/Tcl-based usage set_parameter showPowerGroundValue off

Usage in goal/source
files

-showPowerGroundValue=off
29
Synopsys, Inc.

Reports in SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Product
Reports in SpyGlass Connectivity Verify
Product

The SpyGlass Connectivity Verify product generates the rules and reports
that you can view from the Reports menu in SpyGlass Explorer or by using
the set_option report <report-name> command followed by the
report name.

The SpyGlass Connectivity Verify product generates
dft_connectivity_check_summary report that contains a summary of the Soc_01,
Soc_02, Soc_07, Soc_08, Soc_09, Soc_01_Info, Soc_02_Info, and Soc_07_Info
rules.
30
Synopsys, Inc.

Reports in SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Prod-
dft_connectivity_check_summary
The dft_connectivity_check_summary.rpt file is generated by the Soc_01,
Soc_02, Soc_07, Soc_08, Soc_09, Soc_01_Info, Soc_02_Info, and Soc_07_Info
rules. This report contains a summary of these rules.

##
Purpose :
The report summarizes all the connectivity check results
#
require_value: Checked by Soc_01, Soc_01_Info
Reports the number of 'require_value' constraints
passed and failed
#
require_path: Checked by Soc_02, Soc_02_Info
Reports the number of 'require_path' constraints passed
and failed
#
require_structure: Checked by Soc_07, Soc_07_Info
Reports the number of 'require_structure' constraints
passed and failed
#
require_strict_path: Checked by Soc_08
Reports the number of 'require_strict_path' constraints
passed and failed
#
illegal_path: Checked by Soc_09
Reports the number of 'illegal_path' constraints passed
and failed
#
NOTE : For more details, refer to the corresponding
rule violations
##

##

Format :
Top design unit: <top_design_name>
#

31
Synopsys, Inc.

Reports in SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Product
require_value:
<N> require_value constraints passed
<N> require_value constraints failed
#
require_path:
<N> require_path constraints passed
<N> require_path constraints failed
#
require_structure:
<N> require_structure constraints passed
<N> require_structure constraints failed
#
require_strict_path:
<N> require_strict_path constraints passed
<N> require_strict_path constraints failed
#
illegal_path:
<N> illegal_path constraints passed
<N> illegal_path constraints failed
#
NOTE : If a particular rule is disabled in the current
run, then there will not be a section corresponding to
that rule
###

###

Top design unit: top1

require_value:
 '1' require_value constraint passed
 No require_value constraint failed

require_path:
 '2' require_path constraints passed
 No require_path constraint failed

require_structure:
32
Synopsys, Inc.

Reports in SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Prod-
 No require_structure constraint passed
 '1' require_structure constraint failed

require_strict_path:
 '2' require_strict_path constraints passed
 '2' require_strict_path constraints failed

illegal_path:
 '1' illegal_path constraint passed
 '2' illegal_path constraints failed
##

##

Top design unit: top2

require_value:
 No valid require_value constraint specified

require_path:
 No valid require_path constraint specified

require_structure:
 No valid require_structure constraint specified

require_strict_path:
 No valid require_strict_path constraint specified

illegal_path:
 No valid illegal_path constraint specified
##
33
Synopsys, Inc.

Reports in SpyGlass Connectivity Verify Product

Using the Rules in the SpyGlass Connectivity Verify Product
34
Synopsys, Inc.

Rules in SpyGlass
Connectivity Verify
Overview

The SpyGlass® Connectivity Verify product has the following rules:

Rule Flags/Highlights
Soc_01 Nodes that do not achieve expected values
Soc_02 Missing net connections between specified nodes
Soc_04 Simulation results for the conditions specified by a tag
Soc_07 Structures that are not same as the user-specified structures

between the user-specified nodes
Soc_08 The path between the user-specified nodes
Soc_09 Path between user specified nodes should not exist
Soc_01_Info Nodes that achieve expected values
Soc_02_Info Valid net connections between specified nodes
Soc_07_Info Structures that are same as the user-specified structures

between the user-specified nodes
Soc_10 Reports nets with illegal node values
Soc_11 Ensures that the node satisfies the specified constraint

message tag expression
35
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_12 Ensures that the node does not have the specified constraint
message tag expression

Soc_14 Ensure that specified nets are having stable values under
specified condition

Atspeed_21 Check required pulse pattern at specified node
Info_Atspeed_2
1

Expected pulse pattern at the specified node achieved.

Diagnose_testm
ode

Display instances that block the testmode propagation.

Info_testmode Display testmode simulation results

Rule Flags/Highlights
36
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_01
Ensure that the expected node value is achieved

When to Use

Use this rule to identify the nodes that do not achieve the expected
simulation value.

Description

The Soc_01 rule generates the SpyGlass Explorer highlight data for those
nodes specified with require_value constraints that do not achieve the
specified simulation value when the specified tag condition is simulated.

Expected values at arbitrary nodes and the applied values that should
cause or force the expected values are checked. This is useful for ensuring
that unit-level test requirements are satisfied at the SoC level.

Consider the following require_value constraint:

require_value
-tag <tagName> -name <nodeNames> -value <value>

The Soc_01 rule generates the SpyGlass Explorer highlight data for those
nodes specified with the -name argument that do not achieve the
simulation value <value> when the conditions of <tagName> are
simulated.

To view the nodes that achieve the expected value, use the Soc_01_Info
rule.

Prerequisites

Specify the require_value constraint.

Default Weight

10

Language

Verilog, VHDL

Method
For each define_tag, simulate power, ground and all conditions defined for this
define_tag.
For each require_value with the current define_tag, check that the defined pin has the
37
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
defined value. Otherwise, report a message.

Parameter(s)

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

Constraint(s)

 define_tag: Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

 require_value: Use this constraint to define a check that requires a logic
value to be established on a certain node when the circuit has been
simulated using the condition specified by the -tag argument.

Operating Mode

Define_tag

Messages and Suggested Fix

The following violation messages are displayed for the Soc_01 rule:

Message 1

[ERROR] [constraint_message_tag:<value>] Node <name> has value
<value1>. (Required: <value2>) under tag <tag-name>

Arguments
 Constraint tag value, <value>

 Name of the node <name>

 Actual value <value1>

 Expected value <value2>

 Tag name <tag-name>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the

-constraint_message_tag argument for the require_value constraint.
38
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Potential Issues
A violation is reported due to incomplete or incorrect simulation condition
or incorrect design connectivity.

Consequences of Not Fixing
Not fixing the violation may result in unexpected code behavior.

How to Debug and Fix
View the Incremental Schematic for the violation message. The
Incremental Schematic highlights the node where the required simulation
mismatches the actual simulation.

You can also view the violation for the Soc_04 rule along with the violation
of the Soc_01 rule in the Incremental Schematic window. To do this,
double-click the violation for the Soc_01 rule and open the Incremental
Schematic window.

The violation message for the Soc_04 rule overlaps the violation message
for the Soc_01 rule in the Incremental Schematic window. This is useful in
debugging the violation for the Soc_01 rule.

To fix the violation, see Example Code and/or Schematic section.

Message 2

[WARNING] [constraint_message_tag:<value>] illegal_value
command is using option -matchNBits (<value1>) without setting
parameter dftShowWaveForm to 'on' under <tag-name>. Setting
-matchNBits to value '1' for the rule checking purpose

Arguments
 Constraint tag value, <value>

 Illegal value <value1>

 Tag name <tag-name>

Potential Issues
A violation is reported when the following conditions hold true:

 Value of the dftShowWaveForm parameter is not set on

 The require_value constraint uses the -matchNbits <value>
argument under <tag-name> condition

 The value of the -matchNBits argument is greater than 1
39
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
The Soc_01 rule does not report this violation message if the tag is defined
using the define_tag command.

Consequences of Not Fixing
Not fixing the violation may result in unexpected code behavior.

How to Debug and Fix
To fix the violation, set the value of the dftShowWaveForm parameter to on.

Example Code and/or Schematic

Consider the following example:
40
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Default Severity Label

Error

Rule Group

SoC

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_value
constraints passed and failed.
41
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_02
Ensure that the paths between user-specified nodes exist

When to Use

Use this rule to identify the disjointed pair of user-specified nodes.

Rule Description

The Soc_02 rule reports connection violations between specified pair of
nodes.

The Soc_02 rule checks either conditional or unconditional paths between
user-specified nodes.

NOTE: The Soc_02 rule checks all require_path constraints — without the -tag argument
and with the -tag argument (earlier checked by the now obsolete Soc_03 rule.)

While processing the require_path constraints, Soc_02 rule checking
depends on -path_type and simulation condition as discussed below:

 If you specify the value of the -path_type argument as
sensitized, the Soc_02 rule performs the strict functional checking.
This ensures that the path is properly sensitized by the specified
simulation condition.

 If you specify the value of the -path_type argument as
sensitizable, the Soc_02 rule performs the functional checking.
This ensures that the path is properly sensitizable and is not blocked by
the simulation condition.

 If you specify the value of the -path_type argument as
buffered, the Soc_02 rule looks for strict topological checking
and checks for buffers and inverters only.

Specified field of require_path constraint Simulation condition
-use_shift Shift
-use_capture Capture
-use_captureATspeed Capture (atspeed)
-tag <tag_name> tag_name
If none of the above specified Power ground
42
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 If you do not specify the value of the -path_type argument, the
default value of the argument, that is, sensitizable is used.

Consider the following example, where Shift_Mode is equal to 1, that
is, -use_shift parameter is specified.

The above figure shows an example of the sensitized path. Here, the
value of the -path_type argument is set as sensitized, which
ensures the existing logic connectivity between the start and end points.
Consider the following example, where the clock is controllable to 1:

The above figure shows an example of the sensitizable path. Here, the
value of the -path_type argument is specified as sensitizable,
which checks whether the target path is sensitizable during the specific
simulation condition.

SoC integration often requires that connections between various units
exist. This rule allows arbitrary from-to pin to be checked.

To view the valid paths, use the Soc_02_Info rule.

The Soc_02 rule flags a violation if during traversal to find a path between
43
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
two nodes, a contentious net is found. This path is no longer considered a
correct path, therefore, the Soc_02_Info rule does not highlight this path.

NOTE: If you do not specify the -undirected qualifier in the require_path constraint,
the Soc_02 rule traces the path from -from node to -to node only.

Prerequisites

Specify the require_path constraint.

Default Weight

10

Language

Verilog, VHDL

Method
If specified, simulate require path for <path_type> verification under specified
simulation condition.
For each from-to pair of require_path specification:
Walk the unblocked fan-out cone under the simulation condition from the start point
while maintaining the phase inversion. If the walk doesn't terminate on the specified
endpoint for the required <path_type>, report a violation.

Parameter(s)

 dftAllowNonXValueAtStartOfSensitizedPathInSoc_02: This parameter is
deprecated and is ignored for rule-checking.

 dft_allow_path_from_enable_to_cgc_clkout: The default value is off. Set the
value of the parameter to on to allow a connectivity path from enable
(data and test) to CGC clock-out pin.

 dft_conn_check_allow_non_x_value_on_sensitizable_path: The default value
is on. Set the value of the parameter to off to ignore non-X (0 or 1)
value on the path while performing checks on the sensitizable paths.

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.

 dft_require_path_fail_limit: The default value is 10. Set the value of the
parameter to any natural number to control the number of violations
reported by the Soc_02 rule for the require_path constraint failure when
44
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
either the -from_one_of or -to_one_of arguments of the
require_path constraint is specified.

 dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks:
The default value is off. Set the value of the parameter to on to define
the treatment of latches. That is, whether to consider them as
combinational or sequential, where enable pin does not get either 0 or
1, when running Soc path check rules.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

 dft_conn_check_allow_trace: The default value is off. Set the value of the
parameter to on to allow combinational traversal through the
asynchronous pins of a flip-flop while performing the checks for require
path (require_path constraint) or illegal path (illegal_path constraint).

Constraint(s)

 require_path (mandatory): Use this constraint to define a connectivity
check for a path from a pin specified with the -from argument to a pin
specified with the -to argument.

 test_mode (optional): Use this constraint to specify the set of conditions,
both pins and values, that when simulated, will force the circuit in test
mode.

 define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Scanshift, Capture, Power Ground, Define_tag

Messages and Suggested Fix

Message 1

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
not found from '<from_node_name>' to '<to_node_count>' nodes
under <simulation condition> within '<sequential_depth>'
sequential depth

Arguments
45
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
To view the list of message arguments, click Arguments.

Potential Issues
The violation message appears if no valid path exists between the user-
specified nodes.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 2

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
not found to '<to_node_name>' from '<from_node_count>' nodes
under <simulation condition> within '<sequential_depth>'
sequential depth

Arguments
To view the list of message arguments, click Arguments.

Potential Issues
The violation message appears if no valid path exists between the user-
specified nodes.

NOTE: This violation message is reported instead of Message 1, in case of '-from_one_of'
field specified in 'require_path' constraint.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 3
[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
not found from '<from_node_name>' to '<to_node_count>' nodes
within '<sequential_depth>' sequential depth

Arguments
46
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
To view the list of message arguments, click Arguments.

Potential Issues
The violation message appears if no valid path exists between the user-
specified nodes.

NOTE: This violation message is reported instead of Message 1, when '-path_type' is
'buffered' in 'require_path' constraint.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 4

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
not found to '<to_node_name>' from '<from_node_count>' nodes
within '<sequential_depth>' sequential depth

Arguments
 Constraint tag value, <value>

 Expected path type, as specified by 'require_path' constraint,
<path_type>

 Node name specified in the '-from' field of 'require_path' constraint,
<from_node_name>

 Node name specified in the '-to' field of 'require_path' constraint,
<to_node_name>

 No of '-to' nodes for which connectivity check failed from the specified '-
from' node, <to_node_count>

 No of '-from' nodes from which connectivity check failed to the specified
'-to' node, <from_node_count>

 Value specified by '-sequential_depth' field of 'require_path constraint,
<sequential_depth>

 Simulation condition specified in the 'require_path' constraint,
<simulation_condition>

NOTE: The constraint tag value is prefixed to the violation message only if you specify the
47
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
-constraint_message_tag argument for the require_path constraint.

Potential Issues
The violation message appears if no valid path exists between the user-
specified nodes.

NOTE: This violation message is reported instead of Message 2, when '-path_type' is
'buffered' in 'require_path' constraint.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

If endpoints are displayed start probing from either fan-out cone of from
point or fan-in cone of to point to see why required path does not exist.

If the path from start point up to the instance which is blocking is displayed
then analyze the text annotation date displayed to see why the path is
blocked at the instance highlighted.

To fix the violation, see Example Code and/or Schematic.

Message 5

[ERROR] [constraint_message_tag:<value>] '<no_of_paths>'
(<limit_breached>) '<path_type>' path(s) found from
'<from_node_name> node under <simulation condition> within '<
sequential_depth >' sequential depth

Arguments
 Constraint tag value, <value>

 Expected path type, as specified by 'require_path' constraint,
<path_type>

 Limit to the number of paths, <limit_breached>

 Node name specified in the '-from' field of 'require_path' constraint,
<from_node_name>
48
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 Simulation condition specified in the 'require_path' constraint,
<simulation_condition>

 Value specified by '-sequential_depth' field of 'require_path constraint,
<sequential_depth>

Potential Issues
Specified number of paths are not present between user-specified nodes.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

If endpoints are displayed start probing from either fan-out cone of from
point or fan-in cone of to point to see why required path does not exist.

If the path from start point up to the instance which is blocking is displayed
then analyze the text annotation date displayed to see why the path is
blocked at the instance highlighted.

To fix the violation, see Example Code and/or Schematic.

Message 6

[WARNING] [constraint_message_tag: <value>]
min_to_paths('<min_path_value>') should have a value less than
max_to_paths('<max_path_value>'), ignoring these values

Arguments
 Constraint tag value, <value>

 Minimum number of expected successful paths, <min_path_value>

 Maximum number of expected successful paths, <max_path_value>

Potential issues
The value specified is ignored.

How to debug and fix
49
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

If endpoints are displayed start probing from either fan-out cone of from
point or fan-in cone of to point to see why required path does not exist.

If the path from start point up to the instance which is blocking is displayed
then analyze the text annotation date displayed to see why the path is
blocked at the instance highlighted.

To fix the violation, review the constraint and modify to specify valid
values.

Example Code and/or Schematic

Consider the following example:

Schematic highlight

Start and end point would be highlighted. (No topological connection)

Path from start point till the place signal reached, would be highlighted in
50
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
one color and from there to end point in different color. (Where path is
blocked)

Path with the same phase in one color and invert phase in different color
highlighted. This schematic is applicable only when the -invert or
-noinvert argument is specified in the require_path constraint.

Default Severity
Label

Error

Rule Group

SoC

Reports and
Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_path
constraints passed and failed.
51
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_04
Show system state for a given tag.

When to Use

Use this rule to show the system state for each condition specified by the
define_tag constraint.

Description

The Soc_04 rule shows the simulation results for each condition specified
by the define_tag constraint.

The state of user-selected nodes, when a set of nodes are in a particular
state, is checked. This is useful to verify that port requirements on one or
more blocks in a design have required values when a set of nodes have
particular values.

Prerequisites

Specify the define_tag constraint.

Default Weight

10

Language

Verilog, VHDL

Method
For each set of define_tag conditions
Simulate power, ground and the defined node/value pairs

Parameter(s)

 dftShowWaveForm (optional): The default value is off. Set the value of the
parameter to on to enable the generation of waveform corresponding to
the rule message in the Waveform viewer of the SpyGlass Explorer.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.
52
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Constraint(s)

define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Define_tag

Messages and Suggested Fix

Message 1

[INFO] Tag '<tag-name>' is displayed for design '<du-name>'

Arguments
To view list of arguments, click Arguments.

Potential Issues
Since this is an informational rule, there are no potential issues related to
this violation message.

Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message

How to Debug and Fix
The Soc_04 rule assists in debugging the violations reported by the
Soc_01, Soc_01_info, Soc_02 and Soc_02_info rules. The Soc_04 rule is
an informative rule and requires no debug.

No fix is required as this is an informational rule.

Message 2

[INFO] Tag '<tag name>__as_used_in_scan_chain_tracing__' is
displayed for design '<du-name>'

Arguments

 Name of the tag, <tag-name>

 Name of the design unit, <du-name>

Potential Issues
A violation message is displayed for those define_tag tags that are used in
scan_chain to define scan enable condition (-scanenable field).
53
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message

How to Debug and Fix
The Soc_04 rule assists in debugging the violations reported by the
Soc_01, Soc_01_info, Soc_02 and Soc_02_info rules. The Soc_04 rule is
an informative rule and requires no debug.

No fix is required as this is an informational rule.

Example Code and/or Schematic

Currently Unavailable

Default Severity Label

Info

Rule Group

SoC Rules

Reports and Related Files

No related reports or files.
54
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_07
Checks the structure between the user-specified nodes

When to Use

Use this rule when you want to use a specific structure.

Description

The Soc_07 rule checks whether the path all the -from nodes and at least
one of the -from_one_of nodes to -to node have the same structure as
specified in -type field of the require_structure constraint. The Soc_07 rule
also allows functional buffers (1 input of OR/XOR gate is tied to 0, 1 input
of AND is tied to 1). So, even if structure as specified in -type field acts as
buffer, Soc_07 considers them as valid objects on the path.

As an example of the rule’s application, you can use this rule to run a check
on memories. Memory-Controllers have PASS / FAIL status signals.

A GLOBAL-PASS is AND of all individual PASS signals as specified below:

require_structure -from "BIST::PASS" -to G_PASS -structure and

A GLOBAL-FAIL is OR of all individual FAIL signals as specified below:

require_structure -from "BIST::FAIL" -to G_FAIL -structure or

Based on the above status, we may have 3 types of failures:

 Extra driver is specified in the from-node-list, which is not present
in the combinational fanin cone of -to node. However, the violation
message for the extra driver is not reported for nodes given through
-from_one_of field, if at least one of them is found in the fan in cone
of the -to node.

 Missing driver where a node is in the combinational fanin cone of to-
node but is missing from the from-node-list.

 Incorrect GATE is found in the combinational cloud between from and
to nodes.

Default Weight

10
55
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Language

Verilog, VHDL

Parameter(s)

dftUseOffStateOfClockInClockPropagation: The default value of the parameter
is on. Set the value of the parameter to off so that clock lines are kept at X
during shift, capture, or atspeed mode simulation.

Constraint(s)

require_structure (mandatory): Use this constraint to define a structure
check for all paths from source pins to destination pin.

Operating Mode

None

Messages and Suggested Fix

[WARNING] [constraint_message_tag:<value>]
[Reason:<reason_for_vioaltion>]Path from point '<from_node>' to
point '<to-node>' is not of type '<structure>'

Arguments
 Constraint tag value, <value>

 One or combination of 'missing-driver', 'xtra-driver', incorrect-driver'
may come as reason for violation, <reason_for_violation>

 Name of the source node, <from_node>

 Name of the to destination node, <to_node>

 Desired structure, <structure>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the

-constraint_message_tag argument for the require_structure constraint.

Potential Issues
The violation message appears if path between user-specified nodes is not
user-specified.

Consequences of Not Fixing
Not fixing this violation may result in error in evaluations in the circuit.
56
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
How to Debug and Fix
Double-click the violation message. The Incremental Schematic window
highlights the path between points specified in -from and -to field of the
require_structure constraint.

To fix the violation, use user-specified structure only.

Example Code and/or Schematic

Example 1

Consider the following SGDC declaration:

require_structure -structure and -from in1 -to op1

Now, consider the following figure illustrating the Soc_07 rule violation
because of a missing driver:

For the above example, the Soc_07 rule reports the following violation
message:

[Reason:missing-driver]Path from point 'in1' to point 'op1' is
not of type 'and'

Example 2

Consider the following SGDC declaration:

require_structure -structure and -from in1 in2 in3 in4 in5
in6 in7 in8 in9 -to op4

Consider the following figure illustrating the Soc_07 rule violation because
of an extra driver:
57
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
For the above example, the Soc_07 rule reports the following violation
message:

[Reason:xtra-driver]Path from point 'in9 in8 in7 in6 in5 in4
in3 in2 in1' to point 'op4' is not of type 'and'

Example 3

Consider the following SGDC declaration:

require_structure -structure and -from in1 in2 in3 in9 -to
op1

Consider the following figure illustrating the Soc_07 rule violation because
of extra and missing drivers:

For the above example, the Soc_07 rule reports the following violation
message:

[Reason:xtra-driver, missing-driver]Path from point 'in9 in3
in2 in1' to point 'op1' is not of type 'and'
58
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Example 4

Consider the following SGDC declaration:

require_structure -structure and -from in21 in22 in23 in25
-to op3

Consider the following figure illustrating the Soc_07 rule violation because
of an extra, missing, and incorrect drivers:

For the above example, the Soc_07 rule reports the following violation
message:

[Reason:xtra-driver, incorrect-driver, missing-driver]Path from
point 'in9 in2 in25 in23 in22 in21' to point 'op3' is not of
type 'and'

Example 5

Consider the following SGDC declaration:

require_structure -from ip1 ip2 -from_one_of ip3 ip4 -to op1
-structure and
59
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Now, consider the following figure illustrating the Soc_07 rule violation
because of using the -from_one_of and -structure fields of the
require_structure constraint simultaneously:

For the above example, the Soc_07 rule reports the following violation
message because none of the nodes specified using the -from_one_of field
was found in the fanin of the -to node.

[Reason:xtra-driver]Path from point 'ip2 ip1, one of "ip4 ip3"'
to point 'op1' is not of type 'and'

Default Severity Label

Warning

Rule Group

Soc

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_structure
constraints passed and failed.
60
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_08
Checks the path between the user-specified nodes

When to Use

Use this rule when you want to check the existence of a specific path.

Description

The Soc_08 rule checks if a path originating from the -from field to the
-to field of the require_strict_path constraint exists in the design.

Default Weight

10

Language

Verilog, VHDL

Parameter(s)

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

 dft_allow_path_from_enable_to_cgc_clkout: The default value is off. Set the
value of the parameter to on to allow a connectivity path from enable
(data and test) to CGC clock-out pin.

 dft_conn_check_allow_trace: The default value is off. Set the value of the
parameter to yes to allow combinational traversal through the
asynchronous pins of a flip-flop while performing the checks for require
path (require_path constraint) or illegal path (illegal_path constraint).

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.

 dft_require_path_fail_limit: The default value is 10. Set the value of the
parameter to 10. Set the value of the parameter to any natural number
to controls the number of violations reported by the Soc_08 rule for the
require_strict_path constraint failure when either the -from_one_of or
-to_one_of arguments of the require_strict_path constraint is specified.
61
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 dft_require_path_invalid_limit: The default value is 10. Set the value of the
parameter to any natural number to control the number of invalid path
violations reported by the Soc_08 rule for the require_strict_path
constraint failure.

 dft_require_path_pass_limit: The default value is -1. Set the value of the
parameter to any natural number to control the number of violations
reported by the Soc_08 rule for the require_strict_path constraint failure
when either the -from_one_of or -to_one_of arguments of the
require_strict_path constraint is specified.

 dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks:
The default value is off. Set the value of the parameter to on to define
the treatment of latches. That is, whether to consider them as
combinational or sequential, where enable pin does not get either 0 or
1, when running Soc path check rules.

Constraint(s)

 require_strict_path (mandatory): Use this constraint to define a
connectivity check for a path from a pin specified with the -from
argument to a pin specified with the -to argument.

 test_mode (optional): Use this constraint to specify the set of conditions,
both pins and values, that when simulated, will force the circuit in test
mode.

 define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Scanshift, Capture, Define_tag, Power Ground

Messages and Suggested Fix

Message 1

[INFO] [constraint_message_tag:<value>] Found valid path(s)
from '<from-node>' to '<to-nodes-count>'desired nodes <mode-
name>

Arguments
To view the list of arguments, click Arguments.
62
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Potential Issues
Since this is an informational message, there are no potential issues
related to this message.

Consequences of Not Fixing
Since this is an informational message, there is no implicit impact of this
violation message.

How to Debug and Fix
No debug or fix is required as this is an informational message.

Message 2

[WARNING] [constraint_message_tag:<value>] Found path from
'<from-node>' to '<to-nodes-count>'undesired node <mode-name>

Arguments

The node at which the traversal was stopped, <to-node>

To view the other arguments, click Arguments.

Potential Issues
The violation is reported because a valid path to a design node, which was
not specified in the -to field of the require_strict_path constraint,
is found by SpyGlass.

Consequences of Not Fixing
Not fixing this violation may result in unexpected results.

How to Debug and Fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

To fix the violation, verify the highlighted path. If the path is correct, add
the <to-node> node in the -to field of the require_strict_path
constraint in the SGDC file. However, if the path is not correct, specify any
missing testmode constraint or check the design.

Message 3

[WARNING] [constraint_message_tag:<value>] No Valid path(s)
63
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
from '<from-node>' to '<to-nodes-count>'desired nodes <mode-
name>

Arguments
 Constraint tag value, <value>

 Source node from which the connectivity check is performed, <from-
node>

 Number of <to-nodes> at which the traversal was stopped, <to-
nodes-count>

Please note that this list may or may not be present in the -to field of
the require_strict_path constraint.

NOTE: The constraint tag value is prefixed to the violation message only if you specify the
-constraint_message_tag argument for the require_strict_path constraint.

 The mode name, <mode-name>
The available mode names are specified in the following table:

Potential Issues
The violation message appears if no valid path exists between the
user-specified nodes.

Consequences of Not Fixing
Not fixing this violation may impact the functionality of the design.

How to Debug and Fix
To fix this violation, perform any of the following steps:
 Check the design for an error

 Check the SGDC file for a missing constraint

Specified Field of the
require_strict_path Constraint

Corresponding <mode-name>

-use_shift Shift
-use_capture Capture
-use_captureATspeed Capture (atspeed)
-tag Define_tag
If none of the above fields is specified Power Ground
64
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Message 4

[WARNING] [constraint_message_tag:<value>] '<no_of_paths>'
(<limit_breached>) path(s) found from '<from_node_name>' to
desired nodes in <simulation condition>

Arguments
 Constraint tag value, <value>

 Limit to the number of paths, <limit_breached>

 Node name specified in the '-from' field of 'require_strict_path'
constraint, <from_node_name>

 Simulation condition specified in the 'require_strict_path' constraint,
<simulation_condition>

Potential Issues
Specified number of paths are not present between user-specified nodes.

Consequences of Not Fixing
Not fixing the violation may result in unsearchable expected path. This may
impact the functionality of the design.

How to Debug and Fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

If endpoints are displayed start probing from either fan-out cone of from
point or fan-in cone of to point to see why required path does not exist.

If the path from start point up to the instance which is blocking is displayed
then analyze the text annotation date displayed to see why the path is
blocked at the instance highlighted.

To fix this violation, perform any of the following steps:
 Check the design for an error

 Check the SGDC file for a missing constraint

Message 5

[WARNING] [constraint_message_tag: <value>]
min_to_paths('<min_path_value>') should have a value less than
65
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
max_to_paths('<max_path_value>'), ignoring these values

Arguments
 Constraint tag value, <value>

 Minimum number of expected successful paths, <min_path_value>

 Maximum number of expected successful paths, <max_path_value>

Potential issues
The value specified is ignored.

How to debug and fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

If endpoints are displayed start probing from either fan-out cone of from
point or fan-in cone of to point to see why required path does not exist.

If the path from start point up to the instance which is blocking is displayed
then analyze the text annotation date displayed to see why the path is
blocked at the instance highlighted.

To fix the violation, review the constraint and modify to specify valid
values.

Example Code and/or Schematic

Consider the following SGDC file snippet:

current_design dt
define_tag -tag mbe1 -name bbox.en -value 1
testmode -name bbox.en -value 0
require_strict_path -from "Sflop.*reg.Q" -to "flop2.*_reg.D"
-use_shift

Now, consider the following violation reported by the Soc_08 rule for the
above specification of the require_strict_path constraint:

[WARNING] Found valid path from 'dt.Sflop.Q_reg.Q' to undesired
node 'dt.flop1.Q_reg.D' in shift mode

The above violation is reported because there exists a valid path from the
66
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
dt.Sflop.Q_reg.Q node to the dt.flop1.Q_reg.D node, however,
the dt.flop1.Q_reg.D node is not specified in the -to field of the
above require_strict_path constraint specification.

The following schematic corresponds to the above violation message:

Default Severity Label

Info/Warning

Rule Group

SoC

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of
require_strict_path constraints passed and failed.
67
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_09
Path between user-specified nodes should not exist

When to Use

Use this rule to ensure that the path between two nodes does not exist.

Description

The Soc_09 rule reports a violation, if a path exists between from and to
nodes of the illegal_path constraint.

The type of path to be searched is determined by the -path_type
argument of the illegal_path constraint. This argument can take one
of the following values: buffered, sensitized, or sensitizable. By default,
sensitizable path is searched.

Default Weight

10

Language

Verilog, VHDL

Parameter(s)

 dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks:
The default value is off. Set the value of the parameter to on to define
the treatment of latches. That is, whether to consider them as
combinational or sequential, where enable pin does not get either 0 or
1, when running Soc path check rules.

 dft_allow_path_from_enable_to_cgc_clkout: The default value is off. Set the
value of the parameter to on to allow a connectivity path from enable
(data and test) to CGC clock-out pin.

 dft_conn_check_allow_trace: The default value is off. Set the value of the
parameter to on to allow combinational traversal through the
asynchronous pins of a flip-flop while performing the checks for require
path (require_path constraint) or illegal path (illegal_path constraint).

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.
68
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Constraint(s)

 illegal_path (mandatory): Use this constraint to define nodes between
which path should not exist.

 test_mode (optional): Use this constraint to specify the set of conditions,
both pins and values, that when simulated, will force the circuit in test
mode.

 define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Scanshift, Capture, Define_tag, Power Ground

Messages and Suggested Fix

Message 1

[ERROR] [constraint_message_tag:<value>]'<path_type>' path
found from '<from_node>' to undesired node '<to_node>' in
'<mode_name>'

Arguments
 Type of path found, <path_type>

 From node name, <from_node>

 To node name, <to_node>

 Simulation condition, <mode_name>

Potential Issues
The violation message is reported because a valid path exists from
<from_node> to <to_node>, which are specified using the illegal_path
constraint.

Consequences of Not Fixing
Not fixing this violation may impact the functionality of design.

How to Debug and Fix
View the incremental schematic of the violation message. It displays the
path specified in the violation message.

To fix the violation, verify the highlighted path. If the path is correct,
69
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
modify the corresponding illegal_path constraint. However, if the path is not
correct, specify any missing test_mode/define_tag constraint or check the
design.

Message 2

[ERROR] [constraint_message_tag:<value>]'<path_type>' path
found to '<to_node>' from undesired node '<from_node>' in
'<mode_name>'

Arguments
 Type of path found, <path_type>

 From node name, <from_node>

 To node name, <to_node>

 Simulation condition, <mode_name>

Potential Issues
The violation message is reported because a valid path exists to
<to_node> from <from_node>, which are specified using the
illegal_path constraint.

Consequences of Not Fixing
Not fixing this violation may impact the functionality of design.

How to Debug and Fix
View the incremental schematic of the violation message. It displays the
path specified in the violation message.

To fix the violation, verify the highlighted path. If the path is correct,
modify the corresponding illegal_path constraint. However, if the path is not
correct, specify any missing test_mode/define_tag constraint or check the
design.

Message 3

[ERROR] [constraint_message_tag:<value>]'<From | To>' node
<node name> is connected to leaf cell(s)

Arguments
 Constraint tag value, <value>

 From / To node name, <node name>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the
70
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
-constraint_message_tag argument for the illegal_path constraint.

Potential Issues
The violation message is reported because a from node was driving a leaf
cell or a to node was driven by a leaf cell. The violation message is
reported only for to or from nodes which were specified without any from
or to nodes, respectively, in the illegal_path constraint.

Consequences of Not Fixing
Not fixing this violation may impact the functionality of design.

How to Debug and Fix
View the incremental schematic of the violation message. It displays the
path specified in the violation message.

To fix the violation, verify the highlighted path. If the path is correct,
modify the corresponding illegal_path constraint. However, if the path is not
correct, specify any missing test_mode/define_tag constraint or check the
design.

Message 4

[INFO] [constraint_message_tag: <value>] '<passed_checks>' out
of '<total_checks>' check(s) passed

Potential Issues
Not Applicable.

Consequences of Not Fixing
Not Applicable.

How to Debug and Fix
Not Applicable.

Example Code and/or Schematic

Example 1

Consider the following sample SGDC file snippet:

current_design test.behaviour
illegal_path -from test.ff1.q -to test.bb_inst1.ip
-use_shift

Now, consider the following figure:
71
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
The Soc_09 rule reports the following violation message for the above
specification of the illegal_path constraint:

[ERROR] 'Sensitizable' path found from 'test.ff1.q' to
undesired node 'test.bb_inst1.ip' in 'Shift mode'

The rule reports the above violation message because there exists a
sensitizable path from the test.ff1.q node to the
test.bb_inst1.ip node.

Example 2

Consider the following violation message reported by the Soc_09 rule:

[constraint_message_tag: ip_A_to_B] No 'Sensitizable' path
found from '6' (out of '12') From-Nodes to some (out of '10')
To-Nodes in 'Power-Ground mode', SPREADSHEET_PATH:
'spyglass_reports/dft/Soc_09/000/Soc_09_PASS_001.csv'

Double-click on the violation message to view the related spreadsheet
report as shown in the following figure:

Each row of the Spreadsheet report contains the name of the From-Node
and count of the To-Nodes, for which path is not found. Click on a row to
view the corresponding Schematic, displaying the From-Node and all the
unreachable To-Nodes, as shown in the following figure:
72
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Also, the Incremental Schematic of the main violation shows all the From-
Nodes for which, at least one path to illegal end points was not found.

Default Severity Label

Error

Rule Group

SoC

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of illegal_path
constraints passed and failed.
73
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_01_Info
Displays information for node whose expected node value is
achieved.

When to Use

Use this rule to display the nodes that are specified with the require_value
constraint and have the same simulation value when the specified tag
condition is simulated.

Description

The Soc_01_Info rule generates the SpyGlass Explorer highlight data for
those nodes specified with require_value constraints that achieve the
specified simulation value when the specified tag condition is simulated.

Consider the following require_value constraint:

require_value
-tag <tagName> -name <nodeNames> -value <value>

NOTE: To view the nodes that do not achieve the expected value, use the Soc_01 rule.

Prerequisites

Specify the require_value constraint.

Default Weight

10

Language

Verilog, VHDL

Method
For each define_tag, simulate power, ground and all conditions defined for this
define_tag.
For each require_value with the current define_tag, check that the defined pin has the
defined value. If expected value is achieved, report a message.

Parameter(s)

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.
74
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

Constraint(s)

 require_value (mandatory): Use this constraint to define a connectivity
check for a path from a pin specified with the -from argument to a pin
specified with the -to argument.

 define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Define_tag

Messages and
Suggested Fix

Message 1

The Soc_01_Info rule generates the SpyGlass Explorer highlight data for
those nodes specified with the -name argument that achieve the
simulation value <value> when the conditions of <tagName> are
simulated.

For each such node, the following message is generated:

[INFO] [constraint_message_tag:<value>] Node '<node-name>' has
required value(<value>) under tag '<tagName>'

Where <node-name> is a node specified with the -name argument.

Arguments

 Constraint tag value, <value>

 Name of the node. <node-name>

 Simulation value. <value>

 Tag name. <tagName>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the

-constraint_message_tag argument for the require_value constraint.

Potential Issues
75
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
This is an informational rule. Therefore, it does not have any related
potential issues.

Consequences of Not Fixing
This is an informational rule. Therefore, it does not have any implicit
impact.

How to Debug and Fix
View the Incremental Schematic of the violation message. The Incremental
Schematic displays the node where the required simulation matches the
actual simulation.

You can also view the violation for the Soc_04 rule along with the violation
of the Soc_01_Info rule in the Incremental Schematic window. To do this,
double-click the violation for the Soc_01_Info rule and open the
Incremental Schematic window.

The violation message for the Soc_04 rule overlaps the violation message
for the Soc_01_Info rule in the Incremental Schematic window. This is
useful in debugging the violation for the Soc_01_Info rule.

To fix the violation, see Example Code and/or Schematic section.

Message 2

[WARNING] [constraint_message_tag:<value>] illegal_value
command is using option -matchNBits (<value1>) without setting
parameter dftShowWaveForm to 'on' under <tag-name>. Setting
-matchNBits to value '1' for the rule checking purpose

Arguments
 Constraint tag value, <value>

 Illegal value <value1>

 Tag name <tag-name>

Potential Issues
A violation is reported when the following conditions hold true:

 Value of the dftShowWaveForm parameter is not set on

 The require_value constraint uses the -matchNbits <value>
argument under <tag-name> condition

 The value of the -matchNBits argument is greater than 1

The Soc_01_Info rule does not report this violation message if the tag is
76
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
defined using the define_tag command.

Consequences of Not Fixing
Not fixing the violation may result in unexpected code behavior.

How to Debug and Fix
To fix the violation, set the value of the dftShowWaveForm parameter to on

Example Code and/or Schematic

Consider the following example:
77
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Default Severity Label

Info

Rule Group

SoC

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_value
constraints passed and failed.
78
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_02_Info
Displays information for the connected user-specified nodes.

When to Use

Use this rule to generate information for the connected user-specified
nodes.

Rule Description

The Soc_02_Info rule generates the SpyGlass Explorer highlight data for
valid paths specified with require_path constraints.

To view the invalid paths, use the Soc_02 rule.

While processing the require_path constraints, Soc_02_Info rule checking
depends on -path_type and simulation condition as discussed below:

 If you specify the value of the -path_type argument as sensitized, the
Soc_02_Info rule performs the strict functional checking. This ensures
that the path is properly sensitized by the specified simulation condition.

 If you specify the value of the -path_type argument as sensitizable, the
Soc_02_Info rule performs the functional checking. This ensures that
the path is properly sensitizable and is not blocked by the specified
simulation condition.

 If you specify the value of the -path_type argument as buffered, the
Soc_02_Info rule looks for strict topological checking and checks for
buffers and inverters only.

 If you do not specify the value of the -path_type argument, the default
value of the argument, that is, sensitizable is used.

NOTE: If you do not specify the -undirected qualifier in the require_path constraint, the
Soc_02_Info rule traces the path from -from node to -to node only.

Specified field of require_path constraint Simulation condition
-use_shift Shift
-use_capture Capture
-use_captureATspeed Capture (atspeed)
-tag <tag_name> tag_name
If none of the above specified Power ground
79
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Prerequisites

Specify the require_path constraint.

Default Weight

10

Language

Verilog, VHDL

Method
If specified, simulate require path for <path_type> verification under specified
simulation condition.
For each from-to pair of require_path specification:
Walk the unblocked fan-out cone under the simulation condition from the start point
while maintaining the phase inversion. If the walk terminates on the specified endpoint
for the required <pathtype>, report a violation.

Parameter(s)

 dftAllowNonXValueAtStartOfSensitizedPathInSoc_02: This parameter is
deprecated and is ignored for rule-checking.

 dft_allow_path_from_enable_to_cgc_clkout: The default value is off. Set the
value of the parameter to on to allow a connectivity path from enable
(data and test) to CGC clock-out pin.

 dft_conn_check_allow_non_x_value_on_sensitizable_path: The default value
is on. Set the value of the parameter to off to ignore non-X (0 or 1)
value on the path while performing checks on the sensitizable paths.

 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.

 dft_require_path_pass_limit: The default value is -1. Set the value of the
parameter to any natural number to control the number of violations
reported by the Soc_02_Info rule for the require_path constraint success
when either the -from_one_of or -to_one_of arguments of the
require_path constraint is specified.

 dft_require_path_stop_check_on_pass_count: The default value is -1. Set
the value of the parameter to any natural number to control the number
of violations reported by the Soc_02_Info rule for the require_path
80
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
constraint success when either the -from_one_of or -to_one_of
arguments of the require_path constraint is specified.

 dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks:
The default value is off. Set the value of the parameter to on to define
the treatment of latches. That is, whether to consider them as
combinational or sequential, where enable pin does not get either 0 or
1, when running Soc path check rules.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

 dft_conn_check_allow_trace: The default value is off. Set the value of the
parameter to on to allow combinational traversal through the
asynchronous pins of a flip-flop while performing the checks for require
path (require_path constraint) or illegal path (illegal_path constraint).

Constraint(s)

 require_path (mandatory): Use this constraint to define a connectivity
check for a path from a pin specified with the -from argument to a pin
specified with the -to argument.

If you do not specify the -undirected qualifier in the require_path
constraint, the Soc_02_Info rule traces the path from -from node to
-to node only.

 test_mode (optional): Use this constraint to specify the set of conditions,
both pins and values, that when simulated, will force the circuit in test
mode.

 define_tag (optional): Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

Operating Mode

Scanshift, Capture, Power Ground, Define_tag

Messages and
Suggested Fix

Message 1

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
81
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
found from '<from_node_name>' to '<to_node_count>' nodes under
<simulation condition> within '< sequential_depth >' sequential
depth

Arguments
To view the list of message arguments, click Arguments.

Potential Issues
Since this is an informational rule, there are no potential issues related to
this violation message.

Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 2

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
found to '<to_node_name>' from '<from_node_count>' nodes under
<simulation condition> within '< sequential_depth >' sequential
depth

Arguments
To view the list of message arguments, click Arguments.

Potential Issues
Since this is an informational rule, there are no potential issues related to
this violation message.

NOTE: this violation message is reported instead of Message-1, in case of '-from_one_of'
field specified in the require_path constraint.

Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 3
82
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
found from '<from_node_name>' to '<to_node_count>' nodes within
'<sequential_depth >' sequential depth

Arguments
To view the list of message arguments, click Arguments.

Potential Issues
Since this is an informational rule, there are no potential issues related to
this violation message.

NOTE: This violation is reported instead of Message-1, when '-path_type' is 'buffered' in
'require_path' constraint.

Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 4

[ERROR] [constraint_message_tag:<value>] '<path_type>' path(s)
not found to '<to_node_name>' from '<from_node_count>' nodes
within '< sequential_depth >' sequential depth

Arguments
 Constraint tag value, <value>

 Expected path type, as specified by 'require_path' constraint,
<path_type>

 Node name specified in the '-from' field of 'require_path' constraint,
<from_node_name>

 Node name specified in the '-to' field of 'require_path' constraint,
<to_node_name>

 No of '-to' nodes for which connectivity check failed from the specified '-
from' node, <to_node_count>

 No of '-from' nodes from which connectivity check failed to the specified
'-to' node, <from_node_count>
83
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 Value specified by '-sequential_depth' field of 'require_path constraint,
<sequential_depth>

 Simulation condition specified in the 'require_path' constraint,
<simulation_condition>

NOTE: The constraint tag value is prefixed to the violation message only if you specify the
-constraint_message_tag argument for the require_path constraint.

Potential Issues
Since this is an informational rule, there are no potential issues related to
this violation message.

NOTE: This violation message is reported instead of Message-2, when '-path_type' is
'buffered' in 'require_path' constraint.

Consequences of Not Fixing
Since this is an informational rule, there is no implicit impact of this
violation message.

How to Debug and Fix
Double-click the violation message to open the spreadsheet, which
contains the list of all the violation messages. Click on a violation message
in the spreadsheet to view the incremental schematic of the violation
message. The incremental schematic displays the path specified in the
violation message.

Example Code and/or Schematic

Consider the following example:
84
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Schematic Highlight

Path between the points specified with the -from and -to fields of the
require_path constraint.

Default Severity Label

Info

Rule Group

SoC

Reports and
Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_path
constraints passed and failed.
85
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_07_Info
Reports the existence of structure between user-specified nodes

When to Use

Use this rule to confirm if the user-specified structure is used.

Description

The Soc_07_Info rule displays all the paths from -from nodes and at least
one of the -from_one_of nodes to -to node that have the same structure as
specified in -type field of the require_structure constraint. The Soc_07_Info
rule also displays paths which act as functional buffers (1 input of OR/XOR
gate is tied to 0, 1 input of AND is tied to 1)

As an example of the rule’s application, you can use this rule to run a check
on memories. Memory-Controllers have PASS / FAIL status signals.

A GLOBAL-PASS is AND of all individual PASS signals as specified below:

require_structure -from "BIST::PASS" -to G_PASS -structure and

A GLOBAL-FAIL is OR of all individual FAIL signals as specified below:

require_structure -from "BIST::FAIL" -to G_FAIL -structure or

Based on the above status, we may have 3 types of failures:

 Extra driver is specified in the from-node-list, which is not present
in the combinational fanin cone of -to node. However, the violation
message for the extra driver is not reported for nodes given through
-from_one_of field, if at least one of them is found in the fan in cone
of the -to node.

 Missing driver where a node is in the combinational fanin cone of to-
node but is missing from the from-node-list.

 Incorrect GATE is found in the combinational cloud between from and
to nodes.

Default Weight

10

Language

Verilog, VHDL
86
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Parameter(s)

dftUseOffStateOfClockInClockPropagation: The default value of the parameter
is on. Set the value of the parameter to off so that clock lines are kept at X
during shift, capture, or atspeed mode simulation.

Constraint(s)

require_structure (Mandatory): Use this constraint to define a structure
check for all paths from source pins to destination pin.

Operating Mode

None

Messages and Suggested Fix

[INFO] [constraint_message_tag:<value>] Path from point
'<from_node>' to point '<to-node>' is of type '<structure>'

Arguments
 Constraint tag value, <value>

 Name of the source node, <from_node>

 Name of the to destination node, <to_node>

 Desired structure, <structure>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the

-constraint_message_tag argument for the require_structure constraint.

Potential Issues
The violation message appears when the structure between two points
matches with the user-specified structure.

Consequences of Not Fixing
This is an informational rule. Therefore, there are no direct consequences
of not fixing this violation message.

How to Debug and Fix
This is an informational rule. Therefore, no debug or fix information is
required for this violation message.
87
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Example Code and/or Schematic

Example 1

Consider the following figure:

For the above example, the Soc_07_Info rule reports an information
message stating that structure specified is a valid structure.

Example 2

Consider the following SGDC declaration:

require_structure -from ip14 ip15 -from_one_of ip16 ip17 -to
op5 -structure or

Now, consider the following schematic:

The Soc_07_Info rule reports the following violation message for the above
schematic:

Path from point 'ip15 ip14, one of "ip17 ip16"' to point 'op5'
is of type 'or'
88
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Default Severity Label

Info

Rule Group

SoC

Reports and Related Files

dft_connectivity_check_summary.rpt: Reports the number of require_structure
constraints passed and failed.
89
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_10
Reports nets with illegal node values

When to Use

Use this rule to identify the nodes that have a user-specified value under
the specified simulation condition.

Description

The Soc_10 rule generates the SpyGlass Explorer highlight data for those
nodes specified with illegal_value constraints that contain the illegal
simulation value when the specified tag condition is simulated.

Expected values at arbitrary nodes and the applied values that should
cause or force the expected values are checked. This is useful for ensuring
that unit-level test requirements are satisfied at the SoC level.

Consider the following illegal_value constraint:

illegal_value
-tag <tagName> -name <nodeNames> -value <value>

The Soc_10 rule generates the SpyGlass Explorer highlight data for those
nodes specified with the -name argument get value <value> when the
conditions specified by <tagName> are simulated.

Prerequisites

Specify the illegal_value constraint.

Default Weight

10

Language

Verilog, VHDL

Parameter(s)

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.
90
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 dft_conn_check_handle_rtl_negedge: Default value is off. Set the value of
the parameter to yes to consider the input to the inverter, in front of the
CP/CLR/PRE pin, as the start/end point of the connectivity check.

Constraint(s)

 define_tag: Use this constraint to define a named condition for
application of certain stimulus at the top port or an internal node.

 illegal_value: Use this constraint to check for the presence of an illegal
value on a certain node when the circuit has been simulated using the
condition specified by the -tag argument.

Operating Mode

Define_tag

Messages and Suggested Fix

The following violation messages are reported by the Soc_10 rule:

Message 1

[ERROR] [constraint_message_tag:<value>] Node <name> has
illegal value <value1>. under tag <tag-name>

Arguments
 Constraint tag value, <value>

 Name of the node <name>

 Illegal value <value1>

 Tag name <tag-name>
NOTE: The constraint tag value is prefixed to the violation message only if you specify the

-constraint_message_tag argument for the illegal_value constraint.

Potential Issues
A violation is reported due to incomplete or incorrect simulation condition
or incorrect design connectivity.

Consequences of Not Fixing
Not fixing the violation may result in unexpected code behavior.

How to Debug and Fix
View the Incremental Schematic for the violation message. The
91
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Incremental Schematic highlights the node with the illegal value at the
simulation.

You can also view the violation for the Soc_04 rule along with the violation
of the Soc_10 rule in the Incremental Schematic window. To do this,
double-click the violation for the Soc_10 rule and open the Incremental
Schematic window.

The violation message for the Soc_04 rule overlaps the violation message
for the Soc_10 rule in the Incremental Schematic window. This is useful in
debugging the violation for the Soc_10 rule.

To fix the violation, see Example Code and/or Schematic section.

Message 2

[WARNING] [constraint_message_tag:<value>] illegal_value
command is using option -matchNBits (<value1>) without setting
parameter dftShowWaveForm to 'on' under <tag-name>. Setting
-matchNBits to value '1' for the rule checking purpose

Arguments
 Constraint tag value, <value>

 Illegal value <value1>

 Tag name <tag-name>

Potential Issues
This violation is reported when the following conditions hold true:

 Value of the dftShowWaveForm parameter is not set to on

 The illegal_value constraint uses the -matchNbits <value> argument
under <tag-name> condition. If you have not specified the -
matchNBits argument:
 under a tag defined using define_tag constraint, all bits in the

sequence are checked
 under use_shift, use_capture, or use_captureATspeed, the last bit

value is checked. See Example 3 for more information.

 The value of the -matchNBits argument is greater than 1

The Soc_10 rule does not report this violation message if the tag is defined
using the define_tag command.

Consequences of Not Fixing
92
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Not fixing the violation may result in unexpected code behavior.
93
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
How to Debug and Fix
To fix the violation, set the value of the dftShowWaveForm parameter to on.

Message 3

[INFO] <constraint_message_tag>Node '<node_name>' has valid
value '<current_value> (illegal: <disallowed_value>)' under
<mode>

Arguments
 Name of the constraint_message_tag, if present,

<constraint_message_tag>
 Name of the design node which does not have the illegal value (check

PASSED), <node_name>
 Current value, <current_value>

 Disallowed value, <disallowed_value>

 Name of the 'mode' (simulation condition), <mode>

Potential Issues
This is an informational message. Therefore, there are no potential issues
related to this message.

Consequences of Not Fixing
This is an informational message. Therefore, there are no consequences of
not fixing this message.

How to Debug and Fix
This is an informational message. Therefore, no debug or fix is required.

Example Code and/or Schematic

Example 1

Consider the following sample SGDC file describing the illegal_value
constraint description:

current_design top
 illegal_value -name top.op1 -value 1 -use_shift

test_mode -name in1 -value 1
test_mode -name in2 -value 1

Figure 1 describes the schematic depicting the violation displayed for the
94
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
illegal_value constraint:

FIGURE 1. Violation for the illegal_value constraint

In the above design, in test mode the value at top.op1 is 1. Since, it is
defined as an illegal value in the above defined SGDC description, the
Soc_10 reports the following violation message for the above design:

Node 'top.op1' has illegal value '1'under tag
'use_shift',test.sgdc,2

Example 2

This example illustrates the usage of the -except and -except_type
arguments and the usage of the wildcard characters in the illegal_value
constraint:

Consider the following sample SGDC file describing the illegal_value
constraint description:

current_design top
testmode -name top.clk1 -value 0 -scanshift

illegal_value -type FLIP_FLOP_CLOCK -except_type
top.sub1_1.f1_2:TIED_0_SGDC -value 0 -use_shift -
constraint_message_tag m1
95
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
illegal_value -name "top.sub1_1.f*.q_reg.CP" -except
top.sub1_1.f1_1.q_reg.CP -value 0 -use_shift -
constraint_message_tag m3

Figure 2 describes the schematic depicting the violation displayed for the
illegal_value constraint having the -except, -except_type arguments:

FIGURE 2. Violation for the illegal_value constraint

For the above design, for constraint_message_tag m1, the Soc_10
rule reports the following violation message only for
top.sub1_1.f1_1.q_reg.CP due to the presence of the
except_type condition:

[constraint_message_tag: m1] Node 'top.sub1_1.f1_1.q_reg.CP
(FLIP_FLOP_CLOCK)' has illegal value '0' under tag '-
use_shif',test.sgdc,5

Also, for constraint_message_tag m2, the Soc_10 rule reports the
following violation message only for top.sub1_1.f1_2.q_reg.CP due
to the presence of the except condition

[constraint_message_tag: m3] Node 'top.sub1_1.f1_2.q_reg.CP'
has illegal value '0' under tag '-use_shif',test.sgdc,6
96
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Example 3

Consider the following SGDC description:

current_design top

 illegal_value -name top.op1 -value 1 -tag t1
 -constraint_message_tag m1
 illegal_value -name top.op1 -value 1 -tag t1
 -matchNBits 1 -constraint_message_tag m2
 illegal_value -name top.op1 -value 1 -tag t2
 -constraint_message_tag m3
 illegal_value -name top.op1 -value 1 -tag t2 -matchNBits 1
 -constraint_message_tag m4
 illegal_value -name top.op1 -value 1 -use_shift
 -constraint_message_tag m5
 illegal_value -name top.op1 -value 1 -use_shift
 -matchNBits 1 -constraint_message_tag m6

 define_tag -tag t1 -name in1 -value 101
 define_tag -tag t1 -name in2 -value 1
 define_tag -tag t2 -name in1 -value 1
 define_tag -tag t2 -name in2 -value 1

 test_mode -name top.in1 -value 101
 test_mode -name top.in2 -value 1

The Soc_10 rule reports the following violation message for the message
tags, m2, m3, m4, m5, and m6:

FIGURE 3. Violation messages for message tag, m5

The Soc_10 rule does not report violation message for message tag, m1,
97
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
because it is defined under tag, t1. This is because the value for t1 is
101, which will be matched against -value field in the illegal_value
constraint description for m1.

Default Severity Label

Error

Rule Group

SoC

Reports and Related Files

None
98
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_11
Node must satisfy the specified constraint message tag expression

When to use

Use this rule to perform conditional connectivity and value checks on a
particular node.

Description

The Soc_11 reports violation, if the constraint_message_tag_expression
specified using the require_constraint_message_tag is not met on the
specified design node.

This rule must be run at the end of all other Soc rules so that message
tagging must have happened by then.

Parameter(s)

None

Constraint(s)

require_constraint_message_tag (mandatory): Use this constraint to define
the constraint_message_tag_expression. The
constraint_message_tag_expression must be one or a combination of
constraint_message_tags of the following SGDC commands:
 require_path

 require_value

 require_strict_path

 illegal_value

 illegal_path

Operating Mode

None
99
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Messages & Suggested Fix:

Message 1

[ERROR] Node <node-name> does not have required
constraint_message_tags <constraint_message_tag_expression>.
Present: <constraint_message_tag>, missing:
<constraint_message_tag>

Arguments
 These are nodes name present in the design, <node-name>

 Combination of constraint_message_tag_expression using operator '||'
and '&&', <constraint_message_tag_expression>

 Constraint_message_tag present and missing,
<constraint_message_tag>

Potential Issues
The violation message appears, if at least one constraint_message_tag is
missing from constraint_message_tag_expression.

Consequence of Not Fixing
Not fixing this violation may impact the functionality of the design

How To Debug and Fix
To fix this violation, perform any of the following tasks:
 Check the design for an error

 Check the SGDC file for a missing constraint

Message 2

[INFO] Node <node-name> has required constraint_message_tags
<constraint_message_tag_expression>. Present:
<constraint_message_tag>, missing: <constraint_message_tag>

Arguments
 These are nodes name present in the design, <node-name>

 Combination of constraint_message_tag_expression using operator '||'
and '&&', <constraint_message_tag_expression>

 Constraint_message_tag present and missing,
<constraint_message_tag>

Potential Issues
100
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
The violation message appears, if at least one constraint_message_tag is
missing from constraint_message_tag_expression.

Consequence of Not Fixing
Not fixing this violation may impact the functionality of the design

How To Debug and Fix
To fix this violation, perform any of the following steps:
 Check the design for an error

 Check the SGDC file for a missing constraint

Example Code and/or Schematic

Consider the following SGDC:

current_design top

clock -name clk -testclock
testmode -name rst -value 1

gating_cell -name wb_cgc -clkinTerm clkin -clkoutTerm clkout
-enTerm en -testenTerm te

require_path -from_type INPUT_PORTS -to_type
SCAN_FLIP_FLOP_DATA FLIP_FLOP_DATA LATCH_DATA MUX_SELECT -
constraint_message_tag PORT_CHECK
require_path -from "top.cgc_1.clkout" -to_type
FLIP_FLOP_CLOCK LATCH_ENABLE -constraint_message_tag
CGC_CHECK_1
require_path -from "top.cgc_2.clkout" -to_type
FLIP_FLOP_CLOCK LATCH_ENABLE -constraint_message_tag
CGC_CHECK_2
require_path -from_type LATCH_OUT -to_type FLIP_FLOP_RESET
-constraint_message_tag LATCH_CHECK -report_failure_as_info

illegal_path -from_type BLACK_BOX_OUTPUT -to_type
FLIP_FLOP_DATA -constraint_message_tag BBOX_CHECK -
report_failure_as_info
101
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
require_value -name "top.l_1.out" -value 0
-constraint_message_tag LATCH_VALUE_CHECK
-report_failure_as_info
illegal_value -name "top.d_1.out" -value 1
-constraint_message_tag FLOP_VALUE_CHECK
-report_failure_as_info

require_constraint_message_tag -type LATCH
-constraint_message_tag_expression "LATCH_CHECK:PASS &&
LATCH_VALUE_CHECK:PASS"
require_constraint_message_tag -type LATCH
-constraint_message_tag_expression "LATCH_CHECK:FAIL ||
LATCH_VALUE_CHECK:FAIL"

For the above SGDC, the Soc_11 rule reports the following violation
messages as listed in Table 1:
102
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Default Severity Label

Info/Error

Rule Group

SoC

TABLE 1 Soc_11 Message Examples

Message Rule
Severity

Description

Node 'top.l_1.temp_reg
(LATCH)' does not have
required
constraint_message_tags
'LATCH_CHECK:PASS ||
LATCH_VALUE_CHECK:PASS'
. Present: 'none', Missing:
'LATCH_CHECK:PASS
LATCH_VALUE_CHECK:PASS'

ERROR In the above violation message
the
constraint_message_tag_expressi
on, LATCH_CHECK:PASS ||
LATCH_VALUE_CHECK:PASS, is not met
for design node, top.l1.
It means neither LATCH_CHECK =
PASS nor LATCH_VALUE_CHECK = PASS
constraint_message_tags are
met. If anyone of them meets
then this will be an info message.

Node 'top.l_1.temp_reg
(LATCH)' has required
constraint_message_tags
'LATCH_CHECK:FAIL ||
LATCH_VALUE_CHECK:FAIL'.
Present:
'LATCH_CHECK:FAIL',
Missing:
'LATCH_VALUE_CHECK:FAIL

INFO In the above info message the
constraint_message_tag_expressi
on LATCH_CHECK:FAIL ||
LATCH_VALUE_CHECK:FAIL is met for
design node top.l1. It means
LATCH_CHECK = FAIL
constraint_message_tag is met
and LATCH_VALUE_CHECK = FAIL
constraint_message_tag is not
met. As there is logical OR of
constraint_message_tags so if
anyone of them meets, info
message for Soc_11 is reported.
103
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_12
Node must not have the specified constraint message tag
expression

When to Use

Use this rule to perform conditional connectivity and value checks on a
particular design node.

Description

The Soc_12 rule reports violation, if the
constraint_message_tag_expression specified using the
illegal_constraint_message_tag is met on the design node. This rules must be
run at the end of all other Soc rules so that message tagging must have
happened by then.

Parameter(s)

None

Constraint(s)

require_constraint_message_tag (mandatory): Use this constraint to define
the constraint_message_tag_expression. The
constraint_message_tag_expression must be one or a combination of
constraint_message_tags of the following SGDC commands:
 require_path

 require_value

 require_strict_path

 illegal_value

 illegal_path

Operating Mode

None
104
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Messages and Suggested Fix

Message 1

[ERROR] Node <node-name> has illegal constraint_message_tags
<constraint_message_tag_expression>. Present:
<constraint_message_tag>, missing: <constraint_message_tag>

Arguments
 These are nodes name present in the design, <node-name>

 Combination of constraint_message_tag_expression using operator '||'
and '&&', <constraint_message_tag_expression>

 Constraint_message_tag present and missing,
<constraint_message_tag>

Potential Issues
The violation message appears if at least one
constraint_message_tag is missing from
constraint_message_tag_expression

Consequence of not fixing
Not fixing this violation may impact the functionality of the design.

How To Debug And Fix
To fix this violation, perform any of the following tasks:
 Check the design for an error

 Check the SGDC file for a missing constraint

Message 2

[INFO] Node '<node_name>' has valid constraint_message_tags.
Disallowed: '<disallowed_constraint_message_tag_expression>',
Present: '<present_constraint_message_tag>', Missing:
'<missing_constraint_message_tag>'

Arguments
 Name of the design node which does not have the illegal

constraint_message_tag (check PASSED), <node_name>
 Disallowed constraint_message_tag_expression,

<disallowed_constraint_message_tag_expression>
105
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 constraint_message_tag which are found on the design node,
<present_constraint_message_tag>

 constraint_message_tag which are missing on the design node,
<missing_constraint_message_tag>

Potential Issues
This is an informational message. Therefore, there are no potential issues
related to this message.

Consequences of Not Fixing
This is an informational message. Therefore, there are no consequences of
not fixing this message.

How to Debug and Fix
This is an informational message. Therefore, no debug or fix is required.

Example Code and/or Schematic

Consider the following SGDC:

current_design top

clock -name clk -testclock
testmode -name rst -value 1

gating_cell -name wb_cgc -clkinTerm clkin -clkoutTerm clkout
-enTerm en -testenTerm te

require_path -from_type INPUT_PORTS -to_type
SCAN_FLIP_FLOP_DATA FLIP_FLOP_DATA LATCH_DATA MUX_SELECT -
constraint_message_tag PORT_CHECK

require_path -from "top.cgc_1.clkout" -to_type
FLIP_FLOP_CLOCK LATCH_ENABLE -constraint_message_tag
CGC_CHECK_1

require_path -from "top.cgc_2.clkout" -to_type
FLIP_FLOP_CLOCK LATCH_ENABLE -constraint_message_tag
CGC_CHECK_2
106
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
require_path -from_type LATCH_OUT -to_type FLIP_FLOP_RESET
-constraint_message_tag LATCH_CHECK -report_failure_as_info

illegal_path -from_type BLACK_BOX_OUTPUT -to_type
FLIP_FLOP_DATA -constraint_message_tag BBOX_CHECK -
report_failure_as_info

require_value -name "top.l_1.out" -value 0
-constraint_message_tag LATCH_VALUE_CHECK
-report_failure_as_info

illegal_value -name "top.d_1.out" -value 1
-constraint_message_tag FLOP_VALUE_CHECK
-report_failure_as_info

illegal_constraint_message_tag -type ICG -
constraint_message_tag_expression "CGC_CHECK_1:PASS ||
CGC_CHECK_2:FAIL

illegal_constraint_message_tag -type FLIP_FLOP -
constraint_message_tag_expression "BBOX_CHECK:FAIL &&
PORT_CHECK:PASS"

For the above SGDC, the Soc_12 rule reports the following error message:

Node 'top.cgc_2.clkout (ICG)' has illegal
constraint_message_tags 'CGC_CHECK_1:PASS || CGC_CHECK_2:FAIL'.
Present: 'CGC_CHECK_2:FAIL', Missing: 'CGC_CHECK_1:PASS'

In the above violation message the constraint_message_tag
CGC_CHECK_1:PASS || CGC_CHECK_2:FAIL is met for design node
top.cgc_2. It means in logical or operation of CGC_CHECK_1:PASS
and CGC_CHECK_2:FAIL, the constraint_message_tag CGC_CHECK_2
= FAIL is met.

Default Severity Label

Info/Error
107
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Rule Group

SoC
108
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Soc_14
Ensure that specified nets are having stable values under specified
condition

When to Use

Use this rule to detect the sources of instability.

Description

The Soc_14 rule reports violation for nets having unstable values under
specified condition.

It reports violation for nodes that have unstable values, specified using the
require_stable_value constraint.

Parameter(s)

dft_soc_unstable_value_sources: Default value is none. Set the value of the
parameter to all, blackbox, hanging_net, or port to specify
unstable value sources, other than scannable flip-flops and latches, that
needs to be reported by the Soc_14 rule.

Constraint(s)

 require_stable_value (mandatory): Use this constraint to specify nodes
whose value is expected to be stable.

 force_stable_value (optional): Use this constraint to specify nodes that
will have a stable value during the scan shift and capture modes.

 force_unstable_value (optional): Use this constraint to specify nodes that
will have an unstable value during the scan shift and capture modes.

Operating Mode

None

Messages and Suggested Fix

[ERROR] <constraint_message_tag> Node '<node_name>' may not
have stable value under <tag> due to possible unstable
source(s) <distribution>

Arguments
109
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
 name of the node in the design, <node_name>

 Condition, <tag>

 Details of unstable sources, <distribution>

Potential Issues
A violation message is reported when a node has unstable value under a
specified condition.

Consequence of not fixing
Scan flip-flops are considered sources of corruption as their values toggle
during the shift and capture mode. The impact of such corruption source
propagate through multiple stages of non-scan flops in the fan-in logic
cone of the target node (target for stability) until it reaches the node or it is
blocked (for example, by the test_mode constraint).

How To Debug And Fix
Review the path from unstable sources to the design nodes specified using
the require_stable_value constraint.

Example Code and/or Schematic

Currently Unavailable

Default Severity Label

Error

Rule Group

SoC
110
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Atspeed_21
Check required pulse pattern at specified node.

Rule Description

The Atspeed_21 rule reports a violation, if the simulated result pattern at a
specified node does not match the expected pulse pattern.

Constraints

require_pulse (Mandatory)

define_tag (Mandatory)

Rule Parameters

dftUseOffStateOfClockInClockPropagation

Operating Mode

Define_tag

Message Details

Message 1

[constraint_message_tag:<value>] Node <node_name> (specified as
-type) has mismatched value <actual_pulse_pattern> between
<after_bit> and <before_bit> bits under tag <tag_name>.
[REASON: <reason>]. Expected pulse pattern is
<expected_pulse_pattern>

Message 2

[constraint_message_tag:<value>] Node <node_name> (specified as
-name) has mismatched value <actual_pulse_pattern> between
<after_bit> and <before_bit> bits under tag <tag_name>.
[REASON: <reason>]. Expected pulse pattern is
<expected_pulse_pattern>

Message 3

[constraint_message_tag:<value>] Ignoring require_pulse
constraint as neither -name nor
-type field is specified.
111
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Arguments

 Constraint tag value, <value>

 Name of the net or heir term where pulse is expected, <node_name>

 Pulse pattern obtained at specified node, <actual_pulse_pattern>

 After bit as specified in require_pulse constraint, <after_bit>

 Before bit as specified in require_pulse constraint, <before_bit>

 Tag_name of the define_tag constraint under which simulation is to be
done, <tag_name>

 Short description of reason for mismatch, <reason>. The following lists
the possible reasons for mismatch;

 No pulse found, in case there are don't care bits present during the
pulse

 Pulse's low-width is too long

 Pulse's low-width is too short

 Pulse's high-width is too long

 Pulse's high-width is too short

 Mismatch in rear padding

 Expected pulse pattern as specified in the require_pulse constraint,
<expected_pulse_pattern>

Location

The file and the line where the require_pulse constraint is specified.

Schematic highlight

Specified node with the obtained and the expected value.

Rule Severity

Warning

Example

The following example illustrates the padding. Consider the following
definition of require_pulse constraint:

require_pulse -name xyz -tag sim_1\\two pulses required
112
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
-pulse 2
-after 5 -before 25 \\observation period
-high_width 3 -low_width 2 \\pulse characteristics

Also, consider the following obtained pulse:

The bits in bold are in pulse observation period (-after 5, -before 25). The
underline bits are the actual pulses, which are same as described by the
require_pulse constraint (2 pulses of 3 high bit and 2 low bit).
However, the above pulse causes a violation because there is a mismatch
in rear padding at bit 22. Rear padding starts after complete pulse is
matched and ends at the end of observation period. So, there should not
be any pulse in rear padding. If bit 22 is 0, then Atspeed_21 does not
report any violation. Instead, the Info_Atspeed_21 violation message is
generated stating that two pulses are obtained during this period.
In case the require_pulse is constraint defined with -count 2, -
high_width 3, and -low_width 2, there are following two possible
pulses to match depending on whether you start from low bits or high bits:

0 0 1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1 0 0

In the above example, during pulse observation window, the first transition
is encountered at bit 11. So, bits from 6 to 10 are part of front padding.
Since front padding is sufficiently large to accommodate low_width, we
assume pulse starts from bit 9 with low bits first and ends at bit 18.

If there are insufficient number of bits in front padding, then bit 11 is
considered as pulse starting point.

NOTE: There is no limit on length of front padding or rear padding. However, ensure that
there is no transition in the rear padding.
113
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Also, if the design generates more pattern than expected, then there is a
mismatch in rear padding. To avoid the Atspeed_21 violation, reduce the
length of rear padding by adjusting -before <value>.
114
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Info_Atspeed_21
Expected pulse pattern at the specified node achieved.

Rule Description

The Info_Atspeed_21 rule reports nodes, which are specified in the
following format:

require_pulse
-tag <tagName>
-name <nodeNames>
-count <no_of_pulses>
-after <observe_after_bit_number>
-before <observe_before_bit_number>
-high_width <number_of_bits_during_high_phase>
-low_width <number_of_bits_during_low_phase>

Also, the nodes should have the same pulse pattern obtained between
after and before bits, when the conditions specified by <tagName> are
simulated.

Constraints

require_pulse (Mandatory)

define_tag (Mandatory)

Rule Parameters

dftUseOffStateOfClockInClockPropagation

Operating Mode

Define_tag

Message Details

Message 1

[constraint_message_tag:<value>] Node <node_name> (specified as
-type) received <number_of_pulses> (<pulse_pattern>) under tag
<tag_name>
115
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Message 2

[constraint_message_tag:<value>] Node <node_name> (specified as
-name) received <number_of_pulses> (<pulse_pattern>) under tag
<tag_name>

Message 3

[constraint_message_tag:<value>] Ignoring require_pulse
constraint as neither -name nor
-type field is specified

Arguments

 Constraint tag value, <value>

 Name of net/heir term where pulse is expected, <node_name>

 Number of pulses obtained, <number_of_pulses>

 Pulse pattern obtained between after and before bits, <pulse_pattern>

 Tag name of the define_tag constraint under which simulation is to be
done, <tag_name>

Location

The file and the line where the require_pulse constraint is specified

Schematic highlight

The schematic for the Info_Atspeed_21 rule highlights the following:
 Specified node with obtained pulse pattern.

 Expected pulse pattern between after and before bits, specified in the
require_pulse constraint on the net

 Actual simulation value between the after and before bits resulting from
the simulation of the defineTag condition specified in the
require_pulse constraint.

Rule Severity

Info
116
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Diagnose_testmode
Display instances that block the testmode propagation.

When to Use

Use this rule to identify the devices that block testmode signal propagation
in shift and capture modes.

Description

The Diagnose_testmode rule generates the SpyGlass Explorer highlight
information for the devices that block testmode signal propagation.

The Diagnose_testmode rule generates separate displays for scan shift
mode and capture mode.

Testmode simulation is optional. If one or more test_mode constraints are
present, then the combinational instances and their blocking pins that
block the testmode signal in shift or capture mode are highlighted.

Default Weight

10

Language

Verilog, VHDL

Parameter(s)

 showPowerGroundValue: The default value of the parameter is on. Set the
value of the parameter to off to hide the simulation value of net due to
power/ground.

 dftShowWaveForm: The default value of the parameter is off. Set the
value of the parameter to on to display the waveform information for the
Diagnose_testmode rule. The waveform information is displayed in the
SpyGlass Explorer’s Waveform Viewer.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

Constraint(s)

test_mode (optional): Use this constraint to specify the set of conditions,
117
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
both pins and values, that when simulated, will force the circuit in test
mode.

Operating Mode

Scanshift, Capture

Messages and Suggested Fix

Message 1

When a blocked testmode signal <sig-name> has been found in a design
unit <du-name> specified as current_design under <mode-name>
mode and the corresponding highlight information has been generated, the
Diagnose_testmode rule generates the following message:

[INFO] Instances through which testmode '<sig-name>' signal
doesn't propagate in <mode-name> mode for design '<du-name>' is
displayed

Where <mode-name> can be shift or capture.

Potential Issues
A violation is reported when other path is not properly sensitized with
test_mode.

Consequences of Not Fixing
Not fixing the violation may result in improper test_mode propagation
leading to unscannable flip-flops and reduced coverage.

How to Debug and Fix
For information on debugging, click How to Debug and Fix.

Message 2

In case, there are no testmode constraints present for design unit <du-
name> specified as current_design, the Diagnose_testmode rule
generates the following messages depending on the mode for which the
testmode constraints are missing:

[INFO] Constraint 'testmode -capture' missing in design '<du-
name>'

Constraint 'testmode -shift' missing in design '<du-name>'

Potential Issues
118
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
A violation is reported when a test mode constraint is missing.

Consequences of Not Fixing
Not fixing the violation may result in false violation on other SpyGlass DFT
rules.

How to Debug and Fix
View the Incremental Schematic for the violation message. The
Incremental Schematic shows the terminal blocking the testmode
propagation under the shift/capture mode. Overlay (Auxiliary violation
mode) the Info_testmode rule under the shift/capture mode. This helps in
identifying the blocked simulation value.

When the number of nodes reported is more than 100, the Hierarchy
button on the Incremental Schematic Window menu bar is enabled.
Clicking this button displays the hierarchical representation of the number
of nodes reported. For more information on this option, refer to Viewing
Flat Data Hierarchically section in the SpyGlass DFT Rules Reference Guide.

No fix is required as this is an informational rule.

Example Code and/or Schematic

Currently Unavailable

Default Severity Label

Info

Rule Group

Informational Rules

Reports and Related Files

No related reports or files.
119
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Info_testmode
Display testmode simulation results

When to Use

Use this rule to display testmode simulation results for both scanshift and
capture.

Description

The Info_testmode rule displays all signals with non-x values in testmode
scanshift, capture, and functional mode.

NOTE: The functional mode will be simulated on top of 'Power - Ground' mode and it will be
displayed when the SpyGlass DFT DSM product is run along with the SpyGlass DFT
product.

The Info_testmode rule generates one violation message each for scanshift
and capture conditions.

The Info_testmode rule also allows back-referencing from the Schematic
Windows to the SpyGlass Design Constraints file (displayed in the Source
Window).

Prerequisites

The Info_testmode rule runs only if any power or ground connections exist
or if testmode signals are defined.

Default Weight

10

Language

Verilog, VHDL

Method
Simulate power and ground and any available testmode conditions. For each
displayed item, the value for that net is back-annotated at the source and at all sinks
as follows:
if simulation result = 1 then display "1" on the net
if simulation result = 0 then display "0" on the net

Vectors (multiple bits in the same bus) are merged into a single line on the
schematic.
120
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Parameter(s)

 showPowerGroundValue: The default value is on. Set the value of the
parameter to off to hide the power/ground simulation values of a net.

 dftShowForcedValues: The default value is on. Set the value of the
parameter to off to hide the user enforced values, which are displayed
with a F in the bracket.

 dftShowWaveForm: The default value is off. Set the value of the
parameter to on to enable the generation of waveform information
(displayed in the SpyGlass Explorer’s Waveform Viewer) by the
Info_testmode rule.

 dftUseOffStateOfClockInClockPropagation: The default value of the
parameter is on. Set the value of the parameter to off so that clock lines
are kept at X during shift, capture, or atspeed mode simulation.

Constraint(s)

test_mode (optional): Use this constraint to specify the set of conditions,
both pins and values, that when simulated, will force the circuit in test
mode.

Operating Mode

Scanshift, Capture

Messages and Suggested Fix

Message 1

[INFO] 'shift mode' simulation value for design '<du-name>' is
displayed

Arguments

To view the list of message arguments, click Arguments.

Potential Issues
Since this is an informational message, there are no potential issues
related to this violation.

Consequences of Not Fixing
Since this is an informational message, there is no implicit impact of this
message.
121
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix.

Message 2

[INFO] 'capture mode' simulation value for design '<du-name>'
is displayed

Arguments
To view the list of message arguments, click Arguments.

Potential Issues
Since this is an informational message, there are no potential issues
related to this violation.

Consequences of Not Fixing
Since this is an informational message, there is no implicit impact of this
message.

How to Debug and Fix
For more information on debugging and fixing the violation, click How to
Debug and Fix

Message 3

In case, no testmode specifications is found for a design unit
<du-name>, the Info_testmode rule generates one of the following
messages depending on the mode for which the testmode specifications
are missing:

[INFO] Constraint 'test_mode -capture' missing in design <du-
name>

[INFO] Constraint 'test_mode -shift' missing in design <du-
name>

Arguments

Parent design unit name, <du-name>

Potential Issues
Since this is an informational message, there are no potential issues
related to this violation.

Consequences of Not Fixing
122
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Since this is an informational message, there is no implicit impact of this
message.

How to Debug and Fix
The Info_testmode rule helps in debugging the violations of the Async_07,
Clock_11, and Latch_08 rules. It is informative rule, and hence, requires
no debug.

 Use the scanshift rule message when diagnosing scannability problems
(for example, the Clock_11 rule) and the capture rule message when
diagnosing capture problems.

Simulation value for the circuit when shift and capture simulation modes
are simulated.

When the number of nodes reported is more than 100, the Hierarchy
button on the Incremental Schematic Window menu bar is enabled.
Clicking this button displays the hierarchical representation of the number
of nodes reported. For more information on this option, refer to Viewing
Flat Data Hierarchically section in the SpyGlass DFT Rules Reference Guide.

Coloring Scheme

The Info_testmode rule uses the following color scheme in the
schematics:

No fix is required as this is an informational rule.

Example Code and/or Schematic

Currently Unavailable

Default Severity Label

Info

Rule Group

Information Rules

Color Meaning of the Color
Dark Blue Net having simulation value 1
Light Red Net having simulation value 0
123
Synopsys, Inc.

Overview

Rules in SpyGlass Connectivity Verify
Reports and Related Files

No related reports or files.
124
Synopsys, Inc.

Appendix:
SGDC Constraints
SGDC Concepts
SpyGlass Design Constraints (SGDC) provides additional design
information that is not apparent in an RTL.

In addition, you can restrict SpyGlass analysis to certain objects in a design
by specifying these objects by using SGDC commands.
125
Synopsys, Inc.

SpyGlass Design Constraints

Appendix: SGDC Constraints
SpyGlass Design Constraints
The following table lists the SGDC commands used by SpyGlass
Connectivity Verify product:

SpyGlass Connectivity Verify Product
atspeed_clock_frequency clock define_tag
force_ta illegal_path illegal_value
module_pin require_constraint_messa

ge_tag
require_path

require_pulse require_strict_path require_structure
require_value test_mode
126
Synopsys, Inc.

List of Topics

About This Book ... 7
Conditional Connectivity Checks ... 15
Connectivity Checks.. 14
Contents of This Book ... 8
dftAllowNonXValueAtStartOfSensitizedPathInSoc_02 ... 20
dft_allow_path_from_enable_to_cgc_clkout ... 20
dft_conn_check_allow_non_x_value_on_sensitizable_path................................. 20
dft_conn_check_allow_trace .. 21
dft_conn_check_handle_rtl_negedge .. 21
dft_connectivity_check_summary ... 31
dft_infer_clock_gating_cell .. 22
dft_max_files_in_a_directory ... 23
dft_require_path_fail_limit... 23
dft_require_path_invalid_limit.. 24
dft_require_path_pass_limit .. 24
dft_require_path_stop_check_on_pass_count .. 24
dftShowForcedValues.. 25
dftShowWaveForm ... 26
dft_soc_unstable_value_sources .. 25
dft_treat_latches_with_X_on_enable_as_combinational_for_soc_path_checks 27
dftUseOffStateOfClockInClockPropagation.. 27
Features of SpyGlass Connectivity Verify product.. 12
Goals in the SpyGlass Connectivity Verify Product ... 18
Licensing Requirements... 17
Overview... 12
Overview... 35
Reports in SpyGlass Connectivity Verify Product ... 30
Require Value Checks ... 13
SGDC Concepts.. 125
showPowerGroundValue .. 28
SpyGlass Connectivity Verify Rule Parameters .. 19
SpyGlass Design Constraints.. 126
Types of Connectivity Verification Checks... 13
Typographical Conventions .. 9
127
Synopsys, Inc.

128
Synopsys, Inc.

	SpyGlass® Connectivity Verify Rules Reference Guide
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	Using the Rules in the SpyGlass Connectivity Verify Product
	Overview
	Features of SpyGlass Connectivity Verify product
	Types of Connectivity Verification Checks

	Licensing Requirements
	Goals in the SpyGlass Connectivity Verify Product
	SpyGlass Connectivity Verify Rule Parameters
	dft_allow_path_from_enable_to_cgc_clkout
	dft_conn_check_allow_non_x_value_on_sensitizable_path
	dft_conn_check_allow_trace
	dft_conn_check_handle_rtl_negedge
	dft_infer_clock_gating_cell
	dft_require_path_fail_limit
	dft_require_path_pass_limit
	dft_require_path_stop_check_on_pass_count
	dft_soc_unstable_value_sources
	dftShowWaveForm
	dft_treat_latches_with_X_on_enable_as_combinational_fo r_soc_path_checks
	dftUseOffStateOfClockInClockPropagation
	showPowerGroundValue

	Reports in SpyGlass Connectivity Verify Product

	Rules in SpyGlass Connectivity Verify
	Overview
	Soc_01
	Soc_02
	Soc_04
	Soc_07
	Soc_08
	Soc_09
	Soc_01_Info
	Soc_02_Info
	Soc_07_Info
	Soc_10
	Soc_11
	Soc_12
	Soc_14
	Atspeed_21
	Info_Atspeed_21
	Diagnose_testmode
	Info_testmode

	Appendix: SGDC Constraints
	SGDC Concepts
	SpyGlass Design Constraints

